Programming

Software for a

Erlang c.omasi

Joe Armstrong

The world is parallel.

If we want to write programs that behave as other objects behave in
the real world, then these programs will have a concurrent structure.

Use a language that was designed for writing concurrent applications,
and development becomes a lot easier.

Erlang programs model how we think and interact.

> Joe Armstrong

Programming frlang

Software for a Concurrent World

Joe Armstrong

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 armstrongonsoftware.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-9343560-0-X

ISBN-13: 978-1-934356-00-5

Printed on acid-free paper with 50% recycled, 15% post-consumer content.
P1.1 printing, July, 2007

Version: 2007-7-17

http://www.pragmaticprogrammer.com

_ Confents

1 Begin 12
1.1 RoadMap 13
1.2 BeginAgain 0000 16
1.3 Acknowledgments. 17
2 Getting Started 18
2.1 Overview o e 18
2.2 InstallingErlang 21
2.3 TheCodeinThisBook 23
2.4 StartingtheShell 24
2.5 Simple Integer Arithmetic 25
26 Variables oo o o 27
2.7 Floating-Point Numbers 32
2.8 AtomS.o e 33
2.9 Tuples 35
2.10 Lists e 38
2,11 Strings e 40
2.12 Pattern Matching Again 41
3 Sequential Programming 43
3.1 Modules 43
3.2 BacktoShopping 49
3.3 Functions with the Same Name and Different Arity . . 52
34 Funs e 52
3.5 Simple List Processing 58
3.6 List Comprehensions 61
3.7 Arithmetic Expressions 64
3.8 Guards e 65
39 Records. oL 69
3.10 caseandif Expressions 72
3.11 Building Lists in Natural Order 73

3.12 Accumulators e 74

CONTENTS d 6

4 Exceptions 76
4.1 Exceptions o oo 76
4.2 RaisinganException 77
4.3 try.catch L L. 78
44 catch 81
4.5 Improving Error Messages 82
4.6 Programming Style with try...catch. 82
4.7 Catching Every Possible Exception 83
4.8 Old- and New-Style Exception Handling 84
4.9 StackTraces. 84

5 Advanced Sequential Programming 86
51 BIFs. e 87
52 Binaries 0 oo 87
53 TheBitSyntax 89
5.4 Miscellaneous Short Topics 98

6 Compiling and Running Your Program 118
6.1 Starting and Stopping the Erlang Shell 118
6.2 Modifying the Development Environment 119
6.3 Different Ways to Run Your Program. 122
6.4 Automating Compilation with Makefiles 127
6.5 Command Editing in the Erlang Shell 130
6.6 GettingOutofTrouble 131
6.7 When Things GoWrong 131
6.8 GettingHelp 0L 134
6.9 Tweaking the Environment 135
6.10 TheCrashDump 136

7 Concurrency 137

8 Concurrent Programming 141
8.1 The Concurrency Primitives 142
8.2 ASimple Example 143
8.3 Client-Server—An Introduction 144
8.4 How Long Does It Take to Create a Process? 148
8.5 Receive with a Timeout 150
8.6 Selective Receive 153
8.7 Registered Processes 154
8.8 How Do We Write a Concurrent Program? 156
8.9 A Word About Tail Recursion 156
8.10 Spawningwith MFAs 157

8.11 Problems e 158

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=6

CONTENTS «d 7

9 Errors in Concurrent Programs 159
9.1 Linking Processes 159
9.2 Anon_ exitHandler 160
9.3 Remote Handling of Errors 162
9.4 The Details of Error Handling 162
9.5 Error Handling Primitives 170
9.6 Sets of Linked Processes 172
9.7 Monitors L oo 172
9.8 AKeep-Alive Process 173

10 Distributed Programming 175
10.1 The Name Server 177
10.2 The Distribution Primitives 182
10.3 Libraries for Distributed Programming 185
10.4 The Cookie Protection System 186
10.5 Socket-Based Distribution. 187

11 IRC Lite 191
11.1 Message Sequence Diagrams 193
11.2 The UserInterface 194
11.3 Client-Side Software 195
11.4 Server-Side Software 199
11.5 Running the Application 203
11.6 The Chat Program Source Code 204
11.7 EXerciseso it 211

12 Interfacing Techniques 212
12.1 Ports e 213
12.2 Interfacing an External C Program 214
12.3 open_port e 220
12.4 Linked-inDrivers 221
12.5 Notes 225

13 Programming with Files 226
13.1 Organization of the Libraries 226
13.2 The Different Ways of Readinga File 227
13.3 The Different Ways of Writingtoa File 235
13.4 Directory Operations 239
13.5 Finding Information Abouta File 240
13.6 Copying and Deleting Files 241
13.7 BitsandPieces 241
138 AFnd Utility 242

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=7

CONTENTS «d 8

14 Programming with Sockets 245
14.1 UsingTCP ittt 246
14.2 Controllssues 255
14.3 Where Did That Connection Come From? 258
14.4 Error Handling with Sockets 259
145 UDP. e 260
14.6 Broadcasting to Multiple Machines 263
14.7 A SHOUTcast Server 265
14.8 Digging Deeper 272

15 ETS and DETS: Large Data Storage Mechanisms 273
15.1 Basic OperationsonTables 274
15.2 TypesofTable 275
15.3 ETS Table Efficiency Considerations 276
15.4 Creatingan ETSTable 277
15.5 Example Programs with ETS 279
156 DETS it e 284
15.7 What Haven’'t We Talked About? 287
15.8 Code Listings, 288

16 OTP Introduction 291
16.1 The Road to the Generic Server 292
16.2 Getting Started with gen_server 301
16.3 The gen_server Callback Structure 305
16.4 Code and Templates 309
16.5 Digging Deeper 312

17 Mnesia: The Erlang Database 313
17.1 Database Queries 313
17.2 Adding and Removing Data in the Database 317
17.3 Mnesia Transactions 319
17.4 Storing Complex Datain Tables 323
17.5 Table Types and Location 325
17.6 Creating the Initial Database 328
17.7 The Table Viewer 329
17.8 Digging Deeper, 329
179 Listings. o o 331

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=8

CONTENTS «d 9

18 Making a System with OTP 335
18.1 Generic Event Handling 336
18.2 The Error Logger 339
18.3 Alarm Management 346
18.4 The Application Servers 348
18.5 The SupervisionTree 351
18.6 Starting the System 354
18.7 The Application 358
18.8 File System Organization 360
18.9 The Application Monitor 361
18.10 Digging Deeper 361
18.11 How Did We Make That Prime? 363

19 Multicore Prelude 365

20 Programming Multicore CPUs 367
20.1 How to Make Programs Run Efficiently on a Multicore CPU 368
20.2 Parallelizing Sequential Code 372
20.3 Small Messages, Big Computations 375
20.4 mapreduce and Indexing OurDisk 379
20.5 Growing Into the Future 389

A Documenting Our Program 390
A.1 ErlangType Notation 391
A2 ToolsThatUseTypes. 394

B Erlang on Microsoft Windows 396
B.1 Erlang 396
B.2 Fetch and Install MinGW 396
B.3 Fetch and Instal MSYS 397
B.4 Install the MSYS Developer Toolkit (Optional) 397
B.5 Emacs e 397

C Resources 399
C.1 Online Documentation 399
C.2 BooksandTheses 400
C.3 LinkCollections 400
C4 Blogs 400
C.5 Forums, Online Communities, and Social Sites 401
C.6 Conferences 401
C.7 Projects. o 401
C.8 Bibliography 402

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=9

CONTENTS <« 10

D A Socket Application 403
D.1 AnExample 0o 403
D.2 Howlib chanWorks 406
D.3 Thelib chanCode 409

E Miscellaneous 419
E.1 Analysis and Profiling Tools 419
E.2 Debugging 422
E3 Tracing e 431
E.4 Dynamic Code Loading 435

F Module and Function Reference 439
F.1 Module: application. 439
F.2 Module: base64 440
F.3 Module: beam lib 441
F.4 Module:c e 441
F.5 Module: calendar 443
F.6 Module: code e 444
F.7 Module:dets., 445
F.8 Module: dict 448
F.9 Module: digraph. 449
F.10 Module: digraph_utils 450
F.11 Module: disk log, 451
F.12 Module:epp o o it i i 452
F.13 Module:erl. eval 453
F.14 Module: erl_parse 453
F.15 Module:erlLpp 454
F.16 Module:erl_ scan 454
F.17 Module:erl tar 454
F.18 Module:erlang, 455
F.19 Module: error_ handler 464
F.20 Module: error_logger 464
F.21 Module:ets 465
F.22 Module: file 468
F.23 Module: file_ sorter 470
F.24 Module: filelib 471
F.25 Module: filename 471
F.26 Module: gb_sets, 472
F.27 Module: gb_trees 474
F.28 Module: gen_event, 475
F.29 Module: gen_fsm 476

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=10

CONTENTS «d 11

F.30 Module: gen_sctp 477
F.31 Module: gen_server 478
F.32 Module:gen_tcp. 478
F.33 Module: gen_udp 479
F.34 Module: global 479
F.35 Module:inet, 480
F.36 Module: init 481
F.37 Module:io 481
F.38 Module:io lib 482
F.39 Module:lib. 483
F.40 Module: lists oL 483
F.41 Module:math 487
F.42 Module: ms_transform 487
F.43 Module:net adm 487
F.44 Module: net kernel 488
F.45 Module:os 488
F.46 Module: proc_lib 489
F.47 Module: qlc o 489
F.48 Module: queue 490
F.49 Module: random, 491
F.50 Module:regexpo 492
F.51 Module: rpc 492
F.52 Module: seq_trace. 494
F.53 Module:sets 494
F.54 Module: shell 495
F.55 Module:slave, 495
F.56 Module:sofs, 496
F.57 Module:string, 500
F.58 Module: supervisor 501
F.59 Module: sys 501
F.60 Module: timer, 502
F.61 Module: win32reg 503
F.62 Module: zip 504
F.63 Module: zlib, 504

Index 507

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=11

Chapter 1

Oh no! Not another programming language! Do I have to learn yet another
one? Aren’t there enough already?

I can understand your reaction. There are loads of programming lan-
guages, so why should you learn another?

Here are five reasons why you should learn Erlang:

* You want to write programs that run faster when you run them on
a multicore computer.

* You want to write fault-tolerant applications that can be modified
without taking them out of service.

* You've heard about “functional programming” and you're wonder -
ing whether the techniques really work.

* You want to use a language that has been battle tested in real
large-scale industrial products that has great libraries and an
active user community.

* You don’'t want to wear your fingers out by typing lots of lines of
code.

Can we do these things? In Section 20.3, Running SMP Erlang, on
page 376, we'll look at some programs that have linear speed-ups when
we run them on a thirty-two-core computer. In Chapter 18, Making a
System with OTP, we’ll look at how to make highly reliable systems that
have been in round-the-clock operation for years. In Section 16.1, The
Road to the Generic Server, on page 292, we'll talk about techniques for
writing servers where the software can be upgraded without taking the
server out of service.

RoaD MarP «d 13

In many places we’ll be extolling the virtues of functional programming.
Functional programming forbids code with side effects. Side effects and
concurrency don’'t mix. You can have sequential code with side effects,
or you can have code and concurrency that is free from side effects.
You have to choose. There is no middle way.

Erlang is a language where concurrency belongs to the programming
language and not the operating system. Erlang makes parallel program-
ming easy by modeling the world as sets of parallel processes that can
interact only by exchanging messages. In the Erlang world, there are
parallel processes but no locks, no synchronized methods, and no pos-
sibility of shared memory corruption, since there is no shared memory.

Erlang programs can be made from thousands to millions of extremely
lightweight processes that can run on a single processor, can run on a
multicore processor, or can run on a network of processors.

1.1 Road Map

* Chapter 2, Getting Started, on page 18 is a quick “jump in and
swim around” chapter.

¢ Chapter 3, Sequential Programming, on page 43 is the first of two
chapters on sequential programming. It introduces the ideas of
pattern matching and of nondestructive assignments.

* Chapter 4, Exceptions, on page 76 is about exception handling. No
program is error free. This chapter is about detecting and handling
errors in sequential Erlang programs.

* Chapter 5, Advanced Sequential Programming, on page 86 is the
second chapter on sequential Erlang programming. It takes up
some advanced topics and fills in the remaining details of sequen-
tial programming.

® Chapter 6, Compiling and Running Your Program, on page 118
talks about the different ways of compiling and running your pro-
gram.

¢ In Chapter 7, Concurrency, on page 137, we change gears. This
is a nontechnical chapter. What are the ideas behind our way of
programming? How do we view the world?

* Chapter 8, Concurrent Programming, on page 141 is about concur-
rency. How do we create parallel processes in Erlang? How do pro-
cesses communicate? How fast can we create parallel processes?

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=13

RoaAaD MarP d 14

® Chapter 9, Errors in Concurrent Programs, on page 159 talks about
errors in parallel programs. What happens when a process fails?
How can we detect process failure, and what can we do about it?

® Chapter 10, Distributed Programming, on page 175 takes up dis-
tributed programming. Here we’ll write several small distributed
programs and show how to run them on a cluster of Erlang nodes
or on free-standing hosts using a form of socket-based distribu-
tion.

® Chapter 11, IRC Lite, on page 191 is a pure application chapter.
We tie together the themes of concurrency and socket-based distri-
bution with our first nontrivial application: a mini IRC-like client
and server program.

* Chapter 12, Interfacing Techniques, on page 212 is all about inter-
facing Erlang to foreign-language code.

® Chapter 13, Programming with Files, on page 226 has numerous
examples of programming with files.

* Chapter 14, Programming with Sockets, on page 245 shows you
how to program with sockets. We’'ll look at how to build sequential
and parallel servers in Erlang. We finish this chapter with the sec-
ond sizable application: a SHOUTcast server. This is a streaming
media server, which can be used to stream MP3 data using the
SHOUTcast protocol.

® Chapter 15, ETS and DETS: Large Data Storage Mechanisms, on
page 273 describes the low-level modules ets and defs. efs is a
module for very fast, destructive, in-memory hash table opera-
tions, and dets is designed for low-level disk storage.

® Chapter 16, OTP Introduction, on page 291 is an introduction to
OTP. OTP is a set of Erlang libraries and operating procedures
for building industrial-scale applications in Erlang. This chap-
ter introduces the idea of a behavior (a central concept in OTP).
Using behaviors, we can concentrate on the functional behavior
of a component, while allowing the behavior framework to solve
the nonfunctional aspects of the problem. The framework might,
for example, take care of making the application fault tolerant or
scalable, whereas the behavioral callback concentrates on the spe-
cific aspects of the problem. The chapter starts with a general dis-
cussion on how to build your own behaviors and then moves to
describing the gen_server behavior that is part of the Erlang stan-
dard libraries.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=14

RoaDp Mar «d 15

® Chapter 17, Mnesia: The Erlang Database, on page 313 talks about
the Erlang database management system (DBMS) Mnesia. Mnesia
is an integrated DBMS with extremely fast, soft, real-time
response times. It can be configured to replicate its data over sev-
eral physically separated nodes to provide fault-tolerant operation.

* Chapter 18, Making a System with OTP, on page 335 is the second
of the OTP chapters. It deals with the practical aspects of sewing
together an OTP application. Real applications have a lot of small
messy details. They must be started and stopped in a consistent
manner. If they crash or if subcomponents crash, they must be
restarted. We need error logs so that if they do crash, we can figure
out what happened after the event. This chapter has all the nitty-
gritty details of making a fully blown OTP application.

* Chapter 19, Multicore Prelude, on page 365 is a short introduction
to why Erlang is suited for programming multicore computers. We
talk in general terms about shared memory and message passing
concurrency and why we strongly believe that languages with no
mutable state and concurrency are ideally suited to programming
multicore computers.

® Chapter 20, Programming Multicore CPUs, on page 367 is about
programming multicore computers. We talk about the techniques
for ensuring that an Erlang program will run efficiently on multi-
core computers. We introduce a number of abstractions for speed-
ing up sequential programs on multicore computers. Finally we
perform some measurements and develop our third major pro-
gram, a full-text search engine. To write this, we first implement
a function called mapreduce—this is a higher-order function for
parallelizing a computation over a set of processing elements.

* Appendix A, on page 390, describes the type system used to doc-
ument Erlang functions.

* Appendix B, on page 396, describes how to set up Erlang on the
Windows operating system (and how to configure emacs on all
operating systems).

¢ Appendix C, on page 399, has a catalog of Erlang resources.

¢ Appendix D, on page 403, describes lib_chan, which is a library for
programming socket-based distribution.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=15

BEGIN AcalIN «d 16

¢ Appendix E, on page 419, looks at techniques for analyzing, pro-
filing, debugging, and tracing your code.

* Appendix F, on page 439, has one-line summaries of the most
used modules in the Erlang standard libraries.

1.2 Begin Again

Once upon a time a programmer came across a book describing a _funny
programming language. It had an unfamiliar syntax, equal didn’'t mean
equals, and variables weren’t allowed to vary. Worse, it wasn’'t even
object-oriented. The programs were, well, different....

Not only were the programs different, but the whole approach to pro-
gramming was different. The author kept on and on about concurrency
and distribution and fault tolerance and about a method of programming
called concurrency-oriented programming—whatever that might mean.

But some of the examples looked like fun. That evening the programmer
looked at the example chat program. It was pretty small and easy to
understand, even if the syntax was a bit strange. Surely it couldn’t be
that easy.

The basic program was simple, and with a few more lines of code, file
sharing and encrypted conversations became possible. The programmer
started typing....

What’s This All About?

It’s about concurrency. It's about distribution. It's about fault toler-
ance. It's about functional programming. It’s about programming a dis-
tributed concurrent system without locks and mutexes but using only
pure message passing. It's about speeding up your programs on multi-
core CPUs. It’s about writing distributed applications that allow people
to interact with each other. It’s about design methods and behaviors
for writing fault-tolerant and distributed systems. It’s about modeling
concurrency and mapping those models onto computer programs, a
process I call concurrency-oriented programming.

I had fun writing this book. I hope you have fun reading it.

Now go read the book, write some code, and have fun.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=16

ACKNOWLEDGMENTS <« 17

1.3 Acknowledgments

Many people have helped in the preparation of this book, and I'd like to
thank them all here.

First, Dave Thomas, my editor: Dave has been teaching me to write
and subjecting me to a barrage of never-ending questions. Why this?
Why that? When I started the book, Dave said my writing style was like
“standing on a rock preaching.” He said, “I want you to talk to people,
not preach.” The book is better for it. Thanks, Dave.

Next, I've had a little committee of language experts at my back. They
helped me decide what to leave out. They also helped me clarify some
of the bits that are difficult to explain. Thanks here (in no particular
order) to Bjorn Gustavsson, Robert Virding, Kostis Sagonas, Kenneth
Lundin, Richard Carlsson, and Ulf Wiger.

Thanks also to Claes Vikstrém who provided valuable advice on Mnesia,
to Rickard Green on SMP Erlang, and to Hans Nilsson for the stemming
algorithm used in the text-indexing program.

Sean Hinde and Ulf Wiger helped me understand how to use various
OTP internals, and Serge Aleynikov explained active sockets to me so
that I could understand.

Helen Taylor (my wife) has proofread several chapters and provided
hundreds of cups of tea at appropriate moments. What’s more, she put
up with my rather obsessive behavior for the last seven months. Thanks
also to Thomas and Claire; and thanks to Bach and Handel, Zorro and
Daisy, and Doris, who have helped me stay sane, have purred when
stroked, and have gotten me to the right addresses.

Finally, to all the readers of the beta book who filled in errata requests:
I have cursed you and praised you. When the first beta went out, I was
unprepared for the entire book to be read in two days and for you to
shred every page with your comments. But the process has resulted in
a much better book than I had imagined. When (as happened several
times) dozens of people said, “I don’t understand this page,” then I was
forced to think again and rewrite the material concerned. Thanks for
your help, everybody.

Joe Armstrong
May 2007

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=17

2.1

Chapter 2

Overview

As with every learning experience, you'll pass through a number of
stages on your way to Erlang mastery. Let’s look at the stages we cover
in this book and the things you’ll experience along the way.

Stage 1: I'm Not Sure...

As a beginner, you’ll learn how to start the system, run commands in
the shell, compile simple programs, and become familiar with Erlang.
(Erlang is a small language, so this won’t take you long.)

Let’s break this down into smaller chunks. As a beginner, you’ll do the
following:

* Make sure you have a working Erlang system on your computer.

* Learn to start and stop the Erlang shell.

* Discover how to enter expressions into the shell, evaluate them,
and understand the results.

* See how to create and modify programs using your favorite text
editor.

¢ Experiment with compiling and running your programs in the
shell.

Stage 2: I'm Comfortable with Erlang

By now you’ll have a working knowledge of the language. If you run
into language problems, you'll have the background to make sense of
Chapter 5, Advanced Sequential Programming, on page 86.

OVERVIEW <« 19

At this stage you’'ll be familiar with Erlang, so we’ll move on to more
interesting topics:

* You'll pick up more advanced uses of the shell. The shell can do a
lot more than we let on when you were first learning it. (For exam-
ple, you can recall and edit previous expressions. This is covered
in Section 6.5, Command Editing in the Erlang Shell, on page 130.)

* You'll start learning the libraries (called modules in Erlang). Most
of the programs I write can be written using five modules: lists, io,
file, dict, and gen_tcp; therefore, we’ll be using these modules a lot
throughout the book.

* As your programs get bigger, you’ll need to learn how to automate
compiling and running them. The tool of choice for this is make.
We’'ll see how to control the process by writing a makefile. This is
covered in Section 6.4, Autormating Compilation with Makefiles, on
page 127.

¢ The bigger world of Erlang programming uses an extensive library
collection called OTP.! As you gain experience with Erlang, you'll
find that knowing OTP will save you lots of time. After all, why
reinvent the wheel if someone has already written the functional-
ity you need? We'll learn the major OTP behaviors, in particular
gen_server. This is covered in Section 16.2, Getting Started with
gen_server, on page 301.

* One of the main uses of Erlang is writing distributed programs,
so now is the time to start experimenting. You can start with the
examples in Chapter 10, Distributed Programming, on page 175,
and you can extend them in any way you want.

Stage 2.5: | May Learn Some Optional Stuff
You don’t have to read every chapter in this book the first time through.

Unlike most of the languages you have probably met before, Erlang is
a concurrent programming language—this makes it particularly suited
for writing distributed programs and for programming modern multi-
core and SMP? computers. Most Erlang programs will just run faster
when run on a multicore or SMP machine.

Erlang programming involves using a programming paradigm that I call
concurrency-oriented programming (COP).

1. Open Telecom Platform.
2. Symmetric multiprocessing.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=19

OVERVIEW <« 20

When you use COP, you break down problems and identify the natural
concurrency in their solutions. This is an essential first step in writing
any concurrent program.

Stage 3: I'm an Erlang Master

By now you’ve mastered the language and can write some useful dis-
tributed programs. But to achieve true mastery, you need to learn even
more:

* Mnesia. The Erlang distribution comes complete with a built-in
fast, replicated database called Mnesia. It was originally designed
for telecom applications where performance and fault tolerance
are essential. Today it is used for a wide range of nontelecom appli-
cations.

¢ Interfacing to code written in other programming languages, and
using linked-in drivers. This is covered in Section 12.4, Linked-in
Drivers, on page 221.

* Full use of the OTP behaviors-building supervision trees, start
scripts, and so on. This is covered in Chapter 18, Making a System
with OTP, on page 335.

* How to run and optimize your programs for a multicore computer.
This is covered in Chapter 20, Programming Multicore CPUs, on
page 367.

The Most Important Lesson

There’s one rule you need to remember throughout this book: program-
ming is fun. And I personally think programming distributed applica-
tions such as chat programs or instant messaging applications is a
lot more fun than programming conventional sequential applications.
What you can do on one computer is limited, but what you can do
with networks of computers becomes unlimited. Erlang provides an
ideal environment for experimenting with networked applications and
for building production-quality systems.

To help you get started with this, I've mixed some real-world applica-
tions in among the technical chapters. You should be able to take these
applications as starting points for your own experiments. Take them,
modify them, and deploy them in ways that I hadn’t imagined, and I'll

be very happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=20

INSTALLING ERLANG <« 21

2.2 Installing Erlang

Before you can do anything, you have to make sure you have a func-
tioning version of Erlang on your system. Go to a command prompt,
and type erl:

$ erl
Erlang (BEAM) emulator version 5.5.2 [source] ... [kernel-poll:false]

Eshell V5.5.2 (abort with AG)
1>

On a Windows system, the command erl works only if you have installed

Erlang and changed the PATH environment variable to refer to the pro-

gram. Assuming you've installed the program in the standard way, @
you'll invoke Erlang through the Start > All Programs > Erlang OTP

menu. In Appendix B, on page 396, I'll describe how I've rigged Erlang

to run with MinGW and MSYS.

Note: T'll show the banner (the bit that says “Erlang (BEAM) ... (abort
with AG)”) only occasionally. This information is useful only if you want
to report a bug. I'm just showing it here so you won't get worried if you
see it and wonder what it is. I'll leave it out in most of the examples
unless it’s particularly relevant.

If you see the shell banner, then Erlang is installed on your system.
Exit from it (press Ctrl+G, followed by the letter Q, and then hit Enter
or Return).® Now you can skip ahead to Section 2.3, The Code in This
Book, on page 23.

If instead you get an error saying erl is an unknown command, you’'ll
need to install Erlang on your box. And that means you’ll need to make
a decision—do you want to use a prebuilt binary distribution, use a
packaged distribution (on OS X), build Erlang from the sources, or use
the Comprehensive Erlang Archive Network (CEAN)?

Binary Distributions

Binary distributions of Erlang are available for Windows and for Linux-
based operating systems. The instructions for installing a binary sys-
tem are highly system dependent. So, we’ll go through these system by
system.

3. Or give the command g0 in the shell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=21

INSTALLING ERLANG < 22

Windows

You'll find a list of the releases at http://www.erlang.org/download.html.
Choose the entry for the latest version, and click the link for the Win-
dows binary—this points to a Windows executable. Click the link, and
follow the instructions. This is a standard Windows install, so you
shouldn’t have any problems.

Linux

Binary packages exist for Debian-based systems. On a Debian-based
system, issue the following command:

> apt-get install erlang

Installing on Mac OS X

As a Mac user, you can install a prebuilt version of Erlang using the
MacPorts system, or you can build Erlang from source. Using MacPorts
is marginally easier, and it will handle updates over time. However,
MacPorts can also be somewhat behind the times when it comes to
Erlang releases. During the initial writing up this book, for example,
the MacPorts version of Erlang was two releases behind the then cur-
rent version. For this reason, I recommend you just bite the bullet and
install Erlang from source, as described in the next section. To do this,
you’ll need to make sure you have the developer tools installed (they’re
on the DVD of software that came with your machine).

Building Erlang from Source

The alternative to a binary installation is to build Erlang from the
sources. There is no particular advantage in doing this for Windows
systems since each new release comes complete with Windows binaries
and all the sources. But for Mac and Linux platforms, there can be
some delay between the release of a new Erlang distribution and the
availability of a binary installation package. For any Unix-like OS, the
installation instructions are the same:

1. Fetch the latest Erlang sources.* The source will be in a file with
a name such as otp_src_R11B-4.tar.gz (this file contains the fourth
maintenance release of version 11 of Erlang).

4. From http://www.erlang.org/download.html.

http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=22

THE CODE IN THIS Book <« 23

2. Unpack, configure, make, and install as follows:

$ tar -xzf otp_src_R11B-4.tar.gz
$ cd otp_src_R11B-4

$./configure

$ make

$ sudo make install

Note: You can use the command ./configure --help to review the available
configuration options before building the system.

Use CEAN

The Comprehensive Erlang Archive Network (CEAN) is an attempt to
gather all the major Erlang applications in one place with a common
installer. The advantage of using CEAN is that it manages not only
the basic Erlang system but a large number of packages written in
Erlang. This means that as well as being able to keep your basic Erlang
installation up-to-date, you'll be able to maintain your packages as well.

CEAN has precompiled binaries for a large number of operating systems
and processor architectures. To install a system using CEAN, go to
http://cean.process-one.net/download/, and follow the instructions. (Note
that some readers have reported that CEAN might not install the Erlang
compiler. If this happens to you, then start the Erlang shell and give the
command cean:install(compiler). This will install the compiler.)

2.3 The Code in This Book

Most of the code snippets we show come from full-length, running
examples, which you can download.® To help you find your way, if a
code listing in this book can be found in the download, there’ll be a bar
above the snippet (just like the one here):

Download shopl.erl

-module(shopl).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) » N + total(T);
total([]) -> 0.

This bar contains the path to the code within the download. If you're
reading the PDF version of this book and your PDF viewer supports
hyperlinks, you can click the bar, and the code should appear in a
browser window.

5. From http://pragmaticprogrammer.com/titles/jaerlang/code.html.

http://cean.process-one.net/download/
http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://pragmaticprogrammer.com/titles/jaerlang/code.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=23

STARTING THE SHELL <« 24

2.4 Starting the Shell

Now let’s get started. We can interact with Erlang using an interactive
tool called the shell. Once we've started the shell, we can type expres-
sions, and the shell will display their values.

If you've installed Erlang on your system (as described in Section 2.2,
Installing Erlang, on page 21), then the Erlang shell, erl, will also be
installed. To run it, open a conventional operating system command
shell (cmd on Windows or a shell such as bash on Unix-based systems).
At the command prompt, start the Erlang shell by typing erl:

o $ erl
Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with AG)

® 1> % I'm going to enter some expressions in the shell ..
® 1> 20 + 30.

9 50

e 2>

Let’s look at what we just did:

© This is the Unix command to start the Erlang shell. The shell
responds with a banner telling you which version of Erlang you
are running.

® The shell printed the prompt 1>, and then we typed a comment.
The percent (%) character indicates the start of a comment. All
the text from the percent sign to the end of line is treated as a
comment and is ignored by the shell and the Erlang compiler.

® The shell repeated the prompt 1> since we hadn’t entered a com-
plete command. At this point we entered the expression 20 + 30,
followed by a period and a carriage return. (Beginners often for-
get to enter the period. Without it, Erlang won’t know that we've
finished our expression, and we won't see the result displayed.)

® The shell evaluated the expression and printed the result (50, in
this case).

® The shell printed out another prompt, this time for command
number 2 (because the command number increases each time a
new command is entered).

Have you tried running the shell on your system? If not, please stop and
try it now. If you just read the text without typing in the commands, you
might think that you understand what is happening, but you will not

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=24

SIMPLE INTEGER ARITHMETIC < 25

have transferred this knowledge from your brain to your fingertips—
programming is not a spectator sport. Just like any form of athletics,
you have to practice a lot.

Enter the expressions in the examples exactly as they appear in the
text, and then try experimenting with the examples and changing them
a bit. If they don’t work, stop and ask yourself what went wrong. Even
an experienced Erlang programmer will spend a lot of time interacting
with the shell.

As you get more experienced, you'll learn that the shell is a really pow-
erful tool. Previous shell commands can be recalled (with Ctrl+P and
Ctrl+N) and edited (with emacs-like editing commands). This is covered
in Section 6.5, Command Editing in the Erlang Shell, on page 130. Best
of all, when you start writing distributed programs, you will find that
you can attach a shell to a running Erlang system on a different Erlang
node in a cluster or even make an secure shell (ssh) connection directly
to an Erlang system running on a remote computer. Using this, you can
interact with any program on any node in a system of Erlang nodes.

Warning: You can’t type everything you read in this book into the shell.

In particular, you can’t type the code that’s listed in the Erlang program

files into the shell. The syntactic forms in an .erl file are not expressions @
and are not understood by the shell. The shell can evaluate only Erlang
expressions and doesn’t understand anything else. In particular, you

can’t type module annotations into the shell; these are things that start

with a hyphen (such as -module, -export, and so on).

