
TEAMFL
Y

TEAM FLY ®

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is
to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies – The fun and easy way to learn

• The Weekend Crash Course –The fastest way to learn a new tool or technology

• Visual – For those who prefer to learn a new topic visually

• The Bible – The 100% comprehensive tutorial and reference

• The Wiley Professional list – Practical and reliable resources for IT professionals

The book you hold now, UNIX Filesystems: Evolution, Design, and Implementation, is the first book to cover
filesystems from all versions of UNIX and Linux. The author gives you details about the file I/O aspects
of UNIX programming, describes the various UNIX and Linux operating system internals, and gives
cases studies of some of the most popular filesystems including UFS, ext2, and the VERITAS filesystem,
VxFS. The book contains numerous examples including a fully working Linux filesystem that you can
experiment with.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with you
to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to re-
view our complete title list and explore the other resources we offer. If you have a comment, suggestion,
or any other inquiry, please locate the “contact us” link at www.wiley.com.

Thank you for your support and we look forward to hearing from you and serving your needs again in
the future.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

WILEY
advantage

The

UNIX® Filesystems
Evolution, Design,

and Implementation
(VERITAS Series)

Steve D. Pate

UNIX® Filesystems:
Evolution, Design,

and Implementation
(VERITAS Series)

Publisher: Robert Ipsen
Executive Editor: Carol Long
Developmental Editor: James H. Russell
Managing Editor: Angela Smith
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Steve Pate. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the
Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the accu-
racy or completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by
sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Neither
the publisher nor author shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used
without written permission. Unix is a trademark or registered trademark of Unix Systems Laborato-
ries, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-16483-6

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

vii

Contents

Foreword xvii

Introduction xix

Chapter 1 UNIX Evolution and Standardization 1

A Brief Walk through Time... 1
How Many Versions of UNIX Are There? ..3
Why Is UNIX So Successful?... 3
The Early Days of UNIX .. 3

The Early History of the C Language .. 4
Research Editions of UNIX.. 5
AT&T’s Commercial Side of UNIX .. 5

The Evolution of BSD UNIX ... 7
BSD Networking Releases ... 8
UNIX Goes to Court ... 8
The NetBSD Operating System... 8
The FreeBSD Operating System..9
The OpenBSD Operating System ... 9

Sun Microsystems and SunOS .. 9
System V Release 4 and Variants.. 10
Novell’s Entry into the UNIX Market.. 10
Linux and the Open Source Movement... 11
UNIX Standardization ... 11

IEEE and POSIX .. 11
The X/Open Group .. 12
The System V Interface Definition.. 12
Spec 11/70 and the Single UNIX Specification........................... 13
UNIX International and OSF...13
The Data Management Interfaces Group 14
The Large File Summit ... 14

Summary..15

viii Contents

Chapter 2 File-Based Concepts 17

UNIX File Types ..18
File Descriptors..19
Basic File Properties ..20
The File Mode Creation Mask ...23
Changing File Permissions ..24
Changing File Ownership..26
Changing File Times ...28
Truncating and Removing Files..29
Directories ..30
Special Files ..31
Symbolic Links and Hard Links ...32
Named Pipes..33
Summary ..34

Chapter 3 User File I/O 35

Library Functions versus System Calls..35
Which Header Files to Use?...36
The Six Basic File Operations ..37
Duplicate File Descriptors..40
Seeking and I/O Combined ..41
Data and Attribute Caching ..42

VxFS Caching Advisories...43
Miscellaneous Open Options...46

File and Record Locking ..46
Advisory Locking..47
Mandatory Locking...51

File Control Operations ..51
Vectored Reads and Writes ...52
Asynchronous I/O..54
Memory Mapped Files ...59
64-Bit File Access (LFS)...65
Sparse Files...66
Summary ..71

Chapter 4 The Standard I/O Library 73

The FILE Structure ..74
Standard Input, Output, and Error...74
Opening and Closing a Stream ...75
Standard I/O Library Buffering..77
Reading and Writing to/from a Stream ..79
Seeking through the Stream ..82
Summary ..84

Contents ix

Chapter 5 Filesystem-Based Concepts 85

What’s in a Filesystem?.. 85
The Filesystem Hierarchy.. 86
Disks, Slices, Partitions, and Volumes...88
Raw and Block Devices.. 90
Filesystem Switchout Commands .. 90
Creating New Filesystems... 92
Mounting and Unmounting Filesystems .. 94

Mount and Umount System Call Handling 98
Mounting Filesystems Automatically.. 98
Mounting Filesystems During Bootstrap 99

Repairing Damaged Filesystems .. 100
The Filesystem Debugger .. 101
Per Filesystem Statistics ... 101
User and Group Quotas... 103
Summary..104

Chapter 6 UNIX Kernel Concepts 105

5th to 7th Edition Internals.. 105
The UNIX Filesystem ... 106
Filesystem-Related Kernel Structures.. 107

User Mode and Kernel Mode .. 107
UNIX Process-Related Structures ... 109
File Descriptors and the File Table ...110
The Inode Cache.. 112
The Buffer Cache... 112
Mounting Filesystems .. 115

System Call Handling ..115
Pathname Resolution ... 116
Putting It All Together ... 117

Opening a File ...118
Reading the File... 119
Closing the File .. 120

Summary..120

Chapter 7 Development of the SVR4 VFS/Vnode Architecture 121

The Need for Change ... 121
Pre-SVR3 Kernels.. 122
The File System Switch .. 122

Mounting Filesystems .. 123
The Sun VFS/Vnode Architecture ... 126

The uio Structure... 129
The VFS Layer ...129
The Vnode Operations Layer .. 130

x Contents

Pathname Traversal ..131
The Veneer Layer ..132
Where to Go from Here? ..133

The SVR4 VFS/Vnode Architecture...133
Changes to File Descriptor Management...................................133
The Virtual Filesystem Switch Table ..134
Changes to the Vnode Structure and VOP Layer135
Pathname Traversal ..139
The Directory Name Lookup Cache...140
Filesystem and Virtual Memory Interactions............................142
An Overview of the SVR4 VM Subsystem143
Anonymous Memory..146
File I/O through the SVR4 VFS Layer..146
Memory-Mapped File Support in SVR4149
Flushing Dirty Pages to Disk ...152
Page-Based I/O..153
Adoption of the SVR4 Vnode Interface......................................153

Summary ..154

Chapter 8 Non-SVR4-Based Filesystem Architectures 155

The BSD Filesystem Architecture ...155
File I/O in 4.3BSD ...156
Filename Caching in 4.3BSD..157
The Introduction of Vnodes in BSD UNIX157
VFS and Vnode Structure Differences..159

Digital UNIX / True64 UNIX..159
The AIX Filesystem Architecture..161

The Filesystem-Independent Layer of AIX................................161
File Access in AIX..162

The HP-UX VFS Architecture..163
The HP-UX Filesystem-Independent Layer164
The HP-UX VFS/Vnode Layer..164
File I/O in HP-UX ...164

Filesystem Support in Minix ...165
Minix Filesystem-Related Structures..166
File I/O in Minix ...167

Pre-2.4 Linux Filesystem Support...168
Per-Process Linux Filesystem Structures168
The Linux File Table..169
The Linux Inode Cache...170
Pathname Resolution ..172
The Linux Directory Cache ..172
The Linux Buffer Cache and File I/O...173
Linux from the 2.4 Kernel Series ...174
Main Structures Used in the 2.4.x Kernel Series175

TEAMFL
Y

TEAM FLY ®

Contents xi

The Linux 2.4 Directory Cache.. 175
Opening Files in Linux... 177
Closing Files in Linux...178
The 2.4 Linux Buffer Cache ... 178
File I/O in the 2.4 Linux Kernel ..179

Reading through the Linux Page Cache 179
Writing through the Linux Page Cache 180

Microkernel Support for UNIX Filesystems 180
High-Level Microkernel Concepts ...181
The Chorus Microkernel ..182

Handling Read Operations in Chorus183
Handling Write Operations in Chorus.................................184

The Mach Microkernel ... 185
Handling Read Operations in Mach..................................... 185
Handling Write Operations in Mach.................................... 186

What Happened to Microkernel Technology? 186
Summary..187

Chapter 9 Disk-Based Filesystem Case Studies 189

The VERITAS Filesystem...189
VxFS Feature Overview ... 190

Extent-Based Allocation ... 190
VxFS Extent Attributes ... 191
Caching Advisories... 193
User and Group Quotas ... 194
Filesystem Snapshots / Checkpoints 194
Panic Free and I/O Error Handling Policies 194
VxFS Clustered Filesystem .. 195

The VxFS Disk Layouts .. 195
VxFS Disk Layout Version 1 ..196
VxFS Disk Layout Version 5 ..197

Creating VxFS Filesystems .. 200
Forced Unmount ... 201

VxFS Journaling .. 201
Replaying the Intent Log.. 204
Extended Operations ..204

Online Administration ... 204
Extent Reorg and Directory Defragmentation.......................... 206
VxFS Performance-Related Features.. 206

VxFS Mount Options ..206
VxFS Tunable I/O Parameters .. 209
Quick I/O for Databases .. 209
External Intent Logs through QuickLog 211

VxFS DMAPI Support .. 212
The UFS Filesystem .. 212

xii Contents

Early UFS History..213
Block Sizes and Fragments...214
FFS Allocation Policies ...215
Performance Analysis of the FFS ..216
Additional Filesystem Features...216
What’s Changed Since the Early UFS Implementation?217
Solaris UFS History and Enhancements217

Making UFS Filesystems ..217
Solaris UFS Mount Options..219
Database I/O Support...220
UFS Snapshots..220
UFS Logging ...224

The ext2 and ext3 Filesystems ...224
Features of the ext2 Filesystem..225

Per-File Attributes ...225
The ext2 Disk Layout ..226
ext2 On-Disk Inodes ..231
Repairing Damaged ext2 Filesystems...................................232
Tuning a ext2 Filesystem ..233
Resizing ext2 Filesystems ...234

The ext3 Filesystem ...234
How to Use an ext3 Filesystem..234
Data Integrity Models in ext3 ..235
How Does ext3 Work? ..235

Summary ..236

Chapter 10 Mapping Filesystems to Multiprocessor Systems 237

The Evolution of Multiprocessor UNIX...237
Traditional UNIX Locking Primitives..238

Hardware and Software Priority Levels239
UP Locking and Pre-SVR4 Filesystems......................................241
UP Locking and SVR4-Based Filesystems241

Symmetric Multiprocessing UNIX ...242
SMP Lock Types ..243
Mapping VxFS to SMP Primitives ..245

The VxFS Inode Reader/Writer Lock...................................246
The VxFS Getpage and Putpage Locks.................................246
The VxFS Inode Lock and Inode Spin Lock.........................246
The VxFS Inode List Lock...246

Summary ..247

Chapter 11 Pseudo Filesystems 249

The /proc Filesystem..249
The Solaris /proc Implementation ...250

Accessing Files in the Solaris /proc Filesystem253

Contents xiii

Tracing and Debugging with /proc... 253
The Specfs Filesystem ..255
The BSD Memory-Based Filesystem (MFS) 258

The BSD MFS Architecture.. 259
Performance and Observations... 259

The Sun tmpfs Filesystem.. 260
Architecture of the tmpfs Filesystem ... 260
File Access through tmpfs ... 261
Performance and Other Observations 261

Other Pseudo Filesystems ... 262
The UnixWare Processor Filesystem.. 262
The Translucent Filesystem ... 262
Named STREAMS... 263
The FIFO Filesystem ... 263
The File Descriptor Filesystem.. 263

Summary..264

Chapter 12 Filesystem Backup 265

Traditional UNIX Tools ... 265
The tar, cpio, and pax Commands.. 266

The tar Archive Format .. 266
The USTAR tar Archive Format.. 266
Standardization and the pax Command.............................. 268

Backup Using Dump and Restore .. 268
Frozen-Image Technology... 270

Nonpersistent Snapshots ... 270
VxFS Snapshots ... 270
Accessing VxFS Snapshots... 272
Performing a Backup Using VxFS Snapshots273
How VxFS Snapshots Are Implemented 274

Persistent Snapshot Filesystems ... 274
Differences between VxFS Storage Checkpoints
and Snapshots .. 275
How Storage Checkpoints Are Implemented276
Using Storage Checkpoints.. 277
Writable Storage Checkpoints ... 279

Block-Level Incremental Backups .. 279
Hierarchical Storage Management... 280
Summary..283

Chapter 13 Clustered and Distributed Filesystems 285

Distributed Filesystems ... 286
The Network File System (NFS) ... 286

NFS Background and History ... 286
The Version 1 and 2 NFS Protocols287

xiv Contents

NFS Client/Server Communications....................................288
Exporting, Mounting, and Accessing NFS Filesystems290
Using NFS...292
The Version 3 NFS Protocol ...292
The NFS Lock Manager Protocol...294
The Version 4 NFS Protocol and the Future of NFS...........295
The NFS Automounter ...298
Automounter Problems and the Autofs Filesystem300

The Remote File Sharing Service (RFS)300
The RFS Architecture ..301
Differences between RFS and NFS..302

The Andrew File System (AFS) ...303
The AFS Architecture..303
Client-Side Caching of AFS File Data304
Where Is AFS Now? ..305

The DCE Distributed File Service (DFS)305
DCE / DFS Architecture...306
DFS Local Filesystems...306
DFS Cache Management ..306
The Future of DCE / DFS...307

Clustered Filesystems...307
What Is a Clustered Filesystem? ...308
Clustered Filesystem Components ...309

Hardware Solutions for Clustering.......................................309
Cluster Management...309
Cluster Volume Management..310
Cluster Filesystem Management ...311
Cluster Lock Management ...313

The VERITAS SANPoint Foundation Suite...............................313
CFS Hardware Configuration..313
CFS Software Components ..314
VERITAS Cluster Server (VCS) and Agents315
Low Latency Transport (LLT)..316
Group Membership and Atomic Broadcast (GAB)317
The VERITAS Global Lock Manager (GLM)317
The VERITAS Clustered Volume Manager (CVM)317
The Clustered Filesystem (CFS) ..318
Mounting CFS Filesystems...319
Handling Vnode Operations in CFS319
The CFS Buffer Cache ...320
The CFS DNLC and Inode Cache..321
CFS Reconfiguration ...321
CFS Cache Coherency ...321
VxFS Command Coordination ..322
Application Environments for CFS.......................................322

Contents xv

Other Clustered Filesystems ...323
The SGI Clustered Filesystem (CXFS) 323
The Linux/Sistina Global Filesystem................................... 323
Sun Cluster ...323
Compaq/HP True64 Cluster ... 324

Summary..324

Chapter 14 Developing a Filesystem for the Linux Kernel 325

Designing the New Filesystem ... 326
Obtaining the Linux Kernel Source..328

What’s in the Kernel Source Tree ... 329
Configuring the Kernel .. 330
Installing and Booting the New Kernel 332

Using GRUB to Handle Bootstrap .. 333
Booting the New Kernel ... 333

Installing Debugging Support .. 334
The printk Approach to Debugging... 334
Using the SGI kdb Debugger .. 335
Source Level Debugging with gdb ...337

Connecting the Host and Target Machines 337
Downloading the kgdb Patch.. 338
Installing the kgdb-Modified Kernel.................................... 339
gdb and Module Interactions .. 340

Building the uxfs Filesystem ... 341
Creating a uxfs Filesystem... 342
Module Initialization and Deinitialization 344

Testing the New Filesystem .. 345
Mounting and Unmounting the Filesystem 346

Scanning for a Uxfs Filesystem ... 348
Reading the Root Inode.. 349
Writing the Superblock to Disk... 350
Unmounting the Filesystem .. 352

Directory Lookups and Pathname Resolution 353
Reading Directory Entries ... 353
Filename Lookup .. 354
Filesystem/Kernel Interactions for Listing Directories...........356

Inode Manipulation.. 359
Reading an Inode from Disk ...359
Allocating a New Inode ... 361
Writing an Inode to Disk ... 362
Deleting Inodes ... 363

File Creation and Link Management ... 365
Creating and Removing Directories .. 368
File I/O in uxfs ..370

Reading from a Regular File.. 371

xvi Contents

Writing to a Regular File ..373
Memory-Mapped Files ...374

The Filesystem Stat Interface...376
The Filesystem Source Code..378
Suggested Exercises ..403

Beginning to Intermediate Exercises ..403
Advanced Exercises ..404

Summary ..405

Glossary 407

References 425

Index 429

xvii

Foreword

It's over 30 years ago that the first Edition of UNIX was released. Much has
changed since those early days, as it evolved from a platform for software
development, to the OS of choice for technical workstations, an application
platform for small servers, and finally the platform of choice for mainframe-class
RISC-based application and database servers.

Turning UNIX into the workhorse for mission-critical enterprise applications
was in no small part enabled by the evolution of file systems, which play such a
central role in this Operating System. Features such as extent-based allocation,
journaling, database performance, SMP support, clustering support, snapshots,
replication, NFS, AFS, data migration, incremental backup, and more have
contributed to this.

And the evolution is by no means over. There is, of course, the ever present
need for improved performance and scalability into the realm of Pbytes and
billions of files. In addition, there are new capabilities in areas such as distributed
single image file systems, flexible storage allocation, archiving, and content-based
access that are expected to appear during the next few years.

So if you thought that file system technology had no more excitement to offer,
you should reconsider your opinion, and let this book wet your appetite.

The historical perspective offered by the author not only gives a compelling
insight in the evolution of UNIX and the manner which this has been influenced
by many parties—companies, academic institutions, and individuals—it also

xviii UNIX Filesystems—Evolution, Design and Implementation

gives the reader an understanding of why things work the way they do, rather
than just how they work.

By also covering a wide range of UNIX variants and file system types, and
discussing implementation issues in-depth, this book will appeal to a broad
audience. I highly recommend it to anyone with an interest in UNIX and its
history, students of Operating Systems and File Systems, UNIX system
administrators, and experienced engineers who want to move into file system
development or just broaden their knowledge. Expect this to become a reference
work for UNIX developers and system administrators.

Fred van den Bosch

Executive Vice President and Chief Technology Officer
VERITAS Software Corporation

xix

Introduction

Welcome to UNIX Filesystems—Evolution, Design, and Implementation, the first
book that is solely dedicated to UNIX internals from a filesystem perspective.

Much has been written about the different UNIX and UNIX-like kernels since
Maurice Bach’s book The Design of the UNIX Operating System [BACH86] first
appeared in 1986. At that time, he documented the internals of System V Release 2
(SVR2). However, much had already happened in the UNIX world when SVR2
appeared. The earliest documented kernel was 6th Edition as described in John
Lions’ work Lions’ Commentary on UNIX 6th Edition—with Source Code [LION96],
which was an underground work until its publication in 1996. In addition to these
two books, there have also been a number of others that have described the
different UNIX kernel versions.

When writing about operating system internals, there are many different topics
to cover from process management to virtual memory management, from device
drivers to networking, and hardware management to filesystems. One could fill a
book on each of these areas and, in the case of networking and device drivers,
specialized books have in fact appeared over the last decade.

Filesystems are a subject of great interest to many although they have typically
been poorly documented. This is where this book comes into play.

This book covers the history of UNIX describing how filesystems were
implemented in the early research editions of UNIX up to today’s highly scalable
enterprise class UNIX systems. All of the major changes in the history of UNIX

xx UNIX Filesystems—Evolution, Design, and Implementation

that pertain to filesystems are covered along with a view of how some of the
more well known filesystems are implemented.

Not forgetting the user interface to filesystems, the book also presents the file
and filesystem-level system call and library-level APIs that programmers expect
to see. By providing this context it is easier to understand the services that
filesystems are expected to provide and therefore why they are implemented the
way they are.

Wherever possible, this book provides practical examples, either through
programmatic means or through analysis. To provide a more practical edge to the
material presented, the book provides a complete implementation of a filesystem
on Linux together with instructions on how to build the kernel and filesystem,
how to install it, and analyze it using appropriate kernel-level debuggers.
Examples are then given for readers to experiment further.

Who Should Read This Book?

Rather than reach for the usual group of suspects—kernel engineers and
operating system hobbyists—this book is written in such a way that anyone who
has an interest in filesystem technology, regardless of whether they understand
operating system internals or not, can read the book to gain an understanding of
file and filesystem principles, operating system internals, and filesystem
implementations.

This book should appeal to anyone interested in UNIX, its history, and the
standards that UNIX adheres to. Anyone involved in the storage industry should
also benefit from the material presented here.

Because the book has a practical edge, the material should be applicable for
undergraduate degree-level computer science courses. As well as a number of
examples throughout the text, which are applicable to nearly all versions of
UNIX, the chapter covering Linux filesystems provides a number of areas where
students can experiment.

How This Book Is Organized

Although highly technical in nature, as with all books describing operating
system kernels, the goal of this book has been to follow an approach that enables
readers not proficient in operating system internals to read the book.

Earlier chapters describe UNIX filesystems from a user perspective. This
includes a view of UNIX from a historical perspective, application programming
interfaces (APIs), and filesystem basics. This provides a base on which to
understand how the UNIX kernel provides filesystem services.

Modern UNIX kernels are considerably more complex than their predecessors.
Before diving into the newer kernels, an overview of 5th/6th Edition UNIX is
described in order to introduce kernel concepts and how they relate to

TEAMFL
Y

TEAM FLY ®

Introduction xxi

filesystems. The major changes in the kernel, most notably the introduction of
vnodes in Sun’s SunOS operating system, are then described together with the
differences in filesystem architectures between the SVR4 variants and non-SVR4
variants.

Later chapters start to dig into filesystem internals and the features they
provide. This concludes with an implementation of the original System V UNIX
filesystem on Linux to demonstrate how a simple filesystem is actually
implemented. This working filesystem can be used to aid students and other
interested parties by allowing them to play with a real filesystem, understand the
flow through the kernel, and add additional features.

The following sections describe the book’s chapters in more detail.

Chapter 1: UNIX Evolution and Standardization
Because the book covers many UNIX and UNIX-like operating systems, this
chapter provides a base by describing UNIX from a historical perspective.
Starting with the research editions that originated in Bell Labs in the late 1960s,
the chapter follows the evolution of UNIX through BSD, System V, and the many
UNIX and UNIX-like variants that followed such as Linux.

The latter part of the chapter describes the various standards bodies and the
standards that they have produced which govern the filesystem level interfaces
provided by UNIX.

Chapter 2: File-Based Concepts
This chapter presents concepts and commands that relate to files. The different
file types are described along with the commands that manipulate them. The
chapter also describes the UNIX security model.

Chapter 3: User File I/O
Moving down one level, this chapter describes file access from a programmatic
aspect covering the difference between library-level functions and system calls.
Building on the six basic system calls to allocate files, seek, read, and write file
data, the chapter then goes on to describe all of the main file related functions
available in UNIX. This includes everything from file locking to asynchronous
I/O to memory mapped files.

Examples are given where applicable including a simple implementation of
UNIX commands such as cat, dd, and cp.

Chapter 4: The Standard I/O Library
One part of the UNIX API often used but rarely described in detail is the standard
I/O library. This chapter, using the Linux standard I/O library as an example,
describes how the library is implemented on top of the standard file-based system
calls.

xxii UNIX Filesystems—Evolution, Design, and Implementation

The main structures and the flow through the standard I/O library functions
are described, including the various types of buffering that are employed.

Chapter 5: Filesystem-Based Concepts
This chapter concludes the user-level angle by describing the main features
exported by UNIX for creation and management of filesystems.

The UNIX filesystem hierarchy is described followed by a description of disk
partitioning to produce raw slices or volumes on which filesystems can then be
created. The main commands used for creating, mounting and managing
filesystems is then covered along with the various files that are used in mounting
filesystems.

To show how the filesystem based commands are implemented, the chapter
also provides a simple implementation of the commands mount, df, and fstyp.

Chapter 6: UNIX Kernel Concepts
Today’s UNIX kernels are extremely complicated. Even operating systems such
as Linux have become so large as to make study difficult for the novice.

By starting with 5th Edition, which had around 9,000 lines of code in the whole
kernel, this chapter presents the fundamentals of the kernel from a filesystem
perspective. Main concepts such as the inode cache, buffer cache, and
process-related structures are covered followed by a description of how simple
operations such as read() and write() flow through the kernel.

The concepts introduced in these early kernels are still as relevant today as
they were when first introduced. Studying these older kernels therefore presents
the ideal way to learn about the UNIX kernel.

Chapter 7: Development of the SVR4 VFS/Vnode Architecture
Arguably the most significant filesystem-related development in UNIX was the
introduction of the VFS/vnode architecture. Developed by Sun Microsystems in
the mid 1980s, the architecture allowed support for multiple, different filesystem
types to reside in the kernel simultaneously.

This chapter follows the evolution of this architecture from its first
introduction in SunOS through to SVR4 and beyond.

Chapter 8: Non-SVR4-Based Filesystem Architectures
Although the VFS/vnode architecture was mirrored in the development of many
other of the UNIX variants, subtle differences crept in, and some versions of
UNIX and UNIX-like operating systems adopted different approaches to solving
the problems of supporting different filesystem types.

This chapter explores some of the VFS/vnode variants along with non-VFS
architectures ranging from microkernel implementations to Linux.

Introduction xxiii

Chapter 9: Disk-Based Filesystem Case Studies
By choosing three different filesystem implementations, the VERITAS Filesystem
(VxFS), the UFS filesystem, and the Linux-based ext2/3 filesystems, this chapter
explores in more detail the type of features that individual filesystems provide
along with an insight into their implementation.

Chapter 10: Mapping Filesystems to Multiprocessor Systems
The UNIX implementations described in earlier chapters changed considerably
with the introduction of Symmetric Multiprocessing (SMP). Because multiple
threads of execution could be running within the kernel at the same time, the
need to protect data structures with finer and finer grain locks became apparent.

This chapter follows the evolution of UNIX from a monolithic design through
to today’s highly scalable SMP environments and describes the types of locking
changes that were added to filesystems to support these new architectures.

Chapter 11: Pseudo Filesystems
In addition to the traditional disk-based filesystems, there are a number of pseudo
filesystems that, to the user, appear similar to other filesystems, but have no
associated physical storage. Filesystems such as /proc and device filesystems
such as specfs have become common across many versions of UNIX.

This chapter describes some of the more well-known pseudo filesystems. For
the /proc filesystem, the chapter shows how debuggers and trace utilities can be
written together with an example of how the UNIX ps command can be written.

Chapter 12: Filesystem Backup
Another area that is typically not well documented is the area of filesystem
backup. This chapter describes some of the backup techniques that can be used to
back up a set of files or whole filesystems, and the various archiving tools such as
tar, and the dump/restore utilities. The main part of the chapter describes frozen
image techniques that show how persistent and non persistent snapshot
technologies can be used to obtain stable backups.

Chapter 13: Clustered and Distributed Filesystems
This chapter describes both distributed filesystems and clustered filesystems. For
distributed filesystems, the chapter covers the development of NFS through its
early adoption to the features that are being implemented as part of NFS v4.
Other distributed filesystems such as AFS and DFS are also described.

The components required to build a clustered filesystem using Storage Area
Networks (SANs) is then covered followed by a description of the various
components of the VERITAS Clustered Filesystem.

xxiv UNIX Filesystems—Evolution, Design, and Implementation

Chapter 14: Developing a Filesystem for the Linux Kernel
In order to understand how filesystems are implemented and how they work, it
is best to play with an existing filesystem and see how it works internally and
responds to the various file-related system calls. This chapter provides an
implementation of the old System V filesystem on the Linux kernel. By showing
how to utilize various kernel debuggers, the chapter shows how to analyze the
operation of the filesystem.

There are a number of features omitted from the filesystem that are left for the
reader to complete.

Typographical Conventions

All of the program listings, UNIX commands, library functions, and system calls
are displayed in a fixed-width font as shown here.

Many examples are shown that have required keyboard input. In such cases,
all input is shown in a bold, fixed-width font. Commands entered by the
superuser are prefixed with the # prompt while those commands which do not
require superuser privileges are prefixed with the $ prompt.

Shown below is an example of user input:

$ ls -l myfile
-rw-r--r- 1 spate fcf 0 Feb 16 11:14 myfile

Accessing Manual Pages

The internet offers the opportunity to view the manual pages of all major
versions of UNIX without having to locate a system of that type. Searching for
manual pages, say on Solaris, will reveal a large number of Web sites that enable
you to scan for manual pages, often for multiple versions of the operating
system. The following Web site:

http://unix.about.com/library/misc/blmanpg.htm

contains pointers to the manual pages for most versions of UNIX and Linux.
Manual pages contain a wealth of information, and for those who wish to learn

more about a specific operating system, this is an excellent place to start.

Acknowledgements

First of all I would like to thank VERITAS for allowing me to work a 4-day week
for more than a year, while spending Fridays working on this book. In particular,
my manager, Ashvin Kamaraju, showed considerable patience, always leaving it

Introduction xxv

to my judgement to balance book time and work time. He finally gets those
Fridays back!

Next I would like to thank Marianne Lent who reviewed the book from a
technical perspective but also helped to make it more readable. Thanks also to Pat
Carri for help on FrameMaker.

Dheer Moghe reviewed the chapter on clustered filesystems and Amit Kale
was gracious enough to allow me to steal his makefiles which I used for uxfs.

Finally, I would like to thank my better half, Eleanor, for her patience over the
last 18 months. It will certainly be nice for The book not to dominate the
conversation. Well, until the next one!

CHAPTER

1

1

UNIX Evolution and
Standardization

This chapter introduces UNIX from a historical perspective, showing how the
various UNIX versions have evolved over the years since the very first
implementation in 1969 to the present day. The chapter also traces the history of
the different attempts at standardization that have produced widely adopted
standards such as POSIX and the Single UNIX Specification.

The material presented here is not intended to document all of the UNIX
variants, but rather describes the early UNIX implementations along with those
companies and bodies that have had a major impact on the direction and
evolution of UNIX.

A Brief Walk through Time

There are numerous events in the computer industry that have occurred since
UNIX started life as a small project in Bell Labs in 1969. UNIX history has been
largely influenced by Bell Labs’ Research Editions of UNIX, AT&T’s System V
UNIX, Berkeley’s Software Distribution (BSD), and Sun Microsystems’ SunOS
and Solaris operating systems.

The following list shows the major events that have happened throughout the
history of UNIX. Later sections describe some of these events in more detail.

2 UNIX Filesystems—Evolution, Design, and Implementation

1969. Development on UNIX starts in AT&T’s Bell Labs.

1971. 1st Edition UNIX is released.
1973. 4th Edition UNIX is released. This is the first version of UNIX that had

the kernel written in C.

1974. Ken Thompson and Dennis Ritchie publish their classic paper, “The
UNIX Timesharing System” [RITC74].

1975. 6th Edition, also called V6 UNIX, becomes the first version of UNIX to be
used outside Bell Labs. The University of California at Berkeley starts
development on the Berkeley Software Distribution or more commonly called
BSD.

1977. At this stage there were 500 sites running UNIX. Universities accounted
for about 20 percent of those sites.

1979. 7th Edition UNIX was rewritten to make it more portable. Microsoft
licenses 7th Edition and starts development of Xenix.

1980. Microsoft releases Xenix, a PC-based version of UNIX.
1982. AT&T’s UNIX Systems Group releases System III UNIX. The Santa Cruz

Operation (SCO) licenses Xenix from Microsoft.

1983. AT&T’s UNIX System Development Labs release System V Release 1
UNIX.

1984. 4.2BSD is released including TCP/IP. System V Release 2 is released and
the number of installations of UNIX worldwide exceeds 100,000. Digital
Equipment Corporation’s (DEC’s) 4.2BSD-based Ultrix is released.

1986. 4.3BSD is released. 4.2BSD-based HP-UX first appears. IBM releases AIX
2 for the RT server.

1987. AT&T releases System V Release 3, which includes STREAMS, the
Network File System (NFS), and the Transport Level Interface (TLI).

1989. As a joint venture between AT&T’s Unix System Laboratories (USL) and
Sun Microsystems, System V Release 4.0 is released.

1990. Based on SVR2 with enhancements from 4.2BSD and 4.3BSD, IBM
releases AIX 3.1.

1991. Linus Torvalds announces Linux 0.0.1.
1992. USL releases System V Release 4.2 that includes the VERITAS filesystem

VxFS and Volume Manager VxVM.

1993. 4.4BSD, the last release from Berkeley, is released. SVR4.2MP is released
by Novell following their purchase of USL from AT&T.

1994. 4.4BSD Lite, which was free of copyrighted UNIX source code, is
released.

1995. SCO buys Novell’s UNIX business.
1996. The Linux 2.0 kernel is released.

1997. UnixWare 7, a merge of SVR4.2MP and SCO OpenServer, is released.

UNIX Evolution and Standardization 3

2001. SCO’s UNIX business is sold to Linux distributor Caldera. The Linux 2.4
kernel emerges after many delays.

How Many Versions of UNIX Are There?

Most versions of UNIX have stemmed from System V or BSD, with many taking
enhancements from both. The 1980s saw a proliferation of versions of UNIX.
Although it is difficult to give an exact figure on how many versions of UNIX
have actually been produced, by the late 1980s it is safe to say that there were
close to 100 different UNIX variants employed throughout the world. It is no
wonder why UNIX has had its critics and not surprising that attempts at
standardization have proceeded for much of UNIX’s history.

Developing operating systems is a costly business, however, which has
resulted in consolidation throughout the mid to late 1990s. On the low end, Linux
and SCO variants tend to dominate while in the mid to high-end, Sun’s Solaris,
Hewlett Packard’s HP-UX, and IBM’s AIX account for most of the market share.

As time goes by there is likely to be further consolidation at the low to
mid-range of PCs, workstations, and servers with Linux clearly leading the way.
UNIX is still a clear leader at the high end of the market with Sun, HP, and IBM all
having enterprise level capabilities in their UNIX offerings. While it is difficult to
see further consolidation at this end of the market, only time will tell.

Why Is UNIX So Successful?

Although the large number of different versions of UNIX can be considered a
weakness since it raised the possibility of incompatibilities, it also demonstrates
one of the great strengths of UNIX: the ease by which UNIX has been ported to a
wide number of different hardware architectures and platforms, a task that was
addressed very early on during development at Bell Labs.

Even though the number of versions of UNIX increased dramatically over the
years, porting applications between one version and the next was still
considerably easier than porting between one proprietary OS and the next. This
task has been made easier by the introduction of relevant standards that nearly all
of the major UNIX vendors have adopted. No other operating system can claim
this level of dominance across such a wide range of platforms. The proliferation of
UNIX resulted in a huge amount of development pushing UNIX way ahead of its
nearest proprietary competitors.

The Early Days of UNIX

The research arm of the Bell Telephone Company, Bell Labs, had seen the need for
a new computer operating system in the late 1950s. This resulted in the BESYS

4 UNIX Filesystems—Evolution, Design, and Implementation

operating system which, although used internally, had limited distribution
outside of Bell Labs. By the mid 1960s, third-generation computer equipment
was emerging and the people at Bell Labs had to decide whether to create a new
operating system or to adopt a third party OS. The decision was eventually made
to join General Electric and MIT to create a new timesharing system called the
MULTIplexed Information and Computing Service (MULTICS). This collaborative
venture aimed to show that general purpose, multiuser operating systems were a
viable solution. Based on a research operating system from MIT called the
Compatible Time Sharing System (CTSS), the MULTICS project resulted in a wide
range of new approaches. Amongst those working on MULTICS were Bell Lab
researchers Ken Thomson and Dennis Ritchie, who would take many of the ideas
from MULTICS and evolve them into what would become UNIX. As an example,
many of the UNIX commands were based on commands of the same name in
MULTICS, namely ls, cd, and pwd. Due to the high cost of development and the
amount of time that it was believed MULTICS would take to complete, AT&T
withdrew from the MULTICS project in 1969.

On an internal GE-645 computer at Bell Labs, the GECOS operating system
was installed, which proved inadequate to many of the researchers. For many
this was seen as being back at square one. This resulted in a proposal by
Thompson and Ritchie to get Bell Labs to buy a new machine so they could start
work on their own interactive time-sharing system. The proposal was rejected
and Thompson started work on an old PDP-7. Developing initially on a GE-635,
Thompson produced a primitive kernel, assembler, shell, and a few utilities (rm,
cat, cp) that were then transported to the PDP-7 by paper tape. Even at this
stage the new primitive OS was sufficient for all further development to proceed
on the PDP-7 itself. As a pun on MULTICS, the new environment was named
UNIX.

In 1970 the UNIX pioneers acquired a DEC PDP-11 that was initially diskless
and had 24KB of memory. They used 12KB for the operating system, allowed a
small amount of space for user programs, and the rest was used as a RAM disk. It
was around this time that the first 1st Edition UNIX appeared.

The Early History of the C Language
Following the early assembler versions of UNIX, Thompson worked on a Fortran
compiler that evolved to support the language B, a cut-down version of BCPL.
The B compiler was provided as part of 1st Edition UNIX in 1971, and some of
the first utilities were even written in B. It was Ritchie’s work over the next two
years that resulted in the first C compiler, which became part of 3rd Edition
UNIX in 1973. Note that it would still be another 5 years before the appearance of
Kernighan and Ritchie’s book, The C Programming Language [KERN78]. Following
an abortive attempt by Thompson to write part of the kernel in an early version
of C which did not support structures, by 4th Edition UNIX that appeared in
1973, Thompson and Ritchie had rewritten the kernel in C.

TEAMFL
Y

TEAM FLY ®

UNIX Evolution and Standardization 5

Research Editions of UNIX
There were a total of ten research editions of UNIX from Bell Labs. Perhaps the
most famous was 6th Edition UNIX which was described in John Lions’ book
Lions’ Commentary on UNIX 6th Edition [LION96], which until it was published in
1996 remained an underground work. One thing that distinguished each research
edition was the introduction of a new Programmer’s Reference Manual. Following is
a brief summary of the different research editions and which UNIX features they
introduced:

1st Edition—1971. As well as the B compiler, 1st Edition UNIX introduced a
number of well-known UNIX commands including cat, chdir, chmod,
chown, cp, ed, find, mkdir, mkfs, mount, mv, rm, rmdir, wc, and who.

2nd Edition—1972. One amusing note on 2nd Edition was a comment in the
Programmer’s Reference Manual that the number of UNIX installations had
now grown to 10!

3th Edition—1973. The UNIX C compiler (cc) first appeared. The kernel was
still written in assembler and the number of installations had grown to 16.
Pipes were also introduced.

4th Edition—1973. The kernel was rewritten in C.

5th Edition—1974. This edition appeared around the time of Thompson and
Ritchie’s paper “The UNIX Time Sharing System” [RITC74]. The source code
was made freely available to universities for educational purposes.

6th Edition—1975. This edition, also known as V6, was the first edition widely
available outside of Bell Labs. Most of the operating system by this time had
been written in C.

7th Edition—1979. The first K&R (Kernighan and Ritchie) compliant C
compiler made its appearance with 7th edition together with Steve Bourne’s
shell (sh). The kernel was rewritten to make it more portable to other
architectures. At this time the UNIX Systems Group was created and started
working on enhancing 7th Edition (on which System V UNIX would be
based). Microsoft also licensed 7th Edition, which it used to develop the
Xenix operating system. Note that the size of the 7th Edition kernel was only
40KB, a tiny program by today’s standards.

8th Edition—1985. 8th Edition UNIX picked up some enhancements developed
from 4.1BSD. This edition was used as the basis for System V Release 3.

9th Edition—1988. This edition picked up enhancements made for 4.3BSD.
10th Edition—1989. This was the last edition.

AT&T’s Commercial Side of UNIX
In the late 1960s, while Bell Labs was looking for a new timesharing system, the
Bell Telephone company was looking for a way to automate their telephone

6 UNIX Filesystems—Evolution, Design, and Implementation

operations using minicomputers to switch over from their existing system of
people and paper.

It was Berkley Tague, the head of the computer planning department, who,
having seen the capabilities of UNIX, realized its potential and saw how it could
ease their job. By 1971 Tague gained approval for the adoption of UNIX to
support Bell Telephone operations. By 1973 he formed the UNIX Support Group
(USG) which worked closely with the UNIX team from Bell Labs. During the
same year, the first UNIX applications started to appear, initially involved in
updating customer directory information and intercepting calls to phone
numbers that had been changed. 1973 also saw the first C version of UNIX
released internally together with the first Programmer’s Work Bench, which
included sccs and other tools.

Around the time of 7th Edition UNIX, USG took responsibility for UNIX and
after a number of internal-only releases, System III UNIX became the first version
of UNIX that was available for use outside Bell Labs.

USG later became the UNIX System Development Laboratory (USDL). In 1984,
this group released System V Release 2 (SVR2) which was the first version of
UNIX to support paging, copy-on-write semantics, shared memory, and file
locking. SVR2 UNIX is described in Bach’s classic book The Design of the UNIX
Operating System [BACH86]. At this time there were about 100,000 installations of
UNIX worldwide running on a whole host of different platforms and
architectures. The fact that no other operating system had achieved this goal was
perhaps the single greatest reason why UNIX became so popular.

Following yet another name change to AT&T Information Systems (ATTIS), the
group released System V Release 3 (SVR3) in 1987. This included a number of
enhancements:

■ The File System Switch (FSS) provided an architecture under which
multiple filesystems could coexist in the kernel at the same time. The FSS
provided a layer by which the rest of the kernel could perform file and
filesystem related operations in a filesystem independent manner through
a well defined interface.

■ The RFS (Remote File Sharing) filesystem provided a fully distributed,
cache-coherent file system.

■ The STREAMS subsystem for building networking stacks. The initial
implementation of STREAMS was first introduced in 8th Edition UNIX.

■ The Transport Layer Interface (TLI) for network programming.

■ Shared libraries which can reduce the amount of memory used.

System V Release 3.2 was released in 1987 which involved a merge of SVR3 and
Xenix, produced by Microsoft and the Santa Cruz Operation (SCO).

One of the major releases of UNIX from AT&T was System V Release 4 in
conjunction with Sun Microsystems. This is described in more detail in the
section System V Release 4 and Variants later in the chapter.

UNIX Evolution and Standardization 7

The Evolution of BSD UNIX

Following Thompson and Ritchie’s paper on UNIX at the Symposium on
Operating System Principles in 1974, Bob Fabry, a professor at the University of
California at Berkeley wanted to get a copy to experiment with.

After buying a PDP 11/45, he received the tapes for 4th Edition UNIX which
was installed in 1974. Due to disk related problems, Ken Thompson spent time
dialed in over a modem debugging the system.

Following the purchase of a Vax 11/70 in 1975, Ken Thompson started a
sabbatical at Berkeley during which time he brought up 6th Edition. Around this
time, graduate students Bill Joy and Chuck Haley arrived and started working on
the newly installed system, initially enhancing a Pascal system that Thompson
had put together. The same year, they produced the ex editor and started
working on the kernel following the departure of Thompson back to Bell Labs.

Following requests for the Pascal environment, Bill Joy put together the
Berkeley Software Distribution (consider this as 1BSD) in 1977 and distributed thirty
copies. Soon after, Joy wrote the vi editor, still hugely popular 25 years later.

In 1978 Joy released the second Berkeley Software Distribution which became
known as 2BSD. This included an updated Pascal system, the vi editor, and
termcap which could be used for driving multiple different terminal types, a
must for supporting vi.

Needing more power, a Vax 11/780 was purchased and the 32/V port of UNIX,
initiated at Bell Labs, was installed. Following a number of enhancements to
make use of the new virtual memory capabilities of the machine, Joy started
porting 2BSD to produce the third Berkeley distribution, 3BSD, which was
released in 1979.

Around this time, DARPA (Defense Advanced Research Projects Agency) decided
to standardize on UNIX in order to provide a network to link their major research
centers. Based on Fabry’s proposal to DARPA and the ensuing success of 3BSD,
an 18 month contract was awarded to Berkeley. Fabry set up the Computer Systems
Research Group (CSRG) to handle the contract and research. Bill Joy came on board
and set to work on what would become 4BSD. Released in 1980, the new system
included the Pascal compiler, job control, auto reboot, and a 1KB size filesystem.
Joy then released 4.1BSD which contained numerous performance improvements
to the kernel.

Following renewal of the contract by DARPA, the new project would produce
what would become the Berkeley Fast File System, support for large virtual address
spaces and better IPC mechanisms. The TCP/IP stack was integrated into BSD
and a number of temporary tools were introduced on top of the networking stack.
These temporary tools, namely rcp, rsh, rlogin, and rwho are a little more
permanent than their original authors anticipated, still being used today.

Following Bill Joy’s departure in 1982 to co-found Sun Microsystems, 4.2BSD
was released in 1983. Due to the introduction of TCP/IP and the Fast File System,
the number of 4.2BSD installations far exceeded System V from AT&T.

8 UNIX Filesystems—Evolution, Design, and Implementation

Following criticism of 4.1BSD performance, a two year period of tuning and
refining produced 4.3BSD which was released in 1986. Two years later,
completing the work started by Joy to divide the BSD kernel into machine
dependent and machine independent layers, CSRG released the finished work
under 4.3BSD-Tahoe. Further development which resulted in a rewrite of the
virtual memory subsystem, based on the Mach microkernel, together with NFS,
produced 4.3BSD-Reno in 1990.

BSD Networking Releases
To avoid BSD recipients having to obtain an AT&T source license while wanting
to have source access to the networking components of BSD, the Networking
Release of BSD was released in 1989. An expanded version, which involved
rewriting all except six kernel files, was distributed as the Networking Release 2
in 1991. This involved a huge effort by many people.

Bill Jolitz continued the work by rewriting the remaining six kernel files to
avoid AT&T copyrighted source code and porting the system to the Intel 386,
resulting in 386/BSD which was distributed over the internet.

UNIX Goes to Court
Following the Net/2 release of BSD, the Berkeley Software Design, Incorporated
(BSDI) company was formed to develop a fully supported, commercial version.
The BSDI version, released in 1992, included replacements for the six kernel files,
was considerably cheaper than System V UNIX from USL, and used UNIX as
part of the telephone number in their advertisements to call for questions. This
was followed by a lawsuit from AT&T, initially aiming to prevent BSDI from
promoting their product as UNIX. This was then followed by an additional
lawsuit that claimed that the BSDI version contained proprietary USL source
code and secrets.

While the lawsuit continued, USL was purchased by Novell in 1993. Novell
founder and CEO, Ray Noorda, wanted to drop the lawsuit and in 1994 an
agreement was finally reached. As part of the agreement, 5 of the 18,000 files that
made up the distribution were removed. With some minor changes to other files
and the addition of copyright notices in an additional 70 files, the new,
4.4BSD-Lite version was released.

The NetBSD Operating System
386/BSD was extremely successful. Unfortunately Jolitz was unable to work full
time and keep up with his work on 386/BSD. Frustrated with the way that
development of 386/BSD was progressing, others started working on a parallel
development path, taking a combination of 386BSD and Net/2 and porting it to
large array of other platforms and architectures.

UNIX Evolution and Standardization 9

The FreeBSD Operating System
Following work on Jolitz’s 386/BSD system, Jordan Hubbard, Rod Grimes, and
Nate Williams released the Unofficial 386BSD Patchkit which contained a number
of changes. Jolitz denounced approval of the project in 1993, which was followed
by discussions between Hubbard and Walnut Creek to produce a new operating
system, which they called FreeBSD. The first CDROM version of FreeBSD, version
1.0, was released in December of 1993.

Following the USL lawsuit, the base operating system was upgraded from
Net/2 to 4.4BSD-Lite, which resulted in the release of FreeBSD 2.0 in November of
1994. Enhancements continue to be added with the latest stable release being
FreeBSD 4.2.

FreeBSD has been relatively successful on its own ground. It was also used as
the basis for Apple’s Mac OS X operating system.

The OpenBSD Operating System
Following a disagreement between Theo de Raadt, who had been responsible for
the SPARC port of NetBSD, and the NetBSD core team, de Raadt founded
OpenBSD. The new OS started to diverge from NetBSD 1.1 in 1995 and this was
followed by the first release, OpenBSD 3.0 in October of 1996. The core focus of
OpenBSD was security.

Although not as portable as NetBSD, OpenBSD still runs on a wide range of
machines and architectures and continues to lead the way as the most secure BSD
release available.

Sun Microsystems and SunOS

Sun Microsystems was founded in 1982 by four people including current CEO
Scott McNeally and BSD developer Bill Joy. In their first year they released their
first workstation based on hardware developed at Stanford University and on the
BSD operating system.

Sun has continued from day one to innovate and enhance UNIX. In order to
provide remote file access they introduced the Network File System (NFS) and the
VFS/vnode architecture to support it.

In 1987 Sun and AT&T joined forces to develop UNIX System V Release 4,
which combined the best of SunOS and System V Release 3.2. SVR4 encompassed
many of the ideas that Sun had implemented including VFS/vnodes, NFS, and
their virtual memory architecture, which cleanly divides memory management
into machine dependent and machine independent layers. Sun, together with
IBM and HP, continues to take UNIX to the enterprise, continually enhancing
their UNIX offerings while retaining compatibility at the standards level.

10 UNIX Filesystems—Evolution, Design, and Implementation

System V Release 4 and Variants

System V Release 4 set the standard for everyone else to follow producing an
extremely feature-rich operating system that combined the best of the historical
versions of UNIX with many new ideas from Sun. The following list shows some
of the major enhancements that came with SVR4:

■ The VFS/vnode architecture that replaced the FSS from SVR3. The
VFS/vnode architecture was originally developed as part of SunOS.

■ Symbolic links.

■ The C and Korn Shells along with job control.

■ Memory mapped files.

■ The UFS filesystem derived from the BSD Fast File System. UFS became the
defacto standard on most versions of UNIX. It is still the default filesystem
on Solaris and is still undergoing major development. SVR4 also included
the NFS filesystem. At this stage, the largely unsuccessful RFS was starting
to fade.

■ STREAMS-based console and TTY (teletype) management.

■ Real-time scheduling and a partial implementation of kernel
preemption.

Enhancements continued thereafter. SVR4.1 included Asynchronous I/O. SVR4.2
included Access Control Lists (ACLs), the VERITAS Filesystem (VxFS), and
VERITAS Volume Manager (VxVM). Following this, with a major rewrite,
SVR4.2MP introduced Symmetric Multiprocessing (SMP) capabilities and kernel
threads.

Novell’s Entry into the UNIX Market

The UnixWare 1.0 release of UNIX was released in 1992 as a joint venture
between Novell and USL under the name Univel. Novell completed the
acquisition of USL in 1993, and both USL and Univel were merged to form the
Novell UNIX Systems Group.

UnixWare 1.0 was based on SVR4.0. This was followed by UnixWare 1.1, which
was based on SVR4.2. With the introduction of UnixWare 2.0, the kernel
(SVR4.2MP) had changed significantly, introducing SMP support and kernel
threads.

In 1993 Novell transferred the rights to the UNIX trademark to the X/Open
organization (now the Open Group). Two years later they sold their UNIX
business to SCO who in turn sold a dwindling UNIX business to Caldera in 2001.

UNIX Evolution and Standardization 11

Linux and the Open Source Movement

One could argue that if readers didn’t have to purchase Andrew Tanenbaum’s
MINIX operating system that accompanied his book Operating Systems: Design and
Implementation [TANE87], there would be no Linux.

However, the Free Software Foundation, founded by Richard Stallman, had
already been working for a number of years on a free version of UNIX. The
compiler, utilities, and just about everything except the kernel had been written
under the auspices of the GNU license which allowed the source to be freely
distributed.

Linus Torvalds, a research assistant at the University of Helsinki in Finland,
released Linux 0.0.1 in August of 1991, and the rest, as they say, is history.
Popularity of Linux continues to grow. Although it originally took many of its
ideas from Minix, Linux has been influenced by all versions of UNIX and
non-UNIX systems. Linux followed in the success of UNIX by being ported to just
about every hardware architecture and platform available from IBM mainframes
down to hand-held organizers.

Users of Linux will find a number of components from many different authors
and organizations. A Linux OS is comprised of the Linux kernel, much of the Free
Software Foundation’s GNU software, and a number of other free applications
and utilities. There are many distributors of Linux, with the top players being Red
Hat, SuSe, TurboLinux, and Caldera.

UNIX Standardization

The section A Brief Walk through Time earlier in the chapter showed how the
different versions of UNIX came into existence through the 1980s. Although most
of these versions stemmed from either System V or BSD, each OS vendor added
its own enhancements, whether to increase performance or add new interfaces in
response to internal or customer demands. Because application portability was
crucial to the success of application developers, it soon became clear that a level of
standardization was needed to prevent this divergence from going too far.

Various bodies have been responsible for driving the standardization of UNIX
interfaces, whether at a command level, library, or system call level; or newer
initiatives such as the Large File Summit for 64-bit file access and the Data
Management Interfaces Group (DMIG) for interfaces relating to Hierarchical
Storage Management. This section describes the main standards bodies, their
goals, and the standards that they have produced.

IEEE and POSIX
The /usr/group organization was formed by a group of individuals in 1980 with
the intention of standardizing user-level interfaces with the goal of application
portability.

12 UNIX Filesystems—Evolution, Design, and Implementation

They reached consensus in 1984, and their work was used by the ANSI X3J11
committee, the same group who were working on standardization of the C
language. As the number of versions of UNIX started to increase, divergence
continued, and the /usr/group standard became less and less effective. This led
to the formation of the Portable Operating System Interface for Computing
Environments (POSIX) in 1995 which used the /usr/group standard as its base
working document. As a point of interest, the name POSIX was suggested by
Richard Stallman, founder of the Free Software Foundation (FSF).

The standard produced by this group, POSIX 1003.1-1998 became the most
widely recognized standard throughout the UNIX industry and is available on
many non-UNIX platforms. The initial standard was revised throughout the next
three years and adopted by the Institute of Electrical and Electronics Engineers
(IEEE) organization to become IEEE Std 1003.1-1990 although it is still more
commonly known as POSIX.1 or simply the POSIX standard. In 1989 the
/usr/group changed its name to Uniforum.

The POSIX working committees did not stop there and produced a number of
other standards of which some are shown in Table 1.1.

The X/Open Group
With the same goals as the /usr/group, a number of European computer
companies formed a non profit organization in 1984 called X/Open.

Although many of the players were not specifically UNIX based, application
portability was still key. The first published standard from X/Open was the
X/Open Portability Guide (XPG). The third draft of this standard, XPG3, included
both POSIX 1003.1-1998 and a number of interfaces pertaining to the X Window
System. The XPG3 test suite contained over 5,500 different tests that exercised
system calls, library interfaces, and the C language.

The XPG4 standard was released in October of 1992. This encompassed not
only POSIX.1, but also POSIX.2 and ISO C. A successful branding program was
put in place so that companies could claim XPG4 compliance.

The System V Interface Definition
The UNIX System Group (USG) released the System V Interface Definition (SVID)
version 1 with System V Release 2 in 1994. The SVID was a two-volume book that
described all user accessible interfaces that were available with SVR2. SVID
version 2 accompanied SVR3 in 1996.

With the introduction of SVR4 in 1989, version 3 of the SVID became available,
this time a four-volume set. To accompany the SVID, USG produced SVVS, the
System V Verification Suite, an exhaustive test suite that exercised all of the visible
interfaces. Any vendors licensing System V were required to run and pass SVVS
in order to use the name System V.

Since by this stage the SVID effectively encompassed the POSIX.1 standard, it
was used as the main document in producing what would become the Single
UNIX Specification.

UNIX Evolution and Standardization 13

Spec 11/70 and the Single UNIX Specification
In order to combine the existing UNIX standards such as POSIX.1 and XPG4, a
group was formed by Sun Microsystems, HP, IBM, Novell/USL, and the Open
Software Foundation (OSF) to provide a single unified standard based on existing
standards and additional features provided by the different UNIX versions. Using
XPG4 as a base which already encompassed POSIX.1 and ANSI/ISO C, a
collection of 1,170 APIs were specified in total, and thus the name Spec 11/70 was
given to the group and the specification.

The Spec 11/70 API was delivered to X/Open in 1983 resulting in the Single
UNIX Specification, which was published in 1994. Various names have since
followed this publication including UNIX 95 and the enhanced version renamed
UNIX 98.

The standard is still maintained by the Open Group which was formed by a
merge of X/Open and OSF. The Single UNIX Specification can be viewed online
at www.opengroup.org.

The main components of the Single UNIX Specification are:

System Interface Definitions (XBD). This document outlines common
definitions used in the XSH and XCU documents.

System Interfaces and Headers (XSH). This document describes all
programming interfaces and all header files. Most of the text provides UNIX
manual style representations for each API.

Commands and Utilities (XCU). This document describes all of the commands
and utilities in a UNIX manual page style format.

Networking Services. This document describes the X/Open Transport
Interface (XTI), XPG4 sockets, and the IP address resolution interfaces.

X/Open Curses. This document describes X/Open version 3 curses.

UNIX International and OSF
The Open Software Foundation (OSF) was founded in 1988 by seven leading
computer companies with the goal of producing an operating system together
with an open and portable application environment.

As a reaction to OSF and with a consortium of over 200 vendors and users,

Table 1.1 POSIX Standards

STANDARD DESCRIPTION

1003.1 System call and library routines

1003.2 The shell and UNIX utilities

1003.3 Test methods and conformance

1003.4 Real-time interfaces

14 UNIX Filesystems—Evolution, Design, and Implementation

UNIX International (UI) was founded in 1988 centered around AT&T’s SVR4
version of UNIX. The goals of the organization were to drive the direction for
SVR4 although in reality, UI turned out to be more of a marketing machine with
little actual output. Within a few years, UI was dissolved, and the direction of
SVR4 was left to Novell/USL and then SCO.

Both OSF and UI achieved some notable successes. The big battle predicted
between the two never happened in reality. Through USL, UI pushed the SVID
version 3, which became the basis for the Single UNIX Specification. OSF merged
with X/Open to form the Open Group which still maintains the Single UNIX
Specification today along with other UNIX related standards.

The Data Management Interfaces Group
A small number of independent software and hardware vendors were
developing Hierarchical Storage Management (HSM) solutions, which involved
modifications to the base UNIX kernel (see the section Hierarchical Storage
Management in Chapter 12 for further details). Following publication of Neil
Webber’s USENIX paper “Operating System Support for Portable Filesystem
Extensions” [WEBB93], a group of HSM, backup, OS, and filesystem vendors
formed the Data Management Interfaces Group (DMIG) with the goal of
producing an interface specification that the OS/filesystem vendors would
implement to prevent the constant rewrite of HSM software with each iteration
of the operating system.

X/Open adopted the Data Management API (DMAPI) and renamed it XDSM
(X/Open Data Storage Management).

The standard allows for applications to transparently migrate data from the
filesystem (termed secondary storage) to tape or other offline storage devices
(tertiary storage) bypassing the UNIX timestamping mechanisms and without
knowledge of user-level applications. This allows HSM applications to achieve a
virtual memory-like approach to storage.

The Large File Summit
32-bit operating systems imposed limits on the size of files that could be accessed
due to limits imposed at various layers throughout the operating system, not
least the fact that the value that could be held in a signed integer, the maximum
value that could be held in a size_t, was limited to 2GB -1.

To provide an intermediate solution that could allow access to files greater
than 2GB before the advent of 64-bit operating systems, the Large File Summit, a
group of operating system and filesystem vendors, was formed to produce a
specification that introduced a new set of data types and APIs that allowed for
large file access.

Applications could access large files, files greater than 2GB, by either invoking
64-bit versions of the system calls or via compile time flags that switched the size

TEAMFL
Y

TEAM FLY ®

UNIX Evolution and Standardization 15

of various data types. At the time of writing, much of this is now a moot point
with 64-bit file access being the norm in UNIX.

Summary

This chapter highlighted the main events that show how the different versions of
UNIX have evolved and where specific pieces of technology have come from. The
history of UNIX could fill a book by itself. Indeed, Peter Salus’ book A Quarter
Century of UNIX [SALU96] describes UNIX history from 1969 to 1994.

Programmers wishing to follow UNIX standards should adhere to the Single
UNIX Specification when striving for application compatibility across all the
major versions of UNIX. Although Linux does not comply completely with the
specification, most interfaces are supported. At a very minimum, the POSIX
interfaces are supported by just about every operating system, UNIX and
non-UNIX alike.

CHAPTER

2

17

File-Based Concepts

To gain a full picture of the internal operation of filesystems, it is necessary to
understand what the user sees, why things are presented they way they are, and
what the main concepts are.

This chapter provides an introduction to basic file concepts. Users experienced
in UNIX may wish to skip this chapter. Users new to UNIX and those starting to
program in the UNIX environment will find these concepts useful. A basic
implementation of the ls program helps to reinforce the material presented and
provides an introduction to file-related libraries and system calls, a topic that will
be expanded upon in the next chapter.

One peculiarity that UNIX introduced was the notion that everything in the
UNIX namespace (file tree) is visible as a file and that the same operations can be
applied to all file types. Thus one can open and read a directory in the same way
in which a file can be opened and read. Of course, this doesn’t always have the
desired effect. For example, running the UNIX command cat on a directory will
likely produce a screen full of unreadable characters. However, these and other
simple concepts are one of the great strengths of UNIX. The following sections
provide introductory material which describe file-based concepts and start to
paint a picture of how these components fit together.

18 UNIX Filesystems—Evolution, Design, and Implementation

UNIX File Types

The two most common file types are regular files and directories. Regular files are
by far the most common type of files in a UNIX system, with program source,
documents, executable programs, and scripts all being stored as regular files.
One could argue that executable files are a special type of regular file but their
handling by the filesystem is just the same, that is, the file contains a stream of
bytes that the filesystem never needs to interpret.

Directories are different however. Although they also contain a stream of
bytes, filesystems interpret these bytes in a manner that allows users to see which
files are present in the directory and how they are linked together from a
hierarchical perspective.

There are other file types which must be considered by programmers and
administrators. They are outlined here and described in more detail throughout
the chapter:

Regular files. As mentioned above, regular files hold data that is not
interpreted by the filesystem, such as program source and binaries,
documents and scripts.

Directories. Directories are used to provide structure within a filesystem.
Directories can index files of any type including other directories.

Symbolic links. A symbolic link, also called a symlink, is a means by which
one file can refer to another file through use of a different name. Symbolic
links can cross filesystem boundaries. Removing a symbolic link has no
impact on the file it references.

Hard links. Whereas a symbolic name is simply a mapping between one file
name and another with no impact on the referenced file, a hard link actually
refers to the same physical storage as the file to which it references. Thus by
creating a hard link, the file’s link count is incremented. When the hard link
is removed the link count is decremented. When the link count reaches zero,
the file is removed. Hard links cannot cross filesystem boundaries.

Named pipes. A named pipe is a bi-directional IPC (Inter Process
Communication) mechanism that allows unrelated processes to
communicate. This differs from traditional UNIX pipes that can only be
accessed by related processes.

Special files. A special file is a file that refers to a device such as a disk or tape.
To access a device, the caller would open the special file and access it just
like any other file.

Xenix special file. Semaphores and shared memory segments in the Xenix
operating system could be managed through the UNIX namespace. A
special file of zero length could be used to represent a semaphore or a
shared memory segment. There were a host of Xenix specific functions

File-Based Concepts 19

available for management of these IPC mechanisms. None of the calls were
part of any standard and therefore will not be discussed further.

To obtain the properties of any file type, the stat() system call can be invoked.
This is called by the ls command on each file that must be displayed. The section
Basic File Properties, a bit later in this chapter, provides a simple implementation of
ls to show how this works in practice.

File Descriptors

In order to give a more practical edge to the descriptions that follow, it is
necessary to provide some examples in C. Therefore, before describing the
various file properties, it is necessary to show how to access them; thus, the need
to introduce file descriptors. Consider the following example:

$ cat open.c
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main()
{
 int fd;

 fd = open("/etc/passwd", O_RDONLY);
 printf("fd = %d\n", fd);
 close(fd);
}
$ make open
cc open.c -o open
$./open
fd = 3

To access a file’s data, the file must first be opened. In this case, the open()
system call is used. Looking at the manual page for open(), it shows that three
header files must be included as the following excerpt shows:

NAME
open open a file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *path, int oflag, ...);

DESCRIPTION
The open() function establishes the connection between a
file and a file descriptor. It creates an ...

20 UNIX Filesystems—Evolution, Design, and Implementation

The result of a successful open is a file descriptor that is a handle through which
the file can then be subsequently accessed. The file descriptor is required in calls
such as read(), write(), and lseek(). The value of the file descriptor is not
important although how the value is assigned will be explained in the section File
Descriptors and the File Table in Chapter 6. What is important is that it is used
consistently. Following the open() call shown above, every time the passwd file
is to be accessed by a system call or library function that requires a file descriptor,
the value returned in fd must be used.

Note with this example and with many other short examples shown here and
in other books, the use of the close() system call is often omitted. This is
generally fine since files are automatically closed when the process exits.

Basic File Properties

Typing ls -l at the command prompt, users will see a whole host of properties
associated with each file displayed, as shown in Figure 2.1. The main properties
displayed are:

■ The file type and access permissions

■ The link count of the file

■ The file’s owner and group

■ The size of the file

■ The date on which the file was last modified

■ The name of the file

Some of the values displayed will be obvious to most readers although there are
a few peculiarities. First of all however, where does this information come from?
There are two calls that the ls command must make to get this information. Here
is a brief sketch of both:

1. For the current directory, retrieve the files that are stored in the directory.
2. For each file, obtain the properties of the file.

After this information is available, the ls command can simply print out the
information that it receives. Shown below is an example of how the ls command
is implemented. In summary, the system call getdents() will return all entries
in the directory, then for each entry, ls will call the stat() system call to obtain
the file properties.

Here is the interface for the stat() system call:

#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

File-Based Concepts 21

Thus the caller specifies the pathname of a file for which properties are to be read
and gets all of this information passed back in a stat structure defined as
follows:

struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* Inode number / file serial number */
 mode_t st_mode; /* File mode */
 nlink_t st_nlink; /* Number of links to file */
 uid_t st_uid; /* User ID of file */
 gid_t st_gid; /* Group ID of file */
 dev_t st_rdev; /* Device ID for char/blk special file */
 off_t st_size; /* File size in bytes (regular file) */
 time_t st_atime; /* Time of last access */
 time_t st_mtime; /* Time of last data modification */
 time_t st_ctime; /* Time of last status change */
 long st_blksize; /* Preferred I/O block size */
 blkcnt_t st_blocks; /* Number of 512 byte blocks allocated */
};

Given this information, it is relatively easy to map the fields shown here to the
information displayed by the ls command. To help show how this works, an
abbreviated version of the ls command is shown below. Note that this is not
complete, nor is it the best way to implement the command. It does however
show how to obtain information about individual files.

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <sys/dirent.h>
4 #include <sys/unistd.h>
5 #include <fcntl.h>
6 #include <unistd.h>
7 #include <errno.h>
8 #include <pwd.h>
9 #include <grp.h>

Figure 2.1 File properties shown by typing ls -l

-rw-r--r- 1 spate fcf 137564 Feb 13 09:05 layout.tex

user group and
other permissions

link count file size

file name

user group date of
last modification

‘-’ - regular file
‘d’ - directory
‘s’ - symbolic link
‘p’ - named pipe
‘c’ - character special
‘b’ - block special

22 UNIX Filesystems—Evolution, Design, and Implementation

10
11 #define BUFSZ 1024
12
13 main()
14 {
15 struct dirent *dir;
16 struct stat st;
17 struct passwd *pw;
18 struct group *grp;
19 char buf[BUFSZ], *bp, *ftime;
20 int dfd, fd, nread;
21
22 dfd = open(".", O_RDONLY);
23 bzero(buf, BUFSZ);
24 while (nread = getdents(dfd, (struct dirent *)&buf,
25 BUFSZ) != 0) {
26 bp = buf;
27 dir = (struct dirent *)buf;
28 do {
29 if (dir->d_reclen != 0) {
30 stat(dir->d_name, &st);
31 ftime = ctime(&st.st_mtime);
32 ftime[16] = '\0'; ftime += 4;
33 pw = getpwuid(st.st_uid);
34 grp = getgrgid(st.st_gid);
35 perms(st.st_mode);
36 printf("%3d %-8s %-7s %9d %s %s\n",
37 st.st_nlink, pw->pw_name, grp->gr_name,
38 st.st_size, ftime, dir->d_name);
39 }
40 bp = bp + dir->d_reclen;
41 dir = (struct dirent *)(bp);
42 } while (dir->d_ino != 0);
43 bzero(buf, BUFSZ);
44 }
45 }

The basic loop shown here is fairly straightforward. The majority of the program
deals with collecting the information obtained from stat() and putting it in a
form which is more presentable to the caller.

If a directory contains a large number of entries, it may be difficult to read all
entries in one call. Therefore the getdents() system call must be repeated until
all entries have been read. The value returned from getdents() is the number
of bytes read and not the number of directory entries. After all entries have been
read, a subsequent call to getdents() will return 0.

There are numerous routines available for gathering per user and group
information and for formatting different types of data. It is beyond the scope of
this book to describe all of these interfaces. Using the UNIX manual pages,
especially with the -k option, is often the best way to find the routines available.
For example, on Solaris, running man passwd produces the man page for the

File-Based Concepts 23

passwd command. The “SEE ALSO” section contains references to getpwnam().
The man page for getpwnam() contains information about the getpwuid()
function that is used in the above program.

As mentioned, the program shown here is far from being a complete
implementation of ls nor indeed is it without bugs. The following examples
should allow readers to experiment:

■ Although it is probably a rare condition, the program could crash
depending on the directory entries read. How could this crash occur?

■ Implement the perms() function.

■ Enhance the program to accept arguments including short and long
listings and allowing the caller to specify the directory to list.

In addition to the stat() system call shown previously there are also two
additional system calls which achieve the same result:

#include <sys/types.h>
#include <sys/stat.h>

int lstat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

The only difference between stat() and lstat() is that for symbolic links,
lstat() returns information about the symbolic link whereas stat() returns
information about the file to which the symbolic link points.

The File Mode Creation Mask

There are many commands that can be used to change the properties of files.
Before describing each of these commands it is necessary to point out the file mode
creation mask. Consider the file created using the touch command as follows:

$ touch myfile
$ ls -l myfile
-rw-r--r- 1 spate fcf 0 Feb 16 11:14 myfile

The first command instructs the shell to create a file if it doesn’t already exist. The
shell in turn invokes the open() or creat() system call to instruct the operating
system to create the file, passing a number of properties along with the creation
request. The net effect is that a file of zero length is created.

The file is created with the owner and group IDs set to those of the caller (as
specified in /etc/passwd). The permissions of the file indicate that it is readable
and writable by the owner (rw-) and readable both by other members of the
group fcf and by everyone else.

24 UNIX Filesystems—Evolution, Design, and Implementation

What happens if you don’t want these permissions when the file is created?
Each shell supports the umask command that allows the user to change the
default mask, often referred to as the file mode creation mask. There are actually
two umask calls that take the same arguments. The first is a shell built-in variable
that keeps the specified mask for the lifetime of the shell, and the second is a
system binary, which is only really useful for checking the existing mask.

The current mask can be displayed in numeric or symbolic form as the two
following examples show:

$ umask
022
$ umask -S
u=rwx,g=rx,o=rx

To alter the creation mask, umask is called with a three digit number for which
each digit must be in the range 0 to 7. The three digits represent user, group, and
owner. Each can include access for read (r=4), write (w=2), and execute (x=1).

When a file is created, the caller specifies the new mode or access permissions
of the file. The umask for that process is then subtracted from the mode resulting
in the permissions that will be set for the file.

As an example, consider the default umask, which for most users is 022, and a
file to be created by calling the touch utility:

$ umask
022
$ strace touch myfile 2>&1 | grep open | grep myfile
open("myfile",
O_WRONLY_O_NONBLOCK_O_CREAT_O_NOCTTY_O_LARGEFILE, 0666) = 3
$ ls -l myfile
-rw-r--r- 1 spate fcf 0 Apr 4 09:45 myfile

A umask value of 022 indicates that write access should be turned off for the
group and others. The touch command then creates the file and passes a mode
of 666. The resulting set of permissions will be 666 - 022 = 644, which gives
the permissions -rw-r--r--.

Changing File Permissions

There are a number of commands that allow the user to change file properties.
The most commonly used is the chmod utility, which takes arguments as follows:

chmod [-fR] <absolute-mode> file ...

chmod [-fR] <symbolic-mode-list> file ...

TEAMFL
Y

TEAM FLY ®

File-Based Concepts 25

The mode to be applied gives the new or modified permissions of the file. For
example, if the new permissions for a file should be rwxr--r--, this equates to
the value 744. For this case, chmod can be called with an absolute-mode
argument as follows:

$ ls -l myfile
-rw------ 1 spate fcf 0 Mar 6 10:09 myfile
$ chmod 744 myfile
$ ls -l myfile
-rwxr--r- 1 spate fcf 0 Mar 6 10:09 myfile*

To achieve the same result passing a symbolic-mode argument, chmod can be
called as follows:

$ ls -l myfile
-rw------ 1 spate fcf 0 Mar 6 10:09 myfile
$ chmod u+x,a+r myfile
$ ls -l myfile
-rwxr--r- 1 spate fcf 0 Mar 6 10:09 myfile*

In symbolic mode, the permissions for user, group, other, or all users can be
modified by specifying u, g, o, or a. Permissions may be specified by adding (+),
removing (-), or specifying directly (=), For example, another way to achieve the
above change is:

$ ls -l myfile
-rw------ 1 spate fcf 0 Mar 6 10:09 myfile
$ chmod u=rwx,g=r,o=r myfile
$ ls -l myfile
-rwxr--r- 1 spate fcf 0 Mar 6 10:09 myfile*

One last point worthy of mention is the -R argument which can be passed to
chmod. With this option, chmod recursively descends through any directory
arguments. For example:

$ ls -ld mydir
drwxr-xr-x 2 spate fcf 4096 Mar 30 11:06 mydir//
$ ls -l mydir
total 0
-rw-r--r- 1 spate fcf 0 Mar 30 11:06 fileA
-rw-r--r- 1 spate fcf 0 Mar 30 11:06 fileB
$ chmod -R a+w mydir
$ ls -ld mydir
drwxrwxrwx 2 spate fcf 4096 Mar 30 11:06 mydir/
$ ls -l mydir
total 0
-rw-rw-rw 1 spate fcf 0 Mar 30 11:06 fileA
-rw-rw-rw 1 spate fcf 0 Mar 30 11:06 fileB

26 UNIX Filesystems—Evolution, Design, and Implementation

Note that the recursive option is typically available with most commands that
change file properties. Where it is not, the following invocation of find will
achieve the same result:

$ find mydir -print | xargs chmod a+w

The chmod command is implemented on top of the chmod() system call. There
are two calls, one that operates on a pathname and one that operates on a file
descriptor as the following declarations show:

#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

The mode argument is a bitwise OR of the fields shown in Table 2.1. Some of the
flags can be combined as shown below:

S_IRWXU. This is the bitwise OR of S_IRUSR, S_IWUSR and S_IXUSR
S_IRWXG. This is the bitwise OR of S_IRGRP, S_IWGRP and S_IXGRP

S_IRWXO. This is the bitwise OR of S_IROTH, S_IWOTH and S_IXOTH

One can see from the preceding information that the chmod utility is largely a
string parsing command which collects all the information required and then
makes a call to chmod().

Changing File Ownership

When a file is created, the user and group IDs are set to those of the caller.
Occasionally it is useful to change ownership of a file or change the group in
which the file resides. Only the root user can change the ownership of a file
although any user can change the file’s group ID to another group in which the
user resides.

There are three calls that can be used to change the file’s user and group as
shown below:

#include <sys/types.h>
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);
int lchown(const char *path, uid_t owner, gid_t group);

The difference between chown() and lchown() is that the lchown() system
call operates on the symbolic link specified rather than the file to which it points.

File-Based Concepts 27

In addition to setting the user and group IDs of the file, it is also possible to set
the effective user and effective group IDs such that if the file is executed, the caller
effectively becomes the owner of the file for the duration of execution. This is a
commonly used feature in UNIX. For example, the passwd command is a setuid
binary. When the command is executed it must gain an effective user ID of root in
order to change the passwd(F) file. For example:

$ ls -l /etc/passwd
-r--r--r- 1 root other 157670 Mar 14 16:03 /etc/passwd
$ ls -l /usr/bin/passwd
-r-sr-sr-x 3 root sys 99640 Oct 6 1998 /usr/bin/passwd*

Because the passwd file is not writable by others, changing it requires that the
passwd command run as root as noted by the s shown above. When run, the
process runs as root allowing the passwd file to be changed.

The setuid() and setgid() system calls enable the user and group IDs to
be changed. Similarly, the seteuid() and setegid() system calls enable the
effective user and effective group ID to be changed:

Table 2.1 Permissions Passed to chmod()

PERMISSION DESCRIPTION

S_IRWXU Read, write, execute/search by owner

S_IRUSR Read permission by owner

S_IWUSR Write permission by owner

S_IXUSR Execute/search permission by owner

S_IRWXG Read, write, execute/search by group

S_IRGRP Read permission by group

S_IWGRP Write permission by group

S_IXGRP Execute/search permission by group

S_IRWXO Read, write, execute/search by others

S_IROTH Read permission by others

S_IWOTH Write permission by others

S_IXOTH Execute/search permission by others

S_ISUID Set-user-ID on execution

S_ISGID Set-group-ID on execution

S_ISVTX On directories, set the restricted deletion flag

28 UNIX Filesystems—Evolution, Design, and Implementation

#include <unistd.h>

int setuid(uid_t uid)
int seteuid(uid_t euid)
int setgid(gid_t gid)
int setegid(gid_t egid)

Handling permissions checking is a task performed by the kernel.

Changing File Times

When a file is created, there are three timestamps associated with the file as
shown in the stat structure earlier. These are the creation time, the time of last
modification, and the time that the file was last accessed.

On occasion it is useful to change the access and modification times. One
particular use is in a programming environment where a programmer wishes to
force re-compilation of a module. The usual way to achieve this is to run the
touch command on the file and then recompile. For example:

$ ls -l hello*
-rwxr-xr-x 1 spate fcf 13397 Mar 30 11:53 hello*
-rw-r--r- 1 spate fcf 31 Mar 30 11:52 hello.c
$ make hello
make: 'hello' is up to date.
$ touch hello.c
$ ls -l hello.c
-rw-r--r- 1 spate fcf 31 Mar 30 11:55 hello.c
$ make hello
cc hello.c -o hello
$

The system calls utime() and utimes() can be used to change both the access
and modification times. In some versions of UNIX, utimes() is simply
implemented by calling utime().

#include <sys/types.h>
#include <utime.h>

int utime(const char *filename, struct utimbuf *buf);

#include <sys/time.h>

int utimes(char *filename, struct timeval *tvp);

struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
};

struct timeval {

File-Based Concepts 29

 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
};

By running strace, truss etc., it is possible to see how a call to touch maps
onto the utime() system call as follows:

$ strace touch myfile 2>&1 | grep utime
utime("myfile", NULL) = 0

To change just the access time of the file, the touch command must first
determine what the modification time of the file is. In this case, the call sequence
is a little different as the following example shows:

$ strace touch -a myfile
...
time([984680824]) = 984680824
open("myfile",
O_WRONLY|O_NONBLOCK|O_CREAT|O_NOCTTY|O_LARGEFILE, 0666) = 3
fstat(3, st_mode=S_IFREG|0644, st_size=0, ...) = 0
close(3) = 0
utime("myfile", [2001/03/15-10:27:04, 2001/03/15-10:26:23]) = 0

In this case, the current time is obtained through calling time(). The file is then
opened and fstat() called to obtain the file’s modification time. The call to
utime() then passes the original modification time and the new access time.

Truncating and Removing Files

Removing files is something that people just take for granted in the same vein as
pulling up an editor and creating a new file. However, the internal operation of
truncating and removing files can be a particularly complicated operation as later
chapters will show.

There are two calls that can be invoked to truncate a file:

#include <unistd.h>

int truncate(const char *path, off_t length);
int ftruncate(int fildes, off_t length);

The confusing aspect of truncation is that through the calls shown here it is
possible to truncate upwards, thus increasing the size of the file! If the value of
length is less than the current size of the file, the file size will be changed and
storage above the new size can be freed. However, if the value of length is
greater than the current size, storage will be allocated to the file, and the file size
will be modified to reflect the new storage.

To remove a file, the unlink() system call can be invoked:

30 UNIX Filesystems—Evolution, Design, and Implementation

#include <unistd.h>

int unlink(const char *path);

The call is appropriately named since it does not necessarily remove the file but
decrements the file’s link count. If the link count reaches zero, the file is indeed
removed as the following example shows:

$ touch myfile
$ ls -l myfile
-rw-r--r- 1 spate fcf 0 Mar 15 11:09 myfile
$ ln myfile myfile2
$ ls -l myfile*
-rw-r--r- 2 spate fcf 0 Mar 15 11:09 myfile
-rw-r--r- 2 spate fcf 0 Mar 15 11:09 myfile2
$ rm myfile
$ ls -l myfile*
-rw-r--r- 1 spate fcf 0 Mar 15 11:09 myfile2
$ rm myfile2
$ ls -l myfile*
ls: myfile*: No such file or directory

When myfile is created it has a link count of 1. Creation of the hard link
(myfile2) increases the link count. In this case there are two directory entries
(myfile and myfile2), but they point to the same file.

To remove myfile, the unlink() system call is invoked, which decrements
the link count and removes the directory entry for myfile.

Directories

There are a number of routines that relate to directories. As with other simple
UNIX commands, they often have a close correspondence to the system calls that
they call, as shown in Table 2.2.

The arguments passed to most directory operations is dependent on where in
the file hierarchy the caller is at the time of the call, together with the pathname
passed to the command:

Current working directory. This is where the calling process is at the time of
the call; it can be obtained through use of pwd from the shell or getcwd()
from within a C program.

Absolute pathname. An absolute pathname is one that starts with the
character /. Thus to get to the base filename, the full pathname starting at /
must be parsed. The pathname /etc/passwd is absolute.

Relative pathname. A relative pathname does not contain / as the first
character and starts from the current working directory. For example, to
reach the same passwd file by specifying passwd the current working
directory must be /etc.

File-Based Concepts 31

The following example shows how these calls can be used together:

$ cat dir.c
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/param.h>
#include <fcntl.h>
#include <unistd.h>

main()
{
 printf("cwd = %s\n", getcwd(NULL, MAXPATHLEN));
 mkdir("mydir", S_IRWXU);
 chdir("mydir");
 printf("cwd = %s\n", getcwd(NULL, MAXPATHLEN));
 chdir("..");
 rmdir("mydir");
}
$ make dir
cc -o dir dir.c
$./dir
cwd = /h/h065/spate/tmp
cwd = /h/h065/spate/tmp/mydir

Special Files

A special file is a file that has no associated storage but can be used to gain access
to a device. The goal here is to be able to access a device using the same
mechanisms by which regular files and directories can be accessed. Thus, callers
are able to invoke open(), read(), and write() in the same way that these
system calls can be used on regular files.

One noticeable difference between special files and other file types can be seen
by issuing an ls command as follows:

Table 2.2 Directory Related Operations

COMMAND SYSTEM CALL DESCRIPTION

mkdir mkdir() Make a new directory

rmdir rmdir() Remove a directory

pwd getcwd() Display the current working directory

cd chdir()

fchdir()

Change directory

chroot chroot() Change the root directory

32 UNIX Filesystems—Evolution, Design, and Implementation

$ ls -l /dev/vx/*dsk/homedg/h
brw------ 1 root root 142,4002 Jun 5 1999 /dev/vx/dsk/homedg/h
crw------ 1 root root 142,4002 Dec 5 21:48 /dev/vx/rdsk/homedg/h

In this example there are two device files denoted by the b and c as the first
character displayed on each line. This letter indicates the type of device that this
file represents. Block devices are represented by the letter b while character
devices are represented by the letter c. For block devices, data is accessed in
fixed-size blocks while for character devices data can be accessed in multiple
different sized blocks ranging from a single character upwards.

Device special files are created with the mknod command as follows:

mknod name b major minor
mknod name c major minor

For example, to create the above two files, execute the following commands:

mknod /dev/vx/dsk/homedg/h b 142 4002
mknod /dev/vx/rdsk/homedg/h c 142 4002

The major number is used to point to the device driver that controls the device,
while the minor number is a private field used by the device driver.

The mknod command is built on top of the mknod() system call:

#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

The mode argument specifies the type of file to be created, which can be one of
the following:

S_IFIFO. FIFO special file (named pipe).
S_IFCHR. Character special file.

S_IFDIR. Directory file.
S_IFBLK. Block special file.

S_IFREG. Regular file.

The file access permissions are also passed in through the mode argument. The
permissions are constructed from a bitwise OR for which the values are the same
as for the chmod() system call as outlined in the section Changing File Permissions
earlier in this chapter.

Symbolic Links and Hard Links

Symbolic links and hard links can be created using the ln command, which in
turn maps onto the link() and symlink() system calls. Both prototypes are

File-Based Concepts 33

shown below:

#include <unistd.h>

int link(const char *existing, const char *new);
int symlink(const char *name1, const char *name2);

The section Truncating and Removing Files earlier in this chapter describes hard
links and showed the effects that link() and unlink() have on the underlying
file. Symbolic links are managed in a very different manner by the filesystem as
the following example shows:

$ echo "Hello world" > myfile
$ ls -l myfile
-rw-r--r- 1 spate fcf 12 Mar 15 12:17 myfile
$ cat myfile
Hello world
$ strace ln -s myfile mysymlink 2>&1 | grep link
execve("/bin/ln", ["ln", "-s", "myfile",
"mysymlink"], [/* 39 vars */]) = 0
lstat("mysymlink", 0xbffff660) = -1 ENOENT (No such file/directory)
symlink("myfile", "mysymlink") = 0
$ ls -l my*
-rw-r--r- 1 spate fcf 12 Mar 15 12:17 myfile
lrwxrwxrwx 1 spate fcf 6 Mar 15 12:18 mysymlink -> myfile
$ cat mysymlink
Hello world
$ rm myfile
$ cat mysymlink
cat: mysymlink: No such file or directory

The ln command checks to see if a file called mysymlink already exists and then
calls symlink() to create the symbolic link. There are two things to notice here.
First of all, after the symbolic link is created, the link count of myfile does not
change. Secondly, the size of mysymlink is 6 bytes, which is the length of the
string myfile.

Because creating a symbolic link does not change the file it points to in any way,
after myfile is removed, mysymlink does not point to anything as the example
shows.

Named Pipes

Although Inter Process Communication is beyond the scope of a book on
filesystems, since named pipes are stored in the filesystem as a separate file type,
they should be given some mention here.

A named pipe is a means by which unrelated processes can communicate. A
simple example will show how this all works:

34 UNIX Filesystems—Evolution, Design, and Implementation

$ mkfifo mypipe
$ ls -l mypipe
prw-r--r- 1 spate fcf 0 Mar 13 11:29 mypipe
$ echo "Hello world" > mypipe &
[1] 2010
$ cat < mypipe
Hello world
[1]+ Done echo "Hello world" >mypipe

The mkfifo command makes use of the mknod() system call.
The filesystem records the fact that the file is a named pipe. However, it has no

storage associated with it and other than responding to an open request, the
filesystem plays no role on the IPC mechanisms of the pipe. Pipes themselves
traditionally used storage in the filesystem for temporarily storing the data.

Summary

It is difficult to provide an introductory chapter on file-based concepts without
digging into too much detail. The chapter provided many of the basic functions
available to view files, return their properties and change these properties.

To better understand how the main UNIX commands are implemented and
how they interact with the filesystem, the GNU fileutils package provides
excellent documentation, which can be found online at:

www.gnu.org/manual/fileutils/html_mono/fileutils.html

and the source for these utilities can be found at:

ftp://alpha.gnu.org/gnu/fetishTEAMFL
Y

TEAM FLY ®

CHAPTER

3

35

User File I/O

Building on the principles introduced in the last chapter, this chapter describes
the major file-related programmatic interfaces (at a C level) including basic file
access system calls, memory mapped files, asynchronous I/O, and sparse files.

To reinforce the material, examples are provided wherever possible. Such
examples include simple implementations of various UNIX commands including
cat, cp, and dd.

The previous chapter described many of the basic file concepts. This chapter
goes one step further and describes the different interfaces that can be called to
access files. Most of the APIs described here are at the system call level. Library
calls typically map directly to system calls so are not addressed in any detail here.

The material presented here is important for understanding the overall
implementation of filesystems in UNIX. By understanding the user-level
interfaces that need to be supported, the implementation of filesystems within the
kernel is easier to grasp.

Library Functions versus System Calls

System calls are functions that transfer control from the user process to the
operating system kernel. Functions such as read() and write() are system

36 UNIX Filesystems—Evolution, Design, and Implementation

calls. The process invokes them with the appropriate arguments, control transfers
to the kernel where the system call is executed, results are passed back to the
calling process, and finally, control is passed back to the user process.

Library functions typically provide a richer set of features. For example, the
fread() library function reads a number of elements of data of specified size
from a file. While presenting this formatted data to the user, internally it will call
the read() system call to actually read data from the file.

Library functions are implemented on top of system calls. The decision
whether to use system calls or library functions is largely dependent on the
application being written. Applications wishing to have much more control over
how they perform I/O in order to optimize for performance may well invoke
system calls directly. If an application writer wishes to use many of the features
that are available at the library level, this could save a fair amount of
programming effort. System calls can consume more time than invoking library
functions because they involve transferring control of the process from user
mode to kernel mode. However, the implementation of different library functions
may not meet the needs of the particular application. In other words, whether to
use library functions or systems calls is not an obvious choice because it very
much depends on the application being written.

Which Header Files to Use?

The UNIX header files are an excellent source of information to understand
user-level programming and also kernel-level data structures. Most of the header
files that are needed for user level programming can be found under
/usr/include and /usr/include/sys.

The header files that are needed are shown in the manual page of the library
function or system call to be used. For example, using the stat() system call
requires the following two header files:

#include <sys/types.h>
#include <sys/stat.h>

int stat(const char path, struct stat buf);

The stat.h header file defines the stat structure. The types.h header file
defines the types of each of the fields in the stat structure.

Header files that reside in /usr/include are used purely by applications.
Those header files that reside in /usr/include/sys are also used by the
kernel. Using stat() as an example, a reference to the stat structure is passed
from the user process to the kernel, the kernel fills in the fields of the structure
and then returns. Thus, in many circumstances, both user processes and the
kernel need to understand the same structures and data types.

User File I/O 37

The Six Basic File Operations

Most file creation and file I/O needs can be met by the six basic system calls
shown in Table 3.1. This section uses these commands to show a basic
implementation of the UNIX cat command, which is one of the easiest of the
UNIX commands to implement.

However, before giving its implementation, it is necessary to describe the terms
standard input, standard output, and standard error. As described in the section File
Descriptors in Chapter 2, the first file that is opened by a user process is assigned a
file descriptor value of 3. When the new process is created, it typically inherits the
first three file descriptors from its parent. These file descriptors (0, 1, and 2) have a
special meaning to routines in the C runtime library and refer to the standard
input, standard output, and standard error of the process respectively. When
using library routines, a file stream is specified that determines where data is to be
read from or written to. Some functions such as printf() write to standard
output by default. For other routines such as fprintf(), the file stream must be
specified. For standard output, stdout may be used and for standard error,
stderr may be used. Similarly, when using routines that require an input stream,
stdin may be used. Chapter 5 describes the implementation of the standard I/O
library. For now simply consider them as a layer on top of file descriptors.

When directly invoking system calls, which requires file descriptors, the
constants STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO may be
used. These values are defined in unistd.h as follows:

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

Looking at the implementation of the cat command, the program must be able to
use standard input, output, and error to handle invocations such as:

$ cat # read from standard input
$ cat file # read from 'file'
$ cat file > file2 # redirect standard output

Thus there is a small amount parsing to be performed before the program knows
which file to read from and which file to write to. The program source is shown
below:

 1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <fcntl.h>
 4 #include <unistd.h>
 5
 6 #define BUFSZ 512
 7
 8 main(int argc, char argv)
 9 {

38 UNIX Filesystems—Evolution, Design, and Implementation

10 char buf[BUFSZ];
11 int ifd, ofd, nread;
12
13 get_fds(argc, argv, &ifd, &ofd);
14 while ((nread = read(ifd, buf, BUFSZ)) != 0) {
15 write(ofd, buf, nread);
16 }
17 }

As previously mentioned, there is actually very little work to do in the main
program. The get_fds() function, which is not shown here, is responsible for
assigning the appropriate file descriptors to ifd and ofd based on the following
input:

$ mycat
ifd = STDIN_FILENO
ofd = STDOUT_FILENO

$ mycat file
ifd = open(file, O_RDONLY)
ofd = STDOUT_FILENO

$ mycat > file
ifd = STDIN_FILENO
ofd = open(file, O_WRONLY | O_CREAT)

$ mycat fileA > fileB
ifd = open(fileA, O_RDONLY)
ofd = open(fileB, O_WRONLY | O_CREAT)

The following examples show the program running:

$ mycat > testfile
Hello world
$ mycat testfile
Hello world
$ mycat testfile > testfile2

Table 3.1 The Six Basic System Calls Needed for File I/O

SYSTEM CALL FUNCTION

open() Open an existing file or create a new file

creat() Create a new file

close() Close an already open file

lseek() Seek to a specified position in the file

read() Read data from the file from the current position

write() Write data starting at the current position

User File I/O 39

$ mycat testfile2
Hello world
$ mycat
Hello
Hello
world
world

To modify the program, one exercise to try is to implement the get_fds()
function. Some additional exercises to try are:

1. Number all output lines (cat -n). Parse the input strings to detect the -n.
2. Print all tabs as ^I and place a $ character at the end of each line (cat -ET).

The previous program reads the whole file and writes out its contents.
Commands such as dd allow the caller to seek to a specified block in the input file
and output a specified number of blocks.

Reading sequentially from the start of the file in order to get to the part which
the user specified would be particularly inefficient. The lseek() system call
allows the file pointer to be modified, thus allowing random access to the file. The
declaration for lseek() is as follows:

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

The offset and whence arguments dictate where the file pointer should be
positioned:

■ If whence is SEEK_SET the file pointer is set to offset bytes.

■ If whence is SEEK_CUR the file pointer is set to its current location plus
offset.

■ If whence is SEEK_END the file pointer is set to the size of the file plus
offset.

When a file is first opened, the file pointer is set to 0 indicating that the first byte
read will be at an offset of 0 bytes from the start of the file. Each time data is read,
the file pointer is incremented by the amount of data read such that the next read
will start from the offset in the file referenced by the updated pointer. For
example, if the first read of a file is for 1024 bytes, the file pointer for the next read
will be set to 0 + 1024 = 1024. Reading another 1024 bytes will start from byte
offset 1024. After that read the file pointer will be set to 1024 + 1024 = 2048
and so on.

By seeking throughout the input and output files, it is possible to see how the
dd command can be implemented. As with many UNIX commands, most of the
work is done in parsing the command line to determine the input and output
files, the starting position to read, the block size for reading, and so on. The

40 UNIX Filesystems—Evolution, Design, and Implementation

example below shows how lseek() is used to seek to a specified starting offset
within the input file. In this example, all data read is written to standard output:

1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <fcntl.h>
 4 #include <unistd.h>
 5
 6 #define BUFSZ 512
 7
 8 main(int argc, char argv)
 9 {
10 char *buf;
11 int fd, nread;
12 off_t offset;
13 size_t iosize;
14
15 if (argc != 4) {
16 printf("usage: mydd filename offset size\n");
17 }
18 fd = open(argv[1], O_RDONLY);
19 if (fd < 0) {
20 printf("unable to open file\n");
21 exit(1);
22 }
23 offset = (off_t)atol(argv[2]);
24 buf = (char *)malloc(argv[3]);
25 lseek(fd, offset, SEEK_SET);
26 nread = read(fd, buf, iosize);
27 write(STDOUT_FILENO, buf, nread);
28 }

Using a large file as an example, try different offsets and sizes and determine the
effect on performance. Also try multiple runs of the program. Some of the effects
seen may not be as expected. The section Data and Attribute Caching, a bit later in
this chapter, discusses some of these effects.

Duplicate File Descriptors

The section File Descriptors, in Chapter 2, introduced the concept of file
descriptors. Typically a file descriptor is returned in response to an open() or
creat() system call. The dup() system call allows a user to duplicate an
existing open file descriptor.

#include <unistd.h>

int dup(int fildes);

User File I/O 41

There are a number of uses for dup() that are really beyond the scope of this
book. However, the shell often uses dup() when connecting the input and output
streams of processes via pipes.

Seeking and I/O Combined

The pread() and pwrite() system calls combine the effects of lseek() and
read() (or write()) into a single system call. This provides some improvement
in performance although the net effect will only really be visible in an application
that has a very I/O intensive workload. However, both interfaces are supported
by the Single UNIX Specification and should be accessible in most UNIX
environments. The definition of these interfaces is as follows:

#include <unistd.h>

ssize_t pread(int fildes, void buf, size_t nbyte, off_t offset);
ssize_t pwrite(int fildes, const void buf, size_t nbyte,

off_t offset);

The example below continues on from the dd program described earlier and
shows the use of combining the lseek() with read() and write() calls:

1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <fcntl.h>
 4 #include <unistd.h>
 5
 6 main(int argc, char argv)
 7 {
 8 char *buf;
 9 int ifd, ofd, nread;
10 off_t inoffset, outoffset;
11 size_t insize, outsize;
12
13 if (argc != 7) {
14 printf("usage: mydd infilename in_offset"
15 " in_size outfilename out_offset"
16 " out_size\n");
17 }
18 ifd = open(argv[1], O_RDONLY);
19 if (ifd < 0) {
20 printf("unable to open %s\n", argv[1]);
21 exit(1);
22 }
23 ofd = open(argv[4], O_WRONLY);
24 if (ofd < 0) {
25 printf("unable to open %s\n", argv[4]);
26 exit(1);
27 }
28 inoffset = (off_t)atol(argv[2]);

42 UNIX Filesystems—Evolution, Design, and Implementation

29 insize = (size_t)atol(argv[3]);
30 outoffset = (off_t)atol(argv[5]);
31 outsize = (size_t)atol(argv[6]);
32 buf = (char *)malloc(insize);
33 if (insize < outsize)
34 outsize = insize;
35
36 nread = pread(ifd, buf, insize, inoffset);
37 pwrite(ofd, buf,
38 (nread < outsize) ? nread : outsize, outoffset);
39 }

The simple example below shows how the program is run:

$ cat fileA
0123456789
$ cat fileB

$ mydd2 fileA 2 4 fileB 4 3
$ cat fileA
0123456789
$ cat fileB
----234---

To indicate how the performance may be improved through the use of pread()
and pwrite() the I/O loop was repeated 1 million times and a call was made to
time() to determine how many seconds it took to execute the loop between this
and the earlier example.

For the pread()/pwrite() combination the average time to complete the
I/O loop was 25 seconds while for the lseek()/read() and
lseek()/write() combinations the average time was 35 seconds, which
shows a considerable difference.

This test shows the advantage of pread() and pwrite() in its best form. In
general though, if an lseek() is immediately followed by a read() or
write(), the two calls should be combined.

Data and Attribute Caching

There are a number of flags that can be passed to open() that control various
aspects of the I/O. Also, some filesystems support additional but non standard
methods for improving I/O performance.

Firstly, there are three options, supported under the Single UNIX Specification,
that can be passed to open() that have an impact on subsequent I/O operations.
When a write takes place, there are two items of data that must be written to disk,
namely the file data and the file’s inode. An inode is the object stored on disk that
describes the file, including the properties seen by calling stat() together with
a block map of all data blocks associated with the file.

The three options that are supported from a standards perspective are:

User File I/O 43

O_SYNC. For all types of writes, whether allocation is required or not, the data
and any meta-data updates are committed to disk before the write returns.
For reads, the access time stamp will be updated before the read returns.

O_DSYNC. When a write occurs, the data will be committed to disk before the
write returns but the file’s meta-data may not be written to disk at this stage.
This will result in better I/O throughput because, if implemented efficiently
by the filesystem, the number of inode updates will be minimized,
effectively halving the number of writes. Typically, if the write results in an
allocation to the file (a write over a hole or beyond the end of the file) the
meta-data is also written to disk. However, if the write does not involve an
allocation, the timestamps will typically not be written synchronously.

O_RSYNC. If both the O_RSYNC and O_DSYNC flags are set, the read returns
after the data has been read and the file attributes have been updated on
disk, with the exception of file timestamps that may be written later. If there
are any writes pending that cover the range of data to be read, these writes
are committed before the read returns.

If both the O_RSYNC and O_SYNC flags are set, the behavior is identical to
that of setting O_RSYNC and O_DSYNC except that all file attributes changed
by the read operation (including all time attributes) must also be committed
to disk before the read returns.

Which option to choose is dependent on the application. For I/O intensive
applications where timestamps updates are not particularly important, there can
be a significant performance boost by using O_DSYNC in place of O_SYNC.

VxFS Caching Advisories
Some filesystems provide non standard means of improving I/O performance by
offering additional features. For example, the VERITAS filesystem, VxFS,
provides the noatime mount option that disables access time updates; this is
usually fine for most application environments.

The following example shows the effect that selecting O_SYNC versus O_DSYNC
can have on an application:

#include <sys/unistd.h>
#include <sys/types.h>
#include <fcntl.h>

main(int argc, char argv[])
{
 char buf[4096];
 int i, fd, advisory;

 fd = open("myfile", O_WRONLY|O_DSYNC);
 for (i=0 ; i<1024 ; i++) {

write(fd, buf, 4096);
 }
}

44 UNIX Filesystems—Evolution, Design, and Implementation

By having a program that is identical to the previous with the exception of setting
O_SYNC in place of O_DSYNC, the output of the two programs is as follows:

time ./sync
real 0m8.33s
user 0m0.03s
sys 0m1.92s
time ./dsync
real 0m6.44s
user 0m0.02s
sys 0m0.69s

This clearly shows the increase in time when selecting O_SYNC. VxFS offers a
number of other advisories that go beyond what is currently supported by the
traditional UNIX standards. These options can only be accessed through use of
the ioctl() system call. These advisories give an application writer more
control over a number of I/O parameters:

VX_RANDOM. Filesystems try to determine the I/O pattern in order to perform
read ahead to maximize performance. This advisory indicates that the I/O
pattern is random and therefore read ahead should not be performed.

VX_SEQ. This advisory indicates that the file is being accessed sequentially. In
this case the filesystem should maximize read ahead.

VX_DIRECT. When data is transferred to or from the user buffer and disk, a
copy is first made into the kernel buffer or page cache, which is a cache of
recently accessed file data. Although this cache can significantly help
performance by avoiding a read of data from disk for a second access, the
double copying of data has an impact on performance. The VX_DIRECT
advisory avoids this double buffering by copying data directly between the
user’s buffer and disk.

VX_NOREUSE. If data is only to be read once, the in-kernel cache is not
needed. This advisory informs the filesystem that the data does not need to
be retained for subsequent access.

VX_DSYNC. This option was in existence for a number of years before the
O_DSYNC mode was adopted by the UNIX standards committees. It can still
be accessed on platforms where O_DSYNC is not supported.

Before showing how these caching advisories can be used it is first necessary to
describe how to use the ioctl() system call. The definition of ioctl(), which
is not part of any UNIX standard, differs slightly from platform to platform by
requiring different header files. The basic definition is as follows:

#include <unistd.h> # Solaris
#include <stropts.h> # Solaris, AIX and HP-UX
#include <sys/ioctl.h> # Linux

int ioctl(int fildes, int request, /* arg ... */);

TEAMFL
Y

TEAM FLY ®

User File I/O 45

Note that AIX does not, at the time of writing, support ioctl() calls on regular
files. Ioctl calls may be made to VxFS regular files, but the operation is not
supported generally.

The following program shows how the caching advisories are used in practice.
The program takes VX_SEQ, VX_RANDOM, or VX_DIRECT as an argument and
reads a 1MB file in 4096 byte chunks.

#include <sys/unistd.h>
#include <sys/types.h>
#include <fcntl.h>
#include "sys/fs/vx_ioctl.h"

#define MB (1024 * 1024)

main(int argc, char argv[])
{
 char *buf;
 int i, fd, advisory;
 long pagesize, pagemask;

 if (argc != 2) {
exit(1);

 }
 if (strcmp(argv[1], "VX_SEQ") == 0) {

advisory = VX_SEQ;
 } else if (strcmp(argv[1], "VX_RANDOM") == 0) {

advisory = VX_RANDOM;
 } else if (strcmp(argv[1], "VX_DIRECT") == 0) {

advisory = VX_DIRECT;
 }
 pagesize = sysconf(_SC_PAGESIZE);
 pagemask = pagesize - 1;
 buf = (char *)(malloc(2 * pagesize) & pagemask);
 buf = (char *)(((long)buf + pagesize) & ~pagemask);

 fd = open("myfile", O_RDWR);
 ioctl(fd, VX_SETCACHE, advisory);
 for (i=0 ; i<MB ; i++) {

read(fd, buf, 4096);
 }
}

The program was run three times passing each of the advisories in turn. The
times command was run to display the time to run the program and the amount
of time that was spent in user and system space.

VX_SEQ

real 2:47.6
user 5.9
sys 2:41.4

46 UNIX Filesystems—Evolution, Design, and Implementation

VX_DIRECT

real 2:35.7
user 6.7
sys 2:28.7

VX_RANDOM

real 2:43.6
user 5.2
sys 2:38.1

Although the time difference between the runs shown here is not significant, the
appropriate use of these caching advisories can have a significant impact on
overall performance of large applications.

Miscellaneous Open Options
Through use of the O_NONBLOCK and O_NDELAY flags that can be passed to
open(), applications can gain some additional control in the case where they
may block for reads and writes.

O_EXCL. If both O_CREAT and O_EXCL are set, a call to open() fails if the file
exists. If the O_CREAT option is not set, the effect of passing O_EXCL is
undefined.

O_NONBLOCK / O_NDELAY. These flags can affect subsequent reads and
writes. If both the O_NDELAY and O_NONBLOCK flags are set, O_NONBLOCK
takes precedence. Because both options are for use with pipes, they won’t be
discussed further here.

File and Record Locking

If multiple processes are writing to a file at the same time, the result is non
deterministic. Within the UNIX kernel, only one write to the same file may
proceed at any given time. However, if multiple processes are writing to the file,
the order in which they run can differ depending on many different factors.
Obviously this is highly undesirable and results in a need to lock files at an
application level, whether the whole file or specific sections of a file. Sections of a
file are also called records, hence file and record locking.

