
������� ���� ���������� �������

�������

���� ����� �������� �

����� ������

�" %)& �'� �"+*,.� ��
���

�/'2� �

�

"+�,.(").� *#� �'" .,& �'� �)!� �*(+/.",

�)$&)"",&)$

�%"� �)&0",-&.2� *#� �"1 �-.'"

������� ���	�� �/-.,�'&�

����
���� �������

����� �$,!�#

��%�&("�#(� $�� �!��(& ��!� �#��
$"%)(�&� �#� #��& #�

���� �# *�&' (,� $�� ��+��'(!�

������� ������ �)'(&�! �

eepjm@wombat.newcastle.edu.au
Fax: +61 49 60 1712

�	����
�

The programming language C has been in widespread use since the early 1970s, and
it is probably the language most widely used by computer science professionals. The
goal of this paper is to argue that it is time to retire C in favour of a more modern
language.

The choice of a programming language is often an emotional issue which is not subject
to rational discussion. Nevertheless it is hoped to show here that there are good
objective reasons why C is not a good choice for large programming projects. These
reasons are related primarily to the issues of software readability and programmer
productivity.

Keywords: Programming languages, C, C++

��������
�

This note was written after I had found myself
saying and writing the same things over and
over again to different people. Rather than keep
repeating myself, I thought I should summarize
my thoughts in a single document.

Although the title may sound frivolous, this is a
serious document. I am deeply concerned about
the widespread use of C for serious computer
programming. The language has spread far
beyond its intended application area.
Furthermore, the C enthusiasts seem to be
largely in ignorance of the advances which have
been made in language design in the last 20
years. The misplaced loyalty to C is, in my
opinion, just as serious a problem among
professionals as the BASIC problem is among
amateurs.

It is not my intention in this note to debate the
relative merits of procedural (e.g. Pascal or C),
functional (e.g. Lisp), and declarative languages
(e.g. Prolog). That is a separate issue. My
intention, rather, is to urge people using a
procedural language to give preference to
high-level languages.

In what follows, I shall be using Modula-2 as an
example of a modern programming language.
This is simply because it is a language about
which I can talk intelligently. I am not
suggesting that Modula-2 is perfect; but it at
least serves to illustrate that there are languages
which do not have the failings of C.

I do not consider C++ to be one such language,
by the way. The question of C++ will be
considered in a later section. For now, it is
worth pointing out that almost of the criticisms
of C which will be listed in this note apply
equally well to C++. The C++ language is of
course an improvement on C, but it does not
solve many of the serious problems which C
has.

����� ����	����

The first C compiler, on a PDP-11, appeared in
about 1972. At the time the PDP-11 was a
relatively new machine, and few programming
languages were available for it; the choice was
essentially limited to assembly language,
BASIC, and Fortran IV. (Compilers and
interpreters for some other languages had been
written, but were not widely distributed.) Given
the obvious limitations of these languages for
systems-level programming, there was a clear
need for a new language.

This was also the era in which software
designers were coming to accept that operating
systems need not be written in assembly
language. The first version of Unix (1969-70)
was written in assembly language, but
subsequently almost all of it was rewritten in C.
To make this feasible, however, it was necessary
to have a language which could bypass some of
the safety checks which are built in to most
high-level languages, and allow one to do things
which could otherwise be done only in assembly
or machine language. This led to the concept of
intermediate-level machine-oriented languages.

C was not the only such language, and certainly
not the earliest. In fact, a whole rash of
machine-oriented languages appeared at about
that time. (I was the author of one such
language, SGL, which was used for a number of
projects within our department in the 1970s. It
was retired, as being somewhat old-fashioned,
in the early 1980s.) These languages had a
strong family resemblance to one another; not
because the authors were copying from one
another (in my own case, SGL had reached a
fairly advanced stage before I became aware of
the existence of C), but because they were all
influenced by the same pool of ideas which
were common property at the time.

