
C: Elements of Style

by Steve Oualline

January 9, 1999

Chapter 1: Style and Program Organization 1

Program Organization. 1

Automatic Generation of Program Documentation . 3

Module Design . 4

Libraries and Other Module Groupings . 4

Multiple header files . 5
One header does all . 5
Mixed approach . 6

Program Aesthetics .6

Code paragraphs . 6
Statements. 8

Chapter 2: File Basics, Comments, and Program Headings11

File Basics. 11

The Comment .13

Graphics . 15
Packing bits. 16

Letting the Editor Help You . 17

Beginning Comment Block . 18

The sections of a heading . 18
Other sections . 21

Module Headings . 21

Function Headings . 22

When to Write Comments . 23

Some Comments on Comments . 24

Chapter 3: Variable Names . 25

A Brief History of the Variable . 25

Capitalization . 27

Names You Must Never Use . 28

Other Names Not To Use . 28

Avoid Similar Names . 29

Consistency in Naming. 29

Which Word First . 29

Standard Prefixes and Suffixes . 30

Module Prefixes .31

Special Prefixes and Suffixes . 31

When You Can Use Short Names. 32

argv, argc. 32

Microsoft Notation . 32

Imaginative Solutions . 34

Case studies. 35

The C runtime library . 35
The UNIX kernel . 36
The Microsoft library . 37
The X Windows System . 37

Variable Declaration Comments. 38

Units . 38
Structures and unions . 39
Long declarations and comments . 40
Group similar declarations . 41

Hidden Variables . 42

Portable Types . 42

Numbers . 43

Floating-point numbers. 43
Hex numbers . 44
Long integers . 44

Chapter 4: Statement Formatting . 46

Formatting the Body of the Program . 46

Simplifying complex statements. 48
Splitting long statements. 48

Splitting and parentheses. 49
Splitting a for statement. 50

Splitting a switch statement. 51
Conditional operators (? :). 52

Side effects . 52
Assignments in other statements. 55
When to use two statements per line. 56

Logic and Indentation . 56

Indentation styles . 58
Short form . 58
Braces stand alone. 59
Braces indented too. 60
Variations.. 60

How much to indent . 61
Two Spaces: . 62
Four Spaces: . 62
Eight Spaces:. 62

Chapter 5: Statement Details. 66

Doing Nothing .66

Arithmetic Statements. 66

Function Headings . 67

K&R style parameters. 67
Return type . 68

Number of parameters. 69

Passing parameters in globals . 72

XView style parameter passing . 73

The if Statement . 74

if/else chains . 75
if and the comma operator . 76

The while Statement . 76

The do/while Statement . 77

The for Statement .77

Missing parts of for loops . 77
Overstuffed for loops . 78

The printf Statement . 79

goto and Labels . 80

The switch Statement . 80

Debug Printing . 84

Shut up Statements . 84

Chapter 6: Preprocessor. 87

Simple Define Statements. 87

Constant expressions. 88
#define constants vs. consts . 88
#define vs. typedef . 89
Abuse of #define directives . 90
Keywords and standard functions. 90

Parameterized Macros. 91

Multi-line Macros . 92

Macros and Subroutines . 94

The #include Directive . 95

Style for #Includes . 95
Protecting against double #Includes . 96

Conditional Compilation. 96

Where to define the control symbols . 98
Commenting out code. 99

Chapter 7: Directory Organization and Makefile Style . . 102

Organizing Your Directories. 102

The make Program . 103

Heading Comments. 103

Customization Information . 104
Standard targets. 104
Macro Definitions . 105
Common macro definitions. 106

Configurable variables . 106

Major Targets .107

Other Targets .107

Special Rules. 107

Dependencies . 108

Example . 108
Common Expressions . 110

Complexity . 111

Portability Considerations. 112

Generic Makefiles. 112

Conclusion . 113

Chapter 8: User-Friendly Programming 114

What Does User-Friendly Mean? . 114

Law of Least Astonishment . 114

Modeling the User. 115

Error Messages . 115

The Command Interface . 116

Help. 117

Safety Nets . 117

Accelerators . 118

Chapter 9: Rules . 119

Chapter 1: Style and Program Organization
A program is a detailed set of instructions read by both a human and a machine. The computer

reads only the code, while the human concentrates on the comments. Good style pertains to both
parts of a program. Well-designed, well-written code not only makes effective use of the com-
puter, it also contains careful constructed comments to help humans understand it. Well-designed,
well-written code is a joy to debug, maintain, and enhance.

Good programming style begins with the effective organization of code. using a clear and con-
sistent organization of the components of your program you make them more efficient, readable,
and maintainable.

Program Organization
Good computer programs are organized much like good books. This can seen especially well

with technical books, in which the structure is very clear.

People have been writing books for hundreds of years, and during that time they have discov-
ered how to organize the material to efficiently present their ideas. Standards have emerged. For
example, if I asked you when this book was copyrighted, you would turn to the title page. That's
where the copyright notice is always located.

The same goes for code. In fact, we can make the parallels quite explicit.

Any technical book can be analyzed into standard components. So can program. These com-
ponents correspond quite closely as the following table shows.

These components really do serve the same purposes.

• Title Page

A book's title page contains the name of the book, the author, and the publisher. On the
reverse of the title page is the copyright page, where you find things like the printing his-
tory and Library of Congress information.

Book Program

Title Page Heading

Table of Contents Table of Contents

Chapter Module

Section Function

Paragraph Conceptual Block

Sentence Statement

Word Variable

Index Cross Reference

Glossary Variable Declaration Comments

At the beginning of every well-documented program is a section known as the heading. It
is, in effect, the title page of the program. The heading consists of a set of boxed com-
ments that include the name of the program, the author, copyright, usage, and other impor-
tant information. The heading comments are fully discussed in Chapter 2.

• Table of Contents

Every technical book has a table of contents. It lists the location of all the chapters and
major headings, and serves as a road map to the rest of the book.

A program should have a table of contents as well, listing the location of each function.
This is difficult and tedious to produce by hand, however it can be produced quite easily
by a number of readily available tools, as discussed later in this chapter.

• Chapters

Technical books are divided into chapters, each one covering a single subject. Generally,
each chapter in a technical book consists of a chunk of material that a reader can read in
one sitting, although this is not a rule: Donald Knuth's highly regarded 624-pageFunda-
mental Algorithms(Addison-Wesley, Reading, MA, 1968) contains only two chapters.

Similarly, a program is divided into modules, each a single file containing a set of func-
tions designed to do some specific job. A short program may consist of just one module,
while larger programs can contain 10, 20, or more. Module design is further discussed
later in this chapter.

• Sections

Each chapter in a technical book is typically divided into several sections. A section cov-
ers a smaller body of information than a chapter. Sections in this book are identified by
section heads in bold letters, making it easy for a reader to scan a chapter for a particular
subject.

Just as a book chapter can contain several sections, a program module may contain several
functions. A function is a set of instructions designed to perform a single focused task. A
function should be short enough that a programer can easily understand the entire func-
tion.

• Index

A technical book should have a good index that lists every important subject or keyword in
the book and the pages on which it can be found. The index is extremely important in a
technical book because it provides quick access to specific information.

A program of any length should have a cross reference, which lists the program variables
and constants, along with the line numbers where they are used. A cross reference serves
as an index for the program, aiding the programmer in finding variables and determining
what they do. A cross reference can be generated automatically by one of the many cross
reference tools, such asxref, cref, etc.

• Glossary

A glossary is particularly important in a technical book. Each technical profession has its
own language, and this is especially true in computer programming (e.g., set COM1 to
1200,8,N, I to avoid PE and FE errors). A reader can turn to the glossary to find the mean-

ing of these special words. Every C program uses its own set of variables, constants, and
functions. These names change from program to program, so a glossary is essential. Pro-
ducing one by hand is impractical, but as you'll see later in this chapter, with a little help
from some strategically placed comments, you can easily generate a glossary automati-
cally.

Rule 1-1:

Organize programs for readability, just as you would expect an author to organize a book.

Automatic Generation of Program Documentation
Some of the program components described above can be generated automatically. Consider

the table of contents, for example. On UNIX systems, thectagsprogram will create such a table.
Also, there is a public domain program, calledcpr, that does the job for both DOS and UNIX.

A cross reference can also be generated automatically by one of the many cross reference
tools, such asxref, cref, etc. However, you can also generate a cross reference one symbol at a
time. Suppose you want to find out where total-count is located. The command grep searches files
for a string, so typing:

grep -n total_count *.c

produces a list of every use oftotal_countin all the C files. (The-n tells grep to print line
numbers.)

The commandgrep is available both on UNIX systems and in MS-Windows with Borland
C++ and Borland’s Turbo-C.

Also in UNIX, the command:

vi ‘grep -l total_count *.c‘

invokes thevi editor to list the files that contain the wordtotal_count . Then you can use
thevi search command to locatetotal_countwithin a file. The commands next (:next) and rewind
(:rew) will flip through the files. See yourvi and UNIX manuals for more details.

Borland C++ and Borland’s Turbo-C++ have a version ofgrep built in to the Integrated
Develop Environment (IDE). By using the command Alt-Space you can bring up the tools menu,
then selectgrepand give it a command line, and the program will generate a list of references in
the message window. The file corresponding to the current message window line is displayed in
the edit window. Going up or down in the message changes the edit window. With these com-
mands, you can quickly locate every place a variable is used.

You can also partially automate the process of building a glossary, which is a time-consuming
task if performed entirely by hand. The trick is to put a descriptive comment after each variable
declaration. That way, when the maintenance programmer wants to know whattotal_count
means, all he or she has to do is look up the first timetotal_count in mentioned in the cross
reference, locate that line in the program, and read:

int total_count; /* total number of items in all classes */

So we have a variable (total_count) and its definition: “Total number of items in all
classes” — in other words, a glossary entry.

Module Design
A module is a set of functions that perform related operations. A simple program consists of

one file; i.e., one module. More complex programs are built of several modules.

Modules have two parts: the public interface, which gives a user all the information necessary
to use the module; and the private section, which actually does the work.

Another analogy to books is helpful here. Consider the documentation for a piece of equip-
ment like a laser printer. This typically consists of two manuals: the Operator's Guide and the
Technical Reference Manual.

The Operator's Guide describes how to use the laser printer. It includes information like what
the control panel looks like, how to put in paper, and how to change the toner. It does not cover
howthe printer works.

A user does not need to know what goes on under the covers. As long as the printer does its
job, it doesn't matter how it does it. When the printer stops working, the operator calls in a techni-
cian, who uses the information in the Technical Reference Manual to make repairs. This manual
describes how to disassemble the machine, test the internal components, and replace broken parts.

The public interface of a module is like an Operator's Guide. It tells the programmer and the
computer how to use the module. The public interface of a module is called the “header file.” It
contains data structures, function definitions, and#defineconstants, which are needed by anyone
using the module. The header file also contains a set of comments that tells a programmer how to
use the module.

The private section, the actual code for the module, resides in thec file. A programmer who
uses the module never needs to look into this file. Some commercial products even distribute their
modules in object form only, sonobodycan look in the private section.

Rule 1-2:

Divide each module up into a public part (what's needed to use the module) and a private
part (what's needed to get the job done). The public part goes into a .h file while the pri-
vate part goes into a .c file.

Libraries and Other Module Groupings
A library is a collection of generally useful modules combined into a special object file.

Libraries present a special problem: How do you present the public information for a library?
Do you use a single header file, multiple header files for the individual modules, or some other
method?

There is no one answer. Each method has its advantages and disadvantages.

Multiple header files
Because a library is a collection of modules, you could use a collection of header files to inter-

face with the outside world. The advantage to this is that a program brings in only the function
and data definitions it needs, and leaves out what it doesn't use.

The X Windows system, for example, has a different header file for each module (called a tool
kit in X-language).

A typical X Windows program contains code that looks like this:

#include <Xll/Intrinsic.h>
#include <Xll/Shell.h>
#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/RowColumn.h>
#include <Xm/PushB.h>
#include <Xm/Separator.h>
#include <Xm/BulletinB.h>
#include <Xm/CascadeB.h>

As you can see, this can result in a lot of#includes. One of the problems with this system is
that it is very easy to forget one of the#include statements. Also, it is possible to have redundant
#includes. For example, suppose the header fileXmILabel.hrequiresXmISeparator.hand con-
tains an internal#include for it, but the program itself also includes it. In this case, the file is
included twice, which makes extra, unnecessary work for the compiler.

Also, it is very easy to forget which include files are needed and which to leave out. I've often
had to go through a cycle of compile and get errors, figure out which include file is missing, and
compile again.

Therefore, the advantages of being compact must be balanced against the disadvantages of
being complex and difficult to use.

One header does all
One way of avoiding the problems of multiple header files is to throw everything into a single,

big header file. Microsoft Windows uses this approach. A typical Windows program contains the
line:

#include <windows.h>

This is much simpler than the multiple include file approach taken by X Windows System.
Also, there is no problem with loading a header file twice because there is only one file and only
one#includestatement.

The problem is that this file is 3,500 lines long, so even short 10-line modules bring in 3,500
lines of include file. This make compilation slower. Borland and Microsoft have tried to get
around this problem by introducing “precompiled” headers, but it still takes time to compile Win-
dows programs.

Mixed approach
Borland's Turbo Vision library (TV) uses a different method. The programmer puts#define

statements in the code to tell the TV header which functions will be used. This is followed by one
#includedirective.

#define Uses_TRect
#define Uses_TStatusLine
#define Uses_TStatusDef
#define Uses_TStatusItem
#include <tv.h>

The file tv.h brings in additional include files as needed. (The#defines determine what is
needed.) One advantage over multiple include files is that the files are included in the proper
order, which eliminates redundant includes.

This system has another advantage in that only the data that's needed is brought in, so compi-
lation is faster. The disadvantage is that if you forget to put in the correct#definestatements, your
program won't compile. So while being faster than the all-in-one strategy, it is somewhat more
complex.

Program Aesthetics
A properly designed program is easy to read and understand.

Part of what makes books readable is good paragraphing. Books are broken up into para-
graphs and sentences. A sentence forms one complete thought, and multiple sentences on a single
subject form a paragraph.

Code paragraphs
Similarly, a C program consists of statements, and multiple statements on the same subject

form a conceptual block. Since “conceptual block” is not a recognized technical term, you may
just as well call them paragraphs. In this book, paragraphs are separated from each other by a
blank line. You can separate paragraphs in C in the same way.

Omitting paragraphs in code creates ugly, hard-to-read programs. If you’ve ever tried reading
a paper without paragraphing, you realize how easy it is to get lost. Paragraph-less programming
tends to cause the program to get lost:

/* Poor programming style */
void display(void)
{

int start, finish; /* Start, End of display range */
char line[80]: /* Input line for events */
printf("Event numbers? ");
start = -1;
finish = -1;
fgets(line, sizeof(line), stdin);
sscanf(line,"%d %d", &start, &finish);
if (start == -1)

return;
if (!valid(finish))

finish = start;
if (valid(start))

display2(start, finish);
}

Now, see how much better the same code looks after adding some whitespace to separate the
function into areas:

/* good programming style
void display(void)
{

int start, finish; /* Start, End of display range */
char line[80]: /* Input line for events */

printf("Event numbers ? ");
start = -1;
finish = -1;

fgets(line, sizeof(line), stdin);
sscanf(line,"%d %d", &start, &finish);

if (start == -1)
return;

if (!valid(finish))
finish = start;

if (valid(start))
display2(start, finish);

}

Note that the paragraphs here are not defined by the syntax of the language, but by the seman-
tics of the program. Statements are grouped together if they belong together logically. That judge-
ment is made by the programmer.

Rule 1-3:

Use white space to break a function into paragraphs.

Statements
Good paragraphing improves the aesthetics, hence the readability, of a program. But there are

also aesthetic issues at the level of the sentence; or in C, the statement. A statement expresses a
single thought, idea, or operation. Putting each statement on a line by itself makes the statement
stand out and reserves the use of indentations for showing program structure.

/* Avoid this style of programming */
void dump_regs()
{

{int d_reg_index;for(d_reg_index=0;d_reg_index<7
d_reg_index++)printf("d%d 0x%x\n",
d_reg_index, d_reg[d_reg_indexl););

{int a_reg_index;for(a_reg_index=0;a_reg_index<7
a_reg_index++)printf("a%d 0x%x\n",
a_reg_index, a_reg[a_reg_indexl););

}

Figuring out this code is like extracting a fossil from a rock formation. You must take out your
hammer and chip at it again and again until something coherent emerges. This kind of program-
ming obscures the control flow of the program. It hides statement beginnings and endings and
provides no paragraph separations.

Simply reformatting this code gives us a clearer understanding of what it does.

/* Better style */
void dump_regs()
{

{
int d_reg_index = 0; /* Data register index */

for (d_reg_index = 0;
d_reg_index < 7;
++d_reg_index)

printf("d%d Ox%x\n",
d_reg_index, d_reg[d_reg_indexl);

}
}
{

int a_reg_index; /* Index of the address reg */

for (a_reg_index = 0;
a_reg_index < 7;
++a_reg_index)

printf("a%d Ox%x\n",
a_reg_index, a_reg[a_reg_indexl);

}
}

}

(Better yet, add comments after thed_reg_index and a_reg_index declarations to
explain the variables.)

Rule 1-4:

Put each statement on a line by itself

In clearly written English there are limits on the optimum length of a sentence. We've all suf-
fered through the sentence that runs on and on, repeating itself over and over; or, through a struc-
ture whose complexity demonstrates more the confusion than the cleverness of the author
(although it should be noted that, as in the present example, a demonstration of confusion can be
the whole point), just get all bollixed up.

Likewise, a clearly written C statement should not go on forever. Complex statements can eas-
ily be divided into smaller, more concise statements. For example:

/* Poor practice */
ratio = (load * stress - safety_margin -

fudge_factor) / (length * width * depth -
shrinkage);

/* Better */
top = (load * stress - safety_margin - fudge_factor);
bottom = (length * width * depth - shrinkage);

ratio = top / bottom;

Rule 1-5:

Avoid very long statements. Use multiple shorter statements instead.

Chapter 2: File Basics, Comments, and Pro-
gram Headings

To program some of the very early computers, programmers had to rewire the machine. The
programers got a large circuit board called a plug board, which was filled with little holes where
they plugged in wires to create the program. Once they had programmed the board, they slid it
into the computer and ran the program.

Computers soon evolved to the point where programmers could program them in text. They
typed their program on a machine that output punched cards, dropped the thick deck of cards into
the card reader, and the computer did the rest. Editing the program was as simple as replacing
cards, but woe be to the programmer who dropped the program and scattered the cards.

Today we use text editors, which are certainly an improvement over punched cards and plug
boards, but they do have their limitations. Knowing these limitations can help you to write code
that will always be readable.

File Basics
C can accept files of almost any size, but there are some practical limitations. The longer a file,

the more time and effort it takes to edit and print it. Most editors tend to get a bit slow when the
file size gets to be more than about 3,000 lines. Keep yours within this limit.

Rule 2-1:

Keep programs files to no longer than about 2,000 to 3,000 lines.

Not only are there length limitations, but width limits as well. The old punch cards contained
80 columns. Because of that, most terminals and printers at the time were limited to 80 columns.
This limitation has carried over to present-day computers. For example, the PC screen is only 80
columns wide.

Long lines can be a problem in programming. Many printers truncate lines that are too long,
resulting in listings that look like this:

The code that fell off the right side is referred to as mystery code. So you need to limit the
width of your program files to 80 characters. Actually, you need a slightly smaller limit. Program
printers such ascpr print line numbered listings. Line numbers take up space, so a better limit,
and one with enough history to be taken seriously, is 72 characters.

