VERITAS

P
u N I x I\E)

Filesystems

Evolution,
Design, and
Implementation

Steve D. Pate

WILEY

Dear Valued Customer, ddvd’n tdge

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is
to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

¢ For Dummies — The fun and easy way to learn

* The Weekend Crash Course —The fastest way to learn a new tool or technology
¢ Visual — For those who prefer to learn a new topic visually

¢ The Bible — The 100% comprehensive tutorial and reference

* The Wiley Professional list — Practical and reliable resources for IT professionals

The book you hold now, UNIX Filesystems: Evolution, Design, and Implementation, is the first book to cover
filesystems from all versions of UNIX and Linux. The author gives you details about the file I/O aspects
of UNIX programming, describes the various UNIX and Linux operating system internals, and gives
cases studies of some of the most popular filesystems including UFS, ext2, and the VERITAS filesystem,
VxFS. The book contains numerous examples including a fully working Linux filesystem that you can
experiment with.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with you
to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to re-
view our complete title list and explore the other resources we offer. If you have a comment, suggestion,
or any other inquiry, please locate the “contact us” link at www.wiley.com.

Thank you for your support and we look forward to hearing from you and serving your needs again in
the future.

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

Ns Bible DUMMIES

Visual

$WILEY

Independent Thinkers

UNIX® Filesystems
Evolution, Design,
and Implementation
(VERITAS Series)

UNIX® Filesystems:

Evolution, Design,
and Implementation

(VERITAS Series)

Steve D. Pate

Wiley Publishing, Inc.

Publisher: Robert Ipsen

Executive Editor: Carol Long

Developmental Editor: James H. Russell

Managing Editor: Angela Smith

Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper.
Copyright © 2003 by Steve Pate. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the
Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability /Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the accu-
racy or completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by
sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Neither
the publisher nor author shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used
without written permission. Unix is a trademark or registered trademark of Unix Systems Laborato-
ries, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-16483-6

Printed in the United States of America

10987 654321

Foreword
Introduction

Chapter 1

Contents

xvii

xix

UNIX Evolution and Standardization 1
A Brief Walk through Time........cocovceerrnverenicveinnnenecrerseececvenenene 1
How Many Versions of UNIX Are There?coocoevevveernnencuencn. 3
Why Is UNIX S0 SUCCESSTUL?cvoviimicreereriiireiiceieieneseereneeececreineeaee 3
The Early Days of UNIXcccceomeennnnrereeecnininneeeeseserereseneseeens 3
The Early History of the C Languagec.cooeceeerereereveercceennns 4
Research Editions of UNIX.........ccccocoiiiiiniiiniisiiicciicines 5
AT&T’s Commercial Side of UNIXccccooviininiiiiniine, 5
The Evolution of BSD UNIXccccccoviiiiiniiiiiieciieciceciseceeieieiens 7
BSD Networking Releasesccoceieiniiiiiniiniiciinincecnecenn 8
UNIX G0es t0 COUTt ..ottt 8
The NetBSD Operating SYStem........ccovveeveveveeeeeeninererernerenenereneeees 8
The FreeBSD Operating SyStem.........oc.eerueeuennenccreeneeceevenneenens 9
The OpenBSD Operating SYStemc.oceereeceenerecrereesceeennns 9
Sun Microsystems and SUNOS ..o 9
System V Release 4 and Variants...........ccccoovivniniinnnciiinnns 10
Novell’s Entry into the UNIX Market.........ccccvuoeuviiiiiviiiinicinnns 10
Linux and the Open Source Movement........c...coccevrerecreeeeececvennnen. 11
UNIX Standardization ... 11
IEEE and POSIX ... 11
The X/ OPen GroUpccc.eeveueeeurinereneereeseecieiniiieeisesesesesesenseaces 12
The System V Interface Definition........c.coeevcccerenencceevecncennens 12
Spec 11/70 and the Single UNIX Specification.........c.ccceeereueee. 13
UNIX International and OSF ... 13
The Data Management Interfaces Groupcccoeovvercceeercreennen 14
The Large File SUMMUt....c.cocerrmneenrnrerciccenneseeneeee e 14
SUMMATY v 15

vii

viii Contents

Chapter2 File-Based Concepts 17
UNIX File TYPES .ot 18
File DeSCIiptors......cccuviiiiiiiiiiiciii i 19
Basic File Properties ... 20
The File Mode Creation Maskcccccuiuiiiiriicinicinicicciiceene 23
Changing File PErmiSSioNsc.c.c.ceeeeeeruerirevereurereniererseeeeeiennieeneusenes 24
Changing File OWNership........coccceeeveerenieenrnicreenececsneeeisenes 26
Changing File TIMeScccevereiveveeeerniniieeetseneeeieneneeceee e essesenene 28
Truncating and Removing Files...........cccooviiiiiiinniiiiiins 29
DIIECtOTIES .ottt 30
Special Files ..o 31
Symbolic Links and Hard Linksccccocoiviiiiiininniciiniiics 32
Named Pipes......cccociiiiiiiiiiiiiiiicici s 33
SUMMATY c.ocviiiiiiiiiii e 34
Chapter 3 User File I/O 35
Library Functions versus System Calls..........ccccoviiiinniiicnnnicnns 35
Which Header Files to Use?.........ccoivuiiriiinininiiinininiincicecieceieeeas 36
The Six Basic File Operationscooeecevereneuerereeeeeninneneeersenceens 37
Duplicate File Descriptors........cccocouiiiiiiiiiiiiiiiicceeenciias 40
Seeking and I/O Combinedccoomveuevernrereineceiinnieeenesenenens 41
Data and Attribute Cachingccccovveeceuevnnerereinccnneesnesenenens 42
VXFS Caching AdViSOTIEs.......c.cerumeeeeueirerinerereereecerinnieeieinesesenens 43
Miscellaneous Open Options..........cccvvvicicininicciiiicicicces 46
File and Record LocKingcccocuiiiiiiniiiiiciiniiiciciciccccecccas 46
Advisory LocKing.......cccviniiiiiiiiiiiiiicccccccc s 47
Mandatory LOcKing........ccveuiiiiiiiiiiiicicnicccsccccce 51
File Control Operations..........cccocoviiiiiiiiiiiiniiicicncicc s 51
Vectored Reads and WIites ... 52
ASYNCRIONOUS I/ O vttt enns 54
Memory Mapped Files ..o 59
64-Bit File ACCESS (LFS)....uiiuiieieieeeieeeeeeieete et eeee et et 65
Sparse Files........ooiiiiiiiicc s 66
SUMMATY ..o 71
Chapter4 The Standard I/O Library 73
The FILE StrUCtULecovuieiieiceiiciciciccieecice e 74
Standard Input, Output, and Error...........ccccceiiiiinniiciniicnns 74
Opening and Closing a Streamcccceeeviiiiiiiinniccieneneeae 75
Standard I/ O Library Buffering...........cocccececvnevevevrccennneeencncnenens 77
Reading and Writing to/from a Streamc..cccevecveuenercceereenenene 79
Seeking through the Streamccooovvecvnnerenciinnnecercseenens 82
SUMMEATY oo 84

Contents ix

Chapter 5 Filesystem-Based Concepts 85
What's in a FIleSyStem?......c.ccimeeeerrnnierereecennineeeeseseeeseneneeees 85
The Filesystem Hierarchycoovvcceerrenerereeeecnnnneeeesenerererenneeens 86
Disks, Slices, Partitions, and VOIUIMEScccceoevveevvveeieeieeceeeeeeeeene 88
Raw and Block Devices..........cccocuiiniiiiiininiiiiiiccic e 90
Filesystem Switchout Commands...........cccceueruvieuviiiiiniiiinicinns 90
Creating New Filesystems..........ccccoeceniiiciininiiiiciiccciccce 92
Mounting and Unmounting Filesystemscccccevviviiinniicninnns 94

Mount and Umount System Call Handling............ccccocceevricunenee 98
Mounting Filesystems Automatically...........ccccoeoiiiiiiinncncne 98
Mounting Filesystems During Bootstrapcccceoveiecnnicunnnee 99
Repairing Damaged Filesystems ..., 100
The Filesystem Debuggercceecuiciicciiicciiiciiicsccecaes 101
Per Filesystem Statisticsccocouiviiiiiiiiiiiiecccceas 101
User and Group QUOtas...........ccuuiiiviiiiiniiieicceenenieinas 103
SUIMMATY ..ttt 104

Chapter 6 UNIX Kernel Concepts 105
5th to 7th Edition INternals..........coecceeeerreverernecennnencereeseecverenen. 105
The UNIX FIleSYStemc.ccccuvuiuiiociiiiiiiiiiiiicicicecicecsiceeeseees 106
Filesystem-Related Kernel Structures...........cccooeviiiiiiiiiiiiiinnnns 107

User Mode and Kernel Mode...........cccoviiiiiniciciniicnien, 107
UNIX Process-Related Structures...........ccooeviviiciiinnicicnnninnns 109
File Descriptors and the File Table...........cccccccecoeuviininincninnnn. 110
The Inode Cache......cccoveveveiviciinnnccnrnc e 112
The Buffer Cache ... 112
Mounting FileSystemscccccciiviniiiiiniiiciiicicccceens 115
System Call Handlingcccccouiiiiinniiiiiiiicicicicccccns 115
Pathname ReSOIULON «....c.ceveeerururinicicieerereneicreieeceesnree e seecrenennene 116
Putting It All TOZENETcveeuiriiceircrireicrc et 117
Opening a File ..., 118
Reading the File.......cocveievrciiinnceenenenerereecececnee et 119
Closing the File.......ccccccviiiiiiiiiiiiiiiccccccceees 120
SUIMMATY ..ttt 120

Chapter 7 Development of the SVR4 VFS/Vnode Architecture 121
The Need for Changecccereennnniereeecesnreseereeseeceenennene 121
Pre-SVR3 Kernels........cccooiiiiiiiiniiiiiinicci s 122
The File System SWitchcoccccvvrniccnnniiceeerccesee e, 122

Mounting FileSystemscoccccieiviriiiiniiiiiicciccecceas 123
The Sun VES/Vnode Architecturecoeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee. 126
The U0 STIUCHUTE......cvovreivirereiececeieireseeet et eeeene 129
The VES LaYerccccuiiiiiciiiiiiiiciinicieeietciec e 129

The Vnode Operations Layerccceereervenecereineneerereeneeene 130

x Contents

Chapter 8

Pathname Traversalccceoeeenernniereececeeneneeeesesesenenenne 131
The Veneer LaYercocccccevreuieniicesnenenerereeseeceeis e eese e 132
Where to Go from Here?cccccvuiviiviiniiiniiccciceccees 133
The SVR4 VES/Vnode Architecture.......ooeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeeen 133
Changes to File Descriptor Management............c.cccovurunurenenee 133
The Virtual Filesystem Switch Table......c.c.ccceeevenninccucencne 134
Changes to the Vnode Structure and VOP Layerc........ 135
Pathname Traversalcoccoceenernerereececeennneeeesesesenenenne 139
The Directory Name Lookup Cache........cccccovueiiuriiriiicininnnne 140
Filesystem and Virtual Memory Interactions............ccccceuneueee. 142
An Overview of the SVR4 VM Subsystemccccoovrerceeueercne 143
Anonymous Memory ..o 146
File I/ O through the SVR4 VFS Layer......c.c.cceevrernenceeueercnns 146
Memory-Mapped File Support in SVR4cccceiiiiiinnnne. 149
Flushing Dirty Pages to DisKcc.ccuceceeneriereenercervenieesinenenes 152
Page-Based [/ O.....ccovevrniienieieinineneereeseseeenen e ens 153
Adoption of the SVR4 Vnode Interface..........ccccocveurrececunencne 153
SUMMATY c.ocviiiiiiiiici s 154
Non-SVR4-Based Filesystem Architectures 155
The BSD Filesystem Architecture eae N errreeceeereresesesseeassesenes 155
File T/ O N 4.3BSD ...oiiieieieiiritscsii ettt sttt e st e 156
Filename Caching in 4.3BSDcoccceeeeninereenercenieneeesinenenens 157
The Introduction of Vnodes in BSD UNIX.........cccccccovuiruninnnee. 157
VFS and Vnode Structure Differences.........c.cccocovvviiiinnnnns 159
Digital UNIX / True64 UNIX.....ccococeeererncrereceeeernnieeeesesenenenenne 159
The AIX Filesystem ArchiteCture......ccocovvreverevcecerinninecieesenenenenenn. 161
The Filesystem-Independent Layer of AIX.......c.cccoovvnecrernerene 161
File Access in AIX......ccocovvininiiini 162
The HP-UX VFS Architecture.........cccoueiiiiiniiininicinicinciecieces 163
The HP-UX Filesystem-Independent Layercc.coceccueueerenee 164
The HP-UX VES/Vnode Layer.......cccccceovrnvereeneceenninecenenenene 164
File T/ O N HP-UX ..ottt sttt et 164
Filesystem Support in MiniXcccccccoivniiiiiniciincccieces 165
Minix Filesystem-Related Structures..........ccccocoeeviriiiicinnnnne 166
FAle I/ O A MEIUX +eeee ettt ee e eeeee e eeee e 167
Pre-2.4 Linux Filesystem Support........cocovvciciniiiiiiniiiicenns 168
Per-Process Linux Filesystem Structures...........ccccoeuiiinnene 168
The Linux File Table.........ccccccoeiniiiiiniiniiiciccicc s 169
The Linux Inode Cache.........ccccccviiiiiiiiiiiniiiicccc, 170
Pathname ReSolutionc.cccuueuiiiieniieniieiicicieccciececeeeas 172
The Linux Directory Cacheccccccevvvnevevenccivnnenecreeeenccenns 172
The Linux Buffer Cache and File I/ O ..eoeuveeeeeoeeeeeeeeeeeene. 173
Linux from the 2.4 Kernel Series..........cccccouovuiriirninininininnn. 174

Main Structures Used in the 2.4.x Kernel Series..........cccoeuuee... 175

Contents xi

The Linux 2.4 Directory Cache........ccccovveuevencecveeineninerereencen. 175
Opening Files in LINUX......cocoiviiininiiiiiiicciicci s 177
Closing Files in LINUX......ccccoouiuiiiininiiiiniiiiciicicine e 178
The 2.4 Linux Buffer Cachecccccoouiuiiiiiiniiiiicice 178
FileI/Oin the 2.4 LinuX Kernel.......coooveeeeeeeeeeeeeeeeeeeeeeeeeeen 179
Reading through the Linux Page Cachecccccovnevevvccnee. 179
Writing through the Linux Page Cache..........ccccccceecunacnl 180
Microkernel Support for UNIX Filesystemscccccovviniuiiennne. 180
High-Level Microkernel COnceptscovueceuvrneeeereereecvevennen. 181
The Chorus Microkernelccoeiiiciniciniciniicnicniiccicns 182
Handling Read Operations in Chorusc.cccceovcrenereveencece 183
Handling Write Operations in Chorus.........ccccvevereneveveecece 184
The Mach Microkernelcccccocviiiiiiiiiiniiicccceees 185
Handling Read Operations in Mach.......cc.cccccoevnenecrereeneace 185
Handling Write Operations in Mach.........cccccoecvnenecrevecnenee 186
What Happened to Microkernel Technology?c.ccceeveeueee. 186
SUMMATY .ot 187
Chapter 9 Disk-Based Filesystem Case Studies 189
The VERITAS FileSYStem......veceueureriirereerceeueiriieeisineseesesseseeesennene 189
VXFS Feature OVeIVIeW ... 190
Extent-Based Allocationccccevviviiiniiininininccciie, 190
VXFS Extent Attributes ..o, 191
Caching AdVISOTIESc.cevrereurveuriieceeieirereereeeeseeeaeis e eseinees 193
User and Group QUOtascccceeuveuiininiiiciiiiicccec e 194
Filesystem Snapshots / Checkpointsc.cccoeovnerecrevrcnenne 194
Panic Free and I/O Error Handling Policies........c.c.c.cceeu... 194
VXFS Clustered Filesystemccccoovniiininiiciincniccne, 195
The VXFS Disk LaYOULS «....ccvveeveuimiceeirireneererseecrerennieeeiseseeenens 195
VxFS Disk Layout Version 1 ..o 196
VxFS Disk Layout Version 5..........cccoccvivviiiccinicciinnee 197
Creating VXFS Filesystemsccccooeviniiiinniniiiiniie, 200
Forced Unmountcccoeevviiiinniiinccc 201
VXEFS Journalingcccocovvviviniiinininiiic e 201
Replaying the Intent Log........cccccocvininincnincninciiciiccnnn, 204
Extended Operations ..o 204
Online Administration ..o, 204
Extent Reorg and Directory Defragmentation.............ccc......... 206
VxFS Performance-Related Features...........cccccocoviviiiiininininnn, 206
VXES Mount Optionsccoevviniiiiiiiiiiiiiiiinns 206
VXFS Tunable I/ O Parametersooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 209
Quick I/O for Databases........cccceeevveeueeeeeeeeeeeeeeeee e 209
External Intent Logs through QuickLog.......ccccccvcrenerevevenee 211
VXES DMAPL SUPPOTt .o 212

The UFS FleSYSIEIM ...ucuvuvveveceiiiiriieieieeseseserereeseecie et sesesesennene 212

xii Contents
Early UFS HiStOrY.......ccciviviniiiiiiiiiiciinicicec e 213
Block Sizes and Fragments...........cccccccviviiiiiniiiicninciine, 214
FFS Allocation Policies ... 215
Performance Analysis of the FFSccocceecciinnnccnncnnennn. 216
Additional Filesystem Features...........ccccoccoeeiniiiiiiininiiinnnns 216
What's Changed Since the Early UFS Implementation? 217
Solaris UFS History and Enhancementscccccovrneveveerccunnns 217
Making UFS Filesystemsccccccooeiiviniiiiinniciciiicncene, 217
Solaris UFS Mount Options..........cccccceeiviciiinniciciiinicncene, 219
Database I/ O SUPPOrt.......ccccuicuinciiivciiinciiicic e 220
UFS Snapshots........ccocviciiiciniiciiciccciccc e 220
UFS LOZGINGciiiiiiiiiiiiiiiiiiicccc s 224
The ext2 and ext3 FIlesyStemscccvvurerecrerreeeveveninieeinesenenenenenne 224
Features of the ext2 Filesystem.........ccccevvereerevrercervennecuenninenenens 225
Per-File Attributes ..o, 225
The ext2 Disk Layoutc.coceeveeieecerrnenicrereeneeciennieeensesenene 226
ext2 On-Disk Inodes..........cccooevvviiivininiiiiiiiiice, 231
Repairing Damaged ext2 Filesystems...........ccccocccvuruinunnne. 232
Tuning a ext2 Filesystemccccocoeiiinniiinniiciciccne, 233
Resizing ext2 Filesystems ..., 234
The ext3 FILESYSEMcuceueereririreiiceceenreceree e seene 234
How to Use an ext3 Filesystem.........ccccccccovviniiiiiiinniicnnnnne. 234
Data Integrity Models in ext3 ..o 235
How Does ext3 WOrk?ccccceevviiiininiiiiiciiiiccce, 235
SUMMATY c.ocviiiiiiiiiii s 236
Chapter 10 Mapping Filesystems to Multiprocessor Systems 237
The Evolution of Multiprocessor UNIX.......c.coceevveveinnneceereencen: 237
Traditional UNIX Locking Primitives.........ccccocoviiiiniiciniinns 238
Hardware and Software Priority Levels ..o 239
UP Locking and Pre-SVR4 Filesystems..........cccccccoirviiicincnnne 241
UP Locking and SVR4-Based Filesystems..........cccccoccuciinennne 241
Symmetric Multiprocessing UNIXccccoooiiiiiiniinnniicns 242
SMP LOCK TYPES ..t 243
Mapping VXFS to SMP Primitives ..o, 245
The VXFS Inode Reader/Writer LOCK....ceeueeeeeeeeeeeeeeeene. 246
The VXFS Getpage and Putpage Locks........c.cevveeurrrrencnce 246
The VXFS Inode Lock and Inode Spin Lock....c..occucueurennee. 246
The VXFS Inode List LOCK......ccccuvuiriiiiiiniiciiciiecicies 246
SUMMATY c.ocviiiiiiiiiici s 247
Chapter 11 Pseudo Filesystems 249
The /Proc FIleSYStem......cccevnuiveuineeieerericiereeececeeiniee s senenenne 249
The Solaris /proc Implementationc.cceeeveeevenecueueinenennn 250

Accessing Files in the Solaris /proc Filesystem................... 253

Contents xiii

Tracing and Debugging with /proc.......cccecvecevvnnnccrvenenenee 253
The Spects FIleSYSIEIMc.c.evumieveueiriricrerreneecieinie e seeceesennene 255
The BSD Memory-Based Filesystem (MFS)ccoccceoeennncreveencnce 258

The BSD MFS Architecture..........ccccccvucuviccivicciniiriiiiicecnes 259

Performance and Observations..........c.cccovvviinincicniinccncnnen, 259
The Sun tmpfs FileSystem.........ccccceeiiniiiiiiiiiiiiiicicccceceeeees 260

Architecture of the tmpfs Filesystemccccccocueeuviiiviiininnnne. 260

File Access through tmpfsccoovveeevnnerencceinnecencnenenens 261

Performance and Other Observationsccccceuevvuieriienane. 261
Other Pseudo FIleSYStemSc.covuvueueeeerereniuerereceisnineneereeseeceesenene 262

The UnixWare Processor Filesystem........c.coveeeeenerircrereencec 262

The Translucent Filesystemooveecvrnrereececeeinnneenencnenenens 262

Named STREAMS........cccoooniiiiiiiiiince e 263

The FIFO FileSYStemMc.c.veveeeeerunirieieieinerenerereenceceeiniieeiseseseenens 263

The File Descriptor FileSyStemccccovrnuevereeceennneceencnenenens 263
SUMMATY .o 264

Chapter 12 Filesystem Backup 265
Traditional UNIX TOOIS ... 265

The tar, cpio, and pax Commands........c.c.c.eereeeevernencerereereene 266

The tar Archive Format ..o, 266

The USTAR tar Archive Format......c..ccevueeceeenenccrercencen. 266

Standardization and the pax Command.......c.ccccoceeeveveeenee 268

Backup Using Dump and Restore...........cccccccciiiciinniicicnnnnnnn. 268
Frozen-Image Technologyccccceviiiiniiniisiicccccecieenes 270

Nonpersistent SNapshots ... 270

VXFS SNapshots ... 270
Accessing VXES Snapshots........cccceovvevevecciinnncceencnenenen 272
Performing a Backup Using VXFS Snapshotsc......... 273
How VxFS Snapshots Are Implemented.cccccocveeveveencnee. 274
Persistent Snapshot FileSyStemsccccovevevevecernninccecncncnenen 274
Differences between VXFS Storage Checkpoints
and SNAPShOLScccvccerriiic e 275
How Storage Checkpoints Are Implemented...................... 276
Using Storage ChecKkpoints.......c.cceovreveveececernniceeunererenenens 277
Writable Storage Checkpoints.........c.eveveececerninicecueererenenens 279
Block-Level Incremental Backupscccoouviiiiniiiiinniiciiiccns 279
Hierarchical Storage Management............cccoceenecennenencreeeeneene 280
SUMMATY .o e 283
Chapter 13 Clustered and Distributed Filesystems 285
Distributed Filesystemsccccccvviiiiiiniciinicicccc 286
The Network File System (NFS)cccccvervremecvennenicrerneneees 286
NFS Background and History ..o, 286

The Version 1 and 2 NFS Protocolsccoevveeevveeeieeeeennne. 287

xiv Contents

NFS Client/Server Communications........ccueeeeveeeeeereeeeveeannn. 288
Exporting, Mounting, and Accessing NFS Filesystems.....290
Using NES ... 292
The Version 3 NFS Protocolcccevrereeeenceceeinnnccenenenens 292
The NFS Lock Manager Protocol..........c.ceveeeeennncceenencnns 294
The Version 4 NFS Protocol and the Future of NFS........... 295
The NFS AUOMOUNTET «..c..cvevmiecerueiririciereerereeniennisceneeine e 298
Automounter Problems and the Autofs Filesystem........... 300
The Remote File Sharing Service (RFS)c.cccveeurvvrneccueercn. 300
The RFS Architecturec.c.ceeeecoeuenerierereeneeceennneeeeesenene 301
Differences between RFS and NFS............ccccocooiniiinnn 302
The Andrew File System (AFS)ccccevvrnrerervcennneceeenenens 303
The AFS Architecture........ceieceeuenerinerereeeeccnnneseeeneeene 303
Client-Side Caching of AFS File Data.........ccccccovueuiucunnnnnne. 304
Where Is AFS NOW?cvieveiceinininecereeseneeenenesceee e sesens 305
The DCE Distributed File Service (DFS)ccccoovvvvvvveveeerereennns 305
DCE / DFS ArchitectUre......occooeeeeeieeeieeeeeeeeeeeeeeeeeeee e 306
DEFS Local Filesystems.........ccccooviieniniiiiininiiiiccne, 306
DFS Cache Managementcccccuvcuivciniiiicnicniienienn. 306
The Future of DCE / DFS....ccocoeiirreiereeeeerseeeeeees 307
Clustered Filesystems..........cccccovviiiininiiiiiiiiicce e 307
What Is a Clustered Filesystem?cccccouvuiriiriviiciieeniecnnn. 308
Clustered Filesystem Componentsccoceoeevivivvicriiniiennnnn. 309
Hardware Solutions for Clustering...........cccccocovvinrncnirnnnne. 309
Cluster Management.........cccoooeviviiniiiiiinnni e 309
Cluster Volume Management...........cccoecvvinniiiiniicnnnnnne. 310
Cluster Filesystem Management...........cc.coccoeceniiiiiicinennnn. 311
Cluster Lock Management ..., 313
The VERITAS SANPoint Foundation Suite..........ccceccvuvurueeenenne 313
CFS Hardware Configuration...........ccccoeciinniiinincnnnnne. 313
CFS Software COMpPONentsccccuveevreeiericeciicineniiineenenns 314
VERITAS Cluster Server (VCS) and Agents.....c..coceceeueeenee. 315
Low Latency Transport (LLT).....cccceoverereveveveececninineceereenenene 316
Group Membership and Atomic Broadcast (GAB) 317
The VERITAS Global Lock Manager (GLM)ccccceuunee. 317
The VERITAS Clustered Volume Manager (CVM)............. 317
The Clustered Filesystem (CFS)cococcevvvveneeevennnccrenencnne 318
Mounting CFS Filesystems..........cccocooviiiiiciinniiicneniee 319
Handling Vnode Operations in CFS..........cccccccoeiiniiinnnnne. 319
The CFS Buffer Cachec.cccovoeevvnnncrceeencccenneeeeneenne 320
The CFS DNLC and Inode Cache......c.coccovnnreninnencneeenene. 321
CFS Reconfiguration ..., 321
CFS Cache CONETencycoueueveereeevenninececieerereeeienneeeceenennes 321
VxFS Command Coordinationcccccviviniiicninicnnne. 322

Application Environments for CFS...........ccococcoiiiniininnn. 322

Contents xv

Chapter 14

Other Clustered FileSyStemsccccecveervenneeueienenicrerneececvennen. 323
The SGI Clustered Filesystem (CXFS)....c.ccccevvmverernercrcnenen 323

The Linux/Sistina Global Filesystem.........c.ccovvceeercrenenee 323

SUN CIUSLT ... 323
Compaq/HP True64 CIUSLErcccovvrerierereerceceinrireeieneenes 324
SUMMATY .o 324
Developing a Filesystem for the Linux Kernel 325
Designing the New FileSyStemcccccvvruereuiceinnnenccreeneececnennen. 326
Obtaining the Linux Kernel SOUICe........cocccvmureveeenerinerereececvennn. 328
What's in the Kernel Source Treeccccccuvueeuviiivinviericienennane 329
Configuring the Kernelccccccccviiiiininiicicccicees 330
Installing and Booting the New Kernelcc.ccccovnneceencncnenees 332
Using GRUB to Handle Bootstrapccccccoviiiiinicinnnne. 333
Booting the New Kernel........cococccceceereriieneecceenenenerereencen. 333
Installing Debugging SUppPOTrtcccccoviiiviiiiciiiniiiicicc 334
The printk Approach to Debugging..........cccoveeveuenerecrerrenceene 334
Using the SGI Kdb DebUZEETouveueueurererivererceceeninieeieeserenenens 335
Source Level Debugging with gdbcccoevveccvrncrcncccnnns 337
Connecting the Host and Target Machines.......c..c.cccceuuee. 337
Downloading the kgdb Patch.......c..cooeevecceinnncccncncnenens 338
Installing the kgdb-Modified Kernel...........ccccccervercrevevcace. 339

gdb and Module Interactions............ccccoeeviricicinniiccnnennnnn. 340
Building the uxfs FilesyStemccccevvreerrerereveniceieneneereveenenne 341
Creating a uxfs Filesystem..........ccccccoviiiiiiniiinniiiniccc, 342
Module Initialization and Deinitializationccceceeveiiiicnns 344
Testing the New FileSyStemccccccvverecrevrececveninecrenencnenenes 345
Mounting and Unmounting the Filesystemccccccevvernerevecncnee 346
Scanning for a Uxfs Filesystemccccoeoveiiniciiinniicinnnns 348
Reading the ROOt INOE......c.ccerrimiieucreriierececicnrieeeesese s 349
Writing the Superblock to Disk........cccccvueuiiciiviiiiiiiiiiciene 350
Unmounting the FIlesyStemocvceevrniverenecrnnneceerenenenens 352
Directory Lookups and Pathname Resolutionccccecvevevevevecnce 353
Reading Directory Entries ..o 353
Filename LOOKUPcccovviiiiiiiiiiiiiiinicicccccc s 354
Filesystem /Kernel Interactions for Listing Directories........... 356
Inode Manipulation.........ccccceeuiiiinniiiiincccccc s 359
Reading an Inode from Diskccccocuiiiiniiiiiiiiiiiinine, 359
Allocating a New INodecccceoiiiviiinniiiiiiiiciicccens 361
Writing an Inode to Disk ..., 362
Deleting INOAesccociiiiiiiiiiiincincccc s 363
File Creation and Link Managementcccceecuiinniiicniincnns 365
Creating and Removing Directories ..o 368
FALE I/ O A UXES ettt ettt e e e e eeeeeeeeeeeeaeens 370

Reading from a Regular File...........cccccooviiiiiiinniin, 371

xvi Contents

Writing to a Regular File ..o 373
Memory-Mapped Files ..o, 374

The Filesystem Stat INterfacecoocoevvnenecreeneecveveninieenesenesereneene 376

The Filesystem Source Code........c.cuvmmveenrnierereccesnneeeeesenens 378

Suggested EXercises ..o 403

Beginning to Intermediate Exercisesc.cccocovvvviiiiiiinnnnns 403

Advanced EXETciSes ..o 404

SUIMMATY .ottt s 405

Glossary 407
References 425
Index 429

Foreword

It's over 30 years ago that the first Edition of UNIX was released. Much has
changed since those early days, as it evolved from a platform for software
development, to the OS of choice for technical workstations, an application
platform for small servers, and finally the platform of choice for mainframe-class
RISC-based application and database servers.

