

The world is parallel.

If we want to write programs that behave as other objects behave in

the real world, then these programs will have a concurrent structure.

Use a language that was designed for writing concurrent applications,

and development becomes a lot easier.

Erlang programs model how we think and interact.

Joe Armstrong

Programming Erlang
Software for a Concurrent World

Joe Armstrong

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 armstrongonsoftware.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-9343560-0-X

ISBN-13: 978-1-934356-00-5

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

P1.1 printing, July, 2007

Version: 2007-7-17

http://www.pragmaticprogrammer.com

Contents
1 Begin 12

1.1 Road Map . 13

1.2 Begin Again . 16

1.3 Acknowledgments . 17

2 Getting Started 18

2.1 Overview . 18

2.2 Installing Erlang . 21

2.3 The Code in This Book 23

2.4 Starting the Shell . 24

2.5 Simple Integer Arithmetic 25

2.6 Variables . 27

2.7 Floating-Point Numbers 32

2.8 Atoms . 33

2.9 Tuples . 35

2.10 Lists . 38

2.11 Strings . 40

2.12 Pattern Matching Again 41

3 Sequential Programming 43

3.1 Modules . 43

3.2 Back to Shopping . 49

3.3 Functions with the Same Name and Different Arity . . 52

3.4 Funs . 52

3.5 Simple List Processing 58

3.6 List Comprehensions . 61

3.7 Arithmetic Expressions 64

3.8 Guards . 65

3.9 Records . 69

3.10 case and if Expressions 72

3.11 Building Lists in Natural Order 73

3.12 Accumulators . 74

CONTENTS 6

4 Exceptions 76

4.1 Exceptions . 76

4.2 Raising an Exception . 77

4.3 try...catch . 78

4.4 catch . 81

4.5 Improving Error Messages 82

4.6 Programming Style with try...catch 82

4.7 Catching Every Possible Exception 83

4.8 Old- and New-Style Exception Handling 84

4.9 Stack Traces . 84

5 Advanced Sequential Programming 86

5.1 BIFs . 87

5.2 Binaries . 87

5.3 The Bit Syntax . 89

5.4 Miscellaneous Short Topics 98

6 Compiling and Running Your Program 118

6.1 Starting and Stopping the Erlang Shell 118

6.2 Modifying the Development Environment 119

6.3 Different Ways to Run Your Program 122

6.4 Automating Compilation with Makefiles 127

6.5 Command Editing in the Erlang Shell 130

6.6 Getting Out of Trouble 131

6.7 When Things Go Wrong 131

6.8 Getting Help . 134

6.9 Tweaking the Environment 135

6.10 The Crash Dump . 136

7 Concurrency 137

8 Concurrent Programming 141

8.1 The Concurrency Primitives 142

8.2 A Simple Example . 143

8.3 Client-Server—An Introduction 144

8.4 How Long Does It Take to Create a Process? 148

8.5 Receive with a Timeout 150

8.6 Selective Receive . 153

8.7 Registered Processes . 154

8.8 How Do We Write a Concurrent Program? 156

8.9 A Word About Tail Recursion 156

8.10 Spawning with MFAs . 157

8.11 Problems . 158

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=6

CONTENTS 7

9 Errors in Concurrent Programs 159

9.1 Linking Processes . 159

9.2 An on_exit Handler . 160

9.3 Remote Handling of Errors 162

9.4 The Details of Error Handling 162

9.5 Error Handling Primitives 170

9.6 Sets of Linked Processes 172

9.7 Monitors . 172

9.8 A Keep-Alive Process . 173

10 Distributed Programming 175

10.1 The Name Server . 177

10.2 The Distribution Primitives 182

10.3 Libraries for Distributed Programming 185

10.4 The Cookie Protection System 186

10.5 Socket-Based Distribution 187

11 IRC Lite 191

11.1 Message Sequence Diagrams 193

11.2 The User Interface . 194

11.3 Client-Side Software . 195

11.4 Server-Side Software . 199

11.5 Running the Application 203

11.6 The Chat Program Source Code 204

11.7 Exercises . 211

12 Interfacing Techniques 212

12.1 Ports . 213

12.2 Interfacing an External C Program 214

12.3 open_port . 220

12.4 Linked-in Drivers . 221

12.5 Notes . 225

13 Programming with Files 226

13.1 Organization of the Libraries 226

13.2 The Different Ways of Reading a File 227

13.3 The Different Ways of Writing to a File 235

13.4 Directory Operations . 239

13.5 Finding Information About a File 240

13.6 Copying and Deleting Files 241

13.7 Bits and Pieces . 241

13.8 A Find Utility . 242

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=7

CONTENTS 8

14 Programming with Sockets 245

14.1 Using TCP . 246

14.2 Control Issues . 255

14.3 Where Did That Connection Come From? 258

14.4 Error Handling with Sockets 259

14.5 UDP . 260

14.6 Broadcasting to Multiple Machines 263

14.7 A SHOUTcast Server . 265

14.8 Digging Deeper . 272

15 ETS and DETS: Large Data Storage Mechanisms 273

15.1 Basic Operations on Tables 274

15.2 Types of Table . 275

15.3 ETS Table Efficiency Considerations 276

15.4 Creating an ETS Table 277

15.5 Example Programs with ETS 279

15.6 DETS . 284

15.7 What Haven’t We Talked About? 287

15.8 Code Listings . 288

16 OTP Introduction 291

16.1 The Road to the Generic Server 292

16.2 Getting Started with gen_server 301

16.3 The gen_server Callback Structure 305

16.4 Code and Templates . 309

16.5 Digging Deeper . 312

17 Mnesia: The Erlang Database 313

17.1 Database Queries . 313

17.2 Adding and Removing Data in the Database 317

17.3 Mnesia Transactions . 319

17.4 Storing Complex Data in Tables 323

17.5 Table Types and Location 325

17.6 Creating the Initial Database 328

17.7 The Table Viewer . 329

17.8 Digging Deeper . 329

17.9 Listings . 331

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=8

CONTENTS 9

18 Making a System with OTP 335

18.1 Generic Event Handling 336

18.2 The Error Logger . 339

18.3 Alarm Management . 346

18.4 The Application Servers 348

18.5 The Supervision Tree . 351

18.6 Starting the System . 354

18.7 The Application . 358

18.8 File System Organization 360

18.9 The Application Monitor 361

18.10 Digging Deeper . 361

18.11 How Did We Make That Prime? 363

19 Multicore Prelude 365

20 Programming Multicore CPUs 367

20.1 How to Make Programs Run Efficiently on a Multicore CPU368

20.2 Parallelizing Sequential Code 372

20.3 Small Messages, Big Computations 375

20.4 mapreduce and Indexing Our Disk 379

20.5 Growing Into the Future 389

A Documenting Our Program 390

A.1 Erlang Type Notation . 391

A.2 Tools That Use Types . 394

B Erlang on Microsoft Windows 396

B.1 Erlang . 396

B.2 Fetch and Install MinGW 396

B.3 Fetch and Install MSYS 397

B.4 Install the MSYS Developer Toolkit (Optional) 397

B.5 Emacs . 397

C Resources 399

C.1 Online Documentation 399

C.2 Books and Theses . 400

C.3 Link Collections . 400

C.4 Blogs . 400

C.5 Forums, Online Communities, and Social Sites 401

C.6 Conferences . 401

C.7 Projects . 401

C.8 Bibliography . 402

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=9

CONTENTS 10

D A Socket Application 403

D.1 An Example . 403

D.2 How lib_chan Works . 406

D.3 The lib_chan Code . 409

E Miscellaneous 419

E.1 Analysis and Profiling Tools 419

E.2 Debugging . 422

E.3 Tracing . 431

E.4 Dynamic Code Loading 435

F Module and Function Reference 439

F.1 Module: application . 439

F.2 Module: base64 . 440

F.3 Module: beam_lib . 441

F.4 Module: c . 441

F.5 Module: calendar . 443

F.6 Module: code . 444

F.7 Module: dets . 445

F.8 Module: dict . 448

F.9 Module: digraph . 449

F.10 Module: digraph_utils 450

F.11 Module: disk_log . 451

F.12 Module: epp . 452

F.13 Module: erl_eval . 453

F.14 Module: erl_parse . 453

F.15 Module: erl_pp . 454

F.16 Module: erl_scan . 454

F.17 Module: erl_tar . 454

F.18 Module: erlang . 455

F.19 Module: error_handler 464

F.20 Module: error_logger . 464

F.21 Module: ets . 465

F.22 Module: file . 468

F.23 Module: file_sorter . 470

F.24 Module: filelib . 471

F.25 Module: filename . 471

F.26 Module: gb_sets . 472

F.27 Module: gb_trees . 474

F.28 Module: gen_event . 475

F.29 Module: gen_fsm . 476

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=10

CONTENTS 11

F.30 Module: gen_sctp . 477

F.31 Module: gen_server . 478

F.32 Module: gen_tcp . 478

F.33 Module: gen_udp . 479

F.34 Module: global . 479

F.35 Module: inet . 480

F.36 Module: init . 481

F.37 Module: io . 481

F.38 Module: io_lib . 482

F.39 Module: lib . 483

F.40 Module: lists . 483

F.41 Module: math . 487

F.42 Module: ms_transform 487

F.43 Module: net_adm . 487

F.44 Module: net_kernel . 488

F.45 Module: os . 488

F.46 Module: proc_lib . 489

F.47 Module: qlc . 489

F.48 Module: queue . 490

F.49 Module: random . 491

F.50 Module: regexp . 492

F.51 Module: rpc . 492

F.52 Module: seq_trace . 494

F.53 Module: sets . 494

F.54 Module: shell . 495

F.55 Module: slave . 495

F.56 Module: sofs . 496

F.57 Module: string . 500

F.58 Module: supervisor . 501

F.59 Module: sys . 501

F.60 Module: timer . 502

F.61 Module: win32reg . 503

F.62 Module: zip . 504

F.63 Module: zlib . 504

Index 507

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=11

Chapter 1

Begin
Oh no! Not another programming language! Do I have to learn yet another

one? Aren’t there enough already?

I can understand your reaction. There are loads of programming lan-

guages, so why should you learn another?

Here are five reasons why you should learn Erlang:

• You want to write programs that run faster when you run them on

a multicore computer.

• You want to write fault-tolerant applications that can be modified

without taking them out of service.

• You’ve heard about “functional programming” and you’re wonder-

ing whether the techniques really work.

• You want to use a language that has been battle tested in real

large-scale industrial products that has great libraries and an

active user community.

• You don’t want to wear your fingers out by typing lots of lines of

code.

Can we do these things? In Section 20.3, Running SMP Erlang, on

page 376, we’ll look at some programs that have linear speed-ups when

we run them on a thirty-two-core computer. In Chapter 18, Making a

System with OTP, we’ll look at how to make highly reliable systems that

have been in round-the-clock operation for years. In Section 16.1, The

Road to the Generic Server, on page 292, we’ll talk about techniques for

writing servers where the software can be upgraded without taking the

server out of service.

ROAD MAP 13

In many places we’ll be extolling the virtues of functional programming.

Functional programming forbids code with side effects. Side effects and

concurrency don’t mix. You can have sequential code with side effects,

or you can have code and concurrency that is free from side effects.

You have to choose. There is no middle way.

Erlang is a language where concurrency belongs to the programming

language and not the operating system. Erlang makes parallel program-

ming easy by modeling the world as sets of parallel processes that can

interact only by exchanging messages. In the Erlang world, there are

parallel processes but no locks, no synchronized methods, and no pos-

sibility of shared memory corruption, since there is no shared memory.

Erlang programs can be made from thousands to millions of extremely

lightweight processes that can run on a single processor, can run on a

multicore processor, or can run on a network of processors.

1.1 Road Map

• Chapter 2, Getting Started, on page 18 is a quick “jump in and

swim around” chapter.

• Chapter 3, Sequential Programming, on page 43 is the first of two

chapters on sequential programming. It introduces the ideas of

pattern matching and of nondestructive assignments.

• Chapter 4, Exceptions, on page 76 is about exception handling. No

program is error free. This chapter is about detecting and handling

errors in sequential Erlang programs.

• Chapter 5, Advanced Sequential Programming, on page 86 is the

second chapter on sequential Erlang programming. It takes up

some advanced topics and fills in the remaining details of sequen-

tial programming.

• Chapter 6, Compiling and Running Your Program, on page 118

talks about the different ways of compiling and running your pro-

gram.

• In Chapter 7, Concurrency, on page 137, we change gears. This

is a nontechnical chapter. What are the ideas behind our way of

programming? How do we view the world?

• Chapter 8, Concurrent Programming, on page 141 is about concur-

rency. How do we create parallel processes in Erlang? How do pro-

cesses communicate? How fast can we create parallel processes?

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=13

ROAD MAP 14

• Chapter 9, Errors in Concurrent Programs, on page 159 talks about

errors in parallel programs. What happens when a process fails?

How can we detect process failure, and what can we do about it?

• Chapter 10, Distributed Programming, on page 175 takes up dis-

tributed programming. Here we’ll write several small distributed

programs and show how to run them on a cluster of Erlang nodes

or on free-standing hosts using a form of socket-based distribu-

tion.

• Chapter 11, IRC Lite, on page 191 is a pure application chapter.

We tie together the themes of concurrency and socket-based distri-

bution with our first nontrivial application: a mini IRC-like client

and server program.

• Chapter 12, Interfacing Techniques, on page 212 is all about inter-

facing Erlang to foreign-language code.

• Chapter 13, Programming with Files, on page 226 has numerous

examples of programming with files.

• Chapter 14, Programming with Sockets, on page 245 shows you

how to program with sockets. We’ll look at how to build sequential

and parallel servers in Erlang. We finish this chapter with the sec-

ond sizable application: a SHOUTcast server. This is a streaming

media server, which can be used to stream MP3 data using the

SHOUTcast protocol.

• Chapter 15, ETS and DETS: Large Data Storage Mechanisms, on

page 273 describes the low-level modules ets and dets. ets is a

module for very fast, destructive, in-memory hash table opera-

tions, and dets is designed for low-level disk storage.

• Chapter 16, OTP Introduction, on page 291 is an introduction to

OTP. OTP is a set of Erlang libraries and operating procedures

for building industrial-scale applications in Erlang. This chap-

ter introduces the idea of a behavior (a central concept in OTP).

Using behaviors, we can concentrate on the functional behavior

of a component, while allowing the behavior framework to solve

the nonfunctional aspects of the problem. The framework might,

for example, take care of making the application fault tolerant or

scalable, whereas the behavioral callback concentrates on the spe-

cific aspects of the problem. The chapter starts with a general dis-

cussion on how to build your own behaviors and then moves to

describing the gen_server behavior that is part of the Erlang stan-

dard libraries.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=14

ROAD MAP 15

• Chapter 17, Mnesia: The Erlang Database, on page 313 talks about

the Erlang database management system (DBMS) Mnesia. Mnesia

is an integrated DBMS with extremely fast, soft, real-time

response times. It can be configured to replicate its data over sev-

eral physically separated nodes to provide fault-tolerant operation.

• Chapter 18, Making a System with OTP, on page 335 is the second

of the OTP chapters. It deals with the practical aspects of sewing

together an OTP application. Real applications have a lot of small

messy details. They must be started and stopped in a consistent

manner. If they crash or if subcomponents crash, they must be

restarted. We need error logs so that if they do crash, we can figure

out what happened after the event. This chapter has all the nitty-

gritty details of making a fully blown OTP application.

• Chapter 19, Multicore Prelude, on page 365 is a short introduction

to why Erlang is suited for programming multicore computers. We

talk in general terms about shared memory and message passing

concurrency and why we strongly believe that languages with no

mutable state and concurrency are ideally suited to programming

multicore computers.

• Chapter 20, Programming Multicore CPUs, on page 367 is about

programming multicore computers. We talk about the techniques

for ensuring that an Erlang program will run efficiently on multi-

core computers. We introduce a number of abstractions for speed-

ing up sequential programs on multicore computers. Finally we

perform some measurements and develop our third major pro-

gram, a full-text search engine. To write this, we first implement

a function called mapreduce—this is a higher-order function for

parallelizing a computation over a set of processing elements.

• Appendix A, on page 390, describes the type system used to doc-

ument Erlang functions.

• Appendix B, on page 396, describes how to set up Erlang on the

Windows operating system (and how to configure emacs on all

operating systems).

• Appendix C, on page 399, has a catalog of Erlang resources.

• Appendix D, on page 403, describes lib_chan, which is a library for

programming socket-based distribution.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=15

BEGIN AGAIN 16

• Appendix E, on page 419, looks at techniques for analyzing, pro-

filing, debugging, and tracing your code.

• Appendix F, on page 439, has one-line summaries of the most

used modules in the Erlang standard libraries.

1.2 Begin Again

Once upon a time a programmer came across a book describing a funny

programming language. It had an unfamiliar syntax, equal didn’t mean

equals, and variables weren’t allowed to vary. Worse, it wasn’t even

object-oriented. The programs were, well, different....

Not only were the programs different, but the whole approach to pro-

gramming was different. The author kept on and on about concurrency

and distribution and fault tolerance and about a method of programming

called concurrency-oriented programming—whatever that might mean.

But some of the examples looked like fun. That evening the programmer

looked at the example chat program. It was pretty small and easy to

understand, even if the syntax was a bit strange. Surely it couldn’t be

that easy.

The basic program was simple, and with a few more lines of code, file

sharing and encrypted conversations became possible. The programmer

started typing....

What’s This All About?

It’s about concurrency. It’s about distribution. It’s about fault toler-

ance. It’s about functional programming. It’s about programming a dis-

tributed concurrent system without locks and mutexes but using only

pure message passing. It’s about speeding up your programs on multi-

core CPUs. It’s about writing distributed applications that allow people

to interact with each other. It’s about design methods and behaviors

for writing fault-tolerant and distributed systems. It’s about modeling

concurrency and mapping those models onto computer programs, a

process I call concurrency-oriented programming.

I had fun writing this book. I hope you have fun reading it.

Now go read the book, write some code, and have fun.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=16

ACKNOWLEDGMENTS 17

1.3 Acknowledgments

Many people have helped in the preparation of this book, and I’d like to

thank them all here.

First, Dave Thomas, my editor: Dave has been teaching me to write

and subjecting me to a barrage of never-ending questions. Why this?

Why that? When I started the book, Dave said my writing style was like

“standing on a rock preaching.” He said, “I want you to talk to people,

not preach.” The book is better for it. Thanks, Dave.

Next, I’ve had a little committee of language experts at my back. They

helped me decide what to leave out. They also helped me clarify some

of the bits that are difficult to explain. Thanks here (in no particular

order) to Björn Gustavsson, Robert Virding, Kostis Sagonas, Kenneth

Lundin, Richard Carlsson, and Ulf Wiger.

Thanks also to Claes Vikström who provided valuable advice on Mnesia,

to Rickard Green on SMP Erlang, and to Hans Nilsson for the stemming

algorithm used in the text-indexing program.

Sean Hinde and Ulf Wiger helped me understand how to use various

OTP internals, and Serge Aleynikov explained active sockets to me so

that I could understand.

Helen Taylor (my wife) has proofread several chapters and provided

hundreds of cups of tea at appropriate moments. What’s more, she put

up with my rather obsessive behavior for the last seven months. Thanks

also to Thomas and Claire; and thanks to Bach and Handel, Zorro and

Daisy, and Doris, who have helped me stay sane, have purred when

stroked, and have gotten me to the right addresses.

Finally, to all the readers of the beta book who filled in errata requests:

I have cursed you and praised you. When the first beta went out, I was

unprepared for the entire book to be read in two days and for you to

shred every page with your comments. But the process has resulted in

a much better book than I had imagined. When (as happened several

times) dozens of people said, “I don’t understand this page,” then I was

forced to think again and rewrite the material concerned. Thanks for

your help, everybody.

Joe Armstrong

May 2007

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=17

Chapter 2

Getting Started
2.1 Overview

As with every learning experience, you’ll pass through a number of

stages on your way to Erlang mastery. Let’s look at the stages we cover

in this book and the things you’ll experience along the way.

Stage 1: I’m Not Sure...

As a beginner, you’ll learn how to start the system, run commands in

the shell, compile simple programs, and become familiar with Erlang.

(Erlang is a small language, so this won’t take you long.)

Let’s break this down into smaller chunks. As a beginner, you’ll do the

following:

• Make sure you have a working Erlang system on your computer.

• Learn to start and stop the Erlang shell.

• Discover how to enter expressions into the shell, evaluate them,

and understand the results.

• See how to create and modify programs using your favorite text

editor.

• Experiment with compiling and running your programs in the

shell.

Stage 2: I’m Comfortable with Erlang

By now you’ll have a working knowledge of the language. If you run

into language problems, you’ll have the background to make sense of

Chapter 5, Advanced Sequential Programming, on page 86.

OVERVIEW 19

At this stage you’ll be familiar with Erlang, so we’ll move on to more

interesting topics:

• You’ll pick up more advanced uses of the shell. The shell can do a

lot more than we let on when you were first learning it. (For exam-

ple, you can recall and edit previous expressions. This is covered

in Section 6.5, Command Editing in the Erlang Shell, on page 130.)

• You’ll start learning the libraries (called modules in Erlang). Most

of the programs I write can be written using five modules: lists, io,

file, dict, and gen_tcp; therefore, we’ll be using these modules a lot

throughout the book.

• As your programs get bigger, you’ll need to learn how to automate

compiling and running them. The tool of choice for this is make.

We’ll see how to control the process by writing a makefile. This is

covered in Section 6.4, Automating Compilation with Makefiles, on

page 127.

• The bigger world of Erlang programming uses an extensive library

collection called OTP.1 As you gain experience with Erlang, you’ll

find that knowing OTP will save you lots of time. After all, why

reinvent the wheel if someone has already written the functional-

ity you need? We’ll learn the major OTP behaviors, in particular

gen_server. This is covered in Section 16.2, Getting Started with

gen_server, on page 301.

• One of the main uses of Erlang is writing distributed programs,

so now is the time to start experimenting. You can start with the

examples in Chapter 10, Distributed Programming, on page 175,

and you can extend them in any way you want.

Stage 2.5: I May Learn Some Optional Stuff

You don’t have to read every chapter in this book the first time through.

Unlike most of the languages you have probably met before, Erlang is

a concurrent programming language—this makes it particularly suited

for writing distributed programs and for programming modern multi-

core and SMP2 computers. Most Erlang programs will just run faster

when run on a multicore or SMP machine.

Erlang programming involves using a programming paradigm that I call

concurrency-oriented programming (COP).

1. Open Telecom Platform.
2. Symmetric multiprocessing.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=19

OVERVIEW 20

When you use COP, you break down problems and identify the natural

concurrency in their solutions. This is an essential first step in writing

any concurrent program.

Stage 3: I’m an Erlang Master

By now you’ve mastered the language and can write some useful dis-

tributed programs. But to achieve true mastery, you need to learn even

more:

• Mnesia. The Erlang distribution comes complete with a built-in

fast, replicated database called Mnesia. It was originally designed

for telecom applications where performance and fault tolerance

are essential. Today it is used for a wide range of nontelecom appli-

cations.

• Interfacing to code written in other programming languages, and

using linked-in drivers. This is covered in Section 12.4, Linked-in

Drivers, on page 221.

• Full use of the OTP behaviors-building supervision trees, start

scripts, and so on. This is covered in Chapter 18, Making a System

with OTP, on page 335.

• How to run and optimize your programs for a multicore computer.

This is covered in Chapter 20, Programming Multicore CPUs, on

page 367.

The Most Important Lesson

There’s one rule you need to remember throughout this book: program-

ming is fun. And I personally think programming distributed applica-

tions such as chat programs or instant messaging applications is a

lot more fun than programming conventional sequential applications.

What you can do on one computer is limited, but what you can do

with networks of computers becomes unlimited. Erlang provides an

ideal environment for experimenting with networked applications and

for building production-quality systems.

To help you get started with this, I’ve mixed some real-world applica-

tions in among the technical chapters. You should be able to take these

applications as starting points for your own experiments. Take them,

modify them, and deploy them in ways that I hadn’t imagined, and I’ll

be very happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=20

INSTALLING ERLANG 21

2.2 Installing Erlang

Before you can do anything, you have to make sure you have a func-

tioning version of Erlang on your system. Go to a command prompt,

and type erl:

$ erl

Erlang (BEAM) emulator version 5.5.2 [source] ... [kernel-poll:false]

Eshell V5.5.2 (abort with ^G)

1>

On a Windows system, the command erl works only if you have installed

Erlang and changed the PATH environment variable to refer to the pro-

gram. Assuming you’ve installed the program in the standard way,

you’ll invoke Erlang through the Start > All Programs > Erlang OTP

menu. In Appendix B, on page 396, I’ll describe how I’ve rigged Erlang

to run with MinGW and MSYS.

Note: I’ll show the banner (the bit that says “Erlang (BEAM) ... (abort

with ∧G)”) only occasionally. This information is useful only if you want

to report a bug. I’m just showing it here so you won’t get worried if you

see it and wonder what it is. I’ll leave it out in most of the examples

unless it’s particularly relevant.

If you see the shell banner, then Erlang is installed on your system.

Exit from it (press Ctrl+G, followed by the letter Q, and then hit Enter

or Return).3 Now you can skip ahead to Section 2.3, The Code in This

Book, on page 23.

If instead you get an error saying erl is an unknown command, you’ll

need to install Erlang on your box. And that means you’ll need to make

a decision—do you want to use a prebuilt binary distribution, use a

packaged distribution (on OS X), build Erlang from the sources, or use

the Comprehensive Erlang Archive Network (CEAN)?

Binary Distributions

Binary distributions of Erlang are available for Windows and for Linux-

based operating systems. The instructions for installing a binary sys-

tem are highly system dependent. So, we’ll go through these system by

system.

3. Or give the command q() in the shell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=21

INSTALLING ERLANG 22

Windows

You’ll find a list of the releases at http://www.erlang.org/download.html.

Choose the entry for the latest version, and click the link for the Win-

dows binary—this points to a Windows executable. Click the link, and

follow the instructions. This is a standard Windows install, so you

shouldn’t have any problems.

Linux

Binary packages exist for Debian-based systems. On a Debian-based

system, issue the following command:

> apt-get install erlang

Installing on Mac OS X

As a Mac user, you can install a prebuilt version of Erlang using the

MacPorts system, or you can build Erlang from source. Using MacPorts

is marginally easier, and it will handle updates over time. However,

MacPorts can also be somewhat behind the times when it comes to

Erlang releases. During the initial writing up this book, for example,

the MacPorts version of Erlang was two releases behind the then cur-

rent version. For this reason, I recommend you just bite the bullet and

install Erlang from source, as described in the next section. To do this,

you’ll need to make sure you have the developer tools installed (they’re

on the DVD of software that came with your machine).

Building Erlang from Source

The alternative to a binary installation is to build Erlang from the

sources. There is no particular advantage in doing this for Windows

systems since each new release comes complete with Windows binaries

and all the sources. But for Mac and Linux platforms, there can be

some delay between the release of a new Erlang distribution and the

availability of a binary installation package. For any Unix-like OS, the

installation instructions are the same:

1. Fetch the latest Erlang sources.4 The source will be in a file with

a name such as otp_src_R11B-4.tar.gz (this file contains the fourth

maintenance release of version 11 of Erlang).

4. From http://www.erlang.org/download.html.

http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=22

THE CODE IN THIS BOOK 23

2. Unpack, configure, make, and install as follows:

$ tar -xzf otp_src_R11B-4.tar.gz

$ cd otp_src_R11B-4

$./configure

$ make

$ sudo make install

Note: You can use the command ./configure - -help to review the available

configuration options before building the system.

Use CEAN

The Comprehensive Erlang Archive Network (CEAN) is an attempt to

gather all the major Erlang applications in one place with a common

installer. The advantage of using CEAN is that it manages not only

the basic Erlang system but a large number of packages written in

Erlang. This means that as well as being able to keep your basic Erlang

installation up-to-date, you’ll be able to maintain your packages as well.

CEAN has precompiled binaries for a large number of operating systems

and processor architectures. To install a system using CEAN, go to

http://cean.process-one.net/download/, and follow the instructions. (Note

that some readers have reported that CEAN might not install the Erlang

compiler. If this happens to you, then start the Erlang shell and give the

command cean:install(compiler). This will install the compiler.)

2.3 The Code in This Book

Most of the code snippets we show come from full-length, running

examples, which you can download.5 To help you find your way, if a

code listing in this book can be found in the download, there’ll be a bar

above the snippet (just like the one here):

Download shop1.erl

-module(shop1).

-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) * N + total(T);

total([]) -> 0.

This bar contains the path to the code within the download. If you’re

reading the PDF version of this book and your PDF viewer supports

hyperlinks, you can click the bar, and the code should appear in a

browser window.

5. From http://pragmaticprogrammer.com/titles/jaerlang/code.html.

http://cean.process-one.net/download/
http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://pragmaticprogrammer.com/titles/jaerlang/code.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=23

STARTING THE SHELL 24

2.4 Starting the Shell

Now let’s get started. We can interact with Erlang using an interactive

tool called the shell. Once we’ve started the shell, we can type expres-

sions, and the shell will display their values.

If you’ve installed Erlang on your system (as described in Section 2.2,

Installing Erlang, on page 21), then the Erlang shell, erl, will also be

installed. To run it, open a conventional operating system command

shell (cmd on Windows or a shell such as bash on Unix-based systems).

At the command prompt, start the Erlang shell by typing erl:

Ê $ erl

Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with ^G)
Ë 1> % I'm going to enter some expressions in the shell ..
Ì 1> 20 + 30.
Í 50
Î 2>

Let’s look at what we just did:

Ê This is the Unix command to start the Erlang shell. The shell

responds with a banner telling you which version of Erlang you

are running.

Ë The shell printed the prompt 1>, and then we typed a comment.

The percent (%) character indicates the start of a comment. All

the text from the percent sign to the end of line is treated as a

comment and is ignored by the shell and the Erlang compiler.

Ì The shell repeated the prompt 1> since we hadn’t entered a com-

plete command. At this point we entered the expression 20 + 30,

followed by a period and a carriage return. (Beginners often for-

get to enter the period. Without it, Erlang won’t know that we’ve

finished our expression, and we won’t see the result displayed.)

Í The shell evaluated the expression and printed the result (50, in

this case).

Î The shell printed out another prompt, this time for command

number 2 (because the command number increases each time a

new command is entered).

Have you tried running the shell on your system? If not, please stop and

try it now. If you just read the text without typing in the commands, you

might think that you understand what is happening, but you will not

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=24

SIMPLE INTEGER ARITHMETIC 25

have transferred this knowledge from your brain to your fingertips—

programming is not a spectator sport. Just like any form of athletics,

you have to practice a lot.

Enter the expressions in the examples exactly as they appear in the

text, and then try experimenting with the examples and changing them

a bit. If they don’t work, stop and ask yourself what went wrong. Even

an experienced Erlang programmer will spend a lot of time interacting

with the shell.

As you get more experienced, you’ll learn that the shell is a really pow-

erful tool. Previous shell commands can be recalled (with Ctrl+P and

Ctrl+N) and edited (with emacs-like editing commands). This is covered

in Section 6.5, Command Editing in the Erlang Shell, on page 130. Best

of all, when you start writing distributed programs, you will find that

you can attach a shell to a running Erlang system on a different Erlang

node in a cluster or even make an secure shell (ssh) connection directly

to an Erlang system running on a remote computer. Using this, you can

interact with any program on any node in a system of Erlang nodes.

Warning: You can’t type everything you read in this book into the shell.

In particular, you can’t type the code that’s listed in the Erlang program

files into the shell. The syntactic forms in an .erl file are not expressions

and are not understood by the shell. The shell can evaluate only Erlang

expressions and doesn’t understand anything else. In particular, you

can’t type module annotations into the shell; these are things that start

with a hyphen (such as -module, -export, and so on).

The remainder of this chapter is in the form of a number of short dia-

logues with the Erlang shell. A lot of the time I won’t explain all the

details of what is going on, since this would interrupt the flow of the

text. In Section 5.4, Miscellaneous Short Topics, on page 98, I’ll fill in

the details.

2.5 Simple Integer Arithmetic

Let’s evaluate some arithmetic expressions:

1> 2 + 3 * 4.

14

2> (2 + 3) * 4.

20

Important: You’ll see that this dialogue starts at command number 1

(that is the shell printed, 1>). This means we have started a new Erlang

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=25

SIMPLE INTEGER ARITHMETIC 26

Is the Shell Not Responding?

If the shell didn’t respond after you typed a command, then
you might have forgotten to end the command with a period
followed by carriage return (called dot-whitespace).

Another thing that might have gone wrong is that you’ve
started to type something that is quoted (that is, starts with a
single or double quote mark) but have not yet typed a match-
ing closing quote mark that should be the same as the open
quote mark.

If any of these happen, then the best thing to do is type an
extra closing quote, followed by dot-whitespace.

If things go really wrong and the system won’t respond at all,
then just press Ctrl+C (on Windows, Ctrl+Break). You’ll see the
following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

Now just press A to abort the current Erlang session.

Advanced: You can start and stop multiple shells. See Sec-
tion 6.7, The Shell Isn’t Responding, on page 133 for details.

shell. Every time you see a dialogue that starts with 1>, you’ll have to

start a new shell if you want to exactly reproduce the examples in the

book. When an example starts with a prompt number that is greater

than 1, this means the shell session is continued from the previous

examples so you don’t have to start a new shell.

Note: If you’re going to type these examples into the shell as you read

the text (which is absolutely the best way to learn), then you might

like to take a quick peek at Section 6.5, Command Editing in the Erlang

Shell, on page 130.

You’ll see that Erlang follows the normal rules for arithmetic expres-

sions, so 2 + 3 * 4 means 2 + (3 * 4) and not (2 + 3) * 4.

Erlang uses arbitrary-sized integers for performing integer arithmetic.

In Erlang, integer arithmetic is exact, so you don’t have to worry about

arithmetic overflows or not being able to represent an integer in a cer-

tain word size.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=26

VARIABLES 27

Variable Notation

Often we will want to talk about the values of particular vari-
ables. For this I’ll use the notation Var 7→ Value, so, for example,
A 7→ 42 means that the variable A has the value 42. When there
are several variables, I’ll write {A 7→ 42, B 7→ true ... }, meaning
that A is 42, B is true, and so on.

Why not try it? You can impress your friends by calculating with very

large numbers:

3> 123456789 * 987654321 * 112233445566778899 * 998877665544332211.

13669560260321809985966198898925761696613427909935341

You can enter integers in a number of ways.6 Here’s an expression that

uses base 16 and base 32 notation:

4> 16#cafe * 32#sugar.

1577682511434

2.6 Variables

How can you store the result of a command so that you can use it later?

That’s what variables are for. Here’s an example:

1> X = 123456789.

123456789

What’s happening here? First, we assign a value to the variable X; then,

the shell prints the value of the variable.

Note: All variable names must start with an uppercase letter.

If you want to see the value of a variable, just enter the variable name:

2> X.

123456789

Now that X has a value, you can use it:

3> X*X*X*X.

232305722798259244150093798251441

6. See Section 5.4, Integers, on page 111.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=27

VARIABLES 28

Single Assignment Is Like Algebra

When I went to school, my math teacher said, “If there’s an X
in several different parts in the same equation, then all the X s
mean the same thing.” That’s how we can solve equations: if
we know that X+Y=10 and X-Y=2, then X will be 6 and Y will be
4 in both equations.

But when I learned my first programming language, we were
shown stuff like this:

X = X + 1

Everyone protested, saying “you can’t do that!” But the
teacher said we were wrong, and we had to unlearn what we
learned in math class. X isn’t a math variable: it’s like a pigeon
hole/little box....

In Erlang, variables are just like they are in math. When you asso-
ciate a value with a variable, you’re making an assertion—a
statement of fact. This variable has that value. And that’s that.

However, if you try to assign a different value to the variable X, you’ll

get a somewhat brutal error message:

4> X = 1234.

=ERROR REPORT==== 11-Sep-2006::20:32:49 ===

Error in process <0.31.0> with exit value:

{{badmatch,1234},[{erl_eval,expr,3}]}

** exited: {{badmatch,1234},[{erl_eval,expr,3}]} **

What on Earth is going on here? Well, to explain it, I’m going to have to

shatter two assumptions you have about the simple statement X = 1234:

• First, X is not a variable, at least not in the sense that you’re used

to in languages such as Java and C.

• Second, = is not an assignment operator.

This is probably one of the trickiest areas when you’re new to Erlang,

so let’s spend a couple of pages digging deeper.

Variables That Don’t Vary

Erlang has single assignment variables. As the name suggests, sin-

gle assignment variables can be given a value only once. If you try to

change the value of a variable once it has been set, then you’ll get an

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=28

VARIABLES 29

error (in fact, you’ll get the badmatch error we just saw). A variable that

has had a value assigned to it is called a bound variable; otherwise, it

is called an unbound variable. All variables start off unbound.

When Erlang sees a statement such as X = 1234, it binds the variable X

to the value 1234. Before being bound, X could take any value: it’s just

an empty hole waiting to be filled. However, once it gets a value, it holds

on to it forever.

At this point, you’re probably wondering why we use the name variable.

This is for two reasons:

• They are variables, but their value can be changed only once (that

is, they change from being unbound to having a value).

• They look like variables in conventional programming languages,

so when we see a line of code that starts like this:
X = ...

then our brains say, “Aha, I know what this is; X is a variable, and

= is an assignment operator.” And our brains are almost right: X is

almost a variable, and = is almost an assignment operator.

Note: The use of ellipses (...) in Erlang code examples just means

“code I’m not showing.”

In fact, = is a pattern matching operator, which behaves like assignment

when X is an unbound variable.

Finally, the scope of a variable is the lexical unit in which it is defined.

So if X is used inside a single function clause, its value does not “escape”

to outside the clause. There are no such things as global or private

variables shared by different clauses in the same function. If X occurs

in many different functions, then all the values of X are different.

Pattern Matching

In most languages, = denotes an assignment statement. In Erlang, how-

ever, = denotes a pattern matching operation. Lhs = Rhs really means this:

evaluate the right side (Rhs), and then match the result against the pat-

tern on the left side (Lhs).

Now a variable, such as X, is a simple form of pattern. As we said ear-

lier, variables can be given a value only once. The first time we say X =

SomeExpression, Erlang says to itself, “What can I do to make this state-

ment true?” Because X doesn’t yet have a value, it can bind X to the

value of SomeExpression, the statement becomes valid, and everyone is

happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=29

VARIABLES 30

Then, if at a later stage we say X = AnotherExpression, then this will suc-

ceed only if SomeExpression and AnotherExpression are identical. Here’s an

example of this:

Line 1 1> X = (2+4).
- 6
- 2> Y = 10.
- 10
5 3> X = 6.
- 6
- 4> X = Y.
- =ERROR REPORT==== 27-Oct-2006::17:25:25 ===
- Error in process <0.32.0> with exit value:

10 {{badmatch,10},[{erl_eval,expr,3}]}
- 5> Y = 10.
- 10
- 6> Y = 4.
- =ERROR REPORT==== 27-Oct-2006::17:25:46 ===

15 Error in process <0.37.0> with exit value:
- {{badmatch,4},[{erl_eval,expr,3}]}
- 7> Y = X.
- =ERROR REPORT==== 27-Oct-2006::17:25:57 ===
- Error in process <0.40.0> with exit value:

20 {{badmatch,6},[{erl_eval,expr,3}]}

Here’s what happened: In line 1 the system evaluated the expression

2+4, and the answer was 6. So after this line, the shell has the following

set of bindings: {X 7→ 6}. After line 3 has been evaluated, we have the

bindings {X 7→ 6, Y 7→ 10}.

Now we come to line 5. Just before we evaluate the expression, we know

that X 7→ 6, so the match X = 6 succeeds.

When we say X = Y in line 7, our bindings are {X 7→ 6, Y 7→ 10}, and

therefore the match fails and an error message is printed.

Expressions 4 to 7 either succeed or fail depending upon the values of

X and Y. Now is a good time to stare hard at these and make sure you

really understand them before going any further.

At this stage it may seem that I am belaboring the point. All the patterns

to the left of the “=” are just variables, either bound or unbound, but

as we’ll see later, we can make arbitrarily complex patterns and match

them with the “=” operator. I’ll be returning to this theme after we have

introduced tuples and lists, which are used for storing compound data

items.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=30

VARIABLES 31

Why Does Single Assignment Make My Programs Better?

In Erlang a variable is just a reference to a value—in the Erlang imple-

mentation, a bound variable is represented by a pointer to an area of

storage that contains the value. This value cannot be changed.

The fact that we cannot change a variable is extremely important and

is unlike the behavior of variables in imperative languages such as C or

Java.

Let’s see what can happen when you’re allowed to change a variable.

Let’s define a variable X as follows:

1> X = 23.

23

Now we can use X in computations:

2> Y = 4 * X + 3.

95

Now suppose we could change the value of X (horrors):

3> X = 19.

Fortunately, Erlang doesn’t allow this. The shell complains like crazy

and says this:

=ERROR REPORT==== 27-Oct-2006::13:36:24 ===

Error in process <0.31.0> with exit value:

{{badmatch,19},[{erl_eval,expr,3}]}

This just means that X cannot be 19 since we’ve already said it was 23.

But just suppose we could do this; then the value of Y would be wrong in

the sense that we can no longer interpret statement 2 as an equation.

Moreover, if X could change its value at many different points in the

program and something goes wrong, it might be difficult saying which

particular value of X had caused the failure and at exactly which point

in the program it had acquired the wrong value.

In Erlang, variable values cannot be changed after they have been set.

This simplifies debugging. To understand why this is true, we must ask

ourselves what an error is and how an error makes itself known.

One rather common way that you discover that your program is incor-

rect is that a variable has an unexpected value. If this is the case, then

you have to discover exactly the point in your program where the vari-

able acquired the incorrect value. If this variable changed values many

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=31

FLOATING-POINT NUMBERS 32

Absence of Side Effects Means We Can Parallelize Our Programs

The technical term for memory areas that can be modified is
mutable state. Erlang is a functional programming language
and has nonmutable state.

Much later in the book we’ll look at how to program multicore
CPUs. When it comes to programming multicore CPUs, the con-
sequences of having nonmutable state are enormous.

If you use a conventional programming language such as C
or Java to program a multicore CPU, then you will have to
contend with the problem of shared memory. In order not to
corrupt shared memory, the memory has to be locked while
it is accessed. Programs that access shared memory must not
crash while they are manipulating the shared memory.

In Erlang, there is no mutable state, there is no shared mem-
ory, and there are no locks. This makes it easy to parallelize our
programs.

times and at many different points in your program, then finding out

exactly which of these changes was incorrect can be extremely difficult.

In Erlang there is no such problem. A variable can be set only once and

thereafter never changed. So once we know which variable is incorrect,

we can immediately infer the place in the program where the variable

became bound, and this must be where the error occurred.

At this point you might be wondering how it’s possible to program with-

out variables. How can you express something like X = X + 1 in Erlang?

The answer is easy. Invent a new variable whose name hasn’t been used

before (say X1), and write X1 = X + 1.

2.7 Floating-Point Numbers

Let’s try doing some arithmetic with floating-point numbers:

1> 5/3.

1.66667

2> 4/2.

2.00000

3> 5 div 3.

1

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=32

ATOMS 33

4> 5 rem 3.

2

5> 4 div 2.

2

6> Pi = 3.14159.

3.14159

7> R = 5.

5

8> Pi * R * R.

78.5397

Don’t get confused here. In line 1 the number at the end of the line is

the integer 3. The period signifies the end of the expression and is not

a decimal point. If I had wanted a floating-point number here, I’d have

written 3.0.

“/” always returns a float; thus, 4/2 evaluates to 2.0000 (in the shell). N

div M and N rem M are used for integer division and remainder; thus, 5

div 3 is 1, and 5 rem 3 is 2.

Floating-point numbers must have a decimal point followed by at least

one decimal digit. When you divide two integers with “/”, the result is

automatically converted to a floating-point number.

2.8 Atoms

In Erlang, atoms are used to represent different non-numerical con-

stant values.

If you’re used to enumerated types in C or Java, then you will already

have used something very similar to atoms whether you realize it or

not.

C programmers will be familiar with the convention of using symbolic

constants to make their programs self-documenting. A typical C pro-

gram will define a set of global constants in an include file that consists

of a large number of constant definitions; for example, there might be

a file glob.h containing this:

#define OP_READ 1

#define OP_WRITE 2

#define OP_SEEK 3

...

#define RET_SUCCESS 223

...

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=33

ATOMS 34

Typical C code using such symbolic constants might read as follows:

#include "glob.h"

int ret;

ret = file_operation(OP_READ, buff);

if(ret == RET_SUCCESS) { ... }

In a C program the values of these constants are not interesting; they’re

interesting here only because they are all different and they can be

compared for equality.

The Erlang equivalent of this program might look like this:

Ret = file_operation(op_read, Buff),

if

Ret == ret_success ->

...

In Erlang, atoms are global, and this is achieved without the use of

macro definitions or include files.

Suppose you want to write a program that manipulates days of the

week. How would you represent a day in Erlang? Of course, you’d use

one of the atoms monday, tuesday,

Atoms start with lowercase letters, followed by a sequence of alphanu-

meric characters or the underscore (_) or at (@) sign.7 For example: red,

december, cat, meters, yards, joe@somehost, and a_long_name.

Atoms can also be quoted with a single quotation mark (’). Using the

quoted form, we can create atoms that start with uppercase letters

(which otherwise would be interpreted as variables) or that contain

nonalphanumeric characters. For example: ’Monday’, ’Tuesday’, ’+’, ’*’,

’an atom with spaces’. You can even quote atoms that don’t need to be

quoted, so ’a’ means exactly the same as a.

The value of an atom is just the atom. So if you give a command that is

just an atom, the Erlang shell will print the value of that atom:

1> hello.

hello

It may seem slightly strange talking about the value of an atom or the

value of an integer. But because Erlang is a functional programming

language, every expression must have a value. This includes integers

and atoms that are just extremely simple expressions.

7. You might find that a period (.) can also be used in atoms—this is an unsupported

extension to Erlang.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=34

TUPLES 35

2.9 Tuples

Suppose you want to group a fixed number of items into a single entity.

For this you’d use a tuple. You can create a tuple by enclosing the

values you want to represent in curly brackets and separating them

with commas. So, for example, if you want to represent someone’s name

and height, you might use {joe, 1.82}. This is a tuple containing an atom

and a floating-point number.

Tuples are similar to structs in C, with the difference that they are

anonymous. In C a variable P of type point might be declared as follows:

struct point {

int x;

int y;

} P;

You’d access the fields in a C struct using the dot operator. So to set

the x and y values in Point, you might say this:

P.x = 10; P.y = 45;

Erlang has no type declarations, so to create a “point,” we might just

write this:

P = {10, 45}

This creates a tuple and binds it to the variable P. Unlike C, the fields

of a tuple have no names. Since the tuple itself just contains a couple

of integers, we have to remember what it’s being used for. To make it

easier to remember what a tuple is being used for, it’s common to use

an atom as the first element of the tuple, which describes what the

tuple represents. So we’d write {point, 10, 45} instead of {10, 45}, which

makes the program a lot more understandable.8

Tuples can be nested. Suppose we want to represent some facts about

a person—their name, height, foot size, and eye color. We could do this

as follows:

1> Person = {person,

{name, joe},

{height, 1.82},

{footsize, 42},

{eyecolour, brown}}.

8. This way of tagging a tuple is not a language requirement but is a recommended style

of programming.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=35

TUPLES 36

Note how we used atoms both to identify the field and (in the case of

name and eyecolour) to give the field a value.

Creating Tuples

Tuples are created automatically when we declare them and are de-

stroyed when they can no longer be used. Erlang uses a garbage col-

lector to reclaim all unused memory, so we don’t have to worry about

memory allocation.

If you use a variable in building a new tuple, then the new tuple will

share the value of the data structure referenced by the variable. Here’s

an example:

2> F = {firstName, joe}.

{firstName,joe}

3> L = {lastName, armstrong}.

{lastName,armstrong}

4> P = {person, F, L}.

{person,{firstName,joe},{lastName,armstrong}}

If you try to create a data structure with an undefined variable, then

you’ll get an error. So in the next line, if we try to use the variable Q

that is undefined, we’ll get an error:

5> {true, Q, 23, Costs}.

** 1: variable 'Q' is unbound **

This just means that the variable Q is undefined.

Extracting Values from Tuples

Earlier, we said that =, which looks like an assignment statement,

was not actually an assignment statement but was really a pattern

matching operator. You might wonder why we were being so pedantic.

Well, it turns out that pattern matching is fundamental to Erlang and

that it’s used for lots of different tasks. It’s used for extracting values

from data structures, and it’s also used for flow of control within func-

tions and for selecting which messages are to be processed in a parallel

program when you send messages to a process.

If we want to extract some values from a tuple, we use the pattern

matching operator =.

Let’s go back to our tuple that represents a point:

1> Point = {point, 10, 45}.

{point, 10, 45}.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=36

TUPLES 37

Supposing we want to extract the fields of Point into the two variables X

and Y, we do this as follows:

2> {point, X, Y} = Point.

{point,10,45}

3> X.

10

4> Y.

45

In command 2, X is bound to 10 and Y to 45. The value of the expression

Lhs = Rhs is defined to be Rhs, so the shell prints {point,10,45}.

As you can see, the tuples on both sides of the equal sign must have

the same number of elements, and the corresponding elements on both

sides must bind to the same value.

Now suppose you had entered something like this:

5> {point, C, C} = Point.

=ERROR REPORT==== 28-Oct-2006::17:17:00 ===

Error in process <0.32.0> with exit value:

{{badmatch,{point,10,45}},[{erl_eval,expr,3}]}

What happened? The pattern {point, C, C} does not match {point, 10, 45},

since C cannot be simultaneously 10 and 45. Therefore, the pattern

matching fails,9 and the system prints an error message.

If you have a complex tuple, then you can extract values from the tuple

by writing a pattern that is the same shape (structure) as the tuple and

that contains unbound variables at the places in the pattern where you

want to extract values.10

To illustrate this, we’ll first define a variable Person that contains a com-

plex data structure:

1> Person={person,{name,{first,joe},{last,armstrong}},{footsize,42}}.

{person,{name,{first,joe},{last,armstrong}},{footsize,42}}

Now we’ll write a pattern to extract the first name of the person:

2> {_,{_,{_,Who},_},_} = Person.

{person,{name,{first,joe},{last,armstrong}},{footsize,42}}

9. For readers familiar with Prolog: Erlang considers nonmatching a failure and does

not backtrack.
10. This method of extracting variables using pattern matching is called unification and

is used in many functional and logic programming languages.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=37

LISTS 38

And finally we’ll print out the value of Who:

3> Who.

joe

Note that in the previous example we wrote _ as a placeholder for vari-

ables that we’re not interested in. The symbol _ is called an anonymous

variable. Unlike regular variables, several occurrences of _ in the same

pattern don’t have to bind to the same value.

2.10 Lists

We use lists to store variable numbers of things: things you want to

buy at the store, the names of the planets, the results returned by your

prime factors function, and so on.

We create a list by enclosing the list elements in square brackets and

separating them with commas. Here’s how we could create a shopping

list:

1> ThingsToBuy = [{apples,10},{pears,6},{milk,3}].

[{apples,10},{pears,6},{milk,3}]

The individual elements of a list can be of any type, so, for example, we

could write the following:

2> [1+7,hello,2-2,{cost, apple, 30-20},3].

[8,hello,0,{cost,apple,10},3]

Terminology

We call the first element of a list the head of the list. If you imagine

removing the head from the list, what’s left is called the tail of the list.

For example, if we have a list [1,2,3,4,5], then the head of the list is the

integer 1, and the tail is the list [2,3,4,5]. Note that the head of a list can

be anything, but the tail of a list is usually also a list.

Accessing the head of a list is a very efficient operation, so virtually

all list-processing functions start by extracting the head of a list, doing

something to the head of the list, and then processing the tail of the

list.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=38

LISTS 39

Defining Lists

If T is a list, then [H|T] is also a list,11 with head H and tail T. The vertical

bar | separates the head of a list from its tail. [] is the empty list.

Whenever we construct a list using a [...|T] constructor, we should make

sure that T is a list. If it is, then the new list will be “properly formed.” If

T is not a list, then the new list is said to be an “improper list.” Most of

the library functions assume that lists are properly formed and won’t

work for improper lists.

We can add more than one element to the beginning of T by writing

[E1,E2,..,En|T]. For example:

3> ThingsToBuy1 = [{oranges,4},{newspaper,1}|ThingsToBuy].

[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

Extracting Elements from a List

As with everything else, we can extract elements from a list with a

pattern matching operation. If we have the nonempty list L, then the

expression [X|Y] = L, where X and Y are unbound variables, will extract

the head of the list into X and the tail of the list into Y.

So, we’re in the shop, and we have our shopping list ThingsToBuy1—the

first thing we do is unpack the list into its head and tail:

4> [Buy1|ThingsToBuy2] = ThingsToBuy1.

[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

This succeeds with bindings

Buy1 7→ {oranges,4}

and

ThingsToBuy2 7→ [{newspaper,1}, {apples,10}, {pears,6}, {milk,3}].

We go and buy the oranges, and then we could extract the next couple

of items:

5> [Buy2,Buy3|ThingsToBuy3] = ThingsToBuy2.

{newspaper,1},{apples,10},{pears,6},{milk,3}]

This succeeds with Buy2 7→ {newspaper,1}, Buy3 7→ {apples,10}, and ThingsTo-

Buy3 7→ [{pears,6},{milk,3}].

11. Note for LISP programmers: [H|T] is a CONS cell with CAR H and CDR T. In a pattern,

this syntax unpacks the CAR and CDR. In an expression, it constructs a CONS cell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=39

STRINGS 40

2.11 Strings

Strictly speaking, there are no strings in Erlang. Strings are really just

lists of integers. Strings are enclosed in double quotation marks ("), so,

for example, we can write this:

1> Name = "Hello".

"Hello"

Note: In some programming languages, strings can be quoted with

either single or double quotes. In Erlang, you must use double quotes.

"Hello" is just shorthand for the list of integers that represent the indi-

vidual characters in that string.

When the shell prints the value of a list it prints the list as a string, but

only if all the integers in the list represent printable characters:

2> [1,2,3].

[1,2,3]

3> [83,117,114,112,114,105,115,101].

"Surprise"

4> [1,83,117,114,112,114,105,115,101].

[1,83,117,114,112,114,105,115,101].

In expression 2 the list [1,2,3] is printed without any conversion. This is

because 1, 2, and 3 are not printable characters.

In expression 3 all the items in the list are printable characters, so the

list is printed as a string.

Expression 4 is just like expression 3, except that the list starts with a

1, which is not a printable character. Because of this, the list is printed

without conversion.

We don’t need to know which integer represents a particular character.

We can use the “dollar syntax” for this purpose. So, for example, $a is

actually the integer that represents the character a, and so on.

5> I = $s.

115

6> [I-32,$u,$r,$p,$r,$i,$s,$e].

"Surprise"

Character Sets Used in Strings

The characters in a string represent Latin-1 (ISO-8859-1) character

codes. For example, the string containing the Swedish name Håkan will

be encoded as [72,229,107,97,110].

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=40

PATTERN MATCHING AGAIN 41

Note: If you enter [72,229,107,97,110] as a shell expression, you might not

get what you expect:

1> [72,229,107,97,110].

"H\345kan"

What has happened to “Håkan”—where did he go? This actually has

nothing to do with Erlang but with the locale and character code set-

tings of your terminal.

As far as Erlang is concerned, a string is a just a list of integers in

some encoding. If they happen to be printable Latin-1 codes, then they

should be displayed correctly (if your terminal settings are correct).

2.12 Pattern Matching Again

To round off this chapter, we’ll go back to pattern matching one more

time.

The following table has some examples of patterns and terms.12 The

third column of the table, marked Result, shows whether the pattern

matched the term and, if so, the variable bindings that were created.

Look through these examples, and make sure you really understand

them:

Pattern Term Result

{X,abc} {123,abc} Succeeds X 7→ 123

{X,Y,Z} {222,def,"cat"} Succeeds X 7→ 222, Y 7→ def,

Z 7→ "cat"

{X,Y} {333,ghi,"cat"} Fails—the tuples have

different shapes

X true Succeeds X 7→ true

{X,Y,X} {{abc,12},42,{abc,12}} Succeeds X 7→ {abc,12}, Y 7→ 42

{X,Y,X} {{abc,12},42,true} Fails—X cannot be both

{abc,12} and true

[H|T] [1,2,3,4,5] Succeeds H 7→ 1, T 7→ [2,3,4,5]

[H|T] "cat" Succeeds H 7→ 99, T 7→ "at"

[A,B,C|T] [a,b,c,d,e,f] Succeeds A 7→ a, B 7→ b,

C 7→ c, T 7→ [d,e,f]

If you’re unsure about any of these, then try entering a Pattern = Term

expression into the shell to see what happens.

12. A term is just an Erlang data structure.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=41

PATTERN MATCHING AGAIN 42

For example:

1> {X, abc} = {123, abc}.

{123,abc}.

2> X.

123

3> f().

ok

4> {X,Y,Z} = {222,def,"cat"}.

{222,def,"cat"}.

5> X.

222

6> Y.

def

...

Note: The command f() tells the shell to forget any bindings it has. After

this command, all variables become unbound, so the X in line 4 has

nothing to do with the X in lines 1 and 2.

Now that we’re comfortable with the basic data types and with the

ideas of single assignment and pattern matching, so we can step up

the tempo and see how to define functions and modules. Let’s see how

in the next chapter.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=42

Chapter 3

Sequential Programming
In this chapter, we’ll see how to write simple sequential Erlang pro-

grams. In the first section, we’ll talk about modules and functions. We’ll

see how the ideas on pattern matching that we learned about in the

previous chapter are used when we define functions.

Immediately after this, we’ll return to the shopping list that we intro-

duced in the previous chapter, and we’ll write some code to work out

the total cost of the items in the shopping list.

As we go along, we’ll make incremental improvements to the programs

we develop. That way you’ll be able to see how the basic ideas evolve,

and not just be presented with some finished program with no explana-

tion as to how we got there. By understanding the steps involved, you’ll

get some ideas that you can apply to your own programs.

Along the way we’ll be talking about higher-order functions (called

funs) and how they can be used to create your own control abstrac-

tions. Finally, we’ll talk about guards, records, case expressions, and if

expressions.

So, let’s get to work....

3.1 Modules

Modules are the basic unit of code in Erlang. All the functions we write

are stored in modules. Modules are stored in files with .erl extensions.

MODULES 44

Modules must be compiled before the code can be run. A compiled

module has the extension .beam.1

Before we write our first module, we’ll remind ourselves about pattern

matching. All we’re going to do is create a couple of data structures

representing a rectangle and a circle. Then we’re going to unpack these

data structures and extract the sides from the rectangle and the radius

from the circle. Here’s how:

1> Rectangle = {rectangle, 10, 5}.

{rectangle, 10, 5}.

2> Circle = {circle, 2.4}.

{circle,2.40000}

3> {rectangle, Width, Ht} = Rectangle.

{rectangle,10,5}

4> Width.

10

5> Ht.

5

6> {circle, R} = Circle.

{circle,2.40000}

7> R.

2.40000

In lines 1 and 2 we created a rectangle and circle. In lines 3 and 6 we

unpacked the fields of the rectangle and circle using pattern matching.

In lines 4, 5, and 7 we printed the variable bindings that were created

by the pattern matching expressions. After line 7 the variable bindings

in the shell are {Width 7→ 10, Ht 7→ 5, R 7→ 2.4}.

Going from pattern matching in the shell to pattern matching in func-

tions is an extremely small step. Let’s start with a function called area

that computes the areas of rectangles and circles. We’ll put this in a

module called geometry and store the module in the file called geome-

try.erl. The entire module looks like this:

Download geometry.erl

-module(geometry).

-export([area/1]).

area({rectangle, Width, Ht}) -> Width * Ht;

area({circle, R}) -> 3.14159 * R * R.

Don’t worry about the -module and -export annotations (we’ll talk about

these later); for now I want you just to stare at the code for the area

function.

1. Beam is short for Bogdan’s Erlang Abstract Machine; Bogumil (Bogdan) Hausman

wrote an Erlang compiler in 1993 and designed a new instruction set for Erlang.

http://media.pragprog.com/titles/jaerlang/code/geometry.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=44

MODULES 45

The function area consists of two clauses. The clauses are separated

by a semicolon, and the final clause is terminated by dot-whitespace.

Each clause has a head and a body; the head consists of a function

name followed by a pattern (in parentheses), and the body consists of a

sequence of expressions,2 which are evaluated if the pattern in the head

is successfully matched against the calling arguments. The patterns are

matched in the order they appear in the function definition.

Note that the patterns such as {rectangle, Width, Ht} have become part of

the area function definition. Each pattern corresponds to exactly one

clause. Let’s look at the first clause of the area function:

area({rectangle, Width, Ht}) -> Width * Ht;

This is a rule for computing the area of a rectangle. When we call geom-

etry:area({rectangle, 10, 5}), the earlier pattern matches with bindings

{Width 7→ 10, Ht 7→ 5}. Following the match, the code following the arrow

-> is evaluated. This is just Width * Ht, which is 10*5, or 50.

Now we’ll compile and run it:

1> c(geometry).

{ok,geometry}

2> geometry:area({rectangle, 10, 5}).

50

3> geometry:area({circle, 1.4}).

6.15752

So what happened here? In line 1 we give the command c(geometry),

which compiles the code in the file geometry.erl. The compiler returns

{ok,geometry}, which means that the compilation succeeded and that

the module geometry has been compiled and loaded. In lines 2 and 3

we call the functions in the geometry module. Note how we need to

include the module name together with the function name in order to

identify exactly which function we want to call.

Extending the Program

Now suppose we want to extend our program by adding a square to our

geometric objects. We could write this:

area({rectangle, Width, Ht}) -> Width * Ht;

area({circle, R}) -> 3.14159 * R * R;

area({square, X}) -> X * X.

2. See Section 5.4, Expressions and Expression Sequences, on page 106.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=45

MODULES 46

or even this:

area({rectangle, Width, Ht}) -> Width * Ht;

area({square, X}) -> X * X;

area({circle, R}) -> 3.14159 * R * R.

In this case, the order of the clauses doesn’t matter; the program means

the same no matter how the clauses are ordered. This is because the

patterns in the clause are mutually exclusive. This makes writing and

extending programs very easy—we just add more patterns. In gen-

eral, though, clause order does matter. When a function is entered,

the clauses are pattern matched against the calling arguments in the

order they are presented in the file.

Before going any further, you should note the following about the way

the area function is written:

• The function area consists of several different clauses. When we

call the function, execution starts in the first clause that matches

the call arguments.

• Our function does not handle the case where none of the patterns

match—our program will fail with a runtime error. This is deliber-

ate.

Many programming languages, such as C, have only one entry point

per function. If we had written this in C, the code might look like this:

enum ShapeType { Rectangle, Circle, Square };

struct Shape {

enum ShapeType kind;

union {

struct { int width, height; } rectangleData;

struct { int radius; } circleData;

struct { int side;} squareData;

} shapeData;

};

double area(struct Shape* s) {

if(s->kind == Rectangle) {

int width, ht;

width = s->shapeData.rectangleData.width;

ht = s->shapeData.rectangleData.ht;

return width * ht;

} else if (s->kind == Circle) {

...

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=46

MODULES 47

Where Has My Code Gone?

If you download the code examples in this book or want to write
your own examples, you have to make sure that when you run
the compiler from the shell, you are in the right directory so that
the system can find your code.

If you are running on a system with a command shell, then you
should change directories to the directory where your code is
before trying to compile the example code.

If you’re running on Windows with the standard Erlang distribu-
tion, you will need to change directories to where you have
stored your code. Two commands in the Erlang shell can help
you get to the right directory. If you’re lost, pwd() prints the
current working directory. cd(Dir) changes the current working
directory to Dir. You should use forward slashes in the directory
name; for example:

1> cd("c:/work").
c:/work

Tip for Windows users: Create a file called C:/Program

Files/erl5.4.12/.erlang (you might have to change this if your instal-
lation details vary).

Add the following to the file:

io:format("consulting .erlang in ~p~n",
[element(2,file:get_cwd())]).

%% Edit to the directory where you store your code
c:cd("c:/work").
io:format("Now in:~p~n", [element(2,file:get_cwd())]).

Now when you start Erlang, it will automatically change direc-
tory to C:/work.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=47

MODULES 48

The C code performs what is essentially a pattern matching operation

on the argument to the function; only the programmer has to write the

pattern matching code and make sure that it is correct.

In the Erlang equivalent, we merely write the patterns, and the Erlang

compiler generates optimal pattern matching code, which selects the

correct entry point for the program.

We can see what the equivalent code would look like in Java:3

abstract class Shape {

abstract double area();

}

class Circle extends Shape {

final double radius;

Circle(double radius) { this.radius = radius; }

double area() { return Math.PI * radius*radius; }

}

class Rectangle extends Shape {

final double ht;

final double width;

Rectangle(double width, double height) {

this.ht = height;

this.width = width;

}

double area() { return width * ht; }

}

class Square extends Shape {

final double side;

Square(double side) {

this.side = side;

}

double area() { return side * side; }

}

If you compare the Erlang code with Java code, you’ll see that in the

Java program the code for area is in three different places. In the Erlang

program, all the code for area is in the same place.

3. Adapted from http://java.sun.com/developer/Books/shiftintojava/page1.html.

http://java.sun.com/developer/Books/shiftintojava/page1.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=48

BACK TO SHOPPING 49

3.2 Back to Shopping

Recall that we had a shopping list that looked like this:

[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

Now suppose that we’d like to know what our shopping costs. To work

this out, we need to know how much each item in the shopping list

costs. Let’s assume that this information is computed in a module

called shop. Start your favorite text editor, and enter the following into

a file called shop.erl.

Download shop.erl

-module(shop).

-export([cost/1]).

cost(oranges) -> 5;

cost(newspaper) -> 8;

cost(apples) -> 2;

cost(pears) -> 9;

cost(milk) -> 7.

The function cost/14 is made up from five clauses. The head of each

clause contains a pattern (in this case a very simple pattern that is

just an atom). When we evaluate shop:cost(X), then the system will try

to match X against each of the patterns in these clauses. If a match is

found, the code to the right of the -> is evaluated.

The cost/1 function must also be exported from the module; this is nec-

essary if we want to call it from outside the module.5

Let’s test this. We’ll compile and run the program in the Erlang shell:

1> c(shop).

{ok,shop}

2> shop:cost(apples).

2

3> shop:cost(oranges).

5

4> shop:cost(socks).

=ERROR REPORT==== 30-Oct-2006::20:45:10 ===

Error in process <0.34.0> with exit value:

{function_clause,[{shop,cost,[socks]},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]}

4. The notation Name/N means a function called Name with N arguments; N is called the

arity of the function.
5. You can also say -compile(export_all), which exports all the functions in the module.

http://media.pragprog.com/titles/jaerlang/code/shop.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=49

BACK TO SHOPPING 50

In line 1 we compiled the module in the file shop.erl. In lines 2 and 3,

we asked how much apples and oranges cost (results, 2 and 5 units6).

In line 4 we asked what socks cost, but no clause matched, so we got a

pattern matching error, and the system printed an error message.7

Back to the shopping list. Suppose we have a shopping list like this:

1> Buy = [{oranges,4}, {newspaper,1}, {apples,10}, {pears,6}, {milk,3}].

[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

And say we want to calculate the total value of all the items in the list.

One way we do this might be as follows:

Download shop1.erl

-module(shop1).

-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) * N + total(T);

total([]) -> 0.

Let’s experiment with this:

2> c(shop1).

{ok,shop1}

3> shop1:total([]).

0

Why is this 0? It’s because the second clause of total/1 says that total([])

-> 0:

4> shop1:total([{milk,3}]).

21

The function call total([{milk,3}]) matches the clause total([{What,N}|T]} with

T = [].8 After the match, the bindings of the variables are {What 7→ milk, N

7→ 3, T 7→ []}. Then the body of the function (shop:cost(What) * N + total(T)) is

entered. All the variables in the body are replaced by the values in the

bindings. So, the value of the body is now the expression shop:cost(milk)

* 3 + total([]).

shop:cost(milk) is 7, and total([]) is 0; thus, the value of the body is 7*3+0

= 21.

What about a more complex argument?

5> shop1:total([{pears,6},{milk,3}]).

75

6. We’re not really interested in the units here, just that the return values are numbers.
7. The “function_clause” part of the error message means that the function call failed

because no clause matched the arguments.
8. This is because [X] is just shorthand for [X|[]].

http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=50

BACK TO SHOPPING 51

Where Do I put Those Semicolons?

We use three types of punctuation in Erlang.

Commas (,) separate arguments in function calls, data con-
structors, and patterns.

Periods (.) (followed by whitespace) separate entire functions
and expressions in the shell.

Semicolons (;) separate clauses. We find clauses in several con-
texts: in kn function definitions and in case, if, try..catch and
receive expressions.

Whenever we see sets of patterns followed by expressions, we’ll
see semicolons as separators:

Pattern1 ->
Expressions1;

Pattern2 ->
Expressions2;

...

This time the first clause of total matches with the bindings {What 7→

pears, N 7→ 6, T 7→ [{milk,3}]}.The result is shop:cost(pears) * 6 + total([{milk,3}]),

which is 9 * 6 + total([{milk,3}]).

But we worked out before that total([{milk,3}]) was 21, so the final result

is 9*6 + 21 = 75.

Finally:

6> shop1:total(Buy).

123

Before we leave this section, we should take a more detailed look at the

function total. total(L) works by a case analysis of the argument L. There

are two possible cases; L is a nonempty list, or L is an empty list. We

write one clause for each possible case, like this:

total([Head|Tail]) ->

some_function_of(Head) + total(Tail);

total([]) ->

0.

In our case, Head was a pattern {What,N}. When the first clause matches

a nonempty list, it picks out the head from the list, does something with

the head, and then calls itself to process the tail of the list. The second

clause matches when the list has been reduced to an empty list ([]).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=51

FUNCTIONS WITH THE SAME NAME AND DIFFERENT ARITY 52

The function total/1 actually did two different things. First it looked up

the prices of each of the elements in the list, and then it summed all

the prices. We can rewrite total in a way that separates looking up the

values of the individual items and summing the values. The resulting

code will be clearer and easier to understand. To do this we’ll write two

small list-processing functions called sum and map. But before we talk

about these, we have to introduce the idea of funs. After this, we’ll write

sum and map and then an improved version of total.

3.3 Functions with the Same Name and Different Arity

The arity of a function is the number of arguments that the function

has. In Erlang, two functions with the same name and different arity

in the same module represent entirely different functions. They have

nothing to do with each other apart from a coincidental use of the same

name.

By convention Erlang programmers often use functions with the same

name and different arities as auxiliary functions. Here’s an example:

Download lib_misc.erl

sum(L) -> sum(L, 0).

sum([], N) -> N;

sum([H|T], N) -> sum(T, H+N).

The function sum(L) sums the elements of a list L. It makes use of an

auxiliary routine called sum/2, but this could have been called any-

thing. You could have called the auxilliary routine hedgehog/2, and the

meaning of the program would be the same. sum/2 is a better choice of

name, though, since it gives the reader of your program a clue as to

what’s going on and since you don’t have to invent a new name (which

is always difficult).

3.4 Funs

funs are “anonymous” functions. They are called this because they have

no name. Let’s experiment a bit. First we’ll define a fun and assign it to

the variable Z:

1> Z = fun(X) -> 2*X end.

#Fun<erl_eval.6.56006484>

When we define a fun, the Erlang shell prints #Fun<...> where the ... is

some weird number. Don’t worry about this now.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=52

FUNS 53

There’s only one thing we can do with a fun, and that is to apply it to

an argument, like this:

2> Z(2).

4

Z wasn’t a very good name for the fun; a better name would be Double,

which describes what the fun does:

3> Double = Z.

#Fun<erl_eval.6.10732646>

4> Double(4).

8

Funs can have any number of arguments. We can write a function to

compute the hypotenuse of a right-angled triangle, like this:

5> Hypot = fun(X, Y) -> math:sqrt(X*X + Y*Y) end.

#Fun<erl_eval.12.115169474>

6> Hypot(3,4).

5.00000

If the number of arguments is incorrect, you’ll get an error:

7> Hypot(3).

** exited: {{badarity,{#Fun<erl_eval.12.115169474>,[3]}},

[{erl_eval,expr,3}]} **

Why is this error called badarity? Remember that arity is the number

of arguments a function accepts. badarity means that Erlang couldn’t

find a function with the given name (Hypot in this case) that took the

number of parameters we passed—our function takes two parameters,

and we passed just one.

Funs can have several different clauses. Here’s a function that converts

temperatures between Fahrenheit and Centigrade:

8> TempConvert = fun({c,C}) -> {f, 32 + C*9/5};

8> ({f,F}) -> {c, (F-32)*5/9}

8> end.

#Fun<erl_eval.6.56006484>

9> TempConvert({c,100}).

{f,212.000}

10> TempConvert({f,212}).

{c,100.000}

11> TempConvert({c,0}).

{f,32.0000}

Note: The expression in line 8 spans several lines. As we enter this

expression, the shell repeats the prompt “8>” every time we enter a new

line. This means the expression is incomplete and the shell wants more

input.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=53

FUNS 54

Erlang is a functional programming language. Among other things this

means that funs can be used as the arguments to functions and that

functions (or funs) can return funs.

Functions that return funs, or functions that can accept funs as their

arguments, are called higher-order functions. We’ll see a few examples

of these in the next sections.

Now all of this might not sound very exciting since we haven’t seen

what we can do with funs. So far, the code in a fun looks just like

regular function code in a module, but nothing could be further from

the truth. Higher-order functions are the very essence of functional

programming languages—they breathe fire into the belly of the code.

Once you’ve learned to use them, you’ll love them. We’ll see a lot more

of them in the future.

Functions That Have Funs As Their Arguments

The module lists, which is in the standard libraries, exports several

functions whose arguments are funs. The most useful of all these is

lists:map(F, L). This is a function that returns a list made by applying the

fun F to every element in the list L:

12> L = [1,2,3,4].

[1,2,3,4]

13> lists:map(Double, L).

[2,4,6,8].

Another useful function is lists:filter(P, L), which returns a new list of all

the elements E in L such that P(E) is true.

Let’s define a function Even(X) that is true if X is an even number:

14> Even = fun(X) -> (X rem 2) =:= 0 end.

#Fun<erl_eval.6.56006484>

Here X rem 2 computes the remainder after X has been divided by 2, and

=:= is a test for equality. Now we can test Even, and then we can use it

as an argument to map and filter:

15> Even(8).

true

16> Even(7).

false

17> lists:map(Even, [1,2,3,4,5,6,8]).

[false,true,false,true,false,true,true]

18> lists:filter(Even, [1,2,3,4,5,6,8]).

[2,4,6,8]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=54

FUNS 55

We call operations such as map and filter that do something to an entire

list in one function call as list-at-a-time operations. Using list-at-a-time

operations makes our programs small and easy to understand; they are

easy to understand because we can regard each operation on the entire

list as a single conceptual step in our program. Otherwise, we have to

think of each individual operation on the elements of the list as single

steps in our program.

Functions That Return Funs

Not only can funs be used as arguments to functions (such as map and

filter), but functions can also return funs.

Here’s an example—suppose I have a list of something, say fruit:

1> Fruit = [apple,pear,orange].

[apple,pear,orange]

Now I can define a function MakeTest(L) that turns a list of things (L) into

a test function that checks whether its argument is in the list L:

2> MakeTest = fun(L) -> (fun(X) -> lists:member(X, L) end) end.

#Fun<erl_eval.6.56006484>

3> IsFruit = MakeTest(Fruit).

#Fun<erl_eval.6.56006484>

lists:member(X, L) returns true if X is a member of the list L; otherwise, it

returns false. Now that we have built a test function, we can try it:

4> IsFruit(pear).

true

5> IsFruit(apple).

true

6> IsFruit(dog).

false

We can also use it as an argument to lists:filter/2:

7> lists:filter(IsFruit, [dog,orange,cat,apple,bear]).

[orange,apple]

The notation for funs that return funs takes a little getting used to,

so let’s dissect the notation to make what’s going on a little clearer. A

function that returns a “normal” value looks like this:

1> Double = fun(X) -> (2 * X) end.

#Fun<erl_eval.6.56006484>

2> Double(5).

10

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=55

FUNS 56

The code inside the parentheses (in other words, 2 * X) is clearly the

“return value” of the function. Now let’s try putting a fun inside the

parentheses. Remember the thing inside the parentheses is the return

value:

3> Mult = fun(Times) -> (fun(X) -> X * Times end) end.

#Fun<erl_eval.6.56006484>

The fun inside the parentheses is fun(X) -> X * Times end; this is just a

function of X, but where does Times come from? Answer: This is just the

argument of the “outer” fun.

Evaluating Mult(3) returns fun(X) -> X * 3 end, which is the body of the

inner fun with Times substituted with 3. Now we can test this:

4> Triple = Mult(3).

#Fun<erl_eval.6.56006484>

5> Triple(5).

15

So, Mult is a generalization of Double. Instead of computing a value, it

returns a function, which when called will compute the required value.

Defining Your Own Control Abstractions

Wait a moment—have you noticed something? So far, we haven’t seen

any if statements, switch statements, for statements, or while statements,

and yet this doesn’t seem to matter. Everything is written using pattern

matching and higher-order functions. So far we haven’t needed any

additional control structures.

If we want additional control structures, we have a powerful glue that

we can use to make our own control structures. Let’s give an example

of this: Erlang has no for loop, so let’s make one:

Download lib_misc.erl

for(Max, Max, F) -> [F(Max)];

for(I, Max, F) -> [F(I)|for(I+1, Max, F)].

So, for example, evaluating for(1,10,F) creates the list [F(1), F(2), ..., F(10)].

How does the pattern matching in the for loop work? The first clause

in for matches only when the first and second arguments to for are the

same. So if we call for(10,10,F), then the first clause will match binding

Max to 10, and the result will be the list [F(10)]. If we call for(1,10,F), the

first clause cannot match since Max cannot match both 1 and 10 at the

same time. In this case, the second clause matches with bindings I 7→

1 and Max 7→ 10; the value of the function is then [F(I)|for(I+1,10,F)] with I

substituted by 1 and Max substituted by 10, which is just[F(1)|for(2,10,F)].

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=56

FUNS 57

When Do We Use Higher-Order Functions?

As we have seen, when we use higher-order functions, we can
create our own new control abstractions, we can pass func-
tions as arguments, and we can write functions that return funs.
In practice, not all these techniques get used often:

• Virtually all the modules that I write use functions like
lists:map/2—this is so common that I almost consider map

to be part of the Erlang language. Calling functions such
as map and filter and partition in the module lists is extremely
common.

• I sometimes create my own control abstractions. This is far
less common than calling the higher-order functions in the
standard library modules. This might happen a few times
in a large module.

• Writing functions that return funs is something I do very
infrequently. If I were to write a hundred modules, per-
haps only one or two modules might use this program-
ming technique. Programs with functions that return funs
can be difficult to debug; on the other hand, we can use
functions that return funs to implement things such as lazy
evaluation, and we can easily write reentrant parsers and
parser combinators that are functions that return parsers.

Now we have a simple for loop.9 We can use it to make a list of the

integers from 1 to 10:

1> lib_misc:for(1,10,fun(I) -> I end).

[1,2,3,4,5,6,7,8,9,10]

Or we can use to compute the squares of the integers from 1 to 10:

2> lib_misc:for(1,10,fun(I) -> I*I end).

[1,4,9,16,25,36,49,64,81,100]

As you become more experienced, you’ll find that being able to create

your own control structures can dramatically decrease the size of your

programs and sometimes make them a lot clearer. This is because you

can create exactly the right control structures that are needed to solve

your problem and because you are not restricted by a small and fixed

set of control structures that came with your programming language.

9. This is not quite the same as a for loop in an imperative language, but it is sufficient

for our purposes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=57

SIMPLE LIST PROCESSING 58

Common Errors

Some readers have mistakenly typed into the shell fragments
of code contained in the source code listings. These are not
valid shell commands, and you’ll get some very strange error
message if you try to do this. So be warned: don’t do this.

If you accidentally choose a module name that collides with
one of the system modules, then when you compile your mod-
ule, you’ll get a strange message saying that you can’t load a
module that resides in a sticky directory. Just rename the mod-
ule, and delete any beam file that you might have made when
compiling your module.

3.5 Simple List Processing

Now that we’ve introduced funs, we can get back to writing sum and

map, which we’ll need for our improved version of total (which I’m sure

you haven’t forgotten about!).

We’ll start with sum, which computes the sum of the elements in a list:

Download mylists.erl

Ê sum([H|T]) -> H + sum(T);
Ë sum([]) -> 0.

Note that the order of the two clauses in sum is unimportant. This is

because the first clause matches a nonempty list and the second an

empty list, and these two cases are mutually exclusive. We can test sum

as follows:

1> c(mylists). %% <-- Last time I do this

{ok, mylists}

2> L = [1,3,10].

[1,3,10]

3> mylists:sum(L).

14

Line 1 compiled the module lists. From now on, I’ll often omit the com-

mand to compile the module, and you’ll have to remember to do this

yourself. It’s pretty easy to understand how this works. Let’s trace the

execution:

1. sum([1,3,10])

2. sum([1,3,10]) = 1 + sum([3,10]) (by Ê)

3. = 1 + 3 + sum([10]) (by Ê)

http://media.pragprog.com/titles/jaerlang/code/mylists.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=58

SIMPLE LIST PROCESSING 59

4. = 1 + 3 + 10 + sum([]) (by Ê)

5. = 1 + 3 + 10 + 0 (by Ë)

6. = 14

Finally, let’s look at map/2, which we met earlier. Here’s how it’s defined:

Download mylists.erl

Ê map(_, []) -> [];
Ë map(F, [H|T]) -> [F(H)|map(F, T)].

Ê The first clause says what to do with an empty list. Mapping any

function over the elements of an empty list (there are none!) just

produces an empty list.

Ë The second clause is a rule for what to do with a list with a head

H and tail T. That’s easy. Just build a new list whose head is F(H)

and whose tail is map(F, T).

Note: The definition of map/2 is copied from the standard library module

lists to mylists. You can do anything you like to the code in mylists.erl. Do

not under any circumstance try to make your own module called lists

unless you know exactly what you’re doing.

We can run map using a couple of functions that double and square

the elements in a list, as follows:

1> L = [1,2,3,4,5].

[1,2,3,4,5].

2> mylists:map(fun(X) -> 2*X end, L).

[2,4,6,8,10]

3> mylists:map(fun(X) -> X*X end, L).

[1,4,9,16,25]

Have we said the final word on map? Well, no, not really! Later, we’ll

show an even shorter version of map written using list comprehen-

sions, and in Section 20.2, Parallelizing Sequential Code, on page 372,

we’ll show how we can compute all the elements of the map in parallel

(which will speed up our program on a multicore computer)—but this

is jumping too far ahead. Now that we know about sum and map, we

can rewrite total using these two functions:

Download shop2.erl

-module(shop2).

-export([total/1]).

-import(lists, [map/2, sum/1]).

total(L) ->

sum(map(fun({What, N}) -> shop:cost(What) * N end, L)).

http://media.pragprog.com/titles/jaerlang/code/mylists.erl
http://media.pragprog.com/titles/jaerlang/code/shop2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=59

SIMPLE LIST PROCESSING 60

How I Write Programs

When I’m writing a program, my approach is to “write a bit”
and then “test a bit.” I start with a small module with few func-
tions, and then I compile it and test it with a few commands in
the shell. Once I’m happy with it, I write a few more functions,
compile them, test them, and so on.

Often I haven’t really decided what sort of data structures I’ll
need in my program, and as I run small examples, I can see
whether the data structures I have chosen are appropriate.

I tend to “grow” programs rather than think them out com-
pletely before writing them. This way I don’t tend to make large
mistakes before I discover that things have gone wrong. Above
all, it’s fun, I get immediate feedback, and I see whether my
ideas work as soon as I have typed in the program.

Once I’ve figured out how to do something in the shell, I usually
then go and write a makefile and some code that reproduces
what I’ve learned in the shell.

We can see how this function works by looking at the steps involved:

1> Buy = [{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}].

[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

2> L1=lists:map(fun({What,N}) -> shop:cost(What) * N end, Buy).

[20,8,20,54,21]

3> lists:sum(L1).

123

Note also the use of the -import and -export declarations in the module:

• The declaration -import(lists, [map/2, sum/1]). means the function

map/2 is imported from the module lists, and so on. This means

we can write map(Fun, ...) instead of lists:map(Fun, ...). cost/1 was not

declared in an import declaration, so we had to use the “fully qual-

ified” name shop:cost.

• The declaration -export([total/1]) means the function total/1 can be

called from outside the module shop2. Only functions that are

exported from a module can be called from outside the module.

By this time you might think that our total function cannot be further

improved, but you’d be wrong. Further improvement is possible. To do

so, we’ll use a list comprehension.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=60

LIST COMPREHENSIONS 61

3.6 List Comprehensions

List comprehensions are expressions that create lists without having to

use funs, maps, or filters. This makes our programs even shorter and

easier to understand.

We’ll start with an example. Suppose we have a list L:

1> L = [1,2,3,4,5].

[1,2,3,4,5]

And suppose we want to double every element in the list. We’ve done

this before, but I’ll remind you:

2> lists:map(fun(X) -> 2*X end, L).

[2,4,6,8,10]

But there’s a much easier way that uses a list comprehension:

4> [2*X || X <- L].

[2,4,6,8,10]

The notation [F(X) || X <- L] means “the list of F(X) where X is taken from

the list L.” Thus, [2*X || X <- L] means “the list of 2*X where X is taken

from the list L.”

To see how to use a list comprehension, we can enter a few expressions

in the shell to see what happens. We start by defining Buy:

1> Buy=[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}].

[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}].

Now let’s double the number of every item in the original list:

2> [{Name, 2*Number} || {Name, Number} <- Buy].

[{oranges,8},{newspaper,2},{apples,20},{pears,12},{milk,6}]

Note that the tuple {Name, Number} to the right side of the (||) sign is a

pattern that matches each of the elements in the list Buy. The tuple to

the left side, {Name, 2*Number}, is a constructor.

Suppose we want to compute the total cost of all the elements in the

original list; we could do this as follows. First replace the name of every

item in the list with its price:

3> [{shop:cost(A), B} || {A, B} <- Buy].

[{5,4},{8,1},{2,10},{9,6},{7,3}]

Now multiply the numbers together:

4> [shop:cost(A) * B || {A, B} <- Buy].

[20,8,20,54,21]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=61

LIST COMPREHENSIONS 62

Then sum them:

5> lists:sum([shop:cost(A) * B || {A, B} <- Buy]).

123

Finally, if we wanted to make this into a function, we’d write the follow-

ing:

total(L) ->

lists:sum([shop:cost(A) * B || {A, B} <- L]).

List comprehensions will make your code really short and easy to read.

Just for fun we can use them to give an even shorter definition of map:

map(F, L) -> [F(X) || X <- L].

The most general form of a list comprehension is an expression of the

following form:

[X || Qualifier1, Qualifier2, ...]

X is an arbitrary expression, and each qualifier is either a generator or

a filter.

• Generators are written as Pattern <- ListExpr where ListExpr must be

an expression that evaluates to a list of terms.

• Filters are either predicates (functions that return true or false) or

boolean expressions.

Note that the generator part of a list comprehension works like a filter,

so, for example:

1> [X || {a, X} <- [{a,1},{b,2},{c,3},{a,4},hello,"wow"]].

[1,4]

We’ll finish the section on list comprehensions with a few little exam-

ples:

Quicksort

Here’s how to write a sort algorithm10 using two list comprehensions:

Download lib_misc.erl

qsort([]) -> [];

qsort([Pivot|T]) ->

qsort([X || X <- T, X < Pivot])

++ [Pivot] ++

qsort([X || X <- T, X >= Pivot]).

10. This code is shown for its elegance rather than its efficiency. Using ++ in this way is

not generally considered good programming practice.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=62

LIST COMPREHENSIONS 63

(where ++ is the infix append operator):

1> L=[23,6,2,9,27,400,78,45,61,82,14].

[23,6,2,9,27,400,78,45,61,82,14]

2> lib_misc:qsort(L).

[2,6,9,14,23,27,45,61,78,82,400]

To see how this works, we’ll step through the execution. We start with

a list L and call qsort(L). This matches the second clause of qsort:

3> [Pivot|T] = L.

[23,6,2,9,27,400,78,45,61,82,14]

with bindings Pivot 7→ 23 and T 7→ [6,2,9,27,400,78,45,61,82,14].

Now we split T into two lists, one with all the elements in T that are less

than Pivot, and the other with all the elements greater than or equal to

Pivot:

4> Smaller = [X || X <- T, X < Pivot].

[6,2,9,14]

5> Bigger = [X || X <- T, X >= Pivot].

[27,400,78,45,61,82]

Now we sort Smaller and Bigger and combine them with Pivot:

qsort([6,2,9,14]) ++ [23] ++ qsort([27,400,78,45,61,82])

= [2,6,9,14] ++ [23] ++ [27,45,61,78,82,400]

= [2,6,9,14,23,27,45,61,78,82,400]

Pythagorean Triplets

Pythagorean triplets are sets of integers {A,B,C} such that A2 + B2 = C2.

The function pythag(N) generates a list of all integers {A,B,C} such that

A2 + B2 = C2 and where the sum of the sides is less than or equal to N:

Download lib_misc.erl

pythag(N) ->

[{A,B,C} ||

A <- lists:seq(1,N),

B <- lists:seq(1,N),

C <- lists:seq(1,N),

A+B+C =< N,

A*A+B*B =:= C*C

].

Just a few words of explanation: lists:seq(1, N) returns a list of all the

integers from 1 to N. Thus, A <- lists:seq(1, N) means that A takes all

possible values from 1 to N. So our program reads, “Take all values of

A from 1 to N, all values of B from 1 to N, and all values of C from 1 to N

such that A + B + C is less than or equal to N and A*A + B*B = C*C.”

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=63

ARITHMETIC EXPRESSIONS 64

1> lib_misc:pythag(16).

[{3,4,5},{4,3,5}]

2> lib_misc:pythag(30).

[{3,4,5},{4,3,5},{5,12,13},{6,8,10},{8,6,10},{12,5,13}]

Anagrams

If you’re interested in English-style crossword puzzles, you’ll often find

yourself figuring out anagrams. Let’s use Erlang to find all the permu-

tations of a string using the beautiful little function perms where we

have the following:

Download lib_misc.erl

perms([]) -> [[]];

perms(L) -> [[H|T] || H <- L, T <- perms(L--[H])].

1> lib_misc:perms("123").

["123","132","213","231","312","321"]

2> lib_misc:perms("cats").

["cats", "cast", "ctas", "ctsa", "csat", "csta", "acts", "acst",

"atcs", "atsc", "asct", "astc", "tcas", "tcsa", "tacs", "tasc",

"tsca", "tsac", "scat", "scta", "sact", "satc", "stca", "stac"]

X- -Y is the list subtraction operator. It subtracts the elements in Y from

X; there’s a more precise definition in Section 5.4, List Operations ++

and - -, on page 108.

Just for once, I’m not going to explain how perms works, since the expla-

nation would be many times longer than the program, so you can figure

this out for yourself! (But, here’s a hint: To compute all permutations of

X123, compute all permutations of 123 [these are 123 132 213 231 312

321]. Now interleave the X at all possible positions in each permutation,

so adding X to 123 gives X123 1X23 12X3 123X, adding X to 132 gives

X132 1X32 13X2 132X, and so on. Apply these rules recursively.)

3.7 Arithmetic Expressions

All the possible arithmetic expressions are shown in Figure 3.1, on the

following page. Each arithmetic operation has one or two arguments—

these arguments are shown in the table as Integer or Number (Number

means the argument can be an integer or a float).

Associated with each operator is a priority. The order of evaluation of a

complex arithmetic expression depends upon the priority of the opera-

tor: all operations with priority 1 operators are evaluated first, then all

operators with priority 2, and so on.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=64

GUARDS 65

Op Description Argument Type Priority

+ X + X Number 1

- X - X Number 1

X * Y X * Y Number 2

X / Y X / Y (floating-point division) Number 2

bnot X Bitwise not of X Integer 2

X div Y Integer division of X and Y Integer 2

X rem Y Integer remainder of X divided by Y Integer 2

X band Y Bitwise and of X and Y Integer 2

X + Y X + Y Number 3

X - Y X - Y Number 3

X bor Y Bitwise or of X and Y Integer 3

X bxor Y Bitwise xor of X and Y Integer 3

X bsl N Arithmetic bitshift left of X by N bits Integer 3

X bsr N Bitshift right of X by N bits Integer 3

Figure 3.1: Arithmetic Expressions

You can use parentheses to change the default order of evaluation—

any parenthesized expressions are evaluated first. Operators with equal

priorities are treated as left associative and are evaluated from left to

right.

3.8 Guards

Guards are constructs that we can use to increase the power of pattern

matching. Using guards, we can perform simple tests and comparisons

on the variables in a pattern. Suppose we want to write a function

max(X, Y) that computes the max of X and Y. We can write this using a

guard as follows:

max(X, Y) when X > Y -> X;

max(X, Y) -> Y.

The first clause matches when X is greater than Y and the result is X.

If the first clause doesn’t match, then the second clause is tried. The

second clause always returns the second argument Y. Y must be greater

than or equal to X; otherwise, the first clause would have matched.

You can use guards in the heads of function definitions where they are

introduced by the when keyword, or you can use them at any place in

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=65

GUARDS 66

the language where an expression is allowed. When they are used as

expressions, they evaluate to one of the atoms true or false. If the guard

evaluates to true, we say that the evaluation succeeded; otherwise, it

fails.

Guard Sequences

A guard sequence is either a single guard or a series of guards, sepa-

rated by semicolons (;). The guard sequence G1; G2; ...; Gn is true if at

least one of the guards—G1, G2, ...—evaluates to true.

A guard is a series of guard expressions, separated by commas (,).

The guard GuardExpr1, GuardExpr2, ..., GuardExprN is true if all the guard

expressions—GuardExpr1, GuardExpr2, ...—evaluate to true.

The set of valid guard expressions is a subset of all valid Erlang expres-

sions. The reason for restricting guard expressions to a subset of Erlang

expressions is that we want to guarantee that evaluating a guard ex-

pression is free from side effects. Guards are an extension of pattern

matching, and since pattern matching has no side effects, we don’t

want guard evaluation to have side effects.

In addition, guards cannot be user-defined boolean expressions, since

we want to guarantee that they are side effect free and terminate.

The following syntactic forms are legal in a guard expression:

• The atom true

• Other constants (terms and bound variables); these all evaluate to

false in a guard expression

• Calls to the guard predicates in Figure 3.2, on page 68 and to the

BIFs11 in Figure 3.3, on page 69.

• Term comparisons (Figure 5.3, on page 116)

• Arithmetic expressions (Figure 3.1, on the previous page)

• Booleanexpressions (Section 5.4, Boolean Expressions, on page 103)

• Short-circuit boolean expressions (Section 5.4, Short-Circuit Boo-

lean Expressions, on page 115)

When evaluating a guard expression, the precedence rules described in

Section 5.4, Operator Precedence, on page 112 are used.

11. BIF is short for built-in function See Section 5.1, BIFs, on page 87.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=66

GUARDS 67

Guard Examples
f(X,Y) when is_integer(X), X > Y, Y < 6 -> ...

This means “when X is an integer and X is greater than Y and Y is less

than 6.” The comma, which separates the test in the guard, means

“and.”

is_tuple(T), size(T) =:= 6, abs(element(3, T)) > 5

element(4, X) =:= hd(L)

...

The first line means T is a tuple of six elements, and the absolute value

of the third element of T is greater than 5. The second line means that

element 4 of the tuple X is identical to the head of the list L.

X =:= dog; X =:= cat

is_integer(X), X > Y ; abs(Y) < 23

...

The first guard means X is either a cat or a dog. The second guard

either means that X is an integer and is greater than Y or means that

the absolute value of Y is less than 23.