Rule 2-2:

Keep all lines in your program files down to 72 characters or fewer.

result = draw_line(last_x, last_y, next_x, next_y, line_style,

Early terminals had fixed tabs. Every eight characters you had a tab stop whether you liked it
or not. You couldn't change them since they were built into the machine. This fixed tab size
became an industry standard that is still in force today. If you type a file containing tabs under
UNIX or DOS, the tabs come out every eight characters.

Many editors allow you to set your own tab stops. If you are programming in C with an inden-
tion size of 4, it is convenient to set the tab stop in your editor to 4. That way, to indent all you
have to do is hit the Tab key. The problem with is that your tab setting is non-standard. If someone
else edits your program, they won't know about your tabs and will assume that your code is
indented strangely. Also, many printing programs and older programs default to a tab size of 8.
Some, like DOS, can't be changed.

Note that tab size and indentation level are two different things. It is perfectly acceptable to
use a tab size of 8 and an indentation level of 4. You would then use four spaces to reach the first
level of indentation, a tab to reach the second, and so on.

Rule 2-3:

Use 8-character tab stops.

Finally, there is the character set. There are 95 printing characters in the standard ASCII set.
The PC extended this set to include foreign characters and a line drawing set. It is possible to use
the PC character set to draw interesting shapes,

like the following example:

/***
 * Boxes look like *
 * *
 * *
 * *
 * *

***/

This makes for a nice picture on the screen, but what happens when you try to print it out?
Most printers don't understand the PC character set, so you can easily get something that looks
like this:

/***
 * Boxes look like *
 * LQQL *
 * M M *
 * M M *
 * LQQL *

***/

Worse, if this program is ported to another machine, such as a UNIX system, no one will
understand the funny characters.

Rule 2-4:

Use only the 95 standard ASCII characters in your programs. Avoid exotic characters.
(Foreign characters may be used if you are writing comments in a foreign language.)

The Comment
Well-written code can help a programmer understand what is going on, but the best form of

communication is the comment. Comments are used to explain everything. Without comments, a
programmer has to go through the long and painful process of decrypting the program to figure
out what the heck it does.

The comment can convey a variety of information, including program design, coding details,
tricks, traps, and sometimes even jokes. There are many types of comments, from important ones
that you want make sure the programmer doesn't miss to explanations of the tiniest details.

The author of a book has the advantage of typesetting devices. Important information can be
set inBIG BOLD LETTERS, or words can beemphasizedwith italics.

The programmer, on the other hand, is limited to a single size, single face, monospaced font
and personal imagination. Over the years a lot of imagination has been used to make up for the
limitations of the medium.

Rule 2-5:

Include a heading comment at the beginning of each file that explains the file.

The following program illustrates a variety of commenting styles collected over the years
from many different sources.

/**
* This is a boxed comment. the box draws attention *
* to it. This type of comment is used for programs, *
* module and function headings. *
**/

/* >>>>>>>>>>>>>>> Major Section Marker <<<<<<<<<<<<<<< */

/* --------------- Minor Section Marker --------------- */

static int count = 0; /* A simple end of line comment */

/* This was an end of line comment that grew too long */
static int total = 0;

/**
**
********** Warning: This is a very important **********
********** message. If the programmer misses **********
********** it, the program might crash and **********
********** burn. (Gets your attention, **********
********** doesn't it?) **********
**
**/

int main(void)
{

/* This is an in-line comment */

++total;

/*
* This is a longer in-line comment.
* Because it is so verbose it is split into two lines.
*/

return (0);
}

Other types of comments include:

/*--------------------*\
* Another box style *

--------------------/

/*
* *================*
* * Section Header *
* *================*
*
* This is a sentence with **one** word emphasized.
*/

Graphics
Computers are becoming more and more graphically oriented. Screen layouts, windowing

systems, and games all require sophisticated graphics. It's not possible to put graphic comments
into a program yet, but you can make a good attempt by using ASCII line art.

A typical screen layout comment might look like this:

/**
* Format of address menu *
* *
* <----- MENU_WIDTH ------> MENU_HEIGHT *
* +-----------------------+ ^ *
* | Name: _______________ | <-- NAME_LINE | *
* | Address: ____________ | <-- ADDRESS_LINE | *
* | City: _______________ | <-- CITY_LINE | *
* | State: __ Zip: ______ | <-- STATE_LINE | *
* +-----------------------+ v *
* ^ ^ *
* | | *
* | +--- ZIP_X *
* +--- BLANK_X *
**/

Even with the crude drawing tools in the 95 standard ASCII characters, you can produce a rec-
ognizable picture. This type of comment actually conveys graphically the relationships among the
constants shown.

Packing bits
If you do 1/0 programming, you know that hardware designers like to pack a lot of functions

into a single byte. For example, the serial 1/0 chip that controls the COM ports on a PC contains a
variety of packed registers.

Parity:
000 - No parity
001 - Odd Parity / No Check
010 - Even Parity / No Check
011 - High Bit always set
100 - Odd Party / Check Incoming characters
101 - Even Parity / Check Incoming characters
110 - Undefined
111 - Parity Clear

Stop Bits:

00 - 1 Stop Bit
01 - 1.5 Stop Bits
10 - 2 Stop Bits
11 - Undefined

These registers are documented in the chip's data sheet. Unfortunately, most programmers
don't carry around a complete set of data sheets, so it is very useful to copy the register specifica-
tion into the

This can be turned into a nice comment and a few defines. (How to write the#definestate-
ments is discussed in Chapter 6.)

Mode Break Parity Stop Stop Bits

/**
* Line Control Register *
* for the PC's COM ports *
* *
* 76543210 *
* XXXXXXXX *
* ^^^^^^++---- Number of stop bits *
* |||||+------ Enable Transmitter *
* ||+++------- Parity Generation *
* |+---------- Send Break *
* +----------- Mode control *
**/

/*
* Define the number of stop bits
*/

#define STOP_1_BIT (0 << 0)
#define STOP_15_BIT (1 << 0)
#define STOP_2_BIT (2 << 0)

#define TRANSMIT_ENABLE (1 << 2)
/*

* Parity Mode
*/

#define PARITY_NONE (0 << 3)
#define PARITY_ODD (1 << 3)
#define PARITY_EVEN (2 << 3)
#define PARITY_HIGH (3 << 3)
#define PARITY_ODD_CHECK (4 << 3)
#define PARITY_EVEN_CHECK (5 << 3)
#define PARITY_CLEAR (7 << 3)

#define BREAK (1 << 6)

#define MODE_ASYNC (0 << 7)
#define MODE_SYNC (1 << 7)

Letting the Editor Help You
Most editors have a macro of abbreviation features that make it quick and easy to create boxed

comments.

If you use the UNIX editor vi, you can put the following in your. exrcfile to define two abbre-
viations:

:ab #b /**
:ab #e **/

When you type#b , the editor changes it to a beginning box, while typing#e creates an end-
ing comment.

On the PC, there is Borland's C++ compiler, which comes with a macro file namedCMAC-
ROS.TEM.These macros must be installed using theTEMCcommand. Type:

TEMC cmacros.tem tcconfig.tc

These macros are a bit limited, however, and you might want to edit them before using them in
production.

Beginning Comment Block
The first two questions a programmer should ask when confronting a strange program are

“What is it?” and “What does it do?” Heading comments should answer both questions.

The top of a program serves as a sort of title page and abstract. It briefly describes the program
and provides vital information about it.

Here, the heading comments are boxed. This not only makes them stand out, but it easily iden-
tifies them as containing important and generally useful information. The first line of the heading
block contains the name of the program and a short description of what it does.

The sections of a heading
The following is a list of heading sections, but not all sections apply to all programs. Use only

those that are useful to your program.

• Purpose

Why was this program written? What does it do?

• Author

it took you a great deal of time and trouble to create this program. Sign your work. Also,
when someone else has to modify this program, they can come to you and ask you to
explain what you did.

• Copyright or License

Most commercial programs are protected by copyright or trade secret laws. Generally, this
is some boilerplate text devised by lawyers. You don't have to understand it, but you
should put it in.

• Warning

Sometimes a programmer discovers the hard way that his program contains traps or pit-
falls. This section should warn about potential problems. For example: “Don't compile
with stack checking on. This is a clever program, and it does strange things with the
stack.”

• Usage

Briefly explain how to use the program. Oualline's law of documental states: 90 percent of
the time, the documentation is lost. Of the remaining 10 percent, 9 percent of the time the
documentation is for a different version of the software and is completely useless. The 1
percent of the time you have the correct documentation, it is written in Chinese.

A simple way to prevent the program and the documentation from being separated is to
put the documentation in the program. You don't need a complete tutorial, just enough for
a quick reference.

• Restrictions

This section lists any restrictions that the program might have, such as “This program is
designed to process the output of PLOT5 program. It does not do extensive error checking
and may behave strangely if given bad input.”

• Algorithms

If this program uses any special techniques or algorithms, list them here.

• References

Often a programmer will find it useful to copy or adapt an algorithm from a book or other
source (as long as copyright laws are not violated). But give credit where credit is due.
Listing the source of any special algorithms in this section gives the people who follow
you a chance to check the original work.

• File Formats

This section briefly describes the format of any data files used by the program. This sec-
tion may also be duplicated in the module that reads or writes the file.

• Revision History

it's not unusual for a number of people to work on a single program over the years. This
section lists those who worked on the program, gives a short description of what they did,
and tells when the work was done. Revision control software such asRCSandSCCSwill
automatically generate this information.

• Notes

This is a catch-all for any other information you may want future programmers to have.

/**
* Analyze -- analyze the complexity of a program *
* *
* Purpose: *
* This program produces a set of statistics that *
* are supposed to tell you how complex a program *
* is. *
* *
* Author: John Jones. *
* *
* Copyright 1999 by John Jones. *
* *
* Warning: Compiling with optimization causes *
* incorrect code to be generated. *
* *
* Restrictions: Works only on error-free C files. *
* Does not know about pre-processor directives. *
* *
* Algorithms: Uses a classic unbalanced binary tree *
* for a symbol table. *
* *
* References: "Software complexity measurements", *
* Flying Fingers Newsletter, May 5, 1995. *
* *
* Output file format for raw data file: *
* <magic number> (AC_DATA_MAGIC) *
* <# statistics that follow> *
* <stat table index> *
* <value> *
* (Repeat for each stat.) *
* *
* Revision history: *
* 1.0 July 5, 1995 Ralph Smith *
* Initial Version. *
* *
* 1.5 Nov 5, 1995 Bill Green *
* Add comment / code ratio *
* *
* 2.0 Jan 8, 1996 Bill Green *
* Extensive rework of the report gen. *
* *

* 2.1 Jan 30, 1997 Bill Green *
* Ported to Windows-95. *
* *
* Note: This program generates a lot of numbers *
* about the target program. Not all are useful. *
**/

This particular example is a bit long. It was created to show practical uses of every section.
But it illustrates a problem with style guidelines: there is a strong temptation to overdo it. All too
often, a programming team will form a style committee, toss around a bunch of ideas for docu-
menting the code, and end up throwing them all into the header. This is almost guaranteed to pro-
duce confusing headers that are themselves a maintenance headache.

Heading comments should be as simple as possible, but no simpler.

Too much information is a burden on the programmer. It takes time to type it in and to main-
tain it. Comments that take a lot of time to create and maintain tempt the programmer to take
shortcuts. The result is incorrect or misleading comments, and awrong comment is worse than no
comment at all.

Real programs have shorter headers. Here is a header taken from a real program:

/**
* lab -- handle the labeling of diskettes. *
* *
* Usage: *
* lab -w <drive>:<name> Write label to disk. *
* lab -r <drive>: Read label. *
* lab -c <drive: drive: Copy label. *
* *
* Copyright 1992, Steve Oualline *
**/

#include <stdio.h>

Other sections
We've listed a general set of heading sections. You may need additional sections, depending

on your environment. For example, a student may be required to put in an assignment number,
social security number, and teacher's name. Professional programs may require a part number.
Shareware must include a paragraph that asks the user to pay a license fee, along with an address
to which users can send money.

Module Headings
Modules are similar to program files, except that there is nomain function. Their heading

comments are also structured similarly, except that there is no “Usage” section.

/**
* symbol.c -- Symbol table routines *
* *
* Author: Steve Oualline *
* *
* Copyright 1992 Steve Oualline *
* *
* Warning: Running out of memory kills the program. *
* *
* Algorithm: *
* The symbol table is kept as a balanced binary *
* tree. *
**/

Some programmers put a list of the public functions in the heading comments. This is not rec-
ommended. First, all the public functions are already listed in the header file for this module. Sec-
ond, keeping this list up to date requires work, and frequently a programmer will forget to make
the updates.

Function Headings
C functions serve much the same purpose as sections of a chapter in a book. They deal with a

single subject or operation that the reader can easily absorb.

In this book, each section starts with a section heading in bold letters. This allows the user to
scan down a page to locate a section.

A function needs a similar heading. The comment box for a function should contain the fol-
lowing sections:

• Name

The name of the function and a brief comment describing it.

• Parameters

A list of parameters (one per line) and a brief description of each of them. Sometimes the
words (returned) or (updated) are added.

• Return value

Describes what value the function returns. In addition to these standard sections, any other
useful information about the function can be added. Here's an example:

/**
* find_lowest -- find the lowest number in an array *
* *
* Parameters *
* array -- the array of integers to search. *
* count -- the number of items in the array. *
* *
* Returns *
* The index of the lowest number in the array *
* (in case of a tie, the first instance of the *
* number.) *
**/

Some people include another section: Globals Used. This is very useful information, but it is
difficult to get and maintain. It takes a lot of work to keep this section current, and frequently a
programmer will get lazy and ignore it. It is better not to have a Globals Used section than to have
one that is wrong.

Rule 2-6:

Leave out unnecessary comments if they require maintenance and if you are unlikely to
maintain them.

When to Write Comments
It is best to put your comments in the program as you are writing it. If you start your program

with a set of heading comments, then you should have a pretty good idea what you are planning to
do. It helps focus your thoughts.

Avoid the two-step process of coding and later going back and adding comments. This method
has several problems. First, you are likely to forget what you did. What may be obvious when you
write it may not be so obvious when you re-read it.

Another good reason to write comments while you're writing the code is psychological. When
the code is done, you're probably going to feel that the program is done. Adding comments then
becomes a chore to be completed as quickly as possible. Generally, this means you'll put in too
few comments.

It is especially helpful to do things like screen layouts in comments before you start coding.
That way you have a model to work from.

Rule 2-7:

Comment your code as you write it.

Some Comments on Comments
The heading comments always seem a bit long to the person creating the program. To the per-

son trying to maintain it, they always seem far too short. Balance is the key to good commenting.
Make your comments short enough so they aren't bothersome to put in, yet long enough to give
other programmers a good idea of what's going on.

Overly commented programs are rare. Usually they turn up in the work of eager first-year pro-
gramming students.

Under-commented programs are far too frequent. Too many programmers think that their code
is obvious. It is not.

There is a reason it is called “code.”

Chapter 3: Variable Names
In English, we put words together to make up sentences. The language is fairly easy to under-

stand when you know what most of the words mean. Even if you don't know some words, you can
look them up in the dictionary.

Variables are the “words” for the C language. In a program, variables have a precise definition
and usage, but that definition and usage are different for each program. What's worse, some pro-
grammers tend to use abbreviations, even for simple things. Shakespeare wrote, “That which we
call a rose by any other name would smell as sweet.” (Romeo and Juliet, Act II, Scene 2). But
calling a rose an “RZ” creates needless confusion.

Bureaucratize is a prime example of how things get mixed up when people start using their
own unique languages. Government agencies don't fire people, they “dehire” them. That probably
wouldn't be confusing to the person being dehired, but consider this example: The Army files
“Zipper” under “I.” why? Zipper used to be a trade name, making it illegal for Army filing, so
they use the generic name “Interlocking cloth fastener.” These are the same people who file furry
teddy bears under the label “Bears, fur, Edward.”

Call a spade a spade. Don't call it “spa”, “s1”, or “pronged digging implement.” Simplicity
and a firm grasp of the obvious are necessary for good C programming.

Rule 3-1:

Use simple, descriptive variable names.

A Brief History of the Variable
Early computers were initially used for solving complex and repetitive mathematical equa-

tions. Not surprisingly, early programming languages looked a lot like algebra. Mathematicians
generally use single character variable names because they don't care what the variables stand for.
(They're not supposed to; that's what it means to be a mathematician.)

For example, the equation for the area of a triangle is:

wherea is the area of the triangle,b is the base, andh is the height.

a
1
2
---bh=

This sort of notation is highly compact. You can express a lot on a single line.

However, it isn't very clear. Even the simple triangle example requires a somewhat longer line
of explanation so we know the meaning ofa, b, andh.

In mathematics, you can append notes when you need to break out of the sea of symbols to
explain what the symbols stand for. In programming, where code can easily run 10 or more pages
and where you care a little more what the symbols stand for, variable names should be more
meaningful.

As people discovered that they needed longer variable names, computer languages improved.
The first BASIC interpreter limited variables to a single letter and an optional digit (A, B2, C3,
etc.)

FORTRAN gave the programmer six characters to play with—really 5 1/2, since the first char-
acter denoted the default type. That meant that instead of using I for an index, you could use a
name likeINDEX. This was progress. (One problem with FORTRAN was that it used the first let-
ter of the variable name for type information. So people would useKOUNTfor “count” so that the
type would be integer.)

In C the length of a variable name is unlimited (although the first 31 characters must be
unique). So variable names like these:

disk_name total_count last_entry
are legal.

If long is better, then very long must be much better, right? Consider this example:

total_number_of_entries_with_mangled_or_out_of_range_dates

This is an extremely descriptive name; you know exactly what this variable is used for. But
there are problems with names like this. First, they are difficult to type. Second, remembering the
exact wording of such a long name is not easy. Finally, look at what happens when you try to use
this variable in a statement:

total_number_of_entries_with_mangled_or_out_of_range_dates =
total_number_of_entries_with_mangled_input +
total_number_of_entries_with_mangled_output +
total_number_of_entries_with_out_of_range_dates;

True, you know what the variables are, but the statement logic is obscured by the excess ver-
bosity of the names.

1
n
--- U f Uk 1

1
n
--- U f∑ 

  1
n
--- U f 1+∑ 

 –+∑

1
n
--- U j

2 1
n
--- U f∑ 

  2
–∑ 

  1
n
--- U f

2
k

1
n
--- U f k+∑ 

  2
–+∑ 

 
lim

n ∞→

--

Choosing the right variable name is a balancing act. It must be long enough to be descriptive,
yet short enough to be memorable and useful.

Over the years, the following rule of thumb has evolved.

Rule 3-2:

Good variable names are created by using one word or by putting two or three words
together, separated by “_”. For example:

/* Good variable names */
start_time start_date late_fee
current_entry error_count help_menu
AllDone ModemName LastNumberCalled

Capitalization
Shortly after the invention of moveable type, printers began to arrange their letters in specially

designed boxes, or cases. Soon a standard arrangement emerged: two drawers were used for each
typeface, the top one holding the capital letters, and the bottom for all the others. Thus the terms
uppercase and lowercase.

In many programming languages case is ignored, but in C, uppercase is distinguished from
lowercase. This means, for example, that Count, count and COUNT are three different names.
This can lead to problems, but it also gives you another tool for making variable names meaning-
ful.

Over the years programmers have devised special naming and capitalization conventions for
variables, functions, and constants.

One of the advantages of this system is that all the component words (total, count, name, max)
are separated from each other. This allows you to run the program through a spelling checker.

System A

total_count Variable and
function names

All lowercase words separated by
underscores

NAME_MAX Constants All uppercase words separated by
underscores

System B

TotalCount Variable and
function names

Upper/Lower case with no separa-
tors.