There are numerous uses for file locking. However, looking at database file
access gives an excellent example of the types of locks that applications require.
For example, it is important that all users wishing to view database records are
able to do so simultaneously. When updating records it is imperative that while
one record is being updated, other users are still able to access other records.
Finally it is imperative that records are updated in a time-ordered manner.

User File I/O 47

There are two types of locks that can be used to coordinate access to files,
namely mandatory and advisory locks. With advisory locking, it is possible for
cooperating processes to safely access a file in a controlled manner. Mandatory
locking is somewhat of a hack and will be described later. The majority of this
section will concentrate on advisory locking, sometimes called record locking.

Advisory Locking
There are three functions which can be used for advisory locking. These are
lockf(), flock(), and fcntl(). The flock() function defined below:

/usr/ucb/cc [flag ...] file ...
#include <sys/file.h>

int flock(fd, operation);
int fd, operation;

was introduced in BSD UNIX and is not supported under the Single UNIX
Specification standard. It sets an advisory lock on the whole file. The lock type,
specified by the operation argument, may be exclusive (LOCK_EX) or shared
(LOCK_SH). By OR’ing operation with LOCK_NB, if the file is already locked,
EAGAIN will be returned. The LOCK_UN operation removes the lock.

The lockf() function, which is typically implemented as a call to fcntl(),
can be invoked to apply or remove an advisory lock on a segment of a file as
follows:

#include <sys/file.h>

int lockf(int fildes, int function, off_t size);

To use lockf(), the file must have been opened with one of the O_WRONLY or
O_RDWR flags. The size argument specifies the number of bytes to be locked,
starting from the current file pointer. Thus, a call to lseek() should be made
prior to calling lockf(). If the value of size is 0 the file is locked from the
current offset to the end of the file.

The function argument can be one of the following:

F_LOCK. This command sets an exclusive lock on the file. If the file is already
locked, the calling process will block until the previous lock is relinquished.

F_TLOCK. This performs the same function as the F_LOCK command but will
not block—thus if the file is already locked, EAGAIN is returned.

F_ULOCK. This command unlocks a segment of the file.

F_TEST. This command is used to test whether a lock exists for the specified
segment. If there is no lock for the segment, 0 is returned, otherwise -1 is
returned, and errno is set to EACCES.

48 UNIX Filesystems—Evolution, Design, and Implementation

If the segment to be locked contains a previous locked segment, in whole or part,
the result will be a new, single locked segment. Similarly, if F_ULOCK is specified,
the segment of the file to be unlocked may be a subset of a previously locked
segment or may cover more than one previously locked segment. If size is 0,
the file is unlocked from the current file offset to the end of the file. If the segment
to be unlocked is a subset of a previously locked segment, the result will be one
or two smaller locked segments.

It is possible to reach deadlock if two processes make a request to lock
segments of a file owned by each other. The kernel is able to detect this and, if the
condition would occur, EDEADLK is returned.

Note as mentioned above that flock() is typically implemented on top of the
fcntl() system call, for which there are three commands that can be passed to
manage record locking. Recall the interface for fcntl():

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

All commands operate on the flock structure that is passed as the third
argument:

struct flock {
 short l_type; /* F_RDLCK, F_WRLCK or F_UNLOCK */
 short l_whence; /* flag for starting offset */
 off_t l_start; /* relative offset in bytes */
 off_t l_len; /* size; if 0 then until EOF */
 pid_t l_pid; /* process ID of lock holder */
};

The commands that can be passed to fcntl() are:

F_GETLK. This command returns the first lock that is covered by the flock
structure specified. The information that is retrieved overwrites the fields of
the structure passed.

F_SETLK. This command either sets a new lock or clears an existing lock
based on the value of l_type as shown above.

F_SETLKW. This command is the same as F_SETLK with the exception that
the process will block if the lock is held by another process.

Because record locking as defined by fcntl() is supported by all appropriate
UNIX standards, this is the routine that should be ideally used for application
portability.

The following code fragments show how advisory locking works in practice.
The first program, lock, which follows, sets a writable lock on the whole of the
file myfile and calls pause() to wait for a SIGUSR1 signal. After the signal
arrives, a call is made to unlock the file.

User File I/O 49

1 #include <sys/types.h>
 2 #include <unistd.h>
 3 #include <fcntl.h>
 4 #include <signal.h>
 5
 6 void
 7 mysig(int signo)
 8 {
 9 return;
10 }
11
12 main()
13 {
14 struct flock lk;
15 int fd, err;
16
17 sigset(SIGUSR1, mysig);
18
19 fd = open("myfile", O_WRONLY);
20
21 lk.l_type = F_WRLCK;
22 lk.l_whence = SEEK_SET;
23 lk.l_start = 0;
24 lk.l_len = 0;
25 lk.l_pid = getpid();
26
27 err = fcntl(fd, F_SETLK, &lk);
28 printf("lock: File is locked\n");
29 pause();
30 lk.l_type = F_UNLCK;
31 err = fcntl(fd, F_SETLK, &lk);
32 printf("lock: File is unlocked\n");
33 }

Note that the process ID of this process is placed in l_pid so that anyone
requesting information about the lock will be able to determine how to identify
this process.

The next program (mycatl) is a modified version of the cat program that will
only display the file if there are no write locks held on the file. If a lock is detected,
the program loops up to 5 times waiting for the lock to be released. Because the
lock will still be held by the lock program, mycatl will extract the process ID
from the flock structure returned by fcntl() and post a SIGUSR1 signal. This
is handled by the lock program which then unlocks the file.

1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <fcntl.h>
 4 #include <unistd.h>
 5 #include <signal.h>
 6
 7 pid_t
 8 is_locked(int fd)
 9 {

50 UNIX Filesystems—Evolution, Design, and Implementation

10 struct flock lk;
11
12 lk.l_type = F_RDLCK;
13 lk.l_whence = SEEK_SET;
14 lk.l_start = 0;
15 lk.l_len = 0;
16 lk.l_pid = 0;
17
18 fcntl(fd, F_GETLK, &lk);
19 return (lk.l_type == F_UNLCK) ? 0 : lk.l_pid;
20 }
21
22 main()
23 {
24 struct flock lk;
25 int i, fd, err;
26 pid_t pid;
27
28 fd = open("myfile", O_RDONLY);
29
30 for (i = 0 ; i < 5 ; i++) {
31 if ((pid = is_locked(fd)) == 0) {
32 catfile(fd);
33 exit(0);
34 } else {
35 printf("mycatl: File is locked ...\n");
36 sleep(1);
37 }
38 }
39 kill(pid, SIGUSR1);
40 while ((pid = is_locked(fd)) != 0) {
41 printf("mycatl: Waiting for lock release\n");
42 sleep(1);
43 }
44 catfile(fd);
45 }

Note the use of fcntl() in the mycatl program. If no lock exists on the file that
would interfere with the lock requested (in this case the program is asking for a
read lock on the whole file), the l_type field is set to F_UNLCK. When the
program is run, the following can be seen:

$ cat myfile
Hello world
$ lock&
[1] 2448
lock: File is locked
$ mycatl
mycatl: File is locked ...
mycatl: File is locked ...
mycatl: File is locked ...
mycatl: File is locked ...
mycatl: File is locked ...
mycatl: Waiting for lock release

User File I/O 51

lock: File is unlocked
Hello world
[1]+ Exit 23 ./lock

The following example shows where advisory locking fails to become effective if
processes are not cooperating:

$ lock&
[1] 2494
lock: File is locked
$ cat myfile
Hello world
$ rm myfile
$ jobs
[1]+ Running ./lock &

In this case, although the file has a segment lock, a non-cooperating process can
still access the file, thus the real cat program can display the file and the file can
also be removed! Note that removing a file involves calling the unlink() system
call. The file is not actually removed until the last close. In this case the lock
program still has the file open. The file will actually be removed once the lock
program exits.

Mandatory Locking
As the previous example shows, if all processes accessing the same file do not
cooperate through the use of advisory locks, unpredictable results can occur.
Mandatory locking provides file locking between non-cooperating processes.
Unfortunately, the implementation, which arrived with SVR3, leaves something
to be desired.

Mandatory locking can be enabled on a file if the set group ID bit is switched
on and the group execute bit is switched off—a combination that together does
not otherwise make any sense. Thus if the following were executed on a system
that supports mandatory locking:

$ lock&
[1] 12096
lock: File is locked
$ cat myfile # The cat program blocks here

the cat program will block until the lock is relinquished. Note that mandatory
locking is not supported by the major UNIX standards so further details will not
be described here.

File Control Operations

The fcntl() system call is designed to provide file control functions for open

52 UNIX Filesystems—Evolution, Design, and Implementation

files. The definition was shown in a previous section, File and Record Locking,
earlier in the chapter. It is repeated below:

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

The file descriptor refers to a previously opened file and the cmd argument is one
of the commands shown below:

F_DUPFD. This command returns a new file descriptor that is the lowest
numbered file descriptor available (and is not already open). The file
descriptor returned will be greater than or equal to the third argument. The
new file descriptor refers to the same open file as the original file descriptor
and shares any locks. The FD_CLOEXEC (see F_SETFD below) flag
associated with the new file descriptor is cleared to keep the file open across
calls to one of the exec functions.

F_GETFD. This command returns the flags associated with the specified file
descriptor. This is a little bit of a misnomer because there has only ever been
one flag, the FD_CLOEXEC flag that indicates that the file should be closed
following a successful call to exec().

F_SETFD. This command sets the FD_CLOEXEC flag.

F_GETFL. This command returns the file status flags and file access modes for
fildes. The file access modes can be extracted from the return value using
the mask O_ACCMODE. The flags are O_RDONLY, O_WRONLY and O_RDWR.

The file status flags, as described in the sections Data and Attribute Caching
and Miscellaneous Open Options, earlier in this chapter, can be either
O_APPEND, O_SYNC, O_DSYNC, O_RSYNC, or O_NONBLOCK.

F_SETFL. This command sets the file status flags for the specified file
descriptor.

F_GETLK. This command retrieves information about an advisory lock. See
the section File and Record Locking, earlier in this chapter, for further
information.

F_SETLK. This command clears or sets an advisory lock. See the section File
and Record Locking, earlier in this chapter, for further information.

F_SETLKW. This command also clears or sets an advisory lock. See the section
File and Record Locking, earlier in this chapter, for further information.

Vectored Reads and Writes

If the data that a process reads from a file in a single read needs to placed in
different areas of memory, this would typically involve more than one call to

User File I/O 53

read(). However, the readv() system call can be used to perform a single read
from the file but copy the data to the multiple memory locations, which can cut
down on system call overhead and therefore increase performance in
environments where there is a lot of I/O activity. When writing to files the
writev() system call can be used.

Here are the definitions for both functions:

#include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec iov, int iovcnt);
ssize_t writev(int fildes, const struct iovec iov, int iovcnt);

Note that although multiple I/Os can be combined, they must all be contiguous
within the file.

struct uio {
 void *iov_base; /* Address in memory of buffer for r/w */
 size_t iov_len; /* Size of the above buffer in memory */
}

Figure 3.1 shows how the transfer of data occurs for a read operation. The shading
on the areas of the file and the address space show where the data will be placed
after the read has completed.

The following program corresponds to the example shown in Figure 3.1:

1 #include <sys/uio.h>
 2 #include <unistd.h>
 3 #include <fcntl.h>
 4
 5 main()
 6 {
 7 struct iovec uiop[3];
 8 void *addr1, *addr2, *addr3;
 9 int fd, nbytes;
10
11 addr1 = (void *)malloc(4096);
12 addr2 = (void *)malloc(4096);
13 addr3 = (void *)malloc(4096);
14
15 uiop[0].iov_base = addr1; uiop[0].iov_len = 512;
16 uiop[1].iov_base = addr2; uiop[1].iov_len = 512;
17 uiop[2].iov_base = addr3; uiop[2].iov_len = 1024;
18
19 fd = open("myfile", O_RDONLY);
20 nbytes = readv(fd, uiop, 3);
21 printf("number of bytes read = %d\n", nbytes);
22 {

Note that readv() returns the number of bytes read. When this program runs,
the result is 2048 bytes, the total number of bytes obtained by adding the three
individual iovec structures.

54 UNIX Filesystems—Evolution, Design, and Implementation

$ readv
number of bytes read = 2048

Asynchronous I/O

By issuing an I/O asynchronously, an application can continue with other work
rather than waiting for the I/O to complete. There have been numerous different
implementations of asynchronous I/O (commonly referred to as async I/O) over
the years. This section will describe the interfaces as supported by the Single
UNIX Specification.

As an example of where async I/O is commonly used, consider the Oracle
database writer process (DBWR), one of the main Oracle processes; its role is to
manage the Oracle buffer cache, a user-level cache of database blocks. This
involves responding to read requests and writing dirty (modified) buffers to
disk.

In an active database, the work of DBWR is complicated by the fact that it is
constantly writing dirty buffers to disk in order to allow new blocks to be read.
Oracle employs two methods to help alleviate some of the performance
bottlenecks. First, it supports multiple DBWR processes (called DBWR slave
processes); the second option, which greatly improves throughput, is through
use of async I/O. If I/O operations are being performed asynchronously, the
DBWR processes can be doing other work, whether flushing more buffers to
disk, reading data from disk, or other internal functions.

All of the Single UNIX Specification async I/O operations center around an
I/O control block defined by the aiocb structure as follows:

Figure 3.1 Using readv() to perform multiple read operations.

addr3

addr2

addr1

readv(fd, &uiop, 3)

struct uio uiop = {
{addr1, 512},
(addr2, 512},
{addr3, 1024}

};

offset = 1024
offset = 1536

offset = 2048

current

file pointer

user address space

TEAMFL
Y

TEAM FLY ®

User File I/O 55

struct aiocb {
 int aio_fildes; /* file descriptor */
 off_t aio_offset; /* file offset */
 volatile void *aio_buf; /* location of buffer */
 size_t aio_nbytes; /* length of transfer */
 int aio_reqprio; /* request priority offset */
 struct sigevent aio_sigevent; /* signal number and value */
 int aio_lio_opcode; /* operation to be performed */
};

The fields of the aiocb structure will be described throughout this section as the
various interfaces are described. The first interface to describe is aio_read():

cc [flag...] file... -lrt [library...]
#include <aio.h>
int aio_read(struct aiocb aiocbp);

The aio_read() function will read aiocbp->aio_nbytes from the file
associated with file descriptor aiocbp->aio_fildes into the buffer referenced
by aiocbp->aio_buf. The call returns when the I/O has been initiated. Note
that the requested operation takes place at the offset in the file specified by the
aio_offset field.

Similarly, to perform an asynchronous write operation, the function to call is
aio_write() which is defined as follows:

cc [flag...] file... -lrt [library...]
#include <aio.h>

int aio_write(struct aiocb aiocbp);

and the fields in the aio control block used to initiate the write are the same as for
an async read.

In order to retrieve the status of a pending I/O, there are two interfaces that can
be used. One involves the posting of a signal and will be described later; the other
involves the use of the aio_return() function as follows:

#include <aio.h>

ssize_t aio_return(struct aiocb aiocbp);

The aio control block that was passed to aio_read() should be passed to
aio_return(). The result will either be the same as if a call to read() or
write() had been made or, if the operation is still in progress, the result is
undefined.

The following example shows some interesting properties of an asynchronous
write:

1 #include <aio.h>
 2 #include <time.h>
 3 #include <errno.h>

56 UNIX Filesystems—Evolution, Design, and Implementation

 4
 5 #define FILESZ (1024 * 1024 * 64)
 6
 7 main()
 8 {
 9 struct aiocb aio;
10 void *buf;
11 time_t time1, time2;
12 int err, cnt = 0;
13
14 buf = (void *)malloc(FILESZ);
15 aio.aio_fildes = open("/dev/vx/rdsk/fs1", O_WRONLY);
16 aio.aio_buf = buf;
17 aio.aio_offset = 0;
18 aio.aio_nbytes = FILESZ;
19 aio.aio_reqprio = 0;
20
21 time(&time1);
22 err = aio_write(&aio);
23 while ((err = aio_error(&aio)) == EINPROGRESS) {
24 sleep(1);
25 }
26 time(&time2);
27 printf("The I/O took %d seconds\n", time2 - time1);
28 }

The program uses the raw device /dev/vx/rdsk/fs1 to write a single 64MB
buffer. The aio_error() call:

cc [flag...] file... -lrt [library...]
#include <aio.h>

int aio_error(const struct aiocb aiocbp);

can be called to determine whether the I/O has completed, is still in progress, or
whether an error occurred. The return value from aio_error() will either
correspond to the return value from read(), write(), or will be EINPROGRESS
if the I/O is still pending. Note when the program is run:

aiowrite
The I/O took 7 seconds

Thus if the process had issued a write through use of the write() system call, it
would wait for 7 seconds before being able to do anything else. Through the use
of async I/O the process is able to continue processing and then find out the
status of the async I/O at a later date.

For async I/O operations that are still pending, the aio_cancel() function
can be used to cancel the operation:

cc [flag...] file... -lrt [library...]
#include <aio.h>

int aio_cancel(int fildes, struct aiocb aiocbp);

User File I/O 57

The filedes argument refers to the open file on which a previously made async
I/O, as specified by aiocbp, was issued. If aiocbp is NULL, all pending async
I/O operations are canceled. Note that it is not always possible to cancel an async
I/O. In many cases, the I/O will be queued at the driver level before the call from
aio_read() or aio_write() returns.

As an example, following the above call to aio_write(), this code is inserted:

err = aio_cancel(aio.aio_fildes, &aio);
switch (err) {
 case AIO_CANCELED:

errstr = "AIO_CANCELED";
 break;

case AIO_NOTCANCELED:
 errstr = "AIO_NOTCANCELED";
 break;

case AIO_ALLDONE:
 errstr = "AIO_ALLDONE";
 break;
default:
 errstr = "Call failed";
}
printf("Error value returned %s\n", errstr);

and when the program is run, the following error value is returned:

Error value returned AIO_CANCELED

In this case, the I/O operation was canceled. Consider the same program but
instead of issuing a 64MB write, a small 512 byte I/O is issued:

Error value returned AIO_NOTCANCELED

In this case, the I/O was already in progress, so the kernel was unable to prevent
it from completing.

As mentioned above, the Oracle DBWR process will likely issue multiple I/Os
simultaneously and wait for them to complete at a later time. Multiple read()
and write() system calls can be combined through the use of readv() and
write() to help cut down on system call overhead. For async I/O, the
lio_listio() function achieves the same result:

#include <aio.h>

int lio_listio(int mode, struct aiocb const list[], int nent,
 struct sigevent sig);

The mode argument can be one of LIO_WAIT in which the requesting process will
block in the kernel until all I/O operations have completed or LIO_NOWAIT in
which case the kernel returns control to the user as soon as the I/Os have been

58 UNIX Filesystems—Evolution, Design, and Implementation

queued. The list argument is an array of nent aiocb structures. Note that for
each aiocb structure, the aio_lio_opcode field must be set to either
LIO_READ for a read operation, LIO_WRITE for a write operation, or LIO_NOP
in which case the entry will be ignored.

If the mode flag is LIO_NOWAIT, the sig argument specifies the signal that
should be posted to the process once the I/O has completed.

The following example uses lio_listio() to issue two async writes to
different parts of the file. Once the I/O has completed, the signal handler
aiohdlr() will be invoked; this displays the time that it took for both writes to
complete.

1 #include <aio.h>
 2 #include <time.h>
 3 #include <errno.h>
 4 #include <signal.h>
 5
 6 #define FILESZ (1024 * 1024 * 64)
 7 time_t time1, time2;
 8
 9 void
10 aiohdlr(int signo)
11 {
12 time(&time2);
13 printf("Time for write was %d seconds\n", time2 - time1);
14 }
15
16 main()
17 {
18 struct sigevent mysig;
19 struct aiocb *laio[2];
20 struct aiocb aio1, aio2;
21 void *buf;
22 char errstr;
23 int fd;
24
25 buf = (void *)malloc(FILESZ);
26 fd = open("/dev/vx/rdsk/fs1", O_WRONLY);
27
28 aio1.aio_fildes = fd;
29 aio1.aio_lio_opcode = LIO_WRITE;
30 aio1.aio_buf = buf;
31 aio1.aio_offset = 0;
32 aio1.aio_nbytes = FILESZ;
33 aio1.aio_reqprio = 0;
34 laio[0] = &aio1;
35
36 aio2.aio_fildes = fd;
37 aio2.aio_lio_opcode = LIO_WRITE;
38 aio2.aio_buf = buf;
39 aio2.aio_offset = FILESZ;
40 aio2.aio_nbytes = FILESZ;
41 aio2.aio_reqprio = 0;
42 laio[1] = &aio2;

User File I/O 59

43
44 sigset(SIGUSR1, aiohdlr);
45 mysig.sigev_signo = SIGUSR1;
46 mysig.sigev_notify = SIGEV_SIGNAL;
47 mysig.sigev_value.sival_ptr = (void *)laio;
48
49 time(&time1);
50 lio_listio(LIO_NOWAIT, laio, 2, &mysig);
51 pause();
52 }

The call to lio_listio() specifies that the program should not wait and that a
signal should be posted to the process after all I/Os have completed. Although
not described here, it is possible to use real-time signals through which
information can be passed back to the signal handler to determine which async
I/O has completed. This is particularly important when there are multiple
simultaneous calls to lio_listio(). Bill Gallmeister’s book Posix.4:
Programming for the Real World [GALL95] describes how to use real-time signals.

When the program is run the following is observed:

listio
Time for write was 12 seconds

which clearly shows the amount of time that this process could have been
performing other work rather than waiting for the I/O to complete.

Memory Mapped Files

In addition to reading and writing files through the use of read() and write(),
UNIX supports the ability to map a file into the process’ address space and read
and write to the file through memory accesses. This allows unrelated processes to
access files with either shared or private mappings. Mapped files are also used by
the operating system for executable files.

The mmap() system call allows a process to establish a mapping to an already
open file:

#include <sys/mman.h>

void mmap(void addr, size_t len, int prot, int flags,
int fildes, off_t off);

The file is mapped from an offset of off bytes within the file for len bytes. Note
that the offset must be on a page size boundary. Thus, if the page size of the
system is 4KB, the offset must be 0, 4096, 8192 and so on. The size of the mapping
does not need to be a multiple of the page size although the kernel will round the
request up to the nearest page size boundary. For example, if off is set to 0 and
size is set to 2048, on systems with a 4KB page size, the mapping established will

60 UNIX Filesystems—Evolution, Design, and Implementation

actually be for 4KB.
Figure 3.2 shows the relationship between the pages in the user’s address

space and how they relate to the file being mapped. The page size of the
underlying hardware platform can be determined by making a call to
sysconf() as follows:

#include <unistd.h>

main()
{
 printf("PAGESIZE = %d\n", sysconf(_SC_PAGESIZE));
}

Typically the page size will be 4KB or 8KB. For example, as expected, when the
program is run on an x86 processor, the following is reported:

./sysconf
PAGESIZE = 4096

while for Sparc 9 based hardware:

./sysconf
PAGESIZE = 8192

Although it is possible for the application to specify the address to which the file
should be mapped, it is recommended that the addr field be set to 0 so that the
system has the freedom to choose which address the mapping will start from.
The operating system dynamic linker places parts of the executable program in
various memory locations. The amount of memory used differs from one process
to the next. Thus, an application should never rely on locating data at the same
place in memory even within the same operating system and hardware
architecture. The address at which the mapping is established is returned if the
call to mmap() is successful, otherwise 0 is returned.

Note that after the file has been mapped it can be closed and still accessed
through the mapping.

Before describing the other parameters, here is a very simple example showing
the basics of mmap():

 1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <sys/mman.h>
 4 #include <fcntl.h>
 5 #include <unistd.h>
 6
 7 #define MAPSZ 4096
 8
 9 main()
10 {
11 char *addr, c;
12 int fd;

User File I/O 61

13
14 fd = open("/etc/passwd", O_RDONLY);
15 addr = (char *)mmap(NULL, MAPSZ,
16 PROT_READ, MAP_SHARED, fd, 0);
17 close(fd);
18 for (;;) {
19 c = *addr;
20 putchar(c);
21 addr++;
22 if (c == ’\n’) {
23 exit(0);
24 }
25 }
26 }

The /etc/passwd file is opened and a call to mmap() is made to map the first
MAPSZ bytes of the file. A file offset of 0 is passed. The PROT_READ and
MAP_SHARED arguments describe the type of mapping and how it relates to other
processes that map the same file. The prot argument (in this case PROT_READ)
can be one of the following:

PROT_READ. The data can be read.

PROT_WRITE. The data can be written.
PROT_EXEC. The data can be executed.

PROT_NONE. The data cannot be accessed.

Note that the different access types can be combined. For example, to specify read
and write access a combination of (PROT_READ|PROT_WRITE) may be specified.
By specifying PROT_EXEC it is possible for application writers to produce their

Figure 3.2 Mapping two file pages using mmap().

offset = 1024 offset = 2048

user address space

mmap(0, 8192, PROT_READ, MAP_PRIVATE, fd, 4096);

62 UNIX Filesystems—Evolution, Design, and Implementation

own dynamic library mechanisms. The PROT_NONE argument can be used for
user level memory management by preventing access to certain parts of memory
at certain times. Note that PROT_NONE cannot be used in conjunction with any
other flags.

The flags argument can be one of the following:

MAP_SHARED. Any changes made through the mapping will be reflected back
to the mapped file and are visible by other processes calling mmap() and
specifying MAP_SHARED.

MAP_PRIVATE. Any changes made through the mapping are private to this
process and are not reflected back to the file.

MAP_FIXED. The addr argument should be interpreted exactly. This
argument will be typically used by dynamic linkers to ensure that program
text and data are laid out in the same place in memory for each process. If
MAP_FIXED is specified and the area specified in the mapping covers an
already existing mapping, the initial mapping is first unmapped.

Note that in some versions of UNIX, the flags have been enhanced to include
operations that are not covered by the Single UNIX Specification. For example,
on the Solaris operating system, the MAP_NORESERVE flag indicates that swap
space should not be reserved. This avoids unnecessary wastage of virtual
memory and is especially useful when mappings are read-only. Note, however,
that this flag is not portable to other versions of UNIX.

To give a more concrete example of the use of mmap(), an abbreviated
implementation of the cp utility is given. This is how some versions of UNIX
actually implement cp.

1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <sys/mman.h>
 4 #include <fcntl.h>
 5 #include <unistd.h>
 6
 7 #define MAPSZ 4096
 8
 9 main(int argc, char argv)
10 {
11 struct stat st;
12 size_t iosz;
13 off_t off = 0;
14 void *addr;
15 int ifd, ofd;
16
17 if (argc != 3) {
18 printf("Usage: mycp srcfile destfile\n");
19 exit(1);
20 }
21 if ((ifd = open(argv[1], O_RDONLY)) < 0) {
22 printf("Failed to open %s\n", argv[1]);
23 }

User File I/O 63

24 if ((ofd = open(argv[2],
25 O_WRONLY|O_CREAT|O_TRUNC, 0777)) < 0) {
26 printf("Failed to open %s\n", argv[2]);
27 }
28 fstat(ifd, &st);
29 if (st.st_size < MAPSZ) {
30 addr = mmap(NULL, st.st_size,
31 PROT_READ, MAP_SHARED, ifd, 0);
32 printf("Mapping entire file\n");
33 close(ifd);
34 write (ofd, (char *)addr, st.st_size);
35 } else {
36 printf("Mapping file by MAPSZ chunks\n");
37 while (off <= st.st_size) {
38 addr = mmap(NULL, MAPSZ, PROT_READ,
39 MAP_SHARED, ifd, off);
40 if (MAPSZ < (st.st_size - off)) {
41 iosz = MAPSZ;
42 } else {
43 iosz = st.st_size - off;
44 }
45 write (ofd, (char *)addr, iosz);
46 off += MAPSZ;
47 }
48 }
49 }

The file to be copied is opened and the file to copy to is created on lines 21-27. The
fstat() system call is invoked on line 28 to determine the size of the file to be
copied. The first call to mmap() attempts to map the whole file (line 30) for files of
size less then MAPSZ. If this is successful, a single call to write() can be issued to
write the contents of the mapping to the output file.

If the attempt at mapping the whole file fails, the program loops (lines 37-47)
mapping sections of the file and writing them to the file to be copied.

Note that in the example here, MAP_PRIVATE could be used in place of
MAP_SHARED since the file was only being read. Here is an example of the
program running:

$ cp mycp.c fileA
$ mycp fileA fileB
Mapping entire file
$ diff fileA fileB
$ cp mycp fileA
$ mycp fileA fileB
Mapping file by MAPSZ chunks
$ diff fileA fileB

Note that if the file is to be mapped in chunks, we keep making repeated calls to
mmap(). This is an extremely inefficient use of memory because each call to
mmap() will establish a new mapping without first tearing down the old
mapping. Eventually the process will either exceed its virtual memory quota or

64 UNIX Filesystems—Evolution, Design, and Implementation

run out of address space if the file to be copied is very large. For example, here is
a run of a modified version of the program that displays the addresses returned
by mmap():

$ dd if=/dev/zero of=20kfile bs=4096 count=5
5+0 records in
5+0 records out
$ mycp_profile 20kfile newfile
Mapping file by MAPSZ chunks
map addr = 0x40019000
map addr = 0x4001a000
map addr = 0x4001b000
map addr = 0x4001c000
map addr = 0x4001d000
map addr = 0x4001e000

The different addresses show that each call to mmap() establishes a mapping at a
new address. To alleviate this problem, the munmap() system call can be used to
unmap a previously established mapping:

#include <sys/mman.h>

int munmap(void *addr, size_t len);

Thus, using the example above and adding the following line:

munmap(addr, iosz);

after line 46, the mapping established will be unmapped, freeing up both the
user’s virtual address space and associated physical pages. Thus, running the
program again and displaying the addresses returned by calling mmap() shows:

$ mycp2 20kfile newfile
Mapping file by MAPSZ chunks
map addr = 0x40019000
map addr = 0x40019000
map addr = 0x40019000
map addr = 0x40019000
map addr = 0x40019000
map addr = 0x40019000

The program determines whether to map the whole file based on the value of
MAPSZ and the size of the file. One way to modify the program would be to
attempt to map the whole file regardless of size and only switch to mapping in
segments if the file is too large, causing the call to mmap() to fail.

After a mapping is established with a specific set of access protections, it may
be desirable to change these protections over time. The mprotect() system call
allows the protections to be changed:

#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

TEAMFL
Y

TEAM FLY ®

User File I/O 65

The prot argument can be one of PROT_READ, PROT_WRITE, PROT_EXEC,
PROT_NONE, or a valid combination of the flags as described above. Note that the
range of the mapping specified by a call to mprotect() does not have to cover
the entire range of the mapping established by a previous call to mmap(). The
kernel will perform some rounding to ensure that len is rounded up to the next
multiple of the page size.

The other system call that is of importance with respect to memory mapped
files is msync(), which allows modifications to the mapping to be flushed to the
underlying file:

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Again, the range specified by the combination of addr and len does not need to
cover the entire range of the mapping. The flags argument can be one of the
following:

MS_ASYNC. Perform an asynchronous write of the data.
MS_SYNC. Perform a synchronous write of the data.

MS_INVALIDATE. Invalidate any cached data.

Thus, a call to mmap() followed by modification of the data followed by a call to
msync() specifying the MS_SYNC flag is similar to a call to write() following a
call to open() and specifying the O_SYNC flag. By specifying the MS_ASYNC flag,
this is loosely synonymous to opening a file without the O_SYNC flag. However,
calling msync() with the MS_ASYNC flag is likely to initiate the I/O while writing
to a file without specifying O_SYNC or O_DSYNC could result in data sitting in the
system page or buffer cache for some time.

One unusual property of mapped files occurs when the pseudo device
/dev/zero is mapped. As one would expect, this gives access to a contiguous set
of zeroes covering any part of the mapping that is accessed. However, following a
mapping of /dev/zero, if the process was to fork, the mapping would be visible
by parent and child. If MAP_PRIVATE was specified on the call to mmap(), parent
and child will share the same physical pages of the mapping until a modification
is made at which time the kernel will copy the page that makes the modification
private to the process which issued the write.

If MAP_SHARED is specified, both parent and children will share the same
physical pages regardless of whether read or write operations are performed.

64-Bit File Access (LFS)

32-bit operating systems have typically used a signed long integer as the offset to
files. This leads to a maximum file size of 231 - 1 (2GB - 1). The amount of work to
convert existing applications to use a different size type for file offsets was

66 UNIX Filesystems—Evolution, Design, and Implementation

considered too great, and thus the Large File Summit was formed, a group of OS
and filesystem vendors who wanted to produce a specification that could allow
access to large files. The specification would then be included as part of the Single
UNIX Specification (UNIX 95 and onwards). The specification provided the
following concepts:

■ The off_t data type would support one of two or more sizes as the OS
and filesystem evolved to a full 64-bit solution.

■ An offset maximum which, as part of the interface, would give the maximum
offset that the OS/filesystem would allow an application to use. The offset
maximum is determined through a call to open() by specifying (or not)
whether the application wishes to access large files.

■ When applications attempt to read parts of a file beyond their
understanding of the offset maximum, the OS would return a new error
code, namely EOVERFLOW.

In order to provide both an explicit means of accessing large files as well as a
hidden and easily upgradable approach, there were two programmatic models.
The first allowed the size of off_t to be determined during the compilation and
linking process. This effectively sets the size of off_t and determines whether
the standard system calls such as read() and write() will be used or whether
the large file specific libraries will be used. Either way, the application continues
to use read(), write(), and related system calls, and the mapping is done
during the link time.

The second approach provided an explicit model whereby the size of off_t
was chosen explicitly within the program. For example, on a 32-bit OS, the size
of off_t would be 32 bits, and large files would need to be accessed through
use of the off64_t data type. In addition, specific calls such as open64(),
read64() would be required in order to access large files.

Today, the issue has largely gone away, with most operating systems
supporting large files by default.

Sparse Files

Due to their somewhat rare usage, sparse files are often not well understood and a
cause of confusion. For example, the VxFS filesystem up to version 3.5 allowed a
maximum filesystem size of 1TB but a maximum file size of 2TB. How can a
single file be larger than the filesystem in which it resides?

A sparse file is simply a file that contains one or more holes. This statement itself
is probably the reason for the confusion. A hole is a gap within the file for which
there are no allocated data blocks. For example, a file could contain a 1KB data
block followed by a 1KB hole followed by another 1KB data block. The size of the

User File I/O 67

file would be 3KB but there are only two blocks allocated. When reading over a
hole, zeroes will be returned.

The following example shows how this works in practice. First of all, a 20MB
filesystem is created and mounted:

mkfs -F vxfs /dev/vx/rdsk/rootdg/vol2 20m
version 4 layout
40960 sectors, 20480 blocks of size 1024, log size 1024 blocks
unlimited inodes, largefiles not supported
20480 data blocks, 19384 free data blocks
1 allocation units of 32768 blocks, 32768 data blocks
last allocation unit has 20480 data blocks
mount -F vxfs /dev/vx/dsk/rootdg/vol2 /mnt2

and the following program, which is used to create a new file, seeks to an offset of
64MB and then writes a single byte:

#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>

#define IOSZ (1024 * 1024 *64)

main()
{
 int fd;

 fd = open("/mnt2/newfile", O_CREAT | O_WRONLY, 0666);
 lseek(fd, IOSZ, SEEK_SET);
 write(fd, "a", 1);
}

The following shows the result when the program is run:

./lf
ls -l /mnt2
total 2
drwxr-xr-x 2 root root 96 Jun 13 08:25 lost+found/
-rw-r--r 1 root other 67108865 Jun 13 08:28 newfile
df -k | grep mnt2
/dev/vx/dsk/rootdg/vol2 20480 1110 18167 6% /mnt2

And thus, the filesystem which is only 20MB in size contains a file which is 64MB.
Note that, although the file size is 64MB, the actual space consumed is very low.
The 6 percent usage, as displayed by running df, shows that the filesystem is
mostly empty.

To help understand how sparse files can be useful, consider how storage is
allocated to a file in a hypothetical filesystem. For this example, consider a
filesystem that allocates storage to files in 1KB chunks and consider the
interaction between the user and the filesystem as follows:

68 UNIX Filesystems—Evolution, Design, and Implementation

User Filesystem

create() Create a new file
write(1k of ‘a’s) Allocate a new 1k block for range 0 to 1023 bytes
write(1k of ‘b’s) Allocate a new 1k block for range 1024 to 2047 bytes
close() Close the file

In this example, following the close() call, the file has a size of 2048 bytes. The
data written to the file is stored in two 1k blocks. Now, consider the example
below:

User Filesystem

create() Create a new file
lseek(to 1k) No effect on the file
write(1k of ‘b’s) Allocate a new 1k block for range 1024 to 2047 bytes
close() Close the file

The chain of events here also results in a file of size 2048 bytes. However, by
seeking to a part of the file that doesn’t exist and writing, the allocation occurs at
the position in the file as specified by the file pointer. Thus, a single 1KB block is
allocated to the file. The two different allocations are shown in Figure 3.3.

Note that although filesystems will differ in their individual implementations,
each file will contain a block map mapping the blocks that are allocated to the file
and at which offsets. Thus, in Figure 3.3, the hole is explicitly marked.

So what use are sparse files and what happens if the file is read? All UNIX
standards dictate that if a file contains a hole and data is read from a portion of a
file containing a hole, zeroes must be returned. Thus when reading the sparse file
above, we will see the same result as for a file created as follows:

User Filesystem

create() Create a new file
write(1k of 0s) Allocate a new 1k block for range 1023 to 2047 bytes
write(1k of ‘b’s) Allocate a new 1k block for range 1024 to 2047 bytes
close() Close the file

Not all filesystems implement sparse files and, as the examples above show, from
a programmatic perspective, the holes in the file are not actually visible. The
main benefit comes from the amount of storage that is saved. Thus, if an
application wishes to create a file for which large parts of the file contain zeroes,
this is a useful way to save on storage and potentially gain on performance by
avoiding unnecessary I/Os.

The following program shows the example described above:

 1 #include <sys/types.h>
 2 #include <fcntl.h>
 3 #include <unistd.h>

User File I/O 69

 4
 5 main()
 6 {
 7 char buf[1024];
 8 int fd;
 9
10 memset(buf, ’a’, 1024);
11 fd = open("newfile", O_RDWR|O_CREAT|O_TRUNC, 0777);
12 lseek(fd, 1024, SEEK_SET);
13 write(fd, buf, 1024);
14 }

When the program is run the contents are displayed as shown below. Note the
zeroes for the first 1KB as expected.

$ od -c newfile
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0002000 a a a a a a a a a a a a a a a a
*
0004000

If a write were to occur within the first 1KB of the file, the filesystem would have
to allocate a 1KB block even if the size of the write is less than 1KB. For example,
by modifying the program as follows:

memset(buf, 'b', 512);
fd = open("newfile", O_RDWR);
lseek(fd, 256, SEEK_SET);
write(fd, buf, 512);

and then running it on the previously created file, the resulting contents are:

$ od -c newfile
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0000400 b b b b b b b b b b b b b b b b
*
0001400 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

Figure 3.3 Allocation of storage for sparse and non-sparse files.

non-sparse 2KB file
0, 1 block

1024, 1 block

sparse 2KB file
0, Hole

1024, 1 block

70 UNIX Filesystems—Evolution, Design, and Implementation

*
0002000 a a a a a a a a a a a a a a a a
*
0004000

Therefore in addition to allocating a new 1KB block, the filesystem must zero fill
those parts of the block outside of the range of the write.

The following example shows how this works on a VxFS filesystem. A new file
is created. The program then seeks to byte offset 8192 and writes 1024 bytes.

#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>

main()
{
 int fd;
 char buf[1024];

 fd = open("myfile", O_CREAT | O_WRONLY, 0666);
 lseek(fd, 8192, SEEK_SET);
 write(fd, buf, 1024);
}

In the output shown below, the program is run, the size of the new file is
displayed, and the inode number of the file is obtained:

./sparse
ls -l myfile
-rw-r--r 1 root other 9216 Jun 13 08:37 myfile
ls -i myfile
6 myfile

The VxFS fsdb command can show which blocks are assigned to the file. The
inode corresponding to the file created is displayed:

umount /mnt2
fsdb -F vxfs /dev/vx/rdsk/rootdg/vol2
> 6i
inode structure at 0x00000431.0200
type IFREG mode 100644 nlink 1 uid 0 gid 1 size 9216
atime 992447379 122128 (Wed Jun 13 08:49:39 2001)
mtime 992447379 132127 (Wed Jun 13 08:49:39 2001)
ctime 992447379 132127 (Wed Jun 13 08:49:39 2001)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 0 rdev/reserve/dotdot/matchino 0
blocks 1 gen 844791719 version 0 13 iattrino 0
de: 0 1096 0 0 0 0 0 0 0 0
des: 8 1 0 0 0 0 0 0 0 0
ie: 0 0
ies: 0

User File I/O 71

The de field refers to a direct extent (filesystem block) and the des field is the
extent size. For this file the first extent starts at block 0 and is 8 blocks (8KB) in
size. VxFS uses block 0 to represent a hole (note that block 0 is never actually
used). The next extent starts at block 1096 and is 1KB in length. Thus, although the
file is 9KB in size, it has only one 1KB block allocated to it.

Summary

This chapter provided an introduction to file I/O based system calls. It is
important to grasp these concepts before trying to understand how filesystems
are implemented. By understanding what the user expects, it is easier to see how
certain features are implemented and what the kernel and individual filesystems
are trying to achieve.

Whenever programming on UNIX, it is always a good idea to follow
appropriate standards to allow programs to be portable across multiple versions
of UNIX. The commercial versions of UNIX typically support the Single UNIX
Specification standard although this is not fully adopted in Linux and BSD. At the
very least, all versions of UNIX will support the POSIX.1 standard.

CHAPTER

4

73

The Standard I/O Library

Many users require functionality above and beyond what is provided by the basic
file access system calls. The standard I/O library, which is part of the ANSI C
standard, provides this extra level of functionality, avoiding the need for
duplication in many applications.

There are many books that describe the calls provided by the standard I/O
library (stdio). This chapter offers a different approach by describing the
implementation of the Linux standard I/O library showing the main structures,
how they support the functions available, and how the library calls map onto the
system call layer of UNIX.

The needs of the application will dictate whether the standard I/O library will
be used as opposed to basic file-based system calls. If extra functionality is
required and performance is not paramount, the standard I/O library, with its
rich set of functions, will typically meet the needs of most programmers. If
performance is key and more control is required over the execution of I/O,
understanding how the filesystem performs I/O and bypassing the standard I/O
library is typically a better choice.

Rather than describing the myriad of stdio functions available, which are well
documented elsewhere, this chapter provides an overview of how the standard
I/O library is implemented. For further details on the interfaces available, see
Richard Steven’s book Advanced Programming in the UNIX Programming
Environment [STEV92] or consult the Single UNIX Specification.

74 UNIX Filesystems—Evolution, Design, and Implementation

The FILE Structure

Where system calls such as open() and dup() return a file descriptor through
which the file can be accessed, the stdio library operates on a FILE structure, or
file stream as it is often called. This is basically a character buffer that holds
enough information to record the current read and write file pointers and some
other ancillary information. On Linux, the IO_FILE structure from which the
FILE structure is defined is shown below. Note that not all of the structure is
shown here.

struct _IO_FILE {
 char *_IO_read_ptr; /* Current read pointer */
 char *_IO_read_end; /* End of get area. */
 char *_IO_read_base; /* Start of putback and get area. */
 char *_IO_write_base; /* Start of put area. */
 char *_IO_write_ptr; /* Current put pointer. */
 char *_IO_write_end; /* End of put area. */
 char *_IO_buf_base; /* Start of reserve area. */
 char *_IO_buf_end; /* End of reserve area. */
 int _fileno;
 int _blksize;
};

typedef struct _IO_FILE FILE;

Each of the structure fields will be analyzed in more detail throughout the
chapter. However, first consider a call to the open() and read() system calls:

fd = open("/etc/passwd", O_RDONLY);
read(fd, buf, 1024);

When accessing a file through the stdio library routines, a FILE structure will be
allocated and associated with the file descriptor fd, and all I/O will operate
through a single buffer. For the _IO_FILE structure shown above, _fileno is
used to store the file descriptor that is used on subsequent calls to read() or
write(), and _IO_buf_base represents the buffer through which the data will
pass.

Standard Input, Output, and Error

The standard input, output, and error for a process can be referenced by the file
descriptors STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO. To use the
stdio library routines on either of these files, their corresponding file streams
stdin, stdout, and stderr can also be used. Here are the definitions of all
three:

TEAMFL
Y

TEAM FLY ®

The Standard I/O Library 75

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

All three file streams can be accessed without opening them in the same way that
the corresponding file descriptor values can be accessed without an explicit call to
open().

There are some standard I/O library routines that operate on the standard
input and output streams explicitly. For example, a call to printf() uses stdin
by default whereas a call to fprintf() requires the caller to specify a file stream.
Similarly, a call to getchar() operates on stdin while a call to getc() requires
the file stream to be passed. The declaration of getchar() could simply be:

#define getchar() getc(stdin)

Opening and Closing a Stream

The fopen() and fclose() library routines can be called to open and close a
file stream:

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);
int fclose(FILE *stream);

The mode argument points to a string that starts with one of the following
sequences. Note that these sequences are part of the ANSI C standard.

r, rb. Open the file for reading.

w, wb. Truncate the file to zero length or, if the file does not exist, create a new
file and open it for writing.

a, ab. Append to the file. If the file does not exist, it is first created.

r+, rb+, r+b. Open the file for update (reading and writing).
w+, wb+, w+b. Truncate the file to zero length or, if the file does not exist,

create a new file and open it for update (reading and writing).

a+, ab+, a+b. Append to the file. If the file does not exist it is created and
opened for update (reading and writing). Writing will start at the end of file.

Internally, the standard I/O library will map these flags onto the corresponding
flags to be passed to the open() system call. For example, r will map to
O_RDONLY, r+ will map to O_RDWR and so on. The process followed when
opening a stream is shown in Figure 4.1.

The following example shows the effects of some of the library routines on the
FILE structure:

76 UNIX Filesystems—Evolution, Design, and Implementation

1 #include <stdio.h>
2
3 main()
4 {
5 FILE *fp1, *fp2;
6 char c;
7
8 fp1 = fopen("/etc/passwd", "r");
9 fp2 = fopen("/etc/mtab", "r");
10 printf("address of fp1 = 0x%x\n", fp1);
11 printf(" fp1->_fileno = 0x%x\n", fp1->_fileno);
12 printf("address of fp2 = 0x%x\n", fp2);
13 printf(" fp2->_fileno = 0x%x\n\n", fp2->_fileno);
14
15 c = getc(fp1);
16 c = getc(fp2);
17 printf(" fp1->_IO_buf_base = 0x%x\n",
18 fp1->_IO_buf_base);
19 printf(" fp1->_IO_buf_end = 0x%x\n",
20 fp1->_IO_buf_end);
21 printf(" fp2->_IO_buf_base = 0x%x\n",
22 fp2->_IO_buf_base);
23 printf(" fp2->_IO_buf_end = 0x%x\n",
24 fp2->_IO_buf_end);
25 }

Note that, even following a call to fopen(), the library will not allocate space to
the I/O buffer unless the user actually requests data to be read or written. Thus,
the value of _IO_buf_base will initially be NULL. In order for a buffer to be
allocated in the program here, a call is made to getc() in the above example,
which will allocate the buffer and read data from the file into the newly allocated
buffer.

$ fpopen
Address of fp1 = 0x8049860

Figure 4.1 Opening a file through the stdio library.

fp = fopen("myfile", "r+");

_fileno _fileno = open("myfile", O_RDWR);

service open request

UNIX kernel

struct FILE

stdio library
1. malloc FILE structure
2. call open()

The Standard I/O Library 77

fp1->_fileno = 0x3
Address of fp2 = 0x80499d0
fp2->_fileno = 0x4

fp1->_IO_buf_base = 0x40019000
fp1->_IO_buf_end = 0x4001a000
fp2->_IO_buf_base = 0x4001a000
fp2->_IO_buf_end = 0x4001b000

Note that one can see the corresponding system calls that the library will make by
running strace, truss etc.

$ strace fpopen 2>&1 | grep open
open("/etc/passwd", O_RDONLY) = 3
open("/etc/mtab", O_RDONLY) = 4
$ strace fpopen 2>&1 | grep read
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 827
read(4, "/dev/hda6 / ext2 rw 0 0 none /pr"..., 4096) = 157

Note that despite the program’s request to read only a single character from each
file stream, the stdio library attempted to read 4KB from each file. Any
subsequent calls to getc() do not require another call to read() until all
characters in the buffer have been read.

There are two additional calls that can be invoked to open a file stream, namely
fdopen() and freopen():

#include <stdio.h>

FILE *fdopen (int fildes, const char *mode);
FILE *freopen (const char *filename,
 const char *mode, FILE *stream);

The fdopen() function can be used to associate an already existing file stream
with a file descriptor. This function is typically used in conjunction with functions
that only return a file descriptor such as dup(), pipe(), and fcntl().

The freopen() function opens the file whose name is pointed to by
filename and associates the stream pointed to by stream with it. The original
stream (if it exists) is first closed. This is typically used to associate a file with one
of the predefined streams, standard input, output, or error. For example, if the
caller wishes to use functions such as printf() that operate on standard output
by default, but also wants to use a different file stream for standard output, this
function achieves the desired effect.

Standard I/O Library Buffering

The stdio library buffers data with the goal of minimizing the number of calls to
the read() and write() system calls. There are three different types of
buffering used:

78 UNIX Filesystems—Evolution, Design, and Implementation

Fully (block) buffered. As characters are written to the stream, they are
buffered up to the point where the buffer is full. At this stage, the data is
written to the file referenced by the stream. Similarly, reads will result in a
whole buffer of data being read if possible.

Line buffered. As characters are written to a stream, they are buffered up until
the point where a newline character is written. At this point the line of data
including the newline character is written to the file referenced by the
stream. Similarly for reading, characters are read up to the point where a
newline character is found.

Unbuffered. When an output stream is unbuffered, any data that is written to
the stream is immediately written to the file to which the stream is
associated.

The ANSI C standard dictates that standard input and output should be fully
buffered while standard error should be unbuffered. Typically, standard input
and output are set so that they are line buffered for terminal devices and fully
buffered otherwise.

The setbuf() and setvbuf() functions can be used to change the buffering
characteristics of a stream as shown:

#include <stdio.h>

void setbuf(FILE *stream, char *buf);
int setvbuf(FILE *stream, char *buf, int type, size_t size);

The setbuf() function must be called after the stream is opened but before any
I/O to the stream is initiated. The buffer specified by the buf argument is used in
place of the buffer that the stdio library would use. This allows the caller to
optimize the number of calls to read() and write() based on the needs of the
application.

The setvbuf() function can be called at any stage to alter the buffering
characteristics of the stream. The type argument can be one of _IONBF
(unbuffered), _IOLBF (line buffered), or _IOFBF (fully buffered). The buffer
specified by the buf argument must be at least size bytes. Prior to the next I/O,
this buffer will replace the buffer currently in use for the stream if one has
already been allocated. If buf is NULL, only the buffering mode will be changed.

Whether full or line buffering is used, the fflush() function can be used to
force all of the buffered data to the file referenced by the stream as shown:

#include <stdio.h>

int fflush(FILE *stream);

Note that all output streams can be flushed by setting stream to NULL. One
further point worthy of mention concerns termination of a process. Any streams
that are currently open are flushed and closed before the process exits.

The Standard I/O Library 79

Reading and Writing to/from a Stream

There are numerous stdio functions for reading and writing. This section
describes some of the functions available and shows a different implementation of
the cp program using various buffering options. The program shown below
demonstrates the effects on the FILE structure by reading a single character using
the getc() function:

1 #include <stdio.h>
2
3 main()
4 {
5 FILE *fp;
6 char c;
7
8 fp = fopen("/etc/passwd", "r");
9 printf("address of fp = 0x%x\n", fp);

10 printf(" fp->_fileno = 0x%x\n", fp->_fileno);
11 printf(" fp->_IO_buf_base = 0x%x\n", fp->_IO_buf_base);
12 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
13
14 c = getc(fp);
15 printf(" fp->_IO_buf_base = 0x%x (size = %d)\n",
16 fp->_IO_buf_base,
17 fp->_IO_buf_end fp->_IO_buf_base);
18 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
19 c = getc(fp);
20 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
21 }

Note as shown in the output below, the buffer is not allocated until the first I/O is
initiated. The default size of the buffer allocated is 4KB. With successive calls to
getc(), the read pointer is incremented to reference the next byte to read within
the buffer. Figure 4.2 shows the steps that the stdio library goes through to read
the data.

$ fpinfo
Address of fp = 0x8049818
fp->_fileno = 0x3
fp->_IO_buf_base = 0x0
fp->_IO_read_ptr = 0x0
fp->_IO_buf_base = 0x40019000 (size = 4096)
fp->_IO_read_ptr = 0x40019001
fp->_IO_read_ptr = 0x40019002

By running strace on Linux, it is possible to see how the library reads the data
following the first call to getc(). Note that only those lines that reference the
/etc/passwd file are displayed here:

80 UNIX Filesystems—Evolution, Design, and Implementation

$ strace fpinfo
...

open("/etc/passwd", O_RDONLY) = 3
...
fstat(3, st_mode=S_IFREG_0644, st_size=788, ...) = 0
...
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 788

The call to fopen() results in a call to open() and the file descriptor returned is
stored in fp->_fileno as shown above. Note that although the program only
asked for a single character (line 14), the standard I/O library issued a 4KB read
to fill up the buffer. The next call to getc() did not require any further data to be
read from the file. Note that when the end of the file is reached, a subsequent call
to getc() will return EOL.

The following example provides a simple cp program showing the effects of
using fully buffered, line buffered, and unbuffered I/O. The buffering option is
passed as an argument. The file to copy from and the file to copy to are hard
coded into the program for this example.

1 #include <time.h>
2 #include <stdio.h>
3
4 main(int argc, char **argv)
5 {
6 time_t time1, time2;

Figure 4.2 Reading a file through the standard I/O library.

_IO_read_ptr

_IO_buf_base

_fileno

c = getc(mystream)

stdio library

struct FILE

alloc buffer

yes
1. First I/O?
2. read(_fileno, _IO_buf_base, 4096);

3. Copy data to user buffer
4. Update _IO_read_ptr

UNIX kernel

service read request

The Standard I/O Library 81

7 FILE *ifp, *ofp;
8 int mode;
9 char c, ibuf[16384], obuf[16384];

10
11 if (strcmp(argv[1], "_IONBF") == 0) {
12 mode = _IONBF;
13 } else if (strcmp(argv[1], "_IOLBF") == 0) {
14 mode = _IOLBF;
15 } else {
16 mode = _IOFBF;
17 }
18
19 ifp = fopen("infile", "r");
20 ofp = fopen("outfile", "w");
21
22 setvbuf(ifp, ibuf, mode, 16384);
23 setvbuf(ofp, obuf, mode, 16384);
24
25 time(&time1);
26 while ((c = fgetc(ifp)) != EOF) {
27 fputc(c, ofp);
28 }
29 time(&time2);
30 fprintf(stderr, "Time for %s was %d seconds\n", argv[1],
31 time2 - time1);
32 }

The input file has 68,000 lines of 80 characters each. When the program is run with
the different buffering options, the following results are observed:

$ ls -l infile
-rw-r--r- 1 spate fcf 5508000 Jun 29 15:38 infile
$ wc -l infile
68000 infile
$./fpcp _IONBF
Time for _IONBF was 35 seconds
$./fpcp _IOLBF
Time for _IOLBF was 3 seconds
$./fpcp _IOFBF
Time for _IOFBF was 2 seconds

The reason for such a huge difference in performance can be seen by the number
of system calls that each option results in. For unbuffered I/O, each call to
getc() or putc() produces a system call to read() or write(). All together,
there are 68,000 reads and 68,000 writes! The system call pattern seen for
unbuffered is as follows:

...
open("infile", O_RDONLY) = 3
open("outfile", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 4
time([994093607]) = 994093607
read(3, "0", 1) = 1

82 UNIX Filesystems—Evolution, Design, and Implementation

write(4, "0", 1) = 1
read(3, "1", 1) = 1
write(4, "1", 1) = 1
...

For line buffered, the number of system calls is reduced dramatically as the
system call pattern below shows. Note that data is still read in buffer-sized
chunks.

...
open("infile", O_RDONLY) = 3
open("outfile", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 4
time([994093688]) = 994093688
read(3, "01234567890123456789012345678901"..., 16384) = 16384
write(4, "01234567890123456789012345678901"..., 81) = 81
write(4, "01234567890123456789012345678901"..., 81) = 81
write(4, "01234567890123456789012345678901"..., 81) = 81
...

For the fully buffered case, all data is read and written in buffer size (16384 bytes)
chunks, reducing the number of system calls further as the following output
shows:

open("infile", O_RDONLY) = 3
open("outfile", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 4
read(3, "67890123456789012345678901234567"..., 4096) = 4096
write(4, "01234567890123456789012345678901"..., 4096) = 4096
read(3, "12345678901234567890123456789012"..., 4096) = 4096
write(4, "67890123456789012345678901234567"..., 4096) = 4096

Seeking through the Stream

Just as the lseek() system call can be used to set the file pointer in preparation
for a subsequent read or write, the fseek() library function can be called to set
the file pointer for the stream such that the next read or write will start from that
offset.

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

The offset and whence arguments are identical to those supported by the
lseek() system call. The following example shows the effect of calling
fseek() on the file stream:

 1 #include <stdio.h>
 2
 3 main()
 4 {

The Standard I/O Library 83

 5 FILE *fp;
 6 char c;
 7
 8 fp = fopen("infile", "r");
 9 printf("address of fp = 0x%x\n", fp);
10 printf(" fp->_IO_buf_base = 0x%x\n", fp->_IO_buf_base);
11 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
12
13 c = getc(fp);
14 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
15 fseek(fp, 8192, SEEK_SET);
16 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
17 c = getc(fp);
18 printf(" fp->_IO_read_ptr = 0x%x\n", fp->_IO_read_ptr);
19 }

By calling getc(), a 4KB read is used to fill up the buffer pointed to by
_IO_buf_base. Because only a single character is returned by getc(), the read
pointer is only advanced by one. The call to fseek() modifies the read pointer as
shown below:

$ fpseek
Address of fp = 0x80497e0
fp->_IO_buf_base = 0x0
fp->_IO_read_ptr = 0x0
fp->_IO_read_ptr = 0x40019001
fp->_IO_read_ptr = 0x40019000
fp->_IO_read_ptr = 0x40019001

Note that no data needs to be read for the second call to getc(). Here are the
relevant system calls:

open("infile", O_RDONLY) = 3
fstat64(1, st_mode=S_IFCHR_0620, st_rdev=makedev(136, 0), ...) = 0
read(3, "01234567890123456789012345678901"..., 4096) = 4096
write(1, ...) # display _IO_read_ptr
_llseek(3, 8192, [8192], SEEK_SET) = 0
write(1, ...) # display _IO_read_ptr
read(3, "12345678901234567890123456789012"..., 4096) = 4096
write(1, ...) # display _IO_read_ptr

The first call to getc() results in the call to read(). Seeking through the stream
results in a call to lseek(), which also resets the read pointer. The second call to
getc() then involves another call to read data from the file.

There are four other functions available that relate to the file position within the
stream, namely:

#include <stdio.h>

long ftell(FILE *stream);
void rewind(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, fpos_t *pos);

84 UNIX Filesystems—Evolution, Design, and Implementation

The ftell() function returns the current file position. In the preceding example
following the call to fseek(), a call to ftell() would return 8192. The
rewind() function is simply the equivalent of calling:

fseek(stream, 0, SEEK_SET)

The fgetpos() and fsetpos() functions are equivalent to ftell() and
fseek() (with SEEK_SET passed), but store the current file pointer in the
argument referenced by pos.

Summary

There are numerous functions provided by the standard I/O library that often
reduce the work of an application writer. By aiming to minimize the number of
system calls, performance of some applications may be considerably improved.
Buffering offers a great deal of flexibility to the application programmer by
allowing finer control over how I/O is actually performed.

This chapter highlighted how the standard I/O library is implemented but
stops short of describing all of the functions that are available. Richard Steven’s
book Advanced Programming in the UNIX Environment [STEV92] provides more
details from a programming perspective. Herbert Schildt’s book The Annotated
ANSI C Standard [SCHI93] provides detailed information on the stdio library as
supported by the ANSI C standard.

TEAMFL
Y

TEAM FLY ®

CHAPTER

5

85

Filesystem-Based Concepts

The UNIX filesystem hierarchy contains a number of different filesystem types
including disk-based filesystems such as VxFS and UFS and also pseudo
filesystems such as procfs and tmpfs. This chapter describes concepts that relate
to filesystems as a whole such as disk partitioning, mounting and unmounting of
filesystems, and the main commands that operate on filesystems such as mkfs,
mount, fsck, and df.

What’s in a Filesystem?

At one time, filesystems were either disk based in which all files in the filesystem
were held on a physical disk, or were RAM based. In the latter case, the filesystem
only survived until the system was rebooted. However, the concepts and
implementation are the same for both. Over the last 10 to 15 years a number of
pseudo filesystems have been introduced, which to the user look like filesystems,
but for which the implementation is considerably different due to the fact that
they have no physical storage. Pseudo filesystems will be presented in more detail
in Chapter 11. This chapter is primarily concerned with disk-based filesystems.

A UNIX filesystem is a collection of files and directories that has the following
properties:

86 UNIX Filesystems—Evolution, Design, and Implementation

■ It has a root directory (/) that contains other files and directories. Most
disk-based filesystems will also contain a lost+found directory where
orphaned files are stored when recovered following a system crash.

■ Each file or directory is uniquely identified by its name, the directory in
which it resides, and a unique identifier, typically called an inode.

■ By convention, the root directory has an inode number of 2 and the
lost+found directory has an inode number of 3. Inode numbers 0 and 1
are not used. File inode numbers can be seen by specifying the -i option to
ls.

■ It is self contained. There are no dependencies between one filesystem
and any other.

A filesystem must be in a clean state before it can be mounted. If the system
crashes, the filesystem is said to be dirty. In this case, operations may have been
only partially completed before the crash and therefore the filesystem structure
may no longer be intact. In such a case, the filesystem check program fsck must
be run on the filesystem to check for any inconsistencies and repair any that it
finds. Running fsck returns the filesystem to its clean state. The section
Repairing Damaged Filesystems, later in this chapter, describes the fsck program
in more detail.

The Filesystem Hierarchy

There are many different types of files in a complete UNIX operating system.
These files, together with user home directories, are stored in a hierarchical tree
structure that allows files of similar types to be grouped together. Although the
UNIX directory hierarchy has changed over the years, the structure today still
largely reflects the filesystem hierarchy developed for early System V and BSD
variants.

For both root and normal UNIX users, the PATH shell variable is set up during
login to ensure that the appropriate paths are accessible from which to run
commands. Because some directories contain commands that are used for
administrative purposes, the path for root is typically different from that of
normal users. For example, on Linux the path for a root and non root user may
be:

echo $PATH
/usr/sbin:/sbin:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/root/bin
$ echo $PATH
/home/spate/bin:/usr/bin:/bin:/usr/bin/X11:/usr/local/bin:

/home/spate/office52/program

Filesystem-Based Concepts 87

The following list shows the main UNIX directories and the type of files that
reside in each directory. Note that this structure is not strictly followed among the
different UNIX variants but there is a great deal of commonality among all of
them.

/usr. This is the main location of binaries for both user and administrative
purposes.

/usr/bin. This directory contains user binaries.
/usr/sbin. Binaries that are required for system administration purposes are

stored here. This directory is not typically on a normal user’s path. On some
versions of UNIX, some of the system binaries are stored in /sbin.

/usr/local. This directory is used for locally installed software that is
typically separate from the OS. The binaries are typically stored in
/usr/local/bin.

/usr/share. This directory contains architecture-dependent files including
ASCII help files. The UNIX manual pages are typically stored in
/usr/share/man.

/usr/lib. Dynamic and shared libraries are stored here.
/usr/ucb. For non-BSD systems, this directory contains binaries that

originated in BSD.

/usr/include. User header files are stored here. Header files used by the
kernel are stored in /usr/include/sys.

/usr/src. The UNIX kernel source code was once held in this directory
although this hasn’t been the case for a long time, Linux excepted.

/bin. Has been a symlink to /usr/bin for quite some time.
/dev. All of the accessible device files are stored here.

/etc. Holds configuration files and binaries which may need to be run before
other filesystems are mounted. This includes many startup scripts and
configuration files which are needed when the system bootstraps.

/var. System log files are stored here. Many of the log files are stored in
/var/log.

/var/adm. UNIX accounting files and system login files are stored here.
/var/preserve. This directory is used by the vi and ex editors for storing

backup files.

/var/tmp. Used for user temporary files.
/var/spool. This directory is used for UNIX commands that provide

spooling services such as uucp, printing, and the cron command.

/home. User home directories are typically stored here. This may be
/usr/home on some systems. Older versions of UNIX and BSD often store
user home directories under /u.

88 UNIX Filesystems—Evolution, Design, and Implementation

/tmp. This directory is used for temporary files. Files residing in this
directory will not necessarily be there after the next reboot.

/opt. Used for optional packages and binaries. Third-party software vendors
store their packages in this directory.

When the operating system is installed, there are typically a number of
filesystems created. The root filesystem contains the basic set of commands,
scripts, configuration files, and utilities that are needed to bootstrap the system.
The remaining files are held in separate filesystems that are visible after the
system bootstraps and system administrative commands are available.

For example, shown below are some of the mounted filesystems for an active
Solaris system:

/proc on /proc read/write/setuid
/ on /dev/dsk/c1t0d0s0 read/write/setuid
/dev/fd on fd read/write/setuid
/var/tmp on /dev/vx/dsk/sysdg/vartmp read/write/setuid/tmplog
/tmp on /dev/vx/dsk/sysdg/tmp read/write/setuid/tmplog
/opt on /dev/vx/dsk/sysdg/opt read/write/setuid/tmplog
/usr/local on /dev/vx/dsk/sysdg/local read/write/setuid/tmplog
/var/adm/log on /dev/vx/dsk/sysdg/varlog read/write/setuid/tmplog
/home on /dev/vx/dsk/homedg/home read/write/setuid/tmplog

During installation of the operating system, there is typically a great deal of
flexibility allowed so that system administrators can tailor the number and size
of filesystems to their specific needs. The basic goal is to separate those
filesystems that need to grow from the root filesystem, which must remain stable.
If the root filesystem becomes full, the system becomes unusable.

Disks, Slices, Partitions, and Volumes

Each hard disk is typically split into a number of separate, different sized units
called partitions or slices. Note that is not the same as a partition in PC
terminology. Each disk contains some form of partition table, called a VTOC
(Volume Table Of Contents) in SVR4 terminology, which describes where the
slices start and what their size is. Each slice may then be used to store bootstrap
information, a filesystem, swap space, or be left as a raw partition for database
access or other use.

Disks can be managed using a number of utilities. For example, on Solaris and
many SVR4 derivatives, the prtvtoc and fmthard utilities can be used to edit
the VTOC to divide the disk into a number of slices. When there are many disks,
this hand editing of disk partitions becomes tedious and very error prone.

For example, here is the output of running the prtvtoc command on a root
disk on Solaris:

prtvtoc /dev/rdsk/c0t0d0s0
* /dev/rdsk/c0t0d0s0 partition map

Filesystem-Based Concepts 89

*
* Dimensions:
* 512 bytes/sector
* 135 sectors/track
* 16 tracks/cylinder
* 2160 sectors/cylinder
* 3882 cylinders
* 3880 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Dir

0 2 00 0 788400 788399 /
1 3 01 788400 1049760 1838159
2 5 00 0 8380800 8380799
4 0 00 1838160 4194720 6032879 /usr
6 4 00 6032880 2347920 8380799 /opt

The partition tag is used to identify each slice such that c0t0d0s0 is the slice that
holds the root filesystem, c0t0d0s4 is the slice that holds the /usr filesystem,
and so on.

The following example shows partitioning of an IDE-based, root Linux disk.
Although the naming scheme differs, the concepts are similar to those shown
previously.

fdisk /dev/hda

Command (m for help): p

Disk /dev/hda: 240 heads, 63 sectors, 2584 cylinders
Units = cylinders of 15120 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 3 22648+ 83 Linux
/dev/hda2 556 630 567000 6 FAT16
/dev/hda3 4 12 68040 82 Linux swap
/dev/hda4 649 2584 14636160 f Win95 Ext'd (LBA)
/dev/hda5 1204 2584 10440328+ b Win95 FAT32
/dev/hda6 649 1203 4195737 83 Linux

Logical volume managers provide a much easier way to manage disks and create
new slices (called logical volumes). The volume manager takes ownership of the
disks and gives out space as requested. Volumes can be simple, in which case the
volume simply looks like a basic raw disk slice, or they can be mirrored or striped.
For example, the following command can be used with the VERITAS Volume
Manager, VxVM, to create a new simple volume:

vxassist make myvol 10g
vxprint myvol

90 UNIX Filesystems—Evolution, Design, and Implementation

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE
v myvol fsgen ENABLED 20971520 ACTIVE
pl myvol-01 myvol ENABLED 20973600 ACTIVE
sd disk12-01 myvol-01 ENABLED 8378640 0 -
sd disk02-01 myvol-01 ENABLED 8378640 8378640 -
sd disk03-01 myvol-01 ENABLED 4216320 16757280 -

VxVM created the new volume, called myvol, from existing free space. In this
case, the 1GB volume was created from three separate, contiguous chunks of disk
space that together can be accessed like a single raw partition.

Raw and Block Devices

With each disk slice or logical volume there are two methods by which they can
be accessed, either through the raw (character) interface or through the block
interface. The following are examples of character devices:

ls -l /dev/vx/rdsk/myvol
crw------ 1 root root 86, 8 Jul 9 21:36 /dev/vx/rdsk/myvol
ls -lL /dev/rdsk/c0t0d0s0
crw------ 1 root sys 136, 0 Apr 20 09:51 /dev/rdsk/c0t0d0s0

while the following are examples of block devices:

ls -l /dev/vx/dsk/myvol
brw------ 1 root root 86, 8 Jul 9 21:11 /dev/vx/dsk/myvol
ls -lL /dev/dsk/c0t0d0s0
brw------ 1 root sys 136, 0 Apr 20 09:51 /dev/dsk/c0t0d0s0

Note that both can be distinguished by the first character displayed (b or c) or
through the location of the device file. Typically, raw devices are accessed
through /dev/rdsk while block devices are accessed through /dev/dsk. When
accessing the block device, data is read and written through the system buffer
cache. Although the buffers that describe these data blocks are freed once used,
they remain in the buffer cache until they get reused. Data accessed through the
raw or character interface is not read through the buffer cache. Thus, mixing the
two can result in stale data in the buffer cache, which can cause problems.

All filesystem commands, with the exception of the mount command, should
therefore use the raw/character interface to avoid this potential caching problem.

Filesystem Switchout Commands

Many of the commands that apply to filesystems may require filesystem specific
processing. For example, when creating a new filesystem, each different

Filesystem-Based Concepts 91

filesystem may support a wide range of options. Although some of these options
will be common to most filesystems, many may not be.

To support a variety of command options, many of the filesystem-related
commands are divided into generic and filesystem dependent components. For
example, the generic mkfs command that will be described in the next section, is
invoked as follows:

mkfs -F vxfs -o ...

The -F option (-t on Linux) is used to specify the filesystem type. The -o option
is used to specify filesystem-specific options. The first task to be performed by
mkfs is to do a preliminary sanity check on the arguments passed. After this has
been done, the next job is to locate and call the filesystem specific mkfs function.

Take for example the call to mkfs as follows:

mkfs -F nofs /dev/vx/rdsk/myvol
mkfs: FSType nofs not installed in the kernel

Because there is no filesystem type of nofs, the generic mkfs command is unable
to locate the nofs version of mkfs. To see how the search is made for the
filesystem specific mkfs command, consider the following:

truss -o /tmp/truss.out mkfs -F nofs /dev/vx/rdsk/myvol
mkfs: FSType nofs not installed in the kernel
grep nofs /tmp/truss.out
execve("/usr/lib/fs/nofs/mkfs", 0x000225C0, 0xFFBEFDA8) Err#2 ENOENT
execve("/etc/fs/nofs/mkfs", 0x000225C0, 0xFFBEFDA8) Err#2 ENOENT
sysfs(GETFSIND, "nofs") Err#22 EINVAL

In this case, the generic mkfs command assumes that commands for the nofs
filesystem will be located in one of the two directories shown above. In this case,
the files don’t exist. As a finally sanity check, a call is made to sysfs() to see if
there actually is a filesystem type called nofs.

Consider the location of the generic and filesystem-specific fstyp commands
in Solaris:

which fstyp
/usr/sbin/fstyp
ls /usr/lib/fs
autofs/ fd/ lofs/ nfs/ proc/ udfs/ vxfs/
cachefs/ hsfs/ mntfs/ pcfs/ tmpfs/ ufs/
ls /usr/lib/fs/ufs/fstyp
/usr/lib/fs/ufs/fstyp
ls /usr/lib/fs/vxfs/fstyp
/usr/lib/fs/vxfs/fstyp

Using this knowledge it is very straightforward to write a version of the generic
fstyp command as follows:

92 UNIX Filesystems—Evolution, Design, and Implementation

1 #include <sys/fstyp.h>
2 #include <sys/fsid.h>
3 #include <unistd.h>
4
5 main(int argc, char **argv)
6 {
7 char cmd[256];
8
9 if (argc != 4 && (strcmp(argv[1], "-F") != 0)) {

10 printf("usage: myfstyp -F fs-type\n");
11 exit(1);
12 }
13 sprintf(cmd, "/usr/lib/fs/%s/fstyp", argv[2]);
14 if (execl(cmd, argv[2], argv[3], NULL) < 0) {
15 printf("Failed to find fstyp command for %s\n",
16 argv[2]);
17 }
18 if (sysfs(GETFSTYP, argv[2]) < 0) {
19 printf("Filesystem type %s doesn’t exist\n",
20 argv[2]);
21 }
22 }

This version requires that the filesystem type to search for is specified. If it is
located in the appropriate place, the command is executed. If not, a check is made
to see if the filesystem type exists as the following run of the program shows:

myfstyp -F vxfs /dev/vx/rdsk/myvol
vxfs
myfstyp -F nofs /dev/vx/rdsk/myvol
Failed to find fstyp command for nofs
Filesystem type "nofs" doesn’t exist

Creating New Filesystems

Filesystems can be created on raw partitions or logical volumes. For example, in
the prtvtoc output shown above, the root (/) filesystem was created on the raw
disk slice /dev/rdsk/c0t0d0s0 and the /usr filesystem was created on the
raw disk slice /dev/rdsk/c0t0d0s4.

The mkfs command is most commonly used to create a new filesystem,
although on some platforms the newfs command provides a more friendly
interface and calls mkfs internally. The type of filesystem to create is passed to
mkfs as an argument. For example, to create a VxFS filesystem, this would be
achieved by invoking mkfs -F vxfs on most UNIX platforms. On Linux, the
call would be mkfs -t vxfs.

The filesystem type is passed as an argument to the generic mkfs command
(-F or -t). This is then used to locate the switchout command by searching
well-known locations as shown above. The following two examples show how to

Filesystem-Based Concepts 93

create a VxFS filesystem. In the first example, the size of the filesystem to create is
passed as an argument. In the second example, the size is omitted, in which case
VxFS determines the size of the device and creates a filesystem of that size.

mkfs -F vxfs /dev/vx/rdsk/vol1 25g
version 4 layout
52428800 sectors, 6553600 blocks of size 4096,
log size 256 blocks unlimited inodes, largefiles not supported
6553600 data blocks, 6552864 free data blocks
200 allocation units of 32768 blocks, 32768 data blocks

mkfs -F vxfs /dev/vx/rdsk/vol1
version 4 layout
54525952 sectors, 6815744 blocks of size 4096,
log size 256 blocks unlimited inodes, largefiles not supported
6815744 data blocks, 6814992 free data blocks
208 allocation units of 32768 blocks, 32768 data blocks

The following example shows how to create a UFS filesystem. Note that although
the output is different, the method of invoking mkfs is similar for both VxFS and
UFS.

mkfs -F ufs /dev/vx/rdsk/vol1 54525952
/dev/vx/rdsk/vol1: 54525952 sectors in 106496 cylinders of
 16 tracks, 32 sectors
26624.0MB in 6656 cyl groups (16 c/g, 4.00MB/g, 1920 i/g)
super-block backups (for fsck -F ufs -o b=#) at:

32, 8256, 16480, 24704, 32928, 41152, 49376, 57600, 65824,
74048, 82272, 90496, 98720, 106944, 115168, 123392, 131104,
139328, 147552, 155776, 164000,
...
54419584, 54427808, 54436032, 54444256, 54452480, 54460704,
54468928, 54477152, 54485376, 54493600, 54501824, 54510048,

The time taken to create a filesystem differs from one filesystem type to another.
This is due to how the filesystems lay out their structures on disk. In the example
above, it took UFS 23 minutes to create a 25GB filesystem, while for VxFS it took
only half a second. Chapter 9 describes the implementation of various filesystems
and shows how this large difference in filesystem creation time can occur.

Additional arguments can be passed to mkfs through use of the -o option, for
example:

mkfs -F vxfs -obsize=8192,largefiles /dev/vx/rdsk/myvol
version 4 layout
20971520 sectors, 1310720 blocks of size 8192,
log size 128 blocks
unlimited inodes, largefiles not supported
1310720 data blocks, 1310512 free data blocks
40 allocation units of 32768 blocks, 32768 data blocks

94 UNIX Filesystems—Evolution, Design, and Implementation

For arguments specified using the -o option, the generic mkfs command will
pass the arguments through to the filesystem specific mkfs command without
trying to interpret them.

Mounting and Unmounting Filesystems

The root filesystem is mounted by the kernel during system startup. Each
filesystem can be mounted on any directory in the root filesystem, except /. A
mount point is simply a directory. When a filesystem is mounted on that
directory, the previous contents of the directory are hidden for the duration of the
mount, as shown in Figure 5.1.

In order to mount a filesystem, the filesystem type, the device (slice or logical
volume), and the mount point must be passed to the mount command. In the
example below, a VxFS filesystem is mounted on /mnt1. Running the mount
command by itself shows all the filesystems that are currently mounted, along
with their mount options:

mount -F vxfs /dev/vx/dsk/vol1 /mnt1
mount | grep mnt1
/mnt1 on /dev/vx/dsk/vol1 read/write/setuid/delaylog/

nolargefiles/ioerror=mwdisable/dev=1580006
on Tue Jul 3 09:40:27 2002

Note that the mount shows default mount options as well as options that were
explicitly requested. On Linux, the -t option is used to specify the filesystem
type so the command would be invoked with mount -t vxfs.

As with mkfs, the mount command is a switchout command. The generic
mount runs first and locates the filesystem-specific command to run, as the
following output shows. Note the use of the access() system call. There are a
number of well-known locations for which the filesystem-dependent mount
command can be located.

1379: execve("/usr/sbin/mount", 0xFFBEFD8C, 0xFFBEFDA4) argc = 5
...
1379: access("/usr/lib/fs/vxfs/mount", 0) Err#2 ENOENT
1379: execve("/etc/fs/vxfs/mount", 0xFFBEFCEC, 0xFFBEFDA4) argc = 3
...
1379: mount("/dev/vx/dsk/vol1", "/mnt1", MS_DATA|MS_OPTIONSTR,

"vxfs", 0xFFBEFBF4, 12) = 0
...

When a filesystem is mounted, an entry is added to the mount table, which is a file
held in /etc that records all filesystems mounted, the devices on which they
reside, the mount points on which they’re mounted, and a list of options that
were passed to mount or which the filesystem chose as defaults.

TEAMFL
Y

TEAM FLY ®

Filesystem-Based Concepts 95

The actual name chosen for the mount table differs across different versions of
UNIX. On all System V variants, it is called mnttab, while on Linux and BSD
variants it is called mtab.

Shown below are the first few lines of /etc/mnttab on Solaris followed by
the contents of a /etc/mtab on Linux:

head -6 /etc/mnttab
/proc /proc proc rw,suid,dev=2f80000 995582515
/dev/dsk/c1t0d0s0 / ufs rw,suid,dev=1d80000,largefiles 995582515
fd /dev/fd fd rw,suid,dev=3080000 995582515
/dev/dsk/c1t1d0s0 /space1 ufs ro,largefiles,dev=1d80018 995582760
/dev/dsk/c1t2d0s0 /rootcopy ufs ro,largefiles,dev=1d80010

995582760
/dev/vx/dsk/sysdg/vartmp /var/tmp vxfs rw,tmplog,suid,nolargefiles

995582793

cat /etc/mtab
/dev/hda6 / ext2 rw 0 0
none /proc proc rw 0 0
usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hda1 /boot ext2 rw 0 0
none /dev/pts devpts rw,gid=5,mode=620 0 0

Figure 5.1 Mounting the /usr filesystem.

etc home usr var ... bin lib adm share ...

etc home usr var ...

bin lib adm share ...

root filesystem following mount

root filesystem usr filesystem

fileA
fileB

96 UNIX Filesystems—Evolution, Design, and Implementation

All versions of UNIX provide a set of routines for manipulating the mount table,
either for adding entries, removing entries, or simply reading them. Listed below
are two of the functions that are most commonly available:

#include <stdio.h>
#include <sys/mnttab.h>

int getmntent(FILE *fp, struct mnttab *mp);

int putmntent(FILE *iop, struct mnttab *mp);

The getmntent(L) function is used to read entries from the mount table while
putmntent(L) can be used to remove entries. Both functions operate on the
mnttab structure, which will contain at least the following members:

char *mnt_special; /* The device on which the fs resides */
char *mnt_mountp; /* The mount point */
char *mnt_fstype; /* The filesystem type */
char *mnt_mntopts; /* Mount options */
char *mnt_time; /* The time of the mount */

Using the getmntent(L) library routine, it is very straightforward to write a
simple version of the mount command that, when run with no arguments,
displays the mounted filesystems by reading entries from the mount table. The
program, which is shown below, simply involves opening the mount table and
then making repeated calls to getmntent(L) to read all entries.

1 #include <stdio.h>
2 #include <sys/mnttab.h>
3
4 main()
5 {
6 struct mnttab mt;
7 FILE *fp;
8
9 fp = fopen("/etc/mnttab", “r”);

10
11 printf("%-15s%-10s%-30s\n",
12 "mount point", "fstype", "device");
13 while ((getmntent(fp, &mt)) != -1) {
14 printf("%-15s%-10s%-30s\n", mt.mnt_mountp,
15 mt.mnt_fstype, mt.mnt_special);
16 }
17 }

Each time getmntent(L) is called, it returns the next entry in the file. Once all
entries have been read, -1 is returned. Here is an example of the program
running:

$ mymount | head -7
/proc proc /proc

Filesystem-Based Concepts 97

/ ufs /dev/dsk/c1t0d0s0
/dev/fd fd fd
/space1 ufs /dev/dsk/c1t1d0s0
/var/tmp vxfs /dev/vx/dsk/sysdg/vartmp
/tmp vxfs /dev/vx/dsk/sysdg/tmp

On Linux, the format of the mount table is slightly different and the
getmntent(L) function operates on a mntent structure. Other than minor
differences with field names, the following program is almost identical to the one
shown above:

1 #include <stdio.h>
2 #include <mntent.h>
3
4 main()
5 {
6 struct mntent *mt;
7 FILE *fp;
8
9 fp = fopen("/etc/mtab", "r");

10
11 printf("%-15s%-10s%-30s\n",
12 "mount point", "fstype", "device");
13 while ((mt = getmntent(fp)) != NULL) {
14 printf("%-15s%-10s%-30s\n", mt->mnt_dir,
15 mt->mnt_type, mt->mnt_fsname);
16 }
17 }

Following is the output when the program runs:

$ lmount
mount point fstype device
/ ext2 /dev/hda6
/proc proc none
/proc/bus/usb usbdevfs usbdevfs
/boot ext2 /dev/hda1
/dev/pts devpts none
/mnt1 vxfs /dev/vx/dsk/myvol

To unmount a filesystem either the mount point or the device can be passed to the
umount command, as the following examples show:

umount /mnt1
mount | grep mnt1
mount -F vxfs /dev/vx/dsk/vol1 /mnt1
mount | grep mnt1
/mnt1 on /dev/vx/dsk/vol1 read/write/setuid/delaylog/ ...
umount /dev/vx/dsk/vol1
mount | grep mnt1

After each invocation of umount, the entry is removed from the mount table.

98 UNIX Filesystems—Evolution, Design, and Implementation

Mount and Umount System Call Handling
As the preceding examples showed, the mount and umount commands result in
a call to the mount() and umount() system calls respectively.

#include <sys/types.h>
#include <sys/mount.h>

int mount(const char *spec, const char *dir, int mflag, /*
char *fstype, const char *dataptr, int datalen */ ...);

#include <sys/mount.h>

int umount(const char *file);

Usually there should never be a direct need to invoke either the mount() or
umount() system calls. Although many of the arguments are self explanatory,
the handling of per-filesystem options, as pointed to by dataptr, is not typically
published and often changes. If applications have a need to mount and unmount
filesystems, the system(L) library function is recommended as a better choice.

Mounting Filesystems Automatically
As shown in the next section, after filesystems are created, it is typically left to the
system to mount them during bootstrap. The virtual filesystem table, called
/etc/vfstab on System V variants and /etc/fstab on BSD variants,
contains all the necessary information about each filesystem to be mounted.

This file is partially created during installation of the operating system. When
new filesystems are created, the system administrator will add new entries
ensuring that all the appropriate fields are entered correctly. Shown below is an
example of the vfstab file on Solaris:

cat /etc/vfstab
...
fd - /dev/fd fd - no -
/proc - /proc proc - no -
/dev/dsk/c0t0d0s0 /dev/rdsk/c0t0d0s0 / ufs 1 no -
/dev/dsk/c0t0d0s6 /dev/rdsk/c0t0d0s6 /usr ufs 1 no -
/dev/dsk/c0t0d0s4 /dev/rdsk/c0t0d0s4 /c ufs 2 yes -
...

Here the fields are separated by spaces or tabs. The first field shows the block
device (passed to mount), the second field shows the raw device (passed to
fsck), the third field specifies the mount point, and the fourth specifies the
filesystem type. The remaining three fields specify the order in which the
filesystems will be checked, whether they should be mounted during bootstrap,
and what options should be passed to the mount command.

Here is an example of a Linux fstab table:

Filesystem-Based Concepts 99

cat /etc/fstab
LABEL=/ / ext2 defaults 1 1
LABEL=/boot /boot ext2 defaults 1 2
/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
none /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0
/dev/hda3 swap swap defaults 0 0
/SWAP swap swap defaults 0 0

The first four fields describe the device, mount point, filesystem type, and options
to be passed to mount. The fifth field is related to the dump command and records
which filesystems need to be backed up. The sixth field is used by the fsck
program to determine the order in which filesystems should be checked during
bootstrap.

Mounting Filesystems During Bootstrap
Once filesystems are created and entries placed in /etc/vfstab, or equivalent,
there is seldom need for administrator intervention. This file is accessed during
system startup to mount all filesystems before the system is accessible to most
applications and users.

When the operating system bootstraps, the kernel is read from a well-known
location of disk and then goes through basic initialization tasks. One of these tasks
is to mount the root filesystem. This is typically the only filesystem that is
mounted until the system rc scripts start running.

The init program is spawned by the kernel as the first process (process ID of
1). By consulting the inittab(F) file, it determines which commands and
scripts it needs to run to bring the system up further. This sequence of events can
differ between one system and another. For System V-based systems, the rc
scripts are located in /etc/rcX.d where X corresponds to the run level at which
init is running.

Following are a few lines from the inittab(F) file:

$ head -9 inittab
ap::sysinit:/sbin/autopush -f /etc/iu.ap
ap::sysinit:/sbin/soconfig -f /etc/sock2path
fs::sysinit:/sbin/rcS sysinit
is:3:initdefault:
p3:s1234:powerfail:/usr/sbin/shutdown -y -i5 -g0
sS:s:wait:/sbin/rcS
s0:0:wait:/sbin/rc0
s1:1:respawn:/sbin/rc1
s2:23:wait:/sbin/rc2

Of particular interest is the last line. The system goes multiuser at init state 2.
This is achieved by running the rc2 script which in turn runs all of the scripts
found in /etc/rc2.d. Of particular interest is the script S01MOUNTFSYS. This is

100 UNIX Filesystems—Evolution, Design, and Implementation

the script that is responsible for ensuring that all filesystems are checked for
consistency and mounted as appropriate. The mountall script is responsible for
actually mounting all of the filesystems.

The layout of files and scripts used on non-System V variants differs, but the
concepts are the same.

Repairing Damaged Filesystems

A filesystem can typically be in one of two states, either clean or dirty. To mount a
filesystem it must be clean, which means that it is structurally intact. When
filesystems are mounted read/write, they are marked dirty to indicate that there
is activity on the filesystem. Operations may be pending on the filesystem during
a system crash, which could leave the filesystem with structural damage. In this
case it can be dangerous to mount the filesystem without knowing the extent of
the damage. Thus, to return the filesystem to a clean state, a filesystem-specific
check program called fsck must be run to repair any damage that might exist.

For example, consider the following call to mount after a system crash:

mount -F vxfs /dev/vx/dsk/vol1 /mnt1
UX:vxfs mount: ERROR: /dev/vx/dsk/vol1 is corrupted. needs checking

The filesystem is marked dirty and therefore the mount fails. Before it can be
mounted again, the VxFS fsck program must be run as follows:

fsck -F vxfs /dev/vx/rdsk/vol1
log replay in progress
replay complete marking super-block as CLEAN

VxFS is a transaction-based filesystem in which structural changes made to the
filesystem are first written to the filesystem log. By replaying the transactions in
the log, the filesystem returns to its clean state.

Most UNIX filesystems are not transaction-based, and therefore the whole
filesystem must be checked for consistency. In the example below, a full fsck is
performed on a UFS filesystem to show the type of checks that will be performed.
UFS on most versions of UNIX is not transaction-based although Sun has added
journaling support to its version of UFS.

fsck -F ufs -y /dev/vx/rdsk/myvol
** /dev/vx/dsk/myvol
** Last Mounted on /mnt1
** Phase 1 Check Blocks and Sizes
** Phase 2 Check Pathnames
** Phase 3 Check Connectivity
** Phase 4 Check Reference Counts
** Phase 5 Check Cyl groups
61 files, 13 used, 468449 free (41 frags, 58551 blocks, 0

.0% fragmentation)

Filesystem-Based Concepts 101

Running fsck is typically a non-interactive task performed during system
initialization. Interacting with fsck is not something that system administrators
will typically need to do. Recording the output of fsck is always a good idea in
case fsck fails to clean the filesystem and support is needed by filesystem
vendors and/or developers.

The Filesystem Debugger

When things go wrong with filesystems, it is necessary to debug them in the same
way that it is necessary to debug other applications. Most UNIX filesystems have
shipped with the filesystem debugger, fsdb, which can be used for that purpose.

It is with good reason that fsdb is one of the least commonly used of the UNIX
commands. In order to use fsdb effectively, knowledge of the filesystem
structure on disk is vital, as well as knowledge of how to use the filesystem
specific version of fsdb. Note that one version of fsdb does not necessarily bear
any resemblance to another.

In general, fsdb should be left well alone. Because it is possible to damage the
filesystem beyond repair, its use should be left for filesystem developers and
support engineers only.

Per Filesystem Statistics

In the same way that the stat() system call can be called to obtain per-file
related information, the statvfs() system call can be invoked to obtain
per-filesystem information. Note that this information will differ for each
different mounted filesystem so that the information obtained for, say, one VxFS
filesystem, will not necessarily be the same for other VxFS filesystems.

#include <sys/types.h>
#include <sys/statvfs.h>

int statvfs(const char *path, struct statvfs *buf);
int fstatvfs(int fildes, struct statvfs *buf);

Both functions operate on the statvfs structure, which contains a number of
filesystem-specific fields including the following:

u_long f_bsize; /* file system block size */
u_long f_frsize; /* fundamental filesystem block

(size if supported) */
fsblkcnt_t f_blocks; /* total # of blocks on file system

in units of f_frsize */
fsblkcnt_t f_bfree; /* total # of free blocks */
fsblkcnt_t f_bavail; /* # of free blocks avail to

non-super-user */
fsfilcnt_t f_files; /* total # of file nodes (inodes) */

102 UNIX Filesystems—Evolution, Design, and Implementation

fsfilcnt_t f_ffree; /* total # of free file nodes */
fsfilcnt_t f_favail; /* # of inodes avail to non-suser*/
u_long f_fsid; /* file system id (dev for now) */
char f_basetype[FSTYPSZ]; /* fs name null-terminated */
u_long f_flag; /* bit mask of flags */
u_long f_namemax; /* maximum file name length */
char f_fstr[32]; /* file system specific string */

The statvfs(L) function is not available on Linux. In its place is the
statfs(L) function that operates on the statfs structure. The fields of this
structure are very similar to the statvfs structure, and therefore implementing
commands such as df require very little modification if written for a system
complying with the Single UNIX Specification.

The following program provides a simple implementation of the df command
by invoking statvfs(L) to obtain per filesystem statistics as well as locating
the entry in the /etc/vfstab file:

1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <sys/statvfs.h>
4 #include <sys/mnttab.h>
5
6 #define Kb (stv.f_frsize / 1024)
7
8 main(int argc, char **argv)
9 {

10 struct mnttab mt, mtp;
11 struct statvfs stv;
12 int blocks, used, avail, capacity;
13 FILE *fp;
14
15 statvfs(argv[1], &stv);
16
17 fp = fopen("/etc/mnttab", "r");
18 memset(&mtp, 0, sizeof(struct mnttab));
19 mtp.mnt_mountp = argv[1];
20 getmntany(fp, &mt, &mtp);
21
22 blocks = stv.f_blocks * Kb;
23 used = (stv.f_blocks - stv.f_bfree) * Kb;
24 avail = stv.f_bfree * Kb;
25 capacity = ((double)used / (double)blocks) * 100;
26 printf("Filesystem kbytes used "
27 "avail capacity Mounted on\n");
28 printf("%-22s%-7d%8d%8d %2d%% %s\n",
29 mt.mnt_special, blocks, used, avail,
30 capacity, argv[1]);
31 }

In the output shown next, the df command is run first followed by output from
the example program:

Filesystem-Based Concepts 103

$ df -k /h
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/homedg/h 7145728 5926881 1200824 84% /h
$ mydf /h
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/homedg/h 7145728 5926881 1218847 82% /h

In practice, there is a lot of formatting work needed by df due to the different
sizes of device names, mount paths, and the additional information displayed
about each filesystem.

Note that the preceding program has no error checking. As an exercise,
enhance the program to add error checking. On Linux the program needs
modification to access the /etc/mtab file and to use the statfs(L) function.
The program can be enhanced further to display all entries on the mount table as
well as accept some of the other options that df provides.

User and Group Quotas

Although there may be multiple users of a filesystem, it is possible for a single
user to consume all of the space within the filesystem. User and group quotas
provide the mechanisms by which the amount of space used by a single user or all
users within a specific group can be limited to a value defined by the
administrator.

Quotas are based on the number of files used and the number of blocks. Some
filesystems have a limited number of inodes available. Even though the amount
of space consumed by a user may be small, it is still possible to consume all of the
files in the filesystem even though most of the free space is still available.

Quotas operate around two limits that allow the user to take some action if the
amount of space or number of disk blocks start to exceed the administrator
defined limits:

Soft Limit. If the user exceeds the limit defined, there is a grace period that
allows the user to free up some space. The quota can be exceeded during this
time. However, after the time period has expired, no more files or data blocks
may be allocated.

Hard Limit. When the hard limit is reached, regardless of the grace period, no
further files or blocks can be allocated.

The grace period is set on a per-filesystem basis. For the VxFS filesystem, the
default is seven days. The soft limit allows for users running applications that
may create a lot of temporary files that only exist for the duration of the
application. If the soft limit is exceeded, no action is taken. After the application
exits, the temporary files are removed, and the amount of files and/or disk blocks
goes back under the soft limit once more. Another circumstance when the soft
limit is exceeded occurs when allocating space to a file. If files are written to

104 UNIX Filesystems—Evolution, Design, and Implementation

sequentially, some filesystems, such as VxFS, allocate large extents (contiguous
data blocks) to try to keep file data in one place. When the file is closed, the
portion of the extent unused is freed.

In order for user quotas to work, there must be a file called quotas in the root
directory of the filesystem. Similarly, for group quotas, the quotas.grp file
must be present. Both of these files are used by the administrator to set quota
limits for users and/or groups. If both user and group quotas are used, the
amount of space allocated to a user is the lower of the two limits.

There are a number of commands to administer quotas. Those shown here are
provided by VxFS. UFS provides a similar set of commands. Each command can
take a -u or -g option to administer user and group quotas respectively.

vxedquota. This command can be used to edit the quota limits for users and
groups.

vxrepquota. This command provides a summary of the quota limits
together with disk usage.

vxquot. This command displays file ownership and usage summaries.

vxquota. This command can be used to view quota limits and usage.
vxquotaon. This command turns on quotas for a specified VxFS filesystem.

vxquotaoff. This command turns off quotas for the specified filesystem.

Quota checks are performed when the filesystem is mounted. This involves
reading all inodes on disk and calculating usage for each user and group if
needed.

Summary

This chapter described the main concepts applicable to filesystems as a whole,
how they are created and mounted, and how they are repaired if damaged by a
system crash or other means. Although the format of some of the mount tables
differs between one system and the next, the location of the files differ only
slightly, and the principles apply across all systems.

In general, unless administrating a UNIX-based machine, many of the
commands here will not be used by the average UNIX user. However, having a
view of how filesystems are managed helps gain a much better understanding of
filesystems overall.

TEAMFL
Y

TEAM FLY ®

6

CHAPTER

105

UNIX Kernel Concepts

This chapter covers the earlier versions of UNIX up to 7th Edition and
describes the main kernel concepts, with particular reference to the kernel
structures related to filesystem activity and how the main file access-based
system calls were implemented.

The structures, kernel subsystems, and flow of control through the research
edition UNIX kernels are still largely intact after more than 25 years of
development. Thus, the simple approaches described in this chapter are
definitely a prerequisite to understanding the more complex UNIX
implementations found today.

5th to 7th Edition Internals

From the mid 1980s onwards, there have been a number of changes in the
UNIX kernel that resulted in the mainstream kernels diverging in their
implementation. For the first fifteen years of UNIX development, there wasn’t
a huge difference in the way many kernel subsystems were implemented, and
therefore understanding the principles behind these earlier UNIX versions
will help readers understand how the newer kernels have changed.

The earliest documented version of UNIX was 6th Edition, which can be

106 UNIX Filesystems—Evolution, Design, and Implementation

seen in John Lions’ book Lions’ Commentary on UNIX 6th Edition—with source
code [LION96]. It is now also possible to download free versions of UNIX
from 5th Edition onwards. The kernel source base is very small by today’s
standards. With less than 8,000 lines of code for the whole kernel, it is easily
possible to gain an excellent understanding of how the kernel worked. Even
the small amounts of assembler code do not need significant study to
determine their operation.

This chapter concentrates on kernel principles from a filesystem
perspective. Before describing the newer UNIX implementations, it is first
necessary to explain some fundamental UNIX concepts. Much of the
description here centers around the period covering 5th to 7th Edition UNIX,
which generally covers the first ten years of UNIX development. Note that the
goal here is to avoid swamping the reader with details; therefore, little
knowledge of UNIX kernel internals is required in order to read through the
material with relative ease.

Note that at this early stage, UNIX was a uniprocessor-based kernel. It
would be another 10 years before mainstream multiprocessor-based UNIX
versions first started to appear.

The UNIX Filesystem

Before describing how the different kernel structures work together, it is first
necessary to describe how the original UNIX filesystem was stored on disk.
Figure 6.1 shows the layout of various filesystem building blocks. The first
(512 byte) block was unused. The second block (block 1) held the superblock, a
structure that holds information about the filesystem as a whole such as the
number of blocks in the filesystem, the number of inodes (files), and the
number of free inodes and data blocks. Each file in the filesystem was
represented by a unique inode that contained fields such as:

i_mode. This field specifies whether the file is a directory (IFDIR), a block
special file (IFBLK), or a character special file (IFCHR). Note that if one
of the above modes was not set, the file was assumed to be a regular file.
This would later be replaced by an explicit flag, IFREG.

i_nlink. This field recorded the number of hard links to the file. When
this field reaches zero, the inode is freed.

i_uid. The file’s user ID.
i_gid. The file’s group ID.

i_size. The file size in bytes.
i_addr. This field holds block addresses on disk where the file’s data

blocks are held.

i_mtime. The time the file was last modified.

UNIX Kernel Concepts 107

i_atime. The time that the file was last accessed.

The i_addr field was an array of 8 pointers. Each pointer could reference a
single disk block, giving 512 bytes of storage or could reference what is called
an indirect block. Each indirect block contained 32 pointers, each of which
could point to a 512 byte block of storage or a double indirect block. Double
indirects point to indirect data blocks. Figure 6.2 shows the two extremes
whereby data blocks are accessed directly from the inode or from double
indirects.

In the first example, the inode directly references two data blocks. The file
size in this case will be between 513 and 1024 bytes in size. If the size of the
file is less than 512 bytes, only a single data block is needed. Elements 2 to 7 of
the i_addr[] array will be NULL in this case.

The second example shows the maximum possible file size. Each element
of i_addr[] references an indirect block. Each indirect block points to 32
double indirect blocks, and each double indirect block points to 32 data
blocks. This gives a maximum file size of 32 * 32 * 32 = 32,768 data blocks.

Filesystem-Related Kernel Structures

This section describes the main structures used in the UNIX kernel that are
related to file access, from the file descriptor level down to issuing read and
write calls to the disk driver.

User Mode and Kernel Mode
Each UNIX process is separated both from other processes and from the
kernel through hardware-protection mechanisms. Thus, one process is unable
to access the address space of another and is unable to either read from or

Figure 6.1 The on-disk layout of the first UNIX filesystem.

unused (boot block)

superblock

inodes

data blocks

block 0

block 1

block 2

block n

struct filsys

each defined by
struct inode

108 UNIX Filesystems—Evolution, Design, and Implementation

write to the kernel data structures.
When a process is running it can either be in user mode or kernel mode.

When in user mode it runs on its own stack and executes instructions from
the application binary or one of the libraries that it may be linked with. In
order to execute a system call, the process transfers to kernel mode by issuing
a special hardware instruction. When in the kernel, all arguments related to
the system call are copied into the kernel’s address space. Execution proceeds
on a separate kernel stack. A context switch (a switch to another user process)
can take place prior to returning to the user process if the timeslice of that
process has been exceeded or if the process goes to sleep (for example, while
waiting for an I/O operation).

The mechanisms for transferring control between user and kernel mode are
dependent on the hardware architecture.

Figure 6.2 File storage through the use of indirect data blocks.

i_addr[0
1
.
.
.
7]

File contains 2 blocks

of storage. The file size

can be up to (2 * 512) bytes

i_addr[0
1
.
.
.
7]

.

.

.

.

.

.

.

.

.

struct inode

struct inode

indirects

double indirects

data blocks

File contains:
8 indirects of which each references:

32 double indirects of which each references:
32 direct data block pointers

UNIX Kernel Concepts 109

UNIX Process-Related Structures
Information about each process is divided between two different kernel
structures. The proc structure is always present in memory, while the user
structure holds information that is only needed when the process is running.
Thus, when a process is not running and is eligible to be swapped out, all
structures related to the process other than the proc structure may be written
to the swap device. Needless to say, the proc structure must record
information about where on the swap device the other process-related
structures are located.

The proc structure does not record information related to file access.
However the user structure contains a number of important
file-access-related fields, namely:

u_cdir. The inode of the current working directory is stored here. This is
used during pathname resolution when a user specifies a relative
pathname.

u_uid/u_gid. The process user ID and group ID used for permissions
checking for file-access-based system calls. Similarly, u_euid and
u_egid hold the effective user and group IDs.

u_ofile. This array holds the process file descriptors. This is described in
more detail later.

u_arg. An array of system call arguments set up during the transition
from user to kernel mode when invoking a system call.

u_base. This field holds the address of a user space buffer in which to read
data from or write data to when processing a system call such as read()
or write().

u_count. The number of bytes to read or write is held here. It is
decremented during the I/O operation and the result can be passed back
to the user.

u_offset. This field records the offset within the file for the current read
or write operation.

u_error. When processing a system call, this field is set if an error is
encountered. The value of u_error is then passed back to the user
when the system call returns.

There are other fields which have significance to file-access-based calls.
However, these fields became redundant over the years and to avoid bloating
this section, they won’t be described further.

Users familiar with the chroot() system call and later versions of UNIX
may have been wondering why there is no u_rdir to hold the current,
per-process root director—at this stage in UNIX development, chroot() had
not been implemented.

110 UNIX Filesystems—Evolution, Design, and Implementation

File Descriptors and the File Table
The section File Descriptors, in Chapter 2, described how file descriptors are
returned from system calls such as open(). The u_ofile[] array in the user
structure is indexed by the file descriptor number to locate a pointer to a
file structure.

In earlier versions of UNIX, the size of the u_ofile[] array was hard
coded and had NOFILE elements. Because the stdin, stdout, and stderr
file descriptors occupied slots 0, 1, and 2 within the array, the first file
descriptor returned in response to an open() system call would be 3. For the
early versions of UNIX, NOFILE was set at 15. This would then make its way
to 20 by the time that 7th Edition appeared.

The file structure contains more information about how the file was
opened and where the current file pointer is positioned within the file for
reading or writing. It contained the following members:

f_flag. This flag was set based on how the file was opened. If open for
reading it was set to FREAD, and if open for writing it was set to FWRITE.

f_count. Each file structure had a reference count. This field is further
described below.

f_inode. After a file is opened, the inode is read in from disk and stored in
an in-core inode structure. This field points to the in-core inode.

f_offset. This field records the offset within the file when reading or
writing. Initially it will be zero and will be incremented by each
subsequent read or write or modified by lseek().

The file structure contains a reference count. Calls such as dup() result in a
new file descriptor being allocated that points to the same file table entry as
the original file descriptor. Before dup() returns, the f_count field is
incremented.