Here are some examples of guards using short-circuit boolean expres-

sions:

A >= -1.0 andalso A+1 > B

is_atom(L) orelse (is_list(L) andalso length(L) > 2)

Advanced: The reason for allowing boolean expressions in guards is to

make guards syntactically similar to other expressions. The reason for

the orelse and andalso operators is that the boolean operators and/or

were originally defined to evaluate both their arguments. In guards,

there can be differences between (and and andalso) or between (or and

orelse). For example, consider the following two guards:

f(X) when (X == 0) or (1/X > 2) ->

...

g(X) when (X == 0) orelse (1/X > 2) ->

...

The guard in f(X) fails when X is zero but succeeds in g(X).

In practice, few programs use complex guards, and simple (,) guards

suffice for most programs.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=67

GUARDS 68

Predicate Meaning

is_atom(X) X is an atom.

is_binary(X) X is a binary.

is_constant(X) X is a constant.

is_float(X) X is a float.

is_function(X) X is a fun.

is_function(X, N) X is a fun with N arguments.

is_integer(X) X is an integer.

is_list(X) X is a list.

is_number(X) X is an integer or a float.

is_pid(X) X is a process identifier.

is_port(X) X is a port.

is_reference(X) X is a reference.

is_tuple(X) X is a tuple.

is_record(X,Tag) X is a record of type Tag.

is_record(X,Tag,N) X is a record of type Tag and size N.

Figure 3.2: Guard predicates

Use of the True Guard

You might wonder why we need the true guard at all. The reason is

that atom true can be used as a “catchall” guard at the end of an if

expression, like this:

if

Guard -> Expressions;

Guard -> Expressions;

...

true -> Expressions

end

if will be discussed in Section 3.10, if Expressions, on page 73.

Obsolete Guard Functions

If you come across some old Erlang code written a few years ago, the

names of the guard tests were different. Old code used guard tests

called atom(X), constant(X), float(X), integer(X), list(X), number(X), pid(X),

port(X), reference(X), tuple(X), and binary(X). These tests have the same

meaning as the modern tests named is_atom(X)... The use of old names

in modern code is frowned upon.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=68

RECORDS 69

Function Meaning

abs(X) Absolute value of X.

element(N, X) Element N of X. Note X must be a tuple.

float(X) Convert X, which must be a number, to a float.

hd(X) The head of the list X.

length(X) The length of the list X.

node() The current node.

node(X) The node on which X was created. X can be a process.

An identifier, a reference, or a port.

round(X) Converts X, which must be a number, to an integer.

self() The process identifier of the current process.

size(X) The size of X. X can be a tuple or a binary.

trunc(X) Truncates X, which must be a number, to an integer.

tl(X) The tail of the list X.

Figure 3.3: Guard built-in functions

3.9 Records

When we program with tuples, we can run into a problem when the

number of elements in a tuple becomes large. It becomes difficult to

remember which element in the tuple means what. Records provide a

method for associating a name with a particular element in a tuple,

which solves this problem.

In a small tuple this is rarely a problem, so we often see programs that

manipulate small tuples, and there is no confusion about what the

different elements represent. Records are declared with the following

syntax:

-record(Name, {

%% the next two keys have default values

key1 = Default1,

key2 = Default2,

...

%% The next line is equivalent to

%% key3 = undefined

key3,

...

}).

Warning: record is not a shell command (use rr in the shell; see the

description that comes later in this section). Record declarations can

be used only in Erlang source code modules and not in the shell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=69

RECORDS 70

In the previous example, Name is the name of the record. key1, key2,

and so on, are the names of the fields in the record; these must always

be atoms. Each field in a record can have a default value that is used if

no value for this particular field is specified when the record is created.

For example, suppose we want to manipulate a to-do list. We start by

defining a todo record and storing it in a file (record definitions can be

included in Erlang source code files or put in files with the extension

.hrl, which are then included by Erlang source code files12).

Download records.hrl

-record(todo, {status=reminder,who=joe,text}).

Once a record has been defined, instances of the record can be created.

To do this in the shell, we have to read the record definitions into the

shell before we can define a record. We use the shell function rr (short

for read records) to do this:

1> rr("records.hrl").

[todo]

Creating and Updating Records

Now we’re ready to define and manipulate records:

2> X=#todo{}.

#todo{status = reminder,who = joe,text = undefined}

3> X1 = #todo{status=urgent, text="Fix errata in book"}.

#todo{status = urgent,who = joe,text = "Fix errata in book"}

4> X2 = X1#todo{status=done}.

#todo{status = done,who = joe,text = "Fix errata in book"}

In lines 2 and 3 we created new records. The syntax #todo{key1=Val1,

..., keyN=ValN} is used to create a new record of type todo. The keys are

all atoms and must be the same as those used in the record definition.

If a key is omitted, then a default value is assumed for the value that

comes from the value in the record definition.

In line 4 we copied an existing record. The syntax X1#todo{status=done}

means create a copy of the X1 (which must be of type todo), changing

the field value status to done. Remember this is a copy of the original

record; the original record is not changed.

12. This is the only way to ensure that several Erlang modules use the same record

definitions.

http://media.pragprog.com/titles/jaerlang/code/records.hrl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=70

RECORDS 71

Extracting the Fields of a Record

As with everything else, we use pattern matching:

5> #todo{who=W, text=Txt} = X2.

#todo{status = done,who = joe,text = "Fix errata in book"}

6> W.

joe

7> Txt.

"Fix errata in book"

On the left side of the match operator (=), we write a record pattern

with the unbound variables W and Txt. record pattern with the unbound

variables W and Txt. If the match succeeds, these variables get bound to

the appropriate fields in the record. If we just want one field of a record,

we can use the “dot syntax” to extract the field:

8> X2#todo.text.

"Fix errata in book"

Pattern Matching Records in Functions

We can write functions that pattern match on the fields of a record and

that create new records. We usually write code like this:

clear_status(#todo{status=S, who=W} = R) ->

%% Inside this function S and W are bound to the field

%% values in the record

%%

%% R is the *entire* record

R#todo{status=finished}

%% ...

To match a record of a particular type, we might write the function

definition:

do_something(X) when is_record(X, todo) ->

%% ...

This clause matches when X is a record of type todo.

Records Are Tuples in Disguise

Records are just tuples. Now let’s tell the shell to forget the definition of

todo:

11> X2.

#todo{status = done,who = joe,text = "Fix errata in book"}

12> rf(todo).

ok

13> X2.

{todo,done,joe,"Fix errata in book"}

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=71

CASE AND IF EXPRESSIONS 72

In line 12 we told the shell to forget the definition of the todo record. So

now when we print X2, the shell displays X2 as a tuple. Internally there

are only tuples. Records are a syntactic convenience so you can name

the different elements in a tuple.

3.10 case and if Expressions

So far, we’ve used pattern matching for everything. This makes Erlang

small and consistent. But sometimes defining separate function clauses

for everything is rather inconvenient. When this happens, we can use

case or if expressions.

case Expressions

case has the following syntax:

case Expression of

Pattern1 [when Guard1] -> Expr_seq1;

Pattern2 [when Guard2] -> Expr_seq2;

...

end

case is evaluated as follows. First, Expression is evaluated; assume this

evaluates to Value. Thereafter, Value is matched in turn against Pattern1

(with the optional guard Guard1), Pattern2, and so on, until a match is

found. As soon as a match is found, then the corresponding expres-

sion sequence is evaluated—the result of evaluating the expression

sequence is the value of the case expression. If none of the patterns

match, then an exception is raised.

Earlier, we used a function called filter(P, L); it returns a list of all those

elements X in L for which P(X) is true. Now using pattern matching we

could define filter as follows:

filter(P, [H|T]) -> filter1(P(H), H, P, T);

filter(P, []) -> [].

filter1(true, H, P, T) -> [H|filter(P, T)];

filter1(false, H, P, T) -> filter(P, T).

But this definition is rather ugly, so we have to invent an additional

function (called filter1) and pass it all of the arguments of filter/2.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=72

BUILDING LISTS IN NATURAL ORDER 73

We can do this in a much clearer manner using the case construct, as

follows:

filter(P, [H|T]) ->

case P(H) of

true -> [H|filter(P, T)];

false -> filter(P, T)

end;

filter(P, []) ->

[].

if Expressions

A second conditional primitive, if, is also provided. Here is the syntax:

if

Guard1 ->

Expr_seq1;

Guard2 ->

Expr_seq2;

...

end

This is evaluated as follows: First Guard1 is evaluated. If this evalu-

ates to true, then the value of if is the value obtained by evaluating the

expression sequence Expr_seq1. If Guard1 does not succeed, Guard2 is

evaluated, and so on, until a guard succeeds. At least one of the guards

in the if expression must evaluate to true; otherwise, an exception will

be raised.

Often the final guard in an if expression is the atom true, which guar-

antees that the last form in the expression will be evaluated if all other

guards have failed.

3.11 Building Lists in Natural Order

The most efficient way to build a list is to add the elements to the head

of an existing list, so we often see code with this kind of pattern:

some_function([H|T], ..., Result, ...) ->

H1 = ... H ...,

some_function(T, ..., [H1|Result], ...);

some_function([], ..., Result, ...) ->

{..., Result, ...}.

This code walks down a list extracting the head of the list H and com-

puting some value based on this function (we can call this H1); it then

adds H1 to the output list Result.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=73

ACCUMULATORS 74

When the input list is exhausted, the final clause matches, and the

output variable Result is returned from the function.

The elements in Result are in the opposite order to the elements in the

original list, which may or may not be a problem, but if they are in the

wrong order, they can easily be reversed in the final step.

The basic idea is fairly simple:

1. Always add elements to a list head.

2. Taking the elements from the head of an InputList and adding

them head first to an OutputList results in the OutputList having

the reverse order of the InputList.

3. If the order matters, then call lists:reverse/1, which is highly opti-

mized.

4. Avoid going against these recommendations.

Note: Whenever you want to reverse a list, you should call lists:reverse

and nothing else. If you look in the source code for the module lists,

you’ll find a definition of reverse. However, this definition is simply used

for illustration. The compiler, when it finds a call to lists:reverse, calls a

more efficient internal version of the function.

If you ever see code like this:

List ++ [H]

it should set alarm bells off in your brain—this is very inefficient and

acceptable only if List is very short.

3.12 Accumulators

How can we get two lists out of a function? How can we write a function

that splits a list of integers into two lists that contain the even and odd

integers in the original list? Here’s one way of doing it:

Download lib_misc.erl

odds_and_evens(L) ->

Odds = [X || X <- L, (X rem 2) =:= 1],

Evens = [X || X <- L, (X rem 2) =:= 0],

{Odds, Evens}.

5> lib_misc:odds_and_evens([1,2,3,4,5,6]).

{[1,3,5],[2,4,6]}

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=74

ACCUMULATORS 75

The problem with this code is that we traverse the list twice—this

doesn’t matter whether the list is short, but if the list is very long, it

might be a problem.

To avoid traversing the list twice, we can recode this as follows:

Download lib_misc.erl

odds_and_evens_acc(L) ->

odds_and_evens_acc(L, [], []).

odds_and_evens_acc([H|T], Odds, Evens) ->

case (H rem 2) of

1 -> odds_and_evens_acc(T, [H|Odds], Evens);

0 -> odds_and_evens_acc(T, Odds, [H|Evens])

end;

odds_and_evens_acc([], Odds, Evens) ->

{Odds, Evens}.

Now this traverses the list only once, adding the odd and even argu-

ments onto the appropriate output lists (which are called accumulators).

This code also has an additional benefit, which is less obvious; the ver-

sion with an accumulator is more space efficient than the version with

the [H || filter(H)] type construction.

If we run this, we get almost the same result as before:

1> lib_misc:odds_and_evens_acc([1,2,3,4,5,6]).

{[5,3,1],[6,4,2]}

The difference is that the order of the elements in the odd and even

lists is reversed. This is a consequence of the way that the list was

constructed. If we want the list elements in the same order as they were

in the original, all we have to do is reverse the lists in the final clause

of the function by changing the second clause of odds_and_evens_acc to

the following:

odds_and_evens_acc([], Odds, Evens) ->

{lists:reverse(Odds), lists:reverse(Evens)}.

What We’ve Learned So Far

Now we can write Erlang modules and simple sequential Erlang code,

and we have almost all the knowledge we need to write sequential

Erlang programs.

The next chapter looks briefly at error handling. After this, we get back

to sequential programming, looking at the remaining details that we’ve

omitted up to now.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=75

Chapter 4

Exceptions
4.1 Exceptions

If you’ve been following along with the code in the previous chapter,

you’ve probably seen some of Erlang’s error reporting and handling at

work. Before we dig deeper into sequential programming, let’s take a

brief detour and look at this in more detail. It may seem like a diversion,

but if the eventual objective is to write robust distributed applications,

a good understanding of how error handling works is essential.

Every time we call a function in Erlang, one of two things will happen:

the function returns a value, or something goes wrong. We saw exam-

ples of this in the previous chapter. Remember the cost function?

Download shop.erl

cost(oranges) -> 5;

cost(newspaper) -> 8;

cost(apples) -> 2;

cost(pears) -> 9;

cost(milk) -> 7.

This is what happened when we ran it:

1> shop:cost(apples).

2

2> shop:cost(socks).

=ERROR REPORT==== 30-Oct-2006::20:45:10 ===

Error in process <0.34.0> with exit value:

{function_clause,[{shop,cost,[socks]},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]}

http://media.pragprog.com/titles/jaerlang/code/shop.erl

RAISING AN EXCEPTION 77

When we called cost(socks), the function crashed. This happened be-

cause none of the clauses that define the function matched the calling

arguments.

Calling cost(socks) is pure nonsense. There is no sensible value that the

function can return, since the price of socks is undefined. In this case,

instead of returning a value, the system raises an exception—this is the

technical term for “crashing.”

We don’t try to repair the error because this is not possible. We don’t

know what socks cost, so we can’t return a value. It is up to the caller

of cost(socks) to decide what to do if the function crashes.

Exceptions are raised by the system when internal errors are encoun-

tered or explicitly in code by calling throw(Exception), exit(Exception). or

erlang:error(Exception).

Erlang has two methods of catching an exception. One is to enclose

the call to the function, which raised the exception within a try...catch

expression. The other is to enclose the call in a catch expression.

4.2 Raising an Exception

Exceptions are raised automatically when the system encounters an

error. Typical errors are pattern matching errors (no clauses in a func-

tion match) or calling BIFs with incorrectly typed arguments (for exam-

ple, calling atom_to_list with an argument that is an integer).

We can also explicitly generate an error by calling one of the exception

generating BIFs:

exit(Why)

This is used when you really want to terminate the current pro-

cess. If this exception is not caught, the message {’EXIT’,Pid,Why}

will be broadcast to all processes that are linked to the current

process. We’ll say a lot more about this in Section 9.1, Linking

Processes, on page 159, so I won’t dwell on the details here.

throw(Why)

This is used to throw an exception that a caller might want to

catch. In this case we document that our function might throw

this exception. The user of this function has two alternatives: they

can program for the common case and blissfully ignore exceptions,

or they can enclose the call in a try...catch expression and handle

the errors.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=77

TRY...CATCH 78

erlang:error(Why)

This is used for denoting “crashing errors.” That is, something

rather nasty has happened that callers are not really expected to

handle. This is on par with internally generated errors.

Now let’s try to catch these errors.

4.3 try...catch

If you’re familiar with Java, then you’ll have no difficulties understand-

ing the try...catch expression. Java can trap an exception with the fol-

lowing syntax:

try {

block

} catch (exception type identifier) {

block

} catch (exception type identifier) {

block

} ...

finally {

block

}

Erlang has a remarkably similar construct, which looks like this:

try FuncOrExpressionSequence of

Pattern1 [when Guard1] -> Expressions1;

Pattern2 [when Guard2] -> Expressions2;

...

catch

ExceptionType: ExPattern1 [when ExGuard1] -> ExExpressions1;

ExceptionType: ExPattern2 [when ExGuard2] -> ExExpressions2;

...

after

AfterExpressions

end

Notice the similarity between the try...catch expression and the case

expression:

case Expression of

Pattern1 [when Guard1] -> Expressions1;

Pattern2 [when Guard2] -> Expressions2;

...

end

try...catch is like a case expression on steroids. It’s basically a case

expression with catch and after blocks at the end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=78

TRY...CATCH 79

try...catch Has a Value

Remember, everything in Erlang is an expression, and all expres-
sions have values. This means the expression try...end also has a
value. So, we might write something like this:

f(...) ->
...
X = try ... end,
Y = g(X),
...

More often, we don’t need the value of the try...catch expres-
sion. So, we just write this:

f(...) ->
...
try ... end,
...
...

try...catch works as follows: First FuncOrExpessionSeq is evaluated. If this

finishes without raising an exception, then the return value of the func-

tion is pattern matched against the patterns Pattern1 (with optional

guard Guard1), Pattern2, and so on, until a match is found. If a match is

found, then the value of the entire try...catch is found by evaluating the

expression sequence following the matching pattern.

If an exception is raised within FuncOrExpressionSeq, then the catch pat-

terns ExPattern1, and so on, are matched to find which sequence of

expressions should be evaluated. ExceptionType is an atom (one of throw,

exit, or error) that tells us how the exception was generated. If Exception-

Type is omitted, then the value defaults to throw.

Note: Internal errors that are detected by the Erlang runtime system

always have the tag error.

The code following the after keyword is used for cleaning up after FuncOr-

ExpressionSeq. This code is guaranteed to be executed, even if an excep-

tion is raised. The code in the after section is run immediately after

any code in Expressions in the try or catch section of the expression. The

return value of AfterExpressions is lost.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=79

TRY...CATCH 80

If you’re coming from Ruby, all of this should seem very familiar—in

Ruby, we’d write a similar pattern:

begin

...

rescue

...

ensure

...

end

The keywords are different,1 but the behavior is similar.

Shortcuts

We can omit several of the parts of a try...catch expression. This:

try F

catch

...

end

means the same as this:

try F of

Val -> Val

catch

...

end

Also, the after section can be omitted.

Programming Idioms with try...catch

When we design applications, we often make sure that the code that

catches an error can catch all the errors that a function can produce.

Here’s a pair of functions that illustrates this. The first function gener-

ates all possible types of an exception:

Download try_test.erl

generate_exception(1) -> a;

generate_exception(2) -> throw(a);

generate_exception(3) -> exit(a);

generate_exception(4) -> {'EXIT', a};

generate_exception(5) -> erlang:error(a).

Now we’ll write a wrapper function to call generate_exception in a try...

catch expression.

1. And there is no retry expression in Erlang!

http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=80

CATCH 81

Download try_test.erl

demo1() ->

[catcher(I) || I <- [1,2,3,4,5]].

catcher(N) ->

try generate_exception(N) of

Val -> {N, normal, Val}

catch

throw:X -> {N, caught, thrown, X};

exit:X -> {N, caught, exited, X};

error:X -> {N, caught, error, X}

end.

Running this we obtain the following:

> try_test:demo1().

[{1,normal,a},

{2,caught,thrown,a},

{3,caught,exited,a},

{4,normal,{'EXIT',a}},

{5,caught,error,a}]

This shows that we can trap and distinguish all the forms of exception

that a function can raise.

4.4 catch

The other way to trap an exception is to use the primitive catch. When

you catch an exception, it is converted into a tuple that describes the

error. To demonstrate this, we can call generate_exception within a catch

expression:

Download try_test.erl

demo2() ->

[{I, (catch generate_exception(I))} || I <- [1,2,3,4,5]].

Running this we obtain the following:

2> try_test:demo2().

[{1,a},

{2,a},

{3,{'EXIT',a}},

{4,{'EXIT',a}},

{5,{'EXIT',{a,[{try_test,generate_exception,1},

{try_test,'-demo2/0-fun-0-',1},

{lists,map,2},

{lists,map,2},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]}}}]

http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=81

IMPROVING ERROR MESSAGES 82

If you compare this with the output from the try...catch section, you’ll

see that we lose a lot of precision in analyzing the cause of the problem.

4.5 Improving Error Messages

One use of erlang:error is to improve the quality of error messages. If we

call math:sqrt(X) with a negative argument, we’ll see the following:

1> math:sqrt(-1).

** exited: {badarith,[{math,sqrt,[-1]},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]} **

We can write a wrapper for this, which improves the error message:

Download lib_misc.erl

sqrt(X) when X < 0 ->

erlang:error({squareRootNegativeArgument, X});

sqrt(X) ->

math:sqrt(X).

2> lib_misc:sqrt(-1).

** exited: {{squareRootNegativeArgument,-1},

[{lib_misc,sqrt,1},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]} **

4.6 Programming Style with try...catch

How do you handle errors in practice? It depends....

Code Where Error Returns Are Common

If your function does not really have a “common case,” you should prob-

ably return something like {ok, Value} or {error, Reason}, but remember

that this forces all callers to do something with the return value. You

then have to choose between two alternatives; you either write this:

...

case f(X) of

{ok, Val} ->

do_some_thing_with(Val);

{error, Why} ->

%% ... do something with the error ...

end,

...

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=82

CATCHING EVERY POSSIBLE EXCEPTION 83

which takes care of both return values, or write this:

...

{ok, Val} = f(X),

do_some_thing_with(Val);

...

which raises an exception if f(X) returns {error, ...}.

Code Where Errors Are Possible but Rare

Typically you should write code that is expected to handle errors as in

this example:

try my_func(X)

catch

throw:{thisError, X} -> ...

throw:{someOtherError, X} -> ...

end

And the code that detects the errors should have matching throws:

my_func(X) ->

case ... of

...

... ->

... throw({thisError, ...})

... ->

... throw({someOtherError, ...})

4.7 Catching Every Possible Exception

If we want to catch every possible error, we can use the following idiom:

try Expr

catch

: -> ... Code to handle all exceptions ...

end

If we omit the tag and write this:

try Expr

catch

_ -> ... Code to handle all exceptions ...

end

then we won’t catch all errors, since in this case the default tag throw

is assumed.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=83

OLD- AND NEW-STYLE EXCEPTION HANDLING 84

4.8 Old- and New-Style Exception Handling

This section is for Erlang veterans only!

try...catch is a relatively new construct that was introduced to correct

deficiencies in the catch...throw mechanism. If you’re an old-timer who

hasn’t been reading the latest documentation (like me), then you’ll auto-

matically write code like this:

case (catch foo(...)) of

{'EXIT', Why} ->

...

Val ->

...

end

This is usually correct, but it’s almost always better to write it as fol-

lows:

try foo(...) of

Val -> ...

catch

exit: Why ->

...

end

So, instead of writing case (catch ...) of ..., write try ... of

4.9 Stack Traces

When an exception is caught, we can find the latest stack trace by

calling erlang:get_stacktrace(). Here’s an example:

Download try_test.erl

demo3() ->

try generate_exception(5)

catch

error:X ->

{X, erlang:get_stacktrace()}

end.

1> try_test:demo3().

{a,[{try_test,generate_exception,1},

{try_test,demo3,0},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]}

http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=84

STACK TRACES 85

The stack trace contains a list of the functions on the stack to which

the current function will return if it returns. It’s almost the same as

the sequence of calls that got us to the current function, but any tail-

recursive function calls2 will be missing from the trace.

From the point of view of debugging our program, only the first few lines

of the stack trace are interesting. The earlier stack trace tells us that the

system crashed while evaluating the function generate_exception with

one argument in the module try_test. try_test:generate_exception/1 was

probably called by try_test:demo3() (we can’t be sure about this because

try_test:demo3() might have called some other function that made a tail-

recursive call to try_test:generate_exception/1, in which case the stack

trace won’t have any record of the intermediate function).

2. See Section 8.9, A Word About Tail Recursion, on page 156.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=85

Chapter 5

Advanced Sequential
Programming

By now we’re well on our way to understanding sequential Erlang.

Chapter 3, Sequential Programming, dealt with the basics of writing

functions. This chapter covers the following:

• BIFs: Short for built-in functions, BIFs are functions that are part of

the Erlang language. They look as if they might have been written

in Erlang, but in fact they are implemented as primitive operations

in the Erlang virtual machine.

• Binaries: This is a data type that we use to store raw chunks of

memory in an efficient manner.

• The bit syntax: This is a pattern matching syntax used for packing

and unpacking bit fields from binaries.

• Miscellaneous topics: This deals with a small number of topics

needed to complete our mastery of sequential Erlang.

Once you have mastered this chapter, you’ll know pretty much all there

is to know about sequential Erlang, and you’ll be ready to dive into the

mysteries of concurrent programming.

BIFS 87

5.1 BIFs

BIFs are functions that are built into Erlang. They usually do tasks that

are impossible to program in Erlang. For example, it’s impossible to

turn a list into a tuple or to find the current time and date. To perform

such an operation, we call a BIF.

For example, the BIF tuple_to_list/1 converts a tuple to a list, and time/0

returns the current time of day in hours, minutes, and seconds:

1> tuple_to_list({12,cat,"hello"}).

[12,cat,"hello"]

2> time().

{20,0,3}

All the BIFs behave as if they belong to the module erlang, though the

most common BIFs (such as tuple_to_list) are autoimported, so we can

call it by writing tuple_to_list(...) instead of erlang:tuple_to_list(...).

You’ll find a full list of all BIFs in the erlang manual page in your Erlang

distribution or online at http://www.erlang.org/doc/man/erlang.html.

5.2 Binaries

Use a data structure called a binary to store large quantities of raw

data. Binaries store data in a much more space-efficient manner than

in lists or tuples, and the runtime system is optimized for the efficient

input and output of binaries.

Binaries are written and printed as sequences of integers or strings,

enclosed in double less-than and greater-than brackets. For example:

1> <<5,10,20>>.

<<5,10,20>>

2> <<"hello">>.

<<"hello">>

When you use integers in a binary, each must be in the range 0 to 255.

The binary <<"cat">> is shorthand for <<99,97,116>>; that is, the binary

made up from the ASCII character codes of the characters in the string.

As with strings, if the content of a binary is a printable string, then the

shell will print the binary as a string; otherwise, it will be printed as a

sequence of integers.

We can build a binary and extract the elements of a binary using a

BIF, or we can use the bit syntax (see Section 5.3, The Bit Syntax, on

page 89). In this section, I’ll talk only about the BIFs.

http://www.erlang.org/doc/man/erlang.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=87

BINARIES 88

@spec func(Arg1,..., Argn) -> Val

What’s all this @spec business?

It’s an example of the Erlang type notation, a docu-
mentation convention that the Erlang community uses for
describing (among other things) the argument and return
types of a function. It should be fairly self-explanatory, but
for those who want the full details, turn to Appendix A, on
page 390.

BIFs That Manipulate Binaries

The following BIFs manipulate binaries:

@spec list_to_binary(IoList) -> binary()

list_to_binary returns a binary constructed from the integers and

binaries in IoList. Here IoList is a list, whose elements are integers in

0..255, binaries, or IoLists:

1> Bin1 = <<1,2,3>>.

<<1,2,3>>

2> Bin2 = <<4,5>>.

<<4,5>>

3> Bin3 = <<6>>.

<<6>>

4> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).

<<1,2,3,1,2,3,4,5,4,6>>

@spec split_binary(Bin, Pos) -> {Bin1, Bin2}

This splits the binary Bin into two parts at position Pos:

1> split_binary(<<1,2,3,4,5,6,7,8,9,10>>, 3).

{<<1,2,3>>,<<4,5,6,7,8,9,10>>}

@spec term_to_binary(Term) -> Bin

This converts any Erlang term into a binary.

The binary produced by term_to_binary is stored in the so-called

external term format. Terms that have been converted to binaries

by using term_to_binary can be stored in files, sent in messages

over a network, and so on, and the original term from which they

were made can be reconstructed later. This is extremely useful for

storing complex data structures in files or sending complex data

structures to remote machines.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=88

THE BIT SYNTAX 89

@spec binary_to_term(Bin) -> Term

This is the inverse of term_to_binary:

1> B = term_to_binary({binaries,"are", useful}).

<<131,104,3,100,0,8,98,105,110,97,114,105,101,115,107,

0,3,97,114,101,100,0,6,117,115,101,102,117,108>>

2> binary_to_term(B).

{binaries,"are",useful}

@spec size(Bin) -> Int

This returns the number of bytes in the binary.

1> size(<<1,2,3,4,5>>).

5

5.3 The Bit Syntax

The bit syntax is an extension to pattern matching used for extracting

and packing individual bits or sequences of bits in binary data. When

you’re writing low-level code to pack and unpack binary data at a bit

level, you’ll find the bit syntax incredibly useful. The bit syntax was

developed for protocol programming (something that Erlang excels at)

and produces highly efficient code for packing and unpacking protocol

data.

Suppose we have three variables—X, Y, and Z—that we want to pack

into a 16-bit memory area in a variable M. X should take 3 bits in the

result, Y should take 7 bits, and Z should take 6. In most languages

this involves some messy low-level operations involving bit shifting and

masking. In Erlang, you just write the following:

M = <<X:3, Y:7, Z:6>>

Easy!

The full bit syntax is slightly more complex, so we’ll go through it in

small steps. First we’ll look at some simple code to pack and unpack

RGB color data into 16-bit words. Then we’ll dive into the details of

bit syntax expressions. Finally we’ll look at three examples taken from

real-world code that uses the bit syntax.

Packing and Unpacking 16-bit Colors

We’ll start with a very simple example. Suppose we want to represent

a 16-bit RGB color. We decide to allocate 5 bits for the red channel, 6

bits for the green channel, and 5 bits for the blue channel.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=89

THE BIT SYNTAX 90

(We use one more bit for the green channel because the human eye is

more sensitive to green light.)

We can create a 16-bit memory area Mem containing a single RGB

triplet as follows:

1> Red = 2.

2

2> Green = 61.

61

3> Blue = 20.

20

4> Mem = <<Red:5, Green:6, Blue:5>>.

<<23,180>>

Note in line 4 we created a 2-byte binary containing a 16-bit quantity.

The shell prints this as <<23,180>>.

To pack the memory, we just wrote the expression <<Red:5, Green:6,

Blue:5>>.

To unpack the word, we write a pattern:

5> <<R1:5, G1:6, B1:5>> = Mem.

<<23,180>>

6> R1.

2

7> G1.

61

8> B1.

20

Bit Syntax Expressions

Bit syntax expressions are of the following form:

<<>>

<<E1, E2, ..., En>>

Each element Ei specifies a single segment of the binary. Each element

Ei can have one of four possible forms:

Ei = Value |

Value:Size |

Value/TypeSpecifierList |

Value:Size/TypeSpecifierList

Whatever form you use, the total number of bits in the binary must be

evenly divisible by 8. (This is because binaries contain bytes that take

up 8 bits each, so there is no way of representing sequences of bits

whose length is not a multiple of 8.)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=90

THE BIT SYNTAX 91

When you construct a binary, Value must be a bound variable, a literal

string, or an expression that evaluates to an integer, a float, or a binary.

When used in a pattern matching operation, Value can be a bound or

unbound variable, integer, literal string, float, or binary.

Size must be an expression that evaluates to an integer. In pattern

matching, Size must be an integer or a bound variable whose value is

an integer. Size cannot be an unbound variable.

The value of Size specifies the size of the segment in units (we discuss

this later). The default value depends on the type (see below). For an

integer it is 8, for a float it is 64, and for a binary it is the size of the

binary. In pattern matching, this default value is valid only for the very

last element. All other binary elements in the matching must have a

size specification.

TypeSpecifierList is a hyphen-separated list of items of the form End-Sign-

Type-Unit. Any of the previous items can be omitted, and the items can

occur in any order. If an item is omitted, then a default value for the

item is used.

The items in the specifier list can have the following values:

@type End = big | little | native

(@type is also part of the Erlang type notation given in Appendix A).

This specifies the endianess of the machine. native is determined

at runtime, depending upon the CPU of your machine. The default

is big. The only significance of this has to do with packing and

unpacking integers from binaries. When packing and unpacking

integers from binaries on different endian machines, you should

take care to use the correct endianess.

Tip: In the rare case that you really need to understand what’s

going on here, some experimentation may be necessary. To assure

yourself that you are doing the right thing, try the following shell

command:

1> {<<16#12345678:32/big>>,<<16#12345678:32/little>>,

<<16#12345678:32/native>>,<<16#12345678:32>>}.

{<<18,52,86,120>>,<<120,86,52,18>>,

<<120,86,52,18>>,<<18,52,86,120>>}

The output shows you exactly how integers are packed in a binary

using the bit syntax.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=91

THE BIT SYNTAX 92

In case you’re worried, term_to_binary and binary_to_term “do the

right thing” when packing and unpacking integers. So, you can,

for example, create a tuple containing integers on a big-endian

machine. Then use term_to_binary to convert the term to a binary

and send this to a little-endian machine. On the little-endian, you

do binary_to_term, and all the integers in the tuple will have the

correct values.

@type Sign = signed | unsigned

This parameter is used only in pattern matching. The default is

unsigned.

@type Type = integer | float | binary

The default is integer.

@type Unit = 1 | 2 | ... 255

The total size of the segment is Size x Unit bits long. The total seg-

ment size must be greater than or equal to zero and must be a

multiple of 8.

The default value of Unit depends upon Type and is 1 if Type is

integer or float and 8 if Type is a binary.

If you’ve found the bit syntax description a bit daunting, don’t panic.

Getting the bit syntax patterns right is pretty tricky. The best way to

approach this is to experiment in the shell with the patterns you need

until you get it right and then cut and paste the result into your pro-

gram. That’s how I do it.

Advanced Bit Syntax Examples

Learning the bit syntax is difficult, but the benefits are enormous. This

section has three examples from real life. All the code here is cut and

paste from real-world programs. The examples are as follows:

• Finding the synchronization frame in MPEG data

• Unpacking COFF data

• Unpacking the header in an IPv4 datagram

Finding the Synchronization Frame in MPEG Data

Suppose we want to write a program that manipulates MPEG audio

data. We might want to write a streaming media server in Erlang or

extract the data tags that describe the content of an MPEG audio

stream. To do this, we need to identify and synchronize with the data

frames in an MPEG stream.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=92

THE BIT SYNTAX 93

MPEG audio data is made up from a number of frames. Each frame has

its own header followed by audio information—there is no file header,

and in principle, you can cut an MPEG file into pieces and play any

of the pieces. Any software that reads an MPEG stream is supposed to

find the header frames and thereafter synchronize the MPEG data.

An MPEG header starts with an 11-bit frame sync consisting of eleven

consecutive 1 bits followed by information that describes the data that

follows:

AAAAAAAA AAABBCCD EEEEFFGH IIJJKLMM

AAAAAAAAAAA The sync word (11 bits, all ones)

BB 2 bits is the MPEG Audio version ID

CC 2 bits is the layer description

D 1 bit, a protection bit

And so on...

The exact details of these bits need not concern us here. Basically, given

knowledge of the values of A to M, we can compute the total length of

an MPEG frame.

To find the sync point, we first assume that we are correctly positioned

at the start of an MPEG frame. We use the information we find at that

position to compute the length of the frame. We might be pointing at

nonsense, in which case the length of the frame will be totally wrong.

Assuming that we are at the start of a frame and given the length of the

frame, then we can skip to the start of the next frame and see whether

this is another MPEG header frame.

To find the sync point, we first assume that we are correctly positioned

at the start of an MPEG header. We then try to compute the length of

the frame. Then one of the following can happen:

• Our assumption was correct, so when we skip forward by the

length of the frame, we will find another MPEG header.

• Our assumption was incorrect; either we are not positioned at a

sequence of 11 consecutive 1 bits that marks the start of a header

or the format of the word is incorrect so that we cannot compute

the length of the frame.

• Our assumption was incorrect, but we are positioned at a couple of

bytes of music data that happen to look like the start of a header.

In this case, we can compute a frame length, but when we skip

forward by this length, we cannot find a new header.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=93

THE BIT SYNTAX 94

To be really sure, we look for three consecutive headers. The synchro-

nization routine is as follows:

Download mp3_sync.erl

find_sync(Bin, N) ->

case is_header(N, Bin) of

{ok, Len1, _} ->

case is_header(N + Len1, Bin) of

{ok, Len2, _} ->

case is_header(N + Len1 + Len2, Bin) of

{ok, _, _} ->

{ok, N};

error ->

find_sync(Bin, N+1)

end;

error ->

find_sync(Bin, N+1)

end;

error ->

find_sync(Bin, N+1)

end.

find_sync tries to find three consecutive MPEG header frames. If byte N

in Bin is the start of a header frame, then is_header(N, Bin) will return {ok,

Length, Info}. If is_header returns error, then N cannot point to the start of

a correct frame. We can do a quick test in the shell to make sure this

works:

1> {ok, Bin} = file:read_file("/home/joe/music/mymusic.mp3").

{ok,<<73,68,51,3,0,0,0,0,33,22,84,73,84,50,0,0,0,28, ...>>

2> mp3_sync:find_sync(Bin, 1).

{ok,4256}

This uses file:read_file to read the entire file into a binary (see Sec-

tion 13.2, Reading the Entire File into a Binary, on page 231). Now for

is_header:

Download mp3_sync.erl

is_header(N, Bin) ->

unpack_header(get_word(N, Bin)).

get_word(N, Bin) ->

{_,<<C:4/binary,_/binary>>} = split_binary(Bin, N),

C.

unpack_header(X) ->

try decode_header(X)

catch

: -> error

end.

http://media.pragprog.com/titles/jaerlang/code/mp3_sync.erl
http://media.pragprog.com/titles/jaerlang/code/mp3_sync.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=94

THE BIT SYNTAX 95

This is slightly more complicated. First we extract 32 bits of data to

analyze (this is done by get_word); then we unpack the header using

decode_header. Now decode_header is written to crash (by calling exit/1)

if its argument is not at the start of a header. To catch any errors, we

wrap the call to decode_header in a try...catch statement (read more

about this in Section 4.1, Exceptions, on page 76). This will also catch

any errors that might be caused by incorrect code in framelength/4.

decode_header is where all the fun starts:

Download mp3_sync.erl

decode_header(<<2#11111111111:11,B:2,C:2,_D:1,E:4,F:2,G:1,Bits:9>>) ->

Vsn = case B of

0 -> {2,5};

1 -> exit(badVsn);

2 -> 2;

3 -> 1

end,

Layer = case C of

0 -> exit(badLayer);

1 -> 3;

2 -> 2;

3 -> 1

end,

%% Protection = D,

BitRate = bitrate(Vsn, Layer, E) * 1000,

SampleRate = samplerate(Vsn, F),

Padding = G,

FrameLength = framelength(Layer, BitRate, SampleRate, Padding),

if

FrameLength < 21 ->

exit(frameSize);

true ->

{ok, FrameLength, {Layer,BitRate,SampleRate,Vsn,Bits}}

end;

decode_header(_) ->

exit(badHeader).

The magic lies in the amazing expression in the first line of the code.

decode_header(<<2#11111111111:11,B:2,C:2,_D:1,E:4,F:2,G:1,Bits:9>>) ->

This pattern matches eleven consecutive 1 bits,1 2 bits into B, 2 bits

into C, and so on. Note that the code exactly follows the bit-level spec-

ification of the MPEG header given earlier. More beautiful and direct

code would be difficult to write. This code is beautiful. It’s also highly

efficient. The Erlang compiler turns the bit syntax patterns into highly

optimized code that extracts the fields in an optimal manner.

1. 2#11111111111 is a base 2 integer.

http://media.pragprog.com/titles/jaerlang/code/mp3_sync.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=95

THE BIT SYNTAX 96

Unpacking COFF Data

A few years ago I decided to write a program to make stand-alone Erlang

programs that would run on Windows—I wanted to build a Windows

executable on any machine that could run Erlang. Doing this involved

understanding and manipulating the Microsoft Common Object File

Format (COFF) formatted files. Finding out the details of COFF was

pretty tricky, but various APIs for C++ programs were documented. The

C++ programs used the type declarations DWORD, LONG, WORD, and

BYTE (these type declarations will be familiar to programmers who have

programmed Windows internals).

The data structures involved were documented, but only from a C or

C++ programmer’s point of view. The following is a typical C typedef:

typedef struct _IMAGE_RESOURCE_DIRECTORY {

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

WORD NumberOfNamedEntries;

WORD NumberOfIdEntries;

} IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

To write my Erlang program, I first defined four macros that must be

included in the Erlang source code file:

-define(DWORD, 32/unsigned-little-integer).

-define(LONG, 32/unsigned-little-integer).

-define(WORD, 16/unsigned-little-integer).

-define(BYTE, 8/unsigned-little-integer).

Note: Macros are explained in Section 5.4, Macros, on page 108. To

expand these macros, we use the syntax ?DWORD, ?LONG, and so on.

For example, the macro ?DWORD expands to the literal text 32/unsigned-

little-integer.

These macros deliberately have the same names as their C counter-

parts. Armed with these macros, I could easily write some code to

unpack image resource data into a binary:

unpack_image_resource_directory(Dir) ->

<<Characteristics : ?DWORD,

TimeDateStamp : ?DWORD,

MajorVersion : ?WORD,

MinorVersion : ?WORD,

NumberOfNamedEntries : ?WORD,

NumberOfIdEntries : ?WORD, _/binary>> = Dir,

...

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=96

THE BIT SYNTAX 97

If you compare the C and Erlang code, you’ll see that they are pretty

similar. So by taking care with the names of the macros and the layout

of the Erlang code, we can minimize the semantic gap between the C

code and the Erlang code, something that makes our program easier to

understand and less likely to have errors.

The next step was to unpack data in Characteristics, and so on.

Characteristics is a 32-bit word consisting of a collection of flags. Unpack-

ing these using the bit syntax is extremely easy; we just write code like

this:

<<ImageFileRelocsStripped:1, ImageFileExecutableImage:1, ...>> =

<<Characteristics:32>>

The code <<Characteristics:32>> converted Characteristics, which was an

integer, into a binary of size 32 bits. Then the following code unpacked

the required bits into the variables ImageFileRelocsStripped, ImageFileExe-

cutableImage, and so on:

<<ImageFileRelocsStripped:1, ImageFileExecutableImage:1, ...>> = ...

Again, I kept the same names as in the Windows API to keep the seman-

tic gap between the specification and the Erlang program to a mini-

mum.

Using these macros made unpacking data in the COFF format—well,

I can’t really use the word easy—but at least it was possible, and the

code was reasonably understandable.

Unpacking the Header in an IPv4 Datagram

This example illustrates parsing an Internet Protocol version 4 (IPv4)

datagram in a single pattern-matching operation:

-define(IP_VERSION, 4).

-define(IP_MIN_HDR_LEN, 5).

...

DgramSize = size(Dgram),

case Dgram of

<<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,

ID:16, Flgs:3, FragOff:13,

TTL:8, Proto:8, HdrChkSum:16,

SrcIP:32,

DestIP:32, RestDgram/binary>> when HLen >= 5, 4*HLen =< DgramSize ->

OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),

<<Opts:OptsLen/binary,Data/binary>> = RestDgram,

...

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=97

MISCELLANEOUS SHORT TOPICS 98

This code matches an IP datagram in a single pattern-matching expres-

sion. The pattern is complex, spreading over three lines, and illustrates

how data that does not fall on byte boundaries can easily be extracted

(for example, the Flgs and FragOff fields that are 3 and 13 bits long,

respectively). Having pattern matched the IP datagram, the header and

data part of the datagram are extracted in a second pattern matching

operation.

5.4 Miscellaneous Short Topics

We’ve now covered all the major topics in sequential Erlang. What

remains are a number of small odds and ends that you have to know

but that don’t fit into any of the other topics. There’s no particular log-

ical order to these. The topics covered are as follows:

• apply: How to compute the value of a function from its name and

arguments, when the function and module name are computed

dynamically.

• Attributes: The syntax and meaning of the Erlang module attri-

butes.

• Block expressions: Expressions using begin and end.

• Boolean expressions: All the boolean expressions.

• Character set: Which character set does Erlang use?

• Comments: Syntax of comments.

• epp: The Erlang preprocessor.

• Escape sequences: The syntax of the escape sequences used in

strings and atoms.

• Expressions and expression sequences: What exactly is an expres-

sion?

• Function references: How to refer to functions.

• Include files: How to include files at compile time.

• List operations: ++ and - -.

• Macros: The Erlang macro processor.

• Match operator in patterns: How the match operator = can be used

in patterns.

• Numbers: The syntax of numbers.

• Operator precedence: The priority and associativity of all the Erlang

operators.

• The process dictionary: Each Erlang process has a local area of

destructive storage, which can be useful sometimes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=98

MISCELLANEOUS SHORT TOPICS 99

• References: References are unique symbols.

• Short-circuit boolean expressions: Boolean expressions that are not

fully evaluated.

• Term comparisons: All the term comparison operators and the lex-

ical ordering of terms.

• Underscore variables: Variables that the compiler treats in a spe-

cial way.

apply

The BIF apply(Mod, Func, [Arg1, Arg2, ..., ArgN]) applies the function Func

in the module Mod to the arguments Arg1, Arg2, ... ArgN. It is equivalent

to calling this:

Mod:Func(Arg1, Arg2, ..., ArgN)

apply lets you call a function in a module, passing it arguments. What

makes it different from calling the function directly is that the module

name and/or the function name can be computed dynamically.

All the Erlang BIFs can be called using apply by assuming that they

belong to the module erlang. So, to build a dynamic call to a BIF, we

might write the following:

1> apply(erlang, atom_to_list, [hello]).

"hello"

Warning: The use of apply should be avoided if possible. When the num-

ber of arguments to a function is known in advance, it is much better

to use a call of the form M:F(Arg1, Arg2, ... ArgN) than apply. When calls

to functions are built using apply, many analysis tools cannot work out

what is happening, and certain compiler optimizations cannot be made.

So, use apply sparingly and only when absolutely needed.

Attributes

Module attributes have the syntax -AtomTag(...)2 and are used to define

certain properties of a file. There are two types of module attributes:

predefined and user-defined.

Predefined Module Attributes

The following module attributes have predefined meanings and must

be placed before any function definitions.

2. -record(...) and -include(...) have a similar syntax but are not considered module

attributes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=99

MISCELLANEOUS SHORT TOPICS 100

-module(modname).

The module declaration. modname must be an atom. This attribute

must be the first attribute in the file. Conventionally the code for

modname should be stored in a file called modname.erl. If you do

not do this, then automatic code loading will not work correctly;

see Section E.4, Dynamic Code Loading, on page 435 for more

details.

-import(Mod, [Name1/Arity1, Name2/Arity2,...]).

Specify that the function Name1 with Arity1 arguments is to be

imported from the module Mod.

Once a function has been imported from a module, then calling

the function can be achieved without specifying the module name.

For example:

-module(abc).

-import(lists, [map/2]).

f(L) ->

L1 = map(fun(X) -> 2*X end, L),

lists:sum(L1)

The call to map needs no qualifying module name, whereas to call

sum we need to include the module name in the function call.

-export([Name1/Arity1, Name2/Arity2, ...]).

Export the functions Name1/Arity1, Name2/Arity2, and so on, from

the current module. Note that only exported functions can be

called from outside a module. For example:

Download abc.erl

-module(abc).

-export([a/2, b/1]).

a(X, Y) -> c(X) + a(Y).

a(X) -> 2 * X.

b(X) -> X * X.

c(X) -> 3 * X.

The export declaration means that only a/2 and b/1 can be called

from outside the module abc. So, for example, calling abc:a(5) will

result in an error because a/1 is not exported from the module.

1> abc:a(1,2).

7

2> abc:b(12).

144

http://media.pragprog.com/titles/jaerlang/code/abc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=100

MISCELLANEOUS SHORT TOPICS 101

3> abc:a(5).

** exited: {undef,[{abc,a,[5]},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]} ="session">

-compile(Options).

Add Options to the list of compiler options. Options is a single com-

piler option or a list of compiler options (these are described in the

manual page for the module compile).

Note: The compiler option -compile(export_all). is often used while

debugging programs. This exports all functions from the module

without having to explicitly use the -export annotation.

-vsn(Version).

Specify a module version. Version is any literal term. The value of

Version has no particular syntax or meaning, but it can be used by

analysis programs or for documentation purposes.

User-Defined Attributes

The syntax of a user-defined module attribute is as follows:

-SomeTag(Value).

SomeTag must be an atom, and Value must be a literal term. The val-

ues of the module attributes are compiled into the module and can be

extracted at runtime. Here’s an example:

Download attrs.erl

-module(attrs).

-vsn(1234).

-author({joe,armstrong}).

-purpose("example of attributes").

-export([fac/1]).

fac(1) -> 1;

fac(N) -> N * fac(N-1).

1> attrs:module_info().

[{exports,[{fac,1},{module_info,0},{module_info,1}]},

{imports,[]},

{attributes,[{vsn,[1234]},

{author,[{joe,armstrong}]},

{purpose,"example of attributes"}]},

{compile,[{options,[{cwd,"/home/joe/2006/book/JAERLANG/Book/code"},

{outdir,"/home/joe/2006/book/JAERLANG/Book/code"}]},

{version,"4.4.3"},

{time,{2007,2,21,19,23,48}},

{source,"/home/joe/2006/book/JAERLANG/Book/code/attrs.erl"}]}]

http://media.pragprog.com/titles/jaerlang/code/attrs.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=101

MISCELLANEOUS SHORT TOPICS 102

2> attrs:module_info(attributes).

[{vsn,[1234]},{author,[{joe,armstrong}]},{purpose,"example of attributes"}]

3> beam_lib:chunks("attrs.beam",[attributes]).

{ok,{attrs,[{attributes,[{author,[{joe,armstrong}]},

{purpose,"example of attributes"},

{vsn,[1234]}]}]}}

The user-defined attributes contained in the source code file reappear

as a subterm of {attributes, ...}. The tuple {compile, ...} contains informa-

tion that was added by the compiler. The value {version,"4.4.3"} is the ver-

sion of the compiler and should not be confused with the vsn tag defined

in the module attributes. In the previous example, attrs:module_info()

returns a property list of all the metadata associated with a compiled

module. attrs:module_info(attributes)3 returns a list of any attributes asso-

ciated with the file.

Note that the functions module_info/0 and module_info/1 are automati-

cally created every time a module is compiled.

The output of lines 2 and 3 is a bit difficult to read. To make life easier,

we can write a little function that extracts a specific attribute and call

it like this:

4> extract:attribute("attrs.beam", author).

[{joe,armstrong}]

The code to do this is easy:

Download extract.erl

-module(extract).

-export([attribute/2]).

attribute(File, Key) ->

case beam_lib:chunks(File,[attributes]) of

{ok, {_Module, [{attributes,L}]}} ->

case lookup(Key, L) of

{ok, Val} ->

Val;

error ->

exit(badAttribute)

end;

_ ->

exit(badFile)

end.

lookup(Key, [{Key,Val}|_]) -> {ok, Val};

lookup(Key, [_|T]) -> lookup(Key, T);

lookup(_, []) -> error.

3. Other arguments are exports, imports, and compile.

http://media.pragprog.com/titles/jaerlang/code/extract.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=102

MISCELLANEOUS SHORT TOPICS 103

To run attrs:module_info, we have to load the beam code for the module

attrs. The module beam_lib contains a number of functions for analyz-

ing a module without loading the code. The example in extract.erl used

beam_lib:chunks to extract the attribute data without loading the code

for the module.

Block Expressions
begin

Expr1,

...,

ExprN

end

You can use block expressions to group a sequence of expressions,

similar to a clause body. The value of a begin ... end block is the value

of the last expression in the block.

Block expressions are used when the syntax requires a single expres-

sion but you want to have sequence of expressions at this point in the

code.

Booleans

There is no distinct boolean type in Erlang; instead, the atoms true and

false are given a special interpretation and are used to represent boolean

literals.

Boolean Expressions

There are four possible boolean expressions:

• not B1: Logical not

• B1 and B2: Logical and

• B1 or B2: Logical or

• B1 xor B2: Logical xor

In all of these, B1 and B2 must be boolean literals or expressions that

evaluate to booleans. Examples:

1> not true.

false.

2> true and false.

false

3> true or false.

true

4> (2 > 1) or (3 > 4).

true

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=103

MISCELLANEOUS SHORT TOPICS 104

Force Binary Functions to Return Booleans

Sometimes we write functions that return one of two possible
atomic values. When this happens, it’s good practice to make
sure they return a boolean. It’s also a good idea to name your
functions to make it clear that they return a boolean.

For example, suppose we write a program that represents the
state of some file. We might find ourselves writing a function
file_state() that returns open or closed. When we write this func-
tion, we could think about renaming the function and letting
it return a boolean. With a little thought we could rewrite our
program to use a function called is_file_open() that returns true

or false.

Why should we do this?

The answer is simple. There are a large number of functions
in the standard libraries that work on functions that return
booleans. So if we make sure all our functions that can return
only one of two atomic values instead return booleans, then
we’ll be able to use them together with the standard library
functions.

Character Set

Erlang source code files are assumed to be encoded in the ISO-8859-1

(Latin-1) character set. This means all Latin-1 printable characters can

be used without using any escape sequences.

Internally Erlang has no character data type. Strings don’t really exist

but instead are represented by lists of integers. Unicode strings can

be represented by lists of integers without any problems, though there

is limited support for parsing and generating Unicode files from the

Erlang lists of integers.

Comments

Comments in Erlang start with a percent character (%) and extend to

the end of line. There are no block comments.

Note: You’ll often see double percent characters (%%) in code examples.

Double percent marks are recognized in the emacs erlang-mode and

enable automatic indentation of commented lines.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=104

MISCELLANEOUS SHORT TOPICS 105

% This is a comment

my_function(Arg1, Arg2) ->

case f(Arg1) of

{yes, X} -> % it worked

..

epp

Before an Erlang module is compiled, it is automatically processed by

the Erlang preprocessor epp. The preprocessor expands any macros

that might be in the source file and inserts any necessary include files.

Ordinarily, you won’t need to look at the output of the preprocessor, but

in exceptional circumstances (for example, when debugging a faulty

macro), you might want to save the output of the preprocessor. The

output of the preprocessor can be saved in a file by giving the command

compile:file(M, [’P’]). This compiles any code in the file M.erl and produces

a listing in the file M.P where all macros have been expanded and any

necessary include files have been included.

Escape Sequences

Within strings and quoted atoms, you can use escape sequences to

enter any nonprintable characters. All the possible escape sequences

are shown in Figure 5.1, on the following page.

Let’s give some examples in the shell to show how these conventions

work. (Note: ~w in a format string prints the list without any attempt to

pretty print the result.)

%% Control characters

1> io:format("~w~n", ["\b\d\e\f\n\r\s\t\v"]).

[8,127,27,12,10,13,32,9,11]

ok

%% Octal characters in a string

3> io:format("~w~n", ["\123\12\1"]).

[83,10,1]

ok

%% Quotes and escapes in a string

4> io:format("~w~n", ["\'\"\\"]).

[39,34,92]

ok

%% Character codes

5> io:format("~w~n", ["\a\z\A\Z"]).

[97,122,65,90]

ok

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=105

MISCELLANEOUS SHORT TOPICS 106

Escape Sequence Meaning Integer Code

\b Backspace 8

\d Delete 127

\e Escape 27

\f Form feed 12

\n New line 10

\r Carriage return 13

\s Space 32

\t Tab 9

\v Vertical tab 11

\NNN \NN \N Octal characters (N is 0..7)

\∧a..\∧z or \∧A..\∧Z Ctrl+A to Ctrl+Z 1 to 26

\’ Single quote 39

\" Double quote 34

\\ Backslash 92

\C The ASCII code for C (C is a character) (An integer)

Figure 5.1: Escape sequences

Expressions and Expression Sequences

In Erlang, anything that can be evaluated to produce a value is called

an expression. This means things such as catch, if, and try...catch are

expressions. Things such as records and module attributes cannot be

evaluated, so they are not expressions.

Expression sequences are sequences of expressions separated by com-

mas. These are found all over the place immediately following an ->

arrow. The value of the expression sequence E1, E2, ..., En is defined to

be the value of the last expression in the sequence.4 This is computed

using any bindings created when computing the values of E1, E2, and

so on.

Function References

Often we want to refer to a function that is defined in the current mod-

ule or in some external module. You can use the following notation for

this:

fun LocalFunc/Arity

This is used to refer to the local function called LocalFunc with Arity

arguments in the current module.

4. Equivalent to progn in LISP.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=106

MISCELLANEOUS SHORT TOPICS 107

fun Mod:RemoteFunc/Arity

This is used to refer to an external function called RemoteFunc with

Arity arguments in the module Mod.

Here’s an example of a function reference in the current module:

-module(x1).

-export([square/1, ...]).

square(X) -> X * X.

...

double(L) -> lists:map(fun square/1, L).

If we wanted to call a function in a remote module, we could refer to

the function as in the following example:

-module(x2).

...

double(L) -> lists:map(fun x1:square/1, L).

fun x1:square/1 means the function square/1 in the module x1.

Include Files

Files can be included with the following syntax:

-include(Filename).

In Erlang, the convention is that include files have the extension .hrl.

The FileName should contain an absolute or relative path so that the

preprocessor can locate the appropriate file. Library header files can be

included with the following syntax:

-include_lib(Name).

For example:

-include_lib("kernel/include/file.hrl").

In this case, the Erlang compiler will find the appropriate include files.

(kernel, in the previous example, refers to the application that defines

this header file.)

Include files usually contain record definitions. If many modules need

to share common record definitions, then the common record defini-

tions are put into include files that are included by all the modules that

need these definitions.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=107

MISCELLANEOUS SHORT TOPICS 108

List Operations ++ and - -

++ and - - are infix operators for list addition and subtraction.

A ++ B adds (that is, appends) A and B.

A - - B subtracts the list B from the list A. Subtraction means that every

element in B is removed from A. Note that if some symbol X occurs only

K times in B, then only the first K occurrence of X in A will be removed.

Examples:

1> [1,2,3] ++ [4,5,6].

[1,2,3,4,5,6]

2> [a,b,c,1,d,e,1,x,y,1] -- [1].

[a,b,c,d,e,1,x,y,1]

3> [a,b,c,1,d,e,1,x,y,1] -- [1,1].

[a,b,c,d,e,x,y,1]

4> [a,b,c,1,d,e,1,x,y,1] -- [1,1,1].

[a,b,c,d,e,x,y]

5> [a,b,c,1,d,e,1,x,y,1] -- [1,1,1,1].

[a,b,c,d,e,x,y]

++ in Patterns

++ can also be used in patterns. When matching strings, we can write

patterns such as the following:

f("begin" ++ T) -> ...

f("end" ++ T) -> ...

...

The pattern in the first clause is expanded into [$b,$e,$g,$i,$n|T].

Macros

Erlang macros are written as shown here:

-define(Constant, Replacement).

-define(Func(Var1, Var2,.., Var), Replacement).

Macros are expanded by the Erlang preprocessor epp when an expres-

sion of the form ?MacroName is encountered. Variables occurring in the

macro definition match complete forms in the corresponding site of the

macro call.

-define(macro1(X, Y), {a, X, Y}).

foo(A) ->

?macro1(A+10, b)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=108

MISCELLANEOUS SHORT TOPICS 109

That expands into this:

foo(A) ->

{a,A+10,b}.

In addition, a number of predefined macros provide information about

the current module. They are as follows:

• ?FILE expands to the current filename.

• ?MODULE expands to the current module name.

• ?LINE expands to the current line number.

Control Flow in Macros

Inside a macro definition, the following directives are supported. You

can use them to direct the flow of control within a macro:

-undef(Macro).

Undefines the macro; after this you cannot call the macro.

-ifdef(Macro).

Evaluates the following lines only if Macro has been defined.

-ifndef(Macro).

Evaluates the following lines only if Macro is undefined.

-else.

Allowed after a ifdef or ifndef statement. If the condition was false,

the statements following else are evaluated.

-endif.

Marks the end of an ifdef or ifndef statement.

Conditional macros must be properly nested. They are conventionally

grouped as follows:

-ifdef(debug).

-define(...).

-else.

-define(...).

-endif.

We can use these macros to define a TRACE macro. For example:

Download m1.erl

-module(m1).

-export([start/0]).

-ifdef(debug).

-define(TRACE(X), io:format("TRACE ~p:~p ~p~n",[?MODULE, ?LINE, X])).

-else.

-define(TRACE(X), void).

-endif.

http://media.pragprog.com/titles/jaerlang/code/m1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=109

MISCELLANEOUS SHORT TOPICS 110

start() -> loop(5).

loop(0) ->

void;

loop(N) ->

?TRACE(N),

loop(N-1).

Note: io:format(String, [Args]) prints the variables in [Args] in the Erlang

shell according to the formatting information in String. The formatting

codes are preceded by a (~) symbol. ~p is short for pretty print, and ~n

produces a newline.5

To compile the code using the trace macro turned on and off, we can

use an additional argument to c/2 as follows:

1> c(m1, {d, debug}).

{ok,m1}

2> m1:start().

TRACE m1:15 5

TRACE m1:15 4

TRACE m1:15 3

TRACE m1:15 2

TRACE m1:15 1

void

c(m1, Options) provides a way of passing options to the compiler. {d,

debug} sets the debug flag to true so that it gets recognized in the -

ifdef(debug) section of the macro definition.

When the macro is turned off, the trace macro just expands to the atom

void. This choice of name has no significance; it’s just a reminder to me

that nobody is interested in the value of the macro.

Match Operator in Patterns

Let’s suppose we have some code like this:

Line 1 func1([{tag1, A, B}|T]) ->
- ...
- ... f(..., {tag1, A, B}, ...)
- ...

In line 1, we pattern match the term {tag1, A, B}, and in line 3 we call

f with an argument that is {tag1, A, B}. When we do this, the system

rebuilds the term {tag1, A, B}. A much more efficient and less error prone

5. io:format understands an extremely large number of formatting options; for more

information, see Section 13.3, Write a List of Terms to a File, on page 235.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=110

MISCELLANEOUS SHORT TOPICS 111

way to do this is to assign the pattern to a temporary variable, Z, and

pass this into f, like this:

func1([{tag1, A, B}=Z|T]) ->

...

... f(... Z, ...)

...

The match operator can be used at any point in the pattern, so if we

have two terms that need rebuilding, such as in this code:

func1([{tag, {one, A}, B}|T]) ->

...

... f(..., {tag, {one,A}, B}, ...),

... g(..., {one, A}), ...)

...

then we could introduce two new variables, Z1 and Z2, and write the

following:

func1([{tag, {one, A}=Z1, B}=Z2|T]) ->

..,.

... f(..., Z2, ...),

... g(..., Z1, ...),

...

Numbers

Numbers in Erlang are either integers or floats.

Integers

Integer arithmetic is exact, and the number of digits that can be repre-

sented in an integer is limited only by available memory.

Integers are written with one of three different syntaxes:

1. Conventional syntax: Here integers are written as you expect. For

example, 12, 12375, and -23427 are all integers.

2. Base K integers: Integers in a number base other than ten are

written with the syntax K#Digits; thus, we can write a number in

binary as 2#00101010 or a number in hexadecimal as 16#af6bfa23.

For bases greater than ten, the characters abc... (or ABC...) repre-

sent the numbers 10, 11, 12, and so on. The highest number base

we can represent in this manner is base 36.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=111

MISCELLANEOUS SHORT TOPICS 112

3. $ syntax: The syntax $C represents the integer code for the ASCII

character C. Thus, $a is short for 97, $1 is short for 49, and so on.

Immediately after the $ we can also use any of the escape sequen-

ces described in Figure 5.1, on page 106. Thus, $\n is 10, $\∧c is

3, and so on.

Here are some examples of integers:

0 -65 2#010001110 -8#377 16#fe34 16#FE34 36#wow

(Their values are 0, -65, 142, -255, 65076, 65076, and 42368, respectively.)

Floats

A floating-point number has five parts: an optional sign, a whole num-

ber part, a decimal point, a fractional part, and an optional exponent

part.

Here are some examples of floats:

1.0 3.14159 -2.3e+6 23.56E-27

After parsing, floating-point numbers are represented internally in

IEEE 754 64-bit format. Real numbers in the range −10323 to 10308 can

be represented by an Erlang float.

Operator Precedence

Figure 5.2 shows all the Erlang operators in order of descending priority

together with their associativity. Operator precedence and associativity

is used to determine the evaluation order in unparenthesized expres-

sions.

Expression with higher priority (higher up in the table) are evaluated

first, and then expressions with lower priority are evaluated. So, for

example, to evaluate 3+4*5+6, we first evaluate the subexpression 4*5,

since (*) is higher up in the table than (+). Now we evaluate 3+20+6. Since

(+) is a left-associative operator, we interpret this as meaning (3+20)+6,

so we evaluate 3+20 first yielding 23; finally we evaluate 23+6.

In its fully parenthesized form, 3+4*5+6 means ((3+(4*5))+6). As with all

programming languages, it is better to use parentheses to denote scope

than to rely upon the precedence rules.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=112

MISCELLANEOUS SHORT TOPICS 113

Operators Associativity

:

#

(unary) +, (unary) -, bnot, not

/, *, div, rem, band, and Left associative

+, -, bor, bxor, bsl, bsr, or, xor Left associative

++, - - Right associative

==, /=, =<, <, >=, >, =:=, =/=

andalso

orelse

Figure 5.2: Operator precedence

The Process Dictionary

Each process in Erlang has its own private data store called the process

dictionary. The process dictionary is an associative array (in other lan-

guages this might be called a map, hashmap, or hash table) composed

of a collection of keys and values. Each key has only one value.

The dictionary can be manipulated using the following BIFs:

@spec put(Key, Value) -> OldValue.

Add a Key, Value association to the process dictionary. The value

of put is OldValue, which is the previous value associated with Key.

If there was no previous value, the atom undefined is returned.

@spec get(Key) -> Value.

Look up the value of Key. If there is an association Key, Value asso-

ciation in the dictionary, return Value; otherwise, return the atom

undefined

@spec get() -> [{Key,Value}].

Return the entire dictionary as a list of {Key,Value} tuples.

@spec get_keys(Value) -> [Key].

Return a list of keys that have the values Value in the dictionary.

@spec erase(Key) -> Value.

Return the value associated with Key or the atom undefined if there

is no value associated with Key. Finally, erase the value associated

with Key.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=113

MISCELLANEOUS SHORT TOPICS 114

@spec erase() -> [{Key,Value}].

Erase the entire process dictionary. The return value is a list of

{Key,Value} tuples representing the state of the dictionary before it

was erased.

For example:

1> erase().

[]

2> put(x, 20).

undefined

3> get(x).

20

4> get(y).

undefined

5> put(y, 40).

undefined

6> get(y).

40

7> get().

[{y,40},{x,20}]

8> erase(x).

20

9> get().

[{y,40}]

As you can see, variables in the process dictionary behave pretty much

like conventional variables in imperative programming languages. If

you use the process dictionary, your code will no longer be side effect

free, and all the benefits of using nondestructive variables that we dis-

cussed in Section 2.6, Variables That Don’t Vary, on page 28 do not

apply. For this reason, you should use the process dictionary sparingly.

Note: I rarely use the process dictionary. Using the process dictionary

can introduce subtle bugs into your program and make it difficult to

debug. One form of usage that I do approve of is to use the processes

dictionary to store “write-once” variables. If a key acquires a value

exactly once and does not change the value, then storing it in the pro-

cess dictionary is sometimes acceptable.

References

References are globally unique Erlang terms. They are created with the

BIF erlang:make_ref(). References are useful for creating unique tags that

can be included in data and then at a later stage compared for equality.

For example, a bug-tracking system might add a reference to each new

bug report in order to give it a unique identity.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=114

MISCELLANEOUS SHORT TOPICS 115

Short-Circuit Boolean Expressions

Short-circuit boolean expressions are boolean expressions whose argu-

ments are evaluated only when necessary.

There are two “short-circuit” boolean expressions:

Expr1 orelse Expr2

This first evaluates Expr1. If Expr1 evaluates to true, Expr2 is not

evaluated. If Expr1 evaluates to false, Expr2 is evaluated.

Expr1 andalso Expr2

This first evaluates Expr1. If Expr1 evaluates to true, Expr2 is evalu-

ated. If Expr1 evaluates to false, Expr2 is not evaluated.

Note: In the corresponding boolean expressions (A or B; A and B), both the

arguments are always evaluated, even if the truth value of the expres-

sion can be determined by evaluating only the first expression.

Term Comparisons

There are eight possible term comparison operations, shown in Fig-

ure 5.3, on the following page.

For the purposes of comparison, a total ordering is defined over all

terms. This is defined so that the following is true:

number < atom < reference < fun < port < pid < tuple < list < binary

What does this mean? This means that, for example, a number (any

number) is defined to be smaller than an atom (any atom), that a tuple

is greater than an atom, and so on. (Note that for the purposes of order-

ing, ports and PIDs are included in this list. We’ll talk about these later.)

Having a total order over all terms means we can sort lists of any type

and build efficient data access routines based on the sort order of the

keys.

All the term comparison operators, with the exception of =:= and =/=,

behave in the following way if their arguments are numbers:

• If one argument is a integer and the other is a float, then the

integer is converted to a float before the comparison is performed.

• If both arguments are integers or if both arguments are floats,

then the arguments are used “as is,” that is, without conversion.

You should also be really careful about using == (especially if you’re a C

or Java programmer). In 99 out of a 100 cases, you should be using =:=.

== is useful only when comparing floats with integers. =:= is for testing

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=115

MISCELLANEOUS SHORT TOPICS 116

Operator Meaning

X > Y X is greater than Y.

X < Y X is less than Y.

X =< Y X is equal to or less than Y.

X >= Y X is greater than or equal to Y.

X == Y X is equal to Y.

X /= Y X is not equal to Y.

X =:= Y X is identical to Y.

X =/= Y X is not identical to Y.

Figure 5.3: Term Comparisons

whether two terms are identical.6 If in doubt, use =:=, and be suspicious

if you see ==. Note that a similar comment applies to using /= and =/=,

where /= means “not equal to” and =/= means “not identical.”

Note: In a lot of library and published code, you’ll see == used when the

operator should have been =:=. Fortunately, this kind of error does not

often result in an incorrect program, since if the arguments to == do

not contain any floats, then the behaviors of the two operators are the

same.

You should also be aware that function clause matching always implies

exact pattern matching, so if you define a fun F = fun(12) -> ... end, then

trying to evaluate F(12.0) will fail.

Underscore Variables

There’s one more thing to say about variables. The special syntax _Var-

Name is used for a normal variable, not an anonymous variable. Nor-

mally the compiler will generate a warning if a variable is used only

once in a clause since this is usually the sign of an error. If the variable

is used only once but starts with an underscore, the warning message

will not be generated.

Since _Var is a normal variable, very subtle bugs can be caused by for-

getting this and using it as a “don’t care” pattern. In a complicated pat-

tern match, it can be difficult to spot that, for example, _Int is repeated

when it shouldn’t have been, causing the pattern match to fail.

6. Identical means having the same value (like the Common Lisp EQUAL). Since values

are immutable, this does not imply any notion of pointer identity.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=116

MISCELLANEOUS SHORT TOPICS 117

There are two main uses of underscore variables:

• To name a variable that we don’t intend to use. That is, writing

open(File, _Mode) makes the program more readable than writing

open(File, _).

• For debugging purposes. For example, suppose we write this:

some_func(X) ->

{P, Q} = some_other_func(X),

io:format("Q = ~p~n", [Q]),

P.

This compiles without an error message.

Now comment out the format statement:

some_func(X) ->

{P, Q} = some_other_func(X),

%% io:format("Q = ~p~n", [Q]),

P.

If we compile this, the compiler will issue a warning that the vari-

able Q is not used.

If we rewrite the function like this:

some_func(X) ->

{P, _Q} = some_other_func(X),

io:format("_Q = ~p~n", [_Q]),

P.

then we can comment out the format statement, and the compiler

will not complain.

Now we’re actually through with sequential Erlang. We have not men-

tioned a few small topics, but we’ll return to these as we run into them

in the application chapters.

In the next chapter, we’ll look at how to compile and run your programs

in a variety of ways.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=117

Chapter 6

Compiling and Running Your
Program

In the previous chapters, we didn’t say much about compiling and run-

ning your programs—we just used the Erlang shell. This is fine for small

examples, but as your programs become more complex, you’ll want to

automate the process to make life easier. That’s where makefiles come

in.

There are actually three different ways to run your programs. In this

chapter, we’ll look at all three so you can choose the best method for

any particular occasion.

Sometimes things will go wrong: makefiles will fail, environment vari-

ables will be wrong, and your search paths will be incorrect. We’ll help

you deal with these issues by looking at what to do when things go

wrong.

6.1 Starting and Stopping the Erlang Shell

On a Unix system (including Mac OS X), you start the Erlang shell from

a command prompt:

$ erl

Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with ^G)

1>

On a Windows system, click the erl icon.

MODIFYING THE DEVELOPMENT ENVIRONMENT 119

The easiest way to stop the system is just to press Ctrl+C (Windows

Ctrl+Break) followed by A, as follows:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded

(v)ersion (k)ill (D)b-tables (d)istribution

a

$

Instead, you can evaluate the expression erlang:halt() either in the shell

or in a program.

erlang:halt() is a BIF that immediately stops the system, and it is the

method I use most of the time. However, there is a slight disadvan-

tage to this method of stopping the system. If you are running a large

database application and simply halt the system, then the system will

have to go through an error recovery process the next time you start the

system, so you should try to stop the system in a controlled manner.

For a controlled shutdown, if the shell is responding to commands, you

can type this:

1> q().

ok

$

This flushes all open files, stops the database (if running), and closes

all OTP applications in an ordered manner. q() is a shell alias for the

command init:stop().

If none of these methods works, read Section 6.6, Getting Out of Trouble,

on page 131.

6.2 Modifying the Development Environment

When you start programming in Erlang, you’ll probably put all your

modules and files in the same directory and start Erlang from this

directory. If you do this, then the Erlang loader will have no trouble

finding your code. However, as your applications become more com-

plex, you’ll want to split them into manageable chunks and put the

code into different directories. And when you include code from other

projects, this external code will have its own directory structure.

Setting the Search Paths for Loading Code

The Erlang runtime system makes use of a code autoloading mech-

anism. For this to work correctly, you must set a number of search

paths in order to find the correct version of your code.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=119

MODIFYING THE DEVELOPMENT ENVIRONMENT 120

The code-loading mechanism is actually programmed in Erlang—we’ll

talk more about it in Section E.4, Dynamic Code Loading, on page 435.

Code loading is performed “on demand.”

When the system tries to call a function in a module that has not been

loaded, an exception occurs, and the system tries to find an object code

file for the missing module. If the missing module is called myMissing-

Module, then the code loader will search for a file called myMissingMod-

ule.beam in all the directories that are in the current load path. The

search stops at the first matching file, and the object code in this file is

loaded into the system.

You can find the value of the current load path by starting an Erlang

shell and giving the command code:get_path(). Here’s an example:

code:get_path().

[".",

"/usr/local/lib/erlang/lib/kernel-2.11.3/ebin",

"/usr/local/lib/erlang/lib/stdlib-1.14.3/ebin",

"/usr/local/lib/erlang/lib/xmerl-1.1/ebin",

"/usr/local/lib/erlang/lib/webtool-0.8.3/ebin",

"/usr/local/lib/erlang/lib/typer-0.1.0/ebin",

"/usr/local/lib/erlang/lib/tv-2.1.3/ebin",

"/usr/local/lib/erlang/lib/tools-2.5.3/ebin",

"/usr/local/lib/erlang/lib/toolbar-1.3/ebin",

"/usr/local/lib/erlang/lib/syntax_tools-1.5.2/ebin",

...]

The two most common functions that we use to manipulate the load

path are as follows:

@spec code:add_patha(Dir) => true | {error, bad_directory}

Add a new directory, Dir, to the start of the load path.

@spec code:add_pathz(Dir) => true | {error, bad_directory}

Add a new directory, Dir, to the end of the load path.

Usually it doesn’t matter which you use. The only thing to watch out for

is if using add_patha and add_pathz produces different results. If you

suspect an incorrect module was loaded, you can call code:all_loaded()

(which returns a list of all loaded module) or code:clash() to help you

investigate what went wrong.

There are several other routines in the module code for manipulating

the path, but you probably won’t ever need to use them, unless you’re

doing some strange system programming.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=120

MODIFYING THE DEVELOPMENT ENVIRONMENT 121

The usual convention is to put these commands in a file called .erlang

in your home directory. Alternatively, you can start Erlang with a com-

mand like this:

> erl -pa Dir1 -pa Dir2 ... -pz DirK1 -pz DirK2

The -pa Dir flag adds Dir to the beginning of the code search path, and

-pz Dir adds the directory to the end of the code path.

Executing a Set of Commands When the System Is Started

We saw how you can set the load path in your .erlang file in your home

directory. In fact, you can put any Erlang code in this file—when you

start Erlang, it first reads and evaluates all the commands in this file.

Suppose my .erlang file is as follows:

io:format("Running Erlang~n").

code:add_patha(".").

code:add_pathz("/home/joe/2005/erl/lib/supported").

code:add_pathz("/home/joe/bin").

Then when I start the system, I’ll see the following output:

$ erl

Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Running Erlang

Eshell V5.5.1 (abort with ^G)

1>

If there is a file called .erlang in the current directory when Erlang is

started, then it will take precedence over the .erlang in your home direc-

tory. This way you can arrange that Erlang will behave in different ways

depending upon where it is started. This can be useful for specialized

applications. In this case, it’s probably a good idea to include some

print statements in the start-up file; otherwise, you might forget about

the local start-up file, which could be very confusing.

Tip: In some systems, it’s not clear where your home directory is, or

it might not be where you think it is. To find out where Erlang thinks

your home directory is, do the following:

1> init:get_argument(home).

{ok,[["/home/joe"]]}

From this we can infer that Erlang thinks that my home directory is

/home/joe.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=121

DIFFERENT WAYS TO RUN YOUR PROGRAM 122

6.3 Different Ways to Run Your Program

Erlang programs are stored in modules. Once you have written your

program, you have to compile it before you can run it. Alternatively,

you can run your program directly without compiling it by running

escript.

The next sections show how to compile and run a couple of programs

in a number of ways. The programs are slightly different, and the ways

in which we start and stop them differ.

The first program, hello.erl, just prints “Hello world.” It’s not responsible

for starting or stopping the system, and it does not need to access any

command-line arguments. By way of contrast, the second program, fac,

needs to access the command-line arguments.

Here’s our basic program. It writes the string containing “Hello world”

followed by a newline (~n is interpreted as newline in the Erlang io and

io_lib modules).

Download hello.erl

-module(hello).

-export([start/0]).

start() ->

io:format("Hello world~n").

Let’s compile and run it three different ways.

Compile and Run in the Erlang Shell
$ erl

Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with ^G)

1> c(hello).

{ok,hello}

2> hello:start().

Hello world

ok

Compile and Run from the Command Prompt
$ erlc hello.erl

$ erl -noshell -s hello start -s init stop

Hello world

$

http://media.pragprog.com/titles/jaerlang/code/hello.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=122

DIFFERENT WAYS TO RUN YOUR PROGRAM 123

Quick Scripting

Often we want to be able to execute an arbitrary Erlang func-
tion from the OS command line. The -eval argument is very
handy for quick scripting.

Here’s an example:

erl -eval 'io:format("Memory: ~p~n", [erlang:memory(total)]).'\
-noshell -s init stop

Windows users: For this to work, you have to either set your PATH

variable to include the directories containing the Erlang executables or

give a fully qualified path (including the quote marks) to erlc and erl.

For example:

"C:\Program Files\erl5.5.3\bin\erlc.exe" hello.erl

..

The first line, erlc hello.erl, compiles the file hello.erl, producing an object

code file called hello.beam. The second command has three options:

-noshell

Start Erlang without an interactive shell (so you don’t get the

Erlang “banner,” which ordinarily greets you when you start the

system).

-s hello start

Run the function hello:start().

Note: When using the -s Mod ... option, the Mod must have been

compiled.

-s init stop

When apply(hello, start, []) has finished, then the system evaluates

the function init:stop().

The command erl -noshell ... can be put in a shell script, so typically we’d

make a shell script to run our program that sets the path (with -pa

Directory) and launches the program.

In our example, we used two -s .. commands. We can have as many func-

tions as we like on the command line. Each -s ... command is evaluated

with an apply statement, and when it has run to completion, the next

command is evaluated.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=123

DIFFERENT WAYS TO RUN YOUR PROGRAM 124

Here’s an example that launches hello.erl:

Download hello.sh

#!/bin/sh

erl -noshell -pa /home/joe/2006/book/JAERANG/Book/code\

-s hello start -s init stop

Note: This script needs an absolute path that points to the directory

containing the file hello.beam. So although this script works on my

machine, you’ll have to edit it to get it to run on your machine.

To run the shell script, we chmod the file (only once), and then we can

run the script:

$ chmod u+x hello.sh

$./hello.sh

Hello world

$

Note: On Windows, the #! trick does not work. In a Windows environ-

ment, we create the batch file .bat, and we must use the full pathname

to the Erlang executables if PATH is not set.

A typical Window batch file might be as follows:

Download hello.bat

"C:\Program Files\erl5.5.3\bin\erl.exe" -noshell -s hello start -s init stop

Run As an Escript

Using escript you can run your programs directly as scripts—there’s no

need to compile them first.

Warning: escript is included in Erlang versions R11B-4 and onward. If

you have an earlier version of Erlang, then you should upgrade to the

latest version of Erlang.

To run hello as an escript, we create the following file:

Download hello

#!/usr/bin/env escript

main(_) ->

io:format("Hello world\n").

http://media.pragprog.com/titles/jaerlang/code/hello.sh
http://media.pragprog.com/titles/jaerlang/code/hello.bat
http://media.pragprog.com/titles/jaerlang/code/hello
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=124

DIFFERENT WAYS TO RUN YOUR PROGRAM 125

Exporting Functions During Development

When you’re developing code, it can be a bit of a pain to have
to be continually adding and removing export declarations to
your program just so that you can run the exported functions in
the shell.

The special declaration -compile(export_all). tells the compiler to
export every function in the module. Using this makes life much
easier when you’re developing code.

When you’re finished developing the code, you should com-
ment out the export_all declaration and add the appropriate
export declarations. This is for two reasons. First, when you come
to read your code later, you’ll know that the only important
functions are the exported functions, and all the other func-
tions cannot be called from outside the module so you can
change them in any way you like, provided the interfaces to
the exported functions remain the same. Second, the compiler
can produce much better code if it knows exactly which func-
tions are exported from the module.

On a Unix system,1 we can run this immediately and without compila-

tion as follows:

$ chmod u+x hello

$./hello

Hello world

$

Note: The file mode for this file must be set to “executable” (on a Unix

system, give the command chmod u+x File)—you have to do this only

once, not every time you run the program.

Programs with Command-Line Arguments

“Hello world” had no arguments. Let’s repeat the exercise with a pro-

gram that computes factorials. It takes a single argument.

1. I don’t know whether running escript is possible on Windows. If anybody knows how

to do this, mail me, and I’ll add some information to the book.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=125

DIFFERENT WAYS TO RUN YOUR PROGRAM 126

First, here’s the code:

Download fac.erl

-module(fac).

-export([fac/1]).

fac(0) -> 1;

fac(N) -> N*fac(N-1).

We can compile fac.erl and run it in the Erlang shell like this:

$ erl

Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with ^G)

1> c(fac).

{ok,fac}

2> fac:fac(25).

15511210043330985984000000

If we want to be able to run this program from the command line, we’ll

need to modify it to take command-line arguments:

Download fac1.erl

-module(fac1).

-export([main/1]).

main([A]) ->

I = list_to_integer(atom_to_list(A)),

F = fac(I),

io:format("factorial ~w = ~w~n",[I, F]),

init:stop().

fac(0) -> 1;

fac(N) -> N*fac(N-1).

We can then compile and run it:

$ erlc fac1.erl

$ erl -noshell -s fac1 main 25

factorial 25 = 15511210043330985984000000

Note: The fact that the function is called main has no significance; it can

be called anything. The important thing is that the function name and

the name on the command line agree.

http://media.pragprog.com/titles/jaerlang/code/fac.erl
http://media.pragprog.com/titles/jaerlang/code/fac1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=126

AUTOMATING COMPILATION WITH MAKEFILES 127

Finally, we can run it as an escript:

Download factorial

#!/usr/bin/env escript

main([A]) ->

I = list_to_integer(A),

F = fac(I),

io:format("factorial ~w = ~w~n",[I, F]).

fac(0) -> 1;

fac(N) ->

N * fac(N-1).

No compilation is necessary; just run it:

$./factorial 25

factorial 25 = 15511210043330985984000000

$

6.4 Automating Compilation with Makefiles

When I’m writing a large program, I like to automate as much as pos-

sible. There are two reasons for this. First, in the long run, it saves

typing—typing the same old commands over and over again as I test

and retest my program takes a lot of keystrokes, and I don’t want to

wear my fingers out.

Second, I often suspend what I’m working on and go work on some

other project. It can be months before I return to a project that I have

suspended, and when I return to the project, I’ve usually forgotten how

to build the code in my project. make to the rescue!

make is the utility for automating my work—I use it for compiling and

distributing my Erlang code. Most of my makefiles are extremely simple,

and I have a simple template that solves most of my needs.

I’m not going to explain makefiles in general.2 Instead, I’ll show the

form that I find useful for compiling Erlang programs. In particular,

we’ll look at the makefiles accompanying this book, so you’ll be able to

understand them and build your own makefiles.

2. See http://en.wikipedia.org/wiki/Make for a description of makefiles.

http://media.pragprog.com/titles/jaerlang/code/factorial
http://en.wikipedia.org/wiki/Make
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=127

AUTOMATING COMPILATION WITH MAKEFILES 128

A Makefile Template

Here’s the template that I base most of my makefiles on:

Download Makefile.template

leave these lines alone

.SUFFIXES: .erl .beam .yrl

.erl.beam:

erlc -W $<

.yrl.erl:

erlc -W $<

ERL = erl -boot start_clean

Here's a list of the erlang modules you want compiling

If the modules don't fit onto one line add a \ character

to the end of the line and continue on the next line

Edit the lines below

MODS = module1 module2 \

module3 ... special1 ...\

...

moduleN

The first target in any makefile is the default target.

If you just type "make" then "make all" is assumed (because

"all" is the first target in this makefile)

all: compile

compile: ${MODS:%=%.beam} subdirs

special compilation requirements are added here

special1.beam: special1.erl

${ERL} -Dflag1 -W0 special1.erl

run an application from the makefile

application1: compile

${ERL} -pa Dir1 -s application1 start Arg1 Arg2

the subdirs target compiles any code in

sub-directories

subdirs:

cd dir1; make

cd dir2; make

...

http://media.pragprog.com/titles/jaerlang/code/Makefile.template
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=128

AUTOMATING COMPILATION WITH MAKEFILES 129

remove all the code

clean:

rm -rf *.beam erl_crash.dump

cd dir1; make clean

cd dir2; make clean

The makefile starts with some rules to compile Erlang modules and files

with the extension .yrl (these are files containing parser definitions for

the Erlang parser generator program3).

The important part is the line starting like this:

MODS = module1 module2

This is a list of all the Erlang modules that I want to compile.

Any module in the MODS list will be compiled with the Erlang command

erlc Mod.erl. Some modules might need special treatment (for example

the module special1 in the template file), so there is a separate rule to

handle this.

Inside a makefile there are a number of targets. A target is a alphanu-

meric string starting in the first column and terminated by a colon (:).

In the makefile template, all, compile, and special1.beam are all targets.

To run the makefile, you give the shell command:

$ make [Target]

The argument Target is optional. If Target is omitted, then the first target

in the file is assumed. In the previous example, the target all is assumed

if no target is specified on the command line.

If I want to build all my software and run application1, then I’d give the

command make application1. If I wanted this to be the default behavior,

which happens when I just give the command make, then I’d move the

lines defining the target application1 so that they were the first target in

the makefile.

The target clean removes all compiled Erlang object code files and the

file erl_crash.dump. The crash dump contains information that can help

debug an application. See Section 6.10, The Crash Dump, on page 136

for details.

3. The Erlang parser generator is called yecc (an Erlang version of yacc, which

is short for yet another compiler compiler); see the tutorial on the Internet at

http://www.erlang.org/contrib/parser_tutorial-1.0.tgz.

http://www.erlang.org/contrib/parser_tutorial-1.0.tgz
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=129

COMMAND EDITING IN THE ERLANG SHELL 130

Specializing the Makefile Template

I’m not a fan of clutter in my software, so what I usually do is start

with the template makefile and remove all the lines that are not rele-

vant to my application. This results in makefiles that are shorter and

easier to read. Alternatively, you could have a common makefile that is

included by all makefiles and that is parameterized by the variables in

the makefiles.

Once I’m through with this process, I’ll end up with a much simplified

makefile, something like the following:

.SUFFIXES: .erl .beam

.erl.beam:

erlc -W $<

ERL = erl -boot start_clean

MODS = module1 module2 module3

all: compile

${ERL} -pa '/home/joe/.../this/dir' -s module1 start

compile: ${MODS:%=%.beam}

clean:

rm -rf *.beam erl_crash.dump

6.5 Command Editing in the Erlang Shell

The Erlang shell contains a built-in line editor. It understands a subset

of the line-editing commands used in the popular emacs editor. Previ-

ous lines can be recalled and edited in a few keystrokes. The available

commands are shown next (note that ∧Key means you should press

Ctrl+Key):

Command Description
∧A Beginning of line.
∧E End of line.
∧F or right arrow Forward character.
∧B or left arrow Backward character.
∧P or up arrow Previous line.
∧N or down arrow Next line.
∧T Transpose last two characters.

Tab Try to expand current module or function name.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=130

GETTING OUT OF TROUBLE 131

6.6 Getting Out of Trouble

Erlang can sometimes be difficult to stop. Here are a number of possible

reasons:

• The shell is not responding.

• The Ctrl+C handler has been disabled.

• Erlang has been started with the -detached flag so you may not be

aware that it is running.

• Erlang has been started with the -heart Cmd option. This option

causes an OS monitor process to be set up that watches over the

Erlang OS process. If the Erlang OS process dies, then Cmd is

evaluated. Often Cmd will simply restart the Erlang system. This

is one of the tricks we use when making fault-tolerant nodes—

if Erlang itself dies (which should never happen), it just gets re-

started. The trick here is to find the heartbeat process (use ps on

Unix-like systems and the Task Manager on Windows) and kill it

before you kill the Erlang process.

• Something might have gone seriously wrong and left you with a

detached zombie Erlang process.

6.7 When Things Go Wrong

This section lists some common problems (and their solutions).

Undefined (Missing) Code

If you try to run code in a module that the code loader cannot find

(because the code search path was wrong), you’ll be met with an undef

error message. Here’s an example:

1> glurk:oops(1,23).

** exited: {undef,[{glurk,oops,[1,23]},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]} **

Actually, there is no module called glurk, but that’s not the issue here.

The thing you should be concentrating on is the error message. The

error message tells us that the system tried to call the function oops

with arguments 1 and 23 in the module glurk. So, one of four things

could have happened.

• There really is no module glurk—nowhere, not anywhere. This is

probably because of a spelling mistake.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=131

WHEN THINGS GO WRONG 132

Has Anybody Seen My Semicolons?

If you forget the semicolons between the clauses in a function
or put periods there instead, you’ll be in trouble—real trouble.

If you’re defining a function foo/2 in line 1234 of the module bar

and put a period instead of a semicolon, the compiler will say
this:

bar.erl:1234 function foo/2 already defined.

Don’t do it. Make sure your clauses are always separated by
semicolons.

• There is a module glurk, but it hasn’t been compiled. The system is

looking for a file called glurk.beam somewhere in the code search

path.

• There is a module glurk and it has been compiled, but the direc-

tory containing glurk.beam is not one of the directories in the code

search path. To fix this, you’ll have to change the search path.

We’ll see how to do this later.

• There are several different versions of glurk in the code load path,

and we’ve chosen the wrong one. This is a rare error, but it can

happen.

If you suspect this has happened, you can run the code:clash()

function, which reports all duplicated modules in the code search

path.

My Makefile Doesn’t Make

What can go wrong with a makefile? Well, lots, actually. But this isn’t

a book about makefiles, so I’ll deal only with the most common errors.

Here are the two most common errors that I get:

• Blanks in the makefile: Makefiles are extremely persnickety. Al-

though you can’t see them, each of the indented lines in the make-

file (with the exception of continuation lines, where the previous

line ends with a (\) character) should begin with a tab character.

If there are any spaces there, make will get confused, and you’ll

start seeing errors.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=132

WHEN THINGS GO WRONG 133

• Missing erlang file: If one of the modules declared in Mods is miss-

ing, you’ll get an error message. To illustrate this, assume that

MODS contains a module name glurk but that there is no file called

glurk.erl in the code directory. In this case, make will fail with the

following message:
$ make

make: *** No rule to make target ‘glurk.beam',

needed by ‘compile'. Stop.

Alternatively, there is no missing module, but the module name is

spelled incorrectly in the makefile.

The Shell Isn’t Responding

If the shell is not responding to commands, then a number of things

might have happened. The shell process itself might have crashed, or

you might have issued a command that will never terminate. You might

even have forgotten to type a closing quote mark or forgotten to type

dot-carriage-return at the end of your command.

Regardless of the reason, you can interrupt the current shell by press-

ing Ctrl+G and proceeding as in the following example:

Ê 1> receive foo -> true end.

^G

User switch command
Ë --> h

c [nn] - connect to job

i [nn] - interrupt job

k [nn] - kill job

j - list all jobs

s - start local shell

r [node] - start remote shell

q - quit erlang

? | h - this message
Ì --> j

1* {shell,start,[init]}
Í --> s

--> j

1 {shell,start,[init]}

2* {shell,start,[]}
Î --> c 2

Eshell V5.5.1 (abort with ^G)

1> init:stop().

ok

2> $

Ê Here I told the shell to receive a foo message. But since nobody

ever sends the shell this message, the shell goes into an infinite

wait. I press Ctrl+G.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=133

GETTING HELP 134

Ë The system enters “shell JCL”4 mode. Here I can never remember

the commands, so I type h for help.

Ì I type j for a listing of all jobs. Job number 1 is marked with a

star, which means it is the default shell. All the commands with

an optional argument [nn] use the default shell unless a specific

argument is supplied.

Í I type s to start a new shell, followed by j again. This time I see

there are two shells marked 1 and 2, and shell 2 has become the

default shell.

Î I type c 2, which connects me to the newly started shell 2, and

then I stop the system.

As you can see, you can have many shells in operation and swap

between them by pressing Ctrl+G and then the appropriate commands.

You can even start a shell on a remote node with the r command.

6.8 Getting Help

On a Unix system, here is the code:

$ erl -man erl

NAME

erl - The Erlang Emulator

DESCRIPTION

The erl program starts the Erlang runtime system.

The exact details (e.g. whether erl is a script

or a program and which other programs it calls) are system-dependent.

...

You can also get help about individual modules as follows:

$ erl -man lists

MODULE

lists - List Processing Functions

DESCRIPTION

This module contains functions for list processing.

The functions are organized in two groups:

...

Note: On a Unix system, the manual pages are not installed by default.

If the command erl -man ... does not work, then you need to install the

4. Job Control Language.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=134

TWEAKING THE ENVIRONMENT 135

manual pages. All the manual pages are in a single compressed archive

at http://www.erlang.org/download.html. The manual pages should be un-

packed in the root of the Erlang installation directory (usually /usr/local/

lib/erlang).

The documentation is also downloadable as a set of HTML files. On

Windows the HTML documentation is installed by default and accessi-

ble through the Erlang section of the Start menu.

6.9 Tweaking the Environment

The Erlang shell has a number of built-in commands. You can see them

all with the shell command help():

1> help().

** shell internal commands **
b() -- display all variable bindings

e(N) -- repeat the expression in query <N>

f() -- forget all variable bindings

f(X) -- forget the binding of variable X

h() -- history

...

All these commands are defined in the module shell_default.

If you want to define your own commands, just create a module called

user_default. For example:

Download user_default.erl

-module(user_default).

-compile(export_all).

hello() ->

"Hello Joe how are you?".

away(Time) ->

io:format("Joe is away and will be back in ~w minutes~n",

[Time]).

Once this has been compiled and is placed somewhere in your load

path, then you can call any of the functions in user_default without giv-

ing a module name:

1> hello().

"Hello Joe how are you?"

2> away(10).

Joe is away and will be back in 10 minutes

ok

http://www.erlang.org/download.html
http://media.pragprog.com/titles/jaerlang/code/user_default.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=135

THE CRASH DUMP 136

6.10 The Crash Dump

If Erlang crashes, then it leaves behind a file called erl_crash.dump. The

contents of this file might give you a clue as to what has gone wrong. To

analyze the crash dump, there is a web-based crash analyzer. To start

the analyzer, give the following command:

1> webtool:start().