NAME_MAX Constants All uppercase words separated by
underscores

This system uses a different style for variables and functions. Research shows, incidentally,
that people find upper- and lowercase words easier to read than lowercase only. System B is not
very common.

This system uses a different format for local and global names, which provides additional pro-
gramming information.

Each system has its own advantages. System A used to be the universal standard, but System
C is quickly growing in popularity. Choose the one that suits you best and stay with it.

Names You Must Never Use
A programmer once came up with a brilliant way to avoid ever getting a traffic ticket. He sub-

mitted a request for a personalized license plate with the choices “0O0O0O”, “ 1l1l1l ”, and
“ ll0O11 ”. He figured that if his license plate read “0O0O0O”, the police would find it difficult to
tell the difference between the letter “O” and the digit “O”. The problem was, the DMV clerk had
the same problem, so he got a personalized license plate that read “000000 ”.

The uppercase letter “O” and the digit “O” can easily be confused. So can the lowercase letter
“1” and the digit “1”.

Rule 3-3:

Never useI (lowercaseL) or O (uppercaseO) as variable or constant names.

Other Names Not To Use
Don't use names already in the C library. You'll never know who calls them. I recently ported

a program that defined its own version ofgetdate. The program worked under UNIX because
although the C library has agetdate function, the program never expected to use it.

When the application was ported to the PC, I discovered thatgetdatecalled the library func-
tion time. This function had an internal call togetdate. It expected to call the systemgetdate, not a
local function defined in the program. But the program overrode the library'sgetdate, which
resulted ingetdate calling time callinggetdate calling time—until the stack overflowed.

A quick global rename was done to turngetdateinto get_current_date , and the porting
problem went away. But it would have never occurred in the first place if the programmer hadn't
used an existing C library function:

System C

total_count Local variable and
function names

All lowercase words separated by
underscores

TotalCount Global variables and
functions

Uppercase and lowercase with no
separators.

NAME_MAX Constants All uppercase words separated by
underscores

Rule 3-4:

Don't use the names of existing C library functions or constants.

Avoid Similar Names
Subtle differences in variable names should be avoided. For example, the variable names total

and totals can be easily confused. Differences between variables should be blatant, such as
entry_total andall_total .

Rule 3-5:

Don't use variable names that differ by only one or two characters. Make every name
obviously different from every other name.

Consistency in Naming
Consistency and repetition are extremely powerful programming tools. Use similar names for

similar functions. In the following example, you can easily guess the name of the missing vari-
able:

int start_hour; /* Hour when the program began */
int start_minute; /* Minute when the program began */
int ??????; /* Second when the program began */

If start_hour is the hour when the program began andstart_minute is the minute,
you can easily figure out the name of the variable that holds the seconds. Think how confusing it
would be if the programmer had written this:

int start_hour; /* Hour when the program began */
int begin_minute; /* Program start time. minutes only */

/* Seconds on the clock at program commencement */
int commence_seconds;

Rule 3-6:

Use similar names for variables that perform similar functions.

Which Word First
Suppose you have a variable that denotes the maximum entry in a series of numbers. You

could call itmax_entry or entry_max . How do you decide which name to use?

Picking one at random is does not work, because you might at one time pickmax_entry for
one program andentry_max for another. Experience shows that too often we forget which one
we picked for a particular program, which results in confusion. More often than I care to mention,
I've had to do a global search and replace to changemax_entry to entry_max .

You need a selection rule. What happens when you put the most important word first (in this
case, entry)? A cross reference listing will group all the entry related variables together, such as
(entry_count , entry_min , entry_mnax).

If you choose to begin with the wordmax. then all the maximum limits will be grouped
together (max_count , max_entry , max_list).

Sorting by an important relation (all variables related to entries) is more important than sort-
ing by type (all maximums).

Rule 3-7:

When creating a two word variable name where the words can be put in any order, always
put the more important word first.

Standard Prefixes and Suffixes
Over the years a few standard prefixes and suffixes have developed for variable names. These

include the following:

_ptr Suffix for pointer

Examples:

int *entry_ptr; /* Pointer to current entry */
char *last_ptr; /* Pointer to last char in str */

_p Another suffix for pointer. This can be a little confusing to people who are not
familiar with it, so the suffix_ptr is preferred.

Examples:

event *next_p;/* Pointer to next event in queue */
char *word_p; /* Pointer to start of next word */

_file A variable of type FILE *, or a C++ I/O stream.

Examples:

FILE *in_file; /* Input data file */
FILE *database_file; /* The database file */

_fd File descriptor (returned by the open function.)

Examples:

/* The dictionary file descriptor */
int dictionary_fd;

/* File where we put the memory dump */
int dump_fd;

n_ Number of. For example, if you store a set of events in the array events, the
n_events is the number of entries in the events array. Does this violate the rule
about putting the most important word first? Yes, but it's established usage.

Examples:

/* A list of events */
int events[EVENT_MAX];

/* Number of items in event array */
int n_events = 0;

/* A list of accounts */
struct account account;

/* Number of accounts seen so far */
int n_accounts = 0;

Rule 3-8:

Standard prefixes and suffixes are_ptr , _p , _file , _fd , andn_ .

Module Prefixes
When creating large modules or libraries (more than 10 functions), a prefix is sometimes

added to each variable and function in the library. For example, everything in a database library
might start with the prefixDb.

Example:

int DbErrorNumber;
extern int DbOpen(char *name);
extern int DbClose(int handle);

This serves two purposes: first, it identifies the module containing the name; and second, it
limits name conflicts. A symbol table module and a database both might have a lookup function,
but the namesSymLookup andDbLookup do not conflict.

The X Windows system uses this naming convention extensively. All X Windows functions
begin with the letter X. However, the system is so complex that it has been further divided into
“tool kits,” each of which has its own prefix. For example, Xt is the Andrew Tool kit, Xv is the
X-view tool kit, etc.

Special Prefixes and Suffixes
Sometimes you need to use special names, names that you can be sure don't conflict with a

large body of existing code. Such cases call for unusual naming conventions.

For example, the C preprocessor had been around a number of years before the ANSI Com-
mittee decided on a standard set of predefined symbols. In order to avoid conflict, they decided
that each symbol would look like this: (__SYMBOL__).

Some of the predefined symbols include:

_ _LINE_ _ _ _FILE_ _ _ _STDC_ _

Compiler manufacturers have now jumped on this bandwagon and defined their own special
symbols using this convention.

The utilities lex and yacc solve the naming problem in a different way: they begin everything
with yy . Thus we get names likeyylex , yytext , andyylength in the code generated by
these utilities. It may look a little strange at first, but after a yywhile yyou yyget yyused to it.

If you do need to define a name that's widely used and you want to minimize the possibility of
a naming conflict, begin it with an underscore (_). Very few programmers use this character at the
beginning of normal variable or constant names.

When You Can Use Short Names
In some cases you can use short variable names. For example, when dealing with a graphic

position, the variablesx andy are descriptive.

Also, the variable named “i ” is frequently used as a general purpose, handy dandy, local
index. Its popularity makes it acceptable as a variable name, even though the name index is more
descriptive.

Rule 3-9:

Short names such asx , y, andi are acceptable when their meaning is clear and when a
longer name would not add information or clarity.

argv, argc
The main function of a C program takes two arguments. In 99 percent of the programs, the

arguments are namedargv andargc . In the other 1 percent, we wish the programmer had used
argc andargv instead ofac andav.

A lot of history has gone into these names. When programmers see them, they immediately
think “command line arguments.” Don't confuse the issue by using these names for anything else.

Rule 3-10:

Useargc for the number of command line arguments andargv for the argument list. Do
not use these names for anything else.

Microsoft Notation
When Microsoft introduced Windows, it also introduced a new variable naming notation

called Hungarian Notation. (There are two reasons why it's called that. First, Charles Simonyi, the
man who invented it, is Hungarian. Second, most people looking at it for the first time think that it
might as well be written in Hungarian.) It's also known as Microsoft Notation.

The idea is simple: prefix each variable name with a letter denoting its type; for example,w for
a 16-byte integer (word), andl for a 32-byte integer (long). That way, you can easily prevent pro-
gramming problems caused by type conflicts. For example:

wValue = lParam; /* Obvious type conflict */

There is no complete list of prefixes. The following was gathered from several sources:

Prefix Type

b Boolean (true or false)

w Word, 16-bit integer

i Integer, 16-bit integer (conflicts withw)

n Short, 16-bit integer (conflicts withw)

n Near pointer (ambiguous, can be used for “short”)

p Pointer

d Double, 32-bit integer

dw Double word, 32-bit integer (conflicts with d)

l Long, 32-bit integer (conflicts withd)

fn Function (or pointer to function)

g Global

s String

sz String terminated with zero (conflicts withs)

c character

by byte (unsigned character)

h Window handle

hn Window handle (conflicts withh)

There are some problems with this notation. First, the list of prefixes is confusing and incom-
plete, and the order of prefixes is not clear. For example, does a pointer to a word start withpw or
wp?

Second, variables with type prefixes get sorted by type in the cross reference, which is not the
most useful ordering.

Of course, sometimes a programmer really needs to put type information into a variable name.
For example, it's very important to know the difference between things and pointers to Wings. The
suffix _ptr does this job well.

Example:

char name[30]: /* Name of the user */
char *name_ptr: /* Pointer to user's name */

Suffixes easily do the job of Microsoft's prefixes without getting in the way. The only advan-
tage of Microsoft Notation is that it makes type conflicts obvious. For example:

wValue = lParam: /* Obvious type conflict */

However, most good compilers will produce a warning message for potential problems like
this. So while it may be hard to spot the potential problem in the following line:

count = index:

it's a lot easier when the compiler chimes in with:

Line 86: Warning: Assignment may lose significant digits

Imaginative Solutions
PC class machines come with a line drawing character set that allows the programmer to con-

struct things like single and double lined boxes. One of the problems PC programmers face is
what to name these curious characters when they are referred to in a program. One solution is to
begin every single line character with S. followed by the character type: C for corner, L for line, T
for T and X for cross, followed by a name. The result is:

Character Name

S_C_UR (Single, Corner, Upper Right)

S_C_UL (Single, Corner, Upper Left)

S_C_LR (Single, Corner, Lower Right)

S_C_LL (Single, Corner, Lower Left)

S_L_A (Single, Line, Across)

S_C_UR (Single, Line Down)

SD_X_DA (Single Down, crossing Double Across)

After a while this system tends to make you sick. The problem with this system is that it's
complex and somewhat error prone. At the time it was the best we could come up with, but that
didn't stop us from trying something new.

Then someone figured out a system where you started at the top and worked your way around,
counting the number of lines (0, 1, or 2).

0

2

1

2

So the character turns intoL_0212 . The table is now:

Character Name

L 0011

L_0110

L_1001

L_1100

L_0101

L_1010

L_1212

Now, these names break all the rules we have discussed so far. They are short and somewhat
cryptic. But put them in a file with a very good comment block explaining them, and they bring
order to a very messy problem.

Case studies
Over the years different groups have developed their own standard naming conventions. Each

has its own advantages and disadvantages. This section will look at some of the standard pro-
grams and how they use their names.

The C runtime library
The C runtime library traces its roots back to the first C compiler. It evolved over the years,

and the ANSI Committee standardized it.

Naming conventions:

Private variable names All lowercase

Public variable names All lowercase

Constant names Uppercase only

The C library is full of short, cryptic names like these:

creat stdin stdout open
strcpy printf memcmp malloc

Initially names were restricted because of severe limitations in the compiler, which ran on
some extremely small machines. Also, the early programmers didn't place any value on long
names.

These names are somewhat cryptic. For example, the functionstrcpy copies a string. A
much better name would have beenstring_copy . And usingcreat instead ofcreate is
pretty silly.

The language does not make good use of prefix and suffix letters. For example, here is the
printf family of functions:

printf Print to standard output

fprintf Print to a file

sprintf Print to a string

vfprintf Print to a file, argument list is a vector

Also, the library is fairly consistent. For example, every string functionstr... has a correspond-
ing strn... function.

Example:

strcpy copy a string

strncpy copy n characters of a string

strcat append one string to another

strncat append n characters of one string to another

Constant names are also somewhat cryptic. For example, some of the error codes (from stan-
dard libraryerrno.h) are:

#define EZERO O /* Error O */
#define EINVFNC 1 /* Invalid function number */
#define ENOFILE 2 /* File not found */
#define ENOPATH 3 /* Path not found */
#define ECONTR 7 /* Memory blocks destroyed */
#define EINVMEM 9 /* Invalid memory block address */

However, the C library is good about grouping similar constants together. All error numbers
begin withE, all open flags begin0_ , and so on.

All in all, the C 1ibrary is fairly well designed; and the naming, though short, is regular and
reasonable, with limitations tractable to the days when C compilers were much more limited.

The UNIX kernel
The UNIX operating system was one of the very first to be written in a high level language. It

was the first to be widely ported. Today, almost every computer that’s not a PC clone runs UNIX.

Naming Conventions

Private variable names All lowercase

Public variable names All lowercase

Constant names Uppercase only

UNIX is the king of the 1 to 3 character variable names. Some typical names are:

u bp i bn
pid uid gid fd

After a while, UNIX operating system programmers learn the meaning of most of the abbrevi-
ations. The know thatpid stands for processid andbp is a buffer pointer. But it takes time and
effort to learn this code. In fact, UNIX internal programming is not for the inexperience or the
faint of hear.t Most programmers must be introduced into the world of UNIX internals by an
experience guru.

As UNIX evolved, more and more people added to its code. While the core of the system
remains cryptic, much of the new code is better. Longer variable names came into use, such as:

physical_io dispatch
signal tty_select

The Microsoft library
Microsoft Windows provides PC programmers with a graphics programming environment. It

also allows programmers to better use the power of the more advanced 80386 and 80486 proces-
sors.

Naming conventions:

Private variable names Up to the application programmer

Public variable names Upper and lowercase

Constant names Uppercase only

Function names in Microsoft Windows are nicely done, consisting of several words put
together. Examples:

GetFreeSpace UnlockSegment CreateBitmap
CloseClipboard GetWindow AppendMenu

However, there is no special prefix or suffix for Windows functions, so it's impossible to tell at
a glance whether or notOpenFile is a Windows function. Constants are all Uppercase.

Examples:

LB_SETSEL WM_MOUSE WM_MOVE
WM_CLOSE EN_UPDATE LB_MSGMAX

Each constant contains a short group prefix. For example, all “List box” related constants
begin withLB_. Almost all Windows constants contain only one “_”, which is used to separated
the prefix from the rest of the constant. Multiple words are run together, making it difficult to read.
Therefore a constant likeWM_WINDOWPOSCHANGEDwould be much more readable if it was
written asWM_WINDOW_POS_CHANGED.

In general, the Windows naming convention makes programs more readable than the UNIX
code or C library. Although not perfect, it is a step forward.

The X Windows System
The X Windows is a popular UNIX windowing system available from MIT. Its low cost and

relative availability make it the windowing system of choice for most UNIX systems.

Naming conventions:

Private variable names Up to the application programmer

Public variable names Uppercase and lowercase

Constant names Most Uppercase only, some upper and lowercase

One of the most refreshing things about X Windows programming is that it actually looks like
someone thought about the design and style of the system before beginning the coding.

Public function and variable names in X Windows are upper and lowercase words, with no
underscores.

Examples:

XDrawString XNextEvent XGrabPointer
XCreateGC XMapWindow XFlush

All public names start with the letter X. The programmer can select among many different
tool kits for code. Each of these has its own prefix. For example, all routines in the X-View tool kit
start with Xv.

Constants begin with a type prefix. For example, all button related constants begin with
BUTTON_. Constants are a series of words separated by underscores.

XA_POINT XA_BITMAP XA_ATOM
XrmOptionNoArg XSetSizeHints Focusin

The X Windows system shows what can happen when some thought is given to style before
coding begins. It is well designed and presents the programmer with one of the best interfaces
available.

Variable Declaration Comments
Choosing good variable names helps create programs that are easy to read and maintain. But

names can't do the job alone. The programmer needs a definition for each variable. Technical
books have glossaries that explain all the special terms. We also need a glossary for our programs.

Writing a glossary is a lot of work. Maintaining it and keeping it up to date is even more work.
A better solution is to follow each variable with a comment that describes it.

Examples:

int window; /* Current window index */
int words; /* Number of words in the document */
int line_number; /* Current input file line number */
char *in_name; /* Current input file name */

Now, if you want to know the definition of line_number, go to your cross reference and look
for the first reference to the variable, thus locating the line:

int line_number; /* Current input file line number */

Using this method, you can quickly determine the type and definition of any variable.

Rule 3-11:

Follow every variable declaration with a comment that defines it.

Units
Weather services generally measure rainfall in hundredths of inches, referring to half an inch

of rain as 50. However, one night the weather service computer used inches as input. Someone
forgot a decimal point and entered 50 instead of 0.50.

Now, 50 inches of rain is a lot of rain. The computer caught the effort and printer this mes-
sage:

Build an Ark. Gather the animals two by two.

Units of measure are important. It's one thing to describe dist as the distance between two
objects, but what are the units? They could be inches, centimeters, yards, meters, or light years. It
makes a difference.

Rule 3-12:

Whenever possible, include the units of measure in the description of a variable.

Examples:

int distance_left; /* Distance we've got left (in miles) */
int owed; /* Amount owed in current account (in cents) */

/* Acceleration of gravity (in furlongs/fortnight**2) */
float gravity;

I once had to write a graphics conversion program. Many different units were used throughout
the system, including inches, thousandths of an inch, plotter units, digitizer units, etc. Figuring out
which units to use was a nightmare. Finally, I gave up and put the following comment in the pro-
gram:

/**
* Warning: This program uses a lot of different types *
* of units. I have no idea what the input units *
* or nor do I have any idea what the output *
* units should be, but I do know that if you *
* divide by 3 the plots look about the right size.*
**/

Structures and unions
A structure is simply a group of related variables tied together to form a convenient package.

Each field in a structure should be treated like a variable, with a carefully chosen name. A descrip-
tive comment is necessary as well.

Example:

/*
* A square of space on the screen enclosed by
* a border
*/

struct box {
int x; /* X loc. of upper left corner (in pixels) */
int y; /* Y loc. of upper left corner (in pixels) */
int length; /* Length of the box in pixels */
int width; /* Width of the box in pixels */

};

The structure itself is described in a comment just before its definition. This example uses a
multi-line comment to describe the box. Single-line comments tend to get lost in the clutter. White
space before and after the definition separates the structure from the rest of the code (much like
blank lines separate paragraphs in this book).

Rule 3-13:

Name and comment each field in a structure or union like a variable.

Rule 3-14:

Begin each structure or union definition with a multi-line comment describing it.

Rule 3-15:

Put at least one blank line before and after a structure or union definition.

Long declarations and comments
Sometimes a variable declaration and its initializer leave little room for a comment. In the fol-

lowing example, we need to describelast_entry,but where do we put the comment?

int first_entry; /* First entry to process */
int last_entry = (GOOD-ENTRIES + BAD-ENTRIES + FUDGE);
int current_entry; /* Entry we are working on */

There's no room at the end of the line. The solution is to put the description on a separate line
in front of the variable:

int first_entry; /* First entry to process */
/* Last entry number to process */
int last_entry = (GOOD-ENTRIES + BAD-ENTRIES + FUDGE);
int current_entry; /* Entry we are working on */

But this is still not good enough. This section of code looks like a big gray blob. It's not easy
to locate the description forlast_entry.Adding white space not only breaks up the blob, it also
helps grouplast_entry'scomment and declaration as shown here:

int first_entry; /* First entry to process */

/* Last entry number to process */
int last_entry = (GOOD-ENTRIES + BAD-ENTRIES + FUDGE);

int current_entry; /* Entry we are working on */

Rule 3-16:

When you can't put a descriptive comment at the end of a variable declaration, put it on a
separate line above. Use blank lines to separate the declaration/comment pair from the
rest of the code.