Although gaining access to a running 5th Edition UNIX system is a little
difficult 27 years after it first appeared, it is still possible to show how these
concepts work in practice on more modern versions of UNIX. Take for
example the following program running on Sun’s Solaris version 8:

#include <fcntl.h>

main()
{
 int fd1, fd2;

 fd1 = open("/etc/passwd", O_RDONLY);
 fd2 = dup(fd1);
 printf("fd1 = %d, fd2 = %d\n", fd1, fd2);
 pause();
}

UNIX Kernel Concepts 111

The crash program can be used to analyze various kernel structures. In this
case, it is possible to run the preceding program, locate the process with
crash, and then display the corresponding user and file structures.

First of all, the program is run in the background, which displays file
descriptor values of 3 and 4 as expected. The crash utility is then run and the
proc command is used in conjunction with grep to locate the process in
question as shown here:

./mydup&
[1] 1422
fd1 = 3, fd2 = 4
crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> proc ! grep mydup
37 s 1422 1389 1422 1389 0 46 mydup load

The process occupies slot 37 (consider this as an array of proc structures).
The slot number can be passed to the user command that displays the user
area corresponding to the process. Not all of the structure is shown here
although it easy to see some relevant information about the process including
the list of file descriptors. Note that file descriptor values 0, 1, and 2 all point
to the same file table entry. Also, because a call was made to dup() in the
program, entries 3 and 4 in the array point to the same file table entry.

> user 37
PER PROCESS USER AREA FOR PROCESS 37
PROCESS MISC:
command: mydup, psargs: ./mydup
start: Sat Jul 28 08:50:16 2001
mem: 90, type: exec su-user
vnode of current directory: 300019b5468
OPEN FILES, FLAGS, AND THREAD REFCNT:
[0]: F 30000adad68, 0, 0 [1]: F 30000adad68, 0, 0
[2]: F 30000adad68, 0, 0 [3]: F 30000adb078, 0, 0
[4]: F 30000adb078, 0, 0
...

Finally, the file command can be used to display the file table entry
corresponding to these file descriptors. Note that the reference count is now 2,
the offset is 0 because no data has been read and the flags hold FREAD as
indicated by the read flag displayed.

> file 30000adb078
ADDRESS RCNT TYPE/ADDR OFFSET FLAGS
30000adb078 2 UFS /30000aafe30 0 read

With the exception that this file structure points to a vnode as opposed to the
old in-core inode, the main structure has remained remarkably intact for
UNIX’s 30+ year history.

112 UNIX Filesystems—Evolution, Design, and Implementation

The Inode Cache
Each file is represented on disk by an inode. When a file is opened, the inode
must be retrieved from disk. Operations such as the stat() system call
retrieve much of the information they require from the inode structure.

The inode must remain in memory for the duration of the open and is
typically written back to disk if any operations require changes to the inode
structure. For example, consider writing 512 bytes of data at the end of the file
that has an existing size of 512 bytes and therefore one block allocated
(referenced by i_addr[0]). This will involve changing i_size to 1024
bytes, allocating a new block to the file, and setting i_addr[1] to point to
this newly allocated block. These changes will be written back to disk.

After the file has been closed and there are no further processes holding the
file open, the in-core inode can be freed.

If the inode were always freed on close, however, it would need to be read
in again from disk each time the file is opened. This is very costly, especially
considering that some inodes are accessed frequently such as the inodes for /,
/usr, and /usr/bin. To prevent this from happening, inodes are retained in
an inode cache even when the inode is no longer in use. Obviously if new
inodes need to be read in from disk, these unused, cached inodes will need to
be reallocated.

Figure 6.3 shows the linkage between file descriptors and inodes. The top
process shows that by calling dup(), a new file descriptor is allocated
resulting in fdb and fdc both pointing to the same file table entry. The file
table entry then points to the inode for /etc/passwd.

For the bottom process, the open of /etc/passwd results in allocation of
both a new file descriptor and file table entry. The file table entry points to the
same in-core copy of the inode for this file as referenced by the top process. To
handle these multiple references, the i_count field is used. Each time a file is
opened, i_count is incremented and subsequently decremented on each
close. Note that the inode cannot be released from the inode cache until after
the last close.

The Buffer Cache
Devices were and still are accessed by the device ID and block number.
Device IDs are constructed from the device major number and minor number.
The major number has traditionally been nothing more than an entry into an
array of vectors pointing to device driver entry points. Block special files are
accessed through the bdevsw[] array while character special files are
accessed through the cdevsw[] array. Both arrays were traditionally hard
coded into the kernel. Filesystems access the disk through the block driver
interface for which the disk driver exports a strategy function that is called by
the filesystem.

Each driver, through its exported strategy function, accepts a buf structure

UNIX Kernel Concepts 113

that contains all the necessary information required to perform the I/O. The
buf structure has actually changed very little over the years. Around 5th
Edition it contained the following fields:

int b_flags;
 struct buf *b_forw;
 struct buf *b_back;
 struct buf *av_forw;
 struct buf *av_back;
 int b_dev;
 char *b_addr;
 char *b_blkno;
 char b_error;
 char *b_resid;

The b_forw and b_back fields can be used by the device driver to chain
related buffers together. After I/O is complete and the buffer is freed, the
av_forw and av_back fields are used to hold the buffer on the free list. Note
that buffers on the free list retain their identity until reused and thus act as a
cache of recently accessed blocks. The b_dev and b_blkno fields are used to
associate the buffer with a particular device and block number, while the
b_addr field points to an in-core buffer that holds the data read or to be
written. The b_wcount, b_error, and b_resid fields are used during I/O
and will be described in the section Putting It All Together later in this chapter.

Figure 6.3 Mapping between file descriptors and the inode cache.

fda = open("/tmp/fileA")

fdb = open("/etc/passwd")

fdc = dup(fdb)

u_ofile[3]
u_ofile[4]
u_ofile[5]

user area

u_ofile[3]
u_ofile[4]

user area

fda = open("/etc/passwd")
fdb = open("/tmp/fileB")

file table

inode for
/tmp/fileA

inode for
/etc/passwd

inode for
/tmp/fileB

.

.

.

.

.

.

inode cache

114 UNIX Filesystems—Evolution, Design, and Implementation

The b_flags field contains information about the state of the buffer. Some
of the possible flags are shown below:

B_WRITE. A call to the driver will cause the buffer contents to be written to
block b_blkno within the device specified by b_dev.

B_READ. A call to the driver will read the block specified by b_blkno and
b_dev into the buffer data block referenced by b_addr.

B_DONE. I/O has completed and the data may be used.

B_ERROR. An error occurred while reading or writing.
B_BUSY. The buffer is currently in use.

B_WANTED. This field is set to indicate that another process wishes to use
this buffer. After the I/O is complete and the buffer is relinquished, the
kernel will wake up the waiting process.

When the kernel bootstraps, it initializes an array of NBUF buffers to comprise
the buffer cache. Each buffer is linked together through the av_forw and
av_back fields and headed by the bfreelist pointer.

The two main interfaces exported by the buffer cache are bread() and
bwrite() for reading and writing respectively. Both function declarations
are shown below:

struct buf *
bread(int dev, int blkno)

void
bwrite(struct buf *bp);

Considering bread() first, it must make a call to getblk() to search for a
buffer in the cache that matches the same device ID and block number. If the
buffer is not in the cache, getblk() takes the first buffer from the free list,
sets its identity to that of the device (dev) and block number (blkno), and
returns it.

When bread() retrieves a buffer from getblk(), it checks to see if the
B_DONE flag is set. If this is the case, the buffer contents are valid and the
buffer can be returned. If B_DONE is not set, the block must be read from disk.
In this case a call is made to the disk driver strategy routine followed by a call
to iowait() to sleep until the data has been read

One final point worthy of mention at this stage is that the driver strategy
interface is asynchronous. After the I/O has been queued, the device driver
returns. Performing I/O is a time-consuming operation, so the rest of the
system could be doing something else while the I/O is in progress. In the case
shown above, a call is made to iowait(), which causes the current process
to sleep until the I/O is complete. The asynchronous nature of the strategy
function allowed read ahead to be implemented whereby the kernel could start
an asynchronous read of the next block of the file so that the data may already

TEAMFL
Y

TEAM FLY ®

UNIX Kernel Concepts 115

be in memory when the process requests it. The data requested is read, but
before returning to the user with the data, a strategy call is made to read the
next block without a subsequent call to iowait().

To perform a write, a call is made to bwrite(), which simply needs to
invoke the two line sequence previously shown.

After the caller has finished with the buffer, a call is made to brelse(),
which takes the buffer and places it at the back of the freelist. This ensures
that the oldest free buffer will be reassigned first.

Mounting Filesystems
The section The UNIX Filesystem, earlier in this chapter, showed how
filesystems were laid out on disk with the superblock occupying block 1 of
the disk slice. Mounted filesystems were held in a linked list of mount
structures, one per filesystem with a maximum of NMOUNT mounted
filesystems. Each mount structure has three elements, namely:

m_dev. This field holds the device ID of the disk slice and can be used in a
simple check to prevent a second mount of the same filesystem.

m_buf. This field points to the superblock (struct filsys), which is
read from disk during a mount operation.

m_inodp. This field references the inode for the directory onto which this
filesystem is mounted. This is further explained in the section Pathname
Resolution later in this chapter.

The root filesystem is mounted early on during kernel initialization. This
involved a very simple code sequence that relied on the root device being
hard coded into the kernel. The block containing the superblock of the root
filesystem is read into memory by calling bread(); then the first mount
structure is initialized to point to the buffer.

Any subsequent mounts needed to come in through the mount() system
call. The first task to perform would be to walk through the list of existing
mount structures checking m_dev against the device passed to mount(). If
the filesystem is mounted already, EBUSY is returned; otherwise another
mount structure is allocated for the new mounted filesystem.

System Call Handling

Arguments passed to system calls are placed on the user stack prior to
invoking a hardware instruction that then transfers the calling process from
user mode to kernel mode. Once inside the kernel, any system call handler
needs to be able to access the arguments, because the process may sleep
awaiting some resource, resulting in a context switch, the kernel needs to
copy these arguments into the kernel address space.

116 UNIX Filesystems—Evolution, Design, and Implementation

The sysent[] array specifies all of the system calls available, including
the number of arguments.

By executing a hardware trap instruction, control is passed from user space
to the kernel and the kernel trap() function runs to determine the system
call to be processed. The C library function linked with the user program
stores a unique value on the user stack corresponding to the system call. The
kernel uses this value to locate the entry in sysent[] to understand how
many arguments are being passed.

For a read() or write() system call, the arguments are accessible as
follows:

fd = u.u_ar0[R0]
u_base = u.u_arg[0]
u_count = u.u_arg[1]

This is a little strange because the first and subsequent arguments are
accessed in a different manner. This is partly due to the hardware on which
5th Edition UNIX was based and partly due to the method that the original
authors chose to handle traps.

If any error is detected during system call handling, u_error is set to
record the error found. For example, if an attempt is made to mount an
already mounted filesystem, the mount system call handler will set u_error
to EBUSY. As part of completing the system call, trap() will set up the r0
register to contain the error code, that is then accessible as the return value of
the system call once control is passed back to user space.

For further details on system call handling in early versions of UNIX,
[LION96] should be consulted. Steve Pate’s book UNIX Internals—A Practical
Approach [PATE96] describes in detail how system calls are implemented at an
assembly language level in System V Release 3 on the Intel x86 architecture.

Pathname Resolution

System calls often specify a pathname that must be resolved to an inode
before the system call can continue. For example, in response to:

fd = open("/etc/passwd", O_RDONLY);

the kernel must ensure that /etc is a directory and that passwd is a file
within the /etc directory.

Where to start the search depends on whether the pathname specified is
absolute or relative. If it is an absolute pathname, the search starts from
rootdir, a pointer to the root inode in the root filesystem that is initialized
during kernel bootstrap. If the pathname is relative, the search starts from

UNIX Kernel Concepts 117

u_cdir, the inode of the current working directory. Thus, one can see that
changing a directory involves resolving a pathname to a base directory
component and then setting u_cdir to reference the inode for that directory.

The routine that performs pathname resolution is called namei(). It uses
fields in the user area as do many other kernel functions. Much of the work of
namei() involves parsing the pathname to be able to work on one
component at a time. Consider, at a high level, the sequence of events that
must take place to resolve /etc/passwd.

 if (absolute pathname) {
 dip = rootdir
 } else {
 dip = u.u_cdir
 }
loop:
 name = next component
 scan dip for name / inode number
 iput(dip)
 dip = iget() to read in inode
 if last component {
 return dip

} else {
goto loop

}

This is an oversimplification but it illustrates the steps that must be
performed. The routines iget() and iput() are responsible for retrieving
an inode and releasing an inode respectively. A call to iget() scans the
inode cache before reading the inode from disk. Either way, the returned
inode will have its hold count (i_count) increased. A call to iput()
decrements i_count and, if it reaches 0, the inode can be placed on the free
list.

To facilitate crossing mount points, fields in the mount and inode
structures are used. The m_inodp field of the mount structure points to the
directory inode on which the filesystem is mounted allowing the kernel to
perform a “..’’ traversal over a mount point. The inode that is mounted on has
the IMOUNT flag set that allows the kernel to go over a mount point.

Putting It All Together

In order to describe how all of the above subsystems work together, this
section will follow a call to open() on /etc/passwd followed by the
read() and close() system calls.

Figure 6.4 shows the main structures involved in actually performing the
read. It is useful to have this figure in mind while reading through the
following sections.

118 UNIX Filesystems—Evolution, Design, and Implementation

Opening a File
The open() system call is handled by the open() kernel function. Its first
task is to call namei() to resolve the pathname passed to open(). Assuming

Figure 6.4 Kernel structures used when reading from a file.

fd = open("/etc/passwd", O_RDONLY);
read(fd, buf, 512);

user mode

kernel mode

u_base

u_ofile[3] f_inode

i_addr[0]
iomove()

b_dev = (X, Y)
b_blkno = Z
b_addr

incore inode
for “passwd”

buffer for (X, Y) / Z

(*bdevsw[X].d_strategy)(bp)

bdevsw[]

RK disk driver

I/O

block 0

superblock

inodes

data blocks

in kernel memory

on disk

i_addr[0]

inode for “passwd”

block Z

data copied by RK disk driver

struct user

struct file

UNIX Kernel Concepts 119

the pathname is valid, the inode for passwd is returned. A call to open1() is
then made passing the open mode. The split between open() and open1()
allows the open() and creat() system calls to share much of the same
code.

First of all, open1() must call access() to ensure that the process can
access the file according to ownership and the mode passed to open(). If all
is fine, a call to falloc() is made to allocate a file table entry. Internally this
invokes ufalloc() to allocate a file descriptor from u_ofile[]. The newly
allocated file descriptor will be set to point to the newly allocated file table
entry. Before returning from open1(), the linkage between the file table entry
and the inode for passwd is established as was shown in Figure 6.3.

Reading the File

The read() and write() systems calls are handled by kernel functions of
the same name. Both make a call to rdwr() passing FREAD or FWRITE. The
role of rdwr() is fairly straightforward in that it sets up the appropriate
fields in the user area to correspond to the arguments passed to the system
call and invokes either readi() or writei() to read from or write to the
file. The following pseudo code shows the steps taken for this initialization.
Note that some of the error checking has been removed to simplify the steps
taken.

get file pointer from user area
set u_base to u.u_arg[0]; /* user supplied buffer */
set u_count to u.u_arg[1]; /* number of bytes to read/write */
if (reading) {
 readi(fp->f_inode);
} else {
 writei(fp->f_inode);
}

The internals of readi() are fairly straightforward and involve making
repeated calls to bmap() to obtain the disk block address from the file offset.
The bmap() function takes a logical block number within the file and returns
the physical block number on disk. This is used as an argument to bread(),
which reads in the appropriate block from disk. The uiomove() function
then transfers data to the buffer specified in the call to read(), which is held
in u_base. This also increments u_base and decrements u_count so that
the loop will terminate after all the data has been transferred.

If any errors are encountered during the actual I/O, the b_flags field of
the buf structure will be set to B_ERROR and additional error information
may be stored in b_error. In response to an I/O error, the u_error field of
the user structure will be set to either EIO or ENXIO.

The b_resid field is used to record how many bytes out of a request size

120 UNIX Filesystems—Evolution, Design, and Implementation

of u_count were not transferred. Both fields are used to notify the calling
process of how many bytes were actually read or written.

Closing the File
The close() system call is handled by the close() kernel function. It
performs little work other than obtaining the file table entry by calling
getf(), zeroing the appropriate entry in u_ofile[], and then calling
closef(). Note that because a previous call to dup() may have been made,
the reference count of the file table entry must be checked before it can be
freed. If the reference count (f_count) is 1, the entry can be removed and a
call to closei() is made to free the inode. If the value of f_count is greater
than 1, it is decremented and the work of close() is complete.

To release a hold on an inode, iput() is invoked. The additional work
performed by closei() allows a device driver close call to be made if the
file to be closed is a device.

As with closef(), iput() checks the reference count of the inode
(i_count). If it is greater than 1, it is decremented, and there is no further
work to do. If the count has reached 1, this is the only hold on the file so the
inode can be released. One additional check that is made is to see if the hard
link count of the inode has reached 0. This implies that an unlink() system
call was invoked while the file was still open. If this is the case, the inode can
be freed on disk.

Summary

This chapter concentrated on the structures introduced in the early UNIX
versions, which should provide readers with a basic grounding in UNIX
kernel principles, particularly as they apply to how filesystems and files are
accessed. It says something for the design of the original versions of UNIX
that many UNIX based kernels still bear a great deal of similarity to the
original versions developed over 30 years ago.

Lions’ book Lions’ Commentary on UNIX 6th Edition [LION96] provides a
unique view of how 6th Edition UNIX was implemented and lists the
complete kernel source code. For additional browsing, the source code is
available online for download.

For a more concrete explanation of some of the algorithms and more details
on the kernel in general, Bach’s book The Design of the UNIX Operating System
[BACH86] provides an excellent overview of System V Release 2. Pate’s book
UNIX Internals—A Practical Approach [PATE96] describes a System V Release 3
variant. The UNIX versions described in both books bear most resemblance to
the earlier UNIX research editions.

CHAPTER

121

7

Development of the SVR4
VFS/Vnode Architecture

The development of the File System Switch (FSS) architecture in SVR3, the Sun
VFS/vnode architecture in SunOS, and then the merge between the two to
produce SVR4, substantially changed the way that filesystems were accessed and
implemented. During this period, the number of filesystem types increased
dramatically, including the introduction of commercial filesystems such as VxFS
that allowed UNIX to move toward the enterprise computing market.

SVR4 also introduced a number of other important concepts pertinent to
filesystems, such as tying file system access with memory mapped files, the
DNLC (Directory Name Lookup Cache), and a separation between the traditional
buffer cache and the page cache, which also changed the way that I/O was
performed.

This chapter follows the developments that led up to the implementation of
SVR4, which is still the basis of Sun’s Solaris operating system and also freely
available under the auspices of Caldera’s OpenUNIX.

The Need for Change

The research editions of UNIX had a single filesystem type, as described in
Chapter 6. The tight coupling between the kernel and the filesystem worked well

122 UNIX Filesystems—Evolution, Design, and Implementation

at this stage because there was only one filesystem type and the kernel was single
threaded, which means that only one process could be running in the kernel at the
same time.

Before long, the need to add new filesystem types—including non-UNIX
filesystems—resulted in a shift away from the old style filesystem
implementation to a newer, cleaner architecture that clearly separated the
different physical filesystem implementations from those parts of the kernel that
dealt with file and filesystem access.

Pre-SVR3 Kernels

With the exception of Lions’ book on 6th Edition UNIX [LION96], no other UNIX
kernels were documented in any detail until the arrival of System V Release 2
that was the basis for Bach’s book The Design of the UNIX Operating System
[BACH86]. In his book, Bach describes the on-disk layout to be almost identical
to that of the earlier versions of UNIX.

There was little change between the research editions of UNIX and SVR2 to
warrant describing the SVR2 filesystem architecture in detail. Around this time,
most of the work on filesystem evolution was taking place at the University of
Berkeley to produce the BSD Fast File System which would, in time, become UFS.

The File System Switch

Introduced with System V Release 3.0, the File System Switch (FSS) architecture
introduced a framework under which multiple different filesystem types could
coexist in parallel.

The FSS was poorly documented and the source code for SVR3-based
derivatives is not publicly available. [PATE96] describes in detail how the FSS
was implemented. Note that the version of SVR3 described in that book
contained a significant number of kernel changes (made by SCO) and therefore
differed substantially from the original SVR3 implementation. This section
highlights the main features of the FSS architecture.

As with earlier UNIX versions, SVR3 kept the mapping between file
descriptors in the user area to the file table to in-core inodes. One of the main
goals of SVR3 was to provide a framework under which multiple different
filesystem types could coexist at the same time. Thus each time a call is made to
mount, the caller could specify the filesystem type. Because the FSS could
support multiple different filesystem types, the traditional UNIX filesystem
needed to be named so it could be identified when calling the mount command.
Thus, it became known as the s5 (System V) filesystem. Throughout the
USL-based development of System V through to the various SVR4 derivatives,
little development would occur on s5. SCO completely restructured their
s5-based filesystem over the years and added a number of new features.

Development of the SVR4 VFS/Vnode Architecture 123

The boundary between the filesystem-independent layer of the kernel and the
filesystem-dependent layer occurred mainly through a new implementation of
the in-core inode. Each filesystem type could potentially have a very different
on-disk representation of a file. Newer diskless filesystems such as NFS and RFS
had different, non-disk-based structures once again. Thus, the new inode
contained fields that were generic to all filesystem types such as user and group
IDs and file size, as well as the ability to reference data that was
filesystem-specific. Additional fields used to construct the FSS interface were:

i_fsptr. This field points to data that is private to the filesystem and that is
not visible to the rest of the kernel. For disk-based filesystems this field
would typically point to a copy of the disk inode.

i_fstyp. This field identifies the filesystem type.
i_mntdev. This field points to the mount structure of the filesystem to which

this inode belongs.

i_mton. This field is used during pathname traversal. If the directory
referenced by this inode is mounted on, this field points to the mount
structure for the filesystem that covers this directory.

i_fstypp. This field points to a vector of filesystem functions that are called
by the filesystem-independent layer.

The set of filesystem-specific operations is defined by the fstypsw structure. An
array of the same name holds an fstypsw structure for each possible filesystem.
The elements of the structure, and thus the functions that the kernel can call into
the filesystem with, are shown in Table 7.1.

When a file is opened for access, the i_fstypp field is set to point to the
fstypsw[] entry for that filesystem type. In order to invoke a filesystem-specific
function, the kernel performs a level of indirection through a macro that accesses
the appropriate function. For example, consider the definition of FS_READI()
that is invoked to read data from a file:

#define FS_READI(ip) (*fstypsw[(ip)->i_fstyp].fs_readi)(ip)

All filesystems must follow the same calling conventions such that they all
understand how arguments will be passed. In the case of FS_READI(), the
arguments of interest will be held in u_base and u_count. Before returning to
the filesystem-independent layer, u_error will be set to indicate whether an
error occurred and u_resid will contain a count of any bytes that could not be
read or written.

Mounting Filesystems
The method of mounting filesystems in SVR3 changed because each filesystem’s
superblock could be different and in the case of NFS and RFS, there was no
superblock per se. The list of mounted filesystems was moved into an array of
mount structures that contained the following elements:

124 UNIX Filesystems—Evolution, Design, and Implementation

Table 7.1 File System Switch Functions

FSS OPERATION DESCRIPTION

fs_init Each filesystem can specify a function that is called
during kernel initialization allowing the filesystem to
perform any initialization tasks prior to the first mount
call

fs_iread Read the inode (during pathname resolution)

fs_iput Release the inode

fs_iupdat Update the inode timestamps

fs_readi Called to read data from a file

fs_writei Called to write data to a file

fs_itrunc Truncate a file

fs_statf Return file information required by stat()

fs_namei Called during pathname traversal

fs_mount Called to mount a filesystem

fs_umount Called to unmount a filesystem

fs_getinode Allocate a file for a pipe

fs_openi Call the device open routine

fs_closei Call the device close routine

fs_update Sync the superblock to disk

fs_statfs Used by statfs() and ustat()

fs_access Check access permissions

fs_getdents Read directory entries

fs_allocmap Build a block list map for demand paging

fs_freemap Frees the demand paging block list map

fs_readmap Read a page using the block list map

fs_setattr Set file attributes

fs_notify Notify the filesystem when file attributes change

fs_fcntl Handle the fcntl() system call

fs_fsinfo Return filesystem-specific information

fs_ioctl Called in response to a ioctl() system call

TEAMFL
Y

TEAM FLY ®

Development of the SVR4 VFS/Vnode Architecture 125

m_flags. Because this is an array of mount structures, this field was used to
indicate which elements were in use. For filesystems that were mounted,
m_flags indicates whether the filesystem was also mounted read-only.

m_fstyp. This field specified the filesystem type.
m_bsize. The logical block size of the filesystem is held here. Each filesystem

could typically support multiple different block sizes as the unit of allocation
to a file.

m_dev. The device on which the filesystem resides.
m_bufp. A pointer to a buffer containing the superblock.

m_inodp. With the exception of the root filesystem, this field points to the
inode on which the filesystem is mounted. This is used during pathname
traversal.

m_mountp. This field points to the root inode for this filesystem.

m_name. The file system name.

Figure 7.1 shows the main structures used in the FSS architecture. There are a
number of observations worthy of mention:

■ The structures shown are independent of filesystem type. The mount and
inode structures abstract information about the filesystems and files that
they represent in a generic manner. Only when operations go through the
FSS do they become filesystem-dependent. This separation allows the FSS
to support very different filesystem types, from the traditional s5 filesystem
to DOS to diskless filesystems such as NFS and RFS.

■ Although not shown here, the mapping between file descriptors, the user
area, the file table, and the inode cache remained as is from earlier versions
of UNIX.

■ The Virtual Memory (VM) subsystem makes calls through the FSS to obtain
a block map for executable files. This is to support demand paging. When a
process runs, the pages of the program text are faulted in from the executable
file as needed. The VM makes a call to FS_ALLOCMAP() to obtain this
mapping. Following this call, it can invoke the FS_READMAP() function to
read the data from the file when handling a page fault.

■ There is no clean separation between file-based and filesystem-based
operations. All functions exported by the filesystem are held in the same
fstypsw structure.

The FSS was a big step away from the traditional single filesystem-based UNIX
kernel. With the exception of SCO, which retained an SVR3-based kernel for
many years after the introduction of SVR3, the FSS was short lived, being
replaced by the better Sun VFS/vnode interface introduced in SVR4.

126 UNIX Filesystems—Evolution, Design, and Implementation

The Sun VFS/Vnode Architecture

Developed on Sun Microsystem’s SunOS operating system, the world first came
to know about vnodes through Steve Kleiman’s often-quoted Usenix paper

Figure 7.1 Main structures of the File System Switch.

superblock for “/” superblock for “/mnt”

mount[1] for “/mnt” mount[0] for “/”

struct buf

m_bufp

m_mount

m_inodp

struct buf

m_bufp

m_mount

m_inodp

i_flag
= IISROOT

i_mntdev
i_fstypp
i_mton

i_flag
= IISROOT

i_mntdev
i_fstypp
i_mton

i_flag
= 0

i_mntdev
i_fstypp
i_mton

inode for “/” inode for “/mnt”

inode for “/mnt”

RFS ops

NFS ops

MSDOS ops

s5fs ops

.

.

.

VM subsystem File System Switch

buffer cache

bdevsw[]

disk driver

fstypsw[]

Development of the SVR4 VFS/Vnode Architecture 127

“Vnodes: An Architecture for Multiple File System Types in Sun UNIX” [KLEI86].
The paper stated four design goals for the new filesystem architecture:

■ The filesystem implementation should be clearly split into a filesystem
independent and filesystem-dependent layer. The interface between the two
should be well defined.

■ It should support local disk filesystems such as the 4.2BSD Fast File System
(FSS), non-UNIX like filesystems such as MS-DOS, stateless filesystems
such as NFS, and stateful filesystems such as RFS.

■ It should be able to support the server side of remote filesystems such as
NFS and RFS.

■ Filesystem operations across the interface should be atomic such that
several operations do not need to be encompassed by locks.

One of the major implementation goals was to remove the need for global data,
allowing the interfaces to be re-entrant. Thus, the previous style of storing
filesystem-related data in the user area, such as u_base and u_count, needed to
be removed. The setting of u_error on error also needed removing and the new
interfaces should explicitly return an error value.

The main components of the Sun VFS architecture are shown in Figure 7.2.
These components will be described throughout the following sections.

The architecture actually has two sets of interfaces between the
filesystem-independent and filesystem-dependent layers of the kernel. The VFS
interface was accessed through a set of vfsops while the vnode interface was
accessed through a set of vnops (also called vnodeops). The vfsops operate on a
filesystem while vnodeops operate on individual files.

Because the architecture encompassed non-UNIX- and non disk-based
filesystems, the in-core inode that had been prevalent as the memory-based
representation of a file over the previous 15 years was no longer adequate. A new
type, the vnode was introduced. This simple structure contained all that was
needed by the filesystem-independent layer while allowing individual
filesystems to hold a reference to a private data structure; in the case of the
disk-based filesystems this may be an inode, for NFS, an rnode, and so on.

The fields of the vnode structure were:

v_flag. The VROOT flag indicates that the vnode is the root directory of a
filesystem, VNOMAP indicates that the file cannot be memory mapped,
VNOSWAP indicates that the file cannot be used as a swap device, VNOMOUNT
indicates that the file cannot be mounted on, and VISSWAP indicates that the
file is part of a virtual swap device.

v_count. Similar to the old i_count inode field, this field is a reference
count corresponding to the number of open references to the file.

v_shlockc. This field counts the number of shared locks on the vnode.

v_exlockc. This field counts the number of exclusive locks on the vnode.

128 UNIX Filesystems—Evolution, Design, and Implementation

v_vfsmountedhere. If a filesystem is mounted on the directory referenced
by this vnode, this field points to the vfs structure of the mounted
filesystem. This field is used during pathname traversal to cross filesystem
mount points.

v_op. The vnode operations associated with this file type are referenced
through this pointer.

v_vfsp. This field points to the vfs structure for this filesystem.
v_type. This field specifies the type of file that the vnode represents. It can be

set to VREG (regular file), VDIR (directory), VBLK (block special file), VCHR
(character special file), VLNK (symbolic link), VFIFO (named pipe), or
VXNAM (Xenix special file).

v_data. This field can be used by the filesystem to reference private data
such as a copy of the on-disk inode.

There is nothing in the vnode that is UNIX specific or even pertains to a local
filesystem. Of course not all filesystems support all UNIX file types. For example,
the DOS filesystem doesn’t support symbolic links. However, filesystems in the

Figure 7.2 The Sun VFS architecture.

Other kernel components

VFS / VOP / veneer layer

specfs UFS NFS

buffer cache

network

bdevsw[] / cdevsw[]

disk driver

...

Development of the SVR4 VFS/Vnode Architecture 129

VFS/vnode architecture are not required to support all vnode operations. For
those operations not supported, the appropriate field of the vnodeops vector will
be set to fs_nosys, which simply returns ENOSYS.

The uio Structure
One way of meeting the goals of avoiding user area references was to package all
I/O-related information into a uio structure that would be passed across the
vnode interface. This structure contained the following elements:

uio_iov. A pointer to an array of iovec structures each specifying a base
user address and a byte count.

uio_iovcnt. The number of iovec structures.
uio_offset. The offset within the file that the read or write will start from.

uio_segflg. This field indicates whether the request is from a user process
(user space) or a kernel subsystem (kernel space). This field is required by
the kernel copy routines.

uio_resid. The residual count following the I/O.

Because the kernel was now supporting filesystems such as NFS, for which
requests come over the network into the kernel, the need to remove user area
access was imperative. By creating a uio structure, it is easy for NFS to then make
a call to the underlying filesystem.

The uio structure also provides the means by which the readv() and
writev() system calls can be implemented. Instead of making multiple calls into
the filesystem for each I/O, several iovec structures can be passed in at the same
time.

The VFS Layer
The list of mounted filesystems is maintained as a linked list of vfs structures. As
with the vnode structure, this structure must be filesystem independent. The
vfs_data field can be used to point to any filesystem-dependent data structure,
for example, the superblock.

Similar to the File System Switch method of using macros to access
filesystem-specific operations, the vfsops layer utilizes a similar approach. Each
filesystem provides a vfsops structure that contains a list of functions applicable
to the filesystem. This structure can be accessed from the vfs_op field of the vfs
structure. The set of operations available is:

vfs_mount. The filesystem type is passed to the mount command using the
-F option. This is then passed through the mount() system call and is used
to locate the vfsops structure for the filesystem in question. This function
can be called to mount the filesystem.

vfs_unmount. This function is called to unmount a filesystem.

130 UNIX Filesystems—Evolution, Design, and Implementation

vfs_root. This function returns the root vnode for this filesystem and is
called during pathname resolution.

vfs_statfs. This function returns filesystem-specific information in
response to the statfs() system call. This is used by commands such as
df.

vfs_sync. This function flushes file data and filesystem structural data to
disk, which provides a level of filesystem hardening by minimizing data loss
in the event of a system crash.

vfs_fid. This function is used by NFS to construct a file handle for a
specified vnode.

vfs_vget. This function is used by NFS to convert a file handle returned by a
previous call to vfs_fid into a vnode on which further operations can be
performed.

The Vnode Operations Layer
All operations that can be applied to a file are held in the vnode operations vector
defined by the vnodeops structure. The functions from this vector follow:

vop_open. This function is only applicable to device special files, files in the
namespace that represent hardware devices. It is called once the vnode has
been returned from a prior call to vop_lookup.

vop_close. This function is only applicable to device special files. It is called
once the vnode has been returned from a prior call to vop_lookup.

vop_rdwr. Called to read from or write to a file. The information about the
I/O is passed through the uio structure.

vop_ioctl. This call invokes an ioctl on the file, a function that can be
passed to device drivers.

vop_select. This vnodeop implements select().

vop_getattr. Called in response to system calls such as stat(), this
vnodeop fills in a vattr structure, which can be returned to the caller via
the stat structure.

vop_setattr. Also using the vattr structure, this vnodeop allows the
caller to set various file attributes such as the file size, mode, user ID, group
ID, and file times.

vop_access. This vnodeop allows the caller to check the file for read, write,
and execute permissions. A cred structure that is passed to this function
holds the credentials of the caller.

vop_lookup. This function replaces part of the old namei()
implementation. It takes a directory vnode and a component name and
returns the vnode for the component within the directory.

vop_create. This function creates a new file in the specified directory
vnode. The file properties are passed in a vattr structure.

Development of the SVR4 VFS/Vnode Architecture 131

vop_remove. This function removes a directory entry.

vop_link. This function implements the link() system call.
vop_rename. This function implements the rename() system call.

vop_mkdir. This function implements the mkdir() system call.
vop_rmdir. This function implements the rmdir() system call.

vop_readdir. This function reads directory entries from the specified
directory vnode. It is called in response to the getdents() system call.

vop_symlink. This function implements the symlink() system call.

vop_readlink. This function reads the contents of the symbolic link.
vop_fsync. This function flushes any modified file data in memory to disk. It

is called in response to an fsync() system call.

vop_inactive. This function is called when the filesystem-independent
layer of the kernel releases its last hold on the vnode. The filesystem can then
free the vnode.

vop_bmap. This function is used for demand paging so that the virtual
memory (VM) subsystem can map logical file offsets to physical disk offsets.

vop_strategy. This vnodeop is used by the VM and buffer cache layers to
read blocks of a file into memory following a previous call to vop_bmap().

vop_bread. This function reads a logical block from the specified vnode and
returns a buffer from the buffer cache that references the data.

vop_brelse. This function releases the buffer returned by a previous call to
vop_bread.

If a filesystem does not support some of these interfaces, the appropriate entry in
the vnodeops vector should be set to fs_nosys(), which, when called, will
return ENOSYS. The set of vnode operations are accessed through the v_op field
of the vnode using macros as the following definition shows:

#define VOP_INACTIVE(vp, cr) \
 (*(vp)->v_op->vop_inactive)(vp, cr)

Pathname Traversal
Pathname traversal differs from the File System Switch method due to differences
in the structures and operations provided at the VFS layer. Consider the example
shown in Figure 7.3 and consider the following two scenarios:

1. A user types “cd /mnt’’ to move into the mnt directory.
2. A user is in the directory /mnt and types “cd ..’’ to move up one level.

In the first case, the pathname is absolute, so a search will start from the root
directory vnode. This is obtained by following rootvfs to the first vfs structure
and invoking the vfs_root function. This returns the root vnode for the root
filesystem (this is typically cached to avoid repeating this set of steps). A scan is

132 UNIX Filesystems—Evolution, Design, and Implementation

then made of the root directory to locate the mnt directory. Because the
vfs_mountedhere field is set, the kernel follows this link to locate the vfs
structure for the mounted filesystem through which it invokes the vfs_root
function for that filesystem. Pathname traversal is now complete so the u_cdir
field of the user area is set to point to the vnode for /mnt to be used in
subsequent pathname operations.

In the second case, the user is already in the root directory of the filesystem
mounted on /mnt (the v_flag field of the vnode is set to VROOT). The kernel
locates the mounted on vnode through the vfs_vnodecovered field. Because
this directory (/mnt in the root directory) is not currently visible to users (it is
hidden by the mounted filesystem), the kernel must then move up a level to the
root directory. This is achieved by obtaining the vnode referenced by “..’’ in the
/mnt directory of the root filesystem.

Once again, the u_cdir field of the user area will be updated to reflect the
new current working directory.

The Veneer Layer
To provide more coherent access to files through the vnode interface, the
implementation provided a number of functions that other parts of the kernel
could invoke. The set of functions is:

vn_open. Open a file based on its file name, performing appropriate

Figure 7.3 Pathname traversal in the Sun VFS/vnode architecture.

vfs_next

vfs_op

vfs_root

vfs_vnodecovered

vfs_next

vfs_op

vfs_root

vfs_vnodecovered

rootvfs

...
vfs_root

...

v_flag (VROOT)
v_vfsp
v_type (VDIR)
v_vfsmountedhere

v_flag (VROOT)
v_vfsp
v_type (VDIR)
v_vfsmountedhere

v_flag (VROOT)
v_vfsp
v_type (VDIR)
v_vfsmountedhere

vnode for “/”
vnode for “/mnt”

vnode for “/mnt”

for the mounted filesystem

Development of the SVR4 VFS/Vnode Architecture 133

permission checking first.

vn_close. Close the file given by the specified vnode.
vn_rdwr. This function constructs a uio structure and then calls the
vop_rdwr() function to read from or write to the file.

vn_create. Creates a file based on the specified name, performing
appropriate permission checking first.

vn_remove. Remove a file given the pathname.

vn_link. Create a hard link.
vn_rename. Rename a file based on specified pathnames.

VN_HOLD. This macro increments the vnode reference count.
VN_RELE. This macro decrements the vnode reference count. If this is the last

reference, the vop_inactive() vnode operation is called.

The veneer layer avoids duplication throughout the rest of the kernel by
providing a simple, well-defined interface that kernel subsystems can use to
access filesystems.

Where to Go from Here?
The Sun VFS/vnode interface was a huge success. Its merger with the File System
Switch and the SunOS virtual memory subsystem provided the basis for the SVR4
VFS/vnode architecture. There were a large number of other UNIX vendors who
implemented the Sun VFS/vnode architecture. With the exception of the read and
write paths, the different implementations were remarkably similar to the original
Sun VFS/vnode implementation.

The SVR4 VFS/Vnode Architecture

System V Release 4 was the result of a merge between SVR3 and Sun
Microsystems’ SunOS. One of the goals of both Sun and AT&T was to merge the
Sun VFS/vnode interface with AT&T’s File System Switch.

The new VFS architecture, which has remained largely unchanged for over 15
years, introduced and brought together a number of new ideas, and provided a
clean separation between different subsystems in the kernel. One of the
fundamental changes was eliminating the tight coupling between the filesystem
and the VM subsystem which, although elegant in design, was particularly
complicated resulting in a great deal of difficulty when implementing new
filesystem types.

Changes to File Descriptor Management
A file descriptor had previously been an index into the u_ofile[] array.
Because this array was of fixed size, the number of files that a process could have

134 UNIX Filesystems—Evolution, Design, and Implementation

open was bound by the size of the array. Because most processes do not open a
lot of files, simply increasing the size of the array is a waste of space, given the
large number of processes that may be present on the system.

With the introduction of SVR4, file descriptors were allocated dynamically up
to a fixed but tunable limit. The u_ofile[] array was removed and replaced by
two new fields, u_nofiles, which specified the number of file descriptors that
the process can currently access, and u_flist, a structure of type ufchunk that
contains an array of NFPCHUNK (which is 24) pointers to file table entries. After
all entries have been used, a new ufchunk structure is allocated, as shown in
Figure 7.4.

The uf_pofile[] array holds file descriptor flags as set by invoking the
fcntl() system call.

The maximum number of file descriptors is constrained by a per-process limit
defined by the rlimit structure in the user area.

There are a number of per-process limits within the u_rlimit[] array. The
u_rlimit[RLIMIT_NOFILE] entry defines both a soft and hard file descriptor
limit. Allocation of file descriptors will fail once the soft limit is reached. The
setrlimit() system call can be invoked to increase the soft limit up to that of
the hard limit, but not beyond. The hard limit can be raised, but only by root.

The Virtual Filesystem Switch Table
Built dynamically during kernel compilation, the virtual file system switch table,
underpinned by the vfssw[] array, contains an entry for each filesystem that
can reside in the kernel. Each entry in the array is defined by a vfssw structure
as shown below:

struct vfssw {
 char *vsw_name;
 int (*vsw_init)();
 struct vfsops *vsw_vfsops;
}

The vsw_name is the name of the filesystem (as passed to mount -F). The
vsw_init() function is called during kernel initialization, allowing the
filesystem to perform any initialization it may require before a first call to
mount().

Operations that are applicable to the filesystem as opposed to individual files
are held in both the vsw_vfsops field of the vfssw structure and subsequently
in the vfs_ops field of the vfs structure.

The fields of the vfs structure are shown below:

vfs_mount. This function is called to mount a filesystem.

vfs_unmount. This function is called to unmount a filesystem.
vfs_root. This function returns the root vnode for the filesystem. This is

used during pathname traversal.

TEAMFL
Y

TEAM FLY ®

Development of the SVR4 VFS/Vnode Architecture 135

vfs_statvfs. This function is called to obtain per-filesystem-related
statistics. The df command will invoke the statvfs() system call on
filesystems it wishes to report information about. Within the kernel,
statvfs() is implemented by invoking the statvfs vfsop.

vfs_sync. There are two methods of syncing data to the filesystem in SVR4,
namely a call to the sync command and internal kernel calls invoked by the
fsflush kernel thread. The aim behind fsflush invoking vfs_sync is to
flush any modified file data to disk on a periodic basis in a similar way to
which the bdflush daemon would flush dirty (modified) buffers to disk.
This still does not prevent the need for performing a fsck after a system
crash but does help harden the system by minimizing data loss.

vfs_vget. This function is used by NFS to return a vnode given a specified
file handle.

vfs_mountroot. This entry only exists for filesystems that can be mounted
as the root filesystem. This may appear to be a strange operation. However,
in the first version of SVR4, the s5 and UFS filesystems could be mounted as
root filesystems and the root filesystem type could be specified during UNIX
installation. Again, this gives a clear, well defined interface between the rest
of the kernel and individual filesystems.

There are only a few minor differences between the vfsops provided in SVR4 and
those introduced with the VFS/vnode interface in SunOS. The vfs structure with
SVR4 contained all of the original Sun vfs fields and introduced a few others
including vfs_dev, which allowed a quick and easy scan to see if a filesystem
was already mounted, and the vfs_fstype field, which is used to index the
vfssw[] array to specify the filesystem type.

Changes to the Vnode Structure and VOP Layer
The vnode structure had some subtle differences. The v_shlockc and
v_exlockc fields were removed and replaced by additional vnode interfaces to
handle locking. The other fields introduced in the original vnode structure

Figure 7.4 SVR4 file descriptor allocation.

struct user
struct
ufchunk

uf_next
uf_pofile[]
uf_ofile[]

u_nofiles = 48
u_flist

NULL

system file table

struct
ufchunk

uf_next
uf_pofile[]
uf_ofile[]

136 UNIX Filesystems—Evolution, Design, and Implementation

remained and the following fields were added:

v_stream. If the file opened references a STREAMS device, the vnode field
points to the STREAM head.

v_filocks. This field references any file and record locks that are held on
the file.

v_pages. I/O changed substantially in SVR4 with all data being read and
written through pages in the page cache as opposed to the buffer cache,
which was now only used for meta-data (inodes, directories, etc.). All pages
in-core that are part of a file are linked to the vnode and referenced through
this field.

The vnodeops vector itself underwent more change. The vop_bmap(), the
vop_bread(), vop_brelse(), and vop_strategy() functions were
removed as part of changes to the read and write paths. The vop_rdwr() and
vop_select() functions were also removed. There were a number of new
functions added as follows:

vop_read. The vop_rdwr function was split into separate read and write
vnodeops. This function is called in response to a read() system call.

vop_write. The vop_rdwr function was split into separate read and write
vnodeops. This function is called in response to a write() system call.

vop_setfl. This function is called in response to an fcntl() system call
where the F_SETFL (set file status flags) flag is specified. This allows the
filesystem to validate any flags passed.

vop_fid. This function was previously a VFS-level function in the Sun
VFS/vnode architecture. It is used to generate a unique file handle from
which NFS can later reference the file.

vop_rwlock. Locking was moved under the vnode interface, and filesystems
implemented locking in a manner that was appropriate to their own internal
implementation. Initially the file was locked for both read and write access.
Later SVR4 implementations changed the interface to pass one of two flags,
namely LOCK_SHARED or LOCK_EXCL. This allowed for a single writer but
multiple readers.

vop_rwunlock. All vop_rwlock invocations should be followed by a
subsequent vop_rwunlock call.

vop_seek. When specifying an offset to lseek(), this function is called to
determine whether the filesystem deems the offset to be appropriate. With
sparse files, seeking beyond the end of file and writing is a valid UNIX
operation, but not all filesystems may support sparse files. This vnode
operation allows the filesystem to reject such lseek() calls.

vop_cmp. This function compares two specified vnodes. This is used in the
area of pathname resolution.

vop_frlock. This function is called to implement file and record locking.

Development of the SVR4 VFS/Vnode Architecture 137

vop_space. The fcntl() system call has an option, F_FREESP, which
allows the caller to free space within a file. Most filesystems only implement
freeing of space at the end of the file making this interface identical to
truncate().

vop_realvp. Some filesystems, for example, specfs, present a vnode and hide
the underlying vnode, in this case, the vnode representing the device. A call
to VOP_REALVP() is made by filesystems when performing a link()
system call to ensure that the link goes to the underlying file and not the
specfs file, that has no physical representation on disk.

vop_getpage. This function is used to read pages of data from the file in
response to a page fault.

vop_putpage. This function is used to flush a modified page of file data to
disk.

vop_map. This function is used for implementing memory mapped files.

vop_addmap. This function adds a mapping.
vop_delmap. This function deletes a mapping.

vop_poll. This function is used for implementing the poll() system call.
vop_pathconf. This function is used to implement the pathconf() and
fpathconf() system calls. Filesystem-specific information can be returned,
such as the maximum number of links to a file and the maximum file size.

The vnode operations are accessed through the use of macros that reference the
appropriate function by indirection through the vnode v_op field. For example,
here is the definition of the VOP_LOOKUP() macro:

#define VOP_LOOKUP(vp,cp,vpp,pnp,f,rdir,cr) \
 (*(vp)->v_op->vop_lookup)(vp,cp,vpp,pnp,f,rdir,cr)

The filesystem-independent layer of the kernel will only access the filesystem
through macros. Obtaining a vnode is performed as part of an open() or
creat() system call or by the kernel invoking one of the veneer layer functions
when kernel subsystems wish to access files directly. To demonstrate the mapping
between file descriptors, memory mapped files, and vnodes, consider the
following example:

 1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <sys/mman.h>
 4 #include <fcntl.h>
 5 #include <unistd.h>
 6
 7 #define MAPSZ 4096
 8
 9 main()
10 {
11 char *addr, c;
12 int fd1, fd2;

138 UNIX Filesystems—Evolution, Design, and Implementation

13
14 fd1 = open("/etc/passwd", O_RDONLY);
15 fd2 = dup(fd1);
16 addr = (char *)mmap(NULL, MAPSZ, PROT_READ,
17 MAP_SHARED, fd1, 0);
18 close(fd1);
19 c = *addr;
20 pause();
21 }

A file is opened and then dup() is called to duplicate the file descriptor. The file
is then mapped followed by a close of the first file descriptor. By accessing the
address of the mapping, data can be read from the file.

The following examples, using crash and adb on Solaris, show the main
structures involved and scan for the data read, which should be attached to the
vnode through the v_pages field. First of all, the program is run and crash is
used to locate the process:

./vnode&
crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> p ! grep vnode
35 s 4365 4343 4365 4343 0 46 vnode load
> u 35
PER PROCESS USER AREA FOR PROCESS 35
PROCESS MISC:
command: vnode, psargs: ./vnode
start: Fri Aug 24 10:55:32 2001
mem: b0, type: exec
vnode of current directory: 30000881ab0
OPEN FILES, FLAGS, AND THREAD REFCNT:
[0]: F 30000adaa90, 0, 0 [1]: F 30000adaa90, 0, 0
[2]: F 30000adaa90, 0, 0 [4]: F 30000adac50, 0, 0
...

The p (proc) command displays the process table. The output is piped to grep
to locate the process. By running the u (user) command and passing the process
slot as an argument, the file descriptors for this process are displayed. The first
file descriptor allocated (3) was closed and the second (4) retained as shown
above.

The entries shown reference file table slots. Using the file command, the
entry for file descriptor number 4 is displayed followed by the vnode that it
references:

> file 30000adac50
ADDRESS RCNT TYPE/ADDR OFFSET FLAGS
30000adac50 1 UFS /30000aafe30 0 read
> vnode -l 30000aafe30
VCNT VFSMNTED VFSP STREAMP VTYPE RDEV VDATA VFILOCKS
VFLAG

3 0 104440b0 0 f 30000aafda0 0 -

Development of the SVR4 VFS/Vnode Architecture 139

mutex v_lock: owner 0 waiters 0
Condition variable v_cv: 0

The file table entry points to a vnode that is then displayed using the vnode
command. Unfortunately the v_pages field is not displayed by crash. Looking
at the header file that corresponds to this release of Solaris, it is possible to see
where in the structure the v_pages field resides. For example, consider the
surrounding fields:

...
struct vfs *v_vfsp; /* ptr to containing VFS */
struct stdata *v_stream; /* associated stream */
struct page *v_pages; /* vnode pages list */
enum vtype v_type; /* vnode type */
...

The v_vfsp and v_type fields are displayed above so by dumping the area of
memory starting at the vnode address, it is possible to display the value of
v_pages. This is shown below:

> od -x 30000aafe30 8
30000aafe30: 000000000000 cafe00000003 000000000000 0000104669e8
30000aafe50: 0000104440b0 000000000000 0000106fbe80 0001baddcafe

There is no way to display page structures in crash, so the Solaris adb command
is used as follows:

adb -k
physmem 3ac5
106fbe80$<page
106fbe80: vnode hash vpnext

30000aafe30 1073cb00 106fbe80
106fbe98: vpprev next prev

106fbe80 106fbe80 106fbe80
106fbeb0: offset selock lckcnt

0 0 0
106fbebe: cowcnt cv io_cv

0 0 0
106fbec4: iolock_state fsdata state

0 0 0

Note that the offset field shows a value of 0 that corresponds to the offset
within the file that the program issues the mmap() call for.

Pathname Traversal
The implementation of namei() started to become incredibly complex in some
versions of UNIX as more and more functionality was added to a UNIX kernel
implementation that was really inadequate to support it. [PATE96] shows how

140 UNIX Filesystems—Evolution, Design, and Implementation

namei() was implemented in SCO OpenServer, a derivative of SVR3 for which
namei() became overly complicated. With the addition of new vnodeops,
pathname traversal in SVR4 became greatly simplified.

Because one of the goals of the original Sun VFS/vnode architecture was to
support non-UNIX filesystems, it is not possible to pass a full pathname to the
filesystem and ask it to resolve it to a vnode. Non-UNIX filesystems may not
recognize the “/’’ character as a pathname component separator, DOS being a
prime example. Thus, pathnames are resolved one component at a time.

The lookupname() function replaced the old namei() function found in
earlier versions of UNIX. This takes a pathname structure and returns a vnode (if
the pathname is valid). Internally, lookupname() allocates a pathname
structure and calls lookuppn() to actually perform the necessary parsing and
component lookup. The steps performed by lookuppn() are as follows:

if (absolute_pathname) {
 dirvp = rootdir
} else {
 dirvp = u.u_cdir
}

do {
 name = extract string from pathname
 newvp = VOP_LOOKUP(dirvp, name, ...)
 if not last component {
 dirvp = newvp
 }
} until basename of pathname reached

return newvp

This is a fairly simple task to perform. Obviously, users can add all sorts of
character combinations, and “.’’ and “..’’ in the specified pathname, so there is a
lot of string manipulation to perform which complicates the work of
lookuppn().

The Directory Name Lookup Cache
The section The Inode Cache in Chapter 6 described how the inode cache provided
a means by which to store inodes that were no longer being used. This helped
speed up access during pathname traversal if an inode corresponding to a
component in the pathname was still present in the cache.

Introduced initially in 4.2BSD and then in SVR4, the directory name lookup cache
(DNLC) provides an easy and fast way to get from a pathname to a vnode. For
example, in the old inode cache method, parsing the pathname
/usr/lib/fs/vxfs/bin/mkfs would involve working on each component of
the pathname one at a time. The inode cache merely saved going to disk during
processing of iget(), not to say that this isn’t a significant performance

Development of the SVR4 VFS/Vnode Architecture 141

enhancement. However it still involved a directory scan to locate the appropriate
inode number. With the DNLC, a search may be made by the name component
alone. If the entry is cached, the vnode is returned. At hit rates over 90 percent,
this results in a significant performance enhancement.

The DNLC is a cache of ncache structures linked on an LRU (Least Recently
Used) list. The main elements of the structure are shown below and the linkage
between elements of the DNLC is shown in Figure 7.5.

name. The pathname stored.

namelen. The length of the pathname.
vp. This field points to the corresponding vnode.

dvp. The credentials of the file’s owner.

The ncache structures are hashed to improve lookups. This alleviates the need
for unnecessary string comparisons. To access an entry in the DNLC, a hash value
is calculated from the filename and parent vnode pointer. The appropriate entry
in the nc_hash[] array is accessed, through which the cache can be searched.
There are a number of DNLC-provided functions that are called by both the
filesystem and the kernel.

dnlc_enter. This function is called by the filesystem to add an entry to the
DNLC. This is typically called during pathname resolution on a successful
VOP_LOOKUP() call. It is also called when a new file is created or after other
operations which involve introducing a new file to the namespace such as
creation of hard and symbolic links, renaming of files, and creation of
directories.

dnlc_lookup. This function is typically called by the filesystem during
pathname resolution. Because pathnames are resolved one entry at a time,
the parent directory vnode is passed in addition to the file name to search
for. If the entry exists, the corresponding vnode is returned, otherwise NULL
is returned.

dnlc_remove. Renaming of files and removal of files are functions for which
the entry in the DNLC must be removed.

dnlc_purge_vp. This function can be called to remove all entries in the cache
that reference the specified vnode.

dnlc_purge_vfsp. When a filesystem is to be unmounted, this function is
called to remove all entries that have vnodes associated with the filesystem
that is being unmounted.

dnlc_purge1. This function removes a single entry from the DNLC. SVR4
does not provide a centralized inode cache as found in earlier versions of
UNIX. Any caching of inodes or other filesystem-specific data is the
responsibility of the filesystem. This function was originally implemented to
handle the case where an inode that was no longer in use has been removed
from the inode cache.

142 UNIX Filesystems—Evolution, Design, and Implementation

As mentioned previously, there should be a hit rate of greater than 90 percent in
the DNLC; otherwise it should be tuned appropriately. The size of the DNLC is
determined by the tunable ncsize and is typically based on the maximum
number of processes and the maximum number of users.

Filesystem and Virtual Memory Interactions
With the inclusion of the SunOS VM subsystem in SVR4, and the integration
between the filesystem and the Virtual Memory (VM) subsystem, the SVR4 VFS
architecture radically changed the way that I/O took place. The buffer cache
changed in usage and a tight coupling between VM and filesystems together
with page-based I/O involved changes throughout the whole kernel from
filesystems to the VM to individual disk drivers.

Consider the old style of file I/O that took place in UNIX up to and including
SVR3. The filesystem made calls into the buffer cache to read and write file data.
For demand paging, the File System Switch architecture provided filesystem
interfaces to aid demand paging of executable files, although all file data was still
read and written through the buffer cache.

This was still largely intact when the Sun VFS/vnode architecture was
introduced. However, in addition to their VFS/vnode implementation, Sun
Microsystems introduced a radically new Virtual Memory subsystem that was, in
large part, to become the new SVR4 VM.

The following sections describe the main components and features of the SVR4
VM together with how file I/O takes place. For a description of the SunOS
implementation, consult the Usenix paper “Virtual Memory Architecture in
SunOS” [GING87].

Figure 7.5 Structures used to manage the DNLC.

namelen

name[]

vp

dvp

struct
ncache

active file vnode
parent vnode

. . .
. . . nc_lru

nc_hash[NC_HASH_SIZE]

Development of the SVR4 VFS/Vnode Architecture 143

An Overview of the SVR4 VM Subsystem
The memory image of each user process is defined by an as (address space)
structure that references a number of segments underpinned by the seg structure.
Consider a typical user process. The address space of the process will include
separate segments for text, data, and stack, in addition to various libraries, shared
memory, and memory-mapped files as shown pictorially in Figure 7.6.

The seg structure defines the boundaries covering each segment. This includes
the base address in memory together with the size of the segment.

There are a number of different segment types. Each segment type has an array
of segment-related functions in the same way that each vnode has an array of
vnode functions. In the case of a page fault, the kernel will call the fault()
function for the specified segment causing the segment handler to respond by
reading in the appropriate data from disk. When a process is forked, the dup()
function is called for each segment and so on.

For those segments such as process text and data that are backed by a file, the
segvn segment type is used. Each segvn segment has associated private,
per-segment data that is accessed through the s_data field of the seg structure.
This particular structure, segvn_data, contains information about the segment
as well as the underlying file. For example, segvn segment operations need to
know whether the segment is read-only, read/write, or whether it has execute
access so that it can respond accordingly to a page fault. As well as referencing the
vnode backing the segment, the offset at which the segment is mapped to the file
must be known. As a hypothetical example, consider the case where user text is
held at an offset of 0x4000 from the start of the executable file. If a page fault
occurs within the text segment at the address s_base + 0x2000, the segment
page fault handler knows that the data must be read from the file at an offset of
0x4000 + 0x2000 = 0x6000.

After a user process starts executing, there will typically be no physical pages
of data backing these segments. Thus, the first instruction that the process
executes will generate a page fault within the segment covering the instruction.
The kernel page fault handler must first determine in which segment the fault
occurred. This is achieved using the list of segments referenced by the process as
structure together with the base address and the size of each segment. If the
address that generated the page fault does not fall within the boundaries of any of
the process segments, the process will be posted a SIGSEGV, which will typically
result in the process dumping core.

To show how these structures are used in practice, consider the following
invocation of the sleep(1) program:

$ /usr/bin/sleep 100000&

Using crash, the process can be located and the list of segments can be displayed
as follows:

144 UNIX Filesystems—Evolution, Design, and Implementation

crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> p ! grep sleep
32 s 7719 7694 7719 7694 0 46 sleep load
> as -f 32
PROC PAGLCK CLGAP VBITS HAT HRM RSS
SEGLST LOCK SEGS SIZE LREP TAIL NSEGS
32 0 0 0x0 0x4f958 0x0

0xb10070 0x7fffefa0 0xb5aa50 950272 0 0xb3ccc0 14
BASE SIZE OPS DATA
0x 10000 8192 segvn_ops 0x30000aa46b0
0x 20000 8192 segvn_ops 0x30000bfa448
0x 22000 8192 segvn_ops 0x30000b670f8
0xff280000 679936 segvn_ops 0x30000aa4e40
0xff336000 24576 segvn_ops 0x30000b67c50
0xff33c000 8192 segvn_ops 0x30000bfb260
0xff360000 16384 segvn_ops 0x30000bfac88
0xff372000 16384 segvn_ops 0x30000bface0
0xff380000 16384 segvn_ops 0x30001af3f48
0xff3a0000 8192 segvn_ops 0x30000b677d8
0xff3b0000 8192 segvn_ops 0x30000b239d8
0xff3c0000 131072 segvn_ops 0x30000b4c5e0
0xff3e0000 8192 segvn_ops 0x30000b668b8
0xffbee000 8192 segvn_ops 0x30000bfad38

Figure 7.6 Structures used to manage the process address space.

s_base

s_size

s_ops

s_data

s_base

s_size

s_ops

s_data

.

.

.

.

.

.

a_segsp_as

struct
proc

struct as

text

data

memory image
of process

TEAMFL
Y

TEAM FLY ®

Development of the SVR4 VFS/Vnode Architecture 145

There are 14 different segment types used to construct the address space, all of
which are segvn type segments. Looking at the highlighted segment, the segvn
private data structure associated with this segment can be displayed within adb
as follows:

0x30000aa4e40$<segvn
30000aa4e40: lock
30000aa4e40: wwwh
0
30000aa4e48: pageprot prot maxprot

0 015 017
30000aa4e4b: type offset vp

02 0 30000749c58
30000aa4e60: anon_index amp vpage

0 0 0
30000aa4e78: cred swresv advice

30000429b68 0 0

The vnode representing the file backing this segment together with the offset
within the file are displayed. The vnode and inode commands can be used to
display both the vnode and the underlying UFS inode:

30000749c58$<vnode
30000749c60: flag refcnt vfsmnt

1000 63 0
30000749c70: op vfsp stream

ufs_vnodeops 104440b0 0
30000749c88: pages type rdev

107495e0 1 0
30000749ca0: data filocks shrlocks

30000749bc8 0 0
...
30000749bc8$<inode
...
30000749ce0: number diroff ufsvfs

50909 0 3000016ee18
...

Finally, the following library is displayed whose inode number matches the inode
displayed above.

ls -i /usr/lib/libc.so.1
50909 /usr/lib/libc.so.1

An interesting exercise to try is to run some of the programs presented in the
book, particularly those that use memory-mapped files, map the segments
displayed back to the specific file on disk, and note the file offsets and size of the
segments in question.

146 UNIX Filesystems—Evolution, Design, and Implementation

The segvn segment type is of most interest to filesystem writers. Other
segments include seg_u for managing user areas, seg_kmem for use by the kernel
virtual memory allocator, and seg_dev, which is used to enable applications to
memory-map devices.

The kernel address space is managed in a similar manner to the user address
space in that it has its own address space structure referenced by the kernel
variable k_as. This points to a number of different segments, one of which
represents the SVR4 page cache that is described later in this chapter.

Anonymous Memory
When a process starts executing, the data section may be modified and therefore,
once read from the file, loses its file association thereafter. All such segvn
segments contain a reference to the original file where the data must be read from
but also contain a reference to a set of anonymous pages.

Every anonymous page has reserved space on the swap device. If memory
becomes low and anonymous pages need to be paged out, they can be written to
the swap device and read back into memory at a later date. Anonymous pages
are described by the anon structure, which contains a reference count as well as a
pointer to the actual page. It also points to an entry within an si_anon[] array
for which there is one per swap device. The location within this array determines
the location on the swap device where the page of memory will be paged to if
necessary. This is shown pictorially in Figure 7.7.

File I/O through the SVR4 VFS Layer
SVR4 implemented what is commonly called the page cache through which all file
data is read and written. This is actually a somewhat vague term because the
page cache differs substantially from the fixed size caches of the buffer cache,
DNLC, and other types of caches.

The page cache is composed of two parts, a segment underpinned by the
seg_map segment driver and a list of free pages that can be used for any purpose.
Thus, after a page of file data leaves the cache, it is added to the list of free pages.
While the page is on the free list, it still retains its identity so that if the kernel
wishes to locate the same data prior to the page being reused, the page is
removed from the free list and the data does not need to be re-read from disk.
The main structures used in constructing the page cache are shown in Figure 7.8.

The segmap structure is part of the kernel address space and is underpinned
by the segmap_data structure that describes the properties of the segment. The
size of the segment is tunable and is split into MAXBSIZE (8KB) chunks where
each 8KB chunk represents an 8KB window into a file. Each chunk is referenced
by an smap structure that contains a pointer to a vnode for the file and the offset
within the file. Thus, whereas the buffer cache references file data by device and
block number, the page cache references file data by vnode pointer and file offset.

Development of the SVR4 VFS/Vnode Architecture 147

Two VM functions provide the basis for performing I/O in the new SVR4
model. The first function, shown below, is used in a similar manner to getblk()
to essentially return a new entry in the page cache or return a previously cached
entry:

addr_t
segmap_getmap(struct seg *seg, vnode_t *vp, uint_t *offset);

The seg argument is always segkmap. The remaining two arguments are the
vnode and the offset within the vnode where the data is to be read from or written
to. The offset must be in 8KB multiples from the start of the file.

The address returned from segmap_getmap() is a kernel virtual address
within the segmap segment range s_base to s_base + s_size. When the
page cache is first initialized, the first call to segmap_getmap() will result in the
first smap structure being used. The sm_vp and sm_off fields are updated to
hold the vnode and offset passed in, and the virtual address corresponding to this
entry is returned. After all slots in the segmap window have been used, the

Figure 7.7 Structures used to manage anonymous memory.

s_base

s_size

s_ops

s_data

s_base

s_size

s_ops

s_data

.

.

.

.

.

.

a_segsp_as

struct
proc

struct as

text

data

memory image
of process

swap

space

struct
vnode

vp
offset
amp

struct
segvn_data

anon_map[]

si_anon[]

148 UNIX Filesystems—Evolution, Design, and Implementation

segmap driver must reuse one of the existing slots. This works in a similar
manner to the buffer cache where older buffers are reused when no free buffers
are available. After a slot is reallocated, the pages backing that slot are placed on
the free list. Thus, the page cache essentially works at two levels with the page
free list also acting as a cache.

The segmap_release() function, shown below, works in a similar way to
brelse() by allowing the entry to be reused:

int
segmap_release(struct seg *seg, addr_t addr, u_int flags)

This is where the major difference between SVR4 and other UNIX kernels comes
into play. The virtual address returned by segmap_getmap() will not have any
associated physical pages on the first call with a specific vnode and offset.
Consider the following code fragment, which is used by the filesystem to read
from an offset of 8KB within a file and read 1024 bytes:

kaddr = segmap_getmap(segkmap, vp, 8192);
uiomove(kaddr, 1024, UIO_READ, uiop);
segmap_release(segkmap, kaddr, SM_FREE);

The uiomove() function is called to copy bytes from one address to another.
Because there are no physical pages backing kaddr, a page fault will occur.

Figure 7.8 Main structures used in constructing the SVR4 page cache.

s_data

s_size

s_base

s_ops

s_data

s_size

s_base

s_ops

.

.

.

.

.

.

kasstruct
as

struct
seg

struct
seg

segmap_ops

smd_sm
s_hash

MAXBSIZE
chunks

sm_vp
sm_off

sm_vp
sm_off

.

.

.

.

.

.

struct smap

struct
segmap_data

Development of the SVR4 VFS/Vnode Architecture 149

Because the kernel address space, referenced by kas, contains a linked list of
segments each with a defined start and end address, it is easy for the page fault
handling code to determine which segment fault handler to call to satisfy the page
fault. In this case the s_fault() function provided with the segmap driver will
be called as follows:

segkmap->s_ops->fault(seg, addr, ssize, type, rw);

By using the s_base and addr arguments passed to the fault handler, the
appropriate vnode can be located from the corresponding smap structure. A call
is then made to the filesystem’s VOP_GETPAGE() function, which must allocate
the appropriate pages and read the data from disk before returning. After this is
all complete, the page fault is satisfied and the uiomove() function continues.

A pictorial view of the steps taken when reading a file through the VxFS
filesystem is shown in Figure 7.9.

To write to a file, the same procedure is followed up to the point where
segmap_release() is called. The flags argument determines what happens to
the pages once the segment is released. The values that flags can take are:

SM_WRITE. The pages should be written, via VOP_PUTPAGE(), to the file once
the segment is released.

SM_ASYNC. The pages should be written asynchronously.
SM_FREE. The pages should be freed.

SM_INVAL. The pages should be invalidated.
SM_DONTNEED. The filesystem has no need to access these pages again.

If no flags are specified, the call to VOP_PUTPAGE() will not occur. This is the
default behavior when reading from a file.

Memory-Mapped File Support in SVR4
A call to mmap() will result in a new segvn segment being attached to the calling
process’ address space. A call will be made to the filesystem VOP_MAP() function,
which performs some level of validation before calling the map_addr() function
to actually initialize the process address space with the new segment.

Page faults on the mapping result in a very similar set of steps to page faults on
the segmap segment. The segvn fault handler is called with the process address
space structure and virtual address. Attached to the private data of this segment
will be the vnode, the offset within the file that was requested of mmap(), and a
set of permissions to indicate the type of mapping.

In the simple case of a memory read access, the segvn driver will call
VOP_GETPAGE() to read in the requested page from the file. Again, the
filesystem will allocate the page and read in the contents from disk.

In the following program, /etc/passwd is mapped. The following text then
shows how to display the segments for this process and from there show the
segvn segment for the mapped region and show how it points back to the passwd

150 UNIX Filesystems—Evolution, Design, and Implementation

file so that data can be read and written as appropriate. The program is very
straightforward, mapping an 8KB chunk of the file from a file offset of 0.

 1 #include <sys/types.h>
 2 #include <sys/stat.h>
 3 #include <sys/mman.h>

Figure 7.9 Reading from a file via the SVR4 page cache.

VxFS
vx_getpage(vp, ...)
{

allocate pages
read data from disk

}

segmap_fault()
{

vp = sm_vp
VOP_GETPAGE(vp, ...)

}

as_fault()
{

locate segment
call s_fault()

}

. . .

. . .kas

segkmap

s_base

vp, off

kaddr = segmap_getmap(segkmap, vp, off, ...)
uiomove(kaddr, uaddr, UIO_READ, 1024)
segmap_release(segkmap, kaddr, ...)

vx_read(vp, ...) {

}

PAGE

FAULT

VOP layer
VxFS

read()
{

fp = getf(fd)
vp = fp->f_vnode
VOP_READ(vp, ...)

}

user

kernel

lseek(fd, 8192, SEEK_SET)
read(fd, buf, 1024)

Development of the SVR4 VFS/Vnode Architecture 151

 4 #include <fcntl.h>
 5 #include <unistd.h>
 6
 7 #define MAPSZ 4096
 8
 9 main()
10 {
11 char *addr, c;
12 int fd;
13
14 fd = open("/etc/passwd", O_RDONLY);
15 addr = (char *)mmap(NULL, MAPSZ,
16 PROT_READ, MAP_SHARED, fd, 0);
17 printf("addr = 0x%x\n", addr);
18 c = *addr;
19 pause();
20 }

After running the program, it can be located with crash as follows. Using the
program slot, the as (address space) for the process is then displayed.

mydup&
addr = 0xff390000
crash
> p ! grep mydup
38 s 4836 4800 4836 4800 0 46 map load
> p -f 38
PROC TABLE SIZE = 1882
SLOT ST PID PPID PGID SID UID PRI NAME FLAGS

38 s 4836 4800 4836 4800 0 46 map load
Session: sid: 4800, ctty: vnode(30001031448) maj(24) min(1)
Process Credentials: uid: 0, gid: 1, real uid: 0, real gid: 1
as: 300005d8ff8
...

From within adb the address space can be displayed by invoking the as macro.
This shows a pointer to the list of segments corresponding to this process. In this
case there are 12 segments. The seglist macro then displays each segment in
the list. In this case, only the segment corresponding to the mapped file is
displayed. This is located by looking at the base address of the segment that
corresponds to the address returned from mmap(), which is displayed above.

300005d8ff8$<as
...
300005d9040: segs size tail
30000b5a2a8 e0000 30000b5a190
300005d9058: nsegs lrep hilevel

12 0 0
...
30000b5a2a8$<seglist
...
30000b11f80: base size as
ff390000 2000 300005d8ff8

152 UNIX Filesystems—Evolution, Design, and Implementation

30000b11f98: next prev ops
30000b5a4a0 30000b5b8c0 segvn_ops
30000b11fb0: data

30000b4d138
...

Note that in addition to the base address, the size of the segment corresponds to
the size of the mapping requested, in this case 8KB. The data field points to
private segment-specific data. This can be displayed using the segvn macro as
follows:

30000b4d138$<segvn
...
30000b4d143: type offset vp

01 0 30000aafe30
...

Of most interest here, the vp field points to the vnode from which this segment is
backed. The offset field gives the offset within the file which, as specified to
mmap(), is 0.

The remaining two macro calls display the vnode referenced previously and
the UFS inode corresponding to the vnode.

30000aafe30$<vnode
30000aafe38: flag refcnt vfsmnt

0 3 0
30000aafe48: op vfsp stream

ufs_vnodeops 104440b0 0
30000aafe60: pages type rdev

106fbe80 1 0
30000aafe78: data filocks shrlocks

30000aafda0 0 0
30000aafda0$<inode
...
30000aafeb8: number diroff ufsvfs

129222 0 3000016ee18
...

As a check, the inode number is displayed and also displayed below:

ls -i /etc/passwd
129222 /etc/passwd

Flushing Dirty Pages to Disk
There are a number of cases where modified pages need to be written to disk.
This may result from the pager finding pages to steal, an explicit call to msync(),
or when a process exits and modified pages within a mapping need to be written
back to disk. The VOP_PUTPAGE() vnode operation is called to write a single
page back to disk.

Development of the SVR4 VFS/Vnode Architecture 153

The single page approach may not be ideal for filesystems such as VxFS that
can have multipage extents. The same also holds true for any filesystem where the
block size is greater than the page size. Rather than flush a single dirty page to
disk, it is preferable to flush a range of pages. For VxFS this may cover all dirty
pages within the extent that may be in memory. The VM subsystem provides a
number of routines for manipulating lists of pages. For example, the function
pvn_getdirty_range() can be called to gather all dirty pages in the specified
range. All pages within this range are gathered together in a linked list and
passed to a filesystem-specified routine, that can then proceed to write the page
list to disk.

Page-Based I/O
Prior to SVR4, all I/O went through the buffer cache. Each buffer pointed to a
kernel virtual address where the data could be transferred to and from. With the
change to a page-based model for file I/O in SVR4, the filesystem deals with
pages for file data I/O and may wish to perform I/O to more than one page at a
time. For example, as described in the previous section, a call back into the
filesystem from pvn_getdirty_range() passes a linked list of page
structures. However, these pages do not typically have associated kernel virtual
addresses. To avoid an unnecessary use of kernel virtual address space and an
increased cost in time to map these pages, the buffer cache subsystem as well as
the underlying device drivers were modified to accept a list of pages. In this case,
the b_pages field is set to point to the linked list of pages and the B_PAGES field
must be set.

At the stage that the filesystem wishes to perform I/O, it will typically have a
linked list of pages into which data needs to be read or from which data needs to
be written. To prevent duplication across filesystems, the kernel provides a
function, pageio_setup(), which allocates a buf structure, attaches the list of
pages to b_pages, and initializes the b_flags to include B_PAGES. This is used
by the driver the indicate that page I/O is being performed and that b_pages
should be used and not b_addr. Note that this buffer is not part of the buffer
cache.

The I/O is actually performed by calling the driver strategy function. If the
filesystem needs to wait for the I/O completion, it must call biowait(), passing
the buf structure as an argument. After the I/O is complete, a call to
pageio_done() will free the buffer, leaving the page list intact.

Adoption of the SVR4 Vnode Interface
Although many OS vendors implemented the VFS/vnode architecture within the
framework of their UNIX implementations, the SVR4 style of page I/O, while
elegant and efficient in usage of the underlying memory, failed to gain
widespread adoption. In part this was due to the closed nature in which SVR4
was developed because the implementation was not initially documented. An
additional reason was due to the amount of change that was needed both to the
VM subsystem as well as every filesystem supported.

154 UNIX Filesystems—Evolution, Design, and Implementation

Summary

The period between development of both SVR3 and SunOS and the transition to
SVR4 saw a substantial investment in both the filesystem framework within the
kernel and the development of individual filesystems. The VFS/vnode
architecture has proved to be immensely popular and has been ported in one
way or another to most versions of UNIX. For further details of SVR4.0,
Goodheart and Cox’s book The Magic Garden Explained: The Internals of System V
Release 4, An Open Systems Design [GOOD94] provides a detailed account of SVR4
kernel internals. For details on the File System Switch (FSS) architecture, Pate’s
book UNIX Internals—A Practical Approach [PATE96] is one of the few references.

TEAMFL
Y

TEAM FLY ®

CHAPTER

8

155

Non-SVR4-Based Filesystem
Architectures

Previous chapters have centered around the main evolutionary path that UNIX
took from the early research editions through to System V Release 4, which
involved the last major enhancements to the UNIX filesystem architecture.

While many different UNIX and UNIX-like vendors adopted the Sun
VFS/vnode interface to one degree or another, their implementations differed in
many other areas, most notably in how file I/O takes place. Some of the
microkernel implementations offered new approaches to supporting UNIX-based
filesystems.

This chapter describes the major different UNIX and UNIX-like operating
systems from a filesystem perspective, showing the similarities and differences to
the pre-VFS and post-VFS/vnode implementations.

The BSD Filesystem Architecture

The first version of BSD UNIX, introduced in 1978, was based on 6th Edition
UNIX. Almost from day one, subtle differences between the two code bases
started to appear. However, with 3BSD, introduced in 1980 and based on 7th
Edition, one can still see very similar code paths between 3BSD and 7th Edition
UNIX, which was described in Chapter 6. Therefore, understanding the kernel

156 UNIX Filesystems—Evolution, Design, and Implementation

paths in the earlier research editions will help in understanding the paths
through the earlier BSD versions.

The source of all of the BSD kernels is now available on a single CD set,
distributed under the auspices of the ancient UNIX source code license that was
introduced to allow the research editions to become accessible to anyone. At the
time of writing, Kirk McKusick, one of the BSD contributors, is distributing the
CDs. For further information, see www.mckusick.com.

The three the most significant contributions that the Berkeley team made in the
area of filesystems were quotas, the directory name lookup cache (DNLC), and
the introduction of the Berkeley Fast File System (FFS), which would eventually be
renamed UFS (UNIX File System). This was first documented in [MCKU84] and
is described in more detail in Chapter 9.

UFS first made its appearance in later versions of 4.1BSD. Note, however, that
it did not appear as an additional filesystem but as a replacement for the old
research edition filesystem because, at that stage, the kernel had no means of
supporting multiple different filesystem types.

Around the time of 4.3BSD, traces of the old UNIX filesystem had
disappeared. The filesystem disk layout was that of early UFS, which was
considerably more complex than its predecessor. The in-core file structure still
pointed to an in-core inode but this was changed to include a copy of the
disk-based portion of the UFS inode when the file was opened. The
implementation of namei() also became more complex with the introduction of
the name cache (DNLC).

File I/O in 4.3BSD
To illustrate some of the areas where BSD UNIX differed from the research
editions, consider the case of file I/O. At this stage, the BSD implementation had
already started to move away from the use of user area fields to hold information
pertaining to the read or write operation and introduced the uio and iovec
structures as described in the section The uio Structure in Chapter 7.

Another difference was the introduction of a function vector, which was
accessed through the file structure and referenced the following functions:

fo_rw. This function is called when performing a read or write operation. For
reading and writing to/from files, this field pointed to the ino_rw()
function.

fo_ioctl. Called to handle the ioctl(S) system call. For file access, the
ino_ioctl() function was called.

fo_select. Called to handle the select(S) system call. For file access, the
ino_select() function was called.

fo_close. Called to handle the close(S) system call. For file access, the
ino_close() function was called.

By supporting multiple operation vectors, this allowed applications to access
sockets (a channel for communicating over networks) in the same way that

Non-SVR4-Based Filesystem Architectures 157

regular files were accessed.
For reading from and writing to regular files, ino_rw() calls rwip(), which

performs most of the work by calling bmap() to map an offset to a block on disk
and then calling into the buffer cache to actually read the data. The bmap()
function actually returns two blocks, namely the requested block, which was read
synchronously, and the next block in the file for which an asynchronous read was
initiated. This allows for read ahead in order to improve performance.

Although the bmap() function is called directly from rwip(), the separation
of filesystem-specific code was starting to appear, paving the way for what would
eventually be an architecture that would support multiple filesystem types.

The BSD buffer cache is not significantly different from other buffer cache
implementations described elsewhere in the book and therefore does not warrant
further description here.

Filename Caching in 4.3BSD
Two name caching mechanisms were introduced in BSD UNIX. Firstly, namei()
was enhanced to allow for faster scans of a directory when the process was
scanning the directory sequentially. This could be proved to have a significant
effect given the right benchmark. However, it proved to be useful in only a small
number of practical cases.

More significant was the introduction of a new name cache that held recent
name-to-inode lookups. This cache, which was adopted in SVR4 as the Directory
Name Lookup Cache (DNLC), contained entries that mapped a file name and device
number to a pointer to an in-core inode. The BSD name cache used a softhold
mechanism whereby inodes referenced by entries in the cache did not require the
inode i_count field to be incremented. This avoided limiting the size of the
cache to the size of the inode table. To handle the case where inodes were not in
the inode cache but were still held in the name cache and were subsequently
unlinked and reused, inodes were assigned a capability, a field, that was
incremented each time the inode was reused. If a cache hit were to find the
previous instantiation of the inode, the capabilities would not match and the
name cache entry would be removed.

Both caches combined were hugely successful, resulting in the name cache
being implemented on just about every UNIX implementation that followed. As
documented in [KARE86], on a 12-hour period for a range of machines with
between 500,000 and 1,000,000 name lookups, the combined cache hit of the two
caches was 85 percent.

The Introduction of Vnodes in BSD UNIX
[KARE86] described the rationale for the introduction of a variant of the Sun
VFS/vnode interface in Berkeley UNIX, together with the areas where the
interface would differ from the original Sun implementation. The study
compared Sun’s VFS/vnode architecture with the File System Switch (FSS) from

158 UNIX Filesystems—Evolution, Design, and Implementation

AT&T and the GFS architecture from Digital.
The implementation that followed closely matched the Sun VFS architecture

with the exception of pathname resolution where they retained their existing
namei() and name cache implementation. Many of the VFS-level structures and
interfaces were very similar. Before describing the differences, it is first necessary
to describe the modifications made to namei().

The original namei() implementation used fields in the user area that were
set up prior to the kernel calling namei(). The BSD model was modified to pass
all such arguments in a nameidata structure that was the sole argument to the
namei() function. The fields of the nameidata structure are as follows:

struct nameidata {
caddr_t ni_dirp; /* pathname pointer */
enum uio_seg ni_seg; /* location of pathname */
short ni_nameiop; /* operation to perform */
struct vnode *ni_cdir; /* current working directory */
struct vnode *ni_rdir; /* root directory */
struct ucred *ni_cred; /* caller credentials */
caddr_t ni_pnbuf; /* pathname buffer */
char *ni_ptr; /* cur loc in pathname */
int ni_pathlen; /* remaining chars in pathname */
short ni_more; /* more left to translate? */
short ni_loopcnt; /* count of symlinks found */
struct vnode *nivp; /* vnode of result */
struct vnode *nidvp; /* vnode of parent directory */

}

The BSD namei() function started from a base directory, either the root
directory for absolute pathnames or the current working directory for relative
pathnames. This base directory inode was stored in ni_cdir, and the pathname
to parse, in ni_dirp.

The operation to perform was held in the ni_nameiop field and could be one
of the following:

LOOKUP. Only perform a lookup operation.
CREATE. Prepare for file creation.

DELETE. Prepare for file deletion.
WANTPARENT. Also return the parent directory vnode.

NOCACHE. Do not leave the name in the name cache.
FOLLOW. Follow symbolic links.

NOFOLLOW. Do not follow symbolic links.

The LOOKUP operation is identical to the Sun VFS VOP_LOOKUP() operation. The
CREATE and DELETE operations are called prior to vnodeop functions such as
VOP_CREATE(), VOP_UNLINK(), and VOP_MKNOD(). Because not all of these
operations are followed by the intended vnode operation, the kernel may invoke
the VOP_ABORTOP() function.

Non-SVR4-Based Filesystem Architectures 159

VFS and Vnode Structure Differences
Most structures introduced in the Sun VFS architecture also found their way into
BSD UNIX with very few modifications. The vfs structure added vfs_bsize,
the optimal filesystem block size, although this was rarely used.

The statfs structure was enhanced to add f_bsize and information about
where the filesystem was mounted. The vnode structure gained the v_text
field, which was used for executable files.

A few additional vnode operations were added:

vn_mknod. Handles the mknod(S) system call.
vn_read. Handles the read(S) system call.

vn_write. Handles the write(S) system call.
vn_seek. Called in response to an lseek(S) system call.

vn_abortop. This function is called when a previous namei() call specified
CREATE or DELETE but the operation is not to be carried out.

vn_lock. The filesystem independent layer typically calls VOP_LOCK() to
lock a file prior to a subsequent vnode operation.

vn_unlock. This vnode operation unlocks a vnode previously locked with a
call to VOP_LOCK().

Reading and writing to files was handled by invoking the VOP_READ() and
VOP_WRITE() vnode operations. Both functions are surrounded by calls to
VOP_LOCK() and VOP_UNLOCK() vnode operations. The actual reading and
writing of regular files was handled by the UFS functions ufs_read() and
ufs_write() functions that mapped onto buffer cache functions.

Digital UNIX / True64 UNIX

Digital UNIX, formerly called DEC OSF/1, is a microkernel-based
implementation of UNIX utilizing the Mach microkernel and the BSD 4.3/4.4
versions of UNIX. For further details on microkernel-based UNIX
implementations, see the section Microkernel Support for UNIX Filesystems, later
in this chapter. With the merger between Compaq and Digital, the name of the
operating system was changed to True64 UNIX. True64 now contains a
considerable rewrite of many of the components of the OSF/1 kernel and differs
substantially from the UNIX emulation on Mach, described in the section The
Mach Microkernel later in this chapter.

From a filesystem perspective, True64 UNIX supports a large number of
filesystems including UFS, NFS, procfs, and AdvFS (Advanced File System), a
transaction-based filesystem that provides many features.

The True64 UNIX filesystem architecture was derived from the 4.3BSD Reno
release but has, over the last several years, been modified to include a number of
new features.

160 UNIX Filesystems—Evolution, Design, and Implementation

Steven Hancock’s book True64 UNIX File System Administration Guide
[HANC01] is an excellent source of information on the True64 filesystem
architecture and individual filesystem implementations. The following sections
provide a brief highlight of the main features.

Like most other versions of UNIX, True64 employs the same structures related
to file access, namely file descriptors pointing to the system-wide file table whose
entries point to vnodes.

The per-process file table is stored in the process utask structure which is
similar to the traditional user area. This employs two limits, a soft limit and hard
limit, which determine the number of open files that a process may have open at
any one time. These limits are governed by the setrlimit(S) system call.

The file structure is similar to its BSD counterpart, employing the operations
vector to allow access to files and sockets.

Although based on the 4.3BSD Reno VFS, the True64 UNIX VFS has
undergone substantial modifications. The vnode structure has been significantly
modified to include a large number of fields in addition to the original BSD
vnode structure. Unlike the SVR4 vnode, which has a v_data field pointing to a
filesystem-independent structure, the True64 vnode is a single structure that
contains the filesystem-independent structure whose type is identified by the
v_tag field (VT_UFS, VT_NFS etc).

Two fields of the vnode reference the pages that have been read into core and
possibly modified. The v_cleanblkhd field points to a list of buffers for pages
that have not been modified, while the v_dirtyblkhd field references a list of
dirty buffers.

The vnode operations vector is not too dissimilar from the BSD equivalent.
Pathname lookup is performed by a similar namei() implementation that
results in the need for the VOP_ABORTOP() vnode operation. In addition to
providing a number of vnode operations to handle access control lists (ACLs),
also called property lists, there are a number of interfaces for supporting file
access, namely:

VOP_BMAP(). This function maps a file offset to a filesystem block on disk.

VOP_STRATEGY(). Called to read or write to/from a file.
VOP_PGRD(). This function reads a specified page.

VOP_PGWR(). This function writes a specified page.
VOP_BREAD(). This function reads through the buffer cache.

VOP_BRELSE(). Releases a buffer.

True64 UNIX employed a new buffer cache that unified the old style buffer cache
with the system page cache, allowing full coherency between regular file access
and memory-mapped files. Each unified buffer cache buffer references physical
pages in memory. The traditional buffer cache remains, but it now caches only
filesystem meta-data (inodes and other structural components).

Non-SVR4-Based Filesystem Architectures 161

The AIX Filesystem Architecture

AIX first appeared in 1985 running on the IBM RT machine, which was IBM’s first
RISC-based workstation. AIX version 2 was enhanced to support TCP/IP and
NFS. This was followed by a port to the PS/2 in 1989. In the same year, AIX was
ported to the 370 series of mainframes and the following year saw the
introduction of the RISC System/6000 with AIX version 3. AIX version 3.2, which
is the most publicly documented version of AIX, as seen in David Kelly’s book
AIX/6000 Internals and Architecture [KELL96], was released in 1992. The following
text describes features of AIX from the 3.2 release with information on how
filesystems perform I/O on the 5.x kernel series.

Although originally based on SVR2, AIX has undergone a major rewrite adding
features from other versions of UNIX including SVR4. AIX also has features not
found in any other versions of UNIX, such as a pageable kernel, an area that has
resulted in considerable complexity within the kernel, in particular the virtual
memory subsystem.

The Filesystem-Independent Layer of AIX
As with other earlier versions of UNIX, file descriptors are held in a fixed size
array within the user area for each process. Similarly, each file descriptor entry
points to an entry in the system file table. Although the file table entries contained
all of the fields of other versions of UNIX including referencing a vnode, each
entry also pointed to a filops structure that contained all of the operations that
could be applied to the open file in question. This is similar to BSD such that
regular files and sockets can be accessed by the same set of system calls.

This is where the differences started to appear. Although AIX supported
vnodes referenced by the file structure, each vnode pointed to an in-core inode
that had an embedded gnode structure. With the exception of the gnode, the
inode structure was very similar to earlier UNIX in-core inodes, containing such
fields as:

i_forw / i_back. Forward and backward pointers used for a hash queue
when the inode is in use.

i_next / i_prev. Forward and backward pointers used when the inode is
on the free list.

i_dev. The device that holds the filesystem on which the file resides.
i_number. The disk inode number. When a file is opened, the inode cache is

scanned using the i_dev and i_number fields.

i_count. A reference count holding the number of opens against the file.
i_locks. Used to serialize updates to the inode.

i_gnode. This field points to the gnode.

162 UNIX Filesystems—Evolution, Design, and Implementation

i_dinode. After a file is opened, the disk inode is read from disk into
memory and stored at this position within the incore inode.

Unlike the SVR4 page cache where all files effectively share the virtual address
window implemented by the segmap driver, in AIX each open file has its own
256MB cache backed by a file segment. This virtual window may be backed by
pages from the file that can be accessed on a future reference.

The gnode structure contains a number of fields including a reference to the
underlying file segment:

g_type. This field specifies the type of file to which the gnode belongs, such
as a regular file, directory, and so on.

g_seg. This segment ID is used to reference the file segment that contains
cached pages for the file.

g_vnode. This field references the vnode for this file.

g_filocks. For record locks, there is a linked list of filock structures
referenced by this field.

g_data. This field points to the in-core inode corresponding to this file.

Each segment is represented by a Segment Control Block that is held in the
segment information table as shown in Figure 8.1.

When a process wishes to read from or write to a file, data is accessed through
a set of functions that operate on the file segment.

File Access in AIX
The vnode entry points in AIX are similar to other VFS/vnode architectures with
the exception of reading from and writing to files. The entry point to handle the
read(S) and write(S) system calls is vn_rdwr_attr() through which a uio
structure is passed that gives details on the read or write to perform.

This is where the differences really start. There is no direct equivalent of the
vn_getpage / vn_putpage entry points as seen in the SVR4 VFS. In their
place, the filesystem registers a strategy routine that is called to handle page
faults and flushing of file data. To register a routine, the vm_mounte() function
is called with the strategy routine passed as an argument. Typically this routine is
asynchronous, although later versions of AIX support the ability to have a
blocking strategy routine, a feature added for VxFS support.

As mentioned in the section The Filesystem-Independent Layer of AIX, earlier in
this chapter, each file is mapped by a file segment that represents a 256MB
window into the file. To allocate this segment, vms_create() is called and, on
last close of a file, the routine vms_cache_destroy() is invoked to remove the
segment. Typically, file segments are created on either a first read or write.

After a file segment is allocated, the tasks performed for reading and writing
are similar to those of the SVR4 page cache in that the filesystem loops, making

Non-SVR4-Based Filesystem Architectures 163

calls to vm_uiomove() to copy data to or from the file segment. On first access, a
page fault will occur resulting in a call to the filesystem’s strategy routine. The
arguments to this function are shown below using the VxFS entry point as an
example:

void
vx_mm_thrpgio(struct buf *buflist, vx_u32_t vmm_flags, int path)

The arguments shown do not by themselves give enough information about the
file. Additional work is required in order to determine the file from which data
should be read or written. Note that the file can be accessed through the b_vp
field of the buf structure. From here the segment can be obtained. To actually
perform I/O, multiple calls may be needed to the devstrat() function, which
takes a single buf structure.

The HP-UX VFS Architecture

HP-UX has a long and varied history. Although originally derived from System
III UNIX, the HP-UX 1.0 release, which appeared in 1986, was largely based on
SVR2. Since that time, many enhancements have been added to HP-UX from
SVR3, SVR4, and Berkeley versions of UNIX. At the time of writing, HP-UX is still
undergoing a number of new enhancements to make it more scalable and provide
cleaner interfaces between various kernel components.

Figure 8.1 Main file-related structures in AIX.

u_ufd[]

f_vnode

struct file

i_gnode

gn_seg

gnode

inode
...

segment control
blocks

...

pages backing segment

164 UNIX Filesystems—Evolution, Design, and Implementation

The HP-UX Filesystem-Independent Layer
HP-UX maintains the mapping between file descriptors in the user area through
the system file table to a vnode, as with other VFS/vnode architectures. File
descriptors are allocated dynamically as with SVR4.

The file structure is similar to its BSD counterpart in that it also includes a
vector of functions so that the user can access the filesystem and sockets using
the same set of file-related system calls. The operations exported through the file
table are fo_rw(), fo_ioctl(), fo_select(), and fo_close().

The HP-UX VFS/Vnode Layer
Readers familiar with the SVR4 VFS/vnode architecture will find many
similarities with the HP-UX implementation of vnodes.

The vfs structure, while providing some additional fields, retains most of the
original fields of the original Sun implementation as documented in [KLEI86].
The VFS operations more resemble the SVR4 interfaces but also provide
additional interfaces for quota management and enabling the filesystem to
export a freeze/thaw capability.

The vnode structure differs in that it maintains a linked list of all clean
(v_cleanblkhd) and dirty (v_dirtyblkhd) buffers associated with the file.
This is somewhat similar to the v_pages in the SVR4 vnode structure although
SVR4 does not provide an easy way to determine which pages are clean and
which are dirty without walking the list of pages. Management of these lists is
described in the next section. The vnode also provides a mapping to entries in the
DNLC.

Structures used to pass data across the vnode interface are similar to their
Sun/SVR4 VFS/vnode counterparts. Data for reading and writing is passed
through a uio structure with each I/O being defined by an iovec structure.
Similarly, for operations that set and retrieve file attributes, the vattr structure
is used.

The set of vnode operations has changed substantially since the VFS/vnode
architecture was introduced in HP-UX. One can see similarities between the
HP-UX and BSD VFS/vnode interfaces.

File I/O in HP-UX
HP-UX provides support for memory-mapped files. File I/O still goes through
the buffer cache, but there is no guarantee of data consistency between the page
cache and buffer cache. The interfaces exported by the filesystem and through
the vnode interface are shown in Figure 8.2.

Each filesystem provides a vop_rdwr() interface through which the kernel
enters the filesystem to perform I/O, passing the I/O specification through a uio
structure. Considering a read(S) system call for now, the filesystem will work
through the user request calling into the buffer cache to request the appropriate

TEAMFL
Y

TEAM FLY ®

Non-SVR4-Based Filesystem Architectures 165

buffer. Note that the user request will be broken down into multiple calls into the
buffer cache depending on the size of the request, the block size of the filesystem,
and the way in which the data is laid out on disk.

After entering the buffer cache as part of the read operation, after a valid buffer
has been obtained, it is added to the v_cleanblkhd field of the vnode. Having
easy access to the list of valid buffers associated with the vnode enables the
filesystem to perform an initial fast scan when performing read operations to
determine if the buffer is already valid.

Similarly for writes, the filesystem makes repeated calls into the buffer cache to
locate the appropriate buffer into which the user data is copied. Whether the
buffer is moved to the clean or dirty list of the vnode depends on the type of write
being performed. For delayed writes (without the O_SYNC flag) the buffer can be
placed on the dirty list and flushed at a later date.

For memory-mapped files, the VOP_MAP() function is called for the filesystem
to validate before calling into the virtual memory (VM) subsystem to establish the
mapping. Page faults that occur on the mapping result in a call back into the
filesystem through the VOP_PAGEIN() vnode operation. To flush dirty pages to
disk whether through the msync(S) system call, tearing down a mapping, or as a
result of paging, the VOP_PAEGOUT() vnode operation is called.

Filesystem Support in Minix

The Minix operating system, compatible with UNIX V7 at the system call level,
was written by Andrew Tanenbaum and described in his book Operating Systems,
Design and Implementation [TANE87]. As a lecturer in operating systems for 15

Figure 8.2 Filesystem / kernel interactions for file I/O in HP-UX.

VOP_MAP() VOP_RDWR()

VOP_STRATEGY()

VOP_PAGEIN() VOP_PAGEOUT()

fault on
file mappings

msync(S)
munmap(S) etc

read(S)
write(S)mmap(S)

buffer

cache

Filesystem

166 UNIX Filesystems—Evolution, Design, and Implementation

years, he found it difficult to teach operating system concepts without any
hands-on access to the source code. Because UNIX source code was not freely
available, he wrote his own version, which although compatible at the system
call level, worked very differently inside. The source code was listed in the book,
but a charge was still made to obtain it. One could argue that if the source to
Minix were freely available, Linux may never have been written. The source for
Minix is now freely available across the Internet and is still a good, small kernel
worthy of study.

Because Minix was used as a teaching tool, one of the goals was to allow
students to work on development of various parts of the system. One way of
achieving this was to move the Minix filesystem out of the kernel and into user
space. This was a model that was also adopted by many of the microkernel
implementations.

Minix Filesystem-Related Structures
Minix is logically divided into four layers. The lowest layer deals with process
management, the second layer is for I/O tasks (device drivers), the third for
server processes, and the top layer for user-level processes. The process
management layer and the I/O tasks run together within the kernel address
space. The server process layer handles memory management and filesystem
support. Communication between the kernel, the filesystem, and the memory
manager is performed through message passing.

There is no single proc structure in Minix as there is with UNIX and no user
structure. Information that pertains to a process is described by three main
structures that are divided between the kernel, the memory manager, and the file
manager. For example, consider the implementation of fork(S), as shown in
Figure 8.3.

System calls are implemented by sending messages to the appropriate
subsystem. Some can be implemented by the kernel alone, others by the memory
manager, and others by the file manager. In the case of fork(S), a message
needs to be sent to the memory manager. Because the user process runs in user
mode, it must still execute a hardware trap instruction to take it into the kernel.
However, the system call handler in the kernel performs very little work other
than sending the requested message to the right server, in this case the memory
manager.

Each process is described by the proc, mproc, and fproc structures. Thus to
handle fork(S) work must be performed by the memory manager, kernel, and
file manager to initialize the new structures for the process. All file-related
information is stored in the fproc structure, which includes the following:

fp_workdir. Current working directory

fp_rootdir. Current root directory.
fp_filp. The file descriptors for this process.

Non-SVR4-Based Filesystem Architectures 167

The file descriptor array contains pointers to filp structures that are very similar
to the UNIX file structure. They contain a reference count, a set of flags, the
current file offset for reading and writing, and a pointer to the inode for the file.

File I/O in Minix
In Minix, all file I/O and meta-data goes through the buffer cache. All buffers are
held on a doubly linked list in order of access, with the least recently used buffers
at the front of the list. All buffers are accessed through a hash table to speed buffer
lookup operations. The two main interfaces to the buffer cache are through the
get_block() and put_block() routines, which obtain and release buf
structures respectively.

If a buffer is valid and within the cache, get_block() returns it; otherwise the
data must be read from disk by calling the rw_block() function, which does
little else other than calling dev_io().

Because all devices are managed by the device manager, dev_io() must send
a message to the device manager in order to actually perform the I/O.

Figure 8.3 Implementation of Minix processes.

user process

file manager

memory manager

MSG

MSG
TRAP

kernel

main()
{

...
fork();
...

}

_syscall(MM, FORK)

sys_call()
{

send msg
}

sys_fork()
{

init new proc[]
}

do_fork()
{

init new mproc[]
sys_fork()
tell_fs()

}

do_fork()
{

init new fproc[]
}

168 UNIX Filesystems—Evolution, Design, and Implementation

Reading from or writing to a file in Minix bears resemblance to its UNIX
counterpart. Note, however, when first developed, Minix had a single filesystem
and therefore much of the filesystem internals were spread throughout the
read/write code paths.

Anyone familiar with UNIX internals will find many similarities in the Minix
kernel. At the time it was written, the kernel was only 12,649 lines of code and is
therefore still a good base to study UNIX-like principles and see how a kernel can
be written in a modular fashion.

Pre-2.4 Linux Filesystem Support

The Linux community named their filesystem architecture the Virtual File System
Switch, or Linux VFS which is a little of a misnomer because it was substantially
different from the Sun VFS/vnode architecture and the SVR4 VFS architecture
that preceded it. However, as with all POSIX-compliant, UNIX-like operating
systems, there are many similarities between Linux and other UNIX variants.

The following sections describe the earlier implementations of Linux prior to
the 2.4 kernel released, generally around the 1.2 timeframe. Later on, the
differences introduced with the 2.4 kernel are highlighted with a particular
emphasis on the style of I/O, which changed substantially.

For further details on the earlier Linux kernels see [BECK96]. For details on
Linux filesystems, [BAR01] contains information about the filesystem
architecture as well as details about some of the newer filesystem types
supported on Linux.

Per-Process Linux Filesystem Structures
The main structures used in construction of the Linux VFS are shown in Figure
8.4 and are described in detail below.

Linux processes are defined by the task_struct structure, which contains
information used for filesystem-related operations as well as the list of open file
descriptors. The file-related fields are as follows:

unsigned short umask;
struct inode *root;
struct inode *pwd;

The umask field is used in response to calls to set the umask. The root and pwd
fields hold the root and current working directory fields to be used in pathname
resolution.

The fields related to file descriptors are:

struct file *filp[NR_OPEN];
fd_set close_on_exec;

Non-SVR4-Based Filesystem Architectures 169

As with other UNIX implementations, file descriptors are used to index into a
per-process array that contains pointers to the system file table. The
close_on_exec field holds a bitmask describing all file descriptors that should
be closed across an exec(S) system call.

The Linux File Table
The file table is very similar to other UNIX implementations although there are a
few subtle differences. The main fields are shown here:

struct file {
 mode_t f_mode; /* Access type */

Figure 8.4 Main structures of the Linux 2.2 VFS architecture.

user

kernel

one per
mounted filesystem

fd = open(...)

files fd[]
f_op

f_inode

struct file

task_struct files_struct

lseek
read
write
readdir
select
ioctl
mmap
open
release
fsync

create
lookup
link
unlink
symlink
mkdir
rmdir
mknod
rename
readlink
follow_link
bmap
truncate
permission

struct
inode_operations

read_super
name
requires_dev
next

struct file_system_type

read_super
name
requires_dev
next

read_super
name
requires_dev
next ...

struct
super_block

read_inode
notify_change
write_inode
put_inode
put_super
write_super
statfs
remount_fs

struct
super_operations

i_op
i_sb
i_mount

s_covered
s_mounted
s_op

struct inode

struct
super_block

170 UNIX Filesystems—Evolution, Design, and Implementation

 loff_t f_pos; /* Current file pointer */
 unsigned short f_flags; /* Open flags */
 unsigned short f_count; /* Reference count (dup(S)) */
 struct inode *f_inode; /* Pointer to in-core inode */
 struct file_operations *f_op; /* Functions that can be */

 /* applied to this file */
};

The first five fields contain the usual type of file table information. The f_op
field is a little different in that it describes the set of operations that can be
invoked on this particular file. This is somewhat similar to the set of vnode
operations. In Linux however, these functions are split into a number of different
vectors and operate at different levels within the VFS framework. The set of
file_operations is:

struct file_operations {
 int (*lseek) (struct inode *, struct file *, off_t, int);
 int (*read) (struct inode *, struct file *, char *, int);
 int (*write) (struct inode *, struct file *, char *, int);
 int (*readdir) (struct inode *, struct file *,
 struct dirent *, int);
 int (*select) (struct inode *, struct file *,

int, select_table *);
 int (*ioctl) (struct inode *, struct file *,

 unsigned int, unsigned long);
 int (*mmap) (struct inode *, struct file *, unsigned long,

 size_t, int, unsigned long);
 int (*open) (struct inode *, struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct inode *, struct file *);
};

Most of the functions here perform as expected. However, there are a few
noticeable differences between some of these functions and their UNIX
counterparts, or in some case, lack of UNIX counterpart. The ioctl() function,
which typically refers to device drivers, can be interpreted at the VFS layer above
the filesystem. This is primarily used to handle close-on-exec and the setting or
clearing of certain flags.

The release() function, which is used for device driver management, is
called when the file structure is no longer being used.