The remainder of this chapter is in the form of a number of short dia-
logues with the Erlang shell. A lot of the time I won't explain all the
details of what is going on, since this would interrupt the flow of the
text. In Section 5.4, Miscellaneous Short Topics, on page 98, I'll fill in
the details.

2.5 Simple Integer Arithmetic

Let’s evaluate some arithmetic expressions:

1> 2 + 3 = 4,
14

2> (2 + 3) = 4.
20

Important: You'll see that this dialogue starts at command number 1
(that is the shell printed, 1>). This means we have started a new Erlang

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=25

SIMPLE INTEGER ARITHMETIC <« 26

7 N

Is the Shell Not Responding?

If the shell didn’t respond after you typed a command, then
you might have forgotten to end the command with a period
followed by carriage return (called dof-whitespace).

Another thing that might have gone wrong is that you've
started to type something that is quoted (that is, starts with a
single or double quote mark) but have not yet typed a match-
ing closing quote mark that should be the same as the open
quote mark.

If any of these happen, then the best thing to do is type an
extra closing quote, followed by dot-whitespace.

If things go really wrong and the system won‘t respond at all,
then just press Cirl+C (on Windows, Ctrl+Break). You'll see the
following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

Now just press A to abort the current Erlang session.

Advanced: You can start and stop multiple shells. See Sec-
tion 6.7, The Shell Isn‘t Responding, on page 133 for details.

shell. Every time you see a dialogue that starts with 1>, you’'ll have to
start a new shell if you want to exactly reproduce the examples in the
book. When an example starts with a prompt number that is greater
than 1, this means the shell session is continued from the previous
examples so you don’t have to start a new shell.

Note: If you're going to type these examples into the shell as you read
the text (which is absolutely the best way to learn), then you might
like to take a quick peek at Section 6.5, Command Editing in the Erlang
Shell, on page 130.

You’'ll see that Erlang follows the normal rules for arithmetic expres-
sions, so 2+ 3 *4 means 2 + (3 *4) and not (2 + 3) * 4.

Erlang uses arbitrary-sized integers for performing integer arithmetic.
In Erlang, integer arithmetic is exact, so you don’t have to worry about
arithmetic overflows or not being able to represent an integer in a cer-
tain word size.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=26

VARIABLES «d 27

Variable Notation

Often we will want to talk about the values of particular vari-
ables. For this I'll use the notation Var — Value, so, for example,
A — 42 means that the variable A has the value 42. When there
are several variables, I'll write {A — 42, B — frue ... }, meaning
that A is 42, B is true, and so on.

Why not try it? You can impress your friends by calculating with very
large numbers:

3> 123456789 = 987654321 = 112233445566778899 = 998877665544332211.
13669560260321809985966198898925761696613427909935341

You can enter integers in a number of ways.® Here’s an expression that
uses base 16 and base 32 notation:

4> 16#cafe = 32#sugar.
1577682511434

2.6 Variables

How can you store the result of a command so that you can use it later?
That’s what variables are for. Here’s an example:

1> X = 123456789.
123456789

What's happening here? First, we assign a value to the variable X; then,
the shell prints the value of the variable.

Note: All variable names must start with an uppercase letter.

If you want to see the value of a variable, just enter the variable name:

2> X.
123456789

Now that X has a value, you can use it:

3> XuX#X=X.
232305722798259244150093798251441

6. See Section 5.4, Integers, on page 111.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=27

VARIABLES <« 28

7 A

Single Assignment Is Like Algebra

When | went to school, my math teacher said, *If there’s an X
in several different parts in the same equation, then all the Xs
mean the same thing.” That’s how we can solve equations: if
we know that X+Y=10 and X-Y=2, then X will be 6 and Y will be
4 in both equations.

But when | learned my first programming language, we were
shown stuff like this:

X=X+1

Everyone profested, saying “you can’t do that!” But the
tfeacher said we were wrong, and we had to unlearn what we
learned in math class. X isn‘t a math variable: it's like a pigeon
hole/little box....

In Erlang, variables are just like they are in math. When you asso-
ciate a value with a variable, you're making an assertion—a
statement of fact. This variable has that value. And that’s that.

However, if you try to assign a different value to the variable X, you'll
get a somewhat brutal error message:

4> X = 1234.

=ERROR REPORT==== 11-Sep-2006::20:32:49 ===

Error in process <0.31.0> with exit value:
{{badmatch,1234},[{erl1_eval,expr,3}]}

+» exited: {{badmatch,1234},[{er1_eval,expr,3}]} ==

What on Earth is going on here? Well, to explain it, I'm going to have to
shatter two assumptions you have about the simple statement X = 1234:

* First, X is not a variable, at least not in the sense that you're used
to in languages such as Java and C.
* Second, = is not an assignment operator.

This is probably one of the trickiest areas when you're new to Erlang,
so let’s spend a couple of pages digging deeper.

Variables That Don’t Vary

Erlang has single assignment variables. As the name suggests, sin-
gle assignment variables can be given a value only once. If you try to
change the value of a variable once it has been set, then you’ll get an

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=28

VARIABLES «d 29

error (in fact, you'll get the badmatch error we just saw). A variable that
has had a value assigned to it is called a bound variable; otherwise, it
is called an unbound variable. All variables start off unbound.

When Erlang sees a statement such as X = 1234, it binds the variable X
to the value 1234. Before being bound, X could take any value: it’s just
an empty hole waiting to be filled. However, once it gets a value, it holds
on to it forever.

At this point, you're probably wondering why we use the name variable.
This is for two reasons:

¢ They are variables, but their value can be changed only once (that
is, they change from being unbound to having a value).

* They look like variables in conventional programming languages,
so when we see a line of code that starts like this:
X = ...
then our brains say, “Aha, I know what this is; X is a variable, and
= is an assignment operator.” And our brains are almost right: X is
almost a variable, and = is almost an assignment operator.
Note: The use of ellipses (...) in Erlang code examples just means
“code I'm not showing.”

In fact, = is a pattern matching operator, which behaves like assignment
when X is an unbound variable.

Finally, the scope of a variable is the lexical unit in which it is defined.

So if X is used inside a single function clause, its value does not “escape”

to outside the clause. There are no such things as global or private @
variables shared by different clauses in the same function. If X occurs

in many different functions, then all the values of X are different.

Pattern Matching

In most languages, = denotes an assignment statement. In Erlang, how-
ever, = denotes a pattern matching operation. Lhs = Rhs really means this:
evaluate the right side (Rhs), and then match the result against the pat-
tern on the left side (Lhs).

Now a variable, such as X, is a simple form of pattern. As we said ear-
lier, variables can be given a value only once. The first time we say X =
SomekExpression, Erlang says to itself, “What can I do to make this state-
ment true?” Because X doesn’t yet have a value, it can bind X to the
value of SomeExpression, the statement becomes valid, and everyone is

happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=29

VARIABLES <« 30

Then, if at a later stage we say X = AnotherExpression, then this will suc-
ceed only if SomeExpression and AnotherExpression are identical. Here’s an
example of this:

tnel 1> X = (2+4).

6

2> Y = 10.
- 10
5 3> X = 6.

6

4> X =Y.

=ERROR REPORT==== 27-0ct-2006::17:25:25 ===
- Error in process <0.32.0> with exit value:
10 {{badmatch,10}, [{erl1_eval,expr,3}]1}
- 5> Y = 10.

10

6> Y = 4.

=ERROR REPORT==== 27-0ct-2006::17:25:46 ===

15 Error in process <0.37.0> with exit value:
{{badmatch,4},[{er1_eval,expr,3}]1}
7> Y = X.
=ERROR REPORT==== 27-0ct-2006::17:25:57 ===
- Error 1in process <0.40.0> with exit value:
20 {{badmatch,6},[{er1_eval,expr,3}]}

Here’s what happened: In line 1 the system evaluated the expression
2+4, and the answer was 6. So after this line, the shell has the following
set of bindings: {X — 6}. After line 3 has been evaluated, we have the
bindings {X — 6, Y — 10}.

Now we come to line 5. Just before we evaluate the expression, we know
that X — 6, so the match X = 6 succeeds.

When we say X =V in line 7, our bindings are {X — 6, Y — 10}, and
therefore the match fails and an error message is printed.

Expressions 4 to 7 either succeed or fail depending upon the values of
X and Y. Now is a good time to stare hard at these and make sure you
really understand them before going any further.

At this stage it may seem that I am belaboring the point. All the patterns
to the left of the “=” are just variables, either bound or unbound, but
as we’ll see later, we can make arbitrarily complex patterns and match
them with the “=” operator. I'll be returning to this theme after we have
introduced tuples and lists, which are used for storing compound data
items.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=30

VARIABLES <« 31

Why Does Single Assignment Make My Programs Better?

In Erlang a variable is just a reference to a value—in the Erlang imple-
mentation, a bound variable is represented by a pointer to an area of
storage that contains the value. This value cannot be changed.

The fact that we cannot change a variable is extremely important and
is unlike the behavior of variables in imperative languages such as C or
Java.

Let’s see what can happen when you're allowed to change a variable.
Let’s define a variable X as follows:

1> X = 23.
23

Now we can use X in computations:

2> Y =4 =% X + 3.
95

Now suppose we could change the value of X (horrors):

3> X = 19.

Fortunately, Erlang doesn’t allow this. The shell complains like crazy
and says this:
=ERROR REPORT==== 27-0ct-2006::13:36:24 ===

Error in process <0.31.0> with exit value:
{{badmatch,19}, [{erl1_eval,expr,3}]1}

This just means that X cannot be 19 since we've already said it was 23.

But just suppose we could do this; then the value of Y would be wrong in
the sense that we can no longer interpret statement 2 as an equation.
Moreover, if X could change its value at many different points in the
program and something goes wrong, it might be difficult saying which
particular value of X had caused the failure and at exactly which point
in the program it had acquired the wrong value.

In Erlang, variable values cannot be changed after they have been set.
This simplifies debugging. To understand why this is true, we must ask
ourselves what an error is and how an error makes itself known.

One rather common way that you discover that your program is incor-
rect is that a variable has an unexpected value. If this is the case, then
you have to discover exactly the point in your program where the vari-
able acquired the incorrect value. If this variable changed values many

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=31

FLOATING-POINT NUMBERS < 32

4 N

A n f Side Effects Means W n Paralleliz r Program

The technical term for memory areas that can be modified is
mutable state. Erlang is a functional programming language
and has nonmutable state.

Much later in the book we’ll look at how to program multicore
CPUs. When it comes to programming multicore CPUs, the con-
segquences of having nonmutable state are enormous.

If you use a conventional programming language such as C
or Java to program a multicore CPU, then you will have to
contend with the problem of shared memory. In order not to
corrupt shared memory, the memory has to be locked while
it is accessed. Programs that access shared memory must not
crash while they are manipulating the shared memory.

In Erlang. there is no mutable state, there is no shared mem-
ory, and there are no locks. This makes it easy to parallelize our
programs.

times and at many different points in your program, then finding out
exactly which of these changes was incorrect can be extremely difficult.

In Erlang there is no such problem. A variable can be set only once and
thereafter never changed. So once we know which variable is incorrect,
we can immediately infer the place in the program where the variable
became bound, and this must be where the error occurred.

At this point you might be wondering how it’s possible to program with-
out variables. How can you express something like X = X + 1 in Erlang?
The answer is easy. Invent a new variable whose name hasn’t been used
before (say X1), and write X1 =X+ 1.

2.7 Floating-Point Numbers

Let’s try doing some arithmetic with floating-point numbers:

1> 5/3.
1.66667

2> 4/2.
2.00000

3> 5 div 3.
1

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=32

Atoms <« 33

4> 5 rem 3.

2

5> 4 div 2.

2

6> Pi = 3.14159.

3.14159

7> R = 5.

5

8> Pi * R * R.

78.5397

Don't get confused here. In line 1 the number at the end of the line is
the integer 3. The period signifies the end of the expression and is not
a decimal point. If I had wanted a floating-point number here, I'd have

written 3.0.

“/” always returns a float; thus, 4/2 evaluates to 2.0000 (in the shell). N
div M and Nrem M are used for integer division and remainder; thus, 5
div3is 1, and 5rem 3 is 2.

Floating-point numbers must have a decimal point followed by at least
one decimal digit. When you divide two integers with “/”, the result is
automatically converted to a floating-point number.

2.8 Atoms

In Erlang, atoms are used to represent different non-numerical con-
stant values.

If you're used to enumerated types in C or Java, then you will already
have used something very similar to atoms whether you realize it or
not.

C programmers will be familiar with the convention of using symbolic
constants to make their programs self-documenting. A typical C pro-
gram will define a set of global constants in an include file that consists
of a large number of constant definitions; for example, there might be
a file glob.h containing this:

#define OP_READ 1

#define OP_WRITE 2
#define OP_SEEK 3

#define RET_SUCCESS 223

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=33

Atoms «d 34

Typical C code using such symbolic constants might read as follows:

#include "glob.h"

int ret;
ret = file_operation(OP_READ, buff);
if(ret == RET_SUCCESS) { ... }

In a C program the values of these constants are not interesting; they're
interesting here only because they are all different and they can be
compared for equality.

The Erlang equivalent of this program might look like this:
Ret = file_operation(op_read, Buff),
if

Ret == ret_success ->

In Erlang, atoms are global, and this is achieved without the use of
macro definitions or include files.

Suppose you want to write a program that manipulates days of the
week. How would you represent a day in Erlang? Of course, you'd use
one of the atoms monday, fuesday,

Atoms start with lowercase letters, followed by a sequence of alphanu-
meric characters or the underscore () or at (@) sign.” For example: red,
december, cat, meters, yards, joe@somehost, and a_long_name.

Atoms can also be quoted with a single quotation mark (‘). Using the
quoted form, we can create atoms that start with uppercase letters
(which otherwise would be interpreted as variables) or that contain
nonalphanumeric characters. For example: ‘Monday’, ‘Tuesday’, '+’, "™,
‘an atom with spaces’. You can even quote atoms that don’t need to be

quoted, so ‘a’ means exactly the same as a.

The value of an atom is just the atom. So if you give a command that is
just an atom, the Erlang shell will print the value of that atom:

1> hello.
hello

It may seem slightly strange talking about the value of an atom or the
value of an integer. But because Erlang is a functional programming
language, every expression must have a value. This includes integers
and atoms that are just extremely simple expressions.

7. You might find that a period () can also be used in atoms—this is an unsupported
extension to Erlang.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=34

TurLEs < 35

2.9 Tuples

Suppose you want to group a fixed number of items into a single entity.
For this you'd use a tuple. You can create a tuple by enclosing the
values you want to represent in curly brackets and separating them
with commas. So, for example, if you want to represent someone’s name
and height, you might use {joe, 1.82}. This is a tuple containing an atom
and a floating-point number.

Tuples are similar to structs in C, with the difference that they are
anonymous. In C a variable P of type point might be declared as follows:
struct point {

int x;

int y;
} P;
You’'d access the fields in a C struct using the dot operator. So to set
the x and y values in Point, you might say this:

P.x = 10; P.y = 45;

Erlang has no type declarations, so to create a “point,” we might just
write this:

P = {10, 45}

This creates a tuple and binds it to the variable P. Unlike C, the fields
of a tuple have no names. Since the tuple itself just contains a couple
of integers, we have to remember what it’s being used for. To make it
easier to remember what a tuple is being used for, it's common to use
an atom as the first element of the tuple, which describes what the
tuple represents. So we’d write {point, 10, 45} instead of {10, 45}, which
makes the program a lot more understandable.®

Tuples can be nested. Suppose we want to represent some facts about
a person—their name, height, foot size, and eye color. We could do this
as follows:

1> Person = {person,
{name, joe},
{height, 1.82%,
{footsize, 42},
{eyecolour, brown}}.

8. This way of tagging a tuple is not a language requirement but is a recommended style
of programming.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=35

TurLEs < 36

Note how we used atoms both to identify the field and (in the case of
name and eyecolour) to give the field a value.

Creating Tuples

Tuples are created automatically when we declare them and are de-
stroyed when they can no longer be used. Erlang uses a garbage col-
lector to reclaim all unused memory, so we don’'t have to worry about
memory allocation.

If you use a variable in building a new tuple, then the new tuple will
share the value of the data structure referenced by the variable. Here’s
an example:

2> F = {firstName, joe}.

{firstName, joe}

3> L = {lastName, armstrong}.

{TastName,armstrong}

4> P = {person, F, L}.

{person, {firstName, joe}, {1astName,armstrong}}

If you try to create a data structure with an undefined variable, then
you’ll get an error. So in the next line, if we try to use the variable Q
that is undefined, we’ll get an error:

5> {true, Q, 23, Costs}.
#% 1: variable 'Q' 1is unbound ==

This just means that the variable Q is undefined.

Extracting Values from Tuples

Earlier, we said that =, which looks like an assignment statement,
was not actually an assignment statement but was really a pattern
matching operator. You might wonder why we were being so pedantic.
Well, it turns out that pattern matching is fundamental to Erlang and
that it’s used for lots of different tasks. It's used for extracting values
from data structures, and it’s also used for flow of control within func-
tions and for selecting which messages are to be processed in a parallel
program when you send messages to a process.

If we want to extract some values from a tuple, we use the pattern
matching operator =.

Let’s go back to our tuple that represents a point:

1> Point = {point, 10, 45}.
{point, 10, 453}.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=36

TurLEs < 37

Supposing we want to extract the fields of Point into the two variables X
and Y, we do this as follows:

2> {point, X, Y} = Point.

{point,10,45}

3> X.

10

4> Y.

45

In command 2, X is bound to 10 and Y to 45. The value of the expression
Lhs = Rhs is defined to be Rhs, so the shell prints {point,10,45}.

As you can see, the tuples on both sides of the equal sign must have
the same number of elements, and the corresponding elements on both
sides must bind to the same value.

Now suppose you had entered something like this:

5> {point, C, C} = Point.

=ERROR REPORT==== 28-0ct-2006::17:17:00 ===
Error in process <0.32.0> with exit value:
{{badmatch, {point,10,45}}, [{erl1_eval,expr,3}]1}

What happened? The pattern {point, C, C} does not match {point, 10, 45},
since C cannot be simultaneously 10 and 45. Therefore, the pattern
matching fails,® and the system prints an error message.

If you have a complex tuple, then you can extract values from the tuple
by writing a pattern that is the same shape (structure) as the tuple and
that contains unbound variables at the places in the pattern where you
want to extract values.!©

To illustrate this, we’ll first define a variable Person that contains a com-
plex data structure:

1> Person={person, {name, {first,joe}, {last,armstrong}}, {footsize,42}}.
{person, {name, {first,joe}, {last,armstrong}}, {footsize,42}}

Now we’ll write a pattern to extract the first name of the person:

2> { ,{ ,{ ,Who}, }, } = Person.
{person, {name, {first,joe}, {last,armstrong}}, {footsize,42}}

9. For readers familiar with Prolog: Erlang considers nonmatching a failure and does
not backtrack.

10. This method of extracting variables using pattern matching is called unification and
is used in many functional and logic programming languages.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=37

Lists «d 38

And finally we’ll print out the value of Who:

3> Who.
joe

Note that in the previous example we wrote _ as a placeholder for vari-
ables that we're not interested in. The symbol _ is called an anonymous
variable. Unlike regular variables, several occurrences of _ in the same
pattern don’t have to bind to the same value.

2.10 Lists

We use lists to store variable numbers of things: things you want to
buy at the store, the names of the planets, the results returned by your
prime factors function, and so on.

We create a list by enclosing the list elements in square brackets and
separating them with commas. Here’s how we could create a shopping
list:

1> ThingsToBuy = [{apples, 10}, {pears,6},{milk,3}].
[{apples, 10}, {pears,6},{milk,3}]

The individual elements of a list can be of any type, so, for example, we
could write the following:

2> [1+7,hell0,2-2, {cost, apple, 30-20%},3].
[8,hell0,0,{cost,apple,10},3]

Terminology

We call the first element of a list the head of the list. If you imagine
removing the head from the list, what’s left is called the tail of the list.

For example, if we have a list [1,2,3.4,5], then the head of the list is the
integer 1, and the tail is the list [2,3.4,5]. Note that the head of a list can
be anything, but the tail of a list is usually also a list.

Accessing the head of a list is a very efficient operation, so virtually
all list-processing functions start by extracting the head of a list, doing
something to the head of the list, and then processing the tail of the
list.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=38

Lists «d 39

Defining Lists
If T is a list, then [H|T] is also a list,!! with head H and tail T. The vertical
bar | separates the head of a list from its tail. [] is the empty list.

Whenever we construct a list using a [...|T] constructor, we should make
sure that T is a list. If it is, then the new list will be “properly formed.” If
T is not a list, then the new list is said to be an “improper list.” Most of
the library functions assume that lists are properly formed and won’t
work for improper lists.

We can add more than one element to the beginning of T by writing
[E1.E2...En|T]. For example:

3> ThingsToBuyl = [{oranges,4}, {newspaper,1}|ThingsToBuy].
[{oranges,4}, {newspaper,1},{apples, 10}, {pears,6},{miTk,3}]

Extracting Elements from a List

As with everything else, we can extract elements from a list with a
pattern matching operation. If we have the nonempty list L, then the
expression [X|Y] =L, where X and Y are unbound variables, will extract
the head of the list into X and the tail of the list into Y.

So, we're in the shop, and we have our shopping list ThingsToBuy1—the
first thing we do is unpack the list into its head and tail:

4> [Buyl|ThingsToBuy2] = ThingsToBuyl.
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{miTlk,3}]

This succeeds with bindings

Buy1 — {oranges.4}

and

ThingsToBuy2 — [{newspaper,1}, {apples,10}, {pears.6}, {milk,3}].

We go and buy the oranges, and then we could extract the next couple
of items:

5> [Buy2,Buy3|ThingsToBuy3] = ThingsToBuy2.
{newspaper, 1}, {apples,10}, {pears,6},{milk,3}]

This succeeds with Buy2 — {newspaper,1}, Buy3 — {apples,10}, and ThingsTo-
Buy3 — [{pears.6}.{milk,3}].

11. Note for LISP programmers: [H|T] is a CONS cell with CAR H and CDRT. In a pattern,
this syntax unpacks the CAR and CDR. In an expression, it constructs a CONS cell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=39

STRINGS <« 40

2.11 Strings

Strictly speaking, there are no strings in Erlang. Strings are really just
lists of integers. Strings are enclosed in double quotation marks ('), so,
for example, we can write this:

1> Name = "Hello".
"Hello"

Note: In some programming languages, strings can be quoted with
either single or double quotes. In Erlang, you must use double quotes.

"Hello" is just shorthand for the list of integers that represent the indi-
vidual characters in that string.

When the shell prints the value of a list it prints the list as a string, but
only if all the integers in the list represent printable characters:

2> [1,2,3].

[l ’ 2 ’ 3]

3> [83,117,114,112,114,105,115,101].

"Surprise”

4> [1,83,117,114,112,114,105,115,101].
[1,83,117,114,112,114,105,115,101].

In expression 2 the list [1,2,3] is printed without any conversion. This is
because 1, 2, and 3 are not printable characters.

In expression 3 all the items in the list are printable characters, so the
list is printed as a string.

Expression 4 is just like expression 3, except that the list starts with a
1, which is not a printable character. Because of this, the list is printed
without conversion.

We don’t need to know which integer represents a particular character.
We can use the “dollar syntax” for this purpose. So, for example, $Sa is
actually the integer that represents the character a, and so on.

5> I = $s.

115

6> [I-32,%u,$r,$p,$r,$1,$s,%e].
"Surprise"

Character Sets Used in Strings

The characters in a string represent Latin-1 (ISO-8859-1) character
codes. For example, the string containing the Swedish name Hdkan will
be encoded as [72,229,107,97,110].

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=40

PATTERN MATCHING AGAIN < 41

Note: If you enter [72,229,107,97,110] as a shell expression, you might not
get what you expect:

1> [72,229,107,97,110].
"H\345kan"

What has happened to “Hakan”—where did he go? This actually has
nothing to do with Erlang but with the locale and character code set-
tings of your terminal.

As far as Erlang is concerned, a string is a just a list of integers in
some encoding. If they happen to be printable Latin-1 codes, then they
should be displayed correctly (if your terminal settings are correct).

2.12 Pattern Matching Again

To round off this chapter, we’ll go back to pattern matching one more
time.

The following table has some examples of patterns and terms.!? The
third column of the table, marked Result, shows whether the pattern
matched the term and, if so, the variable bindings that were created.
Look through these examples, and make sure you really understand

them:

Pattern Term Result

{X,abc} {123,abc} Succeeds X +— 123

{X,Y,2} {222,def,"cat"} Succeeds X — 222, Y — def,
Z — "cat"

{X,Y} {333,ghi,"cat"} Fails—the tuples have
different shapes

X true Succeeds X — true

{X,Y,X} {{abc,12},42,{abc,12}} Succeeds X — {abc,12}, Y — 42

{X,Y,X} {{abc,12},42,true} Fails—X cannot be both
{abc,12} and frue

[H[T] 1,2,3,4,5] Succeeds H i 1, T — [2,3,4,5]

[H|T] "cat" Succeeds H r— 99, T +— "at'

[A,B,C|T] [a,b,c,d,e,f] Succeeds A — a, B — b,

Croc, T [def

If you're unsure about any of these, then try entering a Pattern = Term
expression into the shell to see what happens.

12. A term is just an Erlang data structure.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=41

PATTERN MATCHING AGAIN < 42

For example:

1> {X, abc} = {123, abc}.
{123,abc}.

2> X.

123

3> fO.

ok

4> {X,Y,Z} = {222,def,"cat"}.
{222,def,"cat"}.

5> X.

222

6> Y.

def

Note: The command f() tells the shell to forget any bindings it has. After
this command, all variables become unbound, so the X in line 4 has
nothing to do with the X in lines 1 and 2.

Now that we're comfortable with the basic data types and with the
ideas of single assignment and pattern matching, so we can step up
the tempo and see how to define functions and modules. Let’s see how
in the next chapter.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=42

3.1

Chapter 3

In this chapter, we’ll see how to write simple sequential Erlang pro-
grams. In the first section, we’ll talk about modules and functions. We'll
see how the ideas on pattern matching that we learned about in the
previous chapter are used when we define functions.

Immediately after this, we’ll return to the shopping list that we intro-
duced in the previous chapter, and we’ll write some code to work out
the total cost of the items in the shopping list.

As we go along, we’ll make incremental improvements to the programs
we develop. That way you’ll be able to see how the basic ideas evolve,
and not just be presented with some finished program with no explana-
tion as to how we got there. By understanding the steps involved, you'll
get some ideas that you can apply to your own programs.

Along the way we’ll be talking about higher-order functions (called
Juns) and how they can be used to create your own control abstrac-
tions. Finally, we’ll talk about guards, records, case expressions, and if
expressions.

So, let’s get to work....

Modules

Modules are the basic unit of code in Erlang. All the functions we write
are stored in modules. Modules are stored in files with .erl extensions.

MODULES <d 44

Modules must be compiled before the code can be run. A compiled
module has the extension .beam.!

Before we write our first module, we’ll remind ourselves about pattern
matching. All we're going to do is create a couple of data structures
representing a rectangle and a circle. Then we’re going to unpack these
data structures and extract the sides from the rectangle and the radius
from the circle. Here’s how:

1> Rectangle = {rectangle, 10, 5}.

{rectangle, 10, 5}.

2> Circle = {circle, 2.4}.

{circle,2.40000}

3> {rectangle, Width, Ht} = Rectangle.

{rectangle, 10,5}

4> Width.

10

5> Ht.

5

6> {circle, R} = Circle.

{circle,2.40000}

7> R.

2.40000

In lines 1 and 2 we created a rectangle and circle. In lines 3 and 6 we
unpacked the fields of the rectangle and circle using pattern matching.
In lines 4, 5, and 7 we printed the variable bindings that were created
by the pattern matching expressions. After line 7 the variable bindings
in the shell are {Width — 10, Ht — 5, R — 2.4}.

Going from pattern matching in the shell to pattern matching in func-
tions is an extremely small step. Let’s start with a function called area
that computes the areas of rectangles and circles. We'll put this in a
module called geometry and store the module in the file called geome-
try.erl. The entire module looks like this:

Download geometry.erl

-module(geometry).

-export([area/1]).

area({rectangle, Width, Ht}) -> Width = Ht;
area({circle, R}) -> 3.14159 = R * R.

Don’t worry about the -module and -export annotations (we’ll talk about
these later); for now I want you just to stare at the code for the area
function.

1. Beam is short for Bogdan’s Erlang Abstract Machine; Bogumil (Bogdan) Hausman
wrote an Erlang compiler in 1993 and designed a new instruction set for Erlang.

http://media.pragprog.com/titles/jaerlang/code/geometry.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=44

MoODULES < 45

The function area consists of two clauses. The clauses are separated
by a semicolon, and the final clause is terminated by dot-whitespace.
Each clause has a head and a body; the head consists of a function
name followed by a pattern (in parentheses), and the body consists of a
sequence of expressions,? which are evaluated if the pattern in the head
is successfully matched against the calling arguments. The patterns are
matched in the order they appear in the function definition.

Note that the patterns such as {rectangle, Width, Ht} have become part of
the area function definition. Each pattern corresponds to exactly one
clause. Let’s look at the first clause of the area function:

area({rectangle, Width, Ht}) -> Width = Ht;

This is a rule for computing the area of a rectangle. When we call geom-
etry:area({rectangle, 10, 5}), the earlier pattern matches with bindings
{Width — 10, Ht — 5}. Following the match, the code following the arrow
-> is evaluated. This is just Width * Ht, which is 10*5, or 50.

Now we’ll compile and run it:

1> c(geometry).

{ok,geometry}

2> geometry:area({rectangle, 10, 5}).
50

3> geometry:area({circle, 1.4}).
6.15752

So what happened here? In line 1 we give the command c(geometry),
which compiles the code in the file geometry.erl. The compiler returns
{ok.geometry}, which means that the compilation succeeded and that
the module geometry has been compiled and loaded. In lines 2 and 3
we call the functions in the geometry module. Note how we need to
include the module name together with the function name in order to
identify exactly which function we want to call.

Extending the Program

Now suppose we want to extend our program by adding a square to our
geometric objects. We could write this:
area({rectangle, Width, Ht}) -> Width = Ht;

area({circle, R}) -> 3.14159 = R = R;
area({square, X}) -> X = X.

2. See Section 5.4, Expressions and Expression Sequences, on page 106.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=45

MoODULES < 46

or even this:

area({rectangle, Width, Ht}) -> Width = Ht;
area({square, X}) > X = X3
area({circle, R}) -> 3.14159 = R = R.

In this case, the order of the clauses doesn’t matter; the program means
the same no matter how the clauses are ordered. This is because the
patterns in the clause are mutually exclusive. This makes writing and
extending programs very easy—we just add more patterns. In gen-
eral, though, clause order does matter. When a function is entered,
the clauses are pattern matched against the calling arguments in the
order they are presented in the file.

Before going any further, you should note the following about the way
the area function is written:

¢ The function area consists of several different clauses. When we
call the function, execution starts in the first clause that matches
the call arguments.

® Our function does not handle the case where none of the patterns
match—our program will fail with a runtime error. This is deliber-
ate.

Many programming languages, such as C, have only one entry point
per function. If we had written this in C, the code might look like this:

enum ShapeType { Rectangle, Circle, Square };

struct Shape {
enum ShapeType kind;

union {
struct { int width, height; } rectangleData;
struct { int radius; } circleData;
struct { int side;} squareData;

} shapeData;
};

double area(struct Shape* s) {
if(s->kind == Rectangle) {
int width, ht;
width = s->shapeData.rectangleData.width;
ht = s->shapeData.rectangleData.ht;
return width = ht;
} else if (s->kind == Circle) {

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=46

MoDULEs <« 47

Where Has My Code Gone?