Group similar declarations
Repetition and consistency are powerful organizing tools. When declaring variables, group

similar variables together and use similar names.

int errors_out; /* Total number of output errors */
int errors_in; /* Total number of input errors */

int max_out; /* Max output error rate (errors/hour) */
int max_in; /* Max input error rate (errors/hour) */

int min_out; /* Min output error rate (errors/hour) */
int min_in; /* Min input error rate (errors/hour) */

This example uses the prefixerrors_ for the counters that accumulate a running total of the
input/output errors. The variables that hold the limits start with the fixesmax_ andmin_. Common
suffixes are also used. All output-related variables end with _out,and input variables with_in.

Notice that each group of variables consists of two declarations, the first one for the output
and the second one for the input.

This example shows only one of several possible groupings. Another possible method is this:

int errors_out; /* Total number of output errors */
int errors_in; /* Total number of input errors */

int max_out; /* Max output error rate (errors/hour) */
int max_in; /* Max input error rate (errors/hour) */

int min_out; /* Min output error rate (errors/hour) */
int min_in; /* Min input error rate (errors/hour) */

Rule 3-17:

Group similar variables together. When possible, use the same structure for each group.

Hidden Variables
Hidden variables occur when a variable is declared in a global scope and is then declared

again in a local scope. The second declaration “hides” the first.

In the following example, the second declaration of location hides the first.

/* Bad programming practice */

/* Distance traveled by the car in miles */
float location;

/*..... */
void display_location(void)
{

/* Location of current cursor */
int location; /* *** Hides previous declaration *** */

The problem is that we've now used the same word for two different things. Is location a glo-
bal or a local? Is it afloat or an int? Without knowing which version of the variable is being
referred to, we can't answer these questions.

There are enough variable names in the universe that there's no reason to use the same name
twice. We could just as easily have used a different name for the second declaration:

/* Good programming practice

/* Distance traveled by the car in miles
float car_location;

/*..... */

void display_location(void)
{

/* Location of current cursor */
int cursor_location;

Rule 3-18:

Don't use hidden variables.

Portable Types
The C compiler runs on many different machines. Making portable programs that can run on all these

machines is an art. One trick used to define portable types. For example, Novell uses the type WORDand
DWORDin all its header files. Butwhat is aWORD?Is it 8, 16, or 32 bits? Is it signed or unsigned?
You can't tell from the name.

A better set of portable names is:

INT16 INT32
UINT16 UINT32

These names clearly define the type and size of the data.

Rule 3-19:

Use the names INT16, INT32, UINT16, and UINT32 for portable application

Numbers
C uses a wide variety of numbers, and it's easy to get them confused. Be careful to make num-

bers clear and unambiguous.

Floating-point numbers
Here are some examples of floating-point numbers:

0.5 .3 6.2 10.
32E4 1e+10 0.333331 5E-5

A zero in front of the decimal point is optional. For example, C treats0.8 and.8 same. But
there is a difference..8 looks a lot like the integer8, while the number0.8 is obviously floating-
point. Similarly, you should write numbers like5. as5.0 .

Rule 3-20:

Floating-point numbers must have at least one digit on either side f the decimal point.

Large floating-point numbers are written using exponent format. The exponent's “E” can be
written in upper or lowercase. Which is better? Well, all digits are full-height characters. The
uppercase E is also a full-height character and can easily get lost in a string of digits.

32141831235432lEl32809932

The E is important and shouldn't get lost. The lowercase is easier to spot:

32141831235432lel32809932

It's even easier if you always include the sign.

321418312354321e+132809932

So a lowercasee and a sign make these important elements of a floating-point number stand
out.

Rule 3-21:

The exponent in a floating-point number must be a lowercasee. This is always followed by
a sign.

Here are some examples of good floating-point numbers:

3.1415 3.0 0.5 0.0
1.0e+33 1.0e-333. 33.0 1230.0

Hex numbers
C uses the prefix Ox for hexadecimal numbers. A uppercase or lowercasex may be used, but

as discussed, lowercase letters stand out better.

Rule 3-22:

Start hexadecimal numbers withOx. (Lowercasex only.)

Hexadecimal digits include the letters A through F. Again, uppercase or lowercase may be
used, soOXACEis the same asOXace. Lowercase digits create numbers that are easily confused
with variable names. Uppercase digits create numbers that look like constants.

0xacde ace face 0Xdead
0xACE X_ACE BEEF 0xBEEF

Numbers are a type of constant, so confusing a number and a constant is not too problematic.
Mistaking a number for a variable is worse, so it is preferable to use uppercase digits.

Rule 3-23:

Use uppercase A through F when constructing hexadecimal constants.

Long integers
Long integers end with the letterL. Again, C is case insensitive, so lowercase can be used. But

lowercasel looks a lot like the number1 and should be avoided. For example, the following two
constants look very much alike:

34l 341

But when the long integer is written using an uppercaseL, the confusion clears up:

34L 34l

Rule 3-24:

Long constants should end with an uppercaseL.

Chapter 4: Statement Formatting
Organization is the key to a well-written program. Good programming style helps present the

detail and logic of your program in a clear and easy-to-un stand manner.

Programming style and aesthetics are related. A well-written program pleasing to look at,
read, and understand. Your goal in formatting a program is to make it look neat, well-organized,
and beautiful.

Formatting the Body of the Program
The sentence is a basic unit of writing. A sentence ends with a terminator question mark,

exclamation point, or period. In C, the basic coding unit is statement. C statements do not have
terminators, like sentences; rather. they separated from each other by semicolons (;).

Well laid-out programs allow the programmer to quickly and easily pick the statement within
the program. Running the code together, as shown in following example, hurts readability and
clarity:

/* Poor programming practice */
biggest=-l;first=0;count=57;init_key_words();
if(debug)open_log_files();table_size=parse_size+lex_size;

How many statements are in this program fragment? It's hard to tell. programmer has tried to
compact the program by putting as much on each line possible. It's much like the old limerick:

There was a young man from Iran

Whose verses just would not quite scan.

When someone asked why,

He gave this reply:

I like to put as many words on the last line as I possibly can.

It's easier to pick out the statements when there is only one statement per line

/* Better programming practice (still needs work) */
biggest=-l;
first=0;
count=57;
init_key_words();
if(debug)

open_log_files();
table_size=parse_size+lex_size;

Rule 4-1:

Write one statement per line.

There are still some problems with this fragment. True, it is much easier find the statements,
but they are still hard to read. The problem is that our eyes are trained to treat a set of letters and
symbols as one word. Writing sentencewithnospacesmakesitveryhardtoread. Similarly writing a C
statement

Rule 4-2:

Put spaces before and after each arithmetic operator, just like you put spaces between
words when you write.

/* Better programming practice (still needs work) */
biggest = -l;
first = 0;
count = 57;
init_key_words();
if(debug)

open_log_files();
table_size = parse_size + lex_size;

Adding spaces not only improves readability, it also helps to eliminate errors. Consider the
statement:

*average = *total / *count; /* Compute the average */

Written without spaces this becomes:

*average=*total/*count; /* Compute the average */

Looks like the same statement, but it's not. Can you spot the problem?

The operators slash (/) and star (*) take on a new meaning when they are put together with no
space. The operator /* is the beginning of a comment. So the result of the compression is:

*average=*total /* count; /* Compute the average */

If you have a good C compiler, you will get a warning about nested comments. If you have a
typical compiler, you'll get nothing.

Now back to our program fragment. Spaces makes the individual statements easier to read, but
the entire fragment is still something of a gray blob. We can do better.

This book is broken up into paragraphs. The paragraph markers separate one set of sentences
from another. In C, you can use blank lines to separate code into paragraphs:

/* Better programming practice (still needs work) */
biggest = -l;
first = 0;
count = 57;
init_key_words();
if (debug)

open_log_files();
table_size = parse_size + lex_size;

The result is a section of code that uses spaces to separate the coding element into pleasantly
arranged groups.

Simplifying complex statements
Sometimes a statement such as an assignment statement grows so long complex that it can't fit

on one line. In such cases, consider turning a complex statement into several smaller, simpler
statements.

For example, this is syntactically correct, but

/* This is a big mess */
gain = (old_value - new_value) /

(total_old - total_new) * 100.0;

It can be rewritten as three smaller statements:

/* Good practice */
delta_value = (old_value - new_value);
delta_total = (total_old - total_new);
gain = delta_value / delta_total * 100.0;

Rule 4-3:

Change a long, complex statement into several smaller, simpler statements.

Splitting long statements
An alternative to turning one statement into two is to split long statements into multiple lines.

Splitting is an art. The idea is to split the line in a way that does confusion. There is a rule:
One statement per line. A two-line statement that rule, so always indent the second line to indicate
that it is a continuation.

Rule 4-4:

In a statement that consists of two or more lines, every line except the first must be
indented an extra level to indicate that it is a continuation of the first line.

For example:

net_profit = gross_profit - overhead -
cost_of_goods - payroll;

This example brings up another question: Do you put operators at the end of the line, as in the
previous example, or at the beginning of the next line?

net_profit = gross_profit - overhead
- cost_of_goods - payroll;

Actually, either method is acceptable as long as it is used consistently. That means that I don't
get to dodge the issue if there is any reasonable basis for choosing one method over the other.

There is a basis: majority rule. Most programmers prefer to put the operators at the end of the
line. So let's go with the majority preference and make it the rule:

Rule 4-5:

When writing multi-line statements, put the arithmetic and logical operators at the end of
each line.

Splitting and parentheses.
Complex statements in C can contain several levels of parentheses. The following example

shows a complex statement that contains many parentheses. The comment below it indicates the
nesting level.

result = (((x1 + 1) * (x1 + 1)) - ((y1 + 1) * (y1 + 1)));
/* nest 12333333322223333333321112333333322223333333321 */

The best place to break the line is where the nesting level is lowest; in this case at the- opera-
tor in the middle:

result =(((x1 + 1) * (x1 + 1)) -
((y1 + 1) * (y1 + 1)));

Rule 4-6:

When breaking up a line, the preferred split point is where the parenthetic nesting is low-
est.

The second line of the example is carefully indented so that the parenthesis line up. Why not
align it with the first parenthesis?

/* Don't program like this */
result =(((x1 + 1) * (x1 + 1)) -

((y1 + 1) * (y1 + 1)));

Notice that the lines seem to be a little off. That's because the first line's Level I parenthesis is
in the same column as the second line's Level 2 parenthesis.

/* Don't Program like this */
result =(1(2(3x1 + 1) 3 * (3x1 + 1) 3) 2 -

(2(3y1 + 1) 3 * (3y1 + 1) 3) 2) 1;

Properly aligned (Level 2 to Level 2), the same statement looks like this:

result =(1(2(3x1 + 1) 3 * (3x1 + 1) 3) 2 -
(2(3y1 + 1) 3 * (3y1 + 1) 3) 2) 1;

Rule 4-7:

Align like level parentheses vertically.

Here's a more complex example:

flag = (result == OK) ||
((result == WARNING) &&

((code == WARN_SHORT) ||
(code == WARN_EOF))

);

The indentation in this example gives the programmer several clues about the statement’s
logic. First, there are two major clauses:

flag = (result == OK) ||

and

((result == WARNING) &&
((code == WARN_SHORT) ||

(code == WARN_EOF))
);

They are indented at the same level. The second clause goes on for four line This is obvious
because its beginning and ending parenthesis have the sam indent. The two(code == lines
carry equal weight and are at the same level. Their beginning parenthesis are aligned in the same
column.

As you can see, proper splitting and indentation of a multi-line statement c

Splitting a for statement.
A for statement is unique, since it is three statement

for (<initialization>; <condition>; <increment>)

The <initialization>, <condition>, and <increment>are three complete C statements. If
these statements have any complexity at all, the entirefor statement is likely to overflow the line.
Whenever afor grows too long for one line, split it first at the component statement boundaries.

For example, this line:

for (index = start; data[index] != 0; ++index)
splits like this:

for (index = start;
data[index] != 0;
++index)

Note that we've aligned the beginnings of the three substatements.

Rule 4-8:

Split longfor statements along statement boundaries.

In the previous example, we turned a one-linefor statement into three. But if the statement is
short enough, can you limit it to two lines?

/* Poor practice */
for (index = start; data[index] != 0;

++index)

The answer is no. The problem is that this split is ambiguous. We could just as easily have
written this:

/* Poor practice */
for (index = start;

data[index] != 0; ++index)

Consistency is part of good style. If you do things consistently, you set up expectations, which
is another way of saying you remove one detail that the reader of the program has to figure out.
Don't split afor statement one way one time and another the next. You can consistently split afor
statement into three lines the same way every time, but there is no preferred two-line split. Two-
line splits introduce inconsistency. Avoid them.

Rule 4-9:

Always split afor statement into three lines.

Splitting a switch statement.
Theswitch statement is the most complex statement in the C language. The rule for splitting it

is very simple: Don't. If the index expression for aswitch statement grows too big for one line,
split it into two different statements: an assignment and aswitch.

For example:

/* Bad practice */
switch (state_list[cur_state].next_state +

goto_list[last_last] +
special_overrides) {

should be turned into:

/* Good practice */
switch_index = (state_list[cur_state.next_state +

goto_list[last_last] +
special_overrides);

switch (switch_index) {

Rule 4-10:

Writeswitch statements on a single line.

Conditional operators (? :).
When splitting an expression containing a conditional operation (? :), try to put the entire con-

ditional clause on a line by itself

/* Good practice (preferred) */
result = past-due +

(total-owed > 0) ? total-owed : 0;

Rule 4-11:

Keep conditionals on a single line if possible.

If the conditional clause itself is too long for one line, it can be split into three lines. The for-
mat is this:

(condition) ?
(true-value) :
(false-value)

Each line contains one component of the expression. Since the true-value and false-value are
sub-sections of the conditional, their lines are indented.

Rule 4-12:

When splitting a conditional clause (? :), write it on three lines: the condition line, the
true-value line, and the false-value line. Indent the second and third line an extra level.

Side effects
When writing a children's story, you must keep the sentence structure simple and avoid com-

pound sentences. Well, a computer is not a child; it doesn't have that much intelligence. But in C
coding, you should do anything you can to simply the program. That means avoiding side effects.

A side effect is an operation that is performed in addition the main operation of a statement.
For example, the statement:

current = count[index++]

assigns current a value and increments index. Look out. Any time you start using “and” to
describe what a statement does, you're in trouble. The same statement could just as easily have
been written this way:

current = count[index]
index++;

This way, there are no side effects.

C allows very free use of the ++ and -- operators within other statements. Taking advantage of
this freedom can create all sorts of problems. Consider the statement:

i = 0
out[i++] = in[i++];

In fact, consider it a test. Exactly what does this program do?

A) Evaluateout[i] asout[0] , incrementi (i is now 1), evaluatein[i] as
in[1] , incrementi (i is now 2), do the assignment (out[0] = in[1]).

B) Evaluatein[i] asin[0] , incrementi (i is now 1), evaluateout[i] as
out[1] , incrementi (i is now 2), do the assignment (out[1] = in[0]).

C) Evaluatein[i] asin[0] , evaluateout[i] asout[0] , incrementi (i is now
1), incrementi (i is now 2), do the assignment (out[0] = in[0]).

D) The code is compiler dependent, so the compiler carefully computes the best possi-
ble answer and then does something else.

E) If you don't write code like this, you won't have to worry about questions like this.

This code is ambiguous, and the actual code generated can change from compiler to compiler.
Sometimes the same compiler will generate different code depending on the state of the optimize
switch.

The answer, of course, is E.

Ambiguous code is not the only problem that can occur when ++ and -- are used within other
statements. The statements

i = 2;
s = square(i++);

look innocent enough. But square is a macro designed to square a number:

#define square(x) ((x) * (x))

If you expanding the macro, you get this:

i = 2;
s = ((i++) * (i++));

Suddenly you see that i is not incriminated once as expected, but twice. And s an be assigned
the wrong value. Again, this statement is ambiguous.

You can avoid all these problems by writing the++ on a separate line:

i = 2;
s = square(i);
i++;

True, putting the ++ inside another statement does make for more compact code, but the value
of compactness in C source code is minimal. You're striving for readability and reliability. The
one-effect-per-statement rule improves both, especially reliability.

It also simplifies the program. What are the values of i and j after the following code is exe-
cuted?

i = 0;
j = 0;
x = 0;
i = x++;
j = ++x;

The increment operator acts differently depending on where it is placed. In front of a variable,
the increment is performed before the assignment. Incrementing after causes the assignment to be
performed first. So in the example,i is 0 (x before increment) andj is 2 (x after increment).

This code is a puzzle to some people. But you don't have to remember obscure details like this
if you never write code like this. If you simplify the example, it is no longer a puzzle:

i = 0;
j = 0;
x = 0;

i = x;
++x;
++x;
j = x;

Rule 4-13:

Avoid side effects.

Rule 4-14:

Put the operator ++ and -- on lines by themselves. Do not use ++ and -- inside other
statements.

Assignments in other statements
C also allows the programmer to put assignment statements inside other statements. For

example:

/* Poor practice */
if ((result = do_it()) == 5)

printf(“It worked\n”);

This is another example of a side effect that needs to be avoided. You could just as easily have
written this:

/* Good practice */
result = do_it();
if (result == 5)

printf("It worked\n");

The second form not only avoids the side effect, but it is simple and clear. The first form is
compact, but remember — your goals are readability and reliability.

Unintentional assignments inside other statements can quickly cause trouble. Consider this
example.

if (result = 5)
printf("It worked\n");

This fragment should print “It worked” only when result is 5. But the code contains a bug.
What it actually does is to assign 5 to result, check against (humm... no, 5 is not 0 this time) and
print unconditionally.

Experienced programmers recognize this as the old= vs.== bug. They remember it from the
cold, dark night when they stayed up till 2 in the morning staring the bug in they eye a dozen
times and not recognizing it the first eleven.

Novice programmers, be warned: you will make this mistake, and it will cause you a great
deal of pain.

This error is so common that now many compilers issue a warning when they see code like
this. For example:

Borland C++ Version 3.00
Copyright (c) 1991 Borland International
Warning test.c 5:
Possibly incorrect assignment in function main

Rule 4-15:

Never put an assignment statement inside any other statement.

When to use two statements per line
Although there is a rule — one statement per line — don't be fanatical about it. The purpose of

the rule is to make the program clear and easy to understand. In some cases, putting two or more
statements on one line improves clarity. For example, consider the following code:

/* Not as clear as it can be */

token[Ol.word = "if";
token[Ol.value = TOKEN_IF;

token[l].word = "while";
token[l].value = TOKEN_WHILE;

token[2].word = "switch";
token[2].value = TOKEN_SWITCH;

token[3].word = "case";
token[3].value = TOKEN_CASE;

This can easily be rewritten as:

/* Clearer */
token[O].word = "if"; token[O].value = TOKEN_IF;
token[l].word = "while"; token[l].value = TOKEN_WHILE;
token[2].word = "switch"; token[2].value = TOKEN_SWITCH;
token[3].word = "case"; token[3].value = TOKEN_CASE;

There is a pattern to this code. The first example obscures the pattern. You can still see it, but
it's not as clear as in the second case, which is coded in two statement per line. To make the pat-
tern clearer, the statements are organized in columns.

Rule 4-16:

If putting two or more statements on a single line improves program clarity, then do so.

Rule 4-17:

When using more than one statement per line, organize the statement into columns.