The Linux Inode Cache
Linux has a centralized inode cache as with earlier versions of UNIX. This is
underpinned by the inode structure, and all inodes are held on a linked list
headed by the first_inode kernel variable. The major fields of the inode
together with any unusual fields are shown as follows:

struct inode {
 unsigned long i_ino; /* Inode number */

Non-SVR4-Based Filesystem Architectures 171

 atomic_t i_count; /* Reference count */
 kdev_t i_dev; /* Filesystem device */
 umode_t i_mode; /* Type/access rights */
 nlink_t i_nlink; /* # of hard links */
 uid_t i_uid; /* User ID */
 gid_t i_gid; /* Group ID */
 kdev_t i_rdev; /* For device files */
 loff_t i_size; /* File size */
 time_t i_atime; /* Access time */
 time_t i_mtime; /* Modification time */
 time_t i_ctime; /* Creation time */
 unsigned long i_blksize; /* Fs block size */
 unsigned long i_blocks; /* # of blocks in file */
 struct inode_operations *i_op; /* Inode operations */
 struct super_block *i_sb; /* Superblock/mount */
 struct vm_area_struct *i_mmap; /* Mapped file areas */
 unsigned char i_update; /* Is inode current? */
 union { /* One per fs type! */
 struct minix_inode_info minix_i;
 struct ext2_inode_info ext2_i;
 ...
 void *generic_ip;
 } u;
};

Most of the fields listed here are self explanatory and common in meaning across
most UNIX and UNIX-like operating systems. Note that the style of holding
private, per-filesystem data is a little cumbersome. Instead of having a single
pointer to per-filesystem data, the u element at the end of the structure contains a
union of all possible private filesystem data structures. Note that for filesystem
types that are not part of the distributed Linux kernel, the generic_ip field can
be used instead.

Associated with each inode is a set of operations that can be performed on the
file as follows:

struct inode_operations {
 struct file_operations *default_file_ops;
 int (*create) (struct inode *, const char *, ...);
 int (*lookup) (struct inode *, const char *, ...);
 int (*link) (struct inode *, struct inode *, ...);
 int (*unlink) (struct inode *, const char *, ...);
 int (*symlink) (struct inode *, const char *, ...);
 int (*mkdir) (struct inode *, const char *, ...);
 int (*rmdir) (struct inode *, const char *, ...);
 int (*mknod) (struct inode *, const char *, ...);
 int (*rename) (struct inode *, const char *, ...);
 int (*readlink) (struct inode *, char *,int);
 int (*follow_link) (struct inode *, struct inode *, ...);
 int (*bmap) (struct inode *, int);
 void (*truncate) (struct inode *);
 int (*permission) (struct inode *, int);
};

172 UNIX Filesystems—Evolution, Design, and Implementation

As with the file_operations structure, the functionality provided by most
functions is obvious. The bmap() function is used for memory-mapped file
support to map file blocks into the user address space.

The permission() function checks to ensure that the caller has the right
access permissions.

Pathname Resolution
As shown in Figure 8.4, there are fields in the super_block and the inode
structures that are used during pathname resolution, namely:

s_mounted. This field points to the root inode of the filesystem and is
accessed when moving from one filesystem over a mount point to another.

s_covered. Points to the inode on which the filesystem is mounted and can
therefore be used to handle “..”.

i_mount. If a file is mounted on, this field points to the root inode of the
filesystem that is mounted.

Files are opened by calling the open_namei() function. Similar to its
counterparts namei() and lookupname() found in pre-SVR4 and SVR4
kernels, this function parses the pathname, starting at either the root or pwd
fields of the task_struct depending on whether the pathname is relative or
absolute. A number of functions from the inode_operations and
super_operations vectors are used to resolve the pathname. The lookup()
function is called to obtain an inode. If the inode represents a symbolic link, the
follow_link() inode operation is invoked to return the target inode.
Internally, both functions may result in a call to the filesystem-independent
iget() function, which results in a call to the super_operations function
read_inode() to actually bring the inode in-core.

The Linux Directory Cache
The Linux directory cache, more commonly known as the dcache, originated in
the ext2 filesystem before making its way into the filesystem-independent layer
of the VFS. The dir_cache_entry structure, shown below, is the main
component of the dcache; it holds a single <name, inode pointer> pair.

struct dir_cache_entry {
 struct hash_list h;
 unsigned long dev;
 unsigned long dir;
 unsigned long version;
 unsigned long ino;
 unsigned char name_len;
 char name[DCACHE_NAME_LEN];
 struct dir_cache_entry **lru_head;
 struct dir_cache_entry *next_lru, prev_lru;
};

Non-SVR4-Based Filesystem Architectures 173

The cache consists of an array of dir_cache_entry structures. The array,
dcache[], has CACHE_SIZE doubly linked elements. There also exist
HASH_QUEUES, hash queues accessible through the queue_tail[] and
queue_head[] arrays.

Two functions, which follow, can be called to add an entry to the cache and
perform a cache lookup.

void dcache_add(unsigned short dev, unsigned long dir,
const char * name, int len, unsigned long ino)

int dcache_lookup(unsigned short dev, unsigned long dir,
const char * name, int len)

The cache entries are hashed based on the dev and dir fields with dir being the
inode of the directory in which the file resides. After a hash queue is found, the
find_name() function is called to walk down the list of elements and see if the
entry exists by performing a strncmp() between the name passed as an
argument to dcache_lookup() and the name field of the dir_cache_entry
structure.

The cache has changed throughout the development of Linux. For details of the
dcache available in the 2.4 kernel series, see the section The Linux 2.4 Directory
Cache later in this chapter.

The Linux Buffer Cache and File I/O
Linux employs a buffer cache for reading and writing blocks of data to and from
disk. The I/O subsystem in Linux is somewhat restrictive in that all I/O must be
of the same size. It can be changed, but once set, this size must be adhered to by
any filesystem performing I/O.

Buffer cache buffers are described in the buffer_head structure, which is
shown below:

struct buffer_head {
 char *b_data; /* pointer to data block */
 unsigned long b_size; /* block size */
 unsigned long b_blocknr; /* block number */
 dev_t b_dev; /* device (0 = free) */
 unsigned short b_count; /* users using this block */
 unsigned char b_uptodate; /* is block valid? */
 unsigned char b_dirt; /* 0-clean,1-dirty */
 unsigned char b_lock; /* 0-ok, 1-locked */
 unsigned char b_req; /* 0 if buffer invalidated */
 struct wait_queue *b_wait; /* buffer wait queue */
 struct buffer_head *b_prev; /* hash-queue linked list */
 struct buffer_head *b_next;
 struct buffer_head *b_prev_free; /* buffer linked list */
 struct buffer_head *b_next_free;
 struct buffer_head *b_this_page; /* buffers in one page */
 struct buffer_head *b_reqnext; /* request queue */
};

174 UNIX Filesystems—Evolution, Design, and Implementation

Unlike UNIX, there are no flags in the buffer structure. In its place, the
b_uptodate and b_dirt fields indicate whether the buffer contents are valid
and whether the buffer is dirty (needs writing to disk).

Dirty buffers are periodically flushed to disk by the update process or the
bdflush kernel thread. The section The 2.4 Linux Buffer Cache, later in this
chapter, describes how bdflush works.

Valid buffers are hashed by device and block number and held on a doubly
linked list using the b_next and b_pref fields of the buffer_head structure.

Users can call getblk() and brelse() to obtain a valid buffer and release it
after they have finished with it. Because the buffer is already linked on the
appropriate hash queue, brelse() does little other than check to see if anyone is
waiting for the buffer and issue the appropriate wake-up call.

I/O is performed by calling the ll_rw_block() function, which is
implemented above the device driver layer. If the I/O is required to be
synchronous, the calling thread will issue a call to wait_on_buffer(), which
will result in the thread sleeping until the I/O is completed.

Linux file I/O in the earlier versions of the kernel followed the older style
UNIX model of reading and writing all file data through the buffer cache. The
implementation is not too different from the buffer cache-based systems
described in earlier chapters and so it won’t be described further here.

Linux from the 2.4 Kernel Series
The Linux 2.4 series of kernels substantially changes the way that filesystems are
implemented. Some of the more visible changes are:

■ File data goes through the Linux page cache rather than directly through
the buffer cache. There is still a tight relationship between the buffer cache
and page cache, however.

■ The dcache is tightly integrated with the other filesystem-independent
structures such that every open file has an entry in the dcache and each
dentry (which replaces the old dir_cache_entry structure) is
referenced from the file structure.

■ There has been substantial rework of the various operations vectors and
the introduction of a number of functions more akin to the SVR4 page
cache style vnodeops.

■ A large rework of the SMP-based locking scheme results in finer grain
kernel locks and therefore better SMP performance.

The migration towards the page cache for file I/O actually started prior to the 2.4
kernel series, with file data being read through the page cache while still
retaining a close relationship with the buffer cache.

There is enough similarity between the Linux 2.4 kernels and the SVR4 style of
I/O that it is possible to port SVR4 filesystems over to Linux and retain much of

TEAMFL
Y

TEAM FLY ®

Non-SVR4-Based Filesystem Architectures 175

the SVR4 page cache-based I/O paths, as demonstrated by the port of VxFS to
Linux for which the I/O path uses very similar code.

Main Structures Used in the 2.4.x Kernel Series
The main structures of the VFS have remained largely intact as shown in Figure
8.5. One major change was the tight integration between the dcache (which itself
has largely been rewritten) and the inode cache. Each open file has a dentry
(which replaces the old dir_cache_entry structure) referenced from the file
structure, and each dentry is underpinned by an in-core inode structure.

The file_operations structure gained an extra two functions. The
check_media_change() function is used with block devices that support
changeable media such as CD drives. This allows the VFS layer to check for media
changes and therefore determine whether the filesystem should be remounted to
recognize the new media. The revalidate() function is used following a media
change to restore consistency of the block device.

The inode_operations structure gained an extra three functions. The
readpage() and writepage() functions were introduced to provide a means
for the memory management subsystem to read and write pages of data. The
smap() function is used to support swapping to regular files.

There was no change to the super_operations structure. There were
additional changes at the higher layers of the kernel. The fs_struct structure
was introduced that included dentry structures for the root and current working
directories. This is referenced from the task_struct structure. The
files_struct continued to hold the file descriptor array.

The Linux 2.4 Directory Cache
The dentry structure, shown below, is used to represent an entry in the 2.4
dcache. This is referenced by the f_dentry field of the file structure.

struct dentry {
 atomic_t d_count;
 unsigned int d_flags;
 struct inode *d_inode; /* inode for this entry */
 struct dentry *d_parent; /* parent directory */
 struct list_head d_hash; /* lookup hash list */
 struct list_head d_lru; /* d_count = 0 LRU list */
 struct list_head d_child; /* child of parent list */
 struct list_head d_subdirs; /* our children */
 struct list_head d_alias; /* inode alias list */
 int d_mounted;
 struct qstr d_name;

struct dentry_operations *d_op;
 struct super_block *d_sb; /* root of dentry tree */
 unsigned long d_vfs_flags;
 void *d_fsdata; /* fs-specific data */
 unsigned char d_iname[DNAME_INLINE_LEN];
};

176 UNIX Filesystems—Evolution, Design, and Implementation

Each dentry has a pointer to the parent dentry (d_parent) as well as a list of
child dentry structures (d_child).

The dentry_operations structure defines a set of dentry operations,
which are invoked by the kernel. Note, that filesystems can provide their own
vector if they wish to change the default behavior. The set of operations is:

Figure 8.5 Main structures used for file access in the Linux 2.4.x kernel.

name

fs_flags
read_super
next

name

fs_flags
read_super
next

name

fs_flags
read_super
next ...

ext3 vxfsnfs

struct filesystem_type (1 for each filesystem)

files fd

struct
files_struct

struct
task

f_flags
f_mode
f_dentry
f_pos
f_reada
f_op
private_data

d_sb
d_inode i_sb

i_op

s_list

s_op

super_blocks ...

struct
super_block

llseek
read
write
readdir
poll
ioctl
mmap
open
flush
release
fsync
fasync
check_media_change
revalidate
lock

struct file

struct file_operations

create
lookup
link
unlink
symlink
mkdir
rmdir
mknod
rename
readlink
follow_link
get_block
readpage
writepage
flushpage
truncate
permission
smap
revalidate

struct

read_inode
write_inode
put_inode
delete_inode
notify_change
put_super
write_super
statfs
remount_fs
clear_inode
umount_begin

struct
file_operations

inode_operations

Non-SVR4-Based Filesystem Architectures 177

d_revalidate. This function is called during pathname resolution to
determine whether the dentry is still valid. If no longer valid, d_put is
invoked to remove the entry.

d_hash. This function can be supplied by the filesystem if it has an unusual
naming scheme. This is typically used by filesystems that are not native to
UNIX.

d_compare. This function is used to compare file names.

d_delete. This function is called when d_count reaches zero. This happens
when no one is using the dentry but the entry is still in the cache.

d_release. This function is called prior to a dentry being deallocated.

d_iput. This allows filesystems to provide their own version of iput().

To better understand the interactions between the dcache and the rest of the
kernel, the following sections describe some of the common file operations.

Opening Files in Linux
The sys_open() function is the entry point in the kernel for handling the
open(S) system call. This calls get_unused_fd() to allocate a new file
descriptor and then calls filp_open(), which in turn calls open_namei() to
obtain a dentry for the file. If successful, dentry_open() is called to initialize a
new file structure, perform the appropriate linkage, and set up the file
structure.

The first step is to perform the usual pathname resolution functions.
link_path_walk() performs most of the work in this regard. This initially
involves setting up a nameidata structure, which contains the dentry of the
directory from which to start the search (either the root directory or the pwd field
from the fs_struct if the pathname is relative). From this dentry, the inode
(d_inode) gives the starting point for the search.

There are two possibilities here as the following code fragment shows:

dentry = cached_lookup(nd->dentry, &this, LOOKUP_CONTINUE);
if (!dentry) {
 dentry = real_lookup(nd->dentry, &this, LOOKUP_CONTINUE);
}

Note that the argument is the pathname component that is currently being
worked on. The cached_lookup() function calls d_lookup() to perform the
lookup in the dcache. If an entry is found and the filesystem has provided its own
d_revalidate function, this is where it is called from. The work performed by
d_lookup() is fairly straightforward in that it locates the appropriate hash
queue, walks this list, and tries to locate the appropriate entry.

If the entry is not in the cache, the real_lookup() function is invoked.
Taking the inode of the parent and locating the inode_operations vector, the
lookup() function is invoked to read in the inode from disk. Generally this will
involve a call out of the filesystem to iget(), which might find the inode in the

178 UNIX Filesystems—Evolution, Design, and Implementation

inode cache; if the inode is not already cached, a new inode must be allocated
and a call is made back into the filesystem to read the inode through the
super_operations function read_inode(). The final job of iget() is to call
d_add() to add the new entry to the dcache.

Closing Files in Linux
The sys_close() function is the entry point into the kernel for handling the
close(S) system call. After locating the appropriate file structure, the
filp_close() function is called; this invokes the flush() function in the
file_operations vector to write dirty data to disk and then calls fput() to
release the file structure. This involves decrementing f_count. If the count
does not reach zero the work is complete (a previous call to dup(S) was made).
If this is the last reference, a call to the release() function in the
file_operations vector is made to let the filesystem perform any last-close
operations it may wish to make.

A call to dput() is then made. If this is the last hold on the dentry, iput() is
called to release the inode from the cache. The put_inode() function from the
super_operations vector is then called.

The 2.4 Linux Buffer Cache
The buffer cache underwent a number of changes from the earlier
implementations. Although it retained most of the earlier fields, there were a
number of new fields that were introduced. Following is the complete structure:

struct buffer_head {
 struct buffer_head *b_next; /* Hash queue list */
 unsigned long b_blocknr; /* block number */
 unsigned short b_size; /* block size */
 unsigned short b_list; /* List this buffer is on */
 kdev_t b_dev; /* device (B_FREE = free) */
 atomic_t b_count; /* users using this block */
 kdev_t b_rdev; /* Real device */
 unsigned long b_state; /* buffer state bitmap */
 unsigned long b_flushtime; /* Time when (dirty) buffer */
 /* should be written */
 struct buffer_head *b_next_free; /* lru/free list linkage */
 struct buffer_head *b_prev_free; /* linked list of buffers */
 struct buffer_head *b_this_page; /* list of buffers in page */
 struct buffer_head *b_reqnext; /* request queue */

 struct buffer_head **b_pprev; /* linked list of hash-queue */
 char *b_data; /* pointer to data block */
 struct page *b_page; /* page this bh is mapped to */
 void (*b_end_io)(struct buffer_head *bh, int uptodate);
 void *b_private; /* reserved for b_end_io */

 unsigned long b_rsector; /* buffer location on disk */

Non-SVR4-Based Filesystem Architectures 179

 wait_queue_head_t b_wait;
 struct inode * b_inode;
 struct list_head b_inode_buffers;/* inode dirty buffers */
};

The b_end_io field allows the user of the buffer to specify a completion routine
that is invoked when the I/O is completed. The b_private field can be used to
store filesystem-specific data.

Because the size of all I/O operations must be of fixed size as defined by a call
to set_blocksize(), performing I/O to satisfy page faults becomes a little
messy if the I/O block size is less than the page size. To alleviate this problem, a
page may be mapped by multiple buffers that must be passed to
ll_rw_block() in order to perform the I/O. It is quite likely, but not
guaranteed, that these buffers will be coalesced by the device driver layer if they
are adjacent on disk.

The b_state flag was introduced to hold the many different flags that buffers
can now be marked with. The set of flags is:

BH_Uptodate. Set to 1 if the buffer contains valid data.
BH_Dirty. Set to 1 if the buffer is dirty.

BH_Lock. Set to 1 if the buffer is locked.
BH_Req. Set to 0 if the buffer has been invalidated.

BH_Mapped. Set to 1 if the buffer has a disk mapping.
BH_New. Set to 1 if the buffer is new and not yet written out.

BH_Async. Set to 1 if the buffer is under end_buffer_io_async I/O.
BH_Wait_IO. Set to 1 if the kernel should write out this buffer.

BH_launder. Set to 1 if the kernel should throttle on this buffer.

The b_inode_buffers field allows filesystems to keep a linked list of modified
buffers. For operations that require dirty data to be synced to disk, the new buffer
cache provides routines to sync these buffers to disk. As with other buffer caches,
Linux employs a daemon whose responsibility is to flush dirty buffers to disk on a
regular basis. There are a number of parameters that can be changed to control the
frequency of flushing. For details, see the bdflush(8) man page.

File I/O in the 2.4 Linux Kernel
The following sections describe the I/O paths in the 2.4 Linux kernel series,
showing how data is read from and written to regular files through the page
cache. For a much more detailed view of how filesystems work in Linux see
Chapter 14.

Reading through the Linux Page Cache
Although Linux does not provide interfaces identical to the segmap style page

180 UNIX Filesystems—Evolution, Design, and Implementation

cache interfaces of SVR4, the paths to perform a file read, as shown in Figure
Figure 8.6, appear at a high level very similar in functionality to the VFS/vnode
interfaces.

The sys_read() function is executed in response to a read(S) system call.
After obtaining the file structure from the file descriptor, the read() function
of the file_operations vector is called. Many filesystems simply set this
function to generic_file_read(). If the page covering the range of bytes to
read is already in the cache, the data can be simply copied into the user buffer. If
the page is not present, it must be allocated and the filesystem is called, through
the inode_operations function readpage(), to read the page of data from
disk.

The block_read_full_page() is typically called by many filesystems to
satisfy the readpage() operation. This function is responsible for allocating the
appropriate number of buffer heads to perform the I/O, making repeated calls
into the filesystem to get the appropriate block maps.

Writing through the Linux Page Cache
The main flow through the kernel for handling the write(S) system call is
similar to handling a read(S) system call. As with reading, many file systems
set the write(), function of their file_operations vector to
generic_file_write(), which is called by sys_write() in response to a
write(S) system call. Most of the work performed involves looping on a
page-by-page basis with each page either being found in the cache or being
created. For each page, data is copied from the user buffer into the page, and
write_one_page() is called to write the page to disk.

Microkernel Support for UNIX Filesystems

Throughout the 1980s and early 1990s there was a great deal of interest in
microkernel technology. As the name suggests, microkernels do not by
themselves offer the full features of UNIX or other operating systems but export
a set of features and interfaces that allow construction of new services, for
example, emulation of UNIX at a system call level. Microkernels do however
provide the capability of allowing a clean interface between various components
of the OS, paving the way for distributed operating systems or customization of
OS services provided.

This section provides an overview of Chorus and Mach, the two most popular
microkernel technologies, and describes how each supports and performs file
I/O. For an overview of SVR4 running on the Chorus microkernel, refer to the
section The Chorus Microkernel, a bit later in this chapter.

Non-SVR4-Based Filesystem Architectures 181

High-Level Microkernel Concepts
Both Mach and Chorus provide a basic microkernel that exports the following
main characteristics:

■ The ability to define an execution environment, for example, the
construction of a UNIX process. In Chorus, this is the actor and in Mach, the
task. Each defines an address space, one or more threads of execution, and
the means to communicate with other actors/tasks through IPC
(Inter-Process Communication). Actors/tasks can reside in user or kernel
space.

 The Chorus actor is divided into a number of regions, each a virtual
address range backed by a segment that is managed by a mapper. The
segment is often the representation of secondary storage, such as a file.
For example, one can think of a mapped file being represented by a
region in the process address space. The region is a window into a
segment (the file), and page faults are handled by calls to the segment
mapper, which will request data from the filesystem.

Figure 8.6 Reading through the Linux page cache.

...

...

...

page
cache
hash

queues

.

.

.

sys_read

i_op->read()VFS

FS

generic_file_read()

scan page cache
if (page not found) {

alloc page
add to page cache
read into page

}
copy out to user space

i_op->readpage()

VFS

FS

block_read_full_page()

alloc buffers
bmap for each block
perform I/O if necessary

get_block()

FS VFS

182 UNIX Filesystems—Evolution, Design, and Implementation

 The Mach task is divided into a number of VM Objects that typically
map secondary storage handled by an external pager.

■ Each actor/task may contain multiple threads of execution. A traditional
UNIX process would be defined as an actor/task with a single thread.
Threads in one actor/task communicate with threads in other actors/tasks
by sending messages to ports.

■ Hardware access is managed a little differently between Chorus and Mach.
The only device that Chorus knows about is the clock. By providing
interfaces to dynamically connect interrupt handlers and trap handlers,
devices can be managed outside of the microkernel.

 Mach on the other hand exports two interfaces, device_read() and
device_write(), which allow access to device drivers that are
embedded within the microkernel.

Both provide the mechanisms by which binary compatibility with other
operating systems can be achieved. On Chorus, supervisor actors (those residing
in the kernel address space) can attach trap handlers. Mach provides the
mechanisms by which a task can redirect a trap back into the user task that made
the trap. This is discussed in more detail later.

Using the services provided by both Chorus and Mach it is possible to
construct a binary-compatible UNIX kernel. The basic implementation of such
and the methods by which files are read and written are the subject of the next
two sections.

The Chorus Microkernel
The main components of an SVR4-based UNIX implementation on top of Chorus
are shown in Figure 8.7. This is how SVR4 was implemented. Note however, it is
entirely possible to implement UNIX as a single actor.

There are a number of supervisor actors implementing SVR4 UNIX. Those that
comprise the majority of the UNIX kernel are:

Process Manager (PM). All UNIX process management tasks are handled
here. This includes the equivalent of the proc structure, file descriptor
management, and so on. The PM acts as the system call handler in that it
handles traps that occur through users executing a system call.

Object Manager (OM). The Object Manager, also called the File Manager, is
responsible for the majority of file related operations and implements the
main UNIX filesystems. The OM acts as a mapper for UNIX file access.

STREAMS Manager (STM). As well as managing STREAMS devices such as
pipes, TTYs, networking, and named pipes, the STM also implements part
of the NFS protocol.

Communication between UNIX actors is achieved through message passing.
Actors can either reside in a single node or be distributed across different nodes.

Non-SVR4-Based Filesystem Architectures 183

Handling Read Operations in Chorus
Figure 8.8 shows the steps taken to handle a file read in a Chorus-based SVR4
system. The PM provides a trap handler in order to be called when a UNIX
process executes the appropriate hardware instruction to generate a trap for a
system call. For each process there is state similar to the proc and user
structures of UNIX. From here, the file descriptor can be used to locate the
capability (identifier) of the segment underpinning the file. All the PM needs to do
is make an sgRead() call to enter the microkernel.

Associated with each segment is a cache of pages. If the page covering the
range of the read is in the cache there is no work to do other than copy the data to
the user buffer. If the page is not present, the microkernel must send a message to
the mapper associated with this segment. In this case, the mapper is located
inside the OM. A call must then be made through the VFS/vnode layer as in a
traditional SVR4-based UNIX operating system to request the data from the
filesystem.

Although one can see similarities between the Chorus model and the
traditional UNIX model, there are some fundamental differences. Firstly, the
filesystem only gets to know about the read operation if there is a cache miss

Figure 8.7 Implementation of SVR4 UNIX on the Chorus microkernel.

UNIX
process

UNIX
process

UNIX
process

user space

kernel space

Process

Manager
STREAMS

Manager

Key

Manager

IPC

Manager

Object
Manager

trap

Chorus microkernel

- message

184 UNIX Filesystems—Evolution, Design, and Implementation

within the microkernel. This prevents the filesystem from understanding the I/O
pattern and therefore using its own rules to determine read ahead policies.
Secondly, this Chorus implementation of SVR4 required changes to the vnode
interfaces to export a pullIn() operation to support page fault handling. This
involved replacing the getpage() operation in SVR4-based filesystems. Note
that buffer cache and device access within the OM closely mirror their equivalent
subsystems in UNIX.

Handling Write Operations in Chorus
Write handling in Chorus is similar to handling read operations. The microkernel
exports an sgWrite() operation allowing the PM to write to the segment. The
main difference between reading and writing occurs when a file is extended or a
write over a hole occurs. Both operations are handled by the microkernel
requesting a page for read/write access from the mapper. As part of handling the
pullIn() operation, the filesystem must allocate the appropriate backing store.

Figure 8.8 Handling read operations in the Chorus microkernel.

UNIX
process

Process
Manager

read(fd, buf, 4096) user space

kernel space

VFS/vnode i/f

vx_pullin()

bdevsw[]

device driver

msg
hdlr

Object
Manager

sgRead(Cap, buf, lg, off)

cache of pages
for requested segment

page in cache?
yes:

copy to
user buffer

no:
Locate port
ipcCall()

Chorus Microkernel

TEAMFL
Y

TEAM FLY ®

Non-SVR4-Based Filesystem Architectures 185

The final operation is for the PM to change its understanding of the file size.
As with the getpage() operation of SVR4, the vnode interface in Chorus was

extended such that filesystems must export a pushOut() operation allowing the
microkernel to flush dirty pages to disk.

The Mach Microkernel
UNIX processes are implemented in a Mach-based UNIX system as a single
threaded task. There are three main components that come into play when
emulating UNIX as shown in Figure 8.9.

Each UNIX process includes an emulation library linked in to the address space
of the process. When the process wishes to execute a system call it issues the
appropriate trap instruction, which results in the process entering the
microkernel. This is managed by a trap emulator, which redirects the request to
the emulation library within the process. Most of the UNIX emulation is handled
by the UNIX server task although the emulation library can handle some simple
system calls using information that is shared between each UNIX process and the
UNIX server task. This information includes per-process related information that
allows the emulation library to handle system calls such as getpid(S),
getuid(S), and getrlimit(S).

The UNIX server has a number of threads that can respond to requests from a
number of different UNIX processes. The UNIX server task is where most of the
UNIX kernel code is based. The inode pager thread works in a similar manner to
the Chorus mapper threads by responding to page-in and page-out requests from
the microkernel. This is a particularly important concept in Mach UNIX
emulation because all file I/O is performed through mappings that reside within
the UNIX process.

Handling Read Operations in Mach
Each file that is opened by a UNIX process results in a 64KB mapping of the file.
This mapping window can be moved throughout the file in response to a request
from within the UNIX emulation library. If there are multiple readers or writers,
the various mappings are protected through the use of a token-based scheme.

When a read(S) system call is executed, the microkernel redirects the call
back into the emulation library. If the area of the file requested is already covered
by the mapping and this process has a valid token, all there is to do is copy the
data to the user buffer and return. Much of the difficulty in the Mach scheme
results from token management and the fact that the emulation library is not
protected from the user process in any way; the process can overwrite any part of
the data area of the library it wishes. To acquire the token, the emulation library
must communicate with the UNIX server task that in turn will communicate with
other UNIX process tasks.

In addition to token management, the UNIX server task implements
appropriate UNIX filesystem access, including the handling of page faults that
occur on the mapping. On first access to a file mapping in the emulation library,

186 UNIX Filesystems—Evolution, Design, and Implementation

the microkernel will send a memory_object_data_request() to the external
pager responsible for backing the object. The inode pager must read the data
from the filesystem in order to satisfy the request. The Mach file I/O paths are
shown in Figure 8.10.

Handling Write Operations in Mach
The paths followed to implement the write(S) system call are almost identical
to the paths followed for read(S). As with Chorus, the interesting areas
surround extending files and writing over holes.

For a write fault on a page not within the current mapping or a write that
involves either extending the file or filling a hole, the inode pager will return
memory_object_data_unavailable, which results in the microkernel
returning a zero-filled page. If the file size is extended, the emulation library
updates its understanding of the new size. At this stage there is no update to the
on-disk structure that would make it difficult to implement transaction-based
filesystems.

The actual changes to the disk representation of the file occur when the token
is recalled, when the mapping is changed, or when the microkernel needs to
flush dirty pages and sends a request to the inode pager. By revoking a token that
resulted from either a hole write or a file extension, the UNIX server will invoke a
memory_object_lock_request, which results in the kernel pushing the
modified pages to disk through the inode pager. It is only when pages are written
to disk that the UNIX server allocates disk blocks.

What Happened to Microkernel Technology?
During the early 1990s it seemed to be only a matter of time before all the

Figure 8.9 Emulating UNIX using the Mach microkernel.

UNIX

emulation library

user binary

UNIX
process

UNIX server task

BSD server
threads

device
threads

inode
pager

trap
emulation

Mach microkernel

1

2

3

Non-SVR4-Based Filesystem Architectures 187

monolithic UNIX implementations would be replaced by microkernel-based
implementations. Mach was the basis of the OSF (Open Software Foundation)
kernel and Chorus was employed by a number of UNIX vendors. The only UNIX
vendor using microkernel technology as the core of its UNIX based operating
system is Digital (now Compaq), which used OSF/1. The GNU Hurd also uses
Mach as its base. Chorus has been used for a number of different projects within
Sun Microsystems.

Resistance to change is always a factor to consider when moving support from
one operating system to another. The cost of replacing one OS technology with
another for no perceived gain in user functionality is certainly another. As UNIX
evolved, moving the monolithic source base to a microkernel-based
implementation was a costly project. Porting filesystems is expensive and the
amount of code reuse was not as high as it could have been. The original attempts
at serverization of UNIX were certainly one of the main reasons why the porting
efforts were so high. On Chorus, replacing the multiple different actors with a
single UNIX actor, together with emulation of certain SVR4 features such as the
segmap driver, would have made Chorus a more appealing solution.

Having said all of that, microkernels have their place in various niche markets,
but some large opportunities were missed to really capitalize on the technology.

There is a wide range of documentation available on both the Chorus and Mach
microkernels. For a single paper that describes microkernels, their UNIX
emulation, and how file I/O works, see [ARMA92].

Summary

In the 1980s and early 1990s, there was a lot of consolidation around the Sun
VFS/vnode interface with many of the commercial UNIX vendors adopting the

Figure 8.10 Reading from a file in the Mach microkernel.

UNIX
process

UNIX server task

inode
pager

trap
emulation

Mach microkernel

read(fd, buf, 4096)

64k
file
mapping

page
fault

3

1

2 device_read()

4

5

188 UNIX Filesystems—Evolution, Design, and Implementation

interface to some degree. This architecture has still remained largely intact with
only a few changes over the last decade.

The Linux kernel has seen a huge amount of change over the last few years
with the VFS layer still in a state of flux. This is one of the few operating systems
that still shows a huge amount of new development and has by far the largest
number of filesystems supported.

By looking at the different filesystem architectures, one can see a large degree
of similarity among them all. After the basic concepts have been grasped,
locating the structures that pertain to filesystem implementations and following
the code paths to get a high level overview of how filesystems are implemented
is a relatively straightforward task. Therefore, readers new to operating systems
are recommended to follow the earlier, more compact implementations first.

CHAPTER

9

189

Disk-Based Filesystem
Case Studies

This chapter describes the implementation of three different filesystems: the
VERITAS Filesystem, VxFS, has also been ported to many versions of UNIX and
has been the most successful of the “commercially” available filesystems; the UFS
filesystem, first introduced in BSD UNIX as the Fast File System, has been ported
to most versions of UNIX; with the proliferation of Linux systems, the ext2
filesystem and its successor ext3 are widely known and have been documented
extensively.

The VERITAS Filesystem

Development on the VERITAS filesystem, VxFS, started in the late 1980s with the
first implementation for SVR4.0. Over the past decade, VxFS has grown to be the
single most commercially successful filesystem for UNIX, with ports to many
versions of UNIX, Linux, and microkernel-based UNIX implementations. At the
time of writing, VERITAS directly supports Solaris, HP-UX, AIX, and Linux as its
core platforms.

VxFS, a journaling, extent-based filesystem, is also one of the most feature-rich
filesystems available and one of the most scalable and performant. This is the
result of many years of development over many platforms from single CPU

190 UNIX Filesystems—Evolution, Design, and Implementation

machines to 64-way enterprise-class SMP machines. As such, VxFS has been
designed to automatically tune itself to the underlying platform and system
resources.

VxFS Feature Overview
The following sections highlight the main features available with VxFS. At the
time of writing, this covers VxFS version 3.5. Later chapters describe some of
these features in more detail.

Extent-Based Allocation
Most traditional UNIX filesystems are block based such that each time data is
allocated to a file, the blocks allocated correspond to the filesystem block size. If
the block size is 4KB, a 16KB file will have four blocks. With the traditional
scheme of mapping blocks from the inode, a large file quickly goes into indirect
blocks, double indirects, and even triple indirects. There are two main problems
with this approach, which results in a degradation in performance:

1. Blocks allocated to the file are unlikely to be contiguous on disk. Accessing
the file therefore may result in a significant amount of disk head movement.

2. When reading data from anything other than the first few blocks, a number
of reads must be issued to locate indirect, double, or triple indirect blocks
that reference the block that needs to be accessed.

VxFS is an extent-based filesystem. Regardless of the block size chosen for a VxFS
filesystem, which can be 1KB, 2KB, 4KB, or 8KB, data can be allocated in larger
contiguous blocks called extents. The minimum size of an extent is identical to the
filesystem block size. However, a file can have a single extent up to the maximum
size of a file.

To give an example of how this works in practice, consider the following
program, which creates a file and issues a series of 512-byte writes:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

main()
{
 char buf[512];
 int i, fd;

 fd = open("testfile", O_CREAT|O_WRONLY, 0777);
 for (i=0 ; i<100 ; i++) {
 write(fd, buf, 512);
 }
}

Disk-Based Filesystem Case Studies 191

Taking a new VxFS filesystem with a block size of 1KB and running the above
program, the result will be a file with the following extents, shown from within
fsdb, as follows:

> 5i
inode structure at 0x00000449.0100
type IFREG mode 100755 nlink 1 uid 0 gid 1 size 102400
atime 1017289300 420007 (Wed Mar 27 20:21:40 2002)
mtime 1017289300 430106 (Wed Mar 27 20:21:40 2002)
ctime 1017289300 430106 (Wed Mar 27 20:21:40 2002)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 0 rdev/reserve/dotdot/matchino 0
blocks 100 gen 285552327 version 0 33 iattrino 0
de: 1304 1116 0 0 0 0 0 0 0 0
des: 96 4 0 0 0 0 0 0 0 0
ie: 0 0
ies: 0

The “5i” command displays inode number 5. The extents allocated to this file are
highlighted. Note that this is almost the ideal case. There are two extents starting
at block numbers 1304 and 1116 respectively. The des field indicates the size of
each extent in filesystem block-size chunks. Thus the first 96 blocks of the file are
contiguous followed by an extent of 4 contiguous blocks.

If a new file needs creating of a particular size, a single call can be made by
using the setext command to allocate the file with a single contiguous extent.
This is shown in the next section.

VxFS Extent Attributes
The default algorithms used to allocate extents to a file are based on the I/O
pattern. For example, if a file is created and the file is written to sequentially, the
first extent allocated will be a power of two greater than the size of the write. The
extents allocated after this first write increase in size as the sequential writes
continue to be issued. By allocating larger and larger extents in this manner, an
attempt is made to ensure that as many blocks as possible are contiguous on disk.
If a file is closed and the last write occupies only a small amount of a large extent,
the extent is shortened and the remaining space returned to the free pool.

When creating a new file, if the size of the file is known prior to creation, the file
extents may be pre-allocated. This can be achieved using the setext command
or by use of the VX_SETEXT ioctl. The example below shows how a 100MB file is
created using setext:

> myfile
setext -e 1024 -r 1024 -f chgsize myfile
ls -l myfile
-rw-r--r-- 1 root other 1048576 Mar 29 13:36 myfile

192 UNIX Filesystems—Evolution, Design, and Implementation

The -e argument specifies a fixed extent size to be used for all allocations to this
file. The -r field preallocates space to the file. Because the extent size is specified
as 1024 blocks and a request has been made to preallocate 1024 blocks, this
should result in a single extent of 1024 blocks being allocated. The -f option
specifies that the reservation should be made immediately. The following output
from fsdb shows the inode allocated and the extent allocated to this file.

fsdb -F vxfs /dev/vx/rdsk/fs1
> 4i
inode structure at 0x00000449.0000
type IFREG mode 100644 nlink 1 uid 0 gid 1 size 1048576
atime 1017437793 230001 (Fri Mar 29 13:36:33 2002)
mtime 1017437793 230001 (Fri Mar 29 13:36:33 2002)
ctime 1017437805 125000 (Fri Mar 29 13:36:45 2002)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 1024 rdev/reserve/dotdot/matchino 1024
blocks 1024 gen 391 version 0 7 iattrino 0
de: 2048 0 0 0 0 0 0 0 0 0
des: 1024 0 0 0 0 0 0 0 0 0
ie: 0 0
ies: 0

In this case, the file has a single direct extent (de) starting at block address 2048.
This extent is 1024 blocks in size (des). The reserve field in the inode is also
set to 1024 blocks. If this file were to be truncated, the size in the inode would be
changed but the file would retain the number of blocks stored in the reservation.

Following the preceding example, if the extent size were set to 512 blocks and
the setext call made as follows:

> myfile
setext -e 512 -r 1024 -f chgsize myfile

then the minimum size of an extent added to myfile will be 512 blocks. Where
possible, the filesystem will attempt to allocate contiguous extents. If successful,
the extents will be coalesced to create a single extent. Thus, in the above example,
even though one would expect to see two extents of 512 blocks allocated to the
file, a single extent is quite likely to be seen from within fsdb.

There are other extent attributes that can be set on a file as shown below:

-f align. With this attribute, extents allocated to a file should be aligned on
extent size boundaries where the extent size is specified using the -e option.

-f chgsize. This attribute is used to change the size of the file.

-f contig. This attribute indicates that any reservation should be allocated
contiguously.

-f noreserve. This option limits the size of the file. Once the space
preallocated to the file has been used, the file cannot be further extended.

-f trim. If a file has been given a specific reservation and the file size is less
than the reservation, once the file is closed, the reservation is trimmed to the
size of the file.

Disk-Based Filesystem Case Studies 193

The following example shows how reservation works in conjunction with the
trim option. This also shows the getext command, which can be used to
display a file’s extent attributes.

dd if=/dev/zero of=8k bs=8192 count=1
1+0 records in
1+0 records out
ls -l 8k
-rw-r--r-- 1 root other 8192 Mar 29 15:46 8k
> myfile
setext -e 512 -r 1024 -f trim myfile
getext myfile
myfile: Bsize 1024 Reserve 1024 Extent Size 512
cat 8k >> myfile
ls -l
total 2064
-rw-r--r-- 1 root other 8192 Mar 29 15:46 8k
drwxr-xr-x 2 root root 96 Mar 29 15:46 lost+found
-rw-r--r-- 1 root other 8192 Mar 29 15:46 myfile

An 8KB file is created (for the purpose of copying only) and myfile is then
created with an extent size of 512 blocks and a reservation of 1024 blocks. The
trim option is also set. 8KB of data is then written to the file. The extent allocated
to the file is shown below:

> 5i
inode structure at 0x00000449.0100
type IFREG mode 100644 nlink 1 uid 0 gid 1 size 8192
atime 1017445593 220000 (Fri Mar 29 15:46:33 2002)
mtime 1017445616 410003 (Fri Mar 29 15:46:56 2002)
ctime 1017445616 410003 (Fri Mar 29 15:46:56 2002)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 512 rdev/reserve/dotdot/matchino 8
blocks 512 gen 1176 version 0 9 iattrino 0
de: 2048 0 0 0 0 0 0 0 0 0
des: 512 0 0 0 0 0 0 0 0 0
ie: 0 0
ies: 0

Although only 8KB was written to the file, the minimum extent size is 512 blocks,
so a 512-block extent is allocated. Note that the reservation has been set to 8 blocks
(8KB in this case) due to the trim option. If the file were truncated to zero, it
would still retain 8 blocks as marked by the reservation.

Caching Advisories
Through use of the VX_SETCACHE ioctl, VxFS allows a number of different
caching advisories to be set on a file that controls the manner in which I/O takes
place. The advisories, which allow for direct I/O, unbuffered I/O, and data
synchronous I/O are described in the section Data and Attribute Caching in
Chapter 3.

194 UNIX Filesystems—Evolution, Design, and Implementation

In addition to these advisories, VxFS also implements discovered direct I/O. This
is similar to direct I/O but is performed without user intervention. For I/O
operations of specific sizes, determined by VxFS, the I/O is performed as a direct
I/O, assuming the buffer and I/O size meet certain alignment requirements.

User and Group Quotas
VxFS supports both user and group quotas allowing limits to be set on both the
number of files allocated and the number of blocks used. For both types of
quotas, the following two limits apply:

Hard limit. This limit cannot be exceeded under any circumstance. Attempts
to allocate more files or blocks will fail.

Soft limit. This limit can be exceeded temporarily for a specified time limit
after which it defaults to seven days. After the time limit has expired, no
further allocations can be made.

For more details on VxFS quotas, see the section User and Group Quotas in
Chapter 5.

Filesystem Snapshots / Checkpoints
VxFS supports a number of different snapshot mechanisms, both persistent and
non persistent, across system reboots or mount operations. Chapter 12 describes
these mechanisms in more detail.

Panic Free and I/O Error Handling Policies
Unusual in filesystem code, there is no explicit call within VxFS to panic the
filesystem. If errors are detected, such as an I/O error, VxFS disables access to
specific filesystem structures while still allowing access to other structures on
disk. For example, when reading an inode, VxFS performs validation of the inode
to ensure that the structure is intact. If the inode fails validation, it is marked bad
and a flag is set to perform a full fsck. However, access can continue to the rest
of the filesystem. The same is also true when reading other filesystem structures.

This policy became problematic with the introduction of fiber channel in
which the vulnerability of such a hardware configuration became relatively
commonplace. Over time, cables were accidently unplugged, resulting in
temporary I/O errors causing VxFS to mark inodes bad. This resulted in a full
fsck to repair the damaged filesystem.

The I/O error-handling policies were modified to allow for this case and also
to give administrators more flexibility on how they wished to handle I/O errors.
The options are chosen by setting the ioerror option of the VxFS mount
command to one of the following:

TEAMFL
Y

TEAM FLY ®

Disk-Based Filesystem Case Studies 195

disable. If this option is selected, VxFS will disable the file system after
detecting an I/O error. The file system can then be safely unmounted
allowing the problem causing the error to be corrected. Typically, after the
problem has been repaired, a fsck replay should be sufficient to make the
filesystem structurally sound, at which point the file system can be mounted
again. The disable option should be selected in environments where the
underlying storage is redundant, such as with RAID-5 or mirrored (RAID-1)
disks.

nodisable. If selected, when VxFS detects an I/O error it will contain the
error and continue running. This policy is close to the traditional VxFS error
handling model in which access to certain structures is prevented but the
system continues to run. With this option, errors detected while reading
inode meta-data will result in the inode being marked bad.

wdisable | mwdisable. By specifying either the wdisable (write disable)
option or mwdisable (metadata-write disable) option, the file system is
disabled or degraded as shown in Table 9.1. The wdisable or mwdisable
options should be used in environments where read errors are more likely to
persist than write errors, such as when using non redundant storage.

The mwdisable option is the default I/O error-handling option.
For file data read and write errors, VxFS sets the VX_DATAIOERR flag in the

superblock. For metadata read errors, VxFS sets the VX_FULLFSCK flag. For
metadata write errors, VxFS sets the VX_FULLFSCK and VX_METAIOERR flags
and may mark associated metadata as bad on disk. VxFS then prints the
appropriate error messages to the console.

If the VX_DATAIOERR or VX_METAIOERR flags are written to the superblock,
a warning message is displayed when running fsck. If the VX_FULLFSCK flag is
set, VxFS forces a full fsck to be performed.

VxFS Clustered Filesystem
As well as being a host based filesystem, VxFS is also a clustered filesystem. This
aspect of VxFS is further described in Chapter 13.

The VxFS Disk Layouts
The VxFS disk layout has evolved over time to meet the needs of increasing file
and filesystem sizes. The disk layout geometry has changed considerably over the
years as new features and new policies have been added to VxFS.

There have been 5 different VxFS filesystem layouts. The first disk layout
resembled UFS in many aspects while latter layouts are substantially different.
The following sections describe the version 1 and version 5 disk layouts. The
version 5 disk layout supports filesystem sizes up to 32TB and file sizes up to 2TB.

196 UNIX Filesystems—Evolution, Design, and Implementation

VxFS Disk Layout Version 1
The first VxFS disk layout , as shown in Figure 9.1, has three main sections. At the
start of the disk slice containing the filesystem is a fixed amount of unused space
that is used to store OS bootstrap routines.

The disk layout is divided into three main components:

Super block. The super block contains fundamental size information, a
summary of available resources, and references to other places on disk
where additional structural information can be found. Although there are
multiple copies of the superblock in case of filesystem damage, the initial
superblock can always be found at a well-known location. On UnixWare, it
can be found at an offset of 1024 bytes from the start of the filesystem, while
on Solaris, HP-UX, AIX, and Linux, it is located at byte offset 8192.

Intent log. The intent log contains a record of current file system activity. When
a change to the filesystem is to be made that will alter the structural
integrity of the filesystem, the pending change is first written to the intent
log. In the event of a system failure, the operations in the log are either
replayed or nullified to return the file system to a consistent state. To aid
understanding, one can think of the entries in the intent log as a set of pre
and post images of the modified part of the filesystem, allowing the
transition from the old to new structure to be performed idempotently.
Replaying the log multiple times therefore produces the same effect each
time. For further details of how the intent log is used, see the section VxFS
Journaling, later in this chapter.

Allocation units. An allocation unit (AU) is roughly equivalent to a UFS
cylinder group. On disk layout version 1, each AU contains a pool of inodes
and data blocks together with inode and extent bitmaps and extent
summaries.

The intent log immediately follows the superblock and the first allocation unit
immediately follows the log. Each allocation unit is the same size (which is
determined at mkfs time) with the exception of the last AU, which may contain
fewer blocks depending on the overall size of the disk slice on which the
filesystem resides.

Table 9.1 VxFS I/O Error Handling Policies

POLICY OPTION FILE READ FILE WRITE META-DATA
READ

META-DATA
WRITE

disable disable disable disable disable

nodisable degrade degrade degrade degrade

wdisable degrade disable degrade disable

mwdisable degrade degrade degrade disable

Disk-Based Filesystem Case Studies 197

Because the size of the AU is fixed at mkfs time in version 1, this results in a
limitation on the size of other fundamental filesystem structures, not least, the
number of inodes and the maximum extent size that can be allocated to a file.

The earlier VxFS mkfs command supported an array of options to align
specific structures to various disk block boundaries. Because data is not uniformly
stored on disk anymore, these parameters are not necessarily valid today.

For details on the inode extended operations map, see the section Extended
Operations, later in this chapter.

VxFS Disk Layout Version 5
The first couple of VxFS disk layouts had a number of inherent problems. First,
the fixed nature of allocation units required AU data to be written on AU
boundaries across the whole disk. For large filesystems, this is a time-consuming
task resulting in lengthy mkfs times. The fixed number of inodes causes two
problems. First, if a filesystem contains many small files, it is possible to run out
of inodes even though the utilization of disk space may be quite low. On the other
hand, if only a small number of large files are required, a large amount of space
could be wasted by holding unused inodes.

The other problem concerns the use of filesystems to hold database files. To
gain optimal performance, databases are best stored as files with a single, large
extent. If the extents need to be broken up across AU boundaries, the database
files could run into indirects or double indirects, impacting performance.

The newer VxFS disk layouts solved all of these problems by storing all of the
filesystem structural information in files that could grow on demand.

The newer VxFS layouts also introduced the concept of filesets, a term coined
from DCE DFS (Distributed File System) work initiated under the auspices of the

Figure 9.1 The VxFS version 1 disk layout.

intent log

Allocation Unit 0

Allocation Unit 1

Allocation Unit n

.

.

.

superblock

bootstrap block
AU Header

AU summaries

Free inode map

Extended inode ops bitmap

Free extent map

Inodes

Padding

Data blocks

198 UNIX Filesystems—Evolution, Design, and Implementation

Open Software Foundation. In the DCE model, the notion of a filesystem changes
somewhat: a disk slice or volume contains an aggregate of filesets. Each fileset
looks to the user like a filesystem—it has a root inode, lost+found directory,
and a hierarchy of directories and files just like any other filesystem. Each fileset
is independently mountable.

Much of this work was originally done in VxFS to support DCE DFS but has
been extended in a number of ways as discussed in Chapter 12.

When creating a VxFS filesystem, two filesets are created: the primary fileset
which is mounted in response to the mount command and the structural fileset
which contains all the filesystem metadata. Each fileset has its own inode list,
itself stored as a file. The primary fileset inode list file contains all the user
directories, regular files, and so on. The structural fileset inode list file contains a
number of files including:

Object location table (OLT). The OLT is referenced by the superblock. It is
used when a filesystem is mounted; it contains references to structures
needed to mount the filesystem.

Label file. This file holds the superblock and its replicas.
Fileset header file. Each fileset is described by an entry in the fileset header

file. Each entry contains information such as the number of inodes allocated
to the fileset, the inode number of the fileset’s inode list file, and the inode
numbers of other relevant files. To see how filesets are used to construct
persistent snapshots, see the section How Storage Checkpoints are Implemented
in Chapter 12.

Inode list file. This file, one per fileset, contains all of the inodes allocated to a
fileset.

Inode allocation unit file (IAU). This file, again one per fileset, is used to
manage inodes. It includes the free inode bitmap, summary information,
and extended operations information.

Log file. The intent log is stored in this file.
Extent AU state file. This file indicates which AUs have been either allocated

or expanded. This is described later in the chapter.

Extent AU summary file. This file summarizes the allocation of extents.
Free extent map. This file is a bitmap of free and allocated extents.

Figure 9.2 shows how some of these structures are used when mounting the
filesystem. Because the filesystem information is stored in files, the filesystem
needs to know how to access these structural files. Thus, various structures are
used to help bootstrap this process. In order to mount a filesystem, VxFS needs to
locate the root inode for the primary fileset. Following are some of the steps taken
to achieve this:

1. The superblock is located by seeking 8KB into the device.

2. From the superblock, the OLT can be located; the OLT contains information
about where the first few extents of the structural inode list file are located.

Disk-Based Filesystem Case Studies 199

It also contains information such as the inode number of the fileset header
file that contains all the appropriate information about each fileset. Using the
inode number of the primary fileset, the inode is located for the fileset
header file. This file contains a record for each fileset, including the inode
numbers of the inode list file, the IAU file (for allocating inodes), and so on.

3. After the entry for the primary fileset is located, all of the information
necessary to mount the fileset is accessible.

Because all of the structural information about the filesystem is stored in files, the
minimal amount of information is initially allocated. For example, only 32 inodes
are allocated when the filesystem is created. To increase the number of inodes, the
inode list file is extended in conjunction with the inode allocation unit (inode free
bitmaps, etc.). Also, extent maps and summaries are only created when needed.

The notion of allocation units changed with the newer disk layouts. The
filesystem is divided into fixed size AUs, each of 32KB blocks. AU 0 starts at block
0 within the filesystem. The AU state file contains 2 bits per AU, which indicate
whether the AU is being used and if so, whether it has been expanded. When
expanded, extent bitmaps and summaries are allocated to map the AU. Note
however, that if a single 32KB block allocation is required, the AU state file is
updated to indicate that the AU is in use but the bitmaps do not need to be
created. The mapping between the structures used to manage AUs and extent
maps is shown in Figure 9.3 which demonstrates the simplicity of storing

Figure 9.2 Locating structural information when mounting a VxFS filesystem.

fs_oltext[0]

fs_oltext[1]

superblock

Object Location Table

Initial ilist extents

OLT header

Fileset header
record

.

.

.

OLT replica

inode 0

inode 1

inode 2

IFFSH

inode 3

IFFSH

.

.

.
file extents

fileset header
inode

structural inode list

fileset
header 0

fileset
header 1

.

.

.

.

.

.

inode list inode

IAU inode

200 UNIX Filesystems—Evolution, Design, and Implementation

meta-data within a file itself.
When a filesystem is first created, only one or two AUs are initially used. This

is specified in the AU state file and the corresponding extent summaries and
bitmaps are expanded to reflect this. However, because none of the other AUs are
used, the summaries and bitmaps are not allocated. As new files are allocated,
more and more AUs are used. To make use of an unused AU, the state file is
updated, and the summary and bitmap files are extended and updated with the
appropriate summary and bitmap information.

This is why initial allocation of a VxFS filesystem is constant no matter what
the size of the filesystem being created.

Creating VxFS Filesystems
The VxFS mkfs command has changed substantially over the years. Earlier disk
layouts had a layout similar to UFS and therefore had numerous parameters that
could be passed to mkfs to control alignment of filesystem structures.

If no size is passed to mkfs, VxFS will query the device on which the
filesystem will be made and create a filesystem that will fill the device as follows:

mkfs -F vxfs /dev/vx/rdsk/fs1
 version 4 layout
 204800 sectors, 102400 blocks of size 1024, log size 1024 blocks
 unlimited inodes, largefiles not supported
 102400 data blocks, 101280 free data blocks
 4 allocation units of 32768 blocks, 32768 data blocks
 last allocation unit has 4096 data blocks

The size of the filesystem can also be specified either in terms of sectors or by
specifying a suffix of k (kilobytes), m (megabytes), or g (gigabytes). For example,
to create a 100MByte filesystem, mkfs is run as follows:

mkfs -F vxfs /dev/vx/rdsk/fs1 100m

Figure 9.3 Managing VxFS allocation units and extent maps.

AU nAU 0 AU 1 AU 2 AU 3 AU 4 AU 5

. . .

8KB extent bitmap
(one per AU)

Extent summary
(one per AU)

AU state file
(2 bits per AU)

IFEMP

IFAUS

IFEAU

Disk-Based Filesystem Case Studies 201

For quite some time, VxFS has allocated inodes on demand, unlike many other
UNIX filesystems that allocate a fixed number of inodes when the filesystem is
created. VxFS does not initially create many inodes but will grow the inode list
file as required. Thus, it is possible to either have a filesystem with a few very
large files, a filesystem with many small files, or a combination of both.

By default, VxFS will choose a block size of 1024 bytes regardless of the
filesystem size. This has been shown to be most effective in a wide range of
environments. However, the block size can be 1KB, 2KB, 4KB, or 8KB. The bsize
option can be used to override the default.

The VxFS intent log size is calculated automatically based on the size of the
filesystem. This can be overridden during mkfs as shown in the section VxFS
Journaling a little later in this chapter.

Forced Unmount
VxFS supports the ability to forcibly unmount a filesystem even when it is busy.
This is particularly important in high-availability clustered environments where
monitoring software has detected a failure and decides to switch over to a new
host. The filesystem must be unmounted on the old host, then the new host runs a
replay fsck, and mounts the filesystem. On the original host, it is highly likely
that there will still be processes using files in the filesystem and therefore, a
typical umount call will fail with EBUSY. Thus, the filesystem must be forcibly
unmounted.

The following example shows how an unmount can be forced:

mount | grep mnt2
/mnt2 on /dev/vx/dsk/fs1
read/write/delaylog/setuid/nolargefiles/ioerror=mwdisable on Fri Apr 5
21:54:09 2002
cd /mnt2
sleep 60000&
[1] 20507
cd /
umount /mnt2
vxfs umount: /mnt2 cannot unmount: Device busy
umount -o force /mnt2
jobs
[1] + Running sleep 60000&

Very few UNIX operating systems support a switchable umount command.
Solaris supports the force flag. For other operating systems, the VxFS-specific
umount command must be invoked directly.

VxFS Journaling
When the system crashes, filesystems are typically damaged structurally. This
results in a need to run the fsck utility to repair filesystem structures that may
have been corrupted. Filesystems or other areas of the kernel that issue I/O can

202 UNIX Filesystems—Evolution, Design, and Implementation

never be sure that the I/Os will be complete in the event of a crash. Each disk
drive has a unit of I/O that is guaranteed to be atomic (writes of this size either
succeed or fail—a drive can never write less than this amount). This is usually
512 bytes or 1024 bytes on some platforms. However, most structural filesystem
operations require updates to multiple parts of the filesystem so this atomic I/O
size guarantee is insufficient.

Consider the case of file creation. This involves the following operations:

1. Allocate a new inode. This involves flipping a bit in a bitmap to indicate that
the inode is in use. It may also involve updating summary information.

2. Initialize the inode.
3. Update the directory inode in which the new file belongs. The timestamps of

the directory inode are updated and the new file is added to the directory.

This type of operation involves updating a number of structures that are
contained in a number of different blocks throughout the filesystem. If the
system fails after writing some of the above data to disk but before completing
the operation, the filesystem will be structurally incomplete. The role of fsck is
to detect and repair any such inconsistencies resulting from a crash. For example,
if the inode is allocated and initialized but not yet linked to the directory, the
inode is orphaned and will therefore be removed by fsck or placed in
lost+found.

The amount of time taken by fsck is proportional to the amount of meta-data
in the filesystem and therefore typically dependent on the number of files that
exist. In a world that is moving toward multi-terabyte filesystems with up to a
billion files, the amount of time taken to perform fsck is unacceptable, taking
many tens of hours to complete.

To solve this problem, journaling filesystems are written in such a manner that
operations either succeed or fail. Either way, the filesystem should be structurally
sound at all times.

VxFS solves this problem by performing all such updates as transactions. A
transaction is a record of one or more changes to the filesystem. These changes
are first written to the intent log, a circular buffer located within the filesystem,
before they are written to their specific locations on disk. In the above example,
all of the operations that comprise the file allocation are captured in a transaction.
In the event of a system crash, VxFS fsck replays the contents of the intent log to
complete any pending transactions. All such records in the log are idempotent
such that they can be replayed an infinite number of times with the same result.
This ensures that log replay can be restarted if the system crashes while the log
itself is being replayed.

To help understand how transactions are written to the log, consider the
example of creating a new file as follows:

mount -F vxfs /dev/vx/dsk/fs1 /mnt
> /mnt/newfile
umount /mnt

Disk-Based Filesystem Case Studies 203

The VxFS fsdb utility provides the command fmtlog, which displays the
contents of the intent log in a human readable format. Shown below is an extract
of the log showing the sub functions corresponding to the transaction that was
used to create the file. Those parts of the text marked Sub function have been
added to help annotate the output.

fsdb -F vxfs /dev/vx/rdsk/fs1
> fmtlog

...
Sub function 1
00000800: id 363 func 1 ser 0 lser 3 len 292
Inode Modification fset 999 ilist 0 dev/bno 0/1096 ino 2 osize 0
New Inode Contents:
type IFDIR mode 40755 nlink 3 uid 0 gid 0 size 6144
atime 1017451755 890011 (Fri Mar 29 17:29:15 2002)
mtime 1017451926 809999 (Fri Mar 29 17:32:06 2002)
ctime 1017451926 809999 (Fri Mar 29 17:32:06 2002)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 0 rdev/reserve/dotdot/matchino 2
blocks 6 gen 9130 version 0 326 iattrino 0
de: 1125 0 0 0 0 0 0 0 0 0
des: 6 0 0 0 0 0 0 0 0 0
ie: 0 0
ies: 0
Sub function 2
00000940: id 363 func 5 ser 1 lser 3 len 40
free inode map changes fset 999 ilist 0 aun 0
 map dev/bno 0/38 ausum dev/bno 0/37
 op alloc ino 326
Sub function 3
00000980: id 363 func 1 ser 2 lser 3 len 292
Inode Modification fset 999 ilist 0 dev/bno 0/1417 ino 326 osize 0
New Inode Contents:
type IFREG mode 100644 nlink 1 uid 0 gid 1 size 0
atime 1017451926 810000 (Fri Mar 29 17:32:06 2002)
mtime 1017451926 810000 (Fri Mar 29 17:32:06 2002)
ctime 1017451926 810000 (Fri Mar 29 17:32:06 2002)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 0 rdev/reserve/dotdot/matchino 0
blocks 0 gen 1761727895 version 0 1 iattrino 0
de: 0 0 0 0 0 0 0 0 0 0
des: 0 0 0 0 0 0 0 0 0 0
ie: 0 0
ies: 0
Sub function 4
00000ae0: id 363 func 2 ser 3 lser 3 len 57
directory fset 999 ilist 0 inode 2 bno 1130 blen 1024 boff 116
previous d_ino 325 d_reclen 924 d_namlen 6 d_hashnext 0000
added d_ino 326 d_reclen 908 d_namlen 7 d_hashnext 0000
 n e w f i l e

The set of sub functions is as follows:

204 UNIX Filesystems—Evolution, Design, and Implementation

1. Update the link count and timestamps of the root directory in which the new
file resides.

2. Update the inode bitmap to show that the inode has been allocated.
3. Initialize the new inode.

4. Update the directory block to add the entry for the new file.

Replaying the Intent Log
When a transaction is written to the log, markers are placed to indicate the start
and end of the transaction. In the event of a system crash, fsck will run and
perform log replay for all complete transactions it finds in the log. The first task is
to locate the start of the log by scanning for the lowest transaction ID.

Working from start to finish, each subfunction is replayed, that is, the action
specified in the entry is performed idempotently. This is a crucial part of the log
format. Each entry must be able to be performed multiple times such that if the
system crashes during log replay, the process can start over from the beginning.

An entry in the log that had an action such as “increment the inode link count”
is not idempotent. If replayed multiple times, the inode link count would be
invalid. Instead, an appropriate action would be “set the inode link count to 3.”

The size of the intent log is chosen when the filesystem is created. It can
however, be specified directly. The maximum log size is currently 16MB.

Extended Operations
Certain operations present problems for a journaling filesystem. For example,
consider the case where the unlink() system call is invoked for a file that has a
link count of 1. After the unlink() system call returns, the file is considered to
be deleted. However, this presents a problem if the file is still opened. In this case,
the file cannot be physically removed from disk until the last close is performed
on the file.

To alleviate such a problem, VxFS provides inode extended operations. In the case
of unlink() the VX_IEREMOVE extended operation is set on the inode to
indicate that it should be removed. This is a transaction in itself. Any processes
wishing to open the file will be denied, but processes that already have the file
open will continue as is.

In the event of a system crash, extended operations must be completed before
the filesystem can be accessed. In the case of VX_IEREMOVE, the file will be
removed from the filesystem.

Extended operations are used extensively throughout VxFS but are not visible
to the user.

Online Administration
One of the failures of UNIX filesystems over the years has been the lack of
administrative features that can be performed while the filesystem is still

TEAMFL
Y

TEAM FLY ®

Disk-Based Filesystem Case Studies 205

mounted. One important example is the case of a filesystem resize. Traditionally,
resizing a filesystem involved the following:

1. Create a new slice or volume of the appropriate size and create a new
filesystem on this volume.

2. Disable access to the old filesystem (usually through a verbal warning).
3. Copy the contents of the old filesystem to the new filesystem.

4. Mount the new filesystem on the old mount point.

This is obviously undesirable because it can result in a significant interruption of
service. VxFS provides the mechanisms by which a filesystem may be resized (up
or down) while the filesystem is still mounted and active.

The following example shows how this can be achieved through use of the
VxFS fsadm command. First of all, a filesystem is created and mounted. The size
of the filesystem is 10,000 sectors. The number of 1KB blocks is 5,000.

mkfs -F vxfs /dev/vx/rdsk/fs1 10000
 version 4 layout
 10000 sectors, 5000 blocks of size 1024, log size 256 blocks
 unlimited inodes, largefiles not supported
 5000 data blocks, 4672 free data blocks
 1 allocation units of 32768 blocks, 32768 data blocks
 last allocation unit has 5000 data blocks
mount -F vxfs /dev/vx/dsk/fs1 /mnt1
df -k | grep mnt1
/dev/vx/dsk/fs1 5000 341 4375 8% /mnt2

The df command is run to show the amount of blocks in the filesystem and the
amount available. The fsadm command is then run to double the size of the
filesystem as follows:

fsadm -b 20000 /mnt1
UX:vxfs fsadm: INFO: /dev/vx/rdsk/fs1 is currently 10000 sectors - size
will be increased
df -k | grep mnt1
/dev/vx/dsk/fs1 10000 341 9063 4% /mnt2

Notice the increase in blocks and free space once df is re-run.
The fsadm command is then run again and the filesystem size is decreased to

15000 sectors as follows:

fsadm -b 15000 /mnt1
UX:vxfs fsadm: INFO: /dev/vx/rdsk/fs1 is currently 20000 sectors - size
will be reduced
df -k | grep mnt1
/dev/vx/dsk/fs1 7500 341 6719 5% /mnt1

One point to note here is that the underlying volume must be capable of holding a
larger filesystem if the filesystem size is to be increased. Using
volume-management capabilities such as VxVM, a volume can be easily resized

206 UNIX Filesystems—Evolution, Design, and Implementation

online. Increasing the size of a raw partition is particularly difficult and
cumbersome since this would involve taking filesystems offline, backing them
up, repartitioning the disk, and then remaking and restoring the filesystems.

Extent Reorg and Directory Defragmentation
When extents are allocated to files, an attempt is made to allocate them in the
most optimal manner. Over time, though, the filesystem becomes fragmented.
Small free extents are spread over the filesystem resulting in a less than optimal
choice when allocating extents to new files. Many filesystems employ different
techniques to try and reduce the amount of fragmentation; that can provide some
measure of success. However, regardless of the technique used, fragmentation
will still occur over time in all filesystems.

VxFS provides, through the fsadm utility, the mechanisms through which
fragmentation can be reduced while the filesystem is still online and active. The
process involves locating files that have fragmented extent maps and performing
extent reorg on these files to make the extents contiguous wherever possible. This
involves allocating new extents and copying existing data where necessary. In
addition to making files contiguous, free space is consolidated allowing for better
allocations in the future.

Similarly, as files are allocated and removed, directories can become
fragmented over time. Directories can also be defragmented with use of the
fsadm command.

Both extent reorg and directory defragmentation should be run regularly on a
filesystem to ensure that the most optimal layout is achieved at all times.

VxFS Performance-Related Features
Although VxFS will tune itself to the underlying system based on available
memory, number of CPUs, volume geometry, and so on, certain applications may
wish to perform I/O in a very specific manner. Also, in some environments
performance may be critical whereas data integrity may not be an absolute
priority.

To allow for such a wide range of environments and needs, VxFS provides a
large number of different performance-related features, as described in the
following sections.

VxFS Mount Options
There are numerous different options that can be passed to the VxFS mount
command. First of all is the option to alter the way in which the intent log is
managed to allow for a trade-off between data integrity and performance. The
following four options are available:

Disk-Based Filesystem Case Studies 207

log. With this mode, a system call that results in a change to filesystem
structural data will not return to the user until VxFS has logged the changes
to disk. This has traditionally been the default mode but is now being phased
out and replaced by delaylog.

delaylog. With this option, many structural changes made to the filesystem
are recorded in the in-core filesystem log and written to the intent log on disk
at a later time. This has the effect of improving the responsiveness of the
filesystem, but data can be lost in the event of a crash.

tmplog. With this option, nearly all structural changes are written to the
in-core log. Writing to the intent log on disk is delayed as long as possible.
This gives the best all-round performance but at the risk of losing data in the
event of a system crash.

nodatainlog. By default, for small synchronous writes, VxFS writes both the
inode change and the new file data to be written to the intent log. By
specifying the nodatainlog option, the file data is written to its
appropriate place in the file while the inode change is written through the
intent log.

Note that regardless of which option is chosen, if the system crashes, the
filesystem is still guaranteed to be structurally intact at all times.

To maintain correct UNIX semantics, reading from a file will result in a change
to the access time field of the inode. There are however, few applications that look
at or have need to view the access time. Using the noatime mount option,
updates to the inodes’ access time field will be ignored unless written in
conjunction with an update to the modification time.

The caching behavior of the filesystem may be altered at mount time by
specifying the mincache or convosync options. With these options, the
administrator has a range of choices between maximum data integrity and
maximum performance, depending on the workload of the machine.

The mincache mode has five different suboptions, based on the caching
advisories described in the section Data and Attribute Caching in Chapter 3. These
options are:

mincache=closesync. This option is useful in desktop environments where
the machine may be powered off without cleanly shutting down the
machine. With this option, any changes to the file are flushed to disk when
the file is closed. Running in this mode may introduce up to a 15 percent
penalty on performance.

mincache=dsync. When this option is specified, data is read and written as if
the VX_DSYNC caching advisory is set. If a write to a file results in the
timestamps of the inode being modified with no changes to the block
allocations, the inode update will be delayed. For extending writes or when
extents are being allocated, the inode update will not be delayed.

208 UNIX Filesystems—Evolution, Design, and Implementation

mincache=direct. With this option, all non-synchronous requests (O_SYNC
not specified) are handled as if the VX_DIRECT caching advisory had been
set; that is, all requests that are aligned on correct boundaries will be
performed as direct I/O. Thus, writes are guaranteed to complete before the
system call returns. Note however, that because I/O is performed directly
between the user buffer and the file’s blocks on disk, data is not cached in
the kernel. Thus, when reading the same data, a request will go to disk.

mincache=unbuffered. This option is similar to mincache=direct. With
the direct option however, when a file is extended or blocks are allocated
to a file, the inode is updated synchronously before the call returns. When
specifying mincache=unbuffered, the inode updates are always
performed asynchronously.

mincache=tmpcache. This is the most performant option. Nearly all file
operations are delayed. With this option, data is not flushed to disk when a
file is closed. Any writes that are in progress during a system crash may
result in extents that contain garbage. However, filesystem throughput will
be best with this option in most environments.

The convosync mount option is used to alter the behavior of filesystems when
files are opened with O_SYNC and O_DSYNC. There are five suboptions:

convosync=closesync. With this option, any synchronous (O_SYNC) or
data synchronous (O_DSYNC) writes are not performed synchronously.
However, when the file is closed, any updates are flushed to disk.

convosync=delay. This option causes synchronous (O_SYNC) or data
synchronous (O_DSYNC) writes to be delayed.

convosync=direct. With this option, synchronous (O_SYNC) or data
synchronous (O_DSYNC) writes do not update the inode when only the
timestamps are modified. Changes to the file are flushed when the file is
closed.

convosync=unbuffered. This option is similar to the direct option
described above except that inode updates are performed asynchronously
even if the file is extended or blocks are allocated to the file. Changes to the
file are flushed when the file is closed.

convosync=dsync. This option converts synchronous (O_SYNC) writes to
data synchronous writes. Changes to the file are flushed when the file is
closed.

One final mount option worthy of mention and useful in data security
environments is blkclear. When specified, any extents allocated to a file are
zeroed first, ensuring that uninitialized data never appears in a file. Of course
this has an impact on performance (roughly a 10 percent hit). For desktop type
environments, a combination of blkclear and mincache=closesync can be
used.

Disk-Based Filesystem Case Studies 209

VxFS Tunable I/O Parameters
There are several additional parameters that can be specified to adjust the
performance of a VxFS filesystem. The vxtunefs command can either set or
display the tunable I/O parameters of mounted file systems. With no options
specified, vxtunefs prints the existing VxFS parameters for the specified
filesystem, as shown below:

vxtunefs /mnt
Filesystem i/o parameters for /mnt
read_pref_io = 65536
read_nstream = 1
read_unit_io = 65536
write_pref_io = 65536
write_nstream = 1
write_unit_io = 65536
pref_strength = 10
buf_breakup_size = 262144
discovered_direct_iosz = 262144
max_direct_iosz = 1048576
default_indir_size = 8192
qio_cache_enable = 0
write_throttle = 254080
max_diskq = 1048576
initial_extent_size = 8
max_seqio_extent_size = 2048
max_buf_data_size = 8192
hsm_write_prealloc = 0

vxtunefs operates on either a list of mount points specified on the command
line or all the mounted file systems listed in the tunefstab file. When run on a
mounted filesystem, the changes are made effective immediately. The default
tunefstab file is /etc/vx/tunefstab, although this can be changed by
setting the VXTUNEFSTAB environment variable.

If the /etc/vx/tunefstab file is present, the VxFS mount command
invokes vxtunefs to set any parameters found in /etc/vx/tunefstab that
apply to the filesystem. If the file system is built on a VERITAS Volume Manager
(VxVM) volume, the VxFS-specific mount command interacts with VxVM to
obtain default values for the tunables. It is generally best to allow VxFS and
VxVM to determine the best values for most of these tunables.

Quick I/O for Databases
Databases have traditionally used raw devices on UNIX to avoid various
problems inherent with storing the database in a filesystem. To alleviate these
problems and offer databases the same performance with filesystems that they get
with raw devices, VxFS provides a feature called Quick I/O. Before describing how
Quick I/O works, the issues that databases face with running on filesystems is
first described. Figure 9.4 provides a simplified view of how databases run on
traditional UNIX filesystems. The main problem areas are as follows:

210 UNIX Filesystems—Evolution, Design, and Implementation

■ Most database applications tend to cache data in their own user space
buffer cache. Accessing files through the filesystem results in data being
read, and therefore cached, through the traditional buffer cache or through
the system page cache. This results in double buffering of data. The
database could avoid using its own cache. However, it would then have no
control over when data is flushed from the cache.

■ The allocation of blocks to regular files can easily lead to file fragmentation,
resulting in unnecessary disk head movement when compared to running
a database on a raw volume in which all blocks are contiguous. Although
database I/O tends to take place in small I/O sizes (typically 2KB to 8KB),
the filesystem may perform a significant amount of work by continuously
mapping file offsets to block numbers. If the filesystem is unable to cache
indirect blocks, an additional overhead can be seen.

■ When writing to a regular file, the kernel enters the filesystem through the
vnode interface (or equivalent). This typically involves locking the file in
exclusive mode for a single writer and in shared mode for multiple readers.
If the UNIX API allowed for range locks, which allow sections of a file to be
locked when writing, this would alleviate the problem. However, no API

Figure 9.4 Database access through the filesystem.

Database

buffer cache

user space

kernel space

VFS layer FS independent

FS dependent

1. VOP_RWLOCK()
2. VOP_READ/WRITE()

buffer / pageFilesystem

copy 2

copy 1

cache

Disk-Based Filesystem Case Studies 211

has been forthcoming. When accessing the raw device, there is no locking
model enforced. In this case, databases therefore tend to implement their
own locking model.

To solve these problems, databases have moved toward using raw I/O, which
removes the filesystem locking problems and gives direct I/O between user
buffers and the disk. By doing so however, administrative features provided by
the filesystem are then lost.

With the Quick I/O feature of VxFS, these problems can be avoided through use
of an alternate namespace provided by VxFS. The following example shows how
this works.

First, to allocate a file for database use, the qiomkfile utility is used, which
creates a file of the specified size and with a single extent as follows :

qiomkfile -s 100m dbfile
ls -al | grep dbfile
total 204800
-rw-r--r-- 1 root other 104857600 Apr 17 22:18 .dbfile
lrwxrwxrwx 1 root other 19 Apr 17 22:18 dbfile ->

.dbfile::cdev:vxfs:

There are two files created. The .dbfile is a regular file that is created of the
requested size. The file dbfile is a symbolic link. When this file is opened, VxFS
sees the .dbfile component of the symlink together with the extension
::cdev:vxfs:, which indicates that the file must be treated in a different
manner than regular files:

1. The file is opened with relaxed locking semantics, allowing both reads and
writes to occur concurrently.

2. All file I/O is performed as direct I/O, assuming the request meets certain
constraints such as address alignment.

When using Quick I/O with VxFS, databases can run on VxFS at the same
performance as raw I/O. In addition to the performance gains, the manageability
aspects of VxFS come into play, including the ability to perform a block-level
incremental backup as described in Chapter 12.

External Intent Logs through QuickLog
The VxFS intent log is stored near the beginning of the disk slice or volume on
which it is created. Although writes to the intent log are always sequential and
therefore minimize disk head movement when reading from and writing to the
log, VxFS is still operating on other areas of the filesystem, resulting in the disk
heads moving to and fro between the log and the rest of the filesystem. To help
minimize this disk head movement, VxFS supports the ability to move the intent
log from the device holding the filesystem to a separate QuickLog device. In order
to maximize the performance benefits, the QuickLog device should not reside on
the same disk device as the filesystem.

212 UNIX Filesystems—Evolution, Design, and Implementation

VxFS DMAPI Support
The Data Management Interfaces Group specified an API (DMAPI) to be provided
by filesystem and/or OS vendors, that would provide hooks to support
Hierarchical Storage Management (HSM) applications.

An HSM application creates a virtual filesystem by migrating unused files to
tape when the filesystem starts to become full and then migrates them back when
requested. This is similar in concept to virtual memory and physical memory.
The size of the filesystem can be much bigger than the actual size of the device on
which it resides. A number of different policies are typically provided by HSM
applications to determine the type of files to migrate and when to migrate. For
example, one could implement a policy that migrates all files over 1MB that
haven’t been accessed in the last week when the filesystem becomes 80 percent
full.

To support such applications, VxFS implements the DMAPI which provides
the following features:

■ The application can register for one or more events. For example, the
application can be informed of every read, every write, or other events
such as a mount invocation.

■ The API supports a punch hole operation which allows the application to
migrate data to tape and then punch a hole in the file to free the blocks
while retaining the existing file size. After this occurs, the file is said to
have a managed region.

■ An application can perform both invisible reads and invisible writes. As part
of the API, the application can both read from and write to a file without
updating the file timestamps. The goal of these operations is to allow the
migration to take place without the user having knowledge that the file
was migrated. It also allows the HSM application to work in conjunction
with a backup application. For example, if data is already migrated to tape,
there is no need for a backup application to write the same data to tape.

VxFS supports a number of different HSM applications, including the VERITAS
Storage Migrator.

The UFS Filesystem

This section explores the UFS filesystem, formerly known as the Berkeley Fast
File System (FFS), from its roots in BSD through to today’s implementation and
the enhancements that have been added to the Sun Solaris UFS implementation.

UFS has been one of the most studied of the UNIX filesystems, is well
understood, and has been ported to nearly every flavor of UNIX. First described
in the 1984 Usenix paper “A Fast Filesystem for UNIX” [MCKU84], the decisions

Disk-Based Filesystem Case Studies 213

taken for the design of UFS have also found their way into other filesystems,
including ext2 and ext3, which are described later in the chapter.

Early UFS History
In [MCKU84], the problems inherent with the original 512-byte filesystem are
described. The primary motivation for change was due to poor performance
experienced by applications that were starting to be developed for UNIX. The old
filesystem was unable to provide high enough throughput due partly to the fact
that all data was written in 512-byte blocks, which were abitrarily placed
throughout the disk. Other factors that resulted in less than ideal performance
were:

■ Because of the small block size, anything other than small files resulted in
the file going into indirects fairly quickly. Thus, more I/O was needed to
access file data.

■ File meta-data (inodes) and the file data were physically separate on disk
and therefore could result in significant seek times. For example, [LEFF89]
described how a traditional 150MB filesystem had 4MB of inodes followed
by 146MB of data. When accessing files, there was always a long seek
following a read of the inode before the data blocks could be read. Seek
times also added to overall latency when moving from one block of data to
the next, which would quite likely not be contiguous on disk.

Some early work between 3BSD and BSD4.0, which doubled the block size of the
old filesystem to 1024 bytes, showed that the performance could be increased by a
factor of two. The increase in block size also reduced the need for indirect data
blocks for many files.

With these factors in mind, the team from Berkeley went on to design a new
filesystem that would produce file access rates of many times its predecessor with
less I/O and greater disk throughput.

One crucial aspect of the new design concerned the layout of data on disks, as
shown in Figure 9.5. The new filesystem was divided into a number of cylinder
groups that mapped directly to the cylindrical layout of data on disk drives at that
time—note that on early disk drives, each cylinder had the same amount of data
whether toward the outside of the platter or the inside. Each cylinder group
contained a copy of the superblock, a fixed number of inodes, bitmaps describing
free inodes and data blocks, a summary table describing data block usage, and the
data blocks themselves. Each cylinder group had a fixed number of inodes. The
number of inodes per cylinder group was calculated such that there was one
inode created for every 2048 bytes of data. It was deemed that this should provide
far more files than would actually be needed.

To help achieve some level of integrity, cylinder group meta-data was not
stored in the same platter for each cylinder group. Instead, to avoid placing all of
the structural filesystem data on the top platter, meta-data on the second cylinder

214 UNIX Filesystems—Evolution, Design, and Implementation

group was placed on the second platter, meta-data for the third cylinder group
on the third platter, and so on. With the exception of the first cylinder group, data
blocks were stored both before and after the cylinder group meta-data.

Block Sizes and Fragments
Whereas the old filesystem was limited to 512-byte data blocks, the FFS allowed
block sizes to be 4096 bytes at a minimum up to the limit imposed by the size of
data types stored on disk. The 4096 byte block size was chosen so that files up to
232 bytes in size could be accessed with only two levels of indirection. The
filesystem block size was chosen when the filesystem was created and could not
be changed dynamically. Of course, different filesystems could have different
block sizes.

Because most files at the time the FFS was developed were less than 4096 bytes
in size, file data could be stored in a single 4096 byte data block. If a file was only
slightly greater than a multiple of the filesystem block size, this could result in a
lot of wasted space. To help alleviate this problem, the new filesystem introduced
the concept of fragments. In this scheme, data blocks could be split into 2, 4, or 8
fragments, the size of which is determined when the filesystem is created. If a file
contained 4100 bytes, for example, the file would contain one 4096 byte data
block plus a fragment of 1024 bytes to store the fraction of data remaining.

When a file is extended, a new data block or another fragment will be
allocated. The policies that are followed for allocation are documented in
[MCKU84] and shown as follows:

Figure 9.5 Mapping the UFS filesystem to underlying disk geometries.

tracks

outer
track

data
blocks

meta-
data

Cylinder
Group 1

data
blocks

meta-
data

Cylinder
Group 2

data
blocks

track 1 track 2

TEAMFL
Y

TEAM FLY ®

Disk-Based Filesystem Case Studies 215

1. If there is enough space in the fragment or data block covering the end of the
file, the new data is simply copied to that block or fragment.

2. If there are no fragments, the existing block is filled and new data blocks are
allocated and filled until either the write has completed or there is
insufficient data to fill a new block. In this case, either a block with the
correct amount of fragments or a new data block will be allocated.

3. If the file contains one or more fragments and the amount of new data to
write plus the amount of data in the fragments exceeds the amount of space
available in a data block, a new data block is allocated and the data is copied
from the fragments to the new data block, followed by the new data
appended to the file. The process followed in Step 2 is then followed.

Of course, if files are extended by small amounts of data, there will be excessive
copying as fragments are allocated and then deallocated and copied to a full data
block.

The amount of space saved is dependent on the data block size and the
fragment size. However, with a 4096-byte block size and 512-byte fragments, the
amount of space lost is about the same as the old filesystem, so better throughput
is gained but not at the expense of wasted space.

FFS Allocation Policies
The Berkeley team recognized that improvements were being made in disk
technologies and that disks with different characteristics could be employed in a
single system simultaneously. To take advantage of the different disk types and to
utilize the speed of the processor on which the filesystem was running, the
filesystem was adapted to the specific disk hardware and system on which it ran.
This resulted in the following allocation policies:

■ Data blocks for a file are allocated from within the same cylinder group
wherever possible. If possible, the blocks were rotationally well-positioned so
that when reading a file sequentially, a minimal amount of rotation was
required. For example, consider the case where a file has two data blocks,
the first of which is stored on track 0 on the first platter and the second of
which is stored on track 0 of the second platter. After the first data block has
been read and before an I/O request can be initiated on the second, the disk
has rotated so that the disk heads may be one or more sectors past the sector
/ data just read. Thus, data for the second block is not placed in the same
sector on track 0 as the first block is on track 0, but several sectors further
forward on track 0. This allows for the disk to spin between the two read
requests. This is known as the disk interleave factor.

■ Related information is clustered together whenever possible. For example,
the inodes for a specific directory and the files within the directory are
placed within the same cylinder group. To avoid overuse of one cylinder
group over another, the allocation policy for directories themselves is

216 UNIX Filesystems—Evolution, Design, and Implementation

different. In this case, the new directory inode is allocated from another
cylinder group that has a greater than average number of free inodes and
the smallest number of directories.

■ File data is placed in the same cylinder group with its inode. This helps
reduce the need to move the disk heads when reading an inode followed
by its data blocks.

■ Large files are allocated across separate cylinder groups to avoid a single
file consuming too great a percentage of a single cylinder group. Switching
to a new cylinder group when allocating to a file occurs at 48KB and then at
each subsequent megabyte.

For these policies to work, the filesystem has to have a certain amount of free
space. Experiments showed that the scheme worked well until less than 10
percent of disk space was available. This led to a fixed amount of reserved space
being set aside. After this threshold was exceeded, only the superuser could
allocate from this space.

Performance Analysis of the FFS
[MCKU84] showed the results of a number of different performance runs to
determine the effectiveness of the new filesystem. Some observations from these
runs are as follows:

■ The inode layout policy proved to be effective. When running the ls
command on a large directory, the number of actual disk accesses was
reduced by a factor of 2 when the directory contained other directories and
by a factor of 8 when the directory contained regular files.

■ The throughput of the filesystem increased dramatically. The old filesystem
was only able to use 3 to 5 percent of the disk bandwidth while the FFS was
able to use up to 47 percent of the disk bandwidth.

■ Both reads and writes were faster, primarily due to the larger block size.
Larger block sizes also resulted in less overhead when allocating blocks.

These results are not always truly representative of real world situations, and the
FFS can perform badly when fragmentation starts to occur over time. This is
particularly true after the filesystem reaches about 90 percent of the available
space. This is, however, generally true of all different filesystem types.

Additional Filesystem Features
The introduction of the Fast File System also saw a number of new features being
added. Note that because there was no filesystem switch architecture at this time,
they were initially implemented as features of UFS itself. These new features
were:

Disk-Based Filesystem Case Studies 217

Symbolic links. Prior to their introduction, only hard links were supported in
the original UNIX filesystem.

Long file names. The old filesystem restricted file names to 15 characters. The
FFS provided file names of arbitrary length. In the first FFS implementation,
file names were initially restricted to 255 characters.

File locking. To avoid the problems of using a separate lock file to synchronize
updates to another file, the BSD team implemented an advisory locking
scheme. Locks could be shared or exclusive.

File rename. A single rename() system call was implemented. Previously,
three separate system calls were required which resulted in problems
following a system crash.

Quotas. The final feature added was that of support for user quotas. For further
details, see the section User and Group Quotas in Chapter 5.

All of these features are taken for granted today and are expected to be available
on most filesystems on all versions of UNIX.

What’s Changed Since the Early UFS Implementation?
For quite some time, disk drives have no longer adhered to fixed-size cylinders,
on the basis that more data can be stored on those tracks closer to the edge of the
platter than on the inner tracks. This now makes the concept of a cylinder group
somewhat of a misnomer, since the cylinder groups no longer map directly to the
cylinders on the disk itself. Thus, some of the early optimizations that were
present in the earlier UFS implementations no longer find use with today’s disk
drives and may, in certain circumstances, actually do more harm than good.

However, the locality of reference model employed by UFS still results in
inodes and data being placed in close proximity and therefore is still an aid to
performance.

Solaris UFS History and Enhancements
Because SunOS (the predecessor of Solaris) was based on BSD UNIX, it was one of
the first commercially available operating systems to support UFS. Work has
continued on development of UFS at Sun to this day.

This section analyzes the enhancements made by Sun to UFS, demonstrates
how some of these features work in practice, and shows how the underlying
features of the FFS, described in this chapter, are implemented in UFS today.

Making UFS Filesystems
There are still many options that can be passed to the mkfs command that relate
to disk geometry. First of all though, consider the following call to mkfs to create
a 100MB filesystem. Note that the size passed is specified in 512-byte sectors.

218 UNIX Filesystems—Evolution, Design, and Implementation

mkfs -F ufs /dev/vx/rdsk/fs1 204800
/dev/vx/rdsk/fs1:204800 sectors in 400 cylinders of 16 tracks, 32 sectors

100.0MB in 25 cyl groups (16 c/g, 4.00MB/g, 1920 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
 32, 8256, 16480, 24704, 32928, 41152, 49376, 57600, 65824, 74048, 82272,
 90496, 98720, 106944, 115168, 123392, 131104, 139328, 147552, 155776,
164000, 172224, 180448, 188672, 196896,

By default, mkfs determines the number of cylinder groups it chooses to make,
although this can be overridden by use of the cgsize=n option. By default, the
size of the filesystem is calculated by dividing the number of sectors passed to
mkfs by 1GB and then multiplying by 32. For each of the 25 cylinder groups
created in this filesystem, mkfs shows their location by displaying the location of
the superblock that is replicated throughout the filesystem at the start of each
cylinder group.

Some of the other options that can be passed to mkfs are shown below:

bsize=n. This option is used to specify the filesystem block size, which can
be either 4096 or 8192 bytes.

fragsize=n. The value of n is used to specify the fragment size. For a block
size of 4096, the choices are 512, 1024, 2048, or 4096. For a block size of 8192,
the choices are 1024, 2048, 4096, or 8192.

free=n. This value is the amount of free space that is maintained. This is the
threshold which, once exceeded, prevents anyone except root from
allocating any more blocks. By default it is 10 percent. Based on the
information shown in Performance Analysis of the FFS, a little earlier in this
chapter, this value should not be decreased; otherwise, there could be an
impact on performance due to the method of block and fragment allocation
used in UFS.

nbpi=n. This is an unusual option in that it specifies the number of bytes per
inode. This is used to determine the number of inodes in the filesystem. The
filesystem size is divided by the value specified, which gives the number of
inodes that are created.

Considering the nbpi option, a small filesystem is created as follows:

mkfs -F ufs /dev/vx/rdsk/fs1 5120
/dev/vx/rdsk/fs1: 5120 sectors in 10 cylinders of 16 tracks, 32 sectors
 2.5MB in 1 cyl groups (16 c/g, 4.00MB/g, 1920 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
 32,

There is one cylinder group for this filesystem. More detailed information about
the filesystem can be obtained through use of the fstyp command as follows:

fstyp -v /dev/vx/rdsk/fs1
ufs
magic 11954 format dynamic time Fri Mar 8 09:56:38 2002
sblkno 16 cblkno 24 iblkno 32 dblkno 272

Disk-Based Filesystem Case Studies 219

sbsize 2048 cgsize 2048 cgoffset 16 cgmask 0xfffffff0
ncg 1 size 2560 blocks 2287
bsize 8192 shift 13 mask 0xffffe000
fsize 1024 shift 10 mask 0xfffffc00
frag 8 shift 3 fsbtodb 1
minfree 10% maxbpg 2048 optim time
maxcontig 7 rotdelay 0ms rps 60
csaddr 272 cssize 1024 shift 9 mask 0xfffffe00
ntrak 16 nsect 32 spc 512 ncyl 10
cpg 16 bpg 512 fpg 4096 ipg 1920
nindir 2048 inopb 64 nspf 2
nbfree 283 ndir 2 nifree 1916 nffree 14
cgrotor 0 fmod 0 ronly 0 logbno 0
fs_reclaim is not set
file system state is valid, fsclean is 1
blocks available in each rotational position
cylinder number 0:
...

This shows further information about the filesystem created, in particular the
contents of the superblock. The meaning of many fields is reasonably self
explanatory. The nifree field shows the number of inodes that are free. Note
that this number of inodes is fixed as the following script demonstrates:

cd /mnt
i=1
while [$i -lt 1920] ; do ; > $i ; i=‘expr $i + 1‘ ; done
bash: 185: No space left on device
bash: 186: No space left on device
bash: 187: No space left on device
df -k /mnt
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/fs1 2287 18 2041 1% /mnt

So, although the filesystem is only 1 percent full, there are no more inodes
available.

Solaris UFS Mount Options
A number of new mount options that alter the behavior of the filesystem when
mounted have been added to Solaris UFS over the last several years. Shown here
are some of these options:

noatime. When a file is read, the inode on disk is updated to reflect the access
time. This is in addition to the modification time, that is updated when the
file is actually changed. Most applications tend not to be concerned about
access time (atime) updates and therefore may use this option to prevent
unnecessary updates to the inode on disk to improve overall performance.

forcedirectio | noforcedirectio. When a read() system call is
issued, data is copied from the user buffer to a kernel buffer and then to disk.
This data is cached and can therefore be used on a subsequent read without a

220 UNIX Filesystems—Evolution, Design, and Implementation

disk access being needed. The same is also true of a write() system call. To
avoid this double buffering, the forcedirectio mount option performs
the I/O directly between the user buffer and the block on disk to which the
file data belongs. In this case, the I/O can be performed faster than the
double buffered I/O. Of course, with this scenario the data is not cached in
the kernel and a subsequent read operation would involve reading the data
from disk again.

logging | nologging. By specifying the logging option, the filesystem
is mounted with journaling enabled, preventing the need for a full fsck in
the event of a system crash. This option is described in the section UFS
Logging later in this chapter.

Database I/O Support
The current read() / write() system call interactions between multiple
processes is such that there may be multiple concurrent readers but only a single
writer. As shown in the section Quick I/O for Databases, a little earlier in this
chapter, write operations are synchronized through the VOP_RWLOCK()
interface. For database and other such applications that perform their own
locking, this model is highly undesirable.

With the forcedirectio mount option, the locking semantics can be relaxed
when writing. In addition, direct I/O is performed between the user buffer and
disk, avoiding the extra copy that is typically made when performing a read or
write. By using UFS direct I/O, up to 90 percent of the performance of accessing
the raw disk can be achieved.

For more information on running databases on top of filesystems, see the
section Quick I/O for Databases a little earlier in this chapter.

UFS Snapshots
Sun implemented a snapshot mechanism with UFS whereby a consistent,
point-in-time image of the filesystem can be achieved, from which a backup can
be taken. The fssnap command can be used to create the snapshot. It takes a
filesystem to snap and a directory into which the snapshot file is placed (a sparse
file) and returns a pseudo device that can be mounted, giving access to the
snapshot. Note that UFS snapshots are read-only and not persistent across a
reboot. As blocks are modified in the snapped filesystem, they are first copied to
the snapshot. When reading from the snapshot, either the blocks are read from
the original filesystem if unchanged, or read from the snapshot if they have been
overwritten in the snapped filesystem.

The following example shows how UFS snapshots are used in practice. First of
all, a 100MB filesystem is created on the device fs1. This is the filesystem from
which the snapshot will be taken.

mkfs -F ufs /dev/vx/rdsk/fs1 204800
/dev/vx/rdsk/fs1:204800 sectors in 400 cylinders of 16 tracks, 32 sectors

Disk-Based Filesystem Case Studies 221

100.0MB in 25 cyl groups (16 c/g, 4.00MB/g, 1920 i/g)
super-block backups (for fsck -F ufs -o b=#) at:
 32, 8256, 16480, 24704, 32928, 41152, 49376, 57600, 65824, 74048, 82272,
 90496, 98720, 106944, 115168, 123392, 131104, 139328, 147552, 155776,
164000, 172224, 180448, 188672, 196896,

The following 10MB VxFS filesystem is created in which to store the snapshot.
VxFS is used to show that the snapshot device can reside on any filesystem type:

mkfs -F vxfs /dev/vx/rdsk/snap1
 version 4 layout
 20480 sectors, 10240 blocks of size 1024, log size 1024 blocks
 unlimited inodes, largefiles not supported
 10240 data blocks, 9144 free data blocks
 1 allocation units of 32768 blocks, 32768 data blocks
 last allocation unit has 10240 data blocks

Both filesystems are mounted, and two files are created on the UFS filesystem:

mount -F ufs /dev/vx/dsk/fs1 /mnt
mount -F vxfs /dev/vx/rdsk/snap1 /snap-space
echo "hello" > /mnt/hello
dd if=/dev/zero of=/mnt/64m bs=65536 count=1000
1000+0 records in
1000+0 records out
df -k
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 5121031 1653877 13315944 12% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
mnttab 0 0 0 0% /etc/mnttab
swap 4705240 16 4705224 1% /var/run
swap 4705240 16 4705224 1% /tmp
/dev/vx/dsk/fs1 95983 64050 22335 75% /mnt
/dev/vx/dsk/snap1 10240 1109 8568 12% /snap-space

As a reference point, the df command shows the amount of space on each
filesystem. Next, the fssnap command is run, which creates the snapshot and
returns the pseudo device representing the snapshot:

fssnap -o backing-store=/snap-space /mnt
/dev/fssnap/0
ls -l /snap-space
total 16
drwxr-xr-x 2 root root 96 Mar 12 19:45 lost+found
-rw------ 1 root other 98286592 Mar 12 19:48 snapshot0

The snapshot0 file created is a sparse file. The device returned by fssnap can
now be used to mount the snapshot. The following df output shows that the
snapshot mirrors the UFS filesystem created on fs1 and the size of the
/snap-space filesystem is largely unchanged (showing that the snapshot0 file
is sparse).

222 UNIX Filesystems—Evolution, Design, and Implementation

mount -F ufs -o ro /dev/fssnap/0 /snap
df -k
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 15121031 1653877 13315944 12% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
mnttab 0 0 0 0% /etc/mnttab
swap 4705040 16 4705024 1% /var/run
swap 4705040 16 4705024 1% /tmp
/dev/vx/dsk/fs1 95983 64050 22335 75% /mnt
/dev/vx/dsk/snap1 10240 1117 8560 12% /snap-space
/dev/fssnap/0 95983 64050 22335 75% /snap

The -i option to fssnap can be used to display information about the snapshot,
as shown below. The granularity value shows the amount of data that is copied to
the snapshot when blocks in the original filesystem have been overwritten.

fssnap -i /mnt
Snapshot number : 0
Block Device : /dev/fssnap/0
Raw Device : /dev/rfssnap/0
Mount point : /mnt
Device state : active
Backing store path : /snap-space/snapshot0
Backing store size : 0 KB
Maximum backing store size : Unlimited
Snapshot create time : Sat Mar 09 11:28:48 2002
Copy-on-write granularity : 32 KB

The following examples show that even when a file is removed in the snapped
filesystem, the file can still be accessed in the snapshot:

rm /mnt/hello
cat /snap/hello
hello
ls -l /snap
total 128098
-rw-r--r- 1 root other 65536000 Mar 9 11:28 64m
-rw-r--r- 1 root other 6 Mar 9 11:28 hello
drwx----- 2 root root 8192 Mar 9 11:27 lost+found
ls -l /mnt
total 128096
-rw-r--r- 1 root other 65536000 Mar 9 11:28 64m
drwx----- 2 root root 8192 Mar 9 11:27 lost+found

To fully demonstrate how the feature works, consider again the size of the
original filesystems. The UFS filesystem is 100MB in size and contains a 64MB
file. The snapshot resides on a 10MB VxFS filesystem. The following shows what
happens when the 64MB file is removed from the UFS filesystem:

rm /mnt/64m
df -k

Disk-Based Filesystem Case Studies 223

Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 15121031 1653877 13315944 12% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
mnttab 0 0 0 0% /etc/mnttab
swap 4705000 16 4704984 1% /var/run
swap 4705000 16 4704984 1% /tmp
/dev/vx/dsk/fs1 95983 9 86376 1% /mnt
/dev/vx/dsk/snap1 10240 1245 8440 13% /snap-space
/dev/fssnap/0 95983 64050 22335 75% /snap

Note that the although the 64MB file was removed, there is little increase in the
amount of space used by the snapshot. Because the data blocks of the 64m file
were freed but not overwritten, there is no need to copy them to the snapshot
device at this stage. However, if dd is run to create another file in the UFS
filesystem as follows:

dd if=/dev/zero of=/mnt/64m bs=65536 count=1000
1000+0 records in
1000+0 records out

a new file is created and, as blocks are allocated to the file and overwritten, the
original contents must be copied to the snapshot. Because there is not enough
space to copy 64MB of data, the snapshot runs out of space resulting in the
following messages on the system console. Note that the VxFS filesystem first
reports that it is out of space. Because no more data can be copied to the snapshot,
the snapshot is no longer intact and is automatically deleted.

Mar 9 11:30:03 gauss vxfs: [ID 332026 kern.notice]
NOTICE: msgcnt 2 vxfs: mesg 001: vx_nospace /dev/vx/dsk/snap1 file system
full (1 block extent)
Mar 9 11:30:03 gauss fssnap: [ID 443356 kern.warning]
WARNING: fssnap_write_taskq: error writing to backing file. DELETING
SNAPSHOT 0, backing file path /snap-space/snapshot0, offset 13729792
bytes, error 5.
Mar 9 11:30:03 gauss fssnap: [ID 443356 kern.warning]
WARNING: fssnap_write_taskq: error writing to backing file. DELETING
SNAPSHOT 0, backing file path /snap-space/snapshot0, offset 12648448
bytes, error 5.
Mar 9 11:30:03 gauss fssnap: [ID 894761 kern.warning]
WARNING: Snapshot 0 automatically deleted.

To confirm the out-of-space filesystem, df is run one last time:

df -k
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 15121031 1653878 13315943 12% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
mnttab 0 0 0 0% /etc/mnttab
swap 4704824 16 4704808 1% /var/run
swap 4704824 16 4704808 1% /tmp

224 UNIX Filesystems—Evolution, Design, and Implementation

/dev/vx/dsk/fs1 95983 64049 22336 75% /mnt
/dev/vx/dsk/snap1 10240 10240 0 100% /snap-space
/dev/fssnap/0 95983 64050 22335 75% /snap

UFS snapshots are a useful way to create a stable image of the filesystem prior to
running a backup. Note, however, that the size of the filesystem on which the
snapshot resides must be large enough to accommodate enough copied blocks
for the duration of the backup.

UFS Logging
Solaris UFS, starting with Solaris 7, provides a journaling capability referred to as
UFS Logging. Unfortunately, there is little documentation outside of Sun to show
how logging works.

To enable logging, the mount command should be invoked with the logging
option. The amount of space used for logging is based on the size of the
filesystem. 1MB is chosen for each GB of filesystem space up to a maximum of
64MB. As with VxFS, the log is circular. Wrapping or reaching the tail of the log
involves flushing transactions that are held in the log.

As with VxFS journaling (described in the section VxFS Journaling earlier in
this chapter) by using UFS logging the log can be replayed following a system
crash to bring it back to a consistent state.

The ext2 and ext3 Filesystems

The first filesystem that was developed as part of Linux was a Minix filesystem
clone. At this time, the Minix filesystem stored its block addresses in 16-bit
integers that restricted the size of the filesystem to 64MB. Also, directory entries
were fixed in size and therefore filenames were limited to 14 characters. Minix
filesystem support was replaced in 1992 by the ext filesystem, which supported
filesystem sizes up to 2GB and filename sizes up to 255 characters. However, ext
inodes did not have separate access, modification, and creation time stamps, and
linked lists were used to manage free blocks and inodes resulting in
fragmentation and less-than-ideal performance.

These inadequacies were addressed by both the Xia filesystem and the ext2
filesystem (which was modelled on the BSD Fast File System), both of which
provided a number of enhancements, including a better on-disk layout for
managing filesystem resources. The improvements resulting in ext2 far
outweighed those of Xia, and in ext2 became the defacto standard on Linux.

The following sections first describe the ext2 filesystem, followed by a
description of how the filesystem has evolved over time to produce the ext3
filesystem which supports journaling and therefore fast recovery.

TEAMFL
Y

TEAM FLY ®

Disk-Based Filesystem Case Studies 225

Features of the ext2 Filesystem
Shown below are the main features supported by ext2:

4TB filesystems. This required changes within the VFS layer. Note that the
maximum file and filesystem size are properties of the underlying filesystem
and the kernel implementation.

255-byte filenames. Directory entries are variable in length with a maximum
size of 255 bytes.

Selectable file semantics. With a mount option, the administrator can choose
whether to have BSD or SVR4 file semantics. This has an effect on the group
ID chosen when a file is created. With BSD semantics, files are created with
the same group ID as the parent directory. For System V semantics, if a
directory has the set group ID bit set, new files inherit the group ID bit of the
parent directory and subdirectories inherit the group ID and set group ID bit;
otherwise, files and directories inherit the primary group ID of the calling
process.

Multiple filesystem block sizes. Block sizes of 1024, 2048, and 4096 bytes can
be specified as an option to mkfs.

Reserved space. Up to 5 percent of the filesystem can be reserved for root-only
files, allowing some recovery in the case of a full filesystem.

Per-file attributes. Attributes can be set on a file or directory to affect
subsequent file access. This is described in detail in the next section.

BSD-like synchronous updates. A mount option ensures that all meta-data
(inodes, bitmaps, indirects and directories) are written to disk synchronously
when modified. This increases filesystem integrity although at the expense
of performance.

Periodic filesystem checks. To enforce filesystem integrity, ext2 has two ways
of ensuring that a full fsck is invoked on the filesystem. A count is kept of
how many times the filesystem is mounted read/write. When it reaches a
specified count, a full fsck is invoked. Alternatively, a time-based system
can be used to ensure that the filesystem is cleaned on a regular basis.