If you download the code examples in this book or want to write
your own examples, you have to make sure that when you run
the compiler from the shell, you are in the right directory so that
the system can find your code.

If you are running on a system with a cormmand shell, then you
should change directories to the directory where your code is
before trying to compile the example code.

If you‘re running on Windows with the standard Erlang distribbu-
tion, you will need to change directories to where you have
stored your code. Two commands in the Erlang shell can help
you get to the right directory. If you're lost, pwd() prints the
current working directory. cd(Dir) changes the current working
directory to Dir. You should use forward slashes in the directory
name; for example:

1> cd("c:/work™").
c:/work

Tip for Windows users: Create a file called C:/Program
Files/erl5.4.12/.erlang (you might have to change this if your instal-
lation details vary).

Add the following to the file:

io:format("consulting .erlang in ~p~n",
[element(2,file:get_cwd())]1).

%% Edit to the directory where you store your code

c:cd("c:/work™).

io:format("Now in:~p~n", [element(2,file:get_cwd())]).

Now when you start Erlang, it will automatically change direc-
tory to C:/work.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=47

MODULES < 48

The C code performs what is essentially a pattern matching operation
on the argument to the function; only the programmer has to write the
pattern matching code and make sure that it is correct.

In the Erlang equivalent, we merely write the patterns, and the Erlang
compiler generates optimal pattern matching code, which selects the
correct entry point for the program.

We can see what the equivalent code would look like in Java:3

abstract class Shape {
abstract double area();

}

class Circle extends Shape {
final double radius;
Circle(double radius) { this.radius = radius; }
double area() { return Math.PI * radius=*radius; }

}

class Rectangle extends Shape {
final double ht;
final double width;

Rectangle(double width, double height) {
this.ht = height;
this.width = width;

}

double area() { return width = ht; }
}

class Square extends Shape {
final double side;

Square(double side) {
this.side = side;

}

double area() { return side * side; }

}

If you compare the Erlang code with Java code, you'll see that in the
Java program the code for area is in three different places. In the Erlang
program, all the code for area is in the same place.

3. Adapted from http://java.sun.com/developer/Books/shiftintojava/page1.html.

http://java.sun.com/developer/Books/shiftintojava/page1.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=48

BACK TO SHOPPING <d 49

3.2 Back to Shopping

Recall that we had a shopping list that looked like this:
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{milk,3}]

Now suppose that we’d like to know what our shopping costs. To work
this out, we need to know how much each item in the shopping list
costs. Let’s assume that this information is computed in a module
called shop. Start your favorite text editor, and enter the following into
a file called shop.erl.

Download shop.erl

-module(shop) .
-export([cost/1]).
cost(oranges) -> 5;
cost(newspaper) -> 8;
cost(apples) -> 2;
cost(pears) -> 9;
cost(milk) -> 7.

The function cost/14 is made up from five clauses. The head of each
clause contains a pattern (in this case a very simple pattern that is
just an atom). When we evaluate shop:cost(X), then the system will try
to match X against each of the patterns in these clauses. If a match is
found, the code to the right of the -> is evaluated.

The cost/1 function must also be exported from the module; this is nec-
essary if we want to call it from outside the module.?

Let’s test this. We'll compile and run the program in the Erlang shell:

1> c(shop).

{ok,shop}

2> shop:cost(apples).

2

3> shop:cost(oranges).

5

4> shop:cost(socks).

=ERROR REPORT==== 30-0ct-2006::20:45:10 ===

Error in process <0.34.0> with exit value:
{function_clause, [{shop,cost, [socks]},
{erl1_eval,do_apply,5},
{shell,exprs,6},

{shell,eval_loop,3}]1}

4. The notation Name/N means a function called Name with N arguments; N is called the

arity of the function.
5. You can also say -compile(export_all), which exports all the functions in the module.

http://media.pragprog.com/titles/jaerlang/code/shop.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=49

BACK TO SHOPPING <« 50

In line 1 we compiled the module in the file shop.erl. In lines 2 and 3,
we asked how much apples and oranges cost (results, 2 and 5 units®).
In line 4 we asked what socks cost, but no clause matched, so we got a
pattern matching error, and the system printed an error message.”
Back to the shopping list. Suppose we have a shopping list like this:

1> Buy = [{oranges,4}, {newspaper,l}, {apples,10}, {pears,6}, {milk,3}].
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{milk,3}]

And say we want to calculate the total value of all the items in the list.
One way we do this might be as follows:
Download shopl.erl

-module(shopl).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) = N + total(T);
total([]) -> 0.

Let’s experiment with this:

2> c(shopl).

{ok, shopl}
3> shopl:total ([1).
0

Why is this 0? It's because the second clause of total/1 says that total([])
->0:

4> shopl:total ([{miTlk,3}]1).
21

The function call total([{milk.3}]) matches the clause total([{What N} T]} with
T=[].% After the match, the bindings of the variables are {What — milk, N
— 3, T— []}. Then the body of the function (shop:cost(What) * N + total(T)) is
entered. All the variables in the body are replaced by the values in the
bindings. So, the value of the body is now the expression shop:cost(milk)
* 3 + fotal([]).

shop:cost(milk) is 7, and fotal([]) is O; thus, the value of the body is 7*3+0
=21.
What about a more complex argument?

5> shopl:total ([{pears,6},{milk,3}]).
75

6. We're not really interested in the units here, just that the return values are numbers.
7. The “function_clause” part of the error message means that the function call failed
because no clause matched the arguments.

8. This is because [X] is just shorthand for [X|[]].

http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=50

BACK TO SHOPPING <« 51

7 A

Where Do | put Those Semicolons?

We use three types of punctuation in Erlang.

Commas (,) separate arguments in function calls, data con-
structors, and patterns.

Periods (.) (followed by whitespace) separate entire functions
and expressions in the shell.

Semicolons (;) separate clauses. We find clauses in several con-
texts: in kn function definitions and in case, if, try..catch and
receive eXpressions.

Whenever we see sets of patterns followed by expressions, we’ll
see semicolons as separators:

Patternl ->
Expressionsl;

Pattern2 ->
Expressions2;

This time the first clause of total matches with the bindings {What —
pears, N — 6, T+ [{milk,3}]}. The result is shop:cost(pears) * 6 + total([{milk,3}]),
which is 9 * 6 + total([{milk,3})).

But we worked out before that total([{milk,3}]) was 21, so the final result
is 9*6 + 21 =75.

Finally:

6> shopl:total(Buy).
123

Before we leave this section, we should take a more detailed look at the
function total. total(L) works by a case analysis of the argument L. There
are two possible cases; L is a nonempty list, or L is an empty list. We
write one clause for each possible case, like this:
total([Head|Tail]l) ->

some_function_of(Head) + total(Tail);

total([]) ->
0.

In our case, Head was a pattern {What,N}. When the first clause matches
a nonempty list, it picks out the head from the list, does something with
the head, and then calls itself to process the tail of the list. The second
clause matches when the list has been reduced to an empty list ([]).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=51

FUNCTIONS WITH THE SAME NAME AND DIFFERENT ARITY < 52

The function fotal/1 actually did two different things. First it looked up
the prices of each of the elements in the list, and then it summed all
the prices. We can rewrite fotal in a way that separates looking up the
values of the individual items and summing the values. The resulting
code will be clearer and easier to understand. To do this we’ll write two
small list-processing functions called sum and map. But before we talk
about these, we have to introduce the idea of funs. After this, we’ll write
sum and map and then an improved version of total.

3.3 Functions with the Same Name and Different Arity

The arity of a function is the number of arguments that the function
has. In Erlang, two functions with the same name and different arity
in the same module represent entirely different functions. They have
nothing to do with each other apart from a coincidental use of the same
name.

By convention Erlang programmers often use functions with the same
name and different arities as auxiliary functions. Here’s an example:

Download lib_misc.erl

sum(L) -> sum(L, 0).

sum([1, N) -> N;
sum([H|TI, N) -> sum(T, H+N).

The function sum(l) sums the elements of a list L. It makes use of an
auxiliary routine called sum/2, but this could have been called any-
thing. You could have called the auxilliary routine hedgehog/2, and the
meaning of the program would be the same. sum/2 is a better choice of
name, though, since it gives the reader of your program a clue as to
what’s going on and since you don’t have to invent a new name (which
is always difficult).

3.4 Funs

Juns are “anonymous” functions. They are called this because they have
no name. Let’s experiment a bit. First we’ll define a fun and assign it to
the variable Z:

1> Z = fun(X) -> 2%X end.
#Fun<erl_eval.6.56006484>

When we define a fun, the Erlang shell prints #Fun<...> where the ... is
some weird number. Don’t worry about this now.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=52

II!!!!II!III!!!IIIIIII

There’s only one thing we can do with a fun, and that is to apply it to
an argument, like this:

2> 7(2).
4

Z wasn'’t a very good name for the fun; a better name would be Double,
which describes what the fun does:

3> Double = Z.

#Fun<erl_eval.6.10732646>

4> Double(4).
8

Funs can have any number of arguments. We can write a function to
compute the hypotenuse of a right-angled triangle, like this:

5> Hypot = fun(X, Y) -> math:sqrt(X:X + YY) end.
#Fun<erl_eval.12.115169474>

6> Hypot(3,4).
5.00000

If the number of arguments is incorrect, you'll get an error:

7> Hypot(3).
xx exited: {{badarity,{#Fun<erl_eval.12.115169474>,[3]}},
[{er1_eval,expr,3}]} ==

Why is this error called badarity? Remember that arity is the number
of arguments a function accepts. badarity means that Erlang couldn’t
find a function with the given name (Hypot in this case) that took the
number of parameters we passed—our function takes two parameters,
and we passed just one.

Funs can have several different clauses. Here’s a function that converts
temperatures between Fahrenheit and Centigrade:

8> TempConvert = fun({c,C}) -> {f, 32 + Cx9/5};
8> ({f,F}) -> {c, (F-32)=5/9}
8> end.

#Fun<erl_eval.6.56006484>

9> TempConvert({c,100}).

{f,212.000}

10> TempConvert({f,212}).

{c,100.000}

11> TempConvert({c,0}).

{f,32.0000}

Note: The expression in line 8 spans several lines. As we enter this
expression, the shell repeats the prompt “8>” every time we enter a new
line. This means the expression is incomplete and the shell wants more
input.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=53

II!!!!II!III!!IIIIIIII

Erlang is a functional programming language. Among other things this
means that funs can be used as the arguments to functions and that
functions (or funs) can return funs.

Functions that return funs, or functions that can accept funs as their
arguments, are called higher-order functions. We'll see a few examples
of these in the next sections.

Now all of this might not sound very exciting since we haven’'t seen
what we can do with funs. So far, the code in a fun looks just like
regular function code in a module, but nothing could be further from
the truth. Higher-order functions are the very essence of functional
programming languages—they breathe fire into the belly of the code.
Once you've learned to use them, you’ll love them. We’ll see a lot more
of them in the future.

Functions That Have Funs As Their Arguments

The module lists, which is in the standard libraries, exports several
functions whose arguments are funs. The most useful of all these is
lists:map(F,). This is a function that returns a list made by applying the
fun F to every element in the list L:

12> L = [1,2,3,4].

[1,2,3,4]

13> Tists:map(Double, L).

[2 ’ 4 ’ 6 ’ 8] -

Another useful function is lists:filter(P L), which returns a new list of all
the elements E in L such that P(E) is frue.

Let’s define a function Even(X) that is true if X is an even number:

14> Even = fun(X) -> (X rem 2) =:= 0 end.
#Fun<erl_eval.6.56006484>

Here X rem 2 computes the remainder after X has been divided by 2, and
=:= is a test for equality. Now we can test Even, and then we can use it
as an argument to map and filter:

15> Even(8).

true

16> Even(7).

false

17> lists:map(Even, [1,2,3,4,5,6,8]1).
[false,true,false,true,false,true,true]
18> 1lists:filter(Even, [1,2,3,4,5,6,8]1).
[2,4,6,8]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=54

II!!!!!IIIIII!!IIIIIIII

We call operations such as map and filter that do something to an entire
list in one function call as list-at-a-time operations. Using list-at-a-time
operations makes our programs small and easy to understand; they are
easy to understand because we can regard each operation on the entire
list as a single conceptual step in our program. Otherwise, we have to
think of each individual operation on the elements of the list as single
steps in our program.

Functions That Return Funs

Not only can funs be used as arguments to functions (such as map and
filter), but functions can also return funs.

Here’s an example—suppose I have a list of something, say fruit:

1> Fruit = [apple,pear,orange].
[appTle,pear,orange]

Now I can define a function MakeTest(L) that turns a list of things (L) into
a test function that checks whether its argument is in the list L:

2> MakeTest = fun(L) -> (fun(X) -> Tlists:member(X, L) end) end.
#Fun<erl_eval.6.56006484>

3> IsFruit = MakeTest(Fruit).
#Fun<erl_eval.6.56006484>

lists:member(X, L) returns true if X is a member of the list L; otherwise, it
returns false. Now that we have built a test function, we can try it:

4> IsFruit(pear).

true

5> IsFruit(apple).

true

6> IsFruit(dog).

false

We can also use it as an argument to lists:filter/2:

7> lists:filter(IsFruit, [dog,orange,cat,apple,bear]).
[orange,apple]

The notation for funs that return funs takes a little getting used to,
so let’s dissect the notation to make what’s going on a little clearer. A
function that returns a “normal” value looks like this:

1> Double = fun(X) -> (2 * X) end.

#Fun<erl_eval.6.56006484>

2> Double(5).
10

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=55

II!!!!II!III!!!IIIIIII

The code inside the parentheses (in other words, 2 * X) is clearly the
“return value” of the function. Now let’s try putting a fun inside the
parentheses. Remember the thing inside the parentheses is the return
value:

3> Mult = fun(Times) -> (fun(X) -> X = Times end) end.
#Fun<erl_eval.6.56006484>

The fun inside the parentheses is fun(X) -> X * Times end; this is just a
function of X, but where does Times come from? Answer: This is just the
argument of the “outer” fun.

Evaluating Mult(3) returns fun(xX) -> X * 3 end, which is the body of the
inner fun with Times substituted with 3. Now we can test this:

4> Triple = Mult(3).

#Fun<erl_eval.6.56006484>

5> Triple(5).
15

So, Mult is a generalization of Double. Instead of computing a value, it
returns a function, which when called will compute the required value.

Defining Your Own Control Abstractions

Wait a moment—have you noticed something? So far, we haven’'t seen
any if statements, switch statements, for statements, or while statements,
and yet this doesn’t seem to matter. Everything is written using pattern
matching and higher-order functions. So far we haven’'t needed any
additional control structures.

If we want additional control structures, we have a powerful glue that
we can use to make our own control structures. Let’s give an example
of this: Erlang has no for loop, so let’'s make one:

DownToad lib_misc.erl

for(Max, Max, F) -> [F(Max)]1;
for(I, Max, F) -> [F(I)|for(I+1, Max, F)].

So, for example, evaluating for(1,10,F) creates the list [F(1), F(2), ..., F(10)].

How does the pattern matching in the for loop work? The first clause
in for matches only when the first and second arguments to for are the
same. So if we call for(10,10,F), then the first clause will match binding
Max to 10, and the result will be the list [F(10)]. If we call for(1,10,F), the
first clause cannot match since Max cannot match both 1 and 10 at the
same time. In this case, the second clause matches with bindings | —
1 and Max — 10; the value of the function is then [F()|for(l+1,10,F)] with |
substituted by 1 and Max substituted by 10, which is just[F(1)|for(2,10.F)].

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=56

Funs <« 57

7 N

When Do W Higher-Order Functions?

As we have seen, when we use higher-order functions, we can
create our own new control abstractions, we can pass func-
fions as arguments, and we can write functions that return funs.
In practice, not all these techniques get used often:

e Virtually all the modules that | write use functions like
lists:map/2—this is so common that | almost consider map
to be part of the Erlang language. Calling functions such
as map and filter and partition in the module lists is extremely
common.

e | sometimes create my own control abstractions. This is far
less common than calling the higher-order functions in the
standard library modules. This might happen a few times
in a large module.

o Writing functions that return funs is something | do very
infrequently. If | were to write a hundred modules, per-
haps only one or two modules might use this program-
ming technique. Programs with functions that return funs
can be difficult to debug; on the other hand, we can use
functions that return funs to implement things such as lazy
evaluation, and we can easily write reentrant parsers and
parser combinators that are functions that return parsers.

\ S

Now we have a simple for loop.® We can use it to make a list of the
integers from 1 to 10:

1> T1ib_misc:for(1,10,fun(I) -> I end).
[152!3!4!5!6!7!8!9!10]

Or we can use to compute the squares of the integers from 1 to 10:

2> Tib_misc:for(1,10,fun(I) -> I+I end).
[1,4,9,16,25,36,49,64,81,100]

As you become more experienced, you'll find that being able to create
your own control structures can dramatically decrease the size of your
programs and sometimes make them a lot clearer. This is because you
can create exactly the right control structures that are needed to solve
your problem and because you are not restricted by a small and fixed
set of control structures that came with your programming language.

9. This is not quite the same as a for loop in an imperative language, but it is sufficient
for our purposes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=57

SIMPLE LIST PROCESSING <« 58

7 N

Common Errors

Some readers have mistakenly typed into the shell fragments
of code contained in the source code listings. These are not
valid shell commands, and you’ll get some very strange error
message if you try to do this. So be warned: don’t do this.

If you accidentally choose a module name that collides with
one of the system modules, then when you compile your mod-
ule, you'll get a strange message saying that you can’t load a
module that resides in a sticky directory. Just rename the mod-
ule, and delete any beam file that you might have made when
compiling your module.

3.5 Simple List Processing

Now that we’ve introduced funs, we can get back to writing sum and
map, which we’ll need for our improved version of total (which I'm sure
you haven’t forgotten about!).

We'll start with sum, which computes the sum of the elements in a list:
Download mylists.erl

©® sum([H|T]) -> H + sum(T);
® sum([]) -> 0.

Note that the order of the two clauses in sum is unimportant. This is
because the first clause matches a nonempty list and the second an
empty list, and these two cases are mutually exclusive. We can test sum
as follows:

1> c(mylists). %% <-- Last time I do this

{ok, mylists}

2> L =[1,3,10].

[1,3,10]

3> mylists:sum(L).

14

Line 1 compiled the module lists. From now on, I'll often omit the com-
mand to compile the module, and you’ll have to remember to do this
yourself. It’s pretty easy to understand how this works. Let’s trace the
execution:

1. sum([1.3.10D)

2. sum([1,3,10) = 1 + sum([3,10)) (by ©)
3. =1+ 3+sum(10]) (by ©)

http://media.pragprog.com/titles/jaerlang/code/mylists.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=58

SIMPLE LIST PROCESSING < 59

4. =1+3+10+sum([]) (by 0)
5. =1+3+10+0 (by 9)
6. =14

Finally, let’s look at map/2, which we met earlier. Here’s how it’s defined:
DownTload mylists.erl

9 mapC, [D -> [1;
@ map(F, [H|TI]) -> [F(H)|map(F, T)].
©® The first clause says what to do with an empty list. Mapping any
function over the elements of an empty list (there are none!) just
produces an empty list.

® The second clause is a rule for what to do with a list with a head
H and tail T. That’s easy. Just build a new list whose head is F(H)
and whose tail is map(F).

Note: The definition of map/2 is copied from the standard library module
lists to mylists. You can do anything you like to the code in mylists.erl. Do @
not under any circumstance try to make your own module called lists

unless you know exactly what you're doing.

We can run map using a couple of functions that double and square
the elements in a list, as follows:

1> L =1[1,2,3,4,5].

[1,2,3,4,5].
2> mylists:map(fun(X) -> 2+X end, L).
[2,4,6,8,10]
3> mylists:map(fun(X) -> X=X end, L).
[1,4,9,16,25]

Have we said the final word on map? Well, no, not really! Later, we’ll
show an even shorter version of mop written using list comprehen-
sions, and in Section 20.2, Parallelizing Sequential Code, on page 372,
we’ll show how we can compute all the elements of the map in parallel
(which will speed up our program on a multicore computer)—but this
is jumping too far ahead. Now that we know about sum and map, we
can rewrite total using these two functions:

Download shop2.erl

-module(shop2).
-export([total/1]).
-import(lists, [map/2, sum/1]).

total(L) ->
sum(map(fun({What, N}) -> shop:cost(What) = N end, L)).

http://media.pragprog.com/titles/jaerlang/code/mylists.erl
http://media.pragprog.com/titles/jaerlang/code/shop2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=59

SIMPLE LIST PROCESSING < 60

7 A

How | Write Programs

When I'm writing a program, my approach is to “write a bit”
and then “test a bit.” | start with a small module with few func-
fions, and then | compile it and test it with a few commands in
the shell. Once I'm happy with it, | write a few more functions,
compile them, test them, and so on.

Often | haven't really decided what sort of data structures I'll
need in my program, and as | run small examples, | can see
whether the data structures | have chosen are appropriate.

| tend to “grow” programs rather than think them out com-
pletely before writing them. This way | don’t tend to make large
mistakes before | discover that things have gone wrong. Above
all, it’s fun, | get immediate feedback, and | see whether my
ideas work as soon as | have typed in the program.

Once I've figured out how to do something in the shell, | usually
then go and write a makefile and some code that reproduces
what |'ve learned in the shell.

We can see how this function works by looking at the steps involved:

1> Buy = [{oranges,4}, {newspaper,1}, {apples, 10}, {pears,6},{milk,3}].
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{miTlk,3}]

2> Ll=Tists:map(fun({What,N}) -> shop:cost(What) = N end, Buy).
[20,8,20,54,21]

3> Tlists:sum(Ll).

123

Note also the use of the -import and -export declarations in the module:

* The declaration -import(lists, [map/2, sum/1]). means the function
map/2 is imported from the module lists, and so on. This means
we can write map(Fun, ...) instead of lists:map(Fun, ...). cost/1 was not
declared in an import declaration, so we had to use the “fully qual-
ified” name shop:cost.

* The declaration -export([total/1]) means the function total/1 can be
called from outside the module shop2. Only functions that are
exported from a module can be called from outside the module.

By this time you might think that our fotal function cannot be further
improved, but you'd be wrong. Further improvement is possible. To do
so, we'll use a list comprehension.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=60

LisT COMPREHENSIONS < 61

3.6 List Comprehensions

List comprehensions are expressions that create lists without having to
use funs, maps, or filters. This makes our programs even shorter and
easier to understand.

We'll start with an example. Suppose we have a list L:

1> L =[1,2,3,4,5].

[1,2,3,4,5]

And suppose we want to double every element in the list. We've done
this before, but I'll remind you:

2> Tists:map(fun(X) -> 2+X end, L).

[(2,4,6,8,10]

But there’s a much easier way that uses a list comprehension:

4> [2=X || X <- L].

[2!4!6,8,10]

The notation [F(X) || X <- L] means “the list of F(X) where X is taken from
the list L.” Thus, [2*X || X <- L] means “the list of 2*X where X is taken
from the list L.”

To see how to use a list comprehension, we can enter a few expressions
in the shell to see what happens. We start by defining Buy:

1> Buy=[{oranges,4}, {newspaper,1}, {apples, 10}, {pears,6},{milk,3}].
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{milk,3}].

Now let’s double the number of every item in the original list:
2> [{Name, 2%Number} || {Name, Number} <- Buy].
[{oranges, 8}, {newspaper,2},{apples, 20}, {pears,12},{milk,6}]

Note that the tuple {Name, Number} to the right side of the (||) sign is a
pattern that matches each of the elements in the list Buy. The tuple to
the left side, {Name, 2*Number}, is a constructor.

Suppose we want to compute the total cost of all the elements in the
original list; we could do this as follows. First replace the name of every
item in the list with its price:

3> [{shop:cost(A), B} || {A, B} <- Buy].
[{5,4},{8,1},{2,10},{9,6},{7,3}]

Now multiply the numbers together:

4> [shop:cost(A) = B || {A, B} <- Buy].
[20,8,20,54,21]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=61

LisT COMPREHENSIONS <« 62

Then sum them:
5> Tists:sum([shop:cost(A) = B || {A, B} <- Buyl).
123
Finally, if we wanted to make this into a function, we’d write the follow-
ing:
total(L) ->

Tists:sum([shop:cost(A) = B || {A, B} <- L.
List comprehensions will make your code really short and easy to read.
Just for fun we can use them to give an even shorter definition of map:
map(F, L) -> [FCX) || X <- L].
The most general form of a list comprehension is an expression of the
following form:
[X || Qualifierl, Qualifier2, ...]

X is an arbitrary expression, and each qualifier is either a generator or
a filter.

* Generators are written as Pattern <- ListExpr where ListExpr must be
an expression that evaluates to a list of terms.

¢ Filters are either predicates (functions that return true or false) or
boolean expressions.

Note that the generator part of a list comprehension works like a filter,
so, for example:

1> [X || fa, X} <- [{a,1},{b,2},{c,3},{a,4},hello, "won"]].

[1,4]

We'll finish the section on list comprehensions with a few little exam-
ples:

Quicksort
Here’s how to write a sort algorithm!© using two list comprehensions:

DownToad lib_misc.erl

gsort([1) -> [1;

gsort([Pivot|T]) ->
gsort([X || X <= T, X < Pivot])
++ [Pivot] ++
gsort([X || X <- T, X >= Pivot]).

10. This code is shown for its elegance rather than its efficiency. Using ++ in this way is
not generally considered good programming practice.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=62

LIST COMPREHENSIONS < 63

(where ++ is the infix append operator):

1> L=[23,6,2,9,27,400,78,45,61,82,14].
[23,6,2,9,27,400,78,45,61,82,14]

2> Tib_misc:qgsort(L).
[2,6,9,14,23,27,45,61,78,82,400]

To see how this works, we’ll step through the execution. We start with
a list L and call gsort(L). This matches the second clause of gsort:

3> [Pivot|T] = L.
[23,6,2,9,27,400,78,45,61,82,14]

with bindings Pivot — 23 and T — [6,2,9,27,400,78,45,61,82,14).

Now we split T into two lists, one with all the elements in T that are less
than Pivot, and the other with all the elements greater than or equal to
Pivot:

4> Smaller = [X || X <- T, X < Pivot].

[6,2,9,14]

5> Bigger = [X || X <- T, X >= Pivot].

[27,400,78,45,61,82]

Now we sort Smaller and Bigger and combine them with Pivot:

gsort([6,2,9,14]) ++ [23] ++ gsort([27,400,78,45,61,82])
= [2,6,9,14] ++ [23] ++ [27,45,61,78,82,400]
= [2,6,9,14,23,27,45,61,78,82,400]

Pythagorean Triplets
Pythagorean triplets are sets of integers {A,B,C} such that 4% + B2 = C2.

The function pythag(N) generates a list of all integers {AB.C} such that
A% + B? = (? and where the sum of the sides is less than or equal to N:

DownToad lib_misc.erl

pythag(N) ->

[{A,B,C} ||
A <- Tists:seq(1,N),
B <- Tists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
AxA+B*B =:= CxC

1.

Just a few words of explanation: lists:seq(1, N) returns a list of all the
integers from 1 to N. Thus, A <- lists;seq(1, N) means that A takes all
possible values from 1 to N. So our program reads, “Take all values of

A from 1 to N, all values of B from 1 to N, and all values of C from 1 to N
such that A + B + C is less than or equal to N and A*A + B*B = C*C.”

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=63

ARITHMETIC EXPRESSIONS d 64

1> 1ib_misc:pythag(16).

[{3,4,5},{4,3,5}]

2> Tlib_misc:pythag(30).
[{3,4,5},{4,3,5},{5,12,13},{6,8,10},{8,6,10},{12,5,13}]

Anagrams

If you're interested in English-style crossword puzzles, you'll often find
yourself figuring out anagrams. Let’s use Erlang to find all the permu-
tations of a string using the beautiful little function perms where we
have the following:

Download lib_misc.erl

perms([1) -> [[1];
perms(L) -> [[H|T] || H<- L, T <- perms(L--[H])].

1> Tib_misc:perms("123").
["123","132","213","231","312","321"]
2> Tib_misc:perms("cats").

["cats", "cast", "ctas", "ctsa", "csat", "csta", "acts", "acst",
"atcs", "atsc", "asct", "astc", "tcas", "tcsa", "tacs", "tasc",
"tsca", "tsac", "scat", "scta", "sact", "satc", "stca", "stac"]

X--Y is the list subtraction operator. It subtracts the elements in Y from
X; there’s a more precise definition in Section 5.4, List Operations ++
and --, on page 108.

Just for once, I'm not going to explain how perms works, since the expla-
nation would be many times longer than the program, so you can figure
this out for yourself! (But, here’s a hint: To compute all permutations of
X123, compute all permutations of 123 [these are 123 132 213 231 312
321]. Now interleave the X at all possible positions in each permutation,
so adding X to 123 gives X123 1X23 12X3 123X, adding X to 132 gives
X132 1X32 13X2 132X, and so on. Apply these rules recursively.)

3.7 Arithmetic Expressions

All the possible arithmetic expressions are shown in Figure 3.1, on the
following page. Each arithmetic operation has one or two arguments—
these arguments are shown in the table as Integer or Number (Number
means the argument can be an integer or a float).

Associated with each operator is a priority. The order of evaluation of a
complex arithmetic expression depends upon the priority of the opera-
tor: all operations with priority 1 operators are evaluated first, then all
operators with priority 2, and so on.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=64

GUARDS d 65

Op Description Argument Type Priority
+X +X Number 1
-X -X Number 1
X*Y X*Y Number 2
X/Y X /Y (floating-point division) Number 2
bnot X Bitwise not of X Integer 2
XdivY Integer division of X and Y Integer 2
XremY Integer remainder of X divided by Y Integer 2
XbandY Bitwise and of X and Y Integer 2
X+Y X+Y Number 3
X-Y X-Y Number 3
X borY Bitwise or of X and Y Integer 3
X bxorY Bitwise xor of X and Y Integer 3
X bslN Arithmetic bitshift left of X by N bits Integer 3
X bsrN Bitshift right of X by N bits Integer 3

Figure 3.1: Arithmetic Expressions

You can use parentheses to change the default order of evaluation—
any parenthesized expressions are evaluated first. Operators with equal
priorities are treated as left associative and are evaluated from left to
right.

3.8 Guards

Guards are constructs that we can use to increase the power of pattern
matching. Using guards, we can perform simple tests and comparisons
on the variables in a pattern. Suppose we want to write a function
max(X, Y) that computes the max of X and Y. We can write this using a
guard as follows:

max(X, Y) when X > Y -> X;
max(X, Y) -> Y.

The first clause matches when X is greater than Y and the result is X.

If the first clause doesn’t match, then the second clause is tried. The
second clause always returns the second argument Y. Y must be greater
than or equal to X; otherwise, the first clause would have matched.

You can use guards in the heads of function definitions where they are
introduced by the when keyword, or you can use them at any place in

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=65

GUARDS «d 66

the language where an expression is allowed. When they are used as
expressions, they evaluate to one of the atoms true or false. If the guard
evaluates to frue, we say that the evaluation succeeded; otherwise, it
fails.

Guard Sequences

A guard sequence is either a single guard or a series of guards, sepa-
rated by semicolons (;). The guard sequence G1; G2; ...; Gn is true if at
least one of the guards—G1, G2, ...—evaluates to frue.

A guard is a series of guard expressions, separated by commas (,).
The guard GuardExprl, GuardExpr2, ..., GuardExprN is frue if all the guard
expressions—GuardExpr1, GuardExpr2, ...—evaluate to true.