Turning UNIX into the workhorse for mission-critical enterprise applications
was in no small part enabled by the evolution of file systems, which play such a
central role in this Operating System. Features such as extent-based allocation,
journaling, database performance, SMP support, clustering support, snapshots,
replication, NFS, AFS, data migration, incremental backup, and more have
contributed to this.

And the evolution is by no means over. There is, of course, the ever present
need for improved performance and scalability into the realm of Pbytes and
billions of files. In addition, there are new capabilities in areas such as distributed
single image file systems, flexible storage allocation, archiving, and content-based
access that are expected to appear during the next few years.

So if you thought that file system technology had no more excitement to offer,
you should reconsider your opinion, and let this book wet your appetite.

The historical perspective offered by the author not only gives a compelling
insight in the evolution of UNIX and the manner which this has been influenced
by many parties—companies, academic institutions, and individuals—it also

xvii

xviii

UNIX Filesystems—Evolution, Design and Implementation

gives the reader an understanding of why things work the way they do, rather
than just how they work.

By also covering a wide range of UNIX variants and file system types, and
discussing implementation issues in-depth, this book will appeal to a broad
audience. I highly recommend it to anyone with an interest in UNIX and its
history, students of Operating Systems and File Systems, UNIX system
administrators, and experienced engineers who want to move into file system
development or just broaden their knowledge. Expect this to become a reference
work for UNIX developers and system administrators.

Fred van den Bosch

Executive Vice President and Chief Technology Officer
VERITAS Software Corporation

Introduction

Welcome to UNIX Filesystems— Evolution, Design, and Implementation, the first
book that is solely dedicated to UNIX internals from a filesystem perspective.

Much has been written about the different UNIX and UNIX-like kernels since
Maurice Bach’s book The Design of the UNIX Operating System [BACHS86] first
appeared in 1986. At that time, he documented the internals of System V Release 2
(SVR2). However, much had already happened in the UNIX world when SVR2
appeared. The earliest documented kernel was 6th Edition as described in John
Lions” work Lions’ Commentary on UNIX 6th Edition —with Source Code [LION96],
which was an underground work until its publication in 1996. In addition to these
two books, there have also been a number of others that have described the
different UNIX kernel versions.

When writing about operating system internals, there are many different topics
to cover from process management to virtual memory management, from device
drivers to networking, and hardware management to filesystems. One could fill a
book on each of these areas and, in the case of networking and device drivers,
specialized books have in fact appeared over the last decade.

Filesystems are a subject of great interest to many although they have typically
been poorly documented. This is where this book comes into play.

This book covers the history of UNIX describing how filesystems were
implemented in the early research editions of UNIX up to today’s highly scalable
enterprise class UNIX systems. All of the major changes in the history of UNIX

Xix

xx UNIX Filesystems—Evolution, Design, and Implementation

that pertain to filesystems are covered along with a view of how some of the
more well known filesystems are implemented.

Not forgetting the user interface to filesystems, the book also presents the file
and filesystem-level system call and library-level APIs that programmers expect
to see. By providing this context it is easier to understand the services that
filesystems are expected to provide and therefore why they are implemented the
way they are.

Wherever possible, this book provides practical examples, either through
programmatic means or through analysis. To provide a more practical edge to the
material presented, the book provides a complete implementation of a filesystem
on Linux together with instructions on how to build the kernel and filesystem,
how to install it, and analyze it using appropriate kernel-level debuggers.
Examples are then given for readers to experiment further.

Who Should Read This Book?

Rather than reach for the usual group of suspects—kernel engineers and
operating system hobbyists—this book is written in such a way that anyone who
has an interest in filesystem technology, regardless of whether they understand
operating system internals or not, can read the book to gain an understanding of
file and filesystem principles, operating system internals, and filesystem
implementations.

This book should appeal to anyone interested in UNIX, its history, and the
standards that UNIX adheres to. Anyone involved in the storage industry should
also benefit from the material presented here.

Because the book has a practical edge, the material should be applicable for
undergraduate degree-level computer science courses. As well as a number of
examples throughout the text, which are applicable to nearly all versions of
UNIX, the chapter covering Linux filesystems provides a number of areas where
students can experiment.

How This Book Is Organized

Although highly technical in nature, as with all books describing operating
system kernels, the goal of this book has been to follow an approach that enables
readers not proficient in operating system internals to read the book.

Earlier chapters describe UNIX filesystems from a user perspective. This
includes a view of UNIX from a historical perspective, application programming
interfaces (APIs), and filesystem basics. This provides a base on which to
understand how the UNIX kernel provides filesystem services.

Modern UNIX kernels are considerably more complex than their predecessors.
Before diving into the newer kernels, an overview of 5th/6th Edition UNIX is
described in order to introduce kernel concepts and how they relate to

Introduction xxi

filesystems. The major changes in the kernel, most notably the introduction of
vnodes in Sun’s SunOS operating system, are then described together with the
differences in filesystem architectures between the SVR4 variants and non-SVR4
variants.

Later chapters start to dig into filesystem internals and the features they
provide. This concludes with an implementation of the original System V UNIX
filesystem on Linux to demonstrate how a simple filesystem is actually
implemented. This working filesystem can be used to aid students and other
interested parties by allowing them to play with a real filesystem, understand the
flow through the kernel, and add additional features.

The following sections describe the book’s chapters in more detail.

Chapter 1: UNIX Evolution and Standardization

Because the book covers many UNIX and UNIX-like operating systems, this
chapter provides a base by describing UNIX from a historical perspective.
Starting with the research editions that originated in Bell Labs in the late 1960s,
the chapter follows the evolution of UNIX through BSD, System V, and the many
UNIX and UNIX-like variants that followed such as Linux.

The latter part of the chapter describes the various standards bodies and the
standards that they have produced which govern the filesystem level interfaces
provided by UNIX.

Chapter 2: File-Based Concepts

This chapter presents concepts and commands that relate to files. The different
file types are described along with the commands that manipulate them. The
chapter also describes the UNIX security model.

Chapter 3: User File /O

Moving down one level, this chapter describes file access from a programmatic
aspect covering the difference between library-level functions and system calls.
Building on the six basic system calls to allocate files, seek, read, and write file
data, the chapter then goes on to describe all of the main file related functions
available in UNIX. This includes everything from file locking to asynchronous
I/0O to memory mapped files.

Examples are given where applicable including a simple implementation of
UNIX commands such as cat, dd, and cp.

Chapter 4: The Standard I/O Library

One part of the UNIX API often used but rarely described in detail is the standard
I/0O library. This chapter, using the Linux standard 1/0O library as an example,
describes how the library is implemented on top of the standard file-based system
calls.

xxii

UNIX Filesystems—Evolution, Design, and Implementation

The main structures and the flow through the standard I/O library functions
are described, including the various types of buffering that are employed.

Chapter 5: Filesystem-Based Concepts

This chapter concludes the user-level angle by describing the main features
exported by UNIX for creation and management of filesystems.

The UNIX filesystem hierarchy is described followed by a description of disk
partitioning to produce raw slices or volumes on which filesystems can then be
created. The main commands used for creating, mounting and managing
filesystems is then covered along with the various files that are used in mounting
filesystems.

To show how the filesystem based commands are implemented, the chapter
also provides a simple implementation of the commands mount, df, and £styp.

Chapter 6: UNIX Kernel Concepts

Today’s UNIX kernels are extremely complicated. Even operating systems such
as Linux have become so large as to make study difficult for the novice.

By starting with 5th Edition, which had around 9,000 lines of code in the whole
kernel, this chapter presents the fundamentals of the kernel from a filesystem
perspective. Main concepts such as the inode cache, buffer cache, and
process-related structures are covered followed by a description of how simple
operations such as read () and write () flow through the kernel.

The concepts introduced in these early kernels are still as relevant today as
they were when first introduced. Studying these older kernels therefore presents
the ideal way to learn about the UNIX kernel.

Chapter 7: Development of the SVR4 VFS/Vnode Architecture

Arguably the most significant filesystem-related development in UNIX was the
introduction of the VFS/vnode architecture. Developed by Sun Microsystems in
the mid 1980s, the architecture allowed support for multiple, different filesystem
types to reside in the kernel simultaneously.

This chapter follows the evolution of this architecture from its first
introduction in SunOS through to SVR4 and beyond.

Chapter 8: Non-SVR4-Based Filesystem Architectures

Although the VFS/vnode architecture was mirrored in the development of many
other of the UNIX variants, subtle differences crept in, and some versions of
UNIX and UNIX-like operating systems adopted different approaches to solving
the problems of supporting different filesystem types.

This chapter explores some of the VFS/vnode variants along with non-VFS
architectures ranging from microkernel implementations to Linux.

Introduction xxiii

Chapter 9: Disk-Based Filesystem Case Studies

By choosing three different filesystem implementations, the VERITAS Filesystem
(VXES), the UFS filesystem, and the Linux-based ext2/3 filesystems, this chapter
explores in more detail the type of features that individual filesystems provide
along with an insight into their implementation.

Chapter 10: Mapping Filesystems to Multiprocessor Systems

The UNIX implementations described in earlier chapters changed considerably
with the introduction of Symmetric Multiprocessing (SMP). Because multiple
threads of execution could be running within the kernel at the same time, the
need to protect data structures with finer and finer grain locks became apparent.
This chapter follows the evolution of UNIX from a monolithic design through
to today’s highly scalable SMP environments and describes the types of locking
changes that were added to filesystems to support these new architectures.

Chapter 11: Pseudo Filesystems

In addition to the traditional disk-based filesystems, there are a number of pseudo
filesystems that, to the user, appear similar to other filesystems, but have no
associated physical storage. Filesystems such as /proc and device filesystems
such as specfs have become common across many versions of UNIX.

This chapter describes some of the more well-known pseudo filesystems. For
the /proc filesystem, the chapter shows how debuggers and trace utilities can be
written together with an example of how the UNIX ps command can be written.

Chapter 12: Filesystem Backup

Another area that is typically not well documented is the area of filesystem
backup. This chapter describes some of the backup techniques that can be used to
back up a set of files or whole filesystems, and the various archiving tools such as
tar, and the dump/restore utilities. The main part of the chapter describes frozen
image techniques that show how persistent and non persistent snapshot
technologies can be used to obtain stable backups.

Chapter 13: Clustered and Distributed Filesystems

This chapter describes both distributed filesystems and clustered filesystems. For
distributed filesystems, the chapter covers the development of NFS through its
early adoption to the features that are being implemented as part of NFS v4.
Other distributed filesystems such as AFS and DFS are also described.

The components required to build a clustered filesystem using Storage Area
Networks (SANs) is then covered followed by a description of the various
components of the VERITAS Clustered Filesystem.

xxiv UNIX Filesystems—Evolution, Design, and Implementation

Chapter 14: Developing a Filesystem for the Linux Kernel

In order to understand how filesystems are implemented and how they work, it
is best to play with an existing filesystem and see how it works internally and
responds to the various file-related system calls. This chapter provides an
implementation of the old System V filesystem on the Linux kernel. By showing
how to utilize various kernel debuggers, the chapter shows how to analyze the
operation of the filesystem.

There are a number of features omitted from the filesystem that are left for the
reader to complete.

Typographical Conventions

All of the program listings, UNIX commands, library functions, and system calls
are displayed in a fixed-width font as shown here.

Many examples are shown that have required keyboard input. In such cases,
all input is shown in a bold, fixed-width font. Commands entered by the
superuser are prefixed with the # prompt while those commands which do not
require superuser privileges are prefixed with the $ prompt.

Shown below is an example of user input:

S 1s -1 myfile
-YW-Yr--Y- 1 spate fcf 0 Feb 16 11:14 myfile

Accessing Manual Pages

The internet offers the opportunity to view the manual pages of all major
versions of UNIX without having to locate a system of that type. Searching for
manual pages, say on Solaris, will reveal a large number of Web sites that enable
you to scan for manual pages, often for multiple versions of the operating
system. The following Web site:

http://unix.about.com/library/misc/blmanpg.htm

contains pointers to the manual pages for most versions of UNIX and Linux.
Manual pages contain a wealth of information, and for those who wish to learn
more about a specific operating system, this is an excellent place to start.

Acknowledgements

First of all I would like to thank VERITAS for allowing me to work a 4-day week
for more than a year, while spending Fridays working on this book. In particular,
my manager, Ashvin Kamaraju, showed considerable patience, always leaving it

Introduction xxv

to my judgement to balance book time and work time. He finally gets those
Fridays back!

Next I would like to thank Marianne Lent who reviewed the book from a
technical perspective but also helped to make it more readable. Thanks also to Pat
Carri for help on FrameMaker.

Dheer Moghe reviewed the chapter on clustered filesystems and Amit Kale
was gracious enough to allow me to steal his makefiles which I used for uxfs.

Finally, I would like to thank my better half, Eleanor, for her patience over the
last 18 months. It will certainly be nice for The book not to dominate the
conversation. Well, until the next one!

UNIX Evolution and
Standardization

This chapter introduces UNIX from a historical perspective, showing how the
various UNIX versions have evolved over the years since the very first
implementation in 1969 to the present day. The chapter also traces the history of
the different attempts at standardization that have produced widely adopted
standards such as POSIX and the Single UNIX Specification.

The material presented here is not intended to document all of the UNIX
variants, but rather describes the early UNIX implementations along with those
companies and bodies that have had a major impact on the direction and
evolution of UNIX.

A Brief Walk through Time

There are numerous events in the computer industry that have occurred since
UNIX started life as a small project in Bell Labs in 1969. UNIX history has been
largely influenced by Bell Labs’ Research Editions of UNIX, AT&T’s System V
UNIX, Berkeley’s Software Distribution (BSD), and Sun Microsystems’ SunOS
and Solaris operating systems.

The following list shows the major events that have happened throughout the
history of UNIX. Later sections describe some of these events in more detail.

2 UNIX Filesystems—Evolution, Design, and Implementation

1969. Development on UNIX starts in AT&T’s Bell Labs.

1971. 1st Edition UNIX is released.

1973. 4th Edition UNIX is released. This is the first version of UNIX that had
the kernel written in C.

1974. Ken Thompson and Dennis Ritchie publish their classic paper, “The
UNIX Timesharing System” [RITC74].

1975. 6th Edition, also called V6 UNIX, becomes the first version of UNIX to be
used outside Bell Labs. The University of California at Berkeley starts
development on the Berkeley Software Distribution or more commonly called
BSD.

1977. At this stage there were 500 sites running UNIX. Universities accounted
for about 20 percent of those sites.

1979. 7th Edition UNIX was rewritten to make it more portable. Microsoft
licenses 7th Edition and starts development of Xenix.

1980. Microsoft releases Xenix, a PC-based version of UNIX.

1982. AT&T’s UNIX Systems Group releases System III UNIX. The Santa Cruz
Operation (SCO) licenses Xenix from Microsoft.

1983. AT&T’s UNIX System Development Labs release System V Release 1
UNIX.

1984. 4.2BSD is released including TCP/IP. System V Release 2 is released and
the number of installations of UNIX worldwide exceeds 100,000. Digital
Equipment Corporation’s (DEC’s) 4.2BSD-based Ultrix is released.

1986. 4.3BSD is released. 4.2BSD-based HP-UX first appears. IBM releases AIX
2 for the RT server.

1987. AT&T releases System V Release 3, which includes STREAMS, the
Network File System (NFS), and the Transport Level Interface (TLI).

1989. As a joint venture between AT&T’s Unix System Laboratories (USL) and
Sun Microsystems, System V Release 4.0 is released.

1990. Based on SVR2 with enhancements from 4.2BSD and 4.3BSD, IBM
releases AIX 3.1.

1991. Linus Torvalds announces Linux 0.0.1.

1992. USL releases System V Release 4.2 that includes the VERITAS filesystem
VxFS and Volume Manager VxVM.

1993. 4.4BSD, the last release from Berkeley, is released. SVR4.2MP is released
by Novell following their purchase of USL from AT&T.

1994. 44BSD Lite, which was free of copyrighted UNIX source code, is
released.

1995. SCO buys Novell’s UNIX business.
1996. The Linux 2.0 kernel is released.
1997. UnixWare 7, a merge of SVR4.2MP and SCO OpenServer, is released.

UNIX Evolution and Standardization 3

2001. SCO’s UNIX business is sold to Linux distributor Caldera. The Linux 2.4
kernel emerges after many delays.

How Many Versions of UNIX Are There?

Most versions of UNIX have stemmed from System V or BSD, with many taking
enhancements from both. The 1980s saw a proliferation of versions of UNIX.
Although it is difficult to give an exact figure on how many versions of UNIX
have actually been produced, by the late 1980s it is safe to say that there were
close to 100 different UNIX variants employed throughout the world. It is no
wonder why UNIX has had its critics and not surprising that attempts at
standardization have proceeded for much of UNIX's history.

Developing operating systems is a costly business, however, which has
resulted in consolidation throughout the mid to late 1990s. On the low end, Linux
and SCO variants tend to dominate while in the mid to high-end, Sun’s Solaris,
Hewlett Packard’s HP-UX, and IBM’s AIX account for most of the market share.

As time goes by there is likely to be further consolidation at the low to
mid-range of PCs, workstations, and servers with Linux clearly leading the way.
UNIX is still a clear leader at the high end of the market with Sun, HP, and IBM all
having enterprise level capabilities in their UNIX offerings. While it is difficult to
see further consolidation at this end of the market, only time will tell.

Why Is UNIX So Successful?

Although the large number of different versions of UNIX can be considered a
weakness since it raised the possibility of incompatibilities, it also demonstrates
one of the great strengths of UNIX: the ease by which UNIX has been ported to a
wide number of different hardware architectures and platforms, a task that was
addressed very early on during development at Bell Labs.

Even though the number of versions of UNIX increased dramatically over the
years, porting applications between one version and the next was still
considerably easier than porting between one proprietary OS and the next. This
task has been made easier by the introduction of relevant standards that nearly all
of the major UNIX vendors have adopted. No other operating system can claim
this level of dominance across such a wide range of platforms. The proliferation of
UNIX resulted in a huge amount of development pushing UNIX way ahead of its
nearest proprietary competitors.

The Early Days of UNIX

The research arm of the Bell Telephone Company, Bell Labs, had seen the need for
a new computer operating system in the late 1950s. This resulted in the BESYS

4 UNIX Filesystems—Evolution, Design, and Implementation

operating system which, although used internally, had limited distribution
outside of Bell Labs. By the mid 1960s, third-generation computer equipment
was emerging and the people at Bell Labs had to decide whether to create a new
operating system or to adopt a third party OS. The decision was eventually made
to join General Electric and MIT to create a new timesharing system called the
MULTIplexed Information and Computing Service (MULTICS). This collaborative
venture aimed to show that general purpose, multiuser operating systems were a
viable solution. Based on a research operating system from MIT called the
Compatible Time Sharing System (CTSS), the MULTICS project resulted in a wide
range of new approaches. Amongst those working on MULTICS were Bell Lab
researchers Ken Thomson and Dennis Ritchie, who would take many of the ideas
from MULTICS and evolve them into what would become UNIX. As an example,
many of the UNIX commands were based on commands of the same name in
MULTICS, namely 1s, cd, and pwd. Due to the high cost of development and the
amount of time that it was believed MULTICS would take to complete, AT&T
withdrew from the MULTICS project in 1969.

On an internal GE-645 computer at Bell Labs, the GECOS operating system
was installed, which proved inadequate to many of the researchers. For many
this was seen as being back at square one. This resulted in a proposal by
Thompson and Ritchie to get Bell Labs to buy a new machine so they could start
work on their own interactive time-sharing system. The proposal was rejected
and Thompson started work on an old PDP-7. Developing initially on a GE-635,
Thompson produced a primitive kernel, assembler, shell, and a few utilities (rm,
cat, cp) that were then transported to the PDP-7 by paper tape. Even at this
stage the new primitive OS was sufficient for all further development to proceed
on the PDP-7 itself. As a pun on MULTICS, the new environment was named
UNIX.

In 1970 the UNIX pioneers acquired a DEC PDP-11 that was initially diskless
and had 24KB of memory. They used 12KB for the operating system, allowed a
small amount of space for user programs, and the rest was used as a RAM disk. It
was around this time that the first 1st Edition UNIX appeared.

The Early History of the C Language

Following the early assembler versions of UNIX, Thompson worked on a Fortran
compiler that evolved to support the language B, a cut-down version of BCPL.
The B compiler was provided as part of 1st Edition UNIX in 1971, and some of
the first utilities were even written in B. It was Ritchie’s work over the next two
years that resulted in the first C compiler, which became part of 3rd Edition
UNIX in 1973. Note that it would still be another 5 years before the appearance of
Kernighan and Ritchie’s book, The C Programming Language [KERN78]. Following
an abortive attempt by Thompson to write part of the kernel in an early version
of C which did not support structures, by 4th Edition UNIX that appeared in
1973, Thompson and Ritchie had rewritten the kernel in C.

UNIX Evolution and Standardization

5

Research Editions of UNIX

There were a total of ten research editions of UNIX from Bell Labs. Perhaps the
most famous was 6th Edition UNIX which was described in John Lions’ book
Lions” Commentary on UNIX 6th Edition [LION96], which until it was published in
1996 remained an underground work. One thing that distinguished each research
edition was the introduction of a new Programmer’s Reference Manual. Following is
a brief summary of the different research editions and which UNIX features they
introduced:

1st Edition—1971. As well as the B compiler, 1st Edition UNIX introduced a
number of well-known UNIX commands including cat, chdir, chmod,
chown, cp, ed, find, mkdir, mkfs, mount, mv, rm, rmdir, we, and who.

2nd Edition—1972. One amusing note on 2nd Edition was a comment in the
Programmer’s Reference Manual that the number of UNIX installations had
now grown to 10!

3th Edition—1973. The UNIX C compiler (cc) first appeared. The kernel was
still written in assembler and the number of installations had grown to 16.
Pipes were also introduced.

4th Edition—1973. The kernel was rewritten in C.

5th Edition—1974. This edition appeared around the time of Thompson and
Ritchie’s paper “The UNIX Time Sharing System” [RITC74]. The source code
was made freely available to universities for educational purposes.

6th Edition—1975. This edition, also known as V6, was the first edition widely
available outside of Bell Labs. Most of the operating system by this time had
been written in C.

7th Edition—1979. The first K&R (Kernighan and Ritchie) compliant C
compiler made its appearance with 7th edition together with Steve Bourne’s
shell (sh). The kernel was rewritten to make it more portable to other
architectures. At this time the UNIX Systems Group was created and started
working on enhancing 7th Edition (on which System V UNIX would be
based). Microsoft also licensed 7th Edition, which it used to develop the
Xenix operating system. Note that the size of the 7th Edition kernel was only
40KB, a tiny program by today’s standards.

8th Edition—1985. 8th Edition UNIX picked up some enhancements developed
from 4.1BSD. This edition was used as the basis for System V Release 3.

9th Edition—1988. This edition picked up enhancements made for 4.3BSD.
10th Edition—1989. This was the last edition.

AT&T’s Commercial Side of UNIX

In the late 1960s, while Bell Labs was looking for a new timesharing system, the
Bell Telephone company was looking for a way to automate their telephone

6 UNIX Filesystems—Evolution, Design, and Implementation

operations using minicomputers to switch over from their existing system of
people and paper.

It was Berkley Tague, the head of the computer planning department, who,
having seen the capabilities of UNIX, realized its potential and saw how it could
ease their job. By 1971 Tague gained approval for the adoption of UNIX to
support Bell Telephone operations. By 1973 he formed the UNIX Support Group
(USG) which worked closely with the UNIX team from Bell Labs. During the
same year, the first UNIX applications started to appear, initially involved in
updating customer directory information and intercepting calls to phone
numbers that had been changed. 1973 also saw the first C version of UNIX
released internally together with the first Programmer’s Work Bench, which
included sccs and other tools.

Around the time of 7th Edition UNIX, USG took responsibility for UNIX and
after a number of internal-only releases, System III UNIX became the first version
of UNIX that was available for use outside Bell Labs.

USG later became the UNIX System Development Laboratory (USDL). In 1984,
this group released System V Release 2 (SVR2) which was the first version of
UNIX to support paging, copy-on-write semantics, shared memory, and file
locking. SVR2 UNIX is described in Bach'’s classic book The Design of the UNIX
Operating System [BACHS6]. At this time there were about 100,000 installations of
UNIX worldwide running on a whole host of different platforms and
architectures. The fact that no other operating system had achieved this goal was
perhaps the single greatest reason why UNIX became so popular.

Following yet another name change to AT&T Information Systems (ATTIS), the
group released System V Release 3 (SVR3) in 1987. This included a number of
enhancements:

m The File System Switch (FSS) provided an architecture under which
multiple filesystems could coexist in the kernel at the same time. The FSS
provided a layer by which the rest of the kernel could perform file and
filesystem related operations in a filesystem independent manner through
a well defined interface.

m The RFS (Remote File Sharing) filesystem provided a fully distributed,
cache-coherent file system.

m The STREAMS subsystem for building networking stacks. The initial
implementation of STREAMS was first introduced in 8th Edition UNIX.

m The Transport Layer Interface (TLI) for network programming.

m Shared libraries which can reduce the amount of memory used.

System V Release 3.2 was released in 1987 which involved a merge of SVR3 and
Xenix, produced by Microsoft and the Santa Cruz Operation (SCO).

One of the major releases of UNIX from AT&T was System V Release 4 in
conjunction with Sun Microsystems. This is described in more detail in the
section System V Release 4 and Variants later in the chapter.

UNIX Evolution and Standardization

7

The Evolution of BSD UNIX

Following Thompson and Ritchie’s paper on UNIX at the Symposium on
Operating System Principles in 1974, Bob Fabry, a professor at the University of
California at Berkeley wanted to get a copy to experiment with.

After buying a PDP 11/45, he received the tapes for 4th Edition UNIX which
was installed in 1974. Due to disk related problems, Ken Thompson spent time
dialed in over a modem debugging the system.

Following the purchase of a Vax 11/70 in 1975, Ken Thompson started a
sabbatical at Berkeley during which time he brought up 6th Edition. Around this
time, graduate students Bill Joy and Chuck Haley arrived and started working on
the newly installed system, initially enhancing a Pascal system that Thompson
had put together. The same year, they produced the ex editor and started
working on the kernel following the departure of Thompson back to Bell Labs.

Following requests for the Pascal environment, Bill Joy put together the
Berkeley Software Distribution (consider this as 1BSD) in 1977 and distributed thirty
copies. Soon after, Joy wrote the vi editor, still hugely popular 25 years later.

In 1978 Joy released the second Berkeley Software Distribution which became
known as 2BSD. This included an updated Pascal system, the vi editor, and
termcap which could be used for driving multiple different terminal types, a
must for supporting vi.

Needing more power, a Vax 11/780 was purchased and the 32/V port of UNIX,
initiated at Bell Labs, was installed. Following a number of enhancements to
make use of the new virtual memory capabilities of the machine, Joy started
porting 2BSD to produce the third Berkeley distribution, 3BSD, which was
released in 1979.

Around this time, DARPA (Defense Advanced Research Projects Agency) decided
to standardize on UNIX in order to provide a network to link their major research
centers. Based on Fabry’s proposal to DARPA and the ensuing success of 3BSD,
an 18 month contract was awarded to Berkeley. Fabry set up the Computer Systems
Research Group (CSRG) to handle the contract and research. Bill Joy came on board
and set to work on what would become 4BSD. Released in 1980, the new system
included the Pascal compiler, job control, auto reboot, and a 1KB size filesystem.
Joy then released 4.1BSD which contained numerous performance improvements
to the kernel.