“One of the biggest obstacles to the future of computing is C. C is the last
attempt of the high priesthood to control the computing business. It’s like
the scribes and the Pharisees who did not want the masses to learn how to

read and write.” – Jerry Pournelle.

���� �� ������� ���
��

The history of C is inextricably linked with the
history of Unix. The Unix operating system is
itself written in C, as are the majority of utility
programs which come with Unix; and to the
best of my knowledge a C compiler comes with
every distribution of Unix, whereas it is harder
to get compilers for other languages under Unix.
Thus, we need to look at the reasons for the
rapid spread of Unix.

The obvious reasons are cost and availability.
Unix was distributed at virtually no cost, and
sources were available to make it easy to port it
to other systems. A number of useful utilities
were available within Unix – written in C, of
course – and it was usually simpler to leave
them in C than to translate them to another
language. For a Unix user who wanted to do any
programming, a competence in C was almost
essential.

Since then, C has remained widespread for the
same reasons as why Fortran has remained
widespread: once a language has built up a large
user base, it develops an unstoppable
momentum. When people are asked “why do
you use C?”, the most common answers are
(a) easy availability of inexpensive compilers;
(b) extensive subroutine libraries and tools;
(c) everyone else uses it. The ready availability
of compilers, libraries, and support tools is, of
course, a direct consequence of the large number
of users. And, of course, each generation of
programming educators teaches students its
favourite language.

Portability is also given as a reason for the
popularity of C, but in my opinion this is a red
herring. A subset of C is portable, but it is
almost impossible to convince programmers to
stick to that subset. The C compiler which I use
can generate warning messages concerning
portability, but it is no effort at all to write a
non-portable program which generates no
compiler warnings.

���� �� ����	��� ���
��

With advances in compiler technology, the
original motivation for designing medium-level
languages – namely, object code efficiency – has
largely disappeared. Most other
machine-oriented languages which appeared at
about the same time as C are now considered to
be obsolete. Why, then, has C survived?

There is of course a belief that C is more
appealing to the “macho” side of programmers,
who enjoy the challenge of struggling with
obscure bugs and of finding obscure and tricky
ways of doing things.

The conciseness of C code is also a popular
feature. C programmers seem to feel that being
able to write a statement like

**p++^=q++=*r–––s

is a major argument in favour of using C, since
it saves keystrokes. A cynic might suggest that
the saving will be offset by the need for
additional comments, but a glance at some
typical C programs will show that comments are
also considered to be a waste of keystrokes,
even among so-called professional
programmers.

Another important factor is that initial program
development is perceived to be faster in C than
in a more structured language. (I don’t agree
with this belief, and will return later to this
point.) The general perception is that a lot of
forward planning is necessary in a language like
Modula-2, whereas with C one can sit down and
start coding immediately, giving more
immediate gratification.

Do these reasons look familiar? Yes, they are
almost identical to the arguments which were
being trotted out a few years ago in favour of
BASIC. Could it be that the current crop of C
programmers are the same people who were
playing with toy computers as adolescents? We
said at the time that using BASIC as a first
language would create bad habits which would
be very difficult to eradicate. Now we’re seeing
the evidence of that.

C is a medium-level language combining the power of assembly
language with the readability of assembly language.

���
���� �
� 	�
������ �����

It would be a gargantuan task to track down and
document the origin of what we know today
about programming language design, and I’m
not going to do that. Many of the good ideas
first appeared in obscure languages, but did not
become well-known until they were adopted
into more popular languages. What I want to do
in this section is simply note a few important
landmarks, as they appeared in the better-known
languages.

Undoubtedly the most important step forward
was the concept of a high-level language, as
exemplified in Fortran and Cobol. What these
languages gave us were at least three important
new principles: portability of programs across a
range of machines; the ability to tackle new
problems which were just too big or too difficult
in assembly language; and the expansion of the
pool of potential programmers beyond that
small group willing and able to probe the
obscure mysteries of how each individual
processor worked.