The set of valid guard expressions is a subset of all valid Erlang expres-
sions. The reason for restricting guard expressions to a subset of Erlang
expressions is that we want to guarantee that evaluating a guard ex-
pression is free from side effects. Guards are an extension of pattern
matching, and since pattern matching has no side effects, we don’t
want guard evaluation to have side effects.

In addition, guards cannot be user-defined boolean expressions, since
we want to guarantee that they are side effect free and terminate.

The following syntactic forms are legal in a guard expression:
¢ The atom frue

* Other constants (terms and bound variables); these all evaluate to
false in a guard expression

Calls to the guard predicates in Figure 3.2, on page 68 and to the
BIFs!! in Figure 3.3, on page 69.

* Term comparisons (Figure 5.3, on page 116)
¢ Arithmetic expressions (Figure 3.1, on the previous page)
* Boolean expressions (Section 5.4, Boolean Expressions, on page 103)

® Short-circuit boolean expressions (Section 5.4, Short-Circuit Boo-
lean Expressions, on page 115)

When evaluating a guard expression, the precedence rules described in
Section 5.4, Operator Precedence, on page 112 are used.

11. BIF is short for built-in function See Section 5.1, BIFs, on page 87.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=66

GUARDS d 67

Guard Examples
f(X,Y) when is_integer(X), X > Y, Y <6 -> ...

This means “when X is an integer and X is greater than Y and Y is less
than 6.” The comma, which separates the test in the guard, means

“and.”
is_tuple(T), size(T) =:= 6, abs(element(3, T)) > 5

element(4, X) =:= hd(L)

The first line means T is a tuple of six elements, and the absolute value
of the third element of T is greater than 5. The second line means that
element 4 of the tuple X is identical to the head of the list L.

X =:= dog; X =:= cat
is_integer(X), X > Y ; abs(Y) < 23

The first guard means X is either a cat or a dog. The second guard
either means that X is an integer and is greater than Y or means that
the absolute value of Y is less than 23.

Here are some examples of guards using short-circuit boolean expres-
sions:

A >= -1.0 andalso A+l > B

is_atom(L) orelse (is_list(L) andalso length(L) > 2)

Advanced: The reason for allowing boolean expressions in guards is to
make guards syntactically similar to other expressions. The reason for
the orelse and andalso operators is that the boolean operators and/or
were originally defined to evaluate both their arguments. In guards,
there can be differences between (and and andalso) or between (or and
orelse). For example, consider the following two guards:

f(X) when (X == 0) or (1/X > 2) ->
g(X) when (X == 0) orelse (1/X > 2) ->

The guard in f(X) fails when X is zero but succeeds in g(x).

In practice, few programs use complex guards, and simple () guards
suffice for most programs.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=67

GUARDS «d 68

Predicate
is_atom(X)
is_binary(X)
is_constant(X)
is_float(X)
is_function(X)
is_function(X, N)
is_integer(X)
is_list(X)
is_number(X)
is_pid(X)
is_port(X)
is_reference(X)
is_tuple(X)
is_record(X,TaQ)

is_record(X,Tag.N)

Meaning

Xis an atom.

X is a binary.

X is a constant.

X is a float.

X is a fun.

X is a fun with N arguments.
X is an integer.

X is a list.

X is an integer or a float.

X is a process identifier.

X is a port.

X is a reference.

X is a tuple.

X is a record of type Tag.

X is a record of type Tag and size N.

Figure 3.2: Guard predicates

Use of the True Guard

You might wonder why we need the true guard at all. The reason is
that atom true can be used as a “catchall” guard at the end of an if
expression, like this:
if

Guard -> Expressions;

Guard -> Expressions;

true -> Expressions
end

if will be discussed in Section 3.10, if Expressions, on page 73.

Obsolete Guard Functions

If you come across some old Erlang code written a few years ago, the
names of the guard tests were different. Old code used guard tests
called atom(X), constant(X), float(X), integer(X), list(X), number(X), pid(X),
port(X), reference(X), tuple(X), and binary(X). These tests have the same
meaning as the modern tests named is_atom(X)... The use of old names
in modern code is frowned upon.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=68

REcCORDS <« 69

Function Meaning

abs(X) Absolute value of X.

element(N,X) Element N of X. Note X must be a tuple.

float(X) Convert X, which must be a number, to a float.

hd(X) The head of the list X.

length(X) The length of the list X.

node(The current node.

node(X) The node on which X was created. X can be a process.
An identifier, a reference, or a port.

round(X) Converts X, which must be a number, to an integer.

self() The process identifier of the current process.

size(X) The size of X. X can be a tuple or a binary.

frunc(X) Truncates X, which must be a number, to an integer.

(6] The tail of the list X.

Figure 3.3: Guard built-in functions

3.9 Records

When we program with tuples, we can run into a problem when the
number of elements in a tuple becomes large. It becomes difficult to
remember which element in the tuple means what. Records provide a
method for associating a name with a particular element in a tuple,
which solves this problem.

In a small tuple this is rarely a problem, so we often see programs that
manipulate small tuples, and there is no confusion about what the
different elements represent. Records are declared with the following
syntax:
-record(Name, {

%% the next two keys have default values

keyl = Defaultl,
key?2 Default2,

%% The next 1ine is equivalent to
%% key3 = undefined
key3,

b.

Warning: record is not a shell command (use mr in the shell; see the
description that comes later in this section). Record declarations can
be used only in Erlang source code modules and not in the shell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=69

RECcORDS «d 70

In the previous example, Name is the name of the record. keyl, key2,
and so on, are the names of the fields in the record; these must always
be atoms. Each field in a record can have a default value that is used if
no value for this particular field is specified when the record is created.

For example, suppose we want to manipulate a to-do list. We start by
defining a todo record and storing it in a file (record definitions can be
included in Erlang source code files or put in files with the extension
.hrl, which are then included by Erlang source code files!?).

Download records.hrl

-record(todo, {status=reminder,who=joe,text}).
Once a record has been defined, instances of the record can be created.

To do this in the shell, we have to read the record definitions into the
shell before we can define a record. We use the shell function rr (short
for read records) to do this:

1> rr("records.hrl").
[todo]

Creating and Updating Records
Now we're ready to define and manipulate records:

2> X=#todo{}.
#todo{status = reminder,who = joe,text = undefined}
3> X1 = #todo{status=urgent, text="Fix errata in book"}.

#todo{status = urgent,who = joe,text = "Fix errata in book"}
4> X2 = X1l#todo{status=done}.
#todo{status = done,who = joe,text = "Fix errata in book"}

In lines 2 and 3 we created new records. The syntax #odo{keyl=Vall,
.... keyN=VaIN} is used to create a new record of type todo. The keys are
all atoms and must be the same as those used in the record definition.
If a key is omitted, then a default value is assumed for the value that
comes from the value in the record definition.

In line 4 we copied an existing record. The syntax X1#todo{status=done}
means create a copy of the X1 (which must be of type todo), changing
the field value status to done. Remember this is a copy of the original
record; the original record is not changed.

12. This is the only way to ensure that several Erlang modules use the same record
definitions.

http://media.pragprog.com/titles/jaerlang/code/records.hrl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=70

RECORDS «d 71

Extracting the Fields of a Record
As with everything else, we use pattern matching:

5> #todo{who=W, text=Txt} = X2.

#todo{status = done,who = joe,text = "Fix errata in book"}
6> W.

joe

7> Txt.

"Fix errata in book"

On the left side of the match operator (=), we write a record pattern
with the unbound variables W and Txt. record pattern with the unbound
variables W and Txt. If the match succeeds, these variables get bound to
the appropriate fields in the record. If we just want one field of a record,
we can use the “dot syntax” to extract the field:

8> X2#todo.text.
"Fix errata in book"

Pattern Matching Records in Functions

We can write functions that pattern match on the fields of a record and
that create new records. We usually write code like this:
clear_status(#todo{status=S, who=W} = R) ->

%% Inside this function S and W are bound to the field

%% values in the record

%%

%% R is the xentirex record

R#todo{status=finished}

%% ...

To match a record of a particular type, we might write the function
definition:

do_something(X) when 1is_record(X, todo) ->
%% ...

This clause matches when X is a record of type todo.

Records Are Tuples in Disguise

Records are just tuples. Now let’s tell the shell to forget the definition of
todo:

11> X2.

#todo{status = done,who = joe,text = "Fix errata in book"}
12> rf(todo).

ok

13> X2.

{todo,done, joe, "Fix errata in book"}

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=71

CASE AND IF EXPRESSIONS <« 72

In line 12 we told the shell to forget the definition of the todo record. So
now when we print X2, the shell displays X2 as a tuple. Internally there
are only tuples. Records are a syntactic convenience so you can name
the different elements in a tuple.

3.10 case and if Expressions

So far, we've used pattern matching for everything. This makes Erlang
small and consistent. But sometimes defining separate function clauses
for everything is rather inconvenient. When this happens, we can use
case or if expressions.

case Expressions
case has the following syntax:

case Expression of
Patternl [when Guardl] -> Expr_seql;
Pattern2 [when Guard2] -> Expr_seq2;

end

case is evaluated as follows. First, Expression is evaluated; assume this
evaluates to Value. Thereafter, Value is matched in turn against Pattern1
(with the optional guard Guardl), Paftern2, and so on, until a match is
found. As soon as a match is found, then the corresponding expres-
sion sequence is evaluated—the result of evaluating the expression
sequence is the value of the case expression. If none of the patterns
match, then an exception is raised.

Earlier, we used a function called filter(P L); it returns a list of all those
elements X in L for which P(X) is frue. Now using pattern matching we
could define filter as follows:

filter(P, [H|T]) -> filterl(P(H), H, P, T);
filter(P, [1) -> [].

filterl(true, H, P, T) -> [H|filter(P, D];
filterl(false, H, P, T) -> filter(P, T).

But this definition is rather ugly, so we have to invent an additional
function (called filter1) and pass it all of the arguments of filter/2.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=72

BUILDING LISTS IN NATURAL ORDER < 73

We can do this in a much clearer manner using the case construct, as
follows:
filter(P, [H|T]) ->
case P(H) of
true -> [H|filter(P, T)];
false -> filter(P, T)
end;
filter(P, [1) ->
1.

if Expressions
A second conditional primitive, if, is also provided. Here is the syntax:
if
Guardl ->
Expr_seql;
Guard2 ->
Expr_seq2;

end

This is evaluated as follows: First Guardl is evaluated. If this evalu-
ates to frue, then the value of if is the value obtained by evaluating the
expression sequence Expr_seql. If Guardl does not succeed, Guard2 is
evaluated, and so on, until a guard succeeds. At least one of the guards
in the if expression must evaluate to true; otherwise, an exception will
be raised.

Often the final guard in an if expression is the atom true, which guar-
antees that the last form in the expression will be evaluated if all other
guards have failed.

3.11 Building Lists in Natural Order

The most efficient way to build a list is to add the elements to the head
of an existing list, so we often see code with this kind of pattern:

some_function([H|T], ..., Result, ...) ->
HL = ... H ...,
some_function(T, ..., [HLl|Result], ...);
some_function([], ..., Result, ...) ->
{..., Result, ...}.

This code walks down a list extracting the head of the list H and com-
puting some value based on this function (we can call this H1); it then
adds H1 to the output list Result.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=73

ACCUMULATORS d 74

When the input list is exhausted, the final clause matches, and the
output variable Result is returned from the function.

The elements in Result are in the opposite order to the elements in the
original list, which may or may not be a problem, but if they are in the
wrong order, they can easily be reversed in the final step.

The basic idea is fairly simple:
1. Always add elements to a list head.

2. Taking the elements from the head of an InputList and adding
them head first to an OutputList results in the OutputList having
the reverse order of the InputList.

3. If the order matters, then call listsreverse/1, which is highly opti-
mized.

4. Avoid going against these recommendations.

Note: Whenever you want to reverse a list, you should call lists:reverse
and nothing else. If you look in the source code for the module lists,
you’ll find a definition of reverse. However, this definition is simply used
for illustration. The compiler, when it finds a call to lists:reverse, calls a
more efficient internal version of the function.

If you ever see code like this:
List ++ [H]

it should set alarm bells off in your brain—this is very inefficient and
acceptable only if List is very short.

3.12 Accumulators

How can we get two lists out of a function? How can we write a function
that splits a list of integers into two lists that contain the even and odd
integers in the original list? Here’s one way of doing it:

Download lib_misc.erl

odds_and_evens(L) ->
Odds = [X || X <- L, (X rem 2)
Evens = [X || X <- L, (X rem 2) =:
{0dds, Evens}.

=1]!
0],

5> 1ib_misc:odds_and_evens([1,2,3,4,5,6]).
{[1,3,5],[2,4,6]}

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=74

ACCUMULATORS <« 75

The problem with this code is that we traverse the list twice—this
doesn’t matter whether the list is short, but if the list is very long, it
might be a problem.

To avoid traversing the list twice, we can recode this as follows:

Download lib_misc.erl

odds_and_evens_acc(L) ->
odds_and_evens_acc(L, [1, [1).

odds_and_evens_acc([H|T], Odds, Evens) ->
case (H rem 2) of
1 -> odds_and_evens_acc(T, [H|0dds], Evens);
0 -> odds_and_evens_acc(T, 0dds, [H|Evens])
end;
odds_and_evens_acc([], Odds, Evens) ->
{0dds, Evens}.

Now this traverses the list only once, adding the odd and even argu-
ments onto the appropriate output lists (which are called accumulators).
This code also has an additional benefit, which is less obvious; the ver-
sion with an accumulator is more space efficient than the version with
the [H || filter(H)] type construction.

If we run this, we get almost the same result as before:

1> 1ib_misc:odds_and_evens_acc([1,2,3,4,5,6]).
{[5,3,11,[6,4,2]}

The difference is that the order of the elements in the odd and even
lists is reversed. This is a consequence of the way that the list was
constructed. If we want the list elements in the same order as they were
in the original, all we have to do is reverse the lists in the final clause
of the function by changing the second clause of odds_and_evens_acc to
the following:

odds_and_evens_acc([], Odds, Evens) ->
{1ists:reverse(0dds), lists:reverse(Evens)}.

What We’ve Learned So Far

Now we can write Erlang modules and simple sequential Erlang code,
and we have almost all the knowledge we need to write sequential
Erlang programs.

The next chapter looks briefly at error handling. After this, we get back
to sequential programming, looking at the remaining details that we've
omitted up to now.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=75

4.1

Chapter 4

Exceptions

If you've been following along with the code in the previous chapter,
you've probably seen some of Erlang’s error reporting and handling at
work. Before we dig deeper into sequential programming, let’s take a
brief detour and look at this in more detail. It may seem like a diversion,
but if the eventual objective is to write robust distributed applications,
a good understanding of how error handling works is essential.

Every time we call a function in Erlang, one of two things will happen:
the function returns a value, or something goes wrong. We saw exam-
ples of this in the previous chapter. Remember the cost function?

Download shop.erl

cost(oranges) -> 5;
cost(newspaper) -> 8;
cost(apples) -> 2;
cost(pears) -> 9;
cost(milk) -> 7.

This is what happened when we ran it:

1> shop:cost(apples).

2

2> shop:cost(socks).

=ERROR REPORT==== 30-0ct-2006::20:45:10 ===

Error in process <0.34.0> with exit value:
{function_clause, [{shop,cost, [socks]},
{erl1_eval,do_apply,5},
{shell,exprs,6},
{shel1,eval_loop,3}]1}

http://media.pragprog.com/titles/jaerlang/code/shop.erl

RAISING AN EXCEPTION <« 77

When we called cost(socks), the function crashed. This happened be-
cause none of the clauses that define the function matched the calling
arguments.

Calling cost(socks) is pure nonsense. There is no sensible value that the
function can return, since the price of socks is undefined. In this case,
instead of returning a value, the system raises an exception—this is the
technical term for “crashing.”

We don’t try to repair the error because this is not possible. We don’t
know what socks cost, so we can’t return a value. It is up to the caller
of cost(socks) to decide what to do if the function crashes.

Exceptions are raised by the system when internal errors are encoun-
tered or explicitly in code by calling throw(Exception), exit(Exception). or
erlang:error(Exception).

Erlang has two methods of catching an exception. One is to enclose
the call to the function, which raised the exception within a try...catch
expression. The other is to enclose the call in a catch expression.

4.2 Raising an Exception

Exceptions are raised automatically when the system encounters an
error. Typical errors are pattern matching errors (no clauses in a func-
tion match) or calling BIFs with incorrectly typed arguments (for exam-
ple, calling atom_fo_list with an argument that is an integer).

We can also explicitly generate an error by calling one of the exception
generating BIFs:

exit(Why)
This is used when you really want to terminate the current pro-
cess. If this exception is not caught, the message {'EXIT’".Pid,.Why}
will be broadcast to all processes that are linked to the current
process. We'll say a lot more about this in Section 9.1, Linking
Processes, on page 159, so I won’t dwell on the details here.

throw(Why)
This is used to throw an exception that a caller might want to
catch. In this case we document that our function might throw
this exception. The user of this function has two alternatives: they
can program for the common case and blissfully ignore exceptions,
or they can enclose the call in a try...catch expression and handle
the errors.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=77

TRY...CATCH < 78

erlang:error(Why)
This is used for denoting “crashing errors.” That is, something
rather nasty has happened that callers are not really expected to
handle. This is on par with internally generated errors.

Now let’s try to catch these errors.

4.3 try...caich

If you're familiar with Java, then you’ll have no difficulties understand-
ing the try...catch expression. Java can trap an exception with the fol-
lowing syntax:

try {
block

} catch (exception type identifier) {
block

} catch (exception type identifier) {
block

}o...

finally {
block

}

Erlang has a remarkably similar construct, which looks like this:

try FuncOrExpressionSequence of
Patternl [when Guardl] -> Expressionsl;
Pattern2 [when Guard2] -> Expressions2;

catch
ExceptionType: ExPatternl [when ExGuardl] -> ExExpressionsl;
ExceptionType: ExPattern2 [when ExGuard2] -> ExExpressions2;

after
AfterExpressions
end

Notice the similarity between the try...catch expression and the case
expression:

case Expression of
Patternl [when Guardl] -> Expressionsl;
Pattern2 [when Guard2] -> Expressions2;

end

try...catch is like a case expression on steroids. It's basically a case
expression with catch and after blocks at the end.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=78

TRY...CATCH < 79

fry...catch Has a Value

Remember, everything in Erlang is an expression, and all expres-
sions have values. This means the expression try...end also has a
value. So, we might write something like this:

fC...) >
k = try ... end,

Y = 9(x,

More often, we don’t need the value of the try...catch expres-
sion. So, we just write this:

f(...) >

try ... end,

try...catch works as follows: First FuncOrExpessionSeq is evaluated. If this
finishes without raising an exception, then the return value of the func-
tion is pattern matched against the patterns Pattern1 (with optional
guard Guardl), Pattern2, and so on, until a match is found. If a match is
found, then the value of the entire try...catch is found by evaluating the
expression sequence following the matching pattern.

If an exception is raised within FuncOrExpressionSeq, then the catch pat-
terns ExPattern1, and so on, are matched to find which sequence of
expressions should be evaluated. ExceptionType is an atom (one of throw,
exit, or error) that tells us how the exception was generated. If Exception-
Type is omitted, then the value defaults to throw.

Note: Internal errors that are detected by the Erlang runtime system
always have the tag error.

The code following the after keyword is used for cleaning up after FuncOr-
ExpressionSeq. This code is guaranteed to be executed, even if an excep-
tion is raised. The code in the ofter section is run immediately after
any code in Expressions in the try or catch section of the expression. The
return value of AfterExpressions is lost.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=79

...cATcH <« 80

If you're coming from Ruby, all of this should seem very familiar—in
Ruby, we’d write a similar pattern:

begin
rescue
ensure
end.

The keywords are different,! but the behavior is similar.

Shortcuts
We can omit several of the parts of a tfry...catch expression. This:

try F
catch

end

means the same as this:

try F of
vVal -> Val

catch

end

Also, the after section can be omitted.

Programming Idioms with try...catch

When we design applications, we often make sure that the code that
catches an error can catch all the errors that a function can produce.

Here’s a pair of functions that illustrates this. The first function gener-
ates all possible types of an exception:

Download try_test.erl

generate_exception(l) -> a;
generate_exception(2) -> throw(a);
generate_exception(3) -> exit(a);
generate_exception(4) -> {'EXIT', a};
generate_exception(5) -> erlang:error(a).

Now we’ll write a wrapper function to call generate_exception in a try...
catch expression.

1. And there is no retry expression in Erlang!

http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=80

Download try_test.erl

demol() ->
[catcher(I) || I <- [1,2,3,4,5]].

catcher(N) ->

try generate_exception(N) of
val -> {N, normal, Val}

catch
throw:X -> {N, caught, thrown, X};
exit:X -> {N, caught, exited, X};
error:X -> {N, caught, error, X}

end.

Running this we obtain the following:

> try_test:demol().
[{1,normal,a},
{2,caught, thrown,a},
{3,caught,exited,a},
{4,normal,{"EXIT',a}},
{5,caught,error,a}]

This shows that we can trap and distinguish all the forms of exception
that a function can raise.

4.4 catch

The other way to trap an exception is to use the primitive catch. When
you catch an exception, it is converted into a tuple that describes the
error. To demonstrate this, we can call generate_exception within a catch
expression:

Download try_test.erl

demo2() ->
[{I, (catch generate_exception(I))} || I <- [1,2,3,4,5]].

Running this we obtain the following:

2> try_test:demo2().

[{1,a},

{2,a},

{3,{"EXIT",a}},

{4,{'EXIT',a}},

{5,{"EXIT',{a, [{try_test,generate_exception,1},
{try_test, '-demo2/0-fun-0-"',1},
{Tists,map,2},
{Tists,map,2},
{erl1_eval,do_apply,5},
{shell,exprs,6},
{shell,eval_loop,3}1}}}]

http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=81

IMPROVING ERROR MESSAGES <« 82

If you compare this with the output from the try...catch section, you’ll
see that we lose a lot of precision in analyzing the cause of the problem.

4.5 Improving Error Messages

One use of erlang:error is to improve the quality of error messages. If we
call math:sgrt(X) with a negative argument, we’ll see the following:

1> math:sqrt(-1).

#% exited: {badarith,[{math,sqrt,[-1]},
{erl1_eval,do_apply,5},
{shell,exprs,6},
{shell,eval_Tloop,3}]} ==

We can write a wrapper for this, which improves the error message:

Download lib_misc.erl

sqrt(X) when X < 0 ->
erlang:error({squareRootNegativeArgument, X});
sqrt(X) ->
math:sqrt(X).

2> Tib_misc:sqrt(-1).

«%x exited: {{squareRootNegativeArgument,-1},
[{Tib_misc,sqrt,1},
{erl1_eval,do_apply,5},
{shell,exprs,6},
{shell,eval_Tloop,3}]} ==

4.6 Programming Style with try...catch

How do you handle errors in practice? It depends....

Code Where Error Returns Are Common

If your function does not really have a “common case,” you should prob-
ably return something like {ok. Value} or {error, Reason}, but remember
that this forces all callers to do something with the return value. You
then have to choose between two alternatives; you either write this:

case f(X) of
{ok, Val} ->
do_some_thing_with(Val);
{error, Why} ->
%% ... do something with the error ...
end,

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=82

CATCHING EVERY POSSIBLE EXCEPTION <« 83

which takes care of both return values, or write this:

{ok, Vval} = f(X),
do_some_thing_with(Val);

which raises an exception if f(X) returns {error, ...}.

Code Where Errors Are Possible but Rare

Typically you should write code that is expected to handle errors as in
this example:

try my_func(X)
catch
throw: {thisError, X} -> ...
throw: {someOtherError, X} -> ...
end

And the code that detects the errors should have matching throws:

my_func(X) ->
case ... of

. throw({thisError, ...3})

. throw({someOtherError, ...})

4.7 Catching Every Possible Exception

If we want to catch every possible error, we can use the following idiom:

try Expr
catch
-> ... Code to handle all exceptions

end

If we omit the tag and write this:

try Expr
catch

_ -> ... Code to handle all exceptions
end

then we won'’t catch all errors, since in this case the default tag throw
is assumed.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=83

OLD- AND NEW-STYLE EXCEPTION HANDLING < 84

4.8 Old- and New-Style Exception Handling

This section is for Erlang veterans only!

try..catch is a relatively new construct that was introduced to correct
deficiencies in the catch...throw mechanism. If you're an old-timer who
hasn’t been reading the latest documentation (like me), then you’ll auto-
matically write code like this:

case (catch foo(...)) of
{"EXIT', Why} ->

Val ->
end

This is usually correct, but it's almost always better to write it as fol-
lows:

try foo(...) of
Val -> ...
catch
exit: Why ->

end

So, instead of writing case (cafch ...) of ..., write fry ... of

4.9 Stack Traces

When an exception is caught, we can find the latest stack trace by
calling erlang:get_stackirace(). Here’s an example:

Download try_test.erl

demo3() ->
try generate_exception(5)
catch
error:X ->
{X, erlang:get_stacktrace()}
end.

1> try_test:demo3().

{a, [{try_test,generate_exception,l},
{try_test,demo3,0},
{erl1_eval,do_apply,5},
{shell,exprs,6},
{shell,eval_Tloop,3}]}

http://media.pragprog.com/titles/jaerlang/code/try_test.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=84

STACK TRACES < 85

The stack trace contains a list of the functions on the stack to which
the current function will return if it returns. It’'s almost the same as
the sequence of calls that got us to the current function, but any tail-
recursive function calls? will be missing from the trace.

From the point of view of debugging our program, only the first few lines
of the stack trace are interesting. The earlier stack trace tells us that the
system crashed while evaluating the function generate_exception with
one argument in the module try_test. fry_fest:generate_exception/1 was
probably called by try_test:demo3((we can’t be sure about this because
try_test:demo3() might have called some other function that made a tail-
recursive call to try_test:generate_exception/1, in which case the stack
trace won’t have any record of the intermediate function).

2. See Section 8.9, A Word About Tail Recursion, on page 156.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=85

Chapter 5

Advanced Sequential

By now were well on our way to understanding sequential Erlang.
Chapter 3, Sequential Programming, dealt with the basics of writing
functions. This chapter covers the following:

* BIFs: Short for built-in functions, BIFs are functions that are part of
the Erlang language. They look as if they might have been written
in Erlang, but in fact they are implemented as primitive operations
in the Erlang virtual machine.

* Binaries: This is a data type that we use to store raw chunks of
memory in an efficient manner.

* The bit syntax: This is a pattern matching syntax used for packing
and unpacking bit fields from binaries.

* Miscellaneous topics: This deals with a small number of topics
needed to complete our mastery of sequential Erlang.

Once you have mastered this chapter, you’ll know pretty much all there
is to know about sequential Erlang, and you’ll be ready to dive into the
mysteries of concurrent programming.

BIFs <« 87

5.1 BIFs

BIF's are functions that are built into Erlang. They usually do tasks that
are impossible to program in Erlang. For example, it’s impossible to
turn a list into a tuple or to find the current time and date. To perform
such an operation, we call a BIF.

For example, the BIF tuple_fo_list/1 converts a tuple to a list, and time/0
returns the current time of day in hours, minutes, and seconds:

1> tuple_to_Tist({12,cat,"hello"}).

[12,cat,"hell0o"]

2> time(Q).
{20,0,3}

All the BIFs behave as if they belong to the module erlang, though the

most common BIFs (such as tuple_to_list) are autoimported, so we can
call it by writing tuple_to_list(...) instead of erlang:tuple_to_list(...).

You'll find a full list of all BIFs in the erlang manual page in your Erlang
distribution or online at http://www.erlang.org/doc/man/erlang.html.

5.2 Binaries

Use a data structure called a binary to store large quantities of raw
data. Binaries store data in a much more space-efficient manner than
in lists or tuples, and the runtime system is optimized for the efficient
input and output of binaries.

Binaries are written and printed as sequences of integers or strings,
enclosed in double less-than and greater-than brackets. For example:
1> <<5,10,20>>.

<<5,10,20>>

2> <<"hello">>.
<<"hello">>

When you use integers in a binary, each must be in the range 0 to 255.
The binary <<'cat">> is shorthand for <<99,97,116>>; that is, the binary
made up from the ASCII character codes of the characters in the string.

As with strings, if the content of a binary is a printable string, then the
shell will print the binary as a string; otherwise, it will be printed as a
sequence of integers.

We can build a binary and extract the elements of a binary using a
BIF, or we can use the bit syntax (see Section 5.3, The Bit Syntax, on
page 89). In this section, I'll talk only about the BIFs.

http://www.erlang.org/doc/man/erlang.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=87

BINARIES <« 88

4 N\

@spec func(Argl...., Argn) -> Val

What's all this @spec business?

[t's an example of the Erlang fype nofation, a docu-
mentation convention that the Erlang community uses for
describing (among other things) the argument and return
types of a function. It should be fairly self-explanatory, but
for those who want the full details, furn to Appendix A, on
page 390.

BIFs That Manipulate Binaries
The following BIFs manipulate binaries:
@spec list_to_binary(loList) -> binary()
list_to_binary returns a binary constructed from the integers and

binaries in loList. Here loList is a list, whose elements are integers in
0..255, binaries, or loLists:

1> Binl = <<1,2,3>>.

<<1,2,3>>

2> Bin2 = <<4,5>>.
<<4,5>>

3> Bin3 = <<6>>.
<<6>>

4> 1ist_to_binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

@spec split_binary(Bin, Pos) -> {BinT, Bin2}
This splits the binary Bin into two parts at position Pos:
1> split_binary(<<1,2,3,4,5,6,7,8,9,10>>, 3).
{<<1,2,3>>,<<4,5,6,7,8,9,10>>}

@spec term_to_binary(Term) -> Bin
This converts any Erlang term into a binary.

The binary produced by term_tfo_binary is stored in the so-called
external term format. Terms that have been converted to binaries
by using term_to_binary can be stored in files, sent in messages
over a network, and so on, and the original term from which they
were made can be reconstructed later. This is extremely useful for
storing complex data structures in files or sending complex data
structures to remote machines.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=88

THE BIT SyNTAX <« 89

@spec binary_to_term(Bin) -> Term
This is the inverse of term_to_binary:
1> B = term_to_binary({binaries,"are", useful}).
<<131,104,3,100,0,8,98,105,110,97,114,105,101,115,107,
0,3,97,114,101,100,0,6,117,115,101,102,117,108>>
2> binary_to_term(B).
{binaries,"are",useful}

@spec size(Bin) -> Int
This returns the number of bytes in the binary.

1> size(<<1,2,3,4,5>>).
5

5.3 The Bit Syntax

The bit syntax is an extension to pattern matching used for extracting
and packing individual bits or sequences of bits in binary data. When
you're writing low-level code to pack and unpack binary data at a bit
level, you'll find the bit syntax incredibly useful. The bit syntax was
developed for protocol programming (something that Erlang excels at)
and produces highly efficient code for packing and unpacking protocol
data.

Suppose we have three variables—X, Y, and Z—that we want to pack
into a 16-bit memory area in a variable M. X should take 3 bits in the
result, Y should take 7 bits, and Z should take 6. In most languages
this involves some messy low-level operations involving bit shifting and
masking. In Erlang, you just write the following:

M = <<X:3, Y:7, Z:6>>
Easy!

The full bit syntax is slightly more complex, so we’ll go through it in
small steps. First we’ll look at some simple code to pack and unpack
RGB color data into 16-bit words. Then we’ll dive into the details of
bit syntax expressions. Finally we’ll look at three examples taken from
real-world code that uses the bit syntax.