Logic and Indentation
Over the years many people have tried to develop a way to create a document makes the logic

and execution flow of a program easy to understand.

Flowcharts were an early attempt. They presented the program visually using special symbols
to denote things like branch statements, input/output, termination. Figure 4-1 on the following
page shows a sample flowchart. charts were excellent for small programs, but for programs of
nominal size grew too big and bulky. (I remember seeing one that consisted of hundred boxes
spread across a 6x5 foot grid of 11x13 inch paper. It took up whole wall of a conference room.
Although it was impressive, no one could understand the whole thing.)

Another problem with early flowcharts was that at the time very I computers could do graph-
ics. (Most couldn't even do lowercase text.) result, all flow charts had to be done by hand, and
redone if the program changed.

When ALGOL and other structured languages were invented, people discovered that the could
use indentation to represent levels of control This is used in C.

Figure 4-1: A small flow card

For example:

Start

Initialize

User Known?

Print report

Stop

Read in
old profile

Ask user for
profile information

while (count > 0) {
if (balance[index] == EOF_MARKER)

count =-1;
else

total += balance[index];
++index;

}

In this program fragment, you can easily see that the body of thewhile contains both theif
and the++index statement. The statementcount = -1 is indented an extra level, giving a
visual clue that it is part of theif.

There are several indentation styles, but they all indent one level for each level of logic.

Rule 4-18:

Indent one level for each new level of logic.

Indentation styles
There are many different styles of indentation, and a vast religious war being waged in the

programming community as to which is best. I won't t take sides, but I will present the advantages
and disadvantages of each style (Incidentally, the style used throughout this book is the Short
Form, chosen only because I’m used to it.)

Short form
In the Short Form, the open brace ({) is put at the end of a line. The text within the braces is

indented one level. The close brace (}) is aligned with the beginning of the corresponding state-
ment.

Example:

/* Short form indentation
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
printf("You owe %d dollars\n". total);
all_totals = all_totals + total;
if (total > 1000)

printf("You owe a lot\n");

The advantage of this style is that it doesn't waste vertical space. The problem is that corre-
sponding braces are not put in the same column. For example, the brace that closes thewhile lines
up with the “w” in while, not with the brace at the end of the line. This makes it a little more diffi-
cult to match braces.

Braces stand alone.
In the Braces Stand Alone method, all braces are placed on separate lines:

/* Braces stand alone */
while (! done)
{

printf("Processing\n");
next_entry();

}
if (total <= 0)
{

printf("You owe nothing\n");
total = 0;

}
else
{

printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf(“You owe a lot\n”);

The advantage of this is that the braces are aligned. The disadvantage is that it takes up more
vertical space and tends to spread out the code.

Braces indented too.
This variation on the Braces Stand Alone method indents not only the statement within the

braces, but also the braces themselves:

/* Braces stand alone */
while (! done)

{
printf("Processing\n");
next_entry();
}

if (total <= 0)
{
printf("You owe nothing\n");
total = 0;
}

else
{
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;
}

if (total > 1000)
printf(“You owe a lot\n”);

This form of indentation is not as common as the other two. It also has the problem of spacing
out the code somewhat.

Variations.
One variation on the standard indentation styles concerns if statements that affect a single line.

For example:

if (total > 1000)
printf("You owe a lot\n");

This style of indentation can create confusion, as illustrated by the following

example:

/* Problem code */
if (index < 0)

fprintf(stderr,"Error: Index out of range\n");
exit (8);

At first glance, it looks like the program will print an error message only ifindex is out of
range. (That's what the programmer intended.) But on closer inspection, you'll notice that there
are no braces enclosing the two statements under the if. In fact, the code is indented incorrectly.

Indented correctly, the code looks like this:

/* Problem code */
if (index < 0)

fprintf(stderr,"Error: Index out of range\n");
exit (8);

The problem is confusion between multi-line if controlled statements and single-line state-
ments. To solve this problem, put single-line statements and theirifs on the same line:

if (total > 1000) printf("You owe a lot\n");

This makes very clear that theif affects only one line. The problem is that it makes theprintf
line a little more difficult to find and breaks the one-statement-per-line rule.

How much to indent
In this book I indent four spaces for each logic level. Why four? Here are some examples of

various indentations.

Two Spaces:
/* Short form indentation */
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf("You owe a lot\n");

Four Spaces:
/* Short form indentation */
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {
printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf("You owe a lot\n");

Eight Spaces:
/* Short form indentation */
while (! done) {

printf(“Processing\n”);
next_entry();

}
if (total <= 0) {

printf("You owe nothing\n");
total = 0;

} else {

printf("You owe %d dollars\n", total);
all_totals = all_totals + total;

}
if (total > 1000)

printf("You owe a lot\n");

The advantage of a smaller indent is that you don't run into the right margin as quickly. The
disadvantage is that it's hard to tell the various levels apart.

Larger indents are easier to read, but larger indents mean that you run out of room faster.

Several researchers have studied this problem in detail. They started with the same program
and indented it using different indent sizes. They then gave the various flavors of the program to a
set of graduate students and told them each to enhance it by adding some additional commands.
The students had never seen the program before. The researchers measured time amount of time it
took each student to understand and fix the program. As a result of this and other studies like it,
they concluded that four spaces is the ideal indentation.

Rule 4-19:

The best indentation size is four spaces.

Chapter 5: Statement Details
Statements are basic building blocks of a C program, very much as sentences are basic build-

ing blocks of English writing. C provides programmers with a rich set of operations, allowing
them to easily construct complex and powerful statements. This power must be used judiciously,
however. It is far too easy to create complex, unreadable, sometimes indecipherable and unreli-
able C code. The rules discussed this chapter will help you create simple, readable, reliable code.

Doing Nothing
One of the most overlooked statements is the “do nothing”, or null, statement. The syntax for

this statement is extremely simple:

Because it's so tiny, the null statement can easily be missed. For example, the code:

for (i = 0; string[i] != 'x'; ++i);

actually contains two statements: a for statement and a null statement. Most people must look
closely at this code to find the null statement.

That's bad style. The structure of a well-constructed program is obvious; it does not require
close inspection. We need to do something to the null statement to make it obvious, and comment
lines easily provide the answer:

/* Do nothing */;

Now the code fragment looks like this:

for (i = 0; string[i] != 'x'; ++i)
/* Do nothing */;

With this construction, it is obvious that there are two statements.

Rule 5-1:

Always put a comment in the null statement, even if it is only

/* Do Nothing */;

Arithmetic Statements
C provides the programmer with a rich set of operators. There are 15 precedence rules in C

(&& comes before|| , etc.). For example, in this statement:

result = 1 << 5 + 1;

does the compiler perform the << or the + first? In other words, is the statement equivalent to
this:

result = (1 << 5) + 1;

or to this:

result = 1 << (5 + 1);

it turns out that+ comes before<<, so the second version is correct.

The problem is that all these rules are difficult to remember. I've been programming in C for
over 10 years and I can't remember all the rules. I even had to look up the answer to this problem.

Even if you remember all the rules, have pity on the programmer who will be reading your
code someday and who may not have your memory. I've devised a practical subset that's simple to
memorize:

Rule 5-2:

In C expressions, you can assume that* , / , and % come before+ and- . Put parentheses
around everything else.

Following this rule, the problem expression becomes:

result = 1 << (5 + 1);

and in this statement, the order of operations is obvious.

Function Headings
All C code is contained in functions. The function heading defines its return type and the

parameters.

Example:

float average(float total, int n_items)

There are actually two styles of function declarations. Throughout this book I've been using
the newer ANSI-C style. Older compilers allow only the traditional K&R style:

float average(total, n_items)
float total;
int n_items;

The ANSI-C style is preferred because it is more modem, less error prone, and compatible
with C++. Reserve the use of the K&R style for old compilers that don't allow ANSI style decla-
rations.

Rule 5-3:

Use ANSI style function declarations whenever possible.

K&R style parameters
Some of the older C compilers force you to use K&R style parameters. This format does not

allow types in the function declaration. The types immediately follow the function declaration.

int total(values, n_values)
int values[];
int n_values;

Strictly speaking, the declarationint n_values is redundant. The type of all parameters
defaults toint . So you could have written this function as:

/* Poor style */
int total(values, n_values)
int values[];

The problem with this is the problem that occurs with all defaults: you can’t tell the program-
mer's intent. Did the programmer intend to maken_value integer or leave out a declaration?
When you explicitly declare all parameters, you eliminate an doubt.

Rule 5-4:

When using K&R parameters, declare a type for every parameter.

The type declarations for the parameters may be specified in any order. For example:

/* Poor style */
int total(values, n_values)
int n_values;
int values[];

The problem here is that you are fighting with the natural one-to-one correspondence between
parameters and their type declarations. It's a lot easier find things if they are put in order.

Rule 5-5:

When using K&R parameters, put the type declarations for the parameters in the same
order as the occur in the function header.

Return type
In C, defining the function type is optional. If the type is not specified defaults toint. For

example:

int do_it(void);

and

do_it(void);

are equivalent in C. However, they are not the same to the programmer because I second form
is ambiguous. There can be two reasons for not specifying a function type: the return type really
should beint, or the programmer forgot to define correct return type.

The explicit declaration of anint function type tells the reader of the program, “Yes, this func-
tion really does return anint.”

Rule 5-6:

Always declare a function type

It is possible to have an integer function that doesn't return anything. For example

do_more(void)
{

/*...... */
return;

}

Code like this can be found in older programs that pre-date the inventionvoid type. Good
style means that you tell the reader as much as possible

Rule 5-7:

Always declare functions that do not return a value asvoid.

Number of parameters
In theory, functions can have any number of parameters. In practice, not quite true. That's

because while the compilers may be able to han function with 100 parameters, programmers can-
not.

Long parameter lists remind me of a passage from the UNIX mag tape manual page: “Devices
/dev/rmt0, /dev/rmt4, /dev/rmt8, /dev/nrmt0, /dev /dev/nrmt8 are the rewinding low density,
rewinding medium density, rewinding high density, non-rewinding low density, non-rewinding
medium density, non-rewinding high density devices, respectively.” The problem with long list
that you tend to lose track of things.

What's the device name of the “non-rewinding medium density” tape Try to figure it out with-
out counting on your fingers.

Suppose you want to define a function to draw a line. You could write it like this:

/**
* DrawLine - Draw a line *
* draws a line from current point (set by *
* a previous call to GotoPoint to x,y) *
* *
* Parameters *
* x - Point we draw to (x co-ordinate) *
* y - Point we draw to (y co-ordinate) *
* style - line style (DASHED, SOLID) *
* brush - the type of brush to draw with *
* pattern - pattern for filling in the line *
* (STRIPPED, CROSS_HATCH, SOLID) *
* end_style - how to draw the ends *
* (CAPPED, FLUSH, ...) *
* front -- true if the line is to be drawn over *
* everything (false, draw in back) *
**/

void DrawLine(int x, int y,
style_type style, color_type color,
brush_type brush, pattern_type pattern,
end_style_type end_style, boolean front);

This is a disaster waiting to happen. All sorts of problems can easily occur. You forget a
parameter, get the parameters out of order, or generally confuse things. Allowing no more than
five parameters to a function can help alleviate this.

Rule 5-8:

Allow no more that five parameters to a function.

But now what do you do with the functionDrawLine?The solution is to take this herd of
parameters and stuff them into a structure:

struct draw_style {
/* style for drawing (DASHED, SOLID) */

style_type style,

/* color (BLACK, WHITE, BLUE,...) */
color_type color,

/* the type of brush to draw with */
brush_type brush,

pattern_type pattern, /* pattern (STRIPPED, SOLID) */

/* line ends (CAPPED, FLUSH, ...) */
end_style_type end_style,

boolean front /* Front or back */
);

/**
* DrawLine - Draw a line *
* draws a line from current point (set by *
* a previous call to GotoPoint to x,y) *
* *
* Parameters *
* x - Point we draw to (x co-ordinate) *
* y - Point we draw to (y co-ordinate) *
* how - structure describing how to draw the line *
**/

void DrawLine(int x, int y, struct draw_style *how);

There are tremendous advantages to using structures for complex parameter, passing. First, it's
easier to remember a structure's field name than it is a parameter's position number. (Without
looking, can you tell ifpattern is the fifth or sixth parameter?)

Another advantage is that you need set only the fields that apply. You can ignore the others. If
you used a long parameter list, you must have something for, each parameter.

Structures also make it easy to specify default value. For example, if you define the following
defaults:

Field Default Value Integer value of default

style SOLID 0

color BLACK 0

then the statement:

memset(¤t_style, '\O', sizeof(struct style));

initializes the entire structure with default values. (Note: For this to work, the default must all
be zero.)

Passing parameters in globals
Another way of passing parameters to and from a function is to not use parameters at all.

Instead, values are passed through global variables. For example, consider the following function:

/**
* GetTocken - read the next token *
* *
* Globals used *
* in_file -- file to get token from *
* token -- the token we just got *
* error - - 0 = no error *
* non-zero = error code *
**/

There are many problems with this type of parameter passing. First, obscures the interface
between the function and the outside world. What's type of token? You can't tell. Also, suppose
you want to handle multiple files Then your main code must keep reassigning in-file so that it
points to what file you are using. For example:

in_file = main_file
GetToken();
main_token = token;

in_file = include_file;
GetToken();
include_token = token;

It's much easier to write:

brush SMALL_ROUND 0

pattern SOLID 0

end_style CAPPED 0

front FALSE 0

Field Default Value Integer value of default

main_token = GetToken(in_file, &error);
include_token = GetToken(include_file, &error);

A good function interface provides the user with a single, small interface to the function.
When parameters are passed as globals, the function interface in divided into two (or more) parts.
The global declarations are in on part of header file and the function declaration in another.

Also, using these types of functions is difficult, requiring multiple statements. It's extremely
easy to get things wrong. When you pass parameters as parameters, C checks both the number and
type of the parameters. These checks are a big help in improving reliability.

Rule 5-9:

Avoid using global variables where function parameters will do.

XView style parameter passing
XView programming uses a nearly unique parameter passing style. (It shares this style with

the Suntools system from Sun.) For example, the functionXvSetis defined as:

XvSet(handle,
item, [value], [value], [value],
item, [value], [value], [value],
NULL);

The unique feature of this calling sequence is the use of variable parameter lists. “Item” is a
XView attribute. The number of parameters that follow arc defined by the attribute.

For example, a typical XvSet function looks like this:

XvSet(popup,
PANEL_CHOICE_NROWS, 5,
PANEL_CHOICE_STRINGS,

"Start",
"Run",
"Abort",
"Pause",
"Continue",
NULL,

NULL);

The parameter PANEL_CHOICE_NROWSis followed by a single number, and
PANEL_CHOICE_STRINGSis followed by a list of names. This list is terminated by aNULL.
The entire parameter list is terminated by aNULL.

Programmers at Sun went to a lot of work devising this parameter-passing mechanism. It's too
bad they came up with something so poor. There are many problems with this style.

First, since the parameter list is variable length and the types of the variables are not fixed, it is
impossible to check the type and number of parameters. This defeats any type-checking built into
C or lint.

The second problem occurs when a terminator is accidentally omitted. In the example, the list
of names is terminated by aNULL. What would happen if you forgot it?

XvSet(popup,
PANEL_CHOICE_NROWS, 5,
PANEL_CHOICE_STRINGS,

"Start",
"Run",
"Abort",
"Pause",
"Continue",

NULL);

TheXvSetfunction reads the parameters, finds the NULL after the strings, and assumes that it
ends the strings.XvSetthinks more parameters follow, but there are none, so it reads random
memory and goes crazy.

It would be much easier to turn the very generalXvSetinto a series of simpler, specialized
functions:

XvSetPanelNrows(popup, 5);
XvSetPanelChoiceStrings(popup, string_list);

This style of parameter passing lets C's type checking do its job and avoids many potential
problems.

Rule 5-10:

Avoid variable length parameter lists. They are difficult to program and can easily cause
trouble.

The if Statement
The if/elsestatement presents the programmer with some special problems. The first is ambi-

guity. There is a small “hole” in the syntax, as illustrated in the following example:

if (a)
if (b)

printf("First\n");
else /* Indentation is off */

printf("Second\n");

The question is, which if does the else go with?

A) It goes withif (a)

B) It goes with if (b)

C) The answer doesn't matter if I don't write code like this.

Give yourself ten points if you answered C. If you don't write silly code, you won't have to
answer silly questions. (For the purist, theelsegoes with the nearestif. Answer B.)

By using braces, you can avoid the problem of ambiguity as well as make your code clearer.

if (a) {
if (b)

printf("First\n");
else

printf("Second\n");
}

Rule 5-11:

When anif affects more than one line, enclose the target in braces.

if/else chains
Frequently programmers need to implement a decision tree. This usually results in a chain of

if/elsestatements. Using our current indentation rules, this results in code that looks like this:

if (code == ALPHA) {
do_alpha();

} else {
if (code == BETA) {

do_beta();
}else {

if (code ==GAMMA) {
do_gamma();

} else {
do_error();

}

This format adds needless complexity to your program, but how do you simplify it? The solu-
tion is to treat the word pairelse ifas a single keyword.

Rewriting the code using this rule results in this:

if (code == ALPHA) {
do_alpha();

} else if (code == BETA) {
do_beta();

}else if (code ==GAMMA) {
do_gamma();

} else
do_error();

This is at once simpler and easier to understand.

Rule 5-12:

In an if chain, treat the wordselseif as one keyword.

if and the comma operator
The comma operator is used to combine statements. For example, the statements:

x = 1;
y = 2;

are treated as a single statement when written as:

x = 1, y = 1;

With simple statements, the comma operator is not very useful. However it can be used in con-
junction withif to provide the programmer with a unique shorthand.

if (flag)
x =1, y = 1;

This example is syntactically equivalent to:

if (flag) {
x = 1;
y = 1;

}

The problem with the comma operator is that when you use it you break the rule of one state-
ment per line, which obscures the structure of the program.

Rule 5-13:

Never use the comma operator when you can use braces instead.

The while Statement
Sometimes you want to have a loop go on forever (or until you hit abreak). There are two

common ways of specifying an infinite loop.

while (1)

and

for (;;)

The first (while) is preferred because it is more obvious and causes I confusion than
for(;;) . The while statement gives the programmer a simple looping mechanism, and
because it is so simple there are not a lot of style rule go with it.

Rule 5-14:

When looping forever, usewhile (1) instead offor(;;) .

Some programmers are tempted to put assignment statements inside awhile conditional, like
this:

/* Poor practice */
while ((ch = getc()) != EOF) {

/ *.... * /

This is breaks the no side effects rule. It is compact, but it obscures some of the logic in the
code. It is more effectively written like this:

/* Good practice */
while (1) {

ch = getc();
if (ch == EOF)

break;
/* ... */

This way, you can see the statements explicitly instead of having to extract the from some
cryptic logic.

The do/while Statement
Thedo/while statement is rarely seen in practical C programs. That s because it's redundant-

there's nothing that you can do with ado/while that can't be done withwhile andbreak.

Because it is so rare, many programmers are surprised when they see it. Some don't even
know what to do with it. For these reasons, it is better to simply not use it.

Rule 5-15:

Avoid usingdo/while. Usewhile andbreak instead.

The for Statement
There are two common problems with use of thefor statement. They can have too little con-

tent, or too much.

Missing parts of for loops
The for statement is actually three statements in one. Sometimes all three parts are not

needed, so one or more is left blank:

/* Poor practice */
set_start(&start);

for (;start < end; start++) {
/ *... * /

There is a slight problem with this code. We've broken one of rules and did “nothing” silently.
The initialization section of thefor is the empty statement “;”. But with just a “;” to guide you,
how can you tell that the programmer didn't accidentally omit the initialization statement? In fact
you can't. But including the comment:/* Start already set */ tells you the omission
was intentional.

