

Digital Systems Design
Using VHDL®

Second Edition

Charles H. Roth, Jr

The University of Texas
at Austin

Lizy Kurian John

The University of Texas
at Austin

e Canada * Mexico ¢ Singapore ® Spain
d

Digital Systems Design Using VHDL® (Second Edition)

Publisher:
Chris Carson

Developmental Editor:
Hilda Gowans

Permissions Coordinator:
Vicki Gould

Production Services:
RPK Editorial Services, Inc.

Copy Editor:
Patricia Daly

COPYRIGHT © 2008 by Thomson
Learning, part of the Thomson
Corporation

WCN: 02-200-203

Printed and bound in the United
States of America
12 3 4 07

For more information contact
Thomson Learning, 1120
Birchmount Road, Toronto,
Ontario, Canada, MIK 5G4. Or
you can visit our Internet site at
http://www.thomsonlearning.com

Library of Congress Control
Number: 2006934930

ISBN: 10: 0-534-38462-5
ISBN: 13: 978-0-534-38462-3

Proofreader:
Erin Wagner

Indexer:
Shelly Gerger-Knechtl

Production Manager:
Renate McCloy

Creative Director:
Angela Cluer

Interior Design:
Carmela Pereira

ALL RIGHTS RESERVED. No part
of this work covered by the
copyright herein may be
reproduced, transcribed, or used
in any form or by any means—
graphic, electronic, or mechanical,
including photocopying, record-
ing, taping, Web distribution, or
information storage and retrieval
systems—without the written
permission of the publisher.

For permission to use material
from this text or product,
submit a request online at
www.thomsonrights.com

Every effort has been made to
trace ownership of all copyright
material and to secure permission
from copyright holders. In the
event of any question arising as to
the use of any material, we will be
pleased to make the necessary
corrections in future printings.

by Charles H. Roth, Jr and Lizy Kurian John

Cover Design:
Andrew Adams

Compositor:
Integra

Printer:
Thomson/West

Cover Image Credit:
© 2007 Jupiterimages and its
Licensors. All Rights Reserved

North America

Thomson Learning

1120 Birchmount Road
Toronto, Ontario M1K 5G4
Canada

Asia

Thomson Learning

5 Shenton Way #01-01
UIC Building
Singapore 068808

Australia/New Zealand
Thomson Learning

102 Dodds Street
Southbank, Victoria
Australia 3006

Europe/Middle East/Africa
Thomson Learning

High Holborn House

50/51 Bedford Row
London WCIR 4LR

United Kingdom

Latin America
Thomson Learning
Seneca, 53
Colonia Polanco
11560 Mexico D.F.
Mexico

Spain

Paraninfo
Calle/Magallanes, 25
28015 Madrid, Spain

Contents

OO0 000000 OGOOGOOFOS
Preface \vii

Chapter 1 Review of Logic Design Fundamentals 1

1.1 Combinational Logic 1

1.2 Boolean Algebra and Algebraic Simplification 3
1.3 Karnaugh Maps 7

1.4 Designing with NAND and NOR Gates 11

1.5 Hazards in Combinational Circuits 12

1.6 Flip-Flops and Latches 14

1.7 Mealy Sequential Circuit Design 17

1.8 Moore Sequential Circuit Design 25

1.9 Equivalent States and Reduction of State Tables 28
1.10 Sequential Circuit Timing 30

1.11 Tristate Logic and Busses 41

Chapter 2 Introduction to VHDL 51

2.1 Computer-Aided Design 51

2.2 Hardware Description Languages 54

2.3 VHDL Description of Combinational Circuits 57

24 VHDL Modules 61

2.5 Sequential Statements and VHDL Processes 67

2.6 Modeling Flip-Flops Using VHDL Processes 69

2.7 Processes Using Wait Statements 73

2.8 Two Types of VHDL Delays: Transport and Inertial Delays 75
2.9 Compilation, Simulation, and Synthesis of VHDL Code 77
2.10 VHDL Data Types and Operators 82

2.11 Simple Synthesis Examples 84

2.12 VHDL Models for Multiplexers 87

2.13 VHDL Libraries 90

2.14 Modeling Registers and Counters Using VHDL Processes 95
2.15 Behavioral and Structural VHDL 101

iV Contents

2.16 Variables, Signals, and Constants 111
2.17 Arrays 114

2.18 Loops in VHDL 117

2.19 Assert and Report Statements 119

Chapter 3 Introduction to Programmable Logic Devices

3.1
32
33
34

Brief Overview of Programmable Logic Devices 137
Simple Programmable Logic Devices (SPLDs) 140
Complex Programmable Logic Devices (CPLDs) 156
Field-Programmable Gate Arrays (FPGAs) 160

Chapter 4 Design Examples 190

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

BCD to 7-Segment Display Decoder 191
A BCD Adder 192

32-Bit Adders 194

Traffic Light Controller 201

State Graphs for Control Circuits 204
Scoreboard and Controller 205
Synchronization and Debouncing 208

A Shift-and-Add Multiplier 210

Array Multiplier 216

4.10 A Signed Integer/Fraction Muliplier 219
4.11 Keypad Scanner 231
4.12 Binary Dividers 239

Chapter 5 SM Charts and Microprogramming 260

5.1
52
53
5.4
5.5
5.6

State Machine Charts 260

Derivation of SM Charts 265
Realization of SM Charts 275
Implementation of the Dice Game 279
Microprogramming 283

Linked State Machines 297

Chapter 6 Designing with Field Programmable Gate Arrays

6.1
6.2
6.3
6.4
6.5
6.6

Implementing Functions in FPGAs 310

Implementing Functions Using Shannon’s Decomposition 316
Carry Chains in FPGAs 321

Cascade Chains in FPGAs 323

Examples of Logic Blocks in Commercial FPGAs 324
Dedicated Memory in FPGAs 326

137

310

Contents V

6.7 Dedicated Multipliers in FPGAs 332

6.8 Cost of Programmability 333

6.9 FPGAs and One-Hot State Assignment 335

6.10 FPGA Capacity: Maximum Gates Versus Usable Gates 337
6.11 Design Translation (Synthesis) 338

6.12 Mapping, Placement, and Routing 349

Chapter 7 Floating-Point Arithmetic 361

7.1 Representation of Floating-Point Numbers 361
7.2 Floating-Point Multiplication 367

7.3 Floating-Point Addition 377

7.4 Other Floating-Point Operations 383

Chapter 8 Additional Topics in VHDL 389

8.1 VHDL Functions 389

8.2 VHDL Procedures 393

8.3 Attributes 395

8.4 Creating Overloaded Operators 399

8.5 Multi-Valued Logic and Signal Resolution 400
8.6 The IEEE 9-Valued Logic System 405

8.7 SRAM Model Using IEEE 1164 408

8.8 Model for SRAM Read/Write System 410
8.9 Generics 413

8.10 Named Association 414

8.11 Generate Statements 415

8.12 Files and TEXTIO 417

Chapter 9 Design of a RISC Microprocessor 429

9.1 The RISC Philosophy 429

9.2 The MIPS ISA 432

9.3 MIPS Instruction Encoding 438

9.4 Implementation of a MIPS Subset 441
9.5 VHDL Model 449

Chapter 10 Hardware Testing and Design for Testability 468

10.1 Testing Combinational Logic 468
10.2 Testing Sequential Logic 473
10.3 Scan Testing 476

10.4 Boundary Scan 479

10.5 Built-In Self-Test 490

Vi Contents

Chapter 11 Additional Design Examples 507

11.1 Design of a Wristwatch 507
11.2 Memory Timing Models 518
11.3 A Universal Asynchronous Receiver Transmitter (UART)

Appendix A 545
VHDL Language Summary

Appendix B 553
IEEE Standard Libraries

Appendix C 555
TEXTIO PACKAGE

Appendix D 557
Projects

References 568

Index 571

526

Preface

This textbook is intended for a senior-level course in digital systems design. The
book covers both basic principles of digital system design and the use of a hardware
description language, VHDL, in the design process. After basic principles have been
covered, design is best taught by using examples. For this reason, many digital sys-
tem design examples, ranging in complexity from a simple binary adder to a micro-
processor, are included in the text.

Students using this textbook should have completed a course in the fundamen-
tals of logic design, including both combinational and sequential circuits. Although
no previous knowledge of VHDL is assumed, students should have programming
experience using a modern high-level language such as C. A course in assembly lan-
guage programming and basic computer organization is also very helpful, especial-
ly for Chapter 9.

Because students typically take their first course in logic design two years
before this course, most students need a review of the basics. For this reason,
Chapter 1 includes a review of logic design fundamentals. Most students can
review this material on their own, so it is unnecessary to devote much lecture time
to this chapter. However, a good understanding of timing in sequential circuits
and the principles of synchronous design is essential to the digital system design
process.

Chapter 2 starts with an overview of modern design flow. It also summarizes
various technologies for implementation of digital designs. Then, it introduces the
basics of VHDL, and this hardware description language is used throughout the
rest of the book. Additional features of VHDL are introduced on an as-needed
basis, and more advanced features are covered in Chapter 8. From the start, we
relate the constructs of VHDL to the corresponding hardware. Some textbooks
teach VHDL as a programming language and devote many pages to teaching the
language syntax. Instead, our emphasis is on how to use VHDL in the digital design
process. The language is very complex, so we do not attempt to cover all its fea-
tures. We emphasize the basic features that are necessary for digital design and
omit some of the less-used features. Use of standard IEEE VHDL libraries is
introduced in this chapter and only IEEE standard libraries are used throughout
the text.

vii

Viil Preface

VHDL is very useful in teaching top-down design. We can design a system at a
high level and express the algorithms in VHDL. We can then simulate and debug
the designs at this level before proceeding with the detailed logic design. However,
no design is complete until it has actually been implemented in hardware and the
hardware has been tested. For this reason, we recommend that the course include
some lab exercises in which designs are implemented in hardware. We introduce
simple programmable logic devices (PLDs) in Chapter 3 so that real hardware can
be used early in the course if desired. Chapter 3 starts with an overview of pro-
grammable logic devices and presents simple programmable logic devices first,
followed by an introduction to complex programmable logic devices (CPLDs) and
Field Programmable Gate Arrays (FPGAs). There are many products in the mar-
ket, and it is good for students to learn about commercial products. However, it is
more important for them to understand the basic principles in the construction
of these programmable devices. Hence we present the material in a generalized
fashion, with references to specific products as examples. The material in this
chapter also serves as an introduction to the more detailed treatment of FPGAs in
Chapter 6.

Chapter 4 presents a variety of design examples, including both arithmetic
and non-arithmetic examples. Simple examples such as a BCD to 7-segment
display decoder to more complex examples such as game scoreboards, keypad
scanners and binary dividers are presented. The chapter presents common tech-
niques used for computer arithmetic, including carry look-ahead addition, and
binary multiplication and division. Use of a state machine for sequencing the
operations in a digital system is an important concept presented in this chapter.
Synthesizable VHDL code is presented for the various designs. A variety of
examples are presented so that instructors can select their favorite designs for
teaching.

Use of sequential machine charts (SM charts) as an alternative to state graphs is
presented in Chapter 5. We show how to write VHDL code based on SM charts
and how to realize hardware to implement the SM charts. Then, the technique of
microprogramming is presented. Transformation of SM charts for different types
of microprogramming is discussed. Then, we show how the use of linked state
machines facilitates the decomposition of complex systems into simpler ones. The
design of a dice-game simulator is used to illustrate these techniques.

Chapter 6 presents issues related to implementing digital systems in Field
Programmable Gate Arrays. A few simple designs are first hand-mapped into
FPGA building blocks to illustrate the mapping process. Shannon’s expansion for
decomposition of functions with several variables into smaller functions is present-
ed. Features of modern FPGAs like carry chains, cascade chains, dedicated memory,
and dedicated multipliers are then presented. Instead of describing all features in
a selected commercial product, the features are described in a general fashion. Once
students understand the general principles, they will be able to understand and
use any commercial product they have to work with. This chapter also presents an
introduction to the processes and algorithms in the software design flow. Synthesis,
mapping, placement, and routing processes are briefly described. Optimizations
during synthesis are illustrated.

Preface iX

Basic techniques for floating-point arithmetic are described in Chapter 7.
A simple floating-point format with 2’s complement numbers is presented and
then the IEEE standard floating-point formats are presented. A floating-point
multiplier example is presented starting with development of the basic algorithm,
then simulating the system using VHDL, and finally synthesizing and imple-
menting the system using an FPGA. Some instructors may prefer to cover
Chapter 8 and 9 before teaching Chapter 7. Chapter 7 can be omitted without
loss of any continuity.

By the time students reach Chapter 8, they should be thoroughly familiar with
the basics of VHDL. At this point we introduce some of the more advanced features
of VHDL and illustrate their use. The use of multi-valued logic, including the IEEE-
1164 standard logic, is one of the important topics covered. A memory model
with tri-state output busses is presented to illustrate the use of the multi-valued
logic.

Chapter 9 presents the design of a microprocessor, starting from the description
of the instruction set architecture (ISA). The processor is an early RISC processor,
the MIPS R2000. The important instructions in the MIPS ISA are described and a
subset is then implemented. The design of the various components of the processor,
such as the instruction memory module, data memory module and register file are
illustrated module by module. These components are then integrated together and
a complete processor design is presented. The model can be tested with a test bench,
or can be synthesized and implemented on an FPGA. In order to test the design on
an FPGA, one will need to write input-output modules for the design. This example
requires understanding of the basics of assembly language programming and com-
puter organization.

The important topics of hardware testing and design for testability are covered
in Chapter 10. This chapter introduces the basic techniques for testing combina-
tional and sequential logic. Then scan design and boundary-scan techniques, which
facilitate the testing of digital systems, are described. The chapter concludes with a
discussion of built-in self-test (BIST). VHDL code for a boundary-scan example
and for a BIST example is included. The topics in this chapter play an important
role in digital system design, and we recommend that they be included in any
course on this subject. Chapter 10 can be covered any time after the completion of
Chapter 8.

Chapter 11 presents three complete design examples that illustrate the use of
VHDL synthesis tools. First, a wristwatch design is presented. It shows the progress
of a design from a textual description to a state diagram and then a VHDL model.
This example illustrates modular design. The test bench for the wristwatch illustrates
the use of multiple procedure calls to facilitate the testing. The second example
describes the use of VHDL to model RAM memories. The third example, a serial
communications receiver-transmitter, should easily be understood by any student
who has completed the material through Chapter 8.

For instructors who used the first edition of this text, here is a mapping to help
them understand the changes in the second edition. The homegrown library BITLIB
is not used in this edition of the book. The IEEE numeric-bit library is used first until
multi-valued logic is introduced in Chapter 8. The multi-valued IEEE numeric-std

X Preface

library is used thereafter. All code has been converted to use IEEE standard libraries
instead of the BITLIB library.

Chapter 1 Simpler Mealy and Moore designs added. More detailed
descriptions added to sequential circuit timing section.

Chapter 2 Overview of design flow and design technologies added.
Functions and procedures from old Chapter 2 moved to
Chapter 8. Inertial delays and transport delays moved from
Chapter 8 to Chapter 2. Synthesis is introduced in Chapter 2
and all code presented is generally synthesizeable.

Chapter 3 Contains first part of old Chapter 3. New material on CPLDs
and FPGAs added. The design examples from old Chapter 3
(traffic light, keypad scanner) are moved to Chapter 4.

Chapter 4 Several new examples are added. Old Chapter 4 examples are
largely retained, but converted to synthesizeable code. Two
examples from old Chapter 3 are now here.

Chapter 5 Added more detailed treatment of microprogramming.

Chapter 6 New material on FPGAs in a generalized fashion, without
making it specific to any commercial product, but drawing
examples from several commercial devices. A brief treatment
of software design flow including principles of mapping,
placement, routing added.

Chapter 7 IEEE floating point standards and floating point adder design
added.
Chapter 8 Functions and procedures from old Chapter 2 moved to here.

Many sections from old Chapter 8 are still here. A memory
model previously in old Chapter 9 presented as example of
multi-valued logic design in new Chapter 8

Chapter 9 This chapter is new. MIPS instruction set and design of a MIPS
processor presented. Memory models from old Chapter 9 are
moved to Chapter 8 or 11. Bus model from old Chapter 9
omitted.

Chapter 10 Added details on boundary scan and STUMPS architecture.

Chapter 11 A new design (wristwatch) added. Memory timing models from
old Chapter 9 appear here now. UART design from old
Chapter 11 retained. Microcontroller design is omitted.

This book is the result of many years of teaching a senior course in digital systems
design at the University of Texas at Austin. Throughout the years, the technology for
hardware implementation of digital systems has kept changing, but many of the same
design principles are still applicable. In the early years of the course, we handwired mod-
ules consisting of discrete transistors to implement our designs. Then integrated circuits

Preface Xi

were introduced, and we were able to implement our designs using breadboards and
TTL logic. Now we are able to use FPGAs and CPLDs to realize very complex designs.
We originally used our own hardware description language together with a simulator
running on a mainframe computer. When PCs came along, we wrote an improved hard-
ware description language and implemented a simulator that ran on PCs. When VHDL
was adopted as an IEEE standard and became widely used in industry, we switched to
VHDL. The widespread availability of high-quality commercial CAD tools now
enables us to synthesize complex designs directly from the VHDL code.

All of the VHDL code in this textbook has been tested using the ModelSim sim-
ulator. The ModelSim software is available in a student edition, and we recommend
its use in conjunction with this text. The CD that accompanies this text provides a
link for downloading the ModelSim student edition and an introductory tutorial to
help students get started using the software. All of the VHDL code in this textbook
is available on the CD. The CD also contains two software packages, LogicAid and
SimUaid, which are useful in teaching digital system design. Instruction manuals
and examples of using this software are on the CD.

Acknowledgments

We would like to thank the many individuals who have contributed their time and
effort to the development of this textbook. Over many years we have received valu-
able feedback from the students in our digital systems design courses. We would
especially like to thank the faculty members who reviewed the previous edition and
offered many suggestions for its improvement. These faculty include:

Gang Feng, University of Wisconsin, Platteville

Elmer. A. Grubbs, University of Arizona

Marius Z. Jankowski, University of Southern Maine
Chun-Shin Lin, University of Missouri — Columbia

Peter N. Marinos, Duke University

Maryam Moussavi, California State University, Long Beach
Aaron Striegel, University of Notre Dame

Peixin Zhong, Michigan State University

Special thanks go to Ian Burgess at Mentor Graphics for arranging the ModelSim
student version. We also wish to acknowledge the help from Chris Carson, Hilda
Gowans, Rose Kernan and Kamilah Reid Burrell during various steps of the publi-
cation process. It was a pleasure to work with all. We also take this opportunity to
express our gratitude to the student assistants who helped with the word processing,
VHDL code testing, CD, and illustrations: Ciji Isen, Roger Chen, William Earle,
Manish Kapadia, Matt Morgan, Elizabeth Norris, and Raman Suri.