Following renewal of the contract by DARPA, the new project would produce
what would become the Berkeley Fast File System, support for large virtual address
spaces and better IPC mechanisms. The TCP/IP stack was integrated into BSD
and a number of temporary tools were introduced on top of the networking stack.
These temporary tools, namely rcp, rsh, rlogin, and rwho are a little more
permanent than their original authors anticipated, still being used today.

Following Bill Joy’s departure in 1982 to co-found Sun Microsystems, 4.2BSD
was released in 1983. Due to the introduction of TCP/IP and the Fast File System,
the number of 4.2BSD installations far exceeded System V from AT&T.

8 UNIX Filesystems—Evolution, Design, and Implementation

Following criticism of 4.1BSD performance, a two year period of tuning and
refining produced 4.3BSD which was released in 1986. Two years later,
completing the work started by Joy to divide the BSD kernel into machine
dependent and machine independent layers, CSRG released the finished work
under 4.3BSD-Tahoe. Further development which resulted in a rewrite of the
virtual memory subsystem, based on the Mach microkernel, together with NFS,
produced 4.3BSD-Reno in 1990.

BSD Networking Releases

To avoid BSD recipients having to obtain an AT&T source license while wanting
to have source access to the networking components of BSD, the Networking
Release of BSD was released in 1989. An expanded version, which involved
rewriting all except six kernel files, was distributed as the Networking Release 2
in 1991. This involved a huge effort by many people.

Bill Jolitz continued the work by rewriting the remaining six kernel files to
avoid AT&T copyrighted source code and porting the system to the Intel 386,
resulting in 386 /BSD which was distributed over the internet.

UNIX Goes to Court

Following the Net/2 release of BSD, the Berkeley Software Design, Incorporated
(BSDI) company was formed to develop a fully supported, commercial version.
The BSDI version, released in 1992, included replacements for the six kernel files,
was considerably cheaper than System V UNIX from USL, and used UNIX as
part of the telephone number in their advertisements to call for questions. This
was followed by a lawsuit from AT&T, initially aiming to prevent BSDI from
promoting their product as UNIX. This was then followed by an additional
lawsuit that claimed that the BSDI version contained proprietary USL source
code and secrets.

While the lawsuit continued, USL was purchased by Novell in 1993. Novell
founder and CEO, Ray Noorda, wanted to drop the lawsuit and in 1994 an
agreement was finally reached. As part of the agreement, 5 of the 18,000 files that
made up the distribution were removed. With some minor changes to other files
and the addition of copyright notices in an additional 70 files, the new,
4.4BSD-Lite version was released.

The NetBSD Operating System

386/BSD was extremely successful. Unfortunately Jolitz was unable to work full
time and keep up with his work on 386/BSD. Frustrated with the way that
development of 386/BSD was progressing, others started working on a parallel
development path, taking a combination of 386BSD and Net/2 and porting it to
large array of other platforms and architectures.

UNIX Evolution and Standardization 9

The FreeBSD Operating System

Following work on Jolitz’s 386/BSD system, Jordan Hubbard, Rod Grimes, and
Nate Williams released the Unofficial 386BSD Patchkit which contained a number
of changes. Jolitz denounced approval of the project in 1993, which was followed
by discussions between Hubbard and Walnut Creek to produce a new operating
system, which they called FreeBSD. The first CDROM version of FreeBSD, version
1.0, was released in December of 1993.

Following the USL lawsuit, the base operating system was upgraded from
Net/2 to 4.4BSD-Lite, which resulted in the release of FreeBSD 2.0 in November of
1994. Enhancements continue to be added with the latest stable release being
FreeBSD 4.2.

FreeBSD has been relatively successful on its own ground. It was also used as
the basis for Apple’s Mac OS X operating system.

The OpenBSD Operating System

Following a disagreement between Theo de Raadt, who had been responsible for
the SPARC port of NetBSD, and the NetBSD core team, de Raadt founded
OpenBSD. The new OS started to diverge from NetBSD 1.1 in 1995 and this was
followed by the first release, OpenBSD 3.0 in October of 1996. The core focus of
OpenBSD was security.

Although not as portable as NetBSD, OpenBSD still runs on a wide range of
machines and architectures and continues to lead the way as the most secure BSD
release available.

Sun Microsystems and SunOS

Sun Microsystems was founded in 1982 by four people including current CEO
Scott McNeally and BSD developer Bill Joy. In their first year they released their
first workstation based on hardware developed at Stanford University and on the
BSD operating system.

Sun has continued from day one to innovate and enhance UNIX. In order to
provide remote file access they introduced the Network File System (NFS) and the
VFS/vnode architecture to support it.

In 1987 Sun and AT&T joined forces to develop UNIX System V Release 4,
which combined the best of SunOS and System V Release 3.2. SVR4 encompassed
many of the ideas that Sun had implemented including VFS/vnodes, NFS, and
their virtual memory architecture, which cleanly divides memory management
into machine dependent and machine independent layers. Sun, together with
IBM and HP, continues to take UNIX to the enterprise, continually enhancing
their UNIX offerings while retaining compatibility at the standards level.

10 UNIX Filesystems—Evolution, Design, and Implementation

System V Release 4 and Variants

System V Release 4 set the standard for everyone else to follow producing an
extremely feature-rich operating system that combined the best of the historical
versions of UNIX with many new ideas from Sun. The following list shows some
of the major enhancements that came with SVR4:

m The VFS/vnode architecture that replaced the FSS from SVR3. The
VFS/vnode architecture was originally developed as part of SunOS.

Symbolic links.
The C and Korn Shells along with job control.
Memory mapped files.

The UFS filesystem derived from the BSD Fast File System. UFS became the
defacto standard on most versions of UNIX. It is still the default filesystem
on Solaris and is still undergoing major development. SVR4 also included
the NFS filesystem. At this stage, the largely unsuccessful RFS was starting
to fade.

m STREAMS-based console and TTY (teletype) management.

m Real-time scheduling and a partial implementation of kernel
preemption.

Enhancements continued thereafter. SVR4.1 included Asynchronous I/O. SVR4.2
included Access Control Lists (ACLs), the VERITAS Filesystem (VxFS), and
VERITAS Volume Manager (VxVM). Following this, with a major rewrite,
SVR4.2MP introduced Symmetric Multiprocessing (SMP) capabilities and kernel
threads.

Novell’s Entry into the UNIX Market

The UnixWare 1.0 release of UNIX was released in 1992 as a joint venture
between Novell and USL under the name Univel. Novell completed the
acquisition of USL in 1993, and both USL and Univel were merged to form the
Novell UNIX Systems Group.

UnixWare 1.0 was based on SVR4.0. This was followed by UnixWare 1.1, which
was based on SVR4.2. With the introduction of UnixWare 2.0, the kernel
(SVR4.2MP) had changed significantly, introducing SMP support and kernel
threads.

In 1993 Novell transferred the rights to the UNIX trademark to the X/Open
organization (now the Open Group). Two years later they sold their UNIX
business to SCO who in turn sold a dwindling UNIX business to Caldera in 2001.

UNIX Evolution and Standardization

11

Linux and the Open Source Movement

One could argue that if readers didn’t have to purchase Andrew Tanenbaum'’s
MINIX operating system that accompanied his book Operating Systems: Design and
Implementation [TANE87], there would be no Linux.

However, the Free Software Foundation, founded by Richard Stallman, had
already been working for a number of years on a free version of UNIX. The
compiler, utilities, and just about everything except the kernel had been written
under the auspices of the GNU license which allowed the source to be freely
distributed.

Linus Torvalds, a research assistant at the University of Helsinki in Finland,
released Linux 0.0.1 in August of 1991, and the rest, as they say, is history.
Popularity of Linux continues to grow. Although it originally took many of its
ideas from Minix, Linux has been influenced by all versions of UNIX and
non-UNIX systems. Linux followed in the success of UNIX by being ported to just
about every hardware architecture and platform available from IBM mainframes
down to hand-held organizers.

Users of Linux will find a number of components from many different authors
and organizations. A Linux OS is comprised of the Linux kernel, much of the Free
Software Foundation’s GNU software, and a number of other free applications
and utilities. There are many distributors of Linux, with the top players being Red
Hat, SuSe, TurboLinux, and Caldera.

UNIX Standardization

The section A Brief Walk through Time earlier in the chapter showed how the
different versions of UNIX came into existence through the 1980s. Although most
of these versions stemmed from either System V or BSD, each OS vendor added
its own enhancements, whether to increase performance or add new interfaces in
response to internal or customer demands. Because application portability was
crucial to the success of application developers, it soon became clear that a level of
standardization was needed to prevent this divergence from going too far.

Various bodies have been responsible for driving the standardization of UNIX
interfaces, whether at a command level, library, or system call level; or newer
initiatives such as the Large File Summit for 64-bit file access and the Data
Management Interfaces Group (DMIG) for interfaces relating to Hierarchical
Storage Management. This section describes the main standards bodies, their
goals, and the standards that they have produced.

IEEE and POSIX

The /usr/group organization was formed by a group of individuals in 1980 with
the intention of standardizing user-level interfaces with the goal of application
portability.

12 UNIX Filesystems—Evolution, Design, and Implementation

They reached consensus in 1984, and their work was used by the ANSI X3J11
committee, the same group who were working on standardization of the C
language. As the number of versions of UNIX started to increase, divergence
continued, and the /usr/group standard became less and less effective. This led
to the formation of the Portable Operating System Interface for Computing
Environments (POSIX) in 1995 which used the /usr/group standard as its base
working document. As a point of interest, the name POSIX was suggested by
Richard Stallman, founder of the Free Software Foundation (FSF).

The standard produced by this group, POSIX 1003.1-1998 became the most
widely recognized standard throughout the UNIX industry and is available on
many non-UNIX platforms. The initial standard was revised throughout the next
three years and adopted by the Institute of Electrical and Electronics Engineers
(IEEE) organization to become IEEE Std 1003.1-1990 although it is still more
commonly known as POSIX.1 or simply the POSIX standard. In 1989 the
/usr/group changed its name to Uniforum.

The POSIX working committees did not stop there and produced a number of
other standards of which some are shown in Table 1.1.

The X/Open Group

With the same goals as the /usr/group, a number of European computer
companies formed a non profit organization in 1984 called X/Open.

Although many of the players were not specifically UNIX based, application
portability was still key. The first published standard from X/Open was the
X/Open Portability Guide (XPG). The third draft of this standard, XPG3, included
both POSIX 1003.1-1998 and a number of interfaces pertaining to the X Window
System. The XPG3 test suite contained over 5,500 different tests that exercised
system calls, library interfaces, and the C language.

The XPG4 standard was released in October of 1992. This encompassed not
only POSIX.1, but also POSIX.2 and ISO C. A successful branding program was
put in place so that companies could claim XPG4 compliance.

The System V Interface Definition

The UNIX System Group (USG) released the System V Interface Definition (SVID)
version 1 with System V Release 2 in 1994. The SVID was a two-volume book that
described all user accessible interfaces that were available with SVR2. SVID
version 2 accompanied SVR3 in 1996.

With the introduction of SVR4 in 1989, version 3 of the SVID became available,
this time a four-volume set. To accompany the SVID, USG produced SVVS, the
System V Verification Suite, an exhaustive test suite that exercised all of the visible
interfaces. Any vendors licensing System V were required to run and pass SVVS
in order to use the name System V.

Since by this stage the SVID effectively encompassed the POSIX.1 standard, it
was used as the main document in producing what would become the Single
UNIX Specification.

UNIX Evolution and Standardization

13

Table 1.1 POSIX Standards

STANDARD DESCRIPTION

1003.1 System call and library routines
1003.2 The shell and UNIX utilities
1003.3 Test methods and conformance
1003.4 Real-time interfaces

Spec 11/70 and the Single UNIX Specification

In order to combine the existing UNIX standards such as POSIX.1 and XPG4, a
group was formed by Sun Microsystems, HP, IBM, Novell/USL, and the Open
Software Foundation (OSF) to provide a single unified standard based on existing
standards and additional features provided by the different UNIX versions. Using
XPG4 as a base which already encompassed POSIX.1 and ANSI/ISO C, a
collection of 1,170 APIs were specified in total, and thus the name Spec 11/70 was
given to the group and the specification.

The Spec 11/70 API was delivered to X/Open in 1983 resulting in the Single
UNIX Specification, which was published in 1994. Various names have since
followed this publication including UNIX 95 and the enhanced version renamed
UNIX 98.

The standard is still maintained by the Open Group which was formed by a
merge of X/Open and OSF. The Single UNIX Specification can be viewed online
at www.opengroup.org.

The main components of the Single UNIX Specification are:

System Interface Definitions (XBD). This document outlines common
definitions used in the XSH and XCU documents.

System Interfaces and Headers (XSH). This document describes all
programming interfaces and all header files. Most of the text provides UNIX
manual style representations for each APL

Commands and Utilities (XCU). This document describes all of the commands
and utilities in a UNIX manual page style format.

Networking Services. This document describes the X/Open Transport
Interface (XTI), XPG4 sockets, and the IP address resolution interfaces.

X/Open Curses. This document describes X/Open version 3 curses.

UNIX International and OSF

The Open Software Foundation (OSF) was founded in 1988 by seven leading
computer companies with the goal of producing an operating system together
with an open and portable application environment.

As a reaction to OSF and with a consortium of over 200 vendors and users,

14 UNIX Filesystems—Evolution, Design, and Implementation

UNIX International (UI) was founded in 1988 centered around AT&T’s SVR4
version of UNIX. The goals of the organization were to drive the direction for
SVR4 although in reality, UI turned out to be more of a marketing machine with
little actual output. Within a few years, Ul was dissolved, and the direction of
SVR4 was left to Novell/USL and then SCO.

Both OSF and UI achieved some notable successes. The big battle predicted
between the two never happened in reality. Through USL, UI pushed the SVID
version 3, which became the basis for the Single UNIX Specification. OSF merged
with X/Open to form the Open Group which still maintains the Single UNIX
Specification today along with other UNIX related standards.

The Data Management Interfaces Group

A small number of independent software and hardware vendors were
developing Hierarchical Storage Management (HSM) solutions, which involved
modifications to the base UNIX kernel (see the section Hierarchical Storage
Management in Chapter 12 for further details). Following publication of Neil
Webber’s USENIX paper “Operating System Support for Portable Filesystem
Extensions” [WEBB93], a group of HSM, backup, OS, and filesystem vendors
formed the Data Management Interfaces Group (DMIG) with the goal of
producing an interface specification that the OS/filesystem vendors would
implement to prevent the constant rewrite of HSM software with each iteration
of the operating system.

X/Open adopted the Data Management API (DMAPI) and renamed it XDSM
(X/Open Data Storage Management).

The standard allows for applications to transparently migrate data from the
filesystem (termed secondary storage) to tape or other offline storage devices
(tertiary storage) bypassing the UNIX timestamping mechanisms and without
knowledge of user-level applications. This allows HSM applications to achieve a
virtual memory-like approach to storage.

The Large File Summit

32-bit operating systems imposed limits on the size of files that could be accessed
due to limits imposed at various layers throughout the operating system, not
least the fact that the value that could be held in a signed integer, the maximum
value that could be held in a size t, was limited to 2GB -1.

To provide an intermediate solution that could allow access to files greater
than 2GB before the advent of 64-bit operating systems, the Large File Summit, a
group of operating system and filesystem vendors, was formed to produce a
specification that introduced a new set of data types and APIs that allowed for
large file access.

Applications could access large files, files greater than 2GB, by either invoking
64-bit versions of the system calls or via compile time flags that switched the size

UNIX Evolution and Standardization

15

of various data types. At the time of writing, much of this is now a moot point
with 64-bit file access being the norm in UNIX.

Summary

This chapter highlighted the main events that show how the different versions of
UNIX have evolved and where specific pieces of technology have come from. The
history of UNIX could fill a book by itself. Indeed, Peter Salus’ book A Quarter
Century of UNIX [SALU96] describes UNIX history from 1969 to 1994.

Programmers wishing to follow UNIX standards should adhere to the Single
UNIX Specification when striving for application compatibility across all the
major versions of UNIX. Although Linux does not comply completely with the
specification, most interfaces are supported. At a very minimum, the POSIX
interfaces are supported by just about every operating system, UNIX and
non-UNIX alike.

File-Based Concepts

To gain a full picture of the internal operation of filesystems, it is necessary to
understand what the user sees, why things are presented they way they are, and
what the main concepts are.

This chapter provides an introduction to basic file concepts. Users experienced
in UNIX may wish to skip this chapter. Users new to UNIX and those starting to
program in the UNIX environment will find these concepts useful. A basic
implementation of the 1s program helps to reinforce the material presented and
provides an introduction to file-related libraries and system calls, a topic that will
be expanded upon in the next chapter.

One peculiarity that UNIX introduced was the notion that everything in the
UNIX namespace (file tree) is visible as a file and that the same operations can be
applied to all file types. Thus one can open and read a directory in the same way
in which a file can be opened and read. Of course, this doesn’t always have the
desired effect. For example, running the UNIX command cat on a directory will
likely produce a screen full of unreadable characters. However, these and other
simple concepts are one of the great strengths of UNIX. The following sections
provide introductory material which describe file-based concepts and start to
paint a picture of how these components fit together.

17

18 UNIX Filesystems—Evolution, Design, and Implementation

UNIX File Types

The two most common file types are regular files and directories. Regular files are
by far the most common type of files in a UNIX system, with program source,
documents, executable programs, and scripts all being stored as regular files.
One could argue that executable files are a special type of regular file but their
handling by the filesystem is just the same, that is, the file contains a stream of
bytes that the filesystem never needs to interpret.

Directories are different however. Although they also contain a stream of
bytes, filesystems interpret these bytes in a manner that allows users to see which
files are present in the directory and how they are linked together from a
hierarchical perspective.

There are other file types which must be considered by programmers and
administrators. They are outlined here and described in more detail throughout
the chapter:

Regular files. As mentioned above, regular files hold data that is not
interpreted by the filesystem, such as program source and binaries,
documents and scripts.

Directories. Directories are used to provide structure within a filesystem.
Directories can index files of any type including other directories.

Symbolic links. A symbolic link, also called a symlink, is a means by which
one file can refer to another file through use of a different name. Symbolic
links can cross filesystem boundaries. Removing a symbolic link has no
impact on the file it references.

Hard links. Whereas a symbolic name is simply a mapping between one file
name and another with no impact on the referenced file, a hard link actually
refers to the same physical storage as the file to which it references. Thus by
creating a hard link, the file’s link count is incremented. When the hard link
is removed the link count is decremented. When the link count reaches zero,
the file is removed. Hard links cannot cross filesystem boundaries.

Named pipes. A named pipe is a bi-directional IPC (Inter Process
Communication) mechanism that allows unrelated processes to
communicate. This differs from traditional UNIX pipes that can only be
accessed by related processes.

Special files. A special file is a file that refers to a device such as a disk or tape.
To access a device, the caller would open the special file and access it just
like any other file.

Xenix special file. Semaphores and shared memory segments in the Xenix
operating system could be managed through the UNIX namespace. A
special file of zero length could be used to represent a semaphore or a
shared memory segment. There were a host of Xenix specific functions

File-Based Concepts

19

available for management of these IPC mechanisms. None of the calls were
part of any standard and therefore will not be discussed further.

To obtain the properties of any file type, the stat () system call can be invoked.
This is called by the 1s command on each file that must be displayed. The section
Basic File Properties, a bit later in this chapter, provides a simple implementation of

1s to show how this works in practice.

File Descriptors

In order to give a more practical edge to the descriptions that follow, it is
necessary to provide some examples in C. Therefore, before describing the
various file properties, it is necessary to show how to access them; thus, the need

to introduce file descriptors. Consider the following example:

$ cat open.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.hs

main ()

{

int £d4d;

fd = open("/etc/passwd", O_RDONLY) ;
printf("fd = %d\n", £4d);
close (£4) ;

}

S make open

cc open.c -o open
$./open
fd = 3

To access a file’s data, the file must first be opened. In this case, the open ()
system call is used. Looking at the manual page for open (), it shows that three

header files must be included as the following excerpt shows:

NAME
open open a file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.hs>

int open (const char *path, int oflag, ...);
DESCRIPTION

The open() function establishes the connection
file and a file descriptor. It creates an ...

20 UNIX Filesystems—Evolution, Design, and Implementation

The result of a successful open is a file descriptor that is a handle through which
the file can then be subsequently accessed. The file descriptor is required in calls
such as read (), write (), and 1seek (). The value of the file descriptor is not
important although how the value is assigned will be explained in the section File
Descriptors and the File Table in Chapter 6. What is important is that it is used
consistently. Following the open () call shown above, every time the passwd file
is to be accessed by a system call or library function that requires a file descriptor,
the value returned in £d must be used.

Note with this example and with many other short examples shown here and
in other books, the use of the close () system call is often omitted. This is
generally fine since files are automatically closed when the process exits.

Basic File Properties

Typing 1s -1 at the command prompt, users will see a whole host of properties
associated with each file displayed, as shown in Figure 2.1. The main properties
displayed are:

m The file type and access permissions

The link count of the file

The file’s owner and group

The size of the file

The date on which the file was last modified

The name of the file

Some of the values displayed will be obvious to most readers although there are
a few peculiarities. First of all however, where does this information come from?
There are two calls that the 1s command must make to get this information. Here
is a brief sketch of both:

1. For the current directory, retrieve the files that are stored in the directory.
2. For each file, obtain the properties of the file.

After this information is available, the 1s command can simply print out the
information that it receives. Shown below is an example of how the 1s command
is implemented. In summary, the system call getdents () will return all entries
in the directory, then for each entry, 1s will call the stat () system call to obtain
the file properties.

Here is the interface for the stat () system call:

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *buf);

File-Based Concepts 21

_'_1

user group and

A

-’ - regular file

‘d” - directory

‘s’ - symbolic link

‘P’ - named pipe

‘c’ - character special

‘b’ - block special

— link count

\J
-rw-r--r- 1 spate

fcf

A

user group

other permissions

file name

— file size |
\ \
137564 Feb 13 09:05 layout.tex

_'_1

date of
last modification

Figure 2.1 File properties shown by typing 1s -1

Thus the caller specifies the pathname of a file for which properties are to be read
and gets all of this information passed back in a stat structure defined as

follows:

struct stat
dev_t
ino_t
mode_t
nlink t
uid t
gid t
dev_t
off t
time t
time t
time t
long

{
st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;
st_blksize;

blkcent t st _blocks;

i

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ID of device containing file */

Inode number / file serial number */
File mode */

Number of links to file */

User ID of file */

Group ID of file */

Device ID for char/blk special file */
File size in bytes (regular file) */
Time of last access */

Time of last data modification */

Time of last status change */
Preferred I/O block size */

Number of 512 byte blocks allocated */

Given this information, it is relatively easy to map the fields shown here to the
information displayed by the 1s command. To help show how this works, an
abbreviated version of the 1s command is shown below. Note that this is not
complete, nor is it the best way to implement the command. It does however
show how to obtain information about individual files.

#include
#include
#include
#include
#include
#include
#include
#include
#include

W 0 J o0 Ul b WwN P

<sys/types.h>
<sys/stat.h>
<sys/dirent.h>
<sys/unistd.h>
<fcntl.h>
<unistd.h>
<errno.h>
<pwd.h>
<grp.h>

22 UNIX Filesystems—Evolution, Design, and Implementation

10

11 #define BUFSZ 1024

12

13 main()

14 {

15 struct dirent *dir;

16 struct stat st;

17 struct passwd *pw;

18 struct group *grp;

19 char buf [BUFSZ], *bp, *ftime;

20 int dfd, fd, nread;

21

22 dfd = open(".", O_RDONLY);

23 bzero (buf, BUFSZ) ;

24 while (nread = getdents(dfd, (struct dirent *)é&buf,
25 BUFSZ) != 0) {

26 bp = buf;

27 dir = (struct dirent *)buf;

28 do {

29 if (dir->d reclen != 0) {

30 stat (dir->d_name, &st);

31 ftime = ctime(&st.st _mtime);

32 ftime[16] = '\0'; ftime += 4;

33 pw = getpwuid(st.st_uid);

34 grp = getgrgid(st.st_gid);

35 perms (st.st_mode) ;

36 printf ("%$3d %-8s %-7s %9d %s %$s\n",
37 st.st_nlink, pw->pw name, grp->gr_name,
38 st.st_size, ftime, dir->d name);
39 }

40 bp = bp + dir->d reclen;

41 dir = (struct dirent *) (bp);

42 } while (dir->d ino != 0);

43 bzero (buf, BUFSZ) ;

44 }

45 }

The basic loop shown here is fairly straightforward. The majority of the program
deals with collecting the information obtained from stat () and putting it in a
form which is more presentable to the caller.

If a directory contains a large number of entries, it may be difficult to read all
entries in one call. Therefore the getdents () system call must be repeated until
all entries have been read. The value returned from getdents () is the number
of bytes read and not the number of directory entries. After all entries have been
read, a subsequent call to getdents () will return 0.

There are numerous routines available for gathering per user and group
information and for formatting different types of data. It is beyond the scope of
this book to describe all of these interfaces. Using the UNIX manual pages,
especially with the -k option, is often the best way to find the routines available.
For example, on Solaris, running man passwd produces the man page for the

File-Based Concepts 23

passwd command. The “SEE ALSO” section contains references to getpwnam () .
The man page for getpwnam() contains information about the getpwuid ()
function that is used in the above program.

As mentioned, the program shown here is far from being a complete
implementation of 1s nor indeed is it without bugs. The following examples
should allow readers to experiment:

m Although it is probably a rare condition, the program could crash
depending on the directory entries read. How could this crash occur?

m Implement the perms () function.

m Enhance the program to accept arguments including short and long
listings and allowing the caller to specify the directory to list.

In addition to the stat () system call shown previously there are also two
additional system calls which achieve the same result:

#include <sys/types.h>
#include <sys/stat.h>

int lstat (const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);
The only difference between stat () and lstat () is that for symbolic links,

lstat () returns information about the symbolic link whereas stat () returns
information about the file to which the symbolic link points.

The File Mode Creation Mask

There are many commands that can be used to change the properties of files.
Before describing each of these commands it is necessary to point out the file mode
creation mask. Consider the file created using the touch command as follows:

S touch myfile
S 1s -1 myfile
-YW-Yr--Y- 1 spate fcf 0 Feb 16 11:14 myfile

The first command instructs the shell to create a file if it doesn’t already exist. The
shell in turn invokes the open () or creat () system call to instruct the operating
system to create the file, passing a number of properties along with the creation
request. The net effect is that a file of zero length is created.

The file is created with the owner and group IDs set to those of the caller (as
specified in /etc/passwd). The permissions of the file indicate that it is readable
and writable by the owner (rw-) and readable both by other members of the
group f£cf and by everyone else.

24 UNIX Filesystems—Evolution, Design, and Implementation

What happens if you don’t want these permissions when the file is created?
Each shell supports the umask command that allows the user to change the
default mask, often referred to as the file mode creation mask. There are actually
two umask calls that take the same arguments. The first is a shell built-in variable
that keeps the specified mask for the lifetime of the shell, and the second is a
system binary, which is only really useful for checking the existing mask.

The current mask can be displayed in numeric or symbolic form as the two
following examples show:

$ umask

022

$ umask -S
U=rwx,g=rx, o=rx

To alter the creation mask, umask is called with a three digit number for which
each digit must be in the range 0 to 7. The three digits represent user, group, and
owner. Each can include access for read (r=4), write (w=2), and execute (x=1).

When a file is created, the caller specifies the new mode or access permissions
of the file. The umask for that process is then subtracted from the mode resulting
in the permissions that will be set for the file.

As an example, consider the default umask, which for most usersis 022, and a
file to be created by calling the touch utility:

$ umask

022

$ strace touch myfile 2>&1 | grep open | grep myfile
open ("myfile",

O_WRONLY O NONBLOCK O CREAT O NOCTTY O LARGEFILE, 0666) = 3
S 1s -1 myfile
-YW-Yr--Y- 1 spate fcf 0 Apr 4 09:45 myfile

A umask value of 022 indicates that write access should be turned off for the
group and others. The touch command then creates the file and passes a mode
of 666. The resulting set of permissions will be 666 - 022 = 644, which gives
the permissions -rw-r--r--.

Changing File Permissions

There are a number of commands that allow the user to change file properties.
The most commonly used is the chmod utility, which takes arguments as follows:

chmod [-fR] <absolute-mode> file ...

chmod [-fR] <symbolic-mode-list> file ...