WebTool is available at http://localhost:8888/

Or http://127.0.0.1:8888/

{ok,<0.34.0>}

Then point your browser at http://localhost:8888/. You can then happily

surf the error log.

Now we’re through with the nuts-and-bolts stuff, so we can begin to

look at concurrent programs. From now on, you’ll be in unfamiliar ter-

ritory, but this is where the fun really starts.

http://localhost:8888/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=136

Chapter 7

Concurrency
We understand concurrency.

A deep understanding of concurrency is hardwired into our brains.

We react to stimulation extremely quickly, using a part of the brain

called the amygdala. Without this reaction, we would die. Con-

scious thought is just too slow; by the time the thought “hit the

brakes” has formed itself, we have already done it.

While driving on a major road, we mentally track the positions of

dozens, or perhaps hundreds, of cars. This is done without con-

scious thought. If we couldn’t do this, we would probably be dead.

The world is parallel.

If we want to write programs that behave as other objects behave

in the real world, then these programs will have a concurrent

structure.

This is why we should program in a concurrent programming lan-

guage.

And yet most often we program real-world applications in sequen-

tial programming languages. This is unnecessarily difficult.

Use a language that was designed for writing concurrent applica-

tions, and concurrent development becomes a lot easier.

Erlang programs model how we think and interact.

We don’t have shared memory. I have my memory. You have yours.

We have two brains, one each. They are not joined together. To

change your memory, I send you a message: I talk, or I wave my

arms.

CHAPTER 7. CONCURRENCY 138

You listen, you see, and your memory changes; however, without

asking you a question or observing your response, I do not know

that you have received my messages.

This is how it is with Erlang processes. Erlang processes have no

shared memory. Each process has its own memory. To change the

memory of some other process, you must send it a message and

hope that it receives and understands the message.

To confirm that another process has received your message and

changed its memory, you must ask it (by sending it a message).

This is exactly how we interact.

Sue: Hi Bill, my telephone number is 45 67 89 12.

Sue: Did you hear me?

Bill: Sure, your number is 45 67 89 12.

These interaction patterns are well-known to us. From birth on-

ward we learn to interact with the world by observing it and by

sending it messages and observing the responses.

People function as independent entities who communicate by
sending messages.

That’s how Erlang processes work, and that’s how we work, so it’s

very easy to understand an Erlang program.

An Erlang program is made up of dozens, thousands, or even hun-

dreds of thousands of small processes. All these processes oper-

ate independently. They communicate with each other by sending

messages. Each process has a private memory. They behave like

a huge room of people all chattering away to each other.

This makes Erlang program inherently easy to manage and scale.

Suppose we have ten people (processes), and they have too much

work to do. What can we do? Get more people. How can we manage

these groups of people? It’s easy—just shout instructions at them

(broadcasting).

Erlang processes don’t share memory, so there is no need to lock

the memory while it is being used. Where there are locks, there

are keys that can get lost. What happens when you lose your keys?

You panic and don’t know what to do. That’s what happens in soft-

ware systems when you lose your keys and your locks go wrong.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=138

CHAPTER 7. CONCURRENCY 139

Distributed software systems with locks and keys always go

wrong.

Erlang has no locks and no keys.

If somebody dies, other people will notice.

If I’m in a room and suddenly keel over and die, somebody will

probably notice (well, at least I hope so). Erlang processes are just

like people—they can on occasions die. Unlike people, when they

die, they shout out in their last breath exactly what they have died

from.

Imagine a room full of people. Suddenly one person keels over and

dies. Just as they die, they say “I’m dying of a heart attack” or “I’m

dying of an exploded gastric wobbledgog.” That’s what Erlang pro-

cesses do. One process might die saying “I’m dying because I was

asked to divide by zero.” Another might say, “I’m dying because I

was asked what the last element in an empty list was.”

Now in our room full of people, we might imagine there are spe-

cially assigned people whose job it is to clear away the bodies. Let’s

imagine two people, Jane and John. If Jane dies, then John will

fix any problems associated with Jane’s death. If John dies, then

Jane will fix the problems. Jane and John are linked together with

an invisible agreement that says that if one of them dies, the other

will fix up any problems caused by the death.

That’s how error detection in Erlang works. Processes can be

linked together. If one of the processes dies, the other process gets

an error message saying why the first process dies.

That’s basically it.

That’s how Erlang programs work.

Here’s what we’ve learned so far:

• Erlang programs are made of lots of processes. These processes

can send messages to each other.

• These messages may or may not be received and understood. If

you want to know whether a message was received and under-

stood, you must send the process a message and wait for a reply.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=139

CHAPTER 7. CONCURRENCY 140

• Pairs of processes can be linked together. If one processes in a

linked pair dies, the other process in the pair will be sent a mes-

sage containing the reason why the first process died.

This simple model of programming is part of a model I call concurrency-

oriented programming.

In the next chapter, we’ll start writing concurrent programs. We need

to learn three new primitives: spawn, send (using the ! operator), and

receive. Then we can write some simple concurrent programs.

When processes die, some other process notices if they are linked to-

gether. This is the subject of Chapter 9, Errors in Concurrent Programs,

on page 159.

As you read the next two chapters, think of people in a room. The peo-

ple are the processes. The people in the room have individual private

memories; this is the state of a process. To change your memory, I talk

to you, and you listen. This is sending and receiving messages. We have

children; this is spawn. We die; this is a process exit.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=140

Chapter 8

Concurrent Programming
In this chapter, we’ll be talking about processes. These are small self-

contained virtual machines that can evaluate Erlang functions.

I’m sure you’ve met processes before, but only in the context of operat-

ing systems.

In Erlang, processes belong to the programming language and NOT the

operating system.

In Erlang:

• Creating and destroying processes is very fast.

• Sending messages between processes is very fast.

• Processes behave the same way on all operating systems.

• We can have very large numbers of processes.

• Processes share no memory and are completely independent.

• The only way for processes to interact is through message passing.

For these reasons Erlang is sometimes called a pure message passing

language.

If you haven’t programmed with processes before, you might have heard

rumors that it is rather difficult. You’ve probably heard horror stories

of memory violations, race conditions, shared-memory corruption, and

the like. In Erlang, programming with processes is easy. It just needs

three new primitives: spawn, send, and receive.

THE CONCURRENCY PRIMITIVES 142

8.1 The Concurrency Primitives

Everything we’ve learned about sequential programming is still true

for concurrent programming. All we have to do is to add the following

primitives:

Pid = spawn(Fun)

Creates a new concurrent process that evaluates Fun. The new

process runs in parallel with the caller. spawn returns a Pid (short

for process identifier). You can use Pid to send messages to the

process.

Pid ! Message

Sends Message to the process with identifier Pid. Message sending

is asynchronous. The sender does not wait but continues with

what it was doing. ! is called the send operator.

Pid ! M is defined to be M—the message sending primitive ! returns

the message itself. Because of this, Pid1 ! Pid2 ! ... ! M means send

the message M to all the processes Pid1, Pid2, and so on.

receive ... end

Receives a message that has been sent to a process. It has the

following syntax:

receive

Pattern1 [when Guard1] ->

Expressions1;

Pattern2 [when Guard2] ->

Expressions2;

...

end

When a message arrives at the process, the system tries to match

it against Pattern1 (with possible guard Guard1); if this succeeds, it

evaluates Expressions1. If the first pattern does not match, it tries

Pattern2, and so on. If none of the patterns matches, the message

is saved for later processing, and the process waits for the next

message. This is described in more detail in Section 8.6, Selective

Receive, on page 153.

The patterns and guards used in a receive statement have exactly

the same syntactic form and meaning as the patterns and guards

that we use when we define a function.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=142

A SIMPLE EXAMPLE 143

8.2 A Simple Example

Remember how we wrote the area/1 function in Section 3.1, Modules,

on page 43? Just to remind you, the code that defined the function

looked like this:

Download geometry.erl

area({rectangle, Width, Ht}) -> Width * Ht;

area({circle, R}) -> 3.14159 * R * R.

Now we’ll rewrite the same function as a process:

Download area_server0.erl

-module(area_server0).

-export([loop/0]).

loop() ->

receive

{rectangle, Width, Ht} ->

io:format("Area of rectangle is ~p~n",[Width * Ht]),

loop();

{circle, R} ->

io:format("Area of circle is ~p~n", [3.14159 * R * R]),

loop();

Other ->

io:format("I don't know what the area of a ~p is ~n",[Other]),

loop()

end.

We can create a process that evaluates loop/0 in the shell:

1> Pid = spawn(fun area_server0:loop/0).

<0.36.0>

2> Pid ! {rectangle, 6, 10}.

Area of rectangle is 60

{rectangle,6,10}

3> Pid ! {circle, 23}.

Area of circle is 1661.90

{circle,23}

4> Pid ! {triangle,2,4,5}.

I don't know what the area of a {triangle,2,4,5} is

{triangle,2,4,5}

What happened here? In line 1 we created a new parallel process.

spawn(Fun) creates a parallel process that evaluates Fun; it returns Pid,

which is printed as <0.36.0>.

http://media.pragprog.com/titles/jaerlang/code/geometry.erl
http://media.pragprog.com/titles/jaerlang/code/area_server0.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=143

CLIENT -SERVER—AN INTRODUCTION 144

In line 2 we sent a message to the process. This message matches the

first pattern in the receive statement in loop/0:

loop() ->

receive

{rectangle, Width, Ht} ->

io:format("Area of rectangle is ~p~n",[Width * Ht]),

loop()

...

Having received a message, the process prints the area of the rectangle.

Finally, the shell prints {rectangle, 6, 10}. This is because the value of Pid

! Msg is defined to be Msg. If we send the process a message that it

doesn’t understand, it prints a warning. This is performed by the Other

->... code in the receive statement.

8.3 Client-Server—An Introduction

Client-server architectures are central to Erlang. Traditionally, client-

server architectures have involved a network that separates a client

from a server. Most often there are multiple instances of the client and

a single server. The word server often conjures up a mental image of

some rather heavyweight software running on a specialized machine.

In our case, a much lighter-weight mechanism is involved. The client

and server in a client-server architecture are separate processes, and

normal Erlang message passing is used for communication between

the client and the server. Both client and server can run on the same

machine or on two different machines.

The words client and server refer to the roles that these two processes

have; the client always initiates a computation by sending a request to

the server. The server computes a reply and sends a response to the

client.

Let’s write our first client-server application. We’ll start by making some

small changes to the program we wrote in the previous section.

In the previous program, all that we needed was to send a request to

a process that received and printed that request. Now, what we want

to do is send a response to the process that sent the original request.

The trouble is we do not know to whom to send the response. To send a

response, the client has to include an address to which the server can

reply. This is like sending a letter to somebody—if you want to get a

reply, you had better include your address in the letter!

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=144

CLIENT -SERVER—AN INTRODUCTION 145

So, the sender must include a reply address. This can be done by

changing this:

Pid ! {rectangle, 6, 10}

to the following:

Pid ! {self(),{rectangle, 6, 10}}

self() is the PID of the client process.

To respond to the request, we have to change the code that receives the

requests from this:

loop() ->

receive

{rectangle, Width, Ht} ->

io:format("Area of rectangle is ~p~n",[Width * Ht]),

loop()

...

to the following:

loop() ->

receive

{From, {rectangle, Width, Ht}} ->

From ! Width * Ht,

loop();

...

Note how we now send the result of our calculation back to the process

identified by the From parameter. Because the client set this parameter

to its own process ID, it will receive the result.

The process that sends the initial request is usually called a client.

The process that receives the request and sends a response is called a

server.

Finally, we add a small utility function called rpc (short for remote pro-

cedure call) that encapsulates sending a request to a server and waiting

for a response:

Download area_server1.erl

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive

Response ->

Response

end.

http://media.pragprog.com/titles/jaerlang/code/area_server1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=145

CLIENT -SERVER—AN INTRODUCTION 146

Putting all of this together, we get the following:

Download area_server1.erl

-module(area_server1).

-export([loop/0, rpc/2]).

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive

Response ->

Response

end.

loop() ->

receive

{From, {rectangle, Width, Ht}} ->

From ! Width * Ht,

loop();

{From, {circle, R}} ->

From ! 3.14159 * R * R,

loop();

{From, Other} ->

From ! {error,Other},

loop()

end.

We can experiment with this in the shell:

1> Pid = spawn(fun area_server1:loop/0).

<0.36.0>

2> area_server1:rpc(Pid, {rectangle,6,8}).

48

3> area_server1:rpc(Pid, {circle,6}).

113.097

4> area_server1:rpc(Pid, socks).

{error,socks}

There’s a slight problem with this code. In the function rpc/2, we send

a request to the server and then wait for a response. But we do not wait

for a response from the server; we wait for any message. If some other

process sends the client a message while it is waiting for a response

from the server, it will misinterpret this message as a response from

the server. We can correct this by changing the form of the receive

statement to this:

loop() ->

receive

{From, ...} ->

From ! {self(), ...}

loop()

...

http://media.pragprog.com/titles/jaerlang/code/area_server1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=146

CLIENT -SERVER—AN INTRODUCTION 147

and by changing rpc to the following:

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive

{Pid, Response} ->

Response

end.

How does this work? When we have entered the rpc function, Pid is

bound to some value, so in the pattern {Pid, Response}, Pid is bound, and

Response is unbound. This pattern will match only a message contain-

ing a two-tuple1 where the first element is Pid. All other messages will

be queued. (receive provides what is called selective receive, which I’ll

describe after this section.)

With this change, we get the following:

Download area_server2.erl

-module(area_server2).

-export([loop/0, rpc/2]).

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive

{Pid, Response} ->

Response

end.

loop() ->

receive

{From, {rectangle, Width, Ht}} ->

From ! {self(), Width * Ht},

loop();

{From, {circle, R}} ->

From ! {self(), 3.14159 * R * R},

loop();

{From, Other} ->

From ! {self(), {error,Other}},

loop()

end.

This works as expected:

1> Pid = spawn(fun area_server2:loop/0).

<0.37.0>

3> area_server2:rpc(Pid, {circle, 5}).

78.5397

1. N-tuple means a tuple of size N, so two-tuple is a tuple of size 2.

http://media.pragprog.com/titles/jaerlang/code/area_server2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=147

HOW LONG DOES IT TAKE TO CREATE A PROCESS? 148

There’s one final improvement we can make. We can hide the spawn and

rpc inside the module. This is good practice because we will be able to

change the internal details of the server without changing the client

code. Finally, we get this:

Download area_server_final.erl

-module(area_server_final).

-export([start/0, area/2]).

start() -> spawn(fun loop/0).

area(Pid, What) ->

rpc(Pid, What).

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive

{Pid, Response} ->

Response

end.

loop() ->

receive

{From, {rectangle, Width, Ht}} ->

From ! {self(), Width * Ht},

loop();

{From, {circle, R}} ->

From ! {self(), 3.14159 * R * R},

loop();

{From, Other} ->

From ! {self(), {error,Other}},

loop()

end.

To run this, we call the functions start/0 and area/2 (where before we

called spawn and rpc). These are better names that more accurately

describe what the server does:

1> Pid = area_server_final:start().

<0.36.0>

2> area_server_final:area(Pid, {rectangle, 10, 8}).

80

4> area_server_final:area(Pid, {circle, 4}).

50.2654

8.4 How Long Does It Take to Create a Process?

At this point, you might be worried about performance. After all, if we’re

creating hundreds or thousands of Erlang processes, we must be pay-

ing some kind of penalty. Let’s find out how much.

http://media.pragprog.com/titles/jaerlang/code/area_server_final.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=148

HOW LONG DOES IT TAKE TO CREATE A PROCESS? 149

To investigate this, we’ll time how long it takes to spawn a large number

of processes. Here’s the program:

Download processes.erl

-module(processes).

-export([max/1]).

%% max(N)

%% Create N processes then destroy them

%% See how much time this takes

max(N) ->

Max = erlang:system_info(process_limit),

io:format("Maximum allowed processes:~p~n",[Max]),

statistics(runtime),

statistics(wall_clock),

L = for(1, N, fun() -> spawn(fun() -> wait() end) end),

{_, Time1} = statistics(runtime),

{_, Time2} = statistics(wall_clock),

lists:foreach(fun(Pid) -> Pid ! die end, L),

U1 = Time1 * 1000 / N,

U2 = Time2 * 1000 / N,

io:format("Process spawn time=~p (~p) microseconds~n",

[U1, U2]).

wait() ->

receive

die -> void

end.

for(N, N, F) -> [F()];

for(I, N, F) -> [F()|for(I+1, N, F)].

Here are the results I obtained on the computer I’m using to write this

book, a 2.40GHz Intel Celeron with 512MB of memory running Ubuntu

Linux:

1> processes:max(20000).

Maximum allowed processes:32768

Process spawn time=3.50000 (9.20000) microseconds

ok

2> processes:max(40000).

Maximum allowed processes:32768

=ERROR REPORT==== 26-Nov-2006::14:47:24 ===

Too many processes

...

Spawning 20,000 processes took an average of 3.5 µs/process of CPU

time and 9.2 µs of elapsed (wall-clock) time.

http://media.pragprog.com/titles/jaerlang/code/processes.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=149

RECEIVE WITH A TIMEOUT 150

Note that I used the BIF erlang:system_info(process_limit) to find the max-

imum allowed number of processes. Note that some of these are re-

served, so your program cannot actually use this number. When we

exceed the system limit, the system crashes with an error report (com-

mand 2).

The system limit is set to 32,767 processes; to exceed this limit, you

have to start the Erlang emulator with the +P flag as follows:

$ erl +P 500000

1> processes:max(50000).

Maximum allowed processes:500000

Process spawn time=4.60000 (10.8200) microseconds

ok

2> processes:max(200000).

Maximum allowed processes:500000

Process spawn time=4.10000 (10.2150) microseconds

3> processes:max(300000).

Maximum allowed processes:500000

Process spawn time=4.13333 (73.6533) microseconds

In the previous example, I set the system limit to half a million pro-

cesses. We can see that the process spawn time is essentially con-

stant between 50,000 to 200,000 processes. At 300,000 processes, the

CPU time per spawn process remains constant, but the elapsed time

increases by a factor of seven. I can also hear my disk chattering away.

This is sure sign that the system is paging and that I don’t have enough

physical memory to handle 300,000 processes.

8.5 Receive with a Timeout

Sometimes a receive statement might wait forever for a message that

never comes. This could be for a number of reasons. For example, there

might be a logical error in our program, or the process that was going

to send us a message might have crashed before it sent the message.

To avoid this problem, we can add a timeout to the receive statement.

This sets a maximum time that the process will wait to receive a mes-

sage. The syntax is as follows:

receive

Pattern1 [when Guard1] ->

Expressions1;

Pattern2 [when Guard2] ->

Expressions2;

...

after Time ->

Expressions

end

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=150

RECEIVE WITH A TIMEOUT 151

If no matching message has arrived within Time milliseconds of entering

the receive expression, then the process will stop waiting for a message

and evaluate Expressions.

Receive with Just a Timeout

You can write a receive consisting of only a timeout. Using this, we

can define a function sleep(T), which suspends the current process for T

milliseconds.

Download lib_misc.erl

sleep(T) ->

receive

after T ->

true

end.

Receive with Timeout Value of Zero

A timeout value of 0 causes the body of the timeout to occur immedi-

ately, but before this happens, the system tries to match any patterns

in the mailbox. We can use this to define a function flush_buffer, which

entirely empties all messages in the mailbox of a process:

Download lib_misc.erl

flush_buffer() ->

receive

_Any ->

flush_buffer()

after 0 ->

true

end.

Without the timeout clause, flush_buffer would suspend forever and not

return when the mailbox was empty. We can also use a zero timeout to

implement a form of “priority receive,” as follows:

Download lib_misc.erl

priority_receive() ->

receive

{alarm, X} ->

{alarm, X}

after 0 ->

receive

Any ->

Any

end

end.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=151

RECEIVE WITH A TIMEOUT 152

If there is not a message matching {alarm, X} in the mailbox, then pri-

ority_receive will receive the first message in the mailbox. If there is no

message at all, it will suspend in the innermost receive and return the

first message it receives. If there is a message matching {alarm, X}, then

this message will be returned immediately. Remember that the after

section is checked only after pattern matching has been performed on

all the entries in the mailbox.

Without the after 0 statement, the alarm message would not be matched

first.

Note: Using large mailboxes with priority receive is rather inefficient, so

if you’re going to use this technique, make sure your mailboxes are not

too large.

receive with Timeout Value of Infinity

If the timeout value in a receive statement is the atom infinity, then the

timeout will never trigger. This might be useful for programs where the

timeout value is calculated outside the receive statement. Sometimes

the calculation might want to return an actual timeout value, and other

times it might want to have the receive wait forever.

Implementing a Timer

We can implement a simple timer using receive timeouts.

The function stimer:start(Time, Fun) will evaluate Fun (a function of zero

arguments) after Time ms. It returns a handle (which is a PID), which

can be used to cancel the timer if required.

Download stimer.erl

-module(stimer).

-export([start/2, cancel/1]).

start(Time, Fun) -> spawn(fun() -> timer(Time, Fun) end).

cancel(Pid) -> Pid ! cancel.

timer(Time, Fun) ->

receive

cancel ->

void

after Time ->

Fun()

end.

http://media.pragprog.com/titles/jaerlang/code/stimer.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=152

SELECTIVE RECEIVE 153

We can test this as follows:

1> Pid = stimer:start(5000, fun() -> io:format("timer event~n") end).

<0.42.0>

timer event

Here I waited more than five seconds so that the timer would trigger.

Now I’ll start a timer and cancel it before the timer period has expired:

2> Pid1 = stimer:start(25000, fun() -> io:format("timer event~n") end).

<0.49.0>

3> stimer:cancel(Pid1).

cancel

8.6 Selective Receive

So far we have glossed over exactly how send and receive work. send

does not actually send a message to a process. Instead, send sends a

message to the mailbox of the process, and receive tries to remove a

message from the mailbox.

Each process in Erlang has an associated mailbox. When you send a

message to the process, the message is put into the mailbox. The only

time the mailbox is examined is when your program evaluates a receive

statement:

receive

Pattern1 [when Guard1] ->

Expressions1;

Pattern2 [when Guard1] ->

Expressions1;

...

after

Time ->

ExpressionTimeout

end

receive works as follows:

1. When we enter a receive statement, we start a timer (but only if an

after section is present in the expression).

2. Take the first message in the mailbox and try to match it against

Pattern1, Pattern2, and so on. If the match succeeds, the message

is removed from the mailbox, and the expressions following the

pattern are evaluated.

3. If none of the patterns in the receive statement matches the first

message in the mailbox, then the first message is removed from

the mailbox and put into a “save queue.” The second message

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=153

REGISTERED PROCESSES 154

in the mailbox is then tried. This procedure is repeated until a

matching message is found or until all the messages in the mail-

box have been examined.

4. If none of the messages in the mailbox matches, then the process

is suspended and will be rescheduled for execution the next time a

new message is put in the mailbox. Note that when a new message

arrives, the messages in the save queue are not rematched; only

the new message is matched.

5. As soon as a message has been matched, then all messages that

have been put into the save queue are reentered into the mailbox

in the order in which they arrived at the process. If a timer was

set, it is cleared.

6. If the timer elapses when we are waiting for a message, then evalu-

ate the expressions ExpressionsTimeout and put any saved messages

back into the mailbox in the order in which they arrived at the

process.

8.7 Registered Processes

If we want to send a message to a process, then we need to know its PID.

This is often inconvenient since the PID has to be sent to all processes

in the system that want to communicate with this process. On the other

hand, it is very secure; if you don’t reveal the PID of a process, other

processes cannot interact with it in any way.

Erlang has a method for publishing a process identifier so that any pro-

cess in the system can communicate with this process. Such a process

is called a registered process. There are four BIFs for managing regis-

tered processes:

register(AnAtom, Pid)

Register the process Pid with the name AnAtom. The registration

fails if AnAtom has already been used to register a process.

unregister(AnAtom)

Remove any registrations associated with AnAtom.

Note: If a registered process dies it will be automatically unregis-

tered.

whereis(AnAtom) -> Pid | undefined

Find out whether AnAtom is registered. Return the process iden-

tifier Pid, or return the atom undefined if no process is associated

with AnAtom.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=154

REGISTERED PROCESSES 155

registered() -> [AnAtom::atom()]

Return a list of all registered processes in the system.

Using register, we can revise the example in Section 8.2, A Simple Exam-

ple, on page 143, and we can try to register the name of the process

that we created:

1> Pid = spawn(fun area_server0:loop/0).

<0.51.0>

2> register(area, Pid).

true

Once the name has been registered, we can send it a message like this:

3> area ! {rectangle, 4, 5}.

Area of rectangle is 20

{rectangle,4,5}

A Clock

We can use register to make a registered process that represents a

clock:

Download clock.erl

-module(clock).

-export([start/2, stop/0]).

start(Time, Fun) ->

register(clock, spawn(fun() -> tick(Time, Fun) end)).

stop() -> clock ! stop.

tick(Time, Fun) ->

receive

stop ->

void

after Time ->

Fun(),

tick(Time, Fun)

end.

The clock will happily tick away until you stop it:

3> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).

true

TICK {1164,553538,392266}

TICK {1164,553543,393084}

TICK {1164,553548,394083}

TICK {1164,553553,395064}

4> clock:stop().

stop

http://media.pragprog.com/titles/jaerlang/code/clock.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=155

HOW DO WE WRITE A CONCURRENT PROGRAM? 156

8.8 How Do We Write a Concurrent Program?

When I write a concurrent program, I almost always start with some-

thing like this:

Download ctemplate.erl

-module(ctemplate).

-compile(export_all).

start() ->

spawn(fun() -> loop([]) end).

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive

{Pid, Response} ->

Response

end.

loop(X) ->

receive

Any ->

io:format("Received:~p~n",[Any]),

loop(X)

end.

The receive loop is just any empty loop that receives and prints any

message that I send to it. As I develop the program, I’ll start send-

ing messages to the processes. Because I start with no patterns in the

receive loop that match these messages, I’ll get a printout from the

code at the bottom of the receive statement. When this happens, I add

a matching pattern to the receive loop and rerun the program. This

technique largely determines the order in which I write the program: I

start with a small program and slowly grow it, testing it as I go along.

8.9 A Word About Tail Recursion

Take a look at the receive loop in the area server that we wrote earlier:

Download area_server_final.erl

loop() ->

receive

{From, {rectangle, Width, Ht}} ->

From ! {self(), Width * Ht},

loop();

{From, {circle, R}} ->

From ! {self(), 3.14159 * R * R},

loop();

http://media.pragprog.com/titles/jaerlang/code/ctemplate.erl
http://media.pragprog.com/titles/jaerlang/code/area_server_final.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=156

SPAWNING WITH MFAS 157

{From, Other} ->

From ! {self(), {error,Other}},

loop()

end.

If you look carefully, you’ll see that every time we receive a message,

we process the message and then immediately call loop() again. Such a

procedure is called tail-recursive. A tail-recursive function can be com-

piled so that the last function call in a sequence of statements can be

replaced by a simple jump to the start of the function being called. This

means that a tail-recursive function can loop forever without consum-

ing stack space.

Suppose we wrote the following (incorrect) code:

Line 1 loop() ->
- {From, {rectangle, Width, Ht}} ->
- From ! {self(), Width * Ht},
- loop(),
5 someOtherFunc();
- {From, {circle, R}} ->
- From ! {self(), 3.14159 * R * R},
- loop();
- ...

10 end

In line 4, we call loop(), but the compiler must reason that “after I’ve

called loop(), I have to return to here, since I have to call someOther-

Func() in line 5.” So, it pushes the address of someOtherFunc onto the

stack and jumps to the start of loop. The problem with this is that

loop() never returns; instead, it just loops forever. So, each time we

pass line 4, another return address gets pushed onto the control stack,

and eventually the system runs out of space.

Avoiding this is easy; if you write a function F that never returns (such

as loop()), make sure that you never call anything after calling F, and

don’t use F in a list or tuple constructor.

8.10 Spawning with MFAs

Most programs we write use spawn(Fun) to create a new process. This

is fine provided we don’t want to dynamically upgrade our code. Some-

times we want to write code that can be upgraded as we run it. If we

want to make sure that our code can be dynamically upgraded, then

we have to use a different form of spawn.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=157

PROBLEMS 158

spawn(Mod, FuncName, Args)

This creates a new process. Args is a list of arguments of the form

[Arg1, Args2, ..., ArgN]. The newly created process starts evaluating

Mod:FuncName(Arg1, Arg2, ..., ArgN).

Spawning a function with an explicit module, function name, and argu-

ment list (called an MFA) is the proper way to ensure that our running

processes will be correctly updated with new versions of the module

code if it is compiled while it is being used. The dynamic code upgrade

mechanism does not work with spawned funs. It works only with explic-

itly named MFAs. For more details, read Section E.4, Dynamic Code

Loading, on page 435.

8.11 Problems

1. Write a function start(AnAtom, Fun) to register AnAtom as spawn(Fun).

Make sure your program works correctly in the case when two

parallel processes simultaneously evaluate start/2. In this case,

you must guarantee that one of these processes succeeds and the

other fails.

2. Write a ring benchmark. Create N processes in a ring. Send a mes-

sage round the ring M times so that a total of N * M messages get

sent. Time how long this takes for different values of N and M.

Write a similar program in some other programming language you

are familiar with. Compare the results. Write a blog, and publish

the results on the Internet!

That’s it—you can now write concurrent programs!

Next we’ll look at error recovery and see how we can write fault-tolerant

concurrent programs using three more concepts: links, signals, and

trapping process exits. That’s in the next chapter.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=158

Chapter 9

Errors in Concurrent Programs
Earlier we saw how to trap errors in sequential programs. In this chap-

ter, we’ll extend the error handling mechanisms to take care of errors

in concurrent programs.

This is the second and final stage in understanding how Erlang handles

errors. To understand this, we need to introduce three new concepts:

links, exit signals, and the idea of a system process.

9.1 Linking Processes

If a process in some way depends on another, then it may well want

to keep an eye on the health of that second process. One way to do

that is to use Erlang’s link BIF. (The other is to use monitors, which are

described in the erlang manual page).

 A B

 A traps exits

 A is linked to B

 (a)

 A B

 B dies

 (b)

 A

 {’EXIT’,B,Why}

 An exit signal is sent to A

 (c)

Figure 9.1: Exit signals and links

AN ON_EXIT HANDLER 160

Figure 9.1, on the previous page, shows two processes, A and B. They

are linked together (as shown by the dotted line in the diagram). The

link was made when one of the processes called the BIF link(P), with P

being the PID of the other process. Once linked, the two processes will

implicitly monitor each other. If A dies, then B will be sent something

called an exit signal. If B dies, then A receives the signal.

The mechanisms described in this chapter are completely general. They

work on a single node, but they also work on sets of nodes in a dis-

tributed Erlang system. As we’ll see later in Chapter 10, Distributed

Programming, on page 175, we can spawn processes on remote nodes

just as easily as we can spawn processes on the current node. All the

link mechanisms that we talk about in the chapter work equally well in

a distributed system.

What happens when a process receives an exit signal? If the receiver

hasn’t taken any special steps, the exit signal will cause it, too, to exit.

However, a process can ask to trap these exit signals. When a process is

in this state, it is called a system process. If a process linked to a system

process exits for some reason, the system process is not automatically

terminated. Instead, the system process receives an exit signal, which

it can trap and process.

Part (a) of the diagram shows the processes linked together. A is a sys-

tem process (shown by a double circle). In part (b), B dies, and in part

(c), an exit signal is sent to A.

Later in the chapter, we’ll go through all the details of exactly what

happens when an exit signal arrives at a process. But before this, we’ll

start with a short example that shows how to use this mechanism to

write a simple exit handler. The exit handler is a process that evaluates

a particular function, when some other process crashes. The exit han-

dler is in itself a useful building block for constructing more advanced

abstractions.

9.2 An on_exit Handler

We want to perform some action when a process exits. We can write a

function on_exit(Pid, Fun) that creates a link to the process Pid. If Pid dies

with reason, Why and then Fun(Why) is evaluated.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=160

AN ON_EXIT HANDLER 161

Here’s the program:

Download lib_misc.erl

Line 1 on_exit(Pid, Fun) ->
- spawn(fun() ->
- process_flag(trap_exit, true),
- link(Pid),
5 receive
- {'EXIT', Pid, Why} ->
- Fun(Why)
- end
- end).

In line 3, the statement process_flag(trap_exit, true) turns the spawned

process into a system process. link(Pid) (line 4) links the newly spawned

process to Pid. Finally, when the process dies, an exit signal is received

(line 6) and processed (line 7).

Note: When you read this code, you’ll see we just used a variable Pid

everywhere. This is the process identifier of the linked process. We can’t

use a variable name like LinkedPid to say this, because before we have

evaluated link(Pid), it’s not a linked process. When you see a message

like {’EXIT’, Pid, _}, this should alert you that Pid is a linked process and

that it has just died.

To test this, we’ll define a function F that waits for a single message X

and then computes list_to_atom(X):

1> F = fun() ->

receive

X -> list_to_atom(X)

end

end.

#Fun<erl_eval.20.69967518>

We’ll spawn this:

2> Pid = spawn(F).

<0.61.0>

And we’ll set up an on_exit handler to monitor it:

3> lib_misc:on_exit(Pid,

fun(Why) ->

io:format(" ~p died with:~p~n",[Pid, Why])

end).

<0.63.0>

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=161

REMOTE HANDLING OF ERRORS 162

If we send an atom to Pid, the process will die (because it tries to eval-

uate list_to_atom of a nonlist), and the on_exit handler will be called:

4> Pid ! hello.

hello

<0.61.0> died with:{badarg,[{erlang,list_to_atom,[hello]}]}

The function that is invoked when the process dies can, of course, per-

form any computation it likes: it can ignore the error, log the error, or

restart the application. The choice is up to the programmer.

9.3 Remote Handling of Errors

Let’s just stop and think for a moment about the previous example.

It illustrates an extremely important part of the Erlang philosophy,

namely, the remote handling of errors.

Because an Erlang system consists of large numbers of parallel pro-

cesses, we are no longer forced to deal with errors in the process where

the error occurs; we can deal with them in a different process. The

process that deals with the error doesn’t even have to be on the same

machine. In distributed Erlang, described in the next chapter, we’ll see

that this simple mechanism even works across machine boundaries.

This is very important, since if the entire machine has crashed, the

program that fixes the error cannot be on the same machine.

9.4 The Details of Error Handling

Let’s look again at the three concepts that underlie Erlang error han-

dling:

Links

A link is something that defines an error propagation path between

two processes. If two processes are linked together and one of the

processes dies, then an exit signal will be sent to the other process.

The set of processes that are currently linked to a given process is

called the link set of that process.

Exit signals

An exit signal is something generated by a process when the pro-

cess dies. This signal is broadcast to all processes that are in the

link set of the dying process. The exit signal contains an argu-

ment giving the reason why the process died. The reason can be

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=162

THE DETAILS OF ERROR HANDLING 163

any Erlang data term. This reason can be set explicitly by call-

ing the primitive exit(Reason), or it is set implicitly when an error

occurs. For example, if a program tries to divide a number by zero,

then the exit reason will be the atom badarith.

When a process has successfully evaluated the function it was

spawned with, it will die with the exit reason normal.

In addition, a process Pid1 can explicitly send an exit signal X to a

process Pid2 by evaluating exit(Pid2, X). The process that sends the

exit signal does not die; it resumes execution after it has sent the

signal. Pid2 will receive a {’EXIT’, Pid1, X} message (if it is trapping

exits), exactly as if the originating process had died. Using this

mechanism, Pid1 can “fake” its own death (this is deliberate).

System processes

When a process receives a non-normal exit signal, it too will die

unless it is special kind of process called a system process. When

a system process receives an exit signal Why from a process Pid,

then the exit signal is converted to the message {’EXIT’, Pid, Why}

and added to the mailbox of the system process.

Calling the BIF process_flag(trap_exit, true) turns a normal process

into a system process that can trap exits.

When an exit signal arrives at a process, then a number of different

things might happen. What happens depends upon the state of the

receiving process and upon the value of the exit signal and is deter-

mined by the following table:

trap_exit Exit Signal Action

true kill Die: Broadcast the exit signal killed to the link set.

true X Add {’EXIT’, Pid, X} to the mailbox.

false normal Continue: Do-nothing signal vanishes.

false kill Die: Broadcast the exit signal killed to the link set.

false X Die: Broadcast the exit signal X to the link set.

If the reason is given as kill, then an untrappable exit signal will be sent.

An untrappable exit signal will always kill the process it is sent to, even

if it is a system process. This is used by the supervisor process in OTP

to kill rogue processes. When a process receives a kill signal, it dies and

broadcasts killed signals to the processes in its link set. This is a safety

measure to avoid accidentally killing more of the system than you had

intended.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=163

THE DETAILS OF ERROR HANDLING 164

The kill signal is intended to kill rogue processes. Think hard before

using it.

Programming Idioms for Trapping Exits

Trapping exits is actually a lot easier than you might suspect from

reading the preceding sections. Although it is possible to use the exit

generation and trapping mechanisms in a number of ingenious ways,

most programs use one of three simple idioms.

Idiom 1: I Don’t Care If a Process I Create Crashes

Here the process that creates a parallel process that just uses spawn:

Pid = spawn(fun() -> ... end)

Nothing else. If the spawned process crashes, the current process con-

tinues.

Idiom 2: I Want to Die If a Process I Create Crashes

To be strict, we should say, “If the process I create crashes with a non-

normal exit.” To achieve this, the process that creates a parallel process

uses spawn_link and must not have previously been set to trap exits. We

just write this:

Pid = spawn_link(fun() -> ... end)

Then if the spawned process crashes with a non-normal exit, the cur-

rent process will also crash.

Idiom 3: I Want to Handle Errors If a Process I Create Crashes

Here we use spawn_link and trap_exits. We code this as follows:

...

process_flag(trap_exit, true),

Pid = spawn_link(fun() -> ... end),

...

loop(...).

loop(State) ->

receive

{'EXIT', SomePid, Reason} ->

%% do something with the error

loop(State1);

...

end

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=164

THE DETAILS OF ERROR HANDLING 165

The process evaluating loop now traps exits and does not die if the

processes it is linked to dies. It will see all exit signals (converted to

messages) from dying processes,1 and can take any action it wants

when it detects process failures.

Trapping Exit Signals (Advanced)

You can skip this section on a first reading. Most of what you want to

do will be correctly handled by one of the three idioms shown in the

previous section. If you really want to know, read on. But be warned. It

can be difficult to understand the precise details of these mechanisms.

In most cases, you don’t need to understand the mechanism since if

you use one of the common program idioms (in the previous section) or

the OTP libraries, then the system will “do the right thing” without you

having to worry.

To really understand the details of error handling, we’ll write a little

program to illustrate how error handling and links interact. Our pro-

gram starts as follows:

Download edemo1.erl

-module(edemo1).

-export([start/2]).

start(Bool, M) ->

A = spawn(fun() -> a() end),

B = spawn(fun() -> b(A, Bool) end),

C = spawn(fun() -> c(B, M) end),

sleep(1000),

status(b, B),

status(c, C).

This starts three processes: A, B, and C. The idea is that A will be linked

to B, and B will be linked to C. A will trap exits and watch for exits from

B. B will trap exits if Bool is true, and C will die with exit reason M.

(You might by wondering about the sleep(1000) statement. This is to

allow any messages that come when C dies to be printed before we

check the status of the three processes. It doesn’t change the logic of

the program, but it does alter the printout order.)2

1. Apart from the signal generated by exit(Pid, kill)

2. Using sleep to synchronize processes is unsafe. It’s OK in a short example, but for

production-quality code, explicit synchronization should be performed.

http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=165

THE DETAILS OF ERROR HANDLING 166

The code for the A, B, and C processes is as follows:

Download edemo1.erl

a() ->

process_flag(trap_exit, true),

wait(a).

b(A, Bool) ->

process_flag(trap_exit, Bool),

link(A),

wait(b).

c(B, M) ->

link(B),

case M of

{die, Reason} ->

exit(Reason);

{divide, N} ->

1/N,

wait(c);

normal ->

true

end.

wait/1 just prints any message that it receives:

Download edemo1.erl

wait(Prog) ->

receive

Any ->

io:format("Process ~p received ~p~n",[Prog, Any]),

wait(Prog)

end.

And the remainder of the program is as follows:

Download edemo1.erl

sleep(T) ->

receive

after T -> true

end.

status(Name, Pid) ->

case erlang:is_process_alive(Pid) of

true ->

io:format("process ~p (~p) is alive~n", [Name, Pid]);

false ->

io:format("process ~p (~p) is dead~n", [Name,Pid])

end.

http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=166

THE DETAILS OF ERROR HANDLING 167

 a b c

 exit(normal)

 a b

 (a) normal exit, b does not die

 a b c

 exit(X)

 a

 (b) non-normal exit, b dies

 a b c

 exit(X)

 a b

 (c) any exit, b does not die

 A process which traps exits

 A normal process

 A process link

 An exit signal

Figure 9.2: Trapping exit signals

Now we’ll run the program, generating different exit signals in C and

observing the effect in B. As we run the program, you might want to

refer to Figure 9.2, which illustrates what happens when an exit sig-

nal comes from C. Each diagram shows which processes exist, whether

they are system processes, and how they are linked together. The dia-

grams have two parts: the “before” part (at the top of each diagram)

shows the processes before receiving an exit signal, and the “after” part

(at the bottom of each diagram) shows the processes after the exit signal

has been received by the middle process.

First suppose B is a normal process (that is, a process that has not

evaluated process_flag(trap_exit, true)):

1> edemo1:start(false, {die, abc}).

Process a received {'EXIT',<0.44.0>,abc}

process b (<0.44.0>) is dead

process c (<0.45.0>) is dead

ok

When C evaluates exit(abc), process B dies (because it is not trapping

exits). As it exits, B rebroadcasts the unmodified exit signal to all the

processes in its link set. A (which is trapping exits) receives the exit

signal and converts it to the error message {’EXIT’,<0.44.0>,abc}. (Note

that process <0.44.0> is process B, because it is process B that dies.)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=167

THE DETAILS OF ERROR HANDLING 168

Let’s try another scenario. Here we tell C to die with the reason normal.3

2> edemo1:start(false, {die, normal}).

process b (<0.48.0>) is alive

process c (<0.49.0>) is dead

ok

B does not die, since it received an exit normal signal.

Now let’s make C generate an arithmetic error:

3> edemo1:start(false, {divide,0}).

=ERROR REPORT==== 8-Dec-2006::11:12:47 ===

Error in process <0.53.0> with exit value: {badarith,[{edemo1,c,2}]}

Process a received {'EXIT',<0.52.0>,{badarith,[{edemo1,c,2}]}}

process b (<0.52.0>) is dead

process c (<0.53.0>) is dead

ok

When C tries to divide by zero, an error occurs, and the process dies

with a {badarith, ..} error. B receives this and dies, and the error is prop-

agated to A.

Finally, we’ll have C exit with a Reason of kill:

4> edemo1:start(false, {die,kill}).

Process a received {'EXIT',<0.56.0>,killed} <-- ** changed to killed **
process b (<0.56.0>) is dead

process c (<0.57.0>) is dead

ok

The exit reason kill causes B to die, and the error is propagated to the

link set of B with reason killed. The behavior in these cases is illustrated

in Figure 9.2, on the preceding page, boxes (a) and (b).

We can repeat these tests with B trapping exits. This is the situation

depicted in box (c) of Figure 9.2, on the previous page:

5> edemo1:start(true, {die, abc}).

Process b received {'EXIT',<0.61.0>,abc}

process b (<0.60.0>) is alive

process c (<0.61.0>) is dead

ok

6> edemo1:start(true, {die, normal}).

Process b received {'EXIT',<0.65.0>,normal}

process b (<0.64.0>) is alive

process c (<0.65.0>) is dead

ok

3. When a process terminates normally, it has the same effect as if it had evaluated

exit(normal).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=168

THE DETAILS OF ERROR HANDLING 169

7> edemo1:start(true, normal).

Process b received {'EXIT',<0.69.0>,normal}

process b (<0.68.0>) is alive

process c (<0.69.0>) is dead

8> edemo1:start(true, {die,kill}).

Process b received {'EXIT',<0.73.0>,kill}

process b (<0.72.0>) is alive

process c (<0.73.0>) is dead

ok

In all cases, B traps the error. B acts as a kind of “firewall,” trapping

all errors from C and not allowing them to propagate to A. We can test

exit/2 with code/edemo2.erl. This program is similar to edemo1 with the

exception of the function c/2, which now calls exit/2. It now reads as

follows:

Download edemo2.erl

c(B, M) ->

process_flag(trap_exit, true),

link(B),

exit(B, M),

wait(c).

Running edemo2, we observe the following:

1> edemo2:start(false, abc).

Process c received {'EXIT',<0.81.0>,abc}

Process a received {'EXIT',<0.81.0>,abc}

process b (<0.81.0>) is dead

process c (<0.82.0>) is alive

ok

2> edemo2:start(false, normal).

process b (<0.85.0>) is alive

process c (<0.86.0>) is alive

ok

3> edemo2:start(false, kill).

Process c received {'EXIT',<0.97.0>,killed}

Process a received {'EXIT',<0.97.0>,killed}

process b (<0.97.0>) is dead

process c (<0.98.0>) is alive

ok

4> edemo2:start(true, abc).

Process b received {'EXIT',<0.102.0>,abc}

process b (<0.101.0>) is alive

process c (<0.102.0>) is alive

ok

5> edemo2:start(true, normal).

Process b received {'EXIT',<0.106.0>,normal}

process b (<0.105.0>) is alive

process c (<0.106.0>) is alive

ok

http://media.pragprog.com/titles/jaerlang/code/edemo2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=169

ERROR HANDLING PRIMITIVES 170

6> edemo2:start(true, kill).

Process c received {'EXIT',<0.109.0>,killed}

Process a received {'EXIT',<0.109.0>,killed}

process b (<0.109.0>) is dead

process c (<0.110.0>) is alive

ok

9.5 Error Handling Primitives

Here are the most common primitives for manipulating links and for

trapping and sending exit signals:

@spec spawn_link(Fun) -> Pid

This is exactly like spawn(Fun), but it also creates a link between

the parent and child processes. (spawn_link is an atomic operation,

which is not equivalent to spawn followed by link since the process

might die between the spawn and the link.)

@spec process_flag(trap_exit, true)

This turns the current process into a system process. A system

process is a process that can receive and process error signals.

Note: It is possible to set the trap_exit flag to false, after it has been

set to true. This primitive should be used only to change a regular

process into a system process and not the other way around.

@spec link(Pid) -> true

Create a link to the process Pid if there is not already a link. Links

are symmetric. If a process A evaluates link(B), then it will be linked

to B. The net effect is the same as if B had evaluated link(A).

If the process Pid does not exist, then an exit noproc exception is

raised.

If A is already linked to B and evaluates link(B) (or vice versa), the

call is ignored.

@spec unlink(Pid) -> true

This removes any link between the current process and the pro-

cess Pid.

@spec exit(Why) -> none()

This causes the current process to terminate with reason Why. If

the clause that executes this statement is not within the scope of

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=170

ERROR HANDLING PRIMITIVES 171

Joe Asks. . .

How Can We Make a Fault-Tolerant System?

To make something fault tolerant, we need at least two com-
puters. One computer does the job, and another computer
watches the first computer and must be ready to take over at
a moment’s notice if the first computer fails.

This is exactly how error recovery works in Erlang. One process
does the job, and another process watches the first process
and takes over if things go wrong. That’s why we need to mon-
itor processes and to know why things fail. The examples in this
chapter show you how to do this.

In distributed Erlang, the process that does the job and the
processes that monitor the process that does the job can be
placed on physically different machines. Using this technique,
we can start designing fault-tolerant software.

This pattern is common. We call it the worker-supervisor model,
and an entire section of the OTP libraries is devoted to building
supervision trees that use this idea.

The basic language primitive that makes all this possible is the
link primitive.

Once you understand how link works and get yourself access
to two computers, then you’re well on your way to building your
first fault-tolerant system.

a catch statement, then the current process will broadcast an exit

signal, with argument Why to all processes to which it is currently

linked.

@spec exit(Pid, Why) -> true

This sends an exit signal with reason Why to the process Pid.

@spec erlang:monitor(process, Item) -> MonitorRef

This sets up a monitor. Item is a PID or a registered name of a

process. For details, see the erlang manual page.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=171

SETS OF LINKED PROCESSES 172

 (a) Some linked processes

 1 2 3

 4

 5

 6

 7 8

 9

 (b) The linked processes die

 1

 8 5

 9

Figure 9.3: Trapping exit signals

9.6 Sets of Linked Processes

Suppose we have a large set of parallel processes that are involved in

some computation and something goes wrong. How can we identify and

kill all the processes that are involved?

The easiest way to do this is make sure that all the processes that you

want to die as a group are linked together and do not trap exits. If any

of the processes terminates with a non-normal exit reason, then all the

processes in the group will die.

This behavior is illustrated in Figure 9.3. Box (a) represents a set of

nine processes, where processes 2, 3, 4, 6, and 7 are linked together.

If any of these processes dies with a non-normal exit, then the entire

group of processes will die, resulting in box (b).

Sets of linked processes are used to structure software to make fault-

tolerant systems. You can do this yourself in your own design, or you

can use the library functions described in Section 18.5, The Supervision

Tree, on page 351.

9.7 Monitors

Sometimes programming with links is tricky, because links are sym-

metric. If A dies, B will be sent an exit signal, and vice versa. To prevent

a process from dying, we have to make it a system process, but we

might not want to do this. In such occasions we can use a monitor.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=172

A KEEP-ALIVE PROCESS 173

A monitor is an asymmetric link. If process A monitors process B and

B dies, A will be sent an exit signal. But if A dies, B will not be sent a

signal. We can find full details of how to create a monitor in the erlang

manual page.

9.8 A Keep-Alive Process

To wind up this chapter, we’ll make a keep-alive process. The idea is to

make a registered process that is always alive—if it dies for any reason,

it will be immediately restarted.

We can use on_exit to program this:

Download lib_misc.erl

keep_alive(Name, Fun) ->

register(Name, Pid = spawn(Fun)),

on_exit(Pid, fun(_Why) -> keep_alive(Name, Fun) end).

This makes a registered process called Name that evaluates spawn(Fun).

If the process dies for any reason, then it is restarted.

There is a rather subtle error in on_exit and keep_alive. I wonder if you’ve

noticed it? When we say things such as this:

Pid = register(...),

on_exit(Pid, fun(X) -> ..),

there is a possibility the process dies in the gap between these two

statements. If the process dies before on_exit gets evaluated, then no

link will be created, and the on_exit process will not work as you ex-

pected. This could happen if two programs try to evaluate keep_alive at

the same time and with the same value of Name. This is called a race

condition—two bits of code (this bit) and the code section that performs

the link operation inside on_exit are racing each other. If things go wrong

here, your program might behave in an unexpected manner.

I’m not going to solve this problem here—I’ll let you think about how

to do this yourself. When you combine the Erlang primitives spawn,

spawn_link, register, and so on, you must think carefully about possible

race conditions. Write your code in such a way that race conditions

cannot happen.

Fortunately, the OTP libraries have code for building servers, supervi-

sion trees, and so on. These libraries have been well tested and should

not suffer from any race conditions. Use these libraries to build your

applications.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=173

A KEEP-ALIVE PROCESS 174

We have now covered all the mechanisms for detecting and trapping

errors in an Erlang program. In later chapters we’ll be using these

mechanisms to build reliable software systems that can recover from

faults. Now we’ve finished with programming techniques aimed at

single-processor systems.

The next chapter looks at simple distributed systems.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=174

Chapter 10

Distributed Programming
In this chapter, we’ll introduce the libraries and Erlang primitives that

we’ll use to write distributed Erlang programs.Distributed programs are

programs that are designed to run on networks of computers and that

can coordinate their activities only by message passing.

There are number of reasons why we might want to write distributed

applications. Here are some:

Performance

We can make our programs go faster by arranging that different

parts of the program are run in parallel on different machines.

Reliability

We can make fault-tolerant systems by structuring the system to

run on several machines. If one machine fails, we can continue on

another machine.

Scalability

As we scale up an application, sooner or later we will exhaust

the capabilities of even the most powerful machine. At this stage

we have to add more machines to add capacity. Adding a new

machine should be a simple operation that does not require large

changes to the application architecture.

Intrinsically distributed application

Many applications are inherently distributed. If we write a mul-

tiuser game or chat system, different users will be scattered all

over the globe. If we have a large number of users in a particular

geographic location, we want to place the computation resources

near the users.

CHAPTER 10. DISTRIBUTED PROGRAMMING 176

Fun

Most of the fun programs that I want to write are distributed.

Many of these involve interaction with people and machines all

over the world.

In this book we’ll talk about two main models of distribution:

• Distributed Erlang: Provides a method for programming applica-

tions that run on a set of tightly coupled computers.1 In dis-

tributed Erlang, programs are written to run on Erlang nodes. We

can spawn a process on any node, and all the message passing

and error handling primitives we talked about in previous chap-

ters work as in the single node case.

Distributed Erlang applications run in a trusted environment—

since any node can perform any operation on any other Erlang

node, a high degree of trust is involved. Typically distributed Er-

lang applications will be run on clusters on the same LAN and

behind a firewall, though they can run in an open network.

• Socket-based distribution: Using TCP/IP sockets, we can write dis-

tributed applications that can run in an untrusted environment.

The programming model is less powerful than that used in dis-

tributed Erlang but more secure. In Section 10.5, Socket-Based

Distribution, on page 187, we’ll see how to make applications using

a simple socket-based distribution mechanism.

If you think back to the previous chapters, you’ll recall that the basic

unit that we construct programs from is the process. Writing a dis-

tributed Erlang program is easy; all we have to do is spawn our pro-

cesses on the correct machines, and then everything works as before.

We are all used to writing sequential programs. Writing distributed pro-

grams is usually a lot more difficult. In this chapter, we’ll look at a

number of techniques for writing simple distributed programs. Even

though the programs are simple, they are very useful.

We’ll start with a number of small examples. To do this, we’ll need to

learn only two things; then we can make our first distributed program.

We’ll learn how to start an Erlang node and how to perform a remote

procedure call on a remote Erlang node.

1. For example, machines on the same LAN dedicated to solving a particular problem.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=176

THE NAME SERVER 177

When I develop a distributed application, I always work on the program

in a specific order, which is as follows:

1. I write and test my program in a regular nondistributed Erlang

session. This is what we’ve been doing up to now, so it presents

no new challenges.

2. I test my program on two different Erlang nodes running on the

same computer.

3. I test my program on two different Erlang nodes running on two

physically separated computers either in the same local area net-

work or anywhere on the Internet.

The final step can be problematic. If we run on machines within the

same administrative domain, this is rarely a problem. But when the

nodes involved belong to machines in different domains, we can run

into problems with connectivity, and we have to ensure that our system

firewalls and security settings are correctly configured.

In the next sections, we’ll make a simple name server, going through

these steps in order. Specifically, we will do the following:

• Stage 1: Write and test the name server in a regular undistributed

Erlang system.

• Stage 2: Test the name server on two nodes on the same machine.

• Stage 3: Test the name server on two different nodes on two dif-

ferent machines on the same local area network.

• Stage 4: Test the name server on two different machines belonging

to two different domains in two different countries.

10.1 The Name Server

A name server is a program that, given a name, returns a value asso-

ciated with that name. We can also change the value associated with a

particular name.

Our first name server is extremely simple. It is not fault tolerant, so all

the data it stores will be lost if it crashes. The point of this exercise is not

to make a fault-tolerant name server but to get started with distributed

programming techniques.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=177

THE NAME SERVER 178

Stage 1: A Simple Name Server

Our name server kvs is a simple Key 7→ Value, server. It has the following

interface:

@spec kvs:start() -> true

Start the server; this creates a server with the registered name kvs.

@spec kvs:store(Key, Value) -> true

Associate Key with Value.

@spec kvs:lookup(Key) -> {ok, Value} | undefined

Look up the value of Key, and return {ok, Value} if there is a value

associated with Key; otherwise, return undefined.

The key-value server is implemented using the process dictionary get

and put primitives, as follows:

Download socket_dist/kvs.erl

-module(kvs).

-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> loop() end)).

store(Key, Value) -> rpc({store, Key, Value}).

lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->

kvs ! {self(), Q},

receive

{kvs, Reply} ->

Reply

end.

loop() ->

receive

{From, {store, Key, Value}} ->

put(Key, {ok, Value}),

From ! {kvs, true},

loop();

{From, {lookup, Key}} ->

From ! {kvs, get(Key)},

loop()

end.

We’ll start by testing the server locally to see that it works correctly:

1> kvs:start().

true

2> kvs:store({location, joe}, "Stockholm").

true

http://media.pragprog.com/titles/jaerlang/code/socket_dist/kvs.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=178

THE NAME SERVER 179

3> kvs:store(weather, raining).

true

4> kvs:lookup(weather).

{ok,raining}

5> kvs:lookup({location, joe}).

{ok,"Stockholm"}

6> kvs:lookup({location, jane}).

undefined

So far, we get no unpleasant surprises.

Stage 2: Client on One Node, Server on Second Node but Same

Host

Now we’ll start two Erlang nodes on the same computer. To do this, we

need to open two terminal windows and start two Erlang systems.

First, we fire up a terminal shell,2 and start a distributed Erlang node

in this shell called gandalf; then we start the server:

$ erl -sname gandalf

(gandalf@localhost) 1> kvs:start().

true

Windows note: The Windows name might not be localhost; if it is not

localhost, then you will have to use the name that Windows returned in

place of localhost in all subsequent commands.

The argument -sname gandalf means “start an Erlang node with name

gandalf on the local host.” Note how the Erlang shell prints the name of

the Erlang node3 before the command prompt.

Second, we start a second terminal session and start an Erlang node

called bilbo. Then we can call the functions in kvs using the library

module rpc. (Note that rpc is a standard Erlang library module, which

is not the same as the rpc function we wrote earlier.)

$ erl -sname bilbo

(bilbo@localhost) 1> rpc:call(gandalf@localhost,

kvs,store, [weather, fine]).

true

(bilbo@localhost) 2> rpc:call(gandalf@localhost,

kvs,lookup,[weather]).

{ok,fine}

2. Windows users: Read Appendix B, on page 396. Once you have access to a shell

window, the command erl -name Node should work. Remember to set your paths so you

can find erl.exe (this should have a name something like C:\Program Files\erl5.4.4\bin\erl.exe.
3. The node name is of the form Name@Host. Name and Host are both atoms, so they will

have to be quoted if they contain any nonatom characters.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=179

THE NAME SERVER 180

Now it may not look like it, but we’ve actually performed our first-

ever distributed computation! The server ran on the first node that we

started, and the client ran on the second node.

The call to set the value of weather was made on the bilbo node; we can

swap back to gandalf and check the value of the weather:

(gandalf@localhost)2> kvs:lookup(weather).

{ok,fine}

rpc:call(Node, Mod, Func, [Arg1, Arg2, ..., ArgN]) performs a remote proce-

dure call on Node. The function to be called is Mod:Func(Arg1, Arg2, ...,

ArgN).

As we can see, the program works as in the nondistributed Erlang case;

now the only difference is that the client is running on one node and

the server is running on a different node.

The next step is to run the client and the server on different machines.

Stage 3: Client and Server on Different Machines on the Same LAN

We’re going to use two nodes. The first node is called gandalf on doris.

myerl.example.com, and the second is called bilbo on george.myerl.

example.com. Before we do this, we start two terminal windows4 on the

two different machines. We’ll call these two windows doris and george.

Once we’ve done this, we can easily enter commands on both machines.

Step 1: Start an Erlang node on doris:

doris $ erl -name gandalf -setcookie abc

(gandalf@doris.myerl.example.com) 1> kvs:start().

true

Step 2: Start an Erlang node on george, and send some commands to

gandalf:

george $ erl -name bilbo -setcookie abc

(bilbo@george.myerl.example.com) 1> rpc:call(gandalf@doris.myerl.example.com,

kvs,store,[weather,cold]).

true

(bilbo@george.myerl.example.com) 2> rpc:call(gandalf@doris.myerl.example.com,

kvs,lookup,[weather]).

{ok,cold}

Things behave exactly as in the case with two different nodes on the

same machine.

4. Using something like ssh.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=180

THE NAME SERVER 181

Now for this to work, things are a slightly more complicated than in the

case where we ran two nodes on the same computer. We have to take

four steps:

1. Start Erlang with the -name parameter. When we have two nodes

on the same machine, we use “short” names (as indicated by the

-sname flag), but if they are on different networks, we use -name.

We can also use -sname on two different machines when they are

on the same subnet. Using -sname is also the only method that will

work if no DNS service is available.

2. Ensure that both nodes have the same cookie. This is why both

nodes were started with the command-line argument -setcookie

abc. (We’ll talk more about cookies later in this chapter.5)

3. Make sure the fully qualified hostnames of the nodes concerned

are resolvable by DNS. In my case, the domain name myerl.

example.com is purely local to my home network and is resolved

locally by adding an entry to /etc/hosts.

4. Make sure that both systems have the same version of the code6

that we want to run. In our case, the same version of the code for

kvs has to be available on both systems. There are several ways of

doing this:

a) In my setup at home, I have two physically separated comput-

ers with no shared file systems; here I physically copy kvs.erl

to both machines and compile it before starting the programs.

b) On my work computer we use workstations with a shared NFS

disk. Here I merely start Erlang in the shared directory from

two different workstations.

c) Configure the code server to do this. I won’t describe how to

do this here. Have a look at the manual page for the module

erl_prim_loader.

d) Use the shell command nl(Mod). This loads the module Mod

on all connected nodes.

5. When we ran two nodes on the same machine, both nodes could access the same

cookie file, $HOME/.erlang.cookie, which is why we didn’t have to add the cookie to the

Erlang command line.
6. And the same version of Erlang. If you don’t do this, you’ll get serious and mysterious

errors.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=181

THE DISTRIBUTION PRIMITIVES 182

Note: For this to work, you have to make sure that all the

nodes are connected. Nodes become connected when they

first try to access each other. This happens the first time you

evaluate any expression involving a remote node. The easi-

est way to do this is to evaluate net_adm:ping(Node) (see the

manual page for net_adm for more details).

Stage 4: Client and Server on Different Hosts in the Internet

In principle, this is the same as in stage 3, but now we have to be

much more concerned with security. When we run two nodes on the

same LAN, we probably don’t have to worry too much about security. In

most organizations, the LAN is isolated from the Internet by a firewall.

Behind the firewall we are free to allocate IP addresses in a haphazard

manner and generally misconfigure our machines.

When we connect several machines in an Erlang cluster on the Internet,

we can expect to run into problems with firewalls that do not permit

incoming connections. We will have to correctly configure our firewalls

to accept incoming connections. There is no way to do this in a generic

manner, since every firewall is different.

To prepare your system for distributed Erlang, you will have to take the

following steps:

1. Make sure that port 4369 is open for both TCP and UDP traffic.

This port is used by a program called epmd (short for the Erlang

Port Mapper Daemon).

2. Choose a port or range of ports to be used for distributed Erlang,

and make sure these ports are open. If these ports are Min and

Max (use Min = Max if you want to use only one port), then start

Erlang with the following command:

$ erl -name ... -setcookie ... -kernel inet_dist_listen_min Min \

inet_dist_listen_max Max

10.2 The Distribution Primitives

The central concept in distributed Erlang is the node. A node is a self-

contained Erlang system containing a complete virtual machine with

its own address space and own set of processes.

Access to a single node or set of nodes is secured by a cookie system.

Each node has a single cookie, and this cookie must be the same as

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=182

THE DISTRIBUTION PRIMITIVES 183

the cookies of any nodes to which the node talks. To ensure this, all

the nodes in a distributed Erlang system must have been started with

the same magic cookie or have their cookie changed to the same value

by evaluating erlang:set_cookie.

The set of connected nodes having the same cookie defines an Erlang

cluster.

The BIFs that are used for writing distributed programs are as follows:7

@spec spawn(Node, Fun) -> Pid

This works exactly like spawn(Fun), but the new process is spawned

on Node.

@spec spawn(Node, Mod, Func, ArgList) -> Pid

This works exactly like spawn(Mod, Func, ArgList), but the new pro-

cess is spawned on Node. spawn(Mod, Func, Args) creates a new

process that evaluates apply(Mod, Func, Args). It returns the PID of

the new process.

Note: This form of spawn is more robust than spawn(Node, Fun).

spawn(Nod, Fun) can break when the distributed nodes are not run-

ning exactly the same version of a particular module.

@spec spawn_link(Node, Fun) -> Pid

This works exactly like spawn_link(Fun), but the new process is

spawned on Node.

@spec spawn_link(Node, Mod, Func, ArgList) -> Pid

This works like spawn(Node, Mod, Func, ArgList), but the new process

is linked to the current process.

@spec disconnect_node(Node) -> bool() | ignored

This forcibly disconnects a node.

@spec monitor_node(Node, Flag) -> true

If Flag is true, monitoring is turned on; if Flag is false, monitoring

is turned off. If monitoring has been turned on, then the process

that evaluated this BIF will be sent {nodeup, Node} and {nodedown,

Node} messages if Node joins or leaves the set of connected Erlang

nodes.

7. For a fuller description of these BIFs, see the manual page for the erlang module.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=183

THE DISTRIBUTION PRIMITIVES 184

@spec node() -> Node

This returns the name of the local node. nonode@nohost is returned

if the node is not distributed.

@spec node(Arg) -> Node

This returns the node where Arg is located. Arg can be a PID,

a reference, or a port. If the local node is not distributed, non-

ode@nohost is returned.

@spec nodes() -> [Node]

This returns a list of all other nodes in the network to which we

are connected.

@spec is_alive() -> bool()

This returns true if the local node is alive and can be part of a

distributed system. Otherwise, it returns false.

In addition, send can be used to send messages to a locally registered

process in a set of distributed Erlang nodes. The following syntax:

{RegName, Node} ! Msg

sends the message Msg to the registered process RegName on the node

Node.

An Example of Remote Spawning

As a simple example, we can show how to spawn a process on a remote

node. We’ll start with the following program:

Download dist_demo.erl

-module(dist_demo).

-export([rpc/4, start/1]).

start(Node) ->

spawn(Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->

Pid ! {rpc, self(), M, F, A},

receive

{Pid, Response} ->

Response

end.

loop() ->

receive

{rpc, Pid, M, F, A} ->

Pid ! {self(), (catch apply(M, F, A))},

loop()

end.

http://media.pragprog.com/titles/jaerlang/code/dist_demo.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=184

LIBRARIES FOR DISTRIBUTED PROGRAMMING 185

Then we start two nodes; both nodes have to be able to load this code.

If both nodes are on the same host, then this is not a problem. We

merely start two Erlang nodes from the same directory. If the nodes are

on two physically separated nodes with different file systems, then the

program must be copied to all nodes and compiled before starting both

the nodes (alternatively, the .beam file can be copied to all nodes). In

the example, I’ll assume we’ve done this.

On the host doris, we start a node named gandalf:

doris $ erl -name gandalf -setcookie abc

(gandalf@doris.myerl.example.com) 1>

And on the host george, we start a node named bilbo, remembering to

use the same cookie:

george $ erl -name bilbo -setcookie abc

(bilbo@george.myerl.example.com) 1>

Now (on bilbo) we can spawn a process on the remote node (gandalf):

(bilbo@george.myerl.example.com) 1> Pid =

dist_demo:start('gandalf@doris.myerl.example.com').

<5094.40.0>

Pid is now a process identifier of the process on the remote node, and

we can call dist_demo:rpc/4 to perform a remote procedure call on the

remote node:

(bilbo@george.myerl.example.com)2> dist_demo:rpc(Pid, erlang, node, []).

'gandalf@doris.myerl.example.com'

This evaluates erlang:node() on the remote node and returns the value.

10.3 Libraries for Distributed Programming

The previous section showed the BIFs that we can use for writing dis-

tributed programs. In fact, most Erlang programmers will never use

these BIFs; instead, they will use a number of powerful libraries for

distribution. The libraries are written using the distribution BIFs, but

they hide a lot of the complexity from the programmer.

Two modules in the standard distribution cover most needs:

• rpc provides a number of remote procedure call services.

• global has functions for the registration of names and locks in a

distributed system and for the maintenance of a fully connected

network.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=185

THE COOKIE PROTECTION SYSTEM 186

Read the Manual Pages for RPC

The module rpc contains a veritable cornucopia of functional-
ity.

The single most useful function in the module rpc is the following func-

tion:

call(Node, Mod, Function, Args) -> Result | {badrpc, Reason}

This evaluates apply(Mod, Function, Args) on Node and returns the

result Result or {badrpc, Reason} if the call fails.

10.4 The Cookie Protection System

For two distributed Erlang nodes to communicate, they must have the

same magic cookie. We can set the cookie in three ways:

• Method 1: Store the same cookie in the file $HOME/.erlang.cookie.

This file contains a random string and is automatically created the

first time Erlang is run on your machine.

This file can be copied to all machines that we want to participate

in a distributed Erlang session. Alternatively, we can explicitly set

the value. For example, on a Linux system, we could give the fol-

lowing commands:

$ cd

$ cat > .erlang.cookie

AFRTY12ESS3412735ASDF12378

$ chmod 400 .erlang.cookie

The chmod makes the .erlang.cookie file accessible only by the

owner of the file.

• Method 2: When Erlang is started, we can use the command-line

argument -setcookie C to set the magic cookie to C. For example:

$ erl -setcookie AFRTY12ESS3412735ASDF12378 ...

• Method 3: The BIF erlang:set_cookie(node(), C) sets the cookie of the

local node to the atom C.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=186

SOCKET -BASED DISTRIBUTION 187

Note: If your environment is insecure, then method 1 or 3 is better than

method 2 since on a Unix system anybody can discover your cookie

using the ps command.

In case you’re wondering, cookies are never sent across the network

in the clear. Cookies are used only for the initial authentication of a

session. Distributed Erlang sessions are not encrypted but can be set

up to run over encrypted channels. (Google the Erlang mailing list for

up-to-date information on this.)

10.5 Socket-Based Distribution

In this section, we will write a simple program using socket-based dis-

tribution. As we have seen, distributed Erlang is fine for writing cluster

applications where you can trust everybody involved but is less suitable

in an open environment where not everyone can be trusted.

The main problem with distributed Erlang is that the client can decide

to spawn any process on the server machine. So, to destroy your sys-

tem, all you’d have to do is evaluate the following:

rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Distributed Erlang is useful in the situation where you own all the

machines and want to control all the machines from a single machine.

But this model of computation is not suited to the situation where dif-

ferent people own the individual machines and want to control exactly

which software can be executed on their machines.

In these circumstances, we will use a restricted form of spawn where

the owner of a particular machine has explicit control over what gets

run on their machines.

lib_chan

lib_chan is a module that allows a user to explicitly control which pro-

cesses are spawned on their machines. The implementation of lib_chan

is rather complex, so I’ve taken it out of the normal chapter flow; you

can find it in Appendix D, on page 403. The interface is as follows:

@spec start_server() -> true

This starts a server on the local host. The behavior of the server is

determined by the file $HOME/.erlang/lib_chan.conf.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=187

SOCKET -BASED DISTRIBUTION 188

@spec start_server(Conf) -> true

This starts a server on the local host. The behavior of the server is

determined by the file Conf.

In both cases, the server configuration file contains a file of tuples

of the following form:

{port, NNNN}

This starts listening to port number NNNN.

{service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgsS}

This defines a service S protected by password P. If the service

is started, then a process is created by spawning SomeMod:

SomeFunc(MM, ArgsC, SomeArgsS) to handle messages from the

client. Here MM is the PID of a proxy process that can be used

to send messages to the client, and the argument ArgsC comes

from the client connect call.

@spec connect(Host, Port, S, P, ArgsC) -> {ok, Pid} | {error, Why}

Try to open the port Port on the host Host, and then try to acti-

vate the service S, which is protected with the password P. If the

password is correct, {ok, Pid} will be returned, where Pid will be

the process identifier of a proxy process that can be used to send

messages to the server.

When a connection is established by the client calling connect/5, two

proxy processes are spawned: one on the client side and the other on

the server side. These proxy processes handle the conversion of Erlang

messages to TCP packet data, trapping exits from the controlling pro-

cesses, and socket closure.

This explanation might look complicated, but it will become a lot clearer

when we use it.

The following is a complete example of how to use lib_chan together with

the kvs service that we described earlier.

The Server Code

First, we write a configuration file:

{port, 1234}.

{service, nameServer, password, "ABXy45",

mfa, mod_name_server, start_me_up, notUsed}.

This means we are going to offer a service called nameServer on port

1234 of our machine. The service is protected by the password ABXy45.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=188

SOCKET -BASED DISTRIBUTION 189

When a connection is created by the client calling:

connect(Host, 1234, nameServer, "ABXy45", nil)

the server will spawn mod_name_server:startmeUp(MM, nil, notUsed), where

MM is the PID of a proxy process that is used to talk to the client.

Important: At this stage, you should stare at the previous line of code

and make sure you see where the arguments in the call come from:

• mod_name_server, start_me_up, and notUsed come from the configu-

ration file.

• nil is the last argument in the connect call.

mod_name_server is as follows:

Download socket_dist/mod_name_server.erl

-module(mod_name_server).

-export([start_me_up/3]).

start_me_up(MM, _ArgsC, _ArgS) ->

loop(MM).

loop(MM) ->

receive

{chan, MM, {store, K, V}} ->

kvs:store(K, V),

loop(MM);

{chan, MM, {lookup, K}} ->

MM ! {send, kvs:lookup(K)},

loop(MM);

{chan_closed, MM} ->

true

end.

mod_name_server follows this protocol:

• If the client sends the server a message {send, X}, it will appear in

mod_name_server as a message of the form {chan, MM, X} (MM is the

PID of the server proxy process.)

• If the client terminates or the socket used in communication closes

for any reason, then a message of the form {chan_closed, MM} will

be received by the server.

• If the server wants to send a message X to the client, it does so by

calling MM ! {send, X}.

• If the server wants to explicitly close the connection, it can do so

by evaluating MM ! close.

http://media.pragprog.com/titles/jaerlang/code/socket_dist/mod_name_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=189

SOCKET -BASED DISTRIBUTION 190

This protocol is the middle-man protocol that is obeyed by both the

client code and the server code. The socket middle-man code is ex-

plained in more detail in Section D.2, lib_chan_mm: The Middle Man,

on page 407.

To test this code, we will first make sure that everything works on one

machine.

Now we can start the name server (and the module kvs):

1> kvs:start().

true

2> lib_chan:start_server().

Starting a port server on 1234...

true

Now we can start a second Erlang session and test this from any client:

1> {ok, Pid} = lib_chan:connect("localhost", 1234, nameServer,

"ABXy45", "").

{ok, <0.43.0>}

2> lib_chan:cast(Pid, {store, joe, "writing a book"}).

{send,{store,joe,"writing a book"}}

3> lib_chan:rpc(Pid, {lookup, joe}).

{ok,"writing a book"}

4> lib_chan:rpc(Pid, {lookup, jim}).

undefined

Having tested that this works on one machine, we go through the same

steps we described earlier and perform similar tests on two physically

separated machines.

Note that in this case, it is the owner of the remote machine who decides

the contents of the configuration file. The configuration file specifies

which applications are permitted on this machine and which port is to

be used to communicate with these applications.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=190

Chapter 11

IRC Lite
It’s about time for an application. So far we have seen all the parts but

not how to put the parts together. We’ve seen how to write sequential

code, how to spawn processes, how to make registered processes, and

so on. Now we’ll assemble those concepts into something that works.

In this chapter, we’ll develop a simple “IRC-like” program. We won’t

follow the actual IRC protocol. Instead, we’ll invent our own totally dif-

ferent and incompatible protocols.1 As far as a user is concerned, our

program is an implementation of IRC, but underneath the implemen-

tation is a lot easier than might be expected, since we’ll use Erlang

messages as the basis for all interprocess messaging. This totally elim-

inates all message parsing and really simplifies the design.

Our program is also a pure Erlang program, which makes no use of the

OTP libraries and minimal use of the standard libraries. So, for exam-

ple, it has a complete self-contained client-server architecture and a

form of error recovery based on explicit manipulation of links. The rea-

son for not using the libraries is that I want to introduce you to one

concept at a time and show what we can achieve with the language

alone and minimal use of libraries. We’ll write the code as a set of com-

ponents. Each component is simple, but they fit together in a complex

manner. We can make a lot of this complexity go away by using the

OTP libraries, so later in the book we’ll show better ways of organizing

code based on the OTP generic libraries for building client-server and

supervision trees.

1. This makes our lives easier and lets us concentrate on the application, rather than

low-level protocol details.

CHAPTER 11. IRC LITE 192

 Server

 C = Chat Client

 M = Middle Man

 G = Group Controller

 S = Chat Server

 S G

 Widget C M M

 Client

 Widget C M M

 Client

 Widget C M M

 Client

Figure 11.1: The process structure

Our application is built from five components; the structure of these

components is shown in Figure 11.1. The figure shows three client

nodes (assumed to be on different machines) and a single server node

(on a different machine). These components perform the following func-

tions:

The User Interface Widget

The user interface is a GUI widget that is used to send messages

and display received messages. The messages are sent to the chat

client.

The Chat Client

The chat client (“C” in the figure) manages messages from the

chat widget and sends them to the group controller for the cur-

rent group. It also receives messages from the group controller

and sends them to the widget.

The Group Controller

The group controller (“G” in the figure) manages a single chat

group. If a message is sent to the controller, it broadcasts the mes-

sage to all members in the group. It keeps track of new members

who join and leave the group and dies when there are no longer

any members in the group.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=192

MESSAGE SEQUENCE DIAGRAMS 193

 W {W,Nick,Str} {relay,Nick,Str}
 <<Bin>> {M2, {relay,Nick,Str}}

 {msg,Nick,M2,Str}

 <<bin>> {M1,{msg,Nick,M,Str}} {insert, ...}

 C M1 M2 G

Figure 11.2: The flow of messages involved in sending a message

The Chat Server

The chat server (“S” in the figure) keeps track of the group con-

trollers. The chat server is needed only when a new member tries

to join a group. The chat server is a single process, whereas there

is one group controller for every active group.

The Middle Men

The middle men (“M” in the figure) take care of the transport of

data through the system. If a C process sends a message to M,

it will arrive at G (see Figure 11.1, on the previous page). The

M process hides the low-level socket interface between the two

machines. Essentially the M process “abstracts out” the physical

boundary between the machines. This means the entire applica-

tion can be built using Erlang message passing and is uncon-

cerned with the details of the underlying communication infras-

tructure.

11.1 Message Sequence Diagrams

It’s easy to lose track of what’s happening when we have many paral-

lel processes. To help us understand what’s going on, we can draw a

message sequence diagram (MSD) that shows the interaction between

different processes.

The message sequence diagram in Figure 11.2 shows the sequence of

messages that results from a user typing a line into the io widget mes-

sage entry region. This results in a message to the chat controller (C),

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=193

THE USER INTERFACE 194

Figure 11.3: The io widget

followed by a message to one of the middle men (M1); this goes via M2

to the group controller (G). The step between the middle men is a binary

encoding of the Erlang messages involved.

The MSD gives a good overview of what’s happening. If you stare hard at

the MSD and the program code, you should be able to convince yourself

that the code implements the message passing sequence described in

the diagram.

When I’m designing a program like the chat system, I often cover the

backs of lots of envelopes with MSDs—this helps me think about what’s

taking place. I’m not usually a fan of graphical design methods, but

MSDs are useful for visualizing what’s happening in a set of parallel

processes that exchange messages to solve some particular problem.

We’ll now look at the individual components.

11.2 The User Interface

The user interface is built using a simple io widget. This io widget is

shown in Figure 11.3. The code for this widget is fairly long and is

mostly concerned with accessing the windowing system using the stan-

dard gs library. Because we don’t want to dive down that rabbit hole just

yet, we won’t show the code listing here (but you’ll find it starting on

page 209). The interface to the io widget is as follows:

@spec io_widget:start(Pid) -> Widget

Create a new io widget. Returns Widget, which is a PID that can

be used to talk to the widget. When the user types anything in the

entry section of the widget, a message of the form {Widget, State,

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=194

CLIENT -SIDE SOFTWARE 195

Parse} will be sent to the process that evaluated this function. State

is a state variable stored in the widget that can be set by the user,

and Parse is the result of parsing the input string with a user-

defined parser.

@spec io_widget:set_title(Widget, Str)

Set the title in the widget.

@spec io_widget:set_state(Widget, State)

Set the state of the widget.

@spec io_widget:insert_str(Widget, Str)

Insert a string into the main area of the widget.

@spec io_widget:set_handler(Widget, Fun)

Set the widget parser to Fun (see later).

The io widget can generate the following messages:

{Widget, State, Parse}

This message gets sent when the user enters a string in the lower

command region of the widget. Parse is the result of parsing this

string with the parser associated with the widget.

{Widget, destroyed}

This message gets sent when the user destroys the io widget by

killing the window.

Finally, the io widget is a programmable widget. It can be parameterized

with a parser that is used to parse all messages that are entered in the

entry box of the widget. Parsing is accomplished by calling a function

Parse(Str). This function can be set by calling set_handler(Widget, Parse).

The default parser is the following function:

Parse(Str) -> Str end

11.3 Client-Side Software

The client side of the chat program has three processes: the io wid-

get (which we’ve talked about), the chat client (which interfaces the io

widget to the middle man), and the middle-man process itself. In this

section, we’ll concentrate on the chat client.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=195

CLIENT -SIDE SOFTWARE 196

The Chat Client

We start the chat client by calling start/0:

Download socket_dist/chat_client.erl

start() ->

connect("localhost", 2223, "AsDT67aQ", "general", "joe").

This tries to connect to localhost port 2223 (this is hardwired for testing

purposes). The function connect/5 simply creates a parallel process by

spawning handler/5. The handler has to perform several tasks:

• It makes itself into a system process so that it can trap exits.

• It creates an io widget and sets up the prompt and title of the

widget.

• It then spawns connection process (which tries to connect to the

server).

• Finally, it waits for a connection event in disconnected/2.

The code for this is as follows:

Download socket_dist/chat_client.erl

connect(Host, Port, HostPsw, Group, Nick) ->

spawn(fun() -> handler(Host, Port, HostPsw, Group, Nick) end).

handler(Host, Port, HostPsw, Group, Nick) ->

process_flag(trap_exit, true),

Widget = io_widget:start(self()),

set_title(Widget, Nick),

set_state(Widget, Nick),

set_prompt(Widget, [Nick, " > "]),

set_handler(Widget, fun parse_command/1),

start_connector(Host, Port, HostPsw),

disconnected(Widget, Group, Nick).

In the disconnected state, either the process will receive a {connected,

MM}2 message, in which case it sends a login message to the server and

waits for a login response, or the widget might be destroyed, in which

case everything is stopped. The connecting process sends periodic sta-

tus messages to the chat client. These are just sent to the io widget to

be displayed.

2. MM stands for middle man. This is a proxy process that can be used to communicate

with the server.

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=196

CLIENT -SIDE SOFTWARE 197

Download socket_dist/chat_client.erl

disconnected(Widget, Group, Nick) ->

receive

{connected, MM} ->

insert_str(Widget, "connected to server\nsending data\n"),

MM ! {login, Group, Nick},

wait_login_response(Widget, MM);

{Widget, destroyed} ->

exit(died);

{status, S} ->

insert_str(Widget, to_str(S)),

disconnected(Widget, Group, Nick);

Other ->

io:format("chat_client disconnected unexpected:~p~n",[Other]),

disconnected(Widget, Group, Nick)

end.

The {connected, MM} message should eventually come from the con-

nection processes that was started by the call start_connector(Host, Port,

HostPsw). This created a parallel process that periodically tries to con-

nect to the IRC server.

Download socket_dist/chat_client.erl

start_connector(Host, Port, Pwd) ->

S = self(),

spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

try_to_connect(Parent, Host, Port, Pwd) ->

%% Parent is the Pid of the process that spawned this process

case lib_chan:connect(Host, Port, chat, Pwd, []) of

{error, _Why} ->

Parent ! {status, {cannot, connect, Host, Port}},

sleep(2000),

try_to_connect(Parent, Host, Port, Pwd);

{ok, MM} ->

lib_chan_mm:controller(MM, Parent),

Parent ! {connected, MM},

exit(connectorFinished)

end.

try_to_connect loops forever, trying every two seconds to connect to the

server. If it cannot connect, it sends a status message to the chat client.

Note: In start_connector, we wrote this:

S = self(),

spawn_link(fun() -> try_to_connect(S, ...) end)

This is not the same as the following:

spawn_link(fun() -> try_to_connect(self(), ...) end)

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=197

CLIENT -SIDE SOFTWARE 198

The reason is that, in the first code fragment, self() is evaluated inside

the parent process. In the second code fragment, self() is evaluated

inside the spawned fun, so it returns the process identifier of the

spawned process and not, as you might think, the PID of the current

process. This is a common cause of error (and confusion).

If a connection is made, then it sends a {connected, MM} message to the

chat client. When a connection message arrives, the client sends a login

message to the server (both these events happened in disconnected/2)

and waits for the reply in wait_login_response/2:

Download socket_dist/chat_client.erl

wait_login_response(Widget, MM) ->

receive

{MM, ack} ->

active(Widget, MM);

Other ->

io:format("chat_client login unexpected:~p~n",[Other]),

wait_login_response(Widget, MM)

end.

If all goes well, the process should receive an acknowledgment (ack)

message. (In our case, this is the only possibility since the password

was correct.) After receiving the acknowledgment message, this func-

tion calls active/2:

Download socket_dist/chat_client.erl

active(Widget, MM) ->

receive

{Widget, Nick, Str} ->

MM ! {relay, Nick, Str},

active(Widget, MM);

{MM,{msg,From,Pid,Str}} ->

insert_str(Widget, [From,"@",pid_to_list(Pid)," ", Str, "\n"]),

active(Widget, MM);

{'EXIT',Widget,windowDestroyed} ->

MM ! close;

{close, MM} ->

exit(serverDied);

Other ->

io:format("chat_client active unexpected:~p~n",[Other]),

active(Widget, MM)

end.

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=198

SERVER-SIDE SOFTWARE 199

active/2 just sends messages from the widget to the group (and vice

versa) and monitors the connection with the group.

Apart from some module declarations and trivial formatting and pars-

ing routines, this completes the chat client.

The full listing of the chat client starts on page 204.

11.4 Server-Side Software

The server-side software is more complex than the client-side software.

For each chat client, there is a corresponding chat controller that inter-

faces the chat client to the chat server. There is a single chat server that

knows about all the chat sessions that are in progress, and there are

a number of group managers (one per chat group) that manage the

individual chat groups.

The Chat Controller

The chat controller is a plug-in for lib_chan, the socket-based distribu-

tion kit. We met this in Section 10.5, lib_chan, on page 187. lib_chan

needs a configuration file and a plug-in module.

The configuration file for the chat system is as follows:

Download socket_dist/chat.conf

{port, 2223}.

{service, chat, password,"AsDT67aQ",mfa,mod_chat_controller,start,[]}.

If you look back at the code in chat_client.erl, you’ll see that the port

number, service name, and password agree with the information in the

configuration file.

The chat controller module is very simple:

Download socket_dist/mod_chat_controller.erl

-module(mod_chat_controller).

-export([start/3]).

-import(lib_chan_mm, [send/2]).

start(MM, _, _) ->

process_flag(trap_exit, true),

io:format("mod_chat_controller off we go ...~p~n",[MM]),

loop(MM).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat.conf
http://media.pragprog.com/titles/jaerlang/code/socket_dist/mod_chat_controller.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=199

SERVER-SIDE SOFTWARE 200

loop(MM) ->

receive

{chan, MM, Msg} ->

chat_server ! {mm, MM, Msg},

loop(MM);

{'EXIT', MM, _Why} ->

chat_server ! {mm_closed, MM};

Other ->

io:format("mod_chat_controller unexpected message =~p (MM=~p)~n",

[Other, MM]),

loop(MM)

end.

This code should receive only two messages. When the client connects,

it will receive an arbitrary message, and it just sends it to the chat

server. Otherwise, if the session is terminated for any reason, it will

receive an exit message, and it then just tells the chat server that the

client has died.

The Chat Server

The chat server is a registered process called (unsurprisingly)

chat_server. Calling chat_server:start/0 starts and registers a server, and

it starts lib_chan.

Download socket_dist/chat_server.erl

start() ->

start_server(),

lib_chan:start_server("chat.conf").

start_server() ->

register(chat_server,

spawn(fun() ->

process_flag(trap_exit, true),

Val= (catch server_loop([])),

io:format("Server terminated with:~p~n",[Val])

end)).

The server loop is simple. It waits for a {login, Group, Nick}3 message from

a middle man with PID Channel. If there is a chat group controller for

this group, then it just sends the login message to the group controller;

otherwise, it starts a new group controller.

3. Nick is the nickname of the user.

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=200

SERVER-SIDE SOFTWARE 201

The chat server is the only process that knows the PIDs of all the group

controllers, so when a new connection is made to the system, the chat

server is contacted to find out the process identifier of the group con-

troller.

The server itself is simple:

Download socket_dist/chat_server.erl

server_loop(L) ->

receive

{mm, Channel, {login, Group, Nick}} ->

case lookup(Group, L) of

{ok, Pid} ->

Pid ! {login, Channel, Nick},

server_loop(L);

error ->

Pid = spawn_link(fun() ->

chat_group:start(Channel, Nick)

end),

server_loop([{Group,Pid}|L])

end;

{mm_closed, _} ->

server_loop(L);

{'EXIT', Pid, allGone} ->

L1 = remove_group(Pid, L),

server_loop(L1);

Msg ->

io:format("Server received Msg=~p~n",

[Msg]),

server_loop(L)

end.

The code to manipulate the group lists involves some simple list-proces-

sing routines:

Download socket_dist/chat_server.erl

lookup(G, [{G,Pid}|_]) -> {ok, Pid};

lookup(G, [_|T]) -> lookup(G, T);

lookup(_,[]) -> error.

remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;

remove_group(Pid, [H|T]) -> [H|remove_group(Pid, T)];

remove_group(_, []) -> [].

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_server.erl
http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=201

SERVER-SIDE SOFTWARE 202

The Group Manager

The group manager is now all that’s left. The most important part of

this is the dispatcher:

Download socket_dist/chat_group.erl

group_controller([]) ->

exit(allGone);

group_controller(L) ->

receive

{C, {relay, Nick, Str}} ->

foreach(fun({Pid,_}) -> Pid ! {msg, Nick, C, Str} end, L),

group_controller(L);

{login, C, Nick} ->

controller(C, self()),

C ! ack,

self() ! {C, {relay, Nick, "I'm joining the group"}},

group_controller([{C,Nick}|L]);

{close,C} ->

{Nick, L1} = delete(C, L, []),

self() ! {C, {relay, Nick, "I'm leaving the group"}},

group_controller(L1);

Any ->

io:format("group controller received Msg=~p~n", [Any]),

group_controller(L)

end.

The argument L in group_controller(L) is {Pid, Nick} list of Nicks and middle

man PID.

When the group manager receives a {relay,Nick,Str} message, it merely

broadcasts it to all the processes in the group. If a {login, C, Nick} mes-

sage arrives, it adds a {C,Nick} tuple to the broadcast list. The important

point to note is the call to lib_chan_mm:controller/2. This call sets the

controlling process of the middle man to the group controller, which

means that all messages sent to the socket that is controlled by the mid-

dle man will be sent to the group controller—this is probably the key to

understanding how all of this code works.

All that remains is the code that starts the group server:

Download socket_dist/chat_group.erl

-module(chat_group).

-import(lib_chan_mm, [send/2, controller/2]).

-import(lists, [foreach/2, reverse/2]).

-export([start/2]).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_group.erl
http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_group.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=202

RUNNING THE APPLICATION 203

start(C, Nick) ->

process_flag(trap_exit, true),

controller(C, self()),

C ! ack,

self() ! {C, {relay, Nick, "I'm starting the group"}},

group_controller([{C,Nick}]).

and the function delete/3 called from the dispatcher loop of the process:

Download socket_dist/chat_group.erl

delete(Pid, [{Pid,Nick}|T], L) -> {Nick, reverse(T, L)};

delete(Pid, [H|T], L) -> delete(Pid, T, [H|L]);

delete(_, [], L) -> {"????", L}.

11.5 Running the Application

The entire application is stored in the directory pathto/code/socket_dist;

it also uses some library modules in the directory pathto/code.

To run the application, obtain the source code from the book’s website,

and unpack the code to some directory. (We’ll assume here that this is

in the directory /home/joe/erlbook.) Open a terminal window, and give

the following commands:

$ cd /home/joe/erlbook/code

/home/joe/erlbook/code $ make

...

/home/joe/erlbook/code $ cd socket_dist

/home/joe/erlbook/code/socket_dist $ make chat_server

...

This will start the chat server. Now we have to start a second terminal

window and start the client test:

$ cd /home/joe/erlbook/code/socket_dist

/home/joe/erlbook/code/socket_dist $ make chat_client

...

Running make chat_client runs the function chat_client:test(); this actu-

ally creates four windows, all of which connect to the group called “gen-

eral,” which is just for testing purposes. We can see a screen dump

showing how the system looks after giving these commands in Fig-

ure 11.4, on the next page.

To deploy the system on the Internet, all we need to do is change the

password and port to something suitable and enable incoming connec-

tions for the port number we have chosen.

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_group.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=203

THE CHAT PROGRAM SOURCE CODE 204

Figure 11.4: Screen dump showing four test windows connected to the

same group

11.6 The Chat Program Source Code

We’ve now finished the description of the chat program. When describ-

ing the program, we broke it into small fragments and missed out on

some of the code. This section has all the code in one place, which

makes it easier to read. If you have trouble following any of the code,

try referring to the descriptions earlier in the chapter.

Chat Client
Download socket_dist/chat_client.erl

-module(chat_client).

-import(io_widget,

[get_state/1, insert_str/2, set_prompt/2, set_state/2,

set_title/2, set_handler/2, update_state/3]).

-export([start/0, test/0, connect/5]).

start() ->

connect("localhost", 2223, "AsDT67aQ", "general", "joe").

test() ->

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_client.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=204

THE CHAT PROGRAM SOURCE CODE 205

connect("localhost", 2223, "AsDT67aQ", "general", "joe"),

connect("localhost", 2223, "AsDT67aQ", "general", "jane"),

connect("localhost", 2223, "AsDT67aQ", "general", "jim"),

connect("localhost", 2223, "AsDT67aQ", "general", "sue").

connect(Host, Port, HostPsw, Group, Nick) ->

spawn(fun() -> handler(Host, Port, HostPsw, Group, Nick) end).

handler(Host, Port, HostPsw, Group, Nick) ->

process_flag(trap_exit, true),

Widget = io_widget:start(self()),

set_title(Widget, Nick),

set_state(Widget, Nick),

set_prompt(Widget, [Nick, " > "]),

set_handler(Widget, fun parse_command/1),

start_connector(Host, Port, HostPsw),

disconnected(Widget, Group, Nick).

disconnected(Widget, Group, Nick) ->

receive

{connected, MM} ->

insert_str(Widget, "connected to server\nsending data\n"),

MM ! {login, Group, Nick},

wait_login_response(Widget, MM);

{Widget, destroyed} ->

exit(died);

{status, S} ->

insert_str(Widget, to_str(S)),

disconnected(Widget, Group, Nick);

Other ->

io:format("chat_client disconnected unexpected:~p~n",[Other]),

disconnected(Widget, Group, Nick)

end.

wait_login_response(Widget, MM) ->

receive

{MM, ack} ->

active(Widget, MM);

Other ->

io:format("chat_client login unexpected:~p~n",[Other]),

wait_login_response(Widget, MM)

end.

active(Widget, MM) ->

receive

{Widget, Nick, Str} ->

MM ! {relay, Nick, Str},

active(Widget, MM);

{MM,{msg,From,Pid,Str}} ->

insert_str(Widget, [From,"@",pid_to_list(Pid)," ", Str, "\n"]),

active(Widget, MM);

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=205

THE CHAT PROGRAM SOURCE CODE 206

{'EXIT',Widget,windowDestroyed} ->

MM ! close;

{close, MM} ->

exit(serverDied);

Other ->

io:format("chat_client active unexpected:~p~n",[Other]),

active(Widget, MM)

end.

start_connector(Host, Port, Pwd) ->

S = self(),

spawn_link(fun() -> try_to_connect(S, Host, Port, Pwd) end).

try_to_connect(Parent, Host, Port, Pwd) ->

%% Parent is the Pid of the process that spawned this process

case lib_chan:connect(Host, Port, chat, Pwd, []) of

{error, _Why} ->

Parent ! {status, {cannot, connect, Host, Port}},

sleep(2000),

try_to_connect(Parent, Host, Port, Pwd);

{ok, MM} ->

lib_chan_mm:controller(MM, Parent),

Parent ! {connected, MM},

exit(connectorFinished)

end.

sleep(T) ->

receive

after T -> true

end.

to_str(Term) ->

io_lib:format("~p~n",[Term]).

parse_command(Str) -> skip_to_gt(Str).

skip_to_gt(">" ++ T) -> T;

skip_to_gt([_|T]) -> skip_to_gt(T);

skip_to_gt([]) -> exit("no >").

lib_chan Configuration

Download socket_dist/chat.conf

{port, 2223}.