Needless to say, there were those who felt that
“real” programmers would continue to work in
machine language. Those “real” programmers
are still among us, and are still arguing that their
special skills and superior virtue somehow
compensate for their poor productivity.

The main faults of Fortran were a certain lack of
regularity, some awkward restrictions which in
hindsight were seen to be unnecessary, and
some features which were imposed more
because of machine dependencies than for
programmer convenience. (The only
justification for the three-way IF of Fortran II,
for example, was that it mapped well into the
machine language of a machine which is now
obsolete.) Some of these faults were corrected in
Algol 60, which in turn inspired a large number
of Algol-like languages. The main conceptual
advance in Algol was probably its introduction
of nesting in control structures, which in turn
led to cleaner control structures.

The structured programming revolution is
sometimes considered to date from Dijkstra’s
famous “GOTO considered harmful” letter.

Although this is an oversimplification, it is true
that the realisation that the GOTO construct was
unnecessary – and even undesirable – was an
important part of the discovery that
programming productivity was very much
linked to having well-structured and readable
programs. The effect this had on language
design was a new emphasis on “economy of
concept”; that is, on having languages which
were regular in design and which avoided
special cases and baroque, hard to read
constructs.

The important contribution of Pascal was to
extend these ideas from control structures to
data structures. Although the various data
structuring mechanisms had existed in earlier
languages – even C has a way of declaring
record structures – Pascal pulled them all
together in an integrated way.

Pascal can still be considered to be a viable
language, with a large number of users, but it
has at least two conspicuous faults. First, it was
standardized too early, which meant that some
niggling shortcomings – the crude input/output
arrangements, for example – were never fixed in
the language standard. They are fixed in many
implementations of Pascal, but the repairs go
outside the standard and are therefore
nonportable. The second major fault is that a
Pascal program must (if one wants to conform
to the standard) exist as a single file, which
makes the language unsuitable for really large
programs.

More recently, there has been a lot of emphasis
on issues like reusable software and efficient
management of large programs. The key idea
here is modularity, and this will be discussed in
the following section.

Now, where does C fit into this picture? The
answer is that C is built around lessons which
were learnt from Algol 60 and its early
successors, and that it does not incorporate
much that has been learnt since then. We have
learnt some new things about language design in
the last 20 years, and we do know that some of
the things that seemed like a good idea at the
time are in fact not such good ideas. Is it not
time to move on to D, or even E?

Real programmers can write C in any language.

���	�����

In its very crudest sense, modularity means
being able to break a large program into smaller,
separately compiled sections. C allows this.
Even Fortran II allowed it. This, however, is not
enough.

What modularity is really about is data
encapsulation and information hiding. The
essential idea is that each module should take
care of a particular sort of data, and that there
should be no way of getting at that data except
via the procedures provided by that module. The
implementation details of the data structures
should be hidden. There should be no way to
call a procedure unless the module explicitly
exports that procedure. Most importantly, callers
of a module should not need to know anything
about the module except for the declarations and
comments in its “visible” section. It should be
possible to develop a module without having
any knowledge of the internal structure of any
other module.

The advantages should be obvious. At any given
time a programmer need only be concerned with
a short section of program – typically a few
pages long – without having to worry about
side-effects elsewhere in the program. It is
possible to work with complex data structures
without having to worry about their internal
detail. It is possible to replace a module with a
newer version – and this even includes the
possibility of a complete overhaul of the way a
data structure is implemented – without having
to alter or re-check the other modules. In a team
programming situation, the coordination
problems become a lot simpler.

If the hardware supports memory segmentation,
then the data in each module are protected from
accidental damage by other modules (except to
the extent to which pointers are passed as
procedure parameters). This makes errors easier
to detect and to fix. Even without hardware
protection the incidence of programming errors
is reduced, because error rates depend on
program complexity, and a module a few pages
long is far less complex than a monolithic
hundred-page program.