Charles. H. Roth, Jr

Lizy K. John.

1.1

Review of Logic Design
Fundamentals

This chapter reviews many of the logic design topics normally taught in a first course
in logic design. Some of the review examples that follow are referenced in later chap-
ters of this text. For more details on any of the topics discussed in this chapter, the
reader should refer to a standard logic design textbook such as Roth, Fundamentals
of Logic Design, 5th Edition (Thomson Brooks/Cole, 2004). First, we review combi-
national logic and then sequential logic. Combinational logic has no memory, so the
present output depends only on the present input. Sequential logic has memory, so
the present output depends not only on the present input but also on the past
sequence of inputs. The sections on sequential circuit timing and synchronous design
are particularly important, since a good understanding of timing issues is essential to
the successful design of digital systems.

Combinational Logic

Some of the basic gates used in logic circuits are shown in Figure 1-1. Unless otherwise
specified, all the variables that we use to represent logic signals will be two-valued, and
the two values will be designated 0 and 1. We will normally use positive logic, for which
alow voltage corresponds to a logic 0 and a high voltage corresponds to a logic 1. When
negative logic is used, a low voltage corresponds to a logic 1 and a high voltage corre-
sponds to a logic 0.

For the AND gate of Figure 1-1, the output C = 1 if and only if the input A = 1
and the input B = 1. We will use a raised dot or simply write the variables side by side
to indicate the AND operation; thus C = A AND B = A - B = AB. For the OR gate,
the output C = 1 if and only if the input A = 1 or the input B = 1 (inclusive OR). We
will use + to indicate the OR operation; thus C = A OR B = A + B.The NOT gate,
or inverter, forms the complement of the input; thatis,if A =1,C=0,and if A =0,
C=1. We will use a prime (') to indicate the complement (NOT) operation, so
C = NOT A = A'.The exclusive-OR (XOR) gate has an output C=1if A =1 and
B =0orif A =0and B = 1. The symbol @ represents exclusive OR, so we write

C=AXORB=AB'"+A'B=A®B (1-1)

The behavior of a combinational logic circuit can be specified by a truth table
that gives the circuit outputs for each combination of input values. As an example,

2 Review of Logic Design Fundamentals

FIGURE 1-1: Basic
Gates

FIGURE 1-2: Full
Adder

A A

AND: C=AB OR:C=A+B
A
(3
NOT: C=A Exclusive OR: C=A®B

consider the full adder of Figure 1-2, which adds two binary digits (X and Y) and a carry
(C,,) to give a sum (Sum) and a carry out (C_). The truth table specifies the adder out-
puts as a function of the adder inputs. For example, when the inputs are X =0,Y =0
and C, = 1, adding the three inputs gives 0 + 0 + 1 = 01, so the sum is 1 and the carry
out is 0. When the inputs are 011,0 + 1 + 1 = 10,s0 Sum = 0 and C_, = 1. When the
inputsare X =Y =C, =11+1+1=1l,soSum=1and C_, = 1.

XY G |Cout SUm
00 O 0 O
X —»] — Cout 00 1|0 1
v Full 01 O 0 1
Adder 01 1 1 0
— . 100 0 1
Cin Sum 10 1|1 0
11 0 1 0
11 1 1 1

(a) Full adder module (b) Truth table

We will derive algebraic expressions for Sum and C_, from the truth table. From
the table, Sum = 1 when X = 0,Y = 0,and C,, = 1. The term X'Y'C, equals 1 only
for this combination of inputs. The term X'YC, =1 only when X =0, Y =1,
and C, = 0.The term XY'C, is 1 only for the input combination X = 1, Y = 0, and
C,. = 0.The term XYC, is 1 only when X = Y = C, = 1. Therefore, Sum is formed
by ORing these four terms together:

Sum=X'Y'C_ +X'YC + XY'C/ + XYC, (1-2)
Each of the terms in this sum of products (SOP) expression is 1 for exactly one

combination of input values. In a similar manner, C_ is formed by ORing four
terms together:

C,.,=X'YC, +XY'C, +XYC.+ XYC, (1-3)

(&)

Each term in Equations (1-2) and (1-3) is referred to as a minterm, and these
equations are referred to as minterm expansions. These minterm expansions can
also be written in m-notation or decimal notation as follows:

Sum =m, +m, +m, + m,=3m(1,2,4,7)
C. =my+ms+mg+m,=2m(3,5,6,7)

The decimal numbers designate the rows of the truth table for which the correspon-
ding function is 1. Thus Sum = 1 in rows 001, 010, 100, and 111 (rows 1,2, 4,7).

1.2

|
Example

1.2 Boolean Algebra and Algebraic Simplification 3

A logic function can also be represented in terms of the inputs for which the func-
tion value is 0. Referring to the truth table for the full adder, C , =0 when X =Y =
C., =0.The term (X + Y + C,) is 0 only for this combination of inputs. The term (X
+ Y+ C/)isOonly when X =Y =0and C, =1.The term (X + Y’ + C,) is 0 only
when X =C._=0and Y=1.The term (X' + Y+ C,)is O only when X =1 and Y =
C,, =0.C_, is formed by ANDing these four terms together:

Cu=X+Y+C)X+Y+CHX+Y +CHX' +Y+C) (1-4)
C_is 0 only for the 000, 001, 010, and 100 rows of the truth table and, therefore,

t
must (l))ue 1 for the remaining four rows. Each of the terms in the Product of Sums (POS)
expression in Equation (1-4) is referred to as a maxterm, and (1-4) is called a maxterm

expansion. This maxterm expansion can also be written in decimal notation as
Cu=M,-M -M,- -M,=1IM(0,1,2,4)

where the decimal numbers correspond to the truth table rows for which C_ = 0.

Boolean Algebra and Algebraic Simplification

The basic mathematics used for logic design is Boolean algebra. Table 1-1
summarizes the laws and theorems of Boolean algebra. They are listed in dual
pairs; for example, Equation (1-10D) is the dual of (1-10). They can be verified
easily for two-valued logic by using truth tables. These laws and theorems can be
used to simplify logic functions so they can be realized with a reduced number of
components.

A very important law in Boolean algebra is the DeMorgan’s law. DeMorgan’s
laws stated in Equations (1-16, 1-16D) can be used to form the complement of an
expression on a step-by-step basis. The generalized form of DeMorgan’s law in
Equation (1-17) can be used to form the complement of a complex expression in
one step. Equation (1-17) can be interpreted as follows: To form the complement
of a Boolean expression, replace each variable by its complement; also replace
1 with 0, 0 with 1, OR with AND, and AND with OR. Add parentheses as
required to assure the proper hierarchy of operations. If AND is performed
before OR in F, then parentheses may be required to assure that OR is per-
formed before AND in F'.

Find the complement of F if

F=X+EK(C(AB+D')-1+ WZ (G'H + 0))
FF=X"(E+K' +(C+A'"+B)YD+0) (W +Z+(G+H')-1))
Additional parentheses in F’ were added when an AND operation in F was replaced with an

OR. The dual of an expression is the same as its complement, except that the variables are
not complemented.

4 Review of Logic Design Fundamentals

TABLE 1-1: Laws
and Theorems of
Boolean Algebra

Operations with 0 and 1:

X+0=X (1-5)
X+1=1 (1-6)

Idempotent laws:

X+X=X (1-7)
Involution law:

X =X (1-8)
Laws of complementarity:

X+ X = (1-9)

Commutative laws:

X+Y=Y+X (1-10)

Associative laws:

X+Y)+Z=X+(Y+2) (1-11)
=X+Y+2Z

Distributive laws:

XY+ 2Z)=XY + XZ (1-12)

Simplification theorems:

XY+ XY =X (1-13)

X+XYy =X (1-14)

X+ Y)Y = XY (1-15)

DeMorgan’s laws:

X+Y+Z+--y=XYZ"-- (1-16)

(X, Xy -
Duality:

X+Y+Z+--P=XYZ---
(X, Xy

(1-18)
X, 0,1, +,)P = X, X,

Theorem for multiplying out and factoring:

X+Y)X'+2)=XZ+ X'Y (1-20)
Consensus theorem:

XY+ YZ+X'Z=XY+XZ (1-21)

-’ an OI 1' +I .)], = f(X‘|,I XZ,I

XY =YX

XY)Z = X(YZ) = XYZ

X+YZ=(X+Y)(X+2)

X+Y)X+Y)=X
XX +Y) =X
XY +Y =X+Y

XYZ..) =X +Y +Z +
e X0 1,0, 0, 4)

XYZ--P=X+Y+Z+---
e X, 1,0, -,)

XY+ XZ=X+2Z)X +Y)

X+ Y)Y + 2)(X +2)
=X+ VX' +2)

(1-5D)
(1-6D)

(1-7D)

(1-9D)

(1-10D)

(1-11D)

(1-12D)

(1-13D)
(1-14D)
(1-15D)

(1-16D)
(1-17)

(1-18D)
(1-19)

(1-20D)

(1-21D)

1.2 Boolean Algebra and Algebraic Simplification 5

Four ways of simplifying a logic expression using the theorems in Table 1-1 are
as follows:

1. Combining terms. Use the theorem XY + XY’ = X to combine two terms.
For example,

ABC'D' + ABCD' = ABD' [X = ABD', Y = (]

When combining terms by this theorem, the two terms to be combined
should contain exactly the same variables, and exactly one of the variables
should appear complemented in one term and not in the other. Since X +
X = X, agiven term may be duplicated and combined with two or more other

terms. For example, the expression for C_ in Equation (1-3) can be simplified

by combining the first and fourth terms, the second and fourth terms, and the
third and fourth terms:
C.,.=XYC +XYC)+ (XYC, +XYC,)+ (XYC +XYC,)
=YC + XC_+ XY (1-22)
Note that the fourth term in Equation (1-3) was used three times.

The theorem can still be used, of course, when X and Y are replaced with
more complicated expressions. For example,

(A+BC)D+E)Y+A'B +CYD+E)=D+E'
[X=D+E,Y=A+BCY =A"(B"+ ()]
2. Eliminating terms. Use the theorem X + XY = X to eliminate redundant

terms if possible; then try to apply the consensus theorem (XY + X'Z + YZ =
XY + X'Z) to eliminate any consensus terms. For example,

A'B+ A'BC=A'B[X=A'B]
A'BC' + BCD + A'BD = A'BC' + BCD [X=C Y =BD,Z = A’'B]|
3. Eliminating literals. Use the theorem X + X'Y = X + Y to eliminate redun-

dant literals. Simple factoring may be necessary before the theorem is
applied. For example,

A'B+A'B'C'D' + ABCD' = A'(B+ B'C'D') + ABCD' (by (1-12))

= A'(B+ C'D') + ABCD' (by (1-15D))
= B(A' + ACD') + A'C'D' (by (1-10))
= B(A' + CD') + A'C'D’ (by (1-15D))
=A'B+ BCD' + A'C'D’ (by (1-12))

The expression obtained after applying 1,2, and 3 will not necessarily have a
minimum number of terms or a minimum number of literals. If it does not and
no further simplification can be made using 1, 2, and 3, deliberate introduction
of redundant terms may be necessary before further simplification can be made.

4. Adding redundant terms. Redundant terms can be introduced in several
ways, such as adding XX', multiplying by (X + X’),adding YZ to XY + X'Z

6 Review of Logic Design Fundamentals

(consensus theorem), or adding XY to X. When possible, the terms added
should be chosen so that they will combine with or eliminate other terms. For

example,
WX+ XY+ X'Z +WY'Z' (Add WZ' by the consensus theorem.)
=WX+XY+X'Z +WY'Z +WZ' (Eliminate WY'Z'.)
=WX+ XY+ X'Z +WZ (Eliminate WZ'".)

=WX+ XY+ X'Z

When multiplying out or factoring an expression, in addition to using the
ordinary distributive law (1-12), the second distributive law (1-12D) and
theorem (1-20) are particularly useful. The following is an example of multi-
plying out to convert from a product of sums to a sum of products:

(A+B+D)A+B +C')A' +B+D')A +B+C

—(A+(B+D)B +C))A +B+C'D) (by (1-12D))
=(A+BC' + B'D)A' + B+ C'D) (by (1-20))
= A(B + C'D') + A'(BC' + B'D) (by (1-20))
=AB + AC'D' + A'BC' + A'B'D (by (1-12))

Note that the second distributive law (1-12D) and theorem (1-20) were applied
before the ordinary distributive law. Any Boolean expression can be factored
by using the two distributive laws (1-12 and 1-12D) and theorem (1-20). As an
example of factoring, read the steps in the preceding example in the reverse
order.

The following theorems apply to exclusive-OR:

X®0 =X (1-23)

X®1 =X (1-24)

X®X =0 (1-25)

XX =1 (1-26)
X®Y=YDX (commutative law) (1-27)
XBPY)DZ=XPDYDZL)=XDYDZ (associative law) (1-28)
X(Y®Z)=XYD XZ (distributive law) (1-29)
X®AY)=X®Y =X®Y=XY+ XY (1-30)

The expression for Sum in Equation (1-2) can be rewritten in terms of exclusive-
OR by using Equations (1-1) and (1-30):
Sum = X'(Y'C,, + YC)) + X(Y'C, + YC,)
=X(YDC)+X(YDC)=XDYDC, (1-31)
The simplification rules that you studied in this section are important when a cir-
cuit has to be optimized to use a smaller number of gates. The existence of equivalent

forms also helps when mapping circuits into particular target devices where only cer-
tain types of logic (e.g., NAND only or NOR only) are available.

1.3

FIGURE 1-3:
Four-Variable
Karnaugh Maps

1.3 Karnaugh Maps 7

Karnaugh Maps

Karnaugh maps (K-maps) provide a convenient way to simplify logic functions of three
to five variables. Figure 1-3 shows a four-variable Karnaugh map. Each square in the
map represents one of the 16 possible minterms of four variables. A 1 in a square indi-
cates that the minterm is present in the function, and a 0 (or blank) indicates that the
minterm is absent. An X in a square indicates that we don’t care whether the minterm
is present or not. Don’t cares arise under two conditions: (1) The input combination
corresponding to the don’t care can never occur, and (2) the input combination can
occur, but the circuit output is not specified for this input condition.

The variable values along the edge of the map are ordered so that adjacent
squares on the map differ in only one variable. The first and last columns and the

AB AB
CD 00 01 11 10 CD OOI 01 11 .10 Four corner terms
0l ol ali2]s 00__1) o0 & combine to give B’ D’
01| 1|5 13| 9 o1] o3|(1)| o |0]
C 4= ABD
11| 3| 7 |15]| 11 11 1]] x

—/

AEEE
10| 2|6 |14 10 10T 1 | x |@T

| |
F=Xm(0, 2, 3,5,6,7,8, 10, 11) +Xd (14, 15)
=C+B’'D’+A’'BD
(@) Location of minterms (b) Looping terms

top and bottom rows of the map are considered to be adjacent. Two 1’s in adja-
cent squares can be combined by eliminating one variable using xy + xy’ = x.
Figure 1-3 shows a four-variable function with nine minterms and two don’t
cares. Minterms A’'BC'D and A'BCD differ only in the variable C, so they can be
combined to form A’'BD, as indicated by a loop on the map. Four 1’s in a sym-
metrical pattern can be combined to eliminate two variables. The 1’s in the four
corners of the map can be combined as follows:

(A'B'C'D' + AB'C'D'") + (A'B'CD' + AB'CD')=B'C'D' + B'[CD' = B'D’
as indicated by the loop. Similarly, the six 1’s and two X’s in the bottom half of the

map combine to eliminate three variables and form the term C. The resulting sim-
plified function is

F=A'BD+ B'D'+C

The minimum sum-of-products representation of a function consists of a sum of
prime implicants. A group of one, two, four, or eight adjacent 1’s on a map represents

8 Review of Logic Design Fundamentals

FIGURE 1-4:
Selection of Prime
Implicants

a prime implicant if it cannot be combined with another group of 1’s to eliminate
a variable. A prime implicant is essential if it contains a 1 that is not contained
in any other prime implicant. When finding a minimum sum of products from a map,
essential prime implicants should be looped first, and then a minimum number of
prime implicants to cover the remaining 1’s should be looped. The Karnaugh map
shown in Figure 1-4 has five prime implicants and three essential prime implicants.
A'C’ is essential because minterm m, is not covered by any other prime implicant.
Similarly, ACD is essential because of m,, and A'B'D’ is essential because of m,.
After looping the essential prime implicants, all 1’s are covered except m.,. Since m,
can be covered by either prime implicant A’BD or BCD, F has two minimum forms:

F=A'C'+ A'B'D' + ACD + A'BD
and
F=A'C'+ A'B'D' + ACD + BCD

When don’t cares (X’s) are present on the map, the don’t cares are treated like
1’s when forming prime implicants, but the X’s are ignored when finding a minimum

AB
CD 00 01 11 10

00| |1 X
AC’ T Prime implicants: A'C’, ACD, A'B'D’,
01| (1 1)
I 5 13 9 A'BD, BCD
1 ::r ‘l";“C'l 1 D' D Es,se/nti,al prime implicants: A'C’, ACD,
3| Vo] s 1 A'B'D
10((1 X
2 6 14 10
T
AB'D’

set of prime implicants to cover all the 1’s. The following procedure can be used to
obtain a minimum sum of products from a Karnaugh map:

1. Choose a minterm (a 1) that has not yet been covered.

2. Find all 1’s and X’s adjacent to that minterm. (Check the n adjacent squares on
an n-variable map.)

3. If a single term covers the minterm and all the adjacent 1’s and X’s, then that
term is an essential prime implicant, so select that term. (Note that don’t cares are
treated like 1’s in steps 2 and 3 but not in step 1.)

4. Repeat steps 1, 2, and 3 until all essential prime implicants have been chosen.

5. Find a minimum set of prime implicants that cover the remaining 1’s on the map. (If
there is more than one such set, choose a set with a minimum number of literals.)

To find a minimum product of sums from a Karnaugh map, loop the 0’s instead
of the 1’s. Since the 0’s of F are the 1’s of F’, looping the 0’s in the proper way gives
the minimum sum of products for F’, and the complement is the minimum product

TABLE 1-2: Partial
Truth Table for a
Six-Variable
Function

1.3 Karnaugh Maps 9

of sums for F. For Figure 1-3, we can first loop the essential prime implicants of
F'" (BC'D’ and B'C’'D, indicated by dashed loops) and then cover the remaining 0
with AB. Thus the minimum sum for F' is

F'=BC'D'+B'C'D + AB
from which the minimum product of sums for Fis

F=(B'+C+D)B+C+D')A+B)

1.3.1 Simplification Using Map-Entered Variables

Two four-variable Karnaugh maps can be used to simplify functions with five vari-
ables. If functions have more than five variables, map-entered variables can be used.
Consider a truth table as in Table 1-2. There are six input variables (A, B, C, D, E, F)
and one output variable (G). Only certain rows of the truth table have been speci-
fied. To completely specify the truth table, 64 rows will be required. The input com-
binations not specified in the truth table result in an output of 0.