/* Better practice */
set_start(&start);

for (/* Start already set */;start < end; start++) {
/ *... * /

You also need a comment when there is no conditional clause. For example:

for (start = 0; /* break below */; start++) {

Overstuffed for loops
So far we've discussed what happens when you put too little information for loop. It's also

possible to put in too much. As mentioned before, the c operator can be used to combine state-
ments in anif. This also works for statement. For example, the statement:

for (two = 2, three = 3, two < 50; two +=2, three += 3)

is perfectly legal. This statement causes the variable two to increment by 2 and the variable
threeto increment by 3, all in one loop.

The notation is complex and confusing. However spreading out the loop clarifies the logic:

two = 2;
three = 3;
while (two < 50) {

/*.... */
two += 2;
three += 3;

}

You'll note that we have also changed thefor loop to awhile. It could be I as afor, but here the
while shows the structure of the code more clearly.

Stringing together two statements using the comma operator is sometimes useful in afor loop,
but such cases are rare.

Rule 5-16:

Use the comma operator inside a for statement only to put together two statements. Never
use it to combine three statements.

The printf Statement
Theprintf function and its cousins are used for outputting the data. The function can be used

to print one or more lines. For example:

printf("Beginning = %d\ncurrent = %d\n End=%d\n",
beginning, current, end);

Although compact, this obscures what is being output. You are writing three lines, so why not
use threeprintf statements?

printf("Beginning = %d\n", beginning);
printf(“Current = %d\n", current);
printf("End = %d\n", end);

Using this style, You can easily see the structure of the output.

Rule 5-17:

Use one printf per line of output.

Some people might argue that it take more time to do things this way since there are three
function calls instead of one. Theprintf function is relatively slow. The amount of overhead in a
function call takes 1/1000 of the time it takes to execute even a simpleprintf, so the overhead of
the two extra calls in negligible.

Another problem occurs with the use of theprintf, puts,andputc function, If you always use
printf, you have consistency. If you use a mixture ofprintf, andputc,then you increase efficiency
at the expense of consistency.

For example:

/* Consistent */
printf(“Starting phase II\n");
printf("Size = %d\n”, phase_size);
printf(“Phase type %c\n", phase_type);

/* Efficient */
puts("Starting phase II\n");
printf("Size =%d\n”, phase_size);
puts(“Phase type ");
putc(phase_type);
putc('\n');

In most cases, the increase in efficiency is very small. You probably won't notice any speedup
in your program unless the code is executed thousands of rich in an inner loop. The difference in
consistency is extremely noticeable, however. In most cases, readability and consistency consider-
ations outweigh any efficiency considerations.

Rule 5-18:

Unless extreme efficiency is warranted, use printf instead of puts and putc.

goto and Labels
Good programmers avoid thegoto statement because it breaks the structure of the program.

But every once in a while, even the best programmer needs to use agoto.

Thegoto label doesn't fit anywhere in the indentation rules. It's not part of the regular struc-
ture, so in order to give it a home, make it stand out, and generally get out of the way, put it up
against the left margin.

for (x = 0; x < 10; ++x) {
for (y = 0; y < 10; ++y) {

if (data[x][y] == look_for) {
goto found_it;

}
}

}
found_it:

Rule 5-19:

Startgoto labels in the first column.

The switch Statement
The switch statement is the most complex statement in C. It allows the programmer to per-

form a complex branching operation with a single statement, but sometimes it can be confusing.

Good programming style can make theswitch statement clearer and more reliable. Consider
the following statement:

/* Poor practice */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");

}

At the end of theBEGIN_STATEcase, there is nobreak, so the program falls through. Thus,
when state = BEGIN_STATE , you'll get the messages:

Beginning
Processing

Is this intentional or accidental? From this code, there is no way to know. If the programmer
intends a fall through, he or she needs to tell people about it. The comment “/* Fall
Through */ ” would help immensely, yielding:

/* Not so poor */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");

}

Rule 5-20:

End every case in aswitch with abreak or the comment/* Fall Through */

Now consider the lastcase,FINISH_STATE . It doesn't need abreak because it's at the end
of the switch. However, you may want to consider putting in abreak to avoid future problems.
For example, you may want to add anothercase,perhaps one forABORT_STATE. This would
give you this:

/* Surprise! */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");

case FINISH_STATE:
printf(“Aborting\n”);

}

You may have noticed the error: You need abreak after theFINISH_STATE case. If you get
in the habit of always putting in abreak at the end of aswitch statement, then you don't have to
worry about having to put it in during cod modifications.

Good habits are better than a good memory any day.

Rule 5-21:

Always put a break at the end of the last case in a switch statement.

Theswitch statement now looks like this:

/ * Almost there */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");
break;

case FINISH_STATE:
printf(“Aborting\n”);
break;

}

But what happens when state isSTATE_IDLE? There are several possible answers:

1. It is ignored

2. This is a ran-time error

3. When you execute this code, state will never containSTATE_IDLE, so you don't
have to worry about what will happen.

As far as C is conceded, when state isSTATE_IDLE, then theswitch is ignored. But that's
not good enough. Did the programmer intentionally ignore out-of-range cases, or was it acciden-
tal? Again, you don't know. If the programmer intended bad states to be ignored, he or she could
have written:

default:
/* Do nothing */
break;

This makes explicit what was implied.

Rule 5-22:

Always include adefault case in everyswitch, even if it consists of nothing but a null
statement.

But suppose the programmer says that state can never be anything other than the three cases.
Do you need a default for something that will never happen?

The answer is a resounding yes! Any experienced programmer will tell you that things that
can never happen do happen. A good defensive programming technique is to include code for the
impossible:

default:
fprintf(stderr,

“Internal error. Impossible state %d\n”, state);
exit(1);

So the full-blown switch statement has evolved into this:

/* Good style */
switch (state) {

case BEGIN_STATE:
printf("Beginning\n");
/* Fall through */

case PROC_STATE:
printf("Processing\n");
break;

case FINISH_STATE:
printf("Finishing\n");
break;

case FINISH_STATE:
printf(“Aborting\n”);
break;

default:
fprintf(stderr,

“Internal error. Impossible state %d\n”, state);
exit(1);

}

Your work on this statement can be summarized with this rule: Always put everything in the
switch and make it all obvious.

Debug Printing
In spite of all the interactive debuggers, there are still times a programmer needs to use a

debuggingprintf. The problem is how to separate the debugging output from the real stuff. One
trick is to begin all debug printouts with “##”:

printf("## state = %d\n", state);

This not only makes it easy to identify the debug statements in the log, it also makes it easy to
remove them after the program is debugged. All you have to do is search for each line containing
“##” and delete it.

Shut up Statements
Always compile your programs will all possible warning enabled. If you are running under

UNIX, run your program through the program lint. You want the compiler to find as many poten-
tial problems in your code as possible, so you don't have to do it in the debugging stage.

Sometimes you get warning about things you know about. For example, you might define a
variable copyright and never use it. Sometimes the compiler orlint will allow you to turn off a
warning for a single statement or variable. But sometimes it won't.

For example, there is no way to turn off the “Variable defined but not used” message in the
Borland C compiler for a single variable. It's either the whole program or nothing.

The solution to this problem is a set of statements designed solely to turn off warning mes-
sages. For example:

static char *copyright = "Copyright 1992 SDO";
/ *.... * /
main()

(void)copyright; /* Avoid warning */

In this case the statement(void)copyright“uses” the variablecopyright. Thestatement itself
does nothing. In fact, the compiler knows it does nothing and generates no code for it. The only
reason to put this statement in the code is to trick the compiler into thinking that the variable is
being used so it won't issue a warning. Note that a comment is supplied to explain what was done.
Otherwise someone looking at this code later might think we're crazy.

The program lint gets upset when you don't use the value returned by a function. The cast
(void) can be used to telllint “I know that this function returns value, but I don't care.”

i = get_into; /* No warning */
get_into; /* Warning */
(void)get_into; /* No warning */

Chapter 6: Preprocessor
The C preprocessor provides many additional features not found in the language itself. You

can use these to create constants, to include data from other files, to shoot yourself in the foot.

Problems with preprocessors are difficult to spot because they are not obvious Even the com-
piler may misreport preprocessor errors. For example, the following program generates an error
on Line 5 when the problem is really a bad#definestatement on Line 1.

1 #define VALUE_MAX 300 ++ 5 /* Problem is here */
2
3 void check(int value)
4 {
5 if (value > VALUE_MAX) {
6 printf("Value %d is out of range\n", value);
7 abort();
8 }
9 }

Good style is the best defense against preprocessor efforts. It is extreme important. By reli-
giously following the rules discussed here, you can catch errors before they happen.1

Simple Define Statements
One of the uses of the#definestatement is to define simple constant format is this:

#define SYMBOL value /* comment */

TheSYMBOLis any valid C symbol name (by convention,#definenames are all uppercase).
Thevaluecan be a simple number or an expression.

Like variable declarations, a constant declaration needs a comment explains it. This comment
helps create a dictionary of constants.

Some examples:

/* Max number of symbols in a procedure */
#define SYMBOL_MAX 500

/* The longest name handled by this system */
#define NAME_LENGTH 50

Rule 6-1:

#defineconstants are declared like variables. Always put a comment describes the con-
stant after each declaration.

1. Religion, noun. Something a programmer gets after working until two in the morning only find a bug that
wouldn't have been there had he or she religiously followed the rules.

Rule 6-2:

Constant names are all upper-case.

Constant expressions
If the valueof a #definestatement is a compound expression, you can run problems. The fol-

lowing code looks correct, but it hides a fatal flaw.

/* Length of the object (inches) (partl=10, part2=20) */
#define LENGTH 10 + 20 /* Bad practice */

#define WIDTH 30 /* Width of table (in inches) */

/*..... */
/* Prints out an incorrect width */
printf("The area is %d\n", LENGTH * WIDTH);

Expanding theprintf line, you get:

printf("The area is %d\n", LENGTH * WIDTH);
printf("The area is %d\n", 10 + 20 * WIDTH);
printf("The area is %d\n", 10 + 20 * 30);

This another example of how the C preprocessor can hide problems. ClearlyLENGTHis
10+ 20, which is 30.So LENGTH is 30, right? Wrong.LENGTH literally 10 + 20 , and:

10 + 20 * 30

is vastly different from:

30 * 30

To avoid problems like this, always surround all#defineexpressions with parenthesis (()).
Thus, the statement:

/* Length of the object (inches) (partl=10, part2=20) */
#define LENGTH 10 + 20 /* Bad Practice */

Becomes:

/* Length of the object (inches) (partl=10, part2=20) */
#define LENGTH (10 + 20) /* Good Practice */

Rule 6-3:

If the value of a constant is anything other than a single number, enclose it in parentheses.

#define constants vs. consts
In ANSI C constants can be defined two ways: through the#definestatement and through use

of theconstmodifier. For example, the following two statement, are equivalent:

#define LENGTH 10 /* Length of the square in inches */
const int length = 10; /* Length of the square in inches */

Which statement should you use? Theconstdeclaration is better because it is in the main part
of the C language and provides more protection against mistakes.

Consider the following example:

#define SIZE 10 + 20 /* Size of both tables combined */
const int size = 10 + 20; /* Size of both tables combined */

As you've already seen, the#define statement is a problem.SIZE is a macro and always
expands to 10+ 20. The const int size is an integer. It has the value 30. So while the statement:

area = SIZE * SIZE: /* Mistake */

generates the wrong number, the statement:

area = size * size: /* Works */

generates the right number. So theconst declaration is less error-prone. Also, if you make a
mistake in defining aconst,the compiler generates an error message that points at the correct line.
With a#define,the error appears when the symbol is used, not when it is defined.

Then why do we have the#define? Because early compilers did not recognize const declara-
tions. There is still a lot of code out there that was written for these compilers and that should be
modernized.

Rule 6-4:

The use ofconst is preferred over#definefor specifying constants.

#define vs. typedef
The#definedirective can be used to define types, such as:

#define INT32 long int /* 32 bit signed integer type */

Thetypedef clause can be used in a similar manner.

typedef long int int32; /* 32 bit signed integer */

The typedef is preferred over the#definebecause is better integrated into the C language, and
it can create more kinds of variable types than a mere define.

Consider the following:

#define INT_PTR int /* Define a pointer to integer */
typedef int *int_ptr; /* Define a pointer to an integer */
INT_PTR ptr1, ptr2; /* This contains a subtle problem */
int_ptr ptr3, ptr4; /* This does not */

What's the problem with the lineINT_PTR ptr1, ptr2 ? The problem is thatptr2 of
type integer, not a pointer to integer. If you expand this line, the problem, comes apparent:

INT_PTR ptr1, ptr2; /* This contains a subtle problem */
int * ptr1, ptr2; /* This contains a subtle problem */

Problems like this can be avoided by usingtypedef.

Rule 6-5:

When possible, usetypedef instead of#define.

Abuse of #define directives
It is possible to use #define directives for things other than constants. For example, the macro:

#define FOR_EACH_ITEM for (i = first; i < last; ++i)

can define a standard for loop. This can be used in place of a regular for.

FOR_EACH_ITEM
process_item(i);

You can even go so far as to create macros that make your C code look like Pascal.

#define BEGIN I
#define END I

/*... */
if (x == Y)

BEGIN
/ *... * /

END;

The problem with this approach is that you are obscuring the C language itself. The mainte-
nance programmer who comes after you will know C, not a half-Pascal half-C mongrel.

Even the simpleFOR_EACH_ITEMmacro hides vital C code. Someone else reading the pro-
gram would have to go back to the definition ofFOR_EACH_ITEMto figure out what the code
does. By using the code instead of a macro, no lookup is necessary,

You can easily understand the C code that goes into this:

for (i - first; i < last; ++i)
process_item(i);

Rule 6-6:

Don't use#defineto define new language elements.

Keywords and standard functions
Defining new language elements is one problem. A far more difficult problem occurs when a

programmer redefines existing keywords or standard routines. For example, in one program, the
author decided to create a safer version of the string copy routine:

#define strcpy(s1, s1) \
x_strcpy(s1, s2, sizeof(s1), sizeof(s2))

This worked great until the program was ported. Then the program mysteriously bombed at
the code:

/* This lines hangs the system */
strcpy(name, "noname.c");

The programmer performing the port was baffled. There was nothing wrong with the parame-
ters tostrcpy.And of course, becausestrcpyis a standard function, there Shouldn't be a problem
with it.

But in this case, strcpy is not a standard function. It's a non-standard macro that results in a
great deal of confusion.

Think about how difficult it would be to find your way if someone gave you directions like
these: “When I say north I mean west, and when I say west I mean north. Now, go north three
blocks, turn west for one (when I say one I mean four), and then east two. You can't miss it.”

Rule 6-7:

Never use#defineto redefine C keywords or standard functions.

Parameterized Macros
The#definemay have arguments. For example, the following macro doubles a number:

/* Double a number */
#define DOUBLE_IT(number) (2 * (number))

Enclosing the entire macro in parenthesis avoids a lot of trouble similar to the problems with
simple#defines.

Rule 6-8:

Enclose parameterized macros in parentheses.

In the next example, the macroSQUAREis supposed to square a number:

/* Square a number */
#define SQUARE(X) (x * x)
/* Bad practice, no () around parameter */

The invocation of the macro:

a = SQUARE(1 + 3);

expands to:

a = (1 + 3 * 1 + 3);

which is not what was expected. If the macro is defined as:

/* Square a number */
#define SQUARE(X) ((x) * (x))

Then the expansion will be:

a = ((l + 3) * (1 + 3));

Rule 6-9:

Enclose each argument to a parameterized macro in parenthesis.

Multi-line Macros
The#definestatement can be used to define code as well as constants. For example:

/* Print current values of registers (for debugging) */
#define PRINT_REGS printf(“Registers AX=%x BX=%x\n”, AX,BX);

This is fine as long as the target of the#defineis a single C statement. Problems occur when
multiple statements are defined. The following example defines a macroABORTthat will print a
message and exit the system. But it doesn’t work when put inside anif statement.

/* Fatal error found, get out of here */
#define ABORT print(“Abort\n”); exit(8);

/*.... */
if (value > LIM)

ABORT;

problem can easily be seen when we expand the macro:

if (value > LIM)
printf(“Abort\n”); exit(8);

Properly indented, this is:

if (value > LIM)
printf(“Abort\n”);

exit(8);

This is obviously not what the programmer intended. A solution is to enclose multiple state-
ments in braces.

/* Fatal error found, get out of here */
#define ABORT { printf("Abort\n"); exit(8);)

/* Better, but not good */

This allows you to use the ABORT macro in anif, like this:

if (value > LIMIT)
ABORT;

Unfortunately, it causes a syntax error when used with anelse:

if (value > LIMIT)
ABORT;

else
do_it();

Thedo/while statement comes to the rescue. The statement:

do {
printf("Abort\n");
exit(8);

} while (0);

executes the body of the loop once and exits. C treats the entiredo/while as a single statement,
so it's legal inside aif/elseset.

Therefore, properly defined, the macro is:

/* Print an error message and get out */
#define ABORT \

do { \
printf("Abort\n"); \
exit(8); \

} while (0) /* Note: No semicolon */

Rule 6-10:

Always enclose macros that define multiple C statements in braces.

Rule 6-11:

If a macro contains more than one statement, use a do/while structure to enclose the
macro. (Don't forget to leave out the semicolon of the statement).

When macros grow too long, they can be split up into many lines. The preprocessor uses the
backslash (\) to indicate “continue on next line.” The latestABORTmacro also uses this feature.

Always stack the backslashes in a column. Try and spot the missing backslash in the following
two examples:

/* A broken macro */
#define ABORT \

do {
printf("Abort\n"); \
exit(8); \

} while (0)

/* Another broken macro */
#define ABORT \

do { \
printf("Abort\n"); \
exit(8);

} while (0)

The mistake in the first example is obvious. In the second example, the problem is hidden.

Rule 6-12:

When creating multi-line macros, align the backslash continuation characters (\) in a col-
umn.

Macros and Subroutines
Complex macros can easily resemble subroutines. It is entirely possible to create a macro that

looks and codes exactly like a subroutine. The standard functionsgetc andgetchar are actu-
ally not functions at all, but macros. These types of macros frequently use lower-case names,
copying the function-naming convention.

If a macro mimics a subroutine, it should be documented as a function. That involves putting a
function-type comment block at the head of the macro:

/**
* next_char -- move a buffer pointer up one char *
* *
* Parameters *
* ch_ptr -- pointer to the current character *
* *
* Returns *
* pointer to the next character or NULL if none. *
**/

#define next_char(ch_ptr) \
/* ... definition ... */

Rule 6-13:

Always comment any parameterized macros that look like functions.

The #include Directive
Include files are used to define data structures, constants, and function prototypes for items

used by multiple modules. it is possible to put code in an include file, but this is rarely done.

Style for #Includes
,Most programs put the#include directives in a group just after the heading comments. That

way they are all together in a known place. System includes are enclosed in <>) come first, fol-
lowed by any local includes (enclosed in"").

Example:

/**
* ... heading comments *
**/

/* System includes */
#include <stdio.h>
#include <alloc.h>
#include <string.h>

/* Local includes */
#include "key.h"
#include "table.h"
#include "blank.h"

Rule 6-14:

#includedirectives come just after the heading comments. Put system includes first, fol-
lowed by local includes.

#include directives that use absolute file names, that is specify path and name, such as/user/
sam/program/data.handY:\DEVELOP\PROGRAM\DEFS.Hmake your program non-portable. If
the program is moved to another machine, even one using the same operating system, the source
will have to be changed.