{service, chat, password,"AsDT67aQ",mfa,mod_chat_controller,start,[]}.

Chat Controller
Download socket_dist/mod_chat_controller.erl

-module(mod_chat_controller).

-export([start/3]).

-import(lib_chan_mm, [send/2]).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat.conf
http://media.pragprog.com/titles/jaerlang/code/socket_dist/mod_chat_controller.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=206

THE CHAT PROGRAM SOURCE CODE 207

start(MM, _, _) ->

process_flag(trap_exit, true),

io:format("mod_chat_controller off we go ...~p~n",[MM]),

loop(MM).

loop(MM) ->

receive

{chan, MM, Msg} ->

chat_server ! {mm, MM, Msg},

loop(MM);

{'EXIT', MM, _Why} ->

chat_server ! {mm_closed, MM};

Other ->

io:format("mod_chat_controller unexpected message =~p (MM=~p)~n",

[Other, MM]),

loop(MM)

end.

Chat Server
Download socket_dist/chat_server.erl

-module(chat_server).

-import(lib_chan_mm, [send/2, controller/2]).

-import(lists, [delete/2, foreach/2, map/2, member/2,reverse/2]).

-compile(export_all).

start() ->

start_server(),

lib_chan:start_server("chat.conf").

start_server() ->

register(chat_server,

spawn(fun() ->

process_flag(trap_exit, true),

Val= (catch server_loop([])),

io:format("Server terminated with:~p~n",[Val])

end)).

server_loop(L) ->

receive

{mm, Channel, {login, Group, Nick}} ->

case lookup(Group, L) of

{ok, Pid} ->

Pid ! {login, Channel, Nick},

server_loop(L);

error ->

Pid = spawn_link(fun() ->

chat_group:start(Channel, Nick)

end),

server_loop([{Group,Pid}|L])

end;

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=207

THE CHAT PROGRAM SOURCE CODE 208

{mm_closed, _} ->

server_loop(L);

{'EXIT', Pid, allGone} ->

L1 = remove_group(Pid, L),

server_loop(L1);

Msg ->

io:format("Server received Msg=~p~n",

[Msg]),

server_loop(L)

end.

lookup(G, [{G,Pid}|_]) -> {ok, Pid};

lookup(G, [_|T]) -> lookup(G, T);

lookup(_,[]) -> error.

remove_group(Pid, [{G,Pid}|T]) -> io:format("~p removed~n",[G]), T;

remove_group(Pid, [H|T]) -> [H|remove_group(Pid, T)];

remove_group(_, []) -> [].

Chat Groups
Download socket_dist/chat_group.erl

-module(chat_group).

-import(lib_chan_mm, [send/2, controller/2]).

-import(lists, [foreach/2, reverse/2]).

-export([start/2]).

start(C, Nick) ->

process_flag(trap_exit, true),

controller(C, self()),

C ! ack,

self() ! {C, {relay, Nick, "I'm starting the group"}},

group_controller([{C,Nick}]).

delete(Pid, [{Pid,Nick}|T], L) -> {Nick, reverse(T, L)};

delete(Pid, [H|T], L) -> delete(Pid, T, [H|L]);

delete(_, [], L) -> {"????", L}.

group_controller([]) ->

exit(allGone);

group_controller(L) ->

receive

{C, {relay, Nick, Str}} ->

foreach(fun({Pid,_}) -> Pid ! {msg, Nick, C, Str} end, L),

group_controller(L);

{login, C, Nick} ->

controller(C, self()),

C ! ack,

self() ! {C, {relay, Nick, "I'm joining the group"}},

group_controller([{C,Nick}|L]);

http://media.pragprog.com/titles/jaerlang/code/socket_dist/chat_group.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=208

THE CHAT PROGRAM SOURCE CODE 209

{close,C} ->

{Nick, L1} = delete(C, L, []),

self() ! {C, {relay, Nick, "I'm leaving the group"}},

group_controller(L1);

Any ->

io:format("group controller received Msg=~p~n", [Any]),

group_controller(L)

end.

The IO Widget

Download socket_dist/io_widget.erl

-module(io_widget).

-export([get_state/1,

start/1, test/0,

set_handler/2,

set_prompt/2,

set_state/2,

set_title/2, insert_str/2, update_state/3]).

start(Pid) ->

gs:start(),

spawn_link(fun() -> widget(Pid) end).

get_state(Pid) -> rpc(Pid, get_state).

set_title(Pid, Str) -> Pid ! {title, Str}.

set_handler(Pid, Fun) -> Pid ! {handler, Fun}.

set_prompt(Pid, Str) -> Pid ! {prompt, Str}.

set_state(Pid, State) -> Pid ! {state, State}.

insert_str(Pid, Str) -> Pid ! {insert, Str}.

update_state(Pid, N, X) -> Pid ! {updateState, N, X}.

rpc(Pid, Q) ->

Pid ! {self(), Q},

receive

{Pid, R} ->

R

end.

widget(Pid) ->

Size = [{width,500},{height,200}],

Win = gs:window(gs:start(),

[{map,true},{configure,true},{title,"window"}|Size]),

gs:frame(packer, Win,[{packer_x, [{stretch,1,500}]},

{packer_y, [{stretch,10,120,100},

{stretch,1,15,15}]}]),

gs:create(editor,editor,packer, [{pack_x,1},{pack_y,1},{vscroll,right}]),

gs:create(entry, entry, packer, [{pack_x,1},{pack_y,2},{keypress,true}]),

gs:config(packer, Size),

Prompt = " > ",

http://media.pragprog.com/titles/jaerlang/code/socket_dist/io_widget.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=209

THE CHAT PROGRAM SOURCE CODE 210

State = nil,

gs:config(entry, {insert,{0,Prompt}}),

loop(Win, Pid, Prompt, State, fun parse/1).

loop(Win, Pid, Prompt, State, Parse) ->

receive

{From, get_state} ->

From ! {self(), State},

loop(Win, Pid, Prompt, State, Parse);

{handler, Fun} ->

loop(Win, Pid, Prompt, State, Fun);

{prompt, Str} ->

%% this clobbers the line being input ...

%% this could be fixed - hint

gs:config(entry, {delete,{0,last}}),

gs:config(entry, {insert,{0,Str}}),

loop(Win, Pid, Str, State, Parse);

{state, S} ->

loop(Win, Pid, Prompt, S, Parse);

{title, Str} ->

gs:config(Win, [{title, Str}]),

loop(Win, Pid, Prompt, State, Parse);

{insert, Str} ->

gs:config(editor, {insert,{'end',Str}}),

scroll_to_show_last_line(),

loop(Win, Pid, Prompt, State, Parse);

{updateState, N, X} ->

io:format("setelemtn N=~p X=~p Satte=~p~n",[N,X,State]),

State1 = setelement(N, State, X),

loop(Win, Pid, Prompt, State1, Parse);

{gs,_,destroy,_,_} ->

io:format("Destroyed~n",[]),

exit(windowDestroyed);

{gs, entry,keypress,_,['Return'|_]} ->

Text = gs:read(entry, text),

%% io:format("Read:~p~n",[Text]),

gs:config(entry, {delete,{0,last}}),

gs:config(entry, {insert,{0,Prompt}}),

try Parse(Text) of

Term ->

Pid ! {self(), State, Term}

catch

: ->

self() ! {insert, "** bad input**\n** /h for help\n"}

end,

loop(Win, Pid, Prompt, State, Parse);

{gs,_,configure,[],[W,H,_,_]} ->

gs:config(packer, [{width,W},{height,H}]),

loop(Win, Pid, Prompt, State, Parse);

{gs, entry,keypress,_,_} ->

loop(Win, Pid, Prompt, State, Parse);

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=210

EXERCISES 211

Any ->

io:format("Discarded:~p~n",[Any]),

loop(Win, Pid, Prompt, State, Parse)

end.

scroll_to_show_last_line() ->

Size = gs:read(editor, size),

Height = gs:read(editor, height),

CharHeight = gs:read(editor, char_height),

TopRow = Size - Height/CharHeight,

if TopRow > 0 -> gs:config(editor, {vscrollpos, TopRow});

true -> gs:config(editor, {vscrollpos, 0})

end.

test() ->

spawn(fun() -> test1() end).

test1() ->

W = io_widget:start(self()),

io_widget:set_title(W, "Test window"),

loop(W).

loop(W) ->

receive

{W, {str, Str}} ->

Str1 = Str ++ "\n",

io_widget:insert_str(W, Str1),

loop(W)

end.

parse(Str) ->

{str, Str}.

11.7 Exercises

• Improve the graphics widget, adding a side panel to list the names

of the people in the current group.

• Add code to show the names of all people in a group.

• Add code to list all the groups.

• Add person-to-person conversations.

• Add code so that the server machine does not run the group con-

troller but so that this functionality is provided by the first user to

join the system in a particular group.

• Stare at the message sequence diagram (Figure 11.2, on page 193)

to make sure you understand it, and check that you can identify

all the messages in the program code.

• Draw your own message sequence diagrams to show how the login

phase of the problem is solved.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=211

Chapter 12

Interfacing Techniques
Suppose we want to interface Erlang to a program written in C or

Python or to run a shell script from Erlang. To do this, we run the

external program in a separate operating system process outside the

Erlang runtime system and communicate with this process through a

byte-oriented communication channel. The Erlang side of the commu-

nication is controlled by an Erlang port. The process that creates a port

is called the connected process for that port. The connected process

has a special significance: all messages to the external program must

be tagged with the PID of the connected process, and all messages from

the external program are sent to the connected processes.

We can see the relationship between a connected process (C), a port (P),

and an external operating system process in Figure 12.1.

As far as the programmer is concerned, the port behaves just like an

Erlang process. You can send messages to it, you can register it (just

 ERTS

 C P External Program

 ERTS = Erlang runtime system

 C = An Erlang process that is connected to the port

 P = A port

Figure 12.1: Port communication

PORTS 213

like a process), and so on. If the external program crashes, then an

exit signal will be sent to the connected process, and if the connected

process dies, then the external program will be killed.

Perhaps you’re wondering why we do things this way. Many program-

ming languages allow code in foreign languages to be linked into the

application executable. In Erlang, we don’t allow this for reasons of

safety.1 If we were to link an external program into the Erlang exe-

cutable, then a mistake in the external program could easily crash the

Erlang system. For this reason, all foreign language code must be run

outside the Erlang system in an external operating system process. The

Erlang system and the external process communicate through a byte

stream.

12.1 Ports

To create a port, we give the following command:

Port = open_port(PortName, PortSettings)

This returns a port. The following messages can be sent to a port:2

Port ! {PidC, {command, Data}}

Send Data (an IO list) to the port.

Port ! {PidC, {connect, Pid1}}

Change the PID of the connected process from PidC to Pid1.

Port ! {PidC, close}

Close the port.

The connected process can receive message from the external program

with this:

receive

{Port, {data, Data}} ->

... Data comes from the external process ...

In the following sections, we’ll interface Erlang with a very simple C

program. The C program is deliberately short so as not to distract from

the details of how we do the interfacing.

Note: The following example is deliberately simple to highlight the port

mechanisms and protocols. Encoding and decoding complex data

1. An exception to this is the use of linked-in drivers that we discuss later in this chapter.
2. In all of these messages, PidC is the PID of the connected process.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=213

INTERFACING AN EXTERNAL C PROGRAM 214

structures in a portable way is a difficult problem that we won’t solve

here. At the end of the chapter, we give pointers to a number of libraries

that can be used to build interfaces to other programming languages.

12.2 Interfacing an External C Program

We’ll start with the C program:

Download ports/example1.c

int twice(int x){

return 2*x;

}

int sum(int x, int y){

return x+y;

}

Our final goal is to call these routines from Erlang. We’d like to be able

to say this (in Erlang):

X1 = example1:twice(23),

Y1 = example1:sum(45, 32),

As far as the user is concerned, example1 is an Erlang module, and

therefore all details of the interface to the C program should be hidden

inside the module example1.

Our interface needs a main program that decodes the data sent from

the Erlang program. In our example, we first define a protocol between

the port and the external C program. We’ll use an extremely simple

protocol and then show how to implement this in Erlang and C. The

protocol is defined as follows:

• All packets start with a 2-byte length code (Len) followed by Len

bytes of data.

• To call twice(N), the Erlang program must encode the function call

using some convention. We’ll assume this is encoded as the 2-

byte sequence [1,N]; the 1 means call the function twice, and N is a

(1-byte) argument.

• To call sum(N, M), we’ll encode the request as the byte sequence

[2,N,M].

• Return values are assumed to be a single byte long.

http://media.pragprog.com/titles/jaerlang/code/ports/example1.c
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=214

INTERFACING AN EXTERNAL C PROGRAM 215

Both the external C program and the Erlang program must follow this

protocol. As an example, we’ll walk through what happens when an

Erlang program wants to compute sum(45,32):

1. The port sends the byte sequence 0,3,2,45,32 to the external pro-

gram.

The first two bytes, 0,3, represent the packet length (3); the code 2

means call the external sum function; and 45 and 32 are the argu-

ments to sum (one byte each).

2. The external program reads these five bytes from standard input,

calls the sum function, and then writes the byte sequence 0,2,77 to

standard output.

The first two bytes encode the packet length. This is followed by

the result, 77 (again 1-byte long).

We now have to write programs on both sides of the interface that

strictly follow this protocol. We’ll start with the C program.

The C Program

The external C program is made from three files:

• example1.c: This contains the functions that we want to call (we

saw this earlier).

• example1_driver.c: This terminates the byte stream protocol and

calls the routines in example1.c.

• erl_comm.c: This has routines for reading and writing memory

buffers.

example1_driver.c

Download ports/example1_driver.c

#include <stdio.h>

typedef unsigned char byte;

int read_cmd(byte *buff);

int write_cmd(byte *buff, int len);

int main() {

int fn, arg1, arg2, result;

byte buff[100];

while (read_cmd(buff) > 0) {

fn = buff[0];

http://media.pragprog.com/titles/jaerlang/code/ports/example1_driver.c
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=215

INTERFACING AN EXTERNAL C PROGRAM 216

if (fn == 1) {

arg1 = buff[1];

result = twice(arg1);

} else if (fn == 2) {

arg1 = buff[1];

arg2 = buff[2];

/* debug -- you can print to stderr to debug

fprintf(stderr,"calling sum %i %i\n",arg1,arg2); */

result = sum(arg1, arg2);

}

buff[0] = result;

write_cmd(buff, 1);

}

}

This code runs an infinite loop reading commands from standard input

calling the application routines and writing the results to standard out-

put.

If you want to debug this program, you can write to stderr. An example

of a debug statement has been commented out from the code.

erl_comm.c

Finally, here’s the code to read and write 2-byte headed packets to and

from standard input and output. The code is written this way to allow

for possible fragmentation of the IO packets.

Download ports/erl_comm.c

/* erl_comm.c */

#include <unistd.h>

typedef unsigned char byte;

int read_cmd(byte *buf);

int write_cmd(byte *buf, int len);

int read_exact(byte *buf, int len);

int write_exact(byte *buf, int len);

int read_cmd(byte *buf)

{

int len;

if (read_exact(buf, 2) != 2)

return(-1);

len = (buf[0] << 8) | buf[1];

return read_exact(buf, len);

}

http://media.pragprog.com/titles/jaerlang/code/ports/erl_comm.c
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=216

INTERFACING AN EXTERNAL C PROGRAM 217

int write_cmd(byte *buf, int len)

{

byte li;

li = (len >> 8) & 0xff;

write_exact(&li, 1);

li = len & 0xff;

write_exact(&li, 1);

return write_exact(buf, len);

}

int read_exact(byte *buf, int len)

{

int i, got=0;

do {

if ((i = read(0, buf+got, len-got)) <= 0)

return(i);

got += i;

} while (got<len);

return(len);

}

int write_exact(byte *buf, int len)

{

int i, wrote = 0;

do {

if ((i = write(1, buf+wrote, len-wrote)) <= 0)

return (i);

wrote += i;

} while (wrote<len);

return (len);

}

This code is specialized for handling packets with a 2-byte length

header, so it matches up with the {packet, 2} option given to the port

driver program.

The Erlang Program

The Erlang side of the port is driven by the following program:

Download ports/example1.erl

-module(example1).

-export([start/0, stop/0]).

-export([twice/1, sum/2]).

http://media.pragprog.com/titles/jaerlang/code/ports/example1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=217

INTERFACING AN EXTERNAL C PROGRAM 218

start() ->

spawn(fun() ->

register(example1, self()),

process_flag(trap_exit, true),

Port = open_port({spawn, "./example1"}, [{packet, 2}]),

loop(Port)

end).

stop() ->

example1 ! stop.

twice(X) -> call_port({twice, X}).

sum(X,Y) -> call_port({sum, X, Y}).

call_port(Msg) ->

example1 ! {call, self(), Msg},

receive

{example1, Result} ->

Result

end.

loop(Port) ->

receive

{call, Caller, Msg} ->

Port ! {self(), {command, encode(Msg)}},

receive

{Port, {data, Data}} ->

Caller ! {example1, decode(Data)}

end,

loop(Port);

stop ->

Port ! {self(), close},

receive

{Port, closed} ->

exit(normal)

end;

{'EXIT', Port, Reason} ->

exit({port_terminated,Reason})

end.

encode({twice, X}) -> [1, X];

encode({sum, X, Y}) -> [2, X, Y].

decode([Int]) -> Int.

The port is opened with this statement:

Port = open_port({spawn, "./example1"}, [{packet, 2}])

The {packet,2} option tells the system to automatically add a 2-byte

packet length header to all packets sent to the external program. So

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=218

INTERFACING AN EXTERNAL C PROGRAM 219

if we were to send the message {PidC,{command,[2,45,32]}} to the port, the

port driver would add a 2-byte packet length header and actually send

0,3,2,45,32 to the external program.

On input the port driver will also assume that each incoming packet is

preceded by a 2-byte header and will remove these bytes before sending

the data to the Erlang connected process.

That completes the programs; we use the following makefile to build

the programs. The command make example1 builds the external pro-

gram that is used as an argument in the open_port function. Note that

the makefile also includes code to make the linked-in driver that is

presented later in this chapter.

Makefile
Download ports/Makefile

.SUFFIXES: .erl .beam .yrl

.erl.beam:

erlc -W $<

MODS = example1 example1_lid

all: ${MODS:%=%.beam} example1 example1_drv.so

example1: example1.c erl_comm.c example1_driver.c

gcc -o example1 example1.c erl_comm.c example1_driver.c

example1_drv.so: example1_lid.c example1.c

gcc -o example1_drv.so -fpic -shared example1.c example1_lid.c

clean:

rm example1 example1_drv.so *.beam

Running the Program

Now we can run the program:

1> example1:start().

<0.32.0>

2> example1:sum(45, 32).

77

4> example1:twice(10).

20

...

This now completes our first example.

http://media.pragprog.com/titles/jaerlang/code/ports/Makefile
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=219

OPEN_PORT 220

Before passing to the next topic, we should note the following:

• The example program made no attempt to unify Erlang and C’s

idea of what an integer is. We just assumed that an integer in

Erlang and C was a single byte and ignored all problems of pre-

cision and signedness. In a realistic application, we would have

to think rather carefully about the exact types and precisions of

the arguments concerned. This can be difficult, because Erlang

happily manages integers of an arbitrary size, whereas languages

such as C have fixed ideas about the precision of integers and so

on.

• We couldn’t just run the Erlang functions without first having

started the driver that was responsible for the interface (that is,

some program had to evaluate example1:start()before we were able

to run the program). We would like to be able to do this automat-

ically when the system is started. This is perfectly possible but

needs some knowledge of how the system starts and stops. We’ll

deal with this later in Section 18.7, The Application, on page 358.

12.3 open_port

In the previous section we introduced open_port without really saying

what the arguments to this function did. We saw one use of open_port,

with an argument {packet, 2} that added and removed a 2-byte header to

the data sent between Erlang and an external process. open_port takes

a relatively large number of arguments.

Some of the more common arguments are as follows:

@spec open_port(PortName, [Opt]) -> Port

PortName is one of the following:

{spawn, Command}

Start an external program. Command is the name of an exter-

nal program. Command runs outside the Erlang work space

unless a linked-in driver with the name Command is found.

{fd, In, Out}

Allow an Erlang process to access any currently opened file

descriptors used by Erlang. The file descriptor In can be used

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=220

LINKED-IN DRIVERS 221

for standard input, and the file descriptor Out can be used for

standard output.3

Opt is one of the following:

{packet, N}

Packets are preceded by an N (1, 2, or 4) byte length count.

stream

Messages are sent without packet lengths. The application

must know how to handle these packets.

{line, Max}

Deliver messages on a one-per line basis. If the line is more

than Max bytes, then it is split at Max bytes.

{cd, Dir}

Valid only for the {spawn, Command} option. The external pro-

gram starts in Dir.

{env, Env}

Valid only for the {spawn, Command} option. The environment

of external program is extended with the environment vari-

ables in the list Env. Env is a list of {VarName, Value} pairs,

where VarName and Value are strings.

This is not a complete list of the arguments to open_port. We can find

the precise details of the arguments in the manual page for the module

erlang.

12.4 Linked-in Drivers

Sometimes we want to run an foreign-language program inside the

Erlang runtime system. In this case, the program is written as a shared

library that is dynamically linked into the Erlang runtime system. The

linked-in driver appears to the programmer as a port program and

obeys exactly the same protocol as for a port program.

Creating a linked-in driver is the most efficient way of interfacing

foreign-language code with Erlang, but it is also the most dangerous.

Any fatal error in the linked-in driver will crash the Erlang system

3. See http://www.erlang.org/examples/examples-2.0.html for an example of connecting to

standard input and output.

http://www.erlang.org/examples/examples-2.0.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=221

LINKED-IN DRIVERS 222

and affect all processes in the system. For this reason, using linked-

in drivers is not recommended; they should be used only when all else

fails.

To illustrate this, we’ll turn the program we used earlier into a linked-in

driver. To do this, we need three files:

• example1_lid.erl: This is the Erlang server.

• example1.c: This contains the C functions that we want to call.

These are the same as used earlier.

• example1_lid.c: This is the C program that calls the functions in

example1.c.

The Erlang code to manage the interface is as follows:

Download ports/example1_lid.erl

-module(example1_lid).

-export([start/0, stop/0]).

-export([twice/1, sum/2]).

start() ->

start("example1_drv").

start(SharedLib) ->

case erl_ddll:load_driver(".", SharedLib) of

ok -> ok;

{error, already_loaded} -> ok;

_ -> exit({error, could_not_load_driver})

end,

spawn(fun() -> init(SharedLib) end).

init(SharedLib) ->

register(example1_lid, self()),

Port = open_port({spawn, SharedLib}, []),

loop(Port).

stop() ->

example1_lid ! stop.

twice(X) -> call_port({twice, X}).

sum(X,Y) -> call_port({sum, X, Y}).

call_port(Msg) ->

example1_lid ! {call, self(), Msg},

receive

{example1_lid, Result} ->

Result

end.

http://media.pragprog.com/titles/jaerlang/code/ports/example1_lid.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=222

LINKED-IN DRIVERS 223

loop(Port) ->

receive

{call, Caller, Msg} ->

Port ! {self(), {command, encode(Msg)}},

receive

{Port, {data, Data}} ->

Caller ! {example1_lid, decode(Data)}

end,

loop(Port);

stop ->

Port ! {self(), close},

receive

{Port, closed} ->

exit(normal)

end;

{'EXIT', Port, Reason} ->

io:format("~p ~n", [Reason]),

exit(port_terminated)

end.

encode({twice, X}) -> [1, X];

encode({sum, X, Y}) -> [2, X, Y].

decode([Int]) -> Int.

If we compare this program to the earlier version that acts as a port

interface, we’ll see that they are almost identical.

The driver program consists mostly of code to populate elements in the

driver struct. The command make example1_drv.so in the makefile given

earlier can be used to build the shared library.

Download ports/example1_lid.c

/* example1_lid.c */

#include <stdio.h>

#include "erl_driver.h"

typedef struct {

ErlDrvPort port;

} example_data;

static ErlDrvData example_drv_start(ErlDrvPort port, char *buff)

{

example_data* d = (example_data*)driver_alloc(sizeof(example_data));

d->port = port;

return (ErlDrvData)d;

}

http://media.pragprog.com/titles/jaerlang/code/ports/example1_lid.c
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=223

LINKED-IN DRIVERS 224

static void example_drv_stop(ErlDrvData handle)

{

driver_free((char*)handle);

}

static void example_drv_output(ErlDrvData handle, char *buff, int bufflen)

{

example_data* d = (example_data*)handle;

char fn = buff[0], arg = buff[1], res;

if (fn == 1) {

res = twice(arg);

} else if (fn == 2) {

res = sum(buff[1], buff[2]);

}

driver_output(d->port, &res, 1);

}

ErlDrvEntry example_driver_entry = {

NULL, /* F_PTR init, N/A */

example_drv_start, /* L_PTR start, called when port is opened */

example_drv_stop, /* F_PTR stop, called when port is closed */

example_drv_output, /* F_PTR output, called when erlang has sent

data to the port */

NULL, /* F_PTR ready_input,

called when input descriptor ready to read*/

NULL, /* F_PTR ready_output,

called when output descriptor ready to write */

"example1_drv", /* char *driver_name, the argument to open_port */

NULL, /* F_PTR finish, called when unloaded */

NULL, /* F_PTR control, port_command callback */

NULL, /* F_PTR timeout, reserved */

NULL /* F_PTR outputv, reserved */

};

DRIVER_INIT(example_drv) /* must match name in driver_entry */

{

return &example_driver_entry;

}

Here’s how we run the program:

1> c(example1_lid).

{ok,example1_lid}

2> example1_lid:start().

<0.41.0>

3> example1_lid:twice(50).

100

4> example1_lid:sum(10, 20).

30

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=224

NOTES 225

12.5 Notes

In this chapter, we have looked at the use of ports for interfacing an

external program to Erlang. In addition to the port protocol, we can

use a number of BIFs to manipulate ports. These are described in the

manual page for the erlang module.

At this point you’re probably wondering how to pass complex data

structures between Erlang and an external program. How can you

send strings, tuples, and so on, between Erlang and the outside world?

Unfortunately, there is no simple answer to this question; all that ports

provide is a low-level mechanism for transferring a sequence of bytes

between Erlang and the outside world. This, incidentally, is the same

problem as encountered in socket programming. A socket provides a

stream of bytes between two applications; how these applications inter-

pret these bytes is up to the application.

However, several libraries included in the Erlang distribution simplify

the job of interfacing Erlang to external programs; these include the

following:

http://www.erlang.org/doc/pdf/erl_interface.pdf

Erl interface (ei) is a set of C routines and macros for encoding

and decoding the Erlang external format. On the Erlang side, an

Erlang program uses term_to_binary to serialize an Erlang term,

and on the C side the routines in ei can be used to unpack this

binary. ei can also be used to construct a binary, which the Erlang

side can unpack with binary_to_term.

http://www.erlang.org/doc/pdf/ic.pdf

The Erlang IDL Compiler (ic). The ic application is an Erlang imple-

mentation of an OMG IDL complier.

http://www.erlang.org/doc/pdf/jinterface.pdf

Jinteface is a set of tools for interfacing Java to Erlang. It pro-

vides a full mapping of Erlang types to Java objects, encoding and

decoding Erlang terms, linking to Erlang processes, and so on, as

well as a wide range of additional features.

http://www.erlang.org/doc/pdf/erl_interface.pdf
http://www.erlang.org/doc/pdf/ic.pdf
http://www.erlang.org/doc/pdf/jinterface.pdf
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=225

Chapter 13

Programming with Files
In this chapter, we’ll look at some of the most commonly used functions

for manipulating files. The standard Erlang release has a large number

of functions for working with files. We’re going to concentrate on the

small fraction of these that I use to write most of my programs. We’ll

also see a few examples of the techniques I use for writing efficient file

handling code. In addition, I’ll briefly mention some of the more rarely

used file operations so you’ll know they exist. If you want more details,

consult the manual pages.

We’ll concentrate on the following areas:

• Organization of the libraries

• Different ways of reading a file

• Different ways of writing to a file

• Directory operations

• Finding information about a file

13.1 Organization of the Libraries

The functions for file manipulation are organized into four modules:

file This has routines for opening, closing, reading, and writing files;

listing directories; and so on. A short summary of some of the

more frequently used functions in file is shown in Figure 13.1,

on page 228. For full details, consult the manual page for the file

module.

THE DIFFERENT WAYS OF READING A FILE 227

filename

This module has routines that manipulate filenames in a platform-

independent manner, so you can run the same code on a number

of different operating systems.

filelib

This module is an extension to file, which contains a number of

utilities for listing files, checking file types, and so on. Most of

these are written using the functions in file.

io This module has routines that work on opened files. It contains

routines for parsing data in a file and writing formatted data to a

file.

13.2 The Different Ways of Reading a File

Let’s look at some options when it comes to reading files. We’ll start

by writing five little programs that open a file and input the data in a

number of different ways.

The contents of a file is just sequence of bytes. Whether they mean

anything depends upon the interpretation of these bytes.

To demonstrate this, we’ll use the same input file for all our examples.

It actually contains a sequence of Erlang terms. Depending upon how

we open and read the file, we can interpret the contents as a sequence

of Erlang terms, as a sequence of text lines, or as raw chunks of binary

data with no particular interpretation.

Here’s the raw data in the file:

Download data1.dat

{person, "joe", "armstrong",

[{occupation, programmer},

{favoriteLanguage, erlang}]}.

{cat, {name, "zorro"},

{owner, "joe"}}.

Now we’ll read parts of this file in a number of ways.

http://media.pragprog.com/titles/jaerlang/code/data1.dat
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=227

THE DIFFERENT WAYS OF READING A FILE 228

Function Description

change_group Change group of a file.

change_owner Change owner of a file.

change_time Change the modification or last access time of a file.

close Close a file.

consult Read Erlang terms from a file.

copy Copy file contents.

del_dir Delete a directory.

delete Delete a file.

eval Evaluate Erlang expressions in a file.

format_error Return a descriptive string for an error reason.

get_cwd Get the current working directory.

list_dir List files in a directory.

make_dir Make a directory.

make_link Make a hard link to a file.

make_symlink Make a symbolic link to a file or directory.

open Open a file.

position Set position in a file.

pread Read from a file at a certain position.

pwrite Write to a file at a certain position.

read Read from a file.

read_file Read an entire file.

read_file_info Get information about a file.

read_link See what a link is pointing to.

read_link_info Get information about a link or file.

rename Rename a file.

script Evaluate and return the value of Erlang expressions in a file.

set_cwd Set the current working directory.

sync Synchronize the in-memory state of a file with that

on the physical medium.

truncate Truncate a file.

write Write to a file.

write_file Write an entire file.

write_file_info Change information about a file.

Figure 13.1: Summary of file operations (in module file)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=228

THE DIFFERENT WAYS OF READING A FILE 229

Reading All the Terms in the File

data1.dat contains a sequence of Erlang terms; we can read all of these

by calling file:consult as follows:

1> file:consult("data1.dat").

{ok,[{person,"joe",

"armstrong",

[{occupation,programmer},{favoriteLanguage,erlang}]},

{cat,{name,"zorro"},{owner,"joe"}}]}

file:consult(File) assumes that File contains a sequence of Erlang terms. It

returns {ok, [Term]} if it can read all the terms in the file; otherwise, it

returns {error, Reason}.

Reading the Terms in the File One at a Time

If we want to read the terms in a file one at a time, we first open the file

with file:open, then we read the individual terms with io:read until we

reach the end of file, and finally we close the file with file:close.

Here’s a shell session that shows what happens when we read the terms

in a file one at a time:

1> {ok, S} = file:open("data1.dat", read).

{ok,<0.36.0>}

2> io:read(S, '').

{ok,{person,"joe",

"armstrong",

[{occupation,programmer},{favoriteLanguage,erlang}]}}

3> io:read(S, '').

{ok,{cat,{name,"zorro"},{owner,"joe"}}}

4> io:read(S, '').

eof

5> file:close(S)

The functions we’ve used here are as follows:

@spec file:open(File, read) => {ok, IoDevice} | {error, Why}

Tries to open File for reading. It returns {ok, IoDevice} if it can open

the file; otherwise, it returns {error, Reason}. IoDevice is an IO device

that is used to access the file.

@spec io:read(IoDevice, Prompt) => {ok, Term} | {error,Why} | eof

Reads an Erlang term Term from IoDevice. Prompt is ignored if IoDe-

vice represents an opened file. Prompt is used only to provide a

prompt if we use io:read to read from standard input.

@spec file:close(IoDevice) => ok | {error, Why}

Closes IoDevice.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=229

THE DIFFERENT WAYS OF READING A FILE 230

Using these routines we could have implemented file:consult, which we

used in the previous section. Here’s how file:consult might have been

defined:

Download lib_misc.erl

consult(File) ->

case file:open(File, read) of

{ok, S} ->

Val = consult1(S),

file:close(S),

{ok, Val};

{error, Why} ->

{error, Why}

end.

consult1(S) ->

case io:read(S, '') of

{ok, Term} -> [Term|consult1(S)];

eof -> [];

Error -> Error

end.

This is not how file:consult is actually defined. The standard libraries use

an improved version with better error reporting.

Now is a good time to look at the version included in the standard

libraries. If you’ve understood the earlier version, then you should find

it easy to follow the code in the libraries. There’s only one problem. How

can we find the source of the file.erl code? To do this, we use the function

code:which, which can locate the object code for any module that has

been loaded.

1> code:which(file).

"/usr/local/lib/erlang/lib/kernel-2.11.2/ebin/file.beam"

In the standard release, each library has two subdirectories. One, called

src, contains the source code. The other, called ebin, contains compiled

Erlang code. So, the source code for file.erl should be in the following

directory:

/usr/local/lib/erlang/lib/kernel-2.11.2/src/file.erl

When all else fails and the manual pages don’t provide the answers to

all your questions about the code, then a quick peek at the source code

can often reveal the answer. Now I know this shouldn’t happen, but

we’re all human, and sometimes the documentation doesn’t answer all

your questions.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=230

THE DIFFERENT WAYS OF READING A FILE 231

Reading the Lines in a File One at a Time

If we change io:read to io:get_line, we can read the lines in the file one

at a time. io:get_line reads characters until it encounters a line-feed

character or end-of-file. Here’s an example:

1> {ok, S} = file:open("data1.dat", read).

{ok,<0.43.0>}

2> io:get_line(S, '').

"{person, \"joe\", \"armstrong\",\n"

3> io:get_line(S, '').

"\t[{occupation, programmer},\n"

4> io:get_line(S, '').

"\t {favoriteLanguage, erlang}]}.\n"

5> io:get_line(S, '').

"\n"

6> io:get_line(S, '').

"{cat, {name, \"zorro\"},\n"

7> io:get_line(S, '').

" {owner, \"joe\"}}.\n"

8> io:get_line(S, '').

eof

9> file:close(S).

ok

Reading the Entire File into a Binary

You can use file:read_file(File) to read an entire file into a binary using a

single atomic operation:

1> file:read_file("data1.dat").

{ok,<<"{person, \"joe\", \"armstrong\""...>>}

file:read_file(File) returns {ok, Bin} if it succeeds and returns {error, Why}

otherwise.

This is by far the most efficient way of reading files, and it’s a method

that I use a lot. For most operations, I read the entire file into memory

in one operation, manipulate the contents, and store the file in a single

operation (using file:write_file). We’ll give an example of this later.

Reading a File with Random Access

If the file we want to read is very large or if it contains binary data in

some externally defined format, then we can open the file in raw mode

and read any portion of it using file:pread.

Here’s an example:

1> {ok, S} = file:open("data1.dat", [read,binary,raw]).

{ok,{file_descriptor,prim_file,{#Port<0.106>,5}}}

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=231

THE DIFFERENT WAYS OF READING A FILE 232

2> file:pread(S, 22, 46).

{ok,<<"rong\",\n\t[{occupation, progr...>>}

3> file:pread(S, 1, 10).

{ok,<<"person, \"j">>}

4> file:pread(S, 2, 10).

{ok,<<"erson, \"jo">>}

5> file:close(S).

file:pread(IoDevice, Start, Len) reads exactly Len bytes from IoDevice start-

ing at byte Start (the bytes in the file are numbered so that the first byte

in the file is at position 1). It returns {ok, Bin} or {error, Why}.

Finally, we’ll use the routines for random file access to write a utility

routine that we’ll need in the next chapter. In Section 14.7, A SHOUT-

cast Server, on page 265, we’ll develop a simple SHOUTcast server (this

is a server for so-called streaming media, in this case for streaming

MP3). Part of this server needs to be able to find the artist and track

names that are embedded in an MP3 file. We’ll do this in the next sec-

tion.

Reading ID3 Tags

MP3 is a binary format used for storing compressed audio data. MP3

files do not themselves contain information about the content of the

file, so, for example, in an MP3 file that contains music, the name of the

artist who recorded the music is not contained in the audio data. This

data (the track name, artist name, and so on) is stored inside the MP3

files in a tagged block format known as ID3. ID3 tags were invented by a

programmer called Eric Kemp to store metadata describing the content

of an audio file. There are actually a number of ID3 formats, but for our

purposes, we’ll write code to access only the two simplest forms of ID3

tag, namely, the ID3v1 and ID3v1.1 tags.

The ID3v1 tag has a simple structure—the last 128 bytes of the file con-

tain a fixed-length tag. The first 3 bytes contain the ASCII characters

TAG, followed by a number of fixed-length fields. The entire 128 bytes is

packed as follows:

Length Contents

3 Header containing the characters TAG

30 Title

30 Artist

30 Album

4 Year

30 Comment

1 Genre

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=232

THE DIFFERENT WAYS OF READING A FILE 233

In the ID3v1 tag there was no place to add a track number. A method for

doing this was suggested by Michael Mutschler, in the ID3v1.1 format.

The idea was to change the 30-byte comment field to the following:

Length Contents

28 Comment

1 0 (a zero)

1 Track number

It’s easy to write a program that tries to read the ID3v1 tags in an MP3

file and matches the fields using the binary bit-matching syntax. Here’s

the program:

Download id3_v1.erl

-module(id3_v1).

-import(lists, [filter/2, map/2, reverse/1]).

-export([test/0, dir/1, read_id3_tag/1]).

test() -> dir("/home/joe/music_keep").

dir(Dir) ->

Files = lib_find:files(Dir, "*.mp3", true),

L1 = map(fun(I) ->

{I, (catch read_id3_tag(I))}

end, Files),

%% L1 = [{File, Parse}] where Parse = error | [{Tag,Val}]

%% we now have to remove all the entries from L where

%% Parse = error. We can do this with a filter operation

L2 = filter(fun({_,error}) -> false;

(_) -> true

end, L1),

lib_misc:dump("mp3data", L2).

read_id3_tag(File) ->

case file:open(File, [read,binary,raw]) of

{ok, S} ->

Size = filelib:file_size(File),

{ok, B2} = file:pread(S, Size-128, 128),

Result = parse_v1_tag(B2),

file:close(S),

Result;

Error ->

{File, Error}

end.

parse_v1_tag(<<$T,$A,$G,

Title:30/binary, Artist:30/binary,

Album:30/binary, _Year:4/binary,

_Comment:28/binary, 0:8,Track:8,_Genre:8>>) ->

http://media.pragprog.com/titles/jaerlang/code/id3_v1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=233

THE DIFFERENT WAYS OF READING A FILE 234

{"ID3v1.1",

[{track,Track}, {title,trim(Title)},

{artist,trim(Artist)}, {album, trim(Album)}]};

parse_v1_tag(<<$T,$A,$G,

Title:30/binary, Artist:30/binary,

Album:30/binary, _Year:4/binary,

_Comment:30/binary,_Genre:8>>) ->

{"ID3v1",

[{title,trim(Title)},

{artist,trim(Artist)}, {album, trim(Album)}]};

parse_v1_tag(_) ->

error.

trim(Bin) ->

list_to_binary(trim_blanks(binary_to_list(Bin))).

trim_blanks(X) -> reverse(skip_blanks_and_zero(reverse(X))).

skip_blanks_and_zero([$\s|T]) -> skip_blanks_and_zero(T);

skip_blanks_and_zero([0|T]) -> skip_blanks_and_zero(T);

skip_blanks_and_zero(X) -> X.

The main entry point to our program is id3_v1:dir(Dir). The first thing we

do is find all our MP3 files by calling lib_find:find(Dir, "*.mp3", true) (shown

later in Section 13.8, A Find Utility, on page 242), which recursively

scans the directories under Dir looking for MP3 files. Having found the

file, we parse the tags by calling read_id3_tag. Parsing is greatly simpli-

fied because we can merely use the bit-matching syntax to do the pars-

ing for us, and then we can trim the artist and track names by remov-

ing trailing whitespace and zero-padding characters, which delimit the

character strings. Finally, we dump the results in a file for later use

(lib_misc:dump is described in Section E.2, Debugging Techniques, on

page 427).

Most music files are tagged with ID3v1 tags, even if they also have

ID3v2, v3, and v4 tags—the later taggings standards added a differently

formatted tag to the beginning of the file (or more rarely in the middle

of the file). Tagging programs often appear to add both ID3v1 tags and

additional (and more difficult to read) tags at the start of the file. For

our purposes, we’ll be concerned only with files containing valid ID3v1

and ID3v1.1 tags.

Now that we know how to read a file, we can move to the different ways

of writing to a file.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=234

THE DIFFERENT WAYS OF WRITING TO A FILE 235

13.3 The Different Ways of Writing to a File

Writing to a file involves pretty much the same operations as reading a

file. Let’s look at them.

Write a List of Terms to a File

Suppose we want to create a file that we can read with file:consult. The

standard libraries don’t actually contain a function for this, so we’ll

write our own. Let’s call this function unconsult.1

Download lib_misc.erl

unconsult(File, L) ->

{ok, S} = file:open(File, write),

lists:foreach(fun(X) -> io:format(S, "~p.~n",[X]) end, L),

file:close(S).

We can run this in the shell to create a file called test1.dat:

1> lib_misc:unconsult("test1.dat",

[{cats,["zorrow","daisy"]},

{weather,snowing}]).

ok

Let’s check it’s OK:

2> file:consult("test1.dat").

{ok,[{cats,["zorrow","daisy"]},{weather,snowing}]}

To implement unconsult, we opened the file in write mode and then used

io:format(S, "~p.~n", [X]) to write terms to the file.

io:format is the workhorse for creating formatted output. To produce

formatted output, we call the following:

@spec io:format(IoDevice, Format, Args) -> ok

ioDevice is an IO device (which must have been opened in write

mode), Format is a string containing formatting codes, and Args is

a list of items to be output.

For each item in Args, there must be a formatting command in the

format string. Formatting commands begin with a tilde (~) character.

Here are some of the most commonly used formatting commands:

~n Write a line feed. ~n is smart and writes a line feed in a platform-

dependent way. So on a Unix machine, ~n will write ASCII (10)

1. The nice thing about writing a book is I can choose any module or function names I

want and nobody can argue.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=235

THE DIFFERENT WAYS OF WRITING TO A FILE 236

to the output stream, and on a Windows machine it will write

carriage-return line-feed ASCII (13, 10) to the output stream.

~p Pretty-print the argument.

~s The argument is a string.

~w Write data with the standard syntax. This is used to output Erlang

terms.

The format string has about ten quadzillion arguments that nobody in

their right mind can remember. You’ll find a complete list in the man

page for the module io. I remember only ~p, ~s, and ~n. If you start with

these, you won’t have many problems.

Aside

I lied—you’ll probably need more than just ~p, ~s, and ~n. Here are a

few examples:

Format Result

io:format("|~10s|~n", ["abc"]) | abc|

io:format("|~-10s|~n", ["abc"]) |abc |

io:format("|~10.3.+s|~n",["abc"]) |+++++++abc|

io:format("|~10.10.+s|~n",["abc"]) |abc+++++++|

io:format("|~10.7.+s|~n",["abc"]) |+++abc++++|

Writing Lines to a File

This is similar to the previous example—we just use a different format-

ting command:

1> {ok, S} = file:open("test2.dat", write).

{ok,<0.62.0>}

2> io:format(S, "~s~n", ["Hello readers"]).

ok

3> io:format(S, "~w~n", [123]).

ok

4> io:format(S, "~s~n", ["that's it"]).

ok

5> file:close(S).

This created a file called test2.dat with the following contents:

Hello readers

123

that's it

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=236

THE DIFFERENT WAYS OF WRITING TO A FILE 237

Writing an Entire File in One Operation

This is the most efficient way of writing to a file. file:write_file(File, IO)

writes the data in IO, which is an IO list to File. (An IO list is a list whose

elements are IO lists, binaries, or integers from 0 to 255. When an IO

list is output, it is automatically “flattened,” which means that all the

list brackets are removed.) This method is extremely efficient and is one

that I often use. The program in the next section illustrates this.

Listing URLs from a File

Let’s write a simple function called urls2htmlFile(L, File) that takes a list

of URLs, L, and creates an HTML file, where the URLs are presented

as clickable links. This lets us play with the technique of creating an

entire file in a single IO operation.

We’ll write our program in the module scavenge_urls. First here’s the

program header:

Download scavenge_urls.erl

-module(scavenge_urls).

-export([urls2htmlFile/2, bin2urls/1]).

-import(lists, [reverse/1, reverse/2, map/2]).

urls2htmlFile(Urls, File) ->

file:write_file(File, urls2html(Urls)).

bin2urls(Bin) -> gather_urls(binary_to_list(Bin), []).

The program has two entry points. urls2htmlFile(Urls, File) takes a list of

URLs and creates an HTML file containing clickable links for each URL,

and bin2urls(Bin) searches through a binary and returns a list of all the

URLs contained in the binary. urls2htmlFile is as follows:

Download scavenge_urls.erl

urls2html(Urls) -> [h1("Urls"),make_list(Urls)].

h1(Title) -> ["<h1>", Title, "</h1>\n"].

make_list(L) ->

["\n",

map(fun(I) -> ["",I,"\n"] end, L),

"\n"].

This code returns a deep list of characters. Note we make no attempt to

flatten the list (which would be rather inefficient); we make a deep list

of characters and just throw it at the output routines. When we write a

deep list to a file with file:write_file, the IO system automatically flattens

the list (that is, it outputs only the characters embedded in the lists

http://media.pragprog.com/titles/jaerlang/code/scavenge_urls.erl
http://media.pragprog.com/titles/jaerlang/code/scavenge_urls.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=237

THE DIFFERENT WAYS OF WRITING TO A FILE 238

and not the list brackets themselves). Finally, here’s the code to extract

the URLs from a binary:

Download scavenge_urls.erl

gather_urls("<a href" ++ T, L) ->

{Url, T1} = collect_url_body(T, reverse("<a href")),

gather_urls(T1, [Url|L]);

gather_urls([_|T], L) ->

gather_urls(T, L);

gather_urls([], L) ->

L.

collect_url_body("" ++ T, L) -> {reverse(L, ""), T};

collect_url_body([H|T], L) -> collect_url_body(T, [H|L]);

collect_url_body([], _) -> {[],[]}.

To run this, we need to get some data to parse. The input data (a binary)

is the content of an HTML page, so we need an HTML page to scavenge.

For this we’ll use socket_examples:nano_get_url (see Section 14.1, Fetch-

ing Data from a Server, on page 246):

We’ll do this step by step in the shell:

1> B = socket_examples:nano_get_url("www.erlang.org"),

L = scavenge_urls:bin2urls(B),

scavenge_urls:urls2htmlFile(L, "gathered.html").

ok

This produces the file gathered.html:

Download gathered.html

<h1>Urls</h1>

Older news.....

here

Megaco home

Erlang Public License (EPL)

smtp_client-1.0

download statistics graphs

Erlang/OTP Test

Server

proceedings

Read more in the release highlights.

<img src="images/erlang.gif"

border="0" alt="Home">

http://media.pragprog.com/titles/jaerlang/code/scavenge_urls.erl
http://media.pragprog.com/titles/jaerlang/code/gathered.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=238

DIRECTORY OPERATIONS 239

Writing to a Random-Access File

Writing to a file in random-access mode is similar to reading. First, we

have to open the file in write mode. Next, we use file:pwrite(Position, Bin) to

write to the file.

Here’s an example:

1> {ok, S} = file:open("...", [raw,write,binary])

{ok, ...}

2> file:pwrite(S, 10, <<"new">>)

ok

3> file:close(S)

ok

This writes the characters new starting at an offset of 10 in the file,

overwriting the original content.

13.4 Directory Operations

Three functions in file are used for directory operations. list_dir(Dir) is

used to produce a list of the files in Dir, make_dir(Dir) creates a new direc-

tory, and del_dir(Dir) deletes a directory.

If we run list_dir on the code directory that I’m using to write this book,

we’ll see something like the following:

1> cd("/home/joe/book/erlang/Book/code").

/home/joe/book/erlang/Book/code

ok

2> file:list_dir(".").

{ok,["id3_v1.erl~",

"update_binary_file.beam",

"benchmark_assoc.beam",

"id3_v1.erl",

"scavenge_urls.beam",

"benchmark_mk_assoc.beam",

"benchmark_mk_assoc.erl",

"id3_v1.beam",

"assoc_bench.beam",

"lib_misc.beam",

"benchmark_assoc.erl",

"update_binary_file.erl",

"foo.dets",

"big.tmp",

..

Observe that there is no particular order to the files and no indication

as to whether the files in the directory are files or directories, what the

sizes are, and so on.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=239

FINDING INFORMATION ABOUT A FILE 240

To find out about the individual files in the directory listing, we’ll use

file:read_file_info, which is the subject of the next section.

13.5 Finding Information About a File

To find out about a file F, we call file:read_file_info(F). This returns {ok,

Info} if F is a valid file or directory name. Info is a record of type #file_info,

which is defined as follows:

-record(file_info,

{size, % Size of file in bytes.

type, % Atom: device, directory, regular,

% or other.

access, % Atom: read, write, read_write, or none.

atime, % The local time the file was last read:

% {{Year, Mon, Day}, {Hour, Min, Sec}}.

mtime, % The local time the file was last written.

ctime, % The interpretation of this time field

% is dependent on operating system.

% On Unix it is the last time the file or

% or the inode was changed. On Windows,

% it is the creation time.

mode, % Integer: File permissions. On Windows,

% the owner permissions will be duplicated

% for group and user.

links, % Number of links to the file (1 if the

% filesystem doesn't support links).

major_device, % Integer: Identifies the file system (Unix),

% or the drive number (A: = 0, B: = 1) (Windows).

Note: The mode and access fields overlap. You can use mode to set

several file attributes in a single operation, whereas you can use access

for simpler operations.

To find the size and type of a file, we call read_file_info as in the following

example (note we have to include file.hrl, which contains the definition

of the #file_info record):

Download lib_misc.erl

-include_lib("kernel/include/file.hrl").

file_size_and_type(File) ->

case file:read_file_info(File) of

{ok, Facts} ->

{Facts#file_info.type, Facts#file_info.size};

_ ->

error

end.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=240

COPYING AND DELETING FILES 241

Now we can augment the directory listing returned by list_file by adding

information about the files in the function ls() as follows:

Download lib_misc.erl

ls(Dir) ->

{ok, L} = file:list_dir(Dir),

map(fun(I) -> {I, file_size_and_type(I)} end, sort(L)).

Now when we list the files, they are ordered and contain additional

useful information:

1> lib_misc:ls(".").

[{"Makefile",{regular,1244}},

{"README",{regular,1583}},

{"abc.erl",{regular,105}},

{"alloc_test.erl",{regular,303}},

...

{"socket_dist",{directory,4096}},

...

As a convenience, the module filelib exports a few small routines such as

file_size(File) and is_dir(X). These are merely interfaces to file:read_file_info. If

we just want to the size of a file, it is more convenient to call filelib:file_size

than to call file:read_file_info and unpack the elements of the #file_info

record.

13.6 Copying and Deleting Files

file:copy(Source, Destination) copies the file Source to Destination.

file:delete(File) deletes File.

13.7 Bits and Pieces

So far we’ve mentioned most of the functions that I use on a day-to-day

basis for manipulating files. It’s actually rare that I need to look up the

manual pages to find out more information. So, what have I left out

that you might need to know about? I’ll give you a brief list of the major

omissions. For the details, see the manual pages.

File modes

When we open a file with file:open, we open the file in a particular

mode or a combination of modes. There are actually many more

modes than we might think; for example, it’s possible to read and

write gzip-compressed files with the compressed mode flag, and so

on. The full list is in the manual pages.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=241

A FIND UTILITY 242

Modification times, groups, symlinks

We can set all of these with routines in file.

Error codes

I’ve rather blandly said that all errors are of the form {error, Why};

in fact, Why is an atom (for example, enoent means a file does not

exist, and so on)—there are a large number of error codes, and

they are all described in the manual pages.

filename

The filename module has some useful routines for ripping apart

full filenames in directories and finding the file extensions, and so

on, as well as for rebuilding filenames for the component parts. All

this is done in a platform-independent manner.

filelib

The filelib module has a small number of routines that can save

us some work. For example, filelib:ensure_dir(Name) ensures that all

parent directories for the given file or directory name Name exist,

trying to create them if necessary.

13.8 A Find Utility

As a final example, we’ll use file:list_dir and file:read_file_info to make a

general-purpose “find” utility.

The main entry point to this module is as follows:

lib_find:files(Dir, RegExp, Recursive, Fun, Acc0)

The arguments are as follows:

Dir

The directory name to start the file search in.

RegExp

A regular expression2 to test the files we have found. If the files we

encounter match this regular expression, then Fun(File, Acc) will be

called, where File is the name of the file that matches the regular

expression.

Recursive = true | false

A flag that determines whether search should recurse into the

subdirectories of the current directory in the search path.

2. See the man pages for the module regexp for the syntax of regular expressions.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=242

A FIND UTILITY 243

Fun(File, AccIn) -> AccOut

A function that is applied to the File if regExp matches File. Acc is an

accumulator whose initial value is Acc0. Each time Fun is called,

it must return a new value of the accumulator that is passed into

Fun the next time it is called. The final value of the accumulator is

the return value of lib_find:files/5

We can pass any function we want into lib_find:files/5. For example, we

can build a list of files using the following function, passing it an empty

list initially:

fun(File, Acc) -> [File|Acc] end

The module entry point lib_find:files(Dir, ShellRegExp, Flag) provides a sim-

plified entry point for a more common usage of the program. Here Shell-

RegExp is a simplified form of regular expression that is easier to write

than the full form of regular expression.

As an example of the short form of calling sequence, the following call:

lib_find:files(Dir, "*.erl", true)

recursively finds all Erlang files under Dir. If the last argument had

been false, then only the Erlang files in the directory Dir would have

been found—it would not look in subdirectories.

Finally, here’s the code:

Download lib_find.erl

-module(lib_find).

-export([files/3, files/5]).

-import(lists, [reverse/1]).

-include_lib("kernel/include/file.hrl").

files(Dir, Re, Flag) ->

Re1 = regexp:sh_to_awk(Re),

reverse(files(Dir, Re1, Flag, fun(File, Acc) ->[File|Acc] end, [])).

files(Dir, Reg, Recursive, Fun, Acc) ->

case file:list_dir(Dir) of

{ok, Files} -> find_files(Files, Dir, Reg, Recursive, Fun, Acc);

{error, _} -> Acc

end.

http://media.pragprog.com/titles/jaerlang/code/lib_find.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=243

A FIND UTILITY 244

find_files([File|T], Dir, Reg, Recursive, Fun, Acc0) ->

FullName = filename:join([Dir,File]),

case file_type(FullName) of

regular ->

case regexp:match(FullName, Reg) of

{match, _, _} ->

Acc = Fun(FullName, Acc0),

find_files(T, Dir, Reg, Recursive, Fun, Acc);

_ ->

find_files(T, Dir, Reg, Recursive, Fun, Acc0)

end;

directory ->

case Recursive of

true ->

Acc1 = files(FullName, Reg, Recursive, Fun, Acc0),

find_files(T, Dir, Reg, Recursive, Fun, Acc1);

false ->

find_files(T, Dir, Reg, Recursive, Fun, Acc0)

end;

error ->

find_files(T, Dir, Reg, Recursive, Fun, Acc0)

end;

find_files([], _, _, _, _, A) ->

A.

file_type(File) ->

case file:read_file_info(File) of

{ok, Facts} ->

case Facts#file_info.type of

regular -> regular;

directory -> directory;

_ -> error

end;

_ ->

error

end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=244

Chapter 14

Programming with Sockets
Most of the more interesting programs that I write involve sockets one

way or another. A socket is a communication endpoint that allows

machines to communicate over the Internet using the Internet Pro-

tocol (IP). In this chapter, we’ll concentrate on the two core protocols

of the Internet: Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP).

UDP lets applications send short messages (called datagrams) to each

other, but there is no guarantee of delivery for these messages. They

can also arrive out of order. TCP, on the other hand, provides a reliable

stream of bytes that are delivered in order as long as the connection is

established.

Why is programming with sockets fun? Because it allows applications

to interact with other machines on the Internet, which has far more

potential than just performing local operations.

There are two main libraries for programming with sockets: gen_tcp

for programming TCP applications and gen_udp for programming UDP

applications.

In this chapter, we’ll see how to program client and servers using TCP

and UDP sockets. We’ll go through the different forms of servers that

are possible (parallel, sequential, blocking, and nonblocking) and see

how to program traffic-shaping applications that can control the flow of

data to the application.

USING TCP 246

14.1 Using TCP

We’ll start our adventures in socket programming by looking at a simple

TCP program that fetches data from a server. After this, we’ll write a

simple sequential TCP server and show how it can be parallelized to

handle multiple parallel sessions.

Fetching Data from a Server

Let’s start by writing a little function1 that uses a TCP socket to fetch

an HTML page from http://www.google.com:

Download socket_examples.erl

nano_get_url() ->

nano_get_url("www.google.com").

nano_get_url(Host) ->
Ê {ok,Socket} = gen_tcp:connect(Host,80,[binary, {packet, 0}]),
Ë ok = gen_tcp:send(Socket, "GET / HTTP/1.0\r\n\r\n"),

receive_data(Socket, []).

receive_data(Socket, SoFar) ->

receive
Ì {tcp,Socket,Bin} ->

receive_data(Socket, [Bin|SoFar]);
Í {tcp_closed,Socket} ->
Î list_to_binary(reverse(SoFar))

end.

How does this work?

Ê We open a TCP socket to port 80 of http://www.google.com by call-

ing gen_tcp:connect. The argument binary in the connect call tells

the system to open the socket in “binary” mode and deliver all

data to the application as binaries. {packet,0} means the TCP data

is delivered directly to the application in an unmodified form.

Ë We call gen_tcp:send and send the message GET / HTTP/1.0\r\n\r\n to

the socket. Then we wait for a reply. The reply doesn’t come all in

one packet but comes fragmented, a bit at a time. These fragments

will be received as a sequence of messages that are sent to the

process that opened (or controls) the socket.

1. The standard library function in the Erlang distribution, http:request(Uri), achieves the

same result, but we want to show how this can be done using the library functions in

gen_tcp.

http://www.google.com
http://media.pragprog.com/titles/jaerlang/code/socket_examples.erl
http://www.google.com
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=246

USING TCP 247

Ì We receive a {tcp,Socket,Bin} message. The third argument in this

tuple is a binary. This is because we opened the socket in binary

mode. This message is one of the data fragments sent to us from

the web server. We add it to the list of fragments we have received

so far and wait for the next fragment.

Í We receive a {tcp_closed, Socket} message. This happens when the

server has finished sending us data.2

Î When all the fragments have come, we’ve stored them in the wrong

order, so we reverse the order and concatenate all the fragments.

Let’s just test that it works:

1> B = socket_examples:nano_get_url().

<<"HTTP/1.0 302 Found\r\nLocation: http://www.google.se/\r\n

Cache-Control: private\r\nSet-Cookie: PREF=ID=b57a2c:TM"...>>

Note: When you run nano_get_url, the result is a binary, so you’ll see is

what a binary looks like when pretty printed in the Erlang shell. When

binaries are pretty printed, all control characters are displayed in an

escaped format. And the binary is truncated, which is indicted by the

three dots (...>>) at the end of the printout. If you want to see all of

the binary, you can print it with io:format or break it into pieces with

string:tokens:

2> io:format("~p~n",[B]).

<<"HTTP/1.0 302 Found\r\nLocation: http://www.google.se/\r\n

Cache-Control: private\r\nSet-Cookie: PREF=ID=b57a2c:TM"

TM=176575171639526:LM=1175441639526:S=gkfTrK6AFkybT3;

expires=Sun, 17-Jan-2038 19:14:07

... several lines omitted ...

>>

3>string:tokens(binary_to_list(B),"\r\n").

["HTTP/1.0 302 Found",

"Location: http://www.google.se/",

"Cache-Control: private",

"Set-Cookie: PREF=ID=ec7f0c7234b852dece4:TM=11713424639526:

LM=1171234639526:S=gsdertTrK6AEybT3;

expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.com",

"Content-Type: text/html",

"Server: GWS/2.1",

"Content-Length: 218",

"Date: Fri, 16 Feb 2007 15:25:26 GMT",

"Connection: Keep-Alive",

... lines omitted ...

2. This is true only for HTTP/1.0; for more modern versions of HTTP, a different strategy

is used.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=247

USING TCP 248

This is more or less how a web client works (with the emphasis on

less—we would have to do a lot of work to correctly render the resulting

data in a web browser). The previous code is, however, a good starting

point for your own experiments. You might like to try modifying this

code to fetch and store an entire website or automatically go and read

your email. The possibilities are boundless.

Note that the code that reassembled the fragments looked like this:

receive_data(Socket, SoFar) ->

receive

{tcp,Socket,Bin} ->

receive_data(Socket, [Bin|SoFar]);

{tcp_closed,Socket} ->

list_to_binary(reverse(SoFar))

end.

So as the fragments arrive, we just add them to the head of the list

SoFar. When all the fragments have arrived and the socket is closed, we

reverse the list and concatenate all the fragments.

You might think that it would be better to write the code to accumulate

the fragments like this:

receive_data(Socket, SoFar) ->

receive

{tcp,Socket,Bin} ->

receive_data(Socket, list_to_binary([SoFar,Bin]));

{tcp_closed,Socket} ->

SoFar

end.

This code is correct but less efficient than the original version. The

reason is that in the latter version we are continually appending a new

binary to the end of the buffer, which involves a lot of copying of data.

It’s much better to accumulate all the fragments in a list (which will end

up in the wrong order) and then reverse the entire list and concatenate

all the fragments in one operation.

A Simple TCP Server

In the previous section, we wrote a simple client. Now let’s write a

server.

This server opens port 2345 and then waits for a single message. This

message is a binary that contains an Erlang term. The term is an Erlang

string that contains an expression. The server evaluates the expression

and sends the result to the client by writing the result to the socket.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=248

USING TCP 249

How Can We Write a Web Server?

Writing something like a web client or a server is great fun. Sure,
other people have already written these things, but if we really
want to understand how they work, digging under the surface
and finding out exactly how they work is very instructive. Who
knows—maybe our web server will be better than the best. So,
how can we get started?

To build a web server, or for that matter any software that imple-
ments a standard Internet protocol, we need to use the right
tools and need to know exactly which protocols to implement.

In our example code that fetched a web page, how did
we know that we had to open port 80, and how did we
know that we had to send a GET / HTTP/1.0\r\n\r\n command
to the server? The answer is easy. All the major protocols for
Internet services are defined in requests for comments (RFCs).
HTTP/1.0 is defined in RFC 1945. The official website for all RFCs is
http://www.ietf.org (home of the Internet Engineering Task Force).

The other invaluable source of information is a packet snif-
fer. With a packet sniffer we can capture and analyze all the
IP packets coming from and going to our application. Most
packet sniffers include software that can decode and ana-
lyze the data in the packets and present the data in a mean-
ingful manner. One of the most well-known and possibly the
best is Wireshark (previously known as Ethereal), available from
http://www.wireshark.org.

Armed with a packet sniffer dump and the appropriate RFCs,
we’re ready to write our next killer application.

http://www.ietf.org
http://www.wireshark.org
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=249

USING TCP 250

To write this program (and indeed any program that runs over TCP/IP),

we have to answer a few simple questions:

• How is the data organized? How do we know how much data

makes up a single request or response?

• How is the data within a request or the response encoded and

decoded? (Encoding the data is sometimes called marshaling and

decoding the data is sometimes called demarshaling.)

TCP socket data is just an undifferentiated stream of bytes. During

transmission, this data can be broken into arbitrary-sized fragments,

so we need some convention so that we know how much data repre-

sents a single request or response.

In the Erlang case we use the simple convention that every logical

request or response will be preceded by an N (1, 2, or 4) byte length

count. This is the meaning of the {packet, N}3 argument in the

gen_tcp:connect and gen_tcp:listen functions. Note that the arguments

to packet used by the client and the server must agree. If the server

was opened with {packet,2} and the client with {packet,4}, then nothing

would work.

Having opened a socket with the {packet,N} option, we don’t need to

worry about data fragmentation. The Erlang drivers will make sure that

all fragmented data messages are reassembled to the correct lengths

before delivering them to the application.

The next concern is data encoding and decoding. We’ll use the simplest

possible way of encoding and decoding messages using term_to_binary

to encode Erlang terms and using its inverse, binary_to_term, to decode

the data.

Note that the packaging convention and encoding rules needed for the

client to talk to the server is achieved in two lines of code, by using the

{packet,4} option when we open the socket and by using term_to_binary

and its inverse to encode and decode the data.

The ease with which we can package and encode Erlang terms gives

us a significant advantage over text-based methods such as HTTP or

XML. Using the Erlang BIF term_to_binary and its inverse binary_to_term

is typically more than an order of magnitude faster than performing

3. The word packet here refers to the length of an application request or response mes-

sage, not to the physical packet seen on the wire.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=250

USING TCP 251

an equivalent operation using XML terms and involves sending far less

data. Now to the programs. First, here’s a very simple server:

Download socket_examples.erl

start_nano_server() ->
Ê {ok, Listen} = gen_tcp:listen(2345, [binary, {packet, 4},

{reuseaddr, true},

{active, true}]),
Ë {ok, Socket} = gen_tcp:accept(Listen),
Ì gen_tcp:close(Listen),

loop(Socket).

loop(Socket) ->

receive

{tcp, Socket, Bin} ->

io:format("Server received binary = ~p~n",[Bin]),
Í Str = binary_to_term(Bin),

io:format("Server (unpacked) ~p~n",[Str]),
Î Reply = lib_misc:string2value(Str),

io:format("Server replying = ~p~n",[Reply]),
Ï gen_tcp:send(Socket, term_to_binary(Reply)),

loop(Socket);

{tcp_closed, Socket} ->

io:format("Server socket closed~n")

end.

How does this work?

Ê First we call gen_tcp:listen to listen for a connection on port 2345

and set up the message packaging conventions. {packet, 4} means

that each application message will be preceded by a 4-byte length

header.

Then gen_tcp:listen(..) returns {ok, Socket} or {error, Why}, but we’re

interested only in the return case where we were able to open a

socket. Therefore, we write the following code:

{ok, Listen} = gen_tcp:listen(...),

This causes the program to raise a pattern matching exception if

gen_tcp:listen returns {error, ...}. In the successful case, this state-

ment binds Listen to the new listening socket. There’s only one

thing we can do with a listening socket, and that’s to use it as an

argument to gen_tcp:accept.

Ë Now we call gen_tcp:accept(Listen). At this point the program will

suspend and wait for a connection. When we get a connection, this

function returns with the variable Socket bound to a socket that

can be used to talk to the client that performed the connection.

http://media.pragprog.com/titles/jaerlang/code/socket_examples.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=251

USING TCP 252

Ì When accept returns, we immediately call gen_tcp:close(Listen).

This closes down the listening socket, so the server will not accept

any new connections. This does not affect the existing connection;

it just prevents new connections.

Í We decode the input data (unmarshaling).

Î Then we evaluate the string.

Ï Then we encode the reply data (marshaling) and send it back to

the socket.

Note that this program accepts only a single request; once the program

has run to completion, then no more connections will be accepted.

This is the simplest of servers that illustrates how to package and

encode the application data. It accepts a request, computes a reply,

sends the reply, and terminates.

To test the server, we need a corresponding client:

Download socket_examples.erl

nano_client_eval(Str) ->

{ok, Socket} =

gen_tcp:connect("localhost", 2345,

[binary, {packet, 4}]),

ok = gen_tcp:send(Socket, term_to_binary(Str)),

receive

{tcp,Socket,Bin} ->

io:format("Client received binary = ~p~n",[Bin]),

Val = binary_to_term(Bin),

io:format("Client result = ~p~n",[Val]),

gen_tcp:close(Socket)

end.

To test our code, we’ll run both the client and the server on the same

machine, so the hostname in the gen_tcp:connect function is hardwired

to localhost.

Note how term_to_binary is called in the client to encode the message

and binary_to_term is called in the server to reconstruct the message.

To run this, we need to open two terminal windows and start an Erlang

shell in each of the windows.

http://media.pragprog.com/titles/jaerlang/code/socket_examples.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=252

USING TCP 253

First we start the server:

1> socket_examples:start_nano_server().

We won’t see any output in the server window, since nothing has hap-

pened yet. Then we move to the client window and give the following

command:

1> socket_examples:nano_client_eval("list_to_tuple([2+3*4,10+20])").

In the server window, we should see the following:

Server received binary = <<131,107,0,28,108,105,115,116,95,116,

111,95,116,117,112,108,101,40,91,50,

43,51,42,52,44,49,48,43,50,48,93,41>>

Server (unpacked) "list_to_tuple([2+3*4,10+20])"

Server replying = {14,30}

In the client window, we’ll see this:

Client received binary = <<131,104,2,97,14,97,30>>

Client result = {14,30}

ok

Finally, in the server window, we’ll see this:

Server socket closed

Improving the Server

In the previous section we made a server that accepted only one con-

nection and then terminated. By changing this code slightly, we can

make two different types of server:

1. A sequential server—one that accepts one connection at a time.

2. A parallel server—one that accepts multiple parallel connections

at the same time.

The original code started like this:

start_nano_server() ->

{ok, Listen} = gen_tcp:listen(...),

{ok, Socket} = gen_tcp:accept(Listen),

loop(Socket).

...

We’ll be changing this to make our two server variants.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=253

USING TCP 254

A Sequential Server

To make a sequential server, we change this code to the following:

start_seq_server() ->

{ok, Listen} = gen_tcp:listen(...),

seq_loop(Listen).

seq_loop(Listen) ->

{ok, Socket} = gen_tcp:accept(Listen),

loop(Socket),

seq_loop(Listen).

loop(..) -> %% as before

This works pretty much as in the previous example, but since we want

to serve more than one request, we leave the listening socket open

and don’t call gen_tcp:close(Listen). The other difference is that after

loop(Socket) has finished, we call seq_loop(Listen) again, which waits for

the next connection.

If a client tries to connect to the server while the server is busy with an

existing connection, then the connection will be queued until the server

has finished with the existing connection. If the number of queued

connections exceeds the listen backlog, then the connection will be

rejected.

We’ve shown only the code that starts the server. Stopping the server is

easy (as is stopping a parallel server); just kill the process that started

the server or servers. gen_tcp links itself to the controlling process, and

if the controlling process dies, it closes the socket.

A Parallel Server

The trick to making a parallel server is to immediately spawn a new

process each time gen_tcp:accept gets a new connection:

start_parallel_server() ->

{ok, Listen} = gen_tcp:listen(...),

spawn(fun() -> par_connect(Listen) end).

par_connect(Listen) ->

{ok, Socket} = gen_tcp:accept(Listen),

spawn(fun() -> par_connect(Listen) end),

loop(Socket).

loop(..) -> %% as before

This code is similar to the sequential server that we saw earlier. The

crucial difference is the addition of a spawn, which makes sure that we

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=254

CONTROL ISSUES 255

create a parallel process for each new socket connection. Now is a good

chance to compare the two. You should look at the placement of the

spawn statements and see how these turned a sequential server into a

parallel server.

All three servers call gen_tcp:listen and gen_tcp:accept; the only dif-

ference is whether we call these functions in a parallel program or a

sequential program.

Notes

Be aware of the following:

• The process that creates a socket (by calling gen_tcp:accept or

gen_tcp:connect) is said to be the controlling process for that socket.

All messages from the socket will be sent to the controlling pro-

cess; if the controlling process dies, then the socket will be closed.

The controlling process for a socket can be changed to NewPid by

calling gen_tcp:controlling_process(Socket, NewPid).

• Our parallel server can potentially create many thousands of con-

nections. We might want to limit the maximum number of simul-

taneous connections. This can be done by maintaining a counter

of how many connections are alive at any one time. We increment

this counter every time we get a new connection, and we decre-

ment the counter each time a connection finishes. We can use

this to limit the total number of simultaneous connections in the

system.

• After we have accepted a connection, it’s a good idea to explicitly

set the required socket options, like this:

{ok, Socket} = gen_tcp:accept(Listen),

inet:setopts(Socket, [{packet,4},binary,

{nodelay,true},{active, true}]),

loop(Socket)

• As of Erlang version R11B-3, several Erlang processes are allowed

to call gen_tcp:accept/1 on the same listen socket. This simplifies

making a parallel server, because you can have a pool of pres-

pawned processes, all waiting in gen_tcp:accept/1.

14.2 Control Issues

Erlang sockets can be opened in one of three modes: active, active once,

or passive. This is done by including an option {active, true | false | once}

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=255

CONTROL ISSUES 256

in the Options argument to either gen_tcp:connect(Address, Port, Options

or gen_tcp:listen(Port, Options).

If {active, true} is specified, then an active socket will be created; {active

false} specifies a passive socket. {active, once} creates a socket that is

active but only for the reception on one message; after it has received

this message, it must be reenabled before it can receive the next mes-

sage.

We’ll go through how these different types of sockets are used in the

following sections.

The difference between an active and passive socket has to do with

what happens when messages are received by the socket.

• Once an active socket has been created, the controlling process

will be sent {tcp, Socket, Data} messages as data is received. There

is no way the controlling process can control the flow of these

messages. A rogue client could send thousands of messages to

the system, and these would all be sent to the controlling process.

The controlling process cannot stop this flow of messages.

• If the socket was opened in passive mode, then the controlling

process has to call gen_tcp:recv(Socket, N) to receive data from the

socket. It will then try to receive exactly N bytes from the socket. If

N = 0, then all available bytes are returned. In this case, the server

can control the flow of messages from the client by choosing when

to call gen_tcp:recv.

Passive sockets are used to control the flow of data to a server. To

illustrate this, we can write the message reception loop of a server in

three ways:

• Active message reception (nonblocking)

• Passive message reception (blocking)

• Hybrid message reception (partial blocking)

Active Message Reception (Nonblocking)

Our first example opens a socket in active mode and then receives mes-

sages from the socket:

{ok, Listen} = gen_tcp:listen(Port, [..,{active, true}...]),

{ok, Socket} = gen_tcp:accept(Listen),

loop(Socket).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=256

CONTROL ISSUES 257

loop(Socket) ->

receive

{tcp, Socket, Data} ->

... do something with the data ...

{tcp_closed, Socket} ->

...

end.

This process cannot control the flow of messages to the server loop. If

the client produces data faster than the server can consume this data,

then the system can be flooded with messages—the message buffers

will fill up, and the system might crash or behave strangely.

This type of server is called a nonblocking server because it cannot block

the client. We should write a nonblocking server only if we can convince

ourselves that it can keep up with the demands of the clients.

Passive Message Reception (Blocking)

In this section, we’ll write a blocking server. The server opens the socket

in passive mode by setting the {active, false} option. This server cannot

be crashed by an overactive client that tries to flood it with too much

data.

The code in the server loop calls gen_tcp:recv every time it wants to

receive data. The client will block until the server has called recv. Note

that the OS does some buffering that allows the client to send a small

amount of data before it blocks even if recv has not been called.

{ok, Listen} = gen_tcp:listen(Port, [..,{active, false}...]),

{ok, Socket} = gen_tcp:accept(Listen),

loop(Socket).

loop(Socket) ->

case gen_tcp:recv(Socket, N) of

{ok, B} ->

... do something with the data ...

loop(Socket);

{error, closed}

...

end.

The Hybrid Approach (Partial Blocking)

You might think that using passive mode for all servers is the correct

approach. Unfortunately, when we’re in passive mode, we can wait for

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=257

WHERE DID THAT CONNECTION COME FROM? 258

the data from only one socket. This is useless for writing servers that

must wait for data from multiple sockets.

Fortunately, we can adopt a hybrid approach, neither blocking nor non-

blocking. We open the socket with the option {active, once}. In this mode,

the socket is active but for only one message. After the controlling pro-

cesses has been sent a message, it must explicitly call inet:setopts to

reenable reception of the next message. The system will block until this

happens. This is the best of both worlds. Here’s what the code looks

like:

{ok, Listen} = gen_tcp:listen(Port, [..,{active, once}...]),

{ok, Socket} = gen_tcp:accept(Listen),

loop(Socket).

loop(Socket) ->

receive

{tcp, Socket, Data} ->

... do something with the data ...

%% when you're ready enable the next message

inet:setopts(Sock, [{active, once}]),

loop(Socket);

{tcp_closed, Socket} ->

...

end.

Using the {active, once} option, the user can implement advanced forms

of flow control (sometimes called traffic shaping) and thus prevent a

server from being flooded by excessive messages.

14.3 Where Did That Connection Come From?

Suppose we write a some kind of online server and find that somebody

keeps spamming our site. What can we do about this? The first thing

we need to know is where the connection came from. To discover this,

we can call inet:peername(Socket).

@spec inet:peername(Socket) -> {ok, {IP_Address, Port}} | {error, Why}

This returns the IP address and port of the other end of the con-

nection so the server can discover who initiated the connection.

IP_Address is a tuple of integers {N1,N2,N3,N3} representing the IP

address for IPv4 and {K1,K2,K3,K4,K5,K6,K7,K8} for IPv6. Here Ni and Ki

are integers in the range 0 to 255.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=258

ERROR HANDLING WITH SOCKETS 259

14.4 Error Handling with Sockets

Error handling with sockets is extremely easy—basically you don’t have

to do anything. As we said earlier, each socket has a controlling process

(that is, the process that created the socket). If the controlling process

dies, then the socket will be automatically closed.

This means that if we have, for example, a client and a server and

the server dies because of a programming error, the socket owned by

the server will be automatically closed, and the client will be sent a

{tcp_closed, Socket} message.

We can test this mechanism with the following small program:

Download socket_examples.erl

error_test() ->

spawn(fun() -> error_test_server() end),

lib_misc:sleep(2000),

{ok,Socket} = gen_tcp:connect("localhost",4321,[binary, {packet, 2}]),

io:format("connected to:~p~n",[Socket]),

gen_tcp:send(Socket, <<"123">>),

receive

Any ->

io:format("Any=~p~n",[Any])

end.

error_test_server() ->

{ok, Listen} = gen_tcp:listen(4321, [binary,{packet,2}]),

{ok, Socket} = gen_tcp:accept(Listen),

error_test_server_loop(Socket).

error_test_server_loop(Socket) ->

receive

{tcp, Socket, Data} ->

io:format("received:~p~n",[Data]),

atom_to_list(Data),

error_test_server_loop(Socket)

end.

When we run it, we see the following:

1> socket_examples:error_test().

connected to:#Port<0.152>

received:<<"123">>

=ERROR REPORT==== 9-Feb-2007::15:18:15 ===

Error in process <0.77.0> with exit value:

{badarg,[{erlang,atom_to_list,[<<3 bytes>>]},

{socket_examples,error_test_server_loop,1}]}

Any={tcp_closed,#Port<0.152>}

ok

http://media.pragprog.com/titles/jaerlang/code/socket_examples.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=259

UDP 260

We spawn a server, sleep for two seconds to give it a chance to start, and

then send it a message containing the binary <<"123">>. When this mes-

sage arrives at the server, the server tries to compute atom_to_list(Data)

where Data is a binary and immediately crashes.4 Now that the control-

ling process for the server side of the socket has crashed, the (server-

side) socket is automatically closed. The client is then sent a {tcp_closed,

Socket} message.

14.5 UDP

Now let’s look at the User Datagram Protocol (UDP). Using UDP, ma-

chines on the Internet can send each other short messages called data-

grams. UDP datagrams are unreliable. This means if a client sends

a sequence of UDP datagrams to a server, then the datagrams might

arrive out of order, not at all, or even more than once, but the individ-

ual datagrams, if they arrive, will be undamaged. Large datagrams can

get split into smaller fragments, but the IP protocol will reassemble the

fragments before delivering them to the application.

UDP is a connectionless protocol, which means the client does not have

to establish a connection to the server before sending it a message. This

means that UDP is well suited for applications where large numbers of

clients send small messages to a server.

Writing a UDP client and server in Erlang is much easier than writ-

ing in the TCP case since we don’t have to worry about maintaining

connections to the server.

The Simplest UDP Server and Client

First let’s discuss the server. The general form of a UDP server is as

follows:

server(Port) ->

{ok, Socket} = gen_udp:open(Port, [binary]),

loop(Socket).

loop(Socket) ->

receive

{udp, Socket, Host, Port, Bin} ->

BinReply = ... ,

gen_udp:send(Socket, Host, Port, BinReply),

loop(Socket)

end.

4. The system monitor prints the diagnostic that you can see in the shell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=260

UDP 261

This is somewhat easier than the TCP case since we don’t need to worry

about our process receiving “socket closed” messages. Note that we

opened the socket in a binary mode, which tells the driver to send all

messages to the controlling process as binary data.

Now the client. Here’s a very simple client. It merely opens a UDP

socket, sends a message to the server, waits for a reply (or timeout), and

then closes the socket and returns the value returned by the server.

client(Request) ->

{ok, Socket} = gen_udp:open(0, [binary]),

ok = gen_udp:send(Socket, "localhost", 4000, Request),

Value = receive

{udp, Socket, _, _, Bin} ->

{ok, Bin}

after 2000 ->

error

end,

gen_udp:close(Socket),

Value

We must have a timeout since UDP is unreliable and we might not

actually get a reply.

A UDP Factorial Server

We can easily build a UDP server that computes the good ol’ factorial

of any number that is sent to it. The code is modeled on that in the

previous section.

Download udp_test.erl

-module(udp_test).

-export([start_server/0, client/1]).

start_server() ->

spawn(fun() -> server(4000) end).

%% The server

server(Port) ->

{ok, Socket} = gen_udp:open(Port, [binary]),

io:format("server opened socket:~p~n",[Socket]),

loop(Socket).

loop(Socket) ->

receive

{udp, Socket, Host, Port, Bin} = Msg ->

io:format("server received:~p~n",[Msg]),

N = binary_to_term(Bin),

Fac = fac(N),

gen_udp:send(Socket, Host, Port, term_to_binary(Fac)),

loop(Socket)

end.

http://media.pragprog.com/titles/jaerlang/code/udp_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=261

UDP 262

fac(0) -> 1;

fac(N) -> N * fac(N-1).

%% The client

client(N) ->

{ok, Socket} = gen_udp:open(0, [binary]),

io:format("client opened socket=~p~n",[Socket]),

ok = gen_udp:send(Socket, "localhost", 4000,

term_to_binary(N)),

Value = receive

{udp, Socket, _, _, Bin} = Msg ->

io:format("client received:~p~n",[Msg]),

binary_to_term(Bin)

after 2000 ->

0

end,

gen_udp:close(Socket),

Value.

Note that I have added a few print statements so we can see what’s

happening when we run the program. I always add a few print state-

ments when I develop a program and then edit or comment them out

when the program works.

Now let’s run this example. First we start the server:

1> udp_test:start_server().

server opened socket:#Port<0.106>

<0.34.0>

This runs in the background, so we can make a client request:

2> udp_test:client(40).

client opened socket=#Port<0.105>

server received:{udp,#Port<0.106>,{127,0,0,1},32785,<<131,97,40>>}

client received:{udp,#Port<0.105>,

{127,0,0,1}, 4000,

<<131,110,20,0,0,0,0,0,64,37,5,255,

100,222,15,8,126,242,199,132,27,

232,234,142>>}

815915283247897734345611269596115894272000000000

Additional Notes on UDP

We should note that because UDP is a connectionless protocol, the

server has no way to block the client by refusing to read data from

it—the server has no idea who the clients are.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=262

BROADCASTING TO MULTIPLE MACHINES 263

Large UDP packets might become fragmented as they pass through

the network. Fragmentation occurs when the UDP data size is greater

than the maximum transfer unit (MTU) size allowed by the routers that

the packet passes though when it travels over the network. The usual

advice given in tuning a UDP network is to start with a small packet size

(say, about 500 bytes) and then gradually increase it while measuring

throughput. If at some point the throughput drops dramatically, then

you know the packets are too large.

A UDP packet can be delivered twice (which surprises some people),

so you have to be careful writing code for remote procedure calls. It

might happen that the reply to a second query was in fact a duplicated

answer to the first query. To avoid this, we could modify the client code

to include a unique reference and check that this reference is returned

by the server. To generate a unique reference, we call the Erlang BIF

make_ref, which is guaranteed to return a globally unique reference.

The code for a remote procedure call now looks like this:

client(Request) ->

{ok, Socket} = gen_udp:open(0, [binary]),

Ref = make_ref(), %% make a unique reference

B1 = term_to_binary({Ref, Request}),

ok = gen_udp:send(Socket, "localhost", 4000, B1),

wait_for_ref(Socket, Ref).

wait_for_ref(Socket, Ref) ->

receive

{udp, Socket, _, _, Bin} ->

case binary_to_term(Bin) of

{Ref, Val} ->

%% got the correct value

Val;

{_SomeOtherRef, _} ->

%% some other value throw it away

wait_for_ref(Socket, Ref)

end;

after 1000 ->

...

end.

14.6 Broadcasting to Multiple Machines

For completeness, I’ll show you how to set up a broadcast channel. This

code is rather rare, but one day you might need it.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=263

BROADCASTING TO MULTIPLE MACHINES 264

Download broadcast.erl

-module(broadcast).

-compile(export_all).

send(IoList) ->

case inet:ifget("eth0", [broadaddr]) of

{ok, [{broadaddr, Ip}]} ->

{ok, S} = gen_udp:open(5010, [{broadcast, true}]),

gen_udp:send(S, Ip, 6000, IoList),

gen_udp:close(S);

_ ->

io:format("Bad interface name, or\n"

"broadcasting not supported\n")

end.

listen() ->

{ok, S} = gen_udp:open(6000),

loop(S).

loop(S) ->

receive

Any ->

io:format("received:~p~n", [Any]),

loop(S)

end.

Here we need two ports, one to send the broadcast and the other to lis-

ten for answers. We’ve chosen port 5010 to send the broadcast request

and 6000 to listen for broadcasts (these two numbers have no signifi-

cance; I just choose two free ports on my system).

Only the process performing a broadcast opens port 5010, but all

machines in the network call broadcast:listen(), which opens port 6000

and listens for broadcast messages.

broadcast:send(IoList) broadcasts IoList to all machines on the local area

network.

Note: For this to work, the name of the interface must be correct, and

broadcasting must be supported. On my iMac, for example, I use the

name “en0” instead of “eth0.” Note also that if hosts running UDP

listeners are on different network subnets, the UDP broadcasts are

unlikely to reach them, because by default routers drop such UDP

broadcasts.

http://media.pragprog.com/titles/jaerlang/code/broadcast.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=264

A SHOUTCAST SERVER 265

14.7 A SHOUTcast Server

To finish off this chapter, we’ll use our newly acquired skills in socket

programming to write a SHOUTcast server. SHOUTcast is a protocol

developed by the folks at Nullsoft for streaming audio data.5 SHOUT-

cast sends MP3- or AAC-encoded audio data using HTTP as the trans-

port protocol.

To see how things work, we’ll first look at the SHOUTcast protocol.

Then we’ll look at the overall structure of the server. We’ll finish with

the code.

The SHOUTcast Protocol

The SHOUTcast protocol is simple:

1. First the client (which can be something like XMMS, Winamp, or

iTunes) sends an HTTP request to the SHOUTcast server. Here’s

the request that XMMS generates when I run my SHOUTcast

server at home:

GET / HTTP/1.1

Host: localhost

User-Agent: xmms/1.2.10

Icy-MetaData:1

2. My SHOUTcast server replies with this:

ICY 200 OK

icy-notice1:
This stream requires

;Winamp

icy-notice2: Erlang Shoutcast server

icy-name: Erlang mix

icy-genre: Pop Top 40 Dance Rock

icy-url: http://localhost:3000

content-type: audio/mpeg

icy-pub: 1

icy-metaint: 24576

icy-br: 96

... data ...

3. Now the SHOUTcast servers sends a continuous stream of data.

The data has the following structure:

F H F H F H F ...

5. http://www.shoutcast.com/

http://www.shoutcast.com/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=265

A SHOUTCAST SERVER 266

F is a block of MP3 audio data that must be exactly 24,576 bytes

long (the value given in the icy-metaint parameter). H is a header

block. The header block consists of a single-byte K followed by

exactly 16*K bytes of data. Thus, the smallest header block that

can be represented in the binary is <<0>>. The next header block

can be represented as follows:

<<1,B1,B2, ..., B16>>

The content of the data part of the header is a string of the form

StreamTitle=’ ... ’;StreamUrl=’http:// ...’;, which is zero padded to the

right to fill up the block.

How the SHOUTcast Server Works

To make a server, we have to attend to the following details:

1. Make a playlist. Our server uses a file containing a list of song

titles we created in Section 13.2, Reading ID3 Tags, on page 232.

Audio files are chosen at random from this list.

2. Make a parallel server so we can serve several streams in paral-

lel. We do this using the techniques described in Section 14.1, A

Parallel Server, on page 254.

3. For each audio file, we want to send only the audio data and not

the embedded ID3 tags to the client.6

To remove the tags, we use the code in id3_tag_lengths; this code

uses the code developed in sections Section 13.2, Reading ID3

Tags, on page 232 and Section 5.3, Finding the Synchronization

Frame in MPEG Data, on page 92. This code is not shown here.

Pseudocode for the SHOUTcast Server

Before we look at the final program, let’s look at the overall flow of the

code with the details omitted:

start_parallel_server(Port) ->

{ok, Listen} = gen_tcp:listen(Port, ..),

%% create a song server -- this just knows about all our music

PidSongServer = spawn(fun() -> songs() end),

spawn(fun() -> par_connect(Listen, PidSongServer) end).

6. It is unclear whether this is the correct strategy. Audio encoders are supposed to skip

over bad data, so in principle we could send the ID3 tags along with the data. In practice,

the program seems to work better if we remove the ID3 tags.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=266

A SHOUTCAST SERVER 267

%% spawn one of these processes per connection

par_connect(Listen, PidSongServer) ->

{ok, Socket} = gen_tcp:accept(Listen),

%% when accept returns spawn a new process to

%% wait for the next connection

spawn(fun() -> par_connect(Listen, PidSongServer) end),

inet:setopts(Socket, [{packet,0},binary, {nodelay,true},

{active, true}]),

%% deal with the request

get_request(Socket, PidSongServer, []).

%% wait for the TCP request

get_request(Socket, PidSongServer, L) ->

receive

{tcp, Socket, Bin} ->

... Bin contains the request from the client

... if the request is fragmented we call loop again ...

... otherwise we call

.... got_request(Data, Socket, PidSongServer)

{tcp_closed, Socket} ->

... this happens if the client aborts

... before it has sent a request (very unlikely)

end.

%% we got the request -- send a reply

got_request(Data, Socket, PidSongServer) ->

.. data is the request from the client ...

.. analayse it ...

.. we'll always allow the request ..

gen_tcp:send(Socket, [response()]),

play_songs(Socket, PidSongServer).

%% play songs forever or until the client quits

play_songs(Socket, PidSongServer) ->

... PidSongServer keeps a list of all our MP3 files

Song = rpc(PidSongServer, random_song),

... Song is a random song ...

Header = make_header(Song),

... make the header ...

{ok, S} = file:open(File, [read,binary,raw]),

send_file(1, S, Header, 1, Socket),

file:close(S),

play_songs(Socket, PidSongServer).

send_file(K, S, Header, OffSet, Socket) ->

... send the file in chunks to the client ...

... returns when the entire file is sent ...

... but exits if we get an error when writing to

the socket -- this happens if the client quits

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=267

A SHOUTCAST SERVER 268

If you look at the real code, you’ll see the details differ slightly, but the

principles are the same. Here’s the full listing:

Download shout.erl

-module(shout).

%% In one window > shout:start()

%% in another window xmms http://localhost:3000/stream

-export([start/0]).

-import(lists, [map/2, reverse/1]).

-define(CHUNKSIZE, 24576).

start() ->

spawn(fun() ->

start_parallel_server(3000),

%% now go to sleep - otherwise the

%% listening socket will be closed

lib_misc:sleep(infinity)

end).

start_parallel_server(Port) ->

{ok, Listen} = gen_tcp:listen(Port, [binary, {packet, 0},

{reuseaddr, true},

{active, true}]),

PidSongServer = spawn(fun() -> songs() end),

spawn(fun() -> par_connect(Listen, PidSongServer) end).

par_connect(Listen, PidSongServer) ->

{ok, Socket} = gen_tcp:accept(Listen),

spawn(fun() -> par_connect(Listen, PidSongServer) end),

inet:setopts(Socket, [{packet,0},binary, {nodelay,true},{active, true}]),

get_request(Socket, PidSongServer, []).

get_request(Socket, PidSongServer, L) ->

receive

{tcp, Socket, Bin} ->

L1 = L ++ binary_to_list(Bin),

%% split checks if the header is complete

case split(L1, []) of

more ->

%% the header is incomplete we need more data

get_request(Socket, PidSongServer, L1);

{Request, _Rest} ->

%% header is complete

got_request_from_client(Request, Socket, PidSongServer)

end;

{tcp_closed, Socket} ->

void;

http://media.pragprog.com/titles/jaerlang/code/shout.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=268

A SHOUTCAST SERVER 269

_Any ->

%% skip this

get_request(Socket, PidSongServer, L)

end.

split("\r\n\r\n" ++ T, L) -> {reverse(L), T};

split([H|T], L) -> split(T, [H|L]);

split([], _) -> more.

got_request_from_client(Request, Socket, PidSongServer) ->

Cmds = string:tokens(Request, "\r\n"),

Cmds1 = map(fun(I) -> string:tokens(I, " ") end, Cmds),

is_request_for_stream(Cmds1),

gen_tcp:send(Socket, [response()]),

play_songs(Socket, PidSongServer, <<>>).

play_songs(Socket, PidSongServer, SoFar) ->

Song = rpc(PidSongServer, random_song),

{File,PrintStr,Header} = unpack_song_descriptor(Song),

case id3_tag_lengths:file(File) of

error ->

play_songs(Socket, PidSongServer, SoFar);

{Start, Stop} ->

io:format("Playing:~p~n",[PrintStr]),

{ok, S} = file:open(File, [read,binary,raw]),

SoFar1 = send_file(S, {0,Header}, Start, Stop, Socket, SoFar),

file:close(S),

play_songs(Socket, PidSongServer, SoFar1)

end.

send_file(S, Header, OffSet, Stop, Socket, SoFar) ->

%% OffSet = first byte to play

%% Stop = The last byte we can play

Need = ?CHUNKSIZE - size(SoFar),

Last = OffSet + Need,

if

Last >= Stop ->

%% not enough data so read as much as possible and return

Max = Stop - OffSet,

{ok, Bin} = file:pread(S, OffSet, Max),

list_to_binary([SoFar, Bin]);

true ->

{ok, Bin} = file:pread(S, OffSet, Need),

write_data(Socket, SoFar, Bin, Header),

send_file(S, bump(Header),

OffSet + Need, Stop, Socket, <<>>)

end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=269

A SHOUTCAST SERVER 270

write_data(Socket, B0, B1, Header) ->

%% Check that we really have got a block of the right size

%% this is a very useful check that our program logic is

%% correct

case size(B0) + size(B1) of

?CHUNKSIZE ->

case gen_tcp:send(Socket, [B0, B1, the_header(Header)]) of

ok -> true;

{error, closed} ->

%% this happens if the player

%% terminates the connection

exit(playerClosed)

end;

_Other ->

%% don't send the block - report an error

io:format("Block length Error: B0 = ~p b1=~p~n",

[size(B0), size(B1)])

end.

bump({K, H}) -> {K+1, H}.

the_header({K, H}) ->

case K rem 5 of

0 -> H;

_ -> <<0>>

end.

is_request_for_stream(_) -> true.

response() ->

["ICY 200 OK\r\n",

"icy-notice1:
This stream requires",

"Winamp
\r\n",

"icy-notice2: Erlang Shoutcast server
\r\n",

"icy-name: Erlang mix\r\n",

"icy-genre: Pop Top 40 Dance Rock\r\n",

"icy-url: http://localhost:3000\r\n",

"content-type: audio/mpeg\r\n",

"icy-pub: 1\r\n",

"icy-metaint: ",integer_to_list(?CHUNKSIZE),"\r\n",

"icy-br: 96\r\n\r\n"].

songs() ->

{ok,[SongList]} = file:consult("mp3data"),

lib_misc:random_seed(),

songs_loop(SongList).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=270

A SHOUTCAST SERVER 271

songs_loop(SongList) ->

receive

{From, random_song} ->

I = random:uniform(length(SongList)),

Song = lists:nth(I, SongList),

From ! {self(), Song},

songs_loop(SongList)

end.

rpc(Pid, Q) ->

Pid ! {self(), Q},

receive

{Pid, Reply} ->

Reply

end.

unpack_song_descriptor({File, {_Tag,Info}}) ->

PrintStr = list_to_binary(make_header1(Info)),

L1 = ["StreamTitle='",PrintStr,

"';StreamUrl='http://localhost:3000';"],

%% io:format("L1=~p~n",[L1]),

Bin = list_to_binary(L1),

Nblocks = ((size(Bin) - 1) div 16) + 1,

NPad = Nblocks*16 - size(Bin),

Extra = lists:duplicate(NPad, 0),

Header = list_to_binary([Nblocks, Bin, Extra]),

%% Header is the Shoutcast header

{File, PrintStr, Header}.

make_header1([{track,_}|T]) ->

make_header1(T);

make_header1([{Tag,X}|T]) ->

[atom_to_list(Tag),": ",X," "|make_header1(T)];

make_header1([]) ->

[].