— s s 0000O0COO|X
—nm0c0O0O—==-m00CO0CO|W

O =2 -0 0= =00|N
[N « QN N =1l v

XXXX=2XXXXXX|™

XXXXX=2=2 XXX X|m

Karnaugh map techniques can be extended to simplify functions such as this using
map-entered variables. Since E and F are the input variables with the most number of
don’t cares (X), a Karnaugh map can be formed with A, B, C, D and the remaining two
variables can be entered inside the map. Figure 1-5 shows a four-variable map with vari-
ables E and F entered in the squares in the map. When E appears in a square, this means
that if £ = 1, the corresponding minterm is present in the function G, and if £ = 0, the
minterm is absent. The fifth and sixth rows in the truth table result in the E in the box
corresponding to minterm 5 and minterm 7. The seventh row results in the F in the box
corresponding to minterm 9. Thus, the map represents the six-variable function

G(A, B, C D, E F)=my+m,+my+ Em;, + Em, + Fmy+ m,, + m
(+ don’t care terms)

where the minterms are minterms of the variables A, B, C, D. Note that m, is pres-
ent in G only when F = 1.

Next we will discuss a general method of simplifying functions using map-entered
variables. In general, if a variable P, is placed in square m; of a map of function F, this
means that =1 when P, = 1 and the variables are chosen so that m; = 1. Given a

10 Review of Logic Design Fundamentals

FIGURE 1-5:

Simplification
Using Map-Entered

Variables

14

AB AB AB AB
CD 00 01 11 10 CDbN_00 01 11 10 CD 00 01 11 10 CD 00 01 11 10
0|1 00 | (1) 00 | X 00| X
ol x|E|[x]|F o1 ||x X oL|(x)| x 01| x (x_ _1]
W|1|E|1 |1 1 (|1 @]y 11 @ _1) X | x 11| x @ _x)
10| 1 X 10 1) X 10 | X X 10| X X
G E=F=0 E=1,F=0 E=0,F=1
MS,=A’B’+ACD MS, =A'D MS,=AD
map with variables P, P,, ... entered into some of the squares, the minimum sum-

of-products form of F can be found as follows: Find a sum-of-products expression for
F of the form

F=MS,+ PMS, +PMS,+--- (1-32)
where

* MS, is the minimum sum obtained by setting P, = P, = --- = 0.

* MS, is the minimum sum obtained by setting P, = 1,P; =0 (j # 1), and replacing
all 1’s on the map with don’t cares.

* MS, is the minimum sum obtained by setting P, = 1,P; =0 (j # 2), and replacing
all 1’s on the map with don’t cares.

Corresponding minimum sums can be found in a similar way for any remaining
map-entered variables.

The resulting expression for F will always be a correct representation of F. This
expression will be a minimum sum provided that the values of the map-entered vari-
ables can be assigned independently. On the other hand, the expression will not gener-
ally be a minimum sum if the variables are not independent (for example, if P, = P)).

For the example of Figure 1-5, maps for finding MS,, MS,, and MS, are shown,
where E corresponds to P, and F corresponds to P,. Note that it is not required to
draw a map for E = 1, F = 1, because E = 1 already covers cases with E =1, F =0
and £ = 1, F = 1. The resulting expression is a minimum sum of products for G:

G=A'B'"+ ACD + EA'D + FAD

After some practice, it should be possible to write the minimum expression
directly from the original map without first plotting individual maps for each of the
minimum sums.

Designing With NAND and NOR Gates

In many technologies, implementation of NAND gates or NOR gates is easier than
that of AND and OR gates. Figure 1-6 shows the symbols used for NAND and NOR
gates. The bubble at a gate input or output indicates a complement. Any logic func-
tion can be realized using only NAND gates or only NOR gates.

FIGURE 1-6: NAND
and NOR Gates

FIGURE 1-7:
Conversion to NOR
Gates

1.4 Designing With NAND and NOR Gates 11

D I
B—] B

A—O — I AD
5 }c C=(A+B)=A'B

Conversion from circuits of OR and AND gates to circuits of all NOR gates or
all NAND gates is straightforward. To design a circuit of NOR gates, start with a
product-of-sums representation of the function (circle 0’s on the Karnaugh map).
Then find a circuit of OR and AND gates that has an AND gate at the output. If an
AND gate output does not drive an AND gate input and an OR gate output does
not connect to an OR gate input, then conversion is accomplished by replacing all
gates with NOR gates and complementing inputs if necessary. Figure 1-7 illustrates
the conversion procedure for

Z = G(E + F)(A + B' + D)(C + D) = G(E + F)[(A + B")C + D]

W >
@)
Il

Conversion to a circuit of NAND gates is similar, except the starting point
should be a sum-of-products form for the function (circle 1’s on the map), and the
output gate of the AND-OR circuit should be an OR gate.

)z

D

E
E

(a) AND-OR circuit

i“

Double inversion cancels

T2

.
Complemented input———
cancelsinversion E

F

(b) Equivalent NOR-gate circuit

Even if AND and OR gates do not alternate, we can still convert a circuit of
AND and OR gates to a NAND or NOR circuit, but it may be necessary to add

12 Review of Logic Design Fundamentals

FIGURE 1-8:
Conversion of
AND-OR Circuit to
NAND Gates

1.5

extra inverters so that each added inversion is canceled by another inversion. The
following procedure may be used to convert to a NAND (or NOR) circuit:

1.

Convert all AND gates to NAND gates by adding an inversion bubble at the out-
put. Convert OR gates to NAND gates by adding inversion bubbles at the inputs.
(To convert to NOR, add inversion bubbles at all OR gate outputs and all AND
gate inputs.)

. Whenever an inverted output drives an inverted input, no further action is needed,

since the two inversions cancel.

. Whenever a noninverted gate output drives an inverted gate input or vice versa,

insert an inverter so that the bubbles will cancel. (Choose an inverter with the
bubble at the input or output, as required.)

. Whenever a variable drives an inverted input, complement the variable (or add

an inverter) so the complementation cancels the inversion at the input.

In other words, if we always add bubbles (or inversions) in pairs, the function

realized by the circuit will be unchanged. To illustrate the procedure, we will convert
Figure 1-8(a) to NANDs. First, we add bubbles to change all gates to NAND gates
(Figure 1-8(b)). The highlighted lines indicate four places where we have added only
a single inversion. This is corrected in Figure 1-8(c) by adding two inverters and
complementing two variables.

D F
(a) AND-OR circuit

Bubbles cancel

DD

(b) First step in NAND conversion

Added inverter .
/ Added inverter

<

D % F

C

(c) Completed conversion

00000000000
Hazards in Combinational Circuits

When the input to a combinational circuit changes, unwanted switching transients
may appear in the output. These transients occur when different paths from input to
output have different propagation delays. If, in response to an input change and for
some combination of propagation delays, a circuit output may momentarily go to 0

FIGURE 1-9: Simple
Circuits Containing
Hazards

1.5 Hazards in Combinational Circuits 13

when it should remain a constant 1, we say that the circuit has a static 1-hazard.
Similarly, if the output may momentarily go to 1 when it should remain a 0, we say
that the circuit has a static 0-hazard. If, when the output is supposed to change from
0to 1 (or 1 to 0), the output may change three or more times, we say that the circuit
has a dynamic hazard.

Consider the two simple circuits in Figure 1-9. Figure 1-9(a) shows an inverter and
an OR gate implementing the function A + A’. Logically, the output of this circuit is
expected to be a 1 always; however, a delay in the inverter gate can cause static haz-
ards in this circuit. Assume a nonzero delay for the inverter and that the value of A just
changed from 1 to 0. There is a short interval of time until the inverter delay has passed
when both inputs of the OR gate are 0 and hence the output of the circuit may momen-
tarily go to 0. Similarly, in the circuit in Figure 1-9(b), the expected output is always 0;
however, when A changes from 1 to 0, a momentary 1 appears at the output of the
inverter because of the delay. This circuit hence has a static 0-hazard. The hazard occurs
because both A and A’ have the same value for a short duration after A changes.

A Z A+A A E (A+AY=AN
(a) Simple circuit with static (b) Simple circuit with static
1-hazard 0-hazard

A static 1-hazard occurs in a sum-of-product implementation when two
minterms differing by only one input variable are not covered by the same product
term. Figure 1-10(a) illustrates another circuit with a static 1-hazard. If A = C = 1,
the output should remain a constant 1 when B changes from 1 to 0. However, as
shown in Figure 1-10(b), if each gate has a propagation delay of 10 ns, E will go to
0 before D goes to 1, resulting in a momentary 0 (a 1-hazard appearing in the output
F). As seen on the Karnaugh map, there is no loop that covers both minterm ABC
and AB'C.Soif A = C = 1 and B changes from 1 to 0, BC immediately becomes 0,
but until an inverter delay passes, AB’ does not become a 1. Both terms can momen-
tarily go to 0, resulting in a glitch in F. If we add a loop corresponding to the term
AC to the map and add the corresponding gate to the circuit (Figure 1-10(c)), this
eliminates the hazard. The term AC remains 1 while B is changing, so no glitch can
appear in the output. In general, nonminimal expressions are required to eliminate
static hazards.

To design a circuit that is free of static and dynamic hazards, the following pro-
cedure may be used:

1. Find a sum-of-products expression (F’) for the output in which every pair of
adjacent 1s is covered by a 1-term. (The sum of all prime implicants will always
satisfy this condition.) A two-level AND-OR circuit based on this F* will be free
of 1-, 0-, and dynamic hazards.

2. If a different form of circuit is desired, manipulate F’ to the desired form by sim-
ple factoring, DeMorgan’s laws, and so on. Treat each x; and x," as independent
variables to prevent introduction of hazards.

14 Review of Logic Design Fundamentals

FIGURE 1-10:

Elimination of

1-Hazard

1.6

A
B F BCN_0 1
00| 0 m
F=AB’+BC or| o [L2H
1 @ 1 >1—Hazard
10[0fo0

(a) Circuit with 1-hazard

m |m O |o

Ons 10ns 20ns 30ns 40ns 50ns 60ns

(b) Timing chart

B
A
F BC 0 1
00| o |(1)
=
F=AB’+BC+AC 01| o |(1)
11|22
10/0]0

(c) Circuit with hazard removed

Alternatively, you can start with a product-of-sums expression in which every
pair of adjacent Os is covered by a 0-term.

Given a circuit, one can identify the static hazards in it by writing an expression
for the output in terms of the inputs exactly as it is implemented in the circuit and
manipulating it to a sum-of-products form, treating x; and x," as independent variables.
A Karnaugh map can be constructed and all implicants corresponding to each term
circled. If any pair of adjacent 1’s is not covered by a single term, a static 1-hazard can
occur. Similarly, a static 0-hazard can be identified by writing a product-of-sums
expression for the circuit.

Flip-Flops and Latches

Sequential circuits commonly use flip-flops as storage devices. There are several
types of flip-flops, such as Delay (D) flip-flops, J-K flip-flops, Toggle (T) flip-flops,
and so on. Figure 1-11 shows a clocked D flip-flop. This flip-flop can change state in

FIGURE 1-11:
Clocked D Flip-Flop
with Rising-Edge
Trigger

FIGURE 1-12:
Clocked J-K
Flip-Flop

FIGURE 1-13:
Clocked T Flip-Flop

1.6 Flip-Flops and Latches 15

response to the rising edge of the clock input. The next state of the flip-flop after the
rising edge of the clock is equal to the D input before the rising edge. The charac-
teristic equation of the flip-flop is therefore Q* = D, where Q™ represents the next
state of the QO output after the active edge of the clock and D is the input before the
active edge.

Q’ Q
I | D Q|Q"
DFF 0010
0110
A 10 |1
| | 11 |1
CLK D

Figure 1-12 shows a clocked J-K flip-flop and its truth table. Since there is a bub-
ble at the clock input, all state changes occur following the falling edge of the clock
input. If J = K = 0, no state change occurs. If J = 1 and K = 0, the flip-flop is set to 1,
independent of the present state. If / = 0 and K = 1, the flip-flop is always reset to 0.
If / = K = 1, the flip-flop changes state. The characteristic equation, derived from
the truth table in Figure 1-12, using a Karnaugh map is

0+ =J0 +K'Q (1-33)

J K Q| Q
| | 00 00
Q’ Q A
o 1 o | o
g:z o 1 1| o
1 o0 o0 |1
KA J 1 0 1 1
| ? | 1 1 o0 |1
101 110

A clocked T flip-flop (Figure 1-13) changes state following the active edge of
the clock if T'= 1, and no state change occurs if 7 = 0. T flip-flops are particularly
useful for designing counters. The characteristic equation for the T flip-flop is

Q"=0T"+Q0'T=0®T (1-34)

A J-K flip-flop is easily converted to a T flip-flop by connecting 7T to both J and
K. Substituting 7 for J and K in Equation (1-33) yields Equation (1-34).

Q’ Q

FF

mroro (O
orro|O

T
0
0
1
1

16 Review of Logic Design Fundamentals

FIGURE 1-14: S-R
Latch

FIGURE 1-15:
Transparent D
Latch

FIGURE 1-16:
Implementation of
D Latch

Two NOR gates can be connected to form an unclocked S-R (set-reset) flip-flop,
as shown in Figure 1-14. An unclocked flip-flop of this type is often referred to as
an S-R latch. If § = 1 and R = 0, the Q output becomes 1 and P = Q'. If § = 0 and
R =1, O becomes 0 and P = Q'. If S = R =0, no change of state occurs. If R =
S =1,P = Q = 0, which is not a proper flip-flop state, since the two outputs should
always be complements. If R = § = 1 and these inputs are simultaneously changed to
0, oscillation may occur. For this reason, S and R are not allowed to be 1 at the same
time. For purposes of deriving the characteristic equation, we assume that S = R = 1
never occurs, in which case Q* = § + R’Q. In this case, Q* represents the state after
any input changes have propagated to the Q output.

T

[ENENININ e f=l=T=][%]
RrRroOoOrRROO|T
rorororolo
| | mrroOorolo

A gated D latch (Figure 1-15), also called a transparent D latch, behaves as fol-
lows: If the gate signal G = 1, then the Q output follows the D input (Q* = D). If
G = 0, then the latch holds the previous value of Q (Q* = Q). Essentially, the
device will not respond to input changes unless G = 1; it simples “latches” the pre-
vious input right before G became 0. Some refer to the D latch as a level-sensitive
D flip-flop. Essentially, if the gate input G is viewed as a clock, the latch can be
considered as a device that operates when the clock level is high and does
not respond to the inputs when the clock level is low. The characteristic equation
for the D latch is Q" = GD + G'Q. Figure 1-16 shows an implementation of the
D latch using gates. Since the Q" equation has a 1-hazard, an extra AND gate has
been added to eliminate the hazard.

| G D Q Q"
0 0 0 0
Q o 0 1|1
0 1 0 0
Latch 0 1 1 1
G D 1 0 0 0
1 0 1 0
| | 1 1 0 1
1 1 1 1

—Q Q'=DG+G'Q+(DQ)

1.7

FIGURE 1-17:
General Model of
Mealy Sequential
Machine

FIGURE 1-18: Block
Diagram of a
Sequence Detector

1.7 Mealy Sequential Circuit Design 17

Mealy Sequential Circuit Design

There are two basic types of sequential circuits: Mealy and Moore. In a Mealy circuit,
the outputs depend on both the present state and the present inputs. In a Moore
circuit, the outputs depend only on the present state. A general model of a Mealy
sequential circuit consists of a combinational circuit, which generates the outputs and
the next state, and a state register, which holds the present state (see Figure 1-17).
The state register normally consists of D flip-flops. The normal sequence of events is
(1) the X inputs change to a new value; (2) after a delay, the corresponding Z outputs
and next state appears at the output of the combinational circuit; and (3) the next
state is clocked into the state register and the state changes. The new state feeds back
into the combinational circuit and the process is repeated.

Inputs (X) ——— —— Outputs (2)
Combinational
— > circuit Next state State | State
register
Clock—

1.7.1 Mealy Machine Design Example 1: Sequence Detector

To illustrate the design of a clocked Mealy sequential circuit, let us design a sequence
detector. The circuit has the form indicated in the block diagram in Figure 1-18.

Clock

The circuit will examine a string of 0’s and 1’s applied to the X input and generate
an output Z =1 only when the input sequence ends in 1 0 1. The input X can
change only between clock pulses. The output Z = 1 coincides with the last 1in 1 0 1.
The circuit does not reset when a 1 output occurs. A typical input sequence and the
corresponding output sequence are

X=0011011001010100
Z=000O00100O0O0O01O0T1TO0FP0

Let us construct a state graph for this sequence detector. We will start in a reset
state designated S, If a 0 input is received, we can stay in state S, as the input

18 Review of Logic Design Fundamentals

FIGURE 1-19:
Partial State Graph
of the Sequence
Detector

FIGURE 1-20:
Mealy State Graph
for Sequence
Detector

TABLE 1-3: State
Table for Sequence
Detector

sequence we are looking for does not start with 0. However, if a 1 is received, the
circuit should go to a new state. Let us denote that state as S,. When in S, if we
receive a 0, the circuit must change to a new state (S,) to remember that the first two
inputs of the desired sequence (1 0) have been received. If a 1 is received in state S,
the desired input sequence is complete and the output should be a 1. The output will
be produced as a Mealy output and will coincide with the last 1 in the detected
sequence. Since we are designing a Mealy circuit, we are not going to go to a new
state that indicates the sequence 101 has been received. When we receive a 1in S,
we cannot go to the start state since the circuit is not supposed to reset with every
detected sequence. But the last 1 in a sequence can be the first 1 in another
sequence; hence, we can go to state S,. The partial state graph at this point is indi-
cated in Figure 1-19.

When a 0 is received in state S,, we have received two 0’s in a row and must
reset the circuit to state S,. If a 1 is received when we are in §;, we can stay in
S, because the most recent 1 can be the first 1 of a new sequence to be detected.
The final state graph is shown in Figure 1-20. State S, is the starting state, state
S, indicates that a sequence ending in 1 has been received, and state S, indicates
that a sequence ending in 10 has been received. Converting the state graph to a
state table yields Table 1-3. In row S, of the table, an output of 1 is indicated for
input 1.

Present Next State Present Output
State X=0 X=1 X=0 X=1
S, S, S, 0 0
S, S, S, 0 0
S S S 0 1

o

1

TABLE 1-4:
Transition Table for
Sequence Detector

FIGURE 1-21:
K-Maps for Next
States and Output
of Sequence
Detector

1.7 Mealy Sequential Circuit Design 19

Next, state assignment is performed, whereby specific flip-flop values are associ-
ated with specific states. There are two techniques to perform state assignment
(1) one-hot state assignment and (2) encoded state assignment. In one-hot state
assignment, one flip-flop is used for each state. Hence three flip-flops will be required
if this circuit is to be implemented using the one-hot approach. In encoded state
assignment, just enough flip-flops to have a unique combination for each state are
sufficient. Since we have three states, we need at least two flip-flops to represent all
states. We will use encoded state assignment in this design. Let us designate the two
flip-flops as A and B. Let the flip-flop states A = 0 and B = 0 correspond to state S;
A =0and B = 1 correspond to state S;;and A = 1 and B = 0 correspond to state S,.
Now, the transition table of the circuit can be written as in Table 1-4.