Now, modular programming is possible in C,
but only if the programmer sticks to some fairly
rigid rules:

– Exactly one header file per module. The
header should contain the function
prototypes and typedef declarations to be
exported, and nothing else (except
comments).

– The comments in a header file should be all
that an external caller needs to know about
the module. There should never be any need
for writers to know anything about the
module except what is contained in the
header file.

– Every module must import its own header
file, as a consistency check.

– Each module should contain #include
lines for anything being imported from
another module, together with comments
showing what is being imported. The
comments should be kept up-to-date. There
should be no reliance on hidden imports
which occur as a consequence of the nested
#include lines which typically occur
when a header file needs to import a type
definition or a constant from elsewhere.

– Function prototypes should not be used
except in header files. (This rule is needed
because C has no mechanism for checking
that a function is implemented in the same
module as its prototype; so that the use of a
prototype can mask a “missing function”
error.)

– Every global variable in a module, and
every function other than the functions
exported via the header file, should be
declared static .

– The compiler warning “function call without
prototype” should be enabled, and any
warning should be treated as an error.

– For each prototype given in a header file,
the programmer should check that a
non-private (i.e. non-static, in the usual C
terminology) function with precisely the
same name has its implementation in the
same module. (Unfortunately, the nature of
the C language makes an automatic check
impossible.)

– Any use of grep should be viewed with
suspicion. If a prototype is not in the
obvious place, that’s probably an error.

– Ideally, programmers working in a team
should not have access to one another’s

Give me modularity or give me grep!

source files. They should share only object
modules and header files.

Now, the obvious difficulty with these rules is
that few people will stick to them, because the
compiler does not enforce them. A great many
people think of #include as a mechanism for
hiding information, rather than as a mechanism
for exporting information. (This is shown by the
distressingly common practice of writing header
files without comments.) The counter-intuitive
meaning of static is a disincentive for using
it properly. Function prototypes tend to be
thrown into a program in a haphazard way,
rather being confined to header files.
Programmers who think of comments as things
to be added after writing the code will hardly
accept the discipline of keeping the comments
on their #include lines up-to-date. A good
many programmers prefer not to enable warning
messages in their compilations, because it
produces too many distracting and
“unimportant” messages. Finally, the notion of
having precisely one header file per module runs
counter to traditions which have been built up
among the community of C users.

And, what is worse, it takes only one
programmer in a team to break the modularity
of a project, and to force the rest of the team to
waste time with grep and with mysterious
errors caused by unexpected side-effects. I
believe it is well known that almost every
programming team will include at least one bad
programmer. A modular programming language
shields the good programmers from at least part
of the chaos caused by the bad programmers. C
doesn’t.

To complicate matters, it is easy even for good
programmers to violate, by accident, the rules
for proper modularity. There is no mechanism in
C for enforcing the rule that every prototype
mentioned in a header file is matched by an
implementation in the same module, or even for
checking that the function names in the
implementation module match those in the
header file. It is easy to forget to make internal
functions private, since the default behaviour is

back to front: the default is to make all
functions exportable, whether or not a prototype
is used. It is easy, too, to lose track of what is
being imported from where, because the crucial
information is locked away in comments which
the compiler doesn’t check. The only way I
know of for checking what is being imported is
to comment out the #include lines
temporarily, to see what error messages are
produced.

In most modular programs, some or all modules
will need an initialization section. (You can’t
initialize data structures from outside the
module, since they aren’t supposed to be visible
from outside the module.) This means that the
main program of a C program must arrange to
call the initialization procedures in the correct
order. The correct order is bottom-up: if module
MA depends on module MB, then module MB
must be initialized before module MA. Any
language supporting modular programming will
work this out for you, and perform the
initialization in the correct order. (It will also
report circular dependencies, which in most
cases reflect an error in overall program design.)
In C, you have to work this out by hand, which
can be a tedious job when there are more than
about a dozen modules. In practice, I have found
that it is almost impossible to avoid circular
dependencies in a large C program, whereas I
have rarely struck such dependencies in
Modula-2 programs. The reason is that the
Modula-2 compiler/linker combination catches
circularities at an early stage, before it has
become too difficult to re-design the program.
In C, such errors do not show up until
mysterious errors appear in the final testing.