Running the SHOUTcast Server

To run the server and test that it works, we need to perform three steps:

1. Make a playlist.

2. Start the server.

3. Point a client at the server.

Making the Playlist

To make the playlist, follow these steps:

1. Change to the code directory.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=271

DIGGING DEEPER 272

2. Edit the path in the function start1 in the file mp3_manager.erl to

point to the root of the directories that contain the audio files you

want to serve.

3. Compile mp3_manager, and give the commandmp3_manager:start1().

You should see something like the following:

1> c(mp3_manager).

{ok,mp3_manager}

2> mp3_manager:start1().

Dumping term to mp3data

ok

If you’re interested, you can now look in the file mp3data to see

the results of the analysis.

Starting the SHOUTcast Server

Start the SHOUTcast server with a shell command as follows:

1> shout:start().

...

Testing the Server

1. Go to another window to start an audio player, and point it to the

stream called http://localhost:3000.

On my system I use XMMS and give the following command:

xmms http://localhost:3000

Note: If you want to access the server from another computer,

you’ll have to give the IP address of the machine where the server

is running. So, for example, to access the server from my Windows

machine using Winamp, I use the Play > URL menu in Winamp

and enter the address http://192.168.1.168:3000 in the Open URL dia-

log box.

On my iMac using iTunes I use the Advanced > Open Stream menu

and give the previous URL to access the server.

2. You’ll see some diagnostic output in the window where you started

the server.

3. Enjoy!

14.8 Digging Deeper

In this chapter, we have looked at only the most commonly used func-

tions for manipulating sockets. You can find more information about

the socket APIs in the manual pages for gen_tcp, gen_udp, and inet.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=272

Chapter 15

ETS and DETS: Large Data
Storage Mechanisms

ets and dets are two system modules that are used for efficient storage

of large numbers of Erlang terms. ETS is short for Erlang term storage,

and DETS is short for disk ets.

ETS and DETS perform basically the same task: they provide large

key-value lookup tables. ETS is memory resident, while DETS is disk

resident. ETS is highly efficient—using ETS, you can store colossal

amounts of data (if you have enough memory) and perform lookups

in constant (or in some cases logarithmic) time. DETS provides almost

the same interface as ETS but stores the tables on disk. Because DETS

uses disk storage, it is far slower than ETS but will have a much smaller

memory footprint when running. In addition, ETS and DETS tables can

be shared by several processes, making interprocess access to common

data highly efficient.

ETS and DETS tables are data structures for associating keys with

values. The most common operations we will perform on tables are

insertions and lookups. An ETS or DETS table is just a collection of

Erlang tuples.

Data stored in an ETS table is transient and will be deleted when the

ETS table concerned is disposed of. Data stored in DETS tables is per-

sistent and should survive an entire system crash. When a DETS table

is opened, it is checked for consistency. If it is found to be corrupt, then

an attempt is made to repair the table (which can take a long time since

all the data in the table is checked).

BASIC OPERATIONS ON TABLES 274

This should recover all data in the table, though the last entry in the

table might be lost if it was being made at the time of the system crash.

ETS tables are widely used in applications that have to manipulate

large amounts of data in an efficient manner and where it is too costly to

program with nondestructive assignment and “pure” Erlang data struc-

tures.

ETS tables look as if they were implemented in Erlang, but in fact they

are implemented in the underlying runtime system and have differ-

ent performance characteristics than ordinary Erlang objects. In par-

ticular, ETS tables are not garbage collected; this means there are

no garbage collection penalties involved in using extremely large ETS

tables, though slight penalties are incurred when we create or access

ETS objects.

15.1 Basic Operations on Tables

There are four basic operations on ETS and DETS tables:

Create a new table or open an existing table.

This we do with ets:new or dets:open_file.

Insert a tuple or several tuples into a table.

Here we call insert(Tablename, X), where X is a tuple or a list of

tuples. insert has the same arguments and works the same way in

ETS and DETS.

Look up a tuple in a table.

Here we call lookup(TableName, Key). The result is a list of tuples

that match Key. lookup is defined for both ETS and DETS.

(Why is the return value a list of tuples? If the table type is a “bag,”

then several tuples can have the same key. We’ll look at the table

types in the next section.)

If no tuples in the table have the required key, then an empty list

is returned.

Dispose of a table.

When we’ve finished with a table, we can tell the system by calling

dets:close(TableId) or ets:delete(TableId).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=274

TYPES OF TABLE 275

15.2 Types of Table

ETS and DETS tables store tuples. One of the elements in the tuple (by

default, the first) is called the key of the table. We insert tuples into the

table and extract tuples from the table based on the key. What happens

when we insert a tuple into a table depends upon the type of the table

and the value of the key. Some tables, called sets, require that all the

keys in the table are unique. Others, called bags, allow several tuples

to have the same key.

Choosing the correct type of table has important consequences for the

performance of your applications.

Each of the basic set and bag table types has two variants, making for a

total of four types of table: sets, ordered sets, bags, and duplicate bags.

In a set, all the keys in the different tuples in the table must be unique.

In an ordered set, the tuples are sorted. In a bag there can be more

than one tuple with the same key, but no two tuples in the bag can be

identical. In a duplicate bag several tuples can have the same key, and

the same tuple can occur many times in the same table.

We can illustrate how these work with the following little test program:

Download ets_test.erl

-module(ets_test).

-export([start/0]).

start() ->

lists:foreach(fun test_ets/1,

[set, ordered_set, bag, duplicate_bag]).

test_ets(Mode) ->

TableId = ets:new(test, [Mode]),

ets:insert(TableId, {a,1}),

ets:insert(TableId, {b,2}),

ets:insert(TableId, {a,1}),

ets:insert(TableId, {a,3}),

List = ets:tab2list(TableId),

io:format("~-13w => ~p~n", [Mode, List]),

ets:delete(TableId).

This program opens an ETS table in one of four modes and inserts

the tuples {a,1}, {b,2}, {a,1}, and finally {a,3} into the table. Then we call

tab2list, which converts the entire table into a list, and print it.

http://media.pragprog.com/titles/jaerlang/code/ets_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=275

ETS TABLE EFFICIENCY CONSIDERATIONS 276

When we run this, we get the following output:

1> ets_test:start().

set => [{b,2},{a,3}]

ordered_set => [{a,3},{b,2}]

bag => [{b,2},{a,1},{a,3}]

duplicate_bag => [{b,2},{a,1},{a,1},{a,3}]

For the set table type, each key occurs only once. If we insert the tuple

{a,1} in table followed by {a,3}, then the final value will be {a,3}. The

only difference between a set and an ordered set is that the elements in

an ordered set are ordered by the key. We can see the order when we

convert the table to a list by calling tab2list.

The bag table types can have multiple occurrences of the key. So for

example, when we insert {a,1} followed by {a,3}, then the bag will con-

tain both tuples, not just the last. In a duplicate bag multiple identical

tuples are allowed in the bag, so when we insert {a,1} followed by {a,1}

into the bag, then the resulting table contains two copies of the {a,1}

tuple; however, in a regular bag, there would be only one copy of the

tuple.

15.3 ETS Table Efficiency Considerations

Internally, ETS tables are represented by hash tables (except ordered

sets, which are represented by balanced binary trees). This means there

is a slight space penalty for using sets and a time penalty for using

ordered sets. Inserting into sets takes place in constant time, but in-

serting into an ordered set takes place in a time proportional to the log

of the number of entries in the table.

When you choose between a set and an ordered set, you should think

about what you want to do with the table after it has been constructed—

if you want a sorted table, then use an ordered set.

Bags are more expensive to use than duplicate bags, since on each

insertion all elements with the same key have to be compared for equal-

ity. If there are large numbers of tuples with the same key, this can be

rather inefficient.

ETS tables are stored in a separate storage area that is not associated

with normal process memory. An ETS table is said to be owned by the

process that created it—when that process dies or when ets:delete is

called, then the table is deleted. ETS tables are not garbage collected,

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=276

CREATING AN ETS TABLE 277

which means that large amounts of data can be stored in the table

without incurring garbage collection penalties.

When a tuple is inserted into an ETS table, all the data structures

representing the tuple are copied from the process stack and heap into

the ETS table. When a lookup operation is performed on a table, the

resultant tuples are copied from the ETS table to the stack and heap of

the process.

This is true for all data structures except large binaries. Large binaries

are stored in their own off-heap storage area. This area can be shared

by several processes and ETS tables, and the individual binaries are

managed with a reference-counting garbage collector that keeps track

of how many different processes and ETS tables use the binary. When

the use count for the number of processes and tables that use a partic-

ular binary goes down to zero, then the storage area for the binary can

be reclaimed.

All of this might sound rather complicated, but the upshot is that send-

ing messages between processes that contain large binaries is very

cheap, and inserting tuples into ETS tables that contain binaries is

also very cheap. A good rule is to use binaries as much as possible for

representing strings and large blocks of untyped memory.

15.4 Creating an ETS Table

ETS tables are created by calling ets:new. The process that creates the

table is called the “owner” of the table. When the table is created, it

has a set of options that cannot be changed. If the owner process dies,

space for the table is automatically deallocated; otherwise, the table

can be deleted by calling ets:delete.

The arguments to ets:new are as follows:

@spec ets:new(Name, [Opt]) -> TableId

Name is an atom. [Opt] is a list of options, taken from the following:

set | ordered_set | bag | duplicate_bag

Create an ETS table of the given type (we talked about these

earlier).

private

Create a private table. Only the owner process can read and

write this table.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=277

CREATING AN ETS TABLE 278

ETS Tables As Blackboards

Protected tables provide a type of “blackboard system.” You
can think of an protected ETS table as a kind of named black-
board. Anybody who knows the name of the blackboard can
read the blackboard, but only the owner can write on the
blackboard.

Note: An ETS table that has been opened in public mode can
be written and read by any process that knows the table name.
In this case, the user must ensure that reads and writes to the
table are performed in a consistent manner.

public

Create a public table. Any process that knows the table iden-

tifier can read and write this table.

protected

Create a protected table. Any process that knows the table

identifier can read this table, but only the owner process can

write to the table.

named_table

If this is present, then Name can be used for subsequent table

operations.

{keypos, K}

Use K as the key position. Normally position 1 is used for the

key. Probably the only time when we would use this option

is if we store an Erlang record (which is actually a disguised

tuple), where the first element of the record contains the

record name.

Note: Opening an ETS table with zero options is the same as opening it

with the options [set,protected,{keypos,1}].

All the code in this chapter uses protected ETS tables. Protected tables

are particularly useful since they allow data sharing at virtually zero

cost. All local processes that know the table identifier can read the

data, but only one process can change the data in the table.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=278

EXAMPLE PROGRAMS WITH ETS 279

15.5 Example Programs with ETS

The examples in this section have to do with trigram generation. This

is a nice “show-off” program that demonstrates the power of the ETS

tables.

Our goal is to write a heuristic program that tries to predict whether a

given string is an English word. We’re going to use this when we build a

full-text indexing engine in Section 20.4, mapreduce and Indexing Our

Disk, on page 379.

How can we predict whether a random sequence of letters is an English

word? One way is to use trigrams. A trigram is a sequence of three let-

ters. Now not all sequences of three letters can occur in a valid English

word. For example, there are no English words where the three-letter

combinations akj or rwb occur. So, to test whether a string might be

an English word, all we have to do is test all sequences of three consec-

utive letters in the string against the set of trigrams generated from a

large set of English words.

The first thing our program does is to compute all trigrams in the

English language from a very large set of words. To do this, we use

ETS sets. The decision to use an ETS set is based on a set of measure-

ment of the relative performances of ETS sets and ordered sets and of

using “pure” Erlang sets as provided by the sets module.

This is what we’re going to do in the next few sections:

1. Make an iterator that runs through all the trigrams in the English

language. This will greatly simplify writing code to insert the tri-

grams into different table types.

2. Create ETS tables of type set and ordered_set to represent all these

trigrams. Also, build a set containing all these trigrams.

3. Measure the time takes to build these different tables.

4. Measure the time to access these different tables.

5. Based on the measurements, choose the best method and write

access routines for the best method.

All the code is in lib_trigrams. We’re going to present this in sections,

leaving some of the details out. But don’t worry, you’ll find a complete

listing at the end of the chapter. That’s the plan, so let’s get started.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=279

EXAMPLE PROGRAMS WITH ETS 280

The Trigram Iterator

We’ll define a function for_each_trigram_in_the_english_language(F, A). This

function applies the fun F to every trigram in the English language. F is

a fun of type fun(Str, A) -> A, Str ranges over all trigrams in the language,

and A is an accumulator.

To write our iterator,1 we need a massive word list. I’ve used a collection

of 354,984 English words2 to generate the trigrams. Using this word

list, we can define the trigram iterator as follows:

Download lib_trigrams.erl

for_each_trigram_in_the_english_language(F, A0) ->

{ok, Bin0} = file:read_file("354984si.ngl.gz"),

Bin = zlib:gunzip(Bin0),

scan_word_list(binary_to_list(Bin), F, A0).

scan_word_list([], _, A) ->

A;

scan_word_list(L, F, A) ->

{Word, L1} = get_next_word(L, []),

A1 = scan_trigrams([$\s|Word], F, A),

scan_word_list(L1, F, A1).

%% scan the word looking for \r\n

%% the second argument is the word (reversed) so it

%% has to be reversed when we find \r\n or run out of characters

get_next_word([$\r,$\n|T], L) -> {reverse([$\s|L]), T};

get_next_word([H|T], L) -> get_next_word(T, [H|L]);

get_next_word([], L) -> {reverse([$\s|L]), []}.

scan_trigrams([X,Y,Z], F, A) ->

F([X,Y,Z], A);

scan_trigrams([X,Y,Z|T], F, A) ->

A1 = F([X,Y,Z], A),

scan_trigrams([Y,Z|T], F, A1);

scan_trigrams(_, _, A) ->

A.

Note two points here. First, we used zlib:gunzip(Bin) to unzip the binary

in the source file. The word list is rather long, so we prefer to save it

on disk as a compressed file rather than as a raw ASCII file. Second,

we add a space before and after each word; in our trigram analysis, we

want to treat space as if it were a regular letter.

1. I’ve called this an iterator here; to be more strict, it’s actually a fold operator very

much like lists:foldl.
2. From http://www.dcs.shef.ac.uk/research/ilash/Moby/.

http://media.pragprog.com/titles/jaerlang/code/lib_trigrams.erl
http://www.dcs.shef.ac.uk/research/ilash/Moby/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=280

EXAMPLE PROGRAMS WITH ETS 281

Build the Tables

We build our ETS tables like this:

Download lib_trigrams.erl

make_ets_ordered_set() -> make_a_set(ordered_set, "trigramsOS.tab").

make_ets_set() -> make_a_set(set, "trigramsS.tab").

make_a_set(Type, FileName) ->

Tab = ets:new(table, [Type]),

F = fun(Str, _) -> ets:insert(Tab, {list_to_binary(Str)}) end,

for_each_trigram_in_the_english_language(F, 0),

ets:tab2file(Tab, FileName),

Size = ets:info(Tab, size),

ets:delete(Tab),

Size.

Note how when we have isolated a trigram of three letters, ABC, we

actually insert the tuple {<<"ABC">>} into the ETS table representing

the trigrams. This looks funny—a tuple with only one element. What

does that mean? Surely a tuple is a container for several elements,

so it doesn’t make sense to have a tuple with only one element. But

remember that all the entries in an ETS table are tuples, and by default

the key in a tuple is the first element in the tuple. So, in our case, the

tuple {Key} represents a key with no value.

Now for the code that builds a set of all trigrams (this time with the

Erlang module sets and not ETS):

Download lib_trigrams.erl

make_mod_set() ->

D = sets:new(),

F = fun(Str, Set) -> sets:add_element(list_to_binary(Str),Set) end,

D1 = for_each_trigram_in_the_english_language(F, D),

file:write_file("trigrams.set", [term_to_binary(D1)]).

How Long Did It Take to Build the Tables?

The function lib_trigrams:make_tables(), shown in the listing at the end of

the chapter, builds all the tables. It includes some instrumentation so

we can measure the size of our tables and the time taken to build the

tables.

1> lib_trigrams:make_tables().

Counting - No of trigrams=3357707 time/trigram=0.577938

Ets ordered Set size=19.0200 time/trigram=2.98026

Ets set size=19.0193 time/trigram=1.53711

Module Set size=9.43407 time/trigram=9.32234

ok

http://media.pragprog.com/titles/jaerlang/code/lib_trigrams.erl
http://media.pragprog.com/titles/jaerlang/code/lib_trigrams.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=281

EXAMPLE PROGRAMS WITH ETS 282

What do these figures tell us? First there are 3.3 million trigrams, and

it took half a microsecond to process each trigram in the word list.

The insertion time per trigram was 2.9 microseconds in an ETS ordered

set, 1.5 microseconds in an ETS set, and 9.3 microseconds in an Erlang

set. As for storage, ETS sets and ordered sets took 19 bytes per trigram,

while the module sets took 9 bytes per trigram.

How Long Does It Take to Access the Tables?

OK, so the tables took some time to build, but in this case it doesn’t

matter. The important question to ask is, How long does it take to access

the tables? To answer this, we have to write some code to measure the

access times. We’ll look up every trigram in our table exactly once and

then take the average time per lookup. Here’s the code that performs

the timings:

Download lib_trigrams.erl

timer_tests() ->

time_lookup_ets_set("Ets ordered Set", "trigramsOS.tab"),

time_lookup_ets_set("Ets set", "trigramsS.tab"),

time_lookup_module_sets().

time_lookup_ets_set(Type, File) ->

{ok, Tab} = ets:file2tab(File),

L = ets:tab2list(Tab),

Size = length(L),

{M, _} = timer:tc(?MODULE, lookup_all_ets, [Tab, L]),

io:format("~s lookup=~p micro seconds~n",[Type, M/Size]),

ets:delete(Tab).

lookup_all_ets(Tab, L) ->

lists:foreach(fun({K}) -> ets:lookup(Tab, K) end, L).

time_lookup_module_sets() ->

{ok, Bin} = file:read_file("trigrams.set"),

Set = binary_to_term(Bin),

Keys = sets:to_list(Set),

Size = length(Keys),

{M, _} = timer:tc(?MODULE, lookup_all_set, [Set, Keys]),

io:format("Module set lookup=~p micro seconds~n",[M/Size]).

lookup_all_set(Set, L) ->

lists:foreach(fun(Key) -> sets:is_element(Key, Set) end, L).

Here we go:

1> lib_trigrams:timer_tests().

Ets ordered Set lookup=1.79964 micro seconds

Ets set lookup=0.719279 micro seconds

Module sets lookup=1.35268 micro seconds

ok

http://media.pragprog.com/titles/jaerlang/code/lib_trigrams.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=282

EXAMPLE PROGRAMS WITH ETS 283

These timings are in average microseconds per lookup.

And the Winner Is...

Well, it was a walkover. The ETS set won by a large margin. On my

machine, sets took about half a microsecond per lookup—that’s pretty

good!

Note: Performing tests like the previous one and actually measuring

how long a particular operation takes is considered good programming

practice. We don’t need to take this to extremes and time everything,

only the most time-consuming operations in our program. The non-

time-consuming operations should be programmed in the most beau-

tiful way possible. If we are forced to write nonobvious ugly code for

efficiency reasons, then it should be well documented.

Now we can write the routines that try to predict whether a string is a

proper English word.

To test whether a string might be an English language word, we scan

through all the trigrams in the string and check that each trigram

occurs in the trigram table that we computed earlier. The function

is_word does this.

Download lib_trigrams.erl

is_word(Tab, Str) -> is_word1(Tab, "\s" ++ Str ++ "\s").

is_word1(Tab, [_,_,_]=X) -> is_this_a_trigram(Tab, X);

is_word1(Tab, [A,B,C|D]) ->

case is_this_a_trigram(Tab, [A,B,C]) of

true -> is_word1(Tab, [B,C|D]);

false -> false

end;

is_word1(_, _) ->

false.

is_this_a_trigram(Tab, X) ->

case ets:lookup(Tab, list_to_binary(X)) of

[] -> false;

_ -> true

end.

open() ->

{ok, I} = ets:file2tab(filename:dirname(code:which(?MODULE))

++ "/trigramsS.tab"),

I.

close(Tab) -> ets:delete(Tab).

http://media.pragprog.com/titles/jaerlang/code/lib_trigrams.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=283

DETS 284

The functions open and close open the ETS table we computed earlier

and must bracket any call to is_word.

The other trick I used here was the way in which I located the external

file containing the trigram table. I store this in the same directory as

the directory where the code for the current module is loaded from.

code:which(?MODULE) returns the filename where the object code for

?MODULE was located.

15.6 DETS

DETS provides Erlang tuple storage on disk. DETS files have a maxi-

mum size of 2GB. DETS files must be opened before they can be used,

and they should be properly closed when finished with. If they are not

properly closed, then they will be automatically repaired the next time

they are opened. Since the repair can take a long time, it’s important to

close them properly before finishing your application.

DETS tables have different sharing properties to ETS tables. When an

DETS table is opened, it must be given a global name. If two or more

local processes open a DETS table with the same name and options,

then they will share the table. The table will remain open until all pro-

cesses have closed the table (or crashed).

Example: A Filename Index

We’ll start off with an example and yet another utility that we’ll need

for our full-text indexing engine, which is the subject of Section 20.4,

mapreduce and Indexing Our Disk, on page 379.

We want to create a disk-based table that maps filenames onto integers,

and vice versa. We’ll define the function filename2index and its inverse

function index2filename.

To implement this, we’ll create a DETS table and populate it with three

different types of tuple:

{free, N}

N is the first free index in the table. When we enter a new filename

in the table, it will be assigned the index N.

{FileNameBin, K}

FileNameBin (a binary) has been assigned index K.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=284

DETS 285

{K, FileNameBin}

K (an integer) represents the file FilenameBin.

Note how the addition of every new file adds two entries to the table: a

File 7→ Index entry and an inverse Index 7→ Filename. This is for efficiency

reasons. When ETS or DETS tables are built, only one item in the tuple

acts as a key. Matching on a tuple element that is not the key can be

done, but it is very inefficient because it involves searching through the

entire table. This is a particularly expensive operation when the entire

table resides on disk.

Now let’s write the program. We’ll start with routines to open and close

the DETS table that will store all our filenames.

Download lib_filenames_dets.erl

-module(lib_filenames_dets).

-export([open/1, close/0, test/0, filename2index/1, index2filename/1]).

open(File) ->

io:format("dets opened:~p~n", [File]),

Bool = filelib:is_file(File),

case dets:open_file(?MODULE, [{file, File}]) of

{ok, ?MODULE} ->

case Bool of

true -> void;

false -> ok = dets:insert(?MODULE, {free,1})

end,

true;

{error,_Reason} ->

io:format("cannot open dets table~n"),

exit(eDetsOpen)

end.

close() -> dets:close(?MODULE).

The code for open automatically initializes the DETS table by inserting

the tuple {free, 1} if a new table is created. filelib:is_file(File) returns true

if File exists; otherwise, it returns false. Note that dets:open_file either

creates a new file or opens an exiting file, which is why we have to

check whether the file exists before calling dets:open_file.

In this code I’ve used the macro ?MODULE a lot of times; ?MODULE

expands to the current module name (which is lib_filenames_dets). Many

of the calls to DETS need a unique atom argument for the table name.

To generate a unique table name, we just use the module name. Since

there can’t be two Erlang modules in the system with the same name,

http://media.pragprog.com/titles/jaerlang/code/lib_filenames_dets.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=285

DETS 286

then if we follow this convention everywhere, we’ll be reasonably sure

that we have a unique name to use for the table name.

I used the macro ?MODULE instead of explicitly writing the module name

every time because I have a habit of changing modules names as I write

my code. Using macros, if I change the module name, the code will still

be correct.

Once we’ve opened the file, injecting a new filename into the table is

easy. This is done as a side effect of calling filename2index. If the filename

is in the table, then its index is returned; otherwise, a new index is

generated, and the table is updated, this time with three tuples:

Download lib_filenames_dets.erl

filename2index(FileName) when is_binary(FileName) ->

case dets:lookup(?MODULE, FileName) of

[] ->

[{_,Free}] = dets:lookup(?MODULE, free),

ok = dets:insert(?MODULE,

[{Free,FileName},{FileName,Free},{free,Free+1}]),

Free;

[{_,N}] ->

N

end.

Note how we store three tuples in the table. The second argument to

dets:insert is either a tuple or a list of tuples. Note also that the filename

is represented by a binary. This is for efficiency reasons. It’s a good idea

to get into the habit of using binaries to represent strings in ETS and

DETS tables.

The observant reader might have noticed that there is a potential race

condition in filename2index. If two parallel processes call

dets:lookup before dets:insert gets called, then filename2index will return

an incorrect value. For this routine to work, we must ensure that it is

only ever called by one process at a time.

Converting an index to a filename is easy:

Download lib_filenames_dets.erl

index2filename(Index) when is_integer(Index) ->

case dets:lookup(?MODULE, Index) of

[] -> error;

[{_,Bin}] -> Bin

end.

There’s a small design decision here. What do we want to happen if

we call index2filename(Index) and there is no filename associated with

http://media.pragprog.com/titles/jaerlang/code/lib_filenames_dets.erl
http://media.pragprog.com/titles/jaerlang/code/lib_filenames_dets.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=286

WHAT HAVEN’T WE TALKED ABOUT? 287

this index? We could crash the caller by calling exit(ebadIndex). We’ve

chosen a gentler alternative: we just return the atom error. The caller

can distinguish between a valid filename and incorrect value since all

valid returned filenames are of type binary.

Note also the guard tests in filename2index and index2filename. These

check that the arguments have the required type. It’s a good idea to test

these, because entering data of the wrong type into a DETS table can

cause situations that are very difficult to debug. We can imagine storing

data in a table with the wrong type and reading the table months later,

by which time it’s too late to do anything about it. It’s best to check that

all the data is correct before adding it to the table.

15.7 What Haven’t We Talked About?

ETS and DETS tables support a number of operations that we haven’t

talked about in this chapter. These operations fall into the following

categories:

• Fetching and deleting objects based on a pattern

• Converting between ETS and DETS tables and between ETS tables

and disk files

• Finding resource usage for a table

• Traversing all elements in a table

• Repairing a broken DETS table

• Visualizing a table

You can find more information in the ETS and DETS manual pages

available online at http://www.erlang.org/doc/man/ets.html and

http://www.erlang.org/doc/man/dets.html.

Finally, ETS and DETS tables were originally designed to be used to

implement Mnesia. We haven’t talked about Mnesia yet—this is the

subject of Chapter 17, Mnesia: The Erlang Database, on page 313. Mne-

sia is a real-time database written in Erlang. Mnesia uses ETS and

DETS tables internally, and a lot of the routines exported from the ETS

and DETS modules are intended for internal use from Mnesia. Mnesia

can do all kinds of operations that are not possible using single ETS and

DETS tables. For example, we can index on more than the primary key,

so the kind of double insertion trick that we used in the filename2index

example is not necessary. Mnesia will actually create several ETS or

DETS tables to do this, but this is hidden from the user.

http://www.erlang.org/doc/man/ets.html
http://www.erlang.org/doc/man/dets.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=287

CODE LISTINGS 288

15.8 Code Listings

Download lib_trigrams_complete.erl

-module(lib_trigrams).

-export([for_each_trigram_in_the_english_language/2,

make_tables/0, timer_tests/0,

open/0, close/1, is_word/2,

how_many_trigrams/0,

make_ets_set/0, make_ets_ordered_set/0, make_mod_set/0,

lookup_all_ets/2, lookup_all_set/2

]).

-import(lists, [reverse/1]).

make_tables() ->

{Micro1, N} = timer:tc(?MODULE, how_many_trigrams, []),

io:format("Counting - No of trigrams=~p time/trigram=~p~n",[N,Micro1/N]),

{Micro2, Ntri} = timer:tc(?MODULE, make_ets_ordered_set, []),

FileSize1 = filelib:file_size("trigramsOS.tab"),

io:format("Ets ordered Set size=~p time/trigram=~p~n",[FileSize1/Ntri,

Micro2/N]),

{Micro3, _} = timer:tc(?MODULE, make_ets_set, []),

FileSize2 = filelib:file_size("trigramsS.tab"),

io:format("Ets set size=~p time/trigram=~p~n",[FileSize2/Ntri, Micro3/N]),

{Micro4, _} = timer:tc(?MODULE, make_mod_set, []),

FileSize3 = filelib:file_size("trigrams.set"),

io:format("Module sets size=~p time/trigram=~p~n",[FileSize3/Ntri, Micro4/N]).

make_ets_ordered_set() -> make_a_set(ordered_set, "trigramsOS.tab").

make_ets_set() -> make_a_set(set, "trigramsS.tab").

make_a_set(Type, FileName) ->

Tab = ets:new(table, [Type]),

F = fun(Str, _) -> ets:insert(Tab, {list_to_binary(Str)}) end,

for_each_trigram_in_the_english_language(F, 0),

ets:tab2file(Tab, FileName),

Size = ets:info(Tab, size),

ets:delete(Tab),

Size.

make_mod_set() ->

D = sets:new(),

F = fun(Str, Set) -> sets:add_element(list_to_binary(Str),Set) end,

D1 = for_each_trigram_in_the_english_language(F, D),

file:write_file("trigrams.set", [term_to_binary(D1)]).

timer_tests() ->

time_lookup_ets_set("Ets ordered Set", "trigramsOS.tab"),

time_lookup_ets_set("Ets set", "trigramsS.tab"),

time_lookup_module_sets().

http://media.pragprog.com/titles/jaerlang/code/lib_trigrams_complete.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=288

CODE LISTINGS 289

time_lookup_ets_set(Type, File) ->

{ok, Tab} = ets:file2tab(File),

L = ets:tab2list(Tab),

Size = length(L),

{M, _} = timer:tc(?MODULE, lookup_all_ets, [Tab, L]),

io:format("~s lookup=~p micro seconds~n",[Type, M/Size]),

ets:delete(Tab).

lookup_all_ets(Tab, L) ->

lists:foreach(fun({K}) -> ets:lookup(Tab, K) end, L).

time_lookup_module_sets() ->

{ok, Bin} = file:read_file("trigrams.set"),

Set = binary_to_term(Bin),

Keys = sets:to_list(Set),

Size = length(Keys),

{M, _} = timer:tc(?MODULE, lookup_all_set, [Set, Keys]),

io:format("Module set lookup=~p micro seconds~n",[M/Size]).

lookup_all_set(Set, L) ->

lists:foreach(fun(Key) -> sets:is_element(Key, Set) end, L).

how_many_trigrams() ->

F = fun(_, N) -> 1 + N end,

for_each_trigram_in_the_english_language(F, 0).

%% An iterator that iterates through all trigrams in the language

for_each_trigram_in_the_english_language(F, A0) ->

{ok, Bin0} = file:read_file("354984si.ngl.gz"),

Bin = zlib:gunzip(Bin0),

scan_word_list(binary_to_list(Bin), F, A0).

scan_word_list([], _, A) ->

A;

scan_word_list(L, F, A) ->

{Word, L1} = get_next_word(L, []),

A1 = scan_trigrams([$\s|Word], F, A),

scan_word_list(L1, F, A1).

%% scan the word looking for \r\n

%% the second argument is the word (reversed) so it

%% has to be reversed when we find \r\n or run out of characters

get_next_word([$\r,$\n|T], L) -> {reverse([$\s|L]), T};

get_next_word([H|T], L) -> get_next_word(T, [H|L]);

get_next_word([], L) -> {reverse([$\s|L]), []}.

scan_trigrams([X,Y,Z], F, A) ->

F([X,Y,Z], A);

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=289

CODE LISTINGS 290

scan_trigrams([X,Y,Z|T], F, A) ->

A1 = F([X,Y,Z], A),

scan_trigrams([Y,Z|T], F, A1);

scan_trigrams(_, _, A) ->

A.

%% access routines

%% open() -> Table

%% close(Table)

%% is_word(Table, String) -> Bool

is_word(Tab, Str) -> is_word1(Tab, "\s" ++ Str ++ "\s").

is_word1(Tab, [_,_,_]=X) -> is_this_a_trigram(Tab, X);

is_word1(Tab, [A,B,C|D]) ->

case is_this_a_trigram(Tab, [A,B,C]) of

true -> is_word1(Tab, [B,C|D]);

false -> false

end;

is_word1(_, _) ->

false.

is_this_a_trigram(Tab, X) ->

case ets:lookup(Tab, list_to_binary(X)) of

[] -> false;

_ -> true

end.

open() ->

{ok, I} = ets:file2tab(filename:dirname(code:which(?MODULE))

++ "/trigramsS.tab"),

I.

close(Tab) -> ets:delete(Tab).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=290

Chapter 16

OTP Introduction
OTP stands for the Open Telecom Platform. The name is actually mis-

leading, because OTP is far more general than you might think. It’s an

application operating system and a set of libraries and procedures used

for building large-scale, fault-tolerant, distributed applications. It was

developed at the Swedish telecom company Ericsson and is used within

Ericsson for building fault-tolerant systems.1

OTP contains a number of powerful tools—such as a complete web

server, an FTP server, a CORBA ORB, and so on—all written in Erlang.

OTP also contains state-of-the-art tools for building telecom applica-

tions with implementations of H248, SNMP, and an ASN.1-to-Erlang

cross-compiler. I’m not going to talk about these here; you can find a

lot more about these subjects by following the links referred to in Sec-

tion C.1, Online Documentation, on page 399.

If you want to program your own applications using OTP, then the

central concept that you will find very useful is the OTP behavior. A

behavior encapsulates common behavioral patterns—think of it as an

application framework that is parameterized by a callback module.

The power of OTP comes from that properties such as fault tolerance,

scalability, dynamic-code upgrade, and so on, can be provided by the

behavior itself. In other words, the writer of the callback does not have

to worry about things such as fault tolerance because this is provided

by the behavior. For the Java-minded, you can think of a behavior as a

J2EE container.

1. Ericsson has released OTP subject to the Erlang Public License (EPL). EPL is a deriva-

tive of the Mozilla Public License (MPL).

THE ROAD TO THE GENERIC SERVER 292

Put simply, the behavior solves the nonfunctional parts of the problem,

while the callback solves the functional parts. The nice part about this

is that the nonfunctional parts of the problem (for example, how to

do live code upgrades) are the same for all applications, whereas the

functional parts (as supplied by the callback) are different for every

problem.

In this chapter, we’ll look at one of these behaviors, the gen_server mod-

ule, in greater detail. But, before we get down to the nitty-gritty details

of how the gen_server works, we’ll first start with a simple server (the

simplest server we can possibly imagine) and then change it in a num-

ber of small steps until we get to the full gen_server module. That way,

you should be in a position to really understand how gen_server works

and be ready to poke around in the gory details.

Here is the plan of this chapter:

1. Write a small client-server program in Erlang.

2. Slowly generalize this program and add a number of features.

3. Move to the real code.

16.1 The Road to the Generic Server

This is the most important section in the entire book, so read it once, read

it twice, read it 100 times—just make sure the message sinks in.

We’re going to write four little servers called server1, server2..., each

slightly different from the last. The goal is to totally separate the non-

functional parts of the problem from the functional parts of the prob-

lem. That last sentence probably didn’t mean much to you now, but

don’t worry—it soon will. Take a deep breath....

Server 1: The Basic Server

Here’s our first attempt. It’s a little server that we can parameterize with

a callback module:

Download server1.erl

-module(server1).

-export([start/2, rpc/2]).

start(Name, Mod) ->

register(Name, spawn(fun() -> loop(Name, Mod, Mod:init()) end)).

http://media.pragprog.com/titles/jaerlang/code/server1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=292

THE ROAD TO THE GENERIC SERVER 293

rpc(Name, Request) ->

Name ! {self(), Request},

receive

{Name, Response} -> Response

end.

loop(Name, Mod, State) ->

receive

{From, Request} ->

{Response, State1} = Mod:handle(Request, State),

From ! {Name, Response},

loop(Name, Mod, State1)

end.

This very small amount of code captures the quintessential nature of a

server. Let’s write a callback for server1. Here’s a name server callback:

Download name_server.erl

-module(name_server).

-export([init/0, add/2, whereis/1, handle/2]).

-import(server1, [rpc/2]).

%% client routines

add(Name, Place) -> rpc(name_server, {add, Name, Place}).

whereis(Name) -> rpc(name_server, {whereis, Name}).

%% callback routines

init() -> dict:new().

handle({add, Name, Place}, Dict) -> {ok, dict:store(Name, Place, Dict)};

handle({whereis, Name}, Dict) -> {dict:find(Name, Dict), Dict}.

This code actually performs two tasks. It serves as a callback module

that is called from the server framework code, and at the same time, it

contains the interfacing routines that will be called by the client. The

usual OTP convention is to combine both functions in the same module.

Just to prove that it works, do this:

1> server1:start(name_server, name_server).

true

2> name_server:add(joe, "at home").

ok

3> name_server:whereis(joe).

{ok,"at home"}

Now stop and think. The callback had no code for concurrency, no

spawn, no send, no receive, no register. It is pure sequential code—

nothing else. What does this mean?

http://media.pragprog.com/titles/jaerlang/code/name_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=293

THE ROAD TO THE GENERIC SERVER 294

This means we can write client-server models without understanding

anything about the underlying concurrency models.

This is the basic pattern for all servers. Once you understand the basic

structure, it’s easy to “roll your own.”

Server 2: A Server with Transactions

Here’s a server that crashes the client if the query in the server results

in an exception:

Download server2.erl

-module(server2).

-export([start/2, rpc/2]).

start(Name, Mod) ->

register(Name, spawn(fun() -> loop(Name,Mod,Mod:init()) end)).

rpc(Name, Request) ->

Name ! {self(), Request},

receive

{Name, crash} -> exit(rpc);

{Name, ok, Response} -> Response

end.

loop(Name, Mod, OldState) ->

receive

{From, Request} ->

try Mod:handle(Request, OldState) of

{Response, NewState} ->

From ! {Name, ok, Response},

loop(Name, Mod, NewState)

catch

_:Why ->

log_the_error(Name, Request, Why),

%% send a message to cause the client to crash

From ! {Name, crash},

%% loop with the *original* state

loop(Name, Mod, OldState)

end

end.

log_the_error(Name, Request, Why) ->

io:format("Server ~p request ~p ~n"

"caused exception ~p~n",

[Name, Request, Why]).

This one gives you “transaction semantics” in the server—it loops with

the original value of State if an exception was raised in the handler

function. But if the handler function succeeded, then it loops with the

value of NewState provided by the handler function.

http://media.pragprog.com/titles/jaerlang/code/server2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=294

THE ROAD TO THE GENERIC SERVER 295

Why does it retain the original state? When the handler function fails,

the client that sent the message that caused the failure is sent a mes-

sage that causes it to crash. The client cannot proceed, because the

request it sent to the server caused the handler function to crash. But

any other client that wants to use the server will not be affected. More-

over, the state of the server is not changed when an error occurs in the

handler.

Note that the callback module for this server is exactly the same as the

callback module we used for server1. By changing the server and keeping

the callback module constant, we can change the nonfunctional behavior

of the callback module.

Note: The last statement wasn’t strictly true. We have to make a very

small change to the callback module when we go from server1 to server2,

and that is to change the name in the -import declaration from server1

to server2. Otherwise, there are no changes.

Server 3: A Server with Hot Code Swapping

Now we’ll add hot code swapping:

Download server3.erl

-module(server3).

-export([start/2, rpc/2, swap_code/2]).

start(Name, Mod) ->

register(Name,

spawn(fun() -> loop(Name,Mod,Mod:init()) end)).

swap_code(Name, Mod) -> rpc(Name, {swap_code, Mod}).

rpc(Name, Request) ->

Name ! {self(), Request},

receive

{Name, Response} -> Response

end.

loop(Name, Mod, OldState) ->

receive

{From, {swap_code, NewCallBackMod}} ->

From ! {Name, ack},

loop(Name, NewCallBackMod, OldState);

{From, Request} ->

{Response, NewState} = Mod:handle(Request, OldState),

From ! {Name, Response},

loop(Name, Mod, NewState)

end.

http://media.pragprog.com/titles/jaerlang/code/server3.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=295

THE ROAD TO THE GENERIC SERVER 296

How does this work?

If we send the server a swap code message, then it will change the

callback module to the new module contained in the message.

We can demonstrate this by starting server3 with a callback module

and then dynamically swapping the callback module. We can’t use

name_server as the callback module because we hard-compiled the

name of the server into the module. So, we make a copy of this, calling

it name_server1 where we change the name of the server:

Download name_server1.erl

-module(name_server1).

-export([init/0, add/2, whereis/1, handle/2]).

-import(server3, [rpc/2]).

%% client routines

add(Name, Place) -> rpc(name_server, {add, Name, Place}).

whereis(Name) -> rpc(name_server, {whereis, Name}).

%% callback routines

init() -> dict:new().

handle({add, Name, Place}, Dict) -> {ok, dict:store(Name, Place, Dict)};

handle({whereis, Name}, Dict) -> {dict:find(Name, Dict), Dict}.

First we’ll start server3 with the name_server1 callback module:

1> server3:start(name_server, name_server1).

true

2> name_server:add(joe, "at home").

ok

3> name_server:add(helen, "at work").

ok

Now suppose we want to find all the names that are served by the name

server. There is no function in the API that can do this—the module

name_server has only add and lookup access routines.

With lightning speed, we fire up our text editor and write a new callback

module:

Download new_name_server.erl

-module(new_name_server).

-export([init/0, add/2, all_names/0, delete/1, whereis/1, handle/2]).

-import(server3, [rpc/2]).

http://media.pragprog.com/titles/jaerlang/code/name_server1.erl
http://media.pragprog.com/titles/jaerlang/code/new_name_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=296

THE ROAD TO THE GENERIC SERVER 297

%% interface

all_names() -> rpc(name_server, allNames).

add(Name, Place) -> rpc(name_server, {add, Name, Place}).

delete(Name) -> rpc(name_server, {delete, Name}).

whereis(Name) -> rpc(name_server, {whereis, Name}).

%% callback routines

init() -> dict:new().

handle({add, Name, Place}, Dict) -> {ok, dict:store(Name, Place, Dict)};

handle(allNames, Dict) -> {dict:fetch_keys(Dict), Dict};

handle({delete, Name}, Dict) -> {ok, dict:erase(Name, Dict)};

handle({whereis, Name}, Dict) -> {dict:find(Name, Dict), Dict}.

We compile this and tell the server to swap its callback module:

4> c(new_name_server).

{ok,new_name_server}

5> server3:swap_code(name_server, new_name_server).

ack

Now we can run the new functions in the server:

6> new_name_server:all_names().

[joe,helen]

Here we changed the callback module on the fly—this is dynamic code

upgrade, in action before your eyes, with no black magic.

Now stop and think again. The last two tasks we have done are gener-

ally considered to be pretty difficult, in fact, very difficult. Servers with

“transaction semantics” are difficult to write; servers with dynamic code

upgrade are very difficult to write.

This technique is extremely powerful. Traditionally we think of servers

as programs with state that change state when we send them messages.

The code in the servers is fixed the first time it is called, and if we want

to change the code in the server, we have to stop the server and change

the code, and then we can restart the server. In the examples we have

given, the code in the server can be changed just as easily as we can

change the state of the server.2

2. I use this technique a lot in products that are never taken out of service for software

maintenance upgrades.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=297

THE ROAD TO THE GENERIC SERVER 298

Server 4: Transactions and Hot Code Swapping

In the last two servers, code upgrade and transaction semantics were

separate. Let’s combine them into a single server. Hold onto your hats....

Download server4.erl

-module(server4).

-export([start/2, rpc/2, swap_code/2]).

start(Name, Mod) ->

register(Name, spawn(fun() -> loop(Name,Mod,Mod:init()) end)).

swap_code(Name, Mod) -> rpc(Name, {swap_code, Mod}).

rpc(Name, Request) ->

Name ! {self(), Request},

receive

{Name, crash} -> exit(rpc);

{Name, ok, Response} -> Response

end.

loop(Name, Mod, OldState) ->

receive

{From, {swap_code, NewCallbackMod}} ->

From ! {Name, ok, ack},

loop(Name, NewCallbackMod, OldState);

{From, Request} ->

try Mod:handle(Request, OldState) of

{Response, NewState} ->

From ! {Name, ok, Response},

loop(Name, Mod, NewState)

catch

_: Why ->

log_the_error(Name, Request, Why),

From ! {Name, crash},

loop(Name, Mod, OldState)

end

end.

log_the_error(Name, Request, Why) ->

io:format("Server ~p request ~p ~n"

"caused exception ~p~n",

[Name, Request, Why]).

This server provides both hot code swapping and transaction seman-

tics. Neat.

http://media.pragprog.com/titles/jaerlang/code/server4.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=298

THE ROAD TO THE GENERIC SERVER 299

Server 5: Even More Fun

Now that we’ve got the idea of dynamic code change, we can have even

more fun. Here’s a server that does nothing at all until you tell it to

become a particular type of server:

Download server5.erl

-module(server5).

-export([start/0, rpc/2]).

start() -> spawn(fun() -> wait() end).

wait() ->

receive

{become, F} -> F()

end.

rpc(Pid, Q) ->

Pid ! {self(), Q},

receive

{Pid, Reply} -> Reply

end.

If we start this and then send it a {become, F} message, it will become

an F server by evaluating F(). We’ll start it:

1> Pid = server5:start().

<0.57.0>

Our server does nothing and just waits for a become message.

Let’s now define a server function. It’s nothing complicated, just some-

thing to compute factorial:

Download my_fac_server.erl

-module(my_fac_server).

-export([loop/0]).

loop() ->

receive

{From, {fac, N}} ->

From ! {self(), fac(N)},

loop();

{become, Something} ->

Something()

end.

fac(0) -> 1;

fac(N) -> N * fac(N-1).

http://media.pragprog.com/titles/jaerlang/code/server5.erl
http://media.pragprog.com/titles/jaerlang/code/my_fac_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=299

THE ROAD TO THE GENERIC SERVER 300

Erlang on PlanetLab

A few years ago, when I had my research hat on, I was work-
ing with PlanetLab. I had access to the PlanetLab∗ network, so I
installed “empty” Erlang servers on all the PlanetLab machines
(about 450 of them). I didn’t really know what I would do with
the machines, so I just set up the server infrastructure to do
something later.

Once I had gotten this layer running, it was an easy job to send
messages to the empty servers telling them to become real
servers.

The usual approach is to start (for example) a web server and
then install web server plug-ins. My approach was to back off
one step and install an empty server. Later the plug-in turns the
empty server into a web server. When we’re done with the web
server, we might tell it to become something else.

∗. A planet-wide research network (http://www.planet-lab.org)

Just make sure it’s compiled, and then we can tell process <0.57.0> to

become a factorial server:

2> c(my_fac_server).

{ok,my_fac_server}

3> Pid ! {become, fun my_fac_server:loop/0}.

{become,#Fun<my_fac_server.loop.0>}

Now that our process has become a factorial server, we can call it:

4> server5:rpc(Pid, {fac,30}).

265252859812191058636308480000000

Our process will remain a factorial server, until we send it a {become,

Something} message and tell it to do something else.

As you can see from the previous examples, we can make a range of

different types of servers, with different semantics and some quite sur-

prising properties. This technique is almost too powerful. Used to its

full potential, it can yield very small programs of quite surprising power

and beauty. When we make industrial-scale projects with dozens to

hundreds of programmers involved, we might not actually want things

to be too dynamic. We have to try to strike a balance between having

something general and powerful and having something that is useful

for commercial products. Having code that can morph into new ver-

http://www.planet-lab.org
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=300

GETTING STARTED WITH GEN_SERVER 301

sions as it runs is beautiful but terrible to debug if something goes

wrong later. If we have made dozens of dynamic changes to our code

and it then crashes, finding out exactly what went wrong is not easy.

The server examples in this section are actually not quite correct. They

are written this way so as to emphasize the ideas involved, but they do

have one or two extremely small and subtle errors. I’m not going to tell

you immediately what they are, but I’ll give you some hints at the end

of the chapter.

The Erlang module gen_server is the kind of logical conclusion of a suc-

cession of successively sophisticated servers (just like the ones we’ve

written so far in this chapter).

It has been in use in industrial products since 1998. Hundreds of

servers can be part of a single product. These servers have been written

by programmers using regular sequential code. All the error handling

and all the nonfunctional behavior is factored out in the generic part of

the server.

So now we’ll take a great leap of imagination and look at the real

gen_server.

16.2 Getting Started with gen_server

I’m going to throw you in at the deep end. Here’s the simple three-point

plan for writing a gen_server callback module:

1. Decide on a callback module name.

2. Write the interface functions.

3. Write the six required callback functions in the callback module.

This is really easy. Don’t think—just follow the plan!

Step 1: Decide on the Callback Module Name

We’re going to make a very simple payment system. We’ll call the mod-

ule my_bank.3

3. In case you’re wondering, there are actually several online financial services written

in Erlang (such as http://kreditor.se/). Now they don’t publish their code, but if they did, it

might look like ours.

http://kreditor.se/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=301

GETTING STARTED WITH GEN_SERVER 302

Step 2: Write the Interface Routines

We’ll define five interface routines, all in the module my_bank:

start()

Open the bank.

stop()

Close the bank.

new_account(Who)

Create a new account.

deposit(Who, Amount)

Put money in the bank.

withdraw(Who, Amount)

Take money out, if in credit.

Each of these results in exactly one call to the routines in gen_server, as

follows:

Download my_bank.erl

start() -> gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

stop() -> gen_server:call(?MODULE, stop).

new_account(Who) -> gen_server:call(?MODULE, {new, Who}).

deposit(Who, Amount) -> gen_server:call(?MODULE, {add, Who, Amount}).

withdraw(Who, Amount) -> gen_server:call(?MODULE, {remove, Who, Amount}).

gen_server:start_link({local, Name}, Mod, ...) starts a local server.4 The

macro ?MODULE expands to the module name my_bank. Mod is the name

of the callback module. We’ll ignore the other arguments to

gen_server:start for now.

gen_server:call(?MODULE, Term) is used for a remote procedure call to the

server.

Step 3: Write the Callback Routines

Our callback module must export six callback routines: init/1,

handle_call/3, handle_cast/2, handle_info/2, terminate/2, and

code_change/3.

4. With argument global, it would start a global server that could be accessed on a cluster

of Erlang nodes.

http://media.pragprog.com/titles/jaerlang/code/my_bank.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=302

GETTING STARTED WITH GEN_SERVER 303

To make life easy, we can use a number of templates to make a

gen_server. Here’s the simplest:

Download gen_server_template.mini

-module().

%% gen_server_mini_template

-behaviour(gen_server).

-export([start_link/0]).

%% gen_server callbacks

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

start_link() -> gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

init([]) -> {ok, State}.

handle_call(_Request, _From, State) -> {reply, Reply, State}.

handle_cast(_Msg, State) -> {noreply, State}.

handle_info(_Info, State) -> {noreply, State}.

terminate(_Reason, _State) -> ok.

code_change(_OldVsn, State, Extra) -> {ok, State}.

The template contains a simple skeleton that we can fill in to make our

server. The keyword -behaviour is used by the compiler so that it can

generate warning or error messages if we forget to define the appropri-

ate callback functions.

Tip: If you’re using emacs, then you can pull in a gen_server template in

a few keystrokes. If you edit in erlang-mode, then the Erlang > Skele-

tons menu offers a tab that creates a gen_server template. If you don’t

have emacs, don’t panic. I’ve included the template at the end of the

chapter.

We’ll start with the template and edit it a bit. All we have to do is get

the arguments in the interfacing routines to agree with the arguments

in the template.

The most important bit is the handle_call/3 function. We have to write

code that matches the three query terms defined in the interface rou-

tines. That is, we have to fill in the dots in the following:

handle_call({new, Who}, From, State} ->

Reply = ...

State1 = ...

{reply, Reply, State1};

http://media.pragprog.com/titles/jaerlang/code/gen_server_template.mini
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=303

GETTING STARTED WITH GEN_SERVER 304

handle_call({add, Who, Amount}, From, State} ->

Reply = ...

State1 = ...

{reply, Reply, State1};

handle_call({remove, Who, Amount}, From, State} ->

Reply = ...

State1 = ...

{reply, Reply, State1};

The values of Reply in this code are sent back to the client as the return

values of the remote procedure calls.

State is just a variable representing the global state of the server that

gets passed around in the server. In our bank module, the state never

changes; it’s just an ETS table index that is a constant (although the

content of the table changes).

When we’ve filled in the template and edited it a bit, we end up with the

following code:

Download my_bank.erl

init([]) -> {ok, ets:new(?MODULE,[])}.

handle_call({new,Who}, _From, Tab) ->

Reply = case ets:lookup(Tab, Who) of

[] -> ets:insert(Tab, {Who,0}),

{welcome, Who};

[_] -> {Who, you_already_are_a_customer}

end,

{reply, Reply, Tab};

handle_call({add,Who,X}, _From, Tab) ->

Reply = case ets:lookup(Tab, Who) of

[] -> not_a_customer;

[{Who,Balance}] ->

NewBalance = Balance + X,

ets:insert(Tab, {Who, NewBalance}),

{thanks, Who, your_balance_is, NewBalance}

end,

{reply, Reply, Tab};

handle_call({remove,Who, X}, _From, Tab) ->

Reply = case ets:lookup(Tab, Who) of

[] -> not_a_customer;

[{Who,Balance}] when X =< Balance ->

NewBalance = Balance - X,

ets:insert(Tab, {Who, NewBalance}),

{thanks, Who, your_balance_is, NewBalance};

[{Who,Balance}] ->

{sorry,Who,you_only_have,Balance,in_the_bank}

end,

{reply, Reply, Tab};

http://media.pragprog.com/titles/jaerlang/code/my_bank.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=304

THE GEN_SERVER CALLBACK STRUCTURE 305

handle_call(stop, _From, Tab) ->

{stop, normal, stopped, Tab}.

handle_cast(_Msg, State) -> {noreply, State}.

handle_info(_Info, State) -> {noreply, State}.

terminate(_Reason, _State) -> ok.

code_change(_OldVsn, State, Extra) -> {ok, State}.

We start the server by calling gen_server:start_link(Name, CallBackMod, Star-

tArgs, Opts); then the first routine to be called in the callback module is

Mod:init(StartArgs), which must return {ok, State}. The value of State reap-

pears as the third argument in handle_call.

Note how we stop the server. handle_call(Stop, From, Tab) returns {stop, nor-

mal, stopped, Tab} which stops the server. The second argument (normal)

is used as the first argument to my_bank:terminate/2. The third argument

(stopped) becomes the return value of my_bank:stop().

That’s it, we’re done. So let’s go visit the bank:

1> my_bank:start().

{ok,<0.33.0>}

2> my_bank:deposit("joe", 10).

not_a_customer

3> my_bank:new_account("joe").

{welcome,"joe"}

4> my_bank:deposit("joe", 10).

{thanks,"joe",your_balance_is,10}

5> my_bank:deposit("joe", 30).

{thanks,"joe",your_balance_is,40}

6> my_bank:withdraw("joe", 15).

{thanks,"joe",your_balance_is,25}

7> my_bank:withdraw("joe", 45).

{sorry,"joe",you_only_have,25,in_the_bank}

16.3 The gen_server Callback Structure

Now that we’ve got the idea, we’ll take a more detailed look at the

gen_server callback structure.

What Happens When We Start the Server?

The call gen_server:start_link(Name, Mod, InitArgs, Opts) starts everything. It

creates a generic server called Name. The callback module is Mod. Opts

controls the behavior of the generic server. Here we can specify logging

of message, debugging functions, and so on. The generic server starts

by calling Mod:init(InitArgs).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=305

THE GEN_SERVER CALLBACK STRUCTURE 306

The template entry for init is as follows:

%%--

%% Function: init(Args) -> {ok, State} |

%% {ok, State, Timeout} |

%% ignore |

%% {stop, Reason}

%% Description: Initiates the server

%%--

init([]) ->

{ok, #state{}}.

In normal operation, we just return {ok, State}. For the meaning of the

other arguments, consult the manual page for gen_server.

If {ok, State} is returned, then we have successfully started the server,

and the initial state is State.

What Happens When We Call the Server?

To call the server, the client program calls gen_server:call(Name, Request).

This results in handle_call/3 in the callback module being called.

handle_call/3 has the following template entry:

%%--

%% Function:

%% handle_call(Request, From, State) -> {reply, Reply, State} |

%% {reply, Reply, State, Timeout} |

%% {noreply, State} |

%% {noreply, State, Timeout} |

%% {stop, Reason, Reply, State} |

%% {stop, Reason, State}

%% Description: Handling call messages

%%--

handle_call(_Request, _From, State) ->

Reply = ok,

{reply, Reply, State}.

Request (the second argument of gen_server:call/2) reappears as the first

argument of handle_call/3. From is the PID of the requesting client pro-

cess, and State is the current state of the client.

Normally we return {reply, Reply, NewState}. When this happens, Reply

goes back to the client, where it becomes the return value of gen_server:

call. NewState is the next state of the server.

The other return values, {noreply, ..} and {stop, ..}, are used relatively

infrequently. no reply causes the server to continue, but the client will

wait for a reply so the server will have to delegate the task of replying

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=306

THE GEN_SERVER CALLBACK STRUCTURE 307

to some other process. Calling stop with the appropriate arguments will

stop the server.

Calls and Casts

We’ve seen the interplay between gen_server:call and handle_call. This

is used for implementing remote procedure calls. gen_server:cast(Name,

Name) implements a cast, which is just a call with no return value

(actually just a message, but traditionally it’s called a cast to distin-

guish it from a remote procedure call).

The corresponding callback routine is handle_cast; the template entry is

like this:

%%--

%% Function: handle_cast(Msg, State) -> {noreply, NewState} |

%% {noreply, NewState, Timeout} |

%% {stop, Reason, NewState}

%% Description: Handling cast messages

%%--

handle_cast(_Msg, State) ->

{noreply, NewState}.

The handler usually just returns {noreply, NewState}, which changes the

state of the server, or {stop, ...}, which stops the server.

Spontaneous Messages to the Server

The callback function handle_info(Info, State) is used for handling spon-

taneous messages to the server. So, what’s a spontaneous message? If

the server is linked to another process and is trapping exits, then it

might suddenly receive a unexpected {’EXIT’, Pid, What} message. Alter-

natively, any process in the system that discovers the PID of the generic

server can just send it a message. Any message like this ends up at the

server as the value of Info.

The template entry for handle_info is as follows:

%%--

%% Function: handle_info(Info, State) -> {noreply, State} |

%% {noreply, State, Timeout} |

%% {stop, Reason, State}

%% Description: Handling all non-call/cast messages

%%--

handle_info(_Info, State) ->

{noreply, State}.

The return values are the same as for handle_cast.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=307

THE GEN_SERVER CALLBACK STRUCTURE 308

Hasta la Vista, Baby

The server can terminate for many reasons. One of the handle_Something

routines might return a {stop, Reason, NewState}, or the server might

crash with {’EXIT’, reason}. In all of these circumstances, no matter how

they occurred, terminate(Reason, NewState) will be called.

Here’s the template:

%%--

%% Function: terminate(Reason, State) -> void()

%% Description: This function is called by a gen_server when it is

%% about to terminate. It should be the opposite of Module:init/1 and

%% do any necessary

%% cleaning up. When it returns, the gen_server terminates with Reason.

%% The return value is ignored.

%%--

terminate(_Reason, State) ->

ok.

This code can’t return a new state because we’ve terminated. So, what

can we do with State? Lots of things, it turns out. We could store it on

disk, send it in a message to some other process, or discard it depend-

ing upon the applications. If you want your server to be restarted in the

future, you’ll have to write an “I’ll be back” function that is triggered by

terminate/2.

Code Change

You can dynamically change the state of your server while it is run-

ning. This callback function is called by the release handling subsystem

when the system performs a software upgrade.

This topic is described in detail in the section on release handling in

the OTP design principles documentation.5

%%--

%% Func: code_change(OldVsn, State, Extra) -> {ok, NewState} %%

%% Description: Convert process state when code is changed

%%--

code_change(_OldVsn, State, _Extra) -> {ok, State}.

5. Availiable from http://www.erlang.org/doc/pdf/design_principles.pdf.

http://www.erlang.org/doc/pdf/design_principles.pdf
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=308

CODE AND TEMPLATES 309

16.4 Code and Templates

This is built into emacs-mode:

gen_server template

Download gen_server_template.full

%%%---

%%% File : gen_server_template.full

%%% Author : my name <yourname@localhost.localdomain>

%%% Description :

%%%

%%% Created : 2 Mar 2007 by my name <yourname@localhost.localdomain>

%%%---

-module().

-behaviour(gen_server).

%% API

-export([start_link/0]).

%% gen_server callbacks

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-record(state, {}).

%%==

%% API

%%==

%%--

%% Function: start_link() -> {ok,Pid} | ignore | {error,Error}

%% Description: Starts the server

%%--

start_link() ->

gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%==

%% gen_server callbacks

%%==

%%--

%% Function: init(Args) -> {ok, State} |

%% {ok, State, Timeout} |

%% ignore |

%% {stop, Reason}

%% Description: Initiates the server

%%--

init([]) ->

{ok, #state{}}.

http://media.pragprog.com/titles/jaerlang/code/gen_server_template.full
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=309

CODE AND TEMPLATES 310

%%--

%% Function: %% handle_call(Request, From, State) -> {reply, Reply, State} |

%% {reply, Reply, State, Timeout} |

%% {noreply, State} |

%% {noreply, State, Timeout} |

%% {stop, Reason, Reply, State} |

%% {stop, Reason, State}

%% Description: Handling call messages

%%--

handle_call(_Request, _From, State) ->

Reply = ok,

{reply, Reply, State}.

%%--

%% Function: handle_cast(Msg, State) -> {noreply, State} |

%% {noreply, State, Timeout} |

%% {stop, Reason, State}

%% Description: Handling cast messages

%%--

handle_cast(_Msg, State) ->

{noreply, State}.

%%--

%% Function: handle_info(Info, State) -> {noreply, State} |

%% {noreply, State, Timeout} |

%% {stop, Reason, State}

%% Description: Handling all non call/cast messages

%%--

handle_info(_Info, State) ->

{noreply, State}.

%%--

%% Function: terminate(Reason, State) -> void()

%% Description: This function is called by a gen_server when it is about to

%% terminate. It should be the opposite of Module:init/1 and do any necessary

%% cleaning up. When it returns, the gen_server terminates with Reason.

%% The return value is ignored.

%%--

terminate(_Reason, _State) ->

ok.

%%--

%% Func: code_change(OldVsn, State, Extra) -> {ok, NewState}

%% Description: Convert process state when code is changed

%%--

code_change(_OldVsn, State, _Extra) ->

{ok, State}.

%%--

%%% Internal functions

%%--

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=310

CODE AND TEMPLATES 311

my_bank
Download my_bank.erl

-module(my_bank).

-behaviour(gen_server).

-export([start/0]).

%% gen_server callbacks

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

-compile(export_all).

start() -> gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

stop() -> gen_server:call(?MODULE, stop).

new_account(Who) -> gen_server:call(?MODULE, {new, Who}).

deposit(Who, Amount) -> gen_server:call(?MODULE, {add, Who, Amount}).

withdraw(Who, Amount) -> gen_server:call(?MODULE, {remove, Who, Amount}).

init([]) -> {ok, ets:new(?MODULE,[])}.

handle_call({new,Who}, _From, Tab) ->

Reply = case ets:lookup(Tab, Who) of

[] -> ets:insert(Tab, {Who,0}),

{welcome, Who};

[_] -> {Who, you_already_are_a_customer}

end,

{reply, Reply, Tab};

handle_call({add,Who,X}, _From, Tab) ->

Reply = case ets:lookup(Tab, Who) of

[] -> not_a_customer;

[{Who,Balance}] ->

NewBalance = Balance + X,

ets:insert(Tab, {Who, NewBalance}),

{thanks, Who, your_balance_is, NewBalance}

end,

{reply, Reply, Tab};

handle_call({remove,Who, X}, _From, Tab) ->

Reply = case ets:lookup(Tab, Who) of

[] -> not_a_customer;

[{Who,Balance}] when X =< Balance ->

NewBalance = Balance - X,

ets:insert(Tab, {Who, NewBalance}),

{thanks, Who, your_balance_is, NewBalance};

[{Who,Balance}] ->

{sorry,Who,you_only_have,Balance,in_the_bank}

end,

{reply, Reply, Tab};

handle_call(stop, _From, Tab) ->

{stop, normal, stopped, Tab}.

http://media.pragprog.com/titles/jaerlang/code/my_bank.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=311

DIGGING DEEPER 312

handle_cast(_Msg, State) -> {noreply, State}.

handle_info(_Info, State) -> {noreply, State}.

terminate(_Reason, _State) -> ok.

code_change(_OldVsn, State, Extra) -> {ok, State}.

16.5 Digging Deeper

The gen_server is actually rather simple. We haven’t been through all

the interface functions in gen_server, and we haven’t talked about all

the arguments to all the interface functions. Once you understand

the basic ideas, you can look up the details in the manual page for

gen_server.

In this chapter, we have looked only at the simplest possible way to

use gen_server, but this should be adequate for most purposes. More

complex applications often let gen_server reply with a noreply return

value and delegate the real reply to another process. For information

about this, read the “Design Principles” documentation6 and the man-

ual pages for the modules sys and proc_lib.

6. http://www.erlang.org/doc/pdf/design_principles.pdf

http://www.erlang.org/doc/pdf/design_principles.pdf
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=312

Chapter 17

Mnesia: The Erlang Database
Suppose you want to write a multiuser game, make a new website,

or create an online payment system. You’ll probably need a database

management system (DBMS).

Hidden in the thousands of files that appear on our disk when we down-

load Erlang is a complete DBMS called Mnesia. It is extremely fast, and

it can store any type of Erlang data structure.

It’s also highly configurable. Database tables can be stored in RAM (for

speed) or on disk (for persistence), and the tables can be replicated on

different machines to provide fault-tolerant behavior.

Let’s dig deeper.

17.1 Database Queries

Let’s start by looking at Mnesia queries. As we look through this, we

might be surprised to see that Mnesia queries look a lot like both SQL1

and list comprehensions, so there’s actually very little we need to learn

to get started.2

1. A popular language that is used to query relational databases.
2. In fact, it really isn’t that surprising that list comprehensions and SQL look a lot alike.

Both are based on mathematical set theory.

DATABASE QUERIES 314

In all our examples, I’ll assume that we have created a database with

two tables called shop and cost. These tables contain the following data.

The shop Table

Item Quantity Cost

apple 20 2.3

orange 100 3.8

pear 200 3.6

banana 420 4.5

potato 2456 1.2

The cost Table
Name Price

apple 1.5

orange 2.4

pear 2.2

banana 1.5

potato 0.6

To represent these tables in Mnesia, we need record definitions that

define the columns in the tables. These are as follows:

Download test_mnesia.erl

-record(shop, {item, quantity, cost}).

-record(cost, {name, price}).

Now comes a little black magic. I want to show you how queries work,

and I want you to follow along at home. But to do that I have to create

and populate the database for you. So, just for now, trust me. I’ve writ-

ten the initialization code in the file test_mnesia.erl. You can just run it

from within erl.

1> c(test_mnesia).

{ok,test_mnesia}

2> test_mnesia:do_this_once().

=INFO REPORT==== 29-Mar-2007::20:33:12 ===

application: mnesia

exited: stopped

type: temporary

stopped

Now we can move on to our examples.

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=314

DATABASE QUERIES 315

Selecting All Data in a Table

Here’s the code to select all the data in the shop table. (For those of you

who know SQL, each code fragment starts with a comment showing the

equivalent SQL to perform the corresponding operation.)

Download test_mnesia.erl

%% SQL equivalent

%% SELECT * FROM shop;

demo(select_shop) ->

do(qlc:q([X || X <- mnesia:table(shop)]));

The heart of the matter is the call to qlc:q, which compiles the query

(its parameter) into an internal form that is used to query the database.

We pass the resulting query to a function called do(), which is defined

toward the bottom of test_mnesia. It is responsible for running the ques-

tion and returning the result. To make all this easily callable from erl,

we map it to the function demo(select_shop). (The entire listing for mne-

sia_test appears at the end of this chapter.)

We can run it as follows:

1> test_mnesia:start().

ok

2> test_mnesia:reset_tables().

{atomic, ok}

3> test_mnesia:demo(select_shop).

[{shop,orange,100,3.80000},

{shop,pear,200,3.60000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,20,2.30000}]

Note: The rows in the table can come out in any order.

The line that sets up the query in this example is as follows:

qlc:q([X || X <- mnesia:table(shop)])

This looks very much like a list comprehension (see Section 3.6, List

Comprehensions, on page 61). In fact, qlc stands for query list compre-

hensions. It is one of the modules we can use to access data in an

Mnesia database.

[X || X <- mnesia:table(shop)] means “the list of X such that X is taken from

the shop Mnesia table.” The values of X are Erlang shop records.

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=315

DATABASE QUERIES 316

Note: The argument of qlc:q/1 must be a list comprehension literal and

not something that evaluates to such an expression. So, for example,

the following code is not equivalent to the code in the example:

Var = [X || X <- mnesia:table(shop)],

qlc:q(Var)

Projecting Data from a Table

Here’s a query that selects the item and quantity columns from the shop

table.

Download test_mnesia.erl

%% SQL equivalent

%% SELECT item, quantity FROM shop;

demo(select_some) ->

do(qlc:q([{X#shop.item, X#shop.quantity} || X <- mnesia:table(shop)]));

4> test_mnesia:demo(select_some).

[{orange,100},{pear,200},{banana,420},{potato,2456},{apple,20}]

In the previous query, the values of X are records of type shop. If you

recall the record syntax described in Section 3.9, Records, on page 69,

you’ll remember that X#shop.item refers to the item field of the shop

record. So, the tuple {X#shop.item, X#shop.quantity} is a tuple of the item

and quantity fields of X.

Conditionally Selecting Data from a Table

Here’s a query that lists all items in the shop table where the number

of items in stock is less than 250. Maybe we’ll use this query to decide

which items to reorder.

Download test_mnesia.erl

%% SQL equivalent

%% SELECT shop.item FROM shop

%% WHERE shop.quantity < 250;

demo(reorder) ->

do(qlc:q([X#shop.item || X <- mnesia:table(shop),

X#shop.quantity < 250

]));

5> test_mnesia:demo(reorder).

[orange,pear,apple]

Notice how the condition is described naturally as part of the list com-

prehension.

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=316

ADDING AND REMOVING DATA IN THE DATABASE 317

Selecting Data from Two Tables (Joins)

Now let’s suppose that we want to reorder an item only if there are fewer

than 250 items in stock and the item costs less than 2.0 currency units.

To do this, we need to access two tables. Here’s the query:

Download test_mnesia.erl

%% SQL equivalent

%% SELECT shop.item, shop.quantity, cost.name, cost.price

%% FROM shop, cost

%% WHERE shop.item = cost.name

%% AND cost.price < 2

%% AND shop.quantity < 250

demo(join) ->

do(qlc:q([X#shop.item || X <- mnesia:table(shop),

X#shop.quantity < 250,

Y <- mnesia:table(cost),

X#shop.item =:= Y#cost.name,

Y#cost.price < 2

])).

6> test_mnesia:demo(join).

[apple]

The key here is the join between the name of the item in the shop table

and the name in the cost table:

X#shop.item =:= Y#cost.name

17.2 Adding and Removing Data in the Database

Again, we’ll assume we have created our database and defined a shop

table. Now we want to add or remove a row from the table.

Adding a Row

We can add a row to the shop table as follows:

Download test_mnesia.erl

add_shop_item(Name, Quantity, Cost) ->

Row = #shop{item=Name, quantity=Quantity, cost=Cost},

F = fun() ->

mnesia:write(Row)

end,

mnesia:transaction(F).

This creates a shop record and inserts it into the table:

1> test_mnesia:start().

ok

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=317

ADDING AND REMOVING DATA IN THE DATABASE 318

2> test_mnesia:reset_tables().

{atomic, ok}

%% list the shop table

3> test_mnesia:demo(select_shop).

[{shop,orange,100,3.80000},

{shop,pear,200,3.60000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,20,2.30000}]

%% add a new row

4> test_mnesia:add_shop_item(orange, 236, 2.8).

{atomic,ok}

%% list the shop table again so we can see the change

5> test_mnesia:demo(select_shop).

[{shop,orange,236,2.80000},

{shop,pear,200,3.60000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,20,2.30000}]

Note: The primary key of the shop table is the first column in the table,

that is, the item field in the shop record. The table is of type “set” (see a

discussion of the set and bag types in Section 15.2, Types of Table, on

page 275). If the newly created record has the same primary key as an

existing row in the database table, it will overwrite that row; otherwise,

a new row will be created.

Removing a Row

To remove a row, we need to know the object ID (OID) of the row. This

is formed from the table name and the value of the primary key:

Download test_mnesia.erl

remove_shop_item(Item) ->

Oid = {shop, Item},

F = fun() ->

mnesia:delete(Oid)

end,

mnesia:transaction(F).

6> test_mnesia:remove_shop_item(pear).

{atomic,ok}

%% list the table -- the pear has gone

7> test_mnesia:demo(select_shop).

[{shop,orange,236,2.80000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,20,2.30000}]

[{shop,orange,236,2.80000},

8> mnesia:stop().

ok

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=318

MNESIA TRANSACTIONS 319

17.3 Mnesia Transactions

When we added or removed data from the database or performed a

query, we wrote the code something like this:

do_something(...) ->

F = fun() ->

% ...

mnesia:write(Row)

% ... or ...

mnesia:delete(Oid)

% ... or ...

qlc:e(Q)

end,

mnesia:transaction(F)

F is a fun with zero arguments. Inside F we called some combination of

mnesia:write/1, mnesia:delete/1, or qlc:e(Q) (where Q is a query compiled

with qlc:q/1). Having built the fun, we call mnesia:transaction(F), which

evaluates the expression sequence in the fun.

Why do we do this? What does the transaction mean? To answer this,

suppose we have two processes that try to simultaneously access the

same data. For example, suppose I have $10 in my bank account.

Now suppose two people try to simultaneously withdraw $8 from that

account. What I would like to happen is that one of these transactions

succeeds and the other fails.

This is exactly the guarantee that mnesia:transaction/1 provides. Either

all the reads and writes to the tables in the database within a particular

transaction succeed, or none of them does. If none of them does, the

transaction is said to fail. If the transaction fails, no changes will be

made to the database.

The strategy that Mnesia uses for this is a form of pessimistic locking.

Whenever the Mnesia transaction manager accesses a table, it tries

to lock the record or the entire table depending upon the context. If

it detects that this might lead to deadlock, it immediately aborts the

transaction and undoes any changes it has made.

If the transaction initially fails because some other process is accessing

the data, the system waits for a short time and retries the transaction.

One consequence of this is that the code inside the transaction fun

might be evaluated a large number of times.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=319

MNESIA TRANSACTIONS 320

For this reason, the code inside a transaction fun should not do any-

thing that has any side effects. For example, if we were to write the

following:

F = fun() ->

...

io:format("reading ..."), %% don't do this

...

end,

mnesia:transaction(F),

we might get a lot of output, since the fun might be retried many times.

Note 1: mnesia:write/1 and mnesia:delete/1 should be called only inside a

fun that is processed by mnesia:transaction/1.

Note 2: You should never write code to explicitly catch exceptions in

the Mnesia access functions (mnesia:write/1, mnesia:delete/1, and so on)

since the Mnesia transaction mechanism itself relies upon these func-

tions throwing exceptions on failure. If you catch these exceptions and

try to process them yourself, you will break the transaction mechanism.

Aborting a Transaction

Near to our shop, there’s a farm. And the farmer grows apples. The

farmer loves oranges, and he pays for the oranges with apples. The

going rate is two apples for each orange. So, to buy N oranges, the

farmer pays 2*N apples.

Here’s a function that updates the database when the farmer buys

some oranges:

Download test_mnesia.erl

farmer(Nwant) ->

%% Nwant = Number of oranges the farmer wants to buy

F = fun() ->

%% find the number of apples

[Apple] = mnesia:read({shop,apple}),

Napples = Apple#shop.quantity,

Apple1 = Apple#shop{quantity = Napples + 2*Nwant},

%% update the database

mnesia:write(Apple1),

%% find the number of oranges

[Orange] = mnesia:read({shop,orange}),

NOranges = Orange#shop.quantity,

if

NOranges >= Nwant ->

N1 = NOranges - Nwant,

Orange1 = Orange#shop{quantity=N1},

%% update the database

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=320

MNESIA TRANSACTIONS 321

mnesia:write(Orange1);

true ->

%% Oops -- not enough oranges

mnesia:abort(oranges)

end

end,

mnesia:transaction(F).

This code is written in a pretty stupid way because I want to show how

the transaction mechanism works. First, I update the number of apples

in the database. This is done before I check the number of oranges.

The reason I do this is to show that this change gets “undone” if the

transaction fails. Normally, I’d delay writing the orange and apple data

back to the database until I was sure I had enough oranges.

Let’s show this in operation. In the morning, the farmer comes in and

buys 50 oranges:

1> test_mnesia:start().

ok

2> test_mnesia:reset_tables().

{atomic, ok}

%% List the shop table

3> test_mnesia:demo(select_shop).

[{shop,orange,100,3.80000},

{shop,pear,200,3.60000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,20,2.30000}]

%% The farmer buys 50 oranges

%% paying with 100 apples

4> test_mnesia:farmer(50).

{atomic,ok}

%% Print the shop table again

5> test_mnesia:demo(select_shop).

[{shop,orange,50,3.80000},

{shop,pear,200,3.60000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,120,2.30000}]

In the afternoon the farmer wants to buy 100 more oranges (boy, does

this guy love oranges):

6> test_mnesia:farmer(100).

{aborted,oranges}

7> test_mnesia:demo(select_shop).

[{shop,orange,50,3.80000},

{shop,pear,200,3.60000},

{shop,banana,420,4.50000},

{shop,potato,2456,1.20000},

{shop,apple,120,2.30000}]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=321

MNESIA TRANSACTIONS 322

Why Is the DBMS Called Mnesia?

The original name was Amnesia. One of our bosses didn’t like
the name. He said, “You can’t possibly call it Amnesia—you
can’t have a database that forgets things!” So we dropped
the A, and the name stuck.

When the transaction failed (when we called mnesia:abort(Reason)), the

changes made by mnesia:write were undone. Because of this, the data-

base state was restored to how it was before we entered the transaction.

Loading the Test Data

Now we know how transactions work, so we can look at the code for

loading the test data.

The function test_mnesia:example_tables/0 is used to provide data to ini-

tialize the database tables. The first element of the tuple is the table

name. This is followed by the table data in the order given in the origi-

nal record definitions.

Download test_mnesia.erl

example_tables() ->

[%% The shop table

{shop, apple, 20, 2.3},

{shop, orange, 100, 3.8},

{shop, pear, 200, 3.6},

{shop, banana, 420, 4.5},

{shop, potato, 2456, 1.2},

%% The cost table

{cost, apple, 1.5},

{cost, orange, 2.4},

{cost, pear, 2.2},

{cost, banana, 1.5},

{cost, potato, 0.6}

].

Here’s the code that inserts data into Mnesia from the example tables:

Download test_mnesia.erl

reset_tables() ->

mnesia:clear_table(shop),

mnesia:clear_table(cost),

F = fun() ->

foreach(fun mnesia:write/1, example_tables())

end,

mnesia:transaction(F).

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=322

STORING COMPLEX DATA IN TABLES 323

This just calls mnesia:write for each tuple in the list returned by exam-

ple_tables/1.

The do() Function

The do function called by demo/1 is slightly more complex:

Download test_mnesia.erl

do(Q) ->

F = fun() -> qlc:e(Q) end,

{atomic, Val} = mnesia:transaction(F),

Val.

This calls qlc:e(Q) inside an Mnesia transaction. Q is a compiled QLC

query, and qlc:e(Q) evaluates the query and returns all answers to the

query in a list. The return value {atomic, Val} means that the transaction

succeeded with value Val. Val is the value of the transaction function.

17.4 Storing Complex Data in Tables

If you’re a C programmer, how would you store a C struct in a SQL

database? Or if you’re a Java programmer, how would you store an

object in a SQL database? The answer—with great difficulty.

One of the disadvantages of using a conventional DBMS is that there

are a limited number of data types you can store in a table column.

You can store an integer, a string, a float, and so on. But if you want to

store a complex object, then you’re in trouble.

Mnesia is designed to store Erlang data structures. In fact, you can

store any Erlang data structure you want in an Mnesia table.

To illustrate this, we’ll suppose that a number of architects want to

store their designs in an Mnesia database. To start with, we must define

a record to represent their designs:

Download test_mnesia.erl

-record(design, {id, plan}).

Then we can define a function that adds some designs to the database:

Download test_mnesia.erl

add_plans() ->

D1 = #design{id = {joe,1},

plan = {circle,10}},

D2 = #design{id = fred,

plan = {rectangle,10,5}},

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=323

STORING COMPLEX DATA IN TABLES 324

D3 = #design{id = {jane,{house,23}},

plan = {house,

[{floor,1,

[{doors,3},

{windows,12},

{rooms,5}]},

{floor,2,

[{doors,2},

{rooms,4},

{windows,15}]}]}},

F = fun() ->

mnesia:write(D1),

mnesia:write(D2),

mnesia:write(D3)

end,

mnesia:transaction(F).

Now we can add some designs to the database:

1> test_mnesia:start().

ok

2> test_mnesia:add_plans().

{atomic,ok}

Now we have some plans in the database. We can extract these with the

following access function:

Download test_mnesia.erl

get_plan(PlanId) ->

F = fun() -> mnesia:read({design, PlanId}) end,

mnesia:transaction(F).

3> test_mnesia:get_plan(fred).

{atomic,[{design,fred,{rectangle,10,5}}]}

4> test_mnesia:get_plan({jane, {house,23}}).

{atomic,[{design,{jane,{house,23}},

{house,[{floor,1,[{doors,3},

{windows,12},

{rooms,5}]},

{floor,2,[{doors,2},

{rooms,4},

{windows,15}]}]}}]}

As you can see, both the database key and the extracted record can be

arbitrary Erlang terms.

In technical terms, we say there is no “impedance mismatch” between

the data structures in the database and the data structures in our

programming language. This means that inserting and deleting complex

data structures into the database is very fast.

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=324

TABLE TYPES AND LOCATION 325

Fragmented Tables

Mnesia supports “fragmented tables.” (horizontal partitioning
in database terminology). This is designed for implementing
extremely large tables. The tables are split into fragments that
are stored on different machines. The fragments are themselves
Mnesia tables. The fragments can be replicated, have indexes,
and so on, as for any other table.

Refer to the Mnesia User’s Guide for more details.

17.5 Table Types and Location

We can configure Mnesia tables in many different ways. First, tables

can be in RAM or on disk (or both). Second, tables can be located on a

single machine or replicated on several machines.

When we design our tables, we must think about the type of data we

want to store in the tables. Here are the properties of the tables:

RAM tables

These are very fast. The data in them is transient so it will be lost

if the machine crashes or when you stop the DBMS.

Disk tables

Disk tables should survive a crash (provided the disk is not phys-

ically damaged).

When an Mnesia transaction writes to a table and the table is

stored on disk, what actually happens is that the transaction data

is first written to a disk log. This disk log grows continuously, and

at regular intervals the information in the disk log is consolidated

with the other data in the database, and the entry in the disk log

is cleared. If the system crashes, then the next time the system

is restarted, the disk log is checked for consistency, and any out-

standing entries in the log are added to the database before the

database is made available. Once a transaction has succeeded,

the data should have been properly written to the disk log, and if

the system fails after this, then when the system is next restarted,

changes made in the transaction should survive the crash.

If the system crashes during a transaction, then the changes made

to the database should be lost.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=325

TABLE TYPES AND LOCATION 326

Before using a RAM table, you need to perform some experiments to

see whether the entire table will fit into physical memory. If the RAM

tables don’t fit into physical memory, the system will page a lot, which

will be bad for performance.

Since RAM tables are transient, we need to ask ourselves the ques-

tion, Does it matter whether all the data in our RAM table is lost? If

the answer is yes, we will need to replicate the RAM table on disk or

replicate on a second machine (as a RAM or disk table, or both).

Creating Tables

To create a table, we call mnesia:create_table(Name, ArgS), where ArgS is

a list of {Key,Val} tuples. create_table returns {atomic, ok} if the table was

successfully created; otherwise, it returns {aborted, Reason}.

Some of the most common arguments to create_table are as follows:

Name

This is the name of the table (an atom). By convention, it is the

name of an Erlang record—the table rows will be instances of this

record.

{type, Type}

This specifies the type of the table. Type is one of set, ordered_set,

or bag. These types have the same meaning as described in Sec-

tion 15.2, Types of Table, on page 275.

{disc_copies, NodeList}

NodeList is a list of the Erlang nodes where disk copies of the table

will be stored. When we use this option, the system will also create

a RAM copy of the table on the node where we performed this

operation.

It is possible to have a replicated table of type disc_copies on one

node and to have the same table stored as a different table type

on a different node. This is desirable if we want the following:

1. Read operations to be very fast and performed from RAM

2. Write operations to be performed to persistent storage

{ram_copies, NodeList}

NodeList is a list of the Erlang nodes where RAM copies of the table

will be stored.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=326

TABLE TYPES AND LOCATION 327

{disc_only_copies, NodeList}

NodeList is a list of the Erlang nodes where disk-only copies of data

are stored. These tables have no RAM replicas and are slower to

access.

{attributes, AtomList}

This is a list of the column names of the values in a particular

table. Note that to create a table containing the Erlang record xxx,

we can use the syntax {attribute, record_info(fields, xxx)} (alternatively

we can specify an explicit list of record field names).

Note: There are more options to create_table than I have shown here.

Refer to the manual page for mnesia for details of all the options.

Common Combinations of Table Attributes

In all the following, we’ll assume that Attrs is an {attributes,...} tuple.

Here are some common table configuration options that cover the most

common cases:

mnesia:create_table(shop, [Attrs])

• RAM resident on a single node.

• If the node crashes, the table will be lost.

• Fastest of all methods.

• Table must fit in memory.

mnesia:create_table(shop,[Attrs,{disc_copies,[node()]}])

• RAM + disk copy on a single node.

• If the node crashes, the table will be recovered from disk.

• Fast reads, slower writes.

• The table should fit in memory.

mnesia:create_table(shop, [Attrs,{disc_only_copies,[node()]}])

• Disk-only copy on a single node.

• Large tables don’t have to fit in memory.

• Slower than with RAM replicas.

mnesia:create_table(shop,

[Attrs,{ram_copies,[node(),someOtherNode()]})

• RAM resident table on two nodes.

• If both nodes crash, the table will be lost.

• The table must fit into memory.

• The table can be accessed on either node.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=327

CREATING THE INITIAL DATABASE 328

mnesia:create_table(shop,

[Attrs, {disc_copies, [node(),someOtherNode()]}])

• Disk copies on two nodes.

• Can resume on either node.

• Survives double crash.

Table Behavior

When a table is replicated across several Erlang nodes, it is synchro-

nized as far as possible. If one node crashes, the system will still work,

but the number of replicas will be reduced. When the crashed node

comes back online, it will resynchronize with the other nodes where

the replicas are kept.

Note: Mnesia may become overloaded if the nodes running Mnesia stop

functioning. If you are using a laptop that goes to sleep, when it re-

starts, Mnesia might become temporarily overloaded and produce a

number of warning messages. We can ignore these messages.

17.6 Creating the Initial Database

Here is a session that creates an Mnesia database. You need to do this

only once.

$ erl

1> mnesia:create_schema([node()]).

ok

2> init:stop().

ok

$ ls

Mnesia.nonode@nohost

mnesia:create_schema(NodeList) initiates a new Mnesia database on all

the nodes in NodeList (which must be a list of valid Erlang nodes).

In our case, we gave the node list as [node()], that is, the current

node. Mnesia is initialized and creates a directory structure called Mne-

sia.nonode@nohost to store the database. Then we exit from the Erlang

shell and issue the operating system’s ls command to verify this.

If we repeat the exercise with a distributed node called joe, we get the

following:

$ erl -name joe

(joe@doris.myerl.example.com) 1> mnesia:create_schema([node()]).

mnesia:create_schema([node()]).

ok

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=328

THE TABLE VIEWER 329

Figure 17.1: Table viewer initial screen

2> init:stop().

ok

$ ls

Mnesia.joe@doris.myerl.example.com

Or we can point to a specific database when we start Erlang:

$ erl -mnesia dir '"/home/joe/some/path/to/Mnesia.company"'

1> mnesia:create_schema([node()]).

ok

2> init:stop().

ok

/home/joe/some/path/to/Mnesia.company is the name of the directory in

which the database will be stored.

17.7 The Table Viewer

The table viewer is a GUI for viewing Mnesia and ETS tables. The com-

mand tv:start() starts the table viewer. You’ll see the initial display screen

similar to Figure 17.1. To see the tables in Mnesia, you have to select

View > Tab. We can see the table viewer displaying the shop table in

Figure 17.2, on the next page.

17.8 Digging Deeper

I hope I’ve whetted your appetite for Mnesia. Mnesia is a very power-

ful DBMS. It has been in production use in a number of demanding

telecom applications delivered by Ericsson since 1998.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=329

DIGGING DEEPER 330

Figure 17.2: Table viewer

Since this is a book about Erlang and not Mnesia, I can’t really do

any more than just give a few examples of the most common ways to

use Mnesia. The techniques I’ve shown in this chapter are those I use

myself. I don’t actually use (or understand) much more than what I’ve

shown you. But with what I’ve shown you, you can have a lot of fun

and build some pretty sophisticated applications.

The main areas I’ve omitted are as follows:

• Backup and recovery: Mnesia has a range of options for config-

uring backup operations allowing for different types of disaster

recovery.

• Dirty operations: Mnesia allows a number of dirty operations

(dirty_read, dirty_write, ...). These are operations that are performed

outside a transaction context. These are very dangerous opera-

tions that can be used if you know that your application is single-

threaded or under other special circumstances. Dirty operations

are used for efficiency reasons.

• SNMP tables: Mnesia has a built-in SNMP table type. This makes

implementing SNMP management systems very easy.

The definitive reference to Mnesia is the Mnesia User’s Guide available

from the main Erlang distribution site (see Appendix C, on page 399). In

addition, the examples subdirectory in the Mnesia distribution

(/usr/local/lib/erlang/lib/mnesia-X.Y.Z/examples on my machine) has some

Mnesia examples.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=330

LISTINGS 331

17.9 Listings

Download test_mnesia.erl

-module(test_mnesia).

-import(lists, [foreach/2]).

-compile(export_all).

%% IMPORTANT: The next line must be included

%% if we want to call qlc:q(...)

-include_lib("stdlib/include/qlc.hrl").

-record(shop, {item, quantity, cost}).

-record(cost, {name, price}).

-record(design, {id, plan}).

do_this_once() ->

mnesia:create_schema([node()]),

mnesia:start(),

mnesia:create_table(shop, [{attributes, record_info(fields, shop)}]),

mnesia:create_table(cost, [{attributes, record_info(fields, cost)}]),

mnesia:create_table(design, [{attributes, record_info(fields, design)}]),

mnesia:stop().

start() ->

mnesia:start(),

mnesia:wait_for_tables([shop,cost,design], 20000).

%% SQL equivalent

%% SELECT * FROM shop;

demo(select_shop) ->

do(qlc:q([X || X <- mnesia:table(shop)]));

%% SQL equivalent

%% SELECT item, quantity FROM shop;

demo(select_some) ->

do(qlc:q([{X#shop.item, X#shop.quantity} || X <- mnesia:table(shop)]));

%% SQL equivalent

%% SELECT shop.item FROM shop

%% WHERE shop.quantity < 250;

demo(reorder) ->

do(qlc:q([X#shop.item || X <- mnesia:table(shop),

X#shop.quantity < 250

]));

http://media.pragprog.com/titles/jaerlang/code/test_mnesia.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=331

LISTINGS 332

%% SQL equivalent

%% SELECT shop.item, shop.quantity, cost.name, cost.price

%% FROM shop, cost

%% WHERE shop.item = cost.name

%% AND cost.price < 2

%% AND shop.quantity < 250

demo(join) ->

do(qlc:q([X#shop.item || X <- mnesia:table(shop),

X#shop.quantity < 250,

Y <- mnesia:table(cost),

X#shop.item =:= Y#cost.name,

Y#cost.price < 2

])).

do(Q) ->

F = fun() -> qlc:e(Q) end,

{atomic, Val} = mnesia:transaction(F),

Val.

example_tables() ->

[%% The shop table

{shop, apple, 20, 2.3},

{shop, orange, 100, 3.8},

{shop, pear, 200, 3.6},

{shop, banana, 420, 4.5},

{shop, potato, 2456, 1.2},

%% The cost table

{cost, apple, 1.5},

{cost, orange, 2.4},

{cost, pear, 2.2},

{cost, banana, 1.5},

{cost, potato, 0.6}

].

add_shop_item(Name, Quantity, Cost) ->

Row = #shop{item=Name, quantity=Quantity, cost=Cost},

F = fun() ->

mnesia:write(Row)

end,

mnesia:transaction(F).

remove_shop_item(Item) ->

Oid = {shop, Item},

F = fun() ->

mnesia:delete(Oid)

end,

mnesia:transaction(F).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=332

LISTINGS 333

farmer(Nwant) ->

%% Nwant = Number of oranges the farmer wants to buy

F = fun() ->

%% find the number of apples

[Apple] = mnesia:read({shop,apple}),

Napples = Apple#shop.quantity,

Apple1 = Apple#shop{quantity = Napples + 2*Nwant},

%% update the database

mnesia:write(Apple1),

%% find the number of oranges

[Orange] = mnesia:read({shop,orange}),

NOranges = Orange#shop.quantity,

if

NOranges >= Nwant ->

N1 = NOranges - Nwant,

Orange1 = Orange#shop{quantity=N1},

%% update the database

mnesia:write(Orange1);

true ->

%% Oops -- not enough oranges

mnesia:abort(oranges)

end

end,

mnesia:transaction(F).

reset_tables() ->

mnesia:clear_table(shop),

mnesia:clear_table(cost),

F = fun() ->

foreach(fun mnesia:write/1, example_tables())

end,

mnesia:transaction(F).

add_plans() ->

D1 = #design{id = {joe,1},

plan = {circle,10}},

D2 = #design{id = fred,

plan = {rectangle,10,5}},

D3 = #design{id = {jane,{house,23}},

plan = {house,

[{floor,1,

[{doors,3},

{windows,12},

{rooms,5}]},

{floor,2,

[{doors,2},

{rooms,4},

{windows,15}]}]}},

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=333

LISTINGS 334

F = fun() ->

mnesia:write(D1),

mnesia:write(D2),

mnesia:write(D3)

end,

mnesia:transaction(F).

get_plan(PlanId) ->

F = fun() -> mnesia:read({design, PlanId}) end,

mnesia:transaction(F).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=334

Chapter 18

Making a System with OTP
In this chapter, we’re going to make a system that could function as

the back end of a web-based company. Our company has two items for

sale: prime numbers and areas. Customers can buy a prime number

from us, or we’ll calculate the area of a geometric object for them. I

think our company has great potential.