Fast symbolic links. As with VxFS, symbolic links are stored in the inode itself
rather than in a separate allocated block.

The following sections describe some of these features in more detail.

Per-File Attributes
In addition to the features listed in the last section, there is a set of per-file
attributes which can be set using the chattr command and displayed using the
lsattr command. The supported attributes are:

226 UNIX Filesystems—Evolution, Design, and Implementation

EXT2_SECRM_FL. With this attribute set, whenever a file is truncated the
data blocks are first overwritten with random data. This ensures that once a
file is deleted, it is not possible for the file data to resurface at a later stage in
another file.

EXT2_UNRM_FL. This attribute is used to allow a file to be undeleted.
EXT2_SYNC_FL. With this attribute, file meta-data, including indirect blocks,

is always written synchronously to disk following an update. Note, though,
that this does not apply to regular file data.

EXT2_COMPR_FL. The file is compressed. All subsequent access must use
compression and decompression.

EXT2_APPEND_FL. With this attribute set, a file can only be opened in
append mode (O_APPEND) for writing. The file cannot be deleted by
anyone.

EXT2_IMMUTABLE_FL. If this attribute is set, the file can only be read and
cannot deleted by anyone.

Attributes can be set on both regular files and directories. Attributes that are set
on directories are inherited by files created within the directory.

The following example shows how the immutable attribute can be set on a file.
The passwd file is first copied into the current directory and is shown to be
writable by root. The chattr command is called to set the attribute, which can
then displayed by calling lsattr. The two operations following show that it is
then no longer possible to remove the file or extend it:

cp /etc/passwd .
ls -l passwd
-rw-r--r-- 1 root root 960 Jan 28 17:35 passwd
chattr +i passwd
lsattr passwd
---i--------passwd
rm passwd
rm: cannot unlink 'passwd': Operation not permitted
cat >> passwd
bash: passwd: Permission denied

Note that at the time of writing, not all of the file attributes are implemented.

The ext2 Disk Layout
The layout of structures on disk is shown in Figure 9.6. Aside from the boot
block, the filesystem is divided into a number of fixed size block groups. Each
block group manages a fixed set of inodes and data blocks and contains a copy of
the superblock that is shown as follows. Note that the first block group starts at
an offset of 1024 bytes from the start of the disk slice or volume.

struct ext2_super_block {
unsigned long s_inodes_count; /* Inodes count (in use)*/

Disk-Based Filesystem Case Studies 227

unsigned long s_blocks_count; /* Blocks count (in use) */
unsigned long s_r_blocks_count; /* Reserved blocks count */
unsigned long s_free_blocks_count; /* Free blocks count */
unsigned long s_free_inodes_count; /* Free inodes count */
unsigned long s_first_data_block; /* First Data Block */
unsigned long s_log_block_size; /* Block size */
long s_log_frag_size; /* Fragment size */
unsigned long s_blocks_per_group; /* # Blocks per group */
unsigned long s_frags_per_group; /* # Fragments per group */
unsigned long s_inodes_per_group; /* # Inodes per group */
unsigned long s_mtime; /* Mount time */
unsigned long s_wtime; /* Write time */
unsigned short s_mnt_count; /* Mount count */
short s_max_mnt_count; /* Maximal mount count */
unsigned short s_magic; /* Magic signature */
unsigned short s_state; /* File system state */
unsigned short s_errors; /* Error handling */
unsigned long s_lastcheck; /* time of last check */
unsigned long s_checkinterval; /* max. time between checks */

};

Many of the fields shown here are self explanatory and describe the usage of
inodes and data blocks within the block group. The magic number for ext2 is
0xEF58. The fields toward the end of the superblock are used to determine when
a full fsck should be invoked (either based on the number of read/write mounts
or a specified time).

When writing sequentially to a file, ext2 tries to preallocate space in units of 8
contiguous blocks. Unused preallocation is released when the file is closed, so no
space is wasted. This is used to help prevent fragmentation, a situation under
which the majority of the blocks in the file are spread throughout the disk because
contiguous blocks may be unavailable. Contiguous blocks are also good for
performance because when files are accessed sequentially there is minimal disk
head movement.

Figure 9.6 The ext2 disk layout.

boot
block Block Group 1Block Group 0 Block Group n...

Group

Descriptor

Block

Bitmap

Inode

Table
Data Blocks

Inode

BitmapSuperblock

228 UNIX Filesystems—Evolution, Design, and Implementation

It is said that ext2 does not need defragmentation under normal load as long as
there is 5 percent of free space on a disk. However, over time continuous addition
and removal of files of various size will undoubtedly result in fragmentation to
some degree. There is a defragmentation tool for ext2 called defrag but users
are cautioned about its use—if a power outage occurs when running defrag,
the file system can be damaged.

The block group is described by the following structure:

struct ext2_group_desc {
unsigned long bg_block_bitmap; /* Blocks bitmap block */
unsigned long bg_inode_bitmap; /* Inodes bitmap block */
unsigned long bg_inode_table; /* Inodes table block */
unsigned short bg_free_blocks_count; /* Free blocks count */
unsigned short bg_free_inodes_count; /* Free inodes count */
unsigned short bg_used_dirs_count; /* Directories count */

};

This structure basically points to other components of the block group, with the
first three fields referencing specific block numbers on disk. By allocating inodes
and disk blocks within the same block group, it is possible to improve
performance because disk head movement may be reduced. The
bg_used_dirs_count field records the number of inodes in the group that are
used for directories. This count is used as part of the scheme to balance
directories across the different block groups and to help locate files and their
parent directories within the same block group.

To better see how the block group structures are used in practice, the following
example, using a small ext2 filesystem, shows how structures are set up when a
file is allocated. Firstly, a filesystem is made on a floppy disk as follows:

mkfs /dev/fd0
mke2fs 1.24a (02-Sep-2001)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
1 block group
8192 blocks per group, 8192 fragments per group
184 inodes per group

Writing inode tables: 0/1done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 35 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Analysis of the on-disk structures can be achieved using the debugfs command.
The show_super_stats displays the superblock and the disk group structures.
With the -h option, only the superblock is displayed:

Disk-Based Filesystem Case Studies 229

debugfs /dev/fd0
debugfs 1.24a (02-Sep-2001)
debugfs: show_super_stats -h
Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: e4e5f20a-f5f3-4499-8fe0-183d9f87a5ba
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: filetype sparse_super
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 184
Block count: 1440
Reserved block count: 72
Free blocks: 1399
Free inodes: 173
First block: 1
Block size: 1024
Fragment size: 1024
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 184
Inode blocks per group: 23
Last mount time: Wed Dec 31 16:00:00 1969
Last write time: Fri Feb 8 16:11:59 2002
Mount count: 0
Maximum mount count: 35
Last checked: Fri Feb 8 16:11:58 2002
Check interval: 15552000 (6 months)
Next check after: Wed Aug 7 17:11:58 2002
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128

Group 0: block bitmap at 3, inode bitmap at 4, inode table at 5
 1399 free blocks, 173 free inodes, 2 used directories

The block group information is shown separate from the superblock. It shows the
block numbers where the various structural information is held. For example, the
inode bitmap for this block group is stored at block 4—recall from the information
displayed when the filesystem was made that the block size is 1024 bytes. This is
stored in the s_log_block_size field in the superblock.

Further information about the block group can be displayed with the
dumpe2fs command as follows:

dumpe2fs /dev/fd0
dumpe2fs 1.24a (02-Sep-2001)
...
Group 0: (Blocks 1 -1439)
 Primary Superblock at 1, Group Descriptors at 2-2
 Block bitmap at 3 (+2), Inode bitmap at 4 (+3)

230 UNIX Filesystems—Evolution, Design, and Implementation

 Inode table at 5-27 (+4)
 1399 free blocks, 173 free inodes, 2 directories
 Free blocks: 41-1439
 Free inodes: 12-184

There are 184 inodes per group in the example here. Inodes start at inode number
11 with the lost+found directory occupying inode 11. Thus, the first inode
available for general users is inode 12. The following example shows how all
inodes can be used but without all of the space being consumed:

cd /mnt
i=12
while [$i -lt 188] ; do ; > $i ; i=‘expr $i + 1‘ ; done
bash: 185: No space left on device
bash: 186: No space left on device
bash: 187: No space left on device
df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda3 19111092 1844084 17267008 10% /
/dev/hda1 21929 3615 17182 18% /boot
shmfs 127780 0 127780 0% /dev/shm
/dev/fd0 1412 15 1325 2% /mnt

So, although the filesystem is only 2 percent full, all of the inodes have been
allocated. This represents one of the difficulties that filesystems have faced over
the years where the number of inodes are statically allocated when the filesystem
is made.

The following example shows the statistics of an allocated file:

cp /etc/passwd /mnt ; umount /mnt
debugfs /dev/fd0
debugfs 1.24a (02-Sep-2001)
debugfs: ls -l /

 2 40755 0 0 1024 13-Feb-2002 20:20 .
 2 40755 0 0 1024 13-Feb-2002 20:20 ..
 11 40755 0 0 12288 13-Feb-2002 20:18 lost+found
 12 100644 0 0 2064 13-Feb-2002 20:20 passwd
debugfs: stat <12>
Inode: 12 Type: regular Mode: 0644 Flags: 0x0 Generation: 59537
User: 0 Group: 0 Size: 2064
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 6
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x3c6b3af9 -Wed Feb 13 20:20:09 2002
atime: 0x3c6b3af8 -Wed Feb 13 20:20:08 2002
mtime: 0x3c6b3af8 -Wed Feb 13 20:20:08 2002
BLOCKS:
(0-2):41-43
TOTAL: 3

Disk-Based Filesystem Case Studies 231

In this case, the file is displayed by inode number. The size of the file is 2064 bytes
which results in three blocks being allocated: blocks 41 to 43. Recall from
displaying the block group information shown previously that the first data block
started at block 41.

ext2 On-Disk Inodes
The ext2 on-disk inode structure is defined by the ext2_inode structure as
follows:

struct ext2_inode {
 __u16 i_mode; /* File mode */
 __u16 i_uid; /* Low 16 bits of Owner Uid */
 __u32 i_size; /* Size in bytes */
 __u32 i_atime; /* Access time */
 __u32 i_ctime; /* Creation time */
 __u32 i_mtime; /* Modification time */
 __u32 i_dtime; /* Deletion Time */
 __u16 i_gid; /* Low 16 bits of Group Id */
 __u16 i_links_count; /* Links count */
 __u32 i_blocks; /* Blocks count */
 __u32 i_flags; /* File flags */

__u32 i_block[EXT2_N_BLOCKS];/* Pointers to blocks */
 __u32 i_generation; /* File version (for NFS) */
 __u32 i_file_acl; /* File ACL */
 __u32 i_dir_acl; /* Directory ACL */
 __u32 i_faddr; /* Fragment address */

struct {
__u8 l_i_frag; /* Fragment number */
__u8 l_i_fsize; /* Fragment size */

} linux2;
};

The first several fields are self explanatory. The i_blocks field records the
number of blocks that the file has allocated. This value is in 512-byte chunks.
These blocks are stored as either direct data blocks in i_block[] or are
referenced through indirect blocks within the same array. For example, consider
the passwd file copied to an ext2 filesystem as shown above. Because the file is
2064 bytes in size, three 1024 byte blocks are required. The actual block count
shown is 6 (512 byte blocks).

The inode i_block[] array has EXT2_N_BLOCKS (15) pointers to blocks of
data. The first EXT2_NDIR_BLOCKS (12) entries in the array are direct pointers to
data blocks. The i_block[12] element points to an indirect block of pointers to
data blocks. The i_block[13] element points to a double indirect block for
which each element points to an indirect block. The i_block[14] element
points to a triple indirect block of pointers to double indirects.

Various inode numbers are reserved which explains why the first inode
allocated has an inode number of 12 (lost+found is 11). Some reserved inodes
are:

232 UNIX Filesystems—Evolution, Design, and Implementation

EXT2_BAD_INO (1). This file contains a list of bad blocks on the file system.

EXT2_ROOT_INO (2). This is the root directory of the file system.
EXT2_ACL_IDX_INO (3). ACL inode.

EXT2_ACL_DATA_INO (4). ACL inode.
EXT2_BOOT_LOADER_INO (5). The file contains the boot loader.

EXT2_UNDEL_DIR_INO (6). This file is used for file undelete.
EXT2_FIRST_INO (11). This is the first inode that does not have a special

meaning and can be used for other purposes.

There are many different inode flags that can be stored in i_flags. These map
to the file attributes that can be set with chattr.

The i_faddr field is used in the case where the fragment size and block size
are not equal. If the file does not require an exact number of filesystem-sized
blocks, the last portion of the file data is stored in a fragment. The location of the
fragment is stored in this field.

Repairing Damaged ext2 Filesystems
The e2fsck is used to repair filesystem inconsistencies, that can occur following
a system crash. The process followed is divided into five separate passes which
are listed below. The information shown here is based on material that appears in
the Linux System Administrators Guide [WIRZ95]:

Pass 1. This phase takes the longest time to execute, because all of the inodes
have to be read into memory and checked.

In this phase, e2fsck checks each inode in the filesystem to ensure the
file mode is valid and that all of the blocks in the inode are valid block
numbers. During pass 1, bitmaps indicating which blocks and inodes are in
use are compiled, to be used later.

If e2fsck notices data blocks that are mapped by more than one inode, it
can either clone the duplicated blocks so that each inode has its own copy, or
remove the blocks from one or more of the inodes.

To reduce the I/O time necessary in future passes, critical filesystem
information is cached in memory, including the location on disk of all of the
directory blocks on the filesystem. This removes the need to re-read the
directory inodes during pass 2.

Pass 2. In this phase directories are validated. Because directory entries do not
span disk blocks, each directory block can be checked individually without
reference to other directory blocks. The directory blocks are checked to
make sure that the directory entries are valid and contain references to
inode numbers that are in use (as determined by pass 1).

For the first directory block in each directory inode, the “.” and ”..”
entries are checked to make sure they exist, and that the inode number for
the “.” entry matches the current directory.

Disk-Based Filesystem Case Studies 233

Pass 2 also caches information concerning the parent directory in which
each directory is linked. If a directory is referenced by more than one
directory, the second reference of the directory is treated as an illegal hard
link and is removed.

Note that at the end of pass 2, nearly all disk I/O that e2fsck needs to
perform is complete. Information required by passes 3, 4, and 5 are cached in
memory; hence, the remaining passes of e2fsck are largely CPU bound and
take less than 5 to 10 percent of the total running time.

Pass 3. In this phase, the directory connectivity is checked by tracing the path of
each directory back to the root using information that was cached during
pass 2. At this time, the “..” entry for each directory is also checked to make
sure it is valid. Any directories that can not be traced back to the root are
linked to the lost+found directory.

Pass 4. In this phase, e2fsck checks the reference counts for all inodes by
iterating over all the inodes and comparing the link counts (which were
cached in pass 1) against internal counters calculated during passes 2 and 3.
Any undeleted files with a zero link count are placed in lost+found during
this pass.

Pass 5. In this last phase e2fsck checks the validity of the filesystem summary
information. It compares the block and inode bitmaps which were
constructed during the previous passes against the actual bitmaps on the
filesystem and corrects the on-disk copies if necessary.

The e2fsck program is designed to run as quickly as possible. Because
filesystem checking programs tend to be disk-bound, this was done by optimizing
the algorithms used by e2fsck so that filesystem structures are not repeatedly
accessed from the disk. In addition, the order in which inodes and directories are
checked are sorted by block number, to reduce the amount of time in disk seeks.

Tuning a ext2 Filesystem
The tune2fs program can be used to change the various tunable parameters of
an ext2 filesystem. Some of the different tunables that can be changed are:

-c max-mount-counts. This option adjusts the count of read/write mounts
between two filesystem checks.

-e error-behavior. When errors are detected, the behavior of the ext2
kernel code can be altered with this option. The value of error-behavior
can be continue in that the kernel continues with normal execution,
remount-ro, which forces the kernel to remount the filesystem read-only,
or panic in which case the kernel will panic.

-u user. This option sets the user who can benefit from the reserved blocks
when the filesystem becomes full. The value of user can be a numerical user
ID or a user name.

For further information on tune2fs see the tune2fs(8) manual page.

234 UNIX Filesystems—Evolution, Design, and Implementation

Resizing ext2 Filesystems
The resize2fs command can be used to increase or decrease the size of an ext2
filesystem. Note that the filesystem must be unmounted before the resize can
take place. The resize2fs program does not manipulate the size of underlying
partition. To increase the size of a filesystem, the partition must be increased first
using fdisk. Similarly, to decrease the size of an ext2 filesystem, the partition
must be resized with fdisk following the call to resize2fs.

If an ext2 filesystem resides on an LVM (Logical Volume Manager) volume, the
e2fsadm command can be used to resize both the filesystem and the underlying
logical volume.

The ext3 Filesystem
The ext3 filesystem was introduced to solve one specific problem, namely the
amount of time it takes to perform a filesystem check following a system crash.

As described in the section VxFS Journaling, earlier in this chapter, these times
can be significant, measured in many hours, if the filesystem is very large in size.
Note that large in this case is actually a property of the amount of structural data
(inodes) and not specifically the size of the filesystem.

Another goal behind ext3 was to make as few changes to the underlying ext2
code base as possible because ext2 is small in size, easy to maintain, robust, and
well understood.

The use of ext3 was positioned in such a way that it is easy to transition
between ext2 and ext3 filesystems and vice versa.

The actual journaling layer is separate from ext3. The filesystem understands
the concepts of transaction (when one starts, when it finishes) but it is not
actually responsible for the journaling.

How to Use an ext3 Filesystem
A new ext3 filesystem can be created by mkfs or by converting an existing ext2
filesystem. To create a new ext3 filesystem, mkfs is called as follows:

mkfs -j /dev/sda5

To convert an existing ext2 filesystem to an ext3 filesystem, the tune2fs
command can be invoked as follows:

tune2fs -j /dev/sda5

Note that the command can be invoked on either a mounted or unmounted
filesystem. If invoked on a mounted filesystem, the journal will appear as a
visible file (.journal). If invoked on an unmounted filesystem or if mkfs -j is
run when making the filesystem, the journal will not be visible.

To actually mount the filesystem, the ext3 filesystem type must be specified:

TEAMFL
Y

TEAM FLY ®

Disk-Based Filesystem Case Studies 235

mount -t ext3 /dev/sda5 /mnt1

Conversion back to ext2 can be achieved by using the tune2fs command as
follows:

tune2fs -O ^has_journal /dev/sda5

or simply by replaying the log to make the filesystem clean and then simply
mounting it as an ext2 filesystem.

Data Integrity Models in ext3
As with VxFS, there is a set of choices about the type and level of journaling to be
performed. Users can choose among the following options, which are passed to
mount.

data=writeback. This option limits data integrity guarantees so that file
data itself is not journaled. The filesystem, is however, guaranteed to be
structurally sound at all times.

data=ordered. This mode, which is the default, ensures that data is
consistent at all times. The data is actually written to the file before the
transaction is logged. This ensures that there is no stale data in any
filesystem block after a crash.

data=journal. This option writes all file data through the journal. This
means that the data is actually written to disk twice. This option provides the
best guarantees in terms of filesystem integrity but because data is written
through the journal, performance can be significantly impacted and the time
for recovery after a crash can be much greater.

How Does ext3 Work?
The design of ext3 was presented in [TWEE98]. To provide a transaction
mechanism, all meta-data-related data blocks must be logged in the journal. There
are three distinct types of blocks in question:

Journal blocks. An update to an inode, for example, will write the entire
filesystem block to which the inode belongs in to the journal. In [TWEE98],
Stephen Tweedie claims that this is a relatively cheap method due to the
sequential nature in which data is written to the journal, and that by
following this simple approach, there is little complexity in the kernel and
therefore less CPU overhead.

Descriptor blocks. These blocks describe other journal blocks and are written
to the journal before the journal blocks are written. Because the journal
blocks are the actual meta-data blocks that must be written, the descriptor
blocks are used to record information about the journal blocks, such as the
disk block on which they reside.

236 UNIX Filesystems—Evolution, Design, and Implementation

Header blocks. The header blocks are written throughout the journal. They
record the start and end of the journal together with a sequence number that
is used during recovery to locate the order in which the blocks were written.

As with VxFS, transactions are delayed in memory to aid performance. With ext3,
a set of transactions is batched into a compound transaction and committed to the
journal on disk. This process is called checkpointing. While checkpointing is in
progress, a new compound transaction is started, that will record any further
changes to the filesystem while the previous compound transaction is being
written to disk.

Crash recovery is performed by walking through the journal and writing any
journal blocks to their correct location on disk. Because this is an idempotent
operation, a crash in the middle of recovery does not matter because the process
can be repeated any number of times with exactly the same effect.

Summary

There are many different UNIX filesystems and to scratch the surface on all of
them would easily fill a book of this size. The three filesystems described in the
chapter represent a good cross section of filesystems from the UNIX and Linux
operating systems and cover the commercial filesystem market (VxFS), the most
widely documented and ported filesystem (UFS), and the most popular open
source filesystems (ext2 and ext3).

Only a few other filesystems have been documented in any detail. [HANC01]
describes the AdvFS filesystem developed by Digital which is the main
filesystem of their True64 operating system. [KELL96] describes IBM’s JFS
filesystem.

To understand filesystem internals it is always best to start with one of the
simple filesystems such as the original System V filesystem as documented in
[LION96]. If studying Linux, the ext2 filesystem on one of the earlier kernels is a
good place to start before looking at the more elaborate, and therefore more
complex, filesystems.

CHAPTER

10

237

Mapping Filesystems to
Multiprocessor Systems

Once upon a time, filesystem writers (in fact kernel writers in general) didn’t have
to worry about multiprocessor issues. Certain structures needed protection by
locks for the case where a process went to sleep (for example, for an I/O
operation) or if interrupts executed code which could attempt to access structures
that were being used by the process currently running on the CPU.

All of this changed with the introduction of Symmetric Multiprocessor
(SMP)-based systems, where multiple CPUs share the same memory and a single
kernel runs across all of the CPUs. In this model, one must assume that threads of
execution could be running within any part of the kernel and could attempt to
modify any kernel structure at the same time as another thread.

This chapter follows the evolution of UNIX through the earlier Uni-Processor
(UP) days through to today’s highly scalable SMP-based UNIX implementations.
Different types of MP locks are described, as well as how the VERITAS filesystem,
VxFS, uses these locks to manage its set of in-core inodes.

The Evolution of Multiprocessor UNIX

[WAIT87] documents the early years of Multi-Processor (MP) development in
UNIX. In the mid 1980s the emergence of Sun Microsystems and Apollo

238 UNIX Filesystems—Evolution, Design, and Implementation

Computing saw the introduction of cheaper workstations, allowing engineers to
have their own workstations for the first time. In addition to the well-established
computer companies such as DEC, IBM, and Cray, newcomers including
Sequent, Alliant, Convex, and Encore started to introduce multiprocessor-based
UNIX operating systems and hardware.

The first MP UNIX, named MUNIX, was developed at the Naval Postgraduate
School in Monterey [HAWL75]. An MP-based UNIX kernel developed at Purdue
University in the late 1970s ran on a VAX computer in a master/slave model
whereby the UNIX kernel ran on one processor while user applications ran on
the other processors. Within Bell Labs, the UNIX/370 project was formed to
create an MP UNIX kernel to run on an MP version of the IBM 370 mainframe.
This kernel used semaphores to lock various kernel structures. Members of the
Bell Labs team then went on to create an MP UNIX to run on their own 3B20A
resulting in a kernel that could perform 70 percent better than the UP version.

One company that would make enormous enhancements to SMP UNIX and
that would eventually find its way into SVR4 ES/MP was Sequent Computers,
which emerged in the mid 1980s and made significant improvements to both the
underlying hardware and the UNIX kernel.

The large number of UNIX systems companies has diminished somewhat with
consolidation around systems from Sun, IBM, and HP, all of which are today
producing SMP systems with up to 64 CPUs.

Traditional UNIX Locking Primitives

This section examines the earlier uni-processor (UP) UNIX synchronization
primitives starting with 5th Edition UNIX and going up to SVR4.0. Over this
twenty-year time period, the implementation stayed remarkably similar. As
noted in his book Lions Commentary on UNIX 6th Edition-with Source Code
[LION96], John Lions notes that the early mechanisms for handling critical
sections of code were “totally inappropriate in a multi-processor system.”

As mentioned earlier, in UP UNIX implementations, the kernel needed to
protect data structures in the case when a process went to sleep or when
handling interrupts. The reasons a process might sleep include: waiting for I/O,
waiting for a lock owned by another process, or giving up the CPU to another
process after using up its timeslice.

If a process needs to access some resource such as a buffer cache buffer that is
currently in use, it will issue a sleep() call specifying the address of the
resource it requires. A swtch() call is made to relinquish control of the CPU,
allowing another process to run. For example, to wait on a busy buffer, the
following code sequence is made:

if (bp->b_flags & B_BUSY) {
bp->b_flags |= B_WANTED;
sleep(bp, PRIBIO);

}

Mapping Filesystems to Multiprocessor Systems 239

The address of the structure on which the process is waiting (called the wait
channel) is stored in the p_wchan field of the proc structure. The priority
argument passed to sleep() will be described in more detail later in the chapter.
Note for now though that if the priority is greater than or equal to zero, the
process may be awoken from a sleep by a signal. A value of less than zero
prevents this from happening.

When a process is about to relinquish control of a specific resource, it looks to
see if another process is waiting on the resource and issues a corresponding
wakeup() call to signal to the process that the resource is now available. In this
case, the following code sequence is invoked:

if (bp->b_flags & B_WANTED)
wakeup(bp);

To determine which process is sleeping on the resource, a scan is made through
the proc table issuing a wakeup() call for each process whose p_wchan field is
set to bp.

Hardware and Software Priority Levels
To prevent data structures from being modified by interrupt handling code,
critical sections were protected by software priority levels. Because interrupts can
occur at any time, there is a potential for an interrupt handler to modify the same
data structure as the process currently running, resulting in a corrupted variable
or linked list. To prevent this from happening, UNIX allows the running process
to temporarily disable interrupts while executing critical sections of code.
Disabling all interrupts is typically unnecessary, so a number of priority levels
were established allowing the kernel to block one or more interrupts depending
on the type of operation being performed.

When porting an operating system, notice must be taken of the
hardware-assigned priorities for each device. This is a hardware decision for
which the operating system developers may have little or no choice. However, by
knowing the hardware vector, it is then possible to disable specific interrupts.
Each interrupt is assigned a priority such that if an interrupt were to occur while
an interrupt handler is running for the same device, the interrupt can be
temporarily masked.

For example, Table 10.1 shows the interrupt vector around the time of 5th
Edition UNIX.

When an interrupt occurs, the process priority is changed to reflect the type of
interrupt. Although the table shows the process and interrupt priorities to be the
same, this does not have to occur in practice. If the RK disk driver interrupts, the
processor priority will be switched to level 5. This prevents any interrupts from
occurring at processor priority less than or equal to 5. Any interrupts that occur at
this time with a lower priority will be held (latched) until the current interrupt
handling code is finished.

240 UNIX Filesystems—Evolution, Design, and Implementation

Typically, the CPU will be running at processor priority level 0. Consider the
case within the buffer cache handling code where a process has located the
required buffer, but the buffer is currently in the middle of an I/O operation.
Because the buffer is busy, the process needs to set the b_flags field to
B_WANTED before calling sleep() as shown earlier. In this case the following
fragment of code is executed:

spl6();
if (bp->b_flags & B_BUSY) {

bp->b_flags |= B_WANTED;
sleep(bp, PRIBIO);
spl0();

} else {
spl0();

}

In this case, the buffer has been found on one of the hash queues. In order to
check the b_flags field, this process must block interrupts from the disk driver,
thus the initial call to spl6() (set priority level). If B_BUSY is not set, the buffer
is not in use and the call is made to spl0() to set the priority level back to 0. If
the buffer is in use, B_WANTED can be set safely and the process issues a call to
sleep(). One thought that comes to mind here without knowledge of the
implementation of sleep() is that, at a glance, it appears as if the process goes
to sleep with interrupts blocked. In essence this is true. However, the next
process that wakes up will set the priority level to the level at which it went to
sleep. Consider the case where another process is waiting for a separate buffer
from the one shown above. After it awakes, it knows that it has control of the
buffer it slept on, so it will immediately issue an spl0() call as shown above.

After the process that issues the call to sleep() awakes, the priority passed to
sleep() is reinstated before sleep() returns.

Table 10.1 Hardware and Software Priority Levels in 5th Edition UNIX

PERIPHERAL DEVICE INTERRUPT PRIORITY PROCESS PRIORITY

Teletype input 4 4

Teletype output 4 4

Paper tape input 4 4

Paper tape output 4 4

Line printer 4 4

RK disk driver 5 5

Line clock 6 6

Programmable clock 6 6

Mapping Filesystems to Multiprocessor Systems 241

UP Locking and Pre-SVR4 Filesystems
Now that the old style primitives have been described, consider how this applies
to the old filesystem implementation. Recall that there was no File System Switch
or VFS architecture at that time. The main concern for filesystem development
was the thought of what happens when a process goes to sleep. If the process is in
the middle of performing I/O on file A, it would certainly not be a good idea to
let another process come along and truncate the file. The section Putting it All
Together, in Chapter 6, showed how file I/O took place in the research editions of
UNIX. At the higher layers of the kernel, most activity involved manipulating
per-process data structures such as the user, proc, and file structures and
therefore there was no need to protect the process from interrupts or other
processes. Furthermore, on read operations, there was no locking within the
filesystem handling code per se. The only locking occurred within the buffer
cache following calls to bread(), which in turn would invoke getblk(). The
same is also true for overwrites whereby a write to the file would overwrite
blocks that were already allocated.

File allocation on the other hand had a number of places where there could be
contention. The first lock of interest was at the filesystem level. When a call to
alloc() was made to allocate a filesystem block, the s_lock field of the mount
structure was held to indicate that allocation was taking place. If the s_lock field
was already set, a call to sleep() was made passing the address of s_lock.
After a block had been allocated (or freed), a call to wakeup() was issued to
allow any other process to then allocate/deallocate. The procedure was also
followed when allocating or deallocating an inode, by using the s_ilock field of
the mount structure.

There is no locking during handling of the write(S) system call above the
block allocation layer. For each 512-byte chunk of the write to perform, a call to
bmap() is made to locate the block to write to. If the block is not already present
in the file, a call to alloc() is made to allocate a new block. The only reason that
this process can sleep is if I/O needs to be performed, and this will occur only
after a block has been allocated and assigned to the inode. Therefore, no other
process can enter the kernel to access the file until the allocating process
relinquishes control of the CPU. The same is also true when a process time slice
expires due to the result of a clock interrupt. If the process is running in the
kernel, it will continue to run until it is about to return to user space; only then can
it sleep.

UP Locking and SVR4-Based Filesystems
The period between the research editions of UNIX described previously and the
introduction of SVR4 and the VFS/vnode architecture saw only a few differences
in the way that locks were managed in the kernel. The sleep() / wakeup()
mechanism used throughout the history of UNIX still remained in place together
with the software priority mechanism.

242 UNIX Filesystems—Evolution, Design, and Implementation

The reader/writer lock, implemented by the vop_rwlock() and
vop_rwunlock() vnode operations, was introduced with SVR4 to allow the
filesystem to manage locks on the inode internally. When a call was made to
VOP_RWLOCK(), the filesystem had no knowledge of whether a read or a write
was about to follow. This makes sense to a large degree when performing writes,
but the implementation did not allow for multiple readers. This mode of
operation was still in place by the time that the first MP versions of UNIX started
to appear.

The following example shows a fragment of the implementation of
vop_rwlock() in an early version of VxFS:

while (ip->i_flag & IRWLOCKED) {
ip->i_flag |= IWANT;
sleep(ip, PINOD);

}
ip->i_flag |= IRWLOCKED

To release a lock on the inode the following code was executed:

ip->i_flag &= ~IRWLOCKED;
if (ip->i_flag & IWANT) {

ip->i_flag &= ~IWANT;
wakeprocs(ip, PRMPT);

}

Note that the code fragment for sleeping also handles the case where the process
may be awoken but another process grabbed the lock first.

No additional locks were taken by the kernel prior to a call to
VOP_GETPAGE() or VOP_PUTPAGE(). All other filesystem structures were
protected by the same sleep()/wakeup() mechanisms.

Symmetric Multiprocessing UNIX

The introduction of SMP hardware and SMP-based UNIX implementations
resulted in a completely new set of locking primitives and removal of the old
sleep(), wakeup(), and spl() primitives. With an SMP implementation,
multiple threads of control can be executing the same piece of kernel code on
different processors at the same time. More importantly, these threads can be
accessing the same data structures at the same time.

Early SMP implementations were based around a global kernel lock. Each time a
process entered the kernel it grabbed the kernel lock and ran in an environment
similar to the UP kernels described above. Any other processes entering the
kernel were required to sleep until the first processes released the kernel lock. For
environments where most work was performed in user space with little I/O, this
worked well. However, these environments are not very representative of most
real world applications.

Mapping Filesystems to Multiprocessor Systems 243

Over the years, these coarse grain locks were replaced by a much finer grain
locking model. Imagine any number of threads running in the kernel at the same
time. Accessing kernel structures in a read-only manner is fine. However, any
time a kernel structure needs to be modified you must bear in mind that while the
structure, a linked list for example, is in the process of changing, another thread
may be in the process of reading the structure. This is obviously undesirable
because the reader might see a corrupt linked list, access NULL pointers, and so
on. Therefore, structures must be protected by locks while an update is in
progress. There are two basic types of locks, sleep locks and spin locks. The former
are similar to the sleep() / wakeup() calls described in the previous section.
Note, however, that the process will go to sleep, yielding to another process that is
ready to run. If the critical section of code involves only a few instructions to
manipulate a linked list, it can be much cheaper for the waiting process to spin
(loop) waiting for access to the resource.

At the filesystem interface level, the vop_rwlock() interface was changed as
shown below:

int
vx_rwlock(vp, off, len, fmode, mode)

The mode field was set to either LOCK_SHARED or LOCK_EXCL, which informed
the filesystem whether a read or a write vnode operation was about to occur. At a
simple level, this allowed the filesystem to support multiple readers or a single
writer at the vnode layer. It also allowed filesystems to implement a range-locking
model whereby portions of the file could be locked allowing multiple readers and
writers. Note that supporting multiple concurrent writers is not a trivial task to
perform. Most filesystems allow multiple readers.

The sleep()/wakeup() mechanism was retired in SVR4 ES/MP and
replaced by a number of locks more suitable to MP architectures, including spin
locks and reader/writer locks. The following sections highlight the different types
of locks and describe the circumstances under which one lock may be used in
place of another. Note that the above change at the vnode layer was the only
locking change between the filesystem-independent and filesystem-dependent
layers of the kernel. Much of the work in improving filesystem scalability in an
SMP environment comes from careful analysis of filesystem-specific data
structures to ensure that locking occurs at a fine grain level and coarser locks are
minimized as much as possible; with 64-way SMP systems, there can be
significant contention on locks that are at too high a level.

SMP Lock Types
Rather than describing the whole set of possible locks that are available on the
various SMP UNIX implementations, this section highlights the types of locks
that can be used in SMP implementations, together with the conditions under
which one would use one lock type over another. Following this section, using

244 UNIX Filesystems—Evolution, Design, and Implementation

VxFS as an example, the types of locks used to manage in-core inodes is
described.

Mutex locks. The mutex (mutual exclusion) lock has a single owner. An adaptive
mutex is a variant of the mutex lock under which a thread trying to acquire
the mutex can choose to spin (spin lock) or sleep. When spinning, the process
loops constantly trying to acquire the lock. If the process chooses to sleep, it
relinquishes control of the CPU and sleeps until the holding process releases
the mutex.

Reader / writer locks. There are many instances where multiple threads can be
accessing certain structures or sections of code simultaneously but where
only one thread can modify the same structures. One example, as shown
previously, is the VOP_RWLOCK() vnode interface. The filesystem can use a
reader/writer lock on an inode to allow multiple threads to read from the
file simultaneously but only one thread to actually write to a file at any one
time.

Sleep locks. Some implementations do not permit holders of mutexes or
reader/writer locks to sleep if the locks are held. Instead, sleep locks must
be used if the thread wishes to block.

Turnstiles. Different threads in the kernel may be running at different
priorities. If threads of different priorities go to sleep on the same lock and
the one with the lowest priority is first to grab the lock, priority inversion
occurs; that is, the lower priority thread runs in preference to the higher
priority thread. Another type of priority inversion occurs when a high
priority thread blocks on a lock already held by a lower priority thread. To
help alleviate the problem, the priority of the higher thread is inherited by
the lower priority thread, ensuring that it completes its task at the priority of
the waiting thread. Turnstile locks provide a mechanism whereby mutexes
and reader/writer locks can be used with a priority inheritance mechanism.

Condition variables. This type of lock, also called a synchronization variable on
some platforms, is a lock acquired based on some predicate. Threads can
block on the lock and be woken when the result of the predicate changes. In
SMP environments there is a potential for the wakeup to be lost if the
condition changes after a thread has checked the condition but just before it
goes to sleep. To alleviate this problem, condition variables are typically
used in conjunction with a mutex, which must be acquired before checking
and is released when the thread sleeps.

Semaphores. A semaphore is used to access a shared resource either as a
binary semaphore (a mutex is basically a binary semaphore) or as a counter
whereby the semaphore is initialized with a number defining how many
threads can access the resource simultaneously. Each time a thread grabs the
semaphore, the count is decremented. When it reaches zero, the calling
thread blocks until a thread releases the semaphore.

TEAMFL
Y

TEAM FLY ®

Mapping Filesystems to Multiprocessor Systems 245

When to use different types of locks is not always obvious and may change from
one platform to the next depending on the types of locks available. One decision
is the choice between spin locks and sleep locks. Typically, spin locks should only
be used for very short durations. In a 64-way SMP system, it is highly undesirable
to have a large number of threads spinning waiting for a resource held by one
thread on another CPU. On the other hand, the sleep/wakeup mechanism is
expensive because it can result in a number of context switches. When using spin
locks it is important to determine the right granularity of the lock in relation to the
structures that are being locked. Does a whole linked list need to be locked? Can
the list be split into a number of separate lists, each protected by a separate lock?
Is there a significant enough performance benefit to warrant the complexity that
results from breaking structures up at this level of granularity?

Getting the level of locking correct is also dependent on the type of workload.
Getting the balance right and making the correct choices can often be the result of
many years of study!

Mapping VxFS to SMP Primitives
The VERITAS filesystem, VxFS, has been ported to numerous different
architectures. At the time of writing, VERITAS directly supports Solaris, AIX,
HP-UX, and Linux using the same code base. Because much of the VxFS code is
common across all platforms, a generic set of locks is used, which maps to the
underlying operating system locks. VxFS makes use of the following types of
locks:

Spin locks. These locks are typically used to modify certain structure flags. The
duration of the operation is very small, which makes it acceptable for other
threads to spin waiting for the lock.

Sleep locks. The putpage lock is a sleep lock since the vnode putpage paths
through the filesystem are likely to result in disk I/O, causing the calling
process to sleep.

Reader / writer sleep locks. Data structures that support multiple readers but
only a single writer use this type of lock. Examples would be the inode
read/write lock and the getpage lock. VxFS also uses recursive
reader/writer sleep locks.

Synchronization variables. These lock types, also called condition variables,
provide MP sleep/wakeup synchronization. They are used in conjunction
with a spin lock, which must be obtained prior to deciding whether to sleep
or not.

The I/O paths of various operating systems have been described throughout the
previous chapters. At the filesystem/kernel interface the only locking performed
is through the VOP_RWLOCK() / VOP_RWUNLOCK() vnode operations. The
following locks give some indication as to how locks can be used to increase the
concurrency to structures, such as the in-core inode.

246 UNIX Filesystems—Evolution, Design, and Implementation

The VxFS Inode Reader/Writer Lock
First, as described above, when reading from or writing to a file, the read/write
lock must be acquired on the file either at the VOP layer or from within the
filesystem. This is a shared / exclusive lock allowing a single writer and
multiple, concurrent readers.

The lock is always acquired in shared mode for read operations and may also
be acquired in shared mode for some write operations. In the case where writes
access holes or in the case of extending writes, the lock must then be acquired in
exclusive mode. Generally speaking, the lock is held exclusively either if blocks
need to be allocated to the file or if the file size needs changing.

Because I/O will occur when reading and writing, the inode read / write lock
must also be a sleep lock.

The VxFS Getpage and Putpage Locks
As with the inode read/write lock, there can be multiple threads entering
through the VOP_GETPAGE() interface to satisfy page faults. Therefore, the
getpage lock is also a reader/writer lock. Some getpage calls may involve block
allocation and the lock must then be taken in exclusive mode. This may occur, for
example, on a writable mapping over a hole in the file. Because I/O may occur
for getpage calls, the lock must also be a sleep lock.

The putpage lock is also a reader/writer sleep lock. Threads that are in the
process of allocating to the file will take the putpage lock in exclusive mode to
block threads coming in through the VOP_PUTPAGE() vnode interface.

The VxFS Inode Lock and Inode Spin Lock
The preceding locks are primarily concerned with reading from and writing to
files. There are other times that inodes are accessed. The inode lock is used to
protect inode fields when the inode needs to be written to disk and also to protect
the in-core copy of the disk inode when changes are needed. This lock is
exclusive only.

The inode spin lock is used to protect fields of the inode that reside in memory
only, for example, various flags fields, and read ahead and flush behind statistics.

The VxFS Inode List Lock
At a minimum, inodes are linked onto the free list or hash queue when in use.
The fields used to link the inode onto these lists are held within the inode
structure. Moving the inode from one list to another involves manipulating a
small number of fields. A spin lock is used in this case.

Mapping Filesystems to Multiprocessor Systems 247

Summary

It is now not uncommon to see 32- and 64-node SMP systems with many
gigabytes of memory. The fact that one single kernel has the ability to scale to that
number of CPUs shows how multiprocessor technology has evolved since the
early implementations in the 1980s.

For further information on multiprocessor UNIX systems, Curt Schimmel’s
book UNIX Systems for Modern Architectures [SCHI94] is a must read for anyone
interested in UNIX multiprocessing and associated hardware. Solaris
Internals—Core Kernel Architecture by Jim Mauro and Richard McDougall
[MAUR01] contains detailed information about SMP locks, including the
implementation of locking primitives on Solaris. Uresh Vahalia’s book UNIX
Internals—The New Frontiers [VAHA96] shows various case studies of different
multiprocessor implementations, as well as describing some of the classic
multiprocessor issues.

CHAPTER

11

249

Pseudo Filesystems

When people think of filesystems, they tend to think of a file hierarchy of files and
directories that are all stored on disk somewhere. However, there are a number of
filesystem types that provide a host of useful information but which have no
physical backing store (disk storage). The most well known pseudo filesystem is
/proc, which is used by the ps command as well as various debuggers.

This chapter describes some of the more well known pseudo filesystem types
and provides a basic implementation of the ps command using the Solaris /proc
filesystem.

The /proc Filesystem

The /proc filesystem was first introduced in 8th Edition UNIX and was described
in Tom Killian’s 1984 Usenix paper “Processes as Files” [KILL84].

The /proc filesystem was to replace the ptrace() system call, with the
advantage that the full process address space was visible and could be
manipulated with read() and write() system calls. This contrasts with the
interfaces offered by ptrace(), the system call traditionally used by debuggers,
that only provides a word-at-a-time interface.

250 UNIX Filesystems—Evolution, Design, and Implementation

Roger Faulkner and Ron Gomes ported the research version of /proc to SVR4
and presented their work in another USENIX paper: “The Process File System
and Process Model in UNIX System V” [FAUL91]. At that time, Faulkner was
with Sun Microsystems and Gomes with AT&T Bell Laboratories. As described in
the paper, future work was intended to restructure /proc from a flat file system
into a directory hierarchy describing a process. That work was undertaken at
both Sun and USL and will be described later.

In the early /proc implementation, whose name is derived from the directory
on which it is mounted, there is an entry in the directory for each process in the
system. The name of the file displayed corresponds to the process ID, while the
size of the file represents the size of the process address space. The file
permissions correspond to the user who owns the process.

Figure 11.1 shows at a high level how the /proc filesystem is implemented.
Standard file-related system calls such as open(), read(), and write() are
handled at the filesystem-independent layer in the same manner as for other
filesystem types. Much of the information about a process is held in the process
table (traditionally in the array proc[]). To open a specific process file, the /proc
filesystem must scan the process table looking for an entry whose p_pid field
matches the pathname component passed.

One of the most widely used commands that access /proc is ps. Its role is to
open each file in the /proc directory and then access the process status through
an ioctl() system call. This was originally represented by the prstatus
structure, which could be obtained by opening the file and issuing the
PIOCSTATUS ioctl command. With the SVR4 implementation of /proc, there
were over 40 different ioctl commands that could be issued, many of which
dealt with debugging.

Note that the /proc filesystem does not have to be mounted on the /proc
directory. It can in fact be mounted multiple times, which allows it to be used in
chroot() environments.

The Solaris /proc Implementation
With the introduction of user-level threads of execution, the notion of /proc
changed substantially from the single threaded process-based model of previous
versions of UNIX. Each entry in /proc is a directory under which all of the
information about a specific process is collected.

As an example, consider the following process, which is run in the
background. Using the process ID that is returned, the contents of the
/proc/3707 are displayed:

$ sleep 10000&
[1] 3707
$ cd /proc/3707
$ ls -l
total 1618
-rw------- 1 spate fcf 1630208 May 28 21:24 as
-r-------- 1 spate fcf 152 May 28 21:24 auxv

Pseudo Filesystems 251

-r-------- 1 spate fcf 36 May 28 21:24 cred
--w------- 1 spate fcf 0 May 28 21:24 ctl
lr-x------ 1 spate fcf 0 May 28 21:24 cwd ->
dr-x------ 2 spate fcf 8208 May 28 21:24 fd
-r--r--r-- 1 spate fcf 120 May 28 21:24 lpsinfo
-r-------- 1 spate fcf 912 May 28 21:24 lstatus
-r--r--r-- 1 spate fcf 536 May 28 21:24 lusage
dr-xr-xr-x 3 spate fcf 48 May 28 21:24 lwp
-r-------- 1 spate fcf 1728 May 28 21:24 map
dr-x------ 2 spate fcf 544 May 28 21:24 object
-r-------- 1 spate fcf 2048 May 28 21:24 pagedata
-r--r--r-- 1 spate fcf 336 May 28 21:24 psinfo
-r-------- 1 spate fcf 1728 May 28 21:24 rmap
lr-x------ 1 spate fcf 0 May 28 21:24 root ->
-r-------- 1 spate fcf 1440 May 28 21:24 sigact
-r-------- 1 spate fcf 1232 May 28 21:24 status
-r--r--r-- 1 spate fcf 256 May 28 21:24 usage
-r-------- 1 spate fcf 0 May 28 21:24 watch
-r-------- 1 spate fcf 2736 May 28 21:24 xmap

The contents of some of these files are C structures. For each of the structures that
can be accessed, the procfs.h header file can be referenced for further
information. Where structures are described, the file can be opened and the
structure read directly from offset 0 within the file. A primitive ps example,
shown in the section Accessing Files in the Solaris /proc Filesystem, later in this
chapter, demonstrates how this is achieved.

Some of the files make reference to an LWP, a light weight process. The LWP
model is used to provide support for multiple threads of control within a process.
Grouping threads into an LWP alters the scheduling properties of the different
threads.

The various files contained within /proc on a per-process basis are:

as. Opening this file gives access to the address space of the process. This
allows the caller to find a specific address using lseek() and then either
read from or write to the address using read() and write().

Figure 11.1 Implementation of the /proc filesystem.

user

kernel

VFS layer

/proc
filesystem

proc[]

open(56934)

p_pid = 56934

252 UNIX Filesystems—Evolution, Design, and Implementation

auxv. This file contains dynamic linker information.

cred. The process credentials, defined by the pcred structure, can be found
here. This includes information such as the real and effective user IDs, real
and effective group IDs, group, and supplementary group information.

ctl. This write-only file is used for process control and accounting. A request
may be made to stop or start a process or enable process event tracing.

cwd. This file is a symbolic link to the process’ current working directory.
fd. This directory contains files that correspond to the files that the process

has open. There is one entry per open file.

lpsinfo, lstatus, lusage. These files give information about each of
the process LWPs. Note that there can be multiple LWPs per process; each
contains one or more threads.

map. This file contains an array of pmap structures, each of which describes a
segment within the virtual address range of the process.

object. Each address space segment maps an underlying file. This directory
contains read-only files that are referenced by the map and pagedata files.
Opening one of these files gives a file descriptor for the specific mapped file.

pagedata. Opening this file allows the caller to track address space
references and modifications on a per-page basis.

psinfo. This file gives general information about the state of the process that
is used by the ps command. The psinfo structure, defined in procfs.h,
can simply be read from this file.

rmap. Similar to the map file, this file contains an array of prmap structures.
These segments are reserved by the operating system for structures such as
the stack.

root.This file is a symbolic link to the process’ root directory.
sigact. This file contains an array of sigaction structures which define

the disposition of signals associated with the traced process.

status. The information stored in this file, underpinned by the pstatus
structure, gives a fairly detailed account about the state of the process. This
includes a set of flags that indicate whether the process is runnable,
stopped, being single-stepped, and so on. Process group and session
information, memory size, and tracing data are some of the other types of
information that can be found in this file.

usage. This file, underpinned by the prusage structure, gives a wealth of
timing-related information about the process.

watch. This file contains an array of pwatch structures, which enable a
process to be debugged. The controlling process can set breakpoints in the
process by writing a PCWATCH message through the ctl file.

The lwp directory contains further information about each light weight process.

Pseudo Filesystems 253

Accessing Files in the Solaris /proc Filesystem
To demonstrate how to access files within /proc, the following simple program
gives an idea of how the ps program is implemented. Much of the information
that is displayed by ps can be accessed through the psinfo file. Reading from
this file returns data underpinned by the psinfo structure. The following
program takes a process ID as an argument and reads the corresponding psinfo
for that process. It then displays some of the information.

#include <fcntl.h>
#include <procfs.h>

main(int argc, char *argv[])
{
 struct psinfo ps;
 char fname[256];
 int fd;

 sprintf(fname, "/proc/%s/psinfo", argv[1]);
 fd = open(fname, O_RDONLY);
 read(fd, (char *)&ps, sizeof(struct psinfo));
 printf("UID\tPID\tPPID\tCMD\n");
 printf("%d\t%d\t%d\t%s\n",
 ps.pr_uid, ps.pr_pid, ps.pr_ppid, ps.pr_psargs);
}

Shown below is a simple run of the program, which displays information about
the sleep process shown earlier:

$./mps 3707
UID PID PPID CMD
824 3707 1 sleep 100000

The psinfo file for each /proc entry is readable by anyone. Thus, it is possible
for any user to write a more elaborate version of the preceding program that
displays entries for all processes.

Tracing and Debugging with /proc
The ctl file allows one process to control another process through a rich set of
functions provided by the /proc filesystem. Although all of these functions won’t
be described here, the aim is to highlight the type of features available and show
how a process can be traced or debugged.

Access to the ctl file, which is write only, is achieved by writing an operational
code to the file together with any additional data required for the operation in
question. The controlling process tracks three different types of events, namely:

Signals. A stop based on a signal is handled in all cases where the signal is
detected, whether on return from a system call or trap, or during process
wakeup.

254 UNIX Filesystems—Evolution, Design, and Implementation

System calls. The process is stopped either when the kernel is entered to
process a system call or is just about to exit from the kernel back to user
space after the system call has been processed.

Faults. There are a number of different fault types that can be managed, some
of which depend on the type of architecture on which the operating system
is running. Fault types include illegal instructions, breakpoints, memory
access, and trace traps (used for single stepping).

The truss command is a prime example of a utility that controls another
process. Its role is to display the system calls made by another process including
the system call arguments and return values. The PCSENTRY and PCSEXIT
control functions determine whether a process stops on entry to or exit from a
system call. The system calls to be traced are held in the sysset_t structure,
which is passed along with the PCSENTRY and PCSEXIT control functions. The
prfillset() function can be used to build the complete set of system calls,
because truss will monitor all system calls. For a more controlled trace, the set
of system calls monitored can be altered using the praddset() and
prdelset() library functions.

There are a number of different control messages that both stop and start a
process. As an example of those functions that are relevant to truss, the PCSTOP
function directs the process to stop on an event of interest and waits for it to stop.
An event of interest is defined by invoking PCSTRACE (signals to be traced),
PCSFAULT (faults to be traced), PCSENTRY (system call entry), or PCSEXIT
(system call exit). The PCRUN control function makes the process runnable again.

The following pseudo code gives a high-level view of how the truss utility
can be implemented:

prfillset(&syscalls)
PCSENTRY(syscalls)
PCSEXIT(syscalls)
do {

PCSTOP()
extract system call arguments
PCSTART()
PCSTOP()
extract system call return value
display system call type, arguments and return value
PCSTART()

} while (syscall type != exit);

Although this is a simplification, it demonstrates the power of the control
functions implemented by the /proc filesystem.

There are a large number of control functions that make a debugger writer’s
life much easier. If the debugger is interested in fault types, the following are
relevant:

FLTBPT. A breakpoint trap.

TEAMFL
Y

TEAM FLY ®

Pseudo Filesystems 255

FLTTRACE. A trace trap (used for single stepping).

FLTWATCH. A watchpoint trap (used to trap on memory access).

The PCSFAULT control function can be used to set the faults to be traced. To put a
breakpoint on a specific memory access, the PCWATCH function can be used to
specify the address to be watched and whether an event should be triggered for
read, write, or execute access. This can be used in conjunction with the stop and
start control functions.

Anyone wishing to study how a real debugger makes use of /proc should look
at the Solaris implementation of gdb, the GNU debugger whose source is freely
available.

The Specfs Filesystem

Devices, whether block or character, are represented by special files in the
filesystem. As the number of UNIX filesystem types increased, it was found that
each filesystem was duplicating effort when managing access to the devices
themselves.

Having multiple special files in the namespace caused an additional problem in
that there could be multiple buffers in the buffer cache corresponding to the same
block on disk. Considering how files are accessed, returning a filesystem vnode
for a device file is incorrect. For example, consider the case where the device file
resides on a UFS filesystem. Returning a vnode that has the v_op field of the
vnode set to the list of UFS vnode operations will lead to problems. First, the open
vnode operation on UFS or any other filesystem really has no function to perform
for regular files. Second, many of the operations that are applicable to regular files
are not applicable to device files. To make matters worse, if the vnode goes
inactive, the filesystem may attempt to close the device even though it is open
through access to another special file that references the same device.

All of these problems can be solved by adding additional logic inside the
filesystem. However, consideration must be given on how to handle device access
for each vnode operation. Furthermore, reference counting to determine when the
last close on a device occurs is left up to the device driver. All in all, this leads to a
situation that has a lot of duplication and is prone to errors.

To solve these problems, a new filesystem type, specfs, was introduced in SVR4.
The specfs filesystem is not visible to users in that it cannot be mounted or seen
from within the namespace.

During a VOP_LOOKUP() operation, instead of returning a vnode which
corresponds to the special file, the filesystem makes a call to specvp() which
returns a new specfs vnode, that the filesystem must return from the lookup
operation. This vnode points to a specfs node (snode), a private specfs data
structure that references the real vnode of the filesystem.

In the case where one device has more than one entry in the namespace, the
snode also points to a common specfs vnode. It is through this common vnode
that device access actually takes place.

256 UNIX Filesystems—Evolution, Design, and Implementation

The following example shows the linkage between two device special files and
the common specfs vnode that represents both. This is also shown in Figure 11.2.
First of all consider the following simple program, which simply opens a file and
pauses awaiting a signal:

#include <fcntl.h>

main(int argc, char *argv[])
{
 int fd;

 fd = open(argv[1], O_RDONLY);
 pause();
}

As shown below, a new special file is created with the same major and minor
number as /dev/null:

ls -l /dev/null
crw-r--r-- 1 root other 13, 2 May 30 09:17 mynull
mknod mynull c 13 2
ls -l mynull
crw-r--r-- 1 root other 13, 2 May 30 09:17 mynull

and the program is run as follows:

./dopen /dev/null &
[1] 3715
./dopen mynull &
[2] 3719

Using crash, it is possible to trace through the list of file related structures
starting out at the file descriptor for each process, to see which underlying
vnodes they actually reference. First, the process table slots are located where the
two processes reside:

crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> p ! grep dopen
 336 s 3719 3713 3719 3713 0 46 dopen load
 363 s 3715 3713 3715 3713 0 46 dopen load

Starting with the process that is accessing the mynull special file, the user area is
displayed to locate the open files:

> user 336
...
OPEN FILES, POFILE FLAGS, AND THREAD REFCNT:

[0]: F 300106fc690, 0, 0 [1]: F 300106fc690, 0, 0
[2]: F 300106fc690, 0, 0 [3]: F 300106fca10, 0, 0

...

Pseudo Filesystems 257

The file structure and its corresponding vnode are then displayed as shown:

> file 300106fca10
ADDRESS RCNT TYPE/ADDR OFFSET FLAGS
300106fca10 1 SPEC/300180a1bd0 0 read
> vnode 300180a1bd0
VCNT VFSMNTED VFSP STREAMP VTYPE RDEV VDATA VFILOCKS VFLAG
 1 0 300222d8578 0 c 13,2 300180a1bc8 0 -

> snode 300180a1bc8
SNODE TABLE SIZE = 256
HASH-SLOT MAJ/MIN REALVP COMMONVP NEXTR SIZE COUNT FLAGS

 - 13,2 3001bdcdf50 30001b5d5b0 0 0 0

The REALVP field references the vnode for the special file within the filesystem
that references mynull.

For the process that opens the /dev/null special file, the same sequence of
operations is followed as shown:

> user 363
...
OPEN FILES, POFILE FLAGS, AND THREAD REFCNT:

Figure 11.2 Accessing devices from different device special files.

open "/dev/null" open "mynull"

struct
file

struct
file

ufs_vnodeops vx_vnodeops

UFS vnode VxFS vnode

v_opv_op

s_realvp
s_commonvp

struct snode

s_vnode

s_realvp
s_commonvp

struct snode

s_vnode

s_realvp
s_commonvp

struct snode

s_vnode

NULL

(1) (2)

(1) (2) These are the vnodes returned
by the UFS and VxFS filesystems
in response to VOP_LOOKUP() issued
on behalf of the open call

258 UNIX Filesystems—Evolution, Design, and Implementation

[0]: F 300106fc690, 0, 0 [1]: F 300106fc690, 0, 0
[2]: F 300106fc690, 0, 0 [3]: F 3000502e820, 0, 0

...
> file 3000502e820
ADDRESS RCNT TYPE/ADDR OFFSET FLAGS
3000502e820 1 SPEC/30001b5d6a0 0 read

> vnode 30001b5d6a0
VCNT VFSMNTED VFSP STREAMP VTYPE RDEV VDATA VFILOCKS VFLAG
 51 0 10458510 0 c 13,2 30001b5d698 0 -
> snode 30001b5d698
SNODE TABLE SIZE = 256
HASH-SLOT MAJ/MIN REALVP COMMONVP NEXTR SIZE COUNT FLAGS
 - 13,2 30001638950 30001b5d5b0 0 0 0 up ac

Note that for the snode displayed here, the COMMONVP field is identical to the
COMMONVP field shown for the process that referenced mynull.

To some readers, much of what has been described may sound like overkill.
However, device access has changed substantially since the inception of specfs.
By consolidating all device access, only specfs needs to be changed. Filesystems
still make the same specvp() call that they were making 15 years ago and
therefore have not had to make any changes as device access has evolved.

The BSD Memory-Based Filesystem (MFS)

The BSD team developed an unusual but interesting approach to memory-based
filesystems as documented in [MCKU90]. Their goals were to improve upon the
various RAM disk-based filesystems that had traditionally been used.

A RAM disk is typically a contiguous section of memory that has been set
aside to emulate a disk slice. A RAM disk-based device driver is the interface
between this area of memory and the rest of the kernel. Filesystems access the
RAM disk just as they would any other physical device. The main difference is
that the driver employs memory to memory copies rather than copying between
memory and disk.

The paper describes the problems inherent with RAM disk-based filesystems.
First of all, they occupy dedicated memory. A large RAM disk therefore locks
down memory that could be used for other purposes. If many of the files in the
RAM disk are not being used, this is particularly wasteful of memory. One of the
other negative properties of RAM disks, which the BSD team did not initially
attempt to solve, was the triple copies of data. When a file is read, it is copied
from the file’s location on the RAM disk into a buffer cache buffer and then out to
the user’s buffer. Although this is faster than accessing the data on disk, it is
incredibly wasteful of memory.

Pseudo Filesystems 259

The BSD MFS Architecture
Figure 11.3 shows the overall architecture of the BSD MFS filesystem. To create
and mount the filesystem, the following steps are taken:

1. A call to newfs is made indicating that the filesystem will be memory-based.
2. The newfs process allocates an area of memory within its own address space

in which to store the filesystem. This area of memory is then initialized with
the new filesystem structure.

3. The newfs command call is made into the kernel to mount the filesystem.
This is handled by the mfs filesystem type that creates a device vnode to
reference the RAM disk together with the process ID of the caller.

4. The UFS mount entry point is called, which performs standard UFS mount
time processing. However, instead of calling spec_strategy() to access
the device, as it would for a disk-based filesystem, it calls
mfs_strategy(), which interfaces with the memory-based RAM disk.

One unusual aspect of the design is that the newfs process does not exit. Instead,
it stays in the kernel acting as an intermediary between UFS and the RAM disk.

As requests for read and write operations enter the kernel, UFS is invoked as
with any other disk-based UFS filesystem. The difference appears at the
filesystem/driver interface. As highlighted above, UFS calls mfs_strategy()
in place of the typical spec_strategy(). This involves waking up the newfs
process, which performs a copy between the appropriate area of the RAM disk
and the I/O buffer in the kernel. After I/O is completed, the newfs process goes
back to sleep in the kernel awaiting the next request.

After the filesystem is unmounted the device close routine is invoked. After
flushing any pending I/O requests, the mfs_mount() call exits causing the
newfs process to exit, resulting in the RAM disk being discarded.

Performance and Observations
Analysis showed MFS to perform at about twice the speed of a filesystem on disk
for raw read and write operations and multiple times better for meta-data
operations (file creates, etc). The benefit over the traditional RAM disk approach
is that because the data within the RAM disk is part of the process address space,
it is pageable just like any other process data. This ensures that if data within the
RAM disk isn’t being used, it can be paged to the swap device.

There is a disadvantage with this approach; a large RAM disk will consume a
large amount of swap space and therefore could reduce the overall amount of
memory available to other processes. However, swap space can be increased, so
MFS still offers advantages over the traditional RAM disk-based approach.

260 UNIX Filesystems—Evolution, Design, and Implementation

The Sun tmpfs Filesystem

Sun developed a memory-based filesystem that used the facilities offered by the
virtual memory subsystem [SNYD90]. This differs from RAM disk-based
filesystems in which the RAM disk simply mirrors a copy of a disk slice. The goal
of the design was to increase performance for file reads and writes, allow
dynamic resizing of the filesystem, and avoid an adverse effect on performance.
To the user, the tmpfs filesystem looks like any other UNIX filesystem in that it
provides full UNIX file semantics.

Chapter 7 described the SVR4 filesystem architecture on which tmpfs is based.
In particular, the section An Overview of the SVR4 VM Subsystem in Chapter 7,
described the SVR4/Solaris VM architecture. Familiarity with these sections is
essential to understanding how tmpfs is implemented. Because tmpfs is heavily
tied to the VM subsystem, it is not portable between different versions of UNIX.
However, this does not preclude development of a similar filesystem on the other
architectures.

Architecture of the tmpfs Filesystem
In SVR4, files accessed through the read() and write() system calls go
through the seg_map kernel segment driver, which maintains a cache of recently

Figure 11.3 The BSD pageable memory-based filesystem.

newfs(..., mfs, ...)

RAM disk

UFS
filesystem

1. Allocate memory and
create filesystem

2. Invoke mount()
system call

newfs process

user

kernel

mfs_mount()

1. Allocate block
vnode for RAM disk
device

2. Call UFS mount

3. Block awaiting I/O
mfs_strategy()

UFS Filesystem

read()
write()

Pseudo Filesystems 261

accessed pages of file data. Memory-mapped files are backed by a seg_vn kernel
segment that references the underlying vnode for the file. In the case where there
is no backing file, the SVR4 kernel provides anonymous memory that is backed by
swap space. This is described in the section Anonymous Memory in Chapter 7.

Tmpfs uses anonymous memory to store file data and therefore competes with
memory used by all processes in the system (for example, for stack and data
segments). Because anonymous memory can be paged to a swap device, tmpfs
data is also susceptible to paging.

Figure 11.4 shows how the tmpfs filesystem is implemented. The vnode
representing the open tmpfs file references a tmpfs tmpnode structure, which is
similar to an inode in other filesystems. Information within this structure
indicates whether the file is a regular file, directory, or symbolic link. In the case of
a regular file, the tmpnode references an anonymous memory header that
contains the data backing the file.

File Access through tmpfs
Reads and writes through tmpfs function in a very similar manner to other
filesystems. File data is read and written through the seg_map driver. When a
write occurs to a tmpfs file that has no data yet allocated, an anon structure is
allocated, which references the actual pages of the file. When a file grows the
anon structure is extended.

Mapped files are handled in the same way as files in a regular filesystem. Each
mapping is underpinned by a segment vnode.

Performance and Other Observations
Testing performance of tmpfs is highly dependent on the type of data being
measured. Many file operations that manipulate data may show only a marginal
improvement in performance, because meta-data is typically cached in memory.
For structural changes to the filesystem, such as file and directory creations, tmpfs
shows a great improvement in performance since no disk access is performed.

[SNYD90] also shows a test under which the UNIX kernel was recompiled. The
overall time for a UFS filesystem was 32 minutes and for tmpfs, 27 minutes.
Filesystems such as VxFS, which provide a temporary filesystem mode under which
nearly all transactions are delayed in memory, could close this gap significantly.

One aspect that is difficult to measure occurs when tmpfs file data competes for
virtual memory with the applications that are running on the system. The amount
of memory on the system available for applications is a combination of physical
memory and swap space. Because tmpfs file data uses the same memory, the
overall memory available for applications can be largely reduced.

Overall, the deployment of tmpfs is highly dependent on the type of workload
that is running on a machine together with the amount of memory available.

262 UNIX Filesystems—Evolution, Design, and Implementation

Other Pseudo Filesystems

There are a large number of different pseudo filesystems available. The following
sections highlight some of the filesystems available.

The UnixWare Processor Filesystem
With the advent of multiprocessor-based systems, the UnixWare team introduced
a new filesystem type called the Processor Filesystem [NADK92]. Typically
mounted on the /system/processor directory, the filesystem shows one file
per processor in the system. Each file contains information such as whether the
processor is online, the type and speed of the processor, its cache size, and a list of
device drivers that are bound to the processor (will run on that processor only).

The filesystem provided very basic information but detailed enough to get a
quick understanding of the machine configuration and whether all CPUs were
running as expected. A write-only control file also allowed the administrator to
set CPUs online or offline.

The Translucent Filesystem
The Translucent Filesystem (TFS) [HEND90] was developed to meet the needs of
software development within Sun Microsystems but was also shipped as part of
the base Solaris operating system.

Figure 11.4 Architecture of the tmpfs filesystem.

fd = open("/tmp/myfile", O_RDWR);
user

kernel

f_vnode v_data

struct
file

struct
vnode

tmpfs
tmpnode

.

.

.

.

.

.

swap

space

anon_map[]

si_anon[]

Pseudo Filesystems 263

The goal was to facilitate sharing of a set of files without duplication but to
allow individuals to modify files where necessary. Thus, the TFS filesystem is
mounted on top of another filesystem which has been mounted read only.

It is possible to modify files in the top layer only. To achieve this, a copy on
write mechanism is employed such that files from the lower layer are first copied
to the user’s private region before the modification takes place.

There may be several layers of filesystems for which the view from the top
layer is a union of all files underneath.

Named STREAMS
The STREAMS mechanism is a stackable layer of modules that are typically used
for development of communication stacks. For example, TCP/IP and UDP/IP can
be implemented with a single IP STREAMS module on top of which resides a TCP
module and a UDP module.

The namefs filesystem, first introduced in SVR4, provides a means by which a
file can be associated with an open STREAM. This is achieved by calling
fattach(), which in turn calls the mount() system call to mount a namefs
filesystem over the specified file. An association is then made between the mount
point and the STREAM head such that any read() and write() operations will
be directed towards the STREAM.

[PATE96] provides an example of how the namefs filesystem is used.

The FIFO Filesystem
In SVR4, named pipes are handled by a loopback STREAMS driver together with
the fifofs filesystem type. When a call is made into the filesystem to look up a file,
if the file is a character or block special file, or if the file is a named pipe, a call is
made to specvp() to return a specfs vnode in its place. This was described in the
section The Specfs Filesystem earlier in this chapter.

In the case of named pipes a call is made from specfs to fifovp() to return a
fifofs vnode instead. This initializes the v_op field of the vnode to
fifo_vnodeops, which handles all of the file-based operations invoked by the
caller of open().

As with specfs consolidating all access to device files, fifofs performs the same
function with named pipes.

The File Descriptor Filesystem
The file descriptor filesystem, typically mounted on /dev/fd, is a convenient way
to access the open files of a process.

Following a call to open(), which returns file descriptor n, the following two
two system calls are identical:

fd = open("/dev/fd/n",mode);
fd = dup(n);

264 UNIX Filesystems—Evolution, Design, and Implementation

Note that it is not possible to access the files of another process through
/dev/fd. The file descriptor filesystem is typically used by scripting languages
such as the UNIX shells, awk, perl, and others.

Summary

The number of non disk or pseudo-based filesystems has grown substantially
since the early 1990s. Although the /proc filesystem is the most widely known, a
number of memory-based filesystems are in common use, particularly for use
with temporary filesystems and swap management.

It is difficult in a single chapter to do justice to all of these filesystems. For
example, the Linux /proc filesystem provides a number of features not described
here. The Solaris /proc filesystem has many more features above what has been
covered in the chapter. [MAUR01] contains further details of some of the facilities
offered by the Solaris /proc filesystem.

TEAMFL
Y

TEAM FLY ®

CHAPTER

12

265

Filesystem Backup

Backing up a filesystem to tape or other media is one area that is not typically well
documented in the UNIX world. Most UNIX users are familiar with commands
such as tar and cpio, which can be used to create a single archive from a
hierarchy of files and directories. While this is sufficient for creating a copy of a
set of files, such tools operate on a moving target—they copy files while the files
themselves may be changing. To solve this problem and allow backup
applications to create a consistent image of the filesystem, various snapshotting
techniques have been employed.

This chapter describes the basic tools available at the UNIX user level followed
by a description of filesystem features that allow creation of snapshots (also called
frozen images). The chapter also describes the techniques used by hierarchical
storage managers to archive file data based on various policies.

Traditional UNIX Tools

There are a number of tools that have been available on UNIX for many years that
deal with making copies of files, file hierarchies, and filesystems. The following
sections describe tar, cpio, and pax, the best understood utilities for archiving
file hierarchies.

266 UNIX Filesystems—Evolution, Design, and Implementation

This is followed by a description of the dump and restore commands, which
can be used for backing up and restoring whole filesystems.

The tar, cpio, and pax Commands
The tar and cpio commands are both used to construct an archive of files. The
set of files can be a directory hierarchy of files and subdirectories. The tar
command originated with BSD while the cpio command came from System V.
Because tar is available on just about every platform, including non-UNIX
operating systems, cpio will not be mentioned further.

The tar Archive Format
It is assumed that readers are familiar with operation of the tar command. As a
quick refresher, consider the following 3 commands:

$ tar cvf files.tar /lhome/spate/*
$ tar tvf files.tar
$ tar xvf files.tar

The first command (c option) creates a tar archive consisting of all files under the
directory /lhome/spate. The second command (t option) displays the contents
of the archive. The last command (x option) extracts files from the archive.

There are two main tar formats, the original format that originated in BSD
UNIX and is shown in Figure 12.1, and the USTAR format as defined by Posix.1.
In both cases, the archive consists of a set of records. Each record has a fixed size
and is 512 bytes. The first entry in the archive is a header record that describes the
first file in the archive. Next follows zero or more records that hold the file
contents. After the first file there is a header record for the second file, records for
its contents, and so on.

The header records are stored in a printable ASCII form, which allows tar
archives to be easily ported to different operating system types. The end of the
archive is indicated by two records filled with zeros. Unused space in the header
is left as binary zeros, as will be shown in the next section.

The link field is set to 1 for a linked file, 2 for a symbolic link, and 0 otherwise.
A directory is indicated by a trailing slash (/) in its name.

The USTAR tar Archive Format
The USTAR tar format, as defined by POSIX.1, is shown in Figure 12.2. It retains
the original tar format at the start of the header record and extends it by adding
additional information after the old header information. Presence of the USTAR
format can be easily detected by searching for the null-terminated string "ustar"
in the magic field.

Filesystem Backup 267

The information held in the USTAR format matches the information returned
by the stat() system call. All fields that are not character strings are ASCII
representations of octal numbers.

Shown below are the contents of a tar archive that holds a single file with only a
few characters. Some of the fields are highlighted—use the format of the archive
shown in Figure 12.2 for reference. The highlighted fields are the file name, the
USTAR magic field, the owner, group, and file contents.

$ ls -l file
-rw-r--r-- 1 spate fcf 6 Jun 4 21:56 file
$ grep spate /etc/passwd
spate:x:824:119:Steve Pate:/lhome/spate:/usr/local/bin/bash
$ grep fcf /etc/group
fcf::119:iwww
$ od -c archive.tar
0000000 f i l e \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0000140 \0 \0 \0 \0 0 1 0 0 6 4 4 \0 0 0 0 1
0000160 4 7 0 \0 0 0 0 0 1 6 7 \0 0 0 0 0
0000200 0 0 0 0 0 0 6 \0 0 7 4 7 7 3 1 4
0000220 7 7 3 \0 0 1 0 3 7 4 \0 0 \0 \0 \0
0000240 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0000400 \0 u s t a r \0 s p a t e \0 \0
0000420 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000440 \0 \0 \0 \0 \0 \0 \0 \0 \0 f c f \0 \0 \0 \0
0000460 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0001000 h e l l o \n \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0001020 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0024000

Figure 12.1 The format of the original tar archive.

file data records

name of file
file mode
user ID
group ID
length of file
modify time
link indicator
name of link

file 1 file 2

header record

. . .

268 UNIX Filesystems—Evolution, Design, and Implementation

Standardization and the pax Command
POSIX.1 defined the pax (portable archive interchange) command, which reads and
writes archives that conform to the Archive/Interchange File Format specified as
part of POSIX 1003.1. The pax command can read a number of different, older
archive formats including both cpio and tar archives.

For compatibility between different versions of UNIX, the Open Group, which
controls the Single UNIX Specification, recommend that users migrate from tar
to pax. This is partly due to limitations with the tar format but also to allow
operating system vendors to support a single archive format going forward.

Backup Using Dump and Restore
The first dump command appeared in 6th Edition UNIX as a means of backing up
a complete filesystem. To demonstrate how dump and restore work on a
filesystem, this section looks at the VxFS vxdump and vxrestore commands,
both of which offer an interface similar to the dump and restore in other
filesystems.

The vxdump command can write a filesystem dump either to tape or to a
dumpfile (a file on the filesystem that holds the image of the dump).

In addition to a number of options that specify tape properties, vxdump
operates on dump levels in the range 0 to 9. When a dump level in this range is
specified, vxdump backs up all files that changed since the last dump at a lower
dump level. For example, if a level 2 dump was taken on Monday and a level 4
dump was taken on Tuesday, a level 3 dump on Wednesday would back up all
files that had been modified or added since the level 2 dump on Monday. If a
level 0 dump is specified, all files in the filesystem are backed up.

The use of dump levels allows a simple full/incremental approach to backup.
As an example, consider the case where a full backup is taken on Sunday,

Figure 12.2 The USTAR tar format.

Offset Length Contents

0 100 File name ('\0' terminated)
100 8 File mode (octal ascii)
108 8 User ID (octal ascii)
116 8 Group ID (octal ascii)
124 12 File size (octal ascii)
136 12 Modify time (octal ascii)
148 8 Header checksum (octal ascii)
156 1 Link flag
157 100 Link name ('\0' terminated)
257 8 Magic ("ustar\0")
265 32 User name ('\0' terminated)
297 32 Group name ('\0' terminatedh)
329 8 Major device ID (octal ascii)
337 8 Minor device ID (octal ascii)
345 167 Padding

USTAR

format

Original

format

Filesystem Backup 269

followed by a set of incremental backups on each following day for five days. A
dump level of 0 will be specified for the Sunday backup. A level of 1 can be
chosen on Monday, 2 on Tuesday, 3 on Wednesday, and so on. This ensures that
only files that have been changed since the backup on the previous day will be
backed up.

The vxrestore command can be used to restore one or more files from an
archive created by vxdump.

In order to provide a simple example of how vxdump and vxrestore work, a
simple filesystem with one file is backed up to a dumpfile in /tmp as follows:

ls -l /fs1
total 2
-rw-r--r-- 1 root other 6 Jun 7 15:07 hello
drwxr-xr-x 2 root root 96 Jun 7 14:41 lost+found
vxdump -0 -f /tmp/dumpfile /fs1
vxfs vxdump: Date of this level 0 dump: Fri Jun 7 15:08:16 2002
vxfs vxdump: Date of last level 0 dump: the epoch
vxfs vxdump: Dumping /dev/vx/rdsk/fs1 to /tmp/dumpfile
vxfs vxdump: mapping (Pass I) [regular files]
vxfs vxdump: mapping (Pass II) [directories]
vxfs vxdump: estimated 94 blocks (47KB).
vxfs vxdump: dumping (Pass III) [directories]
vxfs vxdump: dumping (Pass IV) [regular files]
vxfs vxdump: vxdump: 41 tape blocks on 1 volumes(s)
vxfs vxdump: Closing /tmp/dumpfile
vxfs vxdump: vxdump is done

Using the -t option of vxrestore it is possible to display the contents of the
dumpfile prior to issuing any type of restore command:

vxrestore -f /tmp/dumpfile -t
Dump date: Fri Jun 7 15:08:16 2002
Dumped from: the epoch
 2 .
 3 ./lost+found
 4 ./hello

This shows the contents of the archive, which is useful in the case where only one
or two files need to be restored and confirmation of their existence is required
before a restore command is issued. The hello file is restored as follows:

cd /fs1 ; rm hello
vxrestore -f /tmp/dumpfile -x hello
ls
hello lost+found

There are a number of other options to vxrestore, including the ability to work
interactively. In this mode it is possible to view the contents of the archive using
ls and cd commands before deciding which files or directories to extract.

270 UNIX Filesystems—Evolution, Design, and Implementation

As with other UNIX tools, vxdump works best on a frozen image, the subject of
the next few sections.

Frozen-Image Technology

All of the traditional tools described so far can operate on a filesystem that is
mounted and in use. Unfortunately, this can lead to backing up some files that
are in the process of being written. If files are being changed while the backup
runs, an inconsistent image will likely be written to tape or other media.

Ideally, a backup should be run when there is no activity to the filesystem,
allowing all files backed up to be in a consistent state. The system administrator
does not, however, want to unmount a busy filesystem just to perform a backup.
This is where stable snapshot mechanisms come into play.

A stable snapshot, or frozen image, is a consistent copy of a filesystem that allows
a backup application to back up files that are not changing. Even though there
still may be activity to the filesystem, the frozen image is guaranteed to be a
consistent replica of the filesystem at the time the frozen image was taken.

The following sections describe the two different types of frozen images:
snapshots that are not persistent across reboots and snapshots that are persistent
across reboots.

Note that there are a number of terms that describe the same concept.
Snapshots, frozen-images, and point-in-time copies are used interchangeably in the
storage industry to refer to the same thing, a stable image of the filesystem.

Nonpersistent Snapshots
The goal behind any snapshotting technology is to provide a frozen image of the
filesystem for the purpose of performing a filesystem backup. Because backups
have traditionally been performed within a relatively small window, it was
believed that the snapshots only needed to exist for the duration of the backup. If
power is lost, or the machine is shutdown, the snapshots are also lost, making
them nonpersistent.

The following sections describe how VxFS snapshots are implemented. Sun
also provide a snapshot mechanism that is described in the section UFS Snaphots
in Chapter 9.

VxFS Snapshots
Introduced in the early 1990s, the VxFS snapshot mechanism provided a stable,
frozen image of the filesystem for making backups. The snapshot is a consistent
view of the filesystem (called the snapped filesystem) at the time that the snapshot
was taken.

VxFS requires a separate device in which to store snapshot data blocks. Using
copy-on-write techniques, any blocks that are about to be overwritten in the

Filesystem Backup 271

snapped filesystem are first copied to the snapshot device. By employing a
bitmap of all blocks in the snapped filesystem, a read through the snapshot reads
the block either from the snapped filesystem or from the snapshot, depending on
whether the bitmap indicates that the block has been copied or not.

There can be a number of snapshots of the same filesystem in existence at the
same time. Note that each snapshot is a replica of the filesystem at the time the
snapshot was taken, and therefore each snapshot is likely to be different. Note
also, that there must be a separate device for each snapshot.

The snapshot filesystem is mounted on its own separate directory to the
filesystem and looks exactly the same as the snapped filesystem. This allows any
UNIX utilities or backup software to work unchanged. Note though, that any
backup utilities that use the raw device to make a copy of the filesystem cannot
use the raw snapshot device. In place of such utilities, the fscat command can be
used to create a raw image of the filesystem. This is described later in the chapter.

A snapshot filesystem is created through a special invocation of the mount
command. For example, consider the following 100MB VxFS filesystem. A VxVM
volume is created and a filesystem is created on the volume. After mounting, two
files are created as follows:

vxassist make fs1 100m
mkfs -F vxfs /dev/vx/rdsk/fs1 100m
 version 4 layout
 204800 sectors, 102400 blocks of size 1024, log size 1024 blocks
 unlimited inodes, largefiles not supported
 102400 data blocks, 101280 free data blocks
 4 allocation units of 32768 blocks, 32768 data blocks
 last allocation unit has 4096 data blocks
mount -F vxfs /dev/vx/dsk/fs1 /fs1
echo hello > /fs1/fileA
echo goodbye > /fs1/fileB

The device on which to create the snapshot is 10MB as shown by a vxassist call
to VxVM below. To create the snapshot, mount is called, passing the snapshot
device and size with the mount point of the filesystem to be snapped. When df is
invoked, the output shows that the two filesystems appear identical, showing that
the snapshot presents an exact replica of the snapped filesystem, even though its
internal implementation is substantially different.

mkdir /snap
vxassist make snap 10m
mount -F vxfs -osnapof=/fs1,snapsize=20480 /dev/vx/dsk/snap /snap
df -k
...
/dev/vx/dsk/fs1 102400 1135 94943 2% /fs1
/dev/vx/dsk/snap 102400 1135 94936 2% /snap
...

The size of the snapshot device must be large enough to hold any blocks that
change on the snapped filesystem. If the snapshot filesystem runs out of blocks, it

272 UNIX Filesystems—Evolution, Design, and Implementation

is disabled and any subsequent attempts to access it will fail.
It was envisaged that snapshots and a subsequent backup would be taken

during periods of low activity, for example, at night or during weekends. During
such times, approximately 2 to 6 percent of the filesystem is expected to change.
During periods of higher activity, approximately 15 percent of the filesystem may
change. Of course, the actual rate of change is highly dependent on the type of
workload that is running on the machine at the time. For a snapshot to
completely hold the image of a snapped filesystem, a device that is
approximately 101 percent of the snapped filesystem should be used.

Accessing VxFS Snapshots
The following example shows how VxFS snapshots work, using the snapshot
created in the preceding section. The example shows how the contents of both the
snapped filesystem and the snapshot initially look identical. It also shows what
happens when a file is removed from the snapped filesystem:

ls -l /fs1
total 4
-rw-r--r-- 1 root other 6 Jun 7 11:17 fileA
-rw-r--r-- 1 root other 8 Jun 7 11:17 fileB
drwxr-xr-x 2 root root 96 Jun 7 11:15 lost+found
ls -l /snap
total 4
-rw-r--r-- 1 root other 6 Jun 7 11:17 fileA
-rw-r--r-- 1 root other 8 Jun 7 11:17 fileB
drwxr-xr-x 2 root root 96 Jun 7 11:15 lost+found
cat /fs1/fileA
hello
cat /snap/fileA
hello
rm /fs1/fileA
cat /snap/fileA
hello
df -k
...
/dev/vx/dsk/fs1 102400 1134 94944 2% /fs1
/dev/vx/dsk/snap 102400 1135 94936 2% /snap
...

The output from df following the file removal now shows that the two
filesystems are different. The snapped filesystem shows more free blocks while
the snapshot still retains the exact same properties that it did when the snapshot
was created.

Note that while one or more snapshot filesystems are in existence, any changes
to the snapped filesystem will result in a block copy to the snapshot if the block
has not already been copied. Although reading from the snapped filesystem does
not show any performance degradation, there may be a 2 to 3 times increase in
the time that it takes to issue a write to a file on the snapped filesystem.

Filesystem Backup 273

Performing a Backup Using VxFS Snapshots
There are a number of ways in which a stable backup may be taken from a
snapshot filesystem. First, any of the traditional UNIX tools such as tar and
cpio may be used. Because no files are changing within the snapshot, the archive
produced with all such tools is an exact representation of the set of files at the time
the snapshot was taken. As mentioned previously, if using vxdump it is best to
run it on a snapshot filesystem.

The fscat command can be used on a snapshot filesystem in an manner
similar to the way in which the dd command can be used on a raw device. Note,
however, that running dd on a snapshot device directly will not return a valid
image of the filesystem. Instead, it will get the snapshot superblock, bitmap,
blockmap, and a series of blocks.

The following example demonstrates how fscat is used. A small 10MB
filesystem is created into which two files are created. A snapshot of 5MB is
created and fscat is used to copy the image of the filesystem to another device,
also 10MB in size.

vxassist make fs1 10m
vxassist make fs1-copy 10m
vxassist make snap 5m
mkfs -F vxfs /dev/vx/rdsk/fs1 10m
 version 4 layout
 20480 sectors, 10240 blocks of size 1024, log size 1024 blocks
 unlimited inodes, largefiles not supported
 10240 data blocks, 9144 free data blocks
 1 allocation units of 32768 blocks, 32768 data blocks
 last allocation unit has 10240 data blocks
mount -F vxfs /dev/vx/dsk/fs1 /fs1
echo hello > /fs1/hello
echo goodbye > /fs1/goodbye
mount -F vxfs -osnapof=/fs1,snapsize=10240 /dev/vx/dsk/snap /snap
rm /fs1/hello
rm /fs1/goodbye
fscat /dev/vx/dsk/snap > /dev/vx/rdsk/fs1-copy

Before issuing the call to fscat the files are removed from the snapped
filesystem. Because the filesystem is active at the time that the snapshot is taken,
the filesystem superblock flags are marked dirty to indicate that it is in use. As a
consequence, the filesystem created by fscat will also have its superblock
marked dirty, and therefore will need a fsck log replay before it can be mounted.
Once mounted, the files originally written to the snapped filesystem are visible as
expected.

fsck -F vxfs /dev/vx/rdsk/fs1-copy
log replay in progress
replay complete - marking super-block as CLEAN
mount -F vxfs /dev/vx/dsk/fs1-copy /fs2
ls -l /fs2
total 4

274 UNIX Filesystems—Evolution, Design, and Implementation

-rw-r--r-- 1 root other 8 Jun 7 11:37 goodbye
-rw-r--r-- 1 root other 6 Jun 7 11:37 hello
drwxr-xr-x 2 root root 96 Jun 7 11:37 lost+found
cat /fs2/hello
hello
cat /fs2/goodbye
goodbye

The fscat command is built on top of the VX_SNAPREAD ioctl, which reads a
specified block from the filesystem. The bitmap on the snapshot filesystem is
consulted to determine whether to return a block from the snapped filesystem or
from the snapshot itself. Issuing a truss when running the fscat command
shown above will produce the following:

13672: open64("/snap", O_RDONLY) = 3
...
13672: ioctl(3, 0x56584680, 0xFFBEFCF4) = 5120
13672: write(1, "\fD5 , nD4F89E 0E6 xDF o".., 5120) = 5120
13672: ioctl(3, 0x56584680, 0xFFBEFCF4) = 5120
13672: write(1, "95DB .9A v04B4938C B 1F".., 5120) = 5120

The snapshot filesystem is opened. Following this is a series of VX_SNAPREAD
ioctl commands to read blocks from the snapshot followed by a series of writes
to standard output.

How VxFS Snapshots Are Implemented
Figure 12.3 shows how VxFS snapshots are laid out on disk. The superblock is a
copy, albeit with a small number of modifications, of the superblock from the
snapped filesystem at the time the snapshot was made.

The bitmap contains one bit for each block on the snapped filesystem. The
bitmap is consulted when accessing the snapshot, to determine whether the
block should be read from the snapshot or from the snapped filesystem. The
block map also contains an entry for each block on the snapped filesystem. When
a block is copied to the snapshot, the bitmap is updated to indicate that a copy
has taken place and the block map is updated to point to the copied block on the
snapshot device.

To create a snapshot, the filesystem is first frozen. This ensures that all data is
flushed to disk and any subsequent access is blocked for the duration of the
freeze. Once frozen, the superblock of the snapshot is written to disk together
with the (empty) bitmap and blockmap. The snapshot is linked to the snapped
filesystem and the filesystem is then thawed, which allows subsequent access.

Persistent Snapshot Filesystems
The snapshot mechanisms discussed so far, such as those provided by VxFS and
Solaris UFS, are nonpersistent meaning that they remain for the duration of the
mount or while the system is running. Once a reboot occurs, for whatever reason,

TEAMFL
Y

TEAM FLY ®

Filesystem Backup 275

the snapshots are no longer valid.
In contrast persistent snapshots remain consistent across a system reboot

therefore provide more flexibility, as the following sections will show.
VxFS storage checkpoints provide a persistent snapshot mechanism. Unlike VxFS

snapshots, they occupy space within the filesystem (disk slice) itself and can be
mounted read-only or read/write when required.

Differences between VxFS Storage Checkpoints and Snapshots
Although both storage checkpoints and snapshots provide a stable, point-in-time
copy of a filesystem, there are some fundamental differences between the two:

■ Snapshots require a separate device in order to hold copy on write blocks.
With storage checkpoints, the copy on write blocks are held within the same
device in which the snapped/primary filesystem resides.

■ Snapshots are read-only while storage checkpoints can be either read-only
or read/write.

■ Snapshots are nonpersistent in that they are lost following a reboot. Storage
checkpoints are persistent and survive a reboot.

■ A snapshot filesystem is mounted at the time that it is created and exists for
the duration of the mount only. Storage checkpoints remain in existence
whether mounted or not. An explicit command must be invoked to remove
a storage checkpoint.

■ Snapshots track changed blocks in a device-level bitmap. Storage
checkpoints track changed blocks on a per-file basis.

Figure 12.3 Implementation of VxFS snapshots.

superblock

bitmap

blockmap

snapped

filesystem

block
copied

block not
copied

snapshot
filesystem

276 UNIX Filesystems—Evolution, Design, and Implementation

How Storage Checkpoints Are Implemented
Most snapshot mechanisms work at the block level. By employing a tracking
mechanism such as a bitmap, the filesystem can determine whether
copy-on-write blocks have been copied to the snapshot or whether the blocks
should be accessed from the filesystem from which the snapshot was taken.
Using a simple bitmap technique simplifies operation of the snapshots but limits
their flexibility. Typically nonpersistent snapshots are read-only.

VxFS storage checkpoints are heavily tied to the implementation of VxFS. The
section VxFS Disk Layout Version 5, in Chapter 9, describes the various
components of the VxFS disk layout. VxFS mountable entities are called filesets.
Each fileset has its own inode list including an inode for the root of the fileset,
allowing it to be mounted separately from other filesets. By providing linkage
between the two filesets, VxFS uses this mechanism to construct a chain of
checkpoints, as shown in Figure 12.4.

This linkage is called a clone chain. At the head of the clone chain is the primary
fileset. When a filesystem is created with mkfs, only the primary fileset is created.
When a checkpoint is created, the following events occur:

■ A new fileset header entry is created and linked into the clone chain. The
primary fileset will point downstream to the new checkpoint, and the new
checkpoint will point downstream to the next most recent checkpoint.
Upstream linkages will be set in the reverse direction. The downstream
pointer of the oldest checkpoint will be NULL to indicate that it is the
oldest fileset in the clone chain.

■ An inode list is created. Each inode in the new checkpoint is an exact copy
of the inode in the primary fileset with the exception of the block map.
When the checkpoint is created, inodes are said to be fully overlayed. In
order to read any data from the inode, the filesystem must walk up the
clone chain to read the blocks from the inode upstream.

■ The in-core fileset structures are modified to take into account the new
checkpoint. This is mainly to link the new fileset into the clone chain.

One of the major differences between storage checkpoints and snapshots is that
block changes are tracked at the inode level. When a write occurs to a file in the
primary fileset, a check must be made to see if the data that exists on disk has
already been pushed to the inode in the downstream fileset. If no push has
occurred, the block covering the write must be pushed first before the write can
proceed. In Figure 12.4, each file shown has four data blocks. Inodes in the
primary fileset always access four data blocks. Whether the checkpoint inodes
reference the blocks in the primary or not depends on activity on the primary
fileset. As blocks are to be written they are pushed to the inode in the
downstream checkpoint.

When reading from a checkpoint file, a bmap operation is performed at the
offset of the read to determine which block to read from disk. If a valid block
number is returned, the data can be copied to the user buffer. If an overlay block is

Filesystem Backup 277

returned, the filesystem must walk upstream to read from the inode in the next
fileset. Over time, blocks will be copied to various files in different filesets in the
clone chain. Walking upstream may result in reading blocks from the primary
fileset or from one of the filesets within the clone chain.

Using Storage Checkpoints
Checkpoints are created using the fscktpadm command. In order to create a
checkpoint, the filesystem from which to create the checkpoint must be mounted.
A filesystem is created and two files are added as follows:

mkfs -F vxfs /dev/vx/rdsk/fs1 100m
 version 4 layout
 204800 sectors, 102400 blocks of size 1024, log size 1024 blocks
 unlimited inodes, largefiles not supported
 102400 data blocks, 101280 free data blocks
 4 allocation units of 32768 blocks, 32768 data blocks
 last allocation unit has 4096 data blocks
mount -F vxfs /dev/vx/dsk/fs1 /fs1
echo hello > /fs1/hello
echo goodbye > /fs1/goodbye
ls -l /fs1

Figure 12.4 The architecture of VxFS storage checkpoints.

Fileset

.

.

.

header file

inode list for
primary fileset

inode list for
newest checkpoint

inode list for
oldest checkpoint

data
blocks

data
blocks

NULL

checkpoint
linkage

data
blocks

278 UNIX Filesystems—Evolution, Design, and Implementation

total 4
-rw-r--r-- 1 root other 8 Jun 9 11:05 goodbye
-rw-r--r-- 1 root other 6 Jun 9 11:05 hello
drwxr-xr-x 2 root root 96 Jun 9 11:04 lost+found

The root directory is displayed in order to view the timestamps, bearing in mind
that a storage checkpoint should be an exact replica of the filesystem, including
all timestamps.

Two checkpoints are now created. Note that before creation of the second
checkpoint, the goodbye file is removed and the hello file is overwritten. One
would expect that both files will be visible in the first checkpoint, that the
goodbye file will not be present in the second and that the modified contents of
the hello file will be visible in the second checkpoint. This will be shown later.
Note that changes to the filesystem are being tracked even though the
checkpoints are not mounted. Also, as mentioned previously, checkpoints will
remain consistent across a umount/mount or a clean or unclean shutdown.

fsckptadm create ckpt1 /fs1
rm /fs1/goodbye
echo "hello again" > /fs1/hello
fsckptadm create ckpt2 /fs1

The fsckptadm command can also be used to list all storage checkpoints that
belong to a filesystem as follows:

fsckptadm list /fs1
/fs1
ckpt2:

ctime = Sun Jun 9 11:06:55 2002
mtme = Sun Jun 9 11:06:55 2002
flags = none

ckpt1:
ctime = Sun Jun 9 11:05:48 2002
mtime = Sun Jun 9 11:05:48 2002
flags = none

Checkpoints can be mounted independently as follows. Note that the device to
be specified to mount is a slight variation of the real device. This avoids having
multiple mount entries in the mount table that reference the same device.

mkdir /ckpt1
mkdir /ckpt2
mount -F vxfs -ockpt=ckpt1 /dev/vx/dsk/fs1:ckpt1 /ckpt1
mount -F vxfs -ockpt=ckpt2 /dev/vx/dsk/fs1:ckpt2 /ckpt2

Finally, the contents of all directories are shown to indicate the specified effects
due to adding and removing files:

ls -l /fs1
total 2

Filesystem Backup 279

-rw-r--r-- 1 root other 12 Jun 9 11:06 hello
drwxr-xr-x 2 root root 96 Jun 9 11:04 lost+found
ls -l /ckpt1
total 4
-rw-r--r-- 1 root other 8 Jun 9 11:05 goodbye
-rw-r--r-- 1 root other 6 Jun 9 11:05 hello
drwxr-xr-x 2 root root 96 Jun 9 11:04 lost+found
ls -l /ckpt2
total 0
-rw-r--r-- 1 root other 12 Jun 9 11:06 hello
drwxr-xr-x 2 root root 96 Jun 9 11:04 lost+found

The granularity at which blocks are pushed is generally fixed in size and is a
multiple of the system page size. However, there are various optimizations that
VxFS can perform. Consider the case where a file in the primary fileset is to be
removed and the corresponding checkpoint inode is fully overlayed (no blocks
have been pushed). In this case, instead of pushing blocks as the truncation
proceeds, it is simpler to swap the block maps. This also has the added advantage
that the geometry of the file is preserved.

Fragmentation can occur in the clone inodes as activity in the primary
continues—this is largely unavoidable. However, by using the VxFS fsadm
command, it is possible to perform extent reorganization on the checkpoint files,
which can minimize the fragmentation.

Writable Storage Checkpoints
Frozen images are, just as the name implies, a copy of the filesystem at a specific
moment in time. Because the main goal of producing frozen images has been to
perform backups, this generally works extremely well. However, there are times
at which writing to frozen images would be beneficial. For example, running a
database decision support application on a writable checkpoint would be ideal for
many environments. Furthermore, this could be performed while the main
database is still active.

VxFS storage checkpoints can be mounted for read/write access as well as
read-only access.

Block-Level Incremental Backups

When backing up from a frozen image, backup applications need to back up all of
the files that have changed since the last backup. In environments where there are
large files, this causes an overhead if only a small percentage of blocks within
these files has changed. This is particularly true of database environments. By
only backing up changed blocks, the backup window, the time to take a backup, can
be reduced significantly. As the amount of data increases, incremental backups
are becoming more critical, particularly in large enterprise environments, because
the amount of time to perform a backup increases as the amount of data increases.

280 UNIX Filesystems—Evolution, Design, and Implementation

An incremental backup does not remove the need for a full backup. It does
however avoid the need to produce a full backup on a daily basis. One scenario is
to make a full backup once a week followed by an incremental backup on a daily
basis. In order to fully restore a filesystem, the full backup needs to be restored,
followed by the incremental backups.

VxFS storage checkpoints can be used to enable block level incremental
backups. There are two different types of checkpoints that are used to enable this
feature, namely:

Datafull checkpoints. The type of checkpoints described in previous sections
are all datafull checkpoints. When a block is to be changed in a file in the
primary fileset, the block is first copied to the file in the downstream
checkpoint.

Dataless checkpoints. When a change occurs to a file in the primary fileset
with dataless checkpoints, the block map of the downstream checkpoint file
is modified to indicate the area of change, but no data is pushed.

Figure 12.5 shows the steps involved in creating an incremental backup. The first
step is to create a datafull checkpoint from which a full backup is taken. This
involves mounting the checkpoint and performing the backup.

Once the full backup is complete, the checkpoint is converted from datafull to
dataless. Over the course of a day, changes to files in the primary fileset will be
marked in the corresponding files in the checkpoint. When the backup
application is run to create the incremental backup it can determine which blocks
have changed in each file, so only data that has changed needs to be backed up.

To perform the incremental backup, a new datafull checkpoint is created. For
all files that have changed, the backup application can read the modified blocks
from the new, datafull checkpoint and write them to tape.

After the incremental backup is complete, the old dataless checkpoint is then
removed and the new, datafull checkpoint is converted to a dataless checkpoint.
On following days, the same process continues up until a new full backup is
taken, at which point the dataless checkpoint is removed and another datafull
checkpoint is created.

In large database environments where database files can span hundreds of
gigabytes, the saving in time of block-level incremental backups can be
significant.

Hierarchical Storage Management

Although not strictly a backup-related feature, Hierarchical Storage Management
(HSM) provides an archiving facility that can be used in conjunction with backup
software to minimize the amount of data that is transferred from the filesystem to
tape. This technique is employed by the VERITAS NetBackup (NBU) and Storage
Migrator products.

Filesystem Backup 281

Figure 12.5 Performing an incremental backup using VxFS storage checkpoints.

Day 1, Step 1 - Create a full backup

Day 1, Step 2 - Convert to a nodata checkpoint

Day 2, Step 1 - Create new dataful checkpoint and perform incremental backup

Day 2, Step 2 - Remove old dataless checkpoint, convert new datafull to dataless

primary
fileset

datafull
checkpoint

primary
fileset

dataless
checkpoint

primary
fileset

datafull
checkpoint

primary
fileset

dataless
checkpoint

dataless
checkpoint

CKPT

1

CKPT

1

CKPT

1

CKPT

2

CKPT

2

copy blocks from
the datafull checkpoint
to create a full backup

scan the dataless
checkpoint for
changes and copy
the blocks from the
datafull checkpoint

282 UNIX Filesystems—Evolution, Design, and Implementation

Introduced many years ago when disk prices were much higher, HSM
applications are to physical disks what virtual memory is to physical memory.
HSM applications monitor the filesystem and migrate files off to tape (or other
media) based on a set of policies. For example, an administrator can set a policy
that specifies that once the filesystem becomes 80 percent full, files older than 60
days are targets for migration. The HSM application moves the data associated
with the file off to tape. The user can still see the files that are migrated and is
unaware that the data is no longer on disk. If the user then attempts to access the
data, the data is migrated back from tape before the read or write can be
processed.

The Data Management Interfaces Group (DMIG) [DMIG97] produced a proposal,
adopted by X/Open, which provides a set of APIs (DMAPI) that operating
system and filesystem developers can implement to ease the job of HSM
developers. The main features of the DMAPI are:

■ The ability to punch a hole in a file. This operation frees file data blocks but
does not change the size of the file.

■ Invisible read and write calls. To avoid backup or other applications seeing
timestamp changes due to HSM activity, special read and write calls are
introduced that avoid updating the timestamps in the inode.

■ Support for extended attributes associated with the file. If a file’s data
blocks have been migrated, there must be some meta-data associated with
the file which indicates that a migration has taken place, together with
information about where the blocks are held. HSM applications typically
tend to keep much of this information in a separate database so only
minimal information is usually kept in extended attributes.

■ The ability to monitor events on a file. Consider the case where file data
has been migrated and a user accesses the file. An event can be posted
to the HSM application to signify a read or write. This allows the HSM
application to migrate the data back in from tape and perform an
invisible write to the file before the user read or write is allowed to
succeed.

HSM applications by themselves do not actually back up the filesystem.
However, for specific filesystems there may be a substantial amount of data
already on tape. When a backup application runs, this may result in duplicate
copies of the data being written to tape.

It is possible for both applications to work together such that if file data has
already been migrated to tape, backup software can skip those specific data
blocks. This feature is implemented by the VERITAS NetBackup and Storage
Migrator products, as shown in Figure 12.6.

Filesystem Backup 283

Summary

There are numerous different ways in which backups can be taken. For smaller
environments, a simple snapshot with standard UNIX utilities may suffice. For
larger environments with multiple servers and large disk farms, this simple
approach doesn’t scale and enterprise backup systems are needed. [BAR02]
provides a detailed account of how enterprises perform backups, together with an
overall account of how storage area networks are employed.

Features such as VxFS storage checkpoints which are not just persistent, but
also writable, allow a host of different types of new applications.

Figure 12.6 Backup and HSM applications working together to minimize data transfers.

Storage
Migrator

NetBackup
data

blocks
archived?

backup
data

data
migration

user

kernel

VxFS

Filesystem

event
management

NO

checkpoint
management

TEAMFL
Y

TEAM FLY ®

CHAPTER

13

285

Clustered and Distributed
Filesystems

With the advent of computer networks, which appeared in the 1970s and became
more widespread in the 1980s, the need to share files between machines became
essential. Initially, UNIX tools such as uucp and ftp were used to transfer files
from one machine to another. However, disks were still relatively expensive; this
resulted in a need to access files across the network without local storage.

The 1980s saw a number of different distributed filesystems make an
appearance in the UNIX community, including Sun’s Network Filesystem (NFS),
AT&T’s Remote File Sharing (RFS), and CMU’s Andrew File System (AFS) which
evolved into the DCE Distributed File Service (DFS). Some of the distributed
filesystems faded as quickly as they appeared. By far, NFS has been the most
successful, being used on tens of thousands of UNIX and non-UNIX operating
systems throughout the world.

Distributed filesystems operate around a client/server model, with one of the
machines owning an underlying disk-based filesystem and serving files to clients
through some well-defined protocol. The protocol and means of transferring files
to the user is transparent, with UNIX file semantics being a key goal.

Clustered filesystems by contrast treat a collection of machines and disks as a
single entity and provide a fully coherent view of the filesystem from any of the
nodes. To the user, clustered filesystems present a single coherent view of the
filesystem and may or may not offer full UNIX file semantics. Clustered
filesystems as well as local filesystems can be exported for use with NFS.

286 UNIX Filesystems—Evolution, Design, and Implementation

Distributed Filesystems

Unlike local filesystems where the storage is physically attached and only
accessible by processes that reside on the same host machine, distributed
filesystems allow access to files on a remote machine through use of a
well-defined protocol. Distributed filesystems employ a client/server model
where a single filesystem server can serve files to multiple clients.

Regardless of the type of distributed filesystem, one goal that is absolutely
essential to all of these filesystems is the need to provide UNIX file semantics
when accessing remote files from the client.