�	�� 	������� �� �
������

I have often heard it said that the #include
directive in C has essentially the same
functionality as the IMPORT of Modula-2 and
similar languages. In fact there is a profound
difference, as I shall now attempt to show.

Consider a header file m2.h which contains the
lines

Much of the power of C comes from having a powerful preprocessor.
The preprocessor is called a programmer.

#include <m1.h>
/* FROM m1 IMPORT stInfo */

void AddToQueue (stInfo* p);

and suppose that several other modules contain
a #include <m2.h> . Consider the
following sequence of events, which could
easily happen in any programming project:

(a) some of the modules which import from
m2 are compiled;

(b) as the result of a design change, the
typedef defining stInfo in m1.h
 is altered;

(c) the remaining modules which import from
m2 are compiled.

At this point, the overall program is in an
inconsistent state, since some of the modules
were compiled with an obsolete definition; but
the error will probably not be caught by the
compiler or linker. If you ever wondered why
you keep having to do a “Compile All” in order
to eliminate a mysterious bug, this is part of the
reason.

The reason why this problem occurs in C,
whereas it does not occur in languages designed
for modular programming, is that a C header file
is a pure text file, with no provision for
containing a “last compiled” time or other
mechanism for consistency checking. (This is
also why C compilers appear to be painfully
slow when compared with, for example, a
typical Modula-2 compiler. It usually takes
longer to read a header file than it does to read a
symbol file.)

Another nasty consequence of reading the
header file literally is that information in the
header file is treated as if it were in the file
which contains the #include . There is no
“fire wall” around the header file. Everything
declared in one header file is automatically
exported, in effect, to the header files mentioned
in every following #include . This can lead to
obscure errors which depend on the order of the
#include lines. It also means that the effect

of a header file is not under the full control of
the person who wrote it, since its behaviour
depends on what comes before it in the
importing module.

Similar problems exist with other preprocessor
directives, such as #define . This point is not
always fully understood: the effects of a
#define persist through an entire
compilation, including any included files. There
is no way in C to declare a local literal constant.

Have you ever had the experience of having the
compiler report an error in a library function
you’re not even calling, where the real error
turns out to be a misplaced semicolon in some
completely unrelated file? Such non-local
effects make a mockery of modularity.

Another problem with #include is that it is
an all-or-nothing proposition. (This can be
resolved by having multiple header files per
module; but that means putting the header files
under the control of the importer, not the
exporter, which creates the risk of undetected
discrepancies between a module and its header
file(s). In any case, such a practice creates major
headaches in terms of book-keeping and naming
conventions.) How many programmers read the
whole of a header file before deciding to include
it? Very few, I suspect. The more likely situation
is that the #include imports some names
which the importer doesn’t know about. This
can be a disaster if, as sometimes happens, two
functions happen to have the same name and the
same parameter types. (If you think this is
unlikely, just think of the obsolete versions of
software which are left around when you copy
files from place to place.) The compiler won’t
complain; it will simply assume you were in an
expansive mood and decided to write a function
prototype twice. The linker might complain, but
you can’t guarantee it.

As a result, it is possible to import a function
which is different from the function you thought
you were importing, and there is not necessarily
any warning message. Part of the problem here
is that the mechanism by which the linker
chooses which functions to link in has no
connection with the mechanism by which the

By analysis of usenet source, the hardest part of C to use is the comment.

compiler checks function prototypes. There is
no way of specifying that a particular header file
belongs to a particular module.