We’ll build two servers: one to generate prime numbers and the other

to compute areas. To do this, we’ll use the gen_server framework that

we talked about in Section 16.2, Getting Started with gen_server, on

page 301.

When we build the system, we have to think about errors. Even though

we have thoroughly tested our software, we might not have caught all

the bugs. We’ll assume that one of our servers has a fatal error that

crashes the server. In fact, we’ll introduce a deliberate error into one of

the servers that will cause it to crash.

When the server crashes, we’ll need some mechanism to detect the fact

that it has crashed and to restart it. For this we’ll use the idea of a

supervision tree. We’ll create a supervisor that watches over our servers

and restarts them if they crash.

Of course, if a server does crash, we’ll want to know why it crashed so

that we can fix the problem later. To log all errors, we’ll use the OTP

error logger. We’ll show how to configure the error logger and how to

generate error reports from the error logs.

GENERIC EVENT HANDLING 336

When we’re computing prime numbers and, in particular large prime

numbers, our CPU might overheat. To prevent this, we’ll need to turn

on a powerful fan. To do so, we’ll need to think about alarms. We’ll use

the OTP event handling framework to generate and handle alarms.

All of these topics (creating a server, supervising a server, logging errors,

and detecting alarms) are typical problems that have to be solved in

any production system. So even though our company might have a

rather uncertain future, we can reuse the architecture here in many

systems. In fact, this architecture is used in a number of commercially

successful companies.

Finally, when everything works, we’ll package all our code into an OTP

application. This is a specialized way of grouping everything that has to

do with a particular problem so that it can be started and stopped and

managed by the OTP system itself.

The order in which this material is presented is slightly tricky since

there are many circular dependencies between the different areas.

Error logging is just a special case of event management. Alarms are

just events, the error logger is a supervised process, but the process

supervisor can call the error logger.

I’ll try to impose some order here and present these topics in an order

that makes some kind of sense. We’ll do the following:

1. We’ll look at the ideas used in a generic event handler.

2. We’ll see how the error logger works.

3. We’ll add alarm management.

4. We’ll write two application servers.

5. We’ll make a supervision tree and add the servers to it.

6. We’ll package everything into an application.

18.1 Generic Event Handling

An event is just something that happens—something noteworthy that

the programmer thinks somebody should do something about.

When we’re programming and something noteworthy happens, we just

send an event message to a registered process, like this:

RegProcName ! {event, E}

E is the event (any Erlang term). RegProcName is the name of a regis-

tered process.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=336

GENERIC EVENT HANDLING 337

We don’t know (or care) what happens to the message after we have

sent it. We have done our job and told somebody else that something

has happened.

Now let’s turn our attention to the process that receives the event mes-

sages. This is called an event handler. The simplest possible event han-

dler is a “do nothing” handler. When it receives an {event, X} message, it

does nothing with the event; it just throws it away.

Here’s our first attempt at a generic event handler program:

Download event_handler.erl

-module(event_handler).

-export([make/1, add_handler/2, event/2]).

%% make a new event handler called Name

%% the handler function is noOp -- so we do nothing with the event

make(Name) ->

register(Name, spawn(fun() -> my_handler(fun no_op/1) end)).

add_handler(Name, Fun) -> Name ! {add, Fun}.

%% generate an event

event(Name, X) -> Name ! {event, X}.

my_handler(Fun) ->

receive

{add, Fun1} ->

my_handler(Fun1);

{event, Any} ->

(catch Fun(Any)),

my_handler(Fun)

end.

no_op(_) -> void.

The event handler API is as follows:

event_handler:make(Name)

Make a “do nothing” event handler called Name (an atom). This

provides a place to which to send events.

event_handler:event(Name, X)

Send the event X to the event handler called Name.

event_handler:add_handler(Name, Fun)

Add a handler Fun to the event handler called Name. Now when an

event X occurs, the event handler will evaluate Fun(X).

http://media.pragprog.com/titles/jaerlang/code/event_handler.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=337

GENERIC EVENT HANDLING 338

Now we’ll create an event handler and generate an error:

1> event_handler:make(errors).

true

2> event_handler:event(errors, hi).

{event,hi}

Nothing special happens, because we haven’t installed a callback mod-

ule in the event handler.

To get the event handler to do something, we have to write a callback

module and install it in the event handler. Here’s the code for an event

handler callback module:

Download motor_controller.erl

-module(motor_controller).

-export([add_event_handler/0]).

add_event_handler() ->

event_handler:add_handler(errors, fun controller/1).

controller(too_hot) ->

io:format("Turn off the motor~n");

controller(X) ->

io:format("~w ignored event: ~p~n",[?MODULE, X]).

Once this has been compiled, it can be installed:

3> c(motor_controller).

{ok,motor_controller}

4> motor_controller:add_event_handler().

{add,#Fun<motor_controller.0.99476749>}

Now when we send events to the handler, they are processed by the

motor_controller:controller/1 function:

5> event_handler:event(errors, cool).

motor_controller ignored event: cool

{event,cool}

6> event_handler:event(errors, too_hot).

Turn off the motor

{event,too_hot}

What was the point of this exercise? First we provided a name to which

to send events. In this case, it was the registered process called errors.

Then we defined a protocol to send events to this registered process.

But we did not say what would happen to the message when it got

there. In fact, all that happened was that we evaluated noOp(X). Then

at a later stage we installed a custom event handler.

http://media.pragprog.com/titles/jaerlang/code/motor_controller.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=338

THE ERROR LOGGER 339

Very Late Binding with “Change Your Mind”

Suppose we write a function that hides the event_handler:event

routine from the programmer. For example, say we write the
following:

Download lib_misc.erl

too_hot() ->
event_handler:event(errors, too_hot).

Then we tell the programmer to call lib_misc:too_hot() in their
code when things go wrong. In most programming languages,
the call to the function too_hot will be statically or dynamically
linked to the code that calls the function. Once it has been
linked, it will perform a fixed job depending upon the code.
If we change our mind later and decide that we want to do
something else, we have no easy way of changing the behav-
ior of the system.

The Erlang way of handling events is completely different. It
allows us to decouple the generation of the event from the
processing of the event. We can change the processing at any
time we want by just sending a new handler function to the
event handler. Nothing is statically linked, and the event han-
dlers can be changed whenever you want.

Using this mechanism, we can build systems that evolve with
time and that never need to be stopped to upgrade the code.

Note: This is not “late binding”—it’s “very late binding, and you
can change your mind later.”

You might be a little puzzled here. Why have we talked about event

handlers? The key point to note is that the event handler provides an

infrastructure where we can install custom handlers.

The error logger infrastructure follows the event handler pattern. We

can install different handlers in the error logger to get it to do different

things. The alarm handling infrastructure also follows this pattern.

18.2 The Error Logger

The OTP system comes packaged with a customizable error logger. We

can look at the error logger from three points of view. The programmer

view concerns the function calls that programmers make in their code

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=339

THE ERROR LOGGER 340

in order to log an error. The configuration view is concerned with where

and how the error logger stores its data. The report view is concerned

with the analysis of errors after they have occurred. We’ll look at each

of these in turn.

Logging an Error

As far as the programmer is concerned, the API to the error logger is

simple. Here’s a simple subset of the API:

@spec error_logger:error_msg(String) -> ok

Send an error message to the error logger.

1> error_logger:error_msg("An error has occurred\n").

=ERROR REPORT==== 28-Mar-2007::10:46:28 ===

An error has occurred

ok

@spec error_logger:error_msg(Format, Data) -> ok

Send an error message to the error logger. The arguments are the

same as for io:format(Format, Data).

2> error_logger:error_msg("~s, an error has occurred\n", ["Joe"]).

=ERROR REPORT==== 28-Mar-2007::10:47:09 ===

Joe, an error has occurred

ok

@spec error_logger:error_report(Report) -> ok

Send a standard error report to the error logger.

• @type Report = [{Tag, Data} | term()] | string() | term()]

• @type Tag = term()

• @type Data = term()

3> error_logger:error_report([{tag1,data1},a_term,{tag2,data}]).

=ERROR REPORT==== 28-Mar-2007::10:51:51 ===

tag1: data1

a_term

tag2: data

This is only a subset of the available API. Discussing this in detail is

not particularly interesting. We’ll use only error_msg in our programs

anyway. The full details are in the error_logger manual page.

Configuring the Error Logger

We can configure the error logger in many ways. We can see all errors in

the Erlang shell (this is the default if we don’t do anything special). We

can write all errors that are reported in the shell into a single format-

ted text file. Finally, we can create a rotating log. You can think of the

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=340

THE ERROR LOGGER 341

rotating log as a large circular buffer containing messages produced by

the error logger. As new messages come, they are appended to the end

of the log, and when the log is full, the earliest entries in the log are

deleted.

The rotating log is extremely useful. You decide how many files the log

should occupy and how big each individual log file should be, and the

system takes care of deleting old log files and creating new files in a

large circular buffer. You can size the log to keep a record of the last

few days of operations, which is usually sufficient for most purposes.

The Standard Error Loggers

When we start Erlang, we can give the system a boot argument:

$ erl -boot start_clean

This creates an environment suited for program development.

Only a simple form of error logging is provided. (The command

erl with no boot argument is equivalent to erl -boot start_clean.)

$ erl -boot start_sasl

This creates an environment suitable for running a production

system. System Architecture Support Libraries (SASL) takes care

of error logging, overload protection, and so on.

Log file configuration is best done from configuration files, because

nobody can ever remember all the arguments to the logger. In the fol-

lowing sections, we’ll look at how the default system works and then

look at four specific configurations that change how the error logger

works.

SASL with No Configuration

Here’s what happens when we start SASL with no configuration file:

$ erl -boot start_sasl

Erlang (BEAM) emulator version 5.5.3 [async-threads:0] ...

=PROGRESS REPORT==== 27-Mar-2007::11:49:12 ===

supervisor: {local,sasl_safe_sup}

started: [{pid,<0.32.0>},

{name,alarm_handler},

{mfa,{alarm_handler,start_link,[]}},

{restart_type,permanent},

{shutdown,2000},

{child_type,worker}]

... many lines removed ...

Eshell V5.5.3 (abort with ^G)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=341

THE ERROR LOGGER 342

Now we’ll call one of the routines in error_logger to report an error:

1> error_logger:error_msg("This is an error\n").

=ERROR REPORT==== 27-Mar-2007::11:53:08 ===

This is an error

ok

Note the error is reported in the Erlang shell. Where the error is re-

ported depends upon the error logger configuration.

Controlling What Gets Logged

The error logger produces a number of types of report:

Supervisor reports

These are issued whenever an OTP supervisor starts or stops a

supervised process (we’ll talk about supervisors in Section 18.5,

The Supervision Tree, on page 351).

Progress reports

These are issued whenever an OTP supervisor starts or stops.

Crash reports

These are issued when a process started by an OTP behavior ter-

minates with an exit reason other than normal or shutdown.

These three reports are produced automatically without the program-

mer having to do anything.

In addition, we can explicitly call routines in the error_handler module to

produce three types of log report. These let us log errors, warnings, and

informational messages. These three terms have no semantic meaning;

they are merely tags used by the programmer to indicate the nature of

the entry in the error log.

Later, when the error log is analyzed, we can use these tags to help

us decide which log entry to investigate. When we configure the error

logger, we can choose to save only errors and discard all other types of

entry. Now we’ll write the configuration file elog1.config to configure the

error logger:

Download elog1.config

%% no tty

[{sasl, [

{sasl_error_logger, false}

]}].

http://media.pragprog.com/titles/jaerlang/code/elog1.config
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=342

THE ERROR LOGGER 343

If we start the system with this configuration file, we’ll get only error

reports and not progress reports and so on. All these error reports are

only in the shell.

$ erl -boot start_sasl -config elog1

1> error_logger:error_msg("This is an error\n").

=ERROR REPORT==== 27-Mar-2007::11:53:08 ===

This is an error

ok

Text File and Shell

The next configuration file lists error reports in the shell, and a copy of

everything reported in the shell is also made to a file:

Download elog2.config

%% single text file - minimal tty

[{sasl, [

%% All reports go to this file

{sasl_error_logger, {file, "/home/joe/error_logs/THELOG"}}

]}].

To test this, we start Erlang, generate an error message, and then look

in the log file:

$ erl -boot start_sasl -config elog2

1> error_logger:error_msg("This is an error\n").

=ERROR REPORT==== 27-Mar-2007::11:53:08 ===

This is an error ok

If we now look in /home/joe/error_logs/THELOG, we’ll find it starts like this:

=PROGRESS REPORT==== 28-Mar-2007::11:30:55 ===

supervisor: {local,sasl_safe_sup}

started: [{pid,<0.34.0>},

{name,alarm_handler},

{mfa,{alarm_handler,start_link,[]}},

{restart_type,permanent},

{shutdown,2000},

{child_type,worker}]

...

Rotating Log and Shell

This configuration gives us shell output plus a copy of everything that

was written to the shell in a rotating log file. This is a very useful con-

figuration.

http://media.pragprog.com/titles/jaerlang/code/elog2.config
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=343

THE ERROR LOGGER 344

Download elog3.config

%% rotating log and minimal tty

[{sasl, [

{sasl_error_logger, false},

%% define the parameters of the rotating log

%% the log file directory

{error_logger_mf_dir,"/home/joe/error_logs"},

%% # bytes per logfile

{error_logger_mf_maxbytes,10485760}, % 10 MB

%% maximum number of logfiles

{error_logger_mf_maxfiles, 10}

]}].

$erl -boot start_sasl -config elog3

1> error_logger:error_msg("This is an error\n").

=ERROR REPORT==== 28-Mar-2007::11:36:19 ===

This is an error

false

When we run the system, all the errors go into a rotating error log. Later

in this chapter we’ll see how to extract this error from the log.

Production Environment

In a production environment, we are really interested only in errors and

not progress or information reports, so we tell the error logger to report

only errors. Without this setting, the system might get swamped with

information and progress reports.

Download elog4.config

%% rotating log and errors

[{sasl, [

%% minimise shell error logging

{sasl_error_logger, false},

%% only report errors

{errlog_type, error},

%% define the parameters of the rotating log

%% the log file directory

{error_logger_mf_dir,"/home/joe/error_logs"},

%% # bytes per logfile

{error_logger_mf_maxbytes,10485760}, % 10 MB

%% maximum number of

{error_logger_mf_maxfiles, 10}

]}].

Running this results in a similar output to the previous example. The

difference is that only errors are reported in the error log.

http://media.pragprog.com/titles/jaerlang/code/elog3.config
http://media.pragprog.com/titles/jaerlang/code/elog4.config
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=344

THE ERROR LOGGER 345

Analyzing the Errors

Reading the error logs is the responsibility of the rb module. It has an

extremely simple interface.

1> rb:help().

Report Browser Tool - usage

===========================

rb:start() - start the rb_server with default options

rb:start(Options) - where Options is a list of:

{start_log, FileName}

- default: standard_io

{max, MaxNoOfReports}

- MaxNoOfReports should be an integer or 'all'

- default: all

...

... many lines omitted ...

...

We start the report browser by telling it how many log entries to read

(in this case the last twenty):

2> rb:start([{max,20}]).

rb: reading report...done.

3> rb:list().

No Type Process Date Time

== ==== ======= ==== ====

11 progress <0.29.0> 2007-03-28 11:34:31

10 progress <0.29.0> 2007-03-28 11:34:31

9 progress <0.29.0> 2007-03-28 11:34:31

8 progress <0.29.0> 2007-03-28 11:34:31

7 progress <0.22.0> 2007-03-28 11:34:31

6 progress <0.29.0> 2007-03-28 11:35:53

5 progress <0.29.0> 2007-03-28 11:35:53

4 progress <0.29.0> 2007-03-28 11:35:53

3 progress <0.29.0> 2007-03-28 11:35:53

2 progress <0.22.0> 2007-03-28 11:35:53

1 error <0.23.0> 2007-03-28 11:36:19

ok

> rb:show(1).

ERROR REPORT <0.40.0> 2007-03-28 11:36:19

===

This is an error

ok

To isolate a particular error, we can use commands such as rb:

grep(RegExp), which will find all reports matching the regular expres-

sion RegExp. I don’t want to go into all the details of how to analyze

the error log. The best thing is to spend some time interacting with rb

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=345

ALARM MANAGEMENT 346

and seeing what it can do. Note that you never need to actually delete

an error report, since the rotation mechanism will eventually delete old

error logs.

If you want to keep all the error logs, you’ll have to poll the error log

at regular intervals and remove the information in which you’re inter-

ested.

18.3 Alarm Management

When we write our application, we need only one alarm—we’ll raise

it when the CPU starts melting because we’re computing a humon-

gous prime (remember, we were making a company that sells prime

numbers). This time we’ll use the real OTP alarm handler (and not the

simple one we saw at the start of this chapter).

The alarm handler is a callback module for the OTP gen_event behavior.

Here’s the code:

Download my_alarm_handler.erl

-module(my_alarm_handler).

-behaviour(gen_event).

%% gen_event callbacks

-export([init/1, handle_event/2, handle_call/2,

handle_info/2, terminate/2]).

%% init(Args) must return {ok, State}

init(Args) ->

io:format("*** my_alarm_handler init:~p~n",[Args]),

{ok, 0}.

handle_event({set_alarm, tooHot}, N) ->

error_logger:error_msg("*** Tell the Engineer to turn on the fan~n"),

{ok, N+1};

handle_event({clear_alarm, tooHot}, N) ->

error_logger:error_msg("*** Danger over. Turn off the fan~n"),

{ok, N};

handle_event(Event, N) ->

io:format("*** unmatched event:~p~n",[Event]),

{ok, N}.

handle_call(_Request, N) -> Reply = N, {ok, N, N}.

handle_info(_Info, N) -> {ok, N}.

terminate(_Reason, _N) -> ok.

http://media.pragprog.com/titles/jaerlang/code/my_alarm_handler.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=346

ALARM MANAGEMENT 347

This code is pretty similar to the callback code for gen_server, which we

saw earlier in Section 16.3, What Happens When We Call the Server?,

on page 306. The interesting routine is handle_event(Event, State). This

should return {ok, NewState}. Event is a tuple of the form {EventType, Even-

tArg}, where EventType is set_event or clear_event and EventArg is a user-

supplied argument. We’ll see later how these events are generated.

Now we can have some fun. We’ll start the system, generate an alarm,

install an alarm handler, generate a new alarm, and so on:

$ erl -boot start_sasl -config elog3

1> alarm_handler:set_alarm(tooHot).

ok

=INFO REPORT==== 28-Mar-2007::14:20:06 ===

alarm_handler: {set,tooHot}

2> gen_event:swap_handler(alarm_handler,

{alarm_handler, swap},

{my_alarm_handler, xyz}).

*** my_alarm_handler init:{xyz,{alarm_handler,[tooHot]}}

3> alarm_handler:set_alarm(tooHot).

ok

=ERROR REPORT==== 28-Mar-2007::14:22:19 ===

*** Tell the Engineer to turn on the fan

4> alarm_handler:clear_alarm(tooHot).

ok

=ERROR REPORT==== 28-Mar-2007::14:22:39 ===

*** Danger over. Turn off the fan

What happened here?

1. We started Erlang with -boot start_sasl. When we do this, we get

a standard alarm handler. When we set or clear an alarm, noth-

ing happens. This is similar to the “do nothing” event handler we

discussed earlier.

2. When we set an alarm (line 1), we just get an information report.

There is no special handling of the alarm.

3. We install a custom alarm handler (line 2). The argument to

my_alarm_handler (xyz) has no particular significance; the syntax

requires some value here, but since we don’t use the value and we

just used the atom xyz, we can identify the argument when it is

printed.

The ** my_alarm_handler_init: ... printout came from our callback

module.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=347

THE APPLICATION SERVERS 348

4. We set and clear a tooHot alarm (lines 3 and 4). This is processed

by our custom alarm handler. We can verify this by reading the

shell printout.

Reading the Log

Let’s go back to the error logger to see what happened:

1> rb:start([{max,20}]).

rb: reading report...done.

2> rb:list().

No Type Process Date Time

== ==== ======= ==== ====

...

3 info_report <0.29.0> 2007-03-28 14:20:06

2 error <0.29.0> 2007-03-28 14:22:19

1 error <0.29.0> 2007-03-28 14:22:39

3> rb:show(1).

ERROR REPORT <0.33.0> 2007-03-28 14:22:39

===

*** Danger over. Turn off the fan

ok

4> rb:show(2).

ERROR REPORT <0.33.0> 2007-03-28 14:22:19

===

*** Tell the Engineer to turn on the fan

So, we can see that the error logging mechanism works.

In practice we would make sure the error log was big enough for several

days or weeks of operation. Every few days (or weeks) we’d check the

error logs and investigate all errors.

Note: The rb module has functions to select specific types of errors and

to extract these errors to a file. So, the process of analyzing the error

logs can be fully automated.

18.4 The Application Servers

Our application has two servers: a prime number server and an area

server. Here’s the prime number server. It has been written using the

gen_server behavior (see Section 16.2, Getting Started with gen_server,

on page 301). Note how it includes the alarm handling procedures we

developed in the previous section.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=348

THE APPLICATION SERVERS 349

The Prime Number Server
Download prime_server.erl

-module(prime_server).

-behaviour(gen_server).

-export([new_prime/1, start_link/0]).

%% gen_server callbacks

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

start_link() ->

gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

new_prime(N) ->

%% 20000 is a timeout (ms)

gen_server:call(?MODULE, {prime, N}, 20000).

init([]) ->

%% Note we must set trap_exit = true if we

%% want terminate/2 to be called when the application

%% is stopped

process_flag(trap_exit, true),

io:format("~p starting~n",[?MODULE]),

{ok, 0}.

handle_call({prime, K}, _From, N) ->

{reply, make_new_prime(K), N+1}.

handle_cast(_Msg, N) -> {noreply, N}.

handle_info(_Info, N) -> {noreply, N}.

terminate(_Reason, _N) ->

io:format("~p stopping~n",[?MODULE]),

ok.

code_change(_OldVsn, N, _Extra) -> {ok, N}.

make_new_prime(K) ->

if

K > 100 ->

alarm_handler:set_alarm(tooHot),

N = lib_primes:make_prime(K),

alarm_handler:clear_alarm(tooHot),

N;

true ->

lib_primes:make_prime(K)

end.

http://media.pragprog.com/titles/jaerlang/code/prime_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=349

THE APPLICATION SERVERS 350

The Area Server

And now the area server. This is also written with the gen_server behav-

ior. Note that writing a server this way is extremely quick. When I wrote

this example, I cut and pasted the code in the prime server and made

it into an area server. This took only a few minutes.

The area server is not the most brilliant program in the world, and it

contains a deliberate error (can you find it?). My not-so-cunning plan

is to let the server crash and be restarted by the supervisor. And what’s

more, we’ll get a report of all of this in the error log.

Download area_server.erl

-module(area_server).

-behaviour(gen_server).

-export([area/1, start_link/0]).

%% gen_server callbacks

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,

terminate/2, code_change/3]).

start_link() ->

gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

area(Thing) ->

gen_server:call(?MODULE, {area, Thing}).

init([]) ->

%% Note we must set trap_exit = true if we

%% want terminate/2 to be called when the application

%% is stopped

process_flag(trap_exit, true),

io:format("~p starting~n",[?MODULE]),

{ok, 0}.

handle_call({area, Thing}, _From, N) -> {reply, compute_area(Thing), N+1}.

handle_cast(_Msg, N) -> {noreply, N}.

handle_info(_Info, N) -> {noreply, N}.

terminate(_Reason, _N) ->

io:format("~p stopping~n",[?MODULE]),

ok.

code_change(_OldVsn, N, _Extra) -> {ok, N}.

compute_area({square, X}) -> X*X;

compute_area({rectonge, X, Y}) -> X*Y.

http://media.pragprog.com/titles/jaerlang/code/area_server.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=350

THE SUPERVISION TREE 351

 one_for_one supervision

 If one process crashes, it is restarted

 all_for_one supervision

 If one process crashes, all are terminated

 and then restarted

Figure 18.1: Two types of supervision tree

18.5 The Supervision Tree

A supervision tree is a tree of processes. The upper processes (supervi-

sors) in the tree monitor the lower processes (workers) in the tree and

restart the lower processes if they fail. There are two types of supervi-

sion tree. You can see them in Figure 18.1.

One-for-one supervision trees

In one-for-one supervision, if a worker fails, it is restarted by the

supervisor.

All-for-one supervision trees

In all-for-one supervision, if any worker dies, then all the worker

processes are killed (by calling the terminate/2 function in the ap-

propriate callback module). Then all the worker processes are re-

started.

Supervisors are created using the OTP supervisor behavior. This behav-

ior is parameterized with a callback module that specifies the supervi-

sor strategy and how to start the individual worker processes in the

supervision tree. The supervisor tree is specified with a function of this

form:

init(...) ->

{ok, {RestartStrategy, MaxRestarts, Time},

[Worker1, Worker2, ...]}.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=351

THE SUPERVISION TREE 352

Here RestartStrategy is one of the atoms one_for_one or all_for_one.

MaxRestarts and Time specify a “restart frequency.” If a supervisor per-

forms more than MaxRestarts in Time seconds, then the supervisor will

terminate all the worker processes and then itself. This is to try to stop

the situation where a process crashes, is restarted, and then crashes

for the same reason, on and on, in an endless loop.

Worker1, Worker2, and so on, are tuples describing how to start each of

the worker processes. We’ll see what these look like in a moment.

Now let’s get back to our company and build a supervision tree.

The first thing we need to do is to choose a name for our company.

Let’s call it sellaprime. The job of the sellaprime supervisor is to make

sure the prime and area servers are always running. To do this, we’ll

write yet another callback module, this time for gen_supervisor. Here’s

the callback module:

Download sellaprime_supervisor.erl

-module(sellaprime_supervisor).

-behaviour(supervisor). % see erl -man supervisor

-export([start/0, start_in_shell_for_testing/0, start_link/1, init/1]).

start() ->

spawn(fun() ->

supervisor:start_link({local,?MODULE}, ?MODULE, _Arg = [])

end).

start_in_shell_for_testing() ->

{ok, Pid} = supervisor:start_link({local,?MODULE}, ?MODULE, _Arg = []),

unlink(Pid).

start_link(Args) ->

supervisor:start_link({local,?MODULE}, ?MODULE, Args).

init([]) ->

%% Install my personal error handler

gen_event:swap_handler(alarm_handler,

{alarm_handler, swap},

{my_alarm_handler, xyz}),

{ok, {{one_for_one, 3, 10},

[{tag1,

{area_server, start_link, []},

permanent,

10000,

worker,

[area_server]},

http://media.pragprog.com/titles/jaerlang/code/sellaprime_supervisor.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=352

THE SUPERVISION TREE 353

{tag2,

{prime_server, start_link, []},

permanent,

10000,

worker,

[prime_server]}

]}}.

The important part of this is the data structure returned by init/1:

Download sellaprime_supervisor.erl

{ok, {{one_for_one, 3, 10},

[{tag1,

{area_server, start_link, []},

permanent,

10000,

worker,

[area_server]},

{tag2,

{prime_server, start_link, []},

permanent,

10000,

worker,

[prime_server]}

]}}.

This data structure defines a supervision strategy. We talked about the

supervision strategy and restart frequency earlier. Now all that remains

are the start specifications for the area server and the prime number

server.

The Worker specifications are tuples of the following form:

{Tag, {Mod, Func, ArgList},

Restart,

Shutdown,

Type,

[Mod1]}

What do these arguments mean?

Tag

This is an atom tag that we can use to refer to the worker process

later (if necessary).

{Mod, Func, ArgList}

This defines the function that the supervisor will use to start the

worker. It is used as arguments to apply(Mod, Fun, ArgList).

Restart = permanent | transient | temporary

A permanent process will always be restarted. A transient process

http://media.pragprog.com/titles/jaerlang/code/sellaprime_supervisor.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=353

STARTING THE SYSTEM 354

is restarted only if it terminates with a non-normal exit value. A

temporary process is never restarted.

Shutdown

This is a shutdown time. This is the maximum time a worker is

allowed to take in terminating. If it takes longer than this, it will

be killed. (Other values are possible—see the supervisor manual

pages.)

Type = worker | supervisor

This is the type of the supervised process. We can construct tree of

supervisors by adding supervisor processes in the place of worker

processes.

[Mod1]

This is the name of the callback module if the child process is a

supervisor or gen_server behavior callback module. (Other values

are possible—see the supervisor manual page.)

These arguments look scarier than they actually are. In practice, you

can cut and paste the values from the earlier area server code and

insert the name of your module. This will suffice for most purposes.

18.6 Starting the System

Now we’re ready for prime time. Let’s launch our company. Off we go.

Who wants to buy the first prime number?

Let’s start the system:

$ erl -boot start_sasl -config elog3

1> sellaprime_supervisor:start_in_shell_for_testing().

*** my_alarm_handler init:{xyz,{alarm_handler,[]}}

area_server starting

prime_server starting

Now make a valid query:

2> area_server:area({square,10}).

100

Now make an invalid query:

3> area_server:area({rectangle,10,20}).

area_server stopping

=ERROR REPORT==== 28-Mar-2007::15:15:54 ===

** Generic server area_server terminating

** Last message in was {area,{rectangle,10,20}}

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=354

STARTING THE SYSTEM 355

Does the Supervision Strategy Work?

Erlang was designed for programming fault-tolerant systems.
It was originally developed in the Computer Science Labora-
tory at the Swedish Telecom company Ericsson. Since then, the
OTP group at Ericsson took over development aided by dozens
of internal users. Using gen_server, gen_supervisor, and so on,
Erlang has been used to build systems with 99.9999999% reliabil-
ity (that’s nine nines). Used correctly, the error handling mech-
anisms can help make your program run forever (well, almost).
The error logger described here has been run for years in live
products.

** When Server state == 1

** Reason for termination ==

** {function_clause,[{area_server,compute_area,[{rectangle,10,20}]},

{area_server,handle_call,3},

{gen_server,handle_msg,6},

{proc_lib,init_p,5}]}

area_server starting

** exited: {{function_clause,

[{area_server,compute_area,[{rectangle,10,20}]},

{area_server,handle_call,3},

{gen_server,handle_msg,6},

{proc_lib,init_p,5}]},

{gen_server,call,

[area_server,{area,{rectangle,10,20}}]}} **

Whoops—what happened here? The area server crashed; we hit the

deliberate error. The crash was detected by the supervisor, and the area

server was restarted by the supervisor. All of this was logged by the

error logger.

After the crash, everything is back to normal, as it should be. Let’s

make a valid request this time:

4> area_server:area({square,25}).

625

We’re up and running again. Now let’s generate a little prime:

5> prime_server:new_prime(20).

Generating a 20 digit prime

37864328602551726491

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=355

STARTING THE SYSTEM 356

And let’s generate a big prime:

6> prime_server:new_prime(120).

Generating a 120 digit prime

=ERROR REPORT==== 28-Mar-2007::15:22:17 ===

*** Tell the Engineer to turn on the fan

..

=ERROR REPORT==== 28-Mar-2007::15:22:20 ===

*** Danger over. Turn off the fan

765525474077993399589034417231006593110007130279318737419683

288059079481951097205184294443332300308877493399942800723107

Now we have a working system. If a server crashes, it is automatically

restarted, and in the error log there will be information about the error.

Let’s now look at the error log:

1> rb:start([{max,20}]).

rb: reading report...done.

rb: reading report...done.

{ok,<0.53.0>}

2> rb:list().

No Type Process Date Time

== ==== ======= ==== ====

20 progress <0.29.0> 2007-03-28 15:05:15

19 progress <0.22.0> 2007-03-28 15:05:15

18 progress <0.23.0> 2007-03-28 15:05:21

17 supervisor_report <0.23.0> 2007-03-28 15:05:21

16 error <0.23.0> 2007-03-28 15:07:07

15 error <0.23.0> 2007-03-28 15:07:23

14 error <0.23.0> 2007-03-28 15:07:41

13 progress <0.29.0> 2007-03-28 15:15:07

12 progress <0.29.0> 2007-03-28 15:15:07

11 progress <0.29.0> 2007-03-28 15:15:07

10 progress <0.29.0> 2007-03-28 15:15:07

9 progress <0.22.0> 2007-03-28 15:15:07

8 progress <0.23.0> 2007-03-28 15:15:13

7 progress <0.23.0> 2007-03-28 15:15:13

6 error <0.23.0> 2007-03-28 15:15:54

5 crash_report area_server 2007-03-28 15:15:54

4 supervisor_report <0.23.0> 2007-03-28 15:15:54

3 progress <0.23.0> 2007-03-28 15:15:54

2 error <0.29.0> 2007-03-28 15:22:17

1 error <0.29.0> 2007-03-28 15:22:20

Something is wrong here. We have a crash report for the area server.

What happened (as if we didn’t know)?

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=356

STARTING THE SYSTEM 357

9> rb:show(5).

CRASH REPORT <0.43.0> 2007-03-28 15:15:54

==

Crashing process

pid <0.43.0>

registered_name area_server

error_info

{function_clause,[{area_server,compute_area,[{rectangle,10,20}]},

{area_server,handle_call,3},

{gen_server,handle_msg,6},

{proc_lib,init_p,5}]}

initial_call

{gen,init_it,

[gen_server,

<0.42.0>,

<0.42.0>,

{local,area_server},

area_server,

[],

[]]}

ancestors [sellaprime_supervisor,<0.40.0>]

messages []

links [<0.42.0>]

dictionary []

trap_exit false

status running

heap_size 233

stack_size 21

reductions 199

ok

The printout {function_clause, compute_area, ...} shows us exactly the

point in the program where the server crashed. It should be an easy

job to locate and correct this error. Let’s move on to the next errors:

10> rb:show(2).

ERROR REPORT <0.33.0> 2007-03-28 15:22:17

==

*** Tell the Engineer to turn on the fan

And.

10> rb:show(1).

ERROR REPORT <0.33.0> 2007-03-28 15:22:20

==

*** Danger over. Turn off the fan

These were our fan alarms caused by computing too large primes!

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=357

THE APPLICATION 358

18.7 The Application

We’re almost through. All we have to do now is write a file with the

extension .app that contains information about our application:

Download sellaprime.app

%% This is the application resource file (.app file) for the 'base'

%% application.

{application, sellaprime,

[{description, "The Prime Number Shop"},

{vsn, "1.0"},

{modules, [sellaprime_app, sellaprime_supervisor, area_server,

prime_server, lib_primes, my_alarm_handler]},

{registered,[area_server, prime_server, sellaprime_super]},

{applications, [kernel,stdlib]},

{mod, {sellaprime_app,[]}},

{start_phases, []}

]}.

Then we have to write a callback module with the same name as the

mod file in the previous file:

Download sellaprime_app.erl

-module(sellaprime_app).

-behaviour(application).

-export([start/2, stop/1]).

%%--

%% Function: start(Type, StartArgs) -> {ok, Pid} |

%% {ok, Pid, State} |

%% {error, Reason}

%% Description: This function is called whenever an application

%% is started using application:start/1,2, and should start the processes

%% of the application. If the application is structured according to the

%% OTP design principles as a supervision tree, this means starting the

%% top supervisor of the tree.

%%--

start(_Type, StartArgs) ->

sellaprime_supervisor:start_link(StartArgs).

%%--

%% Function: stop(State) -> void()

%% Description: This function is called whenever an application

%% has stopped. It is intended to be the opposite of Module:start/2 and

%% should do any necessary cleaning up. The return value is ignored.

%%--

stop(_State) ->

ok.

http://media.pragprog.com/titles/jaerlang/code/sellaprime.app
http://media.pragprog.com/titles/jaerlang/code/sellaprime_app.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=358

THE APPLICATION 359

This must export the functions start/2 and stop/1. Once we’ve done all of

this, we can start and stop our application in the shell.

$ erl -boot start_sasl -config elog3

1> application:loaded_applications().

[{kernel,"ERTS CXC 138 10","2.11.3"},

{stdlib,"ERTS CXC 138 10","1.14.3"},

{sasl,"SASL CXC 138 11","2.1.4"}]

2> application:load(sellaprime).

ok

3> application:loaded_applications().

[{sellaprime,"The Prime Number Shop","1.0"},

{kernel,"ERTS CXC 138 10","2.11.3"},

{stdlib,"ERTS CXC 138 10","1.14.3"},

{sasl,"SASL CXC 138 11","2.1.4"}]

4> application:start(sellaprime).

*** my_alarm_handler init:{xyz,{alarm_handler,[]}}

area_server starting

prime_server starting

ok

5> application:stop(sellaprime).

prime_server stopping

area_server stopping

=INFO REPORT==== 2-Apr-2007::19:34:44 ===

application: sellaprime

exited: stopped

type: temporary

ok

6> application:unload(sellaprime).

ok

7> application:loaded_applications().

[{kernel,"ERTS CXC 138 10","2.11.4"},

{stdlib,"ERTS CXC 138 10","1.14.4"},

{sasl,"SASL CXC 138 11","2.1.5"}]

This is now a fully fledged OTP application. In line 2 we loaded the appli-

cation; this loads all the code but does not start the application. Line

4 started the application, and line 5 stopped the application. Note that

we can see from the printout that when the applications were started

and stopped, the appropriate callback functions in the area server and

prime number server were called. In Line 6 we unloaded the applica-

tion. All the module code for the application is removed.

When we build complex systems using OTP, we package them as appli-

cations. This allows us to start, stop, and administer them uniformly.

Note that when we use init:stop() to close down the system, then all

running applications will be closed down in an orderly manner.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=359

FILE SYSTEM ORGANIZATION 360

$ erl -boot start_sasl -config elog3

1> application:start(sellaprime).

*** my_alarm_handler init:{xyz,{alarm_handler,[]}}

area_server starting

prime_server starting

ok

2> init:stop().

ok

prime_server stopping

area_server stopping

$

The two lines following command 2 come from the area and prime num-

ber servers, which shows that the terminator/2 methods in the gen_server

callback modules were called.1

18.8 File System Organization

I haven’t mentioned anything about the file system organization yet.

This is deliberate—my intention is to confuse you with only one thing

at a time.

Well-behaved OTP applications usually have the files belonging to dif-

ferent parts of the application in well-defined places. This is not a

requirement; as long as all the relevant files can be found at runtime,

it doesn’t matter how the files are organized.

In this book I have put most of the demonstration files in the same

directory. This simplifies the examples and avoids problems with search

paths and interactions between the different programs.

The main files used in the sellaprime company are as follows:

File Content

area_server.erl Area server—a gen_server callback

prime_server.erl Prime number server—a gen_server callback

sellaprim_supervisor.erl Supervisor callback

sellaprim_app.erl Application callback

my_alam_handler.erl Event callback for gen_event

sellaprime.app Application specification

elog4.config Error logger configuration file

To see how these files and modules are used, we can look at the se-

quence of events that happens when we start the application:

1. He did come back!

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=360

THE APPLICATION MONITOR 361

1. We start the system with the following commands:

$ erl -boot start_sasl -config elog4.config

1> application:start(sellaprime).

...

The file sellaprime.app must be in the root directory where Erlang

was started or in a subdirectory of this directory.

The application controller then looks for a {mod, ...} declaration

in the sellaprime.app. This contains the name of the application

controller. In our case, this was the module sellaprime_app.

2. The callback routine sellaprime_app:start/2 is called.

3. sellaprime_app:start/2 calls sellaprime_supervisor:start_link/2, which

starts the sellaprime supervisor.

4. The supervisor callback sellaprime_supervisor:init/1 is called. This in-

stalls an error handler and returns a supervision specification.

The supervision specification says how to start the area server

and prime number server.

5. The sellaprime supervisor starts the area server and prime number

server. These are both implemented as gen_server callback mod-

ules.

Stopping everything is easy. We just call application:stop(sellaprime) or

init:stop().

18.9 The Application Monitor

The application monitor is a GUI for viewing applications. The com-

mand appmon:start() starts the application viewer. When you give this

command, you’ll see a window similar to Figure 18.2, on the following

page. To see the applications, you have to click one of the applications.

The application monitor view of the sellaprime application is shown in

Figure 18.3, on the next page.

18.10 Digging Deeper

I’ve skipped over quite a lot of detail here, explaining just the principles

involved. You can find the details in the manual pages for gen_event,

error_logger, supervisor, and application.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=361

DIGGING DEEPER 362

Figure 18.2: Application monitor initial window

Figure 18.3: The sellaprime application

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=362

HOW DID WE MAKE THAT PRIME? 363

The following files also have some more details on how to use the OTP

behaviors:

http://www.erlang.org/doc/pdf/design_principles.pdf

(97 pages) Gen servers, gen event, supervisors

http://www.erlang.org/doc/pdf/system_principles.pdf

(19 pages) How to make a boot file

http://www.erlang.org/doc/pdf/appmon.pdf

(16 pages) The application monitor

18.11 How Did We Make That Prime?

Easy.

Download lib_primes.erl

%% make a prime with at least K decimal digits.

%% Here we use 'Bertrand's postulate.

%% Bertrands postulate is that for every N > 3,

%% there is a prime P satisfying N < P < 2N - 2

%% This was proved by Tchebychef in 1850

%% (Erdos improved this proof in 1932)

make_prime(1) ->

lists:nth(random:uniform(5), [1,2,3,5,7]);

make_prime(K) when K > 0 ->

new_seed(),

N = make_random_int(K),

if N > 3 ->

io:format("Generating a ~w digit prime ",[K]),

MaxTries = N - 3,

P1 = make_prime(MaxTries, N+1),

io:format("~n",[]),

P1;

true ->

make_prime(K)

end.

make_prime(0, _) ->

exit(impossible);

make_prime(K, P) ->

io:format(".",[]),

case is_prime(P) of

true -> P;

false -> make_prime(K-1, P+1)

end.

http://www.erlang.org/doc/pdf/design_principles.pdf
http://www.erlang.org/doc/pdf/system_principles.pdf
http://www.erlang.org/doc/pdf/appmon.pdf
http://media.pragprog.com/titles/jaerlang/code/lib_primes.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=363

HOW DID WE MAKE THAT PRIME? 364

%% Fermat's little theorem says that if

%% N is a prime and if A < N then

%% A^N mod N = A

is_prime(D) ->

new_seed(),

is_prime(D, 100).

is_prime(D, Ntests) ->

N = length(integer_to_list(D)) -1,

is_prime(Ntests, D, N).

is_prime(0, _, _) -> true;

is_prime(Ntest, N, Len) ->

K = random:uniform(Len),

%% A is a random number less than N

A = make_random_int(K),

if

A < N ->

case lib_lin:pow(A,N,N) of

A -> is_prime(Ntest-1,N,Len);

_ -> false

end;

true ->

is_prime(Ntest, N, Len)

end.

1> lib_primes:make_prime(500).

Generating a 500 digit prime

7910157269872010279090555971150961269085929213425082972662439

1259263140285528346132439701330792477109478603094497394696440

4399696758714374940531222422946966707622926139385002096578309

0625341667806032610122260234591813255557640283069288441151813

9110780200755706674647603551510515401742126738236731494195650

5578474497545252666718280976890401503018406521440650857349061

2139806789380943526673726726919066931697831336181114236228904

0186804287219807454619374005377766827105603689283818173007034

056505784153

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=364

Chapter 19

Multicore Prelude
How can we write programs that run faster on a multicore CPU? It’s all

about mutable state and concurrency.

Back in the old days (twenty-odd years ago), there were two models of

concurrency:

• Shared state concurrency

• Message passing concurrency

The programming world went one way (toward shared state). The Erlang

community went the other way. (Few other languages followed the

“message passing concurrency” road. Others were Oz and Occam.)

In message passing concurrency, there is no shared state. All compu-

tations are done in processes, and the only way to exchange data is

through asynchronous message passing.

Why is this good?

Shared state concurrency involves the idea of “mutable state” (literally

memory that can be changed)—all languages such as C, Java, C++, and

so on, have the notion that there is this stuff called “state” and that we

can change it.

This is fine as long as you have only one process doing the changing.

If you have multiple processes sharing and modifying the same mem-

ory, you have a recipe for disaster—madness lies here.

To protect against the simultaneous modification of shared memory, we

use a locking mechanism. Call this a mutex, a synchronized method,

or what you will, but it’s still a lock.

CHAPTER 19. MULTICORE PRELUDE 366

If programs crash in the critical region (when they hold the lock), disas-

ter results. All the other programs don’t know what to do. If programs

corrupt the memory in the shared state, disaster will also happen. The

other programs won’t know what to do.

How do programmers fix these problems? With great difficulty. On a

unicore processor, their program might just work; but on a multicore—

disaster.

There are various solutions to this (transactional memory is probably

the best), but these are at best kludges. At their worst, they are the

stuff of nightmares.

Erlang has no mutable data structures:1

• No mutable data structures = No locks

• No mutable data structures = Easy to parallelize

How do we do the parallelization? Easy. The programmer breaks up the

solution of the problem into a number of parallel processes.

This style of programming has its own terminology; it’s called concur-

rency-oriented programming.

Now on to the final chapter in the book where we’ll see how our pro-

grams work on a multicore CPU.

1. That’s not quite true, but it’s true enough.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=366

Chapter 20

Programming Multicore CPUs
Here’s the good news for Erlang programmers: your Erlang program

might run n times faster on an n core processor—without any changes

to the program.

But you have to follow a simple set of rules.

If you want your application to run faster on a multicore CPU, you’ll

have to make sure that it has lots of processes, that the processes don’t

interfere with each other, and that you have no sequential bottlenecks

in your program.

If instead you’ve written your code in one great monolithic clump of

sequential code and never used spawn to create a parallel process, your

program might not go any faster.

Don’t despair. Even if your program started as a gigantic sequential

program, several simple changes to the program will parallelize it.

In this chapter, we’ll look at the following topics:

• What we have to do to make our programs run efficiently on a

multicore CPU

• How to parallelize a sequential program

• The problem of sequential bottlenecks

• How to avoid side effects

When we’ve done this, we’ll look at the design issues involved in a

more complex problem. We’ll implement a higher-order function called

mapreduce and show how it can be used to program a full-text indexing

engine. mapreduce is an abstraction developed by Google for performing

parallel computations over sets of processing elements.

HOW TO MAKE PROGRAMS RUN EFFICIENTLY ON A MULTICORE CPU 368

Why Should We Care About Multicore CPUs?

You might wonder what all the fuss is about. Do we have to
bother parallelizing our program so that it can run on a multi-
core? The answer is yes. Today, dual-core CPUs are common-
place. In the lab at my workplace, we have some quad cores
to play with, and occasionally we get to experiment with a
thirty-two core machine.

Making a program go twice as fast on a dual-core machine is
not that exciting (but it is a little bit exciting). But let’s not delude
ourselves. The clock speeds on dual-core processors are slower
than on a single-core CPU, so the performance gains can be
marginal.

Intel has a project called Keifer aimed at producing at a thirty-
two core processor timed for the market in 2009/2010. Sun
already has an eight-core (with four hardware threads per
core) Niagra machine on the market today.

Now although two times doesn’t get me excited, ten times
does, and 100 times is really, really exciting. Modern processors
are so fast that a single core can run four hyperthreads, so a
thirty-two-core CPU might give us an equivalent of 128 threads
to play with. This means that 100 times faster is within striking
distance.

A factor of 100 does make me excited.

All we have to do is write the code.

20.1 How to Make Programs Run Efficiently on a Multicore CPU

To run efficiently, we have to try to do the following:

1. Use lots of processes.

2. Avoid side effects.

3. Avoid sequential bottlenecks.

4. Write “small messages, big computations” code.

If we do all of these, our Erlang program should run efficiently on a

multicore CPU.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=368

HOW TO MAKE PROGRAMS RUN EFFICIENTLY ON A MULTICORE CPU 369

Use Lots of Processes

This is important—we have to keep the CPUs busy. All the CPUs should

be busy all the time. The easiest way to achieve this is to have lots of

processes.

When I say lots of processes, I mean lots in relation to the number of

CPUs. If we have lots of processes, then we won’t need to worry about

keeping the CPUs busy. This appears to be a purely statistical effect.

If we have a small number of processes, they might accidentally hog

one of the same CPUs; this effect seems to go away if we have a large

number of processes. If we want our programs to be future-proof, we

should think that even though today’s chips might have only a small

number of CPUs, in the future we might have thousands of CPUs per

chip.

Preferably the processes should do similar amounts of work. It’s a bad

idea to write programs where one process does a lot of work and the

others do very little.

In many applications we get lots of processes “for free.” If the applica-

tion is “intrinsically parallel,” then we don’t have to worry about paral-

lelizing our code. For example, if we’re writing a messaging system that

manages some tens of thousands of simultaneous connections, then

we get the concurrency from the tens of thousands of connections; the

code that handles an individual connection will not have to worry about

concurrency.

Avoid Side Effects

Side effects prevent concurrency. Right in the beginning of the book

we talked about “variables that do not vary.” This is the key to under-

standing why Erlang programs can run faster on a multicore CPU than

programs written in languages that can destructively modify memory.

In a language with shared memory and threads, a disaster might hap-

pen if two threads write to common memory at the same time. Systems

with shared memory concurrency prevent this by locking the shared

memory while the memory is being written to. These locks are hidden

from the programmer and appear as mutex or synchronized methods

in their programming languages. The main problem with shared mem-

ory is that one thread can corrupt the memory used by another thread.

So even if my program is correct, another thread can mess up my data

structures and cause my program to crash.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=369

HOW TO MAKE PROGRAMS RUN EFFICIENTLY ON A MULTICORE CPU 370

Erlang does not have shared memory, so this problem does not exist.

Actually, this is not quite true. There are only two ways to share mem-

ory, and the problem can be easily avoided. These two ways of sharing

memory have to do with shared ETS or DETS tables.

Shared ETS or DETS Tables

ETS tables can be shared by several processes. In Section 15.4, Cre-

ating an ETS Table, on page 277, we talked about the different ways

of creating an ETS table. Using one of the options to ets:new, we could

create a public table type. Recall what this did:

Create a public table. Any process that knows the table identifier can

read and write this table.

This can be dangerous. It is safe only if

• we can guarantee that only one process at a time writes to the

table and that all other processes read from the table, and

• the process that writes to the ETS table is correct and does not

write incorrect data into the table.

These properties cannot in general be guaranteed by the system but

instead depend upon the program logic.

Note 1: Individual operations on ETS tables are atomic. What is not

possible is performing a sequence of ETS operations as one atomic unit.

Although we cannot corrupt the data in an ETS table, the tables can

become logically inconsistent if several processes try to simultaneously

update a shared table without coordinating their activities.

Note 2: The ETS table type protected is far safer. Only one process (the

owner) can write to this table, but several processes can read the table.

This property is guaranteed by the system. But remember, even if only

one process can write to an ETS table, if this process corrupts the data

in the table, all processes reading the table will be affected.

If you use the ETS table, type private, and then your programs will

be safe. Similar observations apply to DETS. We can create a shared

DETS table to which several different processes can write. This should

be avoided.

Note: ETS and DETS were created in order to implement Mnesia and

were not originally intended for stand-alone use. The intention is that

application programs should use the Mnesia transaction mechanisms

if they want to simulate shared memory between processes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=370

HOW TO MAKE PROGRAMS RUN EFFICIENTLY ON A MULTICORE CPU 371

Sequential Bottlenecks

Once we’ve parallelized our program and have made sure we have lots

of processes and no shared memory operations, the next problem to

think about is sequential bottlenecks. Certain things are intrinsically

sequential. If the “sequentialness” lies in the problem, we can’t make it

go away. Certain events happen in a certain sequential order, and no

matter how we try, we can’t change this order. We are born, we live, we

die. We can’t change the order. We can’t do these things in parallel.

A sequential bottleneck is where several concurrent processes need

access to a sequential resource. A typical example is IO. Typically we

have a single disk, and all output to the disk is ultimately sequential.

The disk has one set of heads, not two, and we can’t change that.

Every time we make a registered process, we are creating a potential

sequential bottleneck. So try to avoid the use of registered processes.

If you do create a registered process and use it as a server, make sure

that it responds to all requests as quickly as possible.

Often, the only solution to a sequential bottleneck is to change the

algorithm concerned. There is no cheap and easy fix here. We have to

change the algorithm from a nondistributed algorithm to a distributed

algorithm. This topic (distributed algorithms) has a vast research liter-

ature but has had relatively little take-up in conventional programming

language libraries. The main reason for this is that the need for such

algorithms is not apparent until we try to program networked algo-

rithms or multicore computers.

Programming computers that are permanently connected to the Inter-

net and multicore CPUs will force us to dig into the research literature

and implement some of these amazing algorithms.

A Distributed Ticket-Booking System

Suppose we have a single resource, a set of tickets to the next concert

of the Strolling Bones. To guarantee that when you buy a ticket you

actually get a ticket, we’d conventionally use a single agency that books

all the tickets. But this introduces a sequential bottleneck. How can we

avoid this?

Easy. Imagine you have two ticket agencies. At the start of sales, the

first ticket agency is given all the even-numbered tickets, and the sec-

ond agency is given all the odd-numbered tickets. This way the agencies

are guaranteed not to sell the same ticket twice.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=371

PARALLELIZING SEQUENTIAL CODE 372

If one of the agencies runs out of tickets, then it can request a bundle

of tickets from the other agency.

I’m not saying this is a good method: you might actually want to sit

next to your friends when you go to a concert. But it does remove the

bottleneck, replacing a single ticket office with two.

Replacing the single booking agency by n distributed agencies where n

can vary with time and where the individual agencies can join and leave

the network and crash at any time is an area of active research in dis-

tributed computing. This research goes under the name of distributed

hash tables. If you google this term, you’ll find a vast array of literature

on the subject.

20.2 Parallelizing Sequential Code

Remember the emphasis we made on list-at-a-time operations and in

particular the function lists:map? map is defined like this:

map(_, []) -> [];

map(F, [H|T]) -> [F(H)|map(F, T)].

A simple strategy for speeding up our sequential programs would re-

place all calls to map with a new version of map, which I’ll call pmap,

which evaluates all its arguments in parallel:

Download lib_misc.erl

pmap(F, L) ->

S = self(),

%% make_ref() returns a unique reference

%% we'll match on this later

Ref = erlang:make_ref(),

Pids = map(fun(I) ->

spawn(fun() -> do_f(S, Ref, F, I) end)

end, L),

%% gather the results

gather(Pids, Ref).

do_f(Parent, Ref, F, I) ->

Parent ! {self(), Ref, (catch F(I))}.

gather([Pid|T], Ref) ->

receive

{Pid, Ref, Ret} -> [Ret|gather(T, Ref)]

end;

gather([], _) ->

[].

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=372

PARALLELIZING SEQUENTIAL CODE 373

pmap works like map, but when we call pmap(F, L), it creates one parallel

process to evaluate each argument in L. Note that the processes that

evaluate the arguments of L can complete in any order.

The selective receive in the gather function ensures that the order of

the arguments in the return value corresponds to the ordering in the

original list.

There is a slight semantic difference between map and pmap. In pmap,

we use (catch F(H)) when we map the function over the list. In map we

just use F(H). This is because we want to make sure pmap terminates

correctly in the case where the computation of F(H) raises an exception.

In the case where no exceptions are raised, the behavior of the two

functions is identical.

Important: This last statement is not strictly true. map and pmap will

not behave the same way if they have side effects. Suppose F(H) has

some code that modifies the process dictionary. When we call map, the

changes to the process dictionary will be made in the process dictionary

of the process that called map.

When we call pmap, each F(H) is evaluated in its own process, so if we

use the process dictionary, the changes in the dictionary will not affect

the process dictionary in the program that called pmap. So be warned:

Code that has side effects cannot be simply parallelized by replacing a

call to map with pmap.

When Can We Use pmap?

Using pmap instead of map is not a general panacea for speeding up

your programs. The following are some things to think about.

Granularity of Concurrency

Don’t use pmap if the amount of work done in the function is small.

Suppose we say this:

map(fun(I) -> 2*I end, L)

Here the amount of work done inside the fun is minimal. The overhead

of setting up a process and waiting for a reply is greater than the benefit

of using parallel processes to do the job.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=373

PARALLELIZING SEQUENTIAL CODE 374

Don’t Create Too Many Processes

Remember that pmap(F, L) creates length(L) parallel processes. If L is very

large, you will create a lot of processes. How many processes should

we create? The Swedes1 have a good word for this; we should create

a lagom number of processes (not too few, not too many, but just the

right number).

Think About the Abstractions You Need

pmap might not be the right abstraction. We can think of many different

ways of mapping a function over a list in parallel; we chose the simplest

possible here.

The pmap version we used cared about the order of the elements in

the return value (we used selective receive to do this). If we didn’t care

about the order of the return values, we could write this:

Download lib_misc.erl

pmap1(F, L) ->

S = self(),

Ref = erlang:make_ref(),

foreach(fun(I) ->

spawn(fun() -> do_f1(S, Ref, F, I) end)

end, L),

%% gather the results

gather1(length(L), Ref, []).

do_f1(Parent, Ref, F, I) ->

Parent ! {Ref, (catch F(I))}.

gather1(0, _, L) -> L;

gather1(N, Ref, L) ->

receive

{Ref, Ret} -> gather1(N-1, Ref, [Ret|L])

end.

A simple change to this could turn this into a parallel foreach. The code

is similar to the previous code, but we don’t build any return value. We

just note the termination of the program.

Another method would be to implement pmap using at most K processes

where K is some fixed constant. This might be useful if we want to use

pmap on very large lists.

1. Erlang comes from Sweden, where the expression “lagom är bäst” (loosely translated

as “just enough is best”) is often said to summarize the national character.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=374

SMALL MESSAGES, BIG COMPUTATIONS 375

Yet another version of pmap could map the computations not only over

the processes in a multicore CPU but also over nodes in a distributed

network.

I’m not going to show you how to do this here. You can think about this

for yourself.

The purpose of this section is to point out that there is a large family

of abstractions that can easily be built from the basic spawn, send, and

receive primitives. You can use these primitives to create your own par-

allel control abstractions to increase the concurrency of your program.

As before—the absence of side effects is the key to increasing concur-

rency. Never forget this.

20.3 Small Messages, Big Computations

We’ve talked theory; now for some measurements. In this section, we’ll

perform two experiments. We’ll map two functions over a list of 100 ele-

ments, and we’ll compare the time it takes with a parallel and sequen-

tial map.

We’ll use two different problem sets. The first computes this:

L = [L1, L2, ..., L100],

map(fun lists:sort/1, L)

Each of the elements in L is a list of 1,000 random integers.

The second computes this:

L = [27,27,..., 27],

map(fun ptests:fib/1, L)

Here, L is a list of 100 twenty-sevens, and we compute the list [fib(27),

fib(27), ...] 100 times. (fib is the Fibonacci function.)

We’ll time both these functions. Then we’ll replace map with pmap and

repeat the timings.

Using pmap in the first computation (sort) involves sending a relatively

large amount of data (a list of 1,000 random numbers) in messages

between the different processes. The sorting process is rather quick.

The second computation involves sending a small request (to compute

fib(27)) to each process, but the work involved in recursively computing

fib(27) is relatively large.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=375

SMALL MESSAGES, BIG COMPUTATIONS 376

Since there is little copying of data between processes in computing

fib(27) and a relatively large amount of work involved, we would expect

the second problem to perform better than the first on a multicore CPU.

To see how this works in practice, we need a script that automates our

tests. But first we’ll look at how to start SMP Erlang.

Running SMP Erlang

SMP2 Erlang runs on a number of different architectures and operating

systems. The current system runs with Intel dual- and quad-core pro-

cessors on motherboards with one or two processors. It also runs with

Sun and Cavium processors. This is an area of extremely rapid develop-

ment, and the number of supported operating systems and processors

increases with every release of Erlang. You can find up-to-date infor-

mation in the release notes of the current Erlang distribution. (Click

the title entry for the latest version of Erlang in the download directory

at http://www.erlang.org/download.html.)

Note: SMP Erlang has been enabled by default (that is, an SMP virtual

machine is built by default) since R11B-0 on all platforms where SMP

Erlang is known to work. To force SMP Erlang to be built on other

platforms, the - -enable-smp-support flag should be given to the configure

command.

SMP Erlang has two command-line flags that determine how it runs on

a multicore CPU:

$erl -smp +S N

-smp

Start SMP Erlang.

+S N

Run Erlang with N schedulers. Each Erlang scheduler is a com-

plete virtual machine that knows about all the other virtual ma-

chines. If this parameter is omitted, it defaults to the number of

logical processors in the SMP machine.

Why would we want to vary this? We would want to for a number

of reasons:

2. A symmetric multiprocessing (SMP) machine has two or more identical CPUs that are

connected to a single shared memory. These CPUs may be on a single multicore chip,

spread across several chips, or a combination of both.

http://www.erlang.org/download.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=376

SMALL MESSAGES, BIG COMPUTATIONS 377

• When we do performance measurements, we want to vary the

number of the schedulers to see the effect of running with a

different number of CPUs.

• On a single-core CPU, we can emulate running on a multicore

CPU by varying N.

• We might want to have more schedulers than physical CPUs.

This can sometimes increase throughput and make the sys-

tem behave in a better manner. These effects are not fully

understood and are the subject of active research.

To perform our tests, we need a script to run the tests:

Download runtests

#!/bin/sh

echo "" >results

for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16\

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

do

echo $i

erl -boot start_clean -noshell -smp +S $i \

-s ptests tests $i >> results

done

This just starts Erlang with one to thirty-two different schedulers, runs

a timing test, and collects all the timings into a file called results.

Then we need a test program:

Download ptests.erl

-module(ptests).

-export([tests/1, fib/1]).

-import(lists, [map/2]).

-import(lib_misc, [pmap/2]).

tests([N]) ->

Nsched = list_to_integer(atom_to_list(N)),

run_tests(1, Nsched).

run_tests(N, Nsched) ->

case test(N) of

stop ->

init:stop();

Val ->

io:format("~p.~n",[{Nsched, Val}]),

run_tests(N+1, Nsched)

end.

http://media.pragprog.com/titles/jaerlang/code/runtests
http://media.pragprog.com/titles/jaerlang/code/ptests.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=377

SMALL MESSAGES, BIG COMPUTATIONS 378

test(1) ->

%% Make 100 lists

%% Each list contains 1000 random integers

seed(),

S = lists:seq(1,100),

L = map(fun(_) -> mkList(1000) end, S),

{Time1, S1} = timer:tc(lists, map, [fun lists:sort/1, L]),

{Time2, S2} = timer:tc(lib_misc, pmap, [fun lists:sort/1, L]),

{sort, Time1, Time2, equal(S1, S2)};

test(2) ->

%% L = [27,27,27,..] 100 times

L = lists:duplicate(100, 27),

{Time1, S1} = timer:tc(lists, map, [fun ptests:fib/1, L]),

{Time2, S2} = timer:tc(lib_misc, pmap, [fun ptests:fib/1, L]),

{fib, Time1, Time2, equal(S1, S2)};

test(3) ->

stop.

%% Equal is used to test that map and pmap compute the same thing

equal(S,S) -> true;

equal(S1,S2) -> {differ, S1, S2}.

%% recursive (inefficent) fibonacci

fib(0) -> 1;

fib(1) -> 1;

fib(N) -> fib(N-1) + fib(N-2).

%% Reset the random number generator. This is so we

%% get the same sequence of random numbers each time we run

%% the program

seed() -> random:seed(44,55,66).

%% Make a list of K random numbers

%% Each random number in the range 1..1000000

mkList(K) -> mkList(K, []).

mkList(0, L) -> L;

mkList(N, L) -> mkList(N-1, [random:uniform(1000000)|L]).

This runs map and pmap in the two different test cases. You can see

the results in Figure 20.1, on the next page, where we have plotted the

ratio of times taken by pmap and map. As we can see, CPU-bound com-

putations with little message passing have linear speed-up, whereas

lighter-weight computations with more message passing scale less well.

As a final note, we shouldn’t read too much into these figures. SMP

Erlang is undergoing daily changes, so what is true today may not be

true tomorrow. All we can say is that we are very encouraged by our

results. Ericsson is building commercial products that run almost twice

as fast on dual-core processors, so we are very happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=378

MAPREDUCE AND INDEXING OUR DISK 379

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of CPUs

Multicore Performance on a SUN Fire T2000 Server

Fib
Lists

Figure 20.1: Speed-up on multicore CPU

20.4 mapreduce and Indexing Our Disk

Now we’re going to turn theory in practice. First we’ll look at the higher-

order function mapreduce; then we’ll use mapreduce to make a sim-

ple indexing engine. The goal here is not actually to make the world’s

fastest and best indexing engine but to address the design issues that

are involved in constructing such a program.

mapreduce

In Figure 20.2, on the following page, we can see the basic idea of mapre-

duce. We have a number of mapping processes, which produce streams

of {Key, Value} pairs. The mapping processes send these pairs to a reduce

process that merges the pairs, combining pairs with the same key.

Warning: The word map, used in the context of mapreduce, is com-

pletely different from the map function that occurs elsewhere in this

book.

mapreduce is a parallel higher-order function. Proposed by Jeffrey Dean

and Sanjay Ghemawat of Google, it is said to be in daily use on Google

clusters.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=379

MAPREDUCE AND INDEXING OUR DISK 380

 {Key, Val}

 M

 {Key, Val}

 M

 {Key, Val}

 M

 {Key, Val}
 M

 {Key, Val}

 M

 R

 M = Map process

 R = Reduce process

Figure 20.2: mapreduce

We can implement mapreduce in lots of different ways and with lots of

different semantics—it’s actually more a family of algorithms than one

particular algorithm.

mapreduce is defined as follows:

@spec mapreduce(F1, F2, Acc0, L) -> Acc

F1 = fun(Pid, X) -> void,

F2 = fun(Key, [Value], Acc0) -> Acc

L = [X]

Acc = X = term()

F1(Pid, X) is the mapping function.

The job of F1 is to send a stream of {Key, Value} messages to the

process Pid and then to terminate. mapreduce will spawn a fresh

process for each value of X in the list L.

F2(Key, [Value], Acc0) -> Acc is the reduction function.

When all the mapping processes have terminated, the reduce pro-

cess will have merged all the values for a particular key together.

It then calls F2(Key, [Value], Acc) for each of the {Key, [Value]} pairs it

has collected. Acc is an accumulator whose initial value is Acc0.

F2 returns a new accumulator. (Another way of describing this is

to say that F2 performs a fold over the {Key, [Value]} pairs that it has

collected.)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=380

MAPREDUCE AND INDEXING OUR DISK 381

Acc0 is the initial value of the accumulator, used when calling F2.

L is a list of X values.

F1(Pid, X) will be called for each value of X in L.Pid is a process

identifier of the reduce process; this is created by mapreduce.

mapreduce is defined in the module phofs (short for parallel higher-order

functions):

Download phofs.erl

-module(phofs).

-export([mapreduce/4]).

-import(lists, [foreach/2]).

%% F1(Pid, X) -> sends {Key,Val} messages to Pid

%% F2(Key, [Val], AccIn) -> AccOut

mapreduce(F1, F2, Acc0, L) ->

S = self(),

Pid = spawn(fun() -> reduce(S, F1, F2, Acc0, L) end),

receive

{Pid, Result} ->

Result

end.

reduce(Parent, F1, F2, Acc0, L) ->

process_flag(trap_exit, true),

ReducePid = self(),

%% Create the Map processes

%% One for each element X in L

foreach(fun(X) ->

spawn_link(fun() -> do_job(ReducePid, F1, X) end)

end, L),

N = length(L),

%% make a dictionary to store the Keys

Dict0 = dict:new(),

%% Wait for N Map processes to terminate

Dict1 = collect_replies(N, Dict0),

Acc = dict:fold(F2, Acc0, Dict1),

Parent ! {self(), Acc}.

%% collect_replies(N, Dict)

%% collect and merge {Key, Value} messages from N processes.

%% When N processes have terminated return a dictionary

%% of {Key, [Value]} pairs

collect_replies(0, Dict) ->

Dict;

http://media.pragprog.com/titles/jaerlang/code/phofs.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=381

MAPREDUCE AND INDEXING OUR DISK 382

collect_replies(N, Dict) ->

receive

{Key, Val} ->

case dict:is_key(Key, Dict) of

true ->

Dict1 = dict:append(Key, Val, Dict),

collect_replies(N, Dict1);

false ->

Dict1 = dict:store(Key,[Val], Dict),

collect_replies(N, Dict1)

end;

{'EXIT', _, Why} ->

collect_replies(N-1, Dict)

end.

%% Call F(Pid, X)

%% F must send {Key, Value} messsages to Pid

%% and then terminate

do_job(ReducePid, F, X) ->

F(ReducePid, X).

Before we go any further, we’ll test mapreduce so as to be really clear

about what it does.

We’ll write a little program to count the frequencies of all words in the

code directory that accompanies this book. Here is the program:

Download test_mapreduce.erl

-module(test_mapreduce).

-compile(export_all).

-import(lists, [reverse/1, sort/1]).

test() ->

wc_dir(".").

wc_dir(Dir) ->

F1 = fun generate_words/2,

F2 = fun count_words/3,

Files = lib_find:files(Dir, "*.erl", false),

L1 = phofs:mapreduce(F1, F2, [], Files),

reverse(sort(L1)).

generate_words(Pid, File) ->

F = fun(Word) -> Pid ! {Word, 1} end,

lib_misc:foreachWordInFile(File, F).

count_words(Key, Vals, A) ->

[{length(Vals), Key}|A].

http://media.pragprog.com/titles/jaerlang/code/test_mapreduce.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=382

MAPREDUCE AND INDEXING OUR DISK 383

5> test_mapreduce:test().

[{341,"1"},

{330,"end"},

{318,"0"},

{265,"N"},

{235,"X"},

{214,"T"},

{213,"2"},

{205,"start"},

{196,"L"},

{194,"is"},

{185,"file"},

{177,"Pid"},

...

When I ran this, there were 102 Erlang modules in the code directory;

mapreduce created 102 parallel processes, each sending a stream of

pairs to the reduce process. This should run nicely on a 100-core pro-

cessor (if the disk can keep up).

Now that we understand how mapreduce works, we can go back to our

indexing engine.

Full-Text Indexing

When we build an index, one of the things we need to do is find all

the words in a file. This is going to be used in the “map” phase of a

mapreduce operation.

Before we do this, we’ll look at the data structures needed to make a

full-text index.

The Inverted Index

Our full-text index is implemented using an inverted index—in this sec-

tion, we’ll review the idea of an inverted index and see how this is stored

in our system.

To illustrate this, we’ll start with a simple example. Suppose we have

a file system with three files and each file contains a small number of

words.

Our files and their contents might look like this:

Filename Contents

/home/dogs rover jack buster winston

/home/animals/cats zorro daisy jaguar

/home/cars rover jaguar ford

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=383

MAPREDUCE AND INDEXING OUR DISK 384

To compute our inverted index, we first number all the files, like this:

Index Filename

1 /home/dogs

2 /home/animals/cats

3 /home/cars

And then we make a table of the words in the files against the indexes

of the files where these words occur:

Word File Index

rover 1, 3

jack 1

buster 1

winston 1

zorro 2

daisy 2

jaguar 2, 3

ford 3

Querying the Inverted Index

Once we have built an inverted index, querying the index is easy. Sup-

pose we want to look up the term buster. This occurs in file 1, namely,

/home/dogs. To query rover AND jaguar, we look up rover (answer, files

1 and 3) and then jaguar (answer, files 2 and 3), and then we take the

intersection of the two answers (file 3), which is the file /home/cars.

Data Structures for the Inverted Index

We need two persistent data structures:

• The filename-to-index table: Filenames are represented by integers

in the inverted index. This is to save space. A common word will

occur in thousands of files, so we want a compact representation

of the filename. We’ll use a DETS table to represent this infor-

mation. Earlier in Section 15.6, Example: A Filename Index, on

page 284, we developed a program to do this.

• The word-to-file index table: For each word in our files, we need

to keep a record of the indexes of the files where this word is

contained. To do this, we use the file system. In our example,

we create files called rover, buster, and so on. The indexer pro-

gram stores these words in some index directory. For example,

if the index directory was /usr/index, we’d expect to find files called

/usr/index/busterbuster, and so on, in this directory containing the

indexes of the files.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=384

MAPREDUCE AND INDEXING OUR DISK 385

The Operation of the Indexer

We start everything by calling indexer:start(). This is defined as follows:

Download indexer-1.1/indexer.erl

start() ->

indexer_server:start(output_dir()),

spawn_link(fun() -> worker() end).

This does two things. First, it starts a server called indexer_server (which

was written using gen_server). Second, it spawns a worker process to do

the indexing.

Download indexer-1.1/indexer.erl

worker() ->

possibly_stop(),

case indexer_server:next_dir() of

{ok, Dir} ->

Files = indexer_misc:files_in_dir(Dir),

index_these_files(Files),

indexer_server:checkpoint(),

possibly_stop(),

sleep(10000),

worker();

done ->

true

end.

The worker process does the following:

1. Calls indexer_server:next_dir(), which returns the next directory to

index.

2. Calls indexer_misc:files_in_dir to find the files in the directory that

should be indexed.

3. Calls index_these_files(Files) to compute the inverted index for Files.

4. Calls indexer_server:checkpoint(). This has to do with crash recovery.

Once we have indexed a new directory, we tell the server that we

have indexed this directory. If the program crashes or is stopped

and subsequently restarted, the next call to indexer_server:next_dir()

will resume from the next directory.

After each cycle of indexing, the worker calls possibly_stop() to see

whether a stop has been scheduled. If not, it sleeps for a while and

continues.

http://media.pragprog.com/titles/jaerlang/code/indexer-1.1/indexer.erl
http://media.pragprog.com/titles/jaerlang/code/indexer-1.1/indexer.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=385

MAPREDUCE AND INDEXING OUR DISK 386

The actual indexing takes place in index_these_files. This is where we go

parallel and use mapreduce.

Download indexer-1.1/indexer.erl

index_these_files(Files) ->

Ets = indexer_server:ets_table(),

OutDir = filename:join(indexer_server:outdir(), "index"),

F1 = fun(Pid, File) -> indexer_words:words_in_file(Pid, File, Ets) end,

F2 = fun(Key, Val, Acc) -> handle_result(Key, Val, OutDir, Acc) end,

indexer_misc:mapreduce(F1, F2, 0, Files).

handle_result(Key, Vals, OutDir, Acc) ->

add_to_file(OutDir, Key, Vals),

Acc + 1.

add_to_file(OutDir, Word, Is) appends a list of indexes in Is to the file Word

in OutDir.

Download indexer-1.1/indexer.erl

add_to_file(OutDir, Word, Is) ->

L1 = map(fun(I) -> <<I:32>> end, Is),

OutFile = filename:join(OutDir, Word),

case file:open(OutFile, [write,binary,raw,append]) of

{ok, S} ->

file:pwrite(S, 0, L1),

file:close(S);

{error, E} ->

exit({ebadFileOp, OutFile, E})

end.

Running the Indexer
1> indexer:cold_start().

2> indexer:start().

...

N> indexer:stop().

Scheduling a stop

ack

Stopping

Comments

This is a complex program (the most complex one in this book), and it

is by no means complete. Even though it is complex, it has a structure

that is simple and understandable.

It has a strategy for starting and stopping the program and recovering

from errors. This is a achieved with indexer_checkpoint. It parallelizes

the search using mapreduce, and it makes a brave attempt at isolating

words from a file.

http://media.pragprog.com/titles/jaerlang/code/indexer-1.1/indexer.erl
http://media.pragprog.com/titles/jaerlang/code/indexer-1.1/indexer.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=386

MAPREDUCE AND INDEXING OUR DISK 387

What would we have to do to turn this toy indexer into a full-featured

indexer? We would have to make a number of improvements:

• Improve the word extraction. This is probably the single area that

needs some major effort. The problem is not particularly difficult,

but the problem has no generic solution. Each file type (Erlang,

PDF, TXT, C, Java, and so on) requires a separate (and different)

analysis technique to extract what might be relevant words. This

has to be repeated for all major natural languages (and spellings).

• mapreduce must be improved to handle extremely large data sets.

The key-value merge steps that I used in mapreduce shown here

ran in memory and without backing disk store. We must give some

careful thought to the problem of how to represent sets of values

where the numbers of elements are extremely large.

• The data structures for the inverted index just used the file system

as a data store and a single DETS table for storing the filename-

to-index map. This technique doesn’t scale well to encompass, for

example, all the filenames of all machines on the planet. For this,

a distributed hash table seems appropriate.

Let’s disregard these problems for a moment and step back to think

about the solution. On the positive side, we have learned a number of

techniques for programming multicore CPUs based on the use of simple

higher-order functions that are free from side effects.

The Indexer Code

All the code for the indexer is in the indexer directory in the code down-

load. It consists of nine files. These files total about 1,200 lines of code,

so we won’t kill trees by including them here.

indexer.erl

The main program. This exports start(), stop(), and cold_start().

These are the only routines that a user of the indexer is supposed

to know about.

indexer_porter.erl

Stemming algorithm. To reduce the number of words in the index,

we try to reduce words to the same base or root form. So, for

example, all the words fishing, fished, and fisher have the same

root (fish). This process is called stemming. The algorithm we use

is the Porter algorithm (because of Martin Porter) and is imple-

mented in the module indexer_porter.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=387

MAPREDUCE AND INDEXING OUR DISK 388

indexer_server.erl

A server built with gen_server. This owns the DETS table used by

indexer_filenames_dets. It keeps track of global data, like the name

of the directories to index and the progress of indexing, and so on.

indexer_filenames_dets.erl

The filename to index code. This is a copy of lib_filenames_dets.

indexer_checkpoint.erl

The checkpointing mechanism. This stores a data structure on

disk that allows the application to recover if it crashes.

indexer_trigrams.erl

This is similar to lib_trigrams.erl. This performs trigram analysis of

words (see Section 15.5, Example Programs with ETS, on page 279).

indexer_misc.erl

Miscellaneous routines, including a copy of mapreduce.

indexer_words.erl

Extracts words from a file and calls routines to perform trigram

analysis and stemming on a word.

indexer_dir_crawler.erl

Reentrant directory listing program called by indexer_server.

You’ll notice something about these filenames. There is one file called

indexer.erl and then a number of files called indexer_XXXX.erl. This follows

the usual convention used for distributing complex Erlang applications.

When we have the application working, we choose an application name

(in this case indexer). Then we make a “main module” (in indexer.erl) and

a number of “submodules” (indexer_XXXX).

In doing so, we copy, rename, and possibly modify code from other

modules. This method has a number of advantages and disadvantages.

The main advantage is that using these namespace conventions we can

independently develop code without worrying about how it is shared.

The disadvantage is that common library code can end up with several

different names and in several different versions when in fact it should

be merged.

The code in the Erlang distribution follows this convention. So, for

example, the code in /usr/local/lib/erlang/lib/mnesia-4.3.4/src follows this

convention. The main exceptions to this rule are the modules in the

libraries kernel and stdlib, which follow no naming conventions but try

to use short intuitive names.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=388

GROWING INTO THE FUTURE 389

20.5 Growing Into the Future

The landscape of computing is changing. Large, monolithic processors

are slowing becoming dinosaurs, eclipsed by the idea that we can put

processing power where we need it. The future has multiple cores, and

the future has distributed processors.

The techniques we grew up with for writing programs are struggling in

this new world. Erlang is a solution for this. In this book, I’ve shown

you how a few basic concepts in Erlang lead to code that is reliable,

maintainable, and that scales well on today’s (and tomorrow’s) archi-

tectures.

Enjoy writing these new style programs.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=389

Appendix A

Documenting Our Program
Erlang has strong ideas about types, but much of what it knows is

implicit. To make it more explicit in documentation, and when talking

about functions, the Erlang community has developed a notation for

talking about types. This notation isn’t part of a program’s source code.

Instead, it’s a documentation device—a way of talking about Erlang

source. Using it, we can specify unambiguously what kinds of parame-

ters a function may accept and what types it returns.

More recently, this same notation has been adopted by a range of tools

that work with Erlang source (which we’ll talk about later).

The type notation is used only for documentation purposes. Type dec-

larations are not Erlang code and cannot be typed into the shell. Type

declarations in Erlang modules are written as part of comments and

are totally ignored by the Erlang compiler. For example, we might write

this:

-module(math).

-export([fac/1]).

%% @spec fac(int()) -> int().

fac(0) -> 1;

fac(N) -> N * fac(N-1).

The type notation is used in the Erlang manual pages and in the API

descriptions that you can find in this book. The notation is informal, in

that we often don’t fully specify the types, but it is formal enough that

we can capture the essence of what a function does.

ERLANG TYPE NOTATION 391

A.1 Erlang Type Notation

We need to define two things: types and function specifications.

Defining a Type

The type named “typeName” is written as typeName(). Types are either

predefined or user-defined. The predefined types are any(), atom(),

binary(), bool(), char(), cons(), deep_string(), float(), function(), integer(),

iolist(), list(), nil(), none(), number(), pid(), port(), reference(), string(), term(),

and tuple().

They have the following meanings:

• any() means “any Erlang data type.” term() is an alias for any().

• atom(), binary(), float(), function(), integer(), pid(), port(), and refer-

ence() are the primitive data types of the Erlang programming

language.

• bool() is one of the atoms true or false.

• char() is a subset of integer() representing a character.

• iolist() is recursively defined as [char() | binary() | iolist()]. A binary

is also allowed as the tail of the list. This is commonly used as

an efficient way of generating character output. See Section 13.3,

Listing URLs from a File, on page 237 for an example of a function

that produces an IO list.

• tuple() is a tuple.

• list(L) is an alias for [L].

• nil() is an alias for the empty list [].

• string() is an alias for list(char()).

• deep_string() is recursively defined as [char()|deep_string()].

• none() means “no data type.” This is used for a function that never

returns (an infinite receive loop, for example). Strictly, it’s not a

type but a way of documenting the fact that the function never

returns.

We can construct new types (user-defined types) by writing this:

@type newType() = TypeExpression

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=391

ERLANG TYPE NOTATION 392

We’ll give some examples first and then give a more formal definition of

the rules defining a type expression:

@type onOff() = on | off.

@type person() = {person, name(), age()}.

@type people() = [person()].

@type name() = {firstname, string()}.

@type age() = integer().

...

These rules say that, for example, {firstname, "dave"} is of type name(),

[{person, {firstname,"john"}, 35}, {person, {firstname,"mary"}, 26}] is of type peo-

ple(), and so on.

TypeExpression is defined inductively as follows:

• {T1, T2, ..., Tn} is a type expression (called a tuple type) if T1, T2, ... Tn

are type expressions. We say that {X1, X2, ..., Xn} is of type {T1, T2, ...,

Tn} if X1 is of type T1, X2 is of type T2, ... and Xn is of type Tn.

• [T] is a type expression (called a list type) if T is a type expression.

We say that the list [X1, X2, ..., Xn] is of type [T] if all the Xis are of

type T.

• T1 | T2 is a type expression (called the alternation type) if T1 is a type

and T2 is a type. We say that X is of type T1 | T2 if X is of type T1 or

type T2.

• fun(T1, T2, ..., Tn) -> T is a type expression (called the function type) if

all the Tis are type expressions and if T is a type expression. We say

that fun(X1, X2, ..., Xn) -> X is of type fun(T1, T2, ..., Tn) -> T if X1 is of type

T1, X2 is of type T2, ..., and X is of type T.

• A predefined type, a user-defined type, or an instance of a prede-

fined type is a type expression.

Now that we know how to define types, we can move on to function

specifications.

Specifying the Input and Output Types of a Function

Function specifications say what the types of the arguments to a func-

tion are and what the type of the return value of the function is. A

function specification is written like this:

@spec functionName(T1, T2, ..., Tn) -> Tret

Here T1, T2, ..., Tn describe the types of the arguments to a function, and

Tret describes the type of the return value of the function.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=392

ERLANG TYPE NOTATION 393

Each of the Tis can have one of three possible forms:

• TypeVar: A type variable. A type variable is a variable used in a type

declaration that represents an unknown type (and incidentally has

nothing to do with an Erlang variable). If we use the same type

variable more than once in a type specification, then all instances

of the type variable must have the same type.

• TypeVar::Type: A type variable followed by a type. This means that

TypeVar has type Type (a type expression).

• Type: A type expression.

We’ll start with an example, and then I’ll explain the details:

@spec file:open(FileName, Mode) -> {ok, Handle} | {error, Why}.

@spec file:read_line(Handle) -> {ok, Line} | eof.

The specification of file:open/2 says that if we open the file FileName, we

should get a return value that is either {ok, Handle} or {error, Why}. The

vertical bar | means OR.

Note: Often the module part of a function is implied by the context.

For example, if we’re talking only about the file module, I’ll write @spec

open(...) instead of @spec file:open(...).

FileName and Mode are type variables, but what types are they? Is

FileName an atom, a string, or something else? We can’t actually see

this from the definition—this is why the definition is informal. Some-

times we don’t need to know what the data type of an argument is;

for example, we don’t need to know what data type Handle (one of the

return values of file:open) is because all we do is pass it unmodified into

file:read_line/1.

We can also use function types as in the following examples:

@spec lists:map(fun(A) -> B, [A]) -> [B].

@spec lists:filter(fun(X) -> bool(), [X]) -> [X].

Often we don’t need to go into great detail about what type a function

argument has; we represent it by a descriptive name, and we can guess

from the context what this means.

If we wanted to remove the guesswork, we could refine our specifica-

tion in a number of different ways, which are all equivalent. Here’s an

example:

@spec file:open(FileName::string(), [mode()]) ->

{ok, Handle::file_handle()} | {error, Why::string()}

@type mode() = read | write | compressed | raw | binary | ...

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=393

TOOLS THAT USE TYPES 394

Here’s another example:

@spec file:open(string(), Modes) -> {ok, Handle} | {error, string()}

Handle = file_handle(),

Modes = [Mode],

Mode = read | write | compressed | raw | binary | ...

Or here’s even another example:

@spec file:open(string(), [mode()]) -> {ok, file_handle()} | error().

@type error() = {error, string()}.

@type mode() = read | write | compressed | raw | binary | ...

Type Definitions in APIs

When we define APIs in manual pages or in this book, we’ll often use

descriptive lists for function type definitions. In this case we omit the

@spec keyword and write the definition directly. Often we’ll just use type

variables and describe them in the text that follows the description.

Here’s an example, showing part of the file manual page:

file:open(File, [Mode]) -> {ok, Handle} | {error, Why}

Open File (a string) according to Mode. Mode is one of read, write,

and so on. It returns {ok, Handle} if the file could be opened or {error,

Why} where Why is a string describing the error. Once the file has

been successfully opened, it can be accessed through Handle.

file:read_line(Handle) -> {ok, Line} | eof

Read a line from the file opened with Handle. It returns Line (a

string) or eof at end-of-file.

and so on....

A.2 Tools That Use Types

Here are some tools that use types:

EDoc

EDoc is the Erlang program documentation generator. Inspired

by the Javadoc tool for the Java programming language, EDoc is

adapted to the conventions of the Erlang world.

EDoc lets you write the documentation of an Erlang program as

annotations that are embedded in comments in the source code.

These annotations are introduced using tags such as @name,

@doc, @type, @author, and so on.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=394

TOOLS THAT USE TYPES 395

The module edoc exports a large number of functions that can

be used to manipulate Erlang source code files containing Edoc

annotations.

The Dialyzer

The Dialyzer is a static analysis tool that identifies software dis-

crepancies such as type errors, unreachable code, unnecessary

tests, and so on. It works for single Erlang modules or entire (sets

of) applications.

Both these tools are distributed as part of the standard Erlang distri-

bution.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=395

Appendix B

Erlang on Microsoft Windows
I run Erlang on many different platforms, and I like the development

environment to be almost the same on all of them. For Windows I have

found the following setup to be useful. (You might need to change some

of the directory names to match those on your own system.)

Step B.1 is essential for all Windows users. You can follow steps B.2 to

B.4 if you want to have a Unix-like development environment on Win-

dows. You can follow step B.5 if you want to install emacs on Windows

(this is useful since emacs has an advanced mode for editing Erlang

programs).

B.1 Erlang

Go to http://www.erlang.org/download.html, and get the latest Windows

binary (37MB), called otp_win32-R11B-3.exe. When you click the file icon,

Erlang is installed in the default directory. When I did this on my

machine, Erlang was installed in C:\Program Files\erl.5.4.12\.

B.2 Fetch and Install MinGW

MinGW1 stands for Minimalist GNU for Windows.

1. Fetch the MinGW installer. This is a small program (about 130KB)

that talks you through the installation procedure. I used MinGW-

5.0.2.exefrom the download area at http://www.mingw.org/download.shtml.

1. http://www.mingw.org

http://www.erlang.org/download.html
http://www.mingw.org/download.shtml
http://www.mingw.org

FETCH AND INSTALL MSYS 397

2. Run the install procedure. Make sure the checkboxes for “MinGW

base tools” and “MinGW make” are selected.

3. Answer Yes to everything. This will install about 44MB of stuff in

the directory C:\MinGW.

B.3 Fetch and Install MSYS

1. Go to http://www.mingw.org/download.shtml, and fetch the latest ver-

sion of MSYS. Look for the current system in the section marked

MSYS, and download the file MSYS-1.0.10.exe (2742KB).

2. Install MSYS-1.0.10.exe by clicking the file icon.

3. Go to the download area of http://sourceforge.net/projects/mingw.

4. Answer the questions. You’ll be asked one question—the location

of MinGW. Reply c:\MinGW.

After this step, you should have a function shell. Selecting Start > Pro-

grams > MinGW > MSYS > msys starts a shell. You should also have a

blue desktop icon that you can click to start the shell.

If you click the icon with a large M on it, you’ll get a shell window where

a lot of your favorite Unix commands will work.

B.4 Install the MSYS Developer Toolkit (Optional)

I do this so I get ssh, and so on. These are “nice to have” but not

essential.

1. Find the file MsysDTK-1.0.1.exe.

2. Use the one-click installer.

B.5 Emacs

1. Go to ftp://ftp.gnu.org/gnu/emacs/windows/, and download the file

emacs-21.3-fullbin-i386.tar.gz.

2. Use WinZip to unpack this into a suitable directory.

3. To complete the installation, navigate to the emacs bin directory,

and click addpm. (This adds a shortcut to emacs in the Start >

Programs tab.) I also make a shortcut to runemacs from my desk-

top.

http://www.mingw.org/download.shtml
http://sourceforge.net/projects/mingw
ftp://ftp.gnu.org/gnu/emacs/windows/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=397

EMACS 398

Customizing emacs

To customize emacs, copy the contents of the file emacs.setup (shown

here) into a file called .emacs in your home directory. On my system

this is the file C:/.emacs.

Download emacs.setup

(setq default-frame-alist

'((top . 10) (left . 10)

(width . 80) (height . 43)

(cursor-color . "blue")

(cursor-type . box)

(foreground-color . "black")

(background-color . "white")

(font . "-*-Courier New-bold-r-*-*-18-108-120-120-c-*-iso8859-8")))

(show-paren-mode)

(global-font-lock-mode t)

(setq font-lock-maximum-decoration t)

;; Erlang stuff this is the path to erlang

;; windows path below -- change to match your environment

(setq load-path (cons "c:/Program Files/erl5.5.3/lib/tools-2.5.3/emacs"

load-path))

(require 'erlang-start)

;; (if window-system

;; (add-hook 'erlang-mode-hook 'erlang-font-lock-level-3))

(add-hook 'erlang-mode-hook 'erlang-font-lock-level-3)

http://media.pragprog.com/titles/jaerlang/code/emacs.setup
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=398

Appendix C

Resources
C.1 Online Documentation

The Main Erlang Documentationhttp://www.erlang.org/doc/

All the Erlang documentation at the main distribution site.

The Erlang Manual Page http://www.erlang.org/doc/man/erlang.html

All the missing details not talked about in this book.

The Erlang Style Guide http://www.erlang.se/doc/programming_rules.shtml

This is a set of rules defining what we think good Erlang programming is. These

rules are used in several commercial projects.1

The Erlang FAQ . http://www.erlang.org/faq/t1.html

Every good project deserves answers to frequently asked questions.

The Manual Pages http://www.erlang.org/doc/man/index.html

All the latest manual pages for all documented Erlang modules and all OS

commands (such as erl, erlc, escript, and so on). Individual manual pages have

names like erlang.org/doc/man/lists.html.

PDF Manuals . http://www.erlang.org/doc/pdf/index.html

Top-level index of the latest version of all PDF manuals in the system.

Individual manuals (for example, the Mnesia manual) have a names like

erlang.org/doc/pdf/mnesia.pdf.

Application Documentationhttp://www.erlang.org/doc/apps/Name

Documentation for individual applications. For example, we can find all docu-

mentation for Mnesia at http://www.erlang.org/doc/apps/mnesia.

1. Also at http://www.erlang.se/doc/programming_rules.pdf.

http://www.erlang.org/doc/
http://www.erlang.org/doc/man/erlang.html
http://www.erlang.se/doc/programming_rules.shtml
http://www.erlang.org/faq/t1.html
http://www.erlang.org/doc/man/index.html
http://www.erlang.org/doc/pdf/index.html
http://www.erlang.org/doc/apps/Name
http://www.erlang.org/doc/apps/mnesia
http://www.erlang.se/doc/programming_rules.pdf.

BOOKS AND THESES 400

C.2 Books and Theses

Concurrent Programming in Erlang [VWWA96]

The first Erlang book has two sections: Part I is about the lan-

guage, and Part II is about applications. Part I is freely available

as a PDF file.2

Erlang Programmation [Rém03] (French)

Mickaël Rémond’s book for French readers.

“Making Reliable Systems in the Presence of Software Errors”

This is my doctoral thesis.3 It contains the theory and partial his-

tory of Erlang. This is a more formal treatment than in this book.

You’ll find some more OTP behaviors described and some case

studies of the use of Erlang.

The Erlang 4.7 Specification

Not for the faint of heart, this was an attempt to precisely specify

Erlang version 4.7.4 Although this is rather out-of-date, it still has

the best available description of those parts of the language that

have not changed since version 4.7. In fact, much of it is still

relevant to the current Erlang 5.5.

C.3 Link Collections

http://www.it.uu.se/research/group/hipe/publications.shtml

High-Performance Erlang (HIPE) is a group at the University of

Uppsala that has been involved with the development of Erlang for

many years. This page has pointers to a large number of Erlang

papers and research reports.

http://dmoz.org/Computers/Programming/Languages/Erlang/

Open Directory Erlang listings.

C.4 Blogs

http://armstrongonsoftware.blogspot.com/

My musings on software.

2. http://www.erlang.org/download/erlang-book-part1.pdf

3. http://www.erlang.org/download/armstrong_thesis_2003.pdf

4. http://www.erlang.org/download/erl_spec47.ps.gz

http://www.it.uu.se/research/group/hipe/publications.shtml
http://dmoz.org/Computers/Programming/Languages/Erlang/
http://armstrongonsoftware.blogspot.com/
http://www.erlang.org/download/erlang-book-part1.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/erl_spec47.ps.gz
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=400

FORUMS, ONLINE COMMUNITIES, AND SOCIAL SITES 401

http://yarivsblog.com/

Yariv Sadan blogs about Erlang and about ErlyWeb, which is a

WEB framework written in Erlang.

http://www.process-one.net/en/blogs/

Blogs by Mickaël Rémond and friends.