Packing and Unpacking 16-bit Colors

We'll start with a very simple example. Suppose we want to represent
a 16-bit RGB color. We decide to allocate 5 bits for the red channel, 6
bits for the green channel, and 5 bits for the blue channel.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=89

THE BIT SynTAX < 90

(We use one more bit for the green channel because the human eye is
more sensitive to green light.)

We can create a 16-bit memory area Mem containing a single RGB
triplet as follows:

1> Red = 2.

2

2> Green = 61.

61

3> Blue = 20.

20

4> Mem = <<Red:5, Green:6, Blue:5>>.

<<23,180>>

Note in line 4 we created a 2-byte binary containing a 16-bit quantity.
The shell prints this as <<23,180>>.

To pack the memory, we just wrote the expression <<Red:5, Green:6,
Blue:5>>.

To unpack the word, we write a pattern:

5> <<R1:5, G1:6, B1l:5>> = Mem.
<<23,180>>

6> R1.

2

7> G1.

61

8> B1.

20

Bit Syntax Expressions
Bit syntax expressions are of the following form:

<<>>
<<E1l, E2, ..., En>>

Each element Ei specifies a single segment of the binary. Each element
Ei can have one of four possible forms:
Ei = Value |

Value:Size |

Value/TypeSpecifierList |
Value:Size/TypeSpecifierList

Whatever form you use, the total number of bits in the binary must be
evenly divisible by 8. (This is because binaries contain bytes that take
up 8 bits each, so there is no way of representing sequences of bits
whose length is not a multiple of 8.)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=90

THE BIT SynTax < 91

When you construct a binary, Value must be a bound variable, a literal
string, or an expression that evaluates to an integer, a float, or a binary.
When used in a pattern matching operation, Value can be a bound or
unbound variable, integer, literal string, float, or binary.

Size must be an expression that evaluates to an integer. In pattern
matching, Size must be an integer or a bound variable whose value is
an integer. Size cannot be an unbound variable.

The value of Size specifies the size of the segment in units (we discuss
this later). The default value depends on the type (see below). For an
integer it is 8, for a float it is 64, and for a binary it is the size of the
binary. In pattern matching, this default value is valid only for the very
last element. All other binary elements in the matching must have a
size specification.

TypeSpecifierlist is a hyphen-separated list of items of the form End-Sign-
Type-Unit. Any of the previous items can be omitted, and the items can
occur in any order. If an item is omitted, then a default value for the
item is used.

The items in the specifier list can have the following values:

@type End = big | little | native
(@type is also part of the Erlang type notation given in Appendix A).

This specifies the endianess of the machine. native is determined
at runtime, depending upon the CPU of your machine. The default
is big. The only significance of this has to do with packing and
unpacking integers from binaries. When packing and unpacking
integers from binaries on different endian machines, you should
take care to use the correct endianess.

Tip: In the rare case that you really need to understand what'’s

going on here, some experimentation may be necessary. To assure

yourself that you are doing the right thing, try the following shell

command:

1> {<<16#12345678:32/big>>,<<16#12345678:32/Tittle>>,
<<16#12345678:32/native>>,<<16#12345678:32>>}.

{<<18,52,86,120>>,<<120,86,52,18>>,
<<120,86,52,18>>,<<18,52,86,120>>}

The output shows you exactly how integers are packed in a binary
using the bit syntax.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=91

THE BIT SYNTAX <« 92

In case youre worried, term_fo_binary and binary_to_ferm “do the
right thing” when packing and unpacking integers. So, you can,
for example, create a tuple containing integers on a big-endian
machine. Then use term_to_binary to convert the term to a binary
and send this to a little-endian machine. On the little-endian, you
do binary_to_term, and all the integers in the tuple will have the
correct values.

@type Sign = signed | unsigned
This parameter is used only in pattern matching. The default is
unsigned.

@type Type = integer | float | binary
The default is integer.

@type Unit=112]...255
The total size of the segment is Size x Unit bits long. The total seg-
ment size must be greater than or equal to zero and must be a
multiple of 8.

The default value of Unit depends upon Type and is 1 if Type is
integer or float and 8 if Type is a binary.

If you've found the bit syntax description a bit daunting, don’t panic.
Getting the bit syntax patterns right is pretty tricky. The best way to
approach this is to experiment in the shell with the patterns you need
until you get it right and then cut and paste the result into your pro-
gram. That's how I do it.

Advanced Bit Syntax Examples

Learning the bit syntax is difficult, but the benefits are enormous. This
section has three examples from real life. All the code here is cut and
paste from real-world programs. The examples are as follows:

* Finding the synchronization frame in MPEG data
* Unpacking COFF data
* Unpacking the header in an IPv4 datagram

Finding the Synchronization Frame in MPEG Data

Suppose we want to write a program that manipulates MPEG audio
data. We might want to write a streaming media server in Erlang or
extract the data tags that describe the content of an MPEG audio
stream. To do this, we need to identify and synchronize with the data
frames in an MPEG stream.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=92

THE BIT SynTaAX <« 93

MPEG audio data is made up from a number of frames. Each frame has
its own header followed by audio information—there is no file header,
and in principle, you can cut an MPEG file into pieces and play any
of the pieces. Any software that reads an MPEG stream is supposed to
find the header frames and thereafter synchronize the MPEG data.

An MPEG header starts with an 11-bit frame sync consisting of eleven
consecutive 1 bits followed by information that describes the data that
follows:

AAAAAAAA AAABBCCD EEEEFFGH IIJJKLMM
AAAAAAAAAAA The sync word (11 bits, all ones)

BB 2 bits is the MPEG Audio version ID
cc 2 bits is the layer description

D 1 bit, a protection bit

And so on...

The exact details of these bits need not concern us here. Basically, given
knowledge of the values of A to M, we can compute the total length of
an MPEG frame.

To find the sync point, we first assume that we are correctly positioned
at the start of an MPEG frame. We use the information we find at that
position to compute the length of the frame. We might be pointing at
nonsense, in which case the length of the frame will be totally wrong.
Assuming that we are at the start of a frame and given the length of the
frame, then we can skip to the start of the next frame and see whether
this is another MPEG header frame.

To find the sync point, we first assume that we are correctly positioned
at the start of an MPEG header. We then try to compute the length of
the frame. Then one of the following can happen:

* Our assumption was correct, so when we skip forward by the
length of the frame, we will find another MPEG header.

* Our assumption was incorrect; either we are not positioned at a
sequence of 11 consecutive 1 bits that marks the start of a header
or the format of the word is incorrect so that we cannot compute
the length of the frame.

* Our assumption was incorrect, but we are positioned at a couple of
bytes of music data that happen to look like the start of a header.
In this case, we can compute a frame length, but when we skip
forward by this length, we cannot find a new header.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=93

THE BIT SYNTAX <« 94

To be really sure, we look for three consecutive headers. The synchro-
nization routine is as follows:

Download mp3_sync.erl

find_sync(Bin, N) ->
case is_header(N, Bin) of
{ok, Lenl, _} ->
case is_header(N + Lenl, Bin) of
{ok, Len2, _} ->
case is_header(N + Lenl + Len2, Bin) of

{ok, _, _} —>
{ok, N};
error ->
find_sync(Bin, N+1)
end;
error ->
find_sync(Bin, N+1)
end;
error ->

find_sync(Bin, N+1)
end.

find_sync tries to find three consecutive MPEG header frames. If byte N
in Bin is the start of a header frame, then is_header(N, Bin) will return {ok,
Length, Info}. If is_header returns error, then N cannot point to the start of
a correct frame. We can do a quick test in the shell to make sure this
works:

1> {ok, Bin} = file:read_file("/home/joe/music/mymusic.mp3").
{ok,<<73,68,51,3,0,0,0,0,33,22,84,73,84,50,0,0,0,28, ...>>

2> mp3_sync:find_sync(Bin, 1).
{ok,4256}

This uses filerread_file to read the entire file into a binary (see Sec-
tion 13.2, Reading the Entire File into a Binary, on page 231). Now for
is_header:

Download mp3_sync.erl

is_header(N, Bin) ->
unpack_header(get_word(N, Bin)).

get_word(N, Bin) ->
{_,<<C:4/binary,_/binary>>} = split_binary(Bin, N),
C.

unpack_header(X) ->
try decode_header(X)
catch
_ -> error
end.

http://media.pragprog.com/titles/jaerlang/code/mp3_sync.erl
http://media.pragprog.com/titles/jaerlang/code/mp3_sync.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=94

THE BIT SYNTAX <« 95

This is slightly more complicated. First we extract 32 bits of data to
analyze (this is done by get_word); then we unpack the header using
decode_header. Now decode_header is written to crash (by calling exit/1)
if its argument is not at the start of a header. To catch any errors, we
wrap the call to decode_header in a try...catch statement (read more
about this in Section 4.1, Exceptions, on page 76). This will also catch
any errors that might be caused by incorrect code in framelength/4.
decode_header is where all the fun starts:

Download mp3_sync.erl

decode_header(<<2#11111111111:11,B:2,C:2,_D:1,E:4,F:2,G:1,Bits:9>>) ->
Vsn = case B of
0 -> {2,5};
1 -> exit(badVsn);
2 > 2;
3 ->1
end,
Layer = case C of
0 -> exit(badLayer);
1 -> 3;
2 > 2;
3 ->1
end,
%% Protection = D,
BitRate = bitrate(Vsn, Layer, E) = 1000,
SampleRate = samplerate(Vsn, F),

Padding = G,
FrameLength = framelength(Layer, BitRate, SampleRate, Padding),
if

FramelLength < 21 ->
exit(frameSize);
true ->
{ok, FrameLength, {Layer,BitRate,SampleRate,Vsn,Bits}}

end;
decode_header () ->
exit(badHeader).

The magic lies in the amazing expression in the first line of the code.

decode_header(<<2#11111111111:11,B:2,C:2,_D:1,E:4,F:2,G:1,Bits:9>>) ->

This pattern matches eleven consecutive 1 bits,! 2 bits into B, 2 bits
into C, and so on. Note that the code exactly follows the bit-level spec-
ification of the MPEG header given earlier. More beautiful and direct
code would be difficult to write. This code is beautiful. It’s also highly
efficient. The Erlang compiler turns the bit syntax patterns into highly
optimized code that extracts the fields in an optimal manner.

1. 2#11111111111 is a base 2 integer.

http://media.pragprog.com/titles/jaerlang/code/mp3_sync.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=95

THE BIT SYNTAX <« 96

Unpacking COFF Data

A few years ago I decided to write a program to make stand-alone Erlang
programs that would run on Windows—I wanted to build a Windows
executable on any machine that could run Erlang. Doing this involved
understanding and manipulating the Microsoft Common Object File
Format (COFF) formatted files. Finding out the details of COFF was
pretty tricky, but various APIs for C++ programs were documented. The
C++ programs used the type declarations DWORD, LONG, WORD, and
BYTE (these type declarations will be familiar to programmers who have
programmed Windows internals).

The data structures involved were documented, but only from a C or
C++ programmer’s point of view. The following is a typical C typedef:
typedef struct _IMAGE_RESOURCE_DIRECTORY {

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

WORD NumberOfNamedEntries;

WORD NumberOfIdEntries;
} IMAGE_RESOURCE_DIRECTORY, =PIMAGE_RESOURCE_DIRECTORY;

To write my Erlang program, I first defined four macros that must be
included in the Erlang source code file:

-define(DWORD, 32/unsigned-Tittle-integer).

-define(LONG, 32/unsigned-Tittle-integer).

-define(WORD, 16/unsigned-little-integer).
-define(BYTE, 8/unsigned-Tittle-integer).

Note: Macros are explained in Section 5.4, Macros, on page 108. To
expand these macros, we use the syntax ?DWORD, ?LONG, and so on.

For example, the macro ?DWORD expands to the literal text 32/unsigned-
litfle-integer.

These macros deliberately have the same names as their C counter-
parts. Armed with these macros, I could easily write some code to
unpack image resource data into a binary:

unpack_image_resource_directory(Dir) ->

<<Characteristics : ?DWORD,
TimeDateStamp : ?DWORD,
MajorVersion : ?WORD,
MinorVersion : ?WORD,
NumberOfNamedEntries : ?WORD,
NumberOfIdEntries : ?WORD, _/binary>> = Dir,

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=96

THE BIT SYNTAX <« 97

If you compare the C and Erlang code, you'll see that they are pretty
similar. So by taking care with the names of the macros and the layout
of the Erlang code, we can minimize the semantic gap between the C
code and the Erlang code, something that makes our program easier to
understand and less likely to have errors.

The next step was to unpack data in Characteristics, and so on.

Characteristics is a 32-bit word consisting of a collection of flags. Unpack-
ing these using the bit syntax is extremely easy; we just write code like
this:

<<ImageFileRelocsStripped:1, ImageFileExecutableImage:1l, ...>> =
<<Characteristics:32>>

The code <<Characteristics:32>> converted Characteristics, which was an
integer, into a binary of size 32 bits. Then the following code unpacked
the required bits into the variables ImageFileRelocsStripped, ImageFileExe-
cutablelmage, and so on:

<<ImageFileRelocsStripped:1, ImageFileExecutableImage:1l, ...>> = ...

Again, I kept the same names as in the Windows API to keep the seman-
tic gap between the specification and the Erlang program to a mini-
mum.

Using these macros made unpacking data in the COFF format—well,
I can’t really use the word easy—but at least it was possible, and the
code was reasonably understandable.

Unpacking the Header in an IPv4 Datagram

This example illustrates parsing an Internet Protocol version 4 (IPv4)
datagram in a single pattern-matching operation:

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of
<<?IP_VERSION:4, HLen:4, SrvcType:8, TotlLen:16,
ID:16, Flgs:3, Frag0off:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen >= 5, 4xHLen =< DgramSize ->
OptsLen = 4x(HLen - ?IP_MIN_HDR_LEN),
<<Opts:0ptsLen/binary,Data/binary>> = RestDgram,

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=97

MISCELLANEOUS SHORT Torics < 98

This code matches an IP datagram in a single pattern-matching expres-
sion. The pattern is complex, spreading over three lines, and illustrates
how data that does not fall on byte boundaries can easily be extracted
(for example, the Figs and FragOff fields that are 3 and 13 bits long,
respectively). Having pattern matched the IP datagram, the header and
data part of the datagram are extracted in a second pattern matching
operation.

5.4 Miscellaneous Short Topics

We've now covered all the major topics in sequential Erlang. What
remains are a number of small odds and ends that you have to know
but that don't fit into any of the other topics. There’s no particular log-
ical order to these. The topics covered are as follows:

* apply: How to compute the value of a function from its name and
arguments, when the function and module name are computed
dynamically.

e Attributes: The syntax and meaning of the Erlang module attri-
butes.

* Block expressions: Expressions using begin and end.

® Boolean expressions: All the boolean expressions.

® Character set: Which character set does Erlang use?

* Comments: Syntax of comments.

* epp: The Erlang preprocessor.

* Escape sequences: The syntax of the escape sequences used in
strings and atoms.

* Expressions and expression sequences: What exactly is an expres-
sion?

* Function references: How to refer to functions.

¢ Include files: How to include files at compile time.

* List operations: ++ and - -.

* Macros: The Erlang macro processor.

® Match operator in patterns: How the match operator = can be used
in patterns.

* Numbers: The syntax of numbers.

* Operator precedence: The priority and associativity of all the Erlang
operators.

* The process dictionary: Each Erlang process has a local area of
destructive storage, which can be useful sometimes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=98

MISCELLANEOUS SHORT Torics < 99

* References: References are unique symbols.

® Short-circuit boolean expressions: Boolean expressions that are not
fully evaluated.

® Term comparisons: All the term comparison operators and the lex-
ical ordering of terms.

* Underscore variables: Variables that the compiler treats in a spe-
cial way.

apply

The BIF apply(Mod, Func, [Arg1, Arg2, ..., ArgN]) applies the function Func
in the module Mod to the arguments Argl, Arg2, ... ArgN. It is equivalent
to calling this:

Mod:Func(Argl, Arg2, ..., ArgN)

apply lets you call a function in a module, passing it arguments. What
makes it different from calling the function directly is that the module
name and/or the function name can be computed dynamically.

All the Erlang BIFs can be called using apply by assuming that they
belong to the module erlang. So, to build a dynamic call to a BIF, we
might write the following:

1> apply(erlang, atom_to_list, [hello]l).
"hello"

Warning: The use of apply should be avoided if possible. When the num-
ber of arguments to a function is known in advance, it is much better
to use a call of the form M:F(Arg1, Arg2, ... ArgN) than apply. When calls
to functions are built using apply, many analysis tools cannot work out
what is happening, and certain compiler optimizations cannot be made.
So, use apply sparingly and only when absolutely needed.

Attributes

Module attributes have the syntax -AtomTag(...)> and are used to define
certain properties of a file. There are two types of module attributes:
predefined and user-defined.

Predefined Module Attributes

The following module attributes have predefined meanings and must
be placed before any function definitions.

2. -ecord(..) and -include(..) have a similar syntax but are not considered module
attributes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=99

MISCELLANEOUS SHORT Torics < 100

-module(modname).
The module declaration. modname must be an atom. This attribute
must be the first attribute in the file. Conventionally the code for
modname should be stored in a file called modname.erl. If you do
not do this, then automatic code loading will not work correctly;
see Section E.4, Dynamic Code Loading, on page 435 for more
details.

-import(Mod, [Name1/Arity 1, Name2/Arity2,...]).
Specify that the function Nomel with Arityl arguments is to be
imported from the module Mod.

Once a function has been imported from a module, then calling
the function can be achieved without specifying the module name.
For example:

-module(abc).
—-import(lists, [map/2]).

(L ->
L1 = map(fun(X) -> 2=X end, L),
Tists:sum(L1l)

The call to map needs no qualifying module name, whereas to call
sum we need to include the module name in the function call.

-export([Name1/Arity 1, Name2/Arity2, ...
Export the functions Name1/Arity1l, Naome2/Arity2, and so on, from
the current module. Note that only exported functions can be
called from outside a module. For example:

Download abc.erl

-module(abc).
-export([a/2, b/1]).

alX, Y) > c(X) + a(Yy).
a(X) -> 2 = X.
b(X) -> X = X.
cX) > 3 = X.

The export declaration means that only a/2 and b/1 can be called
from outside the module abc. So, for example, calling abc:a(5) will
result in an error because a/1 is not exported from the module.

1> abc:a(1,2).

7

2> abc:b(12).
144

http://media.pragprog.com/titles/jaerlang/code/abc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=100

MISCELLANEOUS SHORT Torics < 101

3> abc:a(5).

#% exited: {undef,[{abc,a,[5]},
{erl1_eval,do_apply,5},
{shell,exprs,6},
{shell,eval_loop,3}]} ="session">

-compile(Options).
Add Options to the list of compiler options. Options is a single com-
piler option or a list of compiler options (these are described in the
manual page for the module compile).

Note: The compiler option -compile(export_all). is often used while
debugging programs. This exports all functions from the module
without having to explicitly use the -export annotation.

-vsn(Version).
Specify a module version. Version is any literal term. The value of
Version has no particular syntax or meaning, but it can be used by
analysis programs or for documentation purposes.

User-Defined Attributes
The syntax of a user-defined module attribute is as follows:

-SomeTag(Value).

SomeTag must be an atom, and Value must be a literal term. The val-
ues of the module attributes are compiled into the module and can be
extracted at runtime. Here’s an example:

Download attrs.erl

-module(attrs).

-vsn(1234).
-author({joe,armstrong}).
-purpose("example of attributes").
-export([fac/1]).

fac(l) -> 1;
fac(N) -> N = fac(N-1).

1> attrs:module_info().
[{exports, [{fac,1},{module_info,0}, {module_info,1}]1},
{imports,[1},
{attributes, [{vsn,[1234]},
{author, [{joe,armstrong}]},
{purpose,"example of attributes"}]},
{compile, [{options, [{cwd,"/home/joe/2006/book/JAERLANG/Book/code"},
{outdir,"/home/joe/2006/book/IJAERLANG/Book/code"}]},
{version,"4.4.3"},
{time, {2007,2,21,19,23,48}},
{source,"/home/joe/2006/book/IJAERLANG/Book/code/attrs.er1"}]}]

http://media.pragprog.com/titles/jaerlang/code/attrs.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=101

MISCELLANEOUS SHORT Torics < 102

2> attrs:module_info(attributes).
[{vsn,[1234]},{author, [{joe,armstrong}]}, {purpose,"example of attributes"}]
3> beam_11ib:chunks("attrs.beam", [attributes]).
{ok, {attrs, [{attributes, [{author,[{joe,armstrong}]},
{purpose, "example of attributes"},

{vsn, [1234]}]1}133

The user-defined attributes contained in the source code file reappear
as a subterm of {attributes, ...}. The tuple {compile, ...} contains informa-
tion that was added by the compiler. The value {version,'4.4.3'} is the ver-
sion of the compiler and should not be confused with the vsn tag defined
in the module attributes. In the previous example, atfrs:module_info()
returns a property list of all the metadata associated with a compiled
module. attrs:module_info(attributes)® returns a list of any attributes asso-
ciated with the file.

Note that the functions module_info/0 and module_info/1 are automati-
cally created every time a module is compiled.

The output of lines 2 and 3 is a bit difficult to read. To make life easier,
we can write a little function that extracts a specific attribute and call
it like this:

4> extract:attribute("attrs.beam", author).
[{joe,armstrong}]

The code to do this is easy:
DownTload extract.erl
-module(extract).

-export([attribute/2]).

attribute(File, Key) ->
case beam_Tlib:chunks(File, [attributes]) of
{ok, {_Module, [{attributes,L}]1}} ->
case lookup(Key, L) of

{ok, val} ->
Val;
error ->
exit(badAttribute)
end;
>
exit(badFile)

end.

Tookup(Key, [{Key,Val}|_]1) -> {ok, Val};
Tookup(Key, [_|T]) -> Tookup(Key, T);
Tookup(_, [1 -> error.

3. Other arguments are exports, imports, and compile.

http://media.pragprog.com/titles/jaerlang/code/extract.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=102

MISCELLANEOUS SHORT Torics < 103

To run atfrsmodule_info, we have to load the beam code for the module
aftrs. The module beam_lib contains a number of functions for analyz-
ing a module without loading the code. The example in extract.erl used
beam_lib:chunks to extract the attribute data without loading the code
for the module.

Block Expressions

begin
Expril,
ExprN
end

You can use block expressions to group a sequence of expressions,

similar to a clause body. The value of a begin ... end block is the value
of the last expression in the block.

Block expressions are used when the syntax requires a single expres-
sion but you want to have sequence of expressions at this point in the
code.

Booleans

There is no distinct boolean type in Erlang; instead, the atoms true and
false are given a special interpretation and are used to represent boolean
literals.

Boolean Expressions

There are four possible boolean expressions:

* not B1: Logical not

* B1 and B2: Logical and
* B1 orB2: Logical or

® B1 xor B2: Logical xor

In all of these, Bl and B2 must be boolean literals or expressions that
evaluate to booleans. Examples:

1> not true.

false.

2> true and false.
false

3> true or false.

true

4> (2 > 1D or (3> 4).
true

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=103

MISCELLANEOUS SHORT Torics <« 104

7 A

Force Binary Functions to Return Booleans

Sometimes we write functions that return one of two possible
atomic values. When this happens, it's good practice to make
sure they return a boolean. It’'s also a good idea to hame your
functions to make it clear that they return a boolean.

For example, suppose we write a program that represents the
state of some file. We might find ourselves writing a function
file_state() that returns open or closed. When we write this func-
fion, we could think about renaming the function and letting
it return a boolean. With a little thought we could rewrite our
program to use a function called is_file_open() that returns frue
or false.

Why should we do this?

The answer is simple. There are a large number of functions
in the standard libraries that work on functions that return
booleans. So if we make sure all our functions that can return
only one of two atomic values instead return booleans, then
we'll be able to use them together with the standard library
functions.

Character Set

Erlang source code files are assumed to be encoded in the ISO-8859-1
(Latin-1) character set. This means all Latin-1 printable characters can
be used without using any escape sequences.

Internally Erlang has no character data type. Strings don’t really exist
but instead are represented by lists of integers. Unicode strings can
be represented by lists of integers without any problems, though there
is limited support for parsing and generating Unicode files from the
Erlang lists of integers.

Comments

Comments in Erlang start with a percent character (%) and extend to
the end of line. There are no block comments.

Note: You'll often see double percent characters (%%) in code examples.
Double percent marks are recognized in the emacs erlang-mode and
enable automatic indentation of commented lines.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=104

MISCELLANEOUS SHORT Torics < 105

% This is a comment
my_function(Argl, Arg2) ->
case f(Argl) of
{yes, X} -> % it worked

epp

Before an Erlang module is compiled, it is automatically processed by
the Erlang preprocessor epp. The preprocessor expands any macros
that might be in the source file and inserts any necessary include files.

Ordinarily, you won’t need to look at the output of the preprocessor, but
in exceptional circumstances (for example, when debugging a faulty
macro), you might want to save the output of the preprocessor. The
output of the preprocessor can be saved in a file by giving the command
compile:file(M, ['P’]). This compiles any code in the file M.erl and produces
a listing in the file M.P where all macros have been expanded and any
necessary include files have been included.

Escape Sequences

Within strings and quoted atoms, you can use escape sequences to
enter any nonprintable characters. All the possible escape sequences
are shown in Figure 5.1, on the following page.

Let’s give some examples in the shell to show how these conventions
work. (Note: ~w in a format string prints the list without any attempt to
pretty print the result.)

%% Control characters

1> 1do:format("~w~n", ['"\b\d\e\f\n\r\s\t\v"]).
[8,127,27,12,10,13,32,9,11]

ok

%% Octal characters in a string

3> do:format("~w~n", ['"\123\12\1"]).
[83,10,1]

ok

%% Quotes and escapes in a string
4> Hdo:format("~w~n", ["\'"\"\\"1).
[39,34,92]

ok

%% Character codes

5> 1do:format("~w~n", ["\a\z\A\Z"]).
[97,122,65,90]

ok

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=105

MISCELLANEOUS SHORT Torics < 106

Escape Sequence Meaning Integer Code
\b Backspace 8

\d Delete 127

\e Escape 27

\f Form feed 12

\n New line 10

\r Carriage return 13

\s Space 32

\t Tab 9

\v Vertical tab 11

\NNN \NN \N Octal characters (N is 0..7)

\ra.\"zor \NA.\"Z Ctrl+A to Ctrl+Z 1 to 26

\’ Single quote 39

\' Double quote 34

\\ Backslash 92

\C The ASCII code for C (C is a character) (An integer)

Figure 5.1: Escape sequences
I

Expressions and Expression Sequences

In Erlang, anything that can be evaluated to produce a value is called
an expression. This means things such as catch, if, and try...catch are
expressions. Things such as records and module attributes cannot be
evaluated, so they are not expressions.

Expression sequences are sequences of expressions separated by com-
mas. These are found all over the place immediately following an ->
arrow. The value of the expression sequence E1, E2, ..., En is defined to
be the value of the last expression in the sequence.* This is computed
using any bindings created when computing the values of E1, E2, and
SO on.

Function References

Often we want to refer to a function that is defined in the current mod-
ule or in some external module. You can use the following notation for
this:

fun LocalFunc/Arity
This is used to refer to the local function called LocalFunc with Arity
arguments in the current module.

4. Equivalent to progn in LISP.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=106

MISCELLANEOUS SHORT Torics <« 107

fun Mod:RemoteFunc/Arity
This is used to refer to an external function called RemoteFunc with
Arity arguments in the module Mod.
Here’s an example of a function reference in the current module:
-module(x1).
-export([square/1, ...]).
square(X) -> X = X.
double(L) -> Tists:map(fun square/1, L).
If we wanted to call a function in a remote module, we could refer to
the function as in the following example:

-module(x2).

double(L) -> Tists:map(fun x1l:square/1, L).

fun x1:square/1 means the function square/1 in the module x1.

Include Files

Files can be included with the following syntax:

-include(Filename).

In Erlang, the convention is that include files have the extension .hrl.
The FileName should contain an absolute or relative path so that the

preprocessor can locate the appropriate file. Library header files can be
included with the following syntax:

-include_1lib(Name).

For example:

-include_1ib("kernel/include/file.hr1").

In this case, the Erlang compiler will find the appropriate include files.
(kernel, in the previous example, refers to the application that defines
this header file.)

Include files usually contain record definitions. If many modules need
to share common record definitions, then the common record defini-
tions are put into include files that are included by all the modules that
need these definitions.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=107

MISCELLANEOUS SHORT Torics < 108

List Operations ++ and - -

++ and -- are infix operators for list addition and subtraction.
A ++ B adds (that is, appends) A and B.

A -- B subtracts the list B from the list A. Subtraction means that every
element in B is removed from A. Note that if some symbol X occurs only
K times in B, then only the first K occurrence of X in A will be removed.

Examples:

1> [1,2,3] ++ [4,5,6].

[1,2,3,4,5,6]

2> [a,b,c,1,d,e,1,x,y,1] -- [1].
[a,b,c,d,e,1,x,y,1]

3> [a,b,c,1,d,e,1,x,y,1] -- [1,1].
[a,b,c,d,e,x,y,1]

4> [a,b,c,1,d,e,1,x,y,1] -- [1,1,1].
[a,b,c,d,e,x,y]

5> [a,b,c,1,d,e,1,x,y,1] -- [1,1,1,1].
[a,b,c,d,e,x,y]

++ in Patterns

++ can also be used in patterns. When matching strings, we can write
patterns such as the following:

f("begin" ++ T) —> ...
f("end" ++ T) > ...

The pattern in the first clause is expanded into [$b.5e,59.51,5n(T].

Macros
Erlang macros are written as shown here:

-define(Constant, Replacement).
-define(Func(Varl, Var2,.., Var), Replacement).

Macros are expanded by the Erlang preprocessor epp when an expres-
sion of the form ?MacroName is encountered. Variables occurring in the
macro definition match complete forms in the corresponding site of the
macro call.

-define(macrol(X, Y), {a, X, Y}).

foo(A) ->
?macrol(A+10, b)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=108

MISCELLANEOUS SHORT Torics < 109

That expands into this:

foo(A) ->
{a,A+10,b}.

In addition, a number of predefined macros provide information about
the current module. They are as follows:

* ?FILE expands to the current filename.
* ?MODULE expands to the current module name.
* ?LINE expands to the current line number.

Control Flow in Macros

Inside a macro definition, the following directives are supported. You
can use them to direct the flow of control within a macro:

-undef(Macro).

Undefines the macro; after this you cannot call the macro.
-ifdef(Macro).

Evaluates the following lines only if Macro has been defined.
-ifndef(Macro).

Evaluates the following lines only if Macro is undefined.
-else.

Allowed after a ifdef or ifndef statement. If the condition was false,

the statements following else are evaluated.
-endif.

Marks the end of an ifdef or ifndef statement.

Conditional macros must be properly nested. They are conventionally
grouped as follows:

-ifdef(debug).
-define(...).
-else.
-define(...).
-endif.

We can use these macros to define a TRACE macro. For example:
Download mil.erl

-module(ml).
-export([start/0]).

-ifdef(debug).

-define(TRACE(X), io:format("TRACE ~p:~p ~p~n",[?MODULE, ?LINE, X])).
-else.

-define(TRACE(X), void).

-endif.

http://media.pragprog.com/titles/jaerlang/code/m1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=109

MISCELLANEOUS SHORT Torics <« 110

start() -> Toop(5).

Toop(0) ->
void;

Toop(N) ->
?TRACE(N),
Toop(N-1).

Note: io:format(String, [Args]) prints the variables in [Args] in the Erlang
shell according to the formatting information in String. The formatting
codes are preceded by a (~) symbol. ~p is short for pretty print, and ~n
produces a newline.®

To compile the code using the trace macro turned on and off, we can
use an additional argument to c/2 as follows:

1> c(ml, {d, debug}).