There have been numerous distributed filesystems developed for UNIX over
the last 20 years. Many of them have come and gone. The most successful
distributed filesystem by far is the Sun Network Filesystem (NFS) which appeared
in the mid 1980s. Although not as feature-rich as filesystems such as the DCE
Distributed File Service (DFS), the simplicity of the NFS protocol, together with the
fact that the NFS protocol is in public domain, resulted in it being ported to many
different operating systems, UNIX and non-UNIX alike.

The following sections describe some of the main UNIX distributed
filesystems with particular emphasis on NFS.

The Network File System (NFS)
With the advent of networks providing connectivity between computers, it
became feasible to provide interfaces through which user programs could access
files across a network using the same mechanisms by which they accessed files
on a local machine.

Hard disks were still relatively expensive in the late 1970s and early 1980s. By
providing a client/server file protocol such as NFS, hardware designers were free
to build diskless workstations or least workstations with a minimal amount of
local storage.

NFS Background and History
The Network File System (NFS) was initially developed by Sun Microsystems in
the early to mid 1980s and has been a huge success, with ports to just about every
operating system, UNIX and non-UNIX alike. In the paper that described the first
two versions of NFS [SAND85], the goals of NFS were to:

Provide machine and OS independence. This goal was to ensure that NFS
could work on UNIX and non-UNIX operating systems. The client/server
protocols were to be simple enough that they could be implemented on
PCs—at the time, a DOS-based environment.

Provide resilience to server crashes. If the server crashes, the clients who are
currently accessing the server must be able to recover. Furthermore, the
client should be unable to tell the difference between a server that crashed

Clustered and Distributed Filesystems 287

and restarted and one that was just slow in responding.

Provide transparent file access. In order for the filesystem to succeed, it was
important that applications could access files through NFS in the same
manner in which they could access files on a local disk.

Maintain UNIX semantics on the client. To satisfy the above goal in UNIX
environments, it was imperative that NFS provide UNIX file semantics to the
applications on the client.

Have acceptable performance. As stated in [SAND85] “People will not want to
use NFS if it is no faster than the existing network utilities, such as rcp, even
if it is easier to use.” The performance targets were set at 80 percent of local
disk access.

There were three pieces that comprised NFS, the protocol, the client, and the
server. All three will be described throughout the following sections.

The original NFS implementation, as described in [SAND85], encompassed
both version 1 and 2 of the protocol when it first became available to the public in
SunOS 2.0 in 1985. The first version of the protocol was only used internally
within Sun.

At the time of writing, NFS implementations adhering to version 3 of the
protocol have been in common use for several years and version 4
implementations are starting to appear. NFS is very well understood by tens of
thousands of people throughout the world, which is a great testament of its
success and an indicator as to why it will still be one of the most dominant of the
distributed filesystems for many years to come.

The Version 1 and 2 NFS Protocols
As described in The Sun VFS/Vnode Architecture in Chapter 7, the SunOS
filesystem architecture was redesigned and implemented to accommodate
multiple filesystem types and provide support for NFS. This was not the only
feature of the kernel that NFS depended on—it also relied on use of the Sun
Remote Procedure Call (RPC) infrastructure, that provided a synchronous, cross
network mechanism for one process (or the kernel) to call another process on a
different machine. This allowed the NFS protocol to be broken down into a set of
procedures specifying their arguments, the results, and the effects.

To communicate across the network, NFS used the User Datagram Protocol
(UDP) on top of the Internet Protocol (IP). Because the protocol was designed to be
independent of machine architectures and operating systems, the encoding of the
protocol messages and their responses was sensitive to issues such as endianess
(the order in which bytes are packed into a machine word). This resulted in the
use of the External Data Representation (XDR) specification.

The use of RPC and XDR are described in the following section. Before
describing how they are used, it first helps to describe the actual procedure calls
NFS introduced for communication across the network. The version 2 protocol
was documented in [RFC1094], which describes the procedure calls shown in

288 UNIX Filesystems—Evolution, Design, and Implementation

Table 13.1. Most of the operations are self explanatory. The null procedure is
used to ping the server and can also be used as a means of measuring the round
trip time. The statfs procedure returns information that can be displayed when
making a call to the df command.

The file referenced by these procedures is called a file handle. This is an opaque
data structure provided by the server in response to a lookup request. The client
should never try to interpret the contents of the file handle. File handles are
constructed using a combination of operating-specific information and
information provided by the filesystem. For the latter, the information must
provide a means to locate the file, so the file handle is typically a combination of
filesystem specific information together with the inode number of the file and its
generation count.

Many of the procedures deal with file attributes. Not surprisingly, the
attributes correspond to the various fields of the stat structure as described in
the section Basic File Properties in Chapter 2.

The NFS server is stateless in that there is no information kept on the server
about past requests. This avoids any complicated crash recovery mechanism. If
the client does not receive a response from the server within a specific period of
time, the request is retried until it succeeds. This tolerates a server crash and
reboot, ensuring that the client cannot detect the difference between a server
crash and a server that is simply slow in responding.

The version 2 protocol also requires that any file writes are synchronous. This
meets the objective of achieving UNIX file semantics.

Within the file handle, the inode generation count is typically encoded.
Consider the case when a file is opened and a file handle is returned. If the file is
removed on the server and the inode is reused later for a new file, the file handle
is no longer valid because it refers to the old file. To distinguish between the old
and new files, UNIX filesystems contain a generation count that is incremented
each time the inode is reused. By using the generation count within the file
handle, the stale file handle will be detected by the server when the deleted file is
referenced.

One of the main goals of NFS was to make it portable across different
operating systems. [ROSE86] demonstrated early ports to both an SVR2.2-based
version of UNIX and the Sequent Dynix operating system, a System V/BSD
hybrid. There were a number of different PC (DOS-based) implementations of
NFS. [CALL00] describes the various issues encountered with porting NFS to
these platforms.

NFS Client/Server Communications
NFS relies on both the Remote Procedure Call (RPC) [RFC1057] and eXternal Data
Representation (XDR) [RFC1014] specifications as a means of communicating
between client and server. XDR allows for the description and encoding of
different data types. Its goal is to allow communication between machines with

Clustered and Distributed Filesystems 289

different underlying architectures. RPC provides an infrastructure for creating
client/server applications whereby an application can call a function provided by
the server just as it would call a function within its own address space.

The XDR format assumes that bytes (8-bit) are portable in that the encoding of
bytes does not change from one architecture or hardware device to another.
Building on top of bytes, the XDR specification requires data types to be
constructed from multiples of four bytes of data. If data types require a number of
bytes that is not exactly divisible by 4, any unused bytes will be zero-filled. The
ordering of the bytes is such that, if read from a byte stream, the high order byte is
always read first. This is called big-endian (the biggest digit in a number comes
first). XDR also uses a standard representation for floating point numbers
(following the IEEE standard).

Table 13.1 The NFS Version 2 Protocol Messages

PROCEDURE ARGUMENTS RETURN VALUE

null null null

lookup directory_file_handle, name file_handle, attributes

create directory_file_handle, name,
attributes

new_file_handle, attributes

remove directory_file_handle, name status

getattr file_handle attributes

setattr file_handle, attributes attributes

read file_handle, offset, count attributes, data

write file_handle, offset, count, data attributes

rename directory_file_handle, name,
to_file_handle, to_name

status

link directory_file_handle, name,
to_file_handle, to_name

status

symlink directory_file_handle, name, string status

readlink file_handle string

mkdir directory_file_handle, name,
attributes

file_handle, new_attributes

rmdir directory_file_handle, name status

readdir directory_file_handle, cookie,
count

entries

statfs file_handle filesystem_stats

290 UNIX Filesystems—Evolution, Design, and Implementation

To give a simple example of how XDR is used, consider the encoding of an
integer that is defined as a 32-bit data type. This is encoded as follows:

So if this data type were being read from a regular file as a series of bytes, byte
0, the most significant byte, would be read first.

The XDR specification defines a number of primitive data types including
signed and unsigned integers, booleans, hyper integers (64 bits), fixed and
variable length opaque data types, and strings. It also defines a wide range of
structured data types including arrays, unions, linked lists, and structures. In
basic terms, any data type that can be defined in the most popular high-level
languages can be encoded within XDR.

The RPC mechanism used for NFS was derived from Sun RPC, a simple way
to provide a remote procedure call mechanism between two processes on
different machines. To the caller of such a procedure, there is no difference
between calling an RPC function and calling a local function.

The RPC protocol [RFC1057] can be implemented on top of several different
transport protocols. In the case of the early NFS implementations, this was based
on UDP/IP. Within the last ten years, a move to using TCP/IP has been made in
many environments (typically to avoid packet loss when going through routers).
Description of the RPC protocol is beyond the scope of this book. The NFS
specification [RFC1094] defines the NFS protocol as an RPC program and
[CALL00] provides a more detailed description of the protocol itself.

The overall architecture of NFS in a VFS/vnode architecture is shown in
Figure 13.1. This shows the placement of NFS, XDR, and RPC within the kernel.
To the rest of the kernel, NFS appears as any other filesystem type.

Exporting, Mounting, and Accessing NFS Filesystems
Table 13.1 shows the different NFS protocol procedures. One thing that is missing
from this list of functions is the means by which the very first file handle is
obtained, the handle of the root directory from which subsequent lookup
operations and other procedures can be performed. This is achieved through a
separate mount protocol that returns the file handle for the root directory.

There were two reasons for separating the mount protocol from the NFS
protocol itself (note that both are described in [RFC1094]). First, the means by
which access checking is performed on the server is typically implemented in
user space, which can make use of a number of different security mechanisms.
Because the NFS protocol is implemented within the kernel for performance
reasons, it was felt that it was easiest to allow for this separation. The second
reason that the protocols were separated was that the designers thought a single
pathname to file handle procedure would tie the implementation of NFS too

byte 0 byte 1 byte 2 byte 3most significant digit least significant digit

32 bits

Clustered and Distributed Filesystems 291

closely with UNIX. It was envisaged that the pathname to file handle translation
may be implemented by a protocol that differs from the mount protocol.

The initial mount protocol consisted of six different procedures:

MOUNTPROC_NULL. This procedure performs no specific function. It is used to
ping the server to measure the round-trip time, which can be used to
determine how to time out NFS procedure calls to the server.

MOUNTPROC_MNT. This procedure takes a pathname and returns a file handle
that corresponds to the pathname.

MOUNTPROC_DUMP. This function returns a list of clients and the exported
filesystems that they have mounted. This is used by the UNIX commands
showmount and dfmounts that list the clients that have NFS mounted
filesystems together with the filesystems that they have mounted.

MOUNTPROC_UMNT. This procedure is used to inform the server that the NFS
filesystem on the client has been unmounted.

MOUNTPROC_UMNTALL. This procedure is sent by a client following a reboot
(or after a crash). This prevents the server from maintaining stale mount
entries in the event that the client crashed before sending corresponding
MOUNTPROC_UMNT messages.

MOUNTPROC_EXPORT. This procedure returns a list of exported filesystems.

The mount protocol remained unchanged for a number of years. Since then, only
one additional procedure has been added, MOUNTPROC_PATHCONF, which
retrieves additional information from the server allowing NFS filesystems to
comply with the POSIX pathconf() system call.

Figure 13.1 NFS on a VFS / vnode based version of UNIX.

RPC / XDR

UDP / IP

RPC / XDR

UDP / IP

network

NFS FilesystemNFS Filesystem

VFS / vnode

interface VFS / vnode

interface

. . .

other
filesystems

system calls

local
filesystem

client server

user

kernel

292 UNIX Filesystems—Evolution, Design, and Implementation

Using NFS
Although the NFS implementations differ from one platform to the next in the
way in which filesystems are exported, using NFS is trivial when the appropriate
client and server software is running. NFS daemons/threads are typically started
when the system bootstraps and enters multiuser mode.

As an example, consider the case in Solaris where a server called srv wishes to
export a filesystem mounted on /fs1 to any client. The easiest way to achieve
this is to place an entry in /etc/dfs/dfstab that specifies the filesystem to be
shared and/or exported. This ensures that the filesystem will be exported for use
on each reboot. If no options are needed for this filesystem, the following line is
sufficient:

share -F nfs /fs1

On the client side, a mount call can then be made to mount the filesystem as
follows:

mount -F nfs srv:/fs1 /mnt
mount | grep mnt
/mnt on srv:/fs1 remote/read/write/setuid/dev=2fc004

on Wed Jun 19 07:25:18 2002

Once mounted, the filesystem is then usable just as any local filesystem.

The Version 3 NFS Protocol
Despite its huge success, the NFS version 2 protocol was not without problems,
leading to the introduction of the NFS version 3 protocol [RFC1813]. The two
main problems with the version 2 protocol are highlighted below:

■ Only files up to 4GB in size could be accessed. This limitation was exposed
early on when running NFS on large machines but was rapidly becoming a
problem in most environments.

■ Because all writes were required to be written synchronously, write
intensive applications suffered a performance bottleneck. There were
numerous workarounds for this problem, including some that violated
the NFS protocol by performing writes asynchronously.

The goals of those involved in designing NFS version 3 were to solve the two
problems described above, tidy up the existing version 2 protocol, and add some
minor features, but at the same time limit the scope of the version 3 protocol to
avoid it becoming too bloated to be implemented in a timely manner.

[PAWL94] provides an overview of the process the designers of the version 3
protocol went through, the problems inherent in the version 2 protocol, the goals
behind the version 3 protocol, the changes introduced with the version 3
protocol, and various implementation and performance-related information. In

Clustered and Distributed Filesystems 293

this paper, they identify twelve main areas in which the protocol was enhanced:

■ All arguments within the protocol such as file sizes and file offsets were
widened from 32 to 64-bits. This solved the 4GB file restriction.

■ The write model was changed to introduce a write/commit phase that
allowed for asynchronous writes. (This will be described further).

■ A new ACCESS procedure was introduced to solve permission checking
problems when mapping the ID of the superuser. This procedure works in
the presence of ACLs (Access Control Lists).

■ In the original protocol, some of the procedures required a subsequent call
in order to retrieve file attributes. In the new protocol, all procedures
returned file attributes.

■ In the original protocol, writes were limited to 8Kb per procedure call. This
restriction was relaxed in the new protocol.

■ The READDIRPLUS procedure was introduced that returned both a file
handle and attributes. This eliminated some lookup calls when scanning a
directory.

■ The file handle size in the version 2 protocol was a fixed, 32-byte opaque
data type. In version 3, it was changed to be of variable size up to a
maximum of 64 bytes.

■ The CREATE procedure was modified to allow for exclusive file creates.
This solved a workaround in the version 2 protocol whereby a LOOKUP
was followed by a CREATE, which left a window in which another client
could create the file.

■ The version 2 protocol limited the size of filenames and pathnames to 255
and 1024 characters respectively. In version 3, this was replaced by variable
length strings which could be agreed on between the client and server.

■ The version 3 protocol tightened the errors that could be returned from the
server. All error values are iterated, and no errors outside of the list are
permitted.

■ For the set of file attributes, the blocksize field was removed. The
blocks field was changed to used and recorded the total number of bytes
used by the file.

■ A new error type, NFS3ERR_JUKEBOX, was introduced. In a Hierarchical
Storage Management (HSM) environment, a request may be made to the
server to read a file that has been migrated to tape. The time to read the
data back in from tape could be quite large. This error informs the client
that the operation is in progress and that the call should be retried. It
also allows the client to display a message on the user’s console if
applicable.

294 UNIX Filesystems—Evolution, Design, and Implementation

Writes in UNIX are asynchronous by default unless the O_SYNC or O_DSYNC
flags are passed to open(). Forcing asynchronous writes to be synchronous
inevitably affects performance. With NFS version 3, the client can send a number
of asynchronous WRITE requests that it can then commit to disk on the server at
a later date by issuing a COMMIT request. Once it receives a COMMIT request,
the server cannot return until all data has been flushed to disk. In some regards,
the COMMIT request is similar to calling fsync(). The most noticeable
difference is that the COMMIT request does not necessarily cover the data for the
whole file. It does however allow the client to flush all data when a file is closed
or to break up a large synchronous write request into a number of smaller writes,
all of which are performed asynchronously but followed by a COMMIT request.
This itself is an important enhancement because it allows the filesystem on the
server or the disk driver to coalesce a number of writes in a single large write,
which is more efficient. The use of asynchronous writes should not affect the
crash/recovery properties of NFS because the client is required to keep a copy of
all data to be written to the file until a COMMIT is issued.

The READDIRPLUS procedure, while it can be extremely effective, also
presents problems. The procedure was introduced to minimize the number of
over-the-wire LOOKUP requests once a READDIR procedure had been invoked.
This would typically be the case when issuing an ls -F request on a directory.

Because the implementation of READDIRPLUS is significantly more
expensive than READDIR, it should be used with caution. Typically, the
operation should be performed only when first accessing the directory in order to
populate the DNLC (or other name cache, depending on the underlying OS). The
operation should then be performed again only in the case where the cache was
invalidated for the directory due to a directory modification.

Because many of the goals of NFS version 3 were to improve performance, the
proof of its success was therefore dependent on how well it performed.
[PAWL94] documented a number of different performance-related tests that
showed that the version 3 protocol did in fact meet its objectives.

The NFS Lock Manager Protocol
One decision that the NFS team made when designing the NFS protocol was to
omit file locking. One of the main reasons for this was that to support record
locking, state would need to be maintained on the server, which would
dramatically increase the complexity of NFS implementations.

However, file locking was not something that could be easily overlooked and
was therefore implemented in SunOS as the Network Lock Manager (NLM).
Various iterations of the NLM protocol appeared, with NLM version 3 being the
version that was most widely used with NFS version 2. Unfortunately, due to the
complexity of implementing support for locking, the NLM protocol was not
widely implemented. With the introduction of NFS version 3 [RFC1813], the
definition of NLM (version 4) was included with the NFS specification but was
still a separate protocol. The NLM protocol also relied on the Network Status

TEAMFL
Y

TEAM FLY ®

Clustered and Distributed Filesystems 295

Monitor protocol that was required in order to notify clients and servers of a crash
such that lock state could be recovered.

Crash/recovery involves coordination between both clients and server as
shown here:

Server crash. When locks are handed to clients, the server maintains a list of
clients and the locks that they own. If the server crashes, this information is
lost. When the server reboots, a status monitor runs and sends a message to
all known clients. The lock manager on each client is notified and is given an
opportunity to reclaim all locks it owns for files on the server. There is a fixed
amount of time (or grace period) in which the clients can respond. Note
however, that this is not an ideal situation as notification of clients may be
delayed, because the status monitor typically informs all clients in a serial
manner. This window may be reduced by multithreading the status monitor.

Client crash. If the client crashes, any locks that the client holds on the server
must be cleaned up. When the client resumes, a message is sent to the server
to clean up its locks. Through use of a client state number, which is
incremented on reboot, the server is able to detect that the client has been
rebooted and removes any of the locks that were held by the client before it
crashed/rebooted.

Since the NLM was not widely adopted, version 4 of the NFS protocol has been
extended to include file locking. This is described in the next section.

The Version 4 NFS Protocol and the Future of NFS
NFS was designed for local area networks and was put in place before the
widespread adoption of the World Wide Web. As time goes by there is more of a
need to use NFS in wide area networks. This raises questions on security and
further highlights the need for NFS to address cross-platform issues. Although
one of the goals of the original NFS implementations was to support non-UNIX
platforms, the protocol was still heavily geared towards UNIX environments.

The goals of the version 4 protocol are to address the problems highlighted
above and to provide additional features that were omitted in the version 3
protocol (version 3 changes were kept to a minimum to ensure that it could be
designed and implemented in a timely manner). Although the version 4 protocol
involves some substantial changes, the goals are to allow small incremental
changes that do not require a complete overhaul of the protocol. The time
between the version 2 and 3 protocols was approximately 8 years, which is similar
to the time between the version 3 and 4 protocols. A minor revision to the version
4 protocol allows new features to be added to the version 4 protocol in a much
more timely manner, say a 1 to 2 year timeframe.

The version 4 protocol is described in [RFC3010]. Following are the main
changes that are part of the new protocol. Note that the changes introduced with
the version 4 protocol are substantial and only covered briefly here.

296 UNIX Filesystems—Evolution, Design, and Implementation

Compound procedures. Many file-related operations over NFS require a large
number of procedure calls. In a local area network this is not such a great
issue. However, when operating in a wide area network the effect on
performance is much more noticeable. By combining a number of procedure
calls into a single, compound procedure, the amount of over-the-wire
communications can be reduced considerably resulting in much better
performance.

Internationalization. In previous versions of the protocol, file names were
handled as an opaque byte stream. Although they were typically limited to
a 7-bit US ASCII representation, they were commonly encoded in 8-bit
ISO-Latin-1. Problems occurred because there was no way to specify the
type of encoding within XDR. This limited the use of NFS in environments
where there may be mixed character sets. To provide better support for
internationalization, file and directory names will be encoded with UTF-8.

Volatile file handles. The NFS version 2 and version 3 protocols provided a
single file handle type with one set of semantics. This file handle is defined
as having a value that is fixed for the lifetime of the filesystem to which it
refers. As an example, a file handle on UNIX comprises, amongst other
things, the inode number and generation count. Because inodes can be freed
and reallocated, the generation count of the inode is increased when reused
to ensure that a client file handle that refers to the old file cannot now refer
to the new file even though the inode number stays the same. There have
also been some implementations that are unable to correctly implement the
traditional file handle which inhibits the adoption of NFS on some
platforms.

The NFS version 4 protocol divides file handles into both persistent file
handles, which describe the traditional file handle, and volatile file handles. In
the case of volatile file handles, the server may not always be able to
determine whether the file handle is still valid. If it detects that a file handle
is in fact invalid, it returns an NFS4ERR_STALE error message. If however it
is unable to determine whether the file handle is valid, it can return an
NFS4ERR_FHEXPIRED error message. Clients are able to detect whether a
server can handle persistent and volatile file handles and therefore act
accordingly.

Attribute classes. The set of attributes that were passed over the wire with
earlier versions of the protocol were very UNIX-centric in that the
information returned by the server was sufficient to respond to a stat()
call on the client. In some environments, these attributes are meaningless,
and in some cases, servers are unable to provide valid values.

In NFS version 4, the set of file attributes is divided into three different
classes, namely mandatory, recommended, and named attributes.

The mandatory set of attributes contain information such as the file type
and size, information about file handle expiration times, whether hard links
and symbolic links are supported, and whether the file has named data

Clustered and Distributed Filesystems 297

streams/attributes.
The set of recommended attributes contain information such as the type of

ACLs (Access Control Lists) that the filesystem supports, the ACLs
themselves, information about the owner and group, access timestamps, and
quota attributes. It also contains information about the filesystem such as
free space, total number of files, files available for use, and filesystem limits
such as the maximum filename length and maximum number of links.

Named attributes, also called named data streams, allow a single file to have
multiple streams of opaque bytes unlike the traditional UNIX model of
supporting a single stream of bytes per file. To access named data streams
over NFS version 4, the OPENATTR procedure can retrieve a virtual attribute
directory under which READDIR and LOOKUP procedures can be used to view
and access the named attributes.

Better namespace handling. Both NFS version 2 and 3 servers export a set of
independent pieces of their overall namespace and do not allow NFS clients
to cross mountpoints on the server, because NFS expects all lookup
operations to stay within a single filesystem. In NFS v4, the server provides a
single root file handle through which clients can obtain file handles for any of
the accessible exports.

NFS v4 servers can be made browsable by bridging exported subtrees of
the namespace with a pseudo filesystem and allowing clients to cross server
mountpoints. The tree constructed by the server is a logical view of all the
different exports.

File locking. As mentioned earlier, locking is not part of the NFS version 2 or
version 3 protocols which rely instead on the Network Lock Manager (NLM)
protocol, described in the section The NFS Lock Manager Protocol, earlier in
the chapter. The NLM protocol was not, however, widely adopted.

NFS version 4 provides for both UNIX file-level locking functions and
Windows-based share locking functions. NFS version 4 supports both record
and byte range locking functions.

Client side caching. Most NFS clients cache both file data and attributes as
much as possible. When moving more towards wide area networks, the cost
of a cache miss can be significant. The problem with the version 2 and
version 3 protocols is that NFS does not provide a means to support cache
coherency between multiple clients, which can sometimes lead to invalid file
data being read.

NFS version 4 does not provide cache coherency between clients but
defines a limited set of caching guarantees to allow locks and share
reservations to be used without destructive interference from client-side
caching. NFS v4 also provides a delegation scheme that allows clients to make
decisions that were traditionally made by the server.

The delegation mechanism is an important feature in terms of
performance because it limits the number of procedure calls that would
typically go between client and server when accessing a file. When another

298 UNIX Filesystems—Evolution, Design, and Implementation

client attempts to access a file for which a delegation has been granted, the
server invokes an RPC to the client holding the delegation. The client is then
responsible for flushing any file information, including data, that has
changed before responding to the recall notice. Only after the first client has
responded to the revoke request will the second client be allowed to access
the file.

The NFS version 4 specification provides many details for the different
types of delegations that can be granted and therefore the type of caching
that can be performed on the client.

Built-in security. NFS has relied on the UNIX-centric user ID mechanisms to
provide security. This has generally not been a problem because NFS has
largely been used within private networks. However, because one of the
goals of the version 4 protocol is to widen the use of NFS to wide area
networks, this level of security is insufficient. The basic NFS security
mechanisms are being extended through use of the RPCSEG_GSS
framework. The RPCSEG_GSS mechanisms are implemented at the RPC
layer and are capable of providing both private keys schemes, such as
Kerboros version 5, and public key schemes.

The NFS version 4 protocol is a significant rework of the version 3 protocol. It
provides a wide range of features aimed at continuing its success as it becomes
more widely adopted in wide area networks, and it provides better support for
building a distributed filesystem for heterogeneous operating systems.

There was a huge amount of investment in NFS prior to version 4. Because
NFS version 4 attempts to address many of the prior limitations of the earlier
versions, including more attention to non-UNIX operating systems, NFS is likely
to grow in popularity.

The NFS Automounter
One feature that is part of some distributed filesystems is the ability to provide a
unified namespace across a number of different clients. For example, to see
/home/spate on several different clients would require exporting the
filesystem from the server on which the filesystem resides and NFS mounting it
on all of the required clients. If the mount point is permanent, the appropriate
entries must be placed in the vfstab/fstab table. Obviously this model does not
scale well when dealing with hundreds of filesystems and a very large number of
clients and servers.

This problem was resolved by introduction of the automounter. This aids in
creation of a unified namespace while keeping the number of mounted
filesystems to only those filesystems that are actually in use. The automounter is
simple in nature. When a user attempts to access a file that crosses a mount point
within the boundaries of the automounter, the NFS filesystem is first mounted
prior to allowing the access to proceed. This is shown in Figure 13.2.

Clustered and Distributed Filesystems 299

The first automounters were implemented as user space daemons, which
typically mount themselves on those directories that require automounter
services and masquerade as NFS servers. When an attempt is made to access a file
within one of these filesystems, the kernel sends an NFS LOOKUP call to the server,
in this case the automounter. The automounter then NFS mounts the real
filesystem onto a directory somewhere within its own mount space. The real
filesystem is then referenced through symbolic links. For example, in Figure 13.2,
the filesystem to be mounted on fs2 may be mounted on /auto/f2 and
/mnt/fs1 will be a symbolic link to this directory.

In many environments it is usual to see a combination of standard NFS
mounted filesystems and automounted filesystems. The automounter should be
used for filesystems that are not accessed frequently, such as manual pages,
source code repositories, and so on. User directories and bin directories are
examples of directories that are typically mounted through standard NFS means.

Another common use of the automounter is to use it in conjunction with the
Network Information Service (NIS) in an environment where user home directories
are distributed throughout the network. In this way, NIS centrally manages all of
the NFS mounts from one of the servers. Although each user’s home directory
physically resides on only one server, the same server is configured to export the
home directory to all hosts on the network. Each host on the network runs the
automounter as an NFS client and can therefore mount a user’s home directory.
This allows the user to log in to any host and have access to his/her home
directory. In this environment, file access is enhanced transparently while the use
of the automounter avoids the overhead caused by dozens of active but unused
NFS mounted filesystems.

Figure 13.2 Using the automounter to mount an NFS filesystem.

/

mnt

fs1 fs2

open("/mnt/fs2/fileA")

fileA

1. User attempts to access file

automounter

2. Access detected

3. Automounter mounts
the NFS filesystem

4. Access
continues

300 UNIX Filesystems—Evolution, Design, and Implementation

Automounter Problems and the Autofs Filesystem
[CALL93] highlighted some of the problems inherent with using the
automounter and provided details about autofs, a new automounter that solved
the problems described. The type of problems that the original automounter
exhibited are as follows:

Symbolic links. The preceding section described how the automounter
actually NFS mounts the filesystem on a temporary directory and refers to it
through a symbolic link. Because the goal of the automounter is only to
mount filesystems when required, it periodically unmounts the filesystem if
there is no activity for a predetermined amount of time.

However, if a process issues a getcwd() system call, the real path may
be cached which references the temporary directory structure, that is, where
the filesystem is actually mounted. If the path is used later, there is no
guarantee that the filesystem is still mounted and the automounter is unable
to detect that access is being requested. The user process may therefore see
the local directory structure and thus unpredictable results.

Adding new mountpoints. The list of filesystems that the automounter
manages is consulted only when the automounter first starts. A
workaround is to terminate and restart the automounter—obviously not an
ideal solution.

Performance. The method of sending NFS requests to the automounter when
crossing its mount point, together with the management of symbolic links,
is more time consuming than accessing an NFS filesystem directly.

Single threading. Because the automounter is single threaded it can only
handle one request at a time. Therefore, when in the process of mounting an
NFS filesystem, all subsequent access is blocked.

The autofs filesystem replaced the user-level automounter daemon with an
in-kernel filesystem type. The automounter daemon is still retained. However,
when it starts, it mounts autofs in place for each of the filesystems that is to be
managed. In the previous example, the autofs filesystem would be mounted on
/mnt. When access is detected to, say /mnt/fs2, autofs invokes an RPC request
to communicate with the automounter daemon that NFS mounts the filesystem
on /mnt/fs2. Once this is achieved, the autofs filesystem does not intercept any
further operations. This eradicates the symbolic link problem and therefore
increases the overall performance.

The Remote File Sharing Service (RFS)
At the time Sun was designing NFS, AT&T was working on the development of
another distributed filesystem, Remote File Sharing (RFS) [RIFK86]. The design
goals were quite different for RFS in that they wanted complete UNIX file
semantics. This included access to remote devices as well as providing
UNIX-level file and record locking. Coverage of different operating systems was

Clustered and Distributed Filesystems 301

not a goal for RFS and thus its implementation was heavily restricted to System V
UNIX environments.

The RFS Architecture
In a manner similar to NFS, the RFS client is able to mount a directory that is
exported by the server. Exporting of filesystems involved advertising a resource
name with a name server. The RFS client could receive details of available resources
from the name server and mount a filesystem without prior knowledge of the
server which owned the filesystem. RFS required a separate name service
protocol in order to manage all resources. Servers would issue an advertise
procedure to the name server, which then registered the resource in the name
server database. When the client requested information about a specific resource,
the name server would return the name of the server on which the resource was
located. Communication could then take place between client and server to
actually mount the filesystem.

RFS also relied on an RPC protocol that provided a procedure on the server for
every file-related system call. XDR was used to encode data types but only where
the machine architecture of the client and server differed. On the server side, the
goal was to emulate the environment of the client and provide a context similar to
one on the caller to handle the remote procedure calls. This was used to provide
management of the process user and group IDs, umask, and so on. This emulation
was a little awkward for some operations. For example, when performing a
lookup on a pathname, if an RFS mount point was to be crossed, the remainder of
the pathname was sent to the server to be resolved. If a series of ".." components
took the pathname out of the RFS mounted filesystem, the operation had to be
aborted and completed on the client.

To provide for full UNIX semantics including file and record locking, RFS was
required to provide a stateful server. This required the server to maintain
reference counts for every open call from every client, file and record lock
information on the server, and information about the state of named pipes. RFS
also maintained a list of all client mounts. If either the server or one of the clients
crashed, there was a significant amount of crash/recovery to be performed. If a
client crashed, the server was required to remove all traces of the client. Amongst
other things, this included decrementing reference counts, releasing any locks
that client held, and so on.

Server side failure resulted in the ENOLINK error message being returned when
any attempts were made to access files on the server. All inodes/vnodes on the
client that accessed RFS files were marked to indicate the failure such that further
attempts at access would return ENOLINK without any attempt to communicate
with the server.

The overall architecture of RFS is shown in Figure 13.3. Unlike NFS, RFS
requires a reliable, virtual circuit transport service. In the figure this is shown as
TCP/IP. A virtual circuit is established during the mount and remains in existence
for the duration of the mount. For each client/server pair, the virtual circuit is
shared if a client mounts more than one RFS filesystem.

302 UNIX Filesystems—Evolution, Design, and Implementation

Another big difference between RFS and NFS is the support for client-side
caching. RFS implements a write-through cache on each server; that is, writes are
always sent to the server at the time the write occurs but the data is cached for
subsequent access. Obviously this presents a challenge with respect to cache
coherency when a write occurs to a file and data is cached on one of more clients.
RFS must invalidate cached copies of the data on clients other than the one from
which the write is issued. The client-side caching of file data is subsequently
disabled either until the process that issued the write closes the file or a
predetermined amount of time has passed since the last write to the file.

Differences between RFS and NFS
When RFS was introduced, there were a number of differences between RFS and
NFS as defined by the version 2 protocol. Some of these differences were:

■ NFS is stateless whereas RFS requires a primary name server that
coordinates RFS activity.

■ RFS can map user and group IDs from client to server based on presence of
a mapping table. NFS by contrast requires that the IDs are the same on both
client and server. More specifically, NFS implementations assume the use
of NIS to maintain a consistent user database across the network.

■ RFS allows access to device files across the network while devices are not
accessible across NFS.

■ RFS names resources, the directories that are advertised, which are
communicated to the primary server. This is not required in NFS.

Figure 13.3 The SVR4-based RFS architecture.

RPC / XDR

TCP / IP

RPC / XDR

TCP / IP

network

RFS FilesystemRFS Filesystem

VFS / vnode

interface

system call

handling

. . .

other
filesystems

system calls

local
filesystem

client server

user

kernel

VFS / vnode

interface

user context
emulation

Clustered and Distributed Filesystems 303

■ RFS requires a connection-mode virtual circuit environment, while NFS
runs in a connectionless state.

■ RFS provides support for mandatory file and record locking. This is not
defined as part of the NFS protocol.

■ NFS can run in heterogeneous environments, while RFS is restricted to
UNIX environments and in particular System V UNIX.

■ RFS guarantees that when files are opened in append mode (O_APPEND) the
write is appended to the file. This is not guaranteed in NFS.

■ In an NFS environment, the administrator must know the machine
name from which the filesystem is being exported. This is alleviated
with RFS through use of the primary server.

When reading through this list, it appears that RFS has more features to offer and
would therefore be a better offering in the distributed filesystem arena than NFS.
However, the goals of both projects differed in that RFS supported full UNIX
semantics whereas for NFS, the protocol was close enough for most of the
environments that it was used in.

The fact that NFS was widely publicized and the specification was publicly
open, together with the simplicity of its design and the fact that it was designed to
be portable across operating systems, resulted in its success and the rather quick
death of RFS, which was replaced by NFS in SVR4.

RFS was never open to the public in the same way that NFS was. Because it was
part of the UNIX operating system and required a license from AT&T, it stayed
within the SVR3 area and had little widespread usage. It would be a surprise if
there were still RFS implementations in use today.

The Andrew File System (AFS)
The Andrew Filesystem (AFS) [MORR86] was developed in the early to mid 1980s
at Carnegie Mellon University (CMU) as part of Project Andrew, a joint project
between CMU and IBM to develop an educational-based computing
infrastructure. There were a number of goals for the AFS filesystem. First, they
required that UNIX binaries could run on clients without modification requiring
that the filesystem be implemented in the kernel. They also required a single,
unified namespace such that users be able to access their files wherever they
resided in the network. To help performance, aggressive client-side caching
would be used. AFS also allowed groups of files to be migrated from one server to
another without loss of service, to help load balancing.

The AFS Architecture
An AFS network, shown in Figure 13.4, consists of a group of cells that all reside
under /afs. Issuing a call to ls /afs will display the list of AFS cells. A cell is a
collection of servers that are grouped together and administered as a whole. In the

304 UNIX Filesystems—Evolution, Design, and Implementation

academic environment, each university may be a single cell. Even though each
cell may be local or remote, all users will see exactly the same file hierarchy
regardless of where they are accessing the filesystem.

Within a cell, there are a number of servers and clients. Servers manage a set of
volumes that are held in the Volume Location Database (VLDB). The VLDB is
replicated on each of the servers. Volumes can be replicated over a number of
different servers. They can also be migrated to enable load balancing or to move
a user’s files from one location to another based on need. All of this can be done
without interrupting access to the volume. The migration of volumes is achieved
by cloning the volume, which creates a stable snapshot. To migrate the volume,
the clone is moved first while access is still allowed to the original volume. After
the clone has moved, any writes to the original volume are replayed to the clone
volume.

Client-Side Caching of AFS File Data
Clients each require a local disk in order to cache files. The caching is controlled
by a local cache manager. In earlier AFS implementations, whenever a file was
opened, it was first copied in its entirety to the local disk on the client. This

Figure 13.4 The AFS file hierarchy encompassing multiple AFS cells.

server 1

server 2

server n

.

.

.

client 1

client 2

client n

.

.

.

cache
manager
caches
file data
on local
disks

local
filesystems
stored on
volumes
which may
be replicated

CELL B

/afs/

CELL A

CELL C

CELL D

CELL n

.

.

.

CELL B

mount

points

TEAMFL
Y

TEAM FLY ®

Clustered and Distributed Filesystems 305

quickly became problematic as file sizes increased, so later AFS versions defined
the copying to be performed in 64KB chunks of data. Note that, in addition to file
data, the cache manager also caches file meta-data, directory information, and
symbolic links.

When retrieving data from the server, the client obtains a callback. If another
client is modifying the data, the server must inform all clients that their cached
data may be invalid. If only one client holds a callback, it can operate on the file
without supervision of the server until a time comes for the client to notify the
server of changes, for example, when the file is closed. The callback is broken if
another client attempts to modify the file. With this mechanism, there is a
potential for callbacks to go astray. To help alleviate this problem, clients with
callbacks send probe messages to the server on a regular basis. If a callback is
missed, the client and server work together to restore cache coherency.

AFS does not provide fully coherent client side caches. A client typically makes
changes locally until the file is closed at which point the changes are
communicated with the server. Thus, if multiple clients are modifying the same
file, the client that closes the file last will write back its changes, which may
overwrite another client’s changes even with the callback mechanism in place.

Where Is AFS Now?
A number of the original designers of AFS formed their own company Transarc,
which went on to produce commercial implementations of AFS for a number of
different platforms. The technology developed for AFS also became the basis of
DCE DFS, the subject of the next section. Transarc was later acquired by IBM and,
at the time of this writing, the history of AFS is looking rather unclear, at least
from a commercial perspective.

The DCE Distributed File Service (DFS)
The Open Software Foundation started a project in the mid 1980s to define a secure,
robust distributed environment for enterprise computing. The overall project was
called the Distributed Computing Environment (DCE). The goal behind DCE was to
draw together the best of breed technologies into one integrated solution, produce
the Application Environment Specification (AES), and to release source code as an
example implementation of the standard. In 1989, OSF put out a Request For
Technology, an invitation to the computing industry asking them to bid
technologies in each of the identified areas. For the distributed filesystem
component, Transarc won the bid, having persuaded OSF of the value of their
AFS-based technology.

The resulting Distributed File Service (DFS) technology bore a close resemblance
to the AFS architecture. The RPC mechanisms of AFS were replaced with DCE
RPC and the virtual filesystem architecture was replaced with VFS+ that allowed
local filesystems to be used within a DFS framework, and Transarc produced the
Episode filesystem that provided a wide number of features.

306 UNIX Filesystems—Evolution, Design, and Implementation

DCE / DFS Architecture
The cell nature of AFS was retained, with a DFS cell comprising a number of
servers and clients. DFS servers run services that make data available and
monitor and control other services. The DFS server model differed from the
original AFS model, with some servers performing one of a number of different
functions:

File server. The server that runs the services necessary for storing and
exporting data. This server holds the physical filesystems that comprise the
DFS namespace.

System control server. This server is responsible for updating other servers
with replicas of system configuration files.

Fileset database server. The Fileset Location Database (FLDB) master and
replicas are stored here. The FLDB is similar to the volume database in AFS.
The FLDB holds system and user files.

Backup database server. This holds the master and replicas of the backup
database which holds information used to backup and restore system and
user files.

Note that a DFS server can perform one or more of these tasks.
The fileset location database stores information about the locations of filesets.

Each readable/writeable fileset has an entry in the FLDB that includes
information about the fileset’s replicas and clones (snapshots).

DFS Local Filesystems
A DFS local filesystem manages an aggregate, which can hold one or more filesets
and is physically equivalent to a filesystem stored within a standard disk
partition. The goal behind the fileset concept was to make it smaller than a disk
partition and therefore more manageable. As an example, a single filesystem is
typically used to store a number of user home directories. With DFS, the
aggregate may hold one fileset per user.

Aggregates also supports fileset operations not found on standard UNIX
partitions, including the ability to move a fileset from one DFS aggregate to
another or from one server to another for load balancing across servers. This is
comparable to the migration performed by AFS.

UNIX partitions and filesystems can also be made visible in the DFS
namespace if they adhere to the VFS+ specification, a modification to the native
VFS/vnode architecture with additional interfaces to support DFS. Note
however that these partitions can store only a single fileset (filesystem) regardless
of the amount of data actually stored in the fileset.

DFS Cache Management
DFS enhanced the client-side caching of AFS by providing fully coherent client
side caches. Whenever a process writes to a file, clients should not see stale data.

Clustered and Distributed Filesystems 307

To provide this level of cache coherency, DFS introduced a token manager that
keeps a reference of all clients that are accessing a specific file.

When a client wishes to access a file, it requests a token for the type of
operation it is about to perform, for example, a read or write token. In some
circumstances, tokens of the same class allow shared access to a file; two clients
reading the same file would thus obtain the same class of token. However, some
tokens are incompatible with tokens of the same class, a write token being the
obvious example. If a client wishes to obtain a write token for a file on which a
write token has already been issued, the server is required to revoke the first
client’s write token allowing the second write to proceed. When a client receives a
request to revoke a token, it must first flush all modified data before responding
to the server.

The Future of DCE / DFS
The overall DCE framework and particularly the infrastructure required to
support DFS was incredibly complex, which made many OS vendors question the
benefits of supporting DFS. As such, the number of implementations of DFS were
small and adoption of DFS equally limited. The overall DCE program came to a
halt in the early 1990s, leaving a small number of operating systems supporting
their existing DCE efforts. As NFS evolves and new, distributed filesystem
paradigms come into play, the number of DFS installations is likely to decline
further.

Clustered Filesystems

With distributed filesystems, there is a single point of failure in that if the server
(that owns the underlying storage) crashes, service is interrupted until the server
reboots. In the event that the server is unable to reboot immediately, the delay in
service can be significant.

With most critical business functions now heavily reliant on computer-based
technology, this downtime is unacceptable. In some business disciplines, seconds
of downtime can cost a company significant amounts of money.

By making hardware and software more reliable, clusters provide the means by
which downtime can be minimized, if not removed altogether. In addition to
increasing the reliability of the system, by pooling together a network of
interconnected servers, the potential for improvements in both performance and
manageability make cluster-based computing an essential part of any large
enterprise.

The following sections describe the clustering components, both software and
hardware, that are required in order to provide a clustered filesystem (CFS). There
are typically a large number of components that are needed in addition to
filesystem enhancements in order to provide a fully clustered filesystem. After
describing the basic components of clustered environments and filesystems, the

308 UNIX Filesystems—Evolution, Design, and Implementation

VERITAS clustered filesystem technology is used as a concrete example of how a
clustered filesystem is constructed.

Later sections describe some of the other clustered filesystems that are
available today.

The following sections only scratch the surface of clustered filesystem
technology. For a more in depth look at clustered filesystems, you can refer to
Dilip Ranade’s book Shared Data Clusters [RANA02].

What Is a Clustered Filesystem?
In simple terms, a clustered filesystem is simply a collection of servers (also
called nodes) that work together to provide a single, unified view of the same
filesystem. A process running on any of these nodes sees exactly the same view
of the filesystem as a process on any other node. Any changes by any of the
nodes are immediately reflected on all of the other nodes.

Clustered filesystem technology is complementary to distributed filesystems.
Any of the nodes in the cluster can export the filesystem, which can then be
viewed across the network using NFS or another distributed filesystem
technology. In fact, each node can export the filesystem, which could be mounted
on several clients.

Although not all clustered filesystems provide identical functionality, the goals
of clustered filesystems are usually stricter than distributed filesystems in that a
single unified view of the filesystem together with full cache coherency and
UNIX semantics, should be a property of all nodes within the cluster. In essence,
each of the nodes in the cluster should give the appearance of a local filesystem.

There are a number of properties of clusters and clustered filesystems that
enhance the capabilities of a traditional computer environment, namely:

Resilience to server failure. Unlike a distributed filesystem environment
where a single server crash results loss of access, failure of one of the servers
in a clustered filesystem environment does not impact access to the cluster
as a whole. One of the other servers in the cluster can take over
responsibility for any work that the failed server was doing.

Resilience to hardware failure. A cluster is also resilient to a number of
different hardware failures, such as loss to part of the network or disks.
Because access to the cluster is typically through one of a number of
different routes, requests can be rerouted as and when necessary
independently of what has failed. Access to disks is also typically through a
shared network.

Application failover. Failure of one of the servers can result in loss of service
to one or more applications. However, by having the same application set in
a hot standby mode on one of the other servers, a detected problem can result
in a failover to one of the other nodes in the cluster. A failover results in one
machine taking the placed of the failed machine. Because a single server
failure does not prevent access to the cluster filesystem on another node, the

Clustered and Distributed Filesystems 309

application downtime is kept to a minimum; the only work to perform is to
restart the applications. Any form of system restart is largely taken out of the
picture.

Increased scalability. Performance can typically be increased by simply adding
another node to the cluster. In many clustered environments, this may be
achieved without bringing down the cluster.

Better management. Managing a set of distributed filesystems involves
managing each of the servers that export filesystems. A cluster and clustered
filesystem can typically be managed as a whole, reducing the overall cost of
management.

As clusters become more widespread, this increases the choice of underlying
hardware. If much of the reliability and enhanced scalability can be derived from
software, the hardware base of the cluster can be moved from more traditional,
high-end servers to low cost, PC-based solutions.

Clustered Filesystem Components
To achieve the levels of service and manageability described in the previous
section, there are several components that must work together to provide a
clustered filesystem. The following sections describe the various components that
are generic to clusters and cluster filesystems. Later sections put all these
components together to show how complete clustering solutions can be
constructed.

Hardware Solutions for Clustering
When building clusters, one of the first considerations is the type of hardware that
is available. The typical computer environment comprises a set of clients
communicating with servers across Ethernet. Servers typically have local storage
connected via standards such as SCSI or proprietary based I/O protocols.

While Ethernet and communication protocols such as TCP/IP are unlikely to
be replaced as the communication medium between one machine and the next,
the host-based storage model has been evolving over the last few years. Although
SCSI attached storage will remain a strong player in a number of environments,
the choice for storage subsystems has grown rapidly. Fibre channel, which allows
the underlying storage to be physically separate from the server through use of a
fibre channel adaptor in the server and a fibre switch, enables construction of
storage area networks or SANs.

Figure 13.5 shows the contrast between traditional host-based storage and
shared storage through use of a SAN.

Cluster Management
Because all nodes within the cluster are presented as a whole, there must be a
means by which the clusters are grouped and managed together. This includes the

310 UNIX Filesystems—Evolution, Design, and Implementation

ability to add and remove nodes to or from the cluster. It is also imperative that
any failures within the cluster are communicated as soon as possible, allowing
applications and system services to recover.

These types of services are required by all components within the cluster
including filesystem, volume management, and lock management.

Failure detection is typically achieved through some type of heartbeat
mechanism for which there are a number of methods. For example, a single
master node can be responsible for pinging slaves nodes that must respond
within a predefined amount of time to indicate that all is well. If a slave does not
respond before this time or a specific number of heartbeats have not been
acknowledged, the slave may have failed; this then triggers recovery
mechanisms.

Employing a heartbeat mechanism is obviously prone to failure if the master
itself dies. This can however be solved by having multiple masters along with the
ability for a slave node to be promoted to a master node if one of the master
nodes fails.

Cluster Volume Management
In larger server environments, disks are typically managed through use of a
Logical Volume Manager. Rather than exporting physical disk slices on which
filesystems can be made, the volume manager exports a set of logical volumes.
Volumes look very similar to standard disk slices in that they present a
contiguous set of blocks to the user. Underneath the covers, a volume may
comprise a number of physically disjointed portions of one or more disks.
Mirrored volumes (RAID-1) provide resilience to disk failure by providing one or
more identical copies of the logical volume. Each mirrored volume is stored on a

Figure 13.5 Host-based and SAN-based storage.

SERVER

client client client

client network

SERVER SERVER

servers with traditional host-based storage . . .

SERVER SERVER SERVER. . .

SAN

shared storage through use of a SAN

Clustered and Distributed Filesystems 311

different disk.
In addition to these basic volume types, volumes can also be striped (RAID 0).

For a striped volume the volume must span at least two disks. The volume data is
then interleaved across these disks. Data is allocated in fixed-sized units called
stripes. For example, Figure 13.6 shows a logical volume where the data is striped
across three disks with a stripe size of 64KB.

The first 64KB of data is written to disk 1, the second 64KB of data is written to
disk 2, the third to disk 3, and so on. Because the data is spread across multiple
disks, this increases both read and write performance because data can be read
from or written to the disks concurrently.

Volume managers can also implement software RAID-5 whereby data is
protected through use of a disk that is used to hold parity information obtained
from each of the stripes from all disks in the volume.

In a SAN-based environment where all servers have shared access to the
underlying storage devices, management of the storage and allocation of logical
volumes must be coordinated between the different servers. This requires a
clustered volume manager, a set of volume managers, one per server, which
communicate to present a single unified view of the storage. This prevents one
server from overwriting the configuration of another server.

Creation of a logical volume on one node in the cluster is visible by all other
nodes in the cluster. This allows parallel applications to run across the cluster and
see the same underlying raw volumes. As an example, Oracle RAC (Reliable
Access Cluster), formerly Oracle Parallel Server (OPS), can run on each node in the
cluster and access the database through the clustered volume manager.

Clustered volume managers are resilient to a server crash. If one of the servers
crashes, there is no loss of configuration since the configuration information is
shared across the cluster. Applications running on other nodes in the cluster see
no loss of data access.

Cluster Filesystem Management
The goal of a clustered filesystem is to present an identical view of the same
filesystem from multiple nodes within the cluster. As shown in the previous
sections on distributed filesystems, providing cache coherency between these
different nodes is not an easy task. Another difficult issue concerns lock
management between different processes accessing the same file.

Clustered filesystems have additional problems in that they must share the
resources of the filesystem across all nodes in the system. Taking a read/write
lock in exclusive mode on one node is inadequate if another process on another
node can do the same thing at the same time. When a node joins the cluster and
when a node fails are also issues that must be taken into consideration. What
happens if one of the nodes in the cluster fails? The recovery mechanisms
involved are substantially different from those found in the distributed filesystem
client/server model.

The local filesystem must be modified substantially to take these
considerations into account. Each operation that is provided by the filesystem

312 UNIX Filesystems—Evolution, Design, and Implementation

must be modified to become cluster aware. For example, take the case of mounting
a filesystem. One of the first operations is to read the superblock from disk, mark
it dirty, and write it back to disk. If the mount command is invoked again for this
filesystem, it will quickly complain that the filesystem is dirty and that fsck
needs to be run. In a cluster, the mount command must know how to respond to
the dirty bit in the superblock.

A transaction-based filesystem is essential for providing a robust, clustered
filesystem because if a node in the cluster fails and another node needs to take
ownership of the filesystem, recovery needs to be performed quickly to reduce
downtime. There are two models in which clustered filesystems can be
constructed, namely:

Single transaction server. In this model, only one of the servers in the cluster,
the primary node, performs transactions. Although any node in the cluster
can perform I/O, if any structural changes are needed to the filesystem, a
request must be sent from the secondary node to the primary node in order to
perform the transaction.

Multiple transaction servers. With this model, any node in the cluster can
perform transactions.

Both types of clustered filesystems have their advantages and disadvantages.
While the single transaction server model is easier to implement, the primary
node can quickly become a bottleneck in environments where there is a lot of
meta-data activity.

There are also two approaches to implementing clustered filesystems. Firstly, a
clustered view of the filesystem can be constructed by layering the cluster
components on top of a local filesystem. Although simpler to implement,
without knowledge of the underlying filesystem implementation, difficulties can

Figure 13.6 A striped logical volume using three disks.

logical volume

physical disks

SU 1

SU 2

SU 3

SU 4

SU 5

SU 6

logical volume SU 1

SU 4

disk 1

SU 2

SU 5

disk 2

SU 3

SU 6

disk 3

64KB
64KB

64KB
64KB

64KB
64KB

Clustered and Distributed Filesystems 313

arise in supporting various filesystem features.
The second approach is for the local filesystem to be cluster aware. Any

features that are provided by the filesystem must also be made cluster aware. All
locks taken within the filesystem must be cluster aware and reconfiguration in the
event of a system crash must recover all cluster state.

The section The VERITAS SANPoint Foundation Suite describes the various
components of a clustered filesystem in more detail.

Cluster Lock Management
Filesystems, volume managers, and other system software require different lock
types to coordinate access to their data structures, as described in Chapter 10. This
obviously holds true in a cluster environment. Consider the case where two
processes are trying to write to the same file. The process which obtains the inode
read/write lock in exclusive mode is the process that gets to write to the file first.
The other process must wait until the first process relinquishes the lock.

In a clustered environment, these locks, which are still based on primitives
provided by the underlying operating system, must be enhanced to provide
distributed locks, such that they can be queried and acquired by any node in the
cluster. The infrastructure required to perform this service is provided by a
distributed or global lock manager (GLM).

The services provided by a GLM go beyond communication among the nodes
in the cluster to query, acquire, and release locks. The GLM must be resilient to
node failure. When a node in the cluster fails, the GLM must be able to recover
any locks that were granted to the failed node.

The VERITAS SANPoint Foundation Suite
SANPoint Foundation Suite is the name given to the VERITAS Cluster Filesystem
and the various software components that are required to support it. SANPoint
Foundation Suite HA (High Availability) provides the ability to fail over
applications from one node in the cluster to another in the event of a node failure.

The following sections build on the cluster components described in the
previous sections by describing in more detail the components that are required
to build a full clustered filesystem. Each component is described from a clustering
perspective only. For example, the sections on the VERITAS volume manager and
filesystem only described those components that are used to make them cluster
aware.

The dependence that each of the components has on the others is described,
together with information about the hardware platform that is required.

CFS Hardware Configuration
A clustered filesystem environment requires nodes in the cluster to communicate
with other efficiently and requires each node in the cluster be able to access the
underlying storage directly.

314 UNIX Filesystems—Evolution, Design, and Implementation

For access to storage, CFS is best suited to a Storage Area Network (SAN). A
SAN is a network of storage devices that are connected via fibre channel hubs
and switches to a number of different servers. The main benefit of a SAN is that
each of the servers can directly see all of the attached storage, as shown in Figure
13.7. Distributed filesystems such as AFS and DFS require replication to help in
the event of a server crash. Within a SAN environment, if one of the servers
crashes, any filesystems that the server was managing are accessible from any of
the other servers.

For communication between nodes in the cluster and to provide a heartbeat
mechanism, CFS requires a private network over which to send messages.

CFS Software Components
In addition to the clustered filesystem itself, there are many software components
that are required in order to provide a complete clustered filesystem solution.
The components, which are listed here, are described in subsequent sections:

Clustered Filesystem. The clustered filesystem is a collection of cluster-aware
local filesystems working together to provide a unified view of the
underlying storage. Collectively they manage a single filesystem (from a
storage perspective) and allow filesystem access with full UNIX semantics
from any node in the cluster.

VCS Agents. There are a number of agents within a CFS environment. Each
agent manages a specific resource, including starting and stopping the
resource and reporting any problems such that recovery actions may be
performed.

Cluster Server. The VERITAS Cluster Server (VCS) provides all of the features
that are required to manage a cluster. This includes communication between
nodes in the cluster, configuration, cluster membership, and the framework
in which to handle failover.

Clustered Volume Manager. Because storage is shared between the various
nodes of the cluster, it is imperative that the view of the storage be identical
between one node and the next. The VERITAS Clustered Volume Manager
(CVM) provides this unified view. When a change is made to the volume
configuration, the changes are visible on all nodes in the cluster.

Global Lock Manager (GLM). The GLM provides a cluster-wide lock
manager that allows various components of CFS to manage locks across the
cluster.

Global Atomic Broadcast (GAB). GAB provides the means to bring up and
shutdown the cluster in an orderly fashion. It is used to handle cluster
membership, allowing nodes to be dynamically added to and removed from
the cluster. It also provides a reliable messaging service ensuring that
messages sent from one node to another are received in the order in which
they are sent.

TEAMFL
Y

TEAM FLY ®

Clustered and Distributed Filesystems 315

Low Latency Transport (LLT). LLT provides a kernel-to-kernel communication
layer. The GAB messaging services are built on top of LLT.

Network Time Protocol (NTP). Each node must have the same time

The following sections describe these various components in more detail, starting
with the framework required to build the cluster and then moving to more detail
on how the clustered filesystem itself is implemented.

VERITAS Cluster Server (VCS) and Agents
The VERITAS Cluster Server provides the mechanisms for managing a cluster of
servers. The VCS engine consists of three main components:

Resources. Within a cluster there can be a number of different resources to
manage and monitor, whether hardware such as disks and network cards or
software such as filesystems, databases, and other applications.

Attributes. Agents manage their resources according to a set of attributes. When
these attributes are changed, the agents change their behavior when
managing the resources.

Figure 13.7 The hardware components of a CFS cluster.

. . .

Fibre Channel Switch

NODE

1

NODE

2

NODE

3

NODE

16
. . .

CLUSTER
storage

client client client

client network

316 UNIX Filesystems—Evolution, Design, and Implementation

Service groups. A service group is a collection of resources. When a service
group is brought online, all of its resources become available.

In order for the various services of the cluster to function correctly, it is vital that
the different CFS components are monitored on a regular basis and that any
irregularities that are found are reported as soon as possible in order for
corrective action to take place.

To achieve this monitoring, CFS requires a number of different agents. Once
started, agents obtain configuration information from VCS and then monitor the
resources they manage and update VCS with any changes. Each agent has three
main entry points that are called by VCS:

Online. This function is invoked to start the resource (bring it online).

Offline. This function is invoked to stop the resource (take it offline).
Monitor. This function returns the status of the resource.

VCS can be used to manage the various components of the clustered filesystem
framework in addition to managing the applications that are running on top of
CFS. There are a number of agents that are responsible for maintaining the health
of a CFS cluster. Following are the agents that control CFS:

CFSMount. Clusters pose a problem in traditional UNIX environments
because filesystems are typically mounted before the network is accessible.
Thus, it is not possible to add a clustered filesystem to the mount table
because the cluster communication services must be running before a
cluster mount can take place. The CFSMount agent is responsible for
maintaining a cluster-level mount table that allows clustered filesystems to
be automatically mounted once networking becomes available.

CFSfsckd. When the primary node in a cluster fails, the failover to another
node all happens within the kernel. As part of failover, the new primary
node needs to perform a log replay of the filesystem, that requires the user
level fsck program to run. On each node in the cluster, a fsck daemon
sleeps in the kernel in case the node is chosen as the new primary. In this
case, the daemon is awoken so that fsck can perform log replay.

CFSQlogckd. VERITAS Quick Log requires the presence of a QuickLog
daemon in order to function correctly. Agents are responsible for ensuring
that this daemon is running in environments where QuickLog is running.

In addition to the CFS agents listed, a number of other agents are also required
for managing other components of the cluster.

Low Latency Transport (LLT)
Communication between one node in the cluster and the next is achieved
through use of the VERITAS Low Latency Transport Protocol (LLT), a fast, reliable,
peer-to-peer protocol that provides a reliable sequenced message delivery
between any two nodes in the cluster. LLT is intended to be used within a single

Clustered and Distributed Filesystems 317

network segment.
Threads register for LLT ports through which they communicate. LLT also

monitors connections between nodes by issuing heartbeats at regular intervals.

Group Membership and Atomic Broadcast (GAB)
The GAB service provides cluster group membership and reliable messaging.
These are two essential components in a cluster framework. Messaging is built on
top of the LLT protocol.

While LLT provides the physical-level connection of nodes within the cluster,
GAB provides, through the use of GAB ports, a logical view of the cluster. Cluster
membership is defined in terms of GAB ports. All components within the cluster
register with a specific port. For example, CFS registers with port F, CVM registers
with port V, and so on.

Through use of a global, atomic broadcast, GAB informs all nodes that have
registered with a port whenever a node registers or de-registers with that port.

The VERITAS Global Lock Manager (GLM)
The Global Lock Manager (GLM) provides cluster-wide reader/writer locks.

The GLM is built on top of GAB, which in turn uses LLT to communicate
between the different nodes in the cluster. Note that CFS also communicates
directly with GAB for non-GLM related messages.

The GLM provides shared and exclusive locks with the ability to upgrade and
downgrade a lock as appropriate. GLM implements a distributed master/slave
locking model. Each lock is defined as having a master node, but there is no single
master for all locks. As well as reducing contention when managing locks, this
also aids in recovery when one node dies.

GLM also provides the means to piggy-back data in response to granting a lock.
The idea behind piggy-backed data is to improve performance. Consider the case
where a request is made to obtain a lock for a cached buffer and the buffer is valid
on another node. A request is made to the GLM to obtain the lock. In addition to
granting the lock, the buffer cache data may also be delivered with the lock grant,
which avoids the need for the requesting node to perform a disk I/O.

The VERITAS Clustered Volume Manager (CVM)
The VERITAS volume manager manages disks that may be locally attached to a
host or may be attached through a SAN fabric. Disks are grouped together into
one or more disk groups. Within each disk group are one or more logical volumes
on which filesystems can be made. For example, the following filesystem:

mkfs -F vxfs /dev/vx/mydg/fsvol 1g

is created on the logical volume fsvol that resides in the mydg disk group.
The VERITAS Clustered Volume Manager (CVM), while providing all of the

features of the standard volume manager, has a number of goals:

318 UNIX Filesystems—Evolution, Design, and Implementation

■ Provide uniform naming of all volumes within the cluster. For example, the
above volume name should be visible at the same path on all nodes within
the cluster.

■ Allow for simultaneous access to each of the shared volumes.

■ Allow administration of the volume manager configuration from each
node in the cluster.

■ Ensure that access to each volume is not interrupted in the event that
one of the nodes in the cluster crashes.

CVM provides both private disk groups and cluster shareable disk groups, as
shown in Figure 13.8. The private disk groups are accessible only by a single
node in the cluster even though they may be physically visible from another
node. An example of where such a disk group may be used is for operating
system-specific filesystems such as the root filesystem, /var, /usr, and so on.
Clustered disk groups are used for building clustered filesystems or for
providing shared access to raw volumes within the cluster.

In addition to providing typical volume manager capabilities throughout the
cluster, CVM also supports the ability to perform off-host processing. Because
volumes can be accessed through any node within the cluster, applications such
as backup, decision support, and report generation can be run on separate nodes,
thus reducing the load that occurs within a single host/disk configuration.

CVM requires support from the VCS cluster monitoring services to determine
which nodes are part of the cluster and for information about nodes that
dynamically join or leave the cluster. This is particularly important during
volume manager bootstrap, during which device discovery is performed to
locate attached storage. The first node to join the cluster gains the role of master
and is responsible for setting up any shared disk groups, for creating and
reconfiguring volumes and for managing volume snapshots. If the master node
fails, the role is assumed by one of the other nodes in the cluster.

The Clustered Filesystem (CFS)
The VERITAS Clustered Filesystem uses a master/slave architecture. When a
filesystem is mounted, the node that issues the first mount becomes the primary
(master) in CFS terms. All other nodes become secondaries (slaves).

Although all nodes in the cluster can perform any operation, only the primary
node is able to perform transactions—structural changes to the filesystem. If an
operation such as creating a file or removing a directory is requested on one of
the secondary nodes, the request must be shipped to the primary where it is
performed.

The following sections describe some of the main changes that were made to
VxFS to make it cluster aware, as well as the types of issues encountered. Figure
13.9 provides a high level view of the various components of CFS.

Clustered and Distributed Filesystems 319

Mounting CFS Filesystems
To mount a VxFS filesystem in a shared cluster, the -o cluster option is
specified. Without this option, the mount is assumed to be local only.

The node that issues the mount call first is assigned to be the primary. Every
time a node wishes to mount a cluster filesystem, it broadcasts a message to a
predefined GAB port. If another node has already mounted the filesystem and
assumed primary, it sends configuration data back to the node that is just joining
the cluster. This includes information such as the mount options and the other
nodes that have mounted the filesystem.

One point worthy of mention is that CFS nodes may mount the filesystem with
different mount options. Thus, one node may mount the filesystem read-only
while another node may mount the filesystem as read/write.

Handling Vnode Operations in CFS
Because VxFS employs a primary/secondary model, it must identify operations
that require a structural change to the filesystem.

For vnode operations that do not change filesystem structure the processing is
the same as in a non-CFS filesystem, with the exception that any locks for data
structures must be accessed through the GLM. For example, take the case of a call
through the VOP_LOOKUP() vnode interface. The goal of this function is to
lookup a name within a specified directory vnode and return a vnode for the
requested name. The look-up code needs to obtain a global read/write lock on the
directory while it searches for the requested name. Because this is a read
operation, the lock is requested in shared mode. Accessing fields of the directory
may involve reading one or more buffers into the memory. As shown in the next
section, these buffers can be obtained from the primary or directly from disk.

Figure 13.8 CVM shared and private disk groups.

client client client

client network

. . .

SERVER
. . .

SAN

cluster shared disk group

CVM

private
disk

group

SERVER

CVM

private
disk

group

SERVER

CVM

private
disk

group

. . .

320 UNIX Filesystems—Evolution, Design, and Implementation

For vnode operations that involve any meta-data updates, a transaction will
need to be performed, that brings the primary node into play if the request is
initiated from a secondary node. In addition to sending the request to the
primary, the secondary node must be receptive to the fact that the primary node
may fail. It must therefore have mechanisms to recover from primary failure and
resend the request to the new primary node. The primary node by contrast must
also be able to handle the case where an operation is in progress and the
secondary node dies.

The CFS Buffer Cache
VxFS meta-data is read from and written through the VxFS buffer cache, which
provides similar interfaces to the traditional UNIX buffer cache implementations.
On the primary, the buffer cache is accessed as in the local case, with the
exception that global locks are used to control access to buffer cache buffers. On
the secondary nodes however, an additional layer is executed to help manage
cache consistency by communicating with the primary node when accessing
buffers. If a secondary node wishes to access a buffer and it is determined that
the primary has not cached the data, the data can be read directly from disk. If
the data has previously been accessed on the primary node, a message is sent to
the primary to request the data.

Figure 13.9 Components of a CFS cluster.

client client client

client network

. . .

. . .

SAN

cluster shared disk group

CVM

. . .

CFS

VCS

server 2

LLT

GAB

CVM

CFS

VCS

LLT

GAB

CVM

CFS

VCS

server n

LLT

GAB

Global Lock Manager

private

server 1

network

Clustered and Distributed Filesystems 321

The determination of whether the primary holds the buffer is through use of
global locks. When the secondary node wishes to access a buffer, it makes a call to
obtain a global lock for the buffer. When the lock is granted, the buffer contents
will either be passed back as piggy-back data or must be read from disk.

The CFS DNLC and Inode Cache
The VxFS inode cache works in a similar manner to the buffer cache in that access
to individual inodes is achieved through the use of global locks.

Unlike the buffer cache, though, when looking up an inode, a secondary node
always obtains the inode from the primary. Also recall that the secondary is
unable to make any modifications to inodes so requests to make changes, even
timestamp updates, must be passed to the primary for processing.

VxFS uses its own DNLC. As with other caches, the DNLC is also clusterized.

CFS Reconfiguration
When a node in the cluster fails, CFS starts the process of reconfiguration. There are
two types of reconfiguration, based on whether the primary or a secondary dies:

Secondary failure. If a secondary node crashes there is little work to do in CFS
other than call the GLM to perform lock recovery.

Primary failure. A primary failure involves a considerable amount of work.
The first task is to elect another node in the cluster to become the primary.
The new primary must then perform the following tasks:

1. Wake up the fsck daemon in order to perform log replay.

2. Call the GLM to perform lock recovery.

3. Remount the filesystem as the primary.

4. Send a broadcast message to the other nodes in the cluster indicating
that a new primary has been selected, reconfiguration is complete, and
access to the filesystem can now continue.

Of course, this is an oversimplification of the amount of work that must be
performed but at least highlights the activities that are performed. Note that each
mounted filesystem can have a different node as its primary, so loss of one node
will affect only filesystems that had their primary on that node.

CFS Cache Coherency
Processes can access files on any nodes within the cluster, either through read()
and write() system calls or through memory mappings. If multiple processes
on multiple nodes are reading the file, they share the file’s read/write lock (in this
case another global lock). Pages can be cached throughout the cluster.

Cache coherency occurs at the file level only. When a processes requests a
read/write lock in exclusive mode in order to write to a file, all cached pages

322 UNIX Filesystems—Evolution, Design, and Implementation

must be destroyed before the lock can be granted. After the lock is relinquished
and another process obtains the lock in shared mode, pages may be cached again.

VxFS Command Coordination
Because VxFS commands can be invoked from any node in the cluster, CFS must
be careful to avoid accidental corruption. For example, if a filesystem is mounted
in the cluster, CFS prevents the user from invoking a mkfs or fsck on the shared
volume. Note that non-VxFS commands such as dd are not cluster aware and can
cause corruption if run on a disk or volume device.

Application Environments for CFS
Although many applications are tailored for a single host or for a client/server
model such as are used in an NFS environment, there are a number of new
application environments starting to appear for which clustered filesystems,
utilizing shared storage, play an important role. Some of these environments are:

Serial data sharing. There are a number of larger environments, such as video
post production, in which data is shared serially between different
applications. The first application operates on the data, followed by the
second application, and so on. Sharing large amounts of data in such an
environment is essential. Having a single mounted filesystem eases
administration of the data.

Web farms. In many Web-based environments, data is replicated between
different servers, all of which are accessible through some type of
load-balancing software. Maintaining these replicas is both cumbersome
and error prone. In environments where data is updated relatively
frequently, the multiple copies of data are typically out of sync.

By using CFS, the underlying storage can be shared among these multiple
servers. Furthermore, the cluster provides better availability in that if one
node crashes, the same data is accessible through other nodes.

Off-host backup. Many computing environments are moving towards a 24x7
model, and thus the opportunity to take backups when the system is quiet
diminishes. By running the backup on one of the nodes in the cluster or
even outside of the cluster, the performance impact on the servers within the
cluster can be reduced. In the case where the backup application is used
outside of the cluster, mapping services allow an application to map files
down to the block level such that the blocks can be read directly from the
disk through a frozen image.

Oracle RAC (Real Application Cluster). The Oracle RAC technology,
formerly Oracle Parallel Server (OPS), is ideally suited to the VERITAS CFS
solution. All of the filesystem features that better enable databases on a
single host equally apply to the cluster. This includes providing raw I/O
access for multiple readers and writers in addition to features such as
filesystem resize that allow the database to be extended.

Clustered and Distributed Filesystems 323

These are only a few of the application environments that can benefit from
clustered filesystems. As clustered filesystems become more prevalent, new
applications are starting to appear that can make use of the multiple nodes in the
cluster to achieve higher scalability than can be achieved from some SMP-based
environments.

Other Clustered Filesystems
A number of different clustered filesystems have made an appearance over the
last several years in addition to the VERITAS SanPoint Foundation Suite. The
following sections highlight some of these filesystems.

The SGI Clustered Filesystem (CXFS)
Silicon Graphics Incorporated (SGI) provides a clustered filesystem, CXFS, which
allows a number of servers to present a clustered filesystem based on shared
access to SAN-based storage. CXFS is built on top of the SGI XFS filesystem and
the XVM volume manager.

CXFS provides meta-data servers through which all meta-data operations must
be processed. For data I/O, clients that have access to the storage can access the
data directly. CXFS uses a token-based scheme to control access to various parts of
the file. Tokens also allow the client to cache various parts of the file. If a client
needs to change any part of the file, the meta-data server must be informed,
which then performs the operation.

The Linux/Sistina Global Filesystem
The Global Filesystem (GFS) was a project initiated at the University of Minnesota
in 1995. It was initially targeted at postprocessing large scientific data sets over
fibre channel attached storage.

Unable to better integrate GFS into the SGI IRIX kernel on which it was
originally developed, work began on porting GFS to Linux.

At the heart of GFS is a journaling-based filesystem. GFS is a fully symmetric
clustered filesystem—any node in the cluster can perform transactions. Each node
in the cluster has its own intent log. If a node crashes, the log is replayed by one of
the other nodes in the cluster.

Sun Cluster
Sun offers a clustering solution, including a layered clustered filesystem, which
can support up to 8 nodes. Central to Sun Cluster is the Resource Group Manager
that manages a set of resources (interdependent applications).

The Sun Global Filesystem is a layered filesystem that can run over most local
filesystems. Two new vnode operations were introduced to aid performance of
the global filesystem. The global filesystem provides an NFS-like server that
communicates through a secondary server that mirrors the primary. When an

324 UNIX Filesystems—Evolution, Design, and Implementation

update to the primary occurs, the operation is checkpointed on the secondary. If
the primary fails, any operations that weren’t completed are rolled back.

Unlike some of the other clustered filesystem solutions described here, all I/O
goes through a single server.

Compaq/HP True64 Cluster
Digital, now part of Compaq, has been producing clusters for many years.
Compaq provides a clustering stack called TruCluster Server that supports up to 8
nodes.

Unlike the VERITAS clustered filesystem in which the local and clustering
components of the filesystem are within the same code base, the Compaq
solution provides a layered clustered filesystem that can sit on top of any
underlying local filesystem. Although files can be read from any node in the
cluster, files can be written from any node only if the local filesystem is AdvFS
(Advanced Filesystem).

Summary

Throughout the history of UNIX, there have been numerous attempts to share
files between one computer and the next. Early machines used simple UNIX
commands with uucp being commonplace.

As local area networks started to appear and computers became much more
widespread, a number of distributed filesystems started to appear. With its goals
of simplicity and portability, NFS became the de facto standard for sharing
filesystems within a UNIX system.

With the advent of shared data storage between multiple machines, the ability
to provide a uniform view of the storage resulted in the need for clustered
filesystem and volume management with a number of commercial and open
source clustered filesystems appearing over the last several years.

Because both solutions address different problems, there is no great conflict
between distributed and clustered filesystem. On the contrary, a clustered
filesystem can easily be exported for use by NFS clients.

For further information on NFS, Brent Callaghan’s book NFS Illustrated
[CALL00] provides a detailed account of the various NFS protocols and
infrastructure. For further information on the concepts that are applicable to
clustered filesystems, Dilip Ranade’s book Shared Data Clusters [RANA02] should
be consulted.

TEAMFL
Y

TEAM FLY ®

CHAPTER

14

325

Developing a Filesystem
for the Linux Kernel

Although there have been many programatic examples throughout the book,
without seeing how a filesystem works in practice, it is still difficult to appreciate
the flow through the kernel in response to the various file- and filesystem-related
system calls. It is also difficult to see how the filesystem interfaces with the rest of
the kernel and how it manages its own structures internally.

This chapter provides a very simple, but completely functional filesystem for
Linux called uxfs. The filesystem is not complete by any means. It provides
enough interfaces and features to allow creation of a hierarchical tree structure,
creation of regular files, and reading from and writing to regular files. There is a
mkfs command and a simple fsdb command. There are several flaws in the
filesystem and exercises at the end of the chapter provide the means for readers to
experiment, fix the existing flaws, and add new functionality.

The chapter gives the reader all of the tools needed to experiment with a real
filesystem. This includes instructions on how to download and compile the Linux
kernel source and how to compile and load the filesystem module. There is also
detailed information on how to debug and analyze the flow through the kernel
and the filesystem through use of printk() statements and the kdb and gdb
debuggers. The filesystem layout is also small enough that a new filesystem can
be made on a floppy disk to avoid less-experienced Linux users having to
partition or repartition disks.

326 UNIX Filesystems—Evolution, Design, and Implementation

The source code, which is included in full later in the chapter, has been
compiled and run on the standard 2.4.18 kernel. Unfortunately, it does not take
long before new Linux kernels appear making today’s kernels redundant. To
avoid this problem, the following Web site:

www.wiley.com/compbooks/pate

includes uxfs source code for up-to-date Linux kernels. It also contains
instructions on how to build the uxfs filesystem for standard Linux distributions.
This provides readers who do not wish to download and compile the kernel
source the opportunity to easily compile and load the filesystem and experiment.
To follow the latter route, the time taken to download the source code, compile,
and load the module should not be greater than 5 to 10 minutes.

Designing the New Filesystem

The goal behind designing this filesystem was to achieve simplicity. When
looking at some of the smaller Linux filesystems, novices can still spend a
considerable amount of time trying to understand how they work. With the uxfs
filesystem, small is key. Only the absolutely essential pieces of code are in place.
It supports a hierchical namespace and the ability to create, read to, and write
from files. Some operations, such as rename and creation of symlinks, have been
left out intentionally both to reduce the amount of source code and to give the
reader a number of exercises to follow.

Anyone who studies the filesystem in any amount of detail will notice a large
number of holes despite the fact that the filesystem is fully functional. The layout
of the filesystem is shown in Figure 14.1, and the major design points are detailed
as follows:

■ The filesystem has only 512-byte blocks. This is defined by the UX_BSIZE
constant in the ux_fs.h header file.

■ There is a fixed number of blocks in the filesystem. Apart from space for
the superblock and inodes, there are 470 data blocks. This is defined by the
UX_MAXBLOCKS constant.

■ There are only 32 inodes (UX_MAXFILES). Leaving inodes 0 and 1 aside
(which are reserved), and using inode 2 for the root directory and inode 3
for the lost+found directory, there are 28 inodes for user files and
directories.

■ The superblock is stored in block 0. It occupies a single block. Inside the
superblock are arrays, one for inodes and one for data blocks that record
whether a particular inode or data block is in use. This makes the
filesystem source very easy to read because there is no manipulation of
bitmaps. The superblock also contain fields that record the number of free
inodes and data blocks.

Developing a Filesystem for the Linux Kernel 327

■ There is one inode per data block. The first inode is stored in block 8.
Because inodes 0 and 1 are not used, the root directory inode is stored in
block 10 and the lost+found directory is stored in block 11. The remaining
inodes are stored in blocks 12 through 39.

■ The first data block is stored in block 33. When the filesystem is created,
block 50 is used to store directory entries for the root directory and block 51
is used to store entries for the lost+found directory.

■ Each inode has only 9 direct data blocks, which limits the file size to (9 * 512)
= 4608 bytes.

■ Directory entries are fixed in size storing an inode number and a 28-byte
file name. Each directory entry is 32 bytes in size.

The next step when designing a filesystem is to determine which kernel interfaces
to support. In addition to reading and writing regular files and making and
removing directories, you need to decide whether to support hard links, symbolic
links, rename, and so on. To make this decision, you need to view the different
operations that can be exported by the filesystem. There are four vectors that must
be exported by the filesystem, namely the super_operations,
file_operations, address_space_operations, and inode_operations

Figure 14.1 The disk layout of the uxfs filesystem.

block 0 superblock

blocks 8-49 inodes

data blocks

block 50

struct ux_superblock {
__u32 s_magic;
__u32 s_mod;
__u32 s_nifree;
__u32 s_inode[UX_MAXFILES];
__u32 s_nbfree;
__u32 s_block[UX_MAXBLOCKS];

};

struct ux_inode {
__u32 i_mode;
__u32 i_nlink;
__u32 i_atime;
__u32 i_mtime;
__u32 i_ctime;
__s32 i_uid;
__s32 i_gid;
__u32 i_size;
__u32 i_blocks;
__u32 i_addr[UX_DIRECT_BLOCKS];

};

for each inode

328 UNIX Filesystems—Evolution, Design, and Implementation

vectors. In addition to deciding which functions should be supported directly,
there are several generic functions that can be called in place of providing uxfs
specific functions. This eases the job of a creating a filesystem considerably.

Obtaining the Linux Kernel Source

This section shows how to download the Linux kernel source and how to find
your way around the kernel source tree to locate files that are of most interest to
filesystem development. Later sections show how to configure the kernel to
match the hardware on your system, to compile it, and then install the newly
built kernel. Both the LILO or GRUB bootloaders are described.

The Linux kernel source can be retrieved from the following Web site:

www.kernel.org

The home page of www.kernel.org shows the latest versions of the kernel. For
example, the following line showed the latest stable version at the time of this
writing:

The latest stable version of the Linux kernel is: 2.4.18 2002-07-10 00:40
UTC F V VI Changelog

The Web site also describes the state of the different kernels including the latest
stable version. Click on the kernel version to download the latest kernel. Clicking
on Changelog will display all of the updates to the latest kernel.

All of the kernels since Linux inception can be found at this site. Follow the
links through to the source repositories and locate the kernel of your choice. To
use the source in the book as is, you need the 2.4.18 kernel. Alternatively, as
described earlier, newer versions of the filesystem can be obtained from the
following Web site:

www.wiley.com/compbooks/pate

Also at the site is information about which Linux kernels and the various Linux
distributions that uxfs supports.

To locate the required kernel source, follow the various pointers. As an
example, from the home page follow the link to Linux respository, including kernel
source, then kernel and 2.4. This will take you to the following link:

www.kernel.org/pub/linux/kernel/v2.4/

The kernel source is a gzipped tar archive. Once the file has been downloaded, it
should be unzipped and untarred. The kernel source resides under /usr/src
although this is not mandatory. One possibility is to untar the archive in
/usr/src and set a symlink to point to the directory. For example, if the
gzipped archive has been placed in /usr/src, perform the following steps:

Developing a Filesystem for the Linux Kernel 329

bunzip2 linux-2.4.18.tar.bz2
mv linux linux.orig
tar xvf linux-2.4.18.tar
mv linux linux-2.4.18
ln -s linux-2.4.18 linux

Extracting the files from the tar archive will place them in the directory linux in
the current working directory by default. The command to move the old linux
directory aside may be replaced with something more suitable to your
environment. Alternatively, the soruce can be extracted in a separate directory
and then moved into /usr/src/linux-2.4.18. Be careful not to overwrite any
existing Linux kernel source trees.

What’s in the Kernel Source Tree
There are many files and directories in the Linux kernel source tree. This section
provides an overview of how the kernel source tree is laid to allow readers to be
able to easily locate the various kernel subsystems or specific files.

arch. This directory contains a directory for each of the different machine
architectures that Linux supports including Intel, Sparc, MIPS, and IBM s390.

CREDITS. This file lists all of the major contributors to the kernel together with
information about their area of expertise or contribution.

Documentation. There is a whole host of documentation distributed with
the kernel source. The filesystems directory contains information about
some of the different Linux filesystems in additional to generic
filesystem-related information.

drivers. This directory contains all of the Linux device drivers.

fs. This is the directory that will be of most relevance to people interested in
filesystems together with the mm directory that contains much of the page
cache/data I/O management code. Files in the fs directory implement the
dcache, buffer cache, inode cache, and file-related system call handling. Also
within the fs directory is a directory for each of the Linux filesystems.
Within their respective directories are the filesystem source files themselves.

include. All of the kernel header files can be accessed within this directory.
This directory contains architectural-specific header files in addition to
header files that are common across all architectures. The common header
files can be found in the linux subdirectory. The fs.h header file is of
particular importance to filesystem writers. The dcache.h header file
defines the structures used by the Linux dcache.

init. This directory contains functions that are executed during kernel
bootstrap.

ipc. This directory contains source applicable to System V IPC (Inter Process
Communication) including semaphores, shared memory, and message
queues.

330 UNIX Filesystems—Evolution, Design, and Implementation

kdb. If the kdb patch is installed, this directory contains source for the kernel
debugger. Note that the kdb patch also changes other files throughout the
kernel.

kernel. This directory contains core kernel routines such as process
management, system call handling, module management, and so on.

lib. Some of the standard C library functions have counterparts in the kernel.
The source can be found in this directory.

MAINTAINERS. This file lists the people who are responsible for various parts
of the kernel.

mm. This directory contains all of the memory management code that is not
specific to one architecture or another. The Linux page cache managment
routines can be found in this directory.

net. All of the networking protocols (TCP, UDP, IP, etc.) are stored in this
directory.

There are too many files and directories to decribe here. However, for readers
interested in learning about filesystems, the include, fs, and mm directories are
where most of the filesystem-related structures and routines can be found. There
are also a few interesting files in the drivers/block directory for those
wishing to look at the filesystem/driver interfaces in more detail.

Configuring the Kernel
Before building the kernel, it is necessary to determine the kernel configuration.
There are many components that are part of the kernel source tree that you will
not need as part of your kernel. For example, there are numerous different device
drivers for the various SCSI adaptors. If you don’t have a need for SCSI access,
building support into the kernel is unnecessary. Thus, you need to determine
what hardware configuration you have and therefore which kernel components
are required.

There are several different methods of defining the configuration. The Linux
kernel HOWTO should be consulted in addition to the notes described here.
There are multiple copies of the HOWTO available across the World Wide Web.
You can find it at the following Web site:

www.tldp.org/HOWTO/Kernel-HOWTO.html

One of the easiest ways to determine which components of the kernel are needed
is to install the kernel source when the Linux operating system is installed. This
will result in a configuration file for the installed kernel being available for
consultation. It is then possible to copy the configuration file from the installed
kernel source tree to the new kernel source tree as follows:

cp /usr/src/linux-2.4.18-3/.config /usr/src/linux-2.4.18/.config

Developing a Filesystem for the Linux Kernel 331

Care must be taken here. If the new kernel being installed has a substantially
different configuration from the installed kernel, some options may or may not be
available. However, this method should suffice in most cases.

One method of defining the configuration is to run the following command for
both the installed kernel and the new kernel source. For example, for Red Hat 7.3
run the following:

cd /usr/src/linux-2.4.18-3
make menuconfig

And for the new kernel do the following:

cd /usr/src/linux-2.4.18
make menuconfig

By having both windows side by side it is easy to see which components you need
to select for the new kernel by browsing through the configuration of the current
kernel. The alternative method is to fully understand what type of hardware you
have. When comparing the configurations side by side, it is a safe bet to select
everything for the new kernel that is selected in the current kernel.

Items are selected if noted by an asterisk. Loadable kernel modules are denoted
by the letter "M." Instructions are available at the top of the screen to indicate how
to select. Pressing Enter expands the menu to the next level. Pressing the Escape
key takes you back up a level.

Once you have completed changing the configuration, a series of Escape key
sequences will prompt you as to whether you wish to save and exit. Note that you
do not need to save the configuration for the current kernel. This is particularly
important if you have accidently made any changes. After saving the
configuration and exiting the program, the following message appears:

Saving your kernel configuration...

*** End of Linux kernel configuration.
*** Check the top-level Makefile for additional configuration.
*** Next, you must run ’make dep’

Follow the instructions by issuing the following commands:

make dep
make clean

The first step builds all of the necessary kernel dependencies based on the set of
options chosen during the kernel configuration process. The next step is to ensure
that the build environment is clean such that a subsequent kernel compilation will
not pick up any precompiled files that do not match the configuration chosen.

The next step, which is the longest, is to compile the kernel. This can be
achieved by typing the following:

332 UNIX Filesystems—Evolution, Design, and Implementation

make bzImage
...
objcopy -O binary -R .note -R .comment -S compressed/bvmlinux
compressed/bvmlinux.out
tools/build -b bbootsect bsetup compressed/bvmlinux.out CURRENT >
bzImage
Root device is (3, 2)
Boot sector 512 bytes.
Setup is 2536 bytes.
System is 1301 kB
warning: kernel is too big for standalone boot from floppy
make[1]: Leaving directory '/usr/src/linux-2.4.18/arch/i386/boot'
#

Once the process is complete, the compressed kernel, which is called bzImage,
will be placed in the directory arch/i386/boot. This should be copied to
/boot and given a unique name as follows:

cp arch/i386/boot/bzImage /boot/linux.spate

Note the name of the file that the kernel was copied to. This should be given an
easy to remember name and should not overwrite any existing kernels that are
already in /boot. One exception to this rule is when you are building kernels
frequently and you know which kernels can be safely overwritten.

Because many of the kernel components were probably selected to be kernel
modules, they must be compiled and installed as follows:

make modules
make modules_install

The modules are compiled and installed under the /lib/modules directory.
There is one subdirectory for each kernel version. For example, in the case of the
kernel being used here, the modules will reside under:

/lib/modules/2.4.18

It is important to remember to compile and install the modules selected during
configuration, a task that is often easy to forget. Without the modules in place,
the kernel may not boot.

Installing and Booting the New Kernel
The next step is to configure the boot loader to recognize the new kernel. Most
Linux distributions either use LILO or GRUB as the boot loader. This section
decribes how to use LILO, the most commonly used boot loader.

Consider the following lines taken from one specific /etc/lilo.conf file
that was created as part of Red Hat 7.3 installation:

image=/boot/vxlinuz-2.4.18-3
label=linux

Developing a Filesystem for the Linux Kernel 333

initrd=/boot/initrd-2.4.18-3.img
read-only
root=/dev/hda2

The image field specifies the kernel to bootstrap. When lilo runs and displays
the list of bootable kernels, it displays the names found next to the label field, in
this case linux. The initrd field specifies an initial root disk (RAM disk) that
will be used prior to checking and mounting the real root filesystem. The root
field specifies where the root disk can be found.

In order to bootstrap the new kernel, copy these lines to the end of the file and
change both the image and label lines as follows:

image=/boot/linux.spate
label=linux.spate
initrd=/boot/initrd-2.4.18-3.img
read-only
root=/dev/hda2

This creates an entry for the new kernel and leaves the existing entry for the
default kernel unchanged. Note that it is important not to modify any of the
configuration information for the kernel installed as part of the Linux installation.
It is imperitive to have a kernel that boots safely because there will be times when
building new kernels where device drivers are accidently ommitted. For example,
it is not uncommon when building a kernel for the first few times to ommit vital
information such as the correct disk drivers, rendering the new kernel
unbootable.

The final step is to run lilo to install information about the new kernel in the
master boot record:

lilo

A successful run of lilo should not display anything. Once completed, you will
see an entry corresponding to your kernel (the label field) next time the machine
is rebooted.

Using GRUB to Handle Bootstrap
Many Linux distributions are now using the GRUB (GRand Unified Bootloader)
boot loader. This is extremely rich in features but operates in a different manner to
LILO. However, adding a new kernel is not difficult. The /etc/grub.conf file
is used in a similar manner to /etc/lilo.conf. However, adding an entry to
this file is sufficient. GRUB does not need to be run to install the information in
the master boot record.

For further information on GRUB, see the grub manual page.

Booting the New Kernel
The next step is to reboot the machine. Once the machine boots, lilo displays the
list of kernels that it is able to bootstrap. The newly installed kernel should be

334 UNIX Filesystems—Evolution, Design, and Implementation

visible. This can be selected using the arrow keys and loaded by pressing Enter. If
all goes well, the new kernel will boot as expected

To verify that the kernel requested is running, the uname command can be
used to display the kernel version as follows:

uname -a
Linux x.y.com 2.4.18 #2 SMP Tue Jul 30 18:55:27 PDT 2002 i686 unknown

The kernel version is shown in bold. There will be times when you reboot the
machine and lilo automatically boots a kernel by default and you often wonder
which kernel is running when you return to the machine. It is typically a good
idea to have the default kernel set to the kernel that was installed when the Linux
operating system was installed.

Installing Debugging Support

Analyzing the filesystem source code is one way to learn about how filesystems
work. However, it is extremely difficult following this method to truly
understand the flow through the kernel and filesystem in response to certain
operations. There is no better method than installing and using one of the
different kernel debuggers allowing you to stop in specific functions, display
stack backtraces and function arguments, and print other useful information.

There are three main methods under which a filesystem or indeed any other
part of the kernel can be debugged. The first approach involves using the kernel
printk() command which is very similar to printf(). The second approach
involves using a standalone debugger such as kdb whereby flow can be stopped
by placing explicit breakpoints or by entering a special key sequence to enter the
debugger. The third approach involves the use of two machines connected
through a serial cable and over which gdb can be used for source level
debugging.

The following sections describe each of these approaches. The amount of work
to perform each task is considerably different with printk() being the simplest
approach while the gdb approach involves more time to set up and an additional
machine. For readers who wish to experiment and have access to all the available
resources it is recommended that you start with printk() first, then move to
kdb, and finally to gdb.

The following sections assume some familiarity with debugging concepts.

The printk Approach to Debugging
One of the oldest and easiest styles of debugging is the printf() method. By
placing printf() statements throughout the code it is possible to display
information about the running program. This is useful for development or
simply to follow the flow through the program.

Linux provides the printk() function for kernel/module writers to use.

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 335

With the exception of the name change, it can be used in the same manner in
which printf() can be called. One method employed when writing uxfs was to
place a printk() at the start of each entry point to the filesystem. When typing
various commands at the user prompt, it is then easy to see which functions in the
filesystem are called.

Because Linux supports loadable modules, and the time to recompile and
reload a module is in the order of seconds, this is the easiest way to watch how the
filesystem works in practice and should be the method initially followed by
anyone new to kernel development who wants to understand how the kernel
works. To get a better idea of how the filesystem-related kernel functions work,
printk() calls can be placed throughout the kernel, and various structures can
be displayed.

Using the SGI kdb Debugger
The kdb debugger is a built-in debugger. It must be compiled with the kernel in
order for it to be used. It can be used to set breakpoints, display memory,
disassemble instructions, and display machine configuration such as the register
set. The debugger operates around the kernel symbol table, and therefore
functions and structures can be accessed by name.

The source code for kdb, which was developed by engineers at SGI (Silicon
Graphics Inc), can be downloaded from the SGI Web site. The home page for kdb
is as follows:

http://oss.sgi.com/projects/kdb/

Note that when following the link to the download section, the directories
displayed are for the versions of kdb and not versions of the Linux kernel. For the
kernel used to develop uxfs (2.4.18), kdb version 2.1 must be used (the latter
versions did not support this kernel at the time of writing).

The README file in the download directory contains instructions on which files
to download. This file should be consulted prior to downloading. Note that there
may be several versions for the same kernel. The README file specifies how to
interpret the version numbers of the patches.

There are two patch files to download. The first is common across all different
machine architectures and the second is specific to the machine architecture on
which you’re running. After downloading the patches, they can be applied as
follows:

cd /usr/src/linux-2.4.18
patch -p1 < ../kdb-v2.1-2.4.18-common-3
patching file kernel/sysctl.c
patching file kernel/ksyms.c
patching file kernel/Makefile
patching file init/main.c
...
patching file Documentation/kdb/kdb_env.man
patching file Documentation/kdb/kdb.mm

336 UNIX Filesystems—Evolution, Design, and Implementation

patching file Documentation/kdb/kdb_bp.man
patching file Documentation/kdb/slides
patch -p2 < ../kdb-v2.1-2.4.18-i386-1
patching file include/asm-i386/hw_irq.h
patching file include/asm-i386/keyboard.h
patching file include/asm-i386/ptrace.h
patching file arch/i386/vmlinux.lds
...
patching file arch/i386/kdb/kdbasupport.c
patching file arch/i386/kdb/ansidecl.h
patching file arch/i386/kdb/bfd.h
patching file arch/i386/kdb/ChangeLog
#

Once the patch has been successfully applied, the kernel configuration must be
changed to incorporate kdb. Under the section marked Kernel hacking , select the
option Built-in Kernel Debugger support and select the KDB modules. The kernel
must then be built (make dep ; make bzImage) and reinstalled as described
in the section Configuring the Kernel earlier in the chapter.

Included with the kdb patch is documentation on how the debugger works,
the commands that are available, and so on. The debugger can be entered by
pressing the BREAK key. The kdb prompt is then displayed as follows:

Entering kdb (current=0xc03b0000,pid 0)on processor 0 due to Keyboard Entry
[0]kdb>

The ? command can be used to display the available commands. Shown below is
a summary of the more commonly used commands. Examples of how they are
used in practice will be shown throughout the chapter.

bp. Set or display a breakpoint.
bph. Set a hardware breakpoint.

bc. Clear a breakpoint.
bl. List the current breakpoints.

bt. Display the stack backtrace for the current process.
go. Exit the debugger and restart kernel execution.

id. Disassemble instructions.
md. Display the contents of the specified address.

mds. Display memory symbolically.
mm. Modify memory.

reboot. Reboot the machine immediately.
rd. Display the register contents.

ss. Single step (instruction at a time).
ssb. Single step the CPU until a branch is reached.

The kdb(8) man page describes the other commands.

Developing a Filesystem for the Linux Kernel 337

Source Level Debugging with gdb
The GNU debugger gdb has been available for many years, typically being used
to debug user-level programs. However, by connecting machines together over a
serial line in a host/target configuration, gdb can also be used to debug the Linux
kernel. This requires a patch to the kernel to include a kgdb driver through which
gdb on the host machine can communicate. Although this requires an extra
machine and some additional setup work, the ease of use of debugging the kernel
at source level is well worth the extra work. It is also easier to see how the kernel
works because not only can breakpoints be added to show the flow through the
kernel, but function arguments can be displayed along with the source code
corresponding to the position at which the breakpoint is hit.

There are multiple patches for kernel-level gdb debugging. The following Web
page:

http://kgdb.sourceforge.net/

is the homepage for kgdb. It references all of the patches and contains detailed
instructions on gdb setup. The following sections highlight some of the main
points. For complete details, refer to the kgdb homepage.

Connecting the Host and Target Machines
The first step for gdb debugging is to connect the two machines together and
verify that data can be passed through the link. The machines must be connected
through a standard null modem between the serial ports of the machines as
shown in Figure 14.2.

Serial ports support transmission rates from 110 baud up to 115,200 baud. The
default baud rate for a serial port is 9,600. This is generally adequate for simple
debugging although higher baud rates are preferred if a lot of information will be
transmitted over the wire. This will certainly be the case when displaying
multiple thread stacks.

Once the link is in place, the speed of the serial port on each machine must be
identical. This can be verified on each machine as follows:

stty < /dev/ttyS0
speed 9600 baud; line = 0;
min = 0; time = 10;
-brkint -icrnl -imaxbel
-opost -onlcr
-isig -icanon -iexten -echo -echoe -echok -echoctl -echoke

The baud rate is shown here as 9,600. If the baud rate differs between the two
machines, the following call to the stty command can set the baud rate:

stty ispeed 9600 ospeed 9600 < /dev/ttyS0

Assuming that the baud rate is the same on both machines and the cable is in

338 UNIX Filesystems—Evolution, Design, and Implementation

place, the link can be tested by simply echoing a string through the cable on one
end and reading it on another as follows:

Host Target

cat /dev/ttyS0
echo hello > /dev/ttyS0

hello

If any problems are encountered, review the troubleshooting guide on the kgdb
kernel Web site.

Downloading the kgdb Patch
The download section of the kgdb kernel Web site contains the kernel patches for
specific Linux kernels. Each patch is an ASCII file that contains a set of diffs. Once
downloaded, the patch to build kgdb into the kernel can be applied to the kernel
as follows:

cd /usr/src/linux
patch -p1 < ../linux-2.4.18-kgdb-1.5.patch
patching file Documentation/Configure.help
patching file Documentation/i386/gdb-serial.txt
patching file Makefile
patching file arch/i386/Makefile
patching file arch/i386/config.in
patching file arch/i386/kernel/Makefile
...
patching file kernel/ksyms.c
patching file kernel/sched.c

Once the patch has been applied, the kernel configuration must be updated to
include the kgdb options. Under the Kernel Debugging section, select the
following line:

KGDB: Remote (serial) kernel debugging with gdb (NEW)

Figure 14.2 Source level kernel debugging with gdb.

null modem

gdb

Linux
kernel

gdb stub

serial
port

serial
port

host
machine

target
machine

Developing a Filesystem for the Linux Kernel 339

and then select each of the kgdb suboptions. Note that the Verbose BUG() reporting
option should not be selected.

After saving the kernel configuration, run the following:

make dep
make clean
make bzImage

to build the new kernel. As described in earlier sections, the kernel will be found
under the arch/i386/boot directory.

Installing the kgdb-Modified Kernel
To install the new kernel, the entry in lilo.conf must be changed to instruct the
kernel to wait, on bootstrap, for a connection from gdb on the host machine.
Shown below is an entry in lilo.conf for the new kernel:

image=/boot/linux.gdb
label=linux.gdb
initrd=/boot/initrd-2.4.18-3.img
read-only
root=/dev/hda2
append="gdb gdbttyS=0 gdbbaud=9600"

This instructs the kgdb stub which serial port to use (/dev/ttyS0) and the baud
rate that was established earlier during gdb configuration.

When the new kernel bootstraps, the following message is displayed:

Waiting for connection from remote gdb...

To connect to the target machine, gdb must be run on the host and the following
commands should be entered:

gdb
GNU gdb Red Hat Linux (5.1.90CVS-5)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-redhat-linux".
(gdb) target remote /dev/ttyS0
Remote debugging using /dev/ttyS0
0xc011323d in ?? ()
(gdb) c
Continuing.
PCI: PCI BIOS revision 2.10 entry at 0xfbfee, last bus=1
PCI: Using configuration type 1
...

340 UNIX Filesystems—Evolution, Design, and Implementation

The "target remote" command specifies the serial port to connect to in order
to communicate with the kernel. The c command then continues execution.

To break into the debugger and instruct it where to access the symbolic
debugging information, hit Control-C as follows:

Program received signal SIGTRAP, Trace/breakpoint trap.
0xc011323d in ?? ()
(gdb) symbol-file /usr/src/linux/vmlinux
Reading symbols from /usr/src/linux/vmlinux...done.

The debugger now has enough information to debug the kernel.

gdb and Module Interactions
Because uxfs is a loadable module, gdb knows nothing about the location of the
module in memory or where to locate the module’s symbolic information.

The loadmodule script, also located on the kgdb Web site, must be used to
load the module. It is assumed that the module source and binary are located on
the host machine and that it is possible to rcp from the host to the target.

Before running loadmodule, the GDBSCRIPTS variable, located at the top of
the script, must be altered to point to a directory where it can install a script for
use with gdb. As an example:

GDBSCRIPTS=/home/spate/uxfs/tools/gdbscripts

The script can then be run as follows:

loadmodule target-machine ../kern/uxfs
Copying ../kern/uxfs to linux
Loading module ../kern/uxfs
Generating script /home/spate/uxfs/tools/gdbscripts/loadlinuxuxfs

Once completed, the module should be loaded on the target machine and the
script generated is displayed. This should be run from within gdb. Control-C will
get you into gdb from which the script can be executed as follows:

Program received signal SIGTRAP, Trace/breakpoint trap.
breakpoint () at gdbstub.c:1177
1177 }
(gdb) so /home/spate/uxfs/tools/gdbscripts/loadlinuxuxfs
add symbol table from file "/home/spate/uxfs/kern/uxfs" at

.text_addr = 0xd0854060

.rodata_addr = 0xd0855c60
__ksymtab_addr = 0xd085618c
__archdata_addr = 0xd08562b0
__kallsyms_addr = 0xd08562b0
.data_addr = 0xd08568c0
.bss_addr = 0xd0856a60

The setup of gdb is now complete. Control-C can be invoked at any time the

Developing a Filesystem for the Linux Kernel 341

debugger needs to be entered to add break points and so on. Use of gdb for
kernel-level debugging will be shown throughout the chapter.

Building the uxfs Filesystem

The source code for all of the files that are needed to build the uxfs filesystem for
the 2.4.18 kernel is included at the end of the chapter. This includes the source for
mkfs and fsdb, the kernel makefile, and the kernel source. The source tree
downloaded from www.wiley.com/compbooks/spate is a gzipped tar
archive. Download to any directory and issue the following commands:

gunzip uxfs.tar.gz
tar xvf uxfs.tar
ls
uxfs.tar uxfs
ls uxfs
cmds kern

Commands can be easily built. All that is required is for the uxfs.h header file to
be located in the "../kern" directory. To build each of the commands, go to the
cmds directory and issue the following:

make fsdb
cc fsdb.c -o fsdb
make fsdb
cc fsdb.c -o fsdb

The commands can then be used.
The kernel makefile is relatively straightforward as follows:

KERNELDIR = /usr/src/linux

include $(KERNELDIR)/.config

FLAGS = -D__KERNEL__ -DMODULE $(VERCFLAGS)
GLOBAL_CFLAGS = -g -I$(KERNELDIR)/include $(FLAGS)

M_OBJS = ux_dir.o ux_alloc.o ux_file.o ux_inode.o

M_TARGET = uxfs

SRCS = $(M_OBJS:.o=.c)

CFLAGS = $(GLOBAL_CFLAGS) $(EXTRA_CFLAGS)

$(M_TARGET) : $(M_OBJS)
ld -r -o $@ $(M_OBJS)

$(M_OBJS) : %.o : %.c
$(CC) -c $(CFLAGS) -o $@ $<

342 UNIX Filesystems—Evolution, Design, and Implementation

all: uxfs

clean:
rm -f $(M_OBJS) $(M_TARGET)

To build the kernel source, the KERNELDIR variable at the top of the Makefile
must be changed to reference the kernel source directory. Figure 14.3 shows how
KERNELDIR is set to reference the 2.4.18 source tree.

Once this variable has been set, the kernel can be built as follows:

make uxfs
cc -c -g -I/usr/src/linux/include -D__KERNEL__ -DMODULE -o ux_dir.o ux_dir.c
cc -c -g -I/usr/src/linux/include -D__KERNEL__ -DMODULE -o ux_alloc.o
ux_alloc.c
cc -c -g -I/usr/src/linux/include -D__KERNEL__ -DMODULE -o ux_file.o ux_file.c
cc -c -g -I/usr/src/linux/include -D__KERNEL__ -DMODULE -o ux_inode.o
ux_inode.c
ld -r -o uxfs ux_dir.o ux_alloc.o ux_file.o ux_inode.o

This produces the uxfs module that can then be loaded into the kernel. This is
shown later in the chapter.