The solution is to never use absolute paths. The compiler can be pointed to the correct direc-
tory by using the -I option. That way you need to change only one Makefile instead of a bunch
of source files.

/* Non portable */
#include “/user/sam/program/data.h”

/* Portable, compile with “-I/user/sam/program” */
#include “data.h”

Rule 6-15:

Do not use absolute paths in#includedirectives. Let the -I compile opt

Protecting against double #Includes
Include files can contain#includedirectives. This means that you can easily include the same

file twice. For example, supposedatabase.handsymbol.hboth need the filedefs.h. Then, putting
these lines:

#include “database.h”
#include “symbol.h”

in your program brings in two copies ofdefs.h.Defining a structure or type twice can cause
errors. So how do you avoid this problem? The solution is t conditional compilation to prevent the
double include from causing trouble.

#ifndef _DEFS_H_INCLUDED_
#define _DEFS_H_INCLUDED_

And at the end, insert this line:

#endif /* _DEFS_H_INCLUDED_ */

The first time through, _DEFS_H_INCLUDED_ is not defined.

The#ifndef causes the entire body of the file to be included and_DEFS_H_INCLUDED_to
be defined. Therefore, when the file is include the#ifndef kicks in, and the entire body of the file
is now#ifdef'ed out.

Conditional Compilation
The preprocessor allows you conditionally to compile sections o through the use of#ifdef,

#else, and#endif directives.

For example:

#ifdef DOS
#define NAME "C:\ETC\DATA”
#else /* DOS */
#define NAME "/etc/data”
#endif /* DOS */

Actually, the#elseand#endif directives take no arguments. The following them is entirely a
comment, but a necessary one. It serves to match#elseand#endif directive with the initial#ifdef.

Note: Some strict ANSI compilers don't allow symbols after#elseor #endif directives. In
these cases, the comment DOS must be formally written as/* DOS */ .

Rule 6-16:

Comment#elseand#endif directives with the symbol used in the initial#ifdef or #endif
directive.

Use conditional compilation sparingly. It easily confuse the code.

#ifdef SPECIAL
float sum(float a[])
#else /* SPECIAL */
int sum(int bits)
#endif SPECIAL
{
#ifdef SPECIAL

float total; /* Total so far */
#else /* SPECIAL */

int total; /* Total number of bits */
#endif /* SPECIAL */

int i; /* General index */

#ifdef SPECIAL
total = 0.0;

#else /* SPECIAL */
total = 0;

#endif /* SPECIAL */

#ifdef SPECIAL
for (i = 0; a[i] != 0.0; ++i)

total += ((bits & i) != 0);
#else /* SPECIAL */

for (i = Ox8O; i != 0: i >> 1)
total += a[i];

#endif /* SPECIAL */

return (total);
}
/*

* A comment explaining that this
* is bad code would be redundant
*/

The structure of this function is nearly impossible to pick out. Actually, it consists of two
completely different functions merged together. There are a few lines of common code, but not
many.

float sum(float a[])
{

float total; /* Total so far */
int i; /* General index */

total = 0.0;

for (i = 0; a[i] != 0.0; ++i)
total += ((bits & i) != 0);

return (total);
}

int sum(int bits)
{

int total; /* Total number of bits */
int i; /* General index */

total = 0;

for (i = Ox8O; i != 0: i >> 1)
total += a[i];

return (total);
}

Avoid complex conditional sections. C is difficult enough to understand without confusing the
issue. Usually it is better to write two entirely separate but clearer functions.

Rule 6-17:

Use conditional compilation sparingly. Don't let the conditionals obscure the code.

Where to define the control symbols
The control symbols for conditional compilation can be defined through#definestatements in

the code or the -D compiler option.

If the compiler option is used, the programmer must know how the program was compiled in
order to understand its function. If the control symbol is defined in the code, the programmer
needs no outside help. Therefore, avoid the compiler option as much as possible.

Rule 6-18:

Define (or undefine) conditional compilation control symbols in the code rather than using
the-D option to the compiler.

Put the#definestatements for control symbols at the very front of the file. After all, they con-
trol how the rest of the program is produced.

Use the#undef statement for symbols that are not defined. This serves several functions. It
tells the program that this symbol is used for conditional compilation. Also,#undef contains a
comment that describes the symbol Finally, to put the symbol in, all the programmer needs to do
is change the#undef to #define.

#define CHECK /* Internal data checking enabled */
#undef DEBUG /* Not the debug version of the program */

Rule 6-19:

Put#defineand#undefstatements for compilation control symbols at the beginning of the
program.

Commenting out code
Sometimes a programmer wants to get rid of a section of code. This may be because of an

unimplemented feature, or some other reason. One trick is to comment it out, but this can lead to
problems:

/*-------Begin commented out section ------
open_database();
update_symbol_table(); /* Add our new symbols */
close_database();
/*-------End commented out section------*/

Unless your compiler has been extended for nested comments, this code will not compile. The
commented-out section ends at the line/* Add our new symbols */,not at the bottom of the exam-
ple.

Conditional compilation can accomplish the same thing, with much less hassle.

#ifdef UNDEF
open_database();
update_symbol_table(); /* Add our new symbols */
close_database();
#endif /* UNDEF */

Note: This will not work if the programmer defines the symbol (However, any programmer
who defines this symbol should be shot.)

Rule 6-20:

Do not comment out code. Use conditional compilation (#ifdef UNDEF) to get rid of
unwanted code.

Sometimes the programmer wants to take out a section of code for a minutes for debugging.
This can be done in a similar way:

#ifdef QQQ
erase_backups();

#endif QQQ

The symbolQQQwas chosen because it is probably not defined and is easy spot with an edi-
tor. This allows allQQQ lines to be quickly removed when the is found.

Rule 6-21:

Use#ifdef QQQ to temporarily eliminate code during debugging.

Chapter 7: Directory Organization and
Makefile Style

So far we've only discussed the C program itself. This chapter explores the programming envi-
ronment, which includes organizing your program files, and themakeutility, which turns source
programs into a finished work.

Organizing Your Directories
Small programs consisting of only a few files are easy to organize: just stick everything in one

directory. But suppose you're an adventurous programmer and decide to write two programs. Do
you stick them both in the same directory? No.

Put each program's files in a separate directory. That way you won't have to figure out which
file goes with which program. It also keeps the number of files per directory down to a manage-
able level

Rule 7-1:

Whenever possible, put all the files for one program or library in one directory.

Someday you will probably work on a series of programs, like a set of programs to manage a
mailing list. There are programs to enter data, check for duplicates, print labels, and generate
reports. All of these programs use a common set of low level list functions. You can't put each of
these functions in each program directory. Duplicate files are very difficult to maintain. You need
some way to share files.

The solution is to turn the list functions into a library. The library goes in one subdirectory
while other subdirectories hold the various programs.

Suppose you have all four programs all going to the Library directory for their subroutines.
But the Library directory contains both the source and the library file (MAIL.LIB) and headers
(MAIL.H) used by these programs. Having access to all that data can easily confuse things. You
need to limit what they can see.

The solution is to have a special directory for libraries and header files as illustrated by Figure
4-2. When a library is built it is “released” by placing it in this directory. The header files are put
here as well. This directory contains the public part of the library, while the private part stays
behind in the source directory.

The top level directory (Mailing List) should be kept free of sources, except for aMakefile,
READ.ME,or other compilation. This makes the files in the top level simple. Adding programs to
this level adds unneeded complexity.

Figure 4-2: Mailing list directory tree

The make Program
Almost all C compilers come with a program building utility calledmake.It is designed to

perform the compilation and other commands necessary to turn source files into a program.

To usemake,you provide it with a description of your program in a file namedMakefile.This
file also contains the transformation rules that tell it how to turn source into objects.

TheMakefile isdivided into six major sections:

1. Heading comments

2. Macro definitions

3. Major targets

4. Other targets

5. Special compilation rules

6. Dependencies

Heading Comments
The first things a programmer needs to know when confronting a strangeMakefileare “What

does it do?” and “How do I use it?” The heading comments of yourMakefileshould answer those
questions.

The first paragraph of the heading comments explains what theMakefilecreates. For example:

Enter
Check
dup. Label Report

LIB
(binaries)

Library
(source)

Mailing
List

Exports MAIL.LIB
and header files.

###
Makefile for crating the program "hello"
###

###
This Makefile creates the math libraries:
fft.a, curve.a and graph.a
###

Customization Information
Programmers use the preprocessor#ifdef to allow for compile time configuration of their pro-

gram. For example, there might be a debug version and a production version. Or there might be
several different flavors, one for each of the various operating systems the program is designed to
run on.

The effect of these conditional compilation directives filter up to theMakefile. For example,
defining the macroCFLAGSas -DDEBUGmay produce a test program, while the definition
-DPRODUCTION may produce the production version.

Any configuration information should be listed in the heading comments. This way a pro-
grammer can immediately see what customization must be performed on theMakefilebefore he
starts to build the program.

For example:

#
Set the variable SYSTEM to the appropriate value for your
operating system.
#

SYSTEM=-DBSD4_3 For Berkeley UNIX Ver. 4.3
SYSTEM=-DSYSV For AT&T System V UNIX
SYSTEM=-DSCO For SCO UNIX
SYSTEM=-DDOS For DOS (Borland Turbo C)
#

Standard targets
The standard form of themakecommand is:

make target

Here,target selects what you want to make. (Microsoft'smake isa notable exception to this
standard.) The programmer needs to know which targets are valid and what they do. Putting a list
of targets in the heading provides this information.

For example:

###
Target are:
all - create the program "hello"
clean - remove all object files
clobber - same as clean
install - put the program in $(DESTDIR)
###

Over the years a standard set of four targets have developed:

all This target compiles all the programs. This is the standard default target.

install This target copies the program and associated files into the installation directory.
For local commands this can be/usr/local/bin.For production software, this will
be the official release directory.

clean This target removes all program binaries and object files and generally cleans up
the directory.

clobber Like clean, this target removes all derived files—that is, all files that can be pro-
duced from another source. In cases where a software control system such asSCCS
or RCSis used, it means removing all source files from the software control sys-
tem.

lint (UNIX systems)

This target runs the source files through the program checker

This list represents the minimum “standard” set of targets. Other optional target names have
also come into use over the years.

depend or maketd

Creates a list of dependencies automatically and edits them into theMakefile.
There are several utilities to do this, including a public domain program called
maketd.

srcs Checks out the sources from a software control system such asSCCSor RCS.

print Prints the sources on the line printer.

xrf Creates a cross reference printout.

debug Compiles the program with the debug flag enabled.

shar Makes a char format archive. This format is widely used to distribute sources over
the Internet and USENET.

Macro Definitions
Themakeutility allows the user to define simple text macros, such as:

SAMPLE=sample.c

The macros are used to define a variety of items, such as the source files to be compiled, the
compiler name, compilation flags, and other items.

Themakeprogram predefines a number of macros. (The actual list of Redefined macros var-
ies, so check your manual to see which macros are defined for your version ofmake.)

Each macro definition should be preceded by a short, one-line comment that explains the
macro. Also use white space to separate each comment/macro combination.

For example:

The standard C compiler
CC = cc

Compile with debug enabled
CFLAGS = -g

The source to our program
SOURCE = hello.c

The object file
OBJECT = hello.o

Common macro definitions
There are no standard macro definitions; however, the following is a list of the most common:

CC The C compiler

CFLAGS Flags supplied to the C compiler for compiling a single module.

LDFLAGS Flags supplied to the C compiler for loading all the objects into a single program.

SRCSor SOURCES

The list of source files.

OBJSor OBJECTS

The list of object files. Some of the newer versions ofmakehave an extension that
allows you to automatically generate this macro from theSRCSmacro. For exam-
ple, the following line tells Sun'smakethat OBJSis the same asSRCS,except
change all the.c extensions to .o.

0BJS = $(SRCS:.c=.o)
HDRSor HEADER

The list of header files.

DESTDIR The destination directory, where theinstall target puts the files.

Configurable variables
As mentioned earlier, macros are frequently used for configuration information. When it

comes to actually defining the variable, it is useful to list all the definitions and then comment all
but the selected one. For example:

Define one of the following for your system
SYSTEM=-DBSD4 3 # For Berkeley UNIX Version 4.3
#SYSTEM=-DSYSV # For AT&T System V UNIX
#SYSTEM=-DSCO # For SCO UNIX
#SYSTEM=-DDOS # For DOS (Borland Turbo C)

Major Targets
So far, we've just been defining things. At this point it's time to tellmaketo actually do some-

thing. This section contains the rules for all the major targets listed in the comment header. These
targets are grouped just after the macros so they can be easily located.

For example:

all: hello

install: hello
install -c hello /usr/local/bin

clean:
rm -f hello.o

clobber: clean

Other Targets
Often aMakefilecontains several intermediate or minor targets. These are to help build things

for the major targets. For example, the major targetall calls upon the minor targethello.

Minor targets follow the major ones.

Example:

hello: $(OBJECTS)
$(CC) $(CFLAGS) -o hello $(OBJECTS)

Special Rules
The makeprogram knows about all or most standard compilers, such as the C compiler.

Sometimes you need to define a rule for a special compiler, such as the parser generatoryacc. This
program takes grammars (y files) and turns them to C code

TheMakefilerule for this program is:

#
Use yacc to turn xxx.y into xxx.c
#
.y.c:

yacc $*.y
mv yacc.xx.cc $*.c

Notice that every special rule has a comment explaining what it does.

This target section can also be used to override the default rules. For example, if all your C
files need to run through a special pre-processor, you can install your own rule for C compilation:

#
Run the files through "fixup" before compiling them
#
.c.o:

fixup $*.c
$(CC) $(CFLAGS) -c $*.c

Somemakeprograms provide you with a default rule file.Under no circumstances should
you change this file.Doing so changes causesmaketo behave in a nonstandard way. Also, pro-
grammers expect the complete compilation instructions to be kept in the program'sMakefile,not
hidden in some system file.

Dependencies
The dependencies section shows the relationship between each of the binary files and their

source. For example:

hello.o: hello.c banner.h
tellsmakethat hello.o is created fromhello.candbanner.h.

Dependency checking is the weakest point in themakecommand. Frequently this section is
out of date or missing entirely. Advancedmakeprograms have an automatic dependency check-
ing, thus eliminating the need for this section.

Other solutions have also sprung up. The public domain utilitymaketdand other similar pro-
grams automatically generate dependency lists. They all depend on this section being at the end of
theMakefile.

Example
The full Makefilefor thehelloprogram is:

###
Makefile for creating the program "hello"
Set the variable SYSTEM to the appropriate
value for your operating system.
#
SYSTEM=-DBSD4_3 For Berkeley UNIX Version 4.3
SYSTEM=-DSYSV For AT&T System V UNIX
SYSTEM--DSCO For SCO UNIX
SYSTEM=-DDOS For DOS (Borland Turbo C)
#
Targets are:
all - create the program Hello
clean - remove all object files
clobber - same as clean
install - put the program in
/usr/local/bin
###

#
Macro definitions
#

The standard C compiler
CC = cc

Compile with debug enabled
CFLAGS = -g

The source to our program
SOURCE = hello.c

The object file
OBJECT = hello.o

Define one of the following for your system

SYSTEM=-DBSD4_3 # For Berkeley UNIX Version 4.3
#SYSTEM=-DSYSV # For AT&T System V UNIX
#SYSTEM=-DSCO # For SCO UNIX
#SYSTEM=-DDOS # For DOS (Borland Turbo C)

Compile with debug enabled
CFLAGS = -g $(SYSTEM)

#
Major targets
#

all: hello

install: hello
install -c hello /usr/local/bin

clean:
rm -f hello.o

clobber: clean

#
Minor targets
#
hello: $(OBJECTS)

$(CC) $(CFLAGS) -o hello $(OBJECTS)
#
No special rules
#

#
Dependencies
#
hello.o: hello.c banner.h

Common Expressions
Whenever possible, use macros for common directories or other text. For example:

#
Poor practice
#
INSTALL_BIN = /usr/local/bin # Place to put the binaries
INSTALL_MAN = /usr/local/man # Place to put the man pages
INSTALL_HELP = /usr/local/lib # Place to put help info.
#
Better practice
#
DESTDIR=/usr/local
INSTALL_BIN = $(DESTDIR)/bin # Place to put the binaries
INSTALL_MAN = $(DESTDIR)/man # Place to put the man pages
INSTALL_HELP = $(DESTDIR)/lib # Place to put help info.

and

#
Poor practice
#

Yacc switches
YACC_FLAGS = -c -t -I/project/include -I/general/include
C switches
CFLAGS = -c -g -I/project/include -I/general/include

#
Good practice
#
INCLUDES=-I/project/include -I/general/include

Yacc switches
YACC_FLAGS = -c -t $(INCLUDES)

C switches
CFLAGS = -c -g $(INCLUDES)

Complexity
Installing a program can be tricky. I've seen a shell script with more than 100 lines created just

to install a single program. There is a temptation to put long, complex command sets into the
Makefile.Because of the difficulties of both shell program andMakefileformat, this results in a
large, complex, and impossible to maintain piece of code.

In general, it is best to put large command scripts in a batch file. This makes it easier to test,
debug, and comment them.

Portability Considerations
Makefiles have a standard format that is portable across most systems. However, compile time

options differ from system to system. For example, a program written to work on both UNIX and
DOS will require two entirely different commands sets to create it. Stuffing two sets of compila-
tion instructions in a singleMakefilecan get messy. When this happens, it is best to create a sepa-
rate Makefile for each system. The standard method for naming these variousMakefiles is
<system>.mak.Some standard names are:

bsd.mak BSD4.3 UNIX Makefile

att.mak AT&T System V

sun.mak SUNOS UNIX system

turboc.mak DOS using Borland's Turbo C

msc.mak DOS using Microsoft's C compiler

sco.mak SCO UNIX

This list can grow quite long as programs are ported to more and more systems. Aread.mefile
must be distributed with the software to describe how to select the properMakefile.

Generic Makefiles
Some of the more advancedmakecommands have an include facility that allows the inclusion

of other files in theMakefile.Some programmers have tried to create genericMakefiles, to be used
like this:

#
Define some macro names to be
used by the generic Makefile
#
SRCS=hello.c
OBJS=hello.o
PROGRAM=hello

include(Makefile.generic)

In theory, this should work nicely. There is one genericMakefilethat does everything, then all
you have to do is set things up properly.

In practice, though, it's not so simple. Creating a program is never a standard process and far
too many have their little peculiarities. Trying to program around them in a genericMakefileis
extremely tricky.

One approach is to create a genericMakefile to be used as a template for making custom
MakefilesThe problem with this approach is that when you want to add a new target to every

Makefile. youmust edit each one.

The solution? There isn't one. This is a classic trade-off of standardization vs. flexibility.
GenericMakefiles are standard but inflexible. IndividualMakefiles are flexible but hard to stan-
dardize.

Conclusion
Makefiles are as important to the programming process as the program itself. A well designed

Makefilemakes it easy to create a program. Comments are necessary to tell programmers the vital
information that lets them create future versions of your program.

Chapter 8: User-Friendly Programming
So far we've discussed the use of style to make your code clear and easy to read. But style

doesn't stop at the printed page. A program is not only edited, debugged, and compiled; it is also
used. In this chapter we extend our discussion of style to include how the program appears when it
is in use.

What Does User-Friendly Mean?
As programmers, we encounter a large number of tools, utilities, and other programs. Some

are a joy to use, letting us get our work done with a minimum of fuss. Others are a nightmare,
with obscure and complex command sets.

What is a user-friendly program? Simply a program that the user considers a friend instead of
an enemy.

In the early days of computing, machines cost millions of dollars and programmers cost only a
few thousand. Companies could afford to keep several specialists around to translate management
requests into language the computer could understand.