File-Based Concepts

25

The mode to be applied gives the new or modified permissions of the file. For
example, if the new permissions for a file should be rwxr--r- -, this equates to
the value 744. For this case, chmod can be called with an absolute-mode
argument as follows:

S 1s -1 myfile

-rW------ 1 spate fcf 0 Mar 6 10:09 myfile
S chmod 744 myfile

$ 1s -1 myfile

-YWXY--Y- 1 spate fcf 0 Mar 6 10:09 myfile*

To achieve the same result passing a symbolic-mode argument, chmod can be
called as follows:

S 1s -1 myfile

-rW------ 1 spate fcf 0 Mar 6 10:09 myfile
$ chmod u+x,a+r myfile

$ 1s -1 myfile

-YWXY--Y- 1 spate fcf 0 Mar 6 10:09 myfile*

In symbolic mode, the permissions for user, group, other, or all users can be
modified by specifying u, g, o, or a. Permissions may be specified by adding (+),
removing (-), or specifying directly (=), For example, another way to achieve the
above change is:

S 1s -1 myfile

-rW------ 1 spate fcf 0 Mar 6 10:09 myfile
$ chmod u=rwx,g=r,o=r myfile

$ 1s -1 myfile

-YWXY--Y- 1 spate fcf 0 Mar 6 10:09 myfile*

One last point worthy of mention is the -R argument which can be passed to
chmod. With this option, chmod recursively descends through any directory
arguments. For example:

$ 1s -1d mydir

drwxr-xr-x 2 spate fef 4096 Mar 30 11:06 mydir//
$ 1s -1 mydir

total 0

-Yrw-r--r- 1 spate fcf 0 Mar 30 11:06 fileA
-Yw-r--r- 1 spate fcf 0 Mar 30 11:06 fileB

$ chmod -R a+w mydir
$ 1s -1d mydir

drwXTrwXrwx 2 spate fcf 4096 Mar 30 11:06 mydir/
$ 1s -1 mydir

total 0

-YW-TW-YW 1 spate fcf 0 Mar 30 11:06 fileA

-TW-YW-YW 1 spate fcf 0 Mar 30 11:06 fileB

26 UNIX Filesystems—Evolution, Design, and Implementation

Note that the recursive option is typically available with most commands that
change file properties. Where it is not, the following invocation of £ind will
achieve the same result:

$ find mydir -print | xargs chmod a+w

The chmod command is implemented on top of the chmod () system call. There
are two calls, one that operates on a pathname and one that operates on a file
descriptor as the following declarations show:

#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode t mode) ;

int fchmod(int fildes, mode_t mode) ;

The mode argument is a bitwise OR of the fields shown in Table 2.1. Some of the
flags can be combined as shown below:
S_IRWXU. This is the bitwise OR of S TRUSR, S IWUSR and S_IXUSR
S_IRWXG. This is the bitwise OR of S IRGRPF, S IWGRP and S_IXGRP
S_IRWXO. This is the bitwise OR of S_IROTH, S_IWOTH and S_IXOTH

One can see from the preceding information that the chmod utility is largely a
string parsing command which collects all the information required and then
makes a call to chmod ().

Changing File Ownership

When a file is created, the user and group IDs are set to those of the caller.
Occasionally it is useful to change ownership of a file or change the group in
which the file resides. Only the root user can change the ownership of a file
although any user can change the file’s group ID to another group in which the
user resides.

There are three calls that can be used to change the file’s user and group as
shown below:

#include <sys/types.h>
#include <unistd.h>

int chown(const char *path, uid t owner, gid t group);
int fchown(int fd, uid t owner, gid t group);
int lchown(const char *path, uid t owner, gid t group);

The difference between chown () and lchown () is that the 1chown () system
call operates on the symbolic link specified rather than the file to which it points.

File-Based Concepts 27

Table 2.1 Permissions Passed to chmod ()

PERMISSION DESCRIPTION

S_IRWXU Read, write, execute/search by owner
S_IRUSR Read permission by owner

S _IWUSR Write permission by owner

S_IXUSR Execute/search permission by owner
S_IRWXG Read, write, execute/search by group
S_IRGRP Read permission by group

S_IWGRP Write permission by group

S_IXGRP Execute/search permission by group
S IRWXO Read, write, execute/search by others
S_IROTH Read permission by others

S_IWOTH Write permission by others

S_IXOTH Execute/search permission by others
S_ISUID Set-user-ID on execution

S ISGID Set-group-ID on execution

S _ISVTX On directories, set the restricted deletion flag

In addition to setting the user and group IDs of the file, it is also possible to set
the effective user and effective group IDs such that if the file is executed, the caller
effectively becomes the owner of the file for the duration of execution. This is a
commonly used feature in UNIX. For example, the passwd command is a setuid
binary. When the command is executed it must gain an effective user ID of root in
order to change the passwd (F) file. For example:

$ 1ls -1 /etc/passwd

-Y--r--r- 1 root other 157670 Mar 14 16:03 /etc/passwd
$ 1ls -1 /usr/bin/passwd
-r-sr-sr-x 3 root sys 99640 Oct 6 1998 /usr/bin/passwd*

Because the passwad file is not writable by others, changing it requires that the
passwd command run as root as noted by the s shown above. When run, the
process runs as root allowing the passwd file to be changed.

The setuid () and setgid () system calls enable the user and group IDs to
be changed. Similarly, the seteuid () and setegid() system calls enable the
effective user and effective group ID to be changed:

28 UNIX Filesystems—Evolution, Design, and Implementation

#include <unistd.hs>
int setuid(uid_t uid)
int seteuid(uid t euid)

int setgid(gid t gid)
int setegid(gid t egid)

Handling permissions checking is a task performed by the kernel.

Changing File Times

When a file is created, there are three timestamps associated with the file as
shown in the stat structure earlier. These are the creation time, the time of last

modification, and the time that the file was last accessed.

On occasion it is useful to change the access and modification times. One
particular use is in a programming environment where a programmer wishes to

rce re-compilation of a module. usual wa achieve this i run
force re-compilation of odule. The usual to achieve this is to the

touch command on the file and then recompile. For example:

$ 1s -1 hello*

-YTWXY-XY-X 1 spate fcf 13397 Mar 30 11:53 hello*
-YW-r--Y- 1 spate fcf 31 Mar 30 11:52 hello.c
$ make hello

make: 'hello' is up to date.

$ touch hello.c

$ 1s -1 hello.c

-YW-Yr--Y- 1 spate fcf 31 Mar 30 11:55 hello.c
$ make hello

cc hello.c -o hello

$

The system calls utime () and utimes () can be used to change both the access
and modification times. In some versions of UNIX, utimes () is simply

implemented by calling utime ().

#include <sys/types.h>
#include <utime.h>

int utime (const char *filename, struct utimbuf *buf) ;
#include <sys/time.h>
int utimes(char *filename, struct timeval *tvp);
struct utimbuf {

time t actime; /* access time */

time t modtime; /* modification time */

}i

struct timeval ({

File-Based Concepts 29

long tv_sec; /* seconds */
long tv_usec; /* microseconds */

i

By running strace, truss etc, it is possible to see how a call to touch maps
onto the utime () system call as follows:

$ strace touch myfile 2>&1 | grep utime
utime ("myfile", NULL) =0

To change just the access time of the file, the touch command must first
determine what the modification time of the file is. In this case, the call sequence
is a little different as the following example shows:

$ strace touch -a myfile

time ([984680824]) = 984680824

open ("myfile",

O_WRONLY |O_NONBLOCK|O CREAT|O NOCTTY|O LARGEFILE, 0666) = 3
fstat (3, st mode=S_ IFREG|0644, st size=0, ...) = 0

close(3) =0

utime ("myfile", [2001/03/15-10:27:04, 2001/03/15-10:26:23]) = 0

In this case, the current time is obtained through calling time (). The file is then
opened and fstat () called to obtain the file’s modification time. The call to
utime () then passes the original modification time and the new access time.

Truncating and Removing Files

Removing files is something that people just take for granted in the same vein as
pulling up an editor and creating a new file. However, the internal operation of
truncating and removing files can be a particularly complicated operation as later
chapters will show.

There are two calls that can be invoked to truncate a file:

#include <unistd.h>

int truncate(const char *path, off t length);
int ftruncate(int fildes, off t length);

The confusing aspect of truncation is that through the calls shown here it is
possible to truncate upwards, thus increasing the size of the file! If the value of
length is less than the current size of the file, the file size will be changed and
storage above the new size can be freed. However, if the value of length is
greater than the current size, storage will be allocated to the file, and the file size
will be modified to reflect the new storage.

To remove a file, the unlink () system call can be invoked:

30 UNIX Filesystems—Evolution, Design, and Implementation

#include <unistd.h>

int unlink(const char *path);

The call is appropriately named since it does not necessarily remove the file but
decrements the file’s link count. If the link count reaches zero, the file is indeed
removed as the following example shows:

S touch myfile

S 1s -1 myfile

-YW-r--Y- 1 spate fcf 0 Mar 15 11:09 myfile
$ 1n myfile myfile2

$ 1s -1 myfile*

-YW-Tr--Y- 2 spate fcf 0 Mar 15 11:09 myfile
-YW-Yr--Y- 2 spate fcf 0 Mar 15 11:09 myfile2
S rm myfile

$ 1s -1 myfile*

-YW-Yr--Y- 1 spate fcf 0 Mar 15 11:09 myfile2
S rm myfile2

$ 1s -1 myfile*

ls: myfile*: No such file or directory

When myfile is created it has a link count of 1. Creation of the hard link
(myfile2) increases the link count. In this case there are two directory entries
(myfile and myfile2), but they point to the same file.

To remove myfile, the unlink () system call is invoked, which decrements
the link count and removes the directory entry for myfile.

Directories

There are a number of routines that relate to directories. As with other simple
UNIX commands, they often have a close correspondence to the system calls that
they call, as shown in Table 2.2.

The arguments passed to most directory operations is dependent on where in
the file hierarchy the caller is at the time of the call, together with the pathname
passed to the command:

Current working directory. This is where the calling process is at the time of
the call; it can be obtained through use of pwd from the shell or getcwd ()
from within a C program.

Absolute pathname. An absolute pathname is one that starts with the
character /. Thus to get to the base filename, the full pathname starting at /
must be parsed. The pathname /etc/passwd is absolute.

Relative pathname. A relative pathname does not contain / as the first
character and starts from the current working directory. For example, to
reach the same passwd file by specifying passwd the current working
directory must be /etc.

File-Based Concepts 31

Table 2.2 Directory Related Operations

COMMAND SYSTEM CALL DESCRIPTION
mkdir mkdir () Make a new directory
rmdir rmdir () Remove a directory
pwd getcwd () Display the current working directory
cd chdir () Change directory
fchdir ()
chroot chroot () Change the root directory

The following example shows how these calls can be used together:

$ cat dir.c

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/param.h>
#include <fecntl.hs>
#include <unistd.h>

main ()

{
printf ("cwd = %s\n", getcwd(NULL, MAXPATHLEN)) ;
mkdir ("mydir", S IRWXU) ;
chdir ("mydir") ;
printf("cwd = %s\n", getcwd(NULL, MAXPATHLEN)) ;
chdir("..");
rmdir ("mydir") ;

1

$ make dir

cc -o dir dir.c

$./dir

cwd = /h/h065/spate/tmp

cwd = /h/h065/spate/tmp/mydir

Special Files

A special file is a file that has no associated storage but can be used to gain access
to a device. The goal here is to be able to access a device using the same
mechanisms by which regular files and directories can be accessed. Thus, callers
are able to invoke open (), read (), and write () in the same way that these
system calls can be used on regular files.

One noticeable difference between special files and other file types can be seen
by issuing an 1s command as follows:

32 UNIX Filesystems—Evolution, Design, and Implementation

$ 1ls -1 /dev/vx/*dsk/homedg/h
brw------ 1 root root 142,4002 Jun 5 1999 /dev/vx/dsk/homedg/h
Crw------ 1 root root 142,4002 Dec 5 21:48 /dev/vx/rdsk/homedg/h

In this example there are two device files denoted by the b and ¢ as the first
character displayed on each line. This letter indicates the type of device that this
file represents. Block devices are represented by the letter b while character
devices are represented by the letter c. For block devices, data is accessed in
fixed-size blocks while for character devices data can be accessed in multiple
different sized blocks ranging from a single character upwards.

Device special files are created with the mknod command as follows:

mknod name b major minor
mknod name ¢ major minor

For example, to create the above two files, execute the following commands:

mknod /dev/vx/dsk/homedg/h b 142 4002
mknod /dev/vx/rdsk/homedg/h c 142 4002

The major number is used to point to the device driver that controls the device,
while the minor number is a private field used by the device driver.
The mknod command is built on top of the mknod () system call:

#include <sys/stat.h>

int mknod(const char *path, mode t mode, dev_t dev);

The mode argument specifies the type of file to be created, which can be one of
the following:

S_IFIFO. FIFO special file (named pipe).

S_IFCHR. Character special file.

S_IFDIR. Directory file.

S_IFBLK. Block special file.

S_IFREG. Regular file.
The file access permissions are also passed in through the mode argument. The
permissions are constructed from a bitwise OR for which the values are the same

as for the chmod () system call as outlined in the section Changing File Permissions
earlier in this chapter.

Symbolic Links and Hard Links

Symbolic links and hard links can be created using the 1n command, which in
turn maps onto the 1ink () and symlink () system calls. Both prototypes are

File-Based Concepts

33

shown below:
#include <unistd.h>

int link (const char *existing, const char *new) ;
int symlink (const char *namel, const char *name2);

The section Truncating and Removing Files earlier in this chapter describes hard
links and showed the effects that 1ink () and unlink () have on the underlying
file. Symbolic links are managed in a very different manner by the filesystem as
the following example shows:

S echo "Hello world" > myfile

S 1s -1 myfile

-YW-r--Y- 1 spate fcf 12 Mar 15 12:17 myfile
S cat myfile

Hello world

$ strace ln -s myfile mysymlink 2>&1 | grep link

execve ("/bin/1n", ["ln", "-s", "myfile",

"mysymlink"], [/* 39 vars */]) = 0

lstat ("mysymlink", O0xbffff660) = -1 ENOENT (No such file/directory)
symlink ("myfile", "mysymlink") = 0

$ 1s -1 my*

-YW-Yr--Y- 1 spate fcf 12 Mar 15 12:17 myfile

lrwxrwxrwx 1 spate fcf 6 Mar 15 12:18 mysymlink -> myfile

$ cat mysymlink

Hello world

S rm myfile

$ cat mysymlink

cat: mysymlink: No such file or directory

The 1n command checks to see if a file called mysymlink already exists and then
calls symlink () to create the symbolic link. There are two things to notice here.
First of all, after the symbolic link is created, the link count of myfile does not
change. Secondly, the size of mysymlink is 6 bytes, which is the length of the
string myfile.

Because creating a symbolic link does not change the file it points to in any way,
after myfile is removed, mysymlink does not point to anything as the example
shows.

Named Pipes

Although Inter Process Communication is beyond the scope of a book on
filesystems, since named pipes are stored in the filesystem as a separate file type,
they should be given some mention here.

A named pipe is a means by which unrelated processes can communicate. A
simple example will show how this all works:

34 UNIX Filesystems—Evolution, Design, and Implementation

S mkfifo mypipe
$ 1s -1 mypipe

prw-r--r- 1 spate fcf 0 Mar 13 11:29 mypipe
S echo "Hello world" > mypipe &
[1] 2010

$ cat < mypipe
Hello world
[11+ Done echo "Hello world" >mypipe

The mk £ i fo command makes use of the mknod () system call.

The filesystem records the fact that the file is a named pipe. However, it has no
storage associated with it and other than responding to an open request, the
filesystem plays no role on the IPC mechanisms of the pipe. Pipes themselves
traditionally used storage in the filesystem for temporarily storing the data.

Summary

It is difficult to provide an introductory chapter on file-based concepts without
digging into too much detail. The chapter provided many of the basic functions
available to view files, return their properties and change these properties.

To better understand how the main UNIX commands are implemented and
how they interact with the filesystem, the GNU fileutils package provides
excellent documentation, which can be found online at:

www.gnu.org/manual/fileutils/html mono/fileutils.html
and the source for these utilities can be found at:

ftp://alpha.gnu.org/gnu/fetish

User File I/O

Building on the principles introduced in the last chapter, this chapter describes
the major file-related programmatic interfaces (at a C level) including basic file
access system calls, memory mapped files, asynchronous I/O, and sparse files.

To reinforce the material, examples are provided wherever possible. Such
examples include simple implementations of various UNIX commands including
cat, cp, and dd.

The previous chapter described many of the basic file concepts. This chapter
goes one step further and describes the different interfaces that can be called to
access files. Most of the APIs described here are at the system call level. Library
calls typically map directly to system calls so are not addressed in any detail here.

The material presented here is important for understanding the overall
implementation of filesystems in UNIX. By understanding the user-level
interfaces that need to be supported, the implementation of filesystems within the
kernel is easier to grasp.

Library Functions versus System Calls

System calls are functions that transfer control from the user process to the
operating system kernel. Functions such as read() and write () are system

35

36 UNIX Filesystems—Evolution, Design, and Implementation

calls. The process invokes them with the appropriate arguments, control transfers
to the kernel where the system call is executed, results are passed back to the
calling process, and finally, control is passed back to the user process.

Library functions typically provide a richer set of features. For example, the
fread () library function reads a number of elements of data of specified size
from a file. While presenting this formatted data to the user, internally it will call
the read () system call to actually read data from the file.

Library functions are implemented on top of system calls. The decision
whether to use system calls or library functions is largely dependent on the
application being written. Applications wishing to have much more control over
how they perform I/O in order to optimize for performance may well invoke
system calls directly. If an application writer wishes to use many of the features
that are available at the library level, this could save a fair amount of
programming effort. System calls can consume more time than invoking library
functions because they involve transferring control of the process from user
mode to kernel mode. However, the implementation of different library functions
may not meet the needs of the particular application. In other words, whether to
use library functions or systems calls is not an obvious choice because it very
much depends on the application being written.

Which Header Files to Use?

The UNIX header files are an excellent source of information to understand
user-level programming and also kernel-level data structures. Most of the header
files that are needed for user level programming can be found under
/usr/include and /usr/include/sys.

The header files that are needed are shown in the manual page of the library
function or system call to be used. For example, using the stat () system call
requires the following two header files:

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char path, struct stat buf);

The stat.h header file defines the stat structure. The types.h header file
defines the types of each of the fields in the stat structure.

Header files that reside in /usr/include are used purely by applications.
Those header files that reside in /usr/include/sys are also used by the
kernel. Using stat () as an example, a reference to the stat structure is passed
from the user process to the kernel, the kernel fills in the fields of the structure
and then returns. Thus, in many circumstances, both user processes and the
kernel need to understand the same structures and data types.

User File I/0 37

The Six Basic File Operations

Most file creation and file I/O needs can be met by the six basic system calls
shown in Table 3.1. This section uses these commands to show a basic
implementation of the UNIX cat command, which is one of the easiest of the
UNIX commands to implement.

However, before giving its implementation, it is necessary to describe the terms
standard input, standard output, and standard error. As described in the section File
Descriptors in Chapter 2, the first file that is opened by a user process is assigned a
file descriptor value of 3. When the new process is created, it typically inherits the
first three file descriptors from its parent. These file descriptors (0, 1, and 2) have a
special meaning to routines in the C runtime library and refer to the standard
input, standard output, and standard error of the process respectively. When
using library routines, a file stream is specified that determines where data is to be
read from or written to. Some functions such as printf () write to standard
output by default. For other routines such as fprintf (), the file stream must be
specified. For standard output, stdout may be used and for standard error,
stderr may be used. Similarly, when using routines that require an input stream,
stdin may be used. Chapter 5 describes the implementation of the standard I/O
library. For now simply consider them as a layer on top of file descriptors.

When directly invoking system calls, which requires file descriptors, the
constants STDIN FILENO, STDOUT FILENO, and STDERR FILENO may be
used. These values are defined in unistd.h as follows:

#define STDIN FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

Looking at the implementation of the cat command, the program must be able to
use standard input, output, and error to handle invocations such as:

$ cat # read from standard input
$ cat file # read from 'file'
$ cat file > file2 # redirect standard output

Thus there is a small amount parsing to be performed before the program knows
which file to read from and which file to write to. The program source is shown
below:

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.hs>
#include <unistd.h>

#define BUFSZ 512

main (int argc, char argv)

{

W o J o0 Ul b WN P

38 UNIX Filesystems—Evolution, Design, and Implementation

Table 3.1 The Six Basic System Calls Needed for File I/O

SYSTEM CALL FUNCTION

open () Open an existing file or create a new file
creat () Create a new file

close () Close an already open file

lseek () Seek to a specified position in the file
read () Read data from the file from the current position
write () Write data starting at the current position
10 char buf [BUFSZ] ;

11 int ifd, ofd, nread;

12

13 get fds(argc, argv, &ifd, &ofd);

14 while ((nread = read(ifd, buf, BUFSZ)) != 0) {

15 write (ofd, buf, nread);

16 }

17 }

As previously mentioned, there is actually very little work to do in the main
program. The get £ds () function, which is not shown here, is responsible for
assigning the appropriate file descriptors to i £d and o£d based on the following
input:

S mycat
ifd = STDIN_ FILENO
ofd = STDOUT_ FILENO

S mycat file
ifd = open(file, O RDONLY)
ofd = STDOUT_ FILENO

S mycat > file
ifd = STDIN_ FILENO
ofd = open(file, O WRONLY | O CREAT)

S mycat fileA > fileB
ifd = open(fileA, O _RDONLY)
ofd = open(fileB, O WRONLY | O_CREAT)

The following examples show the program running:

S mycat > testfile

Hello world

S mycat testfile

Hello world

S mycat testfile > testfile2

User File 1/10

39

S mycat testfile2
Hello world

S mycat

Hello

Hello

world

world

To modify the program, one exercise to try is to implement the get f£ds ()
function. Some additional exercises to try are:

1. Number all output lines (cat -n). Parse the input strings to detect the -n.
2. Print all tabs as *I and place a $ character at the end of each line (cat -ET).

The previous program reads the whole file and writes out its contents.
Commands such as dd allow the caller to seek to a specified block in the input file
and output a specified number of blocks.

Reading sequentially from the start of the file in order to get to the part which
the user specified would be particularly inefficient. The 1seek () system call
allows the file pointer to be modified, thus allowing random access to the file. The
declaration for 1seek () is as follows:

#include <sys/types.h>
#include <unistd.h>

off t lseek(int fildes, off t offset, int whence);

The offset and whence arguments dictate where the file pointer should be
positioned:

m If whence is SEEK_SET the file pointer is set to of £set bytes.

m If whence is SEEK_CUR the file pointer is set to its current location plus
offset.

m If whence is SEEK_END the file pointer is set to the size of the file plus
offset.

When a file is first opened, the file pointer is set to 0 indicating that the first byte
read will be at an offset of 0 bytes from the start of the file. Each time data is read,
the file pointer is incremented by the amount of data read such that the next read
will start from the offset in the file referenced by the updated pointer. For
example, if the first read of a file is for 1024 bytes, the file pointer for the next read
willbe setto 0 + 1024 = 1024.Reading another 1024 bytes will start from byte
offset 1024. After that read the file pointer will be set to 1024 + 1024 = 2048
and so on.

By seeking throughout the input and output files, it is possible to see how the
dd command can be implemented. As with many UNIX commands, most of the
work is done in parsing the command line to determine the input and output
files, the starting position to read, the block size for reading, and so on. The

40 UNIX Filesystems—Evolution, Design, and Implementation

example below shows how 1lseek () is used to seek to a specified starting offset
within the input file. In this example, all data read is written to standard output:

1 #include <sys/types.h>

2 #include <sys/stat.h>

3 #include <fcntl.h>

4 #include <unistd.h>

5

6 #define BUFSZ 512

7

8 main (int argc, char argv)

9 {

10 char *buf;

11 int fd, nread;

12 off t offset;

13 size t iosize;

14

15 if (argec != 4) {

16 printf ("usage: mydd filename offset size\n");
17 }

18 fd = open(argv([1l], O_RDONLY) ;

19 if (f£d < 0) {
20 printf ("unable to open file\n");
21 exit (1) ;
22 }
23 offset = (off_ t)atol(argv(2]);
24 buf = (char *)malloc(argv([3]);
25 lseek(fd, offset, SEEK SET);
26 nread = read(fd, buf, iosize);
27 write (STDOUT FILENO, buf, nread);
28 }

Using a large file as an example, try different offsets and sizes and determine the
effect on performance. Also try multiple runs of the program. Some of the effects
seen may not be as expected. The section Data and Attribute Caching, a bit later in
this chapter, discusses some of these effects.

Duplicate File Descriptors

The section File Descriptors, in Chapter 2, introduced the concept of file
descriptors. Typically a file descriptor is returned in response to an open () or
creat () system call. The dup () system call allows a user to duplicate an
existing open file descriptor.

#include <unistd.h>

int dup(int fildes) ;

User File /0 41

There are a number of uses for dup () that are really beyond the scope of this
book. However, the shell often uses dup () when connecting the input and output
streams of processes via pipes.

Seeking and I/O Combined

The pread () and pwrite () system calls combine the effects of 1seek () and
read () (orwrite ()) into a single system call. This provides some improvement
in performance although the net effect will only really be visible in an application
that has a very I/0 intensive workload. However, both interfaces are supported
by the Single UNIX Specification and should be accessible in most UNIX
environments. The definition of these interfaces is as follows:

#include <unistd.h>

ssize t pread(int fildes, void buf, size t nbyte, off t offset);
ssize_ t pwrite(int fildes, const void buf, size t nbyte,
off t offset);

The example below continues on from the dd program described earlier and
shows the use of combining the 1seek () with read () and write () calls:

1 #include <sys/types.h>

2 #include <sys/stat.h>

3 #include <fcntl.hs>

4 #include <unistd.h>

5

6 main(int argc, char argv)

7 {

8 char *buf;
9 int ifd, ofd, nread;
10 off t inoffset, outoffset;
11 size t insize, outsize;
12
13 if (arge !'= 7) {
14 printf ("usage: mydd infilename in offset"
15 " in size outfilename out offset"
16 " out_size\n");
17 }
18 ifd = open(argv([1l], O_RDONLY) ;
19 if (ifd < 0) {
20 printf ("unable to open %s\n", argv[l]);
21 exit (1) ;
22 }
23 ofd = open(argv[4], O WRONLY) ;
24 if (ofd < 0) {
25 printf ("unable to open %s\n", argv([4]);
26 exit (1) ;
27 }

28 inoffset = (off_t)atol(argv[2]);

42 UNIX Filesystems—Evolution, Design, and Implementation

29 insize = (size t)atol(argvI[3]);

30 outoffset = (off_ t)atol(argv[5]);

31 outsize = (size_t)atol(argvl[6]);

32 buf = (char *)malloc (insize) ;

33 if (insize < outsize)

34 outsize = insize;

35

36 nread = pread(ifd, buf, insize, inoffset);
37 pwrite (ofd, buf,

38 (nread < outsize) ? nread : outsize, outoffset);
39 }

The simple example below shows how the program is run:

$ cat fileA
0123456789
$ cat fileB

S mydd2 fileA 2 4 fileB 4 3
$ cat fileA

0123456789

$ cat fileB

----234---

To indicate how the performance may be improved through the use of pread ()
and pwrite () the I/O loop was repeated 1 million times and a call was made to
time () to determine how many seconds it took to execute the loop between this
and the earlier example.

For the pread () /pwrite () combination the average time to complete the
I/O loop was 25 seconds while for the 1seek()/read() and
lseek () /write () combinations the average time was 35 seconds, which
shows a considerable difference.

This test shows the advantage of pread () and pwrite () in its best form. In
general though, if an lseek() is immediately followed by a read() or
write (), the two calls should be combined.

Data and Attribute Caching

There are a number of flags that can be passed to open () that control various
aspects of the I/O. Also, some filesystems support additional but non standard
methods for improving I/O performance.

Firstly, there are three options, supported under the Single UNIX Specification,
that can be passed to open () that have an impact on subsequent I/O operations.
When a write takes place, there are two items of data that must be written to disk,
namely the file data and the file’s inode. An inode is the object stored on disk that
describes the file, including the properties seen by calling stat () together with
a block map of all data blocks associated with the file.

The three options that are supported from a standards perspective are:

User File /0 43

O_SYNC. For all types of writes, whether allocation is required or not, the data
and any meta-data updates are committed to disk before the write returns.
For reads, the access time stamp will be updated before the read returns.

O_DSYNC. When a write occurs, the data will be committed to disk before the
write returns but the file’s meta-data may not be written to disk at this stage.
This will result in better I/O throughput because, if implemented efficiently
by the filesystem, the number of inode updates will be minimized,
effectively halving the number of writes. Typically, if the write results in an
allocation to the file (a write over a hole or beyond the end of the file) the
meta-data is also written to disk. However, if the write does not involve an
allocation, the timestamps will typically not be written synchronously.

O_RSYNC. If both the 0_RSYNC and O_DSYNC flags are set, the read returns
after the data has been read and the file attributes have been updated on
disk, with the exception of file timestamps that may be written later. If there
are any writes pending that cover the range of data to be read, these writes
are committed before the read returns.

If both the 0 RSYNC and O_SYNC flags are set, the behavior is identical to
that of setting O_RSYNC and O_DSYNC except that all file attributes changed
by the read operation (including all time attributes) must also be committed
to disk before the read returns.

Which option to choose is dependent on the application. For I/O intensive
applications where timestamps updates are not particularly important, there can
be a significant performance boost by using O DSYNC in place of O SYNC.

VxFS Caching Advisories

Some filesystems provide non standard means of improving I/O performance by
offering additional features. For example, the VERITAS filesystem, VxFS,
provides the noatime mount option that disables access time updates; this is
usually fine for most application environments.