A*B* z
AB | X=0 X=1| X=0 X=1
00 00 01 0 0
01 10 01 0 0
10 00 01 0 1

From this table, we can plot the K-maps for the next states and the output Z.The
next states are typically represented by A* and B™. The three K-maps are shown in
Figure 1-21.

AB
00

0
0
01 m 0 01| o 1 01| o
>
0

11

10

A*=X'B B*=X Z=XA

The next step is deriving the flip-flop inputs to obtain the desired next states. If
D flip-flops are used, one simply needs to give the expected next state of the flip-
flop to the flip-flop input. So, for flip-flops A and B, D, = A" and D, = B*. The
resulting circuit is shown in Figure 1-22.

1.7.2 Mealy Machine Design Example 2: BCD to Excess-3

Code Converter
As an example of a more complex Mealy sequential circuit, we will design a serial code
converter that converts an 8-4-2-1 binary-coded-decimal (BCD) digit to an excess-
3-coded decimal digit. The input (X) will arrive serially with the least significant bit

20 Review of Logic Design Fundamentals

FIGURE 1-22: | |
Circuit for Mealy A 5 B
Sequence Detector

CK CK

A D A D

Clock (3
A
o |
X—e

(LSB) first. The outputs will be generated serially as well. Table 1-5 lists the desired
inputs and outputs at times {,, ,, 1,, and . After receiving four inputs, the circuit should
reset to its initial state, ready to receive another BCD digit.

TABLE 1-5: Code X Input (BCD) Z Output (excess-3)

Converter t2 t t2 t

~

~
[S)

o
~

~
w

w

1 1

- 0000 O0OCOCOO
OO == = =2000O0
OO0 -2 =00 -==00
- 0O —-~0-~0—-~0-0
_ = s s s 00 00O
L0000 == = a0
O = =00 - =-00=
O~ 0~ 0—~~0—-0-=-

The excess-3 code is formed by adding 0011 to the BCD digit. For example,

01 00 01 01
+0 0 1 1 +0 0 1 1
0111 1 0 0 0

If all of the BCD bits are available simultaneously, this code converter can be
implemented as a combinational circuit with four inputs and four outputs. However,
here the bits arrive sequentially, one bit at a time. Hence we must implement this
code converter sequentially.

Let us now construct a state graph for the code converter (Figure 1-23(a)). Let
us designate the start state as S The first bit arrives and we need to add 1 to this
bit, as it is the LSB of 0011, the number to be added to the BCD digit to obtain the

FIGURE 1-23: State
Graph and Table
for Code Converter

1.7 Mealy Sequential Circuit Design 21

NC=no carry
C=carry

01

(a) Mealy state graph

NS Z
PS | X=0 X=1 | X=0 X=1
SO S1 S2 1 0
S1 S3 A 1 0
S2 4 4 0 1
S3 S5 S5 0 1
4 S5 S6 1 0
S5 S0 S0 0 1
S6 SO - 1 —

(b) State table

excess-3 code. At 7, we add 1 to the least significant bit,so if X = 0, Z = 1 (no carry),
andif X = 1,Z = 0 (carry = 1). Let us use S, to indicate no carry after the first addi-
tion, and S, to indicate a carry of 1 after the addition to the LSB.

At t,we add 1 to the next bit, so if there is no carry from the first addition (state
§,),X=0givesZ =0+ 1+ 0 = 1and no carry (state S,),and X = 1 gives Z = 1 +
1+ 0=0and a carry (state S,). If there is a carry from the first addition (state S,),
then X =0givesZ=0+1+1=0andacarry (S,),and X =1givesZ=1+1+
1 =1and a carry (S,).

At t,,0is added to X, and transitions to S (no carry) and S, are determined in a
similar manner. At z;, 0 is again added to X, and the circuit resets to S,,.

Figure 1-23(b) gives the corresponding state table. At this point, we should
verify that the table has a minimum number of states before proceeding (see
Section 1-9). Then state assignment must be performed. Since this state table has
seven states, three flip-flops will be required to realize the table in encoded state
assignment. In the one-hot approach, one flip-flop is used for each state. Hence
seven flip-flops will be required if this circuit is to be implemented using the one-
hot approach. The next step is to make a state assignment that relates the flip-
flop states to the states in the table. In the sequence detector example, we simply
did a straight binary state assignment. Here we are going to look for an optimal
assignment. The best state assignment to use depends on a number of factors. In

22 Review of Logic Design Fundamentals

FIGURE 1-24: State
Assignment for
BCD to Excess-3
Code Converter

many cases, we should try to find an assignment that will reduce the amount of
required logic. For some types of programmable logic, a straight binary state
assignment will work just as well as any other. For programmable gate arrays, a
one-hot assignment may be preferred. In recent years, with the abundance of
transistors on silicon chips, the emphasis on optimal state assignment has been
reduced.

In order to reduce the amount of logic required, we will make a state assignment
using the following guidelines (see Roth, Fundamentals of Logic Design, Sth Ed.
[Thomson Brooks/Cole, 2004] for details):

I. States that have the same next state (NS) for a given input should be given adja-
cent assignments (look at the columns of the state table).
II. States that are the next states of the same state should be given adjacent assign-
ments (look at the rows).
III. States that have the same output for a given input should be given adjacent
assignments.

Using these guidelines tends to clump 1’s together on the Karnaugh maps for the
next state and output functions. The guidelines indicate that the following states
should be given adjacent assignments:

L (1,2),(3,4),(5,6) (in the X = 1 column, S, and S, both have NS
S, in the X = 0 column, S, and §, have NS S,
and S, and S, have NS §)

IL (1,2),(3,4),(5,6) (S, and S, are NS of §; S, and S, are NS of §;
and S, and S, are NS of S,)
IIL. (0,1,4,6),(2,3,5)

Figure 1-24(a) gives an assignment map, which satisfies the guidelines, and the
corresponding transition table. Since state 001 is not used, the next state and outputs
for this state are don’t cares. The next state and output equations are derived from
this table in Figure 1-25. Figure 1-26 shows the realization of the code converter
using NAND gates and D flip-flops.

+ A+ At
o Q1 Q2 Q3 z
QQxN 0 1 Q1QQ3 | X=0 X=1 | X=0 X=1
00| SO | 1 000 100 101 1 0
100 111 110 1 0
01 S2 101 110 110 0 1
111 011 011 0 1
11| S5 | S3 110 011 010 1 0
011 000 000 0 1
10| 6 | 4 010 000 XXX 1 X
001 XXX XXX X X

(a) Assignment map (b) Transition table

FIGURE 1-25:
Karnaugh Maps for
Code Converter

FIGURE 1-26:
Realization of Code
Converter

TABLE 1-6:
Excitation Table for
a J-K Flip-Flop

XQ

1
Q,Qn 00 01 11 10
00 (1 111 q
ol [1]1]x
11/0fo0o|ofo
10/0fo0]|o0]fx
D;=Q;=Q5
XQ;
QQx 00 01 11 10
00| 0 L}J 0 m
oL x|o|oO @
ulo [@D[o
10| 0 m 0| x
D3=Q3=Q:QxQs+ X'QuQ5+ XQ{Q5
Q1 A
QQ— &
Q3
Q1 _ A,
Qs — G
X
X > A
Q1 — G; 3
Q; —

1.7 Mealy Sequential Circuit Design 23

Q.03 lOO 01 11 10
00| O |(1] 1
orl x [l1] 2| x
1mlolls] 2l o
10| 0 [le | 1| x
D,=Q,=Q

XQq
QQ% 00 01 11 10

00
01
11

10

D

0

X |0

am

0|0

W] d

an

0| X

Z=X'Q5+XQs

Q2 —

If J-K flip-flops are used instead of D flip-flops, the input equations for the J-K
flip-flops can be derived from the next state maps. Given the present state flip-flop
(Q) and the desired next state (Q%), the J and K inputs can be determined from
Table 1-6, also known as the excitation table. This table is derived from the truth
table in Figure 1-12.

Q O | J K

0 0 0 X | (Nochange in Q; J must be 0, K may be 1 to reset Q to 0.)
0 1 1 X | (Change to Q = 1; J must be 1 to set or toggle.)

1 0 | X 1 | (Change to Q = 0; K must be 1 to reset or toggle.)

1 1 X 0 | (No change in Q; K must be 0, J may be 1 to set Q to 1.)

24 Review of Logic Design Fundamentals

Figure 1-27 shows derivation of J-K flip-flop input equations for the state table
of Figure 1-23 using the state assignment of Figure 1-24. First, we derive the J-K
input equations for flip-flop Q, using the O map as the starting point. From the
preceding table, whenever Q, is 0,/ = QO and K = X. So, we can fill in the O, =0
half of the J, map the same as Q" and the Q, = 0 half of the K, map as all X’s. When
Q,is1,J, = Xand K, = (Q;)". So, we can fill in the O, = 1 half of the J, map with
X’s and the Q, = 1 half of the K| map with the complement of the Q. Since half of
every J and K map is don’t cares, we can avoid drawing separate J and K maps and
read the J’s and K’s directly from the Q" maps, as illustrated in Figure 1-27(b). This
shortcut method is based on the following: If Q = 0,then J = O™, so loop the 1’s on
the Q = 0 half of the map to get J. If Q = 1, then K = (Q™")’, so loop the 0’s on the
O =1 half of the map to get K. The J and K equations will be independent of Q,
since Q is set to a constant value (0 or 1) when reading J and K. To make reading
the J’s and K’s off the map easier, we cross off the Q values on each map. In effect,
using the shortcut method is equivalent to splitting the four-variable Q* map into
two three-variable maps, one for Q = 0 and one for Q = 1.

FIGURE 1-27: XQ

XQ XQy

1 1
Derivation of J-K Q,Qx 00 01 11 10 Q,Q) 00 01 11 10 Q,Qy 00 01 11 10
Input Equations 00 (1 1] 1 1\ 00 (1 X | X q 00| x|o|o]|x
o1|x[a]1|x o1 [x [x| x| o[x[o]o[x
1/0f(0|0 (o0 |ofx|x|o 11 p< 1|1 >q
10/0]ofo]x 100 x|x]|x 10x]1]1]x
Q1 3,=Q; K;=Q,
(a) Derivation using separate J-K maps
XQy XQy XQy
QQx 00 07 14 10 Q,Qx_00 01 11 10 Q,Qx\ 00 01 11 10
N 1|2 |(1] ol[a]| 1) o o[lz]{ o][2]{Jd
0 e, o[[Wel:
or| xJ| 1|1 [lx 1| x (e | 1] x o [Xy ool ,
) B T T K3
11| 000y o aENETERICEl 110 1]1]
(19 (Il
10] o[l d| x ol o)]2 [lx] 1] o [M)] 0 X%
- T T T T
hoKpoh o Q3
Q1 3=Q1 J3=X'Qu+ XQ1
7=Q; Ki=Q, Kz=Q1 Ke=Qi+ Q3

(b) Derivation using the shortcut method

The following summarizes the steps required to design a sequential circuit:

1. Given the design specifications, determine the required relationship between the
input and output sequences. Then find a state graph and state table.

2. Reduce the table to a minimum number of states. First eliminate duplicate rows
by row matching; then form an implication table and follow the procedure in
Section 1.9.

1.8

FIGURE 1-28: State
Graph of the Moore
Sequence Detector

1.8 Moore Sequential Circuit Design 25

3. If the reduced table has m states (2! < m = 2"), n flip-flops are required. Assign
a unique combination of flip-flop states to correspond to each state in the
reduced table. This is the encoded state assignment technique. Alternately, a one-
hot assignment with m flip-flops can be used.

4. Form the transition table by substituting the assigned flip-flop states for each
state in the reduced state tables. The resulting transition table specifies the next
states of the flip-flops and the output in terms of the present states of the flip-
flops and the input.

5. Plot next-state maps and input maps for each flip-flop and derive the flip-flop
input equations. Derive the output functions.

6. Realize the flip-flop input equations and the output equations using the available
logic gates.

7. Check your design using computer simulation or another method.

Steps 2 through 7 may be carried out using a suitable computer-aided design
(CAD) program.

Moore Sequential Circuit Design

In a Moore circuit, the outputs depend only on the present state. Moore machines
are typically easier to design and debug compared to Mealy machines, but they
often contain more states than equivalent Mealy machines. In Moore machines,
there are no outputs that happen during the transition. The outputs are associated
entirely to the state.

1.8.1 Moore Machine Design Example 1: Sequence Detector

As an example, let us design the sequence detector of Section 1.7.1 using the Moore
Method. The circuit will examine a string of 0’s and 1’s applied to the X input and gen-
erate an output Z = 1 only when the input sequence ends in 101. The input X can
change only between clock pulses. The circuit does not reset when a 1 output occurs.

As in the Mealy machine example, we start in a reset state designated S, in
Figure 1-28.1f a 0 input is received, we can stay in state S, as the input sequence we
are looking for does not start with 0. However, if a 1 is received, the circuit goes to
a new state, §,. When in S, if we receive a 0, the circuit must change to a new state
(S,) to remember that the first two inputs of the desired sequence (10) have been

26 Review of Logic Design Fundamentals

TABLE 1-7: State
Table for Sequence
Detector

TABLE 1-8:
Transition Table for
Moore Sequence
Detector

received. If a 1 is received in state S,, the circuit should go to a new state to indicate
that the desired input sequence is complete. Let us designate this new state as §,. In
state S, the output must have a value of 1. The outputs in states S, S, and S, must
be 0’s. The sequence 100 resets the circuit to S,. A sequence 1010 takes the circuit
back to S, because another 1 input should cause Z to become 1 again.

The state table corresponding to the circuit is given by Table 1-7. Note that there
is a single column for output because the output is determined by the present state
and does not depend on X. Note that this sequence detector requires one more state
than the Mealy sequence detector in Table 1-3, which detects the same input
sequence.

Next State
Present State | X =0 X =1 | Present Output (2)

0
1
2

0
2

1

o

w
- O O0OOo

nh nhhnhn

S S
S S
S S
S S

w

2

-

Because there are four states, two flip-flops are required to realize the circuit.
Using the state assignment AB = 00 for §;, AB = 01 for §,, AB = 11 for §,, and
AB =10 for S, the transition table shown in Table 1-8 is obtained.

A*B*
AB ‘ X=0 X=1 ‘
00 [00 01
o1 [11 01
1| 00 10
ol 11 o

- OO0 O|N

The output function Z = AB’. Note that Z depends only on the flip-flop states
and is independent of X, while for the corresponding Mealy machine, Z was a func-
tion of X. (It was equal to AX in Figure 1-21.) The transition table can be used to
write the next state maps and inputs to the flip-flops can be derived.

1.8.2 Moore Machine Design Example 2: NRZ to Manchester
Code Converter

As another example of designing a Moore sequential machine, we will design a con-
verter for serial data. Binary data is frequently transmitted between computers as a
serial stream of bits. Figure 1-29 shows three different coding schemes for serial
data. The example shows transmission of the bit sequence 0,1, 1,1,0,0, 1,0. With the
NRZ (nonreturn-to-zero) code, each bit is transmitted for one bit time without any
change. In contrast, for the RZ (return-to-zero) code, a 0 is transmitted as O for one
full bit time, but a 1 is transmitted as a 1 for the first half of the bit time, and then

FIGURE 1-29:
Coding Schemes
for Serial Data
Transmission

FIGURE 1-30:
Moore Circuit for
NRZ-to-Manchester
Conversion

1.8 Moore Sequential Circuit Design 27

Bit sequence|

o

1

NRZ |—‘—‘—|, ,

nEnEEEEN

I
Manchester . |_| |_|

1 bit
time

[y
[
[y

il

Ee

[] []

the signal returns to 0 for the second half. For the Manchester code, a 0 is transmit-
ted as O for the first half of the bit time and a 1 for the second half, but a 1 is trans-
mitted as a 1 for the first half and a 0 for the second half. Thus, the Manchester
encoded bit always changes in the middle of the bit time.

We will design a Moore sequential circuit that converts an NRZ-coded bit
stream to a Manchester-coded bit stream (Figure 1-30). In order to do this, we
will use a clock (CLOCK?2) that is twice the frequency of the basic bit clock. If
the NRZ bit is 0, it will be 0 for two CLOCK?2 periods, and if it is 1, it will be 1
for two CLOCK?2 periods. Thus, starting in the reset state (S,), the only two pos-
sible input sequences are 00 and 11, and the corresponding output sequences are
01 and 10. When a 0 is received, the circuit goes to S, and outputs a 0; when the
second 0 is received, it goes to S, and outputs a 1. Starting in S, if a 1 is received,
the circuit goes to §; and outputs a 1, and when the second 1 is received, it must
go to a state with a 0 output. Going back to §, is appropriate since S has a 0 out-
put and the circuit is ready to receive another 00 or 11 sequence. When in §,, if
a 00 sequence is received, the circuit can go to S, and then back to §,. If a
11 sequence is received in S,, the circuit can go to S, and then back to §. The cor-
responding Moore state table has two don’t cares, which correspond to input
sequences that cannot occur.

X
NRZ data —=—| Conversion z

T ——— Manchester data
CLOCK2 ———» circuit

(a) Conversion circuit

0 Present Next State Present
% % State | X=0 X=1 Output (2)
So S; S3 0
1 I 0 Sq S, — 0
S, S, S3 1
G+ 5 | = % !
(b) State graph (c) State table

Figure 1-31 shows the timing chart for the Moore circuit. Note that the
Manchester output is shifted one clock time with respect to the NRZ input. This

28 Review of Logic Design Fundamentals

FIGURE 1-31:
Timing for Moore
Circuit

1.9

FIGURE 1-32:
Sequential Circuits

— e b—

X (NRZ) 0.0.|1.1.1.1.1.1.|0.0.0.0.1.1.o:o:
QWZHHHHHHHHHHHHHHHH
State | So 51.82.53.50.53.80.33.80.81.82.51.82.83.Sousl

I I I I I I I I I I I I I I
ofr'2]|o|1|of2|olof1]|of{2!2]0!0!
|1oit
— ™ time

Z
(Manchester) | 0

shift occurs because a Moore circuit cannot respond to an input until the active edge
of the clock occurs. This is in contrast to a Mealy circuit, for which the output can
change after the input changes and before the next clock.