C.5 Forums, Online Communities, and Social Sites

http://www.erlang.org/mailman/listinfo

The main Erlang lists. This is mirrored at many sites.

http://www.trapexit.org/

Large Erlang community, including forums, a wiki, and how-tos.

The how-to section5 and the cookbook6 are pretty useful.

Erlounges

Erlounges are held at irregular times and places all over the world.

Erlounges are social events where Erlang users get together (usu-

ally in Pubs or Restaurants) and talk about the joys of program-

ming in Erlang. They are advertised on the Erlang mailing list.

IRC Channels

#erlang on irc.freenode.net.

C.6 Conferences

ACM SIGPLAN Workshop

Annual event. One day.

Erlang User Conference

Annual event.7 Two days.

C.7 Projects

http://jungerl.sourceforge.net/

A large repository of Erlang projects at SourceForge.

5. http://wiki.trapexit.org/index.php/Category:HowTo

6. http://wiki.trapexit.org/index.php/Category:CookBook

7. http://www.erlang.se/euc.

http://yarivsblog.com/
http://www.process-one.net/en/blogs/
http://www.erlang.org/mailman/listinfo
http://www.trapexit.org/
http://jungerl.sourceforge.net/
http://wiki.trapexit.org/index.php/Category:HowTo
http://wiki.trapexit.org/index.php/Category:CookBook
http://www.erlang.se/euc
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=401

BIBLIOGRAPHY 402

http://cean.process-one.net/

The Comprehensive Erlang Archive Network. An attempt to merge

all ongoing Erlang projects.

http://yaws.hyber.org/

Yet Another Web Server. This is a web server in Erlang that is used

in many commercial products.

http://ejabberd.jabber.ru/

Instant messaging server for the Jabber protocol, written in Erlang.

C.8 Bibliography

[Rém03] Mickaël Rémond. Erlang Programmation. Eyrolles, Paris,

2003.

[VWWA96] Robert Virding, Claes Wikstrom, Mike Williams, and Joe

Armstrong. Concurrent Programming in Erlang. Prentice

Hall, Englewood Cliffs, NJ, second edition, 1996.

http://cean.process-one.net/
http://yaws.hyber.org/
http://ejabberd.jabber.ru/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=402

Appendix D

A Socket Application
This appendix is devoted to the implementation of the library lib_chan.

We introduced this library in Section 10.5, lib_chan, on page 187, and

we used it Chapter 11, IRC Lite, on page 191.

The code for lib_chan implements an entire layer of networking on top

of TCP/IP, providing both authentication and streams of Erlang terms.

Once we understand the principles used in lib_chan, we should be able

to tailor-make our own communication infrastructure and layer it on

top of TCP/IP.

In its own right, lib_chan is a useful component for building distributed

systems.

To make the appendix self-contained, there is a considerable amount

of overlap with the material in Section 10.5, lib_chan, on page 187.

The code in this appendix is some of the most complex code I’ve intro-

duced so far, so don’t worry if you don’t understand it all on the first

reading. If you just want to use lib_chan and don’t care about how it

works, read the first section and skip the rest.

D.1 An Example

We’ll start with a simple example that shows how to use lib_chan. We’re

going to create a simple server that can compute factorials and Fibo-

nacci numbers. We’ll protect it with a password.

The server will operate on port 2233.

AN EXAMPLE 404

We’ll take four steps to create this server:

1. Write a configuration file.

2. Write the code for the server.

3. Start the server.

4. Access the server over the network.

Step 1: Write a Configuration File

Here’s the configuration file for our example:

Download socket_dist/config1

{port, 2233}.

{service, math, password, "qwerty", mfa, mod_math, run, []}.

The configuration file has a number of service tuples of this form:

{service, <Name>, password, <P>, mfa, <Mod>, <Func>, <ArgList>}

The arguments are delimited by the atoms service, password, and mfa.

mfa is short for module, function, args, meaning that the next three

arguments are to be interpreted as a module name, a function name,

and a list of arguments to some function call.

In our example, the configuration file specifies a service called math

that will be available on port 2233. The service is protected by the pass-

word qwerty. It is implemented in a module called mod_math and will

be started by calling mod_math:run/3. The third argument of run/3 will be

[].

Step 2: Write the Code for the Server

The math server code looks like this:

Download socket_dist/mod_math.erl

-module(mod_math).

-export([run/3]).

run(MM, ArgC, ArgS) ->

io:format("mod_math:run starting~n"

"ArgC = ~p ArgS=~p~n",[ArgC, ArgS]),

loop(MM).

loop(MM) ->

receive

{chan, MM, {factorial, N}} ->

MM ! {send, fac(N)},

loop(MM);

http://media.pragprog.com/titles/jaerlang/code/socket_dist/config1
http://media.pragprog.com/titles/jaerlang/code/socket_dist/mod_math.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=404

AN EXAMPLE 405

{chan, MM, {fibonacci, N}} ->

MM ! {send, fib(N)},

loop(MM);

{chan_closed, MM} ->

io:format("mod_math stopping~n"),

exit(normal)

end.

fac(0) -> 1;

fac(N) -> N*fac(N-1).

fib(1) -> 1;

fib(2) -> 1;

fib(N) -> fib(N-1) + fib(N-2).

When a client connects to port 2233 and requests the service called

math, lib_auth will authenticate the client and, if the password is correct,

spawn a handler process by spawning the function mod_math:run(MM,

ArgC, ArgS). MM is the PID of a middle man. ArgC comes from the client,

and ArgS comes from the configuration file.

When the client sends to a message X to the server, it will arrive as a

{chan, MM, X} message. If the client dies or something goes wrong with

the connection, the server will be sent a {chan_closed, MM} message. To

send a message Y to the client, the server evaluated MM ! {send, Y}, and

to close the communication channel, it evaluated MM ! close.

The math server is simple; it just waits for a {chan, MM, {factorial, N}}

message and then sends the result to the client by evaluating MM !

{send, fac(N)}.

Step 3: Starting the Server

We start the server as follows:

1> lib_chan:start_server("./config1").

lib_chan starting:"./config1"

Terms=[{port,2233},

{service,math,password,"qwerty",

mfa,mod_math,run,[]}]

true

Step 4: Accessing the Server Over the Network

We can test this code on a single machine:

2> {ok, S} = lib_chan:connect("localhost",2233,math,

"qwerty",{yes,go}).

{ok,<0.47.0>}

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=405

HOW LIB_CHAN WORKS 406

3> lib_chan:rpc(S, {factorial,20}).

2432902008176640000

4> lib_chan:rpc(S, {fibonacci,15}).

610

4> lib_chan:disconnect(S).

close

mod_math stopping

D.2 How lib_chan Works

lib_chan is built using code in four modules:

• lib_chan acts as a “main module.” The only routines that the pro-

grammer needs to know about are the routines that are exported

from lib_chan. The other three modules (discussed next) are used

internally in the implementation of lib_chan.

• lib_chan_mm encodes and decodes Erlang messages and manages

the socket communication.

• lib_chan_cs sets up the server and manages client connections. One

of its main jobs is to limit the maximum number of simultaneous

client connections.

• lib_chan_auth has code for simple challenge/response authentica-

tion.

lib_chan

lib_chan has the following structure:

-module(lib_chan).

start_server(ConfigFile) ->

%% read configuration file - check syntax

%% call start_port_server(Port, ConfigData)

%% where Port is the required Port and ConfigData

%% contines the configuration data

start_port_server(Port, ConfigData) ->

lib_chan_cs:start_raw_server(..

fun(Socket) ->

start_port_instance(Socket, ConfigData),

end, ...)

%% lib_chan_cs manages the connection

%% when a new connection comes the fun which is an

%% argument to start_raw_server will be called

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=406

HOW LIB_CHAN WORKS 407

 M1

 MM1 P1

 M2

 MM2 P2

 {send,T}

 {chan, MM1,R}

 << ... >>

 << ... >>

 {chan, MM2, T}

 {send, R}

Figure D.1: Socket communication with a middle man

start_port_instance(Socket, ConfigData) ->

%% this is spawned when the client connects

%% to the server. Here we setup a middle man,

%% then perform authentication. If everything works call

%% really_start(MM, ArgC, {Mod, Func, ArgS})

%% (the last three arguments come from the configuration file

really_start(MM, ArgC, {Mod, Func, ArgS}) ->

apply(Mod, Func, [MM, ArgC, ArgS]).

connect(Host, Port, Service, Password, ArgC) ->

%% client side code

lib_chan_mm: The Middle Man

lib_chan_mm implements a middle man. It hides the socket communi-

cation from the applications, turning streams of data on TCP sockets

into Erlang messages. The middle man is responsible for assembling

the message (which might have become fragmented) and for encoding

and decoding Erlang terms into streams of bytes that can be sent to

and received from a socket.

Now is a good time to take a quick look at Figure D.1, which shows our

middle-man architecture. When a process P1 on a machine M1 wants

to send a message T to a process P2 on a machine M2, it evaluates

MM1 ! {send, T}. MM1 acts as a proxy for P2. Anything sent to MM1 is

encoded and written to a socket and sent to MM2. MM2 decodes any-

thing it receives on a socket and sends the message {chan, MM2, T} to

P2.

On the machine M1 the process MM1 behaves as a proxy for P2, and on

M2 the process MM2 behaves as a proxy for P1.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=407

HOW LIB_CHAN WORKS 408

MM1 and MM2 are PIDs of middle-men processes. The middle-man pro-

cess code looks something like this:

loop(Socket, Pid) ->

receive

{tcp, Socket, Bin} ->

Pid ! {chan, self(), binary_to_term(Bin)},

loop(Socket, Pid);

{tcp_closed, Socket} ->

Pid ! {chan_closed, self()};

close ->

gen_tcp:close(Socket);

{send, T} ->

gen_tcp:send(Socket, [term_to_binary(T)]),

loop(Socket, Pid)

end.

This loop is used as an interface between the world of socket data and

the world of Erlang message passing. You can find the complete code for

lib_chan_mm in Section D.3, lib_chan_mm, on page 416. This is slightly

more complex than the code shown here, but the principle is the same.

The only difference is that we’ve added some code for tracing messages

and some interfacing routines.

lib_chan_cs

lib_chan_cs is responsible for setting up client and server communica-

tion. The two important routines that it exports are as follows:

start_raw_server(Port, Max, Fun, PacketLength)

This starts a listener that listens for a connection on Port. At most,

Max simultaneous sessions are allowed. Fun is a fun of arity 1;

when a connection starts, Fun(Socket) is evaluated. The socket

communication assumes a packet length of PacketLength.

start:raw_client(Host, Port, PacketLength) => {ok, Socket} | {error, Why}

This tries to connect to a port opened with start_raw_server.

The code for lib_chan_cs follows the pattern described in Section 14.1, A

Parallel Server, on page 254, but in addition it keeps track of the max-

imum number of simultaneously open connections. This small detail,

though conceptually simple, adds twenty-odd lines of rather strange-

looking code that traps exits and so on. Code like this is a mess, but

don’t worry: it does its job and hides the complexity from the user of

the module.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=408

THE LIB_CHAN CODE 409

lib_chan_auth

This module implements a simple form of challenge/response authen-

tication. Challenge/response authentication is based on the idea of a

shared secret that is associated with the service name. To show how

it works, we’ll assume there is a service called math that has a shared

secret qwerty.

If a client wants to use the service math, then the client has to prove to

the server that they know the shared secret. This works as follows:

1. The client sends a request to the server saying it wants to use the

math service.

2. The server computes a random string C and sends it to the client.

This is the challenge. The string is computed by the function

lib_chan_auth:make_challenge(). We can use it interactively to see

what it does:

1> C = lib_chan_auth:make_challenge().

"qnyrgzqefvnjdombanrsmxikc"

3. The client receives this string (C) and computes a response (R)

where R = MD5(C ++ Secret). R is computed using lib_chan_auth:

make_response. For example:

2> R = lib_chan_auth:make_response(Challenge, "qwerty").

"e759ef3778228beae988d91a67253873"

4. The response is sent back to the server. The server receives the

response and checks whether it is correct by computing the ex-

pected value of the response. This is done in lib_chan_auth:

is_response_correct:

3> lib_chan_auth:is_response_correct(C, R, "qwerty").

true

D.3 The lib_chan Code

Now for the code.

lib_chan
Download socket_dist/lib_chan.erl

-module(lib_chan).

-export([cast/2, start_server/0, start_server/1,

connect/5, disconnect/1, rpc/2]).

-import(lists, [map/2, member/2, foreach/2]).

-import(lib_chan_mm, [send/2, close/1]).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/lib_chan.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=409

THE LIB_CHAN CODE 410

%%--

%% Server code

start_server() ->

case os:getenv("HOME") of

false ->

exit({ebadEnv, "HOME"});

Home ->

start_server(Home ++ "/.erlang_config/lib_chan.conf")

end.

start_server(ConfigFile) ->

io:format("lib_chan starting:~p~n",[ConfigFile]),

case file:consult(ConfigFile) of

{ok, ConfigData} ->

io:format("ConfigData=~p~n",[ConfigData]),

case check_terms(ConfigData) of

[] ->

start_server1(ConfigData);

Errors ->

exit({eDeaemonConfig, Errors})

end;

{error, Why} ->

exit({eDaemonConfig, Why})

end.

%% check_terms() -> [Error]

check_terms(ConfigData) ->

L = map(fun check_term/1, ConfigData),

[X || {error, X} <- L].

check_term({port, P}) when is_integer(P) -> ok;

check_term({service,_,password,_,mfa,_,_,_}) -> ok;

check_term(X) -> {error, {badTerm, X}}.

start_server1(ConfigData) ->

register(lib_chan, spawn(fun() -> start_server2(ConfigData) end)).

start_server2(ConfigData) ->

[Port] = [P || {port,P} <- ConfigData],

start_port_server(Port, ConfigData).

start_port_server(Port, ConfigData) ->

lib_chan_cs:start_raw_server(Port,

fun(Socket) ->

start_port_instance(Socket,

ConfigData) end,

100,

4).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=410

THE LIB_CHAN CODE 411

start_port_instance(Socket, ConfigData) ->

%% This is where the low-level connection is handled

%% We must become a middle man

%% But first we spawn a connection handler

S = self(),

Controller = spawn_link(fun() -> start_erl_port_server(S, ConfigData) end),

lib_chan_mm:loop(Socket, Controller).

start_erl_port_server(MM, ConfigData) ->

receive

{chan, MM, {startService, Mod, ArgC}} ->

case get_service_definition(Mod, ConfigData) of

{yes, Pwd, MFA} ->

case Pwd of

none ->

send(MM, ack),

really_start(MM, ArgC, MFA);

_ ->

do_authentication(Pwd, MM, ArgC, MFA)

end;

no ->

io:format("sending bad service~n"),

send(MM, badService),

close(MM)

end;

Any ->

io:format("*** ErL port server got:~p ~p~n",[MM, Any]),

exit({protocolViolation, Any})

end.

do_authentication(Pwd, MM, ArgC, MFA) ->

C = lib_chan_auth:make_challenge(),

send(MM, {challenge, C}),

receive

{chan, MM, {response, R}} ->

case lib_chan_auth:is_response_correct(C, R, Pwd) of

true ->

send(MM, ack),

really_start(MM, ArgC, MFA);

false ->

send(MM, authFail),

close(MM)

end

end.

%% MM is the middle man

%% Mod is the Module we want to execute ArgC and ArgS come from the client and

%% server respectively

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=411

THE LIB_CHAN CODE 412

really_start(MM, ArgC, {Mod, Func, ArgS}) ->

%% authentication worked so now we're off

case (catch apply(Mod,Func,[MM,ArgC,ArgS])) of

{'EXIT', normal} ->

true;

{'EXIT', Why} ->

io:format("server error:~p~n",[Why]);

Why ->

io:format("server error should die with exit(normal) was:~p~n",

[Why])

end.

%% get_service_definition(Name, ConfigData)

get_service_definition(Mod, [{service, Mod, password, Pwd, mfa, M, F, A}|_]) ->

{yes, Pwd, {M, F, A}};

get_service_definition(Name, [_|T]) ->

get_service_definition(Name, T);

get_service_definition(_, []) ->

no.

%%--

%% Client connection code

%% connect(...) -> {ok, MM} | Error

connect(Host, Port, Service, Secret, ArgC) ->

S = self(),

MM = spawn(fun() -> connect(S, Host, Port) end),

receive

{MM, ok} ->

case authenticate(MM, Service, Secret, ArgC) of

ok -> {ok, MM};

Error -> Error

end;

{MM, Error} ->

Error

end.

connect(Parent, Host, Port) ->

case lib_chan_cs:start_raw_client(Host, Port, 4) of

{ok, Socket} ->

Parent ! {self(), ok},

lib_chan_mm:loop(Socket, Parent);

Error ->

Parent ! {self(), Error}

end.

authenticate(MM, Service, Secret, ArgC) ->

send(MM, {startService, Service, ArgC}),

%% we should get back a challenge or a ack or closed socket

receive

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=412

THE LIB_CHAN CODE 413

{chan, MM, ack} ->

ok;

{chan, MM, {challenge, C}} ->

R = lib_chan_auth:make_response(C, Secret),

send(MM, {response, R}),

receive

{chan, MM, ack} ->

ok;

{chan, MM, authFail} ->

wait_close(MM),

{error, authFail};

Other ->

{error, Other}

end;

{chan, MM, badService} ->

wait_close(MM),

{error, badService};

Other ->

{error, Other}

end.

wait_close(MM) ->

receive

{chan_closed, MM} ->

true

after 5000 ->

io:format("**errror lib_chan~n"),

true

end.

disconnect(MM) -> close(MM).

rpc(MM, Q) ->

send(MM, Q),

receive

{chan, MM, Reply} ->

Reply

end.

cast(MM, Q) ->

send(MM, Q).

lib_chan_cs
Download socket_dist/lib_chan_cs.erl

-module(lib_chan_cs).

%% cs stands for client_server

-export([start_raw_server/4, start_raw_client/3]).

-export([stop/1]).

-export([children/1]).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/lib_chan_cs.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=413

THE LIB_CHAN CODE 414

%% start_raw_server(Port, Fun, Max)

%% This server accepts up to Max connections on Port

%% The *first* time a connection is made to Port

%% Then Fun(Socket) is called.

%% Thereafter messages to the socket result in messages to the handler.

%% tcp_is typically used as follows:

%% To setup a listener

%% start_agent(Port) ->

%% process_flag(trap_exit, true),

%% lib_chan_server:start_raw_server(Port,

%% fun(Socket) -> input_handler(Socket) end,

%% 15,

%% 0).

start_raw_client(Host, Port, PacketLength) ->

gen_tcp:connect(Host, Port,

[binary, {active, true}, {packet, PacketLength}]).

%% Note when start_raw_server returns it should be ready to

%% Immediately accept connections

start_raw_server(Port, Fun, Max, PacketLength) ->

Name = port_name(Port),

case whereis(Name) of

undefined ->

Self = self(),

Pid = spawn_link(fun() ->

cold_start(Self,Port,Fun,Max,PacketLength)

end),

receive

{Pid, ok} ->

register(Name, Pid),

{ok, self()};

{Pid, Error} ->

Error

end;

_Pid ->

{error, already_started}

end.

stop(Port) when integer(Port) ->

Name = port_name(Port),

case whereis(Name) of

undefined ->

not_started;

Pid ->

exit(Pid, kill),

(catch unregister(Name)),

stopped

end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=414

THE LIB_CHAN CODE 415

children(Port) when integer(Port) ->

port_name(Port) ! {children, self()},

receive

{session_server, Reply} -> Reply

end.

port_name(Port) when integer(Port) ->

list_to_atom("portServer" ++ integer_to_list(Port)).

cold_start(Master, Port, Fun, Max, PacketLength) ->

process_flag(trap_exit, true),

%% io:format("Starting a port server on ~p...~n",[Port]),

case gen_tcp:listen(Port, [binary,

%% {dontroute, true},

{nodelay,true},

{packet, PacketLength},

{reuseaddr, true},

{active, true}]) of

{ok, Listen} ->

%% io:format("Listening to:~p~n",[Listen]),

Master ! {self(), ok},

New = start_accept(Listen, Fun),

%% Now we're ready to run

socket_loop(Listen, New, [], Fun, Max);

Error ->

Master ! {self(), Error}

end.

socket_loop(Listen, New, Active, Fun, Max) ->

receive

{istarted, New} ->

Active1 = [New|Active],

possibly_start_another(false,Listen,Active1,Fun,Max);

{'EXIT', New, _Why} ->

%% io:format("Child exit=~p~n",[Why]),

possibly_start_another(false,Listen,Active,Fun,Max);

{'EXIT', Pid, _Why} ->

%% io:format("Child exit=~p~n",[Why]),

Active1 = lists:delete(Pid, Active),

possibly_start_another(New,Listen,Active1,Fun,Max);

{children, From} ->

From ! {session_server, Active},

socket_loop(Listen,New,Active,Fun,Max);

_Other ->

socket_loop(Listen,New,Active,Fun,Max)

end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=415

THE LIB_CHAN CODE 416

possibly_start_another(New, Listen, Active, Fun, Max)

when pid(New) ->

socket_loop(Listen, New, Active, Fun, Max);

possibly_start_another(false, Listen, Active, Fun, Max) ->

case length(Active) of

N when N < Max ->

New = start_accept(Listen, Fun),

socket_loop(Listen, New, Active, Fun,Max);

_ ->

socket_loop(Listen, false, Active, Fun, Max)

end.

start_accept(Listen, Fun) ->

S = self(),

spawn_link(fun() -> start_child(S, Listen, Fun) end).

start_child(Parent, Listen, Fun) ->

case gen_tcp:accept(Listen) of

{ok, Socket} ->

Parent ! {istarted,self()}, % tell the controller

inet:setopts(Socket, [{packet,4},

binary,

{nodelay,true},

{active, true}]),

%% before we activate socket

%% io:format("running the child:~p Fun=~p~n", [Socket, Fun]),

process_flag(trap_exit, true),

case (catch Fun(Socket)) of

{'EXIT', normal} ->

true;

{'EXIT', Why} ->

io:format("Port process dies with exit:~p~n",[Why]),

true;

_ ->

%% not an exit so everything's ok

true

end

end.

lib_chan_mm
Download socket_dist/lib_chan_mm.erl

%% Protocol

%% To the controlling process

%% {chan, MM, Term}

%% {chan_closed, MM}

%% From any process

%% {send, Term}

%% close

-module(lib_chan_mm).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/lib_chan_mm.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=416

THE LIB_CHAN CODE 417

%% TCP Middle man

%% Models the interface to gen_tcp

-export([loop/2, send/2, close/1, controller/2, set_trace/2, trace_with_tag/2]).

send(Pid, Term) -> Pid ! {send, Term}.

close(Pid) -> Pid ! close.

controller(Pid, Pid1) -> Pid ! {setController, Pid1}.

set_trace(Pid, X) -> Pid ! {trace, X}.

trace_with_tag(Pid, Tag) ->

set_trace(Pid, {true,

fun(Msg) ->

io:format("MM:~p ~p~n",[Tag, Msg])

end}).

loop(Socket, Pid) ->

%% trace_with_tag(self(), trace),

process_flag(trap_exit, true),

loop1(Socket, Pid, false).

loop1(Socket, Pid, Trace) ->

receive

{tcp, Socket, Bin} ->

Term = binary_to_term(Bin),

trace_it(Trace,{socketReceived, Term}),

Pid ! {chan, self(), Term},

loop1(Socket, Pid, Trace);

{tcp_closed, Socket} ->

trace_it(Trace, socketClosed),

Pid ! {chan_closed, self()};

{'EXIT', Pid, Why} ->

trace_it(Trace,{controllingProcessExit, Why}),

gen_tcp:close(Socket);

{setController, Pid1} ->

trace_it(Trace, {changedController, Pid}),

loop1(Socket, Pid1, Trace);

{trace, Trace1} ->

trace_it(Trace, {setTrace, Trace1}),

loop1(Socket, Pid, Trace1);

close ->

trace_it(Trace, closedByClient),

gen_tcp:close(Socket);

{send, Term} ->

trace_it(Trace, {sendingMessage, Term}),

gen_tcp:send(Socket, term_to_binary(Term)),

loop1(Socket, Pid, Trace);

UUg ->

io:format("lib_chan_mm: protocol error:~p~n",[UUg]),

loop1(Socket, Pid, Trace)

end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=417

THE LIB_CHAN CODE 418

trace_it(false, _) -> void;

trace_it({true, F}, M) -> F(M).

lib_chan_auth
Download socket_dist/lib_chan_auth.erl

-module(lib_chan_auth).

-export([make_challenge/0, make_response/2, is_response_correct/3]).

make_challenge() ->

random_string(25).

make_response(Challenge, Secret) ->

lib_md5:string(Challenge ++ Secret).

is_response_correct(Challenge, Response, Secret) ->

case lib_md5:string(Challenge ++ Secret) of

Response -> true;

_ -> false

end.

%% random_string(N) -> a random string with N characters.

random_string(N) -> random_seed(), random_string(N, []).

random_string(0, D) -> D;

random_string(N, D) ->

random_string(N-1, [random:uniform(26)-1+$a|D]).

random_seed() ->

{_,_,X} = erlang:now(),

{H,M,S} = time(),

H1 = H * X rem 32767,

M1 = M * X rem 32767,

S1 = S * X rem 32767,

put(random_seed, {H1,M1,S1}).

http://media.pragprog.com/titles/jaerlang/code/socket_dist/lib_chan_auth.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=418

Appendix E

Miscellaneous
This appendix presents material about analyzing and debugging code,

and it describes how dynamic code loading works.

E.1 Analysis and Profiling Tools

How can we look into our running program? How can we look for poten-

tial problem code, investigate performance problems, and check for

dead code or the use of deprecated functions? That’s what this section

is all about.

Coverage

When we’re testing our code, it’s often nice to see not only which lines

of code are executed a lot but also which lines are never executed. Lines

of code that are never executed are a potential source of error, so it’s

really good to find out where these are. To do this, we use the program

coverage analyzer.

Here’s an example:

1> cover:start(). %% start the coverage analyser

{ok,<0.34.0>}

2> cover:compile(shout). %% compile shout.erl for coverage

{ok,shout}

3> shout:start(). %% run the program

<0.41.0>

Playing:<<"title: track018 performer: .. ">>

4> %% let the program run for a bit

4> cover:analyse_to_file(shout). %% analyse the results

{ok,"shout.COVER.out"} %% this is the results file

ANALYSIS AND PROFILING TOOLS 420

The Best of All Test Methods?

Performing a coverage analysis of our code answers the ques-
tion, Which lines of code are never executed? Once we know
which lines of code are never executed, we can design test
cases that force these lines of code to be executed.

Doing this is a surefire way to find unexpected and obscure
bugs in your program. Every line of code that has never been
executed might contain an error. Forcing these lines to be exe-
cuted is the best way I know to test a program.

I did this to the original Erlang JAM∗ compiler. I think we got
three bug reports in two years. After this, there were no reported
bugs.

∗. Joe’s Abstract Machine (the first Erlang compiler)

The results of this are printed to a file:

...

| send_file(S, Header, OffSet, Stop, Socket, SoFar) ->

| %% OffSet = first byte to play

| %% Stop = The last byte we can play

131..| Need = ?CHUNKSIZE - size(SoFar),

131..| Last = OffSet + Need,

131..| if

| Last >= Stop ->

| %% not enough data so read as much as possible and return

0..| Max = Stop - OffSet,

0..| {ok, Bin} = file:pread(S, OffSet, Max),

0..| list_to_binary([SoFar, Bin]);

| true ->

131..| {ok, Bin} = file:pread(S, OffSet, Need),

131..| write_data(Socket, SoFar, Bin, Header),

131..| send_file(S, bump(Header),

| OffSet + Need, Stop, Socket, <<>>)

| end.

...

On the left side of the file, we see the number of times each statement

has been executed. The lines marked with a zero are particularly inter-

esting. Since this code has never been executed, we can’t really say

whether our program is correct.

Designing test cases that cause all the coverage counts to be greater

than zero is a valuable method of systematically finding hidden faults

in our programs.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=420

ANALYSIS AND PROFILING TOOLS 421

Profiling

The standard Erlang distribution comes with three profiling tools:

• cprof counts the number of times each function is called. This is

a lightweight profiler. Running this on a live system adds from 5%

to 10% to the system load.

• fprof displays the time for calling and called functions. Output is

to a file. This is suitable for large system profiling in a lab or sim-

ulated system. It adds significant load to the system.

• eprof measures how time is used in Erlang programs. This is a

predecessor of fprof, which is suitable for small-scale profiling.

Here’s how you run cprof:

1> cprof:start(). %% start the profiler

4501

2> shout:start(). %% run the application

<0.35.0>

3> cprof:pause(). %% pause the profiler

4844

4> cprof:analyse(shout). %% analyse function calls

{shout,232,

[{{shout,split,2},73},

{{shout,write_data,4},33},

{{shout,the_header,1},33},

{{shout,send_file,6},33},

{{shout,bump,1},32},

{{shout,make_header1,1},5},

{{shout,'-got_request_from_client/3-fun-0-',1},4},

{{shout,songs_loop,1},2},

{{shout,par_connect,2},2},

{{shout,unpack_song_descriptor,1},1},

...

5> cprof:stop(). %% stop the profiler

4865

In addition, cprof:analyse() analyzes all the modules for which statistics

have been collected.

See http://www.erlang.org/doc/man/cprof.html for more details of cprof.

xref

Cross-references can be generated using the xref module. xref works

only if your code has been compiled with the debug_info flag set.

Running an occasional cross-reference check on your code when you

are developing a program is a good idea. I can’t show you the output of

http://www.erlang.org/doc/man/cprof.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=421

DEBUGGING 422

xref on the code accompanying this book, because the development is

complete and there aren’t any missing functions. Instead, I’ll show you

what happens when I run a cross-reference check on the code in one of

my hobby projects.

vsg is a simple graphics program that I might release one day. We’ll do

an analysis of the code in the vsg directory where I’m developing the

program:

$ cd /home/joe/2007/vsg-1.6

$ rm *.beam

$ erlc +debug_info *.erl

$ erl

1> xref:d('.')

[{deprecated,[]},

{undefined,[{{new,win1,0},{wish_manager,on_destroy,2}},

{{vsg,alpha_tag,0},{wish_manager,new_index,0}},

{{vsg,call,1},{wish,cmd,1}},

{{vsg,cast,1},{wish,cast,1}},

{{vsg,mkWindow,7},{wish,start,0}},

{{vsg,new_tag,0},{wish_manager,new_index,0}},

{{vsg,new_win_name,0},{wish_manager,new_index,0}},

{{vsg,on_click,2},{wish_manager,bind_event,2}},

{{vsg,on_move,2},{wish_manager,bind_event,2}},

{{vsg,on_move,2},{wish_manager,bind_tag,2}},

{{vsg,on_move,2},{wish_manager,new_index,0}}]},

{unused,[{vsg,new_tag,0},

{vsg_indicator_box,theValue,1},

{vsg_indicator_box,theValue,1}]}]

xref:d(’.’) performs a cross-reference analysis of all the code in the cur-

rent directory that has been compiled with the debug flag. It produces

lists of depreciated, undefined, and unused functions.

Like most tools, xref has a large number of options, so reading the man-

ual is necessary if you want to use the more powerful features that this

program has.

E.2 Debugging

Debugging Erlang is pretty easy. That might surprise you, but this is

a consequence of having single-assignment variables. Since Erlang has

no pointers and no mutable state (with the exception of ETS tables

and process dictionaries), finding out where things have gone wrong is

rarely a problem. Once we have observed that a variable has an incor-

rect value, it’s relatively easy to find out when and where this happened.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=422

DEBUGGING 423

I find a debugger is a very helpful tool when I write C programs, because

I can tell it to watch variables and tell me when their value changes.

This is often important because memory in C can be changed indirectly,

via pointers. It can be hard to know just where a change to some chunk

of memory came from. I don’t feel the same need for a debugger in

Erlang because we can’t modify state through pointers.

In the following sections, we’ll look at Erlang’s compiler diagnostics,

followed by the different ways of debugging a program. They are in

order of difficulty. Debugging using print statements is the easiest way

to debug your program. Tracing a process is the most complex. We have

concentrated on the easiest methods here.

Compiler Diagnostics

When we compile a program, the compiler provides us with helpful error

messages if our source code is syntactically incorrect. Most of these are

self-evident: if we omit a bracket, a comma, or a keyword, the compiler

will give an error message with the filename and line number of the

offending statement. The following are some errors we could see.

Head Mismatch

We’ll get this error if the clauses that make up a function definition do

not have the same name and arity:

Download bad.erl

Line 1 foo(1,2) ->
- a;
- foo(2,3,a) ->
- b.

1> c(bad).

./bad.erl:3: head mismatch

Unbound Variables

Here’s some code containing unbound variables:

Download bad.erl

Line 1 foo(A, B) ->
- bar(A, dothis(X), B),
- baz(Y, X).

1> c(bad).

./bad.erl:2: variable 'X' is unbound

./bad.erl:3: variable 'Y' is unbound

http://media.pragprog.com/titles/jaerlang/code/bad.erl
http://media.pragprog.com/titles/jaerlang/code/bad.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=423

DEBUGGING 424

This means that in line 2 the variable X has no value. The error isn’t

actually on line 2 but is detected at line 2, which is the first occurrence

of the unbound variable X. (X is also used on line 3, but the compiler

reports only the first line where the error occurs.)

Unterminated String

unterminated string starting with "..."

If we forget a quote mark in a string or atom, we’ll get this error mes-

sage. Sometimes finding the missing quote mark can be pretty tricky.

If you get this message and really can’t see where the missing quote

is, then try placing a quote mark anywhere in your program (or, better,

near to where you think the problem might be). If you recompile the

program, you might get a more precise diagnostic that will help you

pinpoint the error.

Unsafe Variables

If we compile the following code:

Download bad.erl

Line 1 foo() ->
- case bar() of
- 1 ->
- X = 1,
5 Y = 2;
- 2 ->
- X = 3
- end,
- b(X).

we’ll get a warning:

1> c(bad).

./bad.erl:5: Warning: variable 'Y' is unused

{ok,bad}

This is just a warning, since Y is defined but not used. If we now change

the program to the following:

Download bad.erl

Line 1 foo() ->
- case bar() of
- 1 ->
- X = 1,
5 Y = 2;
- 2 ->
- X = 3
- end,
- b(X, Y).

http://media.pragprog.com/titles/jaerlang/code/bad.erl
http://media.pragprog.com/titles/jaerlang/code/bad.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=424

DEBUGGING 425

we’ll get an error:

> c(bad).

./bad.erl:9: variable 'Y' unsafe in 'case' (line 2)

{ok,bad}

The compiler reasons that the program might take the second branch

through the case expression (in which event the variable Y will be unde-

fined), so it produces an “unsafe variable” error message.

Shadowed Variables

Download bad.erl

Line 1 foo(X, L) ->
- lists:map(fun(X) -> 2*X end, L).

1> c(bad).

./bad.erl:1: Warning: variable 'X' is unused

./bad.erl:2: Warning: variable 'X' shadowed in 'fun'

{ok,bad}

Here, the compiler is worried that we might have made a mistake in

our program. Inside the fun we compute 2*X, but which X are we talk-

ing about: the X that is the argument to the fun or the X that is the

argument to foo?

If this happens, the best thing to do is to rename one of the Xs to make

the warning go away. We could rewrite this as follows:

Download bad.erl

foo(X, L) ->

lists:map(fun(Z) -> 2*Z end, L).

Now there is no problem if we want to use X inside the fun definition.

Runtime Diagnostics

If an Erlang process crashes, we might get an error message. To see the

error message, some other process has to monitor the crashing process

and print an error message when the monitored process dies. If we just

create a process with spawn and the process dies, we won’t get any error

message. The best thing to do if we want to see all the error messages

is always to use spawn_link.

The Stack Trace

Every time a process crashes that is linked to the shell, a stack trace

will be printed.

http://media.pragprog.com/titles/jaerlang/code/bad.erl
http://media.pragprog.com/titles/jaerlang/code/bad.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=425

DEBUGGING 426

To see what’s in the stack trace, we’ll write a simple function with a

deliberate error and call this function from the shell:

Download lib_misc.erl

deliberate_error(A) ->

bad_function(A, 12),

lists:reverse(A).

bad_function(A, _) ->

{ok, Bin} = file:open({abc,123}, A),

binary_to_list(Bin).

1> lib_misc:deliberate_error("file.erl").

** exited: {{badmatch,{error,einval}},

[{lib_misc,bad_function,2},

{lib_misc,deliberate_error,1},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]} **

When we called lib_misc:deliberate_error("file.erl"), an error occurred, and

we got a stack trace. Starting at the top of the stack trace, we see the

following line:

{badmatch,{error,einval}}

This comes from the line:

{ok, Bin} = file:open({abc,123}, A),

Calling file:open/2 returned {error, einval}.1 This was because {abc,123} is

not a valid input value to file:open. When we try to match the return

value with {ok, Bin}, we get a badmatch error, and the runtime system

prints {badmatch, {error, einval}}, which is the value that could not be

matched. Following this is a stack trace. The stack trace starts with the

name of the function where the error occurred. This is followed by a list

of the names of the functions that the current function will return to

when it completes. Thus, the error occurred in lib_misc:bad_function/2,

which would have returned to lib_misc:deliberate_error/1, and so on.

Note that it is really only the top entries in the stack trace that are

interesting. If the call sequence to the erroneous function involves a

tail call, then the call won’t be in the stack trace. To see this, we’ll

rename the function deliberate_error and change it the following:

Download lib_misc.erl

deliberate_error1(A) ->

bad_function(A, 12).

1. einval is a POSIX error code short for invalid value.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=426

DEBUGGING 427

When we call this and get an error, the function deliberate_error1 will be

missing from the stack trace:

2> lib_misc:deliberate_error1("file.erl").

** exited: {{badmatch,{error,einval}},

[{lib_misc,bad_function,2},

{erl_eval,do_apply,5},

{shell,exprs,6},

{shell,eval_loop,3}]} **

The call to deliberate_error1 is not in the trace since bad_function was

called as the last statement in deliberate_error1 and will not return to

deliberate_error1 when it completes but will return to the caller of delib-

erate_error1.

(This is because Erlang applies last-call optimization; if the last thing

executed in a function is a function call, that call is effectively replaced

with a jump. Without this optimization, the infinite loop style of pro-

gramming we use to code message reception loops would not work.

However, because of this optimization, the calling function is effectively

replaced in the call stack by the called function and hence becomes

invisible in stack traces.)

Debugging Techniques

Erlang programmers use a variety of techniques for debugging their

programs. By far the most common technique is to just add print state-

ments to the incorrect programs. This techniques fails if the data struc-

tures you are interested in become very large, in which case they can

be dumped to a file for later inspection.

Some folks use the error logger to save error messages, and others write

them in a file. Failing this we can use the Erlang debugger or trace the

execution of the program. Let’s look at each of these techniques.

io:format Debugging

Adding print statements to the program is the most common form of

debugging. You simply add io:format(...) statements to print the values

of variables you are interested in at critical points in your program.

When debugging parallel programs, it’s often a good idea to print mes-

sage immediately before you send a message to another process and

immediately after you have received a message.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=427

DEBUGGING 428

When I’m writing a concurrent program, I almost always start writing a

receive loop like this:

loop(...) ->

receive

Any ->

io:format("*** warning unexpected message:~p~n",[Any])

loop(...)

end

Then, as I add patterns to the receive loop, I get warning messages

printed if my process gets any message it doesn’t understand. I also use

spawn_link instead of spawn to make sure error messages are printed if

my process exits abnormally.

I often use a macro NYI (not yet implemented), which I define like this:

Download lib_misc.erl

-define(NYI(X),(begin

io:format("*** NYI ~p ~p ~p~n",[?MODULE, ?LINE, X]),

exit(nyi)

end)).

Then I might use this macro as follows:

Download lib_misc.erl

glurk(X, Y) ->

?NYI({glurk, X, Y}).

The body of the function glurk is not yet written, so when I call glurk, the

program crashes:

> lib_misc:glurk(1,2).

*** NYI lib_misc 83 {glurk,1,2}

** exited: nyi *

The program exits and an error message is displayed, so I know it’s

time to complete the implementation of my function.

Dumping to a File

If the data structure we’re interested in is large, then we can write it to

a file using a function such as dump/2:

Download lib_misc.erl

dump(File, Term) ->

Out = File ++ ".tmp",

io:format("** dumping to ~s~n",[Out]),

{ok, S} = file:open(Out, [write]),

io:format(S, "~p.~n",[Term]),

file:close(S).

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=428

DEBUGGING 429

This prints a warning message to remind us that we have created a

new file. It then adds a .tmp file extension to the filename (so we can

easily delete all the temporary files later). Then it pretty-prints the term

we are interested in to a file. We can examine the file in a text editor

at a later stage. This technique is simple and particularly useful when

examining large data structures.

Using the Error Logger

We can use the error logger and create a text file with debugging output.

To do so, we create a configuration file such as the following:

Download elog5.config

%% text erorr log

[{kernel,

[{error_logger,

{file, "/home/joe/error_logs/debug.log"}}]}].

Then we start Erlang with the following command:

erl -config elog5.config

Any error messages created by calling routines in the error_logger mod-

ule, along with any error messages printed in the shell, will end up in

the file specified in the configuration file.

The Debugger

The standard Erlang distribution contains a debugger. I’m not going to

say a lot about it here, other than to tell you how to start it and to give

you pointers to the documentation. Using the debugger once it has been

started is pretty easy. You can inspect variables, single-step the code,

set breakpoints, and so on. Because we’ll often want to debug several

processes, the debugger can also spawn copies of itself, so we can have

several debug windows, one for each process we are debugging.

The only tricky thing is getting the debugger started:

1> %% recompile lib_misc so we can debug it

1> c(lib_misc, [debug_info]).

{ok, lib_misc}

2> im(). %% A window will pop up. Ignore it for now

<0.42.0>

3> ii(lib_misc).

{module,lib_misc}

4> iaa([init]).

true.

5> lib_misc:

...

http://media.pragprog.com/titles/jaerlang/code/elog5.config
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=429

DEBUGGING 430

Figure E.1: Table viewer initial screen

Running this opens the window shown in Figure E.1.

All the commands without a module prefix (ii/1, iaa/1, and so on) are

exported from the module i. This is the debugger/interpreter interface

module. These routines are accessible from the shell without giving the

module prefix.

The functions we called to get the debugger running do the following:

im()

Start a new graphical monitor. This is the main window of the

debugger. It displays the state of all the processes that the debug-

ger is monitoring.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=430

TRACING 431

ii(Mod)

Interpret the code in the module Mod.

iaa([init])

Attach the debugger to any process executing interpreted code

when that process is started.

Digging Deeper

To learn more about debugging, try these resources:

http://www.erlang.org/doc/pdf/debugger.pdf

The debugger reference manual (a 46-page PDF file) is an intro-

duction to the debugger, with screen dumps, API documentation,

and more. It’s a must-read for serious users of the debugger.

http://www.erlang.org/doc/man/i.html

Here you can find the debugger commands that are available in

the shell.

E.3 Tracing

You can always trace a process without having to compile your code

in a special way. Tracing a process (or processes) provides a powerful

way of understanding how your system behaves and can be used to

test complex systems without modifying the code. This is particularly

useful in embedded systems or where you cannot modify the code being

tested.

At a low-level, we can set up a trace by calling a number of Erlang BIFs.

Using these BIFs for setting up complex traces is difficult, so several

libraries are designed to make this task easier.

We’ll start by looking at the low-level Erlang BIFs for tracing and see

how to set up a simple tracer; then we’ll review the libraries that can

provide a higher-level interface to the trace BIFs.

For low-level tracing, two BIFs are particularly important. erlang:trace/3

says, basically, “I want to monitor this process, so please send me a

message if something interesting happens.” erlang:trace_pattern defines

what counts as being “interesting.”

http://www.erlang.org/doc/pdf/debugger.pdf
http://www.erlang.org/doc/man/i.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=431

TRACING 432

erlang:trace(PidSpec, How, FlagList)

This starts tracing. PidSpec tells the system what to trace. How is

a boolean that can turn the trace on or off. FlagList governs what

is to be traced (for example, we can trace all function calls, all

messages being sent, when garbage collections occur, and so on).

Once we have called erlang:trace/3, the process that called this

BIF will be sent trace message when trace events occur. The trace

events themselves are determined by calling erlang:trace_pattern/3.

erlang:trace_pattern(MFA, MatchSpec, FlagList)

This is used to set up a trace pattern. If the pattern is matched,

then the actions requested are performed. Here MFA is a {Mod-

ule, Function, Args} tuple that says to which code the trace pattern

applies. MatchSpec is a pattern that is tested every time the func-

tion specified by MFA is entered, and FlagList tells what to do if the

tracing conditions are satisfied.

Writing match specifications for MatchSpec is complicated and doesn’t

really add much to our understanding of tracing. Fortunately, some

libraries2 make this easier.

Using the previous two BIFs, we can write a simple tracer. trace_

module(Mod, Fun) sets up tracing on the module Mod and then evalu-

ates Fun(). We want to trace all function calls and return values in the

module Mod.

Download tracer_test.erl

trace_module(Mod, StartFun) ->

%% We'll spawn a process to do the tracing

spawn(fun() -> trace_module1(Mod, StartFun) end).

trace_module1(Mod, StartFun) ->

%% The next line says: trace all function calls and return

%% values in Mod

erlang:trace_pattern({Mod, '_','_'},

[{'_',[],[{return_trace}]}],

[local]),

%% spawn a function to do the tracing

S = self(),

Pid = spawn(fun() -> do_trace(S, StartFun) end),

%% setup the trace. Tell the system to start tracing

%% the process Pid

erlang:trace(Pid, true, [call,procs]),

2. http://www.erlang.org/doc/man/ms_transform.html

http://media.pragprog.com/titles/jaerlang/code/tracer_test.erl
http://www.erlang.org/doc/man/ms_transform.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=432

TRACING 433

%% Now tell Pid to start

Pid ! {self(), start},

trace_loop().

%% do_trace evaluates StartFun()

%% when it is told to do so by Parent

do_trace(Parent, StartFun) ->

receive

{Parent, start} ->

StartFun()

end.

%% trace_loop displays the function call and return values

trace_loop() ->

receive

{trace,_,call, X} ->

io:format("Call: ~p~n",[X]),

trace_loop();

{trace,_,return_from, Call, Ret} ->

io:format("Return From: ~p => ~p~n",[Call, Ret]),

trace_loop();

Other ->

%% we get some other message - print them

io:format("Other = ~p~n",[Other]),

trace_loop()

end.

Now we define a test case like this:

Download tracer_test.erl

test2() ->

trace_module(tracer_test, fun() -> fib(4) end).

fib(0) -> 1;

fib(1) -> 1;

fib(N) -> fib(N-1) + fib(N-2).

Then we can trace our code:

1> c(tracer_test).

{ok,tracer_test}

2> tracer_test:test2().

<0.42.0>Call: {tracer_test,'-trace_module1/2-fun-0-',

[<0.42.0>,#Fun<tracer_test.0.36786085>]}

Call: {tracer_test,do_trace,[<0.42.0>,#Fun<tracer_test.0.36786085>]}

Call: {tracer_test,'-test2/0-fun-0-',[]}

Call: {tracer_test,fib,[4]}

Call: {tracer_test,fib,[3]}

Call: {tracer_test,fib,[2]}

Call: {tracer_test,fib,[1]}

Return From: {tracer_test,fib,1} => 1

Call: {tracer_test,fib,[0]}

http://media.pragprog.com/titles/jaerlang/code/tracer_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=433

TRACING 434

Return From: {tracer_test,fib,1} => 1

Return From: {tracer_test,fib,1} => 2

Call: {tracer_test,fib,[1]}

Return From: {tracer_test,fib,1} => 1

Return From: {tracer_test,fib,1} => 3

Call: {tracer_test,fib,[2]}

Call: {tracer_test,fib,[1]}

Return From: {tracer_test,fib,1} => 1

Call: {tracer_test,fib,[0]}

Return From: {tracer_test,fib,1} => 1

Return From: {tracer_test,fib,1} => 2

Return From: {tracer_test,fib,1} => 5

Return From: {tracer_test,'-test2/0-fun-0-',0} => 5

Return From: {tracer_test,do_trace,2} => 5

Return From: {tracer_test,'-trace_module1/2-fun-0-',2} => 5

Other = {trace,<0.43.0>,exit,normal}

Using the Libraries

We can perform the same trace as the previous one using the library

module dbg. This hides all the details of the low-level Erlang BIFs.

Download tracer_test.erl

test1() ->

dbg:tracer(),

dbg:tpl(tracer_test,fib,'_',

dbg:fun2ms(fun(_) -> return_trace() end)),

dbg:p(all,[c]),

tracer_test:fib(4).

Running this, we get the following:

1> tracer_test:test1().

(<0.34.0>) call tracer_test:fib(4)

(<0.34.0>) call tracer_test:fib(3)

(<0.34.0>) call tracer_test:fib(2)

(<0.34.0>) call tracer_test:fib(1)

(<0.34.0>) returned from tracer_test:fib/1 -> 1

(<0.34.0>) call tracer_test:fib(0)

(<0.34.0>) returned from tracer_test:fib/1 -> 1

(<0.34.0>) returned from tracer_test:fib/1 -> 2

(<0.34.0>) call tracer_test:fib(1)

(<0.34.0>) returned from tracer_test:fib/1 -> 1

(<0.34.0>) returned from tracer_test:fib/1 -> 3

(<0.34.0>) call tracer_test:fib(2)

(<0.34.0>) call tracer_test:fib(1)

(<0.34.0>) returned from tracer_test:fib/1 -> 1

(<0.34.0>) call tracer_test:fib(0)

(<0.34.0>) returned from tracer_test:fib/1 -> 1

(<0.34.0>) returned from tracer_test:fib/1 -> 2

(<0.34.0>) returned from tracer_test:fib/1 -> 5

http://media.pragprog.com/titles/jaerlang/code/tracer_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=434

DYNAMIC CODE LOADING 435

Digging Deeper

To learn more about tracing, you need to read three manual pages for

the following modules:

• dbg provides a simplified interface to the Erlang trace BIFs.

• ttb is yet another interface to the trace BIFs. It is higher level than

dbg.

• ms_transform makes match specifications for use in the tracer soft-

ware.

E.4 Dynamic Code Loading

Dynamic code loading is one of the most surprising features built into

the heart of Erlang. The nice part is that it just works without you really

being aware of what’s happening in the background.

The idea is simple: every time we call someModule:someFunction(...), we’ll

always call the latest version of the function in the latest version of the

module, even if we recompile the module while code is running in this

module.

If a calls b in a loop and we recompile b, then a will automatically call

the new version of b the next time b is called.

If many different processes are running and all of them call b, then all

of them will call the new version of b if b is recompiled. To see how this

works, we’ll write two little modules: a and b. b is very simple:

Download b.erl

-module(b).

-export([x/0]).

x() -> 1.

Now we’ll write a:

Download a.erl

-module(a).

-compile(export_all).

start(Tag) ->

spawn(fun() -> loop(Tag) end).

loop(Tag) ->

sleep(),

Val = b:x(),

io:format("Vsn1 (~p) b:x() = ~p~n",[Tag, Val]),

loop(Tag).

http://media.pragprog.com/titles/jaerlang/code/b.erl
http://media.pragprog.com/titles/jaerlang/code/a.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=435

DYNAMIC CODE LOADING 436

sleep() ->

receive

after 3000 -> true

end.

Now we can compile a and start a couple of a processes:

1> c(b).

{ok, b}

2> c(a).

{ok, a}

3> a:start(one).

<0.41.0>

Vsn1 (one) b:x() = 1

4> a:start(two).

<0.43.0>

Vsn1 (one) b:x() = 1

Vsn1 (two) b:x() = 1

Vsn1 (one) b:x() = 1

Vsn1 (two) b:x() = 1

The a processes sleep for three seconds, wake up and call b:x(), and

then print the result. Now we’ll go into the editor and change the mod-

ule b to the following:

-module(b).

-export([x/0]).

x() -> 2.

Then we recompile b in the shell. This is what happens:

4> c(b).

{ok,b}

Vsn1 (one) b:x() = 2

Vsn1 (two) b:x() = 2

Vsn1 (one) b:x() = 2

Vsn1 (two) b:x() = 2

...

The two original versions of a are still running, but now they call the

new version of b. So when we call b:x() from within the module a, we

really call “the latest version of b.” We can change and recompile b as

many times as we want, and all the modules that call it will automati-

cally call the new version of b without having to do anything special.

Now we’ve recompiled b, but what happens if we change and recompile

a? We’ll do an experiment and change a to the following:

-module(a).

-compile(export_all).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=436

DYNAMIC CODE LOADING 437

start(Tag) ->

spawn(fun() -> loop(Tag) end).

loop(Tag) ->

sleep(),

Val = b:x(),

io:format("Vsn2 (~p) b:x() = ~p~n",[Tag, Val]),

loop(Tag).

sleep() ->

receive

after 3000 -> true

end.

Now we compile and start a:

5> c(a).

{ok,a}

Vsn1 (one) b:x() = 2

Vsn1 (two) b:x() = 2

...

6> a:start(three).

<0.53.0>

Vsn1 (one) b:x() = 2

Vsn1 (two) b:x() = 2

Vsn2 (three) b:x() = 2

Vsn1 (one) b:x() = 2

Vsn1 (two) b:x() = 2

Vsn2 (three) b:x() = 2

...

Something funny is going on here. When we start the new version of

a, we see that new version running. However, the existing processes

running the first version of a are still running that old version of a

without any problems.

Now we could try changing b yet again:

-module(b).

-export([x/0]).

x() -> 3.

We’ll recompile b in the shell. Watch what happens:

7> c(b).

{ok,b}

Vsn1 (one) b:x() = 3

Vsn1 (two) b:x() = 3

Vsn2 (three) b:x() = 3

...

Now both the old and new versions of a call the latest version of b.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=437

DYNAMIC CODE LOADING 438

Finally, we’ll change a again (this is the third change to a):

-module(a).

-compile(export_all).

start(Tag) ->

spawn(fun() -> loop(Tag) end).

loop(Tag) ->

sleep(),

Val = b:x(),

io:format("Vsn3 (~p) b:x() = ~p~n",[Tag, Val]),

loop(Tag).

sleep() ->

receive

after 3000 -> true

end.

Now when we recompile a and start a new version of a, we see the

following:

8> c(a).

{ok,a}

Vsn2 (three) b:x() = 3

...

9> a:start(four).

<0.106.0>

Vsn2 (three) b:x() = 3

Vsn3 (four) b:x() = 3

Vsn2 (three) b:x() = 3

Vsn3 (four) b:x() = 3

...

The output contains strings generated by the last two versions of a

(versions 2 and 3); the process running version 1 of a’s code has died.

Erlang can have two versions of a module running at any one time, the

current version and an old version. When you recompile a module, any

process running code in the old version is killed, the current version

becomes the old version, and the newly compiled module becomes the

current version. Think of this as a shift register with two versions of the

code. As we add new code, the oldest version is junked. Processes can

simultaneously run old and new versions of the code.

Read the purge_module documentation3 for more details.

3. http://www.erlang.org/doc/man/erlang.html#purge_module/1

http://www.erlang.org/doc/man/erlang.html#purge_module/1
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=438

Appendix F

Module and Function Reference
This appendix contains one-line summaries for most of the modules in

the kernel and stdlib libraries in the standard Erlang distribution. (I’ve

omitted some of the more obscure modules in order to keep the weight

of this book below the point where you’d need mechanical assistance to

pick it up.)

Note: The modules ordsets and orddict are not included in this appendix.

ordsets exports the same functions as sets; the only difference is that an

ordered list is used to represent the elements of the set. orddict exports

the same functions as dict, but a list of pairs is used to represent the

dictionary. The list is ordered by the keys in the dictionary.

F.1 Module: application

Generic OTP application functions.

Module:config_change(Changed, New, Removed) -> ok

Update the configuration parameters for an application.

Module:prep_stop(State) -> NewState

Prepare an application for termination.

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error, Reason}

Start an application.

Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}

Extended start of an application.

Module:stop(State)

Clean up after termination of an application.

get_all_env(Application) -> Env

Get the configuration parameters for an application.

MODULE: BASE64 440

get_all_key(Application) -> {ok, Keys} | undefined

Get the application specification keys.

get_application(Pid | Module) -> {ok, Application} | undefined

Get the name of an application containing a certain process or module.

get_env(Application, Par) -> {ok, Val} | undefined

Get the value of a configuration parameter.

get_key(Application, Key) -> {ok, Val} | undefined

Get the value of an application specification key.

load(AppDescr, Distributed) -> ok | {error, Reason}

Load an application.

loaded_applications() -> [{Application, Description, Vsn}]

Get the currently loaded applications.

permit(Application, Bool) -> ok | {error, Reason}
Change an application’s permission to run on a node.

set_env(Application, Par, Val, Timeout) -> ok

Set the value of a configuration parameter.

start(Application, Type) -> ok | {error, Reason}

Load and start an application.

start_type() -> StartType | local | undefined

Get the start type of an ongoing application start-up.

stop(Application) -> ok | {error, Reason}

Stop an application.

takeover(Application, Type) -> ok | {error, Reason}

Take over a distributed application.

unload(Application) -> ok | {error, Reason}

Unload an application.

unset_env(Application, Par, Timeout) -> ok

Unset the value of a configuration parameter.

which_applications(Timeout) -> [{Application, Description, Vsn}]

Get the currently running applications.

F.2 Module: base64

Implements base 64 encode and decode; see RFC 2045.

encode_to_string(Data) -> Base64String

Encode data into base 64.

mime_decode_string(Base64) -> DataString
Decode a base 64–encoded string to data.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=440

MODULE: BEAM_LIB 441

F.3 Module: beam_lib

An interface to the BEAM file format.

chunks(Beam, [ChunkRef]) -> {ok, {Module, [ChunkData]}} | {error, beam_lib, Reason}

Read selected chunks from a BEAM file or binary.

chunks(Beam, [ChunkRef], [Option]) -> {ok, {Module, [ChunkResult]}} | {error, beam_lib,

Reason}

Read selected chunks from a BEAM file or binary.

clear_crypto_key_fun() -> {ok, Result}

Unregister the current crypto key fun.

cmp(Beam1, Beam2) -> ok | {error, beam_lib, Reason}

Compare two BEAM files.

cmp_dirs(Dir1, Dir2) -> {Only1, Only2, Different} | {error, beam_lib, Reason1}

Compare the BEAM files in two directories.

crypto_key_fun(CryptoKeyFun) -> ok | {error, Reason}

Register a fun that provides a crypto key.

diff_dirs(Dir1, Dir2) -> ok | {error, beam_lib, Reason1}

Compare the BEAM files in two directories.

format_error(Reason) -> Chars

Return an English description of a BEAM read error reply.

info(Beam) -> [{Item, Info}] | {error, beam_lib, Reason1}

Information about a BEAM file.

md5(Beam) -> {ok, {Module, MD5}} | {error, beam_lib, Reason}

Read the BEAM file’s module version.

strip(Beam1) -> {ok, {Module, Beam2}} | {error, beam_lib, Reason1}

Remove chunks not needed by the loader from a BEAM file.

strip_files(Files) -> {ok, [{Module, Beam2}]} | {error, beam_lib, Reason1}

Remove chunks not needed by the loader from BEAM files.

strip_release(Dir) -> {ok, [{Module, Filename]}} | {error, beam_lib, Reason1}

Remove chunks not needed by the loader from all BEAM files of a release.

version(Beam) -> {ok, {Module, [Version]}} | {error, beam_lib, Reason}

Read the BEAM file’s module version.

F.4 Module: c

Command interface module.

bt(Pid) -> void()

Stack backtrace for a process.

c(File, Options) -> {ok, Module} | error

Compile and load code in a file.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=441

MODULE: C 442

cd(Dir) -> void()
Change working directory.

flush() -> void()

Flush any messages sent to the shell.

help() -> void()

Help information.

i(X, Y, Z) -> void()

Information about pid <X.Y.Z>.

l(Module) -> void()

Load or reload module.

lc(Files) -> ok

Compile a list of files.

ls() -> void()

List files in the current directory.

ls(Dir) -> void()

List files in a directory.

m() -> void()

Which modules are loaded.

m(Module) -> void()

Information about a module.

memory() -> [{Type, Size}]

Memory allocation information.

memory([Type]) -> [{Type, Size}]

Memory allocation information.

nc(File, Options) -> {ok, Module} | error

Compile and load code in a file on all nodes.

ni() -> void()

Information about the system.

nl(Module) -> void()

Load module on all nodes.

nregs() -> void()

Information about registered processes.

pid(X, Y, Z) -> pid()

Convert X,Y,Z to a PID.

pwd() -> void()
Print working directory.

q() -> void()

Quit; shorthand for init:stop().

xm(ModSpec) -> void()

Cross-reference check a module.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=442

MODULE: CALENDAR 443

y(File) -> YeccRet

Generate an LALR-1 parser.

y(File, Options) -> YeccRet

Generate an LALR-1 parser.

F.5 Module: calendar

Local and universal time, day-of-the-week, date and time conversions.

date_to_gregorian_days(Year, Month, Day) -> Days

Compute the number of days from year 0 up to the given date.

datetime_to_gregorian_seconds({Date, Time}) -> Seconds

Compute the number of seconds from year 0 up to the given date and time.

day_of_the_week(Year, Month, Day) -> DayNumber

Compute the day of the week.

gregorian_days_to_date(Days) -> Date

Compute the date given the number of Gregorian days.

gregorian_seconds_to_datetime(Seconds) -> {Date, Time}

Compute the date given the number of Gregorian days.

is_leap_year(Year) -> bool()

Check whether a year is a leap year.

last_day_of_the_month(Year, Month) -> int()

Compute the number of days in a month.

local_time() -> {Date, Time}

Compute local time.

local_time_to_universal_time({Date1, Time1}) -> {Date2, Time2}

Convert from local time to universal time (deprecated).

local_time_to_universal_time_dst({Date1, Time1}) -> [{Date, Time}]

Convert from local time to universal time(s).

now_to_datetime(Now) -> {Date, Time}

Convert now to date and time.

now_to_local_time(Now) -> {Date, Time}

Convert now to local date and time.

seconds_to_daystime(Seconds) -> {Days, Time}

Compute days and time from seconds.

seconds_to_time(Seconds) -> Time

Compute time from seconds.

time_difference(T1, T2) -> {Days, Time}

Compute the difference between two times (deprecated).

time_to_seconds(Time) -> Seconds

Compute the number of seconds since midnight up to the given time.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=443

MODULE: CODE 444

universal_time() -> {Date, Time}

Compute universal time.

universal_time_to_local_time({Date1, Time1}) -> {Date2, Time2}

Convert from universal time to local time.

valid_date(Year, Month, Day) -> bool()

Check whether a date is valid.

F.6 Module: code

Erlang code server.

add_patha(Dir) -> true | {error, What}

Add a directory to the beginning of the code path.

add_pathsa(Dirs) -> ok

Add directories to the beginning of the code path.

add_pathsz(Dirs) -> ok

Add directories to the end of the code path.

add_pathz(Dir) -> true | {error, What}

Add a directory to the end of the code path.

all_loaded() -> [{Module, Loaded}]

Get all loaded modules.

clash() -> ok

Search for modules with identical names.

compiler_dir() -> string()

Library directory for the compiler.

del_path(Name | Dir) -> true | false | {error, What}

Delete a directory from the code path.

delete(Module) -> true | false

Remove current code for a module.

ensure_loaded(Module) -> {module, Module} | {error, What}

Ensure that a module is loaded.

get_object_code(Module) -> {Module, Binary, Filename} | error

Get the object code for a module.

get_path() -> Path

Return the code server search path.

is_loaded(Module) -> {file, Loaded} | false

Check whether a module is loaded.

lib_dir() -> string()

Library directory of Erlang/OTP.

lib_dir(Name) -> string() | {error, bad_name}

Library directory for an application.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=444

MODULE: DETS 445

load_abs(Filename) -> {module, Module} | {error, What}

Load a module, residing in a given file.

load_binary(Module, Filename, Binary) -> {module, Module} | {error, What}

Load object code for a module.

load_file(Module) -> {module, Module} | {error, What}

Load a module.

objfile_extension() -> ".beam"

Object code file extension.

priv_dir(Name) -> string() | {error, bad_name}

Priv directory for an application.

purge(Module) -> true | false

Remove old code for a module.

rehash() -> ok

Rehash or create code path cache.

replace_path(Name, Dir) -> true | {error, What}

Replace a directory with another in the code path.

root_dir() -> string()

Root directory of Erlang/OTP.

set_path(Path) -> true | {error, What}

Set the code server search path.

soft_purge(Module) -> true | false

Remove old code for a module, unless no process uses it.

stick_dir(Dir) -> ok | {error, What}

Mark a directory as sticky.

unstick_dir(Dir) -> ok | {error, What}

Remove a sticky directory mark.

where_is_file(Filename) -> Absname | non_existing

Full name of a file located in the code path.

which(Module) -> Which

The object code file of a module.

F.7 Module: dets

A disk-based term storage.

all() -> [Name]

Return a list of the names of all open DETS tables on this node.

bchunk(Name, Continuation) -> {Continuation2, Data} | ’$end_of_table’ | {error, Reason}

Return a chunk of objects stored in a DETS table.

close(Name) -> ok | {error, Reason}

Close a DETS table.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=445

MODULE: DETS 446

delete(Name, Key) -> ok | {error, Reason}

Delete all objects with a given key from a DETS table.

delete_all_objects(Name) -> ok | {error, Reason}

Delete all objects from a DETS table.

delete_object(Name, Object) -> ok | {error, Reason}

Delete a given object from a DETS table.

first(Name) -> Key | ’$end_of_table’

Return the first key stored in a DETS table.

foldl(Function, Acc0, Name) -> Acc1 | {error, Reason}

Fold a function over a DETS table.

foldr(Function, Acc0, Name) -> Acc1 | {error, Reason}

Fold a function over a DETS table.

from_ets(Name, EtsTab) -> ok | {error, Reason}

Replace the objects of a DETS table with the objects of an ETS table.

info(Name) -> InfoList | undefined

Return information about a DETS table.

info(Name, Item) -> Value | undefined

Return the information associated with a given item for a DETS table.

init_table(Name, InitFun [, Options]) -> ok | {error, Reason}

Replace all objects of a DETS table.

insert(Name, Objects) -> ok | {error, Reason}
Insert one or more objects into a DETS table.

insert_new(Name, Objects) -> Bool
Insert one or more objects into a DETS table.

is_compatible_bchunk_format(Name, BchunkFormat) -> Bool

Test the compatibility of a table’s chunk data.

is_dets_file(FileName) -> Bool | {error, Reason}

Test for a DETS table.

lookup(Name, Key) -> [Object] | {error, Reason}

Return all objects with a given key stored in a DETS table.

match(Continuation) -> {[Match], Continuation2} | ’$end_of_table’ | {error, Reason}
Match a chunk of objects stored in a DETS table, and return a list of
variable bindings.

match(Name, Pattern) -> [Match] | {error, Reason}
Match the objects stored in a DETS table, and return a list of variable
bindings.

match(Name, Pattern, N) -> {[Match], Continuation} | ’$end_of_table’ | {error, Reason}
Match the first chunk of objects stored in a DETS table, and return a list
of variable bindings.

match_delete(Name, Pattern) -> N | {error, Reason}

Delete all objects that match a given pattern from a DETS table.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=446

MODULE: DETS 447

match_object(Continuation) -> {[Object], Continuation2} | ’$end_of_table’ | {error, Reason}
Match a chunk of objects stored in a DETS table and return a list of
objects.

match_object(Name, Pattern) -> [Object] | {error, Reason}

Match the objects stored in a DETS table and return a list of objects.

match_object(Name, Pattern, N) -> {[Object], Continuation} | ’$end_of_table’ | {error, Rea-

son}
Match the first chunk of objects stored in a DETS table and return a list of
objects.

member(Name, Key) -> Bool | {error, Reason}

Test for occurrence of a key in a DETS table.

next(Name, Key1) -> Key2 | ’$end_of_table’

Return the next key in a DETS table.

open_file(Filename) -> {ok, Reference} | {error, Reason}
Open an existing DETS table.

open_file(Name, Args) -> {ok, Name} | {error, Reason}

Open a DETS table.

pid2name(Pid) -> {ok, Name} | undefined

Return the name of the DETS table handled by a PID.

repair_continuation(Continuation, MatchSpec) -> Continuation2

Repair a continuation from select/1 or select/3.

safe_fixtable(Name, Fix)

Fix a DETS table for safe traversal.

select(Continuation) -> {Selection, Continuation2} | ’$end_of_table’ | {error, Reason}

Apply a match specification to some objects stored in a DETS table.

select(Name, MatchSpec) -> Selection | {error, Reason}

Apply a match specification to all objects stored in a DETS table.

select(Name, MatchSpec, N) -> {Selection, Continuation} | ’$end_of_table’ | {error, Reason}
Apply a match specification to the first chunk of objects stored in a DETS
table.

select_delete(Name, MatchSpec) -> N | {error, Reason}

Delete all objects that match a given pattern from a DETS table.

slot(Name, I) -> ’$end_of_table’ | [Object] | {error, Reason}

Return the list of objects associated with a slot of a DETS table.

sync(Name) -> ok | {error, Reason}

Ensure that all updates made to a DETS table are written to disk.

table(Name [, Options]) -> QueryHandle

Return a QLC query handle.

to_ets(Name, EtsTab) -> EtsTab | {error, Reason}

Insert all objects of a DETS table into an ETS table.

traverse(Name, Fun) -> Return | {error, Reason}

Apply a function to all or some objects stored in a DETS table.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=447

MODULE: DICT 448

update_counter(Name, Key, Increment) -> Result
Update a counter object stored in a DETS table.

F.8 Module: dict

Key-value dictionary.

append(Key, Value, Dict1) -> Dict2

Append a value to keys in a dictionary.

append_list(Key, ValList, Dict1) -> Dict2

Append new values to keys in a dictionary.

erase(Key, Dict1) -> Dict2

Erase a key from a dictionary.

fetch(Key, Dict) -> Value

Look up values in a dictionary.

fetch_keys(Dict) -> Keys

Return all keys in a dictionary.

filter(Pred, Dict1) -> Dict2

Choose elements which satisfy a predicate.

find(Key, Dict) -> {ok, Value} | error

Search for a key in a dictionary.

fold(Fun, Acc0, Dict) -> Acc1

Fold a function over a dictionary.

from_list(List) -> Dict

Convert a list of pairs to a dictionary.

is_key(Key, Dict) -> bool()

Test whether a key is in a dictionary.

map(Fun, Dict1) -> Dict2

Map a function over a dictionary.

merge(Fun, Dict1, Dict2) -> Dict3
Merge two dictionaries.

new() -> dictionary()

Create a dictionary.

store(Key, Value, Dict1) -> Dict2

Store a value in a dictionary.

to_list(Dict) -> List

Convert a dictionary to a list of pairs.

update(Key, Fun, Dict1) -> Dict2

Update a value in a dictionary.

update(Key, Fun, Initial, Dict1) -> Dict2

Update a value in a dictionary.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=448

MODULE: DIGRAPH 449

update_counter(Key, Increment, Dict1) -> Dict2

Increment a value in a dictionary.

F.9 Module: digraph

Directed graphs.

add_edge(G, V1, V2) -> edge() | {error, Reason}
Add an edge to a digraph.

add_vertex(G) -> vertex()

Add or modify a vertex of a digraph.

del_edge(G, E) -> true

Delete an edge from a digraph.

del_edges(G, Edges) -> true

Delete edges from a digraph.

del_path(G, V1, V2) -> true

Delete paths from a digraph.

del_vertex(G, V) -> true

Delete a vertex from a digraph.

del_vertices(G, Vertices) -> true

Delete vertices from a digraph.

delete(G) -> true
Delete a digraph.

edge(G, E) -> {E, V1, V2, Label} | false

Return the vertices and the label of an edge of a digraph.

edges(G) -> Edges

Return all edges of a digraph.

edges(G, V) -> Edges

Return the edges emanating from or incident on a vertex of a digraph.

get_cycle(G, V) -> Vertices | false
Find one cycle in a digraph.

get_path(G, V1, V2) -> Vertices | false
Find one path in a digraph.

get_short_cycle(G, V) -> Vertices | false
Find one short cycle in a digraph.

get_short_path(G, V1, V2) -> Vertices | false
Find one short path in a digraph.

in_degree(G, V) -> integer()

Return the in-degree of a vertex of a digraph.

in_edges(G, V) -> Edges

Return all edges incident on a vertex of a digraph.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=449

MODULE: DIGRAPH_UTILS 450

in_neighbours(G, V) -> Vertices

Return all in-neighbors of a vertex of a digraph.

info(G) -> InfoList

Return information about a digraph.

new() -> digraph()
Return a protected empty digraph, where cycles are allowed.

new(Type) -> digraph() | {error, Reason}

Create a new empty digraph.

no_edges(G) -> integer() >= 0

Return the number of edges of a digraph.

no_vertices(G) -> integer() >= 0

Return the number of vertices of a digraph.

out_degree(G, V) -> integer()

Return the out-degree of a vertex of a digraph.

out_edges(G, V) -> Edges

Return all edges emanating from a vertex of a digraph.

out_neighbours(G, V) -> Vertices

Return all out-neighbors of a vertex of a digraph.

vertex(G, V) -> {V, Label} | false

Return the label of a vertex of a digraph.

vertices(G) -> Vertices

Return all vertices of a digraph.

F.10 Module: digraph_utils

Algorithms for directed graphs.

components(Digraph) -> [Component]

Return the components of a digraph.

condensation(Digraph) -> CondensedDigraph

Return a condensed graph of a digraph.

cyclic_strong_components(Digraph) -> [StrongComponent]

Return the cyclic strong components of a digraph.

is_acyclic(Digraph) -> bool()
Check whether a digraph is acyclic.

loop_vertices(Digraph) -> Vertices

Return the vertices of a digraph included in some loop.

postorder(Digraph) -> Vertices

Return the vertices of a digraph in post-order.

preorder(Digraph) -> Vertices

Return the vertices of a digraph in pre-order.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=450

MODULE: DISK_LOG 451

reachable(Vertices, Digraph) -> Vertices

Return the vertices reachable from some vertices of a digraph.

reachable_neighbours(Vertices, Digraph) -> Vertices

Return the neighbours reachable from some vertices of a digraph.

reaching(Vertices, Digraph) -> Vertices

Return the vertices that reach some vertices of a digraph.

reaching_neighbours(Vertices, Digraph) -> Vertices

Return the neighbours that reach some vertices of a digraph.

strong_components(Digraph) -> [StrongComponent]

Return the strong components of a digraph.

subgraph(Digraph, Vertices [, Options]) -> Subgraph | {error, Reason}

Return a subgraph of a digraph.

topsort(Digraph) -> Vertices | false

Return a topological sorting of the vertices of a digraph.

F.11 Module: disk_log

A disk-based term logging facility.

accessible_logs() -> {[LocalLog], [DistributedLog]}

Return the accessible disk logs on the current node.

balog(Log, Bytes) -> ok | {error, Reason}
Asynchronously log an item onto a disk log.

balog_terms(Log, BytesList) -> ok | {error, Reason}

Asynchronously log several items onto a disk log.

bchunk(Log, Continuation, N) -> {Continuation2, Binaries} | {Continuation2, Binaries, Bad-

bytes} | eof | {error, Reason}

Read a chunk of items written to a disk log.

block(Log, QueueLogRecords) -> ok | {error, Reason}
Block a disk log.

blog(Log, Bytes) -> ok | {error, Reason}
Log an item onto a disk log.

blog_terms(Log, BytesList) -> ok | {error, Reason}
Log several items onto a disk log.

breopen(Log, File, BHead) -> ok | {error, Reason}
Reopen a disk log and save the old log.

btruncate(Log, BHead) -> ok | {error, Reason}

Truncate a disk log.

change_header(Log, Header) -> ok | {error, Reason}

Change the head or head_func option for an owner of a disk log.

change_notify(Log, Owner, Notify) -> ok | {error, Reason}

Change the notify option for an owner of a disk log.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=451

MODULE: EPP 452

change_size(Log, Size) -> ok | {error, Reason}

Change the size of an open disk log.

chunk_info(Continuation) -> InfoList | {error, Reason}

Return information about a chunk continuation of a disk log.

chunk_step(Log, Continuation, Step) -> {ok, Continuation2} | {error, Reason}

Step forward or backward among the wrap log files of a disk log.

close(Log) -> ok | {error, Reason}

Close a disk log.

format_error(Error) -> Chars

Return an English description of a disk log error reply.

inc_wrap_file(Log) -> ok | {error, Reason}

Change to the next wrap log file of a disk log.

info(Log) -> InfoList | {error, no_such_log}

Return information about a disk log.

lclose(Log, Node) -> ok | {error, Reason}
Close a disk log on one node.

open(ArgL) -> OpenRet | DistOpenRet

Open a disk log file.

pid2name(Pid) -> {ok, Log} | undefined

Return the name of the disk log handled by a PID.

sync(Log) -> ok | {error, Reason}

Flush the contents of a disk log to the disk.

unblock(Log) -> ok | {error, Reason}
Unblock a disk log.

F.12 Module: epp

An Erlang code preprocessor.

close(Epp) -> ok

Close the preprocessing of the file associated withEpp.

open(FileName, IncludePath, PredefMacros) -> {ok,Epp} | {error, ErrorDescriptor}

Open a file for preprocessing.

parse_erl_form(Epp) -> {ok, AbsForm} | {eof, Line} | {error, ErrorInfo}

Return the next Erlang form from the opened Erlang source file.

parse_file(FileName,IncludePath,PredefMacro) -> {ok,[Form]} | {error,OpenError}

Preprocess and parse an Erlang source file.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=452

MODULE: ERL_EVAL 453

F.13 Module: erl_eval

The Erlang meta interpreter.

add_binding(Name, Value, Bindings) -> BindingStruct
Add a binding.

binding(Name, BindingStruct) -> Binding

Return bindings.

bindings(BindingStruct) -> Bindings
Return bindings.

del_binding(Name, Bindings) -> BindingStruct

Delete a binding.

expr(Expression, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> {value,

Value, NewBindings}

Evaluate the expression.

expr_list(ExpressionList, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> {Val-

ueList, NewBindings}

Evaluate a list of expressions.

exprs(Expressions, Bindings, LocalFunctionHandler, NonlocalFunctionHandler) -> {value,

Value, NewBindings}

Evaluate expressions.

new_bindings() -> BindingStruct
Return a bindings structure.

F.14 Module: erl_parse

The Erlang parser.

abstract(Data) -> AbsTerm

Convert an Erlang term into an abstract form.

format_error(ErrorDescriptor) -> Chars

Format an error descriptor.

normalise(AbsTerm) -> Data

Convert abstract form to an Erlang term.

parse_exprs(Tokens) -> {ok, Expr_list} | {error, ErrorInfo}
Parse Erlang expressions.

parse_form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}

Parse an Erlang form.

parse_term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Parse an Erlang term.

tokens(AbsTerm, MoreTokens) -> Tokens

Generate a list of tokens for an expression.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=453

MODULE: ERL_PP 454

F.15 Module: erl_pp

The Erlang pretty printer.

attribute(Attribute, HookFunction) -> DeepCharList

Pretty-print an attribute.

expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList

Pretty-print one Expression.

exprs(Expressions, Indent, HookFunction) -> DeepCharList

Pretty-print Expressions.

form(Form, HookFunction) -> DeepCharList

Pretty-print a form.

function(Function, HookFunction) -> DeepCharList

Pretty-print a function.

guard(Guard, HookFunction) -> DeepCharList
Pretty-print a guard.

F.16 Module: erl_scan

The Erlang token scanner.

format_error(ErrorDescriptor) -> string()

Format an error descriptor.

reserved_word(Atom) -> bool()

Test for a reserved word.

string(CharList) -> {ok, Tokens, EndLine} | Error
Scan a string, and return the Erlang tokens.

tokens(Continuation, CharList, StartLine) ->Return

Re-entrant scanner.

F.17 Module: erl_tar

Unix TAR utility for reading and writing TAR archives.

add(TarDescriptor, Filename, Options) -> RetValue

Add a file to an open TAR file.

add(TarDescriptor, Filename, NameInArchive, Options) -> RetValue

Add a file to an open TAR file.

close(TarDescriptor)

Close an open TAR file.

create(Name, FileList) ->RetValue

Create a TAR archive.

create(Name, FileList, OptionList)

Create a TAR archive with options.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=454

MODULE: ERLANG 455

extract(Name) -> RetValue

Extract all files from a TAR file.

extract(Name, OptionList)

Extract files from a TAR file.

format_error(Reason) -> string()
Convert error term to a readable string.

open(Name, OpenModeList) -> RetValue

Open a TAR file.

t(Name)

Print the name of each file in a TAR file.

table(Name) -> RetValue

Retrieve the name of all files in a TAR file.

table(Name, Options)

Retrieve name and information of all files in a TAR file.

tt(Name)

Print name and information for each file in a TAR file.

F.18 Module: erlang

The Erlang BIFs.

abs(Number) -> int() | float()

Arithmetical absolute value.

apply(Fun, Args) -> term() | empty()

Apply a function to an argument list.

apply(Module, Function, Args) -> term() | empty()

Apply a function to an argument list.

atom_to_list(Atom) -> string()

Text representation of an atom.

binary_to_list(Binary) -> [char()]

Convert a binary to a list.

binary_to_list(Binary, Start, Stop) -> [char()]

Convert part of a binary to a list.

binary_to_term(Binary) -> term()

Decode an Erlang external term format binary.

check_process_code(Pid, Module) -> bool()

Check whether a process is executing old code for a module.

concat_binary(ListOfBinaries)

Concatenate a list of binaries (deprecated).

date() -> {Year, Month, Day}

Current date.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=455

MODULE: ERLANG 456

delete_module(Module) -> true | undefined

Make the current code for a module old.

disconnect_node(Node) -> bool() | ignored

Force the disconnection of a node.

element(N, Tuple) -> term()

Get Nth element of a tuple.

erase() -> [{Key, Val}]

Return and delete the process dictionary.

erase(Key) -> Val | undefined

Return and delete a value from the process dictionary.

erlang:append_element(Tuple1, Term) -> Tuple2

Append an extra element to a tuple.

erlang:bump_reductions(Reductions) -> void()

Increment the reduction counter.

erlang:cancel_timer(TimerRef) -> Time | false

Cancel a timer.

erlang:demonitor(MonitorRef) -> true
Stop monitoring.

erlang:demonitor(MonitorRef, OptionList) -> true
Stop monitoring.

erlang:display(Term) -> true

Print a term on standard output.

erlang:error(Reason)
Stop execution with a given reason.

erlang:error(Reason, Args)

Stop execution with a given reason.

erlang:fault(Reason)
Stop execution with a given reason.

erlang:fault(Reason, Args)

Stop execution with a given reason.

erlang:fun_info(Fun) -> [{Item, Info}]

Information about a fun.

erlang:fun_info(Fun, Item) -> {Item, Info}

Information about a fun.

erlang:fun_to_list(Fun) -> string()

Text representation of a fun.

erlang:function_exported(Module, Function, Arity) -> bool()

Check whether a function is exported and loaded.

erlang:get_cookie() -> Cookie | nocookie

Get the magic cookie of the local node.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=456

MODULE: ERLANG 457

erlang:get_stacktrace() -> [{Module, Function, Arity | Args}]

Get the call stack backtrace of the last exception.

erlang:hash(Term, Range) -> Hash

Hash function (deprecated).

erlang:hibernate(Module, Function, Args)
Hibernate a process until a message is sent to it.

erlang:info(Type) -> Res

Information about the system (deprecated).

erlang:integer_to_list(Integer, Base) -> string()

Text representation of an integer.

erlang:is_builtin(Module, Function, Arity) -> bool()

Check whether a function is a BIF implemented in C.

erlang:list_to_integer(String, Base) -> int()

Convert from text representation to an integer.

erlang:loaded() -> [Module]

List of all loaded modules.

erlang:localtime() -> {Date, Time}

Current local date and time.

erlang:localtime_to_universaltime({Date1, Time1}) -> {Date2, Time2}

Convert from local to Universal Time Coordinated (UTC) date and time.

erlang:localtime_to_universaltime({Date1, Time1}, IsDst) -> {Date2, Time2}

Convert from local to Universal Time Coordinated (UTC) date and time.

erlang:make_tuple(Arity, InitialValue) -> tuple()

Create a new tuple of a given arity.

erlang:md5(Data) -> Digest

Compute an MD5 message digest.

erlang:md5_final(Context) -> Digest
Finish the update of an MD5 context, and return the computed MD5 mes-
sage digest.

erlang:md5_init() -> Context

Create an MD5 context.

erlang:md5_update(Context, Data) -> NewContext

Update an MD5 context with data, and return a new context.

erlang:memory() -> [{Type, Size}]

Information about dynamically allocated memory.

erlang:memory(Type | [Type]) -> Size | [{Type, Size}]

Information about dynamically allocated memory.

erlang:monitor(Type, Item) -> MonitorRef
Start monitoring.

erlang:monitor_node(Node, Flag, Options) -> true

Monitor the status of a node.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=457

MODULE: ERLANG 458

erlang:phash(Term, Range) -> Hash

Portable hash function.

erlang:phash2(Term [, Range]) -> Hash

Portable hash function.

erlang:port_call(Port, Operation, Data) -> term()

Synchronous call to a port with term data.

erlang:port_info(Port) -> [{Item, Info}] | undefined

Information about a port.

erlang:port_info(Port, Item) -> {Item, Info} | undefined | []

Information about a port.

erlang:port_to_list(Port) -> string()

Text representation of a port identifier.

erlang:ports() -> [port()]

All open ports.

erlang:process_display(Pid, Type) -> void()

Write information about a local process on standard error.

erlang:raise(Class, Reason, Stacktrace)
Stop execution with an exception of given class, reason, and call stack
backtrace.

erlang:read_timer(TimerRef) -> int() | false

Number of milliseconds remaining for a timer.

erlang:ref_to_list(Ref) -> string()

Text representation of a reference.

erlang:resume_process(Pid) -> true

Resume a suspended process.

erlang:send(Dest, Msg) -> Msg
Send a message.

erlang:send(Dest, Msg, [Option]) -> Res

Send a message conditionally.

erlang:send_after(Time, Dest, Msg) -> TimerRef

Start a timer.

erlang:send_nosuspend(Dest, Msg) -> bool()

Try to send a message without ever blocking.

erlang:send_nosuspend(Dest, Msg, Options) -> bool()
Try to send a message without ever blocking.

erlang:set_cookie(Node, Cookie) -> true

Set the magic cookie of a node.

erlang:spawn_monitor(Fun) -> {pid(),reference()}

Create and monitor a new process with a fun as entry point.

erlang:spawn_monitor(Module, Function, Args) -> {pid(),reference()}

Create and monitor a new process with a function as entry point.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=458

MODULE: ERLANG 459

erlang:start_timer(Time, Dest, Msg) -> TimerRef

Start a timer.

erlang:suspend_process(Pid) -> true

Suspend a process.

erlang:system_flag(Flag, Value) -> OldValue

Set system flags.

erlang:system_info(Type) -> Res

Information about the system.

erlang:system_monitor() -> MonSettings

Current system performance monitoring settings.

erlang:system_monitor(undefined | {MonitorPid, Options}) -> MonSettings

Set or clear system performance monitoring options.

erlang:system_monitor(MonitorPid, [Option]) -> MonSettings

Set system performance monitoring options.

erlang:trace(PidSpec, How, FlagList) -> int()

Set trace flags for a process or processes.

erlang:trace_delivered(Tracee) -> Ref

Notification when trace has been delivered.

erlang:trace_info(PidOrFunc, Item) -> Res

Trace information about a process or function.

erlang:trace_pattern(MFA, MatchSpec) -> int()

Set trace patterns for global call tracing.

erlang:trace_pattern(MFA, MatchSpec, FlagList) -> int()

Set trace patterns for tracing of function calls.

erlang:universaltime() -> {Date, Time}

Current date and time according to Universal Time Coordinated (UTC).

erlang:universaltime_to_localtime({Date1, Time1}) -> {Date2, Time2}

Convert from Universal Time Coordinated (UTC) to local date and time.

erlang:yield() -> true

Let other processes get a chance to execute.

exit(Reason)
Stop execution with a given reason.

exit(Pid, Reason) -> true

Send an exit signal to a process.

float(Number) -> float()

Convert a number to a float.

float_to_list(Float) -> string()

Text representation of a float.

garbage_collect() -> true

Force an immediate garbage collection of the calling process.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=459

MODULE: ERLANG 460

garbage_collect(Pid) -> bool()

Force an immediate garbage collection of a process.

get() -> [{Key, Val}]

Return the process dictionary.

get(Key) -> Val | undefined

Return a value from the process dictionary.

get_keys(Val) -> [Key]

Return a list of keys from the process dictionary.

group_leader() -> GroupLeader

Get the group leader for the calling process.

group_leader(GroupLeader, Pid) -> true

Set the group leader for a process.

halt()
Halt the Erlang runtime system, and indicate normal exit to the calling
environment.

halt(Status)
Halt the Erlang runtime system.

hd(List) -> term()

Head of a list.

integer_to_list(Integer) -> string()

Text representation of an integer.

iolist_size(Item) -> int()

Size of an iolist.

iolist_to_binary(IoListOrBinary) -> binary()

Convert an iolist to a binary.

is_alive() -> bool()

Check whether the local node is alive.

is_atom(Term) -> bool()

Check whether a term is an atom.

is_binary(Term) -> bool()

Check whether a term is a binary.

is_boolean(Term) -> bool()

Check whether a term is a boolean.

is_float(Term) -> bool()

Check whether a term is a float.

is_function(Term) -> bool()

Check whether a term is a fun.

is_function(Term, Arity) -> bool()

Check whether a term is a fun with a given arity.

is_integer(Term) -> bool()
Check whether a term is an integer.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=460

MODULE: ERLANG 461

is_list(Term) -> bool()

Check whether a term is a list.

is_number(Term) -> bool()

Check whether a term is a number.

is_pid(Term) -> bool()

Check whether a term is a PID.

is_port(Term) -> bool()

Check whether a term is a port.

is_process_alive(Pid) -> bool()

Check whether a process is alive.

is_record(Term, RecordTag) -> bool()

Check whether a term appears to be a record.

is_record(Term, RecordTag, Size) -> bool()

Check whether a term appears to be a record.

is_reference(Term) -> bool()

Check whether a term is a reference.

is_tuple(Term) -> bool()

Check whether a term is a tuple.

length(List) -> int()

Length of a list.

link(Pid) -> true

Create a link to another process (or port).

list_to_atom(String) -> atom()

Convert from a text representation to an atom.

list_to_binary(IoList) -> binary()

Convert a list to a binary.

list_to_existing_atom(String) -> atom()

Convert from a text representation to an atom.

list_to_float(String) -> float()

Convert from a text representation to a float.

list_to_integer(String) -> int()

Convert from a text representation to an integer.

list_to_pid(String) -> pid()

Convert from text representation to a PID.

list_to_tuple(List) -> tuple()

Convert a list to a tuple.

load_module(Module, Binary) -> {module, Module} | {error, Reason}

Load object code for a module.

make_ref() -> ref()

Return an almost unique reference.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=461

MODULE: ERLANG 462

module_loaded(Module) -> bool()

Check whether a module is loaded.

monitor_node(Node, Flag) -> true

Monitor the status of a node.

node() -> Node

Name of the local node.

node(Arg) -> Node

At which node is a PID, port, or reference located.

nodes() -> Nodes

All visible nodes in the system.

nodes(Arg | [Arg]) -> Nodes

All nodes of a certain type in the system.

now() -> {MegaSecs, Secs, MicroSecs}

Elapsed time since 00:00 GMT.

open_port(PortName, PortSettings) -> port()

Open a port.

pid_to_list(Pid) -> string()

Text representation of a PID.

port_close(Port) -> true

Close an open port.

port_command(Port, Data) -> true

Send data to a port.

port_connect(Port, Pid) -> true

Set the owner of a port.

port_control(Port, Operation, Data) -> Res

Perform a synchronous control operation on a port.

pre_loaded() -> [Module]

List of all preloaded modules.

process_flag(Flag, Value) -> OldValue

Set process flags for the calling process.

process_flag(Pid, Flag, Value) -> OldValue

Set process flags for a process.

process_info(Pid) -> [{Item, Info}] | undefined

Information about a process.

process_info(Pid, Item) -> {Item, Info} | undefined | []

Information about a process.

processes() -> [pid()]

All processes.

purge_module(Module) -> void()

Remove old code for a module.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=462

MODULE: ERLANG 463

put(Key, Val) -> OldVal | undefined

Add a new value to the process dictionary.

register(RegName, Pid | Port) -> true

Register a name for a PID (or port).

registered() -> [RegName]
All registered names.

round(Number) -> int()

Return an integer by rounding a number.

self() -> pid()

Pid of the calling process.

setelement(Index, Tuple1, Value) -> Tuple2

Set Nth element of a tuple.

size(Item) -> int()

Size of a tuple or binary.

spawn(Fun) -> pid()

Create a new process with a fun as entry point.

spawn(Node, Fun) -> pid()

Create a new process with a fun as entry point on a given node.

spawn(Module, Function, Args) -> pid()

Create a new process with a function as entry point.

spawn(Node, Module, Function, ArgumentList) -> pid()

Create a new process with a function as entry point on a given node.

spawn_link(Fun) -> pid()

Create and link to a new process with a fun as entry point.

spawn_link(Node, Fun) ->
Create and link to a new process with a fun as entry point on a specified
node.

spawn_link(Module, Function, Args) -> pid()

Create and link to a new process with a function as entry point.

spawn_link(Node, Module, Function, Args) -> pid()
Create and link to a new process with a function as entry point on a given
node.

spawn_opt(Fun, [Option]) -> pid() | {pid(),reference()}

Create a new process with a fun as entry point.

spawn_opt(Node, Fun, [Option]) -> pid()

Create a new process with a fun as entry point on a given node.

spawn_opt(Module, Function, Args, [Option]) -> pid() | {pid(),reference()}

Create a new process with a function as entry point.

spawn_opt(Node, Module, Function, Args, [Option]) -> pid()

Create a new process with a function as entry point on a given node.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=463

MODULE: ERROR_HANDLER 464

split_binary(Bin, Pos) -> {Bin1, Bin2}

Split a binary into two.

statistics(Type) -> Res

Information about the system.

term_to_binary(Term) -> ext_binary()

Encode a term to an Erlang external term format binary.

term_to_binary(Term, [Option]) -> ext_binary()

Encode a term to en Erlang external term format binary.

throw(Any)

Throw an exception.

time() -> {Hour, Minute, Second}

Current time.

tl(List1) -> List2

Tail of a list.

trunc(Number) -> int()
Return an integer by the truncating a number.

tuple_to_list(Tuple) -> [term()]

Convert a tuple to a list.

unlink(Id) -> true

Remove a link, if there is one, to another process or port.

unregister(RegName) -> true

Remove the registered name for a process (or port).

whereis(RegName) -> pid() | port() | undefined

Get the PID (or port) with a given registered name.

F.19 Module: error_handler

Default system error handler.

undefined_function(Module, Function, Args) -> term()

Called when an undefined function is encountered.

undefined_lambda(Module, Fun, Args) -> term()

Called when an undefined lambda (fun) is encountered.

F.20 Module: error_logger

Erlang error logger.

add_report_handler(Handler, Args) -> Result
Add an event handler to the error logger.

delete_report_handler(Handler) -> Result

Delete an event handler from the error logger.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=464

MODULE: ETS 465

error_report(Report) -> ok
Send a standard error report event to the error logger.

error_report(Type, Report) -> ok

Send a user defined error report event to the error logger.

format(Format, Data) -> ok
Send an standard error event to the error logger.

info_msg(Format, Data) -> ok

Send a standard information event to the error logger.

info_report(Report) -> ok

Send a standard information report event to the error logger.

info_report(Type, Report) -> ok

Send a user defined information report event to the error logger.

logfile(Request) -> ok | Filename | {error, What}

Enable or disable error printouts to a file.

tty(Flag) -> ok

Enable or disable printouts to the tty.

warning_map() -> Tag

Return the current mapping for warning events.

warning_msg(Format, Data) -> ok
Send a standard warning event to the error logger.

warning_report(Report) -> ok
Send a standard warning report event to the error logger.

warning_report(Type, Report) -> ok

Send a user defined warning report event to the error logger.