For the programmers, the early computers were very user-unfriendly. IBM's OS/360 required
the programmer to interface with it using a particularly brutal language called JCL. The com-
mands were cryptic; for example, “copy” was “IEBGENER”, and specifying a file could easily
take up three to five lines of JCL code.

Over the years, computers have dropped in price, and the cost of programmers has increased.
Low prices have meant that more and more people can buy computers. High salaries have meant
that fewer and fewer people can afford to pay a full-time programmer to run them.

Software has had to evolve with the times, too. Programs have had to become easier to use in
order to accommodate newer, less computer-literate clients.

Today, people with no computer training at all can go into Radio Shack, plunk down $1000
and walk out with a computer that is faster and more powerful than an early IBM that cost mil-
lions of dollars.

Law of Least Astonishment
For years, people have tried to come up with a set of laws to define what is user-friendly and

what is not. Many of them involve complex standards and lots of rules; but the best law that I've
seen governing program design is the Law of Least Astonishment: the program should act in a
way that least astonishes the user.

Rule 8-1:

Law of Least Astonishment: The program should act in a way that least astonishes the
user.

Modeling the User
Computers intimidate many people. (Those who aren't intimidated tend to become program-

mers.) Your first step in writing a user-friendly program is to put yourself in the shoes of the user.
What does a user want from the system?

Always remember that users have a job to do. They want the computer to do that job their way,
with a minimum of effort.

Almost all tasks done by computer were at one time done by hand. Before word processing,
there was the typewriter. Before databases, there was the card file. A good program should be
designed to emulate a manual task that the user knows. For example, a good word processor lets
the user treat it like a typewriter. True, it adds a great many features not found on a typewriter, but
at heart it still can be used like a typewriter.

A good example of a program imitating a manual procedure occurred when a business school
graduate student was attending a financial analysis class. He noticed that the professor had a set of
figures arranged in a neat set of rows and columns on the blackboard. Every time the teacher
changed one number, he had to recalculate and write a new set of numbers.

The student figured that a computer could perform the work automatically, so he invented
VisiCalc, the first spreadsheet program. Successful modeling brought this observant programmer
a million-dollar idea.

Error Messages
Sooner or later, every user makes a mistake. When that happens, an error message usually

appears. Writing a good error message is an art. Care and thought need to go into the creation of
these messages.

Examples of poor error messages abound. I once ran a FORTRAN program and was surprised
to see the following message at the end of my run:

JOB KILLED BY IEH240I

So I consulted the book called Messages and Codes (aka The Joke Book), which was sup-
posed to contain a complete list of errors, and it did—for all the codes except the IEH series,
which was in the FORTRAN manual. Going to the FORTRAN book, I discovered that IEH240I
meant “Job killed by fatal error.” Of course, I knew it was a fatal error the moment it killed my
job.

It turns out that the program tried to do a divide by 0, which resulted in a “Divide by 0" mes-
sage followed by the IEH240I.

Error messages should not be cryptic. The IEH240I code sent me on a wild goose chase
through two books, only to wind up where I started.

You cannot expect the user to know computer terminology. For example, a message like this:

FAT table full

means nothing to most users. “What do I do? Put the computer on a diet?”

Remember that most users are not programmers, and they won't think like programmers. For
example, a secretary was having trouble saving a memo and complained to the computer center.
“Do you have enough disk space?” asked the programmer. The secretary typed for a second and
said, “Yes, I see a message disk space OK.” The programmer looked at the screen, and sure
enough, there was the message:

Disk space: OK

After a few files were deleted, the message read:

Disk space: 16K

and the secretary was able to save the memo.

Sometimes an error message baffles even experienced programmers. For example, I'm still
trying to figure out this one:

Error: Success

Sometimes it is difficult to pick out the error messages from all the other noise being produced
by the computer. A solution is to clearly identify error messages by starting them with the word
Error:.

A good error message tells the user what's wrong in plain English, and suggests corrective
action. For example:

Error: Disk full.

Delete some files or save the data on another disk.

Rule 8-2:

Begin each error message with Error:. Begin each warning message with Warning:.

The classic IBM PC self test follows this rule, sort of:

Error: Keyboard missing
Press F1 to continue

One student programmer who took particular pride in his program created a work with the
most interesting and obsequious error message I've seen:

This humble program is devastated to report that it cannot
accept the value of 200 for scale because the base and
thoughtless programmer who implemented this program has
thoughtlessly limited the value of scale to between 0.01 and
100.0. I implore your worthiness to reduce the scale and run
this miserable program again.

The Command Interface
MS/DOS has a very strange command interface. It appears to be built out of bits and pieces

stolen from other operating systems, which results in a command language that is far from consis-
tent.

For example, to get rid of a file, you use the command ERASE. But to get rid of a directory,
the command is RMDIR. This is one of the many reasons MS/DOS is considered user-unfriendly.
The command interface should be consistent. If you are going to use ERASE to get rid of a file,
use ERASEDIR to get rid of a directory.

The GNU ispell program is another example of a program with a problem in consistency. This
program checks spelling, and when it detects a misspelled word it produces a numbered list of
suggested corrections:

Misspelled word: Oualline
1. Hauling
2. Mauling
3. Pauling

To select a replacement, you just type in the number. Type a 2, and “Oualline” becomes
“Mauling.” The problem is that there can be more than 10 suggestions. In such cases, 1 is ambig-
uous. It can mean 1 or the first digit of 10. So the program forces you to type <ENTER> if you
really want to select 1. Let's review the command interface:

To select a word, type its number, unless there are more than 10 displayed and you want num-
ber 1, then type the number 1 and <ENTER>.

How much simpler it would be to say:

Type the number and <ENTER>.

This example demonstrates the main strength of consistency: You don't have to remember
very much. With computer manuals consisting of 1000+ pages, you must have consistency or
you'll get insanity.

Help
Early programs were designed to save disk and memory space, not to be user-friendly. It was

difficult to get more than code out of them, much less a help screen.

As user-friendly programming has gained acceptance, help systems has improved as well.
Today there are help compilers to aid the programmer produce context-sensitive help screens. The
compiler also allows the programmer to embed cross-references in the text that let the user jump
immediately to a related subject. Finally, there is an index of all topics that the user can search.

Help compilers are available for Borland's compiler and Microsoft's Windows development
system. But even without a help compiler, every program needs to provide some help. More com-
plex programs need context-sensitive help. Far too often, help systems are not designed into pro-
grams from the start, but instead as “if we have time” projects. This makes programs very
unfriendly.

Safety Nets
Occasionally a user will try to do something that causes permanent damage and loss of data to

their system. A user-friendly program provides users with a safety net preventing them from
doing something stupid unless they really want to.

For example, if the user tries to write over an existing file, the message:

About to overwrite the file START.TXT.
Are you sure [n]?

This gives the user a chance to abort the operation without damage.

Rule 8-3:

Don't let users do something stupid without warning them.

Accelerators
Some users eventually develop into power users. You know the type—they know every com-

mand in the program, have an amazing set of tricks for getting around program limitations, and
can quote long passages from the reference manual.

The user interface for the power user is different from that needed by the novice. Many pro-
grams provide accelerator keys, which allow the user to perform common commands with a sin-
gle keystroke. For example, to run a program in the Borland C compiler you must type Alt-R to
bring up the run menu, and then R to run the program. Power users can hit Control-F9.

Chapter 9: Rules
Chapter 1:Style and Program Organization

Rule 1-1:

Organize programs for readability, just as you would expect an author to organize
a book.

Rule 1-2:

Divide each module up into a public part (what's needed to use the module) and a
private part (what's needed to get the job done). The public part goes into a .h file
while the private part goes into a .c file.

Rule 1-3:

Use white space to break a function into paragraphs.

Rule 1-4:

Put each statement on a line by itself

Rule 1-5:

Avoid very long statements. Use multiple shorter statements instead.

Chapter 2:File Basics, Comments, and Program Headings

Rule 2-1:

Keep programs files to no longer than about 2,000 to 3,000 lines.

Rule 2-2:

Keep all lines in your program files down to 72 characters or fewer.

Rule 2-3:

Use 8-character tab stops.

Rule 2-4:

Use only the 95 standard ASCII characters in your programs. Avoid exotic charac-
ters. (Foreign characters may be used if you are writing comments in a foreign lan-
guage.)

Rule 2-5:

Include a heading comment at the beginning of each file that explains the file.

Rule 2-6:

Leave out unnecessary comments if they require maintenance and if you are
unlikely to maintain them.

Rule 2-7:

Comment your code as you write it.

Chapter 3:Variable Names

Rule 3-1:

Use simple, descriptive variable names.

Rule 3-2:

Good variable names are created by using one word or by putting two or three
words together, separated by “_”. For example:

Rule 3-3:

Never useI (lowercaseL) or O (uppercaseO) as variable or constant names.

Rule 3-4:

Don't use the names of existing C library functions or constants.

Rule 3-5:

Don't use variable names that differ by only one or two characters. Make every
name obviously different from every other name.

Rule 3-6:

Use similar names for variables that perform similar functions.

Rule 3-7:

When creating a two word variable name where the words can be put in any order,
always put the more important word first.

Rule 3-8:

Standard prefixes and suffixes are_ptr , _p , _file , _fd , andn_ .

Rule 3-9:

Short names such asx , y, andi are acceptable when their meaning is clear and
when a longer name would not add information or clarity.

Rule 3-10:

Useargc for the number of command line arguments andargv for the argument
list. Do not use these names for anything else.

Rule 3-11:

Follow every variable declaration with a comment that defines it.

Rule 3-12:

Whenever possible, include the units of measure in the description of a variable.

Rule 3-13:

Name and comment each field in a structure or union like a variable.

Rule 3-14:

Begin each structure or union definition with a multi-line comment describing it.

Rule 3-15:

Put at least one blank line before and after a structure or union definition.

Rule 3-16:

When you can't put a descriptive comment at the end of a variable declaration, put
it on a separate line above. Use blank lines to separate the declaration/comment
pair from the rest of the code.

Rule 3-17:

Group similar variables together. When possible, use the same structure for each
group.

Rule 3-18:

Don't use hidden variables.

Rule 3-19:

Use the names INT16, INT32, UINT16, and UINT32 for portable application

Rule 3-20:

Floating-point numbers must have at least one digit on either side f the decimal
point.

Rule 3-21:

The exponent in a floating-point number must be a lowercasee. This is always fol-
lowed by a sign.

Rule 3-22:

Start hexadecimal numbers withOx. (Lowercasex only.)

Rule 3-23:

Use uppercase A through F when constructing hexadecimal constants.

Rule 3-24:

Long constants should end with an uppercaseL.

Chapter 4:Statement Formatting

Rule 4-1:

Write one statement per line.

Rule 4-2:

Put spaces before and after each arithmetic operator, just like you put spaces
between words when you write.

Rule 4-3:

Change a long, complex statement into several smaller, simpler statements.

Rule 4-4:

In a statement that consists of two or more lines, every line except the first must be
indented an extra level to indicate that it is a continuation of the first line.

Rule 4-5:

When writing multi-line statements, put the arithmetic and logical operators at the
end of each line.

Rule 4-6:

When breaking up a line, the preferred split point is where the parenthetic nesting
is lowest.

Rule 4-7:

Align like level parentheses vertically.

Rule 4-8:

Split longfor statements along statement boundaries.

Rule 4-9:

Always split afor statement into three lines.

Rule 4-10:

Writeswitch statements on a single line.

Rule 4-11:

Keep conditionals on a single line if possible.

Rule 4-12:

When splitting a conditional clause (? :), write it on three lines: the condition line,
the true-value line, and the false-value line. Indent the second and third line an
extra level.

Rule 4-13:

Avoid side effects.

Rule 4-14:

Put the operator ++ and -- on lines by themselves. Do not use ++ and -- inside
other statements.

Rule 4-15:

Never put an assignment statement inside any other statement.

Rule 4-16:

If putting two or more statements on a single line improves program clarity, then
do so.

Rule 4-17:

When using more than one statement per line, organize the statement into columns.

Rule 4-18:

Indent one level for each new level of logic.

Rule 4-19:

The best indentation size is four spaces.

Chapter 5:Statement Details

Rule 5-1:

Always put a comment in the null statement, even if it is only

Rule 5-2:

In C expressions, you can assume that* , / , and % come before+ and- . Put

parentheses around everything else.

Rule 5-3:

Use ANSI style function declarations whenever possible.

Rule 5-4:

When using K&R parameters, declare a type for every parameter.

Rule 5-5:

When using K&R parameters, put the type declarations for the parameters in the
same order as the occur in the function header.

Rule 5-6:

Always declare a function type

Rule 5-7:

Always declare functions that do not return a value asvoid.

Rule 5-8:

Allow no more that five parameters to a function.

Rule 5-9:

Avoid using global variables where function parameters will do.

Rule 5-10:

Avoid variable length parameter lists. They are difficult to program and can easily
cause trouble.

Rule 5-11:

When an if affects more than one line, enclose the target in braces.

Rule 5-12:

In an if chain, treat the wordselse if as one keyword.

Rule 5-13:

Never use the comma operator when you can use braces instead.

Rule 5-14:

When looping forever, usewhile (1) instead offor(;;) .

Rule 5-15:

Avoid usingdo/while. Usewhile andbreak instead.

Rule 5-16:

Use the comma operator inside a for statement only to put together two statements.
Never use it to combine three statements.

Rule 5-17:

Use one printf per line of output.

Rule 5-18:

Unless extreme efficiency is warranted, use printf instead of puts and putc.

Rule 5-19:

Startgoto labels in the first column.

Rule 5-20:

End every case in aswitch with abreak or the comment/* Fall Through
*/

Rule 5-21:

Always put a break at the end of the last case in a switch statement.

Rule 5-22:

Always include adefault case in everyswitch, even if it consists of nothing but a
null statement.

Chapter 6:Preprocessor

Rule 6-1:

#defineconstants are declared like variables. Always put a comment describes the
constant after each declaration.

Rule 6-2:

Constant names are all upper-case.

Rule 6-3:

If the value of a constant is anything other than a single number, enclose it in
parentheses.

Rule 6-4:

The use ofconst is preferred over#define for specifying constants.

Rule 6-5:

When possible, usetypedef instead of#define.

Rule 6-6:

Don't use#define to define new language elements.

Rule 6-7:

Never use#define to redefine C keywords or standard functions.

Rule 6-8:

Enclose parameterized macros in parentheses.

Rule 6-9:

Enclose each argument to a parameterized macro in parenthesis.

Rule 6-10:

Always enclose macros that define multiple C statements in braces.

Rule 6-11:

If a macro contains more than one statement, use a do/while structure to enclose
the macro. (Don't forget to leave out the semicolon of the statement).

Rule 6-12:

When creating multi-line macros, align the backslash continuation characters (\)
in a column.

Rule 6-13:

Always comment any parameterized macros that look like functions.

Rule 6-14:

#includedirectives come just after the heading comments. Put system includes
first, followed by local includes.

Rule 6-15:

Do not use absolute paths in#include directives. Let the -I compile opt

Rule 6-16:

Comment#else and#endif directives with the symbol used in the initial#ifdef or
#endif directive.

Rule 6-17:

Use conditional compilation sparingly. Don't let the conditionals obscure the code.

Rule 6-18:

Define (or undefine) conditional compilation control symbols in the code rather
than using the-D option to the compiler.

Rule 6-19:

Put #define and #undef statements for compilation control symbols at the begin-
ning of the program.

Rule 6-20:

Do not comment out code. Use conditional compilation (#ifdef UNDEF) to get
rid of unwanted code.

Rule 6-21:

Use#ifdef QQQ to temporarily eliminate code during debugging.

Chapter 7:Directory Organization and Makefile Style

Rule 7-1:

Whenever possible, put all the files for one program or library in one directory.

Chapter 8:User-Friendly Programming

Rule 8-1:

Law of Least Astonishment: The program should act in a way that least astonishes
the user.

Rule 8-2:

Begin each error message with Error:. Begin each warning message with Warn-
ing:.

Rule 8-3:

Don't let users do something stupid without warning them.

	Chapter 1: Style and Program Organization
	Program Organization

	• Title Page
	• Table of Contents
	• Chapters
	• Sections
	• Index
	• Glossary
	Automatic Generation of Program Documentation
	Module Design
	Libraries and Other Module Groupings
	Multiple header files
	One header does all
	Mixed approach

	Program Aesthetics
	Code paragraphs
	Statements

	Chapter 2: File Basics, Comments, and Program Headings
	File Basics
	The Comment
	Graphics
	Packing bits

	Letting the Editor Help You
	Beginning Comment Block
	The sections of a heading

	• Purpose
	• Author
	• Copyright or License
	• Warning
	• Usage
	• Restrictions
	• Algorithms
	• References
	• File Formats
	• Revision History
	• Notes
	Other sections
	Module Headings
	Function Headings

	• Name
	• Parameters
	• Return value
	When to Write Comments
	Some Comments on Comments

	Chapter 3: Variable Names
	A Brief History of the Variable
	Capitalization
	Names You Must Never Use
	Other Names Not To Use
	Avoid Similar Names
	Consistency in Naming
	Which Word First
	Standard Prefixes and Suffixes
	Module Prefixes
	Special Prefixes and Suffixes
	When You Can Use Short Names
	argv, argc
	Microsoft Notation
	Imaginative Solutions
	Case studies
	The C runtime library
	The UNIX kernel
	The Microsoft library
	The X Windows System

	Variable Declaration Comments
	Units
	Structures and unions
	Long declarations and comments
	Group similar declarations

	Hidden Variables
	Portable Types
	Numbers
	Floating-point numbers
	Hex numbers
	Long integers

	Chapter 4: Statement Formatting
	Formatting the Body of the Program
	Simplifying complex statements
	Splitting long statements
	Splitting and parentheses.
	Splitting a for statement.
	Splitting a switch statement.
	Conditional operators (? :).

	Side effects
	Assignments in other statements
	When to use two statements per line

	Logic and Indentation
	Indentation styles
	Short form
	Braces stand alone.
	Braces indented too.
	Variations.

	How much to indent
	Two Spaces:
	Four Spaces:
	Eight Spaces:

	Chapter 5: Statement Details
	Doing Nothing
	Arithmetic Statements
	Function Headings
	K&R style parameters
	Return type

	Number of parameters
	Passing parameters in globals
	XView style parameter passing

	The if Statement
	if/else chains
	if and the comma operator

	The while Statement
	The do/while Statement
	The for Statement
	Missing parts of for loops
	Overstuffed for loops

	The printf Statement
	goto and Labels
	The switch Statement
	Debug Printing
	Shut up Statements

	Chapter 6: Preprocessor
	Simple Define Statements
	Constant expressions
	#define constants vs. consts
	#define vs. typedef
	Abuse of #define directives
	Keywords and standard functions

	Parameterized Macros
	Multi-line Macros
	Macros and Subroutines
	The #include Directive
	Style for #Includes
	Protecting against double #Includes

	Conditional Compilation
	Where to define the control symbols
	Commenting out code

	Chapter 7: Directory Organization and Makefile Style
	Organizing Your Directories
	The make Program
	Heading Comments
	Customization Information
	Standard targets
	Macro Definitions
	Common macro definitions

	Configurable variables
	Major Targets
	Other Targets
	Special Rules
	Dependencies
	Example
	Common Expressions

	Complexity
	Portability Considerations
	Generic Makefiles
	Conclusion

	Chapter 8: User-Friendly Programming
	What Does User-Friendly Mean?
	Law of Least Astonishment
	Modeling the User
	Error Messages
	The Command Interface
	Help
	Safety Nets
	Accelerators

	Chapter 9: Rules