The following example shows the effect that selecting O SYNC versus O_DSYNC
can have on an application:

#include <sys/unistd.h>
#include <sys/types.h>
#include <fentl.hs

main (int argc, char argvl(])
{
char buf [4096] ;
int i, fd, advisory;

fd = open("myfile", O WRONLY|O DSYNC) ;
for (i=0 ; i<1024 ; i++) {
write (fd, buf, 4096) ;

}

44 UNIX Filesystems—Evolution, Design, and Implementation

By having a program that is identical to the previous with the exception of setting
O_SYNC in place of O_DSYNC, the output of the two programs is as follows:

time ./sync
real Om8.33s
user 0m0.03s
sys Oml.92s
time ./dsync
real Om6.44s
user 0m0.02s
sys 0m0.69s

This clearly shows the increase in time when selecting 0 SYNC. VxFS offers a
number of other advisories that go beyond what is currently supported by the
traditional UNIX standards. These options can only be accessed through use of
the ioctl () system call. These advisories give an application writer more
control over a number of I/O parameters:

VX_RANDOM. Filesystems try to determine the I/O pattern in order to perform
read ahead to maximize performance. This advisory indicates that the I/O
pattern is random and therefore read ahead should not be performed.

VX_SEQ. This advisory indicates that the file is being accessed sequentially. In
this case the filesystem should maximize read ahead.

VX_DIRECT. When data is transferred to or from the user buffer and disk, a
copy is first made into the kernel buffer or page cache, which is a cache of
recently accessed file data. Although this cache can significantly help
performance by avoiding a read of data from disk for a second access, the
double copying of data has an impact on performance. The VX _DIRECT
advisory avoids this double buffering by copying data directly between the
user’s buffer and disk.

VX_NOREUSE. If data is only to be read once, the in-kernel cache is not
needed. This advisory informs the filesystem that the data does not need to
be retained for subsequent access.

VX_DSYNC. This option was in existence for a number of years before the
O_DSYNC mode was adopted by the UNIX standards committees. It can still
be accessed on platforms where O _DSYNC is not supported.

Before showing how these caching advisories can be used it is first necessary to
describe how to use the ioctl () system call. The definition of ioctl (), which
is not part of any UNIX standard, differs slightly from platform to platform by
requiring different header files. The basic definition is as follows:

#include <unistd.h> # Solaris
#include <stropts.h> # Solaris, AIX and HP-UX
#include <sys/ioctl.h> # Linux

int ioctl(int fildes, int request, /* arg ... */);

User File 1/10

45

Note that AIX does not, at the time of writing, support ioctl () calls on regular
files. Ioctl calls may be made to VXFS regular files, but the operation is not
supported generally.

The following program shows how the caching advisories are used in practice.
The program takes VX_SEQ, VX_RANDOM, or VX_DIRECT as an argument and
reads a 1MB file in 4096 byte chunks.

#include <sys/unistd.h>
#include <sys/types.h>
#include <fcntl.h>

#include "sys/fs/vx _ioctl.h"

#define MB (1024 * 1024)

main (int argc, char argvl(])

{

char *buf;
int i, fd, advisory;
long pagesize, pagemask;

if (argc != 2) {
exit (1) ;

1

if (strcmp(argv[l], "VX SEQ") == 0) {
advisory = VX SEQ;

} else if (strcmp(argv([1], "VX RANDOM") == 0) {
advisory = VX RANDOM;

} else if (strcmp(argv([1l], "VX DIRECT") == 0) ({
advisory = VX DIRECT;

}

pagesize = sysconf (_SC PAGESIZE) ;

pagemask = pagesize - 1;
buf = (char *) (malloc(2 * pagesize) & pagemask) ;
buf = (char *) (((long)buf + pagesize) & ~pagemask) ;

fd = open("myfile", O RDWR) ;
ioctl (fd, VX SETCACHE, advisory);
for (i=0 ; i<MB ; i++) {

read (fd, buf, 4096) ;

The program was run three times passing each of the advisories in turn. The
times command was run to display the time to run the program and the amount
of time that was spent in user and system space.

VX_SEQ
real 2:47.6
user 5.9

sys

46 UNIX Filesystems—Evolution, Design, and Implementation

VX DIRECT

real 2:35.7
user 6.7
sys 2:28.7
VX_RANDOM

real 2:43.6
user 5.2
sys 2:38.1

Although the time difference between the runs shown here is not significant, the
appropriate use of these caching advisories can have a significant impact on
overall performance of large applications.

Miscellaneous Open Options

Through use of the 0 NONBLOCK and O NDELAY flags that can be passed to
open (), applications can gain some additional control in the case where they
may block for reads and writes.

O _EXCL. Ifboth O CREAT and O EXCL are set, a call to open () fails if the file
exists. If the O_CREAT option is not set, the effect of passing O EXCL is
undefined.

O_NONBLOCK / O NDELAY. These flags can affect subsequent reads and
writes. If both the 0 NDELAY and O_NONBLOCK flags are set, O_NONBLOCK
takes precedence. Because both options are for use with pipes, they won’t be
discussed further here.

File and Record Locking

If multiple processes are writing to a file at the same time, the result is non
deterministic. Within the UNIX kernel, only one write to the same file may
proceed at any given time. However, if multiple processes are writing to the file,
the order in which they run can differ depending on many different factors.
Obviously this is highly undesirable and results in a need to lock files at an
application level, whether the whole file or specific sections of a file. Sections of a
file are also called records, hence file and record locking.

There are numerous uses for file locking. However, looking at database file
access gives an excellent example of the types of locks that applications require.
For example, it is important that all users wishing to view database records are
able to do so simultaneously. When updating records it is imperative that while
one record is being updated, other users are still able to access other records.
Finally it is imperative that records are updated in a time-ordered manner.

User File I/0 47

There are two types of locks that can be used to coordinate access to files,
namely mandatory and advisory locks. With advisory locking, it is possible for
cooperating processes to safely access a file in a controlled manner. Mandatory
locking is somewhat of a hack and will be described later. The majority of this
section will concentrate on advisory locking, sometimes called record locking.

Advisory Locking

There are three functions which can be used for advisory locking. These are
lockf (), flock (), and fcntl (). The flock () function defined below:

/usr/ucb/cc [flag ... 1 file ...
#include <sys/file.h>

int flock(fd, operation);
int fd, operation;

was introduced in BSD UNIX and is not supported under the Single UNIX
Specification standard. It sets an advisory lock on the whole file. The lock type,
specified by the operation argument, may be exclusive (LOCK_EX) or shared
(LOCK_SH). By OR’ing operation with LOCK_NB, if the file is already locked,
EAGAIN will be returned. The LOCK UN operation removes the lock.

The lockf () function, which is typically implemented as a call to fcntl (),
can be invoked to apply or remove an advisory lock on a segment of a file as
follows:

#include <sys/file.h>

int lockf (int fildes, int function, off t size);

To use lockf (), the file must have been opened with one of the O_WRONLY or
O_RDWR flags. The size argument specifies the number of bytes to be locked,
starting from the current file pointer. Thus, a call to 1seek () should be made
prior to calling lockf (). If the value of size is 0 the file is locked from the
current offset to the end of the file.

The function argument can be one of the following:

F_LOCK. This command sets an exclusive lock on the file. If the file is already
locked, the calling process will block until the previous lock is relinquished.

F_TLOCK. This performs the same function as the F_LOCK command but will
not block—thus if the file is already locked, EAGAIN is returned.

F_ULOCK. This command unlocks a segment of the file.

F_TEST. This command is used to test whether a lock exists for the specified
segment. If there is no lock for the segment, 0 is returned, otherwise -1 is
returned, and errno is set to EACCES.

48 UNIX Filesystems—Evolution, Design, and Implementation

If the segment to be locked contains a previous locked segment, in whole or part,
the result will be a new, single locked segment. Similarly, if F_ULOCK is specified,
the segment of the file to be unlocked may be a subset of a previously locked
segment or may cover more than one previously locked segment. If size is 0,
the file is unlocked from the current file offset to the end of the file. If the segment
to be unlocked is a subset of a previously locked segment, the result will be one
or two smaller locked segments.

It is possible to reach deadlock if two processes make a request to lock
segments of a file owned by each other. The kernel is able to detect this and, if the
condition would occur, EDEADLK is returned.

Note as mentioned above that £1ock () is typically implemented on top of the
fentl () system call, for which there are three commands that can be passed to
manage record locking. Recall the interface for fcntl ():

#include <sys/types.h>
#include <unistd.h>

#include <fecntl.hs

int fentl (int fildes, int cmd, ...);

All commands operate on the flock structure that is passed as the third
argument:

struct flock {

short 1 type; /* F_RDLCK, F WRLCK or F_UNLOCK */
short 1 whence; /* flag for starting offset */
off t 1 start; /* relative offset in bytes */
off t 1 len; /* size; 1if 0 then until EOF */
pid t 1 pid; /* process ID of lock holder */

}i

The commands that can be passed to £cntl () are:

F_GETLK. This command returns the first lock that is covered by the £lock
structure specified. The information that is retrieved overwrites the fields of
the structure passed.

F_SETLK. This command either sets a new lock or clears an existing lock
based on the value of 1 _type as shown above.

F_SETLKW. This command is the same as F_SETLK with the exception that
the process will block if the lock is held by another process.

Because record locking as defined by fcntl () is supported by all appropriate
UNIX standards, this is the routine that should be ideally used for application
portability.

The following code fragments show how advisory locking works in practice.
The first program, Lock, which follows, sets a writable lock on the whole of the
file myfile and calls pause () to wait for a SIGUSR1 signal. After the signal
arrives, a call is made to unlock the file.

User File /0 49

o J o0 U W N

e
B o o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#include
#include
#include
#include

void

<sys/types.h>
<unistd.h>
<fcntl.h>
<signal.h>

mysig(int signo)

{
}

main ()

{

}

return;

struct flock 1k;
int fd, err;
sigset (SIGUSR1, mysig) ;

fd = open("myfile", O_WRONLY) ;
1k.1 _type = F_WRLCK;

1k.1 _whence = SEEK SET;

1k.1 _start = 0;

1k.1 len = 0;

1k.1l pid = getpid();

err = fentl (fd, F_SETLK, &lk);
printf ("lock: File is locked\n") ;
pause () ;

1k.1 _type = F _UNLCK;

err = fentl (fd, F_SETLK, &lk);

printf ("lock: File is unlocked\n") ;

Note that the process ID of this process is placed in 1_pid
requesting information about the lock will be able to determine how to identify
this process.

The next program (mycat1l) is a modified version of the cat program that will
only display the file if there are no write locks held on the file. If a lock is detected,
the program loops up to 5 times waiting for the lock to be released. Because the
lock will still be held by the lock program, mycatl will extract the process ID
from the £1lock structure returned by £cntl () and post a SIGUSRL signal. This
is handled by the 1ock program which then unlocks the file.

W o J o0 Ul b WN PR

#include
#include
#include
#include
#include

pid t

<sys/types.h>
<sys/stat.h>
<fcntl.h>
<unistd.h>
<signal.h>

is_locked(int fd)

{

so that anyone

50 UNIX Filesystems—Evolution, Design, and Implementation

10 struct flock 1k;

11

12 1k.1_type = F_RDLCK;

13 1k.1 _whence = SEEK SET;

14 1k.1 _start = 0;

15 1k.1 len = 0;

16 1k.1 pid = 0;

17

18 fentl (£4, F_GETLK, &1k) ;

19 return (lk.l type == F _UNLCK) ? 0 : 1lk.1l pid;
20 }

21

22 main ()

23 {

24 struct flock 1k;

25 int i, fd, err;

26 pid t pid;

27

28 fd = open("myfile", O_RDONLY) ;

29

30 for (1 = 0 ; 1 < 5 ; i++) {

31 if ((pid = is locked(fd)) == 0) {
32 catfile (£4d) ;

33 exit (0) ;

34 } else {

35 printf ("mycatl: File is locked ...\n");
36 sleep(1);

37 }

38 }

39 kill (pid, SIGUSR1);

40 while ((pid = is locked(£fd)) != 0) {

41 printf ("mycatl: Waiting for lock release\n");
42 sleep(1);

43 }

44 catfile (£4d) ;

45 }

Note the use of fcntl () in the mycatl program. If no lock exists on the file that
would interfere with the lock requested (in this case the program is asking for a
read lock on the whole file), the 1 type field is set to F_UNLCK. When the
program is run, the following can be seen:

S cat myfile

Hello world

$ lock&

[1] 2448

lock: File is locked

$ mycatl

mycatl: File is locked
mycatl: File is locked
mycatl: File is locked
mycatl: File is locked
mycatl: File is locked ...
mycatl: Waiting for lock release

User File /0 51

lock: File is unlocked
Hello world
[1]+ Exit 23 ./lock

The following example shows where advisory locking fails to become effective if
processes are not cooperating:

$ lock&

[1] 2494

lock: File is locked

S cat myfile

Hello world

S rm myfile

S jobs

[11+ Running ./lock &

In this case, although the file has a segment lock, a non-cooperating process can
still access the file, thus the real cat program can display the file and the file can
also be removed! Note that removing a file involves calling the unlink () system
call. The file is not actually removed until the last close. In this case the lock
program still has the file open. The file will actually be removed once the lock
program exits.

Mandatory Locking

As the previous example shows, if all processes accessing the same file do not
cooperate through the use of advisory locks, unpredictable results can occur.
Mandatory locking provides file locking between non-cooperating processes.
Unfortunately, the implementation, which arrived with SVR3, leaves something
to be desired.

Mandatory locking can be enabled on a file if the set group ID bit is switched
on and the group execute bit is switched off—a combination that together does
not otherwise make any sense. Thus if the following were executed on a system
that supports mandatory locking:

$ lock&

[1] 12096

lock: File is locked

S cat myfile # The cat program blocks here

the cat program will block until the lock is relinquished. Note that mandatory
locking is not supported by the major UNIX standards so further details will not
be described here.

File Control Operations

The fcntl () system call is designed to provide file control functions for open

52 UNIX Filesystems—Evolution, Design, and Implementation

files. The definition was shown in a previous section, File and Record Locking,
earlier in the chapter. It is repeated below:

#include <sys/types.h>
#include <unistd.h>
#include <fentl.hs

int fentl (int fildes, int cmd, ...);

The file descriptor refers to a previously opened file and the cmd argument is one
of the commands shown below:

F_DUPFD. This command returns a new file descriptor that is the lowest
numbered file descriptor available (and is not already open). The file
descriptor returned will be greater than or equal to the third argument. The
new file descriptor refers to the same open file as the original file descriptor
and shares any locks. The FD_CLOEXEC (see F_SETFD below) flag
associated with the new file descriptor is cleared to keep the file open across
calls to one of the exec functions.

F_GETFD. This command returns the flags associated with the specified file
descriptor. This is a little bit of a misnomer because there has only ever been
one flag, the FD_CLOEXEC flag that indicates that the file should be closed
following a successful call to exec ().

F_SETFD. This command sets the FD_CLOEXEC flag.

F_GETFL. This command returns the file status flags and file access modes for
fildes. The file access modes can be extracted from the return value using
the mask O_ACCMODE. The flags are O RDONLY, O_WRONLY and O_RDWR.

The file status flags, as described in the sections Data and Attribute Caching
and Miscellaneous Open Options, earlier in this chapter, can be either
O _APPEND, O SYNC, O DSYNC, O RSYNC, or O NONBLOCK

F_SETFL. This command sets the file status flags for the specified file
descriptor.

F_GETLK. This command retrieves information about an advisory lock. See
the section File and Record Locking, earlier in this chapter, for further
information.

F_SETLK. This command clears or sets an advisory lock. See the section File
and Record Locking, earlier in this chapter, for further information.

F_SETLKW. This command also clears or sets an advisory lock. See the section
File and Record Locking, earlier in this chapter, for further information.

Vectored Reads and Writes

If the data that a process reads from a file in a single read needs to placed in
different areas of memory, this would typically involve more than one call to

User File /0 53

read (). However, the readv () system call can be used to perform a single read
from the file but copy the data to the multiple memory locations, which can cut
down on system call overhead and therefore increase performance in
environments where there is a lot of I/O activity. When writing to files the
writev () system call can be used.

Here are the definitions for both functions:

#include <sys/uio.h>

ssize_ t readv(int fildes, const struct iovec iov, int iovent);
ssize t writev(int fildes, const struct iovec iov, int iovent);

Note that although multiple I/Os can be combined, they must all be contiguous
within the file.

struct uio {
void *iov_base; /* Address in memory of buffer for r/w */
size t 1iov_len; /* Size of the above buffer in memory */

Figure 3.1 shows how the transfer of data occurs for a read operation. The shading
on the areas of the file and the address space show where the data will be placed
after the read has completed.

The following program corresponds to the example shown in Figure 3.1:

1 #include <sys/uio.h>
2 #include <unistd.h>
3 #include <fcntl.h>

4

5 main ()

6 {

7 struct iovec uiop[3];

8 void *addrl, *addr2, *addr3;

9 int fd, nbytes;

10

11 addrl = (void *)malloc (4096) ;

12 addr2 = (void *)malloc (4096) ;

13 addr3 = (void *)malloc (4096) ;

14

15 uiop[0] .iov_base = addrl; wuiop[0].iov_len = 512;
16 uiop[1l] .iov_base = addr2; wuiop[l].iov_len = 512;
17 uiop[2] .iov_base = addr3; wuiop[2].iov_len = 1024;
18

19 fd = open("myfile", O_RDONLY) ;
20 nbytes = readv(fd, uiop, 3);
21 printf ("number of bytes read = %d\n", nbytes);
22 {

Note that readv () returns the number of bytes read. When this program runs,
the result is 2048 bytes, the total number of bytes obtained by adding the three
individual iovec structures.

54 UNIX Filesystems—Evolution, Design, and Implementation

readv(fd, &uiop, 3) user address spce

{addr1, 512},
(addr2, 512},

{addr3, 1024} addr2
current addrl
file pointer Y

offset = 1024 4444} T t;;;;;roffset = 2048

offset = 1536

Figure 3.1 Using readv () to perform multiple read operations.

$ readv
number of bytes read = 2048

Asynchronous I/O

By issuing an I/O asynchronously, an application can continue with other work
rather than waiting for the I/O to complete. There have been numerous different
implementations of asynchronous 1/ O (commonly referred to as async I/O) over
the years. This section will describe the interfaces as supported by the Single
UNIX Specification.

As an example of where async I/O is commonly used, consider the Oracle
database writer process (DBWR), one of the main Oracle processes; its role is to
manage the Oracle buffer cache, a user-level cache of database blocks. This
involves responding to read requests and writing dirty (modified) buffers to
disk.

In an active database, the work of DBWR is complicated by the fact that it is
constantly writing dirty buffers to disk in order to allow new blocks to be read.
Oracle employs two methods to help alleviate some of the performance
bottlenecks. First, it supports multiple DBWR processes (called DBWR slave
processes); the second option, which greatly improves throughput, is through
use of async I/O. If I/O operations are being performed asynchronously, the
DBWR processes can be doing other work, whether flushing more buffers to
disk, reading data from disk, or other internal functions.

All of the Single UNIX Specification async I/O operations center around an
I/0O control block defined by the aiocb structure as follows:

User File /0 55

struct aiocb {

int aio_fildes; /* file descriptor */

off t aio_offset; /* file offset */

volatile void *aio buf; /* location of buffer */

size t aio_nbytes; /* length of transfer */

int aio_regprio; /* request priority offset */
struct sigevent aio sigevent; /* signal number and value */
int aio lio opcode; /* operation to be performed */

}i

The fields of the aiocb structure will be described throughout this section as the
various interfaces are described. The first interface to describe is aio read():

cc [flag...] file... -1lrt [library...]
#include <aio.h>
int aio read(struct aiocb aiocbp) ;

The aio read() function will read aiocbp->aio nbytes from the file
associated with file descriptor aiocbp->aio_ fildes into the buffer referenced
by aiocbp->aio_buf. The call returns when the I/O has been initiated. Note
that the requested operation takes place at the offset in the file specified by the
aio offset field.

Similarly, to perform an asynchronous write operation, the function to call is
aio write () which is defined as follows:

cc [flag...] file... -1lrt [library...]
#include <aio.h>

int aio write(struct aiocb aiocbp) ;

and the fields in the aio control block used to initiate the write are the same as for
an async read.

In order to retrieve the status of a pending I/ O, there are two interfaces that can
be used. One involves the posting of a signal and will be described later; the other
involves the use of the aio return () function as follows:

#include <aio.h>

ssize t aio return(struct aiocb aiocbp) ;

The aio control block that was passed to aio_read() should be passed to
aio return(). The result will either be the same as if a call to read () or
write () had been made or, if the operation is still in progress, the result is
undefined.

The following example shows some interesting properties of an asynchronous
write:

1 #include <aio.h>
2 #include <time.h>
3 #include <errno.h>

56 UNIX Filesystems—Evolution, Design, and Implementation

4

5 #define FILESZ (1024 * 1024 * 64)

6

7 main ()

8 {

9 struct aiocb aio;

10 void *buf;

11 time t timel, time2;

12 int err, cnt = 0;

13

14 buf = (void *)malloc (FILESZ) ;

15 aio.aio fildes = open("/dev/vx/rdsk/fsl", O WRONLY) ;
16 aio.aio _buf = buf;

17 aio.aio_offset = 0;

18 aio.aio _nbytes = FILESZ;

19 aio.aio_regprio = 0;
20
21 time (&timel) ;
22 err = aio write(&aio);
23 while ((err = aio error(&aio)) == EINPROGRESS) {
24 sleep(1);
25 }
26 time (&time2) ;
27 printf ("The I/O took %d seconds\n", time2 - timel);
28 }

The program uses the raw device /dev/vx/rdsk/£sl to write a single 64MB
buffer. The aio_error () call:

cc [flag...] file... -1lrt [library...]
#include <aio.h>

int aio_error(const struct aiocb aiocbp) ;

can be called to determine whether the I/ O has completed, is still in progress, or
whether an error occurred. The return value from aio error () will either
correspond to the return value from read (), write (), or will be EINPROGRESS
if the I/ O is still pending. Note when the program is run:

aiowrite
The I/0 took 7 seconds

Thus if the process had issued a write through use of the write () system call, it
would wait for 7 seconds before being able to do anything else. Through the use
of async I/O the process is able to continue processing and then find out the
status of the async I/O at a later date.

For async I/O operations that are still pending, the aio_cancel () function
can be used to cancel the operation:

cc [flag...] file... -1lrt [library...]
#include <aio.h>

int aio_cancel (int fildes, struct aiocb aiocbp) ;

User File /0 57

The £iledes argument refers to the open file on which a previously made async
I/0O, as specified by aiocbp, was issued. If aiocbp is NULL, all pending async
I/O operations are canceled. Note that it is not always possible to cancel an async
I/O. In many cases, the I/ O will be queued at the driver level before the call from
aio _read() oraio_write () returns.

As an example, following the above call to aio_write (), this code is inserted:

err = aio cancel(aio.aio_fildes, &aio);
switch (err) {
case AIO CANCELED:
errstr = "AIO_CANCELED";
break;

case AIO NOTCANCELED:
errstr = "AIO NOTCANCELED";

break;

case AIO ALLDONE:

errstr = "AIO_ALLDONE";
break;

default:
errstr = "Call failed";

}

printf ("Error value returned %s\n", errstr);

and when the program is run, the following error value is returned:
Error value returned AIO_CANCELED

In this case, the I/O operation was canceled. Consider the same program but
instead of issuing a 64MB write, a small 512 byte I/ O is issued:

Error value returned AIO_NOTCANCELED

In this case, the I/ O was already in progress, so the kernel was unable to prevent
it from completing.

As mentioned above, the Oracle DBWR process will likely issue multiple I/Os
simultaneously and wait for them to complete at a later time. Multiple read ()
and write () system calls can be combined through the use of readv () and
write () to help cut down on system call overhead. For async I/0O, the
lio listio() function achieves the same result:

#include <aio.h>

int lio_listio(int mode, struct aiocb const list[], int nent,
struct sigevent sig);

The mode argument can be one of LIO_WAIT in which the requesting process will
block in the kernel until all I/O operations have completed or LIO NOWAIT in
which case the kernel returns control to the user as soon as the I/Os have been

58 UNIX Filesystems—Evolution, Design, and Implementation

queued. The 1ist argument is an array of nent aiocb structures. Note that for
each aiocb structure, the aio lio opcode field must be set to either
LIO_READ for a read operation, LIO WRITE for a write operation, or LIO NOP

in which case the entry will be ignored.

If the mode flag is LIO NOWAIT, the sig argument specifies the signal that

should be posted to the process once the I/O has completed.

The following example uses 1lio listio() to issue two async writes to
different parts of the file. Once the I/O has completed, the signal handler
aiohdlr () will be invoked; this displays the time that it took for both writes to

complete.

1 #include <aio.h>

2 #include <time.h>

3 #include <errno.h>

4 #include <signal.h>

5

6 #define FILESZ (1024 * 1024 * 64)
7 time_t timel, time2;

8

9 void

10 aiohdlr(int signo)

11 {

12 time (&time2) ;

13 printf ("Time for write was %d seconds\n", time2
14 }

15

16 main()

17 {

18 struct sigevent mysig;

19 struct aiocb *laio[2];
20 struct aiocb aiol, aio2;
21 void *buf;

22 char errstr;

23 int fd;

24

25 buf = (void *)malloc (FILESZ) ;

26 fd = open("/dev/vx/rdsk/fsl", O WRONLY) ;
27

28 aiol.aio fildes = fd;

29 aiol.aio lio opcode = LIO WRITE;
30 aiol.aio buf = buf;

31 aiol.aio offset = 0;

32 aiol.aio nbytes = FILESZ;

33 aiol.aio_regprio = 0;

34 laio[0] = &aiol;

35

36 aio2.aio fildes = fd;

37 aio2.aio lio opcode = LIO WRITE;
38 aio2.aio buf = buf;

39 aio2.aio offset = FILESZ;
40 aio2.aio nbytes = FILESZ;
41 aio2.aio_regprio = 0;
42 laio[l] = &aio2;

timel) ;

59

User File I/O
43
44 sigset (SIGUSR1, aiohdlr) ;
45 mysig.sigev_signo = SIGUSRI1;
46 mysig.sigev _notify = SIGEV_SIGNAL;
47 mysig.sigev_value.sival ptr = (void *)laio;
48
49 time (&timel) ;
50 lio listio(LIO_NOWAIT, laio, 2, &mysig);
51 pause () ;
52 }

The call to 1io listio() specifies that the program should not wait and that a
signal should be posted to the process after all I/Os have completed. Although
not described here, it is possible to use real-time signals through which
information can be passed back to the signal handler to determine which async
I/O has completed. This is particularly important when there are multiple
simultaneous calls to lio listio(). Bill Gallmeister’'s book Posix.4:
Programming for the Real World [GALL95] describes how to use real-time signals.
When the program is run the following is observed:

1listio
Time for write was 12 seconds

which clearly shows the amount of time that this process could have been
performing other work rather than waiting for the I/O to complete.

Memory Mapped Files

In addition to reading and writing files through the use of read () and write (),
UNIX supports the ability to map a file into the process’ address space and read
and write to the file through memory accesses. This allows unrelated processes to
access files with either shared or private mappings. Mapped files are also used by
the operating system for executable files.

The mmap () system call allows a process to establish a mapping to an already
open file:

#include <sys/mman.h>

void mmap (void addr, size t len, int prot, int flags,
int fildes, off t off);

The file is mapped from an offset of of £ bytes within the file for 1en bytes. Note
that the offset must be on a page size boundary. Thus, if the page size of the
system is 4KB, the offset must be 0, 4096, 8192 and so on. The size of the mapping
does not need to be a multiple of the page size although the kernel will round the
request up to the nearest page size boundary. For example, if of £ is set to 0 and
size is set to 2048, on systems with a 4KB page size, the mapping established will

60 UNIX Filesystems—Evolution, Design, and Implementation

actually be for 4KB.

Figure 3.2 shows the relationship between the pages in the user’s address
space and how they relate to the file being mapped. The page size of the
underlying hardware platform can be determined by making a call to
sysconf () as follows:

#include <unistd.h>

main ()

{

printf ("PAGESIZE = %d\n", sysconf(SC PAGESIZE)) ;

}

Typically the page size will be 4KB or 8KB. For example, as expected, when the
program is run on an x86 processor, the following is reported:

./sysconf
PAGESIZE = 4096

while for Sparc 9 based hardware:

./sysconf
PAGESIZE = 8192

Although it is possible for the application to specify the address to which the file
should be mapped, it is recommended that the addr field be set to 0 so that the
system has the freedom to choose which address the mapping will start from.
The operating system dynamic linker places parts of the executable program in
various memory locations. The amount of memory used differs from one process
to the next. Thus, an application should never rely on locating data at the same
place in memory even within the same operating system and hardware
architecture. The address at which the mapping is established is returned if the
call to mmap () is successful, otherwise 0 is returned.

Note that after the file has been mapped it can be closed and still accessed
through the mapping.

Before describing the other parameters, here is a very simple example showing
the basics of mmap () :

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fentl.hs>
#include <unistd.h>

#define MAPSZ 4096

0 J o0 Uk WwN

9 main ()

10 {

11 char *addr, c;
12 int fd;

User File /0 61

5SS

V

////

offset = 1024 J g offset = 2048

/

mmap (0, 8192, PROT READ, MAP PRIVATE, fd, 4096);

Figure 3.2 Mapping two file pages using mmap () .