F.21 Module: ets

Built-in term storage.

all() -> [Tab]

Return a list of all ETS tables.

delete(Tab) -> true

Delete an entire ETS table.

delete(Tab, Key) -> true

Delete all objects with a given key from an ETS table.

delete_all_objects(Tab) -> true
Delete all objects in an ETS table.

delete_object(Tab,Object) -> true

Delete a specific from an ETS table.

file2tab(Filename) -> {ok,Tab} | {error,Reason}

Read an ETS table from a file.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=465

MODULE: ETS 466

first(Tab) -> Key | ’$end_of_table’

Return the first key in an ETS table.

fixtable(Tab, true|false) -> true | false

Fix an ETS table for safe traversal (obsolete).

foldl(Function, Acc0, Tab) -> Acc1

Fold a function over an ETS table.

foldr(Function, Acc0, Tab) -> Acc1

Fold a function over an ETS table.

from_dets(Tab, DetsTab) -> Tab

Fill an ETS table with objects from a DETS table.

fun2ms(LiteralFun) -> MatchSpec

Pseudofunction that transforms fun syntax to a match_spec.

i() -> void()

Display information about all ETS tables on tty.

i(Tab) -> void()

Browse an ETS table on tty.

info(Tab) -> [{Item, Value}] | undefined

Return information about an ETS table.

info(Tab, Item) -> Value | undefined

Return the information associated with given item for an ETS table.

init_table(Name, InitFun) -> true

Replace all objects of an ETS table.

insert(Tab, ObjectOrObjects) -> true
Insert an object into an ETS table.

insert_new(Tab, ObjectOrObjects) -> bool()

Insert an object into an ETS table if the key is not already present.

is_compiled_ms(Term) -> bool()

Checks whether an Erlang term is the result ofets:match_spec_compile.

last(Tab) -> Key | ’$end_of_table’

Return the last key in an ETS table of typeordered_set.

lookup(Tab, Key) -> [Object]
Return all objects with a given key in an ETS table.

lookup_element(Tab, Key, Pos) -> Elem

Return the Pos :th element of all objects with a given key in an ETS table.

match(Continuation) -> {[Match],Continuation} | ’$end_of_table’
Continue matching objects in an ETS table.

match(Tab, Pattern) -> [Match]

Match the objects in an ETS table against a pattern.

match(Tab, Pattern, Limit) -> {[Match],Continuation} | ’$end_of_table’
Match the objects in an ETS table against a pattern, and return part of the
answers.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=466

MODULE: ETS 467

match_delete(Tab, Pattern) -> true

Delete all objects which match a given pattern from an ETS table.

match_object(Continuation) -> {[Match],Continuation} | ’$end_of_table’

Continue matching objects in an ETS table.

match_object(Tab, Pattern) -> [Object]
Match the objects in an ETS table against a pattern.

match_object(Tab, Pattern, Limit) -> {[Match],Continuation} | ’$end_of_table’
Match the objects in an ETS table against a pattern, and return part of the
answers.

match_spec_compile(MatchSpec) -> CompiledMatchSpec

Compile a match specification into its internal representation.

match_spec_run(List,CompiledMatchSpec) -> list()

Perform matching, using a compiledmatch_spec, on a list of tuples.

member(Tab, Key) -> true | false

Test for occurrence of a key in an ETS table.

new(Name, Options) -> tid()

Create a new ETS table.

next(Tab, Key1) -> Key2 | ’$end_of_table’

Return the next key in an ETS table.

prev(Tab, Key1) -> Key2 | ’$end_of_table’

Return the previous key in an ETS table of typeordered_set.

rename(Tab, Name) -> Name

Rename a named ETS table.

repair_continuation(Continuation, MatchSpec) -> Continuation
Repair a continuation fromets:select/1orets:select/3that has passed through
external representation.

safe_fixtable(Tab, true|false) -> true

Fix an ETS table for safe traversal.

select(Continuation) -> {[Match],Continuation} | ’$end_of_table’
Continue matching objects in an ETS table.

select(Tab, MatchSpec) -> [Match]
Match the objects in an ETS table against amatch_spec.

select(Tab, MatchSpec, Limit) -> {[Match],Continuation} | ’$end_of_table’
Match the objects in an ETS table against amatch_spec, and return part of
the answers.

select_count(Tab, MatchSpec) -> NumMatched
Match the objects in an ETS table against amatch_spec, and return the
number of objects for which thematch_specreturnstrue.

select_delete(Tab, MatchSpec) -> NumDeleted
Match the objects in an ETS table against amatch_spec, and delete objects
where thematch_specreturnstrue.

slot(Tab, I) -> [Object] | ’$end_of_table’

Return all objects in a given slot of an ETS table.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=467

MODULE: FILE 468

tab2file(Tab, Filename) -> ok | {error,Reason}

Dump an ETS table to a file.

tab2list(Tab) -> [Object]

Return a list of all objects in an ETS table.

table(Tab [, Options]) -> QueryHandle

Return a QLC query handle.

test_ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}

Test a match_spec for use in ets:select/2.

to_dets(Tab, DetsTab) -> Tab

Fill a DETS table with objects from an ETS table.

update_counter(Tab, Key, Incr) -> Result

Update a counter object in an ETS table.

F.22 Module: file

File interface module.

change_group(Filename, Gid) -> ok | {error, Reason}

Change group of a file.

change_owner(Filename, Uid) -> ok | {error, Reason}

Change owner of a file.

change_owner(Filename, Uid, Gid) -> ok | {error, Reason}

Change owner and group of a file.

change_time(Filename, Mtime) -> ok | {error, Reason}

Change the modification time of a file.

change_time(Filename, Mtime, Atime) -> ok | {error, Reason}

Change the modification and last access time of a file.

close(IoDevice) -> ok | {error, Reason}

Close a file.

consult(Filename) -> {ok, Terms} | {error, Reason}

Read Erlang terms from a file.

copy(Source, Destination, ByteCount) -> {ok, BytesCopied} | {error, Reason}

Copy file contents.

del_dir(Dir) -> ok | {error, Reason}

Delete a directory.

delete(Filename) -> ok | {error, Reason}

Delete a file.

eval(Filename) -> ok | {error, Reason}

Evaluate Erlang expressions in a file.

eval(Filename, Bindings) -> ok | {error, Reason}

Evaluate Erlang expressions in a file.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=468

MODULE: FILE 469

file_info(Filename) -> {ok, FileInfo} | {error, Reason}

Get information about a file (deprecated).

format_error(Reason) -> Chars

Return a descriptive string for an error reason.

get_cwd() -> {ok, Dir} | {error, Reason}
Get the current working directory.

get_cwd(Drive) -> {ok, Dir} | {error, Reason}

Get the current working directory for the drive specified.

list_dir(Dir) -> {ok, Filenames} | {error, Reason}

List files in a directory.

make_dir(Dir) -> ok | {error, Reason}

Make a directory.

make_link(Existing, New) -> ok | {error, Reason}

Make a hard link to a file.

make_symlink(Name1, Name2) -> ok | {error, Reason}

Make a symbolic link to a file or directory.

open(Filename, Modes) -> {ok, IoDevice} | {error, Reason}

Open a file.

path_consult(Path, Filename) -> {ok, Terms, FullName} | {error, Reason}

Read Erlang terms from a file.

path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}

Evaluate Erlang expressions in a file.

path_open(Path, Filename, Modes) -> {ok, IoDevice, FullName} | {error, Reason}

Open a file.

path_script(Path, Filename) -> {ok, Value, FullName} | {error, Reason}

Evaluate and return the value of Erlang expressions in a file.

path_script(Path, Filename, Bindings) -> {ok, Value, FullName} | {error, Reason}

Evaluate and return the value of Erlang expressions in a file.

pid2name(Pid) -> string() | undefined

Return the name of the file handled by a PID.

position(IoDevice, Location) -> {ok, NewPosition} | {error, Reason}

Set a position in a file.

pread(IoDevice, LocNums) -> {ok, DataL} | {error, Reason}

Read from a file at certain positions.

pread(IoDevice, Location, Number) -> {ok, Data} | {error, Reason}

Read from a file at a certain position.

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}

Write to a file at certain positions.

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}

Write to a file at a certain position.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=469

MODULE: FILE_SORTER 470

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}

Read from a file.

read_file(Filename) -> {ok, Binary} | {error, Reason}

Read a file.

read_file_info(Filename) -> {ok, FileInfo} | {error, Reason}

Get information about a file.

read_link(Name) -> {ok, Filename} | {error, Reason}

See what a link is pointing to.

read_link_info(Name) -> {ok, FileInfo} | {error, Reason}

Get information about a link or file.

rename(Source, Destination) -> ok | {error, Reason}

Rename a file.

script(Filename) -> {ok, Value} | {error, Reason}

Evaluate and return the value of Erlang expressions in a file.

script(Filename, Bindings) -> {ok, Value} | {error, Reason}

Evaluate and return the value of Erlang expressions in a file.

set_cwd(Dir) -> ok | {error,Reason}
Set the current working directory.

sync(IoDevice) -> ok | {error, Reason}
Synchronize the in-memory state of a file with that on the physical
medium.

truncate(IoDevice) -> ok | {error, Reason}

Truncate a file.

write(IoDevice, Bytes) -> ok | {error, Reason}

Write to a file.

write_file(Filename, Binary) -> ok | {error, Reason}

Write a file.

write_file(Filename, Binary, Modes) -> ok | {error, Reason}

Write a file.

write_file_info(Filename, FileInfo) -> ok | {error, Reason}

Change information about a file.

F.23 Module: file_sorter

File sorter.

check(FileNames, Options) -> Reply

Check whether terms on files are sorted.

keycheck(KeyPos, FileNames, Options) -> Reply

Check whether terms on files are sorted by key.

keymerge(KeyPos, FileNames, Output, Options) -> Reply

Merge terms on files by key.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=470

MODULE: FILELIB 471

keysort(KeyPos, Input, Output, Options) -> Reply

Sort terms on files by key.

merge(FileNames, Output, Options) -> Reply

Merge terms on files.

sort(Input, Output, Options) -> Reply

Sort terms on files.

F.24 Module: filelib

File utilities, such as wildcard matching of filenames.

ensure_dir(Name) -> ok | {error, Reason}

Ensure that all parent directories for a file or directory exist.

file_size(Filename) -> integer()

Return the size in bytes of the file.

fold_files(Dir, RegExp, Recursive, Fun, AccIn) -> AccOut

Fold over all files matching a regular expression.

is_dir(Name) -> true | false

Test whetherNamerefers to a directory.

is_file(Name) -> true | false

Test whetherNamerefers to a file or directory.

is_regular(Name) -> true | false

Test whetherNamerefers to a (regular) file.

last_modified(Name) -> {{Year,Month,Day},{Hour,Min,Sec}}

Return the local date and time when a file was last modified.

wildcard(Wildcard) -> list()

Match filenames using Unix-style wildcards.

wildcard(Wildcard, Cwd) -> list()
Match filenames using Unix-style wildcards starting at a specified direc-
tory.

F.25 Module: filename

Filename manipulation functions.

absname(Filename) -> string()

Convert a filename to an absolute name, relative the working directory.

absname(Filename, Dir) -> string()

Convert a filename to an absolute name, relative a specified directory.

absname_join(Dir, Filename) -> string()

Join an absolute directory with a relative filename.

basename(Filename) -> string()

Return the last component of a filename.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=471

MODULE: GB_SETS 472

basename(Filename, Ext) -> string()
Return the last component of a filename, stripped of the specified exten-
sion.

dirname(Filename) -> string()

Return the directory part of a path name.

extension(Filename) -> string()

Return the file extension.

find_src(Beam, Rules) -> {SourceFile, Options}

Find the filename and compiler options for a module.

flatten(Filename) -> string()

Convert a filename to a flat string.

join(Components) -> string()

Join a list of filename components with directory separators.

join(Name1, Name2) -> string()

Join two filename components with directory separators.

nativename(Path) -> string()

Return the native form of a file path.

pathtype(Path) -> absolute | relative | volumerelative

Return the type of a path.

rootname(Filename, Ext) -> string()

Remove a filename extension.

split(Filename) -> Components

Split a filename into its path components.

F.26 Module: gb_sets

General balanced trees.

add_element(Element, Set1) -> Set2

Add an (possibly existing) element to agb_set.

balance(Set1) -> Set2

Rebalance tree representation of agb_set.

del_element(Element, Set1) -> Set2

Remove a (possibly nonexisting) element from agb_set.

delete(Element, Set1) -> Set2

Remove an element from agb_set.

filter(Pred, Set1) -> Set2

Filtergb_setelements.

fold(Function, Acc0, Set) -> Acc1

Fold overgb_setelements.

from_list(List) -> Set

Convert a list into agb_set.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=472

MODULE: GB_SETS 473

from_ordset(List) -> Set

Make agb_setfrom an ordset list.

insert(Element, Set1) -> Set2

Add a new element to agb_set.

intersection(SetList) -> Set

Return the intersection of a list ofgb_sets.

intersection(Set1, Set2) -> Set3

Return the intersection of twogb_sets.

is_element(Element, Set) -> bool()

Test for membership of agb_set.

is_empty(Set) -> bool()

Test for emptygb_set.

is_set(Set) -> bool()

Test for agb_set.

is_subset(Set1, Set2) -> bool()

Test for subset.

iterator(Set) -> Iter

Return an iterator for agb_set.

largest(Set) -> term()
Return largest element.

new() -> Set

Return an emptygb_set.

next(Iter1) -> {Element, Iter2 | none}

Traverse agb_setwith an iterator.

singleton(Element) -> gb_set()

Return agb_setwith one element.

size(Set) -> int()

Return the number of elements in agb_set.

smallest(Set) -> term()

Return the smallest element.

subtract(Set1, Set2) -> Set3

Return the difference of twogb_sets.

take_largest(Set1) -> {Element, Set2}

Extract the largest element.

take_smallest(Set1) -> {Element, Set2}

Extract the smallest element.

to_list(Set) -> List

Convert agb_setinto a list.

union(SetList) -> Set

Return the union of a list ofgb_sets.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=473

MODULE: GB_TREES 474

union(Set1, Set2) -> Set3

Return the union of twogb_sets.

F.27 Module: gb_trees

General balanced trees.

balance(Tree1) -> Tree2

Rebalance a tree.

delete(Key, Tree1) -> Tree2

Remove a node from a tree.

delete_any(Key, Tree1) -> Tree2

Remove a (possibly nonexisting) node from a tree.

empty() -> Tree

Return an empty tree.

enter(Key, Val, Tree1) -> Tree2

Insert or update key with value in a tree.

from_orddict(List) -> Tree

Make a tree from an orddict.

get(Key, Tree) -> Val

Look up a key in a tree, if present.

insert(Key, Val, Tree1) -> Tree2

Insert a new key and value in a tree.

is_defined(Key, Tree) -> bool()

Test for membership of a tree.

is_empty(Tree) -> bool()

Test for empty tree.

iterator(Tree) -> Iter

Return an iterator for a tree.

keys(Tree) -> [Key]

Return a list of the keys in a tree.

largest(Tree) -> {Key, Val}
Return largest key and value.

lookup(Key, Tree) -> {value, Val} | none

Look up a key in a tree.

next(Iter1) -> {Key, Val, Iter2

Traverse a tree with an iterator.

size(Tree) -> int()

Return the number of nodes in a tree.

smallest(Tree) -> {Key, Val}

Return the smallest key and value.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=474

MODULE: GEN_EVENT 475

take_largest(Tree1) -> {Key, Val, Tree2}
Extract largest key and value.

take_smallest(Tree1) -> {Key, Val, Tree2}

Extract smallest key and value.

to_list(Tree) -> [{Key, Val}]

Convert a tree into a list.

update(Key, Val, Tree1) -> Tree2

Update a key to new value in a tree.

values(Tree) -> [Val]

Return a list of the values in a tree.

F.28 Module: gen_event

Generic event handling behavior.g

Module:code_change(OldVsn, State, Extra) -> {ok, NewState}

Update the internal state during upgrade/downgrade.

Module:handle_call(Request, State) -> Result

Handle a synchronous request.

Module:handle_event(Event, State) -> Result

Handle an event.

Module:handle_info(Info, State) -> Result
Handle an incoming message.

Module:init(InitArgs) -> {ok,State}

Initialize an event handler.

Module:terminate(Arg, State) -> term()

Clean up before deletion.

add_handler(EventMgrRef, Handler, Args) -> Result

Add an event handler to a generic event manager.

add_sup_handler(EventMgrRef, Handler, Args) -> Result
Add a supervised event handler to a generic event manager.

call(EventMgrRef, Handler, Request, Timeout) -> Result
Make a synchronous call to a generic event manager.

delete_handler(EventMgrRef, Handler, Args) -> Result

Delete an event handler from a generic event manager.

start(EventMgrName) -> Result
Create a stand-alone event manager process.

start_link(EventMgrName) -> Result
Create a generic event manager process in a supervision tree.

stop(EventMgrRef) -> ok
Terminate a generic event manager.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=475

MODULE: GEN_FSM 476

swap_handler(EventMgrRef, {Handler1,Args1}, {Handler2,Args2}) -> Result
Replace an event handler in a generic event manager.

swap_sup_handler(EventMgrRef, {Handler1,Args1}, {Handler2,Args2}) -> Result

Replace an event handler in a generic event manager.

sync_notify(EventMgrRef, Event) -> ok

Notify an event manager about an event.

which_handlers(EventMgrRef) -> [Handler]

Return all event handlers installed in a generic event manager.

F.29 Module: gen_fsm

Generic finite state machine behavior.

Module:StateName(Event, StateData) -> Result

Handle an asynchronous event.

Module:StateName(Event, From, StateData) -> Result

Handle a synchronous event.

Module:code_change(OldVsn, StateName, StateData, Extra) ->

{ok, NextStateName, NewStateData}

Update the internal state data during upgrade/downgrade.

Module:handle_event(Event, StateName, StateData) -> Result

Handle an asynchronous event.

Module:handle_info(Info, StateName, StateData) -> Result
Handle an incoming message.

Module:handle_sync_event(Event, From, StateName, StateData) -> Result

Handle a synchronous event.

Module:init(Args) -> Result

Initialize process and internal state name and state data.

Module:terminate(Reason, StateName, StateData)

Clean up before termination.

cancel_timer(Ref) -> RemainingTime | false
Cancel an internal timer in a generic FSM.

enter_loop(Module, Options, StateName, StateData, FsmName, Timeout)

Enter thegen_fsmreceive loop.

reply(Caller, Reply) -> true

Send a reply to a caller.

send_all_state_event(FsmRef, Event) -> ok

Send an event asynchronously to a generic FSM.

send_event(FsmRef, Event) -> ok
Send an event asynchronously to a generic FSM.

send_event_after(Time, Event) -> Ref

Send a delayed event internally in a generic FSM.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=476

MODULE: GEN_SCTP 477

start(FsmName, Module, Args, Options) -> Result

Create a stand-alone gen_fsm process.

start_link(FsmName, Module, Args, Options) -> Result

Create a gen_fsm process in a supervision tree.

start_timer(Time, Msg) -> Ref
Send a timeout event internally in a generic FSM.

sync_send_all_state_event(FsmRef, Event, Timeout) -> Reply

Send an event syncronously to a generic FSM.

sync_send_event(FsmRef, Event, Timeout) -> Reply
Send an event synchronously to a generic FSM.

F.30 Module: gen_sctp

The gen_sctp module provides functions for communicating with sockets using
the SCTP protocol.

abort(sctp_socket(), Assoc) -> ok | {error, posix()}
Abnormally terminate the association given byAssoc, without flushing of
unsent data.

close(sctp_socket()) -> ok | {error, posix()}

Completely close the socket and all associations on it.

connect(Socket, IP, Port, Opts) -> {ok,Assoc} | {error, posix()}

Same asconnect(Socket, IP, Port, Opts, infinity).

connect(Socket, IP, Port, [Opt], Timeout) -> {ok, Assoc} | {error, posix()}
Establish a new association for the socketSocket, with a peer (SCTP server
socket).

controlling_process(sctp_socket(), pid()) -> ok

Assign a new controlling process PID to the socket.

eof(Socket, Assoc) -> ok | {error, Reason}
Gracefully terminate the association given byAssoc, with flushing of all
unsent data.

error_string(integer()) -> ok | string() | undefined

Translate an SCTP error number into a string.

listen(Socket, IsServer) -> ok | {error, Reason}

Set up a socket to listen.

open([Opt]) -> {ok, Socket} | {error, posix()}

Create an SCTP socket and bind it to local addresses.

recv(sctp_socket(), timeout()) -> {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

Receive a message from a socket.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}

Send a message using an#sctp_sndrcvinfo{}record.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Send a message over an existing association and given stream.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=477

MODULE: GEN_SERVER 478

F.31 Module: gen_server

Generic server behavior.

Module:code_change(OldVsn, State, Extra) -> {ok, NewState}
Update the internal state during upgrade/downgrade.

Module:handle_call(Request, From, State) -> Result

Handle a synchronous request.

Module:handle_cast(Request, State) -> Result

Handle an asynchronous request.

Module:handle_info(Info, State) -> Result

Handle an incoming message.

Module:init(Args) -> Result

Initialize process and internal state.

Module:terminate(Reason, State)

Clean up before termination.

abcast(Nodes, Name, Request) -> abcast
Send an asynchronous request to several generic servers.

call(ServerRef, Request, Timeout) -> Reply
Make a synchronous call to a generic server.

cast(ServerRef, Request) -> ok

Send an asynchronous request to a generic server.

enter_loop(Module, Options, State, ServerName, Timeout)

Enter thegen_serverreceive loop.

multi_call(Nodes, Name, Request, Timeout) -> Result

Make a synchronous call to several generic servers.

reply(Client, Reply) -> true

Send a reply to a client.

start(ServerName, Module, Args, Options) -> Result

Create a stand-alonegen_serverprocess.

start_link(ServerName, Module, Args, Options) -> Result

Create agen_serverprocess in a supervision tree.

F.32 Module: gen_tcp

Interface to TCP/IP sockets.

accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}

Accept an incoming connection request on a listen socket.

close(Socket) -> ok | {error, Reason}

Close a TCP socket.

connect(Address, Port, Options, Timeout) -> {ok, Socket} | {error, Reason}

Connect to a TCP port.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=478

MODULE: GEN_UDP 479

controlling_process(Socket, Pid) -> ok | {error, eperm}

Change controlling process of a socket.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}

Set up a socket to listen on a port.

recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}

Receive a packet from a passive socket.

send(Socket, Packet) -> ok | {error, Reason}

Send a packet.

shutdown(Socket, How) -> ok | {error, Reason}

Immediately close a socket.

F.33 Module: gen_udp

Interface to UDP sockets.

close(Socket) -> ok | {error, Reason}

Close a UDP socket.

controlling_process(Socket, Pid) -> ok

Change controlling process of a socket.

open(Port, Options) -> {ok, Socket} | {error, Reason}

Associate a UDP port number with the process calling it.

recv(Socket, Length, Timeout) -> {ok, {Address, Port, Packet}} | {error, Reason}

Receive a packet from a passive socket.

send(Socket, Address, Port, Packet) -> ok | {error, Reason}

Send a packet.

F.34 Module: global

A global name registration facility.

del_lock(Id, Nodes) -> void()

Delete a lock.

notify_all_name(Name, Pid1, Pid2) -> none

Name resolving function that notifies both PIDs.

random_exit_name(Name, Pid1, Pid2) -> Pid1 | Pid2

Name resolving function that kills one PID.

random_notify_name(Name, Pid1, Pid2) -> Pid1 | Pid2

Name resolving function that notifies one PID.

re_register_name(Name, Pid, Resolve) -> void()
Atomically reregister a name.

register_name(Name, Pid, Resolve) -> yes | no

Globally register a name for a PID.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=479

MODULE: INET 480

registered_names() -> [Name]
All globally registered names.

send(Name, Msg) -> Pid

Send a message to a globally registered PID.

set_lock(Id, Nodes, Retries) -> boolean()

Set a lock on the specified nodes.

sync() -> void()

Synchronize the global name server.

trans(Id, Fun, Nodes, Retries) -> Res | aborted

Micro transaction facility.

unregister_name(Name) -> void()

Remove a globally registered name for a PID.

whereis_name(Name) -> pid() | undefined
Get the PID with a given globally registered name.

F.35 Module: inet

Access to TCP/IP protocols.

close(Socket) -> ok

Close a socket of any type.

format_error(Posix) -> string()

Return a descriptive string for an error reason.

get_rc() -> [{Par, Val}]

Return a list of IP configuration parameters.

getaddr(Host, Family) -> {ok, Address} | {error, posix()}

Return the IP address for a host.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}

Return the IP addresses for a host.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}

Return a hostent record for the host with the given address.

gethostbyname(Name) -> {ok, Hostent} | {error, posix()}

Return a hostent record for the host with the given name.

gethostbyname(Name, Family) -> {ok, Hostent} | {error, posix()}

Return a hostent record for the host with the given name.

gethostname() -> {ok, Hostname} | {error, posix()}

Return the local hostname.

getopts(Socket, Options) -> OptionValues | {error, posix()}

Get one or more options for a socket.

peername(Socket) -> {ok, {Address, Port}} | {error, posix()}

Return the address and port for the other end of a connection.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=480

MODULE: INIT 481

port(Socket) -> {ok, Port}

Return the local port number for a socket.

setopts(Socket, Options) -> ok | {error, posix()}

Set one or more options for a socket.

sockname(Socket) -> {ok, {Address, Port}} | {error, posix()}

Return the local address and port number for a socket.

F.36 Module: init

Coordination of system start-up.

boot(BootArgs) -> void()
Start the Erlang runtime system.

get_args() -> [Arg]

Get all nonflag command-line arguments.

get_argument(Flag) -> {ok, Arg} | error

Get the values associated with a command-line user flag.

get_arguments() -> Flags

Get all command-line user flags.

get_plain_arguments() -> [Arg]

Get all nonflag command-line arguments.

get_status() -> {InternalStatus, ProvidedStatus}

Get system status information.

reboot() -> void()

Take down an Erlang node smoothly.

restart() -> void()
Restart the running Erlang node.

script_id() -> Id

Get the identity of the used boot script.

stop() -> void()
Take down an Erlang node smoothly.

F.37 Module: io

Standard IO server interface functions.

format([IoDevice,] Format, Data) -> ok

Write formatted output.

fread([IoDevice,] Prompt, Format) -> Result

Read formatted input.

get_chars([IoDevice,] Prompt, Count) -> string() | eof

Read a specified number of characters.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=481

MODULE: IO_LIB 482

get_line([IoDevice,] Prompt) -> string() | eof

Read a line.

nl([IoDevice]) -> ok

Write a newline.

parse_erl_exprs([IoDevice,] Prompt, StartLine) -> Result
Read, tokenize and parse Erlang expressions.

parse_erl_form([IoDevice,] Prompt, StartLine) -> Result

Read, tokenize and parse an Erlang form.

put_chars([IoDevice,] IoData) -> ok

Write a list of characters.

read([IoDevice,] Prompt) -> Result

Read a term.

read(IoDevice, Prompt, StartLine) -> Result

Read a term.

scan_erl_exprs([IoDevice,] Prompt, StartLine) -> Result
Read and tokenize Erlang expressions.

scan_erl_form([IoDevice,] Prompt, StartLine) -> Result

Read and tokenize an Erlang form.

setopts([IoDevice,] Opts) -> ok | {error, Reason}

Set options.

write([IoDevice,] Term) -> ok

Write a term.

F.38 Module: io_lib

IO library functions.

char_list(Term) -> bool()

Test for a list of characters.

deep_char_list(Term) -> bool()

Test for a deep list of characters.

format(Format, Data) -> chars()

Write formatted output.

fread(Format, String) -> Result

Read formatted input.

fread(Continuation, String, Format) -> Return

Reentrant formatted reader.

indentation(String, StartIndent) -> int()

Indentation after printing string.

nl() -> chars()

Write a newline.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=482

MODULE: LIB 483

print(Term, Column, LineLength, Depth) -> chars()

Pretty-print a term.

printable_list(Term) -> bool()

Test for a list of printable characters.

write(Term, Depth) -> chars()

Write a term.

write_atom(Atom) -> chars()

Write an atom.

write_char(Integer) -> chars()

Write a character.

write_string(String) -> chars()

Write a string.

F.39 Module: lib

A number of useful library functions.

error_message(Format, Args) -> ok
Print error message.

flush_receive() -> void()

Flush messages.

nonl(String1) -> String2

Remove last newline.

progname() -> atom()

Return name of Erlang start script.

send(To, Msg)
Send a message.

sendw(To, Msg)

Send a message, and wait for an answer.

F.40 Module: lists

List-processing functions.

all(Pred, List) -> bool()

Return true if all elements in the list satisfyPred.

any(Pred, List) -> bool()

Return true if any of the elements in the list satisfiesPred.

append(ListOfLists) -> List1

Append a list of lists.

append(List1, List2) -> List3

Append two lists.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=483

MODULE: LISTS 484

concat(Things) -> string()

Concatenate a list of atoms.

delete(Elem, List1) -> List2

Delete an element from a list.

dropwhile(Pred, List1) -> List2

Drop elements from a list while a predicate is true.

duplicate(N, Elem) -> List

Make N copies of element.

filter(Pred, List1) -> List2

Choose elements that satisfy a predicate.

flatlength(DeepList) -> int()

Length of flattened deep list.

flatmap(Fun, List1) -> List2

Map and flatten in one pass.

flatten(DeepList) -> List

Flatten a deep list.

flatten(DeepList, Tail) -> List

Flatten a deep list.

foldl(Fun, Acc0, List) -> Acc1

Fold a function over a list.

foldr(Fun, Acc0, List) -> Acc1

Fold a function over a list.

foreach(Fun, List) -> void()

Apply a function to each element of a list.

keydelete(Key, N, TupleList1) -> TupleList2

Delete an element from a list of tuples.

keymap(Fun, N, TupleList1) -> TupleList2

Map a function over a list of tuples.

keymember(Key, N, TupleList) -> bool()

Test for membership of a list of tuples.

keymerge(N, TupleList1, TupleList2) -> TupleList3

Merge two key-sorted lists of tuples.

keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2

Replace an element in a list of tuples.

keysearch(Key, N, TupleList) -> {value, Tuple} | false

Search for an element in a list of tuples.

keysort(N, TupleList1) -> TupleList2

Sort a list of tuples.

last(List) -> Last

Return last element in a list.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=484

MODULE: LISTS 485

map(Fun, List1) -> List2

Map a function over a list.

mapfoldl(Fun, Acc0, List1) -> {List2, Acc1}

Map and fold in one pass.

mapfoldr(Fun, Acc0, List1) -> {List2, Acc1}

Map and fold in one pass.

max(List) -> Max

Return maximum element of a list.

member(Elem, List) -> bool()

Test for membership of a list.

merge(ListOfLists) -> List1

Merge a list of sorted lists.

merge(List1, List2) -> List3
Merge two sorted lists.

merge(Fun, List1, List2) -> List3
Merge two sorted list.

merge3(List1, List2, List3) -> List4
Merge three sorted lists.

min(List) -> Min

Return minimum element of a list.

nth(N, List) -> Elem

Return the Nth element of a list.

nthtail(N, List1) -> Tail

Return the Nth tail of a list.

partition(Pred, List) -> {Satisfying, NonSatisfying}

Partition a list into two lists based on a predicate.

prefix(List1, List2) -> bool()

Test for list prefix.

reverse(List1) -> List2

Reverse a list.

reverse(List1, Tail) -> List2
Reverse a list appending a tail.

seq(From, To, Incr) -> Seq

Generate a sequence of integers.

sort(List1) -> List2

Sort a list.

sort(Fun, List1) -> List2

Sort a list.

split(N, List1) -> {List2, List3}

Split a list into two lists.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=485

MODULE: LISTS 486

splitwith(Pred, List) -> {List1, List2}

Split a list into two lists based on a predicate.

sublist(List1, Len) -> List2

Return a sublist of a certain length, starting at the first position.

sublist(List1, Start, Len) -> List2
Return a sublist starting at a given position and with a given number of
elements.

subtract(List1, List2) -> List3

Subtract the element in one list from another list.

suffix(List1, List2) -> bool()

Test for list suffix.

sum(List) -> number()

Return sum of elements in a list.

takewhile(Pred, List1) -> List2

Take elements from a list while a predicate is true.

ukeymerge(N, TupleList1, TupleList2) -> TupleList3

Merge two key-sorted lists of tuples, removing duplicates.

ukeysort(N, TupleList1) -> TupleList2

Sort a list of tuples, removing duplicates.

umerge(ListOfLists) -> List1

Merge a list of sorted lists, removing duplicates.

umerge(List1, List2) -> List3

Merge two sorted lists, removing duplicates.

umerge(Fun, List1, List2) -> List3
Merge two sorted lists, removing duplicates.

umerge3(List1, List2, List3) -> List4

Merge three sorted lists, removing duplicates.

unzip(List1) -> {List2, List3}

Unzip a list of two tuples into two lists.

unzip3(List1) -> {List2, List3, List4}

Unzip a list of three tuples into three lists.

usort(List1) -> List2
Sort a list, removing duplicates.

usort(Fun, List1) -> List2

Sort a list, removing duplicates.

zip(List1, List2) -> List3

Zip two lists into a list of two tuples.

zip3(List1, List2, List3) -> List4

Zip three lists into a list of three tuples.

zipwith(Combine, List1, List2) -> List3

Zip two lists into one list according to a fun.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=486

MODULE: MATH 487

zipwith3(Combine, List1, List2, List3) -> List4

Zip three lists into one list according to a fun.

F.41 Module: math

Mathematical functions.

erf(X) -> float()

Error function.

erfc(X) -> float()

Another error function.

pi() -> float()

A useful number.

sqrt(X)

Diverse math functions.

F.42 Module: ms_transform

Parse_transform that translates fun syntax into match specifications.

format_error(Errcode) -> ErrMessage

Error formatting function as required by theparse_transforminterface.

parse_transform(Forms,_Options) -> Forms
Transforms Erlang abstract format containing calls toets/dbg:fun2msinto lit-
eral match specifications.

transform_from_shell(Dialect,Clauses,BoundEnvironment) -> term()

Used when transforming fun’s created in the shell intomatch_specifications.

F.43 Module: net_adm

Various Erlang net administration routines.

dns_hostname(Host) -> {ok, Name} | {error, Host}

Official name of a host.

host_file() -> Hosts | {error, Reason}

Read the.hosts.erlangfile.

localhost() -> Name

Name of the local host.

names(Host) -> {ok, [{Name, Port}]} | {error, Reason}

Names of Erlang nodes at a host.

ping(Node) -> pong | pang

Set up a connection to a node.

world(Arg) -> [node()]

Lookup and connect to all nodes at all hosts in.hosts.erlang.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=487

MODULE: NET_KERNEL 488

world_list(Hosts, Arg) -> [node()]

Lookup and connect to all nodes at specified hosts.

F.44 Module: net_kernel

Erlang networking kernel.

allow(Nodes) -> ok | error

Limit access to a specified set of nodes.

connect_node(Node) -> true | false | ignored

Establish a connection to a node.

get_net_ticktime() -> Res

Get net_ticktime.

monitor_nodes(Flag, Options) -> ok | Error
Subscribe to node status change messages.

set_net_ticktime(NetTicktime, TransitionPeriod) -> Res

Setnet_ticktime.

start([Name, NameType, Ticktime]) -> {ok, pid()} | {error, Reason}
Turn an Erlang runtime system into a distributed node.

stop() -> ok | {error, not_allowed | not_found}

Turn a node into a nondistributed Erlang runtime system.

F.45 Module: os

Operating system–specific functions.

cmd(Command) -> string()

Execute a command in a shell of the target OS.

find_executable(Name, Path) -> Filename | false

Absolute filename of a program.

getenv() -> [string()]

List all environment variables.

getenv(VarName) -> Value | false

Get the value of an environment variable.

getpid() -> Value

Return the process identifier of the emulator process.

putenv(VarName, Value) -> true

Set a new value for an environment variable.

type() -> {Osfamily, Osname} | Osfamily
Return the OS family and, in some cases, the OS name of the current
operating system.

version() -> {Major, Minor, Release} | VersionString
Return the operating system version.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=488

MODULE: PROC_LIB 489

F.46 Module: proc_lib

Functions for asynchronous and synchronous start of processes adhering to
the OTP design principles.

format(CrashReport) -> string()

Format a crash report.

hibernate(Module, Function, Args)
Hibernate a process until a message is sent to it.

init_ack(Ret) -> void()

Used by a process when it has started.

initial_call(Process) -> {Module,Function,Args} | Fun | false

Extract the initial call of aproc_libspawned process.

spawn(Node, Module, Function, Args) -> pid()

Spawn a new process.

spawn_link(Node, Module, Function, Args) -> pid()

Spawn and link to a new process.

spawn_opt(Node, Module, Func, Args, SpawnOpts) -> pid()
Spawn a new process with given options.

start_link(Module, Function, Args, Time, SpawnOpts) -> Ret

Start a new process synchronously.

translate_initial_call(Process) -> {Module,Function,Arity} | Fun

Extract and translate the initial call of a proc_lib spawned process.

F.47 Module: qlc

Query interface to Mnesia, ETS, DETS, and so on.

append(QHL) -> QH

Return a query handle.

append(QH1, QH2) -> QH3

Return a query handle.

cursor(QueryHandleOrList [, Options]) -> QueryCursor

Create a query cursor.

delete_cursor(QueryCursor) -> ok

Delete a query cursor.

e(QueryHandleOrList [, Options]) -> Answers

Return all answers to a query.

fold(Function, Acc0, QueryHandleOrList [, Options]) -> Acc1 | Error

Fold a function over the answers to a query.

format_error(Error) -> Chars

Return an English description of a an error tuple.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=489

MODULE: QUEUE 490

info(QueryHandleOrList [, Options]) -> Info
Return code describing a query handle.

keysort(KeyPos, QH1 [, SortOptions]) -> QH2

Return a query handle.

next_answers(QueryCursor [, NumberOfAnswers]) -> Answers | Error

Return some or all answers to a query.

q(QueryListComprehension [, Options]) -> QueryHandle

Return a handle for a query list comprehension.

sort(QH1 [, SortOptions]) -> QH2

Return a query handle.

string_to_handle(QueryString [, Options [, Bindings]]) -> QueryHandle | Error

Return a handle for a query list comprehension.

table(TraverseFun, Options) -> QueryHandle

Return a query handle for a table.

F.48 Module: queue

Abstract data type for FIFO queues.

cons(Item, Q1) -> Q2

Insert an item at the head of a queue.

daeh(Q) -> Item

Return the last item of a queue.

from_list(L) -> queue()

Convert a list to a queue.

head(Q) -> Item

Return the item at the head of a queue.

in(Item, Q1) -> Q2

Insert an item at the tail of a queue.

in_r(Item, Q1) -> Q2

Insert an item at the head of a queue.

init(Q1) -> Q2

Remove the last item from a queue.

is_empty(Q) -> true | false

Test whether a queue is empty.

join(Q1, Q2) -> Q3

Join two queues.

lait(Q1) -> Q2

Remove the last item from a queue.

last(Q) -> Item

Return the last item of a queue.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=490

MODULE: RANDOM 491

len(Q) -> N

Get the length of a queue.

new() -> Q

Create a new empty FIFO queue.

out(Q1) -> Result

Remove the head item from a queue.

out_r(Q1) -> Result

Remove the last item from a queue.

reverse(Q1) -> Q2

Reverse a queue.

snoc(Q1, Item) -> Q2

Insert an item at the end of a queue.

split(N, Q1) -> {Q2,Q3}

Split a queue in two.

tail(Q1) -> Q2

Remove the head item from a queue.

to_list(Q) -> list()

Convert a queue to a list.

F.49 Module: random

Pseudorandom number generation.

seed() -> ran()

Seeds random number generation with default values.

seed(A1, A2, A3) -> ran()
Seeds random number generator.

seed0() -> ran()

Return default state for random number generation.

uniform()-> float()

Return a random float.

uniform(N) -> int()
Return a random integer.

uniform_s(State0) -> {float(), State1}

Return a random float.

uniform_s(N, State0) -> {int(), State1}
Return a random integer.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=491

MODULE: REGEXP 492

F.50 Module: regexp

Regular expression functions for strings.

first_match(String, RegExp) -> MatchRes
Match a regular expression.

format_error(ErrorDescriptor) -> Chars

Format an error descriptor.

gsub(String, RegExp, New) -> SubRes

Substitute all occurrences of a regular expression.

match(String, RegExp) -> MatchRes

Match a regular expression.

matches(String, RegExp) -> MatchRes
Match a regular expression.

parse(RegExp) -> ParseRes
Parse a regular expression.

sh_to_awk(ShRegExp) -> AwkRegExp
Convert an sh regular expression into an AWK one.

split(String, RegExp) -> SplitRes

Split a string into fields.

sub(String, RegExp, New) -> SubRes

Substitute the first occurrence of a regular expression.

F.51 Module: rpc

Remote procedure call services.

abcast(Name, Msg) -> void()
Broadcast a message asynchronously to a registered process on all nodes.

abcast(Nodes, Name, Msg) -> void()
Broadcast a message asynchronously to a registered process on specific
nodes.

async_call(Node, Module, Function, Args) -> Key

Evaluate a function call on a node, asynchrous version.

block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}

Evaluate a function call on a node in the RPC server’s context.

block_call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}

Evaluate a function call on a node in the RPC server’s context.

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}

Evaluate a function call on a node.

call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}

Evaluate a function call on a node.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=492

MODULE: RPC 493

cast(Node, Module, Function, Args) -> void()

Run a function on a node ignoring the result.

eval_everywhere(Module, Funtion, Args) -> void()

Run a function on all nodes, ignoring the result.

eval_everywhere(Nodes, Module, Function, Args) -> void()

Run a function on specific nodes, ignoring the result.

multi_server_call(Name, Msg) -> {Replies, BadNodes}

Interact with the servers on a number of nodes.

multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}

Interact with the servers on a number of nodes.

multicall(Module, Function, Args) -> {ResL, BadNodes}

Evaluate a function call on a number of nodes.

multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}

Evaluate a function call on a number of nodes.

multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}

Evaluate a function call on a number of nodes.

multicall(Nodes, Module, Function, Args, Timeout) -> {ResL, BadNodes}

Evaluate a function call on a number of nodes.

nb_yield(Key) -> {value, Val} | timeout

Deliver the result of evaluating a function call on a node (nonblocking).

nb_yield(Key, Timeout) -> {value, Val} | timeout

Deliver the result of evaluating a function call on a node (nonblocking).

parallel_eval(FuncCalls) -> ResL

Evaluate several function calls on all nodes in parallel.

pinfo(Pid) -> [{Item, Info}] | undefined

Information about a process.

pinfo(Pid, Item) -> {Item, Info} | undefined | []

Information about a process.

pmap({Module, Function}, ExtraArgs, List2) -> List1

Parallell evaluation of mapping a function over a list.

safe_multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}

Interact with the servers on a number of nodes (deprecated).

sbcast(Name, Msg) -> {GoodNodes, BadNodes}

Broadcast a message synchronously to a registered process on all nodes.

sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}
Broadcast a message synchronously to a registered process on specific
nodes.

server_call(Node, Name, ReplyWrapper, Msg) -> Reply | {error, Reason}

Interact with a server on a node.

yield(Key) -> Res | {badrpc, Reason}

Deliver the result of evaluating a function call on a node (blocking).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=493

MODULE: SEQ_TRACE 494

F.52 Module: seq_trace

Sequential tracing of messages.

get_system_tracer() -> Tracer

Return thepid()orport()of the current system tracer.

get_token() -> TraceToken

Return the value of the trace token.

get_token(Component) -> {Component, Val}

Return the value of a trace token component.

print(TraceInfo) -> void()

Put the Erlang termTraceInfointo the sequential trace output.

print(Label, TraceInfo) -> void()
Put the Erlang termTraceInfointo the sequential trace output.

reset_trace() -> void()
Stop all sequential tracing on the local node.

set_system_tracer(Tracer) -> OldTracer

Set the system tracer.

set_token(Token) -> PreviousToken

Set the trace token.

set_token(Component, Val) -> {Component, OldVal}

Set a component of the trace token.

F.53 Module: sets

Functions for set manipulation.

add_element(Element, Set1) -> Set2

Add an element to aSet.

del_element(Element, Set1) -> Set2

Remove an element from aSet.

filter(Pred, Set1) -> Set2

Filter set elements.

fold(Function, Acc0, Set) -> Acc1

Fold over set elements.

from_list(List) -> Set

Convert a list into aSet.

intersection(SetList) -> Set

Return the intersection of a list ofSets.

intersection(Set1, Set2) -> Set3

Return the intersection of two Sets.

is_element(Element, Set) -> bool()

Test for membership of aSet.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=494

MODULE: SHELL 495

is_set(Set) -> bool()

Test for aSet.

is_subset(Set1, Set2) -> bool()

Test for subset.

new() -> Set

Return an empty set.

size(Set) -> int()

Return the number of elements in a set.

subtract(Set1, Set2) -> Set3

Return the difference of two Sets.

to_list(Set) -> List

Convert aSetinto a list.

union(SetList) -> Set

Return the union of a list of Sets.

union(Set1, Set2) -> Set3

Return the union of two Sets.

F.54 Module: shell

The Erlang shell.

history(N) -> integer()

Sets the number of previous commands to keep.

results(N) -> integer()

Sets the number of previous commands to keep.

start_restricted(Module) -> ok

Exits a normal shell and starts a restricted shell.

stop_restricted() -> ok

Exits a restricted shell and starts a normal shell.

F.55 Module: slave

Functions to starting and controlling slave nodes.

pseudo([Master | ServerList]) -> ok

Start a number of pseudoservers.

pseudo(Master, ServerList) -> ok

Start a number of pseudoservers.

relay(Pid)

Run a pseudoserver.

start(Host, Name, Args) -> {ok, Node} | {error, Reason}

Start a slave node on a host.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=495

MODULE: SOFS 496

start_link(Host, Name, Args) -> {ok, Node} | {error, Reason}

Start and link to a slave node on a host.

stop(Node) -> ok

Stop (kill) a node.

F.56 Module: sofs

Functions for manipulating sets of sets.

a_function(Tuples [, Type]) -> Function

Create a function.

canonical_relation(SetOfSets) -> BinRel

Return the canonical map.

composite(Function1, Function2) -> Function3

Return the composite of two functions.

constant_function(Set, AnySet) -> Function

Create the function that maps each element of a set onto another set.

converse(BinRel1) -> BinRel2

Return the converse of a binary relation.

difference(Set1, Set2) -> Set3

Return the difference of two sets.

digraph_to_family(Graph [, Type]) -> Family

Create a family from a directed graph.

domain(BinRel) -> Set

Return the domain of a binary relation.

drestriction(BinRel1, Set) -> BinRel2

Return a restriction of a binary relation.

drestriction(SetFun, Set1, Set2) -> Set3

Return a restriction of a relation.

empty_set() -> Set

Return the untyped empty set.

extension(BinRel1, Set, AnySet) -> BinRel2

Extend the domain of a binary relation.

family(Tuples [, Type]) -> Family

Create a family of subsets.

family_difference(Family1, Family2) -> Family3

Return the difference of two families.

family_domain(Family1) -> Family2

Return a family of domains.

family_field(Family1) -> Family2

Return a family of fields.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=496

MODULE: SOFS 497

family_intersection(Family1) -> Family2

Return the intersection of a family of sets of sets.

family_intersection(Family1, Family2) -> Family3

Return the intersection of two families.

family_projection(SetFun, Family1) -> Family2

Return a family of modified subsets.

family_range(Family1) -> Family2

Return a family of ranges.

family_specification(Fun, Family1) -> Family2

Select a subset of a family using a predicate.

family_to_digraph(Family [, GraphType]) -> Graph

Create a directed graph from a family.

family_to_relation(Family) -> BinRel

Create a binary relation from a family.

family_union(Family1) -> Family2

Return the union of a family of sets of sets.

family_union(Family1, Family2) -> Family3

Return the union of two families.

field(BinRel) -> Set

Return the field of a binary relation.

from_external(ExternalSet, Type) -> AnySet

Create a set.

from_sets(ListOfSets) -> Set

Create a set out of a list of sets.

from_sets(TupleOfSets) -> Ordset

Create an ordered set out of a tuple of sets.

from_term(Term [, Type]) -> AnySet

Create a set.

image(BinRel, Set1) -> Set2

Return the image of a set under a binary relation.

intersection(SetOfSets) -> Set

Return the intersection of a set of sets.

intersection(Set1, Set2) -> Set3

Return the intersection of two sets.

intersection_of_family(Family) -> Set

Return the intersection of a family.

inverse(Function1) -> Function2

Return the inverse of a function.

inverse_image(BinRel, Set1) -> Set2

Return the inverse image of a set under a binary relation.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=497

MODULE: SOFS 498

is_a_function(BinRel) -> Bool

Test for a function.

is_disjoint(Set1, Set2) -> Bool

Test for disjoint sets.

is_empty_set(AnySet) -> Bool

Test for an empty set.

is_equal(AnySet1, AnySet2) -> Bool

Test two sets for equality.

is_set(AnySet) -> Bool

Test for an unordered set.

is_sofs_set(Term) -> Bool

Test for an unordered set.

is_subset(Set1, Set2) -> Bool

Test two sets for subset.

is_type(Term) -> Bool

Test for a type.

join(Relation1, I, Relation2, J) -> Relation3

Return the join of two relations.

multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2
Return the multiple relative product of a tuple of binary relations and a
relation.

no_elements(ASet) -> NoElements

Return the number of elements of a set.

partition(SetOfSets) -> Partition

Return the coarsest partition given a set of sets.

partition(SetFun, Set) -> Partition

Return a partition of a set.

partition(SetFun, Set1, Set2) -> {Set3, Set4}

Return a partition of a set.

partition_family(SetFun, Set) -> Family

Return a family indexing a partition.

product(TupleOfSets) -> Relation

Return the Cartesian product of a tuple of sets.

product(Set1, Set2) -> BinRel

Return the Cartesian product of two sets.

projection(SetFun, Set1) -> Set2

Return a set of substituted elements.

range(BinRel) -> Set

Return the range of a binary relation.

relation(Tuples [, Type]) -> Relation

Create a relation.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=498

MODULE: SOFS 499

relation_to_family(BinRel) -> Family

Create a family from a binary relation.

relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2
Return the relative product of a tuple of binary relations and a binary
relation.

relative_product(BinRel1, BinRel2) -> BinRel3

Return the relative product of two binary relations.

relative_product1(BinRel1, BinRel2) -> BinRel3

Return the relative_product of two binary relations.

restriction(BinRel1, Set) -> BinRel2

Return a restriction of a binary relation.

restriction(SetFun, Set1, Set2) -> Set3

Return a restriction of a set.

set(Terms [, Type]) -> Set

Create a set of atoms or any type of sets.

specification(Fun, Set1) -> Set2

Select a subset using a predicate.

strict_relation(BinRel1) -> BinRel2
Return the strict relation corresponding to a given relation.

substitution(SetFun, Set1) -> Set2

Return a function with a given set as domain.

symdiff(Set1, Set2) -> Set3

Return the symmetric difference of two sets.

symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}

Return a partition of two sets.

to_external(AnySet) -> ExternalSet

Return the elements of a set.

to_sets(ASet) -> Sets

Return a list or a tuple of the elements of set.

type(AnySet) -> Type

Return the type of a set.

union(SetOfSets) -> Set

Return the union of a set of sets.

union(Set1, Set2) -> Set3

Return the union of two sets.

union_of_family(Family) -> Set

Return the union of a family.

weak_relation(BinRel1) -> BinRel2

Return the weak relation corresponding to a given relation.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=499

MODULE: STRING 500

F.57 Module: string

String-processing functions.

centre(String, Number, Character) -> Centered
Center a string.

chars(Character, Number, Tail) -> String

Return a string consisting of numbers of characters.

concat(String1, String2) -> String3
Concatenate two strings.

copies(String, Number) -> Copies

Copy a string.

cspan(String, Chars) -> Length

Span characters at start of string.

equal(String1, String2) -> bool()
Test string equality.

left(String, Number, Character) -> Left

Adjust left end of string.

len(String) -> Length

Return the length of a string.

rchr(String, Character) -> Index

Return the index of the first/last occurrence ofCharacterinString.

right(String, Number, Character) -> Right

Adjust right end of string.

rstr(String, SubString) -> Index

Find the index of a substring.

strip(String, Direction, Character) -> Stripped
Strip leading or trailing characters.

sub_string(String, Start, Stop) -> SubString

Extract a substring.

sub_word(String, Number, Character) -> Word

Extract subword.

substr(String, Start, Length) -> Substring

Return a substring of String.

to_float(String) -> {Float,Rest} | {error,Reason}
Return a float whose text representation is the integers (ASCII values) in
String.

to_integer(String) -> {Int,Rest} | {error,Reason}
Return an integer whose text representation is the integers (ASCII values)
in String.

to_upper(Char) -> CharResult

Convert case of string (ISO/IEC 8859-1).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=500

MODULE: SUPERVISOR 501

tokens(String, SeparatorList) -> Tokens
Split string into tokens.

words(String, Character) -> Count

Count blank separated words.

F.58 Module: supervisor

Generic supervisor behavior.

Module:init(Args) -> Result

Return a supervisor specification.

check_childspecs([ChildSpec]) -> Result

Check whether child specifications are syntactically correct.

delete_child(SupRef, Id) -> Result

Delete a child specification from a supervisor.

restart_child(SupRef, Id) -> Result

Restart a terminated child process belonging to a supervisor.

start_child(SupRef, ChildSpec) -> Result

Dynamically add a child process to a supervisor.

start_link(SupName, Module, Args) -> Result

Create a supervisor process.

terminate_child(SupRef, Id) -> Result
Terminate a child process belonging to a supervisor.

which_children(SupRef) -> [{Id,Child,Type,Modules}]
Return information about all children specifications and child processes
belonging to a supervisor.

F.59 Module: sys

A functional interface to system messages.

Mod:system_code_change(Misc, Module, OldVsn, Extra) -> {ok, NMisc}

Called when the process should perform a code change.

Mod:system_continue(Parent, Debug, Misc)

Called when the process should continue its execution.

Mod:system_terminate(Reason, Parent, Debug, Misc)

Called when the process should terminate.

change_code(Name, Module, OldVsn, Extra, Timeout) -> ok | {error, Reason}

Send the code change system message to the process.

debug_options(Options) -> [dbg_opt()]

Convert a list of options to a debug structure.

get_debug(Item,Debug,Default) -> term()

Get the data associated with a debug option.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=501

MODULE: TIMER 502

get_status(Name,Timeout) -> {status, Pid, {module, Mod}, [PDict, SysState, Parent, Dbg,

Misc]}

Get the status of the process.

handle_debug([dbg_opt()],FormFunc,Extra,Event) -> [dbg_opt()]

Generate a system event.

handle_system_msg(Msg,From,Parent,Module,Debug,Misc)

Take care of system messages.

install(Name,{Func,FuncState},Timeout)

Install a debug function in the process.

log(Name,Flag,Timeout) -> ok | {ok, [system_event()]}
Log system events in memory.

log_to_file(Name,Flag,Timeout) -> ok | {error, open_file}

Log system events to the specified file.

no_debug(Name,Timeout) -> void()

Turn off debugging.

print_log(Debug) -> void()

Print the logged events in the debug structure.

remove(Name,Func,Timeout) -> void()

Remove a debug function from the process.

resume(Name,Timeout) -> void()

Resume a suspended process.

statistics(Name,Flag,Timeout) -> ok | {ok, Statistics}

Enable or disable the collections of statistics.

suspend(Name,Timeout) -> void()

Suspend the process.

trace(Name,Flag,Timeout) -> void()

Print all system events on standard_io.

F.60 Module: timer

Timer functions.

apply_after(Time, Module, Function, Arguments) -> {ok, Tref} | {error, Reason}

ApplyModule:Function(Arguments)after a specifiedTime.

apply_interval(Time, Module, Function, Arguments) -> {ok, TRef} | {error, Reason}

EvaluateModule:Function(Arguments)repeatedly at intervals ofTime.

cancel(TRef) -> {ok, cancel} | {error, Reason}

Cancel a previously requested timeout identified byTRef.

hms(Hours, Minutes, Seconds) -> Milliseconds

Convert Hours + Minutes + Seconds to Milliseconds.

hours(Hours) -> Milliseconds

Convert Hours to Milliseconds.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=502

MODULE: WIN32REG 503

kill_after(Time) -> {ok, TRef} | {error,Reason2}

Send an exit signal with Reason after a specifiedTime.

minutes(Minutes) -> Milliseconds

Converts Minutes to Milliseconds.

now_diff(T2, T1) -> Tdiff

Calculate time difference between now/0 timestamps.

seconds(Seconds) -> Milliseconds

Convert Seconds to Milliseconds.

send_after(Time, Message) -> {ok, TRef} | {error,Reason}

SendMessageto the PID after a specifiedTime.

send_interval(Time, Message) -> {ok, TRef} | {error, Reason}

Send Message repeatedly at intervals ofTime.

sleep(Time) -> ok

Suspend the calling process forTimeamount of milliseconds.

start() -> ok

Start a global timer server (namedtimer_server).

tc(Module, Function, Arguments) -> {Time, Value}

Measure the real time it takes to evaluate apply(Module, Function, Arguments).

F.61 Module: win32reg

Provides access to the registry on Windows.

change_key(RegHandle, Key) -> ReturnValue

Move to a key in the registry.

change_key_create(RegHandle, Key) -> ReturnValue

Move to a key, and create it if it is not there.

close(RegHandle)-> ReturnValue

Close the registry.

current_key(RegHandle) -> ReturnValue

Return the path to the current key.

delete_key(RegHandle) -> ReturnValue

Delete the current key.

delete_value(RegHandle, Name) -> ReturnValue

Delete the named value on the current key.

expand(String) -> ExpandedString
Expand a string with environment variables.

format_error(ErrorId) -> ErrorString
Convert an POSIX error code to a string.

open(OpenModeList)-> ReturnValue

Open the registry for reading or writing.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=503

MODULE: ZIP 504

set_value(RegHandle, Name, Value) -> ReturnValue

Set value at the current registry key with specified name.

sub_keys(RegHandle) -> ReturnValue

Get subkeys to the current key.

value(RegHandle, Name) -> ReturnValue

Get the named value on the current key.

values(RegHandle) -> ReturnValue

Get all values on the current key.

F.62 Module: zip

Utility for reading and creating ZIP archives.

create(Name, FileList, Options) -> RetValue

Create a ZIP archive with options.

extract(Archive, Options) -> RetValue

Extract files from a ZIP archive.

t(Archive)

Print the name of each file in a ZIP archive.

table(Archive, Options)

Retrieve the name of all files in a ZIP archive.

tt(Archive)

Print name and information for each file in a ZIP archive.

zip_close(ZipHandle) -> ok | {error, einval}

Close an open archive.

zip_get(FileName, ZipHandle) -> {ok, Result} | {error, Reason}

Extract files from an open archive.

zip_list_dir(ZipHandle) -> Result | {error, Reason}

Return a table of files in open ZIP archive.

zip_open(Archive, Options) -> {ok, ZipHandle} | {error, Reason}

Open an archive and return a handle to it.

F.63 Module: zlib

Zlib compression interface.

adler32(Z, Binary) -> Checksum

Calculate the adler checksum.

adler32(Z, PrevAdler, Binary) -> Checksum

Calculate the adler checksum.

close(Z) -> ok

Close a stream.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=504

MODULE: ZLIB 505

compress(Binary) -> Compressed

Compress a binary with standard zlib functionality.

crc32(Z) -> CRC

Get current CRC.

crc32(Z, Binary) -> CRC

Calculate CRC.

crc32(Z, PrevCRC, Binary) -> CRC

Calculate CRC.

deflate(Z, Data) -> Compressed

Compress data.

deflate(Z, Data, Flush) ->

Compress data.

deflateEnd(Z) -> ok

End deflate session.

deflateInit(Z) -> ok

Initialize a session for compression.

deflateInit(Z, Level) -> ok

Initialize a session for compression.

deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok

Initialize a session for compression.

deflateParams(Z, Level, Strategy) -> ok

Dynamicly update deflate parameters.

deflateReset(Z) -> ok

Reset the deflate session.

deflateSetDictionary(Z, Dictionary) -> Adler32

Initialize the compression dictionary.

getBufSize(Z) -> Size

Get buffer size.

gunzip(Bin) -> Decompressed

Uncompress a binary with gz header.

gzip(Data) -> Compressed
Compress a binary with gz header.

inflate(Z, Data) -> DeCompressed

Decompress data.

inflateEnd(Z) -> ok

End inflate session.

inflateInit(Z) -> ok

Initialize a session for decompression.

inflateInit(Z, WindowBits) -> ok

Initialize a session for decompression.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=505

MODULE: ZLIB 506

inflateReset(Z) -> ok

>Reset the inflate session.

inflateSetDictionary(Z, Dictionary) -> ok

Initialize the decompression dictionary.

open() -> Z

Open a stream and return a stream reference.

setBufSize(Z, Size) -> ok

Set buffer size.

uncompress(Binary) -> Decompressed

Uncompress a binary with standard zlib functionality.

unzip(Binary) -> Decompressed

Uncompress a binary without the zlib headers.

zip(Binary) -> Compressed

Compress a binary without the zlib headers.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=506

Index
Symbols
++ operator, 108

– operator, 108

-> arrow, 106

= operator, 29, 36

=:= operators, 115

== operators, 115

$ syntax, 112

% character, 104

%% characters, 104

~ character, 235

A
Accumulators, 74–75

Active message reception (nonblocking),

256–257

Active mode, 256

Active once mode, 256

after keyword, 79

Alarm handler (OTP), 346–348

Algebra vs. single assignment variables,

28

Anagrams, 64

Analysis tools, 419–422

Anonymous functions, see Funs

Application monitor (OTP), 361, 362f

apply, 99

appmon:start, 361

area, 44, 46

Area server, 350

Arithmetic expressions

evaluating, 25

every possible, 65f

and guard expressions, 66

sequential programming and, 64

Arity, 52

Atoms

and guard expression, 66

infinity, 152

introduction to, 33–34

and tuples, 35

Attributes, 99–103

arguments for, 102

module, predefined, 99

user-defined, 101

Autocompiling with makefiles, 127–130

B
Bags, 275, 276

Base K integers, 111

become, 299

begin ... end block, 103

BIFs, 87

apply, 99

for binary manipulation, 88–89

defined, 86

for distributed programs, 183–184

and guard expressions, 66

for process dictionary, 113

for registered processes, 154

and tracing, 431, 435

Binaries, 87–89

and BIF manipulation, 88–89

bits and bytes, 90

defined, 86

punctuation, 87

storage of, 277

truncated, 247

Binary distributions, 21

Binary functions, 104

binary_to_term, 92, 225, 250, 252

Bit syntax, 89–98

16-bit color example, 90

advanced examples, 92–98

defined, 86

expressions, 90–92

finding synchronization frame in

MPEG data, 92–95

BLACKBOARDS 508 CONVENTIONAL SYNTAX

unpacking COFF data, 96–97

and unpacking header in IPv4

datagram, 97

Blackboards, 278

Block expressions, 103

Blogs (Erlang), 401

Bogdan’s Erlang Abstract Machine, see

Beam

Boolean expressions, 66, 103

Booleans, 103, 104

Bottlenecks, sequential, 371

Bound variables, 29

Bugs

catching, 420

reporting, 21

and stack trace, 85

and variables, 31

Built in Function, see BIFs

C
case, 72–73, 78, 84

catch, 81

Catching exceptions, 77

CEAN, 23

Character set, 104

Chat program, see IRC lite application

chat_server, 200

Clauses and functions, 46

clean, 129

Client, 144

Client-server application, 144–148

Clock example, 155

Code

coverage analysis, 419, 420

locating, 47

missing (undefined), 131

search paths for loading, 119–121

Command prompt, 123

Command-line arguments, 125

Commas, 51

Comments, 104

Compiler diagnostics, 423

Compiling and running programs,

118–136

command editing in Erlang shell,

130

from command prompt, 123

command-line arguments, 125

crash dump, 136

different ways of, 122–127

in Erlang shell, 122

escript, 124

exporting functions, 125

help, 134–135

makefiles, autocompiling, 127–130

modifying development environment,

119–121

problem solving, 131–134

quick scripting, 123

starting/stopping shell, 118–119

stopping shell, 131

Concurrency, 137–140

and dying messages, 139

granularity, 373

importance of, 13

and interactions, 138

and programming, 137

side effects, avoiding, 369

Concurrency-oriented programming

(COP)

defined, 20

and multicore systems, 365–366

Concurrent Programming in Erlang

(Armstrong and Virding), 400

Concurrent programming, 141–158

client server architecture, 144–148

errors, 159–174

details of, 162–169

keep-alive process, 173

linking processes, 159f, 159–160

monitors, 172

on-exit handler, 160–162

primitives, 170–171

remote handling of, 162

sets of linked processes, 172f, 172

example (as process), 143–144

exercises, 158

overview, 141, 158

primitives for, 142

receive with a timeout, 150–153

recursion, 156–157

registered processes, 154–155

selective receive, 153–154

spawning with MFAs, 157–158

time involved in, 148–150

writing (starting), 156

Conferences for Erlang, 401

Connected process, 212

Connectionless protocol, see UDP

Control flow, macros, 109

Ctrl+G, 133, 134

Conventional syntax, 111

COOKIE PROTECTION SYSTEM 509 EBIN DIRECTORY

Cookie protection system, 186–187

Cookies, 181, 183

COP, see Concurrency-oriented

programming

Copying files, 241

cprof, 421

Crash dump, 136

Crash reports, 342

create_table, 326

Cross-references, 421

D
Database management system (DBMS),

313–330

adding and removing data, 317–318

creating initial database, 328–329

creating Mnesia tables, 326–327

Mnesia table attributes, 327–328

Mnesia table types and location,

325–326

Mnesia transactions, 319–323

do () function, 323

aborting, 320

loading test data, 322

Mnesia’s table viewer, 329, 330f

queries to, 313–317

conditionally selecting table data,

316

joins, 317

projecting data from table, 316

selecting all table data, 315–316

shop and cost tables, 314

storing complex data in tables,

323–324

dbg, 435

Dean, Jeffrey, 379

Debugging, 422–431

and compiler diagnostics, 423

dumping to a file, 428

error logger, 429

and head mismatch, 423

io:format, 427

reference manuals for, 431

and runtime diagnostics, 425

and shadowed variables, 425

stack trace, 426

starting the Erlang debugger, 429

Table viewer initial screen, 430f

and unbound variables, 423

and unsafe variables, 424

and unterminated strings, 424

Decimal points, 33

Decoding, 250, 252

Deleting files, 241

Demarshaling, see Decoding

DETS (disk Erlang term storage)

closing files, 284

code listings for, 287

converting index to filename, 286

efficiency with multicore CPUs, 370

filename index example, 284–287

introduction to, 273–274

and inverted index example, 384

manual for, 287

and Mnesia, 287

operations on tables, 274

sharing properties, 284

support for operations, 287

table types, 275–276

Development environment, modifying,

119–121

Dialyzer, 395

Directory operations, 239

Disk tables, 325

Distributed Erlang, 176

Distributed hash structures, 372

Distributed programming, 175–190

BIFs for, 183–184

cookie protection system, 186–187

libraries for, 185–186

models of, 176

name server application example,

177–182

primitives, 182–185

reasons for, 175

socket based, 187–190

work sequence for, 177

do() function, 323

Documentation, 399

Documenting your program (types),

390–395

definitions in APIs, 394

input/output of a function, 392–394

notation, 390–392

tools for, 394–395

Dollar syntax, 40

Duplicate bags, 275, 276

Dynamic code loading, 435–438

E
E messages, 336

ebin directory, 230

EDOC 510 ERRORS

EDoc, 394

edoc module, 395

Efficiency with multicore CPUs,

368–372

distributed computing, 371

processes, 369

sequential bottlenecks, 371

shared ets/dets tables, 370

side effects, avoiding, 369

Emacs installation, 397

Encoding, 250, 252

epmd, 182

epp, 105

eprof, 421

Erl interface (ei), 225

Erlang

application documentation, 399

arithmetic examples, 25–27

atoms, 33–34

benefits of, 12

binary distributions, 21

blogs, 401

bugs, reporting, 21

building from source, 22

and CEAN, 23

character set, 104

and concurrency-oriented

programming, 20

conferences, 401

documentation, 399

examples to download, 23n

FAQs, 399

floating-point numbers, 32–33

forums, 401

4.7 specifications, 400

home directory, 121

installation, 21

link collections, 400

lists, 38–39

literature on, 400

manuals, 135, 399

and mnesia, 20

and networked application, 20

and nonmutable states, 32

parser generator(yecc), 129

pattern matching, 29–30, 41–42

periods in, 24, 26

projects, 401

punctuation, 51

and shared memory, 138

stages of mastery, 18

starting the shell, 24

strengths of, 19

strings, 40–41

style guide, 399

terms, 41

tuples, 35–38

variables, 27–32

where’s my code, 47

Erlang IDL Compiler (ic), 225

Erlang Port Mapper Daemon, 182

Erlang Programmation (Rémond,

Mickaël), 400

erlang:error(Why), 78

erlang:get_stacktrace(), 84

erlang:halt(), 119

Erlounges, 401

Error handling, see Exceptions; Errors

Error logger (OTP), 339–346

API to, 340

configuring, 341–344

log file and shell, 343

production environment, 344

rotating log and shell output, 343

sasl without configuration, 341

standard, 341

what gets logged, 342

error analysis, 345–346

rotating log, 341

Errors

badarity, 53

codes for files, 242

common, 58

concurrent programming, 159–174

details of, 162–169

keep-alive process, 173

linking processes, 159f, 159–160

monitors, 172

on_exit handler, 160–162

primitives, 170–171

remote handing of, 162

sets of linked processes, 172f, 172

and crash dump file, 136

detection of, 139

and the Dialyzer, 395

function_clause, 50n

and linked-in drivers, 222

log (online), 136

missing modules, 133

and pattern matching, 46

shell not responding, 133

and sockets, 259–260

ESCAPE SEQUENCES 511 GEN_SERVER

undef, 131

see also Error logger (OTP)

Escape sequences, 105, 106f

Escript, 124

ETS (Erlang term storage)

as blackboard, 278

building tables, 281

code listings for, 287

creating a table, 277–278

efficiency with multicore CPUs, 370

and garbage collection, 277

introduction to, 273–274

manual for, 287

and Mnesia, 287

operations on tables, 274

overview, 279

properties and efficiency, 276–277

protected tables, 278

support for operations, 287

table types, 275–276

time (speed) involved, 281–284

trigram example programs, 279–284

trigram iterator, 280

ets:delete, 277

ets:new, 277

event messages, 336

Event handler, 337

see also Generic event handling

Exceptions, 76–85

catch, 81

catching, 77

catching all, 83

cost example, 76–77

error messages, improving, 82

new vs. old style of, 84

raising, 77

stack traces, 84–85

try...catch, 78–81

try...catch programming with, 82–83

Exit signals, 165

Exit signals and links, 159f, 160

exit(Why), 77

Exporting functions, 49, 125

Expression sequences, 106

F
f(), 42

FAQs, 399

Fault-tolerant systems, 171, 175

file module, 226

file:read_file(File), 231

filelib module, 227, 241, 242

filename module, 227, 242

Files, including, 107

Files, programming with, 226–243

copying and deleting, 241

and directory operations, 239

error codes, 242

file modes, 241

file operations, 228f

filename module, 242

find utility example, 242–243

finding information about, 240–241

library organization, 226–227

modification times, groups,

symlinks, 242

reading, 227–234

all terms, 229

into a binary, 231

lines, one at a time, 231

with random access, 231–234

terms one at a time, 229–230

writing, 235–239

lines, 236

list of terms, 235–236

in one operation, 237–238

random access, 239

Filters, defined, 62

Find utility, 242–243

Floating-point numbers, 32–33

Floats, 112

flush_buffer, 151

Formatting commands, 235, 236

Forums (Erlang), 401

fprof, 421

Fragmented tables, 325

Function references, 106–107

Functional Programming, 12

Functions

see also Exceptions

Funs, 52–57

as arguments, 54

arguments for, 53

and clauses, 53

defining control abstractions, 56

and higher-order functions, 54, 57

G
gen_event, 346

gen_server, 292, 301–305

callback module name, 301

callback routines, 302

GENERATORS 512 JOB CONTROL LANGUAGE (JCL)

callback structure, 305–308

calls and casts, 307

interface routines, 302

spontaneous messages to server, 307

template, 309

Generators, defined, 62

Generic event handling, 336–339

callback module for, 338

creating an error in, 338

and late binding, 339

program for, 337

Generic servers, 292–301

basic, 292–294

become, 299–300

hot code swapping, 295–297

with transactions, 294–295

transactions and hot code swapping,

298

Ghemewat, Sanjay, 379

global, 185

Guards, 65–68

built-in functions, 69f

in DETS filename application, 287

examples, 67

obsolete functions, 68

predicates, 68f

sequences, 66

true, 68

H
Hausman, Bogumil (Bogdan), 44n

Head mismatch, 423

Head, of list, 38, 39

Hello world program, 122

command-line arguments, 125

in Erlang shell, 122

escript, 124

quick scripting, 123

Help, 134–135

help(), 135

Higher-order functions, 54, 57

Home directory, 121

Horizontal positioning, 325

Hot code swapping, 295–298

Hybrid approach (partial blocking), 258

I
ID3 tags, 232, 233

Idioms for trapping exits, 164

Idioms, programming with try...catch, 80

if, 73

Include files, 107

init:stop(), 359

Installing Erlang, 21

Integer arithmetic, 26

Integers, 111–112, 220

Interfacing techniques, 212–225

interfacing with external C program,

214–220

C side, 215–217

Erlang side, 217–219

makefile, 219

protocol, 214

running, 219

libraries for, 225

linked-in drivers, 221–224

open_port, 220–221

port communication, 212f

ports, creating, 213–214

Inverted index, 383

IO lists, 237

io:format debugging, 427

io module, 227

IPv4 (Internet Protocol) datagram,

unpacking, 97

IRC lite application, 191–211

client-side software (chat client),

196–199

components of, 192

exercises, 211

how it works, 202

io widget, 194f

message sequence diagrams, 193f,

193–194

process overview, 192f, 191–193

running it, 203

screen dump, 204f

server-side software (chat controller),

199–200

server-side software (chat server),

200–201

server-side software (group

manager), 202–203

source code for, 203–211

user interface, 194f, 194–195

is_word, 283

J
JCL (Job Control Language), 134

Jinteface, 225

Job Control Language (JCL), 134

KEEP-ALIVE PROCESSES 513 MNESIA

K
Keep-alive processes, 173

keep_alive, 173

Kemp, Eric, 232

Key, 275

Key-value lookup tables, 273

Key-value server, 178

kill, 163

L
Late binding, 339

lib_chan, 199, 200, 403, 406

lib_chan module, 187–188

lib_chan_auth, 409

lib_chan_cs, 408

Libraries

interfacing, 225

linked-in drivers, 221

for MatchSpec, 432n

organization of, 226–227

rpc module, 179

for sockets, programming with, 245

and tracing, 434

trigrams, 279

Libraries (distributed programming),

185–186

Link collections, 400

Linked-in drivers, 20, 221–224

Linking processes, 159f, 159–160

Links, 162

Linux, Erlang installation, 22

List operators, 108

List-at-a-time operations, 55

Lists, 38–39

building in natural order, 73–74

components of, 38

comprehensions, 61–64

defining, 39

empty, 51

extracting elements from, 39

IO, 237

operators, 108

processing of, 58–60

reversing, 74, 75

splitting with accumulators, 74

Load path, manipulating, 120

loop(), 157

M
Mac OS X

Erlang installation, 22

starting/stopping shell, 118

Macros, 108–110

Magic cookies, 186

Mailboxes, 153

Makefiles

autocompiling, 127–130

problems with, 132

targets, 129

template, 128, 130

“Making Reliable Systems in the

Presence of Software Errors”

(Armstrong), 400

Manuals, 135

map, 58, 59, 62

map/2, 59

mapreduce, 379–388

full-text indexing, 383–384

improvements to make, 387

indexer operation, 385–386

introduced, 367

running indexer, 386

and word map, 379

Marshaling, see Coding

Match operator, 110–111

Message passing concurrency, 365

Message sequence diagrams (MSDs),

193f, 193–194

Middle-man, see IRC lite application

MinGW (Minimalist GNU for Windows),

396

Mnesia, 313–330

adding and removing data, 317–318

backup and recovery, 330

creating initial database, 328–329

creating tables, 326–327

database queries, 313–317

conditionally selecting table data,

316

joins, 317

projecting data from table, 316

selecting all table data, 315–316

shop and cost tables, 314

dirty operations, 330

ETS and DETS and, 287

fragmented tables, 325

history of, 20

listings, 330

manual for, 399

naming of, 322

pessimistic locking, 319

primary keys, 318

MOD_NAME_SERVER 514 OTP (OPEN TELECOM PLATFORM)

records definitions, 314

SNMP tables, 330

storing complex data in tables,

323–324

table attributes, 327–328

table types and location, 325–326

table viewer, 329, 330f

transactions, 319–323

do () function, 323

aborting, 320

loading test data, 322

user’s guide to, 330

mod_name_server, 189

Modules, 44–48

approach to writing, 60

and area function, 44

attributes, 99

compiling, 45

for creating own commands, 135

and epp, 105

exporting from, 49

for file manipulation, 226

five most common, 19

lib_chan, 406

and pattern matching, 44

troubleshooting, 132

Monitors, 172

MP3 ID3 tags, 232, 233

ms_transform, 435

MSDs, see Message sequence diagrams

MSYS, 397

MSYS Developer Toolkit, 397

Multicore CPUs, 367–388

and concurrency-oriented

programming, 365–366

efficiency of programs, 368–372

distributed computing, 371

processes, 369

sequential bottlenecks, 371

shared ets or dets tables, 370

side effects, avoiding, 369

future of, 368

mapreduce and indexing, 379–388

full-text indexing, 383–384

improvements, 387

indexer code, 387–388

indexer operation, 385–386

running indexer, 386

measurements, 375–378, 379f

SMP Erlang, 376–378

parallelizing sequential code,

372–375

abstractions needed for, 374

granularity, 373

pmap, 373

Mutable states, 32, 366

Mutschler, Michael, 233

N
Name server, 177–182

client-server nodes, 179

different hosts on Internet, 182

role of, 177

running on different machines,

180–182

steps of creating, 177

Naming conventions

for atoms, 34

for commands file, 121

functions and arity, 52

and funs, 52

for -name parameter, 181

system modules, 58

table names in DETS, 286

for variables, 27

nano_get_url, 247

Nodes

connecting, 182

and cookies, 181

cookies for, 183

introduced, 176

and remote spawning, 185

running client and server on

different machines, 180–182

on same computer, 179

none90, 391

O
on_exit, 173

on_exit handler, 160–162

Open Telecom Platform, see OTP

open_port, 220

Operator precedence, 112, 113f

Ordered sets, 275, 276

OTP (open telecom platform), 291–312

code and templates, 309–312

gen_server, 301–305

gen_server callback structure,

305–308

generic servers, 292–301

basic, 292–294

OTP (OPEN TELECOM PLATFORM) SYSTEM 515 Q()

become, 299–300

hot code swapping, 295–297

transactions and, 294–295

transactions and hot code

swapping, 298

OTP (open telecom platform) system,

335–363

alarm handler, 346–348

application, 358–360

application monitor, 361, 362n

application servers, 348–350

code for prime number generation,

363

error logger, 339–346

API to, 340

configuring, 341–344

error analysis, 345–346

file system organization, 360–361

files for behaviors, 363

generic event handling, 336–339

overview of, 335–336

starting the system, 354–357

supervision tree, 351f, 351–354

P
+P flag, 150

Packet sniffer, 249

Packets, 250

Parallel server, 253, 254

Parallelizing sequential code, 372–375

Parser generator (yecc), 129

Passive message reception (blocking),

257

Passive mode, 256

Pattern matching, 29–30, 41–42

Erlang vs. C and Java, 48

errors, 37

extracting values from a tuple, 36

guard sequences, 66

and guards, 65–68

match operator, 110–111

record fields, extracting, 71

terms, 41

see also Bit syntax

Performance

and distributed applications, 175

on multicore CPUs, 367

table type, 275, 276

tuple key and, 285

Periods, 24, 26, 51

perms, 64

Persistent data, 274

Pessimistic locking, 319

phofs module, 381

PlanetLab, 300

pmap, 373–375

Port

communication, 212f

Ports

creating, 213–214

interfacing with external C program,

214–220

C side, 215–217

Erlang side, 217–219

makefile, 219

protocol, 214

running, 219

linked-in drivers, 221–224

open_port, 220–221

Primary key, 318

Prime number server, 348

Primitives

for concurrency, 142, 375

distribution, 182–185

error handling, 170–171

Process dictionary, 113–114

Processes

client-server application, 144–148

example of code, 143–144

exceeding maximum number of, 150

keep-alive, 173

linking, 159f, 159–160

mailboxes for, 153

overview, 141

receive with a timeout, 150–153

registered, 154–155

sets of linked, 172f, 172

time involved in creating, 148–150

Profiling tools, 421–422

Progress reports, 342

Punctuation

for binaries, 87

for comments, 104

formatting commands, 235

semicolons, 132

types of, 51

Pure message passing language, 141

pwd(), 47

Pythagorean triplets, 63

Q
q(), 119

QUICK SCRIPTING 516 SEQUENTIAL PROGRAMMING

Quick scripting, 123

quicksort, 62

Quote marks

and atoms, 34

and shell, 26

and strings, 40

R
Race conditions, 173

Raising an exception, 77

RAM tables, 325

rb module, 345

read_file_info, 240

Reading files, 227–234

all terms in, 229

into a binary, 231

lines, one at a time, 231

with random access, 231–234

terms one at a time, 229–230

receive, 150–154

Receive loop, 156

Receive with a timeout, 150–153

Records, 69–72

creating and updating, 70

extracting fields, 71

in modules vs. shell, 69

pattern matching in functions, 71

as tuples, 71

Recursion, 156–157

References, 114

Registered processes, 154, 371

Remote error handling, 162

Remote spawning, 184–185

Request, 144

Response, 144

RFCs (requests for comments), 249

Rotating log, 341

rpc function, 145

rpc module, 185

Runtime diagnostics, 425

Rémond, Mickaël, 401

S
Sadan, Yariv, 401

SASL (System Architecture Support

Libraries), 341

Scalability, 175

Scope, 29

Search paths for loading code, 120

Security

and cookies, 187

and running client and server on

Internet, 182

self(), 145, 198

Sellaprime company, see OTP (open

telecom platform) system

Semicolons, 51, 132

send, 153–154

Sequential bottlenecks, 371

Sequential code, parallelizing, 372–375

Sequential programming, 43–75

accumulators, 74–75

apply, 99

arithmetic expressions, 64, 65f, 65

attributes, 99–103

BIFs, 87

binaries, 87–89

bit syntax, 89–98

16-bit color example, 90

advanced examples, 92–98

expressions, 90–92

block expressions, 103

boolean expressions, 103

building lists in natural order, 73–74

case, 72–73

character set, 104

comments, 104

common errors, 58

epp, 105

escape sequences, 105, 106f

expression sequences, 106

function references, 106–107

functions with same name, different

arity, 52

funs, 52–57

guards, 68f, 65–68, 69f

if, 73

include files, 107

list comprehensions, 61–64

list operators (++, –), 108

list processing, 58–60

macros, 108–110

match operator in patterns, 110–111

modules, 44–48

numbers (floats), 112

numbers (integers), 111–112

operator precedence, 112, 113f

process dictionary, 113–114

records, 69–72

references, 114

shopping list example, 49–52

SEQUENTIAL SERVER 517 SUPERVISION TREE

short-circuit boolean expressions,

115

term comparisons, 115–116, 116f

underscore variables, 116–117

Sequential server, 253–254

Server, 144, 292–301

basic, 292–294

become, 299–300

callback, 293

hot code swapping, 295–297

transaction semantics, 297

with transactions, 294–295

transactions and hot code swapping,

298

Sets, 275, 276

sets module, 279

Shadowed variables, 425

Shared memory and mutable states, 32

Shared state concurrency, 365

Shell

arithmetic examples, 25–27

benefits of, 25

built-in commands, 135

command editing in, 130

and command numbers, 24, 26

multiple, starting and stopping, 26

not responding, 26, 133

pattern expressions, 42

starting, 24

starting/stopping, 118–119

stopping, 131

what can’t be typed in, 25

Windows installation, 397

Short-circuit boolean expressions

described, 115

and guard expressions, 66, 67

SHOUTcast server, 265–272

how it works, 266

protocol, 265

pseudo code for, 266–268

running, 271–272

Shutdown, 119

Single assignment variables, 28, 29–31

Size variable, 91

SMP Erlang, 376–378, 379f

Socket-based distribution, 176,

187–190

Sockets, 245–272

broadcasting to multiple machines,

263–264

and connection origins, 258

control issues, 256–258

active message reception, 256–257

hybrid approach (partial blocking),

258

passive message reception, 257

definition of, 245

error handling, 259–260

lib_chan application, 403–409, 409

access server over network, 405

challenge/response

authentication, 409

client server communication, 408

code for server, 404

configuration file, 404

middle man, 407

start server, 405

structure, 406

lib_chan code, 409

lib_chan application

middle-man, 407f

libraries for, 245

listening, 251

modes, 256

and parallel server, 254

and sequential server, 254

SHOUTcast server, 265–272

how it works, 266

protocol, 265

pseudo code for, 266–268

running, 271–272

TCP, 246–255

fetching data from server,

246–248

improving server, 253–255

simple server, 248

writing a web server, 249

and UDP, 260–263

spawn, 148, 164

Spawning, 157–158

remote, 184–185

src directory, 230

Stack traces, 84–85, 426

Stages of mastery, 18

start_connector, 197

Strings, 40–41

character sets for, 40

and dollar syntax, 40

examples of, 40

sum, 58

Supervision tree, 351f, 351–354

all-for-one, 351

SUPERVISOR REPORTS 518 VARIABLES

arguments for, 353

data structure, 353

one-on-one, 351

strategy, 355

worker specs, 353

Supervisor reports, 342

Symbolic constants, see Atoms

Symmetric Multiprocessing, see SMP

System processes, 160, 163

T
Tables, see Ets (Erlang term storage);

Dets (disk Erlang term storage);

Mnesia

Tail, of list, 38, 39

Tail-recursive, 156–157

Targets, 129

TCP (transmission control protocol),

245

fetching data from server, 246–248

improving server, 253–255

simple server, 248

writing a web server, 249

Term comparisons, 115–116, 116f

and guard expressions, 66

term_to_binary, 88, 92, 225, 250, 252

Terms, 41

Test methods, 420

throw, 83

throw(Why), 77

Timeouts, 150–152

Timers, 152–154

total, 51, 59

Tracing, 431–435

Transaction semantics, 297

Transient data, 274

Trapping exit signals, 167f, 165–169

Trapping exits, 164, 172f

Trigram example programs, 279–284

building tables, 281

defined, 279

iterator, 280

overview, 279

time (speed) involved, 281–284

Troubleshooting, 131–134

true guard, 68

Trusted environment, 176

try vs. case, 84

try...catch, 78–83

programming idioms with, 80

shortcuts, 80

try_to_connect, 197

ttb, 435

Tuples, 35–38

creating, 36

and data storage, 273

in DETS table, 284

extracting values from, 36–38

insert into tables, 274

inserted into tables, 277

and IP addresses, 258

keys, sets and bags, 275

and list comprehensions, 61

lookup in a table, 274

MFA, 432

nesting, 35

and records, 69–72

service, 404

supervisor tree, 352

in tables, 286

Type, 393

TypeExpression, 392

Types, 390–395

definitions in APIs, 394

input/output of a function, 392–394

notation, 390–392

tools for, 394–395

TypeVar, 393

U
UDP (user datagram protocol), 245,

260–263

background, 263

factorial server, 261

server and client, 260

Unbound variables, 29, 423

Underscore variables, 116–117

Unix-based systems

and escript, 125

help, 134

shell command, 24

starting/stopping shell, 118

Unsafe variables, 424

Unterminated strings, 424

Untrusted environment, 176

User-defined attributes, 101

V
Value variable, 91

Variables

changing value of, 31

introduced, 27–32

WEB SERVER 519 YECC

naming conventions, 27

notation, 27

and pattern matching, 30

scope of, 29

single assignment, 28, 29–31

underscore, 116–117

unexpected values and, 32

W
Web server, writing, 249

Websites

for Armstrong’s doctoral thesis on

Erlang, 400

for CEAN, 23

for connecting to standard

input/output, 221n

for cprof, 421

for Debugger reference manuals, 431

for DETS manual, 287

for emacs installation, 397

for Erlang (Windows download), 22

for Erlang 4.7 specs, 400n

for Erlang application

documentation, 399

for Erlang blogs, 401

for Erlang documentation, 399

for Erlang downloadable examples,

23n

for Erlang error log, 136

for Erlang FAQs, 399

for Erlang forums, 401

for Erlang literature, 400n

for Erlang manuals, 135, 399

for Erlang projects, 401

for Erlang release handling

documentation, 308n

for Erlang sources, 22n

for Erlang style guide, 399

for ETS manual, 287

for Internet Engineering Task Force,

249

libraries for interfacing, 225

for Link collections, 400

for makefile overview, 127n

for MatchSpec libraries, 432n

for MinGW, 396

for MSYS, 397

for online financial services in

Erlang, 301n

for OTP behaviors, 363

for PlanetLab, 300n

for purge_module documentation,

438n

for SHOUTcast, 265n

for SMP Erlang, 376

for Windows binary (Erlang

installation), 396

for wireshark (a packet-sniffer), 249

Windows

batch files, 124

binary distributions, 22

Command prompt, compiling and

running from, 123

and directory navigation, 47

emacs installation, 397

Erlang installation, 21, 396–397

and escript, 125

help documentation, 135

and MinGW, 396

and MSYS, 397

MSYS Developer toolkit, 397

and name server example, 179n

shell command, 24

starting/stopping shell, 118

and unpacking COFF data, 96

wireshark, 249

Word extraction, 387

Worker-supervisor model, 171

Writing to files, 235–239

lines, 236

list of terms, 235–236

in one operation, 237–238

random access, 239

X
xref module, 421

Y
yecc, 129

	Programming Erlang
	Begin
	Road Map
	Begin Again
	Acknowledgments

	Getting Started
	Overview
	Installing Erlang
	The Code in This Book
	Starting the Shell
	Simple Integer Arithmetic
	Variables
	Floating-Point Numbers
	Atoms
	Tuples
	Lists
	Strings
	Pattern Matching Again

	Sequential Programming
	Modules
	Back to Shopping
	Functions with the Same Name and Different Arity
	Funs
	Simple List Processing
	List Comprehensions
	Arithmetic Expressions
	Guards
	Records
	case and if Expressions
	Building Lists in Natural Order
	Accumulators

	Exceptions
	Exceptions
	Raising an Exception
	try...catch
	catch
	Improving Error Messages
	Programming Style with try...catch
	Catching Every Possible Exception
	Old- and New-Style Exception Handling
	Stack Traces

	Advanced Sequential Programming
	BIFs
	Binaries
	The Bit Syntax
	Miscellaneous Short Topics

	Compiling and Running Your Program
	Starting and Stopping the Erlang Shell
	Modifying the Development Environment
	Different Ways to Run Your Program
	Automating Compilation with Makefiles
	Command Editing in the Erlang Shell
	Getting Out of Trouble
	When Things Go Wrong
	Getting Help
	Tweaking the Environment
	The Crash Dump

	Concurrency
	Concurrent Programming
	The Concurrency Primitives
	A Simple Example
	Client-Server---An Introduction
	How Long Does It Take to Create a Process?
	Receive with a Timeout
	Selective Receive
	Registered Processes
	How Do We Write a Concurrent Program?
	A Word About Tail Recursion
	Spawning with MFAs
	Problems

	Errors in Concurrent Programs
	Linking Processes
	An on_exit Handler
	Remote Handling of Errors
	The Details of Error Handling
	Error Handling Primitives
	Sets of Linked Processes
	Monitors
	A Keep-Alive Process

	Distributed Programming
	The Name Server
	The Distribution Primitives
	Libraries for Distributed Programming
	The Cookie Protection System
	Socket-Based Distribution

	IRC Lite
	Message Sequence Diagrams
	The User Interface
	Client-Side Software
	Server-Side Software
	Running the Application
	The Chat Program Source Code
	Exercises

	Interfacing Techniques
	Ports
	Interfacing an External C Program
	open_port
	Linked-in Drivers
	Notes

	Programming with Files
	Organization of the Libraries
	The Different Ways of Reading a File
	The Different Ways of Writing to a File
	Directory Operations
	Finding Information About a File
	Copying and Deleting Files
	Bits and Pieces
	A Find Utility

	Programming with Sockets
	Using TCP
	Control Issues
	Where Did That Connection Come From?
	Error Handling with Sockets
	UDP
	Broadcasting to Multiple Machines
	A SHOUTcast Server
	Digging Deeper

	ETS and DETS: Large Data Storage Mechanisms
	Basic Operations on Tables
	Types of Table
	ETS Table Efficiency Considerations
	Creating an ETS Table
	Example Programs with ETS
	DETS
	What Haven't We Talked About?
	Code Listings

	OTP Introduction
	The Road to the Generic Server
	Getting Started with gen_server
	The gen_server Callback Structure
	Code and Templates
	Digging Deeper

	Mnesia: The Erlang Database
	Database Queries
	Adding and Removing Data in the Database
	Mnesia Transactions
	Storing Complex Data in Tables
	Table Types and Location
	Creating the Initial Database
	The Table Viewer
	Digging Deeper
	Listings

	Making a System with OTP
	Generic Event Handling
	The Error Logger
	Alarm Management
	The Application Servers
	The Supervision Tree
	Starting the System
	The Application
	File System Organization
	The Application Monitor
	Digging Deeper
	How Did We Make That Prime?

	Multicore Prelude
	Programming Multicore CPUs
	How to Make Programs Run Efficiently on a Multicore CPU
	Parallelizing Sequential Code
	Small Messages, Big Computations
	mapreduce and Indexing Our Disk
	Growing Into the Future

	Documenting Our Program
	Erlang Type Notation
	Tools That Use Types

	Erlang on Microsoft Windows
	Erlang
	Fetch and Install MinGW
	Fetch and Install MSYS
	Install the MSYS Developer Toolkit (Optional)
	Emacs

	Resources
	Online Documentation
	Books and Theses
	Link Collections
	Blogs
	Forums, Online Communities, and Social Sites
	Conferences
	Projects
	Bibliography

	A Socket Application
	An Example
	How lib_chan Works
	The lib_chan Code

	Miscellaneous
	Analysis and Profiling Tools
	Debugging
	Tracing
	Dynamic Code Loading

	Module and Function Reference
	Module: application
	Module: base64
	Module: beam_lib
	Module: c
	Module: calendar
	Module: code
	Module: dets
	Module: dict
	Module: digraph
	Module: digraph_utils
	Module: disk_log
	Module: epp
	Module: erl_eval
	Module: erl_parse
	Module: erl_pp
	Module: erl_scan
	Module: erl_tar
	Module: erlang
	Module: error_handler
	Module: error_logger
	Module: ets
	Module: file
	Module: file_sorter
	Module: filelib
	Module: filename
	Module: gb_sets
	Module: gb_trees
	Module: gen_event
	Module: gen_fsm
	Module: gen_sctp
	Module: gen_server
	Module: gen_tcp
	Module: gen_udp
	Module: global
	Module: inet
	Module: init
	Module: io
	Module: io_lib
	Module: lib
	Module: lists
	Module: math
	Module: ms_transform
	Module: net_adm
	Module: net_kernel
	Module: os
	Module: proc_lib
	Module: qlc
	Module: queue
	Module: random
	Module: regexp
	Module: rpc
	Module: seq_trace
	Module: sets
	Module: shell
	Module: slave
	Module: sofs
	Module: string
	Module: supervisor
	Module: sys
	Module: timer
	Module: win32reg
	Module: zip
	Module: zlib

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