Creating a uxfs Filesystem

The first step when developing a new filesystem is to write a mkfs command to
place the intial filesystem layout on disk. This includes the following tasks:

■ Create and initialize the filesystem superblock and write it to disk.

■ Create a root dirtectory inode and lost+found directory inode. For each
of the inodes, ensure that the "." and ".." entries are in place and for the root
directory, add an entry for lost+found.

■ Account for allocation of the two directories within the inode map.

■ Account for allocation of two blocks used for the root and lost+found
directories.

The code for mkfs can be found on lines 104 to 262. For uxfs, it is a fairly simple
program. As with the kernel, it uses various structure definitions and
information from ux_fs.h including superblock structural information, inode
formats, directory entries and various filesystem boundaries such as the
maximum number of blocks and inodes.

Before the filesystem is implemented, it is important to verify the information
that mkfs writes to disk. Thus, the next program to write is fsdb, which can read
back and display various superblock and inode information.

The fsdb command (lines 264 to 393) is very simple. It accepts two commands
that allow the superblock or a specified inode to be displayed.

Developing a Filesystem for the Linux Kernel 343

The first task is to read the superblock into memory (lines 365 to 369), validate
it, and keep in in memory for the duration of the program. From here, it can
access any information it needs to about inodes or data blocks.

The remainder of the main() loop involves reading commands and then
calling additional routines. For now, only the superblock or an inode can be
displayed. By entering 'q', the program will exit.

The following output from fsdb shows the two commands being run on a
newly created filesystem:

./mkfs /dev/fd0
./fsdb /dev/fd0
uxfsdb > s

Superblock contents:
 s_magic = 0x58494e55
 s_mod = UX_FSCLEAN
 s_nifree = 28
 s_nbfree = 468

uxfsdb > i2

inode number 2
 i_mode = 41ed
 i_nlink = 3
 i_atime = Wed Aug 21 09:55:16 2002
 i_mtime = Wed Aug 21 09:55:16 2002
 i_ctime = Wed Aug 21 09:55:16 2002
 i_uid = 0

Figure 14.3 The uxfs filesystem source files and makefile referencing the kernel source.

uxfs

cmds
mkfs.c
fsdb.c

kern
Makefile
ux_alloc.c
ux_dir.c
ux_file.c
ux_inode.c

KERNELDIR = /usr/src/linux-2.4.18
...

/

usr

src

linux-2.4.18

arch drivers fs include ...

344 UNIX Filesystems—Evolution, Design, and Implementation

 i_gid = 0
 i_size = 512
 i_blocks = 1
 i_addr[0] = 50 i_addr[1] = 0 i_addr[2] = 0 i_addr[3] = 0
 i_addr[4] = 0 i_addr[5] = 0 i_addr[6] = 0 i_addr[7] = 0
 i_addr[8] = 0 i_addr[9] = 0 i_addr[10] = 0 i_addr[11] = 0
 i_addr[12] = 0 i_addr[13] = 0 i_addr[14] = 0 i_addr[15] = 0

 Directory entries:
 inum[2],name[.]
 inum[2],name[..]
 inum[3],name[lost+found]

uxfsdb > q

There are many more features that could be added to fsdb. Some of these
changes will be imperitive when completing the exercises at the end of the
chapter.

Module Initialization and Deinitialization

When writing a loadable kernel module, there are three different things that need
to be defined:

■ A declaration giving information about the type of module

■ A function to be called when the module is loaded. This can perform any
initialization functions including registering the filesystem type with the
kernel.

■ A function to be called when the module is unloaded. This can clean up
any remaining filesystem structures and unregister the filesystem.

The various components that are applicable to uxfs are shown in ux_inode.c
on lines 1304 to 1317. The module_init() call specifies the function to be run
when the module is loaded while the module_exit() function specifies the
function to be called when the module is unloaded. Both of these functions
perform little work other than registering and unregistering the filesystem driver
respectively. The DECLARE_FSTYPE_DEV() macro is shown below:

#define DECLARE_FSTYPE(var,type,read,flags) \
struct file_system_type var = { \

name: type, \
read_super: read, \
fs_flags: flags, \
owner: THIS_MODULE, \

}

#define DECLARE_FSTYPE_DEV(var,type,read) \
DECLARE_FSTYPE(var,type,read,FS_REQUIRES_DEV)

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 345

The kernel maintains a list of all such structures, one per filesystem. The entry for
uxfs is added when calling register_filesystem(). When a mount system
call enters the kernel, the filesystem name passed to mount is compared with the
name field of each file_system_type structure. If a match is found, the
read_super function is called to mount the filesystem.

The rmmod command is used to remove a kernel module. If there are still
filesystems mounted, the removal will fail; otherwise the kernel calls the module
exit function, which in the case of uxfs, is the exit_uxfs_fs() function. The
only action to perform is to call unregister_filesystem().

Testing the New Filesystem
The following examples show how a uxfs filesystem is created, how the kernel
module is loaded, the filesystem is unmounted, and how the module is unloaded.
Modules are loaded and unloaded with the insmod and rmmod commands. Note
that by default, the insmod command will attempt to look under
/lib/modules/<kernel_version> to locate the requested module. For
example, if the pathname is not specified as shown below, insmod will fail even
though the requested module is in the current directory. For this reason "./uxfs"
must be specified.

./mkfs /dev/fd0
insmod ./uxfs
lsmod
Module Size Used by Not tainted
uxfs 8608 0 (unused)
ext3 71968 2 (autoclean)
jbd 66208 2 (autoclean) [ext3]
mount -t uxfs /dev/fd0 /mnt
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda5 on /home type ext3 (rw)
none on /dev/shm type tmpfs (rw)
/dev/fd0 on /mnt type uxfs (rw)
rmmod uxfs
uxfs: Device or resource busy
umount /mnt
rmmod uxfs
lsmod
Module Size Used by Not tainted
ext3 71968 2 (autoclean)
jbd 66208 2 (autoclean) [ext3]

The sequence of commands here is merely to illustrate the basics of how to get a
uxfs filesystem mounted. The module displayed by lsmod is the name of the
actual binary and does not bear any resemblance to the source code.

346 UNIX Filesystems—Evolution, Design, and Implementation

Mounting and Unmounting the Filesystem

The ux_read_super() function is called to mount a uxfs filesystem. This
function is declared through the DECLARE_FSTYPE_DEV() macro and becomes
known to the Linux kernel when the filesystem is registered. The code for this
function can be found in ux_inode.c on lines 1240 to 1302.

The ux_read_super() function takes three arguments as shown in
ux_inode.c on line 1234 and iterated below:

ux_read_super(struct super_block *s, void *data, int silent)

There is one super_block structure per mounted filesystem. One of the tasks to
be performed by ux_read_super() is to initialize this structure by filling in the
following fields:

s_magic. This field holds the magic number of the filesystem, which for uxfs
is 0x58494e55. This field has little practical value.

s_blocksize. This field holds the filesystem block size, which in the case of
uxfs is 512 bytes (UX_BSIZE).

s_op. This field holds the super_operations vector, a set of functions that
either deal with the filesystem as a whole or allow inodes to be read,
written, and deleted.

s_root. This field is set to reference the dentry for the root inode. This is
described in more detail later.

The data argument is used by the kernel to pass any arguments that were
passed to mount. At this stage, uxfs does not accept any command line
arguments to mount, so this parameter is ignored. The silent argument, if set,
allows the filesystem writer to display more detailed information when running.
This allows debugging information to be displayed.

The ux_read_super() function must also perform the following tasks:

■ Call set_blocksize() to specify to the underlying driver layer the units
of I/O that will be passed through when accessing data through the buffer
cache. Note that all subsequent I/O must be in fixed-size chunks.

■ Allocate and initialize a root inode for the filesystem. This will be
explained in more detail later.

The following example shows how to set a breakpoint in gdb, display a stack
backtrace, and show how to display various structures. First of all, after the
module is loaded, but before a calling made to mount a filesystem, a breakpoint
is set in ux_read_super(). Hitting Control-C will enter gdb from which the
breakpoint can be set:

(gdb) b ux_read_super
Breakpoint 1 at 0xd08557ca: file ux_inode.c, line 237.

Developing a Filesystem for the Linux Kernel 347

(gdb) c
Continuing.

In response to mounting the filesystem, the breakpoint will be hit as follows:

mount -f uxfs /dev/fd0 /mnt

Breakpoint 1, ux_read_super (s=0xcf15a400, data=0x0, silent=0)
 at ux_inode.c:237
237 dev = s->s_dev;
(gdb) list
232 struct ux_fs *fs;
233 struct buffer_head *bh;
234 struct inode *inode;
235 kdev_t dev;
236
237 dev = s->s_dev;
238 set_blocksize(dev, UX_BSIZE);
239 s->s_blocksize = UX_BSIZE;
240 s->s_blocksize_bits = UX_BSIZE_BITS;
241

The list command displays the source code from the point at which the
breakpoint has been hit. The bt command can be used to display the current stack
backtrace as follows:

(gdb) bt
#0 ux_read_super (s=0xcf15a400, data=0x0, silent=0) at ux_inode.c:237
#1 0xc0143868 in get_sb_bdev (fs_type=0xd0856a44,
 dev_name=0xccfe8000 "/dev/fd0", flags=0, data=0x0) at super.c:697
#2 0xc0143d2d in do_kern_mount (type=0xccfe9000 "uxfs", flags=0,
 name=0xccfe8000 "/dev/fd0", data=0x0) at super.c:879
#3 0xc0156ff1 in do_add_mount (nd=0xcd011f5c, type=0xccfe9000 "uxfs",
 flags=0, mnt_flags=0, name=0xccfe8000 "/dev/fd0", data=0x0)
 at namespace.c:630
#4 0xc01572b7 in do_mount (dev_name=0xccfe8000 "/dev/fd0",
 dir_name=0xcf80f000 "/mnt", type_page=0xccfe9000 "uxfs",

flags=3236757504, data_page=0x0) at namespace.c:746
#5 0xc015737f in sys_mount (dev_name=0x805b418 "/dev/fd0",
 dir_name=0x805b428 "/mnt", type=0x805b438 "uxfs", flags=3236757504,
 data=0x0) at namespace.c:779
#6 0xc010730b in system_call ()

The arguments to the function at the current position in the stack trace
(ux_read_super()) can be displayed with the print (p) command. Note that
gdb understands C constructs:

(gdb) print *(struct super_block *)0xcf15a400
$1 = {s_list = {next = 0xc0293840, prev = 0xcf6df400}, s_dev = 512,
 s_blocksize = 0, s_blocksize_bits = 0 ’\0’, s_dirt = 0 ’\0’,
 s_maxbytes = 2147483647, s_type = 0xd0856a44, s_op = 0x0, dq_op = 0x0,
 s_flags = 0, s_magic = 0, s_root = 0x0, s_umount = {count = -65535,
 wait_lock = {lock = 1}, wait_list = {next = 0xcf15a43c,

348 UNIX Filesystems—Evolution, Design, and Implementation

prev = 0xcf15a43c}}, s_lock = {count = {counter = 0}, sleepers = 0,
 wait = {lock = {lock = 1}, task_list = {next = 0xcf15a450,

prev = 0xcf15a450}}}, s_count = 1073741824, s_active = {counter = 1},
 s_dirty = 0,
 ...

Later examples show some of the other features of gdb.

Scanning for a Uxfs Filesystem
The first task to perform when mounting the filesystem is to read the superblock
from disk. This involves a call to sb_bread() to read block 0 of the device on
which the superblock resides. The sb_read() function is merely a wrapper
around bread() that extracts the device from the s_dev field of the
super_block structure. Thus the following calls are equivalent:

bh = sb_bread(sb, block);
bh = bread(sb->s_dev, block, sb->s_blocksize);

On return from sb_bread(), a buffer_head structure will reference the data
read from the device. Note that each call to sb_read() must be followed at
some stage by a call to brelse() to release the buffer. An attempt to reread the
same block from disk prior to calling brelse() will cause the filesystem to
block. The data read from disk can be referenced by accessing the b_data field.
Because the superblock is located at offset 0 within block 0, the ux_superblock
structure can be referenced as shown in line 1253:

usb = (struct ux_superblock *)bh->b_data;

The first check to perform is to validate that this is a uxfs filesystem. Verification
is achieved by checking for presence of the uxfs magic number. Assuming that
this is detected and the superblock is not marked UX_FSDIRTY, the filesystem
can be mounted. Because all of the inode and data block information is stored in
the uxfs superblock, it is imperative to keep the superblock in memory at all
times. A ux_fs structure is allocated to keep hold of the buffer_head used to
read the superblock. This makes it easy to access the ux_superblock structure
from either the Linux super_block structure or from a Linux inode. This is
shown in Figure 14.4. Note that the buffer is not released until the filesystem is
unmounted.

Access to the ux_fs structure can be achieved through either the Linux
super_block structure or indirectly from the Linux inode structure as follows:

struct super_block *sb = inode->i_sb;
struct ux_fs *fs = (struct ux_fs *)sb->s_private;
struct ux_superblock *usb = fs->u_sb;

Because all exported uxfs functions are passed through either the super_block
or an inode structure as an argument, it is always possible to get access to the
uxfs superblock.

Developing a Filesystem for the Linux Kernel 349

Reading the Root Inode
The final step when mounting the filesystem is to read in the root inode and
instantiate it in the dcache. This is achieved through a call to iget() followed by
a call to d_alloc_root().

The call to iget() will involve a call back into the filesystem to actually read
the inode from disk. Subsequent calls to iget() for the same inode will find the
entry in the cache avoiding the need for further filesystem access. For details on
how uxfs reads inodes see the section Reading an Inode from Disk a little later in the
chapter. The Linux kernel calls find_inode() (fs/inode.c) to scan the inode
cache for the inode. If not found, a call to get_new_inode() is made.

The call to d_alloc_root() is a wrapper to d_instantiate() that
initializes the d_sb field of the dentry structure to reference the new
super_block structure. Note that accessing any further inodes will involve
access to dentries that already exist and that have been initialized by the kernel.

At this stage, the mount is complete. The super_block structure has been
initialized, the root directory is accessible through the Linux inode cache/dcache,
and the kernel has access to the the array of functions exported by the root inode
through which subsequent operations can be performed.

As another example of how to use gdb, a breakpoint can be set on the
ux_read_inode() function as follows:

(gdb) b ux_read_inode
Breakpoint 2 at 0xd0855312: file ux_inode.c, line 54.
(gdb) c
Continuing.

As with the gdb example earlier, the source code can be displayed at the point
where the breakpoint is hit:

Breakpoint 2, ux_read_inode (inode=0xcd235460) at ux_inode.c:54
54 unsigned long ino = inode->i_ino;
(gdb) list

Figure 14.4 Mapping from the Linux super_block structure to the uxfs superblock.

struct

u.generic_sbp

super_block

struct ux_fs

u_sb

u_sbh

b_data

struct
buffer_head

block 0

350 UNIX Filesystems—Evolution, Design, and Implementation

49 void
50 ux_read_inode(struct inode *inode)
51 {
52 struct buffer_head *bh;
53 struct ux_inode *di;
54 unsigned long ino = inode->i_ino;
55 int block;
56
57 if (ino < UX_ROOT_INO || ino > UX_MAXFILES) {
58 printk("uxfs: Bad inode number %lu\n", ino);

and the stack backtrace is displayed to locate the flow through the kernel from
function to function. In the stack backtrace below, you can see the call from
ux_read_super() to iget() to read the root inode. Notice the inode number
(2) passed to iget().

(gdb) bt
#0 ux_read_inode (inode=0xcd235460) at ux_inode.c:54
#1 0xc015411a in get_new_inode (sb=0xcf15a400, ino=2, head=0xcfda3820,
 find_actor=0, opaque=0x0) at inode.c:871
#2 0xc015439a in iget4 (sb=0xcf15a400, ino=2, find_actor=0, opaque=0x0)
 at inode.c:984
#3 0xd0855bfb in iget (sb=0xcf15a400, ino=2)
 at /usr/src/linux/include/linux/fs.h:1328
#4 0xd08558c3 in ux_read_super (s=0xcf15a400, data=0x0, silent=0)
 at ux_inode.c:272
#5 0xc0143868 in get_sb_bdev (fs_type=0xd0856a44,
 dev_name=0xccf35000 "/dev/fd0", flags=0, data=0x0) at super.c:697
#6 0xc0143d2d in do_kern_mount (type=0xccf36000 "uxfs", flags=0,
...

Finally, the inode structure passed to ux_read_inode() can be displayed.
Because the inode has not been read from disk, the in-core inode is only partially
initialized. The i_ino field is correct, but some of the other fields are invalid at
this stage.

(gdb) print *(struct inode *)0xcd235460
$2 = {i_hash = {next = 0xce2c7400, prev = 0xcfda3820}, i_list = {
 next = 0xcf7aeba8, prev = 0xc0293d84}, i_dentry = {next = 0xcd235470,
 prev = 0xcd235470}, i_dirty_buffers = {next = 0xcd235478,
 prev = 0xcd235478}, i_dirty_data_buffers = {next = 0xcd235480,
 prev = 0xcd235480}, i_ino = 2, i_count = {counter = 1}, i_dev = 512,
 i_mode = 49663, i_nlink = 1, i_uid = 0, i_gid = 0,

i_rdev = 512, i_size = 0,

Because the address of the inode structure is known, it may be displayed at any
time. Simply enter gdb and run the above command once more.

Writing the Superblock to Disk
The uxfs superblock contains information about which inodes and data blocks

Developing a Filesystem for the Linux Kernel 351

have been allocated along with a summary of both pieces of information. The
superblock resides in a single UX_MAXBSIZE buffer, which is held throughout the
duration of the mount. The usual method of ensuring that dirty buffers are
flushed to disk is to mark the buffer dirty as follows:

mark_buffer_dirty(bh);

However, the uxfs superblock is not released until the filesystem is unmounted.
Each time the superblock is modified, the s_dirt field of the superblock is set to
1. This informs the kernel that the filesystem should be notified on a periodic
basis by the kupdate daemon, which is called on a regular interval to flush dirty
buffers to disk. The kupdate() routine can be found in the Linux kernel source
in fs/buffer.c. To follow the flow from kupdate() through to the filesystem,
the following tasks are performed:

./mkfs /dev/fd0
mount -t uxfs /dev/fd0 /mnt
touch /mnt/file

Because a new file is created, a new inode is allocated that requires information in
the superblock to be updated. As part of this processing, which will be described
in more detail later in the chapter, the s_dirt field of the in-core superblock is set
to 1 to indicate that the superblock has been modified.

The ux_write_super() function (lines 1218 to 1229) is called to write the
superblock to disk. Setting a breakpoint in ux_write_super() using kdb as
follows:

Entering kdb (current=0xcbe20000, pid 1320) on processor 0 due to
Keyboard Entry[0]kdb> bp ux_write_super
Instruction(i) BP #1 at 0xd08ab788 ([uxfs]ux_write_super)
 is enabled globally adjust 1

and creating the new file as shown will eventually result in the breakpoint being
hit, as follows:

Entering kdb (current=0xc1464000, pid 7) on processor 0 due to Breakpoint
@ 0xd08ab788
[0]kdb> bt
 EBP EIP Function(args)
0xc1465fc4 0xd08ab788 [uxfs]ux_write_super (0xcc53b400, 0xc1464000)
 uxfs .text 0xd08aa060 0xd08ab788 0xd08ab7c4
 0xc014b242 sync_supers+0x142 (0x0, 0xc1464000)
 kernel .text 0xc0100000 0xc014b100 0xc014b2c0
0xc1465fd4 0xc0149bd6 sync_old_buffers+0x66 (0xc1464000, 0x10f00,
0xcffe5f9c, 0xc0105000)
 kernel .text 0xc0100000 0xc0149b70 0xc0149cf0
0xc1465fec 0xc014a223 kupdate+0x273
 kernel .text 0xc0100000 0xc0149fb0 0xc014a230
 0xc01057c6 kernel_thread+0x26

kernel .text
0xc0100000 0xc01057a0 0xc01057e0

352 UNIX Filesystems—Evolution, Design, and Implementation

Note the call from kupdate() to sync_old_buffers(). Following through,
the kernel code shows an inline function, write_super(), which actually calls
into the filesystem as follows:

 if (sb->s_root && sb->s_dirt)
 if (sb->s_op && sb->s_op->write_super)
 sb->s_op->write_super(sb);

Thus, the write_super entry of the superblock_operations vector is
called. For uxfs, the buffer holding the superblock is simply marked dirty.
Although this doesn’t flush the superblock to disk immediately, it will be written
as part of kupdate() processing at a later date (which is usually fairly quickly).

The only other task to perform by ux_write_super() is to set the s_dirt
field of the in-core superblock back to 0. If left at 1, ux_writer_super() would
be called every time kupdate() runs and would, for all intents and purposes,
lock up the system.

Unmounting the Filesystem
Dirty buffers and inodes are flushed to disk separately and are not therefore
really part of unmounting the filesystem. If the filesystem is busy when an
unmount command is issued, the kernel does not communicate with the
filesystem before returning EBUSY to the user.

If there are no open files on the system, dirty buffers and inodes are flushed to
disk and the kernel makes a call to the put_super function exported through
the superblock_operations vector. For uxfs, this function is
ux_put_super() (lines 1176 to 1188).

The path when entering ux_put_super() is as follows:

Breakpoint 4, ux_put_super (s=0xcede4c00) at ux_inode.c:167
167 struct ux_fs *fs = (struct ux_fs *)s->s_private;
(gdb) bt
#0 ux_put_super (s=0xcede4c00) at ux_inode.c:167
#1 0xc0143b32 in kill_super (sb=0xcede4c00) at super.c:800
#2 0xc01481db in path_release (nd=0xc9da1f80)
 at /usr/src/linux-2.4.18/include/linux/mount.h:50
#3 0xc0156931 in sys_umount (name=0x8053d28 "/mnt", flags=0)
 at namespace.c:395
#4 0xc015694e in sys_oldumount (name=0x8053d28 "/mnt")

at namespace.c:406
#5 0xc010730b in system_call ()

There are only two tasks to be performed by ux_put_super():

■ Mark the buffer holding the superblock dirty and release it.

■ Free the structure used to hold the ux_fs structure that was allocated
during ux_read_super().

Developing a Filesystem for the Linux Kernel 353

If there are any inodes or buffers used by the filesystem that have not been freed,
the kernel will free them and display a message on the console about their
existence. There are places within uxfs where this will occur. See the exercises at
the end of the chapter for further information.

Directory Lookups and Pathname Resolution

There are three main entry points into the filesystem for dealing with pathname
resolution, namely ux_readdir(), ux_lookup(), and ux_read_inode().
One interesting way to see how these three functions work together is to consider
the interactions between the kernel and the filesystem in response to the user
issuing an ls command on the root directory. When the filesystem is mounted,
the kernel already has a handle on the root directory, which exports the following
operations:

struct inode_operations ux_dir_inops = {
create: ux_create,
lookup: ux_lookup,
mkdir: ux_mkdir,
rmdir: ux_rmdir,
link: ux_link,
unlink: ux_unlink,

};

struct file_operations ux_dir_operations = {
read: generic_read_dir,
readdir: ux_readdir,
fsync: file_fsync,

};

The kernel has two calls at a directory level for name resolution. The first is to call
ux_readdir() to obtain the names of all the directory entries. After the
filesystem is mounted, the only inode in memory is the root inode so this
operation can only be invoked on the root inode. Given a filename, the
ux_lookup() function can be called to look up a name relative to a directory.
This function is expected to return the inode for the name if found.

The following two sections describe each of these operations in more detail.

Reading Directory Entries
When issuing a call to ls, the ls command needs to know about all of the entries
in the specified directory or the current working directory if ls is typed without
any arguments. This involves calling the getdents() system call. The prototype
for getdents() is as follows:

int getdents(unsigned int fd, struct dirent *dirp, unsigned int count);

354 UNIX Filesystems—Evolution, Design, and Implementation

The dirp pointer references an area of memory whose size is specified in count.
The kernel will try to read as many directory entries as possible. The number of
bytes read is returned from getdents(). The dirent structure is shown below:

struct dirent
{

 long d_ino; /* inode number */
 off_t d_off; /* offset to next dirent */
 unsigned short d_reclen; /* length of this dirent */
 char d_name [NAME_MAX+1]; /* file name (null-terminated) */

}

To read all directory entries, ls may need to call getdents() multiple times
depending on the size of the buffer passed in relation to the number of entries in
the directory.

To fill in the buffer passed to the kernel, multiple calls may be made into the
filesystem through the ux_readdir() function. The definition of this function
is as follows:

int
ux_readdir(struct file *filp, void *dirent, filldir_t filldir)

Each time the function is called, the current offset within the directory is
increased. The first step taken by ux_readdir() is to map the existing offset
into a block number as follows:

pos = filp->f_pos;
blk = (pos + 1) / UX+BSIZE;
blk = uip->iaddr[blk];

On first entry pos will be 0 and therefore the block to read will be i_addr[0].
The buffer corresponding to this block is read into memory and a search is made
to locate the required filename. Each block is comprised of
UX_DIRS_PER_BLOCK ux_dirent structures. Assuming that the entry in the
block at the appropriate offset is valid (d_ino is not 0), the filldir() routine, a
generic kernel function used by all filesystems, is called to copy the entry to the
user’s address space.

For each directory entry found, or if a null directory entry is encountered, the
offset within the directory is incremented as follows:

filp->f_pos += sizeof(struct ux_dirent);

to record where to start the next read if ux_readdir() is called again.

Filename Lookup
From a filesystem perspective, pathname resolution is a fairly straightforward
affair. All that is needed is to provide the lookup() function of the

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 355

inode_operations vector that is passed a handle for the parent directory and a
name to search for. Recall from the ux_read_super() function described in the
section Reading the Root Inode earlier in the chapter, after the superblock has been
read into memory and the Linux super_block structure has been initialized, the
root inode must be read into memory and initialized. The uxfs
ux_inode_operations vector is assigned to the i_op field of the root inode.
From there, filenames may be searched for, and once those directories are brought
into memory, a subsequent search may be made.

The ux_lookup() function in ux_dir.c (lines 838 to 860) is called passing
the parent directory inode and a partially initialized dentry for the filename to
look up. The next section gives examples showing the arguments passed.

There are two cases that must be handled by ux_lookup():

■ The name does not exist in the specified directory. In this case an EACCES
error is returned in which case the kernel marks the dentry as being
negative. If another search is requested for the same name, the kernel finds
the negative entry in the dcache and will return an error to the user. This
method is also used when creating new files and directories and will be
shown later in the chapter.

■ The name is located in the directory. In this case the filesystem should
call iget() to allocate a new Linux inode.

The main task performed by ux_lookup() is to call ux_find_entry() as
follows:

inum = ux_find_entry(dip, (char *)dentry->d_name.name);

Note that the d_name field of the dentry has already been initialized to reference
the filename. The ux_find_entry() function in ux_inode.c (lines 1031 to
1054) loops through all of the blocks in the directory (i_addr[]) making a call to
sb_bread() to read each appropriate block into memory.

For each block, there can be UX_DIRS_PER_BLOCK ux_dirent structures. If a
directory entry is not in use, the d_ino field will be set to 0. Figure 14.5 shows the
root directory inode and how entries are laid out within the inode data blocks. For
each block read, a check is made to see if the inode number (i_ino) is not zero
indicating that the directory entry is valid. If the entry is valid, a string
comparison is made between the name requested (stored in the dentry) and the
entry in the directory (d_name). If the names match, the inode number is
returned.

If there is no match in any of the directory entries, 0 is returned. Note that inode
0 is unused so callers can detect that the entry is not valid.

Once a valid entry is found, ux_lookup() makes a call to iget() to bring the
inode into memory, which will call back into the filesystem to actually read the
inode.

356 UNIX Filesystems—Evolution, Design, and Implementation

Filesystem/Kernel Interactions for Listing Directories
This section shows the kernel/filesystem interactions when running ls on the
root directory. The two main entry points into the filesystem for dealing with
name resolution, which were described in the last two sections, are
ux_lookup() and ux_readdir(). To obtain further information about a
filename, the ux_read_inode() must be called to bring the inode into memory.
The following example sets a breakpoint on all three functions and then an ls is
issued on a filesystem that has just been mounted. The filesystem to be mounted
has the lost+found directory (inode 3) and a copy of the passwd file (inode 4).
There are no other files.

First, the breakpoints are set in gdb as follows:

(gdb) b ux_lookup
Breakpoint 8 at 0xd0854b32: file ux_dir.c, line 367.
(gdb) b ux_readdir
Breakpoint 9 at 0xd0854350
(gdb) b ux_read_inode
Breakpoint 10 at 0xd0855312: file ux_inode.c, line 54.

The filesystem is then mounted and the the first breakpoint is hit as follows:

mount -f uxfs /dev/fd0 /mnt

Breakpoint 10, ux_read_inode (inode=0xcd235280) at ux_inode.c:54
54 unsigned long ino = inode->i_ino;
(gdb) p inode->i_ino
$19 = 2

Figure 14.5 uxfs directory entries.

i_mode = S_IFDIR|0755
i_nlink = 3
i_atime = <tm>
i_mtime = <tm>
i_ctime = <tm>
i_uid = 0 (root)
i_gid = 0 (root)
i_size = 512 (1 block)
i_blocks = 1
i_addr[0]

<tm> time in second since Jan 1 1970

d_ino = 2, d_name = ".\0"

d_ino = 2, d_name = "..\0"

d_ino = 3, d_name = "lost+found\0"

d_ino = 4, d_name = "fred\0"

d_ino = 0, d_name = "\0"

d_ino = 0, d_name = "\0"

.

.

.

512 byte_block with 16 directory entries

struct ux_dirent {
__u32 d_ino;
char d_name[28];

}

Developing a Filesystem for the Linux Kernel 357

This is a request to read inode number 2 and is called as part of the
ux_read_super() operation described in the section Mounting and Unmounting
the Filesystem earlier in the chapter. The print (p) command in gdb can be used
to display information about any of the parameters passed to the function.

Just to ensure that the kernel is still in the process of mounting the filesystem, a
portion of the stack trace is displayed as follows, which shows the call to
ux_read_super():

(gdb) bt
#0 ux_read_inode (inode=0xcd235280) at ux_inode.c:54
#1 0xc015411a in get_new_inode (sb=0xcf15a400, ino=2, head=0xcfda3820,
 find_actor=0, opaque=0x0) at inode.c:871
#2 0xc015439a in iget4 (sb=0xcf15a400, ino=2, find_actor=0, opaque=0x0)
 at inode.c:984
#3 0xd0855bfb in iget (sb=0xcf15a400, ino=2)
 at /usr/src/linux/include/linux/fs.h:1328
#4 0xd08558c3 in ux_read_super (s=0xcf15a400, data=0x0, silent=0)
 at ux_inode.c:272
...

The next step is to run ls /mnt, which will result in numerous calls into the
filesystem. The first such call is:

ls /mnt

Breakpoint 9, 0xd0854350 in ux_readdir (filp=0xcd39cc60,
dirent=0xccf0dfa0, filldir=0xc014dab0 <filldir64>)

This is a request to read directory entries from the root directory. This can be
shown by displaying the inode number of the directory on which the operation is
taking place. Note how C-like constructs can be used within gdb:

(gdb) p ((struct inode *)(filp->f_dentry->d_inode))->i_ino
$20 = 2

Here is the stack backtrace:

(gdb) bt
#0 0xd0854350 in ux_readdir (filp=0xcd39cc60, dirent=0xccf0dfa0,
 filldir=0xc014dab0 <filldir64>)
#1 0xc014d64e in vfs_readdir (file=0xcd39cc60, filler=0xc014dab0
<filldir64>,
 buf=0xccf0dfa0) at readdir.c:27
#2 0xc014dc2d in sys_getdents64 (fd=3, dirent=0x8058730, count=512)
 at readdir.c:311
#3 0xc010730b in system_call ()

Although ls may make repeated calls to getdents(), the kernel records the last
offset within the directory after the previous call to readdir(). This can be used
by the filesystem to know which directory entry to read next. The ux_readir()

358 UNIX Filesystems—Evolution, Design, and Implementation

routine obtains this offset as follows:

pos = filp->f_pos;

It can then read the directory at that offset or advance further into the directory if
the slot at that offset is unused. Either way, when a valid entry is found, it is
copied to the user buffer and the offset is advanced to point to the next entry.

Following this call to ux_readdir(), there are two subsequent calls. Without
looking too deeply, one can assume that ls will read all directory entries first.

The next breakpoint hit is a call to ux_lookup() as follows:

Breakpoint 8, ux_lookup (dip=0xcd235280, dentry=0xcd1e9ae0) at
ux_dir.c:367
367 struct ux_inode *uip = (struct ux_inode *)

The dip argument is the root directory and the dentry is a partially initialized
entry in the dcache. The name to lookup can be found within the dentry
structure as follows:

(gdb) p dentry->d_name
$23 = {name = 0xcd1e9b3c "lost+found", len = 10, hash = 4225228667}

The section Filename Lookup earlier in the chapter showed how the name can be
found in the directory and, if found, ux_lookup() will call iget() to read the
inode into memory. Thus, the next breakpoint is as follows:

Breakpoint 10, ux_read_inode (inode=0xcf7aeba0) at ux_inode.c:54
54 unsigned long ino = inode->i_ino;
(gdb) p inode->i_ino
$24 = 3

The inode number being looked up is inode number 3, which is the inode
number for the lost+found directory. The stack backtrace at this point is:

(gdb) bt
#0 ux_read_inode (inode=0xcf7aeba0) at ux_inode.c:54
#1 0xc015411a in get_new_inode (sb=0xcf15a400, ino=3, head=0xcfda3828,
 find_actor=0, opaque=0x0) at inode.c:871
#2 0xc015439a in iget4 (sb=0xcf15a400, ino=3, find_actor=0, opaque=0x0)
 at inode.c:984
#3 0xd0854e73 in iget (sb=0xcf15a400, ino=3)
 at /usr/src/linux/include/linux/fs.h:1328
#4 0xd0854b93 in ux_lookup (dip=0xcd235280, dentry=0xcd1e9ae0)

at ux_dir.c:379
#5 0xc01482c0 in real_lookup (parent=0xcd1e9160,

name=0xccf0df5c, flags=0)
 at namei.c:305
#6 0xc0148ba4 in link_path_walk (name=0xcf80f00f "", nd=0xccf0df98)
 at namei.c:590
#7 0xc014943a in __user_walk (name=0x0, flags=8, nd=0xccf0df98)

at namei.c:841

Developing a Filesystem for the Linux Kernel 359

#8 0xc0145877 in sys_lstat64 (filename=0xbffff950 "/mnt/lost+found",
 statbuf=0x805597c, flags=1108542220) at stat.c:352
#9 0xc010730b in system_call ()

Thus, the ls command has obtained the lost+found directory entry through
calling readdir() and is now invoking a stat() system call on the file. To
obtain the information to fill in the stat structure, the kernel needs to bring the
inode into memory in which to obtain the appropriate information.

There are two more calls to ux_readdir() followed by the next breakpoint:

Breakpoint 8, ux_lookup (dip=0xcd235280,dentry=0xcd1e90e0) at ux_dir.c:367
367 struct ux_inode *uip = (struct ux_inode *)
(gdb) p dentry->d_name
$26 = {name = 0xcd1e913c "passwd", len = 6, hash = 3467704878}

This is also invoked in response to the stat() system call. And the final
breakpoint hit is:

Breakpoint 10, ux_read_inode (inode=0xcd0c4c00) at ux_inode.c:54
54 unsigned long ino = inode->i_ino;
(gdb) p inode->i_ino
$27 = 4

in order to read the inode, to fill in the fields of the stat structure.
Although not shown here, another method to help understand the flow of

control when reading directory entries is either to modify the ls source code itself
to see the calls it is making or use the ls program (shown in Chapter 2).

Inode Manipulation

Previous sections have already highlighted some of the interactions between the
kernel, the inode cache, and the filesystem. When a lookup request is made into
the filesystem, uxfs locates the inode number and then calls iget() to read the
inode into memory. The following sections describe the inode cache/filesystem
interactions in more detail. Figure 14.6 can be consulted for a high-level view of
these interactions.

Reading an Inode from Disk
The ux_read_inode() function (lines 1061 to 1109) is called from the kernel
iget() function to read an inode into memory. This is typically called as a result
of the kernel calling ux_lookup(). A partially initialized inode structure is
passed to ux_read_inode() as follows:

void
ux_read_inode(struct inode *inode)

360 UNIX Filesystems—Evolution, Design, and Implementation

and the inode number of the inode can be found in inode->i_ino. The role of
ux_read_inode() is simply to read the inode into memory and copy relevant
fields of the disk portion of the disk-based inode into the inode structure
passed.

This is a relatively straightforward task in uxfs. The inode number must be
converted into a block number within the filesystem and then read through the
buffer cache into memory. This is achieved as follows:

block = UX_INODE_BLOCK + ino;
bh = sb_bread(inode->i_sb, block)

Recall that each uxfs inode is held in its own block on disk and inode 0 starts at
the block number defined by UX_INODE_BLOCK.

Figure 14.6 Kernel/filesystem interactions when dealing with inodes.

s_private

struct
super_block

u_sbh

u_sb

struct
ux_fs

b_data

struct
buffer_head

s_ifree
s_inode[]

struct
ux_superblock filesystem disk layout

superblock

inodes

ux_inode

i_nlink = 0

ux_inode

ux_inode

ux_inode

inode cache

data blocks

ux_delete_inode()

free inode
and data blocks

DIRTY

ux_write_inode()

flush inode to disk

ux_read_inode()

read inode from disk

and copy to in_core inode
new inode

CLEAN
no need for

filesystem interactions

Developing a Filesystem for the Linux Kernel 361

Once read into memory, a copy is made of the inode to the location within the
in-core inode defined by the i_private field. This address is at the end of the
in-core inode where the union of filesystem dependent information is stored. The
i_private field is defined in ux_fs.h as follows:

#define i_private u_generic_ip

Before freeing the buffer, the in-core inode fields are updated to reflect the on-disk
inode. Such information is used by the kernel for operations such as handling the
stat() system call.

One additional task to perform in ux_read_inode() is to initialize the i_op,
i_fop, and i_mapping fields of the inode structure with the operations
applicable to the file type. The set of operations that are applicable to a directory
are different to the set of operations that are applicable to regular files. The
initialization of both types of inodes can be found on lines 1088 to 1097 and
duplicated here:

if (di->i_mode & S_IFDIR) {
inode->i_mode |= S_IFDIR;
inode->i_op = &ux_dir_inops;
inode->i_fop = &ux_dir_operations;

} else if (di->i_mode & S_IFREG) {
inode->i_mode |= S_IFREG;
inode->i_op = &ux_file_inops;
inode->i_fop = &ux_file_operations;
inode->i_mapping->a_ops = &ux_aops;

}

Operations such as reading directory entries are obviously not applicable to
regular files while various I/O operations are not applicable to directories.

Allocating a New Inode
There is no operation exported to the kernel to allocate a new inode. However, in
response to requests to create a directory, regular file, and symbolic link, a new
inode needs to be allocated. Because uxfs does not support symbolic links, new
inodes are allocated when creating regular files or directories. In both cases, there
are several tasks to perform:

■ Call new_inode() to allocate a new in-core inode.

■ Call ux_ialloc() to allocate a new uxfs disk inode.

■ Initialize both the in-core and the disk inode.

■ Mark the superblock dirty—the free inode array and summary have been
modified.

■ Mark the inode dirty so that the new contents will be flushed to disk.

362 UNIX Filesystems—Evolution, Design, and Implementation

Information about creation of regular files and directories are the subjects of the
sections File Creation and Link Management and Creating and Removing Directories
later in the chapter. This section only describes the ux_ialloc() function that
can be found in the filesystem source code on lines 413 to 434.

Writing an Inode to Disk
Each time an inode is modified, the inode must be written to disk before the
filesystem is unmounted. This includes allocating or removing blocks or
changing inode attributes such as timestamps.

Within uxfs itself, there are several places where the inode is modified. The
only thing that these functions need to perform is to mark the inode dirty as
follows:

mark_inode_dirty(inode);

The kernel will call the ux_write_inode() function to write the dirty inode to
disk. This function, which can be found on lines 1115 to 1141, is exported through
the superblock_operations vector.

The following example uses kdb to set a breakpoint on ux_write_inode()
in order to see where the function is called from.

[0]kdb> bp ux_write_inode

The breakpoint can be easily hit by copying files into a uxfs filesystem. The stack
backtrace when the breakpoint is encountered is as follows:

Instruction(i) BP #0 at 0xd08cd4c8 ([uxfs]ux_write_inode)
 is enabled globally adjust 1
Entering kdb (current=0xc1464000, pid 7) on processor 0 due to Breakpoint
@ 0xd08cd4c8
[0]kdb> bt
 EBP EIP Function(args)
0xc1465fc8 0xd08cd4c8 [uxfs]ux_write_inode (0xc77f962c, 0x0, 0xcf9a8868,

0xcf9a8800, 0xc1465fd4)
 uxfs .text 0xd08cc060 0xd08cd4c8 0xd08cd5c0
 0xc015d738 sync_unlocked_inodes+0x1d8 (0xc1464000)
 kernel .text 0xc0100000 0xc015d560
0xc015d8e0
0xc1465fd4 0xc0149bc8 sync_old_buffers+0x58 (0xc1464000, 0x10f00,

0xcffe5f9c, 0xc0105000)
 kernel .text 0xc0100000 0xc0149b70
0xc0149cf0
0xc1465fec 0xc014a223 kupdate+0x273
 kernel .text 0xc0100000 0xc0149fb0
0xc014a230
 0xc01057c6 kernel_thread+0x26
 kernel .text 0xc0100000 0xc01057a0
0xc01057e0

Developing a Filesystem for the Linux Kernel 363

As with flushing the superblock when dirty, the kupdate daemon locates dirty
inodes and invokes ux_write_inode() to write them to disk.

The tasks to be performed by ux_write_inode() are fairly straightfoward:

■ Locate the block number where the inode resides. This can be found by
adding the inode number to UX_INODE_BLOCK.

■ Read the inode block into memory by calling sb_bread().

■ Copy fields of interest from the in-core inode to the disk inode, then copy
the disk inode to the buffer.

■ Mark the buffer dirty and release it.

Because the buffer cache buffer is marked dirty, the periodic run of kupdate will
write it to disk.

Deleting Inodes
There are two cases where inodes need to be freed. The first case occurs when a
directory needs to be removed; this is described in the section Creating and
Removing Directories later in the chapter. The second case occurs when the inode
link count reaches zero.

Recall that a regular file is created with a link count of 1. The link count is
incremented each time a hard link is created. For example:

touch A
touch B
ln A C

Files A and B are created with a link count of 1. The call to ln creates a directory
entry for file C and increments the link count of the inode to which A refers. The
following commands:

rm B
rm A

result in calls to the unlink() system call. Because B has a link count of 1, the
file will be removed. However, file A has a link count of 2; in this case, the link
count is decremented and the directory entry for A is removed, but the file still
remains and can be accessed through C.

To show the simple case where a file is created and removed, a breakpoint on
ux_write_inode() can be set in kdb as follows:

[0]kdb> bp ux_write_inode
Instruction(i) BP #0 at 0xd08cd4c8 ([uxfs]ux_write_inode)
 is enabled globally adjust 1
[0]kdb> go

364 UNIX Filesystems—Evolution, Design, and Implementation

and the following commands are executed:

touch /mnt/file
rm /mnt/file

A regular file (file) is created with a link count of 1. As described in previous
chapters of the book, the rm command invokes the unlink() system call. For a
file that has a link count of 1, this will result in the file being removed as shown
below when the stack backtrace is displayed:

Entering kdb (current=0xcaae6000, pid 1398)
on processor 0 due to Breakpoint @ 0xd08bc5c0

[0]kdb> bt
EBP EIP Function(args)
0xcab81f34 0xd08bc5c0 [uxfs]ux_delete_inode (0xcaad2824, 0xcaad2824,

0xcac4d484, 0xcabc6e0c)
uxfs .text 0xd08bb060 0xd08bc5c0 0xd08bc6b4

 0xc015f1f4 iput+0x114 (0xcaad2824, 0xcac4d4e0, 0xcab81f98,
0xcaad2824, 0xcac4d484)

kernel .text 0xc0100000 0xc015f0e0 0xc015f3a0
0xcab81f58 0xc015c466 d_delete+0xd6 (0xcac4d484, 0xcac4d56c, 0xcab81f98,

0x0, 0xcabc6e0c)
kernel .text 0xc0100000 0xc015c390 0xc015c590

0xcab81f80 0xc01537a8 vfs_unlink+0x1e8 (0xcabc6e0c, 0xcac4d484,
0xcac4d56c, 0xcffefcf8, 0xcea16005)

kernel .text 0xc0100000 0xc01535c0 0xc01537e0
0xcab81fbc 0xc0153878 sys_unlink+0x98 (0xbffffc50, 0x2, 0x0,

0xbffffc50, 0x0)
kernel .text 0xc0100000 0xc01537e0 0xc01538e0

 0xc01077cb system_call+0x33
kernel .text 0xc0100000 0xc0107798 0xc01077d0

The call to d_delete() is called to update the dcache first. If possible, the kernel
will attempt to make a negative dentry, which will simplify a lookup operation
in future if the same name is requested. Inside iput(); if the link count of the
inode reaches zero, the kernel knows that there are no further references to the
file so the filesystem is called to remove the file.

The ux_delete_inode() function (lines 1148 to 1168) needs to perform the
following tasks:

■ Free any data blocks that the file references. This involves updating the
s_nbfree field and s_block[] fields of the superblock.

■ Free the inode by updating the s_nbfree field and s_block[] fields of the
superblock.

■ Mark the superblock dirty so it will be flushed to disk to reflect the
changes.

■ Call clear_inode() to free the in-core inode.

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 365

As with many functions that deal with inodes and data blocks in uxfs, the tasks
performed by ux_delete_inode() and others are greatly simplified because all
of the information is held in the superblock.

File Creation and Link Management

Before creating a file, many UNIX utilities will invoke the stat() system call to
see is the file exists. This will involve the kernel calling the ux_lookup()
function. If the file name does not exist, the kernel will store a negative dentry in
the dcache. Thus, if there are additional calls to stat() for the same file, the
kernel can see that the file doesn’t exist without an additional call to the
filesystem.

Shown below is the output from the strace command when using the cp
command to copy file to foo:

lstat64("foo", 0xbffff8a0) = -1 ENOENT (No such file or directory)
stat64("file", {st_mode=S_IFREG|0644, st_size=0, ...}) = 0
open("file", O_RDONLY|O_LARGEFILE) = 3
open("foo", O_WRONLY|O_CREAT|O_LARGEFILE, 0100644) = 4

The cp command invokes the stat() system call on both files before calling
open() to create the new file.

The following example shows the call to ux_lookup() in response to the cp
command calling the stat() system call:

Breakpoint 5, ux_lookup (dip=0xcd73cba0, dentry=0xcb5ed3a0)
at ux_dir.c:367

367 struct ux_inode *uip = (struct ux_inode *)
(gdb) bt
#0 ux_lookup (dip=0xcd73cba0, dentry=0xcb5ed3a0) at ux_dir.c:367
#1 0xc01482c0 in real_lookup (parent=0xcb5ed320, name=0xc97ebf5c,

flags=0)
 at namei.c:305
#2 0xc0148ba4 in link_path_walk (name=0xcb0f700b "", nd=0xc97ebf98)
 at namei.c:590
#3 0xc014943a in __user_walk (

 name=0xd0856920 "\220D\205–,K\205–ÃK\205–<L\205–",
flags=9, nd=0xc97ebf98)

 at namei.c:841
#4 0xc0145807 in sys_stat64 (filename=0x8054788 "file",
 statbuf=0xbffff720, flags=1108542220)

at stat.c:337
#5 0xc010730b in system_call ()

The kernel allocates the dentry before calling ux_lookup(). Notice the address
of the dentry which is highlighted above.

366 UNIX Filesystems—Evolution, Design, and Implementation

Because the file does not exist, the cp command will then call open() to create
the file. This results in the kernel invoking the ux_create() function to create
the file as follows:

Breakpoint 6, 0xd0854494 in ux_create
(dip=0xcd73cba0, dentry=0xcb5ed3a0, mode=33188)

(gdb) bt
#0 0xd0854494 in ux_create (dip=0xcd73cba0, dentry=0xcb5ed3a0,

mode=33188)
#1 0xc014958f in vfs_create (dir=0xcd73cba0, dentry=0xcb5ed3a0,

mode=33188)
 at namei.c:958
#2 0xc014973c in open_namei (pathname=0xcb0f7000 "foo",

flag=32834,
 mode=33188, nd=0xc97ebf74) at namei.c:1034
#3 0xc013cd67 in filp_open (filename=0xcb0f7000 "foo",

flags=32833,
 mode=33188) at open.c:644
#4 0xc013d0d0 in sys_open (filename=0x8054788 "foo",

flags=32833, mode=33188)
at open.c:788

#5 0xc010730b in system_call ()

Note the address of the dentry passed to ux_create(). This is the same as the
address of the dentry passed to ux_lookup(). If the file is created successfully,
the dentry will be updated to reference the newly created inode.

The ux_create() function (lines 629 to 691) has several tasks to perform:

■ Call ux_find_entry() to check whether the file exists. If it does exist, an
error is returned.

■ Call the kernel new_inode() routine to allocate a new in-core inode.

■ Call ux_ialloc() to allocate a new uxfs inode. This will be described in
more detail later.

■ Call ux_diradd() to add the new filename to the parent directory. This is
passed to ux_create() as the first argument (dip).

■ Initialize the new inode and call mark_dirty_inode() for both the
new inode and the parent inode to ensure that they will be written to
disk.

The ux_ialloc() function (lines 413 to 434) is very straightforward working on
fields of the uxfs superblock. After checking to make sure there are still inodes
available (s_nifree > 0) , it walks through the s_inode[] array until it finds
a free entry. This is marked UX_INODE_INUSE, the s_ifree field is
decremented, and the inode number is returned.

The ux_diradd() (lines 485 to 539) function is called to add the new filename
to the parent directory. There are two cases that ux_diradd() must deal with:

Developing a Filesystem for the Linux Kernel 367

■ There is space in one of the existing directory blocks. In this case, the name
of the new file and its inode number can be written in place. The buffer read
into memory, which will hold the new entry, must be marked dirty and
released.

■ There is no more space in any of the existing directory blocks. In this
case, a new block must be allocated to the new directory in which to
store the name and inode number. This is achieved by calling the
ux_block_alloc() function (lines 441 to 469).

When reading through the existing set of directory entries to locate an empty slot,
each directory block must be read into memory. This involves cycling through the
data blocks in i_addr[] from 0 to i_blocks.

Creating a hard link involves adding a new filename to the filesystem and
incrementing the link count of the inode to which it refers. In some respects, the
paths followed are very similar to ux_create() but without the creation of a
new uxfs inode.

The ln command will invoke the stat() system call to check whether both
filenames already exist. Because the name of the link does not exist, a negative
dentry will be created. The ln command then invokes the link() system call,
which will enter the filesystem through ux_link(). The prototype for
ux_link() is as follows and the source can be found on lines 866 to 887:

int
ux_link(struct dentry *old, struct inode *dip, struct dentry *new);

Thus when executing the following command:

$ ln filea fileb

the old dentry refers to filea while new is a negative dentry for fileb,
which will have been established on a prior call to ux_lookup().

These arguments can be analyzed by setting a breakpoint on ux_link() and
running the above ln command.

Breakpoint 11, ux_link (old=0xcf2fe740, dip=0xcf23a240, new=0xcf2fe7c0)
 at ux_dir.c:395
395 }
(gdb) bt
#0 ux_link (old=0xcf2fe740, dip=0xcf23a240, new=0xcf2fe7c0)

at ux_dir.c:395
#1 0xc014adc4 in vfs_link (old_dentry=0xcf2fe740, dir=0xcf23a240,
 new_dentry=0xcf2fe7c0) at namei.c:1613
#2 0xc014aef0 in sys_link (oldname=0xbffffc20 "filea",
 newname=0xbffffc26 "fileb") at namei.c:1662
#3 0xc010730b in system_call ()

The gdb command can be used to display the arguments passed to ux_link()
as follows:

368 UNIX Filesystems—Evolution, Design, and Implementation

(gdb) p new
$9 = (struct dentry *) 0xcf2fe7c0
(gdb) p *old
$10 = {d_count = {counter = 1}, d_flags = 0, d_inode = 0xcd138260,
 d_parent = 0xcb5ed920, d_hash = {next = 0xc2701750, prev = 0xcfde6168},
 d_lru = {next = 0xcf2fe758, prev = 0xcf2fe758}, d_child = {
 next = 0xcb5ed948, prev = 0xcf2fe7e0}, d_subdirs = {next =
0xcf2fe768,
 prev = 0xcf2fe768}, d_alias = {next = 0xcd138270, prev = 0xcd138270},
 d_mounted = 0, d_name = {name = 0xcf2fe79c "filea", len = 5,
 hash = 291007618}, d_time = 0, d_op = 0x0, d_sb = 0xcede4c00,
 d_vfs_flags = 8, d_fsdata = 0x0, d_iname = "filea\0g\0\0\0\0\0\0\0\0"}
(gdb) p old->d_name.name
$11 = (unsigned char *) 0xcf2fe79c "filea"
(gdb) p new->d_name.name
$12 = (unsigned char *) 0xcf2fe81c "fileb"

Thus the dentry for old is complely instantiated and references the inode for
filea. The name field of the dentry for new has been set but the dentry has
not been initialized further.

There is not a great deal of work for ux_link() to perform. In addition to
calling ux_diradd() to add the new name to the parent directory, it increments
the link count of the inode, calls d_instantiate() to map the negative
dentry to the inode, and marks it dirty.

The unlink() system call is managed by the ux_unlink() function (lines
893 to 902). All that this function needs to do is decrement the inode link count
and mark the inode dirty. If the link count reaches zero, the kernel will invoke
ux_delete_inode() to actually remove the inode from the filesystem.

Creating and Removing Directories

At this point, readers should be familiar with the mechanics of how the kernel
looks up a filename and creates a negative dentry before creating a file.
Directory creation is a little different in that the kernel performs the lookup rather
than the application calling stat() first. This is shown as follows:

Breakpoint 5, ux_lookup (dip=0xcd73cba0, dentry=0xcb5ed420)
at ux_dir.c:367

367 struct ux_inode *uip = (struct ux_inode *)
(gdb) bt
#0 ux_lookup (dip=0xcd73cba0, dentry=0xcb5ed420) at ux_dir.c:367
#1 0xc01492f2 in lookup_hash (name=0xc97ebf98, base=0xcb5ed320)

at namei.c:781
#2 0xc0149cd1 in lookup_create (nd=0xc97ebf90, is_dir=1)

at namei.c:1206
#3 0xc014a251 in sys_mkdir (pathname=0xbffffc1c "/mnt/dir", mode=511)
 at namei.c:1332
#4 0xc010730b in system_call ()

Developing a Filesystem for the Linux Kernel 369

Because the filename won’t be found (assuming it doesn’t already exist), a
negative dentry is created is then passed into ux_mkdir() (lines 698 to 780) as
follows:

Breakpoint 7, 0xd08546d0 in ux_mkdir (dip=0xcd73cba0, dentry=0xcb5ed420,
 mode=493)

(gdb) bt
#0 0xd08546d0 in ux_mkdir (dip=0xcd73cba0, dentry=0xcb5ed420, mode=493)
#1 0xc014a197 in vfs_mkdir (dir=0xcd73cba0, dentry=0xcb5ed420,

mode=493)
 at namei.c:1307
#2 0xc014a282 in sys_mkdir (pathname=0xbffffc1c "/mnt/dir", mode=511)
 at namei.c:1336
#3 0xc010730b in system_call ()

Note that dentry address is the same for both functions.
The initial steps performed by ux_mkdir() are very similar to the steps taken

by ux_create(), which was described earlier in the chapter, namely:

■ Call new_inode() to allocate a new in-core inode.

■ Call ux_ialloc() to allocate a new uxfs inode and call ux_diradd() to
add the new directory name to the parent directory.

■ Initialize the in-core inode and the uxfs disk inode.

One additional step that must be performed is to allocate a block to the new
directory in which to store the entries for "." and "..". The ux_block_alloc()
function is called, which returns the block number allocated. This must be stored
in i_addr[0], i_blocks must be set to 1, and the size of the inode (i_size) is
set to 512, which is the size of the data block.

To remove a directory entry, the ux_rmdir() function (lines 786 to 831) is
called. The first step performed by ux_rmdir() is to check the link count of the
directory inode. If it is greater than 2, the directory is not empty and an error is
returned. Recall that a newly created directory has a link count of 2 when created
(for both "." and "..").

The stack backtrace when entering ux_rmdir() is shown below:

Breakpoint 8, 0xd0854a0c in ux_rmdir (dip=0xcd73cba0, dentry=0xcb5ed420)
(gdb) bt
#0 0xd0854a0c in ux_rmdir (dip=0xcd73cba0, dentry=0xcb5ed420)
#1 0xc014a551 in vfs_rmdir (dir=0xcd73cba0, dentry=0xcb5ed420)

at namei.c:1397
#2 0xc014a696 in sys_rmdir (pathname=0xbffffc1c "/mnt/dir")

at namei.c:1443
#3 0xc010730b in system_call ()

The dip argument is for the parent directory and the dentry argument is for the
directory to be removed.

The tasks to be performed by ux_rmdir() are as follows:

370 UNIX Filesystems—Evolution, Design, and Implementation

■ Call ux_dirdel() to remove the directory name from the parent
directory. This is described in more detail later.

■ Free all of the directory blocks.

■ Free the inode by incrementing the s_nifree field of the superblock
and marking the slot in s_nifree[] to indicate that the inode is free.

The dirdel() function (lines 545 to 576) walks through each of the directory
blocks comparing the d_ino field of each ux_dirent structure found with the
name passed. If a match is found, the d_ino field is set to 0 to indicate that the
slot is free. This is not an ideal solution because if many files are created and
removed in the same directory, there will be a fair amount of unused space.
However, for the purpose of demonstrating a simple filesystem, it is the easiest
solution to implement.

File I/O in uxfs

File I/O is typically one of the most difficult areas of a filesystem to implement.
To increase filesystem performance, this is one area where a considerable amount
of time is spent. In Linux, it is very easy to provide a fully working filesytem
while spending a minimal amount of time of the I/O paths. There are many
generic functions in Linux that the filesystem can call to handle all the
interactions with the page cache and buffer cache.

The section File I/O in the 2.4 Linux Kernel in Chapter 8 describes some of the
interactions with the page cache. Because this chapter presents a simplified view
of filesystem activity, the page cache internals won’t be described. Instead, the
following sections show how the kernel interacts with the ux_get_block()
function exported by uxfs. This function can be used to read data from a file or
allocate new data blocks and write data.

First of all, consider the main entry points into the filesystem for file I/O.
These are exported through the file_operations structure as follows:

struct file_operations ux_file_operations = {
 llseek: generic_file_llseek,
 read: generic_file_read,
 write: generic_file_write,
 mmap: generic_file_mmap,
};

So for all of the main file I/O related operations, the filesystem defers to the
Linux generic file I/O routines. The same is true for operations on any of the
mapped file interactions, whether for user-level mappings or for handling
operation within the page cache. The address space related operations are:

struct address_space_operations ux_aops = {
 readpage: ux_readpage,

Developing a Filesystem for the Linux Kernel 371

 writepage: ux_writepage,
 sync_page: block_sync_page,
 prepare_write: ux_prepare_write,
 commit_write: generic_commit_write,
 bmap: ux_bmap,
};

For all of the functions defined in this vector, uxfs also makes calls to generic
kernel routines. For example, consider the ux_readpage() function (lines 976 to
980), which is also shown here:

int
ux_readpage(struct file *file, struct page *page)
{
 return block_read_full_page(page, ux_get_block);
}

For each of the uxfs routines exported, uxfs makes a call to a generic kernel
function and passes the ux_get_block() routine. Before showing the flow into
the filesystem for file I/O, the subject of the next three sections, it is first helpful to
show how ux_get_block() (lines 929 to 968) works:

int
ux_get_block(struct inode *inode, long block,
 struct buffer_head *bh_result, int create)

The ux_getblock() function is called whenever the kernel needs to access part
of a file that is not already cached. The block argument is the logical block within
the file such that block 0 maps to file offset 0, block 1 maps to file offset 512 and
so on. The create argument indicates whether the kernel wants to read from or
write to the file. If create is 0, the kernel is reading from the file. If create is 1,
the filesystem will need to allocate storage at the offset referenced by block.

Taking the case where block is 0, the filesystem must fill in the appropriate
fields of the buffer_head as follows:

bh_result->b_dev = inode->i_dev;
bh_result->b_blocknr = uip->i_addr[block];

The kernel will then perform the actual read of the data. In the case where
create is 1, the filesystem must allocate a new data block by calling
ux_block_alloc() and set the appropriate i_addr[] slot to reference the new
block. Once allocated, the buffer_head structure must be initialized prior to the
kernel performing the I/O operation.

Reading from a Regular File
The filesystem does not do anything specific for reading from regular files. In
place of the read operation (file_operations vector), the filesystem specifies
the generic_file_read() function.

372 UNIX Filesystems—Evolution, Design, and Implementation

To show how the filesystem is entered, a breakpoint is set on
ux_get_block() and the passwd file is read from a uxfs filesystem by running
the cat program. Looking at the size of passwd:

ls -l /mnt/passwd
-rw-r--r-- 1 root root 1203 Jul 24 07:51 /etc/passwd

there will be three data blocks to access. When the first breakpoint is hit:

Breakpoint 1, ux_get_block (inode=0xcf23a420,
block=0, bh_result=0xc94f4740, create=0)

at ux_file.c:21
21 struct super_block *sb = inode->i_sb;
(gdb) bt
#0 ux_get_block (inode=0xcf23a420, block=0, bh_result=0xc94f4740,

create=0)
 at ux_file.c:21
#1 0xc0140b1f in block_read_full_page (page=0xc1250fc0,
 get_block=0xd0855094 <ux_get_block>) at buffer.c:1781
#2 0xd08551ba in ux_readpage (file=0xcd1c9360, page=0xc1250fc0)
 at ux_file.c:67
#3 0xc012e773 in do_generic_file_read (filp=0xcd1c9360,
ppos=0xcd1c9380,
 desc=0xc96d1f5c, actor=0xc012eaf0 <file_read_actor>)

at filemap.c:1401
#4 0xc012ec72 in generic_file_read (filp=0xcd1c9360, buf=0x804eb28 "",
 count=4096, ppos=0xcd1c9380) at filemap.c:1594
#5 0xc013d7c8 in sys_read (fd=3, buf=0x804eb28 "", count=4096)
 at read_write.c:162
#6 0xc010730b in system_call ()

there are two uxfs entry points shown. The first is a call to ux_readpage(). This
is invoked to read a full page of data into the page cache. The routines for
manipulating the page cache can be found in mm/filemap.c. The second, is the
call the ux_get_block(). Because file I/O is in multiples of the system page
size, the block_read_full_page() function is called to fill a page. In the case
of the file being read, there are only three blocks of 512 bytes, thus not enough to
fill a whole page (4KB). The kernel must therefore read in as much data as
possible, and then zero-fill the rest of the page.

The block argument passed to ux_get_block() is 0 so the filesystem will
initialize the buffer_head so that the first 512 bytes are read from the file.

The next time that the breakpoint is hit:

Breakpoint 1, ux_get_block (inode=0xcf23a420,
block=1, bh_result=0xc94f46e0, create=0)

at ux_file.c:21
21 struct super_block *sb = inode->i_sb;
(gdb) bt
#0 ux_get_block (inode=0xcf23a420, block=1,

bh_result=0xc94f46e0, create=0)
 at ux_file.c:21

Developing a Filesystem for the Linux Kernel 373

#1 0xc0140b1f in block_read_full_page (page=0xc1250fc0,
...

the kernel passes block 1 so the next 512 bytes will be read from the file. The final
call to ux_get_block() is shown below:

(gdb) bt
#0 ux_get_block (inode=0xcf23a420, block=2,

bh_result=0xc94f4680, create=0)
 at ux_file.c:21
#1 0xc0140b1f in block_read_full_page (page=0xc1250fc0,
 get_block=0xd0855094 <ux_get_block>) at buffer.c:1781
#2 0xd08551ba in ux_readpage (file=0xcd1c9360, page=0xc1250fc0)
 at ux_file.c:67

The kernel passes block 2 so the final 512 bytes will be read from the file.
For uxfs, reading from files is extremely simple. Once the get_block()

function has been written, there is very little other work for the filesystem to do.

Writing to a Regular File
The mechanisms for writing to files are very similar to those used when reading
regular files. Consider the following commands, this time to copy the passwd file
to a uxfs filesystem:

ls -l /etc/passwd
-rw-r--r-- 1 root root 1336 Jul 24 14:28 /etc/passwd
cp /etc/passwd /mnt

Setting a breakpoint on ux_get_block() once more and running the above cp
command, the first breakpoint is hit as follows:

Breakpoint 1, ux_get_block (inode=0xcd710440,
block=0, bh_result=0xc96b72a0, create=1)

at ux_file.c:21
21 struct super_block *sb = inode->i_sb;
(gdb) bt
#0 ux_get_block (inode=0xcd710440, block=0,

bh_result=0xc96b72a0, create=1)
 at ux_file.c:21
#1 0xc014074b in __block_prepare_write (inode=0xcd710440,

page=0xc125e640, from=0, to=1024,
get_block=0xd0855094 <ux_get_block>)

at buffer.c:1641
#2 0xc0141071 in block_prepare_write (page=0xc125e640, from=0, to=1024,
 get_block=0xd0855094 <ux_get_block>) at buffer.c:1960
#3 0xd08551dd in ux_prepare_write (file=0xcd1c9160, page=0xc125e640,

from=0, to=1024)
at ux_file.c:74

#4 0xc013085f in generic_file_write (file=0xcd1c9160,

374 UNIX Filesystems—Evolution, Design, and Implementation

buf=0xbffff160
"root:x:0:0:root:/root:/bin/bash\nbin:x:1:1:bin:/bin:/sbin/nologin\ndaem
on:x:2:2:daemon:/sbin:/sbin/nologin\nadm:x:3:4:adm:/var/adm:/sbin/nologi
n\nlp:x:4:7:lp:/var/spool/lpd:/sbin/nologin\nsync:x:5:0:sync:/"...,
 count=1024, ppos=0xcd1c9180) at filemap.c:3001
#5 0xc013d8e8 in sys_write (fd=4,
 buf=0xbffff160
"root:x:0:0:root:/root:/bin/bash\nbin:x:1:1:bin:/bin:/sbin/nologin\ndaem
on:x:2:2:daemon:/sbin:/sbin/nologin\nadm:x:3:4:adm:/var/adm:/sbin/nologi
n\nlp:x:4:7:lp:/var/spool/lpd:/sbin/nologin\nsync:x:5:0:sync:/"...,
 count=1024) at read_write.c:188
#6 0xc010730b in system_call ()

This time the create flag is set to 1, indicating that a block must be allocated to
the file. Once the block has been allocated, the buffer_head can be initialized
and the first 512 bytes of passwd can be copied to the buffer. If the buffer and
inode are marked dirty, both will be flushed to disk.

The next breakpoint is hit, and this time the block argument is set to 1, which
will result in another block being allocated to cover the file range 512 to 1023.

Breakpoint 1, ux_get_block (inode=0xcd710440,
block=1, bh_result=0xc96b7240, create=1)

at ux_file.c:21
21 struct super_block *sb = inode->i_sb;
(gdb) bt
#0 ux_get_block (inode=0xcd710440, block=1,

bh_result=0xc96b7240, create=1)
 at ux_file.c:21

The final breakpoint is hit as follows:

Breakpoint 1, ux_get_block (inode=0xcd710440, block=2,
bh_result=0xc9665900, create=1)

at ux_file.c:21
21 struct super_block *sb = inode->i_sb;
(gdb) bt
#0 ux_get_block (inode=0xcd710440, block=2,

bh_result=0xc9665900, create=1)
 at ux_file.c:21

and this time the block argument is set to 2 indicating that the final block which
is needed should be allocated. As with reading from regular files, writing to
regular files is also an easy function for the filesystem to implement.

Memory-Mapped Files
Although this section won’t describe the mechanics of how memory-mapped
files work in the Linux kernel, it is easy to show how the filesystem can support
mapped files through the same mechanisms used for reading from and writing to
regular files.

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 375

In place of the mmap function, exported through the file_operations
vector, uxfs requests that the generic_file_mmap() will be called. All that the
filesystem needs to provide is the get_block() interface.

To demonstrate how the filesystem is involved, a breakpoint is set in
ux_get_block() and a file is mapped for read-only access. The first address of
the mapping is then touched, which will create a page fault. The stack trace when
ux_get_block() is entered is as follows:

Breakpoint 1, ux_get_block (inode=0xcf23a420,
block=0, bh_result=0xc94bbba0, create=0)

at ux_file.c:21
21 struct super_block *sb = inode->i_sb;
(gdb) bt
#0 ux_get_block (inode=0xcf23a420, block=0,

bh_result=0xc94bbba0, create=0)
 at ux_file.c:21
#1 0xc0140b1f in block_read_full_page (page=0xc1238340,

get_block=0xd0855094 <ux_get_block>)
at buffer.c:1781

#2 0xd08551ba in ux_readpage (file=0xcd1c97e0, page=0xc1238340)
 at ux_file.c:67
#3 0xc012dd92 in page_cache_read (file=0xcd1c97e0, offset=3441203168)
 at filemap.c:714
#4 0xc012ddef in read_cluster_nonblocking (file=0xcd1c97e0,
 offset=3475219664, filesize=1)

at filemap.c:739
#5 0xc012f389 in filemap_nopage (area=0xc972a300, address=1073823744,

unused=0)
at filemap.c:1911

#6 0xc012b512 in do_no_page (mm=0xcf996d00, vma=0xc972a300,
 address=1073823744, write_access=0, page_table=0xc91e60a0)

at memory.c:1249
#7 0xc012b76c in handle_mm_fault (mm=0xcf996d00, vma=0xc972a300,
 address=1073823744, write_access=0)

at memory.c:1339
#8 0xc011754a in do_page_fault (regs=0xc952dfc4, error_code=4)

at fault.c:263
#9 0xc01073fc in error_code ()

The kernel is entered, not through a system call, but in response to a fault. Because
there are no pages backing the mapped file in the user address space, when the
process attempts to access the file, a page fault occurs. The kernel establishes
where the page of memory is mapped to and must then fill in the page from the
appropriate file.

The ux_readpage() function is entered, which calls back into the memory
manager. To fill in the page of data, the kernel will make repeated calls into
ux_get_block() until either a page of data has been read or the end of the file
has been reached. If the latter occurs, the kernel must zero-fill the page so that, if
the process accesses within the same page but beyond the end of the file, it will
read zeroes.

376 UNIX Filesystems—Evolution, Design, and Implementation

The Filesystem Stat Interface

The df command displays information about the filesystem usage such as the
number of free and used blocks. Through the super_block operations vector,
uxfs exports the ux_statfs() function, which is called in response to df
invoking the stafs system call (once for each filesystem). The ux_statfs()
function can be found on lines 1194 to 1210. The function prototype is shown
below:

int
ux_statfs(struct super_block *sb, struct statfs *buf);

The df command will make a call to the statfs() system call for each mounted
filesystem. Here is the prototype for statfs().

 int statfs(const char *path, struct statfs *buf);

Note that it also uses the statfs structure which is defined below:

struct statfs {
long f_type; /* type of filesystem (see below) */
long f_bsize; /* optimal transfer block size */
long f_blocks; /* total data blocks in file system */
long f_bfree; /* free blocks in fs */
long f_bavail; /* free blocks avail to non-superuser */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in fs */
fsid_t f_fsid; /* file system id */
long f_namelen; /* maximum length of filenames */

};

As mentioned earlier in the book, understanding the requirements of user level
programs is essential to understanding some of the features that must be
provided by filesystems. The information passed through the statfs structure
corresponds to filesystem limits, such as the total number of files and blocks in
the filesystem, and existing free resources, such as the number of available files
and data blocks.

The following example shows a breakpoint being set within kdb to stop when
the kernel enters ux_statfs(). The debugger is entered by hitting the Break
key as indicated by kdb when it is entered:

Entering kdb (current=0xc03b0000, pid 0) on processor 0 due to Keyboard Entry

[0]kdb> bp ux_statfs
Instruction(i) BP #0 at 0xd08bb400 ([uxfs]ux_statfs)
 is enabled globally adjust 1
[0]kdb> bl
Instruction(i) BP #0 at 0xd08bb400 ([uxfs]ux_statfs)
 is enabled globally adjust 1
[0]kdb> go

Developing a Filesystem for the Linux Kernel 377

The bl command displays the existing breakpoints. This is breakpoint number 0
as indicated by "BP #0 ". Thus, to clear the breakpoint, the bc command can be
invoked passing 0 as an argument.

df -k /mnt
Filesystem 1k-blocks Used Available Use% Mounted on
Instruction(i) breakpoint #0 at 0xd08bb400 (adjusted)
0xd08bb400 ux_statfs

Entering kdb (current=0xcd31c000, pid 1509) on processor 0 due to
Breakpoint @ 0xd08bb400
[0]kdb> bt
EBP EIP Function(args)
0xcd31df38 0xd08bb400 [uxfs]ux_statfs (0xcc2be400, 0xcd31df50,0xffffffda,

uxfs .text 0xd08bb060 0xd08bb400 0xd08bb460
0xc0141ea2 vfs_statfs+0xa2 (0xcc2be400, 0xcd31df50, 0x43, ...

kernel .text 0xc0100000 0xc0141e00 0xc0141f20
0xcd31dfbc 0xc0141f58 sys_statfs+0x38 (0x8052bb8, 0xbffff760, ...

kernel .text 0xc0100000 0xc0141f20 0xc0141fb0
0xc01077cb system_call+0x33

kernel .text 0xc0100000 0xc0107798 0xc01077d0
[0]kdb> go

When the df command is run and ux_statfs() is reached, the breakpoint is hit
and the kernel enters kdb. The bt command can then display the stack backtrace
showing that the kernel was entered by a system call that then called through
sys_statfs() and vfs_statfs() before entering ux_statfs().

The fields of the statfs structure can be obtained from either predefined
defaults in ux_fs.h or from summary information stored in the superblock.
Shown below is the result of a call to df following creation of a single directory:

./mkfs /dev/fd0
insmod ./uxfs
mount -t uxfs /dev/fd0 /mnt
df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda2 15120648 2524836 11827716 18% /
/dev/hda1 102454 11147 86017 12% /boot
/dev/hda5 497829 8240 463887 2% /home
none 127076 0 127076 0% /dev/shm
/dev/fd0 1000 1 999 1% /mnt

In the example that follows, a directory is created. A uxfs directory involves
allocating an inode and one data block to hold the "." and ".." entries plus any
subsequent entries added to the directory. Note that the single block allocated for
the directory is reflected in the information displayed.

mkdir /mnt/dir
df -k
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda2 15120648 2524836 11827716 18% /

378 UNIX Filesystems—Evolution, Design, and Implementation

/dev/hda1 102454 11147 86017 12% /boot
/dev/hda5 497829 8240 463887 2% /home
none 127076 0 127076 0% /dev/shm
/dev/fd0 1000 2 998 1% /mnt

Similarly, df can also display inode allocation information based on the
f_files and f_ffree fields of the statfs structure as displayed below:

df -i /mnt
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/fd0 32 4 28 13% /mnt
mkdir /mnt/mydir
df -i /mnt
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/fd0 32 5 27 16% /mnt

When first run on an empty filesystem, there are 4 inodes used out of the 32
available (UX_MAXFILES) inodes. By creating a directory an additional inode is
used that is returned in the f_ffree field of the statfs structure and displayed
by df above.

The Filesystem Source Code

This section displays all of the uxfs source code. All files are included together to
make it easier to reference from the different sections of the chapter.

The order in which the files are listed is:

ux_fs.h (lines 1 to 103). This file contains definitions of the structures used
by the filesystem. This includes the superblock, inodes, directory entries,
and parameters that are global to the filesystem such as the maximum
number of files, data blocks, and the location of various structures on disk.

mkfs.c (lines 104 to 263). This file contains the source code to the uxfs mkfs
command.

fsdb.c (lines 264 to 394). This file contains the source code to the uxfs fsdb
command.

ux_alloc.c (lines 395 to 470). This file contains routines to allocate inodes
and data blocks.

ux_dir.c (lines 471 to 912). This file contains the uxfs functions that are
exported through the inode_operations vector, including file and
directory creation, name resolution, and creation of hard links.

ux_file.c (lines 913 to 1008). This file contains the routines needed for
reading from and writing to files. Primarily this includes an allocating bmap
interface for retrieving file data blocks and allocating blocks as necessary.

ux_inode.c (lines 1009 to 1317). This file contains routines that work on the
filesystem as a whole, including module initialization and deinitialization.

Developing a Filesystem for the Linux Kernel 379

Note that the source code can be accessed through the following Web site:

www.wiley.com/compbooks/pate

together with modifications and instructions on how to run the filesystem on
different versions of Linux.

 1 /*--*/
 2 /*---------------------------- ux_fs.h -------------------------*/
 3 /*--*/
 4
 5 extern struct address_space_operations ux_aops;
 6 extern struct inode_operations ux_file_inops;
 7 extern struct inode_operations ux_dir_inops;
 8 extern struct file_operations ux_dir_operations;
 9 extern struct file_operations ux_file_operations;
 10
 11
 12 #define UX_NAMELEN 28
 13 #define UX_DIRS_PER_BLOCK 16
 14 #define UX_DIRECT_BLOCKS 16
 15 #define UX_MAXFILES 32
 16 #define UX_MAXBLOCKS 470
 17 #define UX_FIRST_DATA_BLOCK 50
 18 #define UX_BSIZE 512
 19 #define UX_BSIZE_BITS 9
 20 #define UX_MAGIC 0x58494e55
 21 #define UX_INODE_BLOCK 8
 22 #define UX_ROOT_INO 2
 23
 24 #define s_private u.generic_sbp
 25 #define i_private u.generic_ip
 26
 27 /*
 28 * The on-disk superblock. The number of inodes and
 29 * data blocks is fixed.
 30 */
 31
 32 struct ux_superblock {
 33 __u32 s_magic;
 34 __u32 s_mod;
 35 __u32 s_nifree;
 36 __u32 s_inode[UX_MAXFILES];
 37 __u32 s_nbfree;
 38 __u32 s_block[UX_MAXBLOCKS];
 39 };
 40
 41 /*
 42 * The on-disk inode.
 43 */
 44
 45 struct ux_inode {
 46 __u32 i_mode;
 47 __u32 i_nlink;

380 UNIX Filesystems—Evolution, Design, and Implementation

 48 __u32 i_atime;
 49 __u32 i_mtime;
 50 __u32 i_ctime;
 51 __s32 i_uid;
 52 __s32 i_gid;
 53 __u32 i_size;
 54 __u32 i_blocks;
 55 __u32 i_addr[UX_DIRECT_BLOCKS];
 56 };
 57
 58 /*
 59 * Allocation flags
 60 */
 61
 62 #define UX_INODE_FREE 0
 63 #define UX_INODE_INUSE 1
 64 #define UX_BLOCK_FREE 0
 65 #define UX_BLOCK_INUSE 1
 66
 67 /*
 68 * Filesystem flags
 69 */
 70
 71 #define UX_FSCLEAN 0
 72 #define UX_FSDIRTY 1
 73
 74 /*
 75 * FIxed size directory entry.
 76 */
 77
 78 struct ux_dirent {
 79 __u32 d_ino;
 80 char d_name[UX_NAMELEN];
 81 };
 82
 83 /*
 84 * Used to hold filesystem information in-core permanently.
 85 */
 86
 87 struct ux_fs {
 88 struct ux_superblock *u_sb;
 89 struct buffer_head *u_sbh;
 90 };
 91
 92 #ifdef __KERNEL__
 93
 94 extern ino_t ux_ialloc(struct super_block *);
 95 extern int ux_find_entry(struct inode *, char *);
 96 __u32 ux_block_alloc(struct super_block *);
 97 extern __u32 ux_block_alloc(struct super_block *);
 98 extern int ux_unlink(struct inode *, struct dentry *);
 99 extern int ux_link(struct dentry *, struct inode *,
 100 struct dentry *);
 101
 102 #endif

Developing a Filesystem for the Linux Kernel 381

 103
 104 /*--*/
 105 /*---------------------------- mkfs.c --------------------------*/
 106 /*--*/
 107
 108 #include <sys/types.h>
 109 #include <unistd.h>
 110 #include <stdio.h>
 111 #include <fcntl.h>
 112 #include <time.h>
 113 #include <linux/fs.h>
 114 #include <sys/stat.h>
 115 #include "../kern/ux_fs.h"
 116
 117 main(int argc, char **argv)
 118 {
 119 struct ux_dirent dir;
 120 struct ux_superblock sb;
 121 struct ux_inode inode;
 122 time_t tm;
 123 off_t nsectors = UX_MAXBLOCKS;
 124 int devfd, error, i;
 125 int map_blks;
 126 char block[UX_BSIZE];
 127
 128 if (argc != 2) {
 129 fprintf(stderr, "uxmkfs: Need to specify device\n");
 130 exit(1);
 131 }
 132 devfd = open(argv[1], O_WRONLY);
 133 if (devfd < 0) {
 134 fprintf(stderr, "uxmkfs: Failed to open device\n");
 135 exit(1);
 136 }
 137 error = lseek(devfd, (off_t)(nsectors * 512), SEEK_SET);
 138 if (error == -1) {
 139 fprintf(stderr, "uxmkfs: Cannot create filesystem"
 140 " of specified size\n");
 141 exit(1);
 142 }
 143 lseek(devfd, 0, SEEK_SET);
 144
 145 /*
 146 * Fill in the fields of the superblock and write
 147 * it out to the first block of the device.
 148 */
 149
 150 sb.s_magic = UX_MAGIC;
 151 sb.s_mod = UX_FSCLEAN;
 152 sb.s_nifree = UX_MAXFILES - 4;
 153 sb.s_nbfree = UX_MAXBLOCKS - 2;
 154
 155 /*
 156 * First 4 inodes are in use. Inodes 0 and 1 are not
 157 * used by anything, 2 is the root directory and 3 is

382 UNIX Filesystems—Evolution, Design, and Implementation

 158 * lost+found.
 159 */
 160
 161 sb.s_inode[0] = UX_INODE_INUSE;
 162 sb.s_inode[1] = UX_INODE_INUSE;
 163 sb.s_inode[2] = UX_INODE_INUSE;
 164 sb.s_inode[3] = UX_INODE_INUSE;
 165
 166 /*
 167 * The rest of the inodes are marked unused
 168 */
 169
 170 for (i = 4 ; i < UX_MAXFILES ; i++) {
 171 sb.s_inode[i] = UX_INODE_FREE;
 172 }
 173
 174 /*
 175 * The first two blocks are allocated for the entries
 176 * for the root and lost+found directories.
 177 */
 178
 179 sb.s_block[0] = UX_BLOCK_INUSE;
 180 sb.s_block[1] = UX_BLOCK_INUSE;
 181
 182 /*
 183 * The rest of the blocks are marked unused
 184 */
 185
 186 for (i = 2 ; i < UX_MAXBLOCKS ; i++) {
 187 sb.s_block[i] = UX_BLOCK_FREE;
 188 }
 189
 190 write(devfd, (char *)&sb, sizeof(struct ux_superblock));
 191
 192 /*
 193 * The root directory and lost+found directory inodes
 194 * must be initialized.
 195 */
 196
 197 time(&tm);
 198 memset((void *)&inode, 0, sizeof(struct ux_inode));
 199 inode.i_mode = S_IFDIR | 0755;
 200 inode.i_nlink = 3; /* ".", ".." and "lost+found" */
 201 inode.i_atime = tm;
 202 inode.i_mtime = tm;
 203 inode.i_ctime = tm;
 204 inode.i_uid = 0;
 205 inode.i_gid = 0;
 206 inode.i_size = UX_BSIZE;
 207 inode.i_blocks = 1;
 208 inode.i_addr[0] = UX_FIRST_DATA_BLOCK;
 209
 210 lseek(devfd, UX_INODE_BLOCK * UX_BSIZE + 1024, SEEK_SET);
 211 write(devfd, (char *)&inode, sizeof(struct ux_superblock));
 212

Developing a Filesystem for the Linux Kernel 383

 213 memset((void *)&inode, 0 , sizeof(struct ux_inode));
 214 inode.i_mode = S_IFDIR | 0755;
 215 inode.i_nlink = 2; /* "." and ".." */
 216 inode.i_atime = tm;
 217 inode.i_mtime = tm;
 218 inode.i_ctime = tm;
 219 inode.i_uid = 0;
 220 inode.i_gid = 0;
 221 inode.i_size = UX_BSIZE;
 222 inode.i_blocks = 1;
 223 inode.i_addr[0] = UX_FIRST_DATA_BLOCK + 1;
 224
 225 lseek(devfd, UX_INODE_BLOCK * UX_BSIZE + 1536, SEEK_SET);
 226 write(devfd, (char *)&inode, sizeof(struct ux_superblock));
 227
 228 /*
 229 * Fill in the directory entries for root
 230 */
 231
 232 lseek(devfd, UX_FIRST_DATA_BLOCK * UX_BSIZE, SEEK_SET);
 233 memset((void *)&block, 0, UX_BSIZE);
 234 write(devfd, block, UX_BSIZE);
 235 lseek(devfd, UX_FIRST_DATA_BLOCK * UX_BSIZE, SEEK_SET);
 236 dir.d_ino = 2;
 237 strcpy(dir.d_name, ".");
 238 write(devfd, (char *)&dir, sizeof(struct ux_dirent));
 239 dir.d_ino = 2;
 240 strcpy(dir.d_name, "..");
 241 write(devfd, (char *)&dir, sizeof(struct ux_dirent));
 242 dir.d_ino = 3;
 243 strcpy(dir.d_name, "lost+found");
 244 write(devfd, (char *)&dir, sizeof(struct ux_dirent));
 245
 246 /*
 247 * Fill in the directory entries for lost+found
 248 */
 249
 250 lseek(devfd, UX_FIRST_DATA_BLOCK * UX_BSIZE + UX_BSIZE,
 251 SEEK_SET);
 252 memset((void *)&block, 0, UX_BSIZE);
 253 write(devfd, block, UX_BSIZE);
 254 lseek(devfd, UX_FIRST_DATA_BLOCK * UX_BSIZE + UX_BSIZE,
 255 SEEK_SET);
 256 dir.d_ino = 2;
 257 strcpy(dir.d_name, ".");
 258 write(devfd, (char *)&dir, sizeof(struct ux_dirent));
 259 dir.d_ino = 2;
 260 strcpy(dir.d_name, "..");
 261 write(devfd, (char *)&dir, sizeof(struct ux_dirent));
 262 }
 263
 264 /*--*/
 265 /*---------------------------- fsdb.c --------------------------*/
 266 /*--*/
 267

384 UNIX Filesystems—Evolution, Design, and Implementation

 268 #include <sys/types.h>
 269 #include <sys/stat.h>
 270 #include <unistd.h>
 271 #include <stdio.h>
 272 #include <fcntl.h>
 273 #include <time.h>
 274 #include <linux/fs.h>
 275 #include "../kern/ux_fs.h"
 276
 277 struct ux_superblock sb;
 278 int devfd;
 279
 280 void
 281 print_inode(int inum, struct ux_inode *uip)
 282 {
 283 char buf[UX_BSIZE];
 284 struct ux_dirent *dirent;
 285 int i, x;
 286
 287 printf("\ninode number %d\n", inum);
 288 printf(" i_mode = %x\n", uip->i_mode);
 289 printf(" i_nlink = %d\n", uip->i_nlink);
 290 printf(" i_atime = %s",
 291 ctime((time_t *)&uip->i_atime));
 292 printf(" i_mtime = %s",
 293 ctime((time_t *)&uip->i_mtime));
 294 printf(" i_ctime = %s",
 295 ctime((time_t *)&uip->i_ctime));
 296 printf(" i_uid = %d\n", uip->i_uid);
 297 printf(" i_gid = %d\n", uip->i_gid);
 298 printf(" i_size = %d\n", uip->i_size);
 299 printf(" i_blocks = %d", uip->i_blocks);
 300 for (i=0 ; i<UX_DIRECT_BLOCKS; i++) {
 301 if (i % 4 == 0) {
 302 printf("\n");
 303 }
 304 printf(" i_addr[%2d] = %3d ",
 305 i, uip->i_addr[i]);
 306 }
 307
 308 /*
 309 * Print out the directory entries
 310 */
 311
 312 if (uip->i_mode & S_IFDIR) {
 313 printf("\n\n Directory entries:\n");
 314 for (i=0 ; i < uip->i_blocks ; i++) {
 315 lseek(devfd, uip->i_addr[i] * UX_BSIZE,
 316 SEEK_SET);
 317 read(devfd, buf, UX_BSIZE);
 318 dirent = (struct ux_dirent *)buf;
 319 for (x = 0 ; x < UX_DIRECT_BLOCKS ; x++) {
 320 if (dirent->d_ino != 0) {
 321 printf(" inum[%2d],"
 322 "name[%s]\n",

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 385

 323 dirent->d_ino,
 324 dirent->d_name);
 325 }
 326 dirent++;
 327 }
 328 }
 329 printf("\n");
 330 } else {
 331 printf("\n\n");
 332 }
 333 }
 334
 335 int read_inode(ino_t inum, struct ux_inode *uip)
 336 {
 337 if (sb.s_inode[inum] == UX_INODE_FREE) {
 338 return -1;
 339 }
 340 lseek(devfd, (UX_INODE_BLOCK * UX_BSIZE) +
 341 (inum * UX_BSIZE), SEEK_SET);
 342 read(devfd, (char *)uip, sizeof(struct ux_inode));
 343 return 0;
 344 }
 345
 346 main(int argc, char **argv)
 347 {
 348 struct ux_inode inode;
 349 char buf[512];
 350 char command[512];
 351 off_t nsectors;
 352 int error, i, blk;
 353 ino_t inum;
 354
 355 devfd = open(argv[1], O_RDWR);
 356 if (devfd < 0) {
 357 fprintf(stderr, "uxmkfs: Failed to open device\n");
 358 exit(1);
 359 }
 360
 361 /*
 362 * Read in and validate the superblock
 363 */
 364
 365 read(devfd, (char *)&sb, sizeof(struct ux_superblock));
 366 if (sb.s_magic != UX_MAGIC) {
 367 printf("This is not a uxfs filesystem\n");
 368 exit(1);
 369 }
 370
 371 while (1) {
 372 printf("uxfsdb > ") ;
 373 fflush(stdout);
 374 scanf("%s", command);
 375 if (command[0] == ’q’) {
 376 exit(0);
 377 }

386 UNIX Filesystems—Evolution, Design, and Implementation

 378 if (command[0] == ’i’) {
 379 inum = atoi(&command[1]);
 380 read_inode(inum, &inode);
 381 print_inode(inum, &inode);
 382 }
 383 if (command[0] == ’s’) {
 384 printf("\nSuperblock contents:\n");
 385 printf(" s_magic = 0x%x\n", sb.s_magic);
 386 printf(" s_mod = %s\n",
 387 (sb.s_mod == UX_FSCLEAN) ?
 388 "UX_FSCLEAN" : "UX_FSDIRTY");
 389 printf(" s_nifree = %d\n", sb.s_nifree);
 390 printf(" s_nbfree = %d\n\n", sb.s_nbfree);
 391 }
 392 }
 393 }
 394
 395 /*--*/
 396 /*--------------------------- ux_alloc.c -----------------------*/
 397 /*--*/
 398
 399 #include <linux/module.h>
 400 #include <linux/mm.h>
 401 #include <linux/slab.h>
 402 #include <linux/init.h>
 403 #include <linux/locks.h>
 404 #include <linux/smp_lock.h>
 405 #include <asm/uaccess.h>
 406 #include "ux_fs.h"
 407
 408 /*
 409 * Allocate a new inode. We update the superblock and return
 410 * the inode number.
 411 */
 412
 413 ino_t
 414 ux_ialloc(struct super_block *sb)
 415 {
 416 struct ux_fs *fs = (struct ux_fs *)sb->s_private;
 417 struct ux_superblock *usb = fs->u_sb;
 418 int i;
 419
 420 if (usb->s_nifree == 0) {
 421 printk("uxfs: Out of inodes\n");
 422 return 0;
 423 }
 424 for (i = 3 ; i < UX_MAXFILES ; i++) {
 425 if (usb->s_inode[i] == UX_INODE_FREE) {
 426 usb->s_inode[i] = UX_INODE_INUSE;
 427 usb->s_nifree--;
 428 sb->s_dirt = 1;
 429 return i;
 430 }
 431 }
 432 printk("uxfs: ux_ialloc - We should never reach here\n");

Developing a Filesystem for the Linux Kernel 387

 433 return 0;
 434 }
 435
 436 /*
 437 * Allocate a new data block. We update the superblock and return
 438 * the new block number.
 439 */
 440
 441 __u32
 442 ux_block_alloc(struct super_block *sb)
 443 {
 444 struct ux_fs *fs = (struct ux_fs *)sb->s_private;
 445 struct ux_superblock *usb = fs->u_sb;
 446 int i;
 447
 448 if (usb->s_nbfree == 0) {
 449 printk("uxfs: Out of space\n");
 450 return 0;
 451 }
 452
 453 /*
 454 * Start looking at block 1. Block 0 is
 455 * for the root directory.
 456 */
 457
 458 for (i = 1 ; i < UX_MAXBLOCKS ; i++) {
 459 if (usb->s_block[i] == UX_BLOCK_FREE) {
 460 usb->s_block[i] = UX_BLOCK_INUSE;
 461 usb->s_nbfree--;
 462 sb->s_dirt = 1;
 463 return UX_FIRST_DATA_BLOCK + i;
 464 }
 465 }
 466 printk("uxfs: ux_block_alloc - "
 467 "We should never reach here\n");
 468 return 0;
 469 }
 470
 471 /*--*/
 472 /*---------------------------- ux_dir.c ------------------------*/
 473 /*--*/
 474
 475 #include <linux/sched.h>
 476 #include <linux/string.h>
 477 #include <linux/locks.h>
 478
 479 #include "ux_fs.h"
 480
 481 /*
 482 * Add "name" to the directory "dip"
 483 */
 484
 485 int
 486 ux_diradd(struct inode *dip, const char *name, int inum)
 487 {

388 UNIX Filesystems—Evolution, Design, and Implementation

 488 struct ux_inode *uip = (struct ux_inode *)
 489 &dip->i_private;
 490 struct buffer_head *bh;
 491 struct super_block *sb = dip->i_sb;
 492 struct ux_dirent *dirent;
 493 __u32 blk = 0;
 494 int i, pos;
 495
 496 for (blk=0 ; blk < uip->i_blocks ; blk++) {
 497 bh = sb_bread(sb, uip->i_addr[blk]);
 498 dirent = (struct ux_dirent *)bh->b_data;
 499 for (i=0 ; i < UX_DIRS_PER_BLOCK ; i++) {
 500 if (dirent->d_ino != 0) {
 501 dirent++;
 502 continue;
 503 } else {
 504 dirent->d_ino = inum;
 505 strcpy(dirent->d_name, name);
 506 mark_buffer_dirty(bh);
 507 mark_inode_dirty(dip);
 508 brelse(bh);
 509 return 0;
 510 }
 511 }
 512 brelse(bh);
 513 }
 514
 515 /*
 516 * We didn't find an empty slot so need to allocate
 517 * a new block if there’s space in the inode.
 518 */
 519
 520 if (uip->i_blocks < UX_DIRECT_BLOCKS) {
 521 pos = uip->i_blocks;
 522 blk = ux_block_alloc(sb);
 523 uip->i_blocks++;
 524 uip->i_size += UX_BSIZE;
 525 dip->i_size += UX_BSIZE;
 526 dip->i_blocks++;
 527 uip->i_addr[pos] = blk;
 528 bh = sb_bread(sb, blk);
 529 memset(bh->b_data, 0, UX_BSIZE);
 530 mark_inode_dirty(dip);
 531 dirent = (struct ux_dirent *)bh->b_data;
 532 dirent->d_ino = inum;
 533 strcpy(dirent->d_name, name);
 534 mark_buffer_dirty(bh);
 535 brelse(bh);
 536 }
 537
 538 return 0;
 539 }
 540
 541 /*
 542 * Remove "name" from the specified directory.