13

14 fd = open("/etc/passwd", O RDONLY) ;
15 addr = (char *)mmap (NULL, MAPSZ,

16 PROT_READ, MAP_SHARED, fd, 0) ;
17 close (fd) ;

18 for (;;) {

19 c = *addr;

20 putchar (c) ;

21 addr++;

22 if (¢ == "\n") {

23 exit (0) ;

24 }

25 }

26 }

The /etc/passwd file is opened and a call to mmap () is made to map the first
MAPSZ bytes of the file. A file offset of 0 is passed. The PROT READ and
MAP_SHARED arguments describe the type of mapping and how it relates to other
processes that map the same file. The prot argument (in this case PROT_READ)
can be one of the following:

PROT READ. The data can be read.
PROT WRITE. The data can be written.
PROT_ EXEC. The data can be executed.
PROT NONE. The data cannot be accessed.
Note that the different access types can be combined. For example, to specify read

and write access a combination of (PROT_READ | PROT WRITE) may be specified.
By specifying PROT EXEC it is possible for application writers to produce their

62 UNIX Filesystems—Evolution, Design, and Implementation

own dynamic library mechanisms. The PROT_NONE argument can be used for
user level memory management by preventing access to certain parts of memory
at certain times. Note that PROT NONE cannot be used in conjunction with any
other flags.

The £1lags argument can be one of the following:

MAP SHARED. Any changes made through the mapping will be reflected back
to the mapped file and are visible by other processes calling mmap () and
specifying MAP _SHARED.

MAP PRIVATE. Any changes made through the mapping are private to this
process and are not reflected back to the file.

MAP FIXED. The addr argument should be interpreted exactly. This
argument will be typically used by dynamic linkers to ensure that program
text and data are laid out in the same place in memory for each process. If
MAP_ FIXED is specified and the area specified in the mapping covers an
already existing mapping, the initial mapping is first unmapped.

Note that in some versions of UNIX, the flags have been enhanced to include
operations that are not covered by the Single UNIX Specification. For example,
on the Solaris operating system, the MAP_NORESERVE flag indicates that swap
space should not be reserved. This avoids unnecessary wastage of virtual
memory and is especially useful when mappings are read-only. Note, however,
that this flag is not portable to other versions of UNIX.

To give a more concrete example of the use of mmap (), an abbreviated
implementation of the cp utility is given. This is how some versions of UNIX
actually implement cp.

1 #include <sys/types.h>

2 #include <sys/stat.h>

3 #include <sys/mman.h>

4 #include <fcntl.h>

5 #include <unistd.h>

6

7 #define MAPSZ 4096

8

9 main (int argc, char argv)

10 {

11 struct stat st;

12 size t iosz;

13 off t off = 0;

14 void *addr;

15 int ifd, ofd;

16

17 if (argc != 3) {

18 printf ("Usage: mycp srcfile destfile\n");
19 exit (1) ;
20 }
21 if ((ifd = open(argv[1l], O RDONLY)) < 0) ({
22 printf ("Failed to open %s\n", argv[l]);

23 }

User File 1/10

63

24 if ((ofd = open(argv[2],

25 O _WRONLY |O_ CREAT|O_TRUNC, 0777)) < 0) {

26 printf ("Failed to open %s\n", argv([2]);

27 }

28 fstat (ifd, &st);

29 if (st.st _size < MAPSZ) {

30 addr = mmap (NULL, st.st_size,

31 PROT READ, MAP SHARED, ifd, 0);
32 printf ("Mapping entire file\n");

33 close (1ifd) ;

34 write (ofd, (char *)addr, st.st_size);

35 } else {

36 printf ("Mapping file by MAPSZ chunks\n") ;
37 while (off <= st.st_size) ({

38 addr = mmap (NULL, MAPSZ, PROT READ,
39 MAP_SHARED, ifd, off);
40 if (MAPSZ < (st.st size - off)) ({
41 iosz = MAPSZ;

42 } else {

43 iosz = st.st_size - off;
44 }

45 write (ofd, (char *)addr, iosz);
46 off += MAPSZ;

47 }

48 }

49 }

The file to be copied is opened and the file to copy to is created on lines 21-27. The
fstat () system call is invoked on line 28 to determine the size of the file to be
copied. The first call to mmap () attempts to map the whole file (line 30) for files of
size less then MAPSZ. If this is successful, a single call to write () can be issued to
write the contents of the mapping to the output file.

If the attempt at mapping the whole file fails, the program loops (lines 37-47)
mapping sections of the file and writing them to the file to be copied.

Note that in the example here, MAP PRIVATE could be used in place of
MAP SHARED since the file was only being read. Here is an example of the
program running:

S cp mycp.c fileA

S mycp fileA fileB

Mapping entire file

$ diff fileA fileB

S cp mycp fileA

S mycp fileA fileB

Mapping file by MAPSZ chunks
$ diff fileA fileB

Note that if the file is to be mapped in chunks, we keep making repeated calls to
mmap (). This is an extremely inefficient use of memory because each call to
mmap () will establish a new mapping without first tearing down the old
mapping. Eventually the process will either exceed its virtual memory quota or

64 UNIX Filesystems—Evolution, Design, and Implementation

run out of address space if the file to be copied is very large. For example, here is
a run of a modified version of the program that displays the addresses returned
by mmap ():

$ dd if=/dev/zero of=20kfile bs=4096 count=5
5+0 records in

5+0 records out

$ mycp profile 20kfile newfile
Mapping file by MAPSZ chunks
map addr = 0x40019000

map addr = 0x4001a000

map addr = 0x4001b000

map addr = 0x4001c000

map addr = 0x4001d000

map addr = 0x4001e000

The different addresses show that each call to mmap () establishes a mapping at a
new address. To alleviate this problem, the munmap () system call can be used to
unmap a previously established mapping;:

#include <sys/mman.h>
int munmap(void *addr, size t len);

Thus, using the example above and adding the following line:
munmap (addr, iosz);

after line 46, the mapping established will be unmapped, freeing up both the
user’s virtual address space and associated physical pages. Thus, running the
program again and displaying the addresses returned by calling mmap () shows:

S mycp2 20kfile newfile
Mapping file by MAPSZ chunks
map addr = 0x40019000

map addr = 0x40019000

map addr = 0x40019000

map addr = 0x40019000

map addr = 0x40019000

map addr = 0x40019000

The program determines whether to map the whole file based on the value of
MAPSZ and the size of the file. One way to modify the program would be to
attempt to map the whole file regardless of size and only switch to mapping in
segments if the file is too large, causing the call to mmap () to fail.

After a mapping is established with a specific set of access protections, it may
be desirable to change these protections over time. The mprotect () system call
allows the protections to be changed:

#include <sys/mman.h>

int mprotect (void *addr, size_t len, int prot);

User File /0 65

The prot argument can be one of PROT READ, PROT WRITE, PROT EXEC,
PROT_NONE, or a valid combination of the flags as described above. Note that the
range of the mapping specified by a call to mprotect () does not have to cover
the entire range of the mapping established by a previous call to mmap (). The
kernel will perform some rounding to ensure that 1len is rounded up to the next
multiple of the page size.

The other system call that is of importance with respect to memory mapped
files is msync (), which allows modifications to the mapping to be flushed to the
underlying file:

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Again, the range specified by the combination of addr and len does not need to
cover the entire range of the mapping. The £lags argument can be one of the
following:

MS_ASYNC. Perform an asynchronous write of the data.
MS_SYNC. Perform a synchronous write of the data.
MS_INVALIDATE. Invalidate any cached data.

Thus, a call to mmap () followed by modification of the data followed by a call to
msync () specifying the MS_SYNC flag is similar to a call to write () following a
call to open () and specifying the 0_SYNC flag. By specifying the MS_ASYNC flag,
this is loosely synonymous to opening a file without the 0_SYNC flag. However,
calling msync () with the MS_ASYNC flag is likely to initiate the I/ O while writing
to a file without specifying O_SYNC or O_DSYNC could result in data sitting in the
system page or buffer cache for some time.

One unusual property of mapped files occurs when the pseudo device
/dev/zero is mapped. As one would expect, this gives access to a contiguous set
of zeroes covering any part of the mapping that is accessed. However, following a
mapping of /dev/zero, if the process was to fork, the mapping would be visible
by parent and child. If MAP_ PRIVATE was specified on the call to mmap (), parent
and child will share the same physical pages of the mapping until a modification
is made at which time the kernel will copy the page that makes the modification
private to the process which issued the write.

If MAP_SHARED is specified, both parent and children will share the same
physical pages regardless of whether read or write operations are performed.

64-Bit File Access (LFS)

32-bit operating systems have typically used a signed long integer as the offset to
files. This leads to a maximum file size of 23! - 1 (2GB - 1). The amount of work to
convert existing applications to use a different size type for file offsets was

66 UNIX Filesystems—Evolution, Design, and Implementation

considered too great, and thus the Large File Summit was formed, a group of OS
and filesystem vendors who wanted to produce a specification that could allow
access to large files. The specification would then be included as part of the Single
UNIX Specification (UNIX 95 and onwards). The specification provided the
following concepts:

m The off t data type would support one of two or more sizes as the OS
and filesystem evolved to a full 64-bit solution.

m An offset maximum which, as part of the interface, would give the maximum
offset that the OS/filesystem would allow an application to use. The offset
maximum is determined through a call to open () by specifying (or not)
whether the application wishes to access large files.

m When applications attempt to read parts of a file beyond their
understanding of the offset maximum, the OS would return a new error
code, namely EOVERFLOW.

In order to provide both an explicit means of accessing large files as well as a
hidden and easily upgradable approach, there were two programmatic models.
The first allowed the size of of£_t to be determined during the compilation and
linking process. This effectively sets the size of off t and determines whether
the standard system calls such as read () and write () will be used or whether
the large file specific libraries will be used. Either way, the application continues
to use read (), write (), and related system calls, and the mapping is done
during the link time.

The second approach provided an explicit model whereby the size of off t
was chosen explicitly within the program. For example, on a 32-bit OS, the size
of off_t would be 32 bits, and large files would need to be accessed through
use of the off64 t data type. In addition, specific calls such as opené4 (),
readé4 () would be required in order to access large files.

Today, the issue has largely gone away, with most operating systems
supporting large files by default.

Sparse Files

Due to their somewhat rare usage, sparse files are often not well understood and a
cause of confusion. For example, the VxFS filesystem up to version 3.5 allowed a
maximum filesystem size of 1TB but a maximum file size of 2TB. How can a
single file be larger than the filesystem in which it resides?

A sparse file is simply a file that contains one or more holes. This statement itself
is probably the reason for the confusion. A hole is a gap within the file for which
there are no allocated data blocks. For example, a file could contain a 1KB data
block followed by a 1KB hole followed by another 1KB data block. The size of the

User File 1/10

67

file would be 3KB but there are only two blocks allocated. When reading over a
hole, zeroes will be returned.

The following example shows how this works in practice. First of all, a 20MB
filesystem is created and mounted:

mkfs -F vxfs /dev/vx/rdsk/rootdg/vol2 20m

version 4 layout

40960 sectors, 20480 blocks of size 1024, log size 1024 blocks
unlimited inodes, largefiles not supported

20480 data blocks, 19384 free data blocks

1 allocation units of 32768 blocks, 32768 data blocks

last allocation unit has 20480 data blocks

mount -F vxfs /dev/vx/dsk/rootdg/vol2 /mnt2

and the following program, which is used to create a new file, seeks to an offset of
64MB and then writes a single byte:

#include <sys/types.h>
#include <fentl.hs
#include <unistd.h>

#define IOSZ (1024 * 1024 *64)
main ()
{
int fd;
fd = open("/mnt2/newfile", O CREAT | O WRONLY, 0666) ;

lseek (fd, I0SzZ, SEEK_SET);
write (£4, "a", 1);

The following shows the result when the program is run:

./1f

1s -1 /mnt2

total 2

drwXr-Xr-x 2 root root 96 Jun 13 08:25 lost+found/
-YW-Yr--Y 1 root other 67108865 Jun 13 08:28 newfile

df -k | grep mnt2

/dev/vx/dsk/rootdg/vol2 20480 1110 18167 6% /mnt2

And thus, the filesystem which is only 20MB in size contains a file which is 64MB.
Note that, although the file size is 64MB, the actual space consumed is very low.
The 6 percent usage, as displayed by running df, shows that the filesystem is
mostly empty.

To help understand how sparse files can be useful, consider how storage is
allocated to a file in a hypothetical filesystem. For this example, consider a
filesystem that allocates storage to files in 1KB chunks and consider the
interaction between the user and the filesystem as follows:

68 UNIX Filesystems—Evolution, Design, and Implementation

User Filesystem

create () Create a new file

write (lk of‘a’s) Allocate a new 1k block for range 0 to 1023 bytes
write (lk of b’s) Allocate a new 1k block for range 1024 to 2047 bytes
close () Close the file

In this example, following the close () call, the file has a size of 2048 bytes. The
data written to the file is stored in two 1k blocks. Now, consider the example

below:
User Filesystem
create () Create a new file
lseek (to 1k) No effect on the file
write (lk of b’s) Allocate a new 1k block for range 1024 to 2047 bytes
close () Close the file

The chain of events here also results in a file of size 2048 bytes. However, by
seeking to a part of the file that doesn’t exist and writing, the allocation occurs at
the position in the file as specified by the file pointer. Thus, a single 1KB block is
allocated to the file. The two different allocations are shown in Figure 3.3.

Note that although filesystems will differ in their individual implementations,
each file will contain a block map mapping the blocks that are allocated to the file
and at which offsets. Thus, in Figure 3.3, the hole is explicitly marked.

So what use are sparse files and what happens if the file is read? All UNIX
standards dictate that if a file contains a hole and data is read from a portion of a
file containing a hole, zeroes must be returned. Thus when reading the sparse file
above, we will see the same result as for a file created as follows:

User Filesystem

create () Create a new file

write (1k of Os) Allocate a new 1k block for range 1023 to 2047 bytes
write (lk of b’s) Allocate a new 1k block for range 1024 to 2047 bytes
close () Close the file

Not all filesystems implement sparse files and, as the examples above show, from
a programmatic perspective, the holes in the file are not actually visible. The
main benefit comes from the amount of storage that is saved. Thus, if an
application wishes to create a file for which large parts of the file contain zeroes,
this is a useful way to save on storage and potentially gain on performance by
avoiding unnecessary 1/ Os.

The following program shows the example described above:

1 #include <sys/types.h>
2 #include <fcntl.hs>
3 #include <unistd.h>

User File 1/10

69

non-sparse 2KB file ‘ A ‘ A ‘
0,1block ———

1024, 1 block

sparse 2KB file L f, o]I|
0, Hole
1024, 1 block

Figure 3.3 Allocation of storage for sparse and non-sparse files.

4
5 main ()

6 {

7 char buf [1024] ;

8 int fd;

9

10 memset (buf, ‘a’, 1024);

11 fd = open("newfile", O RDWR|O CREAT|O TRUNC, 0777) ;
12 lseek (fd, 1024, SEEK SET);

13 write (fd, buf, 1024);

14 }

When the program is run the contents are displayed as shown below. Note the
zeroes for the first 1KB as expected.

$ od -c newfile

0000000 \0 \0 \0o \0o \o \o \o \o \o \o \o \o \o \o \o \o

*

0002000 a a a a a a a a a a a a a a a a
*

0004000

If a write were to occur within the first 1KB of the file, the filesystem would have
to allocate a 1KB block even if the size of the write is less than 1KB. For example,
by modifying the program as follows:

memset (buf, 'b', 512);

fd = open("newfile", O_RDWR) ;
1lseek (fd, 256, SEEK_SET);
write (fd, buf, 512);

and then running it on the previously created file, the resulting contents are:

$ od -c newfile

0000000 \0 \0o \o \o \o \o \o \o \o \o \o \o \o \o \o \o

*

0000400 b b b b b b b b b b b b b b b b

*

0001400 \0 \0o \o \o \o \o \o \o \o \o \o \o \o \o \o \o

70 UNIX Filesystems—Evolution, Design, and Implementation

*

0002000 a a a a a a a a a a a a a a a a
*

0004000

Therefore in addition to allocating a new 1KB block, the filesystem must zero fill
those parts of the block outside of the range of the write.

The following example shows how this works on a VxFS filesystem. A new file
is created. The program then seeks to byte offset 8192 and writes 1024 bytes.

#include <sys/types.h>
#include <fecntl.hs
#include <unistd.h>

main ()
{
int fd;
char buf [1024] ;

fd = open("myfile", O CREAT | O_WRONLY, 0666) ;
lseek (fd, 8192, SEEK_SET);
write (fd, buf, 1024);

In the output shown below, the program is run, the size of the new file is
displayed, and the inode number of the file is obtained:

./sparse

1s -1 myfile

-rw-r--r 1 root other 9216 Jun 13 08:37 myfile
1s -i myfile

6 myfile

The VxFS £sdb command can show which blocks are assigned to the file. The
inode corresponding to the file created is displayed:

umount /mnt2

fsdb -F vxfs /dev/vx/rdsk/rootdg/vol2

> 61

inode structure at 0x00000431.0200

type IFREG mode 100644 nlink 1 wuid 0 gid 1 size 9216
atime 992447379 122128 (Wed Jun 13 08:49:39 2001)
mtime 992447379 132127 (Wed Jun 13 08:49:39 2001)
ctime 992447379 132127 (Wed Jun 13 08:49:39 2001)
aflags 0 orgtype 1 eopflags 0 eopdata 0
fixextsize/fsindex 0 rdev/reserve/dotdot/matchino 0
blocks 1 gen 844791719 version 0 13 iattrino 0

de: 0 1096 0 0 0 0 0 0 0 0
des: 8 1 0 0 0 0 0 0 0 0
ie: 0 0

ies: 0

User File /0 71

The de field refers to a direct extent (filesystem block) and the des field is the
extent size. For this file the first extent starts at block 0 and is 8 blocks (8KB) in
size. VXFS uses block 0 to represent a hole (note that block 0 is never actually
used). The next extent starts at block 1096 and is 1KB in length. Thus, although the
file is 9KB in size, it has only one 1KB block allocated to it.

Summary

This chapter provided an introduction to file I/O based system calls. It is
important to grasp these concepts before trying to understand how filesystems
are implemented. By understanding what the user expects, it is easier to see how
certain features are implemented and what the kernel and individual filesystems
are trying to achieve.

Whenever programming on UNIX, it is always a good idea to follow
appropriate standards to allow programs to be portable across multiple versions
of UNIX. The commercial versions of UNIX typically support the Single UNIX
Specification standard although this is not fully adopted in Linux and BSD. At the
very least, all versions of UNIX will support the POSIX.1 standard.

The Standard 1/O Library

Many users require functionality above and beyond what is provided by the basic
file access system calls. The standard I/O library, which is part of the ANSI C
standard, provides this extra level of functionality, avoiding the need for
duplication in many applications.

There are many books that describe the calls provided by the standard I/O
library (stdio). This chapter offers a different approach by describing the
implementation of the Linux standard I/O library showing the main structures,
how they support the functions available, and how the library calls map onto the
system call layer of UNIX.

The needs of the application will dictate whether the standard I/O library will
be used as opposed to basic file-based system calls. If extra functionality is
required and performance is not paramount, the standard I/0O library, with its
rich set of functions, will typically meet the needs of most programmers. If
performance is key and more control is required over the execution of 1/0,
understanding how the filesystem performs I/O and bypassing the standard I/O
library is typically a better choice.

Rather than describing the myriad of stdio functions available, which are well
documented elsewhere, this chapter provides an overview of how the standard
I/O library is implemented. For further details on the interfaces available, see
Richard Steven’s book Advanced Programming in the UNIX Programming
Environment [STEV92] or consult the Single UNIX Specification.

73

74 UNIX Filesystems—Evolution, Design, and Implementation

The FILE Structure

Where system calls such as open () and dup () return a file descriptor through
which the file can be accessed, the stdio library operates on a FILE structure, or
file stream as it is often called. This is basically a character buffer that holds
enough information to record the current read and write file pointers and some
other ancillary information. On Linux, the I0_FILE structure from which the
FILE structure is defined is shown below. Note that not all of the structure is
shown here.

struct IO FILE (
char * IO read ptr; /* Current read pointer */
char * IO read end; /* End of get area. */
char * IO read base; /* Start of putback and get area. */
char * IO write base; /* Start of put area. */
char * IO write ptr; /* Current put pointer. */
char * IO write end; /* End of put area. */

char * IO buf base; /* Start of reserve area. */
char * IO buf end; /* End of reserve area. */
int _fileno;

int _blksize;

i

typedef struct IO FILE FILE;

Each of the structure fields will be analyzed in more detail throughout the
chapter. However, first consider a call to the open () and read () system calls:

fd = open("/etc/passwd", O_RDONLY) ;
read (fd, buf, 1024);

When accessing a file through the stdio library routines, a FILE structure will be
allocated and associated with the file descriptor £d, and all I/O will operate
through a single buffer. For the IO FILE structure shown above, fileno is
used to store the file descriptor that is used on subsequent calls to read () or
write(),and IO buf base represents the buffer through which the data will
pass.

Standard Input, Output, and Error

The standard input, output, and error for a process can be referenced by the file
descriptors STDIN FILENO, STDOUT FILENO, and STDERR FILENO. To use the
stdio library routines on either of these files, their corresponding file streams
stdin, stdout, and stderr can also be used. Here are the definitions of all
three:

The Standard I/O Library 75

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

All three file streams can be accessed without opening them in the same way that
the corresponding file descriptor values can be accessed without an explicit call to
open().

There are some standard I/O library routines that operate on the standard
input and output streams explicitly. For example, a call to printf () uses stdin
by default whereas a call to fprintf () requires the caller to specify a file stream.
Similarly, a call to getchar () operates on stdin while a call to getc () requires
the file stream to be passed. The declaration of getchar () could simply be:

#define getchar () getc (stdin)

Opening and Closing a Stream

The fopen () and fclose () library routines can be called to open and close a
file stream:

#include <stdio.hs>

FILE *fopen(const char *filename, const char *mode) ;
int fclose(FILE *stream) ;

The mode argument points to a string that starts with one of the following
sequences. Note that these sequences are part of the ANSI C standard.

r, rb. Open the file for reading.

w, wb. Truncate the file to zero length or, if the file does not exist, create a new
file and open it for writing.

a, ab. Append to the file. If the file does not exist, it is first created.
r+, rb+, r+b. Open the file for update (reading and writing).

w+, wb+, w+b. Truncate the file to zero length or, if the file does not exist,
create a new file and open it for update (reading and writing).

a+, ab+, a+b. Append to the file. If the file does not exist it is created and
opened for update (reading and writing). Writing will start at the end of file.

Internally, the standard I/O library will map these flags onto the corresponding
flags to be passed to the open() system call. For example, r will map to
O_RDONLY, r+ will map to O_RDWR and so on. The process followed when
opening a stream is shown in Figure 4.1.

The following example shows the effects of some of the library routines on the
FILE structure:

76 UNIX Filesystems—Evolution, Design, and Implementation

fp = fopen("myfile", "r+");
stdio library
1. malloc FILE structure
2. call open()
fileno _fileno = open("myfile", O_RDWR) ;
UNIX kernel
struct FILE
service open request
Figure 4.1 Opening a file through the stdio library.

1 #include <stdio.h>
2
3 main ()
4 {
5 FILE *fpl, *fp2;
6 char c;
7
8 fpl = fopen("/etc/passwd", "r");
9 fp2 = fopen("/etc/mtab", "r");
10 printf ("address of fpl = 0x%x\n", fpl);
11 printf (" fpl-> fileno = 0x%x\n", fpl-> fileno);
12 printf ("address of fp2 = 0x%x\n", fp2);
13 printf (" £fp2-> fileno = 0x%x\n\n", fp2-> fileno);
14
15 c = getc(fpl);
16 c = getc(fp2);
17 printf (" £fpl-> IO buf base = 0x%x\n",
18 fpl-> IO buf base);
19 printf (" £fpl-> IO buf end = 0x%x\n",
20 fpl-> IO buf end);
21 printf (" £fp2-> IO buf base = 0x%x\n",
22 fp2-> IO buf base);
23 printf (" £fp2-> IO buf end = 0x%x\n",
24 fp2-> I0 buf end);
25 }

Note that, even following a call to fopen (), the library will not allocate space to
the I/ O buffer unless the user actually requests data to be read or written. Thus,
the value of I0 buf base will initially be NULL. In order for a buffer to be
allocated in the program here, a call is made to getc () in the above example,
which will allocate the buffer and read data from the file into the newly allocated

buffer.

$ fpopen

Address of fpl

0x8049860

The Standard I/O Library 77

fpl-> fileno = 0x3

Address of fp2 = 0x80499d0
fp2-> fileno = 0x4

fpl-> IO buf base = 0x40019000
fpl-> IO buf end = 0x4001a000
fp2-> I0 buf base = 0x4001a000
fp2-> I0 buf end = 0x4001b000

Note that one can see the corresponding system calls that the library will make by
running strace, truss etc.

$ strace fpopen 2>&l1 | grep open

open ("/etc/passwd", O RDONLY) =3

open ("/etc/mtab", O RDONLY) = 4

$ strace fpopen 2>&l | grep read

read (3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 827
read (4, "/dev/hdaé6 / ext2 rw 0 0 none /pr"..., 4096) = 157

Note that despite the program’s request to read only a single character from each
file stream, the stdio library attempted to read 4KB from each file. Any
subsequent calls to getc () do not require another call to read () until all
characters in the buffer have been read.

There are two additional calls that can be invoked to open a file stream, namely
fdopen () and freopen ():

#include <stdio.hs>

FILE *fdopen (int fildes, const char *mode) ;
FILE *freopen (const char *filename,
const char *mode, FILE *stream) ;

The £dopen () function can be used to associate an already existing file stream
with a file descriptor. This function is typically used in conjunction with functions
that only return a file descriptor such as dup (), pipe (), and fcntl ().

The freopen() function opens the file whose name is pointed to by
filename and associates the stream pointed to by stream with it. The original
stream (if it exists) is first closed. This is typically used to associate a file with one
of the predefined streams, standard input, output, or error. For example, if the
caller wishes to use functions such as printf () that operate on standard output
by default, but also wants to use a different file stream for standard output, this
function achieves the desired effect.

Standard I/O Library Buffering

The stdio library buffers data with the goal of minimizing the number of calls to
the read() and write() system calls. There are three different types of
buffering used:

78

UNIX Filesystems—Evolution, Design, and Implementation

Fully (block) buffered. As characters are written to the stream, they are
buffered up to the point where the buffer is full. At this stage, the data is
written to the file referenced by the stream. Similarly, reads will result in a
whole buffer of data being read if possible.

Line buffered. As characters are written to a stream, they are buffered up until
the point where a newline character is written. At this point the line of data
including the newline character is written to the file referenced by the
stream. Similarly for reading, characters are read up to the point where a
newline character is found.

Unbuffered. When an output stream is unbuffered, any data that is written to
the stream is immediately written to the file to which the stream is
associated.

The ANSI C standard dictates that standard input and output should be fully
buffered while standard error should be unbuffered. Typically, standard input
and output are set so that they are line buffered for terminal devices and fully
buffered otherwise.

The setbuf () and setvbuf () functions can be used to change the buffering
characteristics of a stream as shown:

#include <stdio.hs>

void setbuf (FILE *stream, char *buf) ;
int setvbuf (FILE *stream, char *buf, int type, size t size);

The setbuf () function must be called after the stream is opened but before any
I/0O to the stream is initiated. The buffer specified by the buf argument is used in
place of the buffer that the stdio library would use. This allows the caller to
optimize the number of calls to read () and write () based on the needs of the
application.

The setvbuf () function can be called at any stage to alter the buffering
characteristics of the stream. The type argument can be one of IONBF
(unbuffered), IOLBF (line buffered), or _IOFBF (fully buffered). The buffer
specified by the buf argument must be at least size bytes. Prior to the nextI/O,
this buffer will replace the buffer currently in use for the stream if one has
already been allocated. If buf is NULL, only the buffering mode will be changed.

Whether full or line buffering is used, the ££1ush () function can be used to
force all of the buffered data to the file referenced by the stream as shown:

#include <stdio.hs>

int fflush(FILE *stream) ;

Note that all output streams can be flushed by setting stream to NULL. One
further point worthy of mention concerns termination of a process. Any streams
that are currently open are flushed and closed before the process exits.

The Standard I/O Library 79

Reading and Writing to/from a Stream

There are numerous stdio functions for reading and writing. This section
describes some of the functions available and shows a different implementation of
the cp program using various buffering options. The program shown below
demonstrates the effects on the FILE structure by reading a single character using
the getc () function:

1 #include <stdio.h>

2

3 main()

4 |

5 FILE *fp;

6 char c;

7

8 fp = fopen("/etc/passwd", "r");

9 printf ("address of fp = 0x%x\n", fp);

10 printf (" fp-> fileno = 0x%x\n", fp-> fileno);

11 printf (" fp-> IO buf base = 0x%x\n", fp-> IO buf base);
12 printf (" fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
13

14 c = getc(fp);

15 printf (" fp-> IO buf base = 0x%x (size = %d)\n",

16 fp-> IO buf base,

17 fp-> IO buf end fp-> IO buf base);

18 printf (" fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
19 c = getc(fp);
20 printf (" fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
21 }

Note as shown in the output below, the buffer is not allocated until the first I/O is
initiated. The default size of the buffer allocated is 4KB. With successive calls to
getc (), the read pointer is incremented to reference the next byte to read within
the buffer. Figure 4.2 shows the steps that the stdio library goes through to read
the data.