Note, too, that an unused prototype is never
picked up as an error. (This is another reason for
insisting that prototypes be used only in header
files, and nowhere else. This does not solve the
problem, but it reduces the amount of manual
checking which has to be done.) While this will
not cause a program to run incorrectly, it adds to
the confusion to be faced by future maintainers
of the program.

���� ����� ��� �����
� ����	�
���

A claim that is often heard is that initial
program development is fast in C because it is
easy to get to the point of the “first clean
compile”. (This is also an argument which is
popular with the BASIC enthusiasts.) This
property is contrasted with what happens with
languages like Modula-2, where – it is said – a
lot of forward planning is necessary before any
progress is made on the coding. The conclusion
is that C programmers get more immediate
feedback.

This argument is silly in at least three ways.
First, the claim relies at least partly on the fact
that C compilers are more generous in accepting
doubtful code than are compilers for
higher-level languages. Where is the virtue in
that? If the compilation of code containing
errors is seen as a significant step forward, you
can get that in any language. All you have to do
is ignore the error messages.

Second, the “first clean compile” is a fairly
meaningless measure of how far you have
progressed. It might be a significant milestone if
you follow an approach to programming where
the coding is not started until most of the design
work has been completed, but not otherwise.
Under the “code, then debug” philosophy of
programming, you still have most of your work
ahead of you after the first compilation.

Finally, my own experience is that even the
original statement is incorrect. I find that I reach
the “first clean compile” stage within the first
few minutes of starting work. This is because I
prefer developing programs through stepwise
refinement (also known as top-down design
combined with top-down coding). The very first
thing I compile consists of perhaps half a dozen
lines of code, plus a couple of dozen lines of
comments. It is so short that it will compile
without errors either immediately, or after
discovering errors which are obvious and easy
to repair.

What about the subdivision of a large program
into modules? This takes a lot less forward
planning than is commonly supposed. With
stepwise refinement, and with the philosophy
that the function of a module is to look after a
data type, one tends to discover what modules
are needed as the program development
proceeds. Furthermore, true modularity makes it
very easy to construct and test the program in
stages, because of the property that changes in
the internal details of a module can be made
independently of what is happening outside that
module.

In cases where I have kept a log of the time I
have spent on a project, I have found that I
spend about twice the time to get a C program
working as to solve a problem of equivalent
complexity using Modula-2. The difference has
nothing to do with typing speed – since the
source files tend to be of about the same length
– but in the time spent in debugging. In
Modula-2, the job is essentially complete once I
have typed in the last module, and debuggers
are rarely needed. In C, a good debugger is
indispensable.

To a project manager, this is a very important
factor. In a big project, the cost of paying the
programmers is typically the second-biggest
budget item (after administrative overheads),
and sometimes even the biggest. A productivity
difference of 50% can make the difference
between making a large profit or a large loss on
the project.

���������� ��� ����� ���
���� ����	�����

Despite all the advances which have been made
in the theory and practice of data structures,
pointers remain a thorn in everyone’s side.
Some languages (e.g. Fortran, Lisp) manage to
get by without explicit pointers, but at the cost
of complicating the representation of some data
structures. (In Fortran, for example, you have to
simulate everything using arrays.) For anyone
working with almost any reasonably advanced
application, it is hard to avoid the use of
pointers.

This does not mean that we have to like them.
Pointers are responsible for a significant amount
of the time spent on program debugging, and a
large proportion of the complexity which makes
program development difficult. A major
challenge for software designers in languages
like Modula-2 is to restrict the pointer
operations to the low-level modules, so that
people working with the software don’t have to
deal with them. A major, and largely unsolved,
problem for language designers is to find
mechanisms which save programmers the
trouble of having to use pointers.

Having said that, one can also say that a
distinction can be drawn between essential and
inessential pointers. An essential pointer, in the
present context, is a pointer which is required in
order to create and maintain a data structure. For
example, a pointer is needed to link a queue
element to its successor. (The language might or
might not explicitly call it a pointer, but that is a
separate issue. Whatever the language, there
must be some way of implementing the “find
successor” operation.) An inessential pointer is
one which is not needed as part of implementing
a data structure.