{ok,m1}

2> ml:start().

TRACE m1:15 5

TRACE ml1:15 4

TRACE m1:15 3

TRACE m1:15 2

TRACE m1:15 1

void

c(m1, Options) provides a way of passing options to the compiler. {d,
debug} sets the debug flag to true so that it gets recognized in the -
ifdef(debug) section of the macro definition.

When the macro is turned off, the trace macro just expands to the atom
void. This choice of name has no significance; it’s just a reminder to me
that nobody is interested in the value of the macro.

Match Operator in Patterns
Let’s suppose we have some code like this:

tne1 funcl([{tagl, A, B}|T]) ->
.': f(..., {tagl, A, B}, ...)
In line 1, we pattern match the term {tagl. A, B}, and in line 3 we call

f with an argument that is {tagl, A, B}. When we do this, the system
rebuilds the term {tagl, A, B}. A much more efficient and less error prone

5. io:format understands an extremely large number of formatting options; for more
information, see Section 13.3, Write a List of Terms to a File, on page 235.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=110

MISCELLANEOUS SHORT Torics <« 111

way to do this is to assign the pattern to a temporary variable, Z, and
pass this into f, like this:

funcl([{tagl, A, B}=Z|T]) ->

": fG... z, ...

The match operator can be used at any point in the pattern, so if we
have two terms that need rebuilding, such as in this code:

funcl([{tag, {one, A}, B}|T]) —>

f(..., {tag, {one,A}, B}, ...),
g(..., {one, A}, ...)

then we could introduce two new variables, Z1 and 72, and write the
following:
funcl([{tag, {one, A}=Z1, B}=Z2|T]) ->

fC..., 22, ...),
gC..., 721, ...),

Numbers

Numbers in Erlang are either integers or floats.

Integers

Integer arithmetic is exact, and the number of digits that can be repre-
sented in an integer is limited only by available memory.

Integers are written with one of three different syntaxes:

1. Conwventional syntax: Here integers are written as you expect. For
example, 12, 12375, and -23427 are all integers.

2. Base K integers: Integers in a number base other than ten are
written with the syntax K#Digits; thus, we can write a number in
binary as 2#00101010 or a number in hexadecimal as 16#af6bfa23.
For bases greater than ten, the characters abc... (or ABC...) repre-
sent the numbers 10, 11, 12, and so on. The highest number base
we can represent in this manner is base 36.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=111

MISCELLANEOUS SHORT Torics <« 112

3. $ syntax: The syntax $SC represents the integer code for the ASCII
character C. Thus, $a is short for 97, $1 is short for 49, and so on.

Immediately after the $ we can also use any of the escape sequen-
ces described in Figure 5.1, on page 106. Thus, $\n is 10, $\/c is
3, and so on.

Here are some examples of integers:
0 -65 2#010001110 -8#377 16#fe34 16#FE34 36#wow
(Their values are 0, -65, 142, -255, 65076, 65076, and 42368, respectively.)

Floats

A floating-point number has five parts: an optional sign, a whole num-
ber part, a decimal point, a fractional part, and an optional exponent
part.

Here are some examples of floats:
1.0 3.14159 -2.3e+6 23.56E-27

After parsing, floating-point numbers are represented internally in
IEEE 754 64-bit format. Real numbers in the range —10%?3 to 10°°® can
be represented by an Erlang float.

Operator Precedence

Figure 5.2 shows all the Erlang operators in order of descending priority
together with their associativity. Operator precedence and associativity
is used to determine the evaluation order in unparenthesized expres-
sions.

Expression with higher priority (higher up in the table) are evaluated
first, and then expressions with lower priority are evaluated. So, for
example, to evaluate 3+4*5+6, we first evaluate the subexpression 4*5,
since (*) is higher up in the table than (+). Now we evaluate 3+20+6. Since
(+) is a left-associative operator, we interpret this as meaning (3+20)+6,
so we evaluate 3+20 first yielding 23; finally we evaluate 23+6.

In its fully parenthesized form, 3+4*5+6 means ((3+(4*5))+6). As with all
programming languages, it is better to use parentheses to denote scope
than to rely upon the precedence rules.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=112

MISCELLANEOUS SHORT Torics <« 113

Operators Associativity

#

(unary) +, (unary) -, bnot, not

/, *, div, rem, band, and Left associative
+, -, bor, bxor, bsl, bsr, or, xor Left associative
++, - - Right associative
== /= =<, <, >= > == =/=

andalso

orelse

Figure 5.2: Operator precedence

The Process Dictionary

Each process in Erlang has its own private data store called the process
dictionary. The process dictionary is an associative array (in other lan-
guages this might be called a map, hashmap, or hash table) composed
of a collection of keys and values. Each key has only one value.

The dictionary can be manipulated using the following BIF's:

@spec put(Key, Value) -> OldValue.
Add a Key, Value association to the process dictionary. The value
of put is OldValue, which is the previous value associated with Key.
If there was no previous value, the atom undefined is returned.

@spec get(Key) -> Value.
Look up the value of Key. If there is an association Key, Value asso-
ciation in the dictionary, return Value; otherwise, return the atom
undefined

@spec get(-> [{Key,Value}].
Return the entire dictionary as a list of {Key,Value} tuples.

@spec get_keys(Value) -> [Key].
Return a list of keys that have the values Value in the dictionary.

@spec erase(Key) -> Value.
Return the value associated with Key or the atom undefined if there
is no value associated with Key. Finally, erase the value associated
with Key.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=113

MISCELLANEOUS SHORT Torics <« 114

@spec erase() -> [{Key,Value}].
Erase the entire process dictionary. The return value is a list of
{KeyValue} tuples representing the state of the dictionary before it
was erased.

For example:

1> erase().

[]

2> put(x, 20).
undefined

3> get(x).

20

4> get(y).
undefined

5> put(y, 40).
undefined

6> get(y).

40

7> get().
[{y,40},{x,20}]
8> erase(x).
20

9> get().
[{y,40}]

As you can see, variables in the process dictionary behave pretty much
like conventional variables in imperative programming languages. If
you use the process dictionary, your code will no longer be side effect
free, and all the benefits of using nondestructive variables that we dis-
cussed in Section 2.6, Variables That Don’t Vary, on page 28 do not
apply. For this reason, you should use the process dictionary sparingly.

Note: I rarely use the process dictionary. Using the process dictionary
can introduce subtle bugs into your program and make it difficult to
debug. One form of usage that I do approve of is to use the processes
dictionary to store “write-once” variables. If a key acquires a value
exactly once and does not change the value, then storing it in the pro-
cess dictionary is sometimes acceptable.

References

References are globally unique Erlang terms. They are created with the
BIF erlang:make_ref(). References are useful for creating unique tags that
can be included in data and then at a later stage compared for equality.
For example, a bug-tracking system might add a reference to each new
bug report in order to give it a unique identity.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=114

MISCELLANEOUS SHORT Torics <« 115

Short-Circuit Boolean Expressions

Short-circuit boolean expressions are boolean expressions whose argu-
ments are evaluated only when necessary.

There are two “short-circuit” boolean expressions:

Expr1 orelse Expr2
This first evaluates Exprl. If Exprl evaluates to true, Expr2 is not
evaluated. If Exprl evaluates to false, Expr2 is evaluated.

Expr1 andalso Expr2
This first evaluates Exprl. If Exprl evaluates to true, Expr2 is evalu-
ated. If Exprl1 evaluates to false, Expr2 is not evaluated.

Note: In the corresponding boolean expressions (A or B; A and B), both the
arguments are always evaluated, even if the truth value of the expres-
sion can be determined by evaluating only the first expression.

Term Comparisons

There are eight possible term comparison operations, shown in Fig-
ure 5.3, on the following page.

For the purposes of comparison, a total ordering is defined over all
terms. This is defined so that the following is true:

number < atom < reference < fun < port < pid < tuple < list < binary

What does this mean? This means that, for example, a number (any
number) is defined to be smaller than an atom (any atom), that a tuple
is greater than an atom, and so on. (Note that for the purposes of order-
ing, ports and PIDs are included in this list. We’ll talk about these later.)

Having a total order over all terms means we can sort lists of any type
and build efficient data access routines based on the sort order of the
keys.

All the term comparison operators, with the exception of == and =/=,
behave in the following way if their arguments are numbers:

¢ If one argument is a integer and the other is a float, then the
integer is converted to a float before the comparison is performed.

¢ If both arguments are integers or if both arguments are floats,
then the arguments are used “as is,” that is, without conversion.

You should also be really careful about using == (especially if you're a C
or Java programmer). In 99 out of a 100 cases, you should be using =:=.
== is useful only when comparing floats with integers. =:= is for testing

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=115

MISCELLANEOUS SHORT Torics <« 116

Operator Meaning

X>Y X is greater than Y.

X<Y X is less than Y.

X=<Y X is equal to or less than Y.
X>=Y X is greater than or equal to Y.
X==Y Xis equal to V.

X /=Y X is not equal to Y.

X == X is identical to Y.

X=/=Y X is not identical to Y.

Figure 5.3: Term Comparisons

whether two terms are identical.® If in doubt, use =:=, and be suspicious
if you see ==. Note that a similar comment applies to using /= and =/=,
where /= means “not equal to” and =/= means “not identical.”

Note: In a lot of library and published code, you'll see == used when the
operator should have been =:=. Fortunately, this kind of error does not
often result in an incorrect program, since if the arguments to == do
not contain any floats, then the behaviors of the two operators are the
same.

You should also be aware that function clause matching always implies
exact pattern matching, so if you define a fun F = fun(12) -> ... end, then
trying to evaluate F(12.0) will fail.

Underscore Variables

There’s one more thing to say about variables. The special syntax _Var-
Name is used for a normal variable, not an anonymous variable. Nor-
mally the compiler will generate a warning if a variable is used only
once in a clause since this is usually the sign of an error. If the variable
is used only once but starts with an underscore, the warning message
will not be generated.

Since _Var is a normal variable, very subtle bugs can be caused by for-

getting this and using it as a “don’t care” pattern. In a complicated pat-
tern match, it can be difficult to spot that, for example, _Int is repeated

when it shouldn’t have been, causing the pattern match to fail.

6. Identical means having the same value (like the Common Lisp EQUAL). Since values
are immutable, this does not imply any notion of pointer identity.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=116

MISCELLANEOUS SHORT Torics <« 117

There are two main uses of underscore variables:

* To name a variable that we don’t intend to use. That is, writing
open(File, _Mode) makes the program more readable than writing
open(File, .

* For debugging purposes. For example, suppose we write this:

some_func(X) ->
{P, Q} = some_other_func(X),
io:format("Q = ~p~n", [QD),
P.

This compiles without an error message.

Now comment out the format statement:

some_func(X) ->

{P, Q} = some_other_func(X),

%% io:format("Q = ~p~n", [Q]),

P.
If we compile this, the compiler will issue a warning that the vari-
able Q is not used.

If we rewrite the function like this:

some_func(X) ->
{P, _Q} = some_other_func(X),
io:format("_Q = ~p~n", [_QD),
P.

then we can comment out the format statement, and the compiler
will not complain.

Now we're actually through with sequential Erlang. We have not men-
tioned a few small topics, but we’ll return to these as we run into them
in the application chapters.

In the next chapter, we’ll look at how to compile and run your programs

in a variety of ways.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=117

6.1

Chapter 6

Compiling and Running Your

In the previous chapters, we didn’t say much about compiling and run-
ning your programs—we just used the Erlang shell. This is fine for small
examples, but as your programs become more complex, you'll want to
automate the process to make life easier. That’s where makefiles come
in.

There are actually three different ways to run your programs. In this

chapter, we’ll look at all three so you can choose the best method for
any particular occasion.

Sometimes things will go wrong: makefiles will fail, environment vari-
ables will be wrong, and your search paths will be incorrect. We’ll help
you deal with these issues by looking at what to do when things go
wrong.

Starting and Stopping the Erlang Shell

On a Unix system (including Mac OS X), you start the Erlang shell from
a command prompt:

$ erl
ErTang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with AG)
1>

On a Windows system, click the erl icon.

MODIFYING THE DEVELOPMENT ENVIRONMENT <« 119

The easiest way to stop the system is just to press Ctrl+C (Windows
Ctrl+Break) followed by A, as follows:
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded

(v)ersion (k)i1l (D)b-tables (d)istribution

a
$

Instead, you can evaluate the expression erlang:halt() either in the shell
or in a program.

erlang:haltQ is a BIF that immediately stops the system, and it is the
method I use most of the time. However, there is a slight disadvan-
tage to this method of stopping the system. If you are running a large
database application and simply halt the system, then the system will
have to go through an error recovery process the next time you start the
system, so you should try to stop the system in a controlled manner.

For a controlled shutdown, if the shell is responding to commands, you
can type this:

1> q0.
ok

$

This flushes all open files, stops the database (if running), and closes
all OTP applications in an ordered manner. q() is a shell alias for the
command init:stop().

If none of these methods works, read Section 6.6, Getting Out of Trouble,
on page 131.

6.2 Modifying the Development Environment

When you start programming in Erlang, you’ll probably put all your
modules and files in the same directory and start Erlang from this
directory. If you do this, then the Erlang loader will have no trouble
finding your code. However, as your applications become more com-
plex, you’ll want to split them into manageable chunks and put the
code into different directories. And when you include code from other
projects, this external code will have its own directory structure.

Setting the Search Paths for Loading Code

The Erlang runtime system makes use of a code autoloading mech-
anism. For this to work correctly, you must set a number of search
paths in order to find the correct version of your code.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=119

MODIFYING THE DEVELOPMENT ENVIRONMENT < 120

The code-loading mechanism is actually programmed in Erlang—we’ll
talk more about it in Section E.4, Dynamic Code Loading, on page 435.
Code loading is performed “on demand.”

When the system tries to call a function in a module that has not been
loaded, an exception occurs, and the system tries to find an object code
file for the missing module. If the missing module is called myMissing-
Module, then the code loader will search for a file called myMissingMod-
ule.beam in all the directories that are in the current load path. The
search stops at the first matching file, and the object code in this file is
loaded into the system.

You can find the value of the current load path by starting an Erlang
shell and giving the command code:gef_path(). Here’s an example:
code:get_path().
",
"/usr/local/lib/erlang/1ib/kernel-2.11.3/ebin",
"/usr/local/1lib/erlang/1ib/std1lib-1.14.3/ebin",
"/usr/local/Tib/erlang/1ib/xmer1-1.1/ebin",
"/usr/local/1lib/erlang/1ib/webtoo1-0.8.3/ebin",
"/usr/local/lib/erlang/1ib/typer-0.1.0/ebin",
"/usr/local/lib/erlang/1ib/tv-2.1.3/ebin",
"/usr/local/1lib/erlang/1ib/tools-2.5.3/ebin",
"/usr/local/Tlib/erlang/1ib/toolbar-1.3/ebin",
"/usr/local/Tlib/erlang/1ib/syntax_tools-1.5.2/ebin",

o]

The two most common functions that we use to manipulate the load
path are as follows:

@spec code:add_patha(Dir) => true | {error, bad_directory}
Add a new directory, Dir, to the start of the load path.

@spec code:add_pathz(Dir) => true | {error, bad_directory}
Add a new directory, Dir, to the end of the load path.

Usually it doesn’t matter which you use. The only thing to watch out for
is if using add_patha and add_pathz produces different results. If you
suspect an incorrect module was loaded, you can call code:all_loaded(
(which returns a list of all loaded module) or code:clash() to help you
investigate what went wrong.

There are several other routines in the module code for manipulating
the path, but you probably won't ever need to use them, unless you're
doing some strange system programming.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=120

MODIFYING THE DEVELOPMENT ENVIRONMENT < 121

The usual convention is to put these commands in a file called .erlang
in your home directory. Alternatively, you can start Erlang with a com-
mand like this:

> erl -pa Dirl -pa Dir2 ... -pz DirkKl -pz Dirk2

The -pa Dir flag adds Dir to the beginning of the code search path, and
-pz Dir adds the directory to the end of the code path.

Executing a Set of Commands When the System Is Started

We saw how you can set the load path in your .erlang file in your home
directory. In fact, you can put any Erlang code in this file—when you
start Erlang, it first reads and evaluates all the commands in this file.

Suppose my .erlang file is as follows:

io:format("Running Erlang~n").

code:add_patha(".").
code:add_pathz("/home/joe/2005/er1/1ib/supported").
code:add_pathz("/home/joe/bin™).

Then when I start the system, I'll see the following output:

$ erl
Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Running Erlang
Eshell V5.5.1 (abort with AG)
1>

If there is a file called .erlang in the current directory when Erlang is
started, then it will take precedence over the .erlang in your home direc-
tory. This way you can arrange that Erlang will behave in different ways
depending upon where it is started. This can be useful for specialized
applications. In this case, it's probably a good idea to include some
print statements in the start-up file; otherwise, you might forget about
the local start-up file, which could be very confusing.

Tip: In some systems, it's not clear where your home directory is, or
it might not be where you think it is. To find out where Erlang thinks
your home directory is, do the following:

1> 1init:get_argument(home).
{ok, [["/home/joe"]1]}

From this we can infer that Erlang thinks that my home directory is
/home/joe.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=121

DIFFERENT WAYS TO RUN YOUR PROGRAM < 122

6.3 Different Ways to Run Your Program

Erlang programs are stored in modules. Once you have written your
program, you have to compile it before you can run it. Alternatively,
you can run your program directly without compiling it by running
escript.

The next sections show how to compile and run a couple of programs
in a number of ways. The programs are slightly different, and the ways
in which we start and stop them differ.

The first program, hello.erl, just prints “Hello world.” It’s not responsible
for starting or stopping the system, and it does not need to access any
command-line arguments. By way of contrast, the second program, fac,
needs to access the command-line arguments.

Here’s our basic program. It writes the string containing “Hello world”
followed by a newline (~n is interpreted as newline in the Erlang io and
io_lib modules).

Download hello.erl

-moduleChello).
-export([start/0]).

start() ->
io:format("Hello world~n").

Let’s compile and run it three different ways.

Compile and Run in the Erlang Shell

$ erl
Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with AG)
1> c(hello).

{ok,hell0}

2> hello:start(Q).

Hello world

ok

Compile and Run from the Command Prompt

$ erlc hello.erl

$ er1 -noshell -s hello start -s 1init stop
Hello world

$

http://media.pragprog.com/titles/jaerlang/code/hello.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=122

DIFFERENT WAYS TO RUN YOUR PROGRAM <« 123

4 N

Quick Scripting

Often we want to be able to execute an arbitrary Erlang func-
fion from the OS command line. The -eval argument is very
handy for quick scripting.

Here’'s an example:

erl -eval 'io:format("Memory: ~p~n", [erlang:memory(total)])."\
-noshell -s 1init stop

Windows users: For this to work, you have to either set your PATH
variable to include the directories containing the Erlang executables or
give a fully qualified path (including the quote marks) to erlc and erl.
For example:

"C:\Program Files\er15.5.3\bin\erlc.exe" hello.erl

The first line, erlc hello.erl, compiles the file hello.erl, producing an object
code file called hello.oeam. The second command has three options:

-noshell
Start Erlang without an interactive shell (so you don’t get the
Erlang “banner,” which ordinarily greets you when you start the
system).

-s hello start
Run the function hello:start().

Note: When using the -s Mod ... option, the Mod must have been
compiled.

-s init stop
When apply(hello, start, []) has finished, then the system evaluates
the function init:stop().

The command erl -noshell ... can be put in a shell script, so typically we’d
make a shell script to run our program that sets the path (with -pa
Directory) and launches the program.

In our example, we used two -s .. commands. We can have as many func-
tions as we like on the command line. Each -s ... command is evaluated
with an apply statement, and when it has run to completion, the next
command is evaluated.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=123

DIFFERENT WAYS TO RUN YOUR PROGRAM < 124

Here’s an example that launches hello.erl:
Download hello.sh

#!/bin/sh
erl -noshell -pa /home/joe/2006/book/JAERANG/Book/code\
-s hello start -s init stop

Note: This script needs an absolute path that points to the directory
containing the file hello.beam. So although this script works on my
machine, you'll have to edit it to get it to run on your machine.

To run the shell script, we chmod the file (only once), and then we can
run the script:

$ chmod u+x hello.sh

$./hello.sh
Hello world
$

Note: On Windows, the #! trick does not work. In a Windows environ-
ment, we create the batch file .bat, and we must use the full pathname
to the Erlang executables if PATH is not set.

A typical Window batch file might be as follows:

Download hello.bat

"C:\Program Files\erl15.5.3\bin\erl.exe" -noshell -s hello start -s init stop

Run As an Escript

Using escript you can run your programs directly as scripts—there’s no
need to compile them first.

Warning: escript is included in Erlang versions R11B-4 and onward. If
you have an earlier version of Erlang, then you should upgrade to the
latest version of Erlang.

To run hello as an escript, we create the following file:
Download hello

#!/usr/bin/env escript

main(_) ->
jo:format("Hello world\n").

http://media.pragprog.com/titles/jaerlang/code/hello.sh
http://media.pragprog.com/titles/jaerlang/code/hello.bat
http://media.pragprog.com/titles/jaerlang/code/hello
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=124

DIFFERENT WAYS TO RUN YOUR PROGRAM <« 125

4 N

Exporting Functions During Development

When you're developing code, it can be a bit of a pain to have
to be continually adding and removing export declarations to
your program just so that you can run the exported functions in
the shell.

The special declaration -compile(export_all). tells the compiler to
export every function in the module. Using this makes life much
easier when you're developing code.

When you're finished developing the code, you should com-
ment out the export_all declaration and add the appropriate
export declarations. This is for two reasons. First, when you come
to read your code later, you'll know that the only important
functions are the exported functions, and all the other func-
tions cannot be called from oufside the module so you can
change them in any way you like, provided the interfaces to
the exported functions remain the same. Second, the compiler
can produce much better code if it knows exactly which func-
tions are exported from the module.

On a Unix system,! we can run this immediately and without compila-
tion as follows:

$ chmod u+x hello

$./hello

Hello world
$

Note: The file mode for this file must be set to “executable” (on a Unix
system, give the command chmod u+x File}—you have to do this only
once, not every time you run the program.

Programs with Command-Line Arguments

“Hello world” had no arguments. Let’s repeat the exercise with a pro-
gram that computes factorials. It takes a single argument.

1. Idon’t know whether running escript is possible on Windows. If anybody knows how
to do this, mail me, and I'll add some information to the book.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=125

DIFFERENT WAYS TO RUN YOUR PROGRAM < 126

First, here’s the code:
Download fac.erl

-module(fac).
-export([fac/1]).

fac(0) -> 1;
fac(N) -> Nxfac(N-1).

We can compile fac.erl and run it in the Erlang shell like this:

$ erl
ErTang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with AG)
1> c(fac).

{ok, fac}

2> fac:fac(25).
15511210043330985984000000

If we want to be able to run this program from the command line, we’ll
need to modify it to take command-line arguments:

Download facl.erl

-module(facl).
-export([main/1]).

main([A]) ->
I = Tist_to_integer(atom_to_Tist(A)),
F = fac(D),
jo:format("factorial ~w = ~w~n",[I, F]),
init:stop().

fac(0) -> 1;
fac(N) -> N=fac(N-1).

We can then compile and run it:

$ erlc facl.erl
$ er1l -noshell -s facl main 25
factorial 25 = 15511210043330985984000000

Note: The fact that the function is called main has no significance; it can
be called anything. The important thing is that the function name and
the name on the command line agree.

http://media.pragprog.com/titles/jaerlang/code/fac.erl
http://media.pragprog.com/titles/jaerlang/code/fac1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=126

AUTOMATING COMPILATION WITH MAKEFILES < 127

Finally, we can run it as an escript:
Download factorial
#!/usr/bin/env escript

main([A]) ->
I = Tist_to_integer(A),

F = fac(D),

jo:format("factorial ~w = ~w~n",[I, F]).
fac(0) -> 1;
fac(N) ->

N % fac(N-1).

No compilation is necessary; just run it:

$./factorial 25
factorial 25 = 15511210043330985984000000
$

6.4 Automating Compilation with Makefiles

When I'm writing a large program, I like to automate as much as pos-
sible. There are two reasons for this. First, in the long run, it saves
typing—typing the same old commands over and over again as I test
and retest my program takes a lot of keystrokes, and I don’t want to
wear my fingers out.

Second, I often suspend what I'm working on and go work on some
other project. It can be months before I return to a project that I have
suspended, and when I return to the project, I've usually forgotten how
to build the code in my project. make to the rescue!

make is the utility for automating my work—I use it for compiling and
distributing my Erlang code. Most of my makefiles are extremely simple,
and I have a simple template that solves most of my needs.

I'm not going to explain makefiles in general.? Instead, I'll show the
form that I find useful for compiling Erlang programs. In particular,
we’ll look at the makefiles accompanying this book, so you’ll be able to
understand them and build your own makefiles.

2. See http://en.wikipedia.org/wiki/Make for a description of makefiles.

http://media.pragprog.com/titles/jaerlang/code/factorial
http://en.wikipedia.org/wiki/Make
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=127

AUTOMATING COMPILATION WITH MAKEFILES

A Makefile Template
Here’s the template that I base most of my makefiles on:
Download Makefile.template

leave these lines alone
.SUFFIXES: .erl .beam .yrl

.erl.beam:

erlc -W $<
.yrl.erl:

erlc -W $<

ERL = erl -boot start_clean
Here's a 1list of the erlang modules you want compiling
If the modules don't fit onto one Tine add a \ character
to the end of the 1line and continue on the next line
Edit the lines below
MODS = modulel module2 \
module3 ... speciall ...\
moduTeN
The first target in any makefile 1is the default target.
If you just type "make" then "make all" is assumed (because
"all" is the first target in this makefile)
all: compile
compile: ${MODS:%=%.beam} subdirs

special compilation requirements are added here

speciall.beam: speciall.erl
${ERL} -Dflagl -WO speciall.erl

run an application from the makefile

applicationl: compile
${ERL} -pa Dirl -s applicationl start Argl Arg2

the subdirs target compiles any code in
sub-directories

subdirs:

cd dirl; make
cd dir2; make

http://media.pragprog.com/titles/jaerlang/code/Makefile.template
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=128

AUTOMATING COMPILATION WITH MAKEFILES < 129

remove all the code

clean:
rm -rf «.beam erl_crash.dump
cd dirl; make clean
cd dir2; make clean

The makefile starts with some rules to compile Erlang modules and files
with the extension .yrl (these are files containing parser definitions for
the Erlang parser generator program?).

The important part is the line starting like this:
MODS = modulel module2

This is a list of all the Erlang modules that I want to compile.

Any module in the MODS list will be compiled with the Erlang command
erlc Mod.erl. Some modules might need special treatment (for example
the module speciall in the template file), so there is a separate rule to
handle this.

Inside a makefile there are a number of targets. A target is a alphanu-
meric string starting in the first column and terminated by a colon ().
In the makefile template, all, compile, and speciall.beam are all targets.
To run the makefile, you give the shell command:

$ make [Target]

The argument Target is optional. If Target is omitted, then the first target
in the file is assumed. In the previous example, the target all is assumed
if no target is specified on the command line.

If I want to build all my software and run application1, then I'd give the
command make applicationl. If I wanted this to be the default behavior,
which happens when I just give the command make, then I'd move the
lines defining the target application1 so that they were the first target in
the makefile.

The target clean removes all compiled Erlang object code files and the
file erl_crash.dump. The crash dump contains information that can help
debug an application. See Section 6.10, The Crash Dump, on page 136
for details.

3. The Erlang parser generator is called yecc (an Erlang version of yacc, which
is short for yet another compiler compiler); see the tutorial on the Internet at
http://www.erlang.org/contrib/parser_tutorial-1.0.tgz.

http://www.erlang.org/contrib/parser_tutorial-1.0.tgz
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=129

COMMAND EDITING IN THE ERLANG SHELL < 130

Specializing the Makefile Template

I'm not a fan of clutter in my software, so what I usually do is start
with the template makefile and remove all the lines that are not rele-
vant to my application. This results in makefiles that are shorter and
easier to read. Alternatively, you could have a common makefile that is
included by all makefiles and that is parameterized by the variables in
the makefiles.

Once I'm through with this process, I'll end up with a much simplified
makefile, something like the following:

.SUFFIXES: .erl .beam

.erl.beam:
erlc -W $<

ERL = erl -boot start_clean
MODS = modulel module2 module3

all: compile
${ERL} -pa '/home/joe/.../this/dir' -s modulel start

compile: ${MODS:%=%.beam}

clean:
rm -rf «.beam erl_crash.dump

6.5 Command Editing in the Erlang Shell

The Erlang shell contains a built-in line editor. It understands a subset
of the line-editing commands used in the popular emacs editor. Previ-
ous lines can be recalled and edited in a few keystrokes. The available
commands are shown next (note that "Key means you should press

Ctrl+Key):

Command Description

AA Beginning of line.

AE End of line.

AF or right arrow Forward character.

7B or left arrow Backward character.

AP or up arrow Previous line.

AN or down arrow Next line.

AT Transpose last two characters.

Tab Try to expand current module or function name.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=130

GETTING OUT OF TROUBLE <« 131

6.6 Getting Out of Trouble

Erlang can sometimes be difficult to stop. Here are a number of possible
reasons:

¢ The shell is not responding.

¢ The Ctrl+C handler has been disabled.

* Erlang has been started with the -detached flag so you may not be
aware that it is running.

¢ Erlang has been started with the -heart Cmd option. This option
causes an OS monitor process to be set up that watches over the
Erlang OS process. If the Erlang OS process dies, then Cmd is
evaluated. Often Cmd will simply restart the Erlang system. This
is one of the tricks we use when making fault-tolerant nodes—
if Erlang itself dies (which should never happen), it just gets re-
started. The trick here is to find the heartbeat process (use ps on
Unix-like systems and the Task Manager on Windows) and kill it
before you kill the Erlang process.

* Something might have gone seriously wrong and left you with a
detached zombie Erlang process.

6.7 When Things Go Wrong

This section lists some common problems (and their solutions).

Undefined (Missing) Code

If you try to run code in a module that the code loader cannot find
(because the code search path was wrong), you'll be met with an undef
error message. Here’s an example:
1> glurk:oops(1,23).
=% exited: {undef,[{glurk,oops,[1,23]},

{erl1_eval,do_apply,5},

{shell,exprs,6},
{shell,eval_loop,3}]} ==

Actually, there is no module called glurk, but that’s not the issue here.
The thing you should be concentrating on is the error message. The
error message tells us that the system tried to call the function oops

with arguments 1 and 23 in the module glurk. So, one of four things
could have happened.

* There really is no module glurk—nowhere, not anywhere. This is
probably because of a spelling mistake.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=131

WHEN THINGS GO WRONG <« 132

7 N

Has Anybody Seen My Semicolons?

If you forget the semicolons between the clauses in a function
or put periods there instead, you'll be in trouble—real frouble.

If you're defining a function foo/2 in line 1234 of the module bar
and put a period instead of a semicolon, the compiler will say
this:

bar.erl:1234 function foo/2 already defined.

Don’t do it. Make sure your clauses are always separated by
semicolons.

* There is a module glurk, but it hasn’t been compiled. The system is
looking for a file called glurk.beam somewhere in the code search
path.

® There is a module glurk and it has been compiled, but the direc-
tory containing glurk.oeam is not one of the directories in the code
search path. To fix this, you'll have to change the search path.
We'll see how to do this later.

* There are several different versions of glurk in the code load path,
and we've chosen the wrong one. This is a rare error, but it can
happen.

If you suspect this has happened, you can run the code:clashQ
function, which reports all duplicated modules in the code search
path.