$ fpinfo
Address of fp = 0x8049818
fp-> fileno = 0x3

fp-> IO buf base = 0x0

fp-> IO read ptr = 0x0

fp-> IO buf base = 0x40019000 (size = 4096)
fp-> IO read ptr = 0x40019001
fp-> IO read ptr = 0x40019002

By running strace on Linu, it is possible to see how the library reads the data
following the first call to getc (). Note that only those lines that reference the
/etc/passwd file are displayed here:

80

UNIX Filesystems—Evolution, Design, and Implementation

stdio library
«—— alloc buffer
_IO _read ptr > A
_IO buf base — p |
_fileno yes ‘
1. FirstI/O? - - — — - S
struct FILE

c = getc(mystream)

2. read(_fileno, _IO buf base, 4096);
3. Copy data to user buffer
4. Update _IO_read_ptr

UNIX kernel

\J
service read request

Figure 4.2 Reading a file through the standard I/O library.

$ strace fpinfo

open("/etc/passwd", O RDONLY) = 3
fstat (3, st _mode=S IFREG 0644, st size=788, ...) =0
read (3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 788

The call to fopen () results in a call to open () and the file descriptor returned is
stored in fp->_fileno as shown above. Note that although the program only
asked for a single character (line 14), the standard I/O library issued a 4KB read
to fill up the buffer. The next call to getc () did not require any further data to be
read from the file. Note that when the end of the file is reached, a subsequent call
to getc () will return EOL.

The following example provides a simple cp program showing the effects of
using fully buffered, line buffered, and unbuffered I/O. The buffering option is
passed as an argument. The file to copy from and the file to copy to are hard
coded into the program for this example.

#include <time.h>
#include <stdio.h>

main (int argc, char **argv)

{

time t timel, time2;

81

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 }

The Standard I/O Library
FILE *ifp, *ofp;
int mode ;
char c, ibuf[16384], obuf[16384];
if (strcmp(argv([1l], " IONBF") == 0) {
mode = _IONBF;
} else if (strcmp(argv[1], " IOLBF") == 0) ({
mode = _IOLBF;
} else {
mode = _IOFBF;
1
ifp = fopen("infile", "r");
ofp = fopen("outfile", "w");

setvbuf (ifp, ibuf, mode, 16384);
setvbuf (ofp, obuf, mode, 16384);

time (&timel) ;

while ((c = fgetc(ifp)) != EOF) {
fputc(c, ofp);

1

time (&time2) ;

fprintf (stderr, "Time for %s was %d seconds\n", argv[1l],
time2 - timel) ;

The input file has 68,000 lines of 80 characters each. When the program is run with
the different buffering options, the following results are observed:

$ 1s -1 infile

-rw-r--r-

1 spate fcf 5508000 Jun 29 15:38 infile

$ we -1 infile
68000 infile

$./fpecp
Time for

$./fpecp
Time for

$./fpecp
Time for

_IONBF
_IONBF was 35 seconds
_IOLBF
_IOLBF was 3 seconds
_IOFBF

_IOFBF was 2 seconds

The reason for such a huge difference in performance can be seen by the number
of system calls that each option results in. For unbuffered I/O, each call to
getc () or putc () produces a system call to read () or write (). All together,
there are 68,000 reads and 68,000 writes! The system call pattern seen for
unbuffered is as follows:

open

("infile", O_RDONLY) =3
open ("outfile", O WRONLY|O CREAT|O TRUNC, 0666) = 4
time ([994093607]) = 994093607
read (3, "o", 1) =1

82 UNIX Filesystems—Evolution, Design, and Implementation

write(4, "0", 1) =1
read (3, "1", 1) =1
write(4, "1", 1) =1

For line buffered, the number of system calls is reduced dramatically as the
system call pattern below shows. Note that data is still read in buffer-sized

chunks.
open("infile", O RDONLY) =3
open ("outfile", O WRONLY|O CREAT|O TRUNC, 0666) =4
time ([994093688]) = 994093688
read (3, "01234567890123456789012345678901"..., 16384) = 16384
write (4, "01234567890123456789012345678901"..., 81) = 81
write (4, "01234567890123456789012345678901"..., 81) = 81
write (4, "01234567890123456789012345678901"..., 81) = 81

For the fully buffered case, all data is read and written in buffer size (16384 bytes)
chunks, reducing the number of system calls further as the following output

shows:
open("infile", O RDONLY) =3
open ("outfile", O WRONLY|O CREAT|O TRUNC, 0666) =4
read (3, "67890123456789012345678901234567"..., 4096) = 4096
write (4, "01234567890123456789012345678901"..., 4096) = 4096
read (3, "12345678901234567890123456789012"..., 4096) = 4096
write (4, "67890123456789012345678901234567"..., 4096) = 4096

Seeking through the Stream

Just as the 1seek () system call can be used to set the file pointer in preparation
for a subsequent read or write, the £seek () library function can be called to set
the file pointer for the stream such that the next read or write will start from that
offset.

#include <stdio.hs>

int fseek (FILE *stream, long int offset, int whence) ;

The offset and whence arguments are identical to those supported by the
lseek () system call. The following example shows the effect of calling
fseek () on the file stream:

1 #include <stdio.h>
2

3 main ()

4 {

The Standard 1/O Library

83

5 FILE *fp;

6 char c;

7

8 fp = fopen("infile", "xr");

9 printf ("address of fp = 0x%x\n", fp);

10 printf (" fp-> IO buf base = 0x%x\n", fp-> IO buf base);
11 printf (" fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
12

13 c = getc(fp);

14 printf (" fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
15 fseek (fp, 8192, SEEK SET);

16 printf (" £fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
17 c = getc(fp);

18 printf (" £fp-> IO read ptr = 0x%x\n", fp-> IO read ptr);
19 }

By calling getc (), a 4KB read is used to

fill up the buffer pointed to by

_IO_buf_ base. Because only a single character is returned by getc (), the read
pointer is only advanced by one. The call to £seek () modifies the read pointer as

shown below:

S fpseek
Address of fp
fp->_ IO buf base

fp-> IO read ptr =
fp-> IO read ptr =
fp-> IO read ptr =
fp-> IO read ptr =

0x80497e0
0x0

0x0
0x40019001
0x40019000
0x40019001

Note that no data needs to be read for the second call to getc (). Here are the

relevant system calls:

open("infile", O RDONLY) =3

fstat64 (1, st _mode=S IFCHR 0620, st rdev=makedev (136, 0), ...) =0
read (3, "01234567890123456789012345678901"..., 4096) = 4096

write (1, ...) # display _IO read ptr
_1lseek (3, 8192, [8192], SEEK SET) =0

write (1, ...) # display _IO read ptr
read (3, "12345678901234567890123456789012"..., 4096) = 4096

write(1, ...) # display _IO read ptr

The first call to getc () results in the call to read () . Seeking through the stream
results in a call to 1seek (), which also resets the read pointer. The second call to
getc () then involves another call to read data from the file.

There are four other functions available that relate to the file position within the

stream, namely:

#include <stdio.h>

long ftell(FILE *stream) ;

void rewind (

FILE *stream) ;
int fgetpos(FILE *stream,
int fsetpos(FILE *stream,

fpos_t *pos) ;
fpos_t *pos) ;

84 UNIX Filesystems—Evolution, Design, and Implementation

The £tell () function returns the current file position. In the preceding example
following the call to fseek(), a call to ftell() would return 8192. The
rewind () function is simply the equivalent of calling:

fseek (stream, 0, SEEK SET)

The fgetpos() and fsetpos () functions are equivalent to ftell () and
fseek () (with SEEK_SET passed), but store the current file pointer in the
argument referenced by pos.

Summary

There are numerous functions provided by the standard I/O library that often
reduce the work of an application writer. By aiming to minimize the number of
system calls, performance of some applications may be considerably improved.
Buffering offers a great deal of flexibility to the application programmer by
allowing finer control over how I/0 is actually performed.

This chapter highlighted how the standard I/O library is implemented but
stops short of describing all of the functions that are available. Richard Steven’s
book Advanced Programming in the UNIX Environment [STEV92] provides more
details from a programming perspective. Herbert Schildt's book The Annotated
ANSI C Standard [SCHI93] provides detailed information on the stdio library as
supported by the ANSI C standard.

Filesystem-Based Concepts

The UNIX filesystem hierarchy contains a number of different filesystem types
including disk-based filesystems such as VXFS and UFS and also pseudo
filesystems such as procfs and tmpfs. This chapter describes concepts that relate
to filesystems as a whole such as disk partitioning, mounting and unmounting of
filesystems, and the main commands that operate on filesystems such as mkfs,
mount, £sck, and df.

What’s in a Filesystem?

At one time, filesystems were either disk based in which all files in the filesystem
were held on a physical disk, or were RAM based. In the latter case, the filesystem
only survived until the system was rebooted. However, the concepts and
implementation are the same for both. Over the last 10 to 15 years a number of
pseudo filesystems have been introduced, which to the user look like filesystems,
but for which the implementation is considerably different due to the fact that
they have no physical storage. Pseudo filesystems will be presented in more detail
in Chapter 11. This chapter is primarily concerned with disk-based filesystems.

A UNIX filesystem is a collection of files and directories that has the following
properties:

85

86 UNIX Filesystems—Evolution, Design, and Implementation

m It has a root directory (/) that contains other files and directories. Most
disk-based filesystems will also contain a lost+found directory where
orphaned files are stored when recovered following a system crash.

m Each file or directory is uniquely identified by its name, the directory in
which it resides, and a unique identifier, typically called an inode.

m By convention, the root directory has an inode number of 2 and the
lost+found directory has an inode number of 3. Inode numbers 0 and 1
are not used. File inode numbers can be seen by specifying the -1 option to
1s.

m It is self contained. There are no dependencies between one filesystem
and any other.

A filesystem must be in a clean state before it can be mounted. If the system
crashes, the filesystem is said to be dirty. In this case, operations may have been
only partially completed before the crash and therefore the filesystem structure
may no longer be intact. In such a case, the filesystem check program fsck must
be run on the filesystem to check for any inconsistencies and repair any that it
finds. Running fsck returns the filesystem to its clean state. The section
Repairing Damaged Filesystems, later in this chapter, describes the £sck program
in more detail.

The Filesystem Hierarchy

There are many different types of files in a complete UNIX operating system.
These files, together with user home directories, are stored in a hierarchical tree
structure that allows files of similar types to be grouped together. Although the
UNIX directory hierarchy has changed over the years, the structure today still
largely reflects the filesystem hierarchy developed for early System V and BSD
variants.

For both root and normal UNIX users, the PATH shell variable is set up during
login to ensure that the appropriate paths are accessible from which to run
commands. Because some directories contain commands that are used for
administrative purposes, the path for root is typically different from that of

normal users. For example, on Linux the path for a root and non root user may
be:

echo $PATH

/usr/sbin:/sbin:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/root/bin

$ echo $PATH

/home/spate/bin: /usr/bin:/bin:/usr/bin/X11:/usr/local/bin:
/home/spate/office52/program

Filesystem-Based Concepts 87

The following list shows the main UNIX directories and the type of files that
reside in each directory. Note that this structure is not strictly followed among the
different UNIX variants but there is a great deal of commonality among all of
them.

/usr. This is the main location of binaries for both user and administrative
purposes.
/usr/bin. This directory contains user binaries.

/usr/sbin. Binaries that are required for system administration purposes are
stored here. This directory is not typically on a normal user’s path. On some
versions of UNIX, some of the system binaries are stored in /sbin.

/usr/local. This directory is used for locally installed software that is
typically separate from the OS. The binaries are typically stored in
/usr/local/bin.

/usr/share. This directory contains architecture-dependent files including
ASCII help files. The UNIX manual pages are typically stored in
/usr/share/man.

/usr/1lib. Dynamic and shared libraries are stored here.

/usr/ucb. For non-BSD systems, this directory contains binaries that
originated in BSD.

/usr/include. User header files are stored here. Header files used by the
kernel are stored in /usr/include/sys.

/usr/src. The UNIX kernel source code was once held in this directory
although this hasn’t been the case for a long time, Linux excepted.

/bin. Has been a symlink to /usr/bin for quite some time.
/dev. All of the accessible device files are stored here.

/etc. Holds configuration files and binaries which may need to be run before
other filesystems are mounted. This includes many startup scripts and
configuration files which are needed when the system bootstraps.

/var. System log files are stored here. Many of the log files are stored in
/var/log.

/var/adm. UNIX accounting files and system login files are stored here.

/var/preserve. This directory is used by the vi and ex editors for storing
backup files.

/var/tmp. Used for user temporary files.

/var/spool. This directory is used for UNIX commands that provide
spooling services such as uucp, printing, and the cron command.

/home. User home directories are typically stored here. This may be
/usr/home on some systems. Older versions of UNIX and BSD often store
user home directories under /u.

88 UNIX Filesystems—Evolution, Design, and Implementation

/tmp. This directory is used for temporary files. Files residing in this
directory will not necessarily be there after the next reboot.

/opt . Used for optional packages and binaries. Third-party software vendors
store their packages in this directory.

When the operating system is installed, there are typically a number of
filesystems created. The root filesystem contains the basic set of commands,
scripts, configuration files, and utilities that are needed to bootstrap the system.
The remaining files are held in separate filesystems that are visible after the
system bootstraps and system administrative commands are available.

For example, shown below are some of the mounted filesystems for an active
Solaris system:

/proc on /proc read/write/setuid

/ on /dev/dsk/clt0d0s0 read/write/setuid

/dev/fd on fd read/write/setuid

/var/tmp on /dev/vx/dsk/sysdg/vartmp read/write/setuid/tmplog
/tmp on /dev/vx/dsk/sysdg/tmp read/write/setuid/tmplog

/opt on /dev/vx/dsk/sysdg/opt read/write/setuid/tmplog

/usr/local on /dev/vx/dsk/sysdg/local read/write/setuid/tmplog
/var/adm/log on /dev/vx/dsk/sysdg/varlog read/write/setuid/tmplog
/home on /dev/vx/dsk/homedg/home read/write/setuid/tmplog

During installation of the operating system, there is typically a great deal of
flexibility allowed so that system administrators can tailor the number and size
of filesystems to their specific needs. The basic goal is to separate those
filesystems that need to grow from the root filesystem, which must remain stable.
If the root filesystem becomes full, the system becomes unusable.

Disks, Slices, Partitions, and Volumes

Each hard disk is typically split into a number of separate, different sized units
called partitions or slices. Note that is not the same as a partition in PC
terminology. Each disk contains some form of partition table, called a VTOC
(Volume Table Of Contents) in SVR4 terminology, which describes where the
slices start and what their size is. Each slice may then be used to store bootstrap
information, a filesystem, swap space, or be left as a raw partition for database
access or other use.

Disks can be managed using a number of utilities. For example, on Solaris and
many SVR4 derivatives, the prtvtoc and £mthard utilities can be used to edit
the VTOC to divide the disk into a number of slices. When there are many disks,
this hand editing of disk partitions becomes tedious and very error prone.

For example, here is the output of running the prtvtoc command on a root
disk on Solaris:

prtvtoc /dev/rdsk/c0t0d0s0
* /dev/rdsk/c0t0d0s0 partition map

Filesystem-Based Concepts 89

*

* Dimensions:

* 512 bytes/sector

* 135 sectors/track

* 16 tracks/cylinder

* 2160 sectors/cylinder

* 3882 cylinders

* 3880 accessible cylinders

*

* Flags:

* 1: unmountable

* 10: read-only

*

* First Sector Last

* Partition Tag Flags Sector Count Sector Mount Dir
0 2 00 0 788400 788399 /
1 3 01 788400 1049760 1838159
2 5 00 0 8380800 8380799
4 0 00 1838160 4194720 6032879 /usr
6 4 00 6032880 2347920 8380799 /opt

The partition tag is used to identify each slice such that c0t0d0s0 is the slice that
holds the root filesystem, c0t0d0s4 is the slice that holds the /usr filesystem,
and so on.

The following example shows partitioning of an IDE-based, root Linux disk.
Although the naming scheme differs, the concepts are similar to those shown
previously.

fdisk /dev/hda
Command (m for help): p

Disk /dev/hda: 240 heads, 63 sectors, 2584 cylinders
Units = cylinders of 15120 * 512 bytes

Device Boot Start End Blocks Id System

/dev/hdal * 1 3 22648+ 83 Linux

/dev/hda2 556 630 567000 6 FATle

/dev/hda3 4 12 68040 82 Linux swap
/dev/hda4 649 2584 14636160 f Win95 Ext'd (LBA)
/dev/hdab 1204 2584 10440328+ b Win95 FAT32
/dev/hda6 649 1203 4195737 83 Linux

Logical volume managers provide a much easier way to manage disks and create
new slices (called logical volumes). The volume manager takes ownership of the
disks and gives out space as requested. Volumes can be simple, in which case the
volume simply looks like a basic raw disk slice, or they can be mirrored or striped.
For example, the following command can be used with the VERITAS Volume
Manager, VxVM, to create a new simple volume:

vxassist make myvol 10g
vxprint myvol

90 UNIX Filesystems—Evolution, Design, and Implementation

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE
v myvol fsgen ENABLED 20971520 ACTIVE
pl myvol-01 myvol ENABLED 20973600 ACTIVE
sd disk12-01 myvol-01 ENABLED 8378640 O -
sd disk02-01 myvol-01 ENABLED 8378640 8378640 -
sd disk03-01 myvol-01 ENABLED 4216320 16757280 -

VxVM created the new volume, called myvol, from existing free space. In this
case, the 1GB volume was created from three separate, contiguous chunks of disk
space that together can be accessed like a single raw partition.

Raw and Block Devices

With each disk slice or logical volume there are two methods by which they can
be accessed, either through the raw (character) interface or through the block
interface. The following are examples of character devices:

1s -1 /dev/vx/rdsk/myvol

Crw------ 1 root root 86, 8 Jul 9 21:36 /dev/vx/rdsk/myvol
ls -1L /dev/rdsk/c0t0d0s0
Crw------ 1 root sys 136, 0 Apr 20 09:51 /dev/rdsk/c0t0d0s0

while the following are examples of block devices:

1s -1 /dev/vx/dsk/myvol

brw------ 1 root root 86, 8 Jul 9 21:11 /dev/vx/dsk/myvol
ls -1L /dev/dsk/c0t0d0s0
brw------ 1 root sys 136, 0 Apr 20 09:51 /dev/dsk/c0t0d0s0

Note that both can be distinguished by the first character displayed (b or c) or
through the location of the device file. Typically, raw devices are accessed
through /dev/rdsk while block devices are accessed through /dev/dsk. When
accessing the block device, data is read and written through the system buffer
cache. Although the buffers that describe these data blocks are freed once used,
they remain in the buffer cache until they get reused. Data accessed through the
raw or character interface is not read through the buffer cache. Thus, mixing the
two can result in stale data in the buffer cache, which can cause problems.

All filesystem commands, with the exception of the mount command, should
therefore use the raw / character interface to avoid this potential caching problem.

Filesystem Switchout Commands

Many of the commands that apply to filesystems may require filesystem specific
processing. For example, when creating a new filesystem, each different

Filesystem-Based Concepts 91

filesystem may support a wide range of options. Although some of these options
will be common to most filesystems, many may not be.

To support a variety of command options, many of the filesystem-related
commands are divided into generic and filesystem dependent components. For
example, the generic mkfs command that will be described in the next section, is
invoked as follows:

mkfs -F vxfs -o ...

The -F option (-t on Linux) is used to specify the filesystem type. The -o option

is used to specify filesystem-specific options. The first task to be performed by

mkfs is to do a preliminary sanity check on the arguments passed. After this has

been done, the next job is to locate and call the filesystem specific mk£s function.
Take for example the call to mk£fs as follows:

mkfs -F nofs /dev/vx/rdsk/myvol
mkfs: FSType nofs not installed in the kernel

Because there is no filesystem type of nofs, the generic mkfs command is unable
to locate the nofs version of mkfs. To see how the search is made for the
filesystem specific mkfs command, consider the following:

truss -o /tmp/truss.out mkfs -F nofs /dev/vx/rdsk/myvol

mkfs: FSType nofs not installed in the kernel

grep nofs /tmp/truss.out

execve ("/usr/1lib/fs/nofs/mkfs", 0x000225C0, OxFFBEFDA8) Err#2 ENOENT
execve ("/etc/fs/nofs/mkfs", 0x000225C0, OxFFBEFDA8) Err#2 ENOENT
sysfs (GETFSIND, "nofs") Err#22 EINVAL

In this case, the generic mkfs command assumes that commands for the nofs
filesystem will be located in one of the two directories shown above. In this case,
the files don’t exist. As a finally sanity check, a call is made to sysfs () to see if
there actually is a filesystem type called nofs.

Consider the location of the generic and filesystem-specific £styp commands
in Solaris:

which fstyp

/usr/sbin/fstyp

ls /usr/lib/fs

autofs/ £fd/ lofs/ nfs/ proc/ udfs/ vxfs/
cachefs/ hsfs/ mntfs/ pcfs/ tmpfs/ ufs/

1ls /usr/lib/fs/ufs/fstyp
/usr/lib/fs/ufs/fstyp
1ls /usr/lib/fs/vxfs/fstyp
/usr/lib/fs/vxfs/fstyp

Using this knowledge it is very straightforward to write a version of the generic
fstyp command as follows:

92 UNIX Filesystems—Evolution, Design, and Implementation

1 #include <sys/fstyp.h>

2 #include <sys/fsid.h>

3 #include <unistd.hs>

4

5 main(int argc, char **argv)

6 {

7 char cmd [256] ;

8

9 if (argc != 4 && (strcmp(argv([1], "-F") != 0)) {

10 printf ("usage: myfstyp -F fs-type\n");

11 exit (1) ;

12 }

13 sprintf (cmd, "/usr/lib/fs/%s/fstyp", argv[2]);

14 if (execl(cmd, argv([2], argv([3], NULL) < 0) {

15 printf ("Failed to find fstyp command for %$s\n",
16 argv([2]);

17 }

18 if (sysfs (GETFSTYP, argv([2]) < 0) {

19 printf ("Filesystem type %s doesn’t exist\n",
20 argv([2]);

21 }

22 }

This version requires that the filesystem type to search for is specified. If it is
located in the appropriate place, the command is executed. If not, a check is made
to see if the filesystem type exists as the following run of the program shows:

myfstyp -F vxfs /dev/vx/rdsk/myvol
vxfs

myfstyp -F nofs /dev/vx/rdsk/myvol
Failed to find fstyp command for nofs
Filesystem type "nofs" doesn’t exist

Creating New Filesystems

Filesystems can be created on raw partitions or logical volumes. For example, in
the prtvtoc output shown above, the root (/) filesystem was created on the raw
disk slice /dev/rdsk/c0t0d0s0 and the /usr filesystem was created on the
raw disk slice /dev/rdsk/c0t0d0s4.

The mkfs command is most commonly used to create a new filesystem,
although on some platforms the newfs command provides a more friendly
interface and calls mkfs internally. The type of filesystem to create is passed to
mkfs as an argument. For example, to create a VXFS filesystem, this would be
achieved by invoking mkfs -F vxfs on most UNIX platforms. On Linux, the
call would be mkfs -t vxfs.

The filesystem type is passed as an argument to the generic mkfs command
(-F or -t). This is then used to locate the switchout command by searching
well-known locations as shown above. The following two examples show how to

Filesystem-Based Concepts

create a VxFS filesystem. In the first example, the size of the filesystem to create is
passed as an argument. In the second example, the size is omitted, in which case
VxFS determines the size of the device and creates a filesystem of that size.

mkfs -F vxfs /dev/vx/rdsk/voll 25g

version 4 layout

52428800 sectors, 6553600 blocks of size 4096,

log size 256 blocks unlimited inodes, largefiles not supported
6553600 data blocks, 6552864 free data blocks

200 allocation units of 32768 blocks, 32768 data blocks

mkfs -F vxfs /dev/vx/rdsk/voll

version 4 layout

54525952 sectors, 6815744 blocks of size 4096,

log size 256 blocks unlimited inodes, largefiles not supported
6815744 data blocks, 6814992 free data blocks

208 allocation units of 32768 blocks, 32768 data blocks

The following example shows how to create a UFS filesystem. Note that although
the output is different, the method of invoking mk£s is similar for both VxFS and
UFS.

mkfs -F ufs /dev/vx/rdsk/voll 54525952
/dev/vx/rdsk/voll: 54525952 sectors in 106496 cylinders of
16 tracks, 32 sectors

26624.0MB in 6656 cyl groups (16 c/g, 4.00MB/g, 1920 i/g)

super-block backups (for fsck -F ufs -o b=#) at:
32, 8256, 16480, 24704, 32928, 41152, 49376, 57600, 65824,
74048, 82272, 90496, 98720, 106944, 115168, 123392, 131104,
139328, 147552, 155776, 164000,

54419584, 54427808, 54436032, 54444256, 54452480, 54460704,
54468928, 54477152, 54485376, 54493600, 54501824, 54510048,

The time taken to create a filesystem differs from one filesystem type to another.
This is due to how the filesystems lay out their structures on disk. In the example
above, it took UFS 23 minutes to create a 25GB filesystem, while for VxFS it took
only half a second. Chapter 9 describes the implementation of various filesystems
and shows how this large difference in filesystem creation time can occur.

Additional arguments can be passed to mkfs through use of the -o option, for
example:

mkfs -F vxfs -obsize=8192,largefiles /dev/vx/rdsk/myvol
version 4 layout
20971520 sectors, 1310720 blocks of size 8192,
log size 128 blocks
unlimited inodes, largefiles not supported
1310720 data blocks, 1310512 free data blocks
40 allocation units of 32768 blocks, 32768 data blocks

94 UNIX Filesystems—Evolution, Design, and Implementation

For arguments specified using the -o option, the generic mkfs command will
pass the arguments through to the filesystem specific mkfs command without
trying to interpret them.

Mounting and Unmounting Filesystems

The root filesystem is mounted by the kernel during system startup. Each
filesystem can be mounted on any directory in the root filesystem, except /. A
mount point is simply a directory. When a filesystem is mounted on that
directory, the previous contents of the directory are hidden for the duration of the
mount, as shown in Figure 5.1.

In order to mount a filesystem, the filesystem type, the device (slice or logical
volume), and the mount point must be passed to the mount command. In the
example below, a VXFS filesystem is mounted on /mntl. Running the mount
command by itself shows all the filesystems that are currently mounted, along
with their mount options:

mount -F vxfs /dev/vx/dsk/voll /mntl

mount | grep mntl

/mntl on /dev/vx/dsk/voll read/write/setuid/delaylog/
nolargefiles/ioerror=mwdisable/dev=1580006
on Tue Jul 3 09:40:27 2002

Note that the mount shows default mount options as well as options that were
explicitly requested. On Linux, the -t option is used to specify the filesystem
type so the command would be invoked with mount -t vxfs.

As with mkfs, the mount command is a switchout command. The generic
mount runs first and locates the filesystem-specific command to run, as the
following output shows. Note the use of the access () system call. There are a
number of well-known locations for which the filesystem-dependent mount
command can be located.

1379: execve ("/usr/sbin/mount", OXFFBEFD8C, OxFFBEFDA4) argc = 5

1379: access ("/usr/lib/fs/vxfs/mount", 0) Err#2 ENOENT
1379: execve("/etc/fs/vxfs/mount", OxFFBEFCEC, OxXFFBEFDA4) argc = 3

1379: mount ("/dev/vx/dsk/voll", "/mntl", MS_DATA|MS_OPTIONSTR,
"vxfs", OxXFFBEFBF4, 12) = 0

When a filesystem is mounted, an entry is added to the mount table, which is a file
held in /etc that records all filesystems mounted, the devices on which they
reside, the mount points on which they’re mounted, and a list of options that
were passed to mount or which the filesystem chose as defaults.

Filesystem-Based Concepts 95

root filesystem usr filesystem

etc home usxy var . bin 1ib adm share
fileA
fileB

root filesystem following mount

etc home usxr var

bin 1lib adm share

Figure 5.1 Mounting the /usr filesystem.

The actual name chosen for the mount table differs across different versions of
UNIX. On all System V variants, it is called mnttab, while on Linux and BSD
variants it is called mtab.