Developing a Filesystem for the Linux Kernel 389

 543 */
 544
 545 int
 546 ux_dirdel(struct inode *dip, char *name)
 547 {
 548 struct ux_inode *uip = (struct ux_inode *)
 549 &dip->i_private;
 550 struct buffer_head *bh;
 551 struct super_block *sb = dip->i_sb;
 552 struct ux_dirent *dirent;
 553 __u32 blk = 0;
 554 int i;
 555
 556 while (blk < uip->i_blocks) {
 557 bh = sb_bread(sb, uip->i_addr[blk]);
 558 blk++;
 559 dirent = (struct ux_dirent *)bh->b_data;
 560 for (i=0 ; i < UX_DIRS_PER_BLOCK ; i++) {
 561 if (strcmp(dirent->d_name, name) != 0) {
 562 dirent++;
 563 continue;
 564 } else {
 565 dirent->d_ino = 0;
 566 dirent->d_name[0] = ’\0’;
 567 mark_buffer_dirty(bh);
 568 dip->i_nlink--;
 569 mark_inode_dirty(dip);
 570 break;
 571 }
 572 }
 573 brelse(bh);
 574 }
 575 return 0;
 576 }
 577
 578 int
 579 ux_readdir(struct file *filp, void *dirent, filldir_t filldir)
 580 {
 581 unsigned long pos;
 582 struct inode *inode = filp->f_dentry->d_inode;
 583 struct ux_inode *uip = (struct ux_inode *)
 584 &inode->i_private;
 585 struct ux_dirent *udir;
 586 struct buffer_head *bh;
 587 __u32 blk;
 588
 589 start_again:
 590 pos = filp->f_pos;
 591 if (pos >= inode->i_size) {
 592 return 0;
 593 }
 594 blk = (pos + 1) / UX_BSIZE;
 595 blk = uip->i_addr[blk];
 596 bh = sb_bread(inode->i_sb, blk);
 597 udir = (struct ux_dirent *)(bh->b_data + pos % UX_BSIZE);

390 UNIX Filesystems—Evolution, Design, and Implementation

 598
 599 /*
 600 * Skip over 'null' directory entries.
 601 */
 602
 603 if (udir->d_ino == 0) {
 604 filp->f_pos += sizeof(struct ux_dirent);
 605 brelse(bh);
 606 goto start_again;
 607 } else {
 608 filldir(dirent, udir->d_name,
 609 sizeof(udir->d_name), pos,
 610 udir->d_ino, DT_UNKNOWN);
 611 }
 612 filp->f_pos += sizeof(struct ux_dirent);
 613 brelse(bh);
 614 return 0;
 615 }
 616
 617 struct file_operations ux_dir_operations = {
 618 read: generic_read_dir,
 619 readdir: ux_readdir,
 620 fsync: file_fsync,
 621 };
 622
 623 /*
 624 * When we reach this point, ux_lookup() has already been called
 625 * to create a negative entry in the dcache. Thus, we need to
 626 * allocate a new inode on disk and associate it with the dentry.
 627 */
 628
 629 int
 630 ux_create(struct inode *dip, struct dentry *dentry, int mode)
 631 {
 632 struct ux_inode *nip;
 633 struct super_block *sb = dip->i_sb;
 634 struct inode *inode;
 635 ino_t inum = 0;
 636
 637 /*
 638 * See if the entry exists. If not, create a new
 639 * disk inode, and incore inode. Then add the new
 640 * entry to the directory.
 641 */
 642
 643 inum = ux_find_entry(dip, (char *)dentry->d_name.name);
 644 if (inum) {
 645 return -EEXIST;
 646 }
 647 inode = new_inode(sb);
 648 if (!inode) {
 649 return -ENOSPC;
 650 }
 651 inum = ux_ialloc(sb);
 652 if (!inum) {

Developing a Filesystem for the Linux Kernel 391

 653 iput(inode);
 654 return -ENOSPC;
 655 }
 656 ux_diradd(dip, (char *)dentry->d_name.name, inum);
 657
 658 /*
 659 * Increment the parent link count and intialize the inode.
 660 */
 661
 662 dip->i_nlink++;
 663 inode->i_uid = current->fsuid;
 664 inode->i_gid = (dip->i_mode & S_ISGID) ?
 665 dip->i_gid : current->fsgid;
 666 inode->i_mtime = inode->i_atime =
 667 inode->i_ctime = CURRENT_TIME;
 668 inode->i_blocks = inode->i_blksize = 0;
 669 inode->i_op = &ux_file_inops;
 670 inode->i_fop = &ux_file_operations;
 671 inode->i_mapping->a_ops = &ux_aops;
 672 inode->i_mode = mode;
 673 inode->i_nlink = 1;
 674 inode->i_ino = inum;
 675 insert_inode_hash(inode);
 676
 677 nip = (struct ux_inode *)&inode->i_private;
 678 nip->i_mode = mode;
 679 nip->i_nlink = 1;
 680 nip->i_atime = nip->i_ctime = nip->i_mtime = CURRENT_TIME;
 681 nip->i_uid = inode->i_gid;
 682 nip->i_gid = inode->i_gid;
 683 nip->i_size = 0;
 684 nip->i_blocks = 0;
 685 memset(nip->i_addr, 0, UX_DIRECT_BLOCKS);
 686
 687 d_instantiate(dentry, inode);
 688 mark_inode_dirty(dip);
 689 mark_inode_dirty(inode);
 690 return 0;
 691 }
 692
 693 /*
 694 * Make a new directory. We already have a negative dentry
 695 * so must create the directory and instantiate it.
 696 */
 697
 698 int
 699 ux_mkdir(struct inode *dip, struct dentry *dentry, int mode)
 700 {
 701 struct ux_inode *nip;
 702 struct buffer_head *bh;
 703 struct super_block *sb = dip->i_sb;
 704 struct ux_dirent *dirent;
 705 struct inode *inode;
 706 ino_t inum = 0;
 707 int blk;

392 UNIX Filesystems—Evolution, Design, and Implementation

 708
 709 /*
 710 * Make sure there isn't already an entry. If not,
 711 * allocate one, a new inode and new incore inode.
 712 */
 713
 714 inum = ux_find_entry(dip, (char *)dentry->d_name.name);
 715 if (inum) {
 716 return -EEXIST;
 717 }
 718 inode = new_inode(sb);
 719 if (!inode) {
 720 return -ENOSPC;
 721 }
 722 inum = ux_ialloc(sb);
 723 if (!inum) {
 724 iput(inode);
 725 return -ENOSPC;
 726 }
 727 ux_diradd(dip, (char *)dentry->d_name.name, inum);
 728
 729 inode->i_uid = current->fsuid;
 730 inode->i_gid = (dip->i_mode & S_ISGID) ?
 731 dip->i_gid : current->fsgid;
 732 inode->i_mtime = inode->i_atime =
 733 inode->i_ctime = CURRENT_TIME;
 734 inode->i_blocks = 1;
 735 inode->i_blksize = UX_BSIZE;
 736 inode->i_op = &ux_dir_inops;
 737 inode->i_fop = &ux_dir_operations;
 738 inode->i_mapping->a_ops = &ux_aops;
 739 inode->i_mode = mode | S_IFDIR;
 740 inode->i_ino = inum;
 741 inode->i_size = UX_BSIZE;
 742 inode->i_nlink = 2;
 743
 744 nip = (struct ux_inode *)&inode->i_private;
 745 nip->i_mode = mode | S_IFDIR;
 746 nip->i_nlink = 2;
 747 nip->i_atime = nip->i_ctime
 748 = nip->i_mtime = CURRENT_TIME;
 749 nip->i_uid = current->fsuid;
 750 nip->i_gid = (dip->i_mode & S_ISGID) ?
 751 dip->i_gid : current->fsgid;
 752 nip->i_size = 512;
 753 nip->i_blocks = 1;
 754 memset(nip->i_addr, 0, 16);
 755
 756 blk = ux_block_alloc(sb);
 757 nip->i_addr[0] = blk;
 758 bh = sb_bread(sb, blk);
 759 memset(bh->b_data, 0, UX_BSIZE);
 760 dirent = (struct ux_dirent *)bh->b_data;
 761 dirent->d_ino = inum;
 762 strcpy(dirent->d_name, ".");

Developing a Filesystem for the Linux Kernel 393

 763 dirent++;
 764 dirent->d_ino = inode->i_ino;
 765 strcpy(dirent->d_name, "..");
 766
 767 mark_buffer_dirty(bh);
 768 brelse(bh);
 769 insert_inode_hash(inode);
 770 d_instantiate(dentry, inode);
 771 mark_inode_dirty(inode);
 772
 773 /*
 774 * Increment the link count of the parent directory.
 775 */
 776
 777 dip->i_nlink++;
 778 mark_inode_dirty(dip);
 779 return 0;
 780 }
 781
 782 /*
 783 * Remove the specified directory.
 784 */
 785
 786 int
 787 ux_rmdir(struct inode *dip, struct dentry *dentry)
 788 {
 789 struct super_block *sb = dip->i_sb;
 790 struct ux_fs *fs = (struct ux_fs *)
 791 sb->s_private;
 792 struct ux_superblock *usb = fs->u_sb;
 793 struct inode *inode = dentry->d_inode;
 794 struct ux_inode *uip = (struct ux_inode *)
 795 &inode->i_private;
 796 int inum, i;
 797
 798 if (inode->i_nlink > 2) {
 799 return -ENOTEMPTY;
 800 }
 801
 802 /*
 803 * Remove the entry from the parent directory
 804 */
 805
 806 inum = ux_find_entry(dip, (char *)dentry->d_name.name);
 807 if (!inum) {
 808 return -ENOTDIR;
 809 }
 810 ux_dirdel(dip, (char *)dentry->d_name.name);
 811
 812 /*
 813 * Clean up the inode
 814 */
 815
 816 for (i=0 ; i<UX_DIRECT_BLOCKS ; i++) {
 817 if (uip->i_addr[i] != 0) {

394 UNIX Filesystems—Evolution, Design, and Implementation

 818 usb->s_block[uip->i_addr[i]]
 819 = UX_BLOCK_FREE;
 820 usb->s_nbfree++;
 821 }
 822 }
 823
 824 /*
 825 * Update the superblock summaries.
 826 */
 827
 828 usb->s_inode[dip->i_ino] = UX_INODE_FREE;
 829 usb->s_nifree++;
 830 return 0;
 831 }
 832
 833 /*
 834 * Lookup the specified file. A call is made to iget() to
 835 * bring the inode into core.
 836 */
 837
 838 struct dentry *
 839 ux_lookup(struct inode *dip, struct dentry *dentry)
 840 {
 841 struct ux_inode *uip = (struct ux_inode *)
 842 &dip->i_private;
 843 struct ux_dirent dirent;
 844 struct inode *inode = NULL;
 845 int inum;
 846
 847 if (dentry->d_name.len > UX_NAMELEN) {
 848 return ERR_PTR(-ENAMETOOLONG);
 849 }
 850
 851 inum = ux_find_entry(dip, (char *)dentry->d_name.name);
 852 if (inum) {
 853 inode = iget(dip->i_sb, inum);
 854 if (!inode) {
 855 return ERR_PTR(-EACCES);
 856 }
 857 }
 858 d_add(dentry, inode);
 859 return NULL;
 860 }
 861
 862 /*
 863 * Called in response to an ln command/syscall.
 864 */
 865
 866 int
 867 ux_link(struct dentry *old, struct inode *dip, struct dentry *new)
 868 {
 869 struct inode *inode = old->d_inode;
 870 int error;
 871
 872 /*

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 395

 873 * Add the new file (new) to its parent directory (dip)
 874 */
 875
 876 error = ux_diradd(dip, new->d_name.name, inode->i_ino);
 877
 878 /*
 879 * Increment the link count of the target inode
 880 */
 881
 882 inode->i_nlink++;
 883 mark_inode_dirty(inode);
 884 atomic_inc(&inode->i_count);
 885 d_instantiate(new, inode);
 886 return 0;
 887 }
 888
 889 /*
 890 * Called to remove a file (decrement its link count)
 891 */
 892
 893 int
 894 ux_unlink(struct inode *dip, struct dentry *dentry)
 895 {
 896 struct inode *inode = dentry->d_inode;
 897
 898 ux_dirdel(dip, (char *)dentry->d_name.name);
 899 inode->i_nlink--;
 900 mark_inode_dirty(inode);
 901 return 0;
 902 }
 903
 904 struct inode_operations ux_dir_inops = {
 905 create: ux_create,
 906 lookup: ux_lookup,
 907 mkdir: ux_mkdir,
 908 rmdir: ux_rmdir,
 909 link: ux_link,
 910 unlink: ux_unlink,
 911 };
 912
 913 /*--*/
 914 /*--------------------------- ux_file.c ------------------------*/
 915 /*--*/
 916
 917 #include <linux/fs.h>
 918 #include <linux/locks.h>
 919 #include <linux/smp_lock.h>
 920 #include "ux_fs.h"
 921
 922 struct file_operations ux_file_operations = {
 923 llseek: generic_file_llseek,
 924 read: generic_file_read,
 925 write: generic_file_write,
 926 mmap: generic_file_mmap,
 927 };

396 UNIX Filesystems—Evolution, Design, and Implementation

 928
 929 int
 930 ux_get_block(struct inode *inode, long block,
 931 struct buffer_head *bh_result, int create)
 932 {
 933 struct super_block *sb = inode->i_sb;
 934 struct ux_fs *fs = (struct ux_fs *)
 935 sb->s_private;
 936 struct ux_inode *uip = (struct ux_inode *)
 937 &inode->i_private;
 938 __u32 blk;
 939
 940 /*
 941 * First check to see if the file can be extended.
 942 */
 943
 944 if (block >= UX_DIRECT_BLOCKS) {
 945 return -EFBIG;
 946 }
 947
 948 /*
 949 * If we're creating, we must allocate a new block.
 950 */
 951
 952 if (create) {
 953 blk = ux_block_alloc(sb);
 954 if (blk == 0) {
 955 printk("uxfs: ux_get_block - "
 956 "Out of space\n");
 957 return -ENOSPC;
 958 }
 959 uip->i_addr[block] = blk;
 960 uip->i_blocks++;
 961 uip->i_size = inode->i_size;
 962 mark_inode_dirty(inode);
 963 }
 964 bh_result->b_dev = inode->i_dev;
 965 bh_result->b_blocknr = uip->i_addr[block];
 966 bh_result->b_state |= (1UL << BH_Mapped);
 967 return 0;
 968 }
 969
 970 int
 971 ux_writepage(struct page *page)
 972 {
 973 return block_write_full_page(page, ux_get_block);
 974 }
 975
 976 int
 977 ux_readpage(struct file *file, struct page *page)
 978 {
 979 return block_read_full_page(page, ux_get_block);
 980 }
 981
 982 int

Developing a Filesystem for the Linux Kernel 397

 983 ux_prepare_write(struct file *file, struct page *page,
 984 unsigned from, unsigned to)
 985 {
 986 return block_prepare_write(page, from, to, ux_get_block);
 987 }
 988
 989 int
 990 ux_bmap(struct address_space *mapping, long block)
 991 {
 992 return generic_block_bmap(mapping, block, ux_get_block);
 993 }
 994
 995 struct address_space_operations ux_aops = {
 996 readpage: ux_readpage,
 997 writepage: ux_writepage,
 998 sync_page: block_sync_page,
 999 prepare_write: ux_prepare_write,
1000 commit_write: generic_commit_write,
1001 bmap: ux_bmap,
1002 };
1003
1004 struct inode_operations ux_file_inops = {
1005 link: ux_link,
1006 unlink: ux_unlink,
1007 };
1008
1009 /*--*/
1010 /*--------------------------- ux_inode.c -----------------------*/
1011 /*--*/
1012
1013 #include <linux/module.h>
1014 #include <linux/mm.h>
1015 #include <linux/slab.h>
1016 #include <linux/init.h>
1017 #include <linux/locks.h>
1018 #include <linux/smp_lock.h>
1019 #include <asm/uaccess.h>
1020 #include "ux_fs.h"
1021
1022 MODULE_AUTHOR("Steve Pate <spate@veritas.com>");
1023 MODULE_DESCRIPTION("A primitive filesystem for Linux");
1024 MODULE_LICENSE("GPL");
1025
1026 /*
1027 * This function looks for "name" in the directory "dip".
1028 * If found the inode number is returned.
1029 */
1030
1031 int
1032 ux_find_entry(struct inode *dip, char *name)
1033 {
1034 struct ux_inode *uip = (struct ux_inode *)
1035 &dip->i_private;
1036 struct super_block *sb = dip->i_sb;
1037 struct buffer_head *bh;

398 UNIX Filesystems—Evolution, Design, and Implementation

1038 struct ux_dirent *dirent;
1039 int i, blk = 0;
1040
1041 for (blk=0 ; blk < uip->i_blocks ; blk++) {
1042 bh = sb_bread(sb, uip->i_addr[blk]);
1043 dirent = (struct ux_dirent *)bh->b_data;
1044 for (i=0 ; i < UX_DIRS_PER_BLOCK ; i++) {
1045 if (strcmp(dirent->d_name, name) == 0) {
1046 brelse(bh);
1047 return dirent->d_ino;
1048 }
1049 dirent++;
1050 }
1051 }
1052 brelse(bh);
1053 return 0;
1054 }
1055
1056 /*
1057 * This function is called in response to an iget(). For
1058 * example, we call iget() from ux_lookup().
1059 */
1060
1061 void
1062 ux_read_inode(struct inode *inode)
1063 {
1064 struct buffer_head *bh;
1065 struct ux_inode *di;
1066 unsigned long ino = inode->i_ino;
1067 int block;
1068
1069 if (ino < UX_ROOT_INO || ino > UX_MAXFILES) {
1070 printk("uxfs: Bad inode number %lu\n", ino);
1071 return;
1072 }
1073
1074 /*
1075 * Note that for simplicity, there is only one
1076 * inode per block!
1077 */
1078
1079 block = UX_INODE_BLOCK + ino;
1080 bh = sb_bread(inode->i_sb, block);
1081 if (!bh) {
1082 printk("Unable to read inode %lu\n", ino);
1083 return;
1084 }
1085
1086 di = (struct ux_inode *)(bh->b_data);
1087 inode->i_mode = di->i_mode;
1088 if (di->i_mode & S_IFDIR) {
1089 inode->i_mode |= S_IFDIR;
1090 inode->i_op = &ux_dir_inops;
1091 inode->i_fop = &ux_dir_operations;
1092 } else if (di->i_mode & S_IFREG) {

Developing a Filesystem for the Linux Kernel 399

1093 inode->i_mode |= S_IFREG;
1094 inode->i_op = &ux_file_inops;
1095 inode->i_fop = &ux_file_operations;
1096 inode->i_mapping->a_ops = &ux_aops;
1097 }
1098 inode->i_uid = di->i_uid;
1099 inode->i_gid = di->i_gid;
1100 inode->i_nlink = di->i_nlink;
1101 inode->i_size = di->i_size;
1102 inode->i_blocks = di->i_blocks;
1103 inode->i_blksize = UX_BSIZE;
1104 inode->i_atime = di->i_atime;
1105 inode->i_mtime = di->i_mtime;
1106 inode->i_ctime = di->i_ctime;
1107 memcpy(&inode->i_private, di, sizeof(struct ux_inode));
1108 brelse(bh);
1109 }
1110
1111 /*
1112 * This function is called to write a dirty inode to disk.
1113 */
1114
1115 void
1116 ux_write_inode(struct inode *inode, int unused)
1117 {
1118 unsigned long ino = inode->i_ino;
1119 struct ux_inode *uip = (struct ux_inode *)
1120 &inode->i_private;
1121 struct buffer_head *bh;
1122 __u32 blk;
1123
1124 if (ino < UX_ROOT_INO || ino > UX_MAXFILES) {
1125 printk("uxfs: Bad inode number %lu\n", ino);
1126 return;
1127 }
1128 blk = UX_INODE_BLOCK + ino;
1129 bh = sb_bread(inode->i_sb, blk);
1130 uip->i_mode = inode->i_mode;
1131 uip->i_nlink = inode->i_nlink;
1132 uip->i_atime = inode->i_atime;
1133 uip->i_mtime = inode->i_mtime;
1134 uip->i_ctime = inode->i_ctime;
1135 uip->i_uid = inode->i_uid;
1136 uip->i_gid = inode->i_gid;
1137 uip->i_size = inode->i_size;
1138 memcpy(bh->b_data, uip, sizeof(struct ux_inode));
1139 mark_buffer_dirty(bh);
1140 brelse(bh);
1141 }
1142
1143 /*
1144 * This function gets called when the link count goes to zero.
1145 */
1146
1147 void

400 UNIX Filesystems—Evolution, Design, and Implementation

1148 ux_delete_inode(struct inode *inode)
1149 {
1150 unsigned long inum = inode->i_ino;
1151 struct ux_inode *uip = (struct ux_inode *)
1152 &inode->i_private;
1153 struct super_block *sb = inode->i_sb;
1154 struct ux_fs *fs = (struct ux_fs *)
1155 sb->s_private;
1156 struct ux_superblock *usb = fs->u_sb;
1157 int i;
1158
1159 usb->s_nbfree += uip->i_blocks;
1160 for (i=0 ; i < uip->i_blocks ; i++) {
1161 usb->s_block[uip->i_addr[i]] = UX_BLOCK_FREE;
1162 uip->i_addr[i] = UX_BLOCK_FREE;
1163 }
1164 usb->s_inode[inum] = UX_INODE_FREE;
1165 usb->s_nifree++;
1166 sb->s_dirt = 1;
1167 clear_inode(inode);
1168 }
1169
1170 /*
1171 * This function is called when the filesystem is being
1172 * unmounted. We free the ux_fs structure allocated during
1173 * ux_read_super() and free the superblock buffer_head.
1174 */
1175
1176 void
1177 ux_put_super(struct super_block *s)
1178 {
1179 struct ux_fs *fs = (struct ux_fs *)s->s_private;
1180 struct buffer_head *bh = fs->u_sbh;
1181
1182 /*
1183 * Free the ux_fs structure allocated by ux_read_super
1184 */
1185
1186 kfree(fs);
1187 brelse(bh);
1188 }
1189
1190 /*
1191 * This function will be called by the df command.
1192 */
1193
1194 int
1195 ux_statfs(struct super_block *sb, struct statfs *buf)
1196 {
1197 struct ux_fs *fs = (struct ux_fs *)sb->s_private;
1198 struct ux_superblock *usb = fs->u_sb;
1199
1200 buf->f_type = UX_MAGIC;
1201 buf->f_bsize = UX_BSIZE;
1202 buf->f_blocks = UX_MAXBLOCKS;

Developing a Filesystem for the Linux Kernel 401

1203 buf->f_bfree = usb->s_nbfree;
1204 buf->f_bavail = usb->s_nbfree;
1205 buf->f_files = UX_MAXFILES;
1206 buf->f_ffree = usb->s_nifree;
1207 buf->f_fsid.val[0] = kdev_t_to_nr(sb->s_dev);
1208 buf->f_namelen = UX_NAMELEN;
1209 return 0;
1210 }
1211
1212 /*
1213 * This function is called to write the superblock to disk. We
1214 * simply mark it dirty and then set the s_dirt field of the
1215 * in-core superblock to 0 to prevent further unnecessary calls.
1216 */
1217
1218 void
1219 ux_write_super(struct super_block *sb)
1220 {
1221 struct ux_fs *fs = (struct ux_fs *)
1222 sb->s_private;
1223 struct buffer_head *bh = fs->u_sbh;
1224
1225 if (!(sb->s_flags & MS_RDONLY)) {
1226 mark_buffer_dirty(bh);
1227 }
1228 sb->s_dirt = 0;
1229 }
1230
1231 struct super_operations uxfs_sops = {
1232 read_inode: ux_read_inode,
1233 write_inode: ux_write_inode,
1234 delete_inode: ux_delete_inode,
1235 put_super: ux_put_super,
1236 write_super: ux_write_super,
1237 statfs: ux_statfs,
1238 };
1239
1240 struct super_block *
1241 ux_read_super(struct super_block *s, void *data, int silent)
1242 {
1243 struct ux_superblock *usb;
1244 struct ux_fs *fs;
1245 struct buffer_head *bh;
1246 struct inode *inode;
1247 kdev_t dev;
1248
1249 dev = s->s_dev;
1250 set_blocksize(dev, UX_BSIZE);
1251 s->s_blocksize = UX_BSIZE;
1252 s->s_blocksize_bits = UX_BSIZE_BITS;
1253
1254 bh = sb_bread(s, 0);
1255 if(!bh) {
1256 goto out;
1257 }

402 UNIX Filesystems—Evolution, Design, and Implementation

1258 usb = (struct ux_superblock *)bh->b_data;
1259 if (usb->s_magic != UX_MAGIC) {
1260 if (!silent)
1261 printk("Unable to find uxfs filesystem\n");
1262 goto out;
1263 }
1264 if (usb->s_mod == UX_FSDIRTY) {
1265 printk("Filesystem is not clean. Write and "
1266 "run fsck!\n");
1267 goto out;
1268 }
1269
1270 /*
1271 * We should really mark the superblock to
1272 * be dirty and write it back to disk.
1273 */
1274
1275 fs = (struct ux_fs *)kmalloc(sizeof(struct ux_fs),
1276 GFP_KERNEL);
1277 fs->u_sb = usb;
1278 fs->u_sbh = bh;
1279 s->s_private = fs;
1280
1281 s->s_magic = UX_MAGIC;
1282 s->s_op = &uxfs_sops;
1283
1284 inode = iget(s, UX_ROOT_INO);
1285 if (!inode) {
1286 goto out;
1287 }
1288 s->s_root = d_alloc_root(inode);
1289 if (!s->s_root) {
1290 iput(inode);
1291 goto out;
1292 }
1293
1294 if (!(s->s_flags & MS_RDONLY)) {
1295 mark_buffer_dirty(bh);
1296 s->s_dirt = 1;
1297 }
1298 return s;
1299
1300 out:
1301 return NULL;
1302 }
1303
1304 static DECLARE_FSTYPE_DEV(uxfs_fs_type, "uxfs", ux_read_super);
1305
1306 static int __init init_uxfs_fs(void)
1307 {
1308 return register_filesystem(&uxfs_fs_type);
1309 }
1310
1311 static void __exit exit_uxfs_fs(void)
1312 {

Developing a Filesystem for the Linux Kernel 403

1313 unregister_filesystem(&uxfs_fs_type);
1314 }
1315
1316 module_init(init_uxfs_fs)
1317 module_exit(exit_uxfs_fs)

Suggested Exercises

Because the filesystem presents only a basic set of operations, there are several
things that can be added to increase functionality. There are also several bugs that
exist in the filesystem as it stands that could be fixed. This section contains
numerous different exercises that readers can follow either to simply experiment
with the filesystem as is or to add additional capabilities.

Simply playing with the filesystem, compiling kernels, and using one of the
kernel level debuggers is a significant amount of work in itself. Don’t
underestimate the amount of time that it can take to achieve these tasks. However,
the amount of Linux support information on the World Wide Web is extremely
good, so it is usually reasonably easy to find answers to most Linux-related
questions.

Beginning to Intermediate Exercises
The exercises in this section can be made to the existing filesystem without
changing the underlying disk layout. Some of these exercises involve careful
anaysis and some level of testing.

1. What is significant about the uxfs magic number?

2. As a simple way of analyzing the filesystem when running, the silent
argument to ux_read_super() can be used to enable debugging. Add
some calls to printk() to the filesystem, which are only activated when the
silent option is specified. The first step is to determine under what
conditions the silent flag is set. The ux_read_super() function provides
one example of how silent is used.

3. There are several functions that have not been implemented, such as
symbolic links. Look at the various operations vectors and determine which
file operations will not work. For each of these functions, locate the place in
the kernel where the functions would be called from.

4. For the majority of the operations on the filesystem, various timestamps are
not updated. By comparing uxfs with one of the other Linux filesystems—for
example ext2—identify those areas where the timestamp updates are
missing and implement changes to the filesystem to provide these updates.

5. When the filesystem is mounted, the superblock field s_mod should be set to
UX_FSDIRTY and the superblock should be written back to disk. There is
already code within ux_read_super() to handle and reject a dirty
filesystem. Add this additional feature, but be warned that there is a bug in

404 UNIX Filesystems—Evolution, Design, and Implementation

ux_read_super() that must be fixed for this feature to work correctly.
Add an option to fsdb to mark the superblock dirty to help test this
example.

6. Locate the Loopback Filesystem HOWTO on the World Wide Web and use
this to build a device on which a uxfs filesystem can be made.

7. There are places in the filesystem where inodes and buffers are not released
correctly. When performing some operations and then unmounting the
filesystem, warnings will be displayed by the kernel.

Advanced Exercises
The following exercises require more modification to the filesystem and require
either substantial modification to the command and/or kernel source:

1. If the system crashes the filesystem could be left in an unstable state.
Implement a fsck command that can both detect and repair any such
inconsistencies. One method of testing a version of fsck is to modify fsdb
to actually break the filesystem. Study operations such as directory creation
to see how many I/O operations constitute creating the directory. By
simulating a subset of these I/O, the filesystem can be left in a state which is
not structurally intact.

2. Introduce the concept of indirect, double indirect, and triple indirects. Allow
6 direct blocks, 2 indirect blocks, and 1 triple indirect block to be referenced
directly from the inode. What size file does this allow?

3. If the module panics, the kernel is typically able to detect that the uxfs
module is at fault and allows the kernel to continue running. If a uxfs
filesystem is already mounted, the module is unable to unload because the
filesystem is busy. Look at ways in which the filesystem could be
unmounted allowing the module to be unloaded.

4. The uxfs filesystem would not work at all well in an SMP environment. By
analyzing other Linux filesystems, suggest improvements that could be
made to allow uxfs to work in an SMP system. Suggest methods by which
coarse grain as well as fine grain locks could be employed.

5. Removing a directory entry leaves a gap within the directory structure.
Write a user-level program that enters the filesystem and reorganizes the
directory so that unused space is removed. What mechanisms can be used
to enter the filesystem?

6. Modify the filesystem to use bitmaps for both inodes and data blocks.
Ensure that the bitmaps and blockmaps are separate from the actual
superblock. This will involve substantial modifications to both the existing
disk layout and in-core structures used to manage filesystem resource.

7. Allow the user to specify the filesystem block size and also the size of the
filesystem. This will involve changing the on-disk layout.

TEAMFL
Y

TEAM FLY ®

Developing a Filesystem for the Linux Kernel 405

8. Study the NFS Linux kernel code and other filesystems to see how NFS file
handles are constructed. To avoid invalid file handles due to files being
removed and the inode number being reused, filesystems typically employ
use of a generation count. Implement this feature in uxfs.

Summary

As the example filesystem here shows, even with the most minimal set of features
and limited operations, and although the source code base is small, there are still a
lot of kernel concepts to grasp in order to understand how the filesystem works.
Understanding which operations need to be supported and the order in which
they occur is a difficult task. For those wishing to write a new filesystem for
Linux, the initial learning curve can be overcome by taking a simple filesystem
and instrumenting it with printk() calls to see which functions are invoked in
response to certain user-level operations and in what order.

The uxfs filesystem, although very limited in its abilities, is a simple filesystem
from which to learn. Hopefully, the examples shown here provide enough
information on which to experiment.

I would of course welcome feedback so that I can update any of the material on
the Web site where the source code is based:

www.wiley.com/compbooks/pate

so that I can ensure that it is up-to-date with respect to newer Linux kernels and
has more detailed instructions or maybe better information than what is
presented here to make it easier for people to experiment and learn. Please send
feedback to spate@veritas.com.

Happy hacking!

407

Glossary

Because this is not a general book about operating system principles, there are
many OS-related terms described throughout the book that do not have full,
descriptive definitions. This chapter provides a glossary of these terms and
filesystem-related terms.

/proc. The process filesystem, also called the /proc filesystem, is a pseudo
filesystem that displays to the user a hierarchical view of the processes
running on the machine. There is a directory in the filesystem per user
process with a whole host of information about each process. The /proc
filesystem also provides the means to both trace running processes and
debug another process.

ACL. Access Control Lists, or more commonly known as ACLs, provide an
additional level of security on top of the traditional UNIX security model.
An ACL is a list of users who are allowed access to a file along with the type
of access that they are allowed.

address space. There are two main uses of the term address space. It can be
used to refer to the addresses that a user process can access—this is where
the user instructions, data, stack, libraries, and mapped files would reside.
One user address space is protected from another user through use of

408 UNIX Filesystems—Evolution, Design, and Implementation

hardware mechanisms. The other use for the term is to describe the
instructions, data, and stack areas of the kernel. There is typically only one
kernel address space that is protected from user processes.

AFS. The Andrew File System (AFS) is a distributed filesystem developed at
CMU as part of the Andrew Project. The goal of AFS was to create a
uniform, distributed namespace that spans multiple campuses.

aggregate. UNIX filesystems occupy a disk slice, partition, or logical volume.
Inside the filesystem is a hierarchical namespace that exports a single root
filesystem that is mountable. In the DFS local filesystem component, each
disk slice comprises an aggregate of filesets, each with their own
hierarchical namespace and each exporting a root directory. Each fileset can
be mounted separately, and in DFS, filesets can be migrated from one
aggregate to another.

AIX. This is the version of UNIX distributed by IBM.
allocation unit. An allocation unit, to be found in the VxFS filesystem, is a

subset of the overall storage within the filesystem. In older VxFS
filesystems, the filesystem was divided into a number of fixed-size
allocation units, each with its own set of inodes and data blocks.

anonymous memory. Pages of memory are typically backed by an underlying
file in the filesystem. For example, pages of memory used for program code
are backed by an executable file from which the kernel can satisfy a page
fault by reading the page of data from the file. Process data such as the data
segment or the stack do not have backing stored within the filesystem. Such
data is backed by anonymous memory that in turn is backed by storage on
the swap device.

asynchronous I/O. When a user process performs a read() or write()
system call, the process blocks until the data is read from disk into the user
buffer or written to either disk or the system page or buffer cache. With
asynchronous I/O, the request to perform I/O is simply queued and the
kernel returns to the user process. The process can make a call to determine
the status of the I/O at a later stage or receive an asynchronous notification.
For applications that perform a huge amount of I/O, asynchronous I/O can
leave the application to perform other tasks rather than waiting for I/O.

automounter. In many environments it is unnecessary to always NFS mount
filesystems. The automounter provides a means to automatically mount an
NFS filesystem when a request is made to open a file that would reside in
the remote filesystem.

bdevsw. This structure has been present in UNIX since day one and is used to
access block-based device drivers. The major number of the driver, as
displayed by running ls -l, is used to index this array.

bdflush. Many writes to regular files that go through the buffer cache are not
written immediately to disk to optimize performance. When the filesystem
is finished writing data to the buffer cache buffer, it releases the buffer

Glossary 409

allowing it to be used by other processes if required. This leaves a large
number of dirty (modified) buffers in the buffer cache. A kernel daemon or
thread called bdflush runs periodically and flushes dirty buffers to disk
freeing space in the buffer cache and helping to provide better data integrity
by not caching modified data for too long a period.

block device. Devices in UNIX can be either block or character referring to
method through which I/O takes place. For block devices, such as a hard
disk, data is transferred in fixed-size blocks, which are typically a minimum
of 512 bytes.

block group. As with cylinder groups on UFS and allocations units on VxFS,
the ext2 filesystem divides the available space into block groups with each
block group managing a set of inodes and data blocks.

block map. Each inode in the filesystem has a number of associated blocks of
data either pointed to directly from the inode or from a indirect block. The
mapping between the inode and the data blocks is called the block map.

bmap. There are many places within the kernel and within filesystems
themselves where there is a need to translate a file offset into the
corresponding block on disk. The bmap() function is used to achieve this.
On some UNIX kernels, the filesystem exports a bmap interface that can be
used by the rest of the kernel, while on others, the operation is internal to the
filesystem.

BSD. The Berkeley Software Distribution is the name given to the version of
UNIX was distributed by the Computer Systems Research Group (CSRG) at
the University of Berkeley.

BSDI. Berkeley Software Design Inc. (BSDI) was a company established to
develop and distribute a fully supported, commercial version of BSD UNIX.

buffer cache. When the kernel reads data to and from block devices such as a
hard disk, it uses the buffer cache through which blocks of data can be
cached for subsequent access. Traditionally, regular file data has been cached
in the buffer cache. In SVR4-based versions of UNIX and some other kernels,
the buffer cache is only used to cache filesystem meta-data such as directory
blocks and inodes.

buffered I/O. File I/O typically travels between the user buffer and disk
through a set of kernel buffers whether the buffer cache or the page cache.
Access to data that has been accessed recently will involve reading the data
from the cache without having to go to disk. This type of I/O is buffered as
opposed to direct I/O where the I/O transfer goes directly between the user
buffer and the blocks on disk.

cache coherency. Caches can be employed at a number of different levels
within a computer system. When multiple caches are provided, such as in a
distributed filesystem environment, the designers must make a choice as to
how to ensure that data is consistent across these different caches. In an
environment where a write invalidates data covered by the write in all other

410 UNIX Filesystems—Evolution, Design, and Implementation

caches, this is a form of strong coherency. Through the use of distributed
locks, one can ensure that applications never see stale data in any of the
caches.

caching advisory. Some applications may wish to have control over how I/O
is performed. Some filesystems export this capability to applications which
can select the type of I/O being performed, which allows the filesystem to
optimize the I/O paths. For example, an application may choose between
sequential, direct, or random I/Os.

cdevsw. This structure has been present in UNIX since day one and is used to
access character-based device drivers. The major number of the driver, as
displayed by running ls -l, is used to index this array.

Chorus. The Chorus microkernel, developed by Chorus Systems, was a
popular microkernel in the 1980s and 1990s and was used as the base of a
number of different ports of UNIX.

clustered filesystem. A clustered filesystem is a collection of filesystems
running on different machines, which presents a unified view of a single,
underlying filesystem to the user. The machines within the cluster work
together to recover from events such as machine failures.

context switch. A term used in multitasking operating systems. The kernel
implements a separate context for each process. Because processes are time
sliced or may go to sleep waiting for resources, the kernel switches context
to another runnable process.

copy on write. Filesystem-related features such as memory-mapped files
operate on a single copy of the data wherever possible. If multiple processes
are reading from a mapping simultaneously, there is no need to have
multiple copies of the same data. However, when files are memory mapped
for write access, a copy will be made of the data (typically at the page level)
when one of the processes wishes to modify the data. Copy-on-write
techniques are used throughout the kernel.

crash. The crash program is a tool that can be used to analyze a dump of the
kernel following a system crash. It provides a rich set of routines for
examining various kernel structures.

CSRG. The Computer Systems Research Group, the group within the University
of Berkeley that was responsible for producing the BSD versions of UNIX.

current working directory. Each user process has two associated directories,
the root directory and the current working directory. Both are used when
performing pathname resolution. Pathnames which start with ’/’ such as
/etc/passwd are resolved from the root directory while a pathname such
as bin/myls starts from the current working directory.

cylinder group. The UFS filesystem divides the filesystem into fixed-sized
units called cylinder groups. Each cylinder group manages a set of inodes
and data blocks. At the time UFS was created cylinder groups actually
mapped to physical cylinders on disk.

Glossary 411

data synchronous write. A call to the write() system call typically does not
write the data to disk before the system call returns to the user. The data is
written to either a buffer cache buffer or a page in the page cache. Updates to
the inode timestamps are also typically delayed. This behavior differs from
one filesystem to the next and is also dependent on the type of write;
extending writes or writes over a hole (in a sparse file) may involve writing
the inode updates to disk while overwrites (writes to an already allocated
block) will typically be delayed. To force the I/O to disk regardless of the
type of write being performed, the user can specify the O_SYNC option to the
open() system call. There are times however, especially in the case of
overwrites, where the caller may not wish to incur the extra inode write just
to update the timestamps. In this case, the O_DSYNC option may be passed to
open() in which the data will be written synchronously to disk but the
inode update may be delayed.

dcache. The Linux directory cache, or dcache for short, is a cache of pathname
to inode structures, which can be used to decrease the time that it takes to
perform pathname lookups, which can be very expensive. The entry in the
dcache is described by the dentry structure. If a dentry exists, there will
always be a corresponding, valid inode.

DCE. The Distributed Computing Environment was the name given to the OSF
consortium established to create a new distributed computing environment
based on contributions from a number of OSF members. Within the DCE
framework was the Distributed File Service, which offered a distributed
filesystem.

delayed write. When a process writes to a regular file, the actual data may not
be written to disk before the write returns. The data may be simply copied to
either the buffer cache or page cache. The transfer to disk is delayed until
either the buffer cache daemon runs and writes the data to disk, the pageout
daemon requires a page of modified data to be written to disk, or the user
requests that the data be flushed to disk either directly or through closing the
file.

dentry. An entry in the Linux directory name lookup cache structure is called a
dentry, the same name as the structure used to define the entry.

DFS. The Distributed File Service (DFS) was part of the OSF DCE program and
provided a distributed filesystem based on the Andrew filesystem but
adding more features.

direct I/O. Reads and writes typically go through the kernel buffer cache or
page cache. This involves two copies. In the case of a read, the data is read
from disk into a kernel buffer and then from the kernel buffer into the user
buffer. Because the data is cached in the kernel, this can have a dramatic
effect on performance for subsequent reads. However, in some
circumstances, the application may not wish to access the same data again.
In this case, the I/O can take place directly between the user buffer and disk
and thus eliminate an unnecessary copy in this case.

412 UNIX Filesystems—Evolution, Design, and Implementation

discovered direct I/O. The VERITAS filesystem, VxFS, detects I/O patterns
that it determines would be best managed by direct I/O rather than
buffered I/O. This type of I/O is called discovered direct I/O and it is not
directly under the control of the user process.

DMAPI. The Data Management Interfaces Group (DMIG) was established in
1993 to produce a specification that allowed Hierarchical Storage
Management applications to run without repeatedly modifying the kernel
and/or filesystem. The resulting Data Management API (DMAPI) was the
result of that work and has been adopted by the X/Open group.

DNLC. The Directory Name Lookup Cache (DNLC) was first introduced with
BSD UNIX to provide a cache of name to inode/vnode pairs that can
substantially reduce the amount of time spent in pathname resolution.
Without such a cache, resolving each component of a pathname involves
calling the filesystem, which may involve more than one I/O operation.

ext2. The ext2 filesystem is the most popular Linux filesystem. It resembles
UFS in its disk layout and the methods by which space is managed in the
filesystem.

ext3. The ext3 filesystem is an extension of ext2 that supports journaling.

extended attributes. Each file in the filesystem has a number of fixed attributes
that are interpreted by the filesystem. This includes, amongst other things,
the file permissions, size, and timestamps. Some filesystems support
additional, user-accessible file attributes in which application-specific data
can be stored. The filesystem may also use extended attributes for its own
use. For example, VxFS uses the extended attribute space of a file to store
ACLs.

extent. In the traditional UNIX filesystems data blocks are typically allocated
to a file is fixed-sized units equal to the filesystem block size. Extent-based
filesystems such as VxFS can allocate a variable number of contiguous data
blocks to a file in place of the fixed-size data block. This can greatly improve
performance by keeping data blocks sequential on disk and also by
reducing the number of indirects.

extent map. See block map.
FFS. The Fast File System (FFS) was the name originally chosen by the

Berkeley team for developing their new filesystem as a replacement to the
traditional filesystem that was part of the research editions of UNIX. Most
people know this filesystem as UFS.

file descriptor. A file descriptor is an opaque descriptor returned to the user in
response to the open() system call. It must be used in subsequent
operations when accessing the file. Within the kernel, the file descriptor is
nothing more than an index into an array that references an entry in the
system file table.

Glossary 413

file handle. When opening a file across NFS, the server returns a file handle, an
opaque object, for the client to subsequently access the file. The file handle
must be capable of being used across a server reboot and therefore must
contain information that the filesystem can always use to access a file. The
file handle is comprised of filesystem and non filesystem information. For
the filesystem specific information, a filesystem ID, inode number, and
generation count are typically used.

fileset. Traditional UNIX filesystems provide a single hierarchical namespace
with a single root directory. This is the namespace that becomes visible to the
user when the filesystem is mounted. Introduced with the Episode
filesystem by Transarc as part of DFS and supported by other filesystems
since including VxFS, the filesystem is comprised of multiple, disjoint
namespaces called filesets. Each fileset can be mounted separately.

file stream. The standard I/O library provides a rich number of file-access
related functions that are built around the FILE structure, which holds the
file descriptor in additional to a data buffer. The file stream is the name given
to the object through which this type of file access occurs.

filesystem block size. Although filesystems and files can vary in size, the
amount of space given to a file through a single allocation in traditional
UNIX filesystems is in terms of fixed-size data blocks. The size of such a data
block is governed by the filesystem block size. For example, if the filesystem
block size is 1024 bytes and a process issues a 4KB write, four 1KB separate
blocks will be allocated to the file. Note that for many filesystems the block
size can be chosen when the filesystem is first created.

file table. Also called the system file table or even the system-wide file table, all
file descriptors reference entries in the file table. Each file table entry,
typically defined by a file structure, references either an inode or vnode.
There may be multiple file descriptors referencing the same file table entry.
This can occur through operations such as dup(). The file structure holds
the current read/write pointer.

forced unmount. Attempting to unmount a filesystem will result in an EBUSY
if there are still open files in the filesystem. In clustering environments where
different nodes in the cluster can access shared storage, failure of one or
more resources on a node may require a failover to another node in the
cluster. One task that is needed is to unmount the filesystem on the failing
node and remount it on another node. The failing node needs a method to
forcibly unmount the filesystem.

FreeBSD. Stemming from the official BSD releases distributed by the
University of Berkeley, the FreeBSD project was established in the early
1990s to provide a version of BSD UNIX that was free of USL source code
licenses or any other licensing obligations.

414 UNIX Filesystems—Evolution, Design, and Implementation

frozen image. A frozen image is a term used to describe filesystem snapshots
where a consistent image is taken of the filesystem in order to perform a
reliable backup. Frozen images, or snapshots, can be either persistent or non
persistent.

fsck. In a non journaling filesystem, some operations such as a file rename
involve changing several pieces of filesystem meta-data. If a machine
crashes while part way through such an operation, the filesystem is left in
an inconsistent state. Before the filesystem can be mounted again, a
filesystem-specific program called fsck must be run to repair any
inconsistencies found. Running fsck can take a considerable amount of
time if there is a large amount of filesystem meta-data. Note that the time to
run fsck is typically a measure of the number of files in the filesystem and
not typically related to the actual size of the filesystem.

fsdb. Many UNIX filesystems are distributed with a debugger which can be
used to both analyze the on-disk structures and repair any inconsistencies
found. Note though, that use of such a tool requires intimate knowledge of
how the various filesystem structures are laid out on disk and without
careful use, the filesystem can be damaged beyond repair if a great deal of
care is not taken.

FSS. An acronym for the File System Switch, a framework introduced in SVR3
that allows multiple different filesystems to coexist within the same kernel.

generation count. One of the components that is typically part of an NFS file
handle is the inode number of the file. Because inodes are recycled when a
file is removed and a new file is allocated, there is a possibility that a file
handle obtained from the deleted file may reference the new file. To prevent
this from occurring inodes have been modified to include a generation
count that is modified each time the inode is recycled.

gigabyte. A gigabyte (GB) is 1024 megabytes (MB).
gnode. In the AIX kernel, the in-core inode includes a gnode structure. This is

used to reference a segment control block that is used to manage a 256MB
cache backing the file. All data access to the file is through the per-file
segment cache.

hard link. A file’s link count is the number of references to a file. When the
link count reaches zero, the file is removed. A file can be referenced by
multiple names in the namespace even though there is a single on-disk
inode. Such a link is called a hard link.

hierarchical storage management. Once a filesystem runs out of data blocks
an error is returned to the caller the next time an allocation occurs. HSM
applications provide the means by which file data blocks can be migrated to
tape without knowledge of the user. This frees up space in the filesystem
while the file that had been data migrated retains the same file size and
other attributes. An attempt to access a file that has been migrated results in

TEAMFL
Y

TEAM FLY ®

Glossary 415

a call to the HSM application, which can then migrate that data back in from
tape allowing the application to access the file.

HP-UX. This is the version of UNIX that is distributed by Hewlett Packard.
HSM. See hierarchical storage management.

indirect data block. File data blocks are accessed through the inode either
directly (direct data blocks) or by referencing a block that contains pointers
to the data blocks. Such blocks are called indirect data blocks. The inode has
a limited number of pointers to data blocks. By the use of indirect data
blocks, the size of the file can be increased dramatically.

init. The first process that is started by the UNIX kernel. It is the parent of all
other processes. The UNIX operating system runs at a specific init state.
When moving through the init states during bootstrap, filesystems are
mounted.

inittab. The file that controls the different activities at each init state.
Different rc scripts are run at the different init levels. On most versions of
UNIX, filesystem activity starts at init level 2.

inode. An inode is a data structure that is used to describe a particular file. It
includes information such as the file type, owner, timestamps, and block
map. An in-core inode is used on many different versions of UNIX to
represent the file in the kernel once opened.

intent log. Journaling filesystems employ an intent log through which
transactions are written. If the system crashes, the filesystem can perform log
replay whereby transactions specifying filesystem changes are replayed to
bring the filesystem to a consistent state.

journaling. Because many filesystem operations need to perform more than
one I/O to complete a filesystem operation, if the system crashes in the
middle of an operation, the filesystem could be left in an inconsistent state.
This requires the fsck program to be run to repair any such inconsistencies.
By employing journaling techniques, the filesystem writes transactional
information to a log on disk such that the operations can be replayed in the
event of a system crash.

kernel mode/space. The kernel executes in a privileged hardware mode which
allows it access to specific machine instructions that are not accessible by
normal user processes. The kernel data structures are protected from user
processes which run in their own protected address spaces.

kilobyte. 1024 bytes.

Linux. A UNIX-like operating system developed by a Finnish college research
assistant named Linus Torvalds. The source to the Linux kernel is freely
available under the auspices of the GNU public license. Linux is mainly used
on desktops, workstations, and the lower-end server market.

Mach. The Mach microkernel was developed at Carnegie Mellon University
(CMU) and was used as the basis for the Open Software Foundation (OSF).
Mach is also being used for the GNU Hurd kernel.

416 UNIX Filesystems—Evolution, Design, and Implementation

mandatory locking. Mandatory locking can be enabled on a file if the set
group ID bit is switched on and the group execute bit is switched off—a
combination that together does not otherwise make any sense. Mandatory
locking is seldom used.

megabyte. 1024 * 1024 kilobytes.
memory-mapped files. In addition to using the read() and write() system,

calls, the mmap() system call allows the process to map the file into its
address space. The file data can then be accessed by reading from and
writing to the process address space. Mappings can be either private or
shared.

microkernel. A microkernel is a set of services provided by a minimal kernel
on which additional operating system services can be built. Various versions
of UNIX, including SVR3, SVR4, and BSD have been ported to Mach and
Chorus, the two most popular microkernels.

Minix. Developed by Andrew Tanenbaum to teach operating system
principles, the Minix kernel source was published in his book on operating
systems. A version 7 UNIX clone from the system call perspective, the Minix
kernel was very different to UNIX. Minix was the inspiration for Linux.

mkfs. The command used to make a UNIX filesystem. In most versions of
UNIX, there is a generic mkfs command and filesystem-specific mkfs
commands that enable filesystems to export different features that can be
implemented, in part, when the filesystem is made.

mount table. The mount table is a file in the UNIX namespace that records all
of the filesystems that have been mounted. It is typically located in /etc
and records the device on which the filesystem resides, the mountpoint, and
any options that were passed to the mount command.

MULTICS. The MULTICS operating system was a joint project between Bell
Labs, GE, and MIT. The goal was to develop a multitasking operating
system. Before completion, Bell Labs withdrew from the project and went
on to develop the UNIX operating system. Many of the ideas from
MULTICS found their way into UNIX.

mutex. A mutex is a binary semaphore that can be used to serialize access to
data structures. Only one thread can hold the mutex at any one time. Other
threads that attempt to hold the mutex will sleep until the owner
relinquishes the mutex.

NetBSD. Frustrated with the way that development of 386/BSD was
progressing, others started working on a parallel development path, taking
a combination of 386BSD and Net/2 and porting it to a large array of other
platforms and architectures.

NFS. The Network File System, a distributed filesystem technology originally
developed by Sun Microsystems. The specification for NFS was open to the
public in the form of an RFC (request for comments) document. NFS has
been adopted by many UNIX and non-UNIX vendors.

Glossary 417

OpenServer. SCO OpenServer is the name of the SVR3-based version of UNIX
distributed by SCO. This was previously known as SCO Open Desktop.

OSF. The Open Software Foundation was formed to bring together a number of
technologies offered by academic and commercial interests. The resulting
specification, the distributed computing environment (DCE), was backed by
the OSF/1 operating system. The kernel for OSF/1 was based on the Mach
microkernel and BSD. OSF and X/Open merged to become the Open Group.

page cache. Older UNIX systems employ a buffer cache, a fixed-size cache of
data through which user and filesystem data can be read from or written to.
In newer versions of UNIX and Linux, the buffer cache is mainly used for
filesystem meta-data such as inodes and indirect data blocks. The kernel
provides a page-cache where file data is cached on a page-by-page basis. The
cache is not fixed size. When pages of data are not immediately needed, they
are placed on the free page list but still retain their identity. If the same data
is required before the page is reused, the file data can be accessed without
going to disk.

page fault. Most modern microprocessors provide support for virtual memory
allowing large address spaces despite there being a limited amount of
physical memory. For example, on the Intel x86 architecture, each user
process can map 4GB of virtual memory. The different user address spaces
are set to map virtual addresses to physical memory but are only used when
required. For example, when accessing program instructions, each time an
instruction on a different page of memory is accessed, a page-fault occurs.
The kernel is required to allocate a physical page of memory and map it to
the user virtual page. Into the physical page, the data must be read from disk
or initialized according to the type of data being stored in memory.

page I/O. Each buffer in the traditional buffer cache in UNIX referenced an area
of the kernel address space in which the buffer data could be stored. This
area was typically fixed in size. With the move towards page cache systems,
this required the I/O subsystem to perform I/O on a page-by-page basis and
sometimes the need to perform I/O on multiple pages with a single request.
This resulted in a large number of changes to filesystems, the buffer cache,
and the I/O subsystem.

pageout daemon. Similar to the buffer cache bdflush daemon, the pageout
daemon is responsible for keeping a specific number of pages free. As an
example, on SVR4-based kernels, there are two variables, freemem and
lotsfree that are measured in terms of free pages. Whenever freemem
goes below lotsfree, the pageout daemon runs and is required to locate
and free pages. For pages that have not been modified, it can easily reclaim
them. For pages that have been modified, they must be written to disk before
being reclaimed. This involves calling the filesystem putpage() vnode
operation.

pathname resolution. Whenever a process accesses a file or directory by name,
the kernel must be able to resolve the pathname requested down to the base

418 UNIX Filesystems—Evolution, Design, and Implementation

filename. For example, a request to access /home/spate/bin/myls will
involve parsing the pathname and looking up each component in turn,
starting at home, until it gets to myls. Pathname resolution is often
performed one component at a time and may involve calling multiple
different filesystem types to help.

Posix. The portable operating system standards group (Posix) was formed by a
number of different UNIX vendors in order to standardize the
programmatic interfaces that each of them were presenting. Over several
years, this effort led to multiple different standards. The Posix.1 standard,
which defines the base system call and library routines, has been adopted by
all UNIX vendors and many non-UNIX vendors.

proc structure. The proc is one of two main data structures that has been
traditionally used in UNIX to describe a user process. The proc structure
remains in memory at all times. It describes many aspects of the process
including user and group IDs, the process address space, and various
statistics about the running process.

process. A process is the execution environment of a program. Each time a
program is run from the command line or a process issues a fork() system
call, a new process is created. As an example, typing ls at the command
prompt results in the shell calling fork(). In the new process created, the
exec() system call is then invoked to run the ls program.

pseudo filesystem. A pseudo filesystem is one which does not have any
physical backing store (on disk). Such filesystems provide useful
information to the user or system but do not have any information that is
persistent across a system reboot. The /proc filesystem, which presents
information about running processes, is an example of a pseudo filesystem.

quick I/O. The quick I/O feature offered by VERITAS allows files in a VxFS
filesystem to appear as raw devices to the user. It also relaxes the locking
semantics associated with regular files, so there can be multiple readers and
multiple writers at the same time. Quick I/O allows databases to run on the
filesystem with raw I/O performance but with all the manageability
features provided by the filesystem.

quicklog. The VxFS intent log, through which transactions are first written, is
created on the same device that the filesystem is created. The quicklog
feature allows intent logs from different filesystems to be placed on a
separate device. By not having the intent log on the same device as the
filesystem, there is a reduction in disk head movement. This can improve
the performance of VxFS

quotas. There are two main types of quotas, user and group, although group
quotas are not supported by all versions of UNIX. A quota is a limit on the
number of files and data blocks that a user or group can allocate. Once the
soft limit is exceeded, the user or group has a grace period in which to
remove files to get back under the quota limit. Once the grace period

Glossary 419

expires, the user or group can no longer allocate any other files. A hard limit
cannot be exceeded under any circumstances.

RAM disk. A RAM disk, as the name implies, is an area of main memory that is
used to simulate a disk device. On top of a RAM disk, a filesystem can be
made and files copied to and from it. RAM disks are used in two main areas.
First, they can be used for temporary filesystem space. Because no disk I/Os
are performed, the performance of the system can be improved (of course the
extra memory used can equally degrade performance). The second main use
of RAM disks is for kernel bootstrap. When the kernel loads, it can access a
number of critical programs from the RAM disk prior to the root filesystem
being mounted. An example of a critical program is fsck, which may be
needed to repair the root filesystem.

raw disk device. The raw disk device, also known as a character device, is one
view of the disk storage. Unlike the block device, through which fixed-sized
blocks of data can be read or written, I/O can be performed to or from the
raw device in any size units.

RFS. At the time that Sun was developing NFS, UNIX System Laboratories,
who distributed System V UNIX, was developing its own distributed
filesystem technology. The Remote File Sharing (RFS) option was a
cache-coherent, distributed filesystem that offered full UNIX semantics.
Although technically a better filesystem in some areas, RFS lacked the
cross-platform capabilities of NFS and was available only to those who
purchased a UNIX license, unlike the open NFS specification.

root directory. Each user process has two associated directories, the root
directory and the current working directory. Both are used when performing
pathname resolution. Pathnames that start with ’/’ such as /etc/passwd
are resolved from the root directory while a pathname such as bin/myls
starts from the current working directory.

root filesystem. The root filesystem is mounted first by the kernel during
bootstrap. Although it is possible for everything to reside in the root
filesystem, there are typically several more filesystems mounted at various
points on top of the root filesystem. By separate filesystems, it is easier to
increase the size of the filesystem. It is not possible to increase the size of
most root filesystems.

San Point Foundation Suite. The name given to the VERITAS clustered
filesystem (FS) and all the clustering infrastructure that is needed to support
a clustered filesystem. VERITAS CFS is part of the VERITAS filesystem,
VxFS.

SCO. The Santa Cruz Operation (SCO) was the dominant supplier of UNIX to
Intel-based PCs and servers. Starting with Xenix, SCO moved to SVR3 and
then SVR4 following their acquisition of USL. The SCO UNIX technology
was purchased by Caldera in 2001 and SCO changed its name to Tarantella
to develop application technology.

420 UNIX Filesystems—Evolution, Design, and Implementation

Single UNIX Specification. Although standards such as Posix and the various
X/Open specifications went a long way to improve application
compatibility between different versions of UNIX, each UNIX vendor still
implemented different commands, libraries, and system calls. In the early
1990s, a group of companies formed to produce a standard that
encompassed Posix, X/Open, and the various additional interfaces. There
were initially 1,170 APIs in total, and thus the name originally given to the
consortium. The completed specification became known as UNIX95 and has
been since superseded by UNIX98.

SMP. Symmetric Multi-Processor (SMP) machines are single-node machines
with more than one CPU running concurrently and sharing the same
memory. There is a single instance of the kernel running across all of the
processors. To the user, the machine appears no different from a
uniprocessor machine.

snapshot. A snapshot, also called a frozen image, is a replica of a filesystem.
The snapshot looks exactly like the filesystem from which the snapshot was
taken. Snapshots can be used to create a stable backup of the filesystem
rather than trying to back up a filesystem that is constantly changing.

Solaris. This is the version of UNIX that is distributed by Sun Microsystems. It
was derived from SVR4 but has undergone substantial modifications
throughout the 1990s.

sparse files. A sparse file is a file that may contain one or more holes. Files are
typically backed by data blocks covering the entire range of the file.
However, a hole is an area of the file for which there are no data blocks.
Users reading across a hole will see a series of zeroes. If a process writes to
the file over an area covered by a hole, data blocks will be allocated.

Spec 11/70. See Single UNIX Specification.
specfs. The specfs filesystem, introduced with SVR4, is a filesystem that

presents devices to the user. To prevent all filesystems having to handle I/O
to devices, whenever they see a device in the namespace, they call specfs to
return a handle to the device. All I/O will then pass through specfs before
going to the device. Inode modifications and calls such as stat() will still
be passed to the filesystem on which the device node resides.

spin lock. When a process holds a resource such as a buffer cache buffer,
another process that wants the same buffer will typically sleep. Because the
buffer may be in use for I/O, it could be quite some time before the buffer is
freed. Some operations that require the use of locks are for only very short
durations, for example, adding an entry to a linked list. Because this
operation takes only a few instructions, it does not make sense to make
another process that wishes to access the list go to sleep. In this case, the list
is protected by a spin lock. The waiting process literally spins around a loop
waiting until the lock is released.

Glossary 421

standard I/O library. The standard I/O library offers a rich set of functions
built on top of the basic file-related system calls such as read() and
write(). For processes that are accessing small amounts of data at a time
and wish to perform a number of string-related functions on the data, the
standard I/O library is more likely to be a better fit to the application.

storage checkpoint. The VERITAS filesystem, VxFS, supports both non
persistent and persistent snapshots. Storage checkpoints are persistent
snapshots. They survive across a system reboot and are always guaranteed
to be structurally intact because all operations to checkpoints are tied in with
the VxFS journaling mechanisms. There can be multiple checkpoints for each
filesystem, and each can be mounted independently. Storage checkpoints
reside in the same device as the filesystem.

strategy function. Each device driver exports a number of functions that are
used by filesystems and the rest of the kernel. For block devices, the main
entry point into the driver is through an exported strategy interface.
Requests for I/O are made through the strategy interface, which is an
asynchronous interface. If the caller wishes to wait for the data, it must then
make an additional call to block until the I/O is complete.

SunOS. The name given to the Sun version of UNIX prior to Solaris. SunOS
was based on BSD UNIX and ran on all Sun workstations and servers up to
the early 1990s.

superblock. Each filesystem records basic information about the structure of
the filesystem in a superblock. The superblock is always stored in a
well-known location on disk so that the filesystem is easily able to find it
when the filesystem is to be mounted.

SVID. The set of system calls, library functions, and commands supported by
System V UNIX, was documented in the System V Interface Definition
(SVID). The last SVID produced was for SVR4.

SVRx. The organizations responsible for the commercial side of UNIX at the
Bell Telephone company named their versions of UNIX System V. There
were four releases of System V UNIX ending in SVR4 in the late 1980s. The
SVR4 technology, at the time SVR4.2MP, was purchased by SCO who carried
on development until Caldera bought the technology in the late 1990s.

SVVS. System V UNIX was licensed to several different companies. In order
for these companies to use the name “System V” in their own product name,
they were required to pass the System V Verification Suite (SVVS).

swap space. The amount of physical memory (RAM) is limited in just about all
machines. Because this memory is shared between all applications and the
UNIX kernel, an area of disk is used as an extension of physical memory.
This area is called the swap space, and there may be multiple different swap
spaces in the same system. The UNIX kernel employs daemons or kernel
threads, which are responsible for ensuring that there is always a set of free

422 UNIX Filesystems—Evolution, Design, and Implementation

pages of memory at any one time. Older pages are selected for paging and
are written to the swap device to free up physical memory. Tables must be
kept in memory to record the location of such pages on the swap device.

symbolic link. A symbolic link is a file whose contents are simply a string of
characters. This string of characters references another filename. Because the
file type is recorded as a symbolic link, also called a symlink, the kernel can
use the pathname recorded in the symlink to continue pathname resolution.
The resulting name returned will be the file to which the symlink points.

synchronous write. A call to the write() system call typically does not write
the data to disk before the system call returns to the user. The data is written
to either a buffer in the buffer cache or a page in the page cache. Updates to
the inode timestamps are also typically delayed. This behavior differs from
one filesystem to the next and is also dependent on the type of write;
extending writes or writes over a hole (in a sparse file) may involve writing
the inode updates to disk while overwrites (writes to an already allocated
block) will typically be delayed. To force the I/O to disk regardless of the
type of write being performed, the user can specify the O_SYNC option to
the open() system call.

system call. A system call is a special library function that transfers control
from user space to the kernel in which to perform a specific operation. The
user does not need to typically distinguish between a system call and any
other library function that UNIX provides unless performance is of
importance, in which case a trade-off between performance and
operating-supplied functionality may need to be made.

terabyte. A terabyte (TB) is 1024 gigabytes (GB).

thread. Traditional UNIX systems operate around the concept of a process.
Although the process is still the running instance of a user program, modern
UNIX kernels support the notion of threads. Each user process may have
more than one thread of control, each executing within the same address
space, able to access the same data and instructions but running on separate
stacks. With the introduction of SMP-based architectures it is possible for
the threads to be running concurrently and sharing the process resources.
This is often a better solution than having the same tasks performed via
separate processes. Within the kernel, there are also likely to be multiple
threads running concurrently.

tmpfs. The tmpfs filesystem, provided by Sun Microsystems, is a
memory-based filesystem that can be used to provide better performance
for applications using temporary files.

True64 UNIX. The 64-bit version of UNIX provided by Digital, now
HP/Compaq.

UFS. The UFS filesystem, formerly known as the BSD fast filesystem, is the
most widely ported of all UNIX filesystems. Developed to replace the old

Glossary 423

UNIX filesystem that was part of the UNIX editions, UFS offered
considerably greater performance.

Unix International (UI). Centered around System V UNIX, a number of
vendors formed UI, largely in competition to OSF. The goal was to
standardize around SVR4 and derivatives. The group was disbanded in the
early 1990s.

UnixWare. The version of SVR4-based UNIX produced by Novell. See USL.

UP. Uni-Processor (UP) machines have a single processor. Also see SMP.
user area. In addition to the proc structure, there is a user structure, also

called the user area or uarea, for each running process in UNIX. The user
area contains file-related information such as the root and current working
directories, and the mapping between file descriptors and the file table.

user mode/space. Each user process runs in its own address space protected
from other user processes. There are, however, hardware services that are not
accessible in user mode and therefore involve a transition to kernel mode to
access. An example would be to access special instructions to initiate a
hardware operation.

USG. See USL.

USL. The group that started the commercial side of UNIX at Bell Labs went
through several different names including the UNIX Systems Group (UGS)
and UNIX System Laboratories (USL). This group produced the versions of
UNIX up to SVR4. After being acquired by Novell, they went on to produce
the UnixWare operating system.

vectored reads/writes. Each time a process issues a read() or write()
system call, a single I/O can be performed. The readv() and writev()
system calls allow multiple I/Os to be performed in a single system call. In
addition to cutting down on system call overhead, it may allow for two or
more of the I/Os to be coalesced.

VFS. The Virtual File System (VFS) architecture was the name given to the new
filesystem architecture introduced by Sun Microsystems for supporting
multiple filesystem types including their new networked filesystem (NFS).
Linux has since used the term VFS to refer to their filesystem architecture.

vfstab / fstab. These files, whose names differ between the UNIX variants, hold
the filesystems that are to be mounted when the system boots.

VFS-ops. The Sun VFS/vnode interface introduced a set of operations that
were applicable to filesystems. Each filesystem must export its own VFS
operations that are called by the filesystem-independent layer of the kernel.

vnode. Older UNIX systems used an inode as the structure for representing
files both on-disk and in memory. The memory-based inode was often
referred to as the in-core inode. With the introduction of the Sun VFS
architecture, the in-core inode was replaced with a vnode structure. Albeit a
small change, this lead to less confusion all-round.

424 UNIX Filesystems—Evolution, Design, and Implementation

vnode ops. Whenever the kernel performs a lookup operation to retrieve a file
in the filesystem, the vnode is instantiated with a vector of operations that is
applicable to the file type. These operations, such as read and write, allow
the kernel to call into the filesystem.

VTOC. The Volume Table Of Contents (VTOC) is a label written at the start of
the disk to describe the different slices on the disk, where they start, and
how many sectors they hold.

VxFS. A journaling filesystem from VERITAS, VxFS is the most successful of
the commercially available UNIX filesystems.

VxVM. The VERITAS logical volume manager, VxVM, has been ported to
almost all versions of UNIX and Windows NT.

XDR. The eXternal Data Representation is a standard that describes how to
represent data types and structures in a machine-independent manner. XDR
is used when sending NFS requests and responses over the wire from one
machine to another.

Xenix. The version of UNIX developed by both Microsoft and the Santa Cruz
Operation (SCO). Xenix was used for Intel-based machines.

X/Open. The X/Open company was established in the U.K. to standardize
programmatic interfaces across multiple operating systems. The resulting
XPG (X/Open Portability Guide) was originally based on Posix.1.

TEAMFL
Y

TEAM FLY ®

425

References

[ARMA92] Armand, F. and Dean, R. (1992). “Data Movement in Kernelized
Systems.” Proceedings of the Summer 1992 USENIX
Conference, pages 238–247.

[BACH86] Bach, M. (1986). The Design of the UNIX Operating System.
Englewood Cliffs, NJ: Prentice-Hall.

[BAR01] Bar, M. (2001). Linux File Systems. Berkeley, CA:
Osborne/McGraw-Hill.

[BAR02] Barker, R., and Massiglia, P. (2002). Storage Area Networking
Essentials. New York: John Wiley & Sons.

[BATL92] Batlivala, N., Gleeson, B., Hamrick, J., Lurndal, S., Price, D.,
Soddy, J., and Abrossimov, V. (1992). “Experience with SVR4
over Chorus.” Proceedings of the USENIX Workshop on
Microkernels & Other Kernel Architectures, April 1992.

[BECK96] Beck, M., Bohme, H., Dziadzka, M., Kunitz, U., Magnus, R., and
Verworner, D. (1996). Linux Kernel Internals. Reading,
Massachusetts: Addison-Wesley.

[CALL00] Callaghan, B. (2000). NFS Illustrated. Reading, Massachusetts:
Addison-Wesley.

[CALL93] Callaghan, B., and Sing, S. (1993). “The Autofs Automounter.”
Proceedings of the USENIX Summer 1993 Technical
Conference, Cincinnati, Ohio June 21–25, 1993.

426 UNIX Filesystems—Evolution, Design and Implementation

[DMIG97] CAE Specification Systems Management: Data Storage Management
(XDSM) API. X/Open Document Number: C429 ISBN:
1-85912-190-X

[FAUL91] Faulkner R., and Gomes R. (1991). “The Process File System and
Process Model in UNIX System V.” Proceedings of the
USENIX Association Winter Conference, Dallas, TX, January
1991.

[GALL95] Gallmeister, B. (1995). Posix.4 : Programming for the Real World.
Sebastopol, CA: O'Reilly.

[GING87] Gingell, R. A., Moran, J. P., and Shannon, W. A. (1987). “Virtual
Memory Architecture in SunOS.” Proceedings of the USENIX
1987 Summer Conference, pages 81–94.

[GOOD94] Goodheart, B. and Cox, J. (1994). The Magic Garden Explained: The
Internals of System V Release 4, An Open Systems Design.
Sydney, Australia: Prentice-Hall.

[HANC01] Hancock, S. (2001). True64 UNIX Filesystem Administration
Handbook. Woburn, MA: Digital Press.

[HAWL75] Hawley, J. and Meyer, W. (1975). MUNIX, a Multiprocessing
version of UNIX. Monterey, California: Naval Postgraduate
School.

[HEND90] Hendricks, D. (1990). “A File System for Software
Development.” Proceedings of the Summer 1990 USENIX
Technical Conference, June 1990, pages 333–340.

[KARE86] Karels, M. and McKusick, M. (1986). “Toward a Compatible
Filesystem Interface.” Conference of the European Users'
Group, September 1986.

[KELL96] Kelly, D. (1996). AIX/6000 Internals and Architecture. New York,
NY: McGraw-Hill.

[KERN78] Kernighan, B. and Ritchie, D. (1978). The C Programming
Language. Englewood Cliffs, NJ: Prentice-Hall.

[KILL84] Killian, T. J. (1988). “Processes as Files.” Proc. Summer 1984
USENIX Conference, pages 203–207.

[KLEI86] Kleiman, S. (1986). “Vnodes: An Architecture for Multiple File
System Types in Sun Unix.” Proceedings of the Summer 1986
USENIX Conference, pages 238–247.

[LEFF89] Leffler, S., McKusick, M., Karels, M., and Quarterman, J. (1989).
4.3BSD UNIX Operating System. Reading, Massachusetts:
Addison Wesley.

[LION96] Lions, J. (1996). Lions' Commentary on UNIX 6th Edition. San Jose,
CA: Peer-to-Peer Communications.

[MAUR01] Mauro, J. and McDougall, R. (2001). Solaris Internals—Core Kernel
Architecture. Palo Alto, CA: Prentice Hall.

[MCKU84] McKusick, M.K., Joy, W., Leffler, S., and Fabry, R. (1984). “A Fast
File System for UNIX.” Communications of the ACM, August
1984, pages 181–197.

References 427

[MCKU90] McKusick, M.K., Karels, M.K., and Bostic, K. (1990). “A Pageable
Memory Based Filesystem.” Proceedings of the Summer 1990
USENIX Technical Conference, June 1990.

[MORR86] Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H.,
Rosenthal, D.S.H., and Smith, F.D. (1986). “Andrew: A
Distributed Personal Computing Environment.”
Communications of the ACM, Volume 29, No. 3, March 1986.

[NADK92] Nadkarni, A.V. (1992). “The Processor File System in UNIX
SVR4.2.” Proceedings of the 1992 USENIX Workshop on File
Systems, May 1992, pages 131–132.

[PATE96] Pate, S. D. (1996). UNIX Internals—A Practical Approach. Reading,
Massachusetts: Addison Wesley.

[PAWL94] Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., and
Hitz, D. (1994). “NFS Version 3 Design and Implementation.”
Proceedings of the Summer 1994 Summer USENIX
Conference, June 1994, pages 137–151.

[RANA02] Ranade, D. M. (2002). Shared Data Clusters. New York: John Wiley
& Sons.

[RFC1014] Sun Microsystems, Inc., External Data Representation Specification.
RFC-11014. Menlo Park, CA: DDN Network Information
Center, SRI International.

[RFC1057] Sun Microsystems, Inc. Remote Procedure Call Specification.
RFC-11057. Menlo Park, CA: DDN Network Information
Center, SRI International.

[RFC1094] Sun Microsystems, Inc. Network Filesystem Specification.
RFC-11094. Menlo Park, CA: DDN Network Information
Center, SRI International.

[RFC1813] Sun Microsystems, Inc. NFS Version 3 Protocol Specification,
RFC-1813. Menlo Park, CA: DDN Network Information
Center, SRI International.

[RFC2203] Eisler, M., Chiu, A., and Ling, L. RPCSEC_GSS Protocol
Specification, RFC-2203, August 1995.

[RFC3010] IETF Network Working Group. NFS Version 4 Protocol
Specification. RFC-3010.

[RIFK86] Rifkin, A.P., Forbes, M.P., Hamilton, R.L., Sabrio, M., Shah, S., and
Yueh, K. (1986). “RFS Architectural Overview.” Proceedings of
the Summer 1986 USENIX Technical Conference, June 1986,
pages 248-259.

[RITC74] Ritchie, D. and Thompson, K. (1974). “The UNIX Timesharing
System.” Communications of the ACM, July 1974, pages
365-375.

[ROSE86] Rosen, M. B., Wilde, M. J., and Fraser-Campbell, B. (1986). “NFS
Portability.” Proceedings of the Summer 1986 USENIX
Technical Conference, Atlanta, GA, pages 299–305.

428 UNIX Filesystems—Evolution, Design and Implementation

[SALU96] Salus, P. (1996). A Quarter Century of UNIX. Reading,
Massachusetts: Addison Wesley.

[SAND85] Sandberg, R., Goldeberg, D., Kleiman, S., Walsh, D., and Lyon, B.
(1985). “Design and Implementation of the Sun Network
Filesystem.” Proceedings of the Summer 1985 USENIX
Conference, Berkeley, CA.

[SCHI93] Schildt, H. (1993). The Annotated ANSI C Standard. Berkeley, CA:
Osborne McGraw-Hill.

[SCHI94] Schimmel, C. (1994). UNIX Systems for Modern Architectures,
Reading, Massachusetts: Addison-Wesley.

[SNYD90] Snyder, P. (1990). “tmpfs: A Virtual Memory File System.” (1990).
Proceedings of the Autumn 1990 European UNIX Users’
Group Conference, October 1990, pages 241–248.

[STEV92] Stevens, R. (1992). Advanced Programming in the UNIX
Environment. Englewood Cliffs, NJ: Prentice Hall.

[TANE87] Tanenbaum, A. (1987). Operating Systems: Design and
Implementation. Englewood Cliffs, NJ: Prentice Hall.

[TWEE98] Tweedie, S. (1998). “Journaling the Linux ext2fs filesystem.”
Linux Expo, 1998.

[VAHA96] Vahalia, U. (1996). UNIX Internals—The New Frontiers.
Englewood Cliffs, NJ: Prentice Hall.

[WAIT87] Waite, M. (1987). UNIX Papers for UNIX Developers and Power
Users. Indianapolis, IN: Howard W. Sams & Company.

[WEBB93] Webber, N. (1993). “Operating System Support for Portable
Filesystem Extensions.” USENIX Conference Proceedings,
Winter, 1993, pages 219-225.

[WIRZ95] Wirzenius, L. (1995). The Linux System Administrators Guide,
version 0.3, August 6th, 1995. Public Domain.

Index

/dev/fd, 263
/proc filesystem, 249

contents, 251
implementation, 250
ps example, 253
ps implementation, 250
ptrace system call, 249
Solaris version of, 250
tracing and debugging, 253

/system/processor, 262
/usr/group, 11

absolute pathname, 30
pathname resolution, 116

Access Control Lists (ACLs), 10
address space

SVR4 VM abstractions, 143
AdvFS filesystem, 324
AFS, 303

architecture, 303
cache manager, 304
cells, 303
client callback, 305
client-side caching, 304
design goals, 303
future of, 305
volume cloning, 304

volume location database, 304
AIX, 2–3, 245

filesystem architecture, 161
ioctls, 45
pageable kernel, 161
virtual memory management, 162

Alliant, 238
Andrew File System

See AFS
anonymous memory, 146, 261
Apollo Computing, 237
asynchronous I/O, 54

development of, 10
AT&T, 2, 7–8, 250, 300
AT&T Information Systems, 6
autofs filesystem, 300
automounter, 298

autofs filesystem, 300
problems, 300

backup, 265
block-level incremental, 279
incremental, 280

BCPL, 4
bdevsw array, 112
bdflush daemon, 135
Bell Labs, 1–7

429

430 Index

Berkeley Fast File System, 7
See Also UFS

Berkeley Software Design Incorporat-
ed (BSDI), 8
BESYS, 3
block device files, 32
block devices, 90
block map, 125
block special file, 106, 128
bmap function

in BSD, 157
research UNIX, 119
VxFS storage checkpoints, 276

Bourne, Steve, 5
BSD, 1–3, 11

1BSD, 7
386/BSD, 8
3BSD, 7, 155
3BSD and UFS, 213
4.1BSD, 5, 7–8, 156
4.2BSD, 2, 7
4.2BSD DNLC, 140
4.3BSD, 2, 5, 8
4.3BSD file caching, 157
4.3BSD file I/O, 156
4.3BSD Reno, 160
4.3BSD-Reno, 8
4.3BSD-Tahoe, 8
4.4BSD, 2
4.4BSD Lite, 2
4.4BSD-Lite, 8–9
4BSD, 7
BSD4.0 and UFS, 213
filesystem architecture, 155
FreeBSD, 9
history, 7
memory filesystem

see MFS filesystem
Net/2, 8
NetBSD, 9
Networking Releases, 8
OpenBSD, 9
Unofficial 386BSD Patchkit, 9

buf structure
See buffer cache

buffer cache, 90, 112, 121
bread function, 241
brelse function, 115
BSD UNIX, 157
buf structure, 119
buf structure and device I/O, 112
buffer flags, 114
bwrite function, 115
HP-UX, 164
Linux

brelse function, 174
getblk function, 174

Linux 2.4 buffer_head structure,
178

original bread function, 114
original buf structure, 113
original bwrite function, 114
original getblk function, 114
page I/O, 153
read ahead, 114
synchronization, 238, 240
True64 UNIX, 160

buffer_head structure, 173

C Language
history, 4

Caldera, 3, 10–11, 121
Callaghan, Brent, 324
cat command

implementation, 37–39
cdevsw array, 112
CFS

agents, 314
applications, 322

off-host backup, 322
Oracle RAC, 322
serial data sharing, 322
web farms, 322

buffer cache, 320
cache coherency, 321
cluster group membership, 317
cluster management, 309
components, 309
design goals, 307
DNLC and inode cache, 321

Index 431

failover, 308
global lock manager, 313
hardware configuration, 313
hardware required, 309
lock management, 313
low latency transport, 316
management, 309
mounting filesystems, 319
primary / secondary model, 318
reconfiguration, 321
scalability, 309
software components, 314
transaction models, 312

character device files, 32
character special file, 106, 128
chattr command, 225
chmod command, 24–26
Chorus microkernel, 180

file mapper, 183
inode pager, 186
kernel architecture, 182, 185
process abstractions, 181
reading files, 183
reading from files, 185
UNIX emulation, 185
UNIX server, 185
writing to files, 184, 186

closei function, 120
cluster volume management, 310
clustered filesystems, 285

See Also CFS
clustered volume manager, 311
Compaq/HP True64 Cluster, 324
Computer Systems Research Group
(CSRG), 7
context switch, 108, 115
Convex, 238
cp command implementation, 62
cpio command, 265
crash, 111, 256

analyzing VM segments, 143
finding vnodes, 138

cred structure, 130
critical section, 239
CTSS, 4

current working directory, 30, 109, 117
in Linux, 168

CVM, 317
cylinder groups, 213
DARPA, 7
Data Management Interfaces Group,
282

See Also DMIG
Dataless checkpoints, 280
dcache

2.4 kernels, 174
dcache_add function, 173
dcache_lookup function, 173
dentry structure, 174, 175
dir_cache_entry structure, 172
negative entries, 355
pre-2.4 Linux, 172

DCE DFS, 197–198, 285
dd command

implementation, 39–40
de Raadt, Theo, 9
debugfs command, 229
demand paging, 125
dentry structure, 174
device drivers

strategy function, 153
df command

implementation, 102
DFS, 305

architecture, 306
backup database server, 306
cache management, 306
design goals, 305
file server, 306
fileset aggregates, 306
fileset location database, 306
filesets, 306
future of, 307
local filesystem support, 306
RPC mechanisms, 305
system control server, 306
token manager, 307

dfstab file, 292
Digital UNIX, 159
directories, 18, 30

432 Index

definition of, 18
relevant system calls, 31

Directory Name Lookup Cache
See DNLC

disk slices, 88
Distributed File Service

See DFS
distributed filesystems, 285
DMAPI, 212

in VxFS, 212
DMIG, 11, 14, 282
DNLC, 121, 156

functions exported by, 141
in HP-UX, 164
ncache structure, 141
softhold, 157
SVR4 implementation, 140

double indirect block, 107
dump command, 268
dumpe2fs command, 229
Dynix, 288

e2fsck program, 232
Encore, 238
errno

kernel error handling, 109
ext2 filesystem, 224

block groups, 226
debugfs command, 229
disk layout, 226
dumpe2fs, 229
e2fsck program, 232
ext2_inode structure, 231
features, 225
history, 224
resize2fs command, 234
resizing of, 234
tune2fs command, 233
tuning, 233

ext3 filesystem, 224, 234
checkpointing, 236
compound transactions, 236
creating and converting, 234
data integrity models, 235
descriptor blocks, 235

design goals, 234
evolution, 237
header blocks, 236
journal blocks, 235

Fabry, Bob, 7
Fast File System, 10, 122, 127, 156

See Also Berkeley Fast File System
Faulkner, Roger, 250
fclose library function, 75
fdopen library function, 77
fflush library function, 78
fibre channel, 309
FIFO filesystem, 263
file

access time, 107
access times, 28–29
advisory locking, 47, 51

definition, 47
close on exec, 52
data and attribute caching, 42
effective group ID, 27
effective user ID, 27
file mode creation mask, 23
group ID, 23, 26
holes, 66
link count, 20
locking, 46–47

fcntl, 47
flock, 47
flock structure, 48
lockf, 47

mandatory locking, 51
definition, 47

modification time, 28
owner ID, 23
ownership, 26
permissions, 24
record locking, 47–48
sparse files, 66
stream, 37
times, 28
timestamps, 43
truncation and removal, 29
user ID, 26

file and record locking, 46

Index 433

file descriptor filesystem, 263
file descriptors, 20, 109–110, 112, 125

allocation, 119
dup system call, 40
inheriting, 37
kernel flags, 134
SVR4 management of, 133
ufchunk, 134

file I/O
asynchronous I/O, 54

aio_cancel, 57
aio_cancel definition, 56
aio_error definition, 56
aio_read, 55
aio_return definition, 55
aio_write definition, 55
aio_write example, 55
aiocb structure, 54
lio_listio definition, 57
lio_listio example, 58

data synchronous writes, 43
in HP-UX, 164
Linux 2.4 kernel, 179
memory mapped files, 59

flags, 62
mapping /dev/zero, 65
mapping types, 63
mmap definition, 59
mmap example, 60
mmap protections, 61
mprotect definition, 64
msync definition, 65
munmap definition, 64
pagesize issues, 60

readv example, 53
seeking and I/O combined, 41
synchronous writes, 43
user structure fields, 109
vectored reads and writes, 52

FILE structure
definition, 74

file structure, 111, 156, 241
in AIX, 161
in HP-UX, 164
in Linux, 169, 174

True64 UNIX, 160
File System Switch, 6, 121–123, 129, 157

architecture, 125
error handling, 123
filesystem type, 123
fstypsw structure, 123
function reference, 123
macro definition, 123
operations, 124
page fault handling, 125
SVR4 merge, 133
virtual memory, 125

file table, 110, 112, 119–120, 122, 125
file structure, 110
in AIX, 161

file_operations vector, 175, 180
filesystem

backup, 265
clean filesystem, 100
commands, 90

switchout commands, 91
creation of, 92
debugging with fsck, 101
definition of, 85
dirty filesystem, 100
hardening, 130
hierarchy, 85, 86
mount structure, 115
mounting, 115
mounting and unmounting, 94
root filesystem, 94
SVR4 VM interactions, 142
System V, 122, 125

original implementation, 106
transaction-based, 100

filops structure
in AIX, 161

filsys structure, 115
fmthard command, 88
fopen library function, 75
Free Software Foundation, 11–12
freopen library function, 77
frozen-image technology, 270
fscat command, 273
fsck, 100

434 Index

overview, 86
fsckptadm command, 278
fsdb command, 101
fseek library function, 82
fsflush daemon, 135
FSS

See File System Switch
fstab, 98
fstyp command, 91

implementation, 91

Gallmeister, Bill, 59
gdb

applying kernel patches, 338
hardware setup, 337
installing the new kernel, 339
module interactions, 340
obtaining kernel patches, 337
overview, 334

GECOS, 4
generic_file_read function, 180
generic_file_write function, 180
getc library function, 80
getmntent library function, 96
gnode structure, 161–162
GNU fileutils package, 34
GNU Hurd, 187
Gomes, Ron, 250
Grimes, Rod, 9
group ID, 106, 109, 123
group quotas, 194

Haley, Chuck, 7
Hancock, Steven, 160
hard link, 32, 106

definition of, 18
hardware priority levels, 239
header files

how to access, 36
hierarchical storage management, 11,
14, 212, 280
HP, 3, 9, 238

standards, 13
HP-UX, 2–3, 245

filesystem architecture, 163

Hubbard, Jordan, 9

IBM, 2, 3, 9, 11, 238
AIX architecture, 161
standards, 13

IEEE, 11
iget function, 140

in Linux, 172, 177, 355
research UNIX, 117

inactive handling, 133
indirect block, 107
init program, 99
inittab, 99
inode, 86, 106, 112, 117

BSD DNLC, 157
FSS reference to, 123
I/O options, 42
incore structure, 110
size, 112
structure, 112, 117
structure definitions, 106

inode cache, 112, 125, 140
in AIX, 161

inode_operations vector, 172, 175, 180
Inter Process Communication, 18
interleave factor, 215
interrupt handler, 239
interrupts, 239
iovec structure, 129
iowait function, 114
iput function, 120

research UNIX, 117

Jolitz, Bill, 8
Joy, Bill, 7, 9

kdb
applying kernel patches, 335
command overview, 336
obtaining source code, 335
overview, 334

Kelly, David, 161
kernel

5th to 7th edition internals, 105
concepts, 105

TEAMFL
Y

TEAM FLY ®

Index 435

kernel mode, 107
user mode, 107

Kernighan, Brian, 5
Killian, Tom, 249
Kleiman, Steve, 126

large file summit, 11, 14, 65
library functions, 35

definition of, 36
versus system calls, 36

light weight process, 251
link count

See file
Linux, 2, 3, 11, 245

2.4 buffer cache, 178
2.4 Directory Cache, 175
buffer cache

pre-2.4 kernels, 173
building the kernel, 331
closing files, 178
configuring the kernel, 330
debugging

using printk, 334
debugging support

See kdb and gdb, 334
directory cache

See dcache
downloading source code, 328
file structure, 169
file table, 169
file_operations vector, 170
filesystem architecture, 174–175
filesystem development, 325
fstab file, 98
history, 11
inode cache, 170
inode structure, 170
inode_operations, 171
installing modules, 332
installing the kernel, 332
kernel HOWTO, 330
kernel modules

See uxfs, 344
kernel source tree, 329
kupdate daemon, 351

modifying GRUB, 333
modifying LILO, 333
opening files, 177
page cache, 174, 179
pre-2.4 filesystem architecture, 168

Linux/Sistina Global Filesystem, 323
Lions, John, 5, 106, 238
ll_rw_block function, 174, 179
ln command, 33
locking

See file
logical block size, 125
logical volume managers, 89

mirrored volumes, 89
striped volumes, 89

lookupname function, 140
lsattr command, 225

Mach microkernel, 8, 159, 180
process abstractions, 181

major number, 112
managed region, 212
manual page references, 22
Mauro, Jim, 247
McDougall, Richard, 247
McKusick, Kirk, 156
McNeally, Scott, 9
memory mapped files

See Also file I/O
memory-mapped files, 10, 59
MFS filesystem, 258

architecture, 259
design goals, 258
performance of, 259

microkernels, 159, 180
concepts, 181
in the future, 186
IPC mechanisms, 181

Microsoft, 2, 5–6
Minix, 11

buffer cache, 167
file I/O, 167
filesystem architecture, 165
filesystem in Linux, 224
history, 166

436 Index

main file-related structures, 166
minor number, 112
mkfs command, 91–92
mknod command, 32
mnttab, 95

structure, 96
mount, 100

read-only, 125
SVR3, 123

mount command
implementation, 96

mount structure, 123
MS-DOS filesystem, 127
mtab file, 95
MULTICS, 4
MUNIX, 238
mutual exclusion, 244

named data streams, 297
named pipe, 33, 128

definition of, 18
named STREAMS, 263
namei function, 118, 130, 139–140, 158

BSD, 156
in BSD UNIX, 157
in Linux, 172
research UNIX, 117
True64 UNIX, 160

nameidata structure, 158
Network Information Service

See NIS
newfs command, 259
NFS, 2, 8, 9, 123, 127, 129–130, 285

asynchronous writes, 294
automounter, 298–299
background and history, 286
client / server communications,

288
client side caching, 297
design goals, 286
differences with RFS, 302
file handle, 293
file handle construction, 130
filesystem switch support, 125
first implementation, 287

general access mechanisms, 290
lock manager protocol, 294
mount protocol, 290
named data streams, 297
Sun RPC (Remote Procedure Call),

287
SVR4 file handle allocation, 135
version 1 and 2 protocols, 287
version 2 protocol messages, 289
version 3 design goals, 292
version 3 features, 293
version 3 protocol, 292
version 4 protocol, 295
XDR representation, 287
XDR specification, 289

NIS, 299
Noorda, Ray, 8
Novell, 2, 8, 10, 14

standards participation, 13

Open Group, 10, 14, 268
formation of, 13

Open Software Foundation, 13, 198
DFS, 305

open_namei function, 172
in Linux 2.4, 177

OpenServer, 2
Oracle buffer cache, 54
OSF

Distributed Computing Environ-
ment, 305

OSF/1, 159, 187

page cache, 121
SVR4 vnode fields, 136

Pate, Steve, 116
pathname resolution, 115, 117, 158

in Linux, 172
in Linux 2.4, 177
in research UNIX, 116
Pre-2.4 Linux, 172

pathname traversal, 123, 125, 128, 140
SVR4 implementation, 131, 139

pax command, 265
PDP 11/45, 7

Index 437

PDP-11, 4
PDP-7, 4
persistent snapshots, 274
point-in-time copies, 270
POSIX, 1, 11, 13, 15

history of, 11
proc structure, 109, 111, 241

Chorus microkernel, 182
fields of, 109
wait channels, 239

proc table, 111
process ID, 49
process priority, 239
processor filesystem, 262
procfs, 85
Programmer’s Work Bench, 6
Project Andrew, 303
prtvtoc command, 88
pseudo filesystems, 249
punch hole operation

in DMAPI, 212
putmntent library function, 96

Quicklog, 211
quotas, 103

grace period, 103
group, 103
hard limit, 103
soft limit, 103
user, 103

RAM disks, 258
Ranade, Dilip, 308, 324
raw devices, 90
rdwr function

research UNIX, 119
readi function

research UNIX, 119
Red Hat, 11
regular file, 106

definition of, 18
relative pathname, 30

pathname resolution, 116
Remote File Sharing

See RFS

repairing damaged filesystems, 100
resize2fs command, 234
restore command, 268
RFS, 123, 127, 285, 300

advertise procedure, 301
architecture, 301
client-side caching, 302
differences with NFS, 302
Filesystem switch support, 125
history of, 300
name server, 301
resource names, 301
RPC protocol, 301
use of TCP/IP, 301

RFS (Remote File Sharing), 6, 10
Ritchie, Dennis, 2, 4–5, 7
root directory, 86

in Linux, 168
pathname traversal, 131

root filesystem, 94, 99, 115–116, 125
mounting, 135

root inode, 125
Linux, 172

root vnode, 130
rootvfs, 131
rwip function

in BSD, 157

S01MOUNTFSYS, 99
Salus, Peter, 15
Santa Cruz Operation

See SCO
Schimmel, Curt, 247
SCO, 2–3, 6, 14, 122, 125, 140
seg structure, 143
segmap_getmap function, 147
segmap_release function, 148
segment control block

in AIX, 162
semaphores, 18
Sequent, 238, 288
set_blocksize function, 179, 346
setbuf library function, 78
setuid binaries, 27
setvbuf library function, 78

438 Index

SGI Clustered Filesystem, 323
shared libraries, 6
shared memory, 18
Single UNIX Specification, 1, 12–15,
41–42, 54, 62, 66, 73, 102, 268
sleep kernel function, 238–239, 241
SMP, 10, 237

coarse grain locks, 243
fine grain locks, 243
global kernel lock, 242
history and implementation, 242
lock types, 243

snapshots, 270
software priority levels, 239
Solaris, 1, 110, 121, 245, 249, 262

mounted filesystems, 88
vfstab file, 98

sparse files, 66
examples of, 67

Spec 11/70, 13
specfs filesystem, 137, 255

design goals, 255
snode, 255

special files, 31
definition of, 18

spl kernel functions, 240
Stallman, Richard, 11, 12
standard error, 37
standard I/O library, 73

buffering, 77
standard input, 37
standard output, 37
stat

See system calls
statfs library function, 103
statfs structure, 159
statvfs

library function, 102
structure, 101

stderr, 37, 110
definition, 74

stdin, 37, 110
definition, 74

stdio library, 73, 77
stdout, 37, 110

definition, 74
storage area networks, 309, 314
strace command, 29, 79
strategy function, 112
STREAMS, 2, 6, 10, 263

Chorus microkernel, 182
Sun Microsystems, 1, 3, 7, 125, 237–238,
250, 262, 300

Cluster Filesystem, 323
history of, 9
standards participation, 13
SVR4 development, 6
VFS/vnode development, 125

SunOS, 1, 9, 121, 126, 294
super_block structure, 172
super_operations vector, 172
superblock, 106, 115, 125

location on disk, 196
SuSe, 11
SVR4

anonymous memory, 146
kernel address space (kas), 149
memory mapped files, 149
page cache, 162
page cache overview, 143
page fault handling, 143
seg_dev, 146
seg_kmem, 146
segvn vnodes, 143
VFS architecture, 127
VM segment handlers, 143
VM subsystem, 143

SVR4.2, 10
SVR4.2MP, 10
swtch function, 238
symbolic link, 32, 128

definition of, 18
symmetric multiprocessing

See SMP
synchronization primitives

adaptive mutex, 244
binary semaphore, 244
condition variables, 244
mutex locks, 244
priority inversion, 244

Index 439

reader / writer locks, 244
semaphores, 244
sleep locks, 243–244
spin locks, 243
synchronization variable, 244

system calls, 116
access, 94
chdir, 31
chmod

permissions, 27
Chorus microkernel, 182
chown, 26
chroot, 31, 109
close, 38

research UNIX, 117, 120
creat, 23, 38, 40
definition of, 35
dup, 40–41, 110–112, 120
fchdir, 31
fchown, 26
fcntl, 47, 50–51

definition, 52
fstatvfs

definition, 101
ftruncate, 29
getcwd, 31, 300
getdents, 20, 22, 353
ioctl

definition of, 44
kernel entry, 116
lchown, 26
link, 32–33
lseek, 38–40
mkdir, 31
mknod, 32, 34
mount, 98
open, 23, 38

flags, 42
non-blocking I/O, 46
research UNIX, 117
research UNIX implementa-

tion, 118
pathconf, 291
pread, 41
pwrite, 41

read, 38
in AIX, 162
research UNIX, 117
research UNIX implementa-

tion, 119
readv, 53, 129

definition of, 53
research UNIX, 115
rmdir, 31
setegid, 27
seteuid, 27
setgid, 27
setrlimit, 134

True64 UNIX, 160
setuid, 27
stat, 19, 20, 23, 36, 101, 112

definition of, 20
structure, 28
structure definition, 21

statfs, 130
statvfs, 135

definition of, 101
symlink, 32, 33
truncate, 29
umount, 98
unlink, 29
user structure fields, 109
utime, 28–29
utimes, 28
versus library functions, 36
write, 38

in AIX, 162
research UNIX implementa-

tion, 119
writev, 129

definition of, 53
system library function, 98
system startup, 99
System V Interface Definition (SVID),
12

Tague, Berkley, 6
Tanenbaum, Andrew, 11, 165
tar command, 265

USTAR format, 266

440 Index

task_struct structure, 172
in Linux, 168

TCP/IP, 2
Thompson, Ken, 2, 4–5, 7
timeslice, 108
tmpfs filesystem, 85, 260

architecture, 260
design goals, 260
file access, 261

Torvalds, Linus, 2, 11
touch command, 24
Transarc, 305
translucent filesystem, 262
True64 filesystem architecture, 160
True64 UNIX

See Digital UNIX, 159
truss command, 29, 91
tune2fs command, 233
TurboLinux, 11

UDP, 287
UFS filesystem, 10, 85, 93, 100, 122, 156,
212

allocation policies, 215
block sizes, 214
creating new filesystems, 217
cylinder group, 196, 213, 215
database support, 220
design goals, 213
forcedirectio mount option, 219
fragments, 214
history of, 212
logging, 224
logging mount option, 220
mount options, 218
new features supported, 216
newfs command, 259
noatime mount option, 219
per-file attributes, 225
performance analysis, 216
selectable file semantics, 225
snapshots, 220

example of, 221
Solaris UFS mount options, 219
Sun enhancements, 217

ufs_write function
in BSD UNIX, 159

uio structure, 53, 129, 156
structure definition, 129

uiomove function, 148
Ultrix, 2
umask command, 24
Univel, 10
UNIX, 1

5th Edition, 110
6th Edition, 155
7th Edition, 155
8th Edition

/proc filesystem, 249
command history, 4
commands

ls implementation, 20
commercial side, 5
court battles, 8
downloading early versions, 106
history, 1
locking primitives, 238
number of versions, 3
portability, 5
Programmer’s Reference Manual,

5
reasons for success, 3
research editions, 5, 105
shell history, 5
standardization, 11
SVR2, 161
SVR2.2, 288
SVR4 ES/MP, 238, 243
SVR4.0 and locking, 238
SVR4.1, 10
SVR4.2MP, 2, 10
System III, 6
System V, 3, 122
System V Release, 6
System V Release 1–2
System V Release 2, 6, 12, 122
System V Release 2, 3, 5–6, 116
System V Release 3.0, 122
System V Release 3.2, 6, 9
System V Release 4, 9–10, 155

Index 441

System V Release 4.0, 2
System V Release 4.2, 2
UnixWare, 2, 196

UNIX 95
See Single UNIX Specification

UNIX International, 13–14
UNIX Support Group, 6
UNIX System Development Laborato-
ry (USDL), 6
UNIX System Development Labs, 2
UNIX System Group, 12
Unix System Laboratories, 2
UNIX Systems Group, 2, 5, 10
UNIX/370 MP UNIX, 238
UnixWare, 10

processor filesystem, 262
UP locking

pre-SVR4 locking, 241
UP locking primitives, 238
Usenix, 126
user area, 111, 122, 125

in AIX, 161
SVR4 pathname traversal, 132
True64 UNIX, 160

user ID, 106, 109, 123
user quotas, 194
user structure, 109, 111, 241

fields for system calls, 116
fields of, 109

USL, 8, 10, 122, 250
uxfs, 326

allocating inodes, 361
building the kernel, 341
creating new filesystems, 342
dcache interactions, 349
deleting inodes, 363
design goals, 326
directory management, 368
disk layout, 342
exercises, 403
file creation, 365
file I/O, 370
filesystem stat, 376
flushing inodes to disk, 362
flushing the superblock, 350

initialization on mount, 348
inode management, 359
installing and testing, 345
loadable modules, 344
memory-mapped files, 374
mounting and unmounting, 346
obtaining kernel source, 341
pathname resolution, 353
reading directory entries, 353
reading from files, 371
reading inodes from disk, 359
reading the root inode, 349
source code, 378
writing to files, 373

Vahalia, Uresh, 247
vattr structure, 130
Vax 11/70, 7
VERITAS

Cluster Server, 314
properties of, 315

Clustered Volume Manager, 314,
317

Global Lock Manager, 317
NetBackup, 280
SANPoint Foundation Suite, 313
Storage Migrator, 212, 280
VxFS

See Also VxFS
VxVM, 2, 10

VFS architecture
BSD implementation, 158
page I/O, 142
SVR4 vnode operations, 136
veneer layer, 132

VFS layer, 129
VFS operations, 127, 129
vfs structure, 128

in BSD UNIX, 159
in HP-UX, 164
pathname traversal, 131
SVR4 definition, 134

VFS+ specification, 305
VFS/vnode architecture, 9

development of, 121

442 Index

vfs_data, 129
vfs_root function, 131
vfssw array, 134
vfssw structure

definition of, 134
vfstab, 98, 102
vnode, 111

architecture in SunOS, 125
bmap function, 131
credentials, 130
device special file handling, 130
differences in BSD, 159
in BSD UNIX, 157
in HP-UX, 164
inactive, 131
reference count, 127
shared and exclusive locks, 136
SVR4 macro definition, 131
type of, 128
vfs_mountedhere, 132
vop_getpage, 149
vop_map, 149
vop_putpage, 149
vop_rwlock, 242
vop_rwunlock, 242

vnode operations, 127–128, 130
macro definitions, 137
vop_access, 130
vop_bread, 131
vop_close, 130
vop_create, 130
vop_getattr, 130
vop_getpage, 137
vop_lookup, 130
vop_map, 137
vop_open, 130
vop_putpage, 137
vop_rdwr, 130
vop_read, 136
vop_realvp, 137
vop_rwlock, 136
vop_rwunlock, 136
vop_setattr, 130
vop_strategy, 131
vop_write, 136

vnode structure, 129
introduction of, 127
original structure, 127
SVR4 differences, 135
True64 UNIX, 160

vnodeops structure, 130
vop_getpage function, 137
VTOC, 88
vxassist command, 271
VxFS, 2, 10, 85, 92, 94, 100–101, 103, 121,
153

allocation units, 196
blkclear mount option, 208
block size, 190
caching advisories, 43–46, 193
clone chain, 276
convosync mount option, 208
creating filesystems, 200
data synchronous I/O, 44, 193
database buffer cache, 210
database performance, 209
datafull checkpoints, 280
dataless checkpoints, 280
delaylog mode, 207
direct I/O, 44, 193
directory defragmentation, 206
discovered direct I/O, 194
disk layouts, 195
DMAPI support, 212
dynamic inode allocation, 201
error handling policies, 194

mount options, 195
extended operations, 197, 204
extent alignment, 192
extent allocation, 190
extent attributes, 191
extent preallocation, 192
extent reorganization, 206
extent reservation, 192–193
external log, 211
fileset header file, 198
filesets, 198
forced unmount, 201
fsadm command, 205
fscat command, 273

Index 443

fsckptadm command, 278
fsdb usage, 192
getpage / putpage locks, 246
history of, 189
inode allocation unit, 198
inode list file, 198
inode list lock, 246
inode lock, 246
inode reader/writer lock, 246
inode spin lock, 246
intent log, 196, 202
intent log replay, 204
journaling capabilities, 201
journaling sub functions, 203
label file, 198
log mode, 207
mapping to SMP primitives, 245
mincache mount option, 207
mount options, 206
noatime mount option, 43
nodatainlog mode, 207
object location table, 198
online administration, 204
online resize, 205
performance enhancements, 206
platform support, 189
primary fileset, 198
qiomkfile command, 211
Quick I/O, 209
QuickLog, 211
quota support, 104
random I/O, 44
sequential I/O, 44
setext command, 191, 192
snapshots, 270

implementation of, 274
performing a backup, 273

storage checkpoints, 275
datafull, 280
implementation of, 276
snapshot comparison, 275

structural fileset, 198
superblock, 198
tmplog mode, 207
transactions, 202

tunefstab file, 209
unbuffered I/O, 193
user and group quotas, 194
VX_SETCACHE ioctl, 193
VX_SETEXT ioctl, 191
vxdump command, 268
vxrestore command, 268
vxtunefs command, 209
writing data to the log, 207

VxVM, 89
cluster management, 311
online resize, 205
vxassist command, 271

wait channel, 239
wait_on_buffer function, 174
wakeup kernel function, 239, 241
Webber, Neil, 14
Williams, Nate, 9
writei function

research UNIX, 119

X/Open, 10, 12, 14, 282
and DMIG, 14
Portability Guide, 12
See Also Open Group
XPG3, 12
XPG4, 12–13

XDR, 287
Xenix, 2, 18, 128
Xenix special file

definition of, 18
Xia filesystem, 224

	Contents
	Foreword
	Introduction
	UNIX Evolution and Standardization
	A Brief Walk through Time
	How Many Versions of UNIX Are There?
	Why Is UNIX So Successful?
	The Early Days of UNIX
	The Early History of the C Language
	Research Editions of UNIX
	AT& T’s Commercial Side of UNIX

	The Evolution of BSD UNIX
	BSD Networking Releases
	UNIX Goes to Court
	The NetBSD Operating System
	The FreeBSD Operating System
	The OpenBSD Operating System

	Sun Microsystems and SunOS
	System V Release 4 and Variants
	Novell’s Entry into the UNIX Market
	Linux and the Open Source Movement
	UNIX Standardization
	IEEE and POSIX
	The X/ Open Group
	The System V Interface Definition
	Spec 11/ 70 and the Single UNIX Specification
	UNIX International and OSF
	The Data Management Interfaces Group
	The Large File Summit

	Summary

	File- Based Concepts
	UNIX File Types
	File Descriptors
	Basic File Properties
	The File Mode Creation Mask
	Changing File Permissions
	Changing File Ownership
	Changing File Times
	Truncating and Removing Files
	Directories
	Special Files
	Symbolic Links and Hard Links
	Named Pipes
	Summary

	User File I/ O
	Library Functions versus System Calls
	Which Header Files to Use?
	The Six Basic File Operations
	Duplicate File Descriptors
	Seeking and I/ O Combined
	Data and Attribute Caching
	VxFS Caching Advisories
	Miscellaneous Open Options

	File and Record Locking
	Advisory Locking
	Mandatory Locking

	File Control Operations
	Vectored Reads and Writes
	Asynchronous I/ O
	Memory Mapped Files
	64- Bit File Access (LFS)
	Sparse Files
	Summary

	The Standard I/ O Library
	The FILE Structure
	Standard Input, Output, and Error
	Opening and Closing a Stream
	Standard I/ O Library Buffering
	Reading and Writing to/ from a Stream
	Seeking through the Stream
	Summary

	Filesystem- Based Concepts
	What’s in a Filesystem?
	The Filesystem Hierarchy
	Disks, Slices, Partitions, and Volumes
	Raw and Block Devices
	Filesystem Switchout Commands
	Creating New Filesystems
	Mounting and Unmounting Filesystems
	Mount and Umount System Call Handling
	Mounting Filesystems Automatically
	Mounting Filesystems During Bootstrap

	Repairing Damaged Filesystems
	The Filesystem Debugger
	Per Filesystem Statistics
	User and Group Quotas
	Summary

	UNIX Kernel Concepts
	5th to 7th Edition Internals
	The UNIX Filesystem
	Filesystem- Related Kernel Structures
	User Mode and Kernel Mode
	UNIX Process- Related Structures
	File Descriptors and the File Table
	The Inode Cache
	The Buffer Cache
	Mounting Filesystems

	System Call Handling
	Pathname Resolution
	Putting It All Together
	Opening a File
	Reading the File
	Closing the File

	Summary

	Development of the SVR4 VFS/ Vnode Architecture
	The Need for Change
	Pre- SVR3 Kernels
	The File System Switch
	Mounting Filesystems

	The Sun VFS/ Vnode Architecture
	The uio Structure
	The VFS Layer
	The Vnode Operations Layer
	Pathname Traversal
	The Veneer Layer
	Where to Go from Here?

	The SVR4 VFS/ Vnode Architecture
	Changes to File Descriptor Management
	The Virtual Filesystem Switch Table
	Changes to the Vnode Structure and VOP Layer
	Pathname Traversal
	The Directory Name Lookup Cache
	Filesystem and Virtual Memory Interactions
	An Overview of the SVR4 VM Subsystem
	Anonymous Memory
	File I/ O through the SVR4 VFS Layer
	Memory- Mapped File Support in SVR4
	Flushing Dirty Pages to Disk
	Page- Based I/ O
	Adoption of the SVR4 Vnode Interface

	Summary

	Non- SVR4- Based Filesystem Architectures
	The BSD Filesystem Architecture
	File I/ O in 4. 3BSD
	Filename Caching in 4.3BSD
	The Introduction of Vnodes in BSD UNIX
	VFS and Vnode Structure Differences

	Digital UNIX / True64 UNIX
	The AIX Filesystem Architecture
	The Filesystem- Independent Layer of AIX
	File Access in AIX

	The HP- UX VFS Architecture
	The HP- UX Filesystem- Independent Layer
	The HP- UX VFS/ Vnode Layer
	File I/ O in HP- UX

	Filesystem Support in Minix
	Minix Filesystem- Related Structures
	File I/ O in Minix

	Pre- 2.4 Linux Filesystem Support
	Per- Process Linux Filesystem Structures
	The Linux File Table
	The Linux Inode Cache
	Pathname Resolution
	The Linux Directory Cache
	The Linux Buffer Cache and File I/ O
	Linux from the 2.4 Kernel Series
	Main Structures Used in the 2.4.x Kernel Series
	The Linux 2.4 Directory Cache
	Opening Files in Linux
	Closing Files in Linux
	The 2. 4 Linux Buffer Cache
	File I/ O in the 2. 4 Linux Kernel

	Microkernel Support for UNIX Filesystems
	High- Level Microkernel Concepts
	The Chorus Microkernel
	The Mach Microkernel
	What Happened to Microkernel Technology?

	Summary

	Disk- Based Filesystem Case Studies
	The VERITAS Filesystem
	VxFS Feature Overview
	The VxFS Disk Layouts
	Creating VxFS Filesystems
	VxFS Journaling
	Online Administration
	Extent Reorg and Directory Defragmentation
	VxFS Performance- Related Features
	VxFS DMAPI Support

	The UFS Filesystem
	Early UFS History
	Block Sizes and Fragments
	FFS Allocation Policies
	Performance Analysis of the FFS
	Additional Filesystem Features
	What’s Changed Since the Early UFS Implementation?
	Solaris UFS History and Enhancements

	The ext2 and ext3 Filesystems
	Features of the ext2 Filesystem
	The ext3 Filesystem

	Summary

	Mapping Filesystems to Multiprocessor Systems
	The Evolution of Multiprocessor UNIX
	Traditional UNIX Locking Primitives
	Hardware and Software Priority Levels
	UP Locking and Pre- SVR4 Filesystems
	UP Locking and SVR4- Based Filesystems

	Symmetric Multiprocessing UNIX
	SMP Lock Types
	Mapping VxFS to SMP Primitives

	Summary

	Pseudo Filesystems
	The /proc Filesystem
	The Solaris /proc Implementation
	Tracing and Debugging with /proc

	The Specfs Filesystem
	The BSD Memory- Based Filesystem (MFS)
	The BSD MFS Architecture
	Performance and Observations

	The Sun tmpfs Filesystem
	Architecture of the tmpfs Filesystem
	File Access through tmpfs
	Performance and Other Observations

	Other Pseudo Filesystems
	The UnixWare Processor Filesystem
	The Translucent Filesystem
	Named STREAMS
	The FIFO Filesystem
	The File Descriptor Filesystem

	Summary

	Filesystem Backup
	Traditional UNIX Tools
	The tar, cpio, and pax Commands
	Backup Using Dump and Restore

	Frozen- Image Technology
	Nonpersistent Snapshots
	Persistent Snapshot Filesystems

	Block- Level Incremental Backups
	Hierarchical Storage Management
	Summary

	Clustered and Distributed Filesystems
	Distributed Filesystems
	The Network File System (NFS)
	The Remote File Sharing Service (RFS)
	The Andrew File System (AFS)
	The DCE Distributed File Service (DFS)

	Clustered Filesystems
	What Is a Clustered Filesystem?
	Clustered Filesystem Components
	The VERITAS SANPoint Foundation Suite
	Other Clustered Filesystems

	Summary

	Developing a Filesystem for the Linux Kernel
	Designing the New Filesystem
	Obtaining the Linux Kernel Source
	What’s in the Kernel Source Tree
	Configuring the Kernel
	Installing and Booting the New Kernel

	Installing Debugging Support
	The printk Approach to Debugging
	Using the SGI kdb Debugger
	Source Level Debugging with gdb

	Building the uxfs Filesystem
	Creating a uxfs Filesystem
	Module Initialization and Deinitialization
	Testing the New Filesystem

	Mounting and Unmounting the Filesystem
	Directory Lookups and Pathname Resolution
	Inode Manipulation
	File Creation and Link Management
	Creating and Removing Directories
	File I/O in uxfs
	The Filesystem Stat Interface
	The Filesystem Source Code
	Summary

	Glossary
	References
	Index