In a typical C program, the inessential pointers
outnumber the essential pointers by a significant
amount. There are two reasons for this. The first
is that C traditions encourage programmers to
create pointers even where equally good access
methods already exist; for example, for stepping
through the elements of an array. (Should we
blame the language for the persistence of this
bad habit? I don’t know; I simply note that it is

more prevalent among C programmers than
among those who prefer other languages.)

The second reason is the C rule that all function
parameters must be passed by value. When you
need the equivalent of a Pascal VAR parameter
or an Ada inout parameter, the only solution is
to pass a pointer. This is a major contributor to
the unreadability of C programs. (To be fair, it
should be admitted that C++ does at least
provide a solution for this problem.)

The situation worsens when it becomes
necessary to pass an essential pointer as an
inout parameter. In this case, a pointer to a
pointer must be passed to the function, which is
confusing for even the most experienced
programmers.

���	����������� ����	���	�

There appears to be a widespread belief among
C programmers that – because the language is
close to machine language – a C program will
produce more efficient object code than an
equivalent program written in a high-level
language.

I’m not aware of any detailed study of this
question, but I have seen the results of a few
informal studies comparing Modula-2 and C
compilers. The results were that the code
produced by the Modula-2 compilers was faster
and more compact than that produced by the C
compilers. This should not be taken as a
definitive answer, since the studies were not
extensive enough, but it does indicate that C
programs might not be as efficient as is
generally thought.

I believe I’ve also seen claims – although I can’t
recall the details at this distance in time – that C
compilers produced better code than an
assembly language programmer did. I observed
a similar phenomenon when testing my SGL
compiler many years ago. The reason in that
case seemed to be that the compiler did a
reasonably good job on things like register
allocation, whereas one can suffer from lapses
of concentration when having to concentrate too
much on the fine detail.

C++ will do for C what Algol-68 did for Algol.

The general rule seems to be that a high-level
language compiler will out-perform a
lower-level language compiler, mainly because
the high-level language compiler has more
scope for making decisions about how to
generate the code. If you do things in C like
setting up a pointer to an array rather than using
subscripts, you are taking that decision away
from the compiler. Your approach might produce
more efficient code, but to be sure of that you
have to know quite a lot about the instruction
timings on the machine you are using, and about
the code generation strategies of your compiler.
In addition, the decision is a non-portable one,
potentially leading to major inefficiencies if you
switch to another machine or another version of
the compiler.

More importantly, the speed of a program tends
to depend more on the global strategies adopted
– what sort of data structures to use, what
sorting algorithms to use, and so on – than the
micro-efficiency issues related to precisely how
each line of code is written. When working in a
low-level language like C, it becomes harder to
keep track of the global issues.

It is true that C compilers produced better code,
in many cases, than the Fortran compilers of the
early 1970s. This was because of the very close
relationship between the C language and
PDP-11 assembly language. (Constructs like
*p++ in C have the same justification as the
three-way IF of Fortran II: they exploit a special
feature of the instruction set architecture of one
particular processor.) If your processor is not a
PDP-11, this advantage is lost.

���	� ���
	� �++�

The language C++ is supposed to overcome
some of the faults of C, and to a certain extent it
does this. It does, however, have two major
drawbacks. It is much more complex than it
needs to be, which can lead programmers either
to ignore the extended features or to use them in
an inappropriate way. The second problem is
that the language tries to maintain compatibility
with C, and in so doing retains most of the
unsafe features.

This second problem means that most of the
faults discussed in earlier sections are also faults
of C++. Type checking is still minimal, and
programmers are still permitted to produce
weird and baroque constructs which are hard to
read. Strangest of all, there is still no support for
modularity beyond the crude #include
mechanism. This is a little surprising: modular
programming and object-oriented programming
complement each other very nicely, and given
all the effort that the designers of C++ must
have had to put into the object-oriented
extensions it is rather disappointing that they
did not put in that slight extra effort which
could have resulted in a major improvement to
the language.