Equivalent States and Reduction
of State Tables

The concept of equivalent states is important for the design and testing of sequential
circuits. It helps to reduce the hardware consumed by circuits. Two states in a sequen-
tial circuit are said to be equivalent if we cannot tell them apart by observing input and
output sequences. Consider two sequential circuits, N, and N, (see Figure 1-32).
N, and N, could be copies of the same circuit. N, is started in state s, and N, is started
in state s, We apply the same input sequence, X, to both circuits and observe the
output sequences Z, and Z,. (The underscore notation indicates a sequence.) If Z,
and Z, are the same, we reset the circuits to states s; and s, apply a different 1nput
sequence, and observe Z, and Z,. If the output sequences are the same for all possi-
ble input sequences, we say the s, and s; are equivalent (s, = s) Formally, we can
define equivalent states as follows:s;, = s;if and only if, for every 1nput sequence X, the
output sequences Z, = A(s,, X) and Z = /\2(s X) are the same. This is not a very
practical way to test for state equlvalence since, at least in theory, it requires input
sequences of infinite length. In practice, if we have a bound on number of states, then
we can limit the length of the test sequences.

A more practical way to determine state equivalence uses the state equivalence
theorem:s; = s, if and only if for every single input X, the outputs are the same and the

Zy=11(si, X)

®
@

> Zy=15(s55, X)

1.9 Equivalent States and Reduction of State Tables 29

next states are equivalent. When using the definition of equivalence, we must consider
all input sequences, but we do not need any information about the internal state of the
system. When using the state equivalence theorem, we must look at both the output
and next state, but we need to consider only single inputs rather than input sequences.

The table of Figure 1-33(a) can be reduced by eliminating equivalent states.
First, observe that states a and 4 have the same next states and outputs when X = 0
and also when X = 1.Therefore,a = & so we can eliminate row /& and replace /4 with
a in the table. To determine if any of the remaining states are equivalent, we will use
the state equivalence theorem. From the table, since the outputs for states a and b
are the same, a = b if and only if ¢ = d and e = f. We say that c-d and e-f are implied
pairs for a-b. To keep track of the implied pairs, we make an implication chart, as
shown in Figure 1-33(b). We place c-d and e-fin the square at the intersection of row
a and column b to indicate the implication. Since states d and e have different
outputs, we place an X in the d-e square to indicate that d # e. After completing the
implication chart in this way, we make another pass through the chart. The e-g
square contains c-e and b-g. Since the c-e square has an X, ¢ # e, which implies e # g,
so we X out the e-g square. Similarly, since a # g, we X out the f-g square. On the
next pass through the chart, we X out all the squares that contain e-g or f-g as
implied pairs (shown on the chart with dashed x’s). In the next pass, no additional
squares are X’ed out, so the process terminates. Since all the squares corresponding
to non-equivalent states have been X’ed out, the coordinates of the remaining
squares indicate equivalent state pairs. From the first column, a = b; from third col-
umn, ¢ = d; and from the fifth column, e = f.

The implication table method of determining state equivalence can be summa-
rized as follows:

1. Construct a chart that contains a square for each pair of states.

2. Compare each pair of rows in the state table. If the outputs associated with states
i and j are different, place an X in square i-j to indicate that i # j. If the outputs
are the same, place the implied pairs in square i-j. (If the next states of i and j are
m and n for some input x, then m-n is an implied pair.) If the outputs and next
states are the same (or if i-j implies only itself), place a check () in square i-j to
indicate that i =j.

Go through the table square by square. If square i-j contains the implied pair
m-n, and square m-n contains an X, then i # j, and an X should be placed in
square i—j.

4. If any X’s were added in step 3, repeat step 3 until no more X’s are added.

5. For each square i-j that does not contain an X,i = .

W

If desired, row matching can be used to partially reduce the state table before con-
structing the implication table. Although we have illustrated this procedure for a
Mealy table, the same procedure applies to a Moore table.

Two sequential circuits are said to be equivalent if every state in the first circuit
has an equivalent state in the second circuit, and vice versa.

Optimization techniques such as this are incorporated in CAD tools. The
importance of state minimization has slightly diminished in recent years due to
the abundance of transistors on chips; however, it is still important to do obvious
state minimizations to reduce the circuit’s area and power.

30 Review of Logic Design Fundamentals

FIGURE 1-33: State Present Next State Present Output

Table Reduction State X=0 1 X=0 1
a c f 0 0
b d e 0 0
c Ma g 0 0
d b g 0 0
e e b 0 1
f f a 0 1
g c g 0 1
h c—fF 0—0

(a) State table reduction by row matching

ol €9 k— a=biff c=dande=f .| <l
e-f e-f
a-d N 4 \a'd 4
c| f- 7
9 e-g ¢ /bq N /e>_g\ N
b-c ab \b'(}’ N b
d| ¢ €-g - dl > e a-
f] /f_g\ N4 g\ N
e e
f a-b f a-b
c-e c-f c-e c-f
g - - g
bg | a9 -0\ 4-g
a b c d e f a b c d e f
(b) Implication chart (first pass) (c) After second and third passes
X= X=

oco®o|lo
QoQ ®|F
[elololelle]
PP OO

Q ® o0 ®

(d) Final reduced table

1.10 Sequential Circuit Timing

The correct functioning of sequential circuits involves several timing issues.
Propagation delays of flip-flops, gates and wires, setup times and hold times of flip-
flops, clock synchronization, clock skew, etc become important issues while design-
ing sequential circuits. In this section, we look at various topics related to sequential
circuit timing.

FIGURE 1-34: Setup
and Hold Times for
D Flip-Flop

1.10 Sequential Circuit Timing 31

1.10.1 Propagation Delays; Setup and Hold Times

There is a certain amount of time, albeit small, that elapses from the time the clock
changes to the time the Q output changes. This time, called propagation delay, is
indicated in Figure 1-34. The propagation delay can depend on whether the output
is changing from high to low or vice versa. In the figure, the propagation delay for
a low-to-high change in Q is denoted by 7, and for a high-to-low change it is
denoted by 7 ;.

For an ideal D flip-flop, if the D input changed at exactly the same time as the
active edge of the clock, the flip-flop would operate correctly. However, for a real
flip-flop, the D input must be stable for a certain amount of time before the active
edge of the clock. This interval is called the setup time (¢). Furthermore, D must be
stable for a certain amount of time after the active edge of the clock. This interval
is called the hold time (t,). Figure 1-34 illustrates setup and hold times for a D flip-
flop that changes state on the rising edge of the clock. D can change at any time dur-
ing the shaded region on the diagram, but it must be stable during the time interval
t,, before the active edge and for 7, after the active edge. If D changes at any time
during the forbidden interval, it cannot be determined whether the flip-flop will
change state. Even worse, the flip-flop may malfunction and output a short pulse or
even go into oscillation. Minimum values for 7 and 7, and maximum values for 7,
and 7, can be read from manufacturers’ data sheets.

1h>

—

Clock f—| {7
Q tpm"é |'* 4’ |‘7tphl

1.10.2 Maximum Clock Frequency of Operation

In a synchronous sequential circuit, state changes occur immediately following the
active edge of the clock. The maximum clock frequency for a sequential circuit
depends on several factors. The clock period must be long enough so that all flip-
flop and register inputs will have time to stabilize before the next active edge of the
clock. Propagation delays and setup and hold times create complications in sequen-
tial circuit timing.

Consider a simple circuit of the form of Figure 1-35(a). The output of a D flip-flop
is fed back to its input through an inverter. Assume a clock as indicated by the wave-
form CLK in Figure 1-35(b). If the current output of the flip-flop is 1, a value of 0 will
appear at the flip-flop’s D input after the propagation delay of the inverter. Assuming
that the next active edge of the clock arrives after the setup time has elapsed, the out-
put of the flip-flop will change to 0. This process will continue, yielding the output Q

32 Review of Logic Design Fundamentals

FIGURE 1-35:
Simple Frequency
Divider

A

DFF

CLK Q

(a) A frequency divider

|

Dgp—‘—| I !
|| | | | I—

—Hlcle— > lcle— |

(b) Frequency divider timing diagram

of the flip-flop to be a waveform with twice the period of the clock. Essentially the
circuit behaves as a frequency divider.

If we increase the frequency of the clock slightly, the circuit will still work yield-
ing half of the increased frequency at the output. However, if we increase the
frequency to be very high, the output of the inverter may not get enough time to
stabilize and meet the setup time requirements. Similarly, if the inverter was very fast
and fed the inverted output to the D input extremely quickly, there will be timing
problems because the hold time of the flip-flop may not be met. So we can easily see
a variety of ways in which timing problems could arise from propagation delays and
setup and hold time requirements.

1.10.3 Timing Conditions for Proper Operation

For a circuit of the general form of Figure 1-17, assume that the maximum propa-
gation delay through the combinational circuit is ¢, and the maximum propaga-
tion delay from the time the clock changes to the time the flip-flop output changes
is L ymaxs where Lymax i1s the maximum of ¢ olh and ¢ ohl* There are four conditions this
circuit has to meet in order to ensure proper operation.

1. Clock period should be long enough to satisfy flip-flop setup time. The clock
period should be long enough to allow the flip-flop outputs to change and the
combinational circuitry to change while still leaving enough time to satisfy
the setup time. Once the clock arrives, it could take a delay of up toz, . before
the flip-flop output changes. Then it could take a delay of up toz, before the

output of the combinational circuitry changes. Thus the maximum time from
the active edge of the clock to the time the change in O propagates back to the

FIGURE 1-36: Setup
and Hold Timing
for Changes in X

CLK

1.10 Sequential Circuit Timing 33

ax T Lo Inorder to ensure proper flip-flop operation,
the combinational circuit output must be stable 7 before the end of the clock
period. If the clock period is 7,

D flip-flop inputs is Lomax T 1

t, =t +t

ck ‘pmax cmax + tsu

The differ@nce between 7, and (tpmax + 1. T 1) is referred to as the setup
time margin.

Clock period should be long enough to satisfy flip-flop hold time. A hold-
time violation could occur if the change in Q fed back through the combina-
tional circuit and caused D to change too soon after the clock edge. The hold
time is satisfied if

t

o+t =t
pmin cmin

h

When checking for hold-time violations, the worst case occurs when the tim-
ing parameters have their minimum values. Since 7. > 1, for normal flip-
flops, a hold-time violation due to Q changing does not occur.

External input changes to the circuit should satisfy flip-flop setup time. A setup
time violation could occur if the X input to the circuit changes too close to the
active edge of the clock. When the X input to a sequential circuit changes,
we must make sure that the input change propagates to the flip-flop inputs
such that the setup time is satisfied before the active edge of the clock. If X
changes _time units before the active edge of the clock (see Figure 1-36), then
it could take up to the maximum propagation delay of the combinational cir-
cuit, before the change in X propagates to the flip-flop input. There should still
be a margin of 7 left before the edge of the clock. Hence, the setup time is
satisfied if

t =t +t

X cxmax su

where ¢ is the maximum propagation delay from X to the flip-flop input.

m.

' by [texmin

External input changes to the circuit should satisfy flip-flop hold times. In
order to satisfy the hold time, we must make sure that X does not change too
soon after the clock. If a change in X propagates to the flip-flop input in zero
time, X should not change for a duration of 7, after the clock edge.
Fortunately, it takes some positive propagation delay for the change in X

34 Review of Logic Design Fundamentals

to reach the flip-flop. If 7. is the minimum propagation delay from X to
the flip-flop input, changes in X will not reach the flip-flop input until at
least a time of 7. has elapsed after the clock edge. So, if X changes 7, time

units after the active edge of the clock, then the hold time is satisfied if

ty = th - tcxmin
If ¢, is negative, X can change before the active clock edge and still satisfy
the hold time.

Given a circuit, we can determine the safe frequency of operation and safe
regions for input changes using the above principles. As an example, consider the fre-
quency divider circuit in Figure 1-35(a). If the minimum and maximum delays of the
inverter are 1 ns and 3 ns, and if Lomin and Lymax AT€ 5 ns and 8 ns, the maximum fre-
quency at which it can be clocked can be derived using requirement (1) above.
Assume that the setup and hold times of the flip-flop are 4 ns and 2 ns. For proper
operation,t, =1, +1,. + 1, Inthisexample,z . forthe flip-flopsis8ns, 7, is

> “ck T "pmax
3 ns,and ¢ is 4 ns. Hence

t,=8+3+4=15ns

The maximum clock frequency is then 1/, = 66.67 MHz. We should also make
sure that the hold time requirement is satisfied. Hold time requirement means that
the D input should not change before 2 ns after the clock edge. This will be satisfied
if Lomin + Lomin = 2 ns. In this circuit, ¢ . is Snsand ¢_. is 1 ns. Thus the Q output is
guaranteed to not change until 5 ns after the clock edge, and at least 1 ns more
should elapse before the change can propagate through the inverter. Hence the
D input will not change until 6 ns after the clock edge, which automatically satisfies
the hold time requirements. Since there are no external inputs, these are the only
timing constraints that we need to satisfy.

Now consider a circuit as in Figure 1-37(a). Assume that the delay of the combi-
national circuit is in the range 2 to 4 ns, the flip-flop propagation delays are in the
range 5 tol0 ns, the setup time is 8 ns, and hold time is 3 ns. In order to satisfy the
setup time, the clock period has to be greater than ¢ +t . T, So

pmax cmax

t,=10+4+8=22ns

The hold time requirement is satisfied if the output does not change until 3 ns
after the clock. Here, the output is not expected to change until 7 .+, . . Since
L ymin is Snsand ¢ is 2 ns, the output is not expected to change until 7 ns, which
automatically satisfies the hold time requirement. This circuit has external inputs
that allow us to identify safe regions where the input X can change using require-
ments (3) and (4) above. The X input should be stable for a duration of 7+t
(i.e.,4 ns + 8 ns) before the clock edge. Similarly, it should be stable for a duration
of t, —t .. (ie,3 ns —2 ns) after the clock edge. Thus, the X input should not
change 12 ns before the clock edge and 1 ns after the clock edge. Although the hold
time is 3 ns, we see that the input X can change 1 ns after the clock edge, because
it takes at least another 2 ns (minimum delay of combinational circuit) before the

input change can propagate to the D input of the flip-flop. The shaded regions in

FIGURE 1-37: Safe
Regions for Input
Changes

FIGURE 1-38:
Timing Diagram for
Code Converter

1.10 Sequential Circuit Timing 35

X . Z Q* z
Qlo 1 fo 1
Combinational D 0ofo 1 (0 1
circuit 110 01 0

Clk

all

(a) A sequential circuit

CLK I—I

(b) Saferegionsfor changesin X

the waveform for X indicate safe regions where the input signal X may change
without causing erroneous operation in the circuit.

1.10.4 Glitches in Sequential Circuits

Sequential circuits often have external inputs that are asynchronous. Input changes can
cause temporary false values called glitches at the outputs and next states. For exam-
ple, if the state table of Figure 1-23(b) is implemented in the form of Figure 1-17, the
timing waveforms are as shown in Figure 1-38. Propagation delays in the flip-flop have
been neglected; hence state changes are shown to coincide with clock edges. In this
example, the input sequence is 00101001, and X is assumed to change in the mid-
dle of the clock pulse. At any given time, the next state and Z output can be read from
the next state table. For example, at time ¢, State = S, and X = 0, so Next State = §
and Z = 0. At time ¢, following the rising edge of the clock, State = §; and X is still 0,
so Next State = §, and Z = 1. Then X changes to 1, and at time ¢, Next State = §, and
Z = 0. Note that there is a glitch (sometimes called a false output) at ¢,. The Z output

Clock
e e o O o R o O

Statesox 51X53X85X50X52X54X55
sate| S s K5 X s XXs
‘ []

36 Review of Logic Design Fundamentals

FIGURE 1-39:
Timing Diagram for
Figure 1-26

momentarily has an incorrect value at ¢, because the change in X is not exactly
synchronized with the active edge of the clock. The correct output sequence, as indi-
cated on the waveform,is 1 11000 1 1. Several glitches appear between the correct
outputs; however, these are of no consequence if Z is read at the right time. The glitch
in the next state at ¢, (S,) also does not cause a problem, because the next state has the
correct value at the active edge of the clock.

The timing waveforms derived from the circuit of Figure 1-26 are shown in
Figure 1-39. They are similar to the general timing waveforms given in Figure 1-38
except that State has been replaced with the states of the three flip-flops, and a
propagation delay of 10 ns has been assumed for each gate and flip-flop.

i Y s O o
o [1 1 [
@ [b
of [.]
2[1 111 Ja[]lo]la[1][z]

1.10.5 Synchronous Design

One of the most commonly used digital design techniques is synchronous design. In
this type of design, a clock is used to synchronize the operation of all flip-flops, reg-
isters, and counters in the system. Synchronous circuits are more reliable compared
to asynchronous circuits. In synchronous circuits, events are expected to occur
immediately following the active edge of the clock. Outputs from one part have a
full clock cycle to propagate to the next part of the circuit. Synchronous design phi-
losophy makes design and debugging easier compared to asynchronous techniques.

Figure 1-40 illustrates a synchronous digital system. Assume that the system is
built from several modules or devices. The devices could be flip-flops, registers,
counters, adders, multipliers, and so on. All of the sequential devices are synchro-
nized with respect to the same clock in a synchronous system. A traditional way to
view a digital system is to consider it as a control section plus a data section. The var-
ious devices shown in Figure 1-40 are part of the data section. The control section is
a sequential machine that generates control signals to control the operation of the
data section. For example, if the data section contains a shift register, the control
section may generate signals that determine when the register is to be loaded (Ld)
and when it is to be shifted (S/). A common clock synchronizes the operation of the
control and data sections. The data section may generate status signals (not shown
in this figure) that affect the control sequence. For example, if a data operation
produces an arithmetic overflow, then the data section might generate a condition

FIGURE 1-40:
A Synchronous
Digital System

FIGURE 1-41:
Timing Chart for
System with
Falling-Edge
Devices

1.10 Sequential Circuit Timing 37

CLOCK

L— L .

Device Device Device
1 5 « s x o oaa n

Control
unit i f

Control signals

signal V to indicate an overflow. The control section is also called controller and the
data section is often called architecture or data path.

In a synchronous digital system, we desire to see all changes happen immediately
at the active edge of the clock, but that might not happen in a practical circuit.
Modern integrated circuits (ICs) are fabricated at feature sizes such as or smaller
than 0.1 microns. Modern microprocessors are clocked at several gigahertz. In these
chips, wire delays are significant compared to the clock period. Even if two flip-flops
are connected to the same clock, the clock edge might arrive at the two flip-flops at
different times due to unequal wire delays. If unequal amounts of combinational cir-
cuitry (e.g., buffers or inverters) are used in the clock path to different devices, that
also could result in unequal delays, making the clock reach different devices at
slightly different times. This problem is called clock skew.

There are also problems that occur due to glitches in control signals. Consider
Figure 1-41, which illustrates the operation of a digital system that uses devices that
change state on the falling edge of the clock. Several flip-flops may change state in
response to this falling edge. The time at which each flip-flop changes state is deter-
mined by the propagation delay for that flip-flop. The changes in flip-flop states
in the control section will propagate through the combinational circuit that gener-
ates the control signals, and some of the control signals may change as a result. The
exact times at which the control signals change depend on the propagation delays in
the gate circuits that generate the signals as well as the flip-flop delays. Thus, after

State change initiated here

-

Clock-CS 4|—|

Clock
Uncertain
| | T~ | |
Switching | |_| | |_| | |_|
transients | | | | | |
Control | | | |
signal (CS) '
gnal (CS) | | | | | |_|
I I I I
I

38 Review of Logic Design Fundamentals

FIGURE 1-42:
Techniques to
Synchronize
Control Signals

FIGURE 1-43:
Examples of
Circuits to Avoid

the falling edge of the clock, there is a period of uncertainty during which control
signals may change. Glitches and spikes may occur in the control signals due to haz-
ards. Furthermore, when signals are changing in one part of the circuit, noise may be
induced in another part of the circuit. As indicated by the shading in Figure 1-41,
there is a time interval after each falling edge of the clock in which there may be
noise in a control signal (CS), and the exact time at which the control signal changes
is not known.

If we want a device in the data section to change state on the falling edge of the
clock only if the control signal CS = 1, we can AND the clock with CS, as shown in
Figure 1-42(a). This technique is called clock gating. The transitions will occur in
synchronization with the clock CLK except for a small delay in the AND gate. The
gated CLK signal is clean because the clock is 0 during the time interval in which
the switching transients occur in CS.

Gating the clock with the control signal, as illustrated in Figure 1-42(a), can
solve some synchronization problems. However, clock gating can also lead to
clock skew and additional timing problems in high-speed circuits. Instead of gat-
ing the clock with the control signal, it is more desirable to use devices with clock
enable (CE) pins and feed the control signal to the enable pin, as illustrated in
Figure 1-42(b). Many registers, counters, and other devices used in synchronous
systems have an enable input. When enable = 1, the device changes state in
response to the clock, and when enable = 0, no state change occurs. Use of the
enable input eliminates the need for a gate on the clock input, and associated tim-
ing problems are avoided.

CS ——Enabl
Clock = nevie
cs >CK
CLK Clock —d>CK
(a) Control signal gating (b) Use of aclock enable (CE)

input to synchronize

We discourage designers from gating clocks or feeding the output of combina-
tional circuits to clock inputs. While clock skew from wire delays is unavoidable to
some extent, clock skew due to combinational circuitry in the clock path can easily
be avoided. Circuits as in Figure 1-43 should be avoided as much as possible to min-
imize timing problems.

DFF cs DFF

a9 :l:D_c o —

CLK

FIGURE 1-44: A
Circuit with Clock
Skew

FIGURE 1-45:
Timing Chart for
System with Rising-
Edge Devices

1.10 Sequential Circuit Timing 39

Due to wire delays or other unforeseen problems, at times we end up with cir-
cuits where the clock edge reaches different flip-flops at different times. Consider
the circuit in Figure 1-44, where the clock reaches the two flip-flops at slightly dif-
ferent times. Proper synchronous operation means that both flip-flops operate as if
they receive the same clock. Despite the delay in the clock to the second flip-flop,
its state change must be triggered before the new value of Q| reaches D,. The max-
imum clock frequency for synchronous operation should be decided considering the
delay between the clocks as well.

x————)J@> P o D,

T>CK S oK Q;

Clock

If devices do not have enables and synchronous operation cannot be obtained
without clock gating, we should pay attention to gate the clocks correctly. A device
with negative edge triggering can be made to function correctly by ANDing the
clock signal with the control signal, as in Figure 1-42(a). In the following paragraphs,
we describe issues associated with control signal gating for positive edge triggered
devices.

Figure 1-45 illustrates the operation of a digital system that uses devices that
change state on the rising edge of the clock. In this case, the switching transients that
result in noise and uncertainty will occur following the rising edge of the clock. The
shading indicates the time interval in which the control signal CS may be noisy. If
we want a device to change state on the rising edge of the clock when CS = 1, tran-
sition is expected at (a) and (c), but no change is expected at (b) since CS = 0 when
the clock edge arrives. In order to create a gated control signal, it is tempting to

State change initiated here

.

3,\1- h | | |
e G| o] o
Control 1 1 1
signal (CS) | L] L
CLK1= | | |
Clock-CS [] L | L L
cs Ll []
CLK2= ‘ ‘

|
|
Clock+CS

!

40 Review of Logic Design Fundamentals

FIGURE 1-46:
Incorrect Clock
Gating for
Rising-Edge
Devices

FIGURE 1-47:
Correct Control
Signal Gating for
Rising-Edge Device

AND the clock with CS, as shown in Figure 1-46(a). The resulting signal, which goes
to the CK input of the device, may be noisy and timed incorrectly. In particular, the
CLKI pulse at (a) will be short and noisy. It may be too short to trigger the device,
or it may be noisy and trigger the device more than once. In general, it will be out
of synchronization with the clock, because the control signal does not change until
after some of the flip-flops in the control circuit have changed state. The rising edge
of the pulse at (b) again will be out of synch with the clock, and it may be noisy. But
even worse, the device will trigger near point (b) when it should not trigger there at
all. Since CS = 0 at the time of the rising edge of the clock, triggering should not
occur until the next rising edge, when CS = 1.

Clock —] oK Clock -
CS:| > CLK1 ™~ Rising-edge CS:D—‘ CK

device

(a) With AND gate (b) With NAND gate

For a rising-edge device, if we changed the AND gate in Figure 1-42 to NAND gate
as in Figure 1-46(b), it would be incorrect because the synchronization will happen at
the wrong edge. The correct way to gate the control signal will be as in Figure 1-47,
which will result in the CK input to the device having a positive edge only when the
control signal is positive and clock is going to have a positive edge. The CK input is then

CLK2 = (CS - clock') = CS' + clock

The last waveform in Figure 1-45 illustrates this gated control signal. While this
circuit can solve the synchronization problem, we encourage designers to refrain
from gating clocks at all if possible.

Clock I
cs CK
CLK2

In summary, synchronous design is based on the following principles:

e Method: All clock inputs to flip-flops, registers, counters, and so on are driven
directly from the system clock.

All state changes occur immediately following the active edge of
the clock signal.

All switching transients, switching noise, and so on occur between

clock pulses and have no effect on system performance.

e Result:

e Advantage:

Asynchronous design is generally more difficult than synchronous design.
Since there is no clock to synchronize the state changes, problems may arise when
several state variables must change at the same time. A race occurs if the final

1.1

FIGURE 1-48: Four
Kinds of Tristate
Buffers

1.11 Tristate Logic and Busses 41

state depends on the order in which the variables change. Asynchronous design
requires special techniques to eliminate problems with races and hazards. On the
other hand, synchronous design has several disadvantages: In high-speed circuits
where the propagation delay in the wiring is significant, the clock signal must
be carefully routed so that it reaches all the clock inputs at essentially the same
time (i.e., to minimize clock skew). The maximum clock rate is determined by the
worst-case delay of the longest path. The system inputs may not be synchronized
with the clock, so use of synchronizers may be required. Synchronous systems also
consume more power than asynchronous systems. The clock distribution circuitry
in synchronous chips often consumes a significant fraction of the chip power.

000000000 00
Tristate Logic and Busses

Normally, if we connect the outputs of two gates or flip-flops together, the circuit will
not operate properly. It can also cause damage to the circuit. Hence, when we need to
connect multiple gate outputs to the same wire or channel, one way to do that is by using
tristate buffers. Tristate buffers are gates with a high impedance state (hi-Z) in addition
to high and low logic states. The high impedance state is equivalent to an open circuit.
In digital systems, transferring data back and forth between several system components
is often necessary. Tristate busses can be used to facilitate data transfers between regis-
ters. When several gates are connected onto a wire, what we expect is that at any one
point, one of the gates is going to actually drive the wire, and the other gates should
behave as if they are not connected to the wire. The high impedance state achieves this.

Tristate buffers can be inverting or non-inverting. The control input can be
active high or active low. Figure 1-48 shows four kinds of tristate buffers. B is the
control input used to enable or disable the buffer output. When a buffer is enabled,
the output (C) is equal to the input (A) or its complement. However, we can con-
nect two tristate buffer outputs, provided that only one output is enabled at a time.

B B B B
A Sc afboc a]S c a]%0c
B A|] C BA|] C B A|] C B A|] C
00[H-Z O0O0[H-Z 00| O 00| 1
0 1|H-Z 0 1|H-Zz 01| 1 01| 0
10| 0 10| 1 1 0|H-Zz 1 0|Hi-Z
111 1 11] 0 1 1|Hi-z 1 1|Hi-z
€Y (b) (© (d)

Figure 1-49 shows a system with three registers connected to a tristate bus.
Each register is 8 bits wide, and the bus consists of 8 wires connected in parallel.
Each tristate buffer symbol in the figure represents 8 buffers operating in parallel

42 Review of Logic Design Fundamentals

FIGURE 1-49: Data
Transfer Using
Tristate Bus

1.1

1.2

1.3

1.4

with a common enable input. Only one group of buffers is enabled at a time. For
example, if Enb = 1, the register B output is driven onto the bus. The data on the
bus is routed to the inputs of register A, register B, and register C. However, data
is loaded into a register only when its load input is 1 and the register is clocked.
Thus, if Enb = Ldc = 1, the data in register B will be copied into register C when
the active edge of the clock occurs. If Eni = Lda = Ldb = 1, the input data will be
loaded in registers A and B when the registers are clocked.

Eni
Input_[$ 8 Tristate bus
data
Ena 8 Enb 8 Enc 8
Lda— Reg A Ldb— Reg.B Ldc— Reg.C
Clock

Problems

Write out the truth table for the following equation.
F=A®B)-C+A" - (B"® O

A full subtracter computes the difference of three inputs X, Y, and B, , where Diff =
X-Y-B,.When X < (Y + B,), the borrow output B_ is set. Fill in the truth table
for the subtracter and derive the sum-of-products and product-of-sums equations for
Diff and B,

Simplify Z using a four-variable map with map-entered variables. ABCD represents
the state of a control circuit. Assume that the circuit can never be in state 0100, 0001,
or 1001.

Z=BC'DE + ACDF’'+ ABCD'F'+ ABC'D'G + B'CD + ABC'D'H’

For the following functions, find the minimum sum of products using four-variable

maps with map-entered variables. In (a) and (b), m, represents a minterm of vari-
ables A, B, C,and D.

(@) F(A,B,C,D,E) =32m(0,4,6,13,14) + 2d(2,9) + E(m, + m,,)

(b) Z(A,B,C,D,E,F,G) =2m(2,5,6,9) + 2d(1,3,4,13,14) + E(m,, + m,,)
+ F(m,,) + G(m,)

(¢ H=A'B'CDF’'+ A'CD + A'B'CD'E + BCDF’

(d) G=C'E'F+ DEF+ AD'E’F’'+ BC'E’F + AD'EF’

Hint: Which variables should be used for the map sides and which variables should
be entered into the map?

15

1.6

1.7

1.8

Problems 43

Identify the static 1-hazards in the following circuit. State the condition under which
each hazard can occur. Draw a timing diagram (similar to Figure 1-10(b)) that
shows the sequence of events when a hazard occurs.

A’ G
C
=
(o4 H
D"

Find all of the 1-hazards in the given circuit. Indicate what changes are necessary to
eliminate the hazards.

b —]
¢ —

D=

wifw

(a) Find all the static hazards in the following circuit. For each hazard, specify the
values of the input variables and which variable is changing when the hazard
occurs. For one of the hazards, specify the order in which the gate outputs must
change.

o 0 0 oW

o

(b) Design a NAND-gate circuit that is free of static hazards to realize the same
function.

(a) Find all the static hazards in the following circuit. State the condition under
which each hazard can occur.

(b) Redesign the circuit so that it is free of static hazards. Use gates with at most
three inputs.

44 Review of Logic Design Fundamentals

1.9

1.10

1.12

(a) Show how you can construct a T flip-flop using a J-K flip-flop.
(b) Show how you can construct a J-K flip-flop using a D flip-flop and gates.

Construct a clocked D flip-flop, triggered on the rising edge of CLK, using two
transparent D latches and any necessary gates. Complete the following timing dia-
gram, where Q| and Q, are latch outputs. Verify that the flip-flop output changes to
D after the rising edge of the clock.

1 []

CLK

_i

Q

Q,

A synchronous sequential circuit has one input and one output. If the input
sequence 0101 or 0110 occurs, an output of two successive 1’s will occur. The first of
these 1’s should occur coincident with the last input of the 0101 or 0110 sequence.
The circuit should reset when the second 1 output occurs. For example,

inputsequence: X=010011101010101101...
output sequence: Z=000000000011000011...

(a) Derive a Mealy state graph and table with a minimum number of states
(six states).

(b) Try to choose a good state assignment. Realize the circuit using J-K flip-flops
and NAND gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to
find the NAND solution for two other state assignments.

A sequential circuit has one input (X) and two outputs (Z, and Z,). An output Z, = 1
occurs every time the input sequence 010 is completed provided that the sequence 100
has never occurred. An output Z, =1 occurs every time the input sequence 100 is
completed. Note that once a Z, = 1 output has occurred, Z, = 1 can never occur, but
not vice versa.

(a) Derive a Mealy state graph and table with a minimum number of states
(eight states).

(b) Try to choose a good state assignment. Realize the circuit using J-K flip-flops
and NAND gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to
find the NAND solution for two other state assignments.

1.13

1.16

Problems 45

A sequential circuit has one input (X) and two outputs (S and V). X represents a
4-bit binary number N, which is input least significant bit first. S represents a 4-bit
binary number equal to N + 2, which is output least significant bit first. At the
time the fourth input occurs, V = 1if N + 2 is too large to be represented by 4 bits;
otherwise, V' = 0. The value of S should be the proper value, not a don’t care, in
both cases. The circuit always resets after the fourth bit of X is received.

(a) Derive a Mealy state graph and table with a minimum number of states
(six states).

(b) Try to choose a good state assignment. Realize the circuit using D flip-flops and
NAND gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to
find the NAND solution for two other state assignments.

A sequential circuit has one input (X) and two outputs (D and B). X represents a
4-bit binary number N, which is input least significant bit first. D represents a 4-bit
binary number equal to N — 2, which is output least significant bit first. At the time
the fourth input occurs, B =1 if N — 2 is negative; otherwise, B = 0. The circuit
always resets after the fourth bit of X is received.

(a) Derive a Mealy state graph and table with a minimum number of states
(six states).

(b) Try to choose a good state assignment. Realize the circuit using J-K flip-flops
and NAND gates. Repeat using NOR gates. (Work this part by hand.)

(¢) Check your answer to (b) using the LogicAid program. Also use the program to
find the NAND solution for two other state assignments.

A Moore sequential circuit has one input and one output. The output goes to 1 when
the input sequence 111 has occurred and the output goes to 0 if the input sequence
000 occurs. At all other times, the output holds its value.

Example:

X=01011101000111001000
Z=000000111110001111110

Derive a Moore state graph and table for the circuit.

Derive the state transition table and flip-flop input equations for a modulo-6 counter
that counts 000 through 101 and then repeats. Use J-K flip-flops.

Derive the state transition table and D flip-flop input equations for a counter that
counts from 1 to 6 and then repeats.

46 Review of Logic Design Fundamentals

1.18 Reduce the following state table to a minimum number of states.

Present Next State Output
State X=0 X=1|X=0 X=1
A B G 0 1
B A D 1 1
C F G 0 1
D H A 0 0
E G C 0 0
F C D 1 1
G G E 0 0
H G D 0 0

1.19 A Mealy sequential circuit is implemented using the circuit shown in Figure 1-44.

1.20

Assume that if the input X changes, it changes at the same time as the falling edge
of the clock.

(a) Complete the timing diagram below. Indicate the proper times to read the
output (Z). Assume that “delay” is 0 ns and that the propagation delay for
the flip-flop and XOR gate has a nominal value of 10 ns. The clock period is
100 ns.

(b) Assume the following delays: XOR gate—10 to 20 ns, flip-flop propagation
delay—S5 to 10 ns, setup time—>5 ns, and hold time—2 ns. Also assume that the
“delay” is O ns. Determine the maximum clock rate for proper synchronous
operation. Consider both the feedback path that includes the flip-flop propaga-
tion delay and the path starting when X changes.

(¢) Assume a clock period of 100 ns. Also assume the same timing parameters as in
(b). What is the maximum value that “delay” can have and still achieve proper
synchronous operation? That is, the state sequence must be the same as for no
delay.

Two flip-flops are connected as shown below. The delay represents wiring delay
between the two clock inputs, which results in clock skew. This can cause possible
loss of synchronization. The flip-flop propagation delay from clock to Q is 10 ns <
1, < 15 ns; the setup and hold times are 4 ns and 2 ns, respectively.

Problems 47

(a) What is the maximum value that the delay can have and still achieve proper
synchronous operation? Draw a timing diagram to justify your answer.

—1D1 & Dy Q—
FFL FF2
Ok ——> >

Delay

(b) Assuming that the delay is < 3 ns, what is the minimum allowable clock period?

1.21 A D flip-flop has a propagation delay from clock to Q of 7 ns. The setup time of the
flip-flop is 10 ns and the hold time is 5 ns. A clock with a period of 50 ns (low until
25 ns, high from 25 to 50 ns, and so on) is fed to the clock input of the flip-flop.
Assume a two-level AND-OR circuitry between the external input signals and the
flip-flop inputs. Assume gate delays are between 2 and 4 ns. The flip-flop is positive
edge triggered.

(a) Assume the D input equals 0 from ¢ =0 until # = 10 ns, 1 from 10 until 35,
0 from 35 to 70, and 1 thereafter. Draw timing diagrams illustrating the clock,
D, and Q until 100 ns. If outputs cannot be determined (because of not satisfying
setup and hold times), indicate this by XX in the region.

(b) The D input of the flip-flop should not change between __ ns before the clock
edge and __ ns after the clock edge.

(¢) External inputs should not change between __ ns before the clock edge and __ ns
after the clock edge.

1.22 A sequential circuit consists of a PLA and a D flip-flop, as shown.

X [1z
PLA Qlo1 o1
D 0{01 |01
100 (10
Clk

iS)
ll
Q
N

Clk

N— + — — - — — —|—

ns
.20 40 60 80 1

48 Review of Logic Design Fundamentals

1.23

1.24

1.25

(a) Complete the timing diagram, assuming that the propagation delay for the PLA
is in the range 5 to 10 ns, and the propagation delay from clock to output of the
D flip-flop is 5 to 10 ns. Use cross-hatching on your timing diagram to indicate
the intervals in which Q and Z can change, taking the range of propagation
delays into account.

(b) Assuming that X always changes at the same time as the falling edge of the
clock, what is the maximum setup and hold time specification that the flip-flop
can have and still maintain proper operation of the circuit?

A D flip-flop has a propagation delay from clock to Q of 15 ns. The setup time of
the flip-flop is 10 ns and the hold time is 2 ns. A clock with a period of 50 ns (low
until 25 ns, high from 25 to 50 ns, and so on) is fed to the clock input of the flip-flop.
The flip-flop is positive edge triggered. D goes up at 20, down at 40, up at 60, down
at 80, and so on. Draw timing diagrams illustrating the clock, D, and Q until 100 ns.
If outputs cannot be determined (because of not satisfying setup and hold times),
indicate it by placing XX in that region.

A D flip-flop has a setup time of 5 ns, a hold time of 3 ns, and a propagation delay
from the rising edge of the clock to the change in flip-flop output in the range of 6 to
12 ns. An OR gate delay is in the range of 1 to 4 ns.

(a) What is the minimum clock period for proper operation of the following circuit?

>

Clk——mmp

(b) What is the earliest time after the rising clock edge that X is allowed to change?
(¢) Show how you can construct a T flip-flop using a J-K flip-flop using a block dia-
gram. Circuits inside the flip-flops are NOT to be shown.

In the following circuit, the XOR gate has a delay in the range of 2 to 16 ns. The
D flip-flop has a propagation delay from clock to Q in the range 12 to 24 ns. The setup
time is 8 ns, and the hold time is 4 ns.

x50 QJ

Ok >

(a) What is the minimum clock period for proper operation of the circuit?

(b) What are the earliest and latest times after the rising clock edge that X is
allowed to change and still have proper synchronous operation? (Assume min-
imum clock period from (a).)

Problems 49

1.26 A Mealy sequential machine has the following state table:

NS Z
PS|X=0 X=1|X=0 X=1
1 2 3 0 1
2 3 1 1 0
3 2 2 1 0

Complete the following timing diagram. Clearly mark on the diagram the times
at which you should read the values of Z. All state changes occur after the rising
edge of the clock.

oK I

PS [1

NS

1.27 (a) Do the following two circuits have essentially the same timing?
(b) Draw the timing for QO and Q, given the timing diagram.
(¢) If your answer to (a) is no, show what change(s) should be made in the second
circuit so that the two circuits have essentially the same timing (do not change

the flip-flop).

D D Q D——D Q[—
CLK —p CLK L
EN —— EN EN
CLK [I [I [I [I
EN 1 1
D I

1.28 A simple binary counter has only a clock input (CK7). The counter increments on
the rising edge of CK1.

(a) Show the proper connections for a signal En and the system clock (CLK), so
that when En = 1, the counter increments on the rising edge of CLK and when
En = 0, the counter does not change state.

50 Review of Logic Design Fundamentals

(b) Complete the following timing diagram. Explain, in terms of your diagram, why
the switching transients that occur on En after the rising edge of CLK do not
affect the proper operation of the counter.

oLk I
En § § §

Ck1

Counter
state

1.29 Referring to Figure 1-49, specify the values of Eni, Ena, Enb, Enc, Lda, Ldb, and
Ldc so that the data stored in Reg. C will be copied into Reg. A and Reg. B when
the circuit is clocked.

2.1

Introduction to VHDL

As integrated circuit technology has improved to allow more and more components
on a chip, digital systems have continued to grow in complexity. While putting a few
transistors on an integrated circuit (IC) was a miracle when it happened, technology
improvements have advanced the VLSI (very large scale integration) field con-
tinually. The early integrated circuits belonged to SSI (small scale integration), MSI
(medium scale integration), or LSI (large scale integration) categories depending on
the density of integration. SSI referred to ICs with 1 to 20 gates, MSI referred to ICs
with 20 to 200 gates, and LSI referred to devices with 200 to a few thousand gates.
Many popular building blocks, such as adders, multiplexers, decoders, registers, and
counters, are available as MSI standard parts. When the term VLSI was coined,
devices with 10,000 gates were called VLSI chips. The boundaries between the dif-
ferent categories are fuzzy today. Many modern microprocessors contain more than
100 million transistors. Compared to what was referred to as VLSI in its initial days,
modern integration capability could be described as ULSI (ultra large scale integra-
tion). Despite the changes in integration ability and the fuzzy definition, the term
VLSI remains popular, while terms like LSI are not practically used any more.

As digital systems have become more complex, detailed design of the systems at
the gate and flip-flop level has become very tedious and time-consuming. Two or
three decades ago, digital systems were created using hand-drawn schematics,
bread-boards, and wires that were connected to the bread-board. Now, hardware
design often involves no hands-on tasks with bread-boards and wires.

In this chapter, first we present an introduction to computer-aided design. Then
we present an introduction to hardware description languages. Basic features of
VHDL are presented and examples are presented to illustrate how digital hardware
is described, simulated, and synthesized using VHDL. Advanced features of VHDL
are presented in Chapter 8.

Computer-Aided Design

Computer-aided design (CAD) tools have advanced significantly in the past decade,
and nowadays, digital design is performed using a variety of software tools.
Prototypes or even final designs can be created without discrete components and
interconnection wires.

51

52 Introduction to VHDL

FIGURE 2-1: Design
Flow in Modern
Digital System
Design

Figure 2-1 illustrates the steps in modern digital system design. Like any engi-
neering design, the first step in the design flow is formulating the problem, stating
the design requirements and arriving at the design specification. The next step is to
formulate the design at a conceptual level, either at a block diagram level or at an
algorithmic level.

Reguirements

v

Design specifications

v

Design formulation

v

Design entry
VHDL, Verilog, schematic capture

Simulation
|
A 4
Logic synthesis
|
v
Post synthesis simulation

T
v

Mapping, placement, routing
v

v

FPGA programming unit
v v

ASIC masks Configured FPGAs

Design entry is the next step in the design flow. In olden days, this would have
been a hand-drawn schematic or blueprint. Now with CAD tools, the design con-
ceptualized in the previous step needs to be entered into the CAD system in an
appropriate manner. Designs can be entered in multiple forms. A few years ago,
CAD tools used to provide a graphical method to enter designs. This was called
schematic capture. The schematic editors typically were supplemented with a library
of standard digital building blocks like gates, flip-flops, multiplexers, decoders, coun-
ters, registers, and so on. ORCAD (a company that produced design automation
tools) provided a very popular schematic editor. Nowadays, hardware description
languages (HDLs) are used to enter designs. Two popular HDLs are VHDL and
Verilog. The acronym VHDL stands for VHSIC hardware description language,
and VHSIC in turn stands for very high speed integrated circuit.

2.1 Computer-Aided Design 53

A hardware description language allows a digital system to be designed and
debugged at a higher level of abstraction than schematic capture with gates, flip-
flops, and standard MSI building blocks. The details of the gates and flip-flops do not
need to be handled during early phases of design. A design can be entered in what
is called a behavioral description of the design. In a behavioral HDL description,
one only specifies the general working of the design at a flow-chart or algorithmic
level without associating to any specific physical parts, components, or implementa-
tions. Another method to enter a design in VHDL and Verilog is the structural
description entry. In structural design, specific components or specific implementa-
tions of components are associated with the design. A structural VHDL or Verilog
model of a design can be considered as a textual description of a schematic diagram
that you would have drawn interconnecting specific gates and flip-flops.

Once the design has been entered, it is important to simulate it to confirm that
the conceptualized design does function correctly. Initially, one should perform the
simulation at the high-level behavioral model. This early simulation unveils prob-
lems in the initial design. If problems are discovered, the designer goes back and
alters the design to meet the requirements.

Once the functionality of the design has been verified through simulation, the next
step is synthesis. Synthesis means “conversion of the higher-level abstract description
of the design to actual components at the gate and flip-flop level.” Use of computer-
aided design tools to do this conversion (a.k.a. synthesis) is becoming widespread. The
output of the synthesis tool, consisting of a list of gates and a list of interconnections
specifying how to interconnect them, is often referred to as a netlist. Synthesis is anal-
ogous to writing software programs in a high-level language such as C and then using
a compiler to convert the programs to machine language. Just like a C compiler
can generate optimized or unoptimized machine code, a synthesis tool can generate
optimized or unoptimized hardware. The synthesis software generates different hard-
ware implementations depending on algorithms embedded in the software to perform
the translation and optimization techniques incorporated into the tool. A synthesis
tool is nothing but a compiler to convert design descriptions to hardware, and it is not
unusual to name synthesis packages with phrases similar to design compiler, silicon
compiler, and so on.

The next step in the design flow is post-synthesis simulation. The earlier simulation
at a higher level of abstraction does not take into account specific implementations of
the hardware components that the design is using. If post-synthesis simulation unveils
problems, one should go back and modify the design to meet timing requirements.
Arriving at a proper design implementation is an iterative process.

Next, a designer moves into specific realizations of the design. A design can be
implemented in several different target technologies. It could be a completely cus-
tom IC or it could be implemented in a standard part that is easily available from a
vendor. The target technologies that are commonly available now are illustrated in
Figure 2-2.

At the lowest level of sophistication and density is an old-fashioned printed
circuit board with off-the-shelf gates, flip-flops, and other standard logic building
blocks. Slightly higher in density are programmable logic arrays (PLAs), program-
mable array logic (PAL), and simple programmable logic devices (SPLDs). PLDs

54 Introduction to VHDL

FIGURE 2-2:

Spectrum of Design

Technologies

2.2

A
Mask
programmable gate
g arrays (MPGAS)
& Field
g programmable gate
@ arrays (FPGAS)
£
5 Complex PLDS
g (CPLDs)
J2
@)
PALs, PLAs, PLDs
Off-the-shelf gates,
flip-flops, and standard
Wel ements

A
>

Density and degree of customization

with higher density and gate count are called complex programmable logic devices
(CPLDs). Then there are the popular field programmable gate arrays (FPGAs)
and mask programmable gate arrays (MPGAs), or simply gate arrays. The highest
level of density and performance is a fully custom application-specific integrated
circuit (ASIC).

Two most common target technologies nowadays are FPGAs and ASICs. The
initial steps in the design flow are largely the same for either realization. Toward
the final stages in the design flow, different operations are performed depending on the
target technology. This is indicated in Figure 2-1. The design is mapped into specific tar-
get technology and placed into specific parts in the target ASIC or FPGA. The paths
taken by the connections between components are decided during the routing. If an
ASIC is being designed, the routed design is used to generate a photomask that will be
used in the IC manufacturing process. If a design is to be implemented in an FPGA,
the design is translated to a format specifying what is to be done to various program-
mable points in the FPGA. In modern FPGAs, programming simply involves writing a
sequence of 0’s and 1’s into the programmable cells in the FPGA, and no specific
programming unit other than a personal computer (PC) is required.

Hardware Description Languages

Hardware description languages (HDLs) are a popular mode of design entry. As
mentioned previously, two popular HDLs are VHDL and Verilog. This book uses
VHDL for illustrating principles of modern digital system design.

2.2 Hardware Description Languages 55

VHDL is a hardware description language used to describe the behavior and
structure of digital systems. VHDL is a general-purpose HDL that can be used to
describe and simulate the operation of a wide variety of digital systems, ranging in
complexity from a few gates to an interconnection of many complex integrated
circuits. VHDL was originally developed under funding from the Department of
Defense (DoD) to allow a uniform method for specifying digital systems. When
VHDL was developed, the main purpose was to have a mechanism to describe
and document hardware unambiguously. Synthesizing hardware from high-level
descriptions was not one of the original purposes. The VHDL language has since
become an IEEE (Institute of Electronic and Electrical Engineers) standard, and it is
widely used in industry. IEEE created a VHDL standard in 1987 (VHDL-87) and
later modified the standard in 1993 (VHDL-93). Further revisions were done to the
standard in 2000 and 2002.

VHDL can describe a digital system at several different levels—behavioral, data
flow, and structural. For example, a binary adder could be described at the behav-
ioral level in terms of its function of adding two binary numbers without giving any
implementation details. The same adder could be described at the data flow level by
giving the logic equations for the adder. Finally, the adder could be described at the
structural level by specifying the gates and the interconnections between the gates
that comprise the adder.

VHDL leads naturally to a top-down design methodology, in which the system is
first specified at a high level and tested using a simulator. After the system is
debugged at this level, the design can gradually be refined, eventually leading to a
structural description closely related to the actual hardware implementation. VHDL
was designed to be technology independent. If a design is described in VHDL and
implemented in today’s technology, the same VHDL description could be used as a
starting point for a design in some future technology. Although initially conceived as
a hardware documentation language, most of VHDL can now be used for simulation
and logic synthesis.

Verilog is another popular HDL. It was developed by the industry at about
the same time the U.S. DoD was funding the creation of VHDL. Verilog was
introduced by Gateway Design Automation in 1984 as a proprietary HDL.
Synopsis created synthesis tools for Verilog around 1988. Verilog became an
IEEE standard in 1995.

VHDL has its syntactic roots in ADA while Verilog has its syntactic roots in C.
ADA was a general-purpose programming language, also sponsored by the
Department of Defense. Due to the similarity with C, some find Verilog easier or less
intimidating to learn. Many find VHDL to be excellent for supporting design and doc-
umentation of large systems. VHDL and Verilog enjoy approximately 50/50 market
share. Both languages can accomplish most requirements for digital design rather eas-
ily. Often design companies continue to use what they are used to, and hence, Verilog
users continue to use Verilog and VHDL users continue to use VHDL. If you know
one of these languages, it is not difficult to transition to the other.

More recently, there also have been efforts in system design languages such as
System C, Handel-C, and System Verilog. System C is created as an extension to
C++, and hence some who are very comfortable with general-purpose software

56 Introduction to VHDL

development find it less intimidating. These languages are primarily targeted at
describing large digital systems at a high level of abstraction. They are primarily
used for verification and validation. When different parts of a large system are
designed by different teams, one team can use a system level behavioral description
of the block being designed by the other team during initial design. Problems that
might otherwise become obvious only during system integration may become evi-
dent in early stages reducing the design cycle for large systems. System-level simu-
lation languages are used during design of large systems.

2.2.1 Learning a Language

There are several challenges when you learn a new language, whether it be a lan-
guage for common communication (English, Spanish, French, etc.), a computer
language like C, or a special-purpose language such as VHDL. If it is not your first
language, you typically have a tendency to compare it to a language you know. In
the case of VHDL, if you already know another hardware description language, it is
good to compare it with VHDL, but you should be careful when comparing it with
languages like C. VHDL and Verilog have a very different purpose than languages
like C, and a comparison with C is not a meaningful activity. We will be describing
the language assuming it is your first HDL; however, we will assume basic knowl-
edge of computer languages like C and the basic compilation and execution flow.

When one learns a new language, one needs to study the alphabet of the new lan-
guage, its vocabulary, grammar, syntax rules, and semantics of language descriptions.
The process of learning VHDL is not much different. One needs to learn the alpha-
bet, vocabulary or lexical elements of the language, syntax (grammar and rules), and
semantics (meaning of descriptions). VHDL-87 uses the ASCII character set while
VHDL-93 allows use of the full ISO character set. The ISO character set includes the
ASCII characters and additionally includes accented characters. The ASCII charac-
ter set only includes the first 128 characters of the ISO character set. The lexical
elements of the language include various identifiers, reserved words, special symbols,
and literals. We have listed these in Appendix A. The syntax or grammar determines
what combinations of lexical elements can be combined to make valid VHDL
descriptions. These are the rules that govern the use of different VHDL constructs.
Then one needs to understand the semantics or meaning of VHDL descriptions. It is
here that one understands what descriptions represent combinational hardware ver-
sus sequential hardware. And just like fluency in a natural language comes by speak-
ing, reading, and writing the language, mastery of VHDL comes by repeated use of
the language to create models for various digital systems.

Since VHDL is a hardware description language, it differs from an ordinary pro-
gramming language in several ways. Most importantly, VHDL has statements that
execute concurrently since they must model real hardware in which the components
are all in operation at the same time. VHDL is popularly used for the purposes of
describing, documenting, simulating, and automatically generating hardware. Hence,
its constructs are tailored for these purposes. We will present the various methods to
model different kinds of digital hardware using examples in the following sections.

2.3

2.3 VHDL Description of Combinational Circuits 57

Common Abbreviations

VHDL: VHSIC hardware description language
VHSIC: Very high speed integrated circuit
HDL: Hardware description language

CAD: Computer-aided design

EDA: Electronic design automation

LSIL: Large scale integration
MSI: Medium scale integration
SSI: Small scale integration

VLSI: Very large scale integration

ULSI: Ultra large scale integration

ASCII: American standard code for information exchange
ISO: International Standards Organization

ASIC: Application-specific integrated circuit

FPGA: Field programmable gate array

PLA: Programmable logic array

PAL: Programmable array logic

PLD: Programmable logic device

CPLD: Complex programmable logic device

VHDL Description of Combinational
Circuits

The biggest difficulty in modeling hardware using a general-purpose computer lan-
guage is representing concurrently operating hardware. Computer programs that
you are normally accustomed to are sequences of instructions with a well-defined
order. At any point of time during execution, the program is at a specific point in its
flow and it encounters and executes different parts of the program sequentially. In
order to model combinational circuits, which have several gates (all of which are
working simultaneously), one needs to be able to “simulate” the execution of sev-
eral parts of the circuit at the same time.

VHDL models combinational circuits by what are called concurrent statements.
Concurrent statements are statements which are always ready to execute. These are
statements which get evaluated any time and every time a signal on the right side of
the statement changes.

We will start by describing a simple gate circuit in VHDL. If each gate in the cir-
cuit of Figure 2-3 has a 5-ns propagation delay, the circuit can be described by two
VHDL statements as shown, where A, B, C, D, and E are signals. A signal in VHDL
usually corresponds to a signal in a physical system. The symbol “<="is the signal

58 Introduction to VHDL

FIGURE 2-3:
A Simple Gate
Circuit

A C
B D E C<=A and B after 5 ns;

E<=C or D after 5 ns;

assignment operator, which indicates that the value computed on the right side is
assigned to the signal on the left side. When the statements in Figure 2-3 are simu-
lated, the first statement will be evaluated anytime A or B changes, and the second
statement will be evaluated anytime C or D changes. Suppose that initially A =1
and B=C =D = E = 0.1If B changes to 1 at time 0, C will change to 1 at time = 5 ns.
Then E will change to 1 at time = 10 ns.

VHDL signal assignment statements, like the ones in the preceding example, are
examples of concurrent statements. The VHDL simulator monitors the right side of
each concurrent statement, and anytime a signal changes, the expression on the right
side is immediately re-evaluated. The new value is assigned to the signal on the left
side after an appropriate delay. This is exactly the way the hardware works. Anytime
a gate input changes, the gate output is recomputed by the hardware, and the out-
put changes after the gate delay. The location of the concurrent statement in the
program is not important.

When we initially describe a circuit, we may not be concerned about propaga-
tion delays. If we write

C <= A and B;
E <= C or D;

this implies that the propagation delays are 0 ns. In this case, the simulator will
assume an infinitesimal delay referred to as A (delta). Assume that initially A = 1
and B=C=D = E =0.1If Bis changed to 1 at time = 1 ns, then C will change at
time 1 + A and E will change at time 1 + 2A.

Unlike a sequential program, the order of the preceding concurrent statements
is unimportant. If we write

E <= C or D;
C <= A and B;

the simulation results would be exactly the same as before.
In general, a signal assignment statement has the form

signal_name <= expression [after delay];

The expression is evaluated when the statement is executed, and the signal on the
left side is scheduled to change after de1ay.The square brackets indicate that after
deTay is optional; they are not part of the statement. If after delay is omitted, then
the signal is scheduled to be updated after a delta delay. Note that the time at which
the statement executes and the time at which the signal is updated are not the same.

Even if a VHDL program has no explicit loops, concurrent statements may
execute repeatedly as if they were in a loop. Figure 2-4 shows an inverter with
the output connected back to the input. If the output is ‘0’, then this ‘0’ feeds back
to the input and the inverter output changes to ‘1’ after the inverter delay, assumed

FIGURE 2-4:
Inverter with
Feedback

2.3 VHDL Description of Combinational Circuits 59

CLK
CLK <= not CLK after 10 ns;

to be 10 ns. Then the ‘1’ feeds back to the input and the output changes to ‘0’ after
the inverter delay. The signal CLK will continue to oscillate between ‘0’ and ‘1’ as
shown in the waveform. The corresponding concurrent VHDL statement will
produce the same result. If CLK is initialized to ‘0’, the statement executes and CLK
changes to ‘1’ after 10 ns. Since CLK has changed, the statement executes again,
and CLK will change back to ‘0" after another 10 ns. This process will continue
indefinitely.

The statement in Figure 2-4 generates a clock waveform with a half period of 10 ns.
On the other hand, the concurrent statement

CLK <= not CLK;

will cause a run-time error during simulation. Since there is 0 delay, the value of
CLK will change at times 0 + A, 0 + 2A,0 + 3A, and so on. Since A is an infinitesi-
mal time, time will never advance to 1 ns.

In general, VHDL is not case sensitive; that is, uppercase and lowercase letters
are treated the same by the compiler and by the simulator. Thus, the statements

Clk <= NOT c1k After 10 ns;
and
CLK <= not CLK after 10 ns;

would be treated exactly the same. Signal names and other VHDL identifiers may
contain letters, numbers, and the underscore character (_). An identifier must start
with a letter, and it cannot end with an underscore. Thus C123 and ab_23 are legal
identifiers, but IABC and ABC_ are not. Every VHDL statement must be termi-
nated with a semicolon. Spaces, tabs, and carriage returns are treated in the same
way. This means that a VHDL statement can be continued over several lines, or
several statements can be placed on one line. In a line of VHDL code, anything fol-
lowing a double dash (--) is treated as a comment. Words such as and, or, and after
are reserved words (or keywords) which have a special meaning to the VHDL com-
piler. In this text, we will put all reserved words in boldface type.

Figure 2-5 shows three gates that have the signal A as a common input and the
corresponding VHDL code. The three concurrent statements execute simultaneously
whenever A changes, just as the three gates start processing the signal change at the
same time. However, if the gates have different delays, the gate outputs can change
at different times. If the gates have delays of 2 ns, 1 ns, and 3 ns, respectively, and
A changes at time 5 ns, then the gate outputs D, E, and F can change at times 7 ns, 6 ns,

60 Introduction to VHDL

FIGURE 2-5: Three
Gates with a
Common Input and
Different Delays

FIGURE 2-6: Array
of AND Gates

-- statements all execute at the
-- same time

D <= A and B after 2 ns;

E <= not A after 1 ns;

j>7': F <= A or C after 3 ns;
c

and 8 ns, respectively. The VHDL statements work in the same way. Even though
the statements execute simultaneously, the signals D, E, and F are updated at times
7 ns, 6 ns, and 8 ns. However, if no delays were specified, then D, E, and F would all be
updated at time 5 + A.

In the preceding examples, every signal is of type bit, which means it can have a
value of ‘0’ or ‘1”. (Bit values in VHDL are enclosed in single quotes to distinguish
them from integer values.)

In digital design, we often need to perform the same operation on a group of
signals. A one-dimensional array of bit signals is referred to as a bit-vector. If a
4-bit vector named B has an index range 0 through 3, then the four elements of the
bit-vector are designated B(0), B(1), B(2), and B(3). One can declare a bit-vector
using a statement such as:

B
_‘}D -- when A changes, these concurrent

B: 1in bit_vector(3 downto 0);

The statement B <= "1100" assigns ‘1’ to B(3), ‘1’ to B(2),‘0’ to B(1), and ‘0’ to B(0).

Figure 2-6 shows an array of four AND gates. The inputs are represented by bit-
vectors A and B, and the output by bit-vector C. Although we can write four VHDL
statements to represent the four gates, it is much more efficient to write a single
VHDL statement that performs the and operation on the bit-vectors A and B. When
applied to bit-vectors, the and operator performs the and operation on correspon-
ding pairs of elements.

AR) —]
B(3)—}C(3) -- the hard way

C(3) <= A(3) and B(3);

A2) — c@ C(2) <= A(2) and B(2);
B(Z)_} C(1) <= A(1) and B(1);

o C(0) <= A(0) and B(0);
A1)
B(D) —}C(l)

o0
B(0) — -- the easy way assuming C, A and
-- B are 4-bit bit-vectors

C <= A and B;

2.4

FIGURE 2-7: VHDL
Module with Two
Gates

FIGURE 2-8: Black
Box View of the
Two-Gate Module

2.4 VHDL Modules 61

VHDL Modules

The general structure of a VHDL module is an entity description and an architec-
ture description. The entity description declares the input and output signals, and
the architecture description specifies the internal operation of the module. As an
example, consider Figure 2-7. The entity declaration gives the name two_gates to the
module. The port declaration specifies the inputs and outputs to the module. A, B,
and D are input signals of type bit, and E is an output signal of type bit. The archi-
tecture is named gates. The signal C is declared within the architecture since it is an
internal signal. The two concurrent statements that describe the gates are placed
between the keywords begin and end.

A— c
B —| —
Di

entity two_gates is
port(A, B, D: 1in bit;
end two_gates;

E: out bit);

architecture gates of two_gates is
signal C: bit;

begin
C <= A and B; -- concurrent
E <= C or D; -- statements
end gates;

The entity description can be considered as the black box picture of the module
being designed and its external interface (i.e., it represents the interconnections
from this module to the external world, as in Figure 2-8).

A —>
B —»

D —»

Just as in the preceding simple example, when we describe a system in VHDL,
we must specify an entity and architecture at the top level and also specify an entity
and architecture for each of the component modules that are part of the system (see
Figure 2-9). Each entity declaration includes a list of interface signals that can
be used to connect to other modules or to the outside world. We will use entity dec-
larations of the form

entity entity-name 1is
[port(interface-signal-declaration);]
end [entity] [entity-name];

62 Introduction to VHDL

FIGURE 2-9: VHDL
Program Structure

The items enclosed in square brackets are optional. The interface-signal-
declaration normally has the following form:

Tist-of-interface-signals: mode type [:= initial-value]
{; list-of-interface-signals: mode type [:= initial-valuel};

The curly brackets indicate zero or more repetitions of the enclosed clause.
Mode indicates the direction of information; whether information is flowing into the
port or out of it. Input port signals are of mode in, output port signals are of mode
out, and bidirectional signals are of mode inout. Type specifies the data type or kind
of information that can be communicated. So far, we have only used type bit and bit-
vector; other types are described in Section 2.10. The optional initial-value is
used to initialize the signals on the associated list; otherwise, the default initial value
is used for the specified type. For example, the port declaration

port(A, B: 1in integer := 2; C, D: out bit);

indicates that A and B are input signals of type integer that are initially set to 2, and C
and D are output signals of type bit that are initialized by default to ‘0’. These initial
values are significant only for simulation and not for synthesis.

In addition to in, out and inout modes, there are two other modes: buffer and
linkage. The buffer mode is similar to inout mode, in that it can be read and writ-
ten into in the entity. The buffer mode is useful if a signal is truly an output, but we
would like to read the ports internally as well. A linkage port is useful when
VHDL entities are connected to non-VHDL entities. Both of these modes involve
several restrictions and we generally restrict ourselves to in, out and inout modes.

Entity
Architecture
Entity Entity Entity
Architecture| | Architecture Architecture
Module 1 Module 2 Module N

Associated with each entity is one or more architecture declarations of the form

architecture architecture-name of entity-name is
[declarations]

begin
architecture body

end [architecture] [architecture-name];

In the declarations section, we can declare signals and components that are
used within the architecture. The architecture body contains statements that describe
the operation of the module.

FIGURE 2-10: Entity
Declaration for a
Full Adder Module

FIGURE 2-11:
Four-Bit Binary
Adder

2.4 VHDL Modules 63

Next, we will write the entity and architecture for a full adder module. A full
adder adds 2 bits and a carry input to generate a sum bit and a carry output bit. The
entity specifies the inputs and outputs of the adder module as shown in Figure 2-10.
The port declaration specifies that X, Y,and C, are input signals of type bit, and that
C and Sum are output signals of type bit.

out

X Ful " Cou entity FullAdder is

Y™ dder port(X, Y, Cin: 1in bit; --Inputs
c : > Sum Cout, Sum: out bit); --Outputs
" end FullAdder;

The operation of the full adder is specified by an architecture declaration:

architecture Equations of FullAdder is
begin -- concurrent assignment statements

Sum <= X xor Y xor Cin after 10 ns;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
end Equations;

In this example, the architecture name (Equations) is arbitrary, but the entity
name (FullAdder) must match the name used in the associated entity declaration.
The VHDL assignment statements for Sum and C_ represent the logic equations
for the full adder. Several other architectural descriptions, such as a truth table or
an interconnection of gates, could have been used instead. In the C_, equation,
parentheses are required around (X and Y) since VHDL does not specify an order
of precedence for the logic operators except the NOT operator.

2.4.1 Four-Bit Full Adder

Next, we will show how to use the FulTAdder module defined above as a component
in a system, which consists of four full adders connected to form a 4-bit binary adder
(see Figure 2-11). We first declare the 4-bit adder as an entity (see Figure 2-12). Since
the inputs and the sum output are 4 bits wide, we declare them as bit-vectors which
are dimensioned 3 downto 0. (We could have used a range 1 to 4 instead).

S3 Sy Sy So
c .| Ful Cs | Ful Ca | Ful Cio | Rul | &
° adder adder adder adder '

P P P P

Az B Ay By A1 By Ao Bo

64 Introduction to VHDL

Next, we specify the FullAdder as a component within the architecture of
Adder4 (Figure 2-12). The component specification is very similar to the entity dec-
laration for the full adder, and the input and output port signals correspond to those
declared for the full adder. Anytime a module created in one part of the code has
to be used in another part, a component declaration needs to be used. The compo-
nent declaration does not need to be in the same file where you are using the
component. It can be where the component entity and architecture are defined. It is
typical to create libraries of components for reuse in code, and typically the compo-
nent declarations are placed in the library file.

Following the component statement, we declare a 3-bit internal carry signal C. In
the body of the architecture, we create several instances of the FulTAdder compo-
nent. (In CAD jargon, we “instantiate” four copies of the FulTAdder.) Each copy
of FullAdder has a name (such as FAO) and a port map. The signal names follow-
ing the port map correspond one-to-one with the signals in the component port.
Thus, A(0), B(0), and C, correspond to the inputs X, Y, and C, , respectively. C(1) and
S(0) correspond to the C_ , and Sum outputs. Note that the order of the signals in the
port map must be the same as the order of the signals in the port of the component
declaration.

FIGURE 2-12: Structural Description of a 4-Bit Adder

entity Adder4 is

end Structure;

port(A, B: 1in bit_vector(3 downto 0); Ci: 1in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;

architecture Structure of Adder4 is
component FullAdder

port (X, Y, Cin: 1in bit; -- Inputs
Cout, Sum: out bit); -- Outputs
end component;
signal C: bit_vector(3 downto 1); -- C is an internal signal
begin --instantiate four copies of the FullAdder

FAO: FullAdder port map (A(0), B(0), Ci, C(1), SC0));
FAl: FullAdder port map (A(1), B(1), C(1), C(2), S(1D);
FA2: FullAdder port map (A(2), B(2), C(2), CC3), S(2));
FA3: FullAdder port map (A(3), B(3), C(3), Co, S(3));

In preparation for simulation, we can place the entity and architecture for the
FullAdder and for Adder4 together in one file and compile. Alternatively, we
could compile the FulTAdder separately and place the resulting code in a library
which is linked in when we compile Adder4.

All of the simulation examples in this text use the ModelSim VHDL simulator
from Mentor Graphics. Most other VHDL simulators use similar command files and
can produce output in a similar format. We will use the following simulator com-
mands to test Adder4:

2.4 VHDL Modules 65

add 1ist A B Co C CGi S -- put these signals on the output Tist
force A 1111 -- set the A inputs to 1111

force B 0001 -- set the B inputs to 0001

force Ci 1 -- set (i to 1

run 50 ns -- run the simulation for 50 ns

force Ci 0

force A 0101
force B 1110
run 50 ns

We have chosen to run the simulation for 50 ns since this is more than enough
time for the carry to propagate through all of the full adders. The simulation results
for the preceding command list are as follows:

ns delta a b co d ci S
0 +0 0000 0000 0 000 O 0000
0 +1 1M1 0001 0 000 1 0000

10 +0 1M1 0001 0 001 1 111

20 +0 1M1 0001 0 011 1 1101

30 +0 1111 0001 0 111 1 1001

40 +0 1111 0001 1 111 1 0001

50 +0 0101 1110 1 111 0 0001

60 +0 0101 1110 1 110 O 0101

70 +0 0101 1110 1 100 O 0111

80 +0 0101 1110 1 100 O 0011

The listing shows how the carry propagates one position every 10 ns. The full
adder inputs change at time = A:

0 0 0 0
t t t 1
oﬂ FA3 R‘ FA2 H FAL H FAO %1
-t 7 1ttt 1T

10 10 10 11

Time=A

The sum and carry are computed by each FA and appear at the FA outputs 10 ns
later:

Time=10 1 t 1 1
0<+— FA3 +— FA2 = FALl = FAO [—1

1 1 0 1
Time=20 1 1 1 t
0 1 1
0+— FA3 [~ FA2 += FAl == FAQ #—1

66 Introduction to VHDL

The final simulation results are

1111 + 0001 + 1 = 0001 with a carry of 1 (at time = 40 ns) and
0101 + 1110 + 0 = 0011 with a carry of 1 (at time = 80 ns)

The simulation stops at 80 ns since no further changes occur after that time.

In this section we have shown how to construct a VHDL module using an entity-
architecture pair. The 4-bit adder module demonstrates the use of VHDL components
to write structural VHDL code. Components used within the architecture are declared
at the start of the architecture using a component declaration of the form

component component-name
port(list-of-interface-signals-and-their-types);
end component;

The port clause used in the component declaration has the same form as the port
clause used in an entity declaration. The connections to each component used in a
circuit are specified using a component instantiation statement of the form

Tabel: component-name port map (list-of-actual-signals);

The list of actual signals must correspond one-to-one to the list of interface signals
specified in the component declaration.

2.4.2 Use of "Buffer” Mode

Let us consider the example in Figure 2-13. Assume that all variables are 0 at O ns,
but A changes to 1 at 10 ns.

FIGURE 2-13: VHDL Code Which Will Not Compile

entity gates is
port(A, B, C: 1in bit; D, E: out bit);
end gates;

architecture example of gates is

begin
D <= A or B after 5 ns; -- statement 1
E <= C or D after 5 ns; -- statement 2

end example;

The code in Figure 2-13 will not actually compile, simulate, or synthesize in most
tools because D is declared only as an output. Statement 2 uses D on the right side of
the assignment. Hence, D should be either inout or buffer mode as in Figure 2-14. Use
of inout mode results in the synthesis tools creating a truly bidirectional signal.
In actuality, D is not an external input to the circuit, and hence the mode buffer is
more appropriate. The mode buffer indicates a signal that is an output to the external
world; however, its value can also be read inside the entity’s architecture. The follow-
ing code uses buffer mode for signal D instead of out mode.

2.5 Sequential Statements and VHDL Processes 67

FIGURE 2-14: VHDL Code lllustrating Use of Mode Buffer

entity gates is
port(A, B, C:
end gates;

in bit; D: buffer bit; E: out bit);

architecture example of gates is

begin
D <= A or B after 5 ns; -- statement 1
E <= C or D after 5 ns; -- statement 2

end example;

2.5

All signals remain at ‘0’ until time 10 ns. The change in A at 10 ns results in
statement 1 reevaluating. The value of D becomes ‘1’ at time equal to 15 ns. The
change in D at time 15 ns results in statement 2 reevaluating. Signal E changes to ‘1’
at time 20 ns. The description represents two gates, each with a delay of 5 ns.

Sequential Statements and VHDL Processes

The concurrent statements from the previous section are useful in modeling combi-
national logic. Combinational logic constantly reacts to input changes. In contrast,
synchronous sequential logic responds to changes dependent on the clock. Many
input changes might be ignored since output and state changes occur only at valid
conditions of the clock. Modeling sequential logic requires primitives to model
selective activity conditional on clock, edge-triggered devices, sequence of opera-
tions, and so on. In this unit, we will learn VHDL processes which help to model
sequential logic.
A VHDL process has the following basic form:

process(sensitivity-1list)
begin

sequential-statements
end process;

When a process is used, the statements between the begin and the end are exe-
cuted sequentially. The expression in parentheses after the word process is called
a sensitivity list, and the process executes whenever any signal in the sensitivity
list changes. For example, if the process begins with process (A, B, C), then the
process executes whenever any one of A, B, or C changes. Whenever one of the sig-
nals in the sensitivity list changes, the sequential statements in the process body are
executed in sequence one time. When a process finishes executing, it goes back to
the beginning and waits for a signal on the sensitivity list to change again.

When the concurrent statements

C <= A and B; -- concurrent
E <= C or D; -- statements

68 Introduction to VHDL

are used in a process, they become sequential statements executed in the order in
which they appear in the process. Remember that when they were concurrent state-
ments outside a process, their sequence did not matter. But, if they are in a process,
the sequence determines the order of execution.

process(A, B, C, D)

begin
C <= A and B; -- sequential
E <= C or D; -- statements

end process;

The process executes once when any of the signals A, B, C, or D changes. If C
changes when the process executes, then the process will execute a second time
because C is on the sensitivity list.

VHDL processes can be used for modeling combinational logic and sequential
logic; however, processes are not necessary for modeling combinational logic. They
are, however, required for modeling sequential logic. One should be very careful when
using processes to represent combinational logic. Consider the code in Figure 2-15,
where a process is used. One may write this code thinking of two cascaded gates; how-
ever, it does not actually represent such a circuit.

FIGURE 2-15: VHDL Code with a Process

end nogates;

end process;
end behave;

entity nogates is

port(A, B, C: 1in bit;
D: buffer bit;
E: out bit);

architecture behave of nogates is

begin
process(A, B, O
begin
D <= A or B after 5 ns; -- statement 1
E <= C or D after 5 ns; -- statement 