My Makefile Doesn’t Make

What can go wrong with a malefile? Well, lots, actually. But this isn’t
a book about makefiles, so I'll deal only with the most common errors.
Here are the two most common errors that I get:

* Blanks in the makefile: Makefiles are extremely persnickety. Al-
though you can’t see them, each of the indented lines in the make-
file (with the exception of continuation lines, where the previous
line ends with a (\) character) should begin with a tab character.
If there are any spaces there, make will get confused, and you'll
start seeing errors.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=132

WHEN THINGS GO WRONG <« 133

* Missing erlang file: If one of the modules declared in Mods is miss-
ing, you'll get an error message. To illustrate this, assume that
MODS contains a module name glurk but that there is no file called
glurk.erl in the code directory. In this case, make will fail with the

following message:

$ make

make: =% No rule to make target ‘glurk.beam',
needed by ‘compile'. Stop.

Alternatively, there is no missing module, but the module name is
spelled incorrectly in the makefile.

The Shell Isn’t Responding

If the shell is not responding to commands, then a number of things
might have happened. The shell process itself might have crashed, or
you might have issued a command that will never terminate. You might
even have forgotten to type a closing quote mark or forgotten to type
dot-carriage-return at the end of your command.

Regardless of the reason, you can interrupt the current shell by press-
ing Ctrl+G and proceeding as in the following example:

©® 1> receive foo -> true end.

AG
User switch command
® -->h
c [nn] - connect to job
i [nn] - dinterrupt job
k [nn] - ki1l job
Jj - Tist all jobs
s - start local shell
r [node] - start remote shell
q - quit erlang
? | h - this message
3] --> 3
1+ {shell,start,[init]}
® -->5
>

1 {shell,start,[init]}
2% {shell,start,[]}
® -->c2
Eshell V5.5.1 (abort with AG)
1> 1dinit:stop(Q).
ok
2> $

© Here I told the shell to receive a foo message. But since nobody
ever sends the shell this message, the shell goes into an infinite
wait. I press Ctrl+G.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=133

GETTING HELP <« 134

® The system enters “shell JCL"* mode. Here I can never remember
the commands, so I type h for help.

® I type j for a listing of all jobs. Job number 1 is marked with a
star, which means it is the default shell. All the commands with
an optional argument [nn] use the default shell unless a specific
argument is supplied.

® I type s to start a new shell, followed by j again. This time I see
there are two shells marked 1 and 2, and shell 2 has become the
default shell.

® I type c 2, which connects me to the newly started shell 2, and
then I stop the system.

As you can see, you can have many shells in operation and swap
between them by pressing Ctrl+G and then the appropriate commands.
You can even start a shell on a remote node with the r command.

6.8 Getting Help

On a Unix system, here is the code:

$ erl -man erl
NAME
erl - The Erlang Emulator

DESCRIPTION

The erl program starts the Erlang runtime system.

The exact details (e.g. whether erl is a script

or a program and which other programs it calls) are system-dependent.

You can also get help about individual modules as follows:

$ erl -man lists
MODULE
Tists - List Processing Functions

DESCRIPTION
This module contains functions for T1ist processing.
The functions are organized in two groups:

Note: On a Unix system, the manual pages are not installed by default.
If the command erl -man ... does not work, then you need to install the

4. Job Control Language.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=134

TWEAKING THE ENVIRONMENT < 135

manual pages. All the manual pages are in a single compressed archive
at http://www.erlang.org/download.html. The manual pages should be un-
packed in the root of the Erlang installation directory (usually /usr/local/
lib/erlang).

The documentation is also downloadable as a set of HTML files. On
Windows the HTML documentation is installed by default and accessi-
ble through the Erlang section of the Start menu.

6.9 Tweaking the Environment

The Erlang shell has a number of built-in commands. You can see them
all with the shell command helpQ:

1> help().

#% shell internal commands =

b -- display all variable bindings

e(N) -- repeat the expression in query <N>
fO -- forget all variable bindings

1{09) -- forget the binding of variable X

hQO -- history

All these commands are defined in the module shell_default.

If you want to define your own commands, just create a module called
user_default. For example:

Download user_default.erl

-module(user_default).
-compile(export_all).

hello() ->
"Hello Joe how are you?".

away(Time) ->
io:format("Joe is away and will be back in ~w minutes~n",
[Time]).

Once this has been compiled and is placed somewhere in your load
path, then you can call any of the functions in user_default without giv-
ing a module name:

1> helloQ).

"Hello Joe how are you?"

2> away(10).

Joe is away and will be back in 10 minutes
ok

http://www.erlang.org/download.html
http://media.pragprog.com/titles/jaerlang/code/user_default.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=135

THE CRASH Dump <« 136

6.10 The Crash Dump

If Erlang crashes, then it leaves behind a file called erl_crash.dump. The
contents of this file might give you a clue as to what has gone wrong. To
analyze the crash dump, there is a web-based crash analyzer. To start
the analyzer, give the following command:

1> webtool:start().

WebTool is available at http://Tocalhost:8888/

Or http://127.0.0.1:8888/
{ok,<0.34.0>}

Then point your browser at hffp://localhost:8888/. You can then happily
surf the error log.

Now we're through with the nuts-and-bolts stuff, so we can begin to
look at concurrent programs. From now on, you’ll be in unfamiliar ter-
ritory, but this is where the fun really starts.

http://localhost:8888/
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=136

—as

4
7
-

- @

Chapter 7

We understand concurrency.

A deep understanding of concurrency is hardwired into our brains.
We react to stimulation extremely quickly, using a part of the brain
called the amygdala. Without this reaction, we would die. Con-
scious thought is just too slow; by the time the thought “hit the
brakes” has formed itself, we have already done it.

While driving on a major road, we mentally track the positions of
dozens, or perhaps hundreds, of cars. This is done without con-
scious thought. If we couldn’t do this, we would probably be dead.

The world is parallel.

If we want to write programs that behave as other objects behave
in the real world, then these programs will have a concurrent
structure.

This is why we should program in a concurrent programming lan-
guage.

And yet most often we program real-world applications in sequen-
tial programming languages. This is unnecessarily difficult.

Use a language that was designed for writing concurrent applica-
tions, and concurrent development becomes a lot easier.

Erlang programs model how we think and interact.

We don’t have shared memory. I have my memory. You have yours.
We have two brains, one each. They are not joined together. To
change your memory, I send you a message: I talk, or I wave my
arms.

CHAPTER 7. CONCURRENCY <« 138

You listen, you see, and your memory changes; however, without
asking you a question or observing your response, I do not know
that you have received my messages.

This is how it is with Erlang processes. Erlang processes have no
shared memory. Each process has its own memory. To change the
memory of some other process, you must send it a message and
hope that it receives and understands the message.

To confirm that another process has received your message and
changed its memory, you must ask it (by sending it a message).
This is exactly how we interact.

Sue: Hi Bill, my telephone number is 45 67 89 12.
Sue: Did you hear me?
Bill: Sure, your number is 45 67 89 12.

These interaction patterns are well-known to us. From birth on-
ward we learn to interact with the world by observing it and by
sending it messages and observing the responses.

People function as independent entities who communicate by
sending messages.

That’s how Erlang processes work, and that’s how we work, so it’s
very easy to understand an Erlang program.

An Erlang program is made up of dozens, thousands, or even hun-
dreds of thousands of small processes. All these processes oper-
ate independently. They communicate with each other by sending
messages. Each process has a private memory. They behave like
a huge room of people all chattering away to each other.

This makes Erlang program inherently easy to manage and scale.
Suppose we have ten people (processes), and they have too much
work to do. What can we do? Get more people. How can we manage
these groups of people? It’s easy—just shout instructions at them
(broadcasting).

Erlang processes don’t share memory, so there is no need to lock
the memory while it is being used. Where there are locks, there
are keys that can get lost. What happens when you lose your keys?
You panic and don’t know what to do. That’s what happens in soft-
ware systems when you lose your keys and your locks go wrong.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=138

CHAPTER 7. CONCURRENCY <« 139

Distributed software systems with locks and keys always go
wrong.

Erlang has no locks and no keys.

If somebody dies, other people will notice.
If 'm in a room and suddenly keel over and die, somebody will
probably notice (well, at least I hope so). Erlang processes are just
like people—they can on occasions die. Unlike people, when they
die, they shout out in their last breath exactly what they have died
from.

Imagine a room full of people. Suddenly one person keels over and
dies. Just as they die, they say “I'm dying of a heart attack” or “I'm
dying of an exploded gastric wobbledgog.” That’s what Erlang pro-
cesses do. One process might die saying “I'm dying because I was
asked to divide by zero.” Another might say, “I'm dying because I
was asked what the last element in an empty list was.”

Now in our room full of people, we might imagine there are spe-
cially assigned people whose job it is to clear away the bodies. Let’s
imagine two people, Jane and John. If Jane dies, then John will
fix any problems associated with Jane’s death. If John dies, then
Jane will fix the problems. Jane and John are linked together with
an invisible agreement that says that if one of them dies, the other
will fix up any problems caused by the death.

That’s how error detection in Erlang works. Processes can be
linked together. If one of the processes dies, the other process gets
an error message saying why the first process dies.

That'’s basically it.
That’'s how Erlang programs work.
Here’s what we've learned so far:

¢ Erlang programs are made of lots of processes. These processes
can send messages to each other.

* These messages may or may not be received and understood. If
you want to know whether a message was received and under-
stood, you must send the process a message and wait for a reply.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=139

CHAPTER 7. CONCURRENCY < 140

* Pairs of processes can be linked together. If one processes in a
linked pair dies, the other process in the pair will be sent a mes-
sage containing the reason why the first process died.

This simple model of programming is part of a model I call concurrency-
oriented programming.

In the next chapter, we'll start writing concurrent programs. We need
to learn three new primitives: spawn, send (using the ! operator), and
receive. Then we can write some simple concurrent programs.

When processes die, some other process notices if they are linked to-
gether. This is the subject of Chapter 9, Errors in Concurrent Programs,
on page 159.

As you read the next two chapters, think of people in a room. The peo-
ple are the processes. The people in the room have individual private
memories; this is the state of a process. To change your memory, I talk
to you, and you listen. This is sending and receiving messages. We have

children; this is spawn. We die; this is a process exit.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=140

Chapter 8

In this chapter, we’ll be talking about processes. These are small self-
contained virtual machines that can evaluate Erlang functions.

I'm sure you've met processes before, but only in the context of operat-
ing systems.

In Erlang, processes belong to the programming language and NOT the
operating system.

In Erlang:

¢ Creating and destroying processes is very fast.

¢ Sending messages between processes is very fast.

* Processes behave the same way on all operating systems.

* We can have very large numbers of processes.

* Processes share no memory and are completely independent.

* The only way for processes to interact is through message passing.

For these reasons Erlang is sometimes called a pure message passing
language.

If you haven’t programmed with processes before, you might have heard
rumors that it is rather difficult. You've probably heard horror stories
of memory violations, race conditions, shared-memory corruption, and
the like. In Erlang, programming with processes is easy. It just needs
three new primitives: spawn, send, and receive.

THE CONCURRENCY PRIMITIVES < 142

8.1 The Concurrency Primitives

Everything we've learned about sequential programming is still true
for concurrent programming. All we have to do is to add the following
primitives:

Pid = spawn(Fun)
Creates a new concurrent process that evaluates Fun. The new
process runs in parallel with the caller. spawn returns a Pid (short
for process identifier). You can use Pid to send messages to the
process.

Pid ! Message
Sends Message to the process with identifier Pid. Message sending
is asynchronous. The sender does not wait but continues with
what it was doing. ! is called the send operator.

Pid I M is defined to be M—the message sending primitive ! returns
the message itself. Because of this, Pid1 ! Pid2 ! ... | M means send
the message M to all the processes Pid1, Pid2, and so on.

receive ... end
Receives a message that has been sent to a process. It has the
following syntax:
receive
Patternl [when Guardl] ->
Expressionsl;

Pattern2 [when Guard2] ->
Expressions2;

end

When a message arrives at the process, the system tries to match
it against Pattern1 (with possible guard Guardl); if this succeeds, it
evaluates Expressions1. If the first pattern does not match, it tries
Pattern2, and so on. If none of the patterns matches, the message
is saved for later processing, and the process waits for the next
message. This is described in more detail in Section 8.6, Selective
Receive, on page 153.

The patterns and guards used in a receive statement have exactly
the same syntactic form and meaning as the patterns and guards
that we use when we define a function.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=142

A SIMPLE EXAMPLE <« 143

8.2 A Simple Example

Remember how we wrote the area/1 function in Section 3.1, Modules,
on page 43? Just to remind you, the code that defined the function
looked like this:

Download geometry.erl

area({rectangle, Width, Ht}) -> Width = Ht;
area({circle, R}) -> 3.14159 = R * R.

Now we’ll rewrite the same function as a process:
Download area_server0.erl

-module(area_server0).
-export([Toop/0]).

Toop() ->
receive
{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
ToopQ);
{circle, R} ->
io:format("Area of circle is ~p~n", [3.14159 = R = R]),
ToopQ);
Other ->
io:format("I don't know what the area of a ~p is ~n",[Other]),
Toop()
end.

We can create a process that evaluates loop/0 in the shell:

1> Pid = spawn(fun area_server0:l1oop/0).
<0.36.0>

2> Pid ! {rectangle, 6, 10}.

Area of rectangle is 60

{rectangle, 6,10}

3> Pid ! {circle, 23}.

Area of circle is 1661.90

{circle,23}

4> Pid ! {triangle,2,4,5}.

I don't know what the area of a {triangle,2,4,5} is
{triangle,2,4,5}

What happened here? In line 1 we created a new parallel process.
spawn(Fun) creates a parallel process that evaluates Fun; it returns Pid,
which is printed as <0.36.0>.

http://media.pragprog.com/titles/jaerlang/code/geometry.erl
http://media.pragprog.com/titles/jaerlang/code/area_server0.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=143

CLIENT-SERVER—AN INTRODUCTION < 144

In line 2 we sent a message to the process. This message matches the
first pattern in the receive statement in loop/0:
Toop() ->
receive
{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width *« Ht]),
Toop()

Having received a message, the process prints the area of the rectangle.
Finally, the shell prints {rectangle, 6, 10}. This is because the value of Pid
I Msg is defined to be Msg. If we send the process a message that it
doesn’t understand, it prints a warning. This is performed by the Other
->... code in the receive statement.

8.3 Client-Server—An Introduction

Client-server architectures are central to Erlang. Traditionally, client-
server architectures have involved a network that separates a client
from a server. Most often there are multiple instances of the client and
a single server. The word server often conjures up a mental image of
some rather heavyweight software running on a specialized machine.

In our case, a much lighter-weight mechanism is involved. The client
and server in a client-server architecture are separate processes, and
normal Erlang message passing is used for communication between
the client and the server. Both client and server can run on the same
machine or on two different machines.

The words client and server refer to the roles that these two processes
have; the client always initiates a computation by sending a request to
the server. The server computes a reply and sends a response to the
client.

Let’s write our first client-server application. We'll start by making some
small changes to the program we wrote in the previous section.

In the previous program, all that we needed was to send a request to
a process that received and printed that request. Now, what we want
to do is send a response to the process that sent the original request.
The trouble is we do not know to whom to send the response. To send a
response, the client has to include an address to which the server can
reply. This is like sending a letter to somebody—if you want to get a
reply, you had better include your address in the letter!

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=144

CLIENT-SERVER—AN INTRODUCTION < 145

So, the sender must include a reply address. This can be done by
changing this:

Pid ! {rectangle, 6, 10}

to the following:

Pid I {selfQ.{rectangle, 6, 10}}

self() is the PID of the client process.

To respond to the request, we have to change the code that receives the
requests from this:
Toop() ->
receive
{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
Toop ()

to the following:

Toop() ->
receive
{From, {rectangle, Width, Ht}} ->
From ! Width = Ht,
ToopQ;

Note how we now send the result of our calculation back to the process
identified by the From parameter. Because the client set this parameter
to its own process ID, it will receive the result.

The process that sends the initial request is usually called a client.
The process that receives the request and sends a response is called a
server.

Finally, we add a small utility function called rpc (short for remote pro-
cedure call) that encapsulates sending a request to a server and waiting
for a response:

Download area_serverl.erl

rpc(Pid, Request) ->
Pid ! {self(), Request},
receive
Response ->
Response
end.

http://media.pragprog.com/titles/jaerlang/code/area_server1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=145

CLIENT-SERVER—AN INTRODUCTION < 146

Putting all of this together, we get the following:
Download area_serverl.erl
-module(area_serverl).

-export([Toop/0, rpc/2]).

rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
Response ->
Response
end.
Toop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! Width = Ht,

ToopQ;
{From, {circle, R}} ->
From ! 3.14159 = R = R,

ToopQ;
{From, Other} ->
From ! {error,Other},

Toop()
end.

We can experiment with this in the shell:

1> Pid = spawn(fun area_serverl:loop/0).
<0.36.0>

2> area_serverl:rpc(Pid, {rectangle,6,8}).
48

3> area_serverl:rpc(Pid, {circle,6}).
113.097

4> area_serverl:rpc(Pid, socks).
{error,socks}

There’s a slight problem with this code. In the function rpc/2, we send
a request to the server and then wait for a response. But we do not wait
Jor a response from the server; we wait for any message. If some other
process sends the client a message while it is waiting for a response
from the server, it will misinterpret this message as a response from
the server. We can correct this by changing the form of the receive
statement to this:

Toop() ->
receive
{From, ...} ->
From ! {self(Q), ...}
Toop ()

http://media.pragprog.com/titles/jaerlang/code/area_server1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=146

CLIENT-SERVER—AN INTRODUCTION < 147

and by changing rpc to the following:

rpc(Pid, Request) ->
Pid ! {self(), Request},
receive
{Pid, Response} ->
Response
end.

How does this work? When we have entered the rpc function, Pid is
bound to some value, so in the pattern {Pid, Response}, Pid is bound, and
Response is unbound. This pattern will match only a message contain-
ing a two-tuple! where the first element is Pid. All other messages will
be queued. (receive provides what is called selective receive, which T'll
describe after this section.)

With this change, we get the following:
Download area_server2.erl
-module(area_server2).

-export([Toop/0, rpc/2]).

rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
{Pid, Response} ->
Response
end.
Toop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! {self(), Width = Ht},
ToopQ;

{From, {circle, R}} ->
From ! {self(), 3.14159 = R * R},
Toop();

{From, Other} ->
From ! {self(), {error,Other}},

Toop ()
end.

This works as expected:

1> Pid = spawn(fun area_server2:l1oop/0).
<0.37.0>

3> area_server2:rpc(Pid, {circle, 5}).
78.5397

1. N-tuple means a tuple of size N, so two-tuple is a tuple of size 2.

http://media.pragprog.com/titles/jaerlang/code/area_server2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=147

How LoNG DOES IT TAKE TO CREATE A PROCESsS? <« 148

8.4

There’s one final improvement we can make. We can hide the spawn and
roc inside the module. This is good practice because we will be able to
change the internal details of the server without changing the client
code. Finally, we get this:

Download area_server_final.erl

-module(area_server_final).
-export([start/0, area/2]).

start() -> spawn(fun Toop/0).

area(Pid, What) ->
rpc(Pid, What).

rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
{Pid, Response} ->
Response
end.
Toop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! {self(), Width = Ht},
ToopQ);

{From, {circle, R}} ->
From ! {self(), 3.14159 = R = R},
Toop();

{From, Other} ->
From ! {self(), {error,Other}},

Toop ()
end.

To run this, we call the functions start/0 and area/2 (where before we
called spawn and rpc). These are better names that more accurately
describe what the server does:

1> Pid = area_server_final:start().

<0.36.0>

2> area_server_final:area(Pid, {rectangle, 10, 8}).

80

4> area_server_final:area(Pid, {circle, 4}).
50.2654

How Long Does It Take to Create a Process?

At this point, you might be worried about performance. After all, if we're
creating hundreds or thousands of Erlang processes, we must be pay-
ing some kind of penalty. Let’s find out how much.

http://media.pragprog.com/titles/jaerlang/code/area_server_final.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=148

How LONG DOES IT TAKE TO CREATE A PROCESS? <« 149

To investigate this, we’ll time how long it takes to spawn a large number
of processes. Here’s the program:

Download processes.erl

-module(processes).
-export([max/1]).

%% max(N)
%% Create N processes then destroy them
%% See how much time this takes

max(N) ->
Max = erlang:system_info(process_1limit),
io:format("Maximum allowed processes:~p~n",h [Max]),
statistics(runtime),
statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Timel} = statistics(runtime),
{_, Time2} = statistics(wall_clock),
Tists:foreach(fun(Pid) -> Pid ! die end, L),
Ul = Timel = 1000 / N,
U2 = Time2 * 1000 / N,
jo:format("Process spawn time=~p (~p) microseconds~n",

[u1l, uU21).
wait() ->
receive
die -> void
end.

for(N, N, F) -> [FO1I;
for(I, N, F) -> [FO|for(I+1, N, BF)].

Here are the results I obtained on the computer I'm using to write this
book, a 2.40GHz Intel Celeron with 512MB of memory running Ubuntu
Linux:

1> processes:max(20000) .

Maximum allowed processes:32768

Process spawn time=3.50000 (9.20000) microseconds

ok

2> processes:max(40000).

Maximum allowed processes:32768

=ERROR REPORT==== 26-Nov-2006::14:47:24 ===

Too many processes

Spawning 20,000 processes took an average of 3.5 us/process of CPU
time and 9.2 us of elapsed (wall-clock) time.

http://media.pragprog.com/titles/jaerlang/code/processes.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=149

RECEIVE WITH A TIMEOUT < 150

Note that I used the BIF erlang:system_info(process_limit) to find the max-
imum allowed number of processes. Note that some of these are re-
served, so your program cannot actually use this number. When we
exceed the system limit, the system crashes with an error report (com-
mand 2).

The system limit is set to 32,767 processes; to exceed this limit, you
have to start the Erlang emulator with the +P flag as follows:
$ erl +P 500000

1> processes:max(50000) .

Maximum allowed processes:500000

Process spawn time=4.60000 (10.8200) microseconds

ok

2> processes:max(200000) .

Maximum allowed processes:500000

Process spawn time=4.10000 (10.2150) microseconds

3> processes:max(300000) .

Maximum allowed processes:500000

Process spawn time=4.13333 (73.6533) microseconds

In the previous example, I set the system limit to half a million pro-
cesses. We can see that the process spawn time is essentially con-
stant between 50,000 to 200,000 processes. At 300,000 processes, the
CPU time per spawn process remains constant, but the elapsed time
increases by a factor of seven. I can also hear my disk chattering away.
This is sure sign that the system is paging and that I don’t have enough
physical memory to handle 300,000 processes.

8.5 Receive with a Timeout

Sometimes a receive statement might wait forever for a message that
never comes. This could be for a number of reasons. For example, there
might be a logical error in our program, or the process that was going
to send us a message might have crashed before it sent the message.

To avoid this problem, we can add a timeout to the receive statement.
This sets a maximum time that the process will wait to receive a mes-
sage. The syntax is as follows:

receive
Patternl [when Guardl] ->
Expressionsl;
Pattern2 [when Guard2] ->
Expressions2;

after Time ->
Expressions
end

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=150

RECEIVE WITH A TIMEOUT

If no matching message has arrived within Time milliseconds of entering
the receive expression, then the process will stop waiting for a message
and evaluate Expressions.

Receive with Just a Timeout

You can write a receive consisting of only a timeout. Using this, we
can define a function sleep(T), which suspends the current process for T
milliseconds.

DownToad lib_misc.erl

sleep(T) ->
receive
after T ->
true
end.

Receive with Timeout Value of Zero

A timeout value of 0 causes the body of the timeout to occur immedi-
ately, but before this happens, the system tries to match any patterns
in the mailbox. We can use this to define a function flush_buffer, which
entirely empties all messages in the mailbox of a process:

Download lib_misc.erl

flush_buffer() ->
receive
_Any ->
flush_buffer()
after 0 ->
true
end.

Without the timeout clause, flush_buffer would suspend forever and not
return when the mailbox was empty. We can also use a zero timeout to
implement a form of “priority receive,” as follows:

DownToad lib_misc.erl

priority_receive() ->
receive
{alarm, X} ->
{alarm, X}
after 0 ->
receive
Any ->
Any
end
end.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=151

RECEIVE WITH A TIMEOUT <« 152

If there is not a message matching {alarm, X} in the mailbox, then pri-
ority_receive will receive the first message in the mailbox. If there is no
message at all, it will suspend in the innermost receive and return the
first message it receives. If there is a message matching {alarm, X}, then
this message will be returned immediately. Remember that the after
section is checked only after pattern matching has been performed on
all the entries in the mailbox.

Without the aoffer O statement, the alarm message would not be matched
first.

Note: Using large mailboxes with priority receive is rather inefficient, so
if you're going to use this technique, make sure your mailboxes are not
too large.

receive with Timeout Value of Infinity

If the timeout value in a receive statement is the atom infinity, then the
timeout will never trigger. This might be useful for programs where the
timeout value is calculated outside the receive statement. Sometimes
the calculation might want to return an actual timeout value, and other
times it might want to have the receive wait forever.

Implementing a Timer

We can implement a simple timer using receive timeouts.

The function stimer:start(Time, Fun) will evaluate Fun (a function of zero
arguments) after Time ms. It returns a handle (which is a PID), which
can be used to cancel the timer if required.

Download stimer.erl

-module(stimer).
-export([start/2, cancel/1]).

start(Time, Fun) -> spawn(fun() -> timer(Time, Fun) end).
cancel(Pid) -> Pid ! cancel.

timer(Time, Fun) ->
receive
cancel ->
void
after Time ->
FunQ
end.

http://media.pragprog.com/titles/jaerlang/code/stimer.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=152

SELECTIVE RECEIVE <« 153

We can test this as follows:

1> Pid = stimer:start(5000, fun() -> 1io:format("timer event~n") end).
<0.42.0>
timer event

Here I waited more than five seconds so that the timer would trigger.
Now I'll start a timer and cancel it before the timer period has expired:
2> Pidl = stimer:start(25000, fun() -> io:format('"timer event~n") end).

<0.49.0>

3> stimer:cancel (Pidl).
cancel

8.6 Selective Receive

So far we have glossed over exactly how send and receive work. send
does not actually send a message to a process. Instead, send sends a
message to the mailbox of the process, and receive tries to remove a
message from the mailbox.

Each process in Erlang has an associated mailbox. When you send a
message to the process, the message is put into the mailbox. The only
time the mailbox is examined is when your program evaluates a receive
statement:
receive
Patternl [when Guardl] ->
Expressionsl;

Pattern2 [when Guardl] ->
Expressionsl;

after
Time ->
ExpressionTimeout
end

receive works as follows:

1. When we enter a receive statement, we start a timer (but only if an
after section is present in the expression).

2. Take the first message in the mailbox and try to match it against
Pattern1, Pattern2, and so on. If the match succeeds, the message
is removed from the mailbox, and the expressions following the
pattern are evaluated.

3. If none of the patterns in the receive statement matches the first
message in the mailbox, then the first message is removed from
the mailbox and put into a “save queue.” The second message

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=153

REGISTERED PROCESSES <« 154

in the mailbox is then tried. This procedure is repeated until a
matching message is found or until all the messages in the mail-
box have been examined.

4. If none of the messages in the mailbox matches, then the process
is suspended and will be rescheduled for execution the next time a
new message is put in the mailbox. Note that when a new message
arrives, the messages in the save queue are not rematched; only
the new message is matched.

5. As soon as a message has been matched, then all messages that
have been put into the save queue are reentered into the mailbox
in the order in which they arrived at the process. If a timer was
set, it is cleared.

6. If the timer elapses when we are waiting for a message, then evalu-
ate the expressions ExpressionsTimeout and put any saved messages
back into the mailbox in the order in which they arrived at the
process.

8.7 Registered Processes

If we want to send a message to a process, then we need to know its PID.
This is often inconvenient since the PID has to be sent to all processes
in the system that want to communicate with this process. On the other
hand, it is very secure; if you don’t reveal the PID of a process, other
processes cannot interact with it in any way.

Erlang has a method for publishing a process identifier so that any pro-
cess in the system can communicate with this process. Such a process
is called a registered process. There are four BIFs for managing regis-
tered processes:

register(AnAtom, Pid)
Register the process Pid with the name AnAtom. The registration
fails if AnAtom has already been used to register a process.

unregister(AnAtom)
Remove any registrations associated with AnAtom.

Note: If a registered process dies it will be automatically unregis-
tered.

whereis(AnAtom) -> Pid | undefined
Find out whether AnAtom is registered. Return the process iden-
tifier Pid, or return the atom undefined if no process is associated
with AnAtom.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=154

REGISTERED PROCESSES <« 155

registered(-> [AnAtom::atom()]
Return a list of all registered processes in the system.

Using register, we can revise the example in Section 8.2, A Simple Exam-
ple, on page 143, and we can try to register the name of the process
that we created:

1> Pid = spawn(fun area_server0:l1oop/0).
<0.51.0>

2> register(area, Pid).

true

Once the name has been registered, we can send it a message like this:

3> area ! {rectangle, 4, 5}.
Area of rectangle is 20
{rectangle, 4,5}

A Clock

We can use register to make a registered process that represents a
clock:

Download clock.erl

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) ->
register(clock, spawn(fun() -> tick(Time, Fun) end)).

stop() -> clock ! stop.

tick(Time, Fun) ->
receive
stop ->
void
after Time ->
FunQ,
tick(Time, Fun)
end.

The clock will happily tick away until you stop it:

3> clock:start(5000, fun() -> ijo:format("TICK ~p~n",[erlang:now()]) end).
true

TICK {1164,553538,392266}

TICK {1164,553543,393084}

TICK {1164,553548,394083}

TICK {1164,553553,395064}

4> clock:stop().

stop

http://media.pragprog.com/titles/jaerlang/code/clock.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=155

How Do WE WRITE A CONCURRENT PROGRAM? <« 156

8.8 How Do We Write a Concurrent Program?
When I write a concurrent program, I almost always start with some-
thing like this:
Download ctemplate.erl

-module(ctemplate).
-compile(export_all).

start() ->
spawn(fun() -> Toop([]) end).

rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
{Pid, Response} ->
Response
end.
Toop(X) ->
receive
Any ->
io:format("Received:~p~n", [Any]),
Toop (X)
end.

The receive loop is just any empty loop that receives and prints any
message that I send to it. As I develop the program, I'll start send-
ing messages to the processes. Because I start with no patterns in the
receive loop that match these messages, I'll get a printout from the
code at the bottom of the receive statement. When this happens, I add
a matching pattern to the receive loop and rerun the program. This
technique largely determines the order in which I write the program: I
start with a small program and slowly grow it, testing it as I go along.

8.9 A Word About Tail Recursion

Take a look at the receive loop in the area server that we wrote earlier:
Download area_server_final.erl

Toop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! {self(), Width = Ht},
ToopQ);

{From, {circle, R}} ->
From ! {self(), 3.14159 = R = R},
ToopQ);

http://media.pragprog.com/titles/jaerlang/code/ctemplate.erl
http://media.pragprog.com/titles/jaerlang/code/area_server_final.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=156

SPAWNING WITH MFAs <« 157

{From, Other} ->
From ! {self(), {error,Other}},

Toop()
end.

If you look carefully, you'll see that every time we receive a message,
we process the message and then immediately call loop() again. Such a
procedure is called tail-recursive. A tail-recursive function can be com-
piled so that the last function call in a sequence of statements can be
replaced by a simple jump to the start of the function being called. This
means that a tail-recursive function can loop forever without consum-
ing stack space.

Suppose we wrote the following (incorrect) code:

Line 1 Toop() ->

{From, {rectangle, Width, Ht}} ->
From ! {self(), Width =* Ht},
ToopQ),

5 someOtherFunc();

{From, {circle, R}} ->
From ! {self(), 3.14159 = R = R},
ToopQ;

10 end

In line 4, we call loop(), but the compiler must reason that “after I've
called loop(), I have to return to here, since I have to call someOther-
FuncQ in line 5.” So, it pushes the address of someOtherFunc onto the
stack and jumps to the start of loop. The problem with this is that
loop() never returns; instead, it just loops forever. So, each time we
pass line 4, another return address gets pushed onto the control stack,
and eventually the system runs out of space.

Avoiding this is easy; if you write a function F that never returns (such
as loop()), make sure that you never call anything after calling F, and
don’t use F in a list or tuple constructor.

8.10 Spawning with MFAs

Most programs we write use spawn(Fun) to create a new process. This
is fine provided we don’t want to dynamically upgrade our code. Some-
times we want to write code that can be upgraded as we run it. If we
want to make sure that our code can be dynamically upgraded, then
we have to use a different form of spawn.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=157

PROBLEMS < 158

spawn(Mod, FuncName, Args)
This creates a new process. Args is a list of arguments of the form
[Argl, Args2, ..., ArgN]. The newly created process starts evaluating
Mod:FuncName(Arg1, Arg2, ..., ArgN).

Spawning a function with an explicit module, function name, and argu-
ment list (called an MFA) is the proper way to ensure that our running
processes will be correctly updated with new versions of the module
code if it is compiled while it is being used. The dynamic code upgrade
mechanism does not work with spawned funs. It works only with explic-
itly named MFAs. For more details, read Section E.4, Dynamic Code
Loading, on page 435.

8.11 Problems

1. Write a function start(AnAtom, Fun) to register AnAtom as spawn(Fun).
Make sure your program works correctly in the case when two
parallel processes simultaneously evaluate start/2. In this case,
you must guarantee that one of these processes succeeds and the
other fails.

2. Write a ring benchmark. Create N processes in a ring. Send a mes-
sage round the ring M times so that a total of N * M messages get
sent. Time how long this takes for different values of N and M.

Write a similar program in some other programming language you
are familiar with. Compare the results. Write a blog, and publish
the results on the Internet!

That’s it—you can now write concurrent programs!

Next we’ll look at error recovery and see how we can write fault-tolerant
concurrent programs using three more concepts: links, signals, and
trapping process exits. That’s in the next chapter.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=158

9.1

Chapter 9

Earlier we saw how to trap errors in sequential programs. In this chap-
ter, we’ll extend the error handling mechanisms to take care of errors
in concurrent programs.

This is the second and final stage in understanding how Erlang handles
errors. To understand this, we need to introduce three new concepts:
links, exit signals, and the idea of a system process.

Linking Processes

If a process in some way depends on another, then it may well want
to keep an eye on the health of that second process. One way to do
that is to use Erlang’s link BIF. (The other is to use monitors, which are
described in the erlang manual page).

A traps exits B dies {"EXIT",B,Why}

Aislinkedto B e
Anexit signal issentto A

@ (b) ©

Figure 9.1: Exit signals and links

AN ON_EXIT HANDLER <« 160

Figure 9.1, on the previous page, shows two processes, A and B. They
are linked together (as shown by the dotted line in the diagram). The
link was made when one of the processes called the BIF link(P), with P
being the PID of the other process. Once linked, the two processes will
implicitly monitor each other. If A dies, then B will be sent something
called an exit signal. If B dies, then A receives the signal.

The mechanisms described in this chapter are completely general. They
work on a single node, but they also work on sets of nodes in a dis-
tributed Erlang system. As we’ll see later in Chapter 10, Distributed
Programming, on page 175, we can spawn processes on remote nodes
just as easily as we can spawn processes on the current node. All the
link mechanisms that we talk about in the chapter work equally well in
a distributed system.

What happens when a process receives an exit signal? If the receiver
hasn’t taken any special steps, the exit signal will cause it, too, to exit.
However, a process can ask to trap these exit signals. When a process is
in this state, it is called a system process. If a process linked to a system
process exits for some reason, the system process is not automatically
terminated. Instead, the system process receives an exit signal, which
it can trap and process.

Part (a) of the diagram shows the processes linked together. A is a sys-
tem process (shown by a double circle). In part (b), B dies, and in part
(c), an exit signal is sent to A.

Later in the chapter, we’ll go through all the details of exactly what
happens when an exit signal arrives at a process. But before this, we’ll
start with a short example that shows how to use this mechanism to
write a simple exit handler. The exit handler is a process that evaluates
a particular function, when some other process crashes. The exit han-
dler is in itself a useful building block for constructing more advanced
abstractions.

9.2 An on_exit Handler

We want to perform some action when a process exits. We can write a
function on_exit(Pid, Fun) that creates a link to the process Pid. If Pid dies
with reason, Why and then Fun(Why) is evaluated.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=160

AN ON_EXIT HANDLER <« 161

Here’s the program:
Download lib_misc.erl

lnel on_exit(Pid, Fun) ->
spawn(fun() ->
process_flag(trap_exit, true),

Tink(Pid),
5 receive
{'EXIT', Pid, Why} ->
Fun(Why)
end

end) .

In line 3, the statement process_flag(frap_exit, frue) turns the spawned
process into a system process. link(Pid) (line 4) links the newly spawned
process to Pid. Finally, when the process dies, an exit signal is received
(line 6) and processed (line 7).

Note: When you read this code, you’ll see we just used a variable Pid
everywhere. This is the process identifier of the linked process. We can’t
use a variable name like LinkedPid to say this, because before we have
evaluated link(Pid), it’s not a linked process. When you see a message
like {"EXIT’, Pid, _}, this should alert you that Pid is a linked process and
that it has just died.

To test this, we’ll define a function F that waits for a single message X
and then computes list_to_atom(X):

1> F = funQQ ->
receive
X -> Tist_to_atom(X)
end
end.
#Fun<erl_eval.20.69967518>

We'll spawn this:

2> Pid = spawn(F).
<0.61.0>

And we’ll set up an on_exit handler to monitor it:

3> 1ib_misc:on_exit(Pid,
fun(Why) ->
io:format(" ~p died with:~p~n",[Pid, Why])
end).
<0.63.0>

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=161

REMOTE HANDLING OF ERRORS <« 162

If we send an atom to Pid, the process will die (because it tries to eval-
uate list_to_atom of a nonlist), and the on_exit handler will be called:
4> Pid ! hello.

hello
<0.61.0> died with:{badarg, [{erlang,list_to_atom,[hello]}]}

The function that is invoked when the process dies can, of course, per-
form any computation it likes: it can ignore the error, log the error, or
restart the application. The choice is up to the programmer.

9.3 Remote Handling of Errors

Let’s just stop and think for a moment about the previous example.
It illustrates an extremely important part of the Erlang philosophy,
namely, the remote handling of errors.

Because an Erlang system consists of large numbers of parallel pro-
cesses, we are no longer forced to deal with errors in the process where
the error occurs; we can deal with them in a different process. The
process that deals with the error doesn’t even have to be on the same
machine. In distributed Erlang, described in the next chapter, we’ll see
that this simple mechanism even works across machine boundaries.
This is very important, since if the entire machine has crashed, the
program that fixes the error cannot be on the same machine.

9.4 The Details of Error Handling

Let’s look again at the three concepts that underlie Erlang error han-
dling:

Links
A link is something that defines an error propagation path between
two processes. If two processes are linked together and one of the
processes dies, then an exit signal will be sent to the other process.

The set of processes that are currently linked to a given process is
called the link set of that process.

Exit signals
An exit signal is something generated by a process when the pro-
cess dies. This signal is broadcast to all processes that are in the
link set of the dying process. The exit signal contains an argu-
ment giving the reason why the process died. The reason can be

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=162

THE DETAILS OF ERROR HANDLING < 163

any Erlang data term. This reason can be set explicitly by call-
ing the primitive exit(Reason), or it is set implicitly when an error
occurs. For example, if a program tries to divide a number by zero,
then the exit reason will be the atom badarith.

When a process has successfully evaluated the function it was
spawned with, it will die with the exit reason normal.

In addition, a process Pid1 can explicitly send an exit signal X to a
process Pid2 by evaluating exit(Pid2, X). The process that sends the
exit signal does not die; it resumes execution after it has sent the
signal. Pid2 will receive a {'EXIT’, Pid1, X} message (if it is trapping
exits), exactly as if the originating process had died. Using this
mechanism, Pid1 can “fake” its own death (this is deliberate).

System processes
When a process receives a non-normal exit signal, it too will die
unless it is special kind of process called a system process. When
a system process receives an exit signal Why from a process Pid,
then the exit signal is converted to the message {"EXIT", Pid, Why}
and added to the mailbox of the system process.

Calling the BIF process_flag(frap_exit, frue) turns a normal process
into a system process that can trap exits.

When an exit signal arrives at a process, then a number of different
things might happen. What happens depends upon the state of the
receiving process and upon the value of the exit signal and is deter-
mined by the following table:

frap_exit Exit Signal Action

frue kill Die: Broadcast the exit signal killed to the link set.
frue X Add {'EXIT", Pid, X} to the mailbox.

false normal Continue: Do-nothing signal vanishes.

false kill Die: Broadcast the exit signal killed to the link set.
false X Die: Broadcast the exit signal X to the link set.

If the reason is given as kill, then an untrappable exit signal will be sent.
An untrappable exit signal will always kill the process it is sent to, even
if it is a system process. This is used by the supervisor process in OTP
to Kkill rogue processes. When a process receives a kill signal, it dies and
broadcasts killed signals to the processes in its link set. This is a safety
measure to avoid accidentally killing more of the system than you had
intended.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=163

THE DETAILS OF ERROR HANDLING < 164

The kil signal is intended to kill rogue processes. Think hard before
using it.

Programming Idioms for Trapping Exits

Trapping exits is actually a lot easier than you might suspect from
reading the preceding sections. Although it is possible to use the exit
generation and trapping mechanisms in a number of ingenious ways,
most programs use one of three simple idioms.

Idiom 1: I Don’t Care If a Process | Create Crashes
Here the process that creates a parallel process that just uses spawn:
Pid = spawn(fun() -> ... end)

Nothing else. If the spawned process crashes, the current process con-
tinues.

Idiom 2: | Want to Die If a Process | Create Crashes

To be strict, we should say, “If the process I create crashes with a non-
normal exit.” To achieve this, the process that creates a parallel process
uses spawn_link and must not have previously been set to trap exits. We
just write this:

Pid = spawn_Tink(fun() -> ... end)

Then if the spawned process crashes with a non-normal exit, the cur-
rent process will also crash.

Idiom 3: | Want to Handle Errors If a Process | Create Crashes

Here we use spawn_link and trap_exits. We code this as follows:

process_flag(trap_exit, true),
Pid = spawn_Tink(fun() -> ... end),
Toop(...).

loop(State) ->
receive
{'EXIT', SomePid, Reason} ->
%% do something with the error
Toop(Statel);

end

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=164

THE DETAILS OF ERROR HANDLING < 165

The process evaluating loop now traps exits and does not die if the
processes it is linked to dies. It will see all exit signals (converted to
messages) from dying processes,! and can take any action it wants
when it detects process failures.

Trapping Exit Signals (Advanced)

You can skip this section on a first reading. Most of what you want to

do will be correctly handled by one of the three idioms shown in the
previous section. If you really want to know, read on. But be warned. It

can be difficult to understand the precise details of these mechanisms. @
In most cases, you don’'t need to understand the mechanism since if

you use one of the common program idioms (in the previous section) or

the OTP libraries, then the system will “do the right thing” without you

having to worry.

To really understand the details of error handling, we’ll write a little
program to illustrate how error handling and links interact. Our pro-
gram starts as follows:

Download edemol.erl

-module(edemol).
-export([start/2]).

start(Bool, M) ->
A = spawn(fun() -> a() end),
B = spawn(fun() -> b(A, Bool) end),
C spawn(fun() -> c(B, M) end),
sleep(1000),
status(b, B),
status(c, O).

This starts three processes: A, B, and C. The idea is that A will be linked
to B, and B will be linked to C. A will trap exits and watch for exits from
B. B will trap exits if Bool is true, and C will die with exit reason M.

(You might by wondering about the sleep(1000) statement. This is to
allow any messages that come when C dies to be printed before we
check the status of the three processes. It doesn’t change the logic of
the program, but it does alter the printout order.)?

1. Apart from the signal generated by exit(Pid, kill)
2. Using sleep to synchronize processes is unsafe. It's OK in a short example, but for
production-quality code, explicit synchronization should be performed.

http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=165

THE DETAILS OF ERROR HANDLING < 166

The code for the A, B, and C processes is as follows:
Download edemol.erl

a() ->
process_flag(trap_exit, true),
wait(a).

b(A, Bool) ->
process_flag(trap_exit, Bool),
Tink(A),
wait(b).

c(B, M) ->
1ink(B),
case M of
{die, Reason} ->
exit(Reason);
{divide, N} ->
1/N,
wait(c);
normal ->
true
end.

wait/1 just prints any message that it receives:
Download edemol.erl

wait(Prog) ->
receive
Any ->
io:format("Process ~p received ~p~n'",[Prog, Anyl),
wait(Prog)
end.

And the remainder of the program is as follows:
Download edemol.erl

sleep(T) ->
receive
after T -> true
end.

status(Name, Pid) ->
case erlang:is_process_alive(Pid) of
true ->
io:format("process ~p (~p) is alive~n", [Name, Pid]);
false ->
io:format("process ~p (~p) is dead~n", [Name,Pid])
end.

http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://media.pragprog.com/titles/jaerlang/code/edemo1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=166

THE DETAILS OF ERROR HANDLING < 167

~

exit(normal) - exit(X)

(c) any exit, b does not die

/
@ @ ®\ © A process which traps exits

*exn(X) O A normal process
QID» """" A process link
K (b) non-normal exit, b dies / <= Anexitsignd

Figure 9.2: Trapping exit signals

Now we’ll run the program, generating different exit signals in C and
observing the effect in B. As we run the program, you might want to
refer to Figure 9.2, which illustrates what happens when an exit sig-
nal comes from C. Each diagram shows which processes exist, whether
they are system processes, and how they are linked together. The dia-
grams have two parts: the “before” part (at the top of each diagram)
shows the processes before receiving an exit signal, and the “after” part
(at the bottom of each diagram) shows the processes after the exit signal
has been received by the middle process.

First suppose B is a normal process (that is, a process that has not
evaluated process_flag(trap_exit, true)):

1> edemol:start(false, {die, abc}).

Process a received {'EXIT',<0.44.0>,abc}

process b (<0.44.0>) 1is dead

process ¢ (<0.45.0>) 1is dead
ok

When C evaluates exit(abc), process B dies (because it is not trapping
exits). As it exits, B rebroadcasts the unmodified exit signal to all the
processes in its link set. A (which is trapping exits) receives the exit
signal and converts it to the error message {'EXIT’,<0.44.0>,abc}. (Note
that process <0.44.0> is process B, because it is process B that dies.)

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=167

THE DETAILS OF ERROR HANDLING < 168

Let’s try another scenario. Here we tell C to die with the reason normal.®

2> edemol:start(false, {die, normal}).
process b (<0.48.0>) 1is alive

process ¢ (<0.49.0>) 1is dead

ok

B does not die, since it received an exit normal signal.

Now let's make C generate an arithmetic error:

3> edemol:start(false, {divide,0}).

=ERROR REPORT==== 8-Dec-2006::11:12:47 ===

Error in process <0.53.0> with exit value: {badarith,[{edemol,c,2}]}
Process a received {'EXIT',<0.52.0>,{badarith,[{edemol,c,2}]}}
process b (<0.52.0>) 1is dead

process ¢ (<0.53.0>) 1is dead

ok

When C tries to divide by zero, an error occurs, and the process dies
with a {badarith, ..} error. B receives this and dies, and the error is prop-
agated to A.

Finally, we’ll have C exit with a Reason of kill:

4> edemol:start(false, {die,kill}).

Process a received {'EXIT',<0.56.0>,killed} <-- #x changed to killed ==
process b (<0.56.0>) 1is dead

process ¢ (<0.57.0>) 1is dead

ok

The exit reason kill causes B to die, and the error is propagated to the
link set of B with reason killed. The behavior in these cases is illustrated
in Figure 9.2, on the preceding page, boxes (a) and (b).

We can repeat these tests with B trapping exits. This is the situation
depicted in box (c) of Figure 9.2, on the previous page:

5> edemol:start(true, {die, abc}).

Process b received {'EXIT',<0.61.0>,abc}
process b (<0.60.0>) 1is alive

process ¢ (<0.61.0>) 1is dead

ok

6> edemol:start(true, {die, normal}).
Process b received {'EXIT',<0.65.0>,normal}
process b (<0.64.0>) 1is alive

process ¢ (<0.65.0>) 1is dead

ok

3. When a process terminates normally, it has the same effect as if it had evaluated
exit(hormal).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=168

THE DETAILS OF ERROR HANDLING < 169

7> edemol:start(true, normal).

Process b received {'EXIT',<0.69.0>,normal}
process b (<0.68.0>) 1is alive

process ¢ (<0.69.0>) 1is dead

8> edemol:start(true, {die,kill}).

Process b received {'EXIT',<0.73.0>,kil1}
process b (<0.72.0>) 1is alive

process ¢ (<0.73.0>) 1is dead

ok

In all cases, B traps the error. B acts as a kind of “firewall,” trapping
all errors from C and not allowing them to propagate to A. We can test
exit/2 with code/edemo?.erl. This program is similar to edemo1 with the
exception of the function c/2, which now calls exit/2. It now reads as
follows:

Download edemo2.erl

c(B, M) ->
process_flag(trap_exit, true),
1ink(B),
exit(B, M),
wait(c).

Running edemo?2, we observe the following:

1> edemo2:start(false, abc).
Process c received {'EXIT',<0.81.0>,abc}

Process a received {'EXIT',<0.81.0>,abc}
process b (<0.81.0>) 1is dead

process c (<0.82.0>) 1is alive

ok

2> edemo2:start(false, normal).

process b (<0.85.0>) 1is alive

process c (<0.86.0>) 1is alive

ok

3> edemo2:start(false, kill).

Process c received {'EXIT',<0.97.0>,killed}
Process a received {'EXIT',<0.97.0>,kilTled}
process b (<0.97.0>) 1is dead

process c (<0.98.0>) 1is alive

ok

4> edemo2:start(true, abc).

Process b received {'EXIT',<0.102.0>,abc}
process b (<0.101.0>) 1is alive

process ¢ (<0.102.0>) 1is alive

ok

5> edemo2:start(true, normal).

Process b received {'EXIT',<0.106.0>,normal}
process b (<0.105.0>) 1is alive

process ¢ (<0.106.0>) 1is alive

ok

http://media.pragprog.com/titles/jaerlang/code/edemo2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=169

ERROR HANDLING PRIMITIVES < 170

6> edemo2:start(true, kill).

Process c received {'EXIT',<0.109.0>,killed}
Process a received {'EXIT',<0.109.0>,killed}
process b (<0.109.0>) 1is dead

process ¢ (<0.110.0>) 1is alive

ok

9.5 Error Handling Primitives

Here are the most common primitives for manipulating links and for
trapping and sending exit signals:

@spec spawn_link(Fun) -> Pid
This is exactly like spawn(Fun), but it also creates a link between
the parent and child processes. (spawn_link is an atomic operation,
which is not equivalent to spawn followed by link since the process
might die between the spawn and the link.)

@spec process_flag@rap_exit, true)
This turns the current process into a system process. A system
process is a process that can receive and process error signals.

Note: It is possible to set the trap_exit flag to false, after it has been
set to true. This primitive should be used only to change a regular
process into a system process and not the other way around.

@spec link(Pid) -> true
Create a link to the process Pid if there is not already a link. Links
are symmetric. If a process A evaluates link(B), then it will be linked
to B. The net effect is the same as if B had evaluated link(A).

If the process Pid does not exist, then an exit noproc exception is
raised.

If A is already linked to B and evaluates link(B) (or vice versa), the
call is ignored.

@spec unlink(Pid) -> frue
This removes any link between the current process and the pro-
cess Pid.

@spec exit(Why) -> none()
This causes the current process to terminate with reason Why. If
the clause that executes this statement is not within the scope of

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=170

ERROR HANDLING PRIMITIVES <« 171

()

Vf Joe Asks...
f
_=__How Can We Make a Fault-Tolerant System?

To make something fault tolerant, we need at least two com-
puters. One computer does the job, and another computer
watches the first computer and must be ready to take over at
a moment’s notice if the first computer fails.

This is exactly how error recovery works in Erlang. One process
does the job, and another process watches the first process
and takes over if things go wrong. That’s why we need to mon-
itor processes and to know why things fail. The examples in this
chapter show you how to do this.

In distributed Erlang, the process that does the job and the
processes that monitor the process that does the job can be
placed on physically different machines. Using this technique,
we can start designing fault-tolerant software.

This pattern is common. We call it the worker-supervisor model,
and an entire section of the OTP libraries is devoted to building
supervision frees that use this idea.

The basic language primitive that makes all this possible is the
link primitive.

Once you understand how link works and get yourself access
to two computers, then you're well on your way to building your
first fault-tolerant system.

a catch statement, then the current process will broadcast an exit
signal, with argument Why to all processes to which it is currently
linked.

@spec exit(Pid, Why) -> true
This sends an exit signal with reason Why to the process Pid.

@spec erlang:monitor(process, lfem) -> MonitorRef
This sets up a monitor. Item is a PID or a registered name of a
process. For details, see the erlang manual page.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=171

SETS OF LINKED PROCESSES <« 172

9.6

9.7

©® ©
©,

. s,

©,

(b) The linked processes die Y,

_ (a) Some linked processes Y, _

Figure 9.3: Trapping exit signals

Sets of Linked Processes

Suppose we have a large set of parallel processes that are involved in
some computation and something goes wrong. How can we identify and
kill all the processes that are involved?

The easiest way to do this is make sure that all the processes that you
want to die as a group are linked together and do not trap exits. If any
of the processes terminates with a non-normal exit reason, then all the
processes in the group will die.

This behavior is illustrated in Figure 9.3. Box (a) represents a set of
nine processes, where processes 2, 3, 4, 6, and 7 are linked together.
If any of these processes dies with a non-normal exit, then the entire
group of processes will die, resulting in box (b).

Sets of linked processes are used to structure software to make fault-
tolerant systems. You can do this yourself in your own design, or you
can use the library functions described in Section 18.5, The Supervision
Tree, on page 351.

Monitors

Sometimes programming with links is tricky, because links are sym-
metric. If A dies, B will be sent an exit signal, and vice versa. To prevent
a process from dying, we have to make it a system process, but we
might not want to do this. In such occasions we can use a monitor.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=172

A KEEP-ALIVE PROCESS <« 173

A monitor is an asymmetric link. If process A monitors process B and
B dies, A will be sent an exit signal. But if A dies, B will not be sent a
signal. We can find full details of how to create a monitor in the erlang
manual page.

9.8 A Keep-Alive Process

To wind up this chapter, we’ll make a keep-alive process. The idea is to
make a registered process that is always alive—if it dies for any reason,
it will be immediately restarted.

We can use on_exit to program this:

Download lib_misc.erl

keep_alive(Name, Fun) ->
register(Name, Pid = spawn(Fun)),
on_exit(Pid, fun(_Why) -> keep_alive(Name, Fun) end).

This makes a registered process called Name that evaluates spawn(Fun).
If the process dies for any reason, then it is restarted.

There is a rather subtle error in on_exit and keep_alive. I wonder if you've
noticed it? When we say things such as this:

Pid = register(...),
on_exit(Pid, fun(X) -> ..),

there is a possibility the process dies in the gap between these two
statements. If the process dies before on_exit gets evaluated, then no
link will be created, and the on_exit process will not work as you ex-
pected. This could happen if two programs try to evaluate keep_alive at
the same time and with the same value of Name. This is called a race
condition—two bits of code (this bit) and the code section that performs
the link operation inside on_exit are racing each other. If things go wrong
here, your program might behave in an unexpected manner.

I'm not going to solve this problem here—T'll let you think about how
to do this yourself. When you combine the Erlang primitives spawn,
spawn_link, register, and so on, you must think carefully about possible
race conditions. Write your code in such a way that race conditions
cannot happen.

Fortunately, the OTP libraries have code for building servers, supervi-
sion trees, and so on. These libraries have been well tested and should
not suffer from any race conditions. Use these libraries to build your
applications.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=173

A KEEP-ALIVE PROCESss < 174

We have now covered all the mechanisms for detecting and trapping
errors in an Erlang program. In later chapters we’ll be using these
mechanisms to build reliable software systems that can recover from
faults. Now we've finished with programming techniques aimed at
single-processor systems.

The next chapter looks at simple distributed systems.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=174

Chapter 10

In this chapter, we’ll introduce the libraries and Erlang primitives that
we'll use to write distributed Erlang programs. Distributed programs are
programs that are designed to run on networks of computers and that
can coordinate their activities only by message passing.

There are number of reasons why we might want to write distributed
applications. Here are some:

Performance
We can make our programs go faster by arranging that different
parts of the program are run in parallel on different machines.

Reliability
We can make fault-tolerant systems by structuring the system to
run on several machines. If one machine fails, we can continue on
another machine.

Scalability
As we scale up an application, sooner or later we will exhaust
the capabilities of even the most powerful machine. At this stage
we have to add more machines to add capacity. Adding a new
machine should be a simple operation that does not require large
changes to the application architecture.

Intrinsically distributed application
Many applications are inherently distributed. If we write a mul-
tiuser game or chat system, different users will be scattered all
over the globe. If we have a large number of users in a particular
geographic location, we want to place the computation resources
near the users.

CHAPTER 10. DISTRIBUTED PROGRAMMING < 176

Fun
Most of the fun programs that I want to write are distributed.
Many of these involve interaction with people and machines all
over the world.

In this book we’ll talk about two main models of distribution:

¢ Distributed Erlang: Provides a method for programming applica-
tions that run on a set of tightly coupled computers.! In dis-
tributed Erlang, programs are written to run on Erlang nodes. We
can spawn a process on any node, and all the message passing
and error handling primitives we talked about in previous chap-
ters work as in the single node case.

Distributed Erlang applications run in a trusted environment—
since any node can perform any operation on any other Erlang
node, a high degree of trust is involved. Typically distributed Er-
lang applications will be run on clusters on the same LAN and
behind a firewall, though they can run in an open network.

* Socket-based distribution: Using TCP/IP sockets, we can write dis-
tributed applications that can run in an untrusted environment.
The programming model is less powerful than that used in dis-
tributed Erlang but more secure. In Section 10.5, Socket-Based
Distribution, on page 187, we’ll see how to make applications using
a simple socket-based distribution mechanism.

If you think back to the previous chapters, you'll recall that the basic
unit that we construct programs from is the process. Writing a dis-
tributed Erlang program is easy; all we have to do is spawn our pro-
cesses on the correct machines, and then everything works as before.

We are all used to writing sequential programs. Writing distributed pro-
grams is usually a lot more difficult. In this chapter, we’ll look at a
number of techniques for writing simple distributed programs. Even
though the programs are simple, they are very useful.

We'll start with a number of small examples. To do this, we’ll need to
learn only two things; then we can make our first distributed program.
We'll learn how to start an Erlang node and how to perform a remote
procedure call on a remote Erlang node.

1. For example, machines on the same LAN dedicated to solving a particular problem.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=176

THE NAME SERVER <« 177

When I develop a distributed application, I always work on the program
in a specific order, which is as follows:

1. I write and test my program in a regular nondistributed Erlang
session. This is what we've been doing up to now, so it presents
no new challenges.

2. I test my program on two different Erlang nodes running on the
same computer.

3. I test my program on two different Erlang nodes running on two
physically separated computers either in the same local area net-
work or anywhere on the Internet.

The final step can be problematic. If we run on machines within the
same administrative domain, this is rarely a problem. But when the
nodes involved belong to machines in different domains, we can run
into problems with connectivity, and we have to ensure that our system
firewalls and security settings are correctly configured.

In the next sections, we’'ll make a simple name server, going through
these steps in order. Specifically, we will do the following:

* Stage 1: Write and test the name server in a regular undistributed
Erlang system.

* Stage 2: Test the name server on two nodes on the same machine.

* Stage 3: Test the name server on two different nodes on two dif-
ferent machines on the same local area network.

* Stage 4: Test the name server on two different machines belonging
to two different domains in two different countries.

10.1 The Name Server

A name server is a program that, given a name, returns a value asso-
ciated with that name. We can also change the value associated with a
particular name.

Our first name server is extremely simple. It is not fault tolerant, so all
the data it stores will be lost if it crashes. The point of this exercise is not
to make a fault-tolerant name server but to get started with distributed
programming techniques.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=177

THE NAME SERVER <« 178

Stage 1: A Simple Name Server

Our name server kvs is a simple Key — Value, server. It has the following
interface:

@spec kvs:start() -> true
Start the server; this creates a server with the registered name kvs.

@spec kvs:store(Key, Value) -> true
Associate Key with Value.

@spec kvs:lookup(Key) -> {ok, Value} | undefined
Look up the value of Key, and return {ok, Value} if there is a value
associated with Key; otherwise, return undefined.

The key-value server is implemented using the process dictionary get
and put primitives, as follows:

Download socket_dist/kvs.erl

-module(kvs).
-export([start/0, store/2, lookup/1]).

start() -> register(kvs, spawn(fun() -> Toop() end)).
store(Key, Value) -> rpc({store, Key, Value}).

Tookup(Key) -> rpc({lookup, Key}).

rpc(Q ->
kvs I {self(), Q},
receive
{kvs, Reply} ->
Reply
end.
Toop() ->
receive

{From, {store, Key, Value}} ->
put(Key, {ok, Value}),
From ! {kvs, true},
ToopQ);

{From, {lookup, Key}} ->
From ! {kvs, get(Key)},
Toop ()

end.

We'll start by testing the server locally to see that it works correctly:

1> kvs:start().

true

2> kvs:store({location, joe}, "Stockholm').
true

http://media.pragprog.com/titles/jaerlang/code/socket_dist/kvs.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=178

THE NAME SERVER <« 179

3> kvs:store(weather, raining).
true

4> kvs:lookup(weather).

{ok, raining}

5> kvs:lookup({location, joe}).
{ok,"StockhoTm"}

6> kvs:Tookup({location, jane}).
undefined

So far, we get no unpleasant surprises.

Stage 2: Client on One Node, Server on Second Node but Same
Host

Now we’ll start two Erlang nodes on the same computer. To do this, we
need to open two terminal windows and start two Erlang systems.

First, we fire up a terminal shell,? and start a distributed Erlang node
in this shell called gandalf; then we start the server:
$ erl -sname gandalf

(gandalf@localhost) 1> kvs:start().
true

Windows note: The Windows name might not be localhost; if it is not
localhost, then you will have to use the name that Windows returned in
place of localhost in all subsequent commands.

The argument -sname gandalf means “start an Erlang node with name
gandalf on the local host.” Note how the Erlang shell prints the name of
the Erlang node® before the command prompt.

Second, we start a second terminal session and start an Erlang node
called bilbo. Then we can call the functions in kvs using the library
module rpc. (Note that rpc is a standard Erlang library module, which
is not the same as the rpc function we wrote earlier.)

$ erl -sname bilbo
(biTbo@localhost) 1> rpc:call(gandalf@localhost,
kvs,store, [weather, finel).
true
(biTbo@localhost) 2> rpc:call(gandalf@localhost,
kvs, Tookup, [weather]).
{ok, fine}

2. Windows users: Read Appendix B, on page 396. Once you have access to a shell
window, the command erl -name Node should work. Remember to set your paths so you
can find erl.exe (this should have a name something like C:\Program Files\erl5.4.4\bin\erl.exe.
3. The node name is of the form Name@Host. Nome and Hos