Some of the features related to object-oriented
programming are complicated, and open to
misuse by programmers who do not fully
understand them. For safety, I would prefer to
see programmers learn object-oriented
programming using a cleaner implementation
(e.g. Smalltalk, Modula-3) before being let
loose on C++.

The ability to pass function parameters by
reference is a definite bonus, but the mechanism
chosen for doing this is unnecessarily messy.
The only motivation I can see for implementing
it this way is to satisfy the Fortran programmers
who miss the EQUIVALENCE construct.

Operator and function overloading is a mixed
blessing. In the hands of a competent
programmer it can be a major virtue; but when
used by a sloppy programmer it could cause
chaos. I would feel happier about this feature if
C++ compilers had some way to detect sloppy
programmers.

If there is a discrepancy between a function and
its prototype, is this an error, or is it a deliberate
overloading? Most commonly it will be an error,
but in some such cases the C++ compiler will
make the optimistic assumption. One has to be a
little suspicious of a language improvement
which increases the probability of undetected
errors.

I’m not yet sure how to feel about multiple
inheritance. It is powerful, in the same way that
goto is powerful, but is it the sort of power we

Adding object orientation to C is like adding air conditioning to a bicycle.

want? I have a nagging suspicion that at some
time in the future our guidelines for “clean
programming” will include a rule that object
inheritance should always be restricted to single
inheritance. However, I’m prepared to admit
that the evidence is not yet in on this question.

In brief, C++ introduces some new problems
without really solving the original problems.
The designers have opted to continue with the C
tradition that “almost everything should be
legal”. In my view, this was a mistake.

�������	�� ���� �������	�
	����	�

One of the popular features of C++ is the large
set of library functions which is usually
distributed with it. This is, indeed, a desirable
feature, but it should not be confused with the
inherent properties of the language. Good
libraries can be written for any language; and in
any case most reasonable compilers allow one
to call “foreign” procedures written in other
languages.

More generally, people sometimes say they like
C because they like things like argc and
argv , printf , and so on. (I don’t – I’ve had
so much trouble with printf , sscanf , and
the like that I’ve been forced into writing
alternative I/O formatting functions – but that’s
a separate issue.) In many cases, the functions
they like, and point to as examples of “portable
C” are peculiar to one particular compiler, and
not even mentioned in whichever C standard
they consider to be the standard standard. The
desirability or otherwise of various library
routines is a legitimate subject for debate, but it
is an issue separate from that of language
properties.

There is just one way in which these functions
differ as a result of genuine language
differences from the procedures available with

other languages, and that is the C rule which
permits functions with variable numbers and
types of parameters. While this feature does
have certain advantages, it necessarily involves
a relaxation of type checking by the compiler. I
personally have wasted hours of valuable
debugging time over things like printing out a
long int with a format appropriate to an
int , and then not being able to discover why
my computations were producing the wrong
value. It would have been much faster, even if
slightly more verbose, to call type-safe
procedures.

����������� �	����

Nothing in this document should be interpreted
as a criticism of the original designers of C. I
happen to believe that the language was an
excellent invention for its time. I am simply
suggesting that there have been some advances
in the art and science of software design since
that time, and that we ought to be taking
advantage of them.

I am not so naive as to expect that diatribes such
as this will cause the language to die out.
Loyalty to a language is very largely an
emotional issue which is not subject to rational
debate. I would hope, however, that I can
convince at least some people to re-think their
positions.

I recognise, too, that factors other than the
inherent quality of a language can be important.
Compiler availability is one such factor. Re-use
of existing software is another; it can dictate the
continued use of a language even when it is
clearly not the best choice on other grounds.
(Indeed, I continue to use the language myself
for some projects, mainly for this reason.) What
we need to guard against, however, is making
inappropriate choices through simple inertia.