Shown below are the first few lines of /etc/mnttab on Solaris followed by
the contents of a /etc/mtab on Linux:

head -6 /etc/mnttab

/proc /proc proc rw,suid,dev=2£80000 995582515

/dev/dsk/clt0d0s0 / ufs rw,suid,dev=1d80000,largefiles 995582515

fd /dev/fd £4 rw,suid,dev=3080000 995582515

/dev/dsk/clt1d0s0 /spacel ufs ro,largefiles,dev=1d80018 995582760

/dev/dsk/clt2d0s0 /rootcopy ufs ro,largefiles,dev=1d80010
995582760

/dev/vx/dsk/sysdg/vartmp /var/tmp vxfs rw,tmplog,suid,nolargefiles
995582793

cat /etc/mtab

/dev/hda6 / ext2 rw 0 0

none /proc proc rw 0 0

usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hdal /boot ext2 rw 0 0

none /dev/pts devpts rw,gid=5,mode=620 0 0

96 UNIX Filesystems—Evolution, Design, and Implementation

All versions of UNIX provide a set of routines for manipulating the mount table,
either for adding entries, removing entries, or simply reading them. Listed below
are two of the functions that are most commonly available:

#include <stdio.hs>
#include <sys/mnttab.h>

int getmntent (FILE *fp, struct mnttab *mp) ;

int putmntent (FILE *iop, struct mnttab *mp) ;

The getmntent (L) function is used to read entries from the mount table while
putmntent (L) can be used to remove entries. Both functions operate on the
mnttab structure, which will contain at least the following members:

char *mnt_special; /* The device on which the fs resides */
char *mnt _mountp; /* The mount point */

char *mnt_fstype; /* The filesystem type */

char *mnt_mntopts; /* Mount options */

char *mnt_time; /* The time of the mount */

Using the getmntent (L) library routine, it is very straightforward to write a
simple version of the mount command that, when run with no arguments,
displays the mounted filesystems by reading entries from the mount table. The
program, which is shown below, simply involves opening the mount table and
then making repeated calls to getmntent (L) to read all entries.

1 #include <stdio.h>
2 #include <sys/mnttab.h>
3

4 main()

5 {

6 struct mnttab mt ;

7 FILE *fp;

8

9 fp = fopen("/etc/mnttab", “r”);

10

11 printf ("%$-15s%-10s%-30s\n",

12 "mount point", "fstype", "device");

13 while ((getmntent (fp, &mt)) != -1) {

14 printf ("%$-15s%-10s%-30s\n", mt.mnt mountp,
15 mt.mnt_fstype, mt.mnt special);
16 }

17 }

Each time getmntent (L) is called, it returns the next entry in the file. Once all
entries have been read, -1 is returned. Here is an example of the program
running:

$ mymount | head -7
/proc proc /proc

Filesystem-Based Concepts

97

/
/dev/fd
/spacel
/var/tmp
/tmp

ufs /dev/dsk/c1t0d0s0

fd fd

ufs /dev/dsk/clt1d0s0

vxfs /dev/vx/dsk/sysdg/vartmp
vxfs /dev/vx/dsk/sysdg/tmp

On Linux, the format of the mount table is slightly different and the
getmntent (L) function operates on a mntent structure. Other than minor
differences with field names, the following program is almost identical to the one

shown above:

1 #include
2 #include
3

4 main()

5 {

0 J 0

9
10
11
12
13
14
15
16
17 }

<stdio.h>
<mntent.h>

struct mntent *mt ;
FILE *fp;
fp = fopen("/etc/mtab", "r");

printf ("%$-15s%-10s%-30s\n",
"mount point", "fstype", "device");
while ((mt = getmntent (fp)) != NULL) {
printf ("$-15s%-10s%-30s\n", mt->mnt dir,
mt->mnt_type, mt—>mnt_fsname);

Following is the output when the program runs:

$ lmount

mount point fstype device

/ ext2 /dev/hda6

/proc proc none
/proc/bus/usb usbdevfs usbdevfs

/boot ext2 /dev/hdal
/dev/pts devpts none

/mntl vxfs /dev/vx/dsk/myvol

To unmount a filesystem either the mount point or the device can be passed to the
umount command, as the following examples show:

H H H H

umount /mntl

mount | grep mntl

mount -F vxfs /dev/vx/dsk/voll /mntl
mount | grep mntl

/mntl on /dev/vx/dsk/voll read/write/setuid/delaylog/
umount /dev/vx/dsk/voll
mount | grep mntl

After each invocation of umount, the entry is removed from the mount table.

98 UNIX Filesystems—Evolution, Design, and Implementation

Mount and Umount System Call Handling

As the preceding examples showed, the mount and umount commands result in
a call to the mount () and umount () system calls respectively.

#include <sys/types.h>
#include <sys/mount.h>

int mount (const char *spec, const char *dir, int mflag, /*
char *fstype, const char *dataptr, int datalen */ ...);

#include <sys/mount.h>

int umount (const char *file);

Usually there should never be a direct need to invoke either the mount () or
umount () system calls. Although many of the arguments are self explanatory,
the handling of per-filesystem options, as pointed to by dataptr, is not typically
published and often changes. If applications have a need to mount and unmount
filesystems, the system (L) library function is recommended as a better choice.

Mounting Filesystems Automatically

As shown in the next section, after filesystems are created, it is typically left to the
system to mount them during bootstrap. The virtual filesystem table, called
/etc/vEstab on System V variants and /etc/fstab on BSD variants,
contains all the necessary information about each filesystem to be mounted.

This file is partially created during installation of the operating system. When
new filesystems are created, the system administrator will add new entries
ensuring that all the appropriate fields are entered correctly. Shown below is an
example of the vEstab file on Solaris:

cat /etc/vEstab

fd - /dev/fd fd - no -

/proc - /proc proc - no -
/dev/dsk/c0t0d0s0 /dev/rdsk/c0t0d0s0 / ufs 1 no -
/dev/dsk/c0t0d0s6 /dev/rdsk/c0t0d0s6 /usr ufs 1 no -

2 yes -

/dev/dsk/c0t0d0s4 /dev/rdsk/c0t0d0s4 /c ufs

Here the fields are separated by spaces or tabs. The first field shows the block
device (passed to mount), the second field shows the raw device (passed to
fsck), the third field specifies the mount point, and the fourth specifies the
filesystem type. The remaining three fields specify the order in which the
filesystems will be checked, whether they should be mounted during bootstrap,
and what options should be passed to the mount command.

Here is an example of a Linux fstab table:

Filesystem-Based Concepts 99

cat /etc/fstab

LABEL=/ / ext2 defaults 11
LABEL=/boot /boot ext2 defaults 12
/dev/cdrom /mnt /cdrom 1809660 noauto,owner,ro 0 0
/dev/£do /mnt /floppy auto noauto, owner 00
none /proc proc defaults 00
none /dev/pts devpts gid=5,mode=620 00
/dev/hda3 swap swap defaults 00
/SWAP swap swap defaults 00

The first four fields describe the device, mount point, filesystem type, and options
to be passed to mount. The fifth field is related to the dump command and records
which filesystems need to be backed up. The sixth field is used by the fsck
program to determine the order in which filesystems should be checked during
bootstrap.

Mounting Filesystems During Bootstrap

Once filesystems are created and entries placed in /etc/vEstab, or equivalent,
there is seldom need for administrator intervention. This file is accessed during
system startup to mount all filesystems before the system is accessible to most
applications and users.

When the operating system bootstraps, the kernel is read from a well-known
location of disk and then goes through basic initialization tasks. One of these tasks
is to mount the root filesystem. This is typically the only filesystem that is
mounted until the system rc scripts start running.

The init program is spawned by the kernel as the first process (process ID of
1). By consulting the inittab (F) file, it determines which commands and
scripts it needs to run to bring the system up further. This sequence of events can
differ between one system and another. For System V-based systems, the rc
scripts are located in /etc/rcX.d where X corresponds to the run level at which
init is running.

Following are a few lines from the inittab (F) file:

$ head -9 inittab

ap::sysinit:/sbin/autopush -f /etc/iu.ap
ap::sysinit:/sbin/soconfig -f /etc/sock2path
fs::sysinit:/sbin/rcS sysinit

is:3:initdefault:
p3:s1234:powerfail:/usr/sbin/shutdown -y -1i5 -g0
sS:s:wait:/sbin/rcS

s0:0:wait:/sbin/rc0

sl:1l:respawn:/sbin/rcl

s2:23:wait:/sbin/rc2

Of particular interest is the last line. The system goes multiuser at init state 2.
This is achieved by running the rc2 script which in turn runs all of the scripts
found in /etc/rc2.d. Of particular interest is the script SO1MOUNTFSYS. This is

100 UNIX Filesystems—Evolution, Design, and Implementation

the script that is responsible for ensuring that all filesystems are checked for
consistency and mounted as appropriate. The mountall script is responsible for
actually mounting all of the filesystems.

The layout of files and scripts used on non-System V variants differs, but the
concepts are the same.

Repairing Damaged Filesystems

A filesystem can typically be in one of two states, either clean or dirty. To mount a
filesystem it must be clean, which means that it is structurally intact. When
filesystems are mounted read /write, they are marked dirty to indicate that there
is activity on the filesystem. Operations may be pending on the filesystem during
a system crash, which could leave the filesystem with structural damage. In this
case it can be dangerous to mount the filesystem without knowing the extent of
the damage. Thus, to return the filesystem to a clean state, a filesystem-specific
check program called £sck must be run to repair any damage that might exist.
For example, consider the following call to mount after a system crash:

mount -F vxfs /dev/vx/dsk/voll /mntl
UX:vxfs mount: ERROR: /dev/vx/dsk/voll is corrupted. needs checking

The filesystem is marked dirty and therefore the mount fails. Before it can be
mounted again, the VXFS £sck program must be run as follows:

fsck -F vxfs /dev/vx/rdsk/voll
log replay in progress
replay complete marking super-block as CLEAN

VxFS is a transaction-based filesystem in which structural changes made to the
filesystem are first written to the filesystem log. By replaying the transactions in
the log, the filesystem returns to its clean state.

Most UNIX filesystems are not transaction-based, and therefore the whole
filesystem must be checked for consistency. In the example below, a full £sck is
performed on a UFS filesystem to show the type of checks that will be performed.
UFS on most versions of UNIX is not transaction-based although Sun has added
journaling support to its version of UFS.

fsck -F ufs -y /dev/vx/rdsk/myvol

**% /dev/vx/dsk/myvol

** Last Mounted on /mntl

** Phase 1 Check Blocks and Sizes

** Phase 2 Check Pathnames

** Phase 3 Check Connectivity

** Phase 4 Check Reference Counts

** Phase 5 Check Cyl groups

61 files, 13 used, 468449 free (41 frags, 58551 blocks, 0
.0% fragmentation)

Filesystem-Based Concepts

101

Running fsck is typically a non-interactive task performed during system
initialization. Interacting with £sck is not something that system administrators
will typically need to do. Recording the output of £sck is always a good idea in
case fsck fails to clean the filesystem and support is needed by filesystem
vendors and /or developers.

The Filesystem Debugger

When things go wrong with filesystems, it is necessary to debug them in the same
way that it is necessary to debug other applications. Most UNIX filesystems have
shipped with the filesystem debugger, £sdb, which can be used for that purpose.

It is with good reason that £sdb is one of the least commonly used of the UNIX
commands. In order to use f£sdb effectively, knowledge of the filesystem
structure on disk is vital, as well as knowledge of how to use the filesystem
specific version of £sdb. Note that one version of £sdb does not necessarily bear
any resemblance to another.

In general, £sdb should be left well alone. Because it is possible to damage the
filesystem beyond repair, its use should be left for filesystem developers and
support engineers only.

Per Filesystem Statistics

In the same way that the stat () system call can be called to obtain per-file
related information, the statvfs() system call can be invoked to obtain
per-filesystem information. Note that this information will differ for each
different mounted filesystem so that the information obtained for, say, one VxFS
filesystem, will not necessarily be the same for other VxFS filesystems.

#include <sys/types.h>
#include <sys/statvfs.h>

int statvfs(const char *path, struct statvfs *buf);
int fstatvfs(int fildes, struct statvfs *buf) ;

Both functions operate on the statvfs structure, which contains a number of
filesystem-specific fields including the following:

u_long f bsize; /* file system block size */

u_long f frsize; /* fundamental filesystem block
(size if supported) */

fsblkent _t £ blocks; /* total # of blocks on file system
in units of f frsize */

fsblkent t £ bfree; /* total # of free blocks */

fsblkent t £ bavail; /* # of free blocks avail to

non-super-user */
fsfilent t £ files; /* total # of file nodes (inodes) */

102 UNIX Filesystems—Evolution, Design, and Implementation

fsfilent t £ ffree; /* total # of free file nodes */
fsfilent _t £ favail; /* # of inodes avail to non-suser*/
u_long f fsid; /* file system id (dev for now) */
char f basetype[FSTYPSZ]; /* fs name null-terminated */
u_long f flag; /* bit mask of flags */

u_long f namemax; /* maximum file name length */

char f fstr[32]; /* file system specific string */

The statvfs (L) function is not available on Linux. In its place is the
statfs (L) function that operates on the statfs structure. The fields of this
structure are very similar to the statvfs structure, and therefore implementing
commands such as df require very little modification if written for a system
complying with the Single UNIX Specification.

The following program provides a simple implementation of the df command
by invoking statvfs (L) to obtain per filesystem statistics as well as locating
the entry in the /etc/vEstab file:

1 #include <stdio.h>

2 #include <sys/types.h>

3 #include <sys/statvfs.h>

4 #include <sys/mnttab.h>

5

6 #define Kb (stv.f frsize / 1024)

7

8 main (int argc, char **argv)

9 {

10 struct mnttab mt, mtp;

11 struct statvfs stv;

12 int blocks, used, avail, capacity;
13 FILE *fp;

14

15 statvis (argv[1l], &stv);

16

17 fp = fopen("/etc/mnttab", "r");

18 memset (&mtp, 0, sizeof (struct mnttab)) ;

19 mtp.mnt _mountp = argv[1l];

20 getmntany (fp, &mt, &mtp) ;

21

22 blocks = stv.f _blocks * Kb;

23 used = (stv.f blocks - stv.f bfree) * Kb;
24 avail = stv.f bfree * Kb;

25 capacity = ((double)used / (double)blocks) * 100;
26 printf ("Filesystem kbytes wused "
27 "avail capacity Mounted on\n") ;

28 printf ("%$-22s%-7d%8d%8d $2d%% $s\n",
29 mt.mnt_special, blocks, used, avail,

30 capacity, argvl([1l]);

31 }

In the output shown next, the df command is run first followed by output from
the example program:

Filesystem-Based Concepts

103

$ df -k /h

Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/homedg/h 7145728 5926881 1200824 84% /h

$ mydf /h

Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/homedg/h 7145728 5926881 1218847 82% /h

In practice, there is a lot of formatting work needed by df due to the different
sizes of device names, mount paths, and the additional information displayed
about each filesystem.

Note that the preceding program has no error checking. As an exercise,
enhance the program to add error checking. On Linux the program needs
modification to access the /etc/mtab file and to use the statfs (L) function.
The program can be enhanced further to display all entries on the mount table as
well as accept some of the other options that df provides.

User and Group Quotas

Although there may be multiple users of a filesystem, it is possible for a single
user to consume all of the space within the filesystem. User and group quotas
provide the mechanisms by which the amount of space used by a single user or all
users within a specific group can be limited to a value defined by the
administrator.

Quotas are based on the number of files used and the number of blocks. Some
filesystems have a limited number of inodes available. Even though the amount
of space consumed by a user may be small, it is still possible to consume all of the
files in the filesystem even though most of the free space is still available.

Quotas operate around two limits that allow the user to take some action if the
amount of space or number of disk blocks start to exceed the administrator
defined limits:

Soft Limit. If the user exceeds the limit defined, there is a grace period that
allows the user to free up some space. The quota can be exceeded during this
time. However, after the time period has expired, no more files or data blocks
may be allocated.

Hard Limit. When the hard limit is reached, regardless of the grace period, no
further files or blocks can be allocated.

The grace period is set on a per-filesystem basis. For the VxFS filesystem, the
default is seven days. The soft limit allows for users running applications that
may create a lot of temporary files that only exist for the duration of the
application. If the soft limit is exceeded, no action is taken. After the application
exits, the temporary files are removed, and the amount of files and / or disk blocks
goes back under the soft limit once more. Another circumstance when the soft
limit is exceeded occurs when allocating space to a file. If files are written to

104 UNIX Filesystems—Evolution, Design, and Implementation

sequentially, some filesystems, such as VxFS, allocate large extents (contiguous
data blocks) to try to keep file data in one place. When the file is closed, the
portion of the extent unused is freed.

In order for user quotas to work, there must be a file called quotas in the root
directory of the filesystem. Similarly, for group quotas, the quotas.grp file
must be present. Both of these files are used by the administrator to set quota
limits for users and/or groups. If both user and group quotas are used, the
amount of space allocated to a user is the lower of the two limits.

There are a number of commands to administer quotas. Those shown here are
provided by VxFS. UFS provides a similar set of commands. Each command can
take a -u or -g option to administer user and group quotas respectively.

vxedquota. This command can be used to edit the quota limits for users and
groups.

vxrepgquota. This command provides a summary of the quota limits
together with disk usage.

vxquot . This command displays file ownership and usage summaries.
vxquota. This command can be used to view quota limits and usage.
vxquotaon. This command turns on quotas for a specified VxFS filesystem.

vxquotaoff. This command turns off quotas for the specified filesystem.

Quota checks are performed when the filesystem is mounted. This involves
reading all inodes on disk and calculating usage for each user and group if
needed.

Summary

This chapter described the main concepts applicable to filesystems as a whole,
how they are created and mounted, and how they are repaired if damaged by a
system crash or other means. Although the format of some of the mount tables
differs between one system and the next, the location of the files differ only
slightly, and the principles apply across all systems.

In general, unless administrating a UNIX-based machine, many of the
commands here will not be used by the average UNIX user. However, having a
view of how filesystems are managed helps gain a much better understanding of
filesystems overall.

UNIX Kernel Concepts

This chapter covers the earlier versions of UNIX up to 7th Edition and
describes the main kernel concepts, with particular reference to the kernel
structures related to filesystem activity and how the main file access-based
system calls were implemented.

The structures, kernel subsystems, and flow of control through the research
edition UNIX kernels are still largely intact after more than 25 years of
development. Thus, the simple approaches described in this chapter are
definitely a prerequisite to understanding the more complex UNIX
implementations found today.

5th to 7th Edition Internals

From the mid 1980s onwards, there have been a number of changes in the
UNIX kernel that resulted in the mainstream kernels diverging in their
implementation. For the first fifteen years of UNIX development, there wasn't
a huge difference in the way many kernel subsystems were implemented, and
therefore understanding the principles behind these earlier UNIX versions
will help readers understand how the newer kernels have changed.

The earliest documented version of UNIX was 6th Edition, which can be

105

106 UNIX Filesystems—Evolution, Design, and Implementation

seen in John Lions’ book Lions” Commentary on UNIX 6th Edition —with source
code [LION96]. It is now also possible to download free versions of UNIX
from 5th Edition onwards. The kernel source base is very small by today’s
standards. With less than 8,000 lines of code for the whole kernel, it is easily
possible to gain an excellent understanding of how the kernel worked. Even
the small amounts of assembler code do not need significant study to
determine their operation.

This chapter concentrates on kernel principles from a filesystem
perspective. Before describing the newer UNIX implementations, it is first
necessary to explain some fundamental UNIX concepts. Much of the
description here centers around the period covering 5th to 7th Edition UNIX,
which generally covers the first ten years of UNIX development. Note that the
goal here is to avoid swamping the reader with details; therefore, little
knowledge of UNIX kernel internals is required in order to read through the
material with relative ease.

Note that at this early stage, UNIX was a uniprocessor-based kernel. It
would be another 10 years before mainstream multiprocessor-based UNIX
versions first started to appear.

The UNIX Filesystem

Before describing how the different kernel structures work together, it is first
necessary to describe how the original UNIX filesystem was stored on disk.
Figure 6.1 shows the layout of various filesystem building blocks. The first
(512 byte) block was unused. The second block (block 1) held the superblock, a
structure that holds information about the filesystem as a whole such as the
number of blocks in the filesystem, the number of inodes (files), and the
number of free inodes and data blocks. Each file in the filesystem was
represented by a unique inode that contained fields such as:

i_mode. This field specifies whether the file is a directory (IFDIR), a block
special file (IFBLK), or a character special file (IFCHR). Note that if one
of the above modes was not set, the file was assumed to be a regular file.
This would later be replaced by an explicit flag, IFREG.

i nlink. This field recorded the number of hard links to the file. When
this field reaches zero, the inode is freed.

i uid. The file’s user ID.
i_gid. The file’s group ID.
i_size. The file size in bytes.

i addr. This field holds block addresses on disk where the file’s data
blocks are held.

i mtime. The time the file was last modified.

UNIX Kernel Concepts 107

block 0 | unused (boot block)

block 1 superblock struct filsys

block 2 each defined by

inodes struct inode

data blocks

/_\/\
block n ‘/\/\'

Figure 6.1 The on-disk layout of the first UNIX filesystem.

i atime. The time that the file was last accessed.

The i_addr field was an array of 8 pointers. Each pointer could reference a
single disk block, giving 512 bytes of storage or could reference what is called
an indirect block. Each indirect block contained 32 pointers, each of which
could point to a 512 byte block of storage or a double indirect block. Double
indirects point to indirect data blocks. Figure 6.2 shows the two extremes
whereby data blocks are accessed directly from the inode or from double
indirects.

In the first example, the inode directly references two data blocks. The file
size in this case will be between 513 and 1024 bytes in size. If the size of the
file is less than 512 bytes, only a single data block is needed. Elements 2 to 7 of
the i _addr [] array will be NULL in this case.

The second example shows the maximum possible file size. Each element
of i_addr[] references an indirect block. Each indirect block points to 32
double indirect blocks, and each double indirect block points to 32 data
blocks. This gives a maximum file size of 32 * 32 * 32 = 32,768 data blocks.

Filesystem-Related Kernel Structures

This section describes the main structures used in the UNIX kernel that are
related to file access, from the file descriptor level down to issuing read and
write calls to the disk driver.

User Mode and Kernel Mode

Each UNIX process is separated both from other processes and from the
kernel through hardware-protection mechanisms. Thus, one process is unable
to access the address space of another and is unable to either read from or

108

UNIX Filesystems—Evolution, Design, and Implementation

i _addrlo

71

/D File contains 2 blocks

\ of storage. The file size
D can be up to (2 * 512) bytes

struct inode

i _addrlo

71

struct inode

File contains:

NET \D

indirects

double indirects

8 indirects of which each references:
32 double indirects of which each references:
32 direct data block pointers

Figure 6.2 File storage through the use of indirect data blocks.

write to the kernel data structures.

When a process is running it can either be in user mode or kernel mode.
When in user mode it runs on its own stack and executes instructions from
the application binary or one of the libraries that it may be linked with. In
order to execute a system call, the process transfers to kernel mode by issuing
a special hardware instruction. When in the kernel, all arguments related to
the system call are copied into the kernel’s address space. Execution proceeds
on a separate kernel stack. A context switch (a switch to another user process)
can take place prior to returning to the user process if the timeslice of that
process has been exceeded or if the process goes to sleep (for example, while

waiting for an I/O operation).

The mechanisms for transferring control between user and kernel mode are

dependent on the hardware architecture.

UNIX Kernel Concepts 109

UNIX Process-Related Structures

Information about each process is divided between two different kernel
structures. The proc structure is always present in memory, while the user
structure holds information that is only needed when the process is running.
Thus, when a process is not running and is eligible to be swapped out, all
structures related to the process other than the proc structure may be written
to the swap device. Needless to say, the proc structure must record
information about where on the swap device the other process-related
structures are located.

The proc structure does not record information related to file access.
However the user structure contains a number of important
file-access-related fields, namely:

u_cdir. The inode of the current working directory is stored here. This is
used during pathname resolution when a user specifies a relative
pathname.

u_uid/u_gid. The process user ID and group ID used for permissions
checking for file-access-based system calls. Similarly, u_euid and
u_egid hold the effective user and group IDs.

u_ofile. This array holds the process file descriptors. This is described in
more detail later.

u_arg. An array of system call arguments set up during the transition
from user to kernel mode when invoking a system call.

u_base. This field holds the address of a user space buffer in which to read
data from or write data to when processing a system call such as read ()
orwrite().

u_count. The number of bytes to read or write is held here. It is
decremented during the I/O operation and the result can be passed back
to the user.

u_offset. This field records the offset within the file for the current read
or write operation.

u_error. When processing a system call, this field is set if an error is
encountered. The value of u_error is then passed back to the user
when the system call returns.

There are other fields which have significance to file-access-based calls.
However, these fields became redundant over the years and to avoid bloating
this section, they won’t be described further.

Users familiar with the chroot () system call and later versions of UNIX
may have been wondering why there is no u_rdir to hold the current,
per-process root director—at this stage in UNIX development, chroot () had
not been implemented.

110 UNIX Filesystems—Evolution, Design, and Implementation

File Descriptors and the File Table

The section File Descriptors, in Chapter 2, described how file descriptors are
returned from system calls such as open (). Theu_ofile[] array in the user
structure is indexed by the file descriptor number to locate a pointer to a
file structure.

In earlier versions of UNIX, the size of the u_ofile[] array was hard
coded and had NOFILE elements. Because the stdin, stdout, and stderr
file descriptors occupied slots 0, 1, and 2 within the array, the first file
descriptor returned in response to an open () system call would be 3. For the
early versions of UNIX, NOFILE was set at 15. This would then make its way
to 20 by the time that 7th Edition appeared.

The file structure contains more information about how the file was
opened and where the current file pointer is positioned within the file for
reading or writing. It contained the following members:

f flag. This flag was set based on how the file was opened. If open for
reading it was set to FREAD, and if open for writing it was set to FWRITE.

f count. Each file structure had a reference count. This field is further
described below.

£ _inode. After a file is opened, the inode is read in from disk and stored in
an in-core inode structure. This field points to the in-core inode.

f offset. This field records the offset within the file when reading or
writing. Initially it will be zero and will be incremented by each
subsequent read or write or modified by 1seek ().

The file structure contains a reference count. Calls such as dup () resultina
new file descriptor being allocated that points to the same file table entry as
the original file descriptor. Before dup () returns, the £ count field is
incremented.

Although gaining access to a running 5th Edition UNIX system is a little
difficult 27 years after it first appeared, it is still possible to show how these
concepts work in practice on more modern versions of UNIX. Take for
example the following program running on Sun’s Solaris version 8:

#include <fentl.hs

main ()

{

int fdi, f£d2;

fdl = open("/etc/passwd", O RDONLY) ;

fd2 = dup (fd1) ;

printf("fdl = %d, f£d42 = %d\n", fd1, £d2);
pause () ;

UNIX Kernel Concepts

111

The crash program can be used to analyze various kernel structures. In this
case, it is possible to run the preceding program, locate the process with
crash, and then display the corresponding user and file structures.

First of all, the program is run in the background, which displays file
descriptor values of 3 and 4 as expected. The crash utility is then run and the
proc command is used in conjunction with grep to locate the process in
question as shown here:

./mydup&

[1] 1422

fdl = 3, fd2 = 4

crash

dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> proc ! grep mydup

37 s 1422 1389 1422 1389 0 46 mydup load

The process occupies slot 37 (consider this as an array of proc structures).
The slot number can be passed to the user command that displays the user
area corresponding to the process. Not all of the structure is shown here
although it easy to see some relevant information about the process including
the list of file descriptors. Note that file descriptor values 0, 1, and 2 all point
to the same file table entry. Also, because a call was made to dup () in the
program, entries 3 and 4 in the array point to the same file table entry.

> user 37

PER PROCESS USER AREA FOR PROCESS 37

PROCESS MISC:

command: mydup, psargs: ./mydup

start: Sat Jul 28 08:50:16 2001

mem: 90, type: exec su-user

vnode of current directory: 300019b5468

OPEN FILES, FLAGS, AND THREAD REFCNT:

[0]: F 30000adade8, 0, 0 [1]: F 30000adadé68, 0, O
[2]: F 30000adade8, 0, 0 [3]: F 30000adb078, 0, O
[4]: F 30000adb078, 0, O

Finally, the file command can be used to display the file table entry
corresponding to these file descriptors. Note that the reference count is now 2,
the offset is 0 because no data has been read and the flags hold FREAD as
indicated by the read flag displayed.

> file 30000adb078
ADDRESS RCNT TYPE/ADDR OFFSET FLAGS
30000adb078 2 UFS /30000aafe30 0 read

With the exception that this £ile structure points to a vnode as opposed to the
old in-core inode, the main structure has remained remarkably intact for
UNIX'’s 30+ year history.

112 UNIX Filesystems—Evolution, Design, and Implementation

The Inode Cache

Each file is represented on disk by an inode. When a file is opened, the inode
must be retrieved from disk. Operations such as the stat () system call
retrieve much of the information they require from the inode structure.

The inode must remain in memory for the duration of the open and is
typically written back to disk if any operations require changes to the inode
structure. For example, consider writing 512 bytes of data at the end of the file
that has an existing size of 512 bytes and therefore one block allocated
(referenced by i_addr [0]). This will involve changing i size to 1024
bytes, allocating a new block to the file, and setting i addr [1] to point to
this newly allocated block. These changes will be written back to disk.

After the file has been closed and there are no further processes holding the
file open, the in-core inode can be freed.

If the inode were always freed on close, however, it would need to be read
in again from disk each time the file is opened. This is very costly, especially
considering that some inodes are accessed frequently such as the inodes for /,
/usr, and /usr/bin. To prevent this from happening, inodes are retained in
an inode cache even when the inode is no longer in use. Obviously if new
inodes need to be read in from disk, these unused, cached inodes will need to
be reallocated.

Figure 6.3 shows the linkage between file descriptors and inodes. The top
process shows that by calling dup (), a new file descriptor is allocated
resulting in £db and £dc both pointing to the same file table entry. The file
table entry then points to the inode for /etc/passwd.

For the bottom process, the open of /etc/passwd results in allocation of
both a new file descriptor and file table entry. The file table entry points to the
same in-core copy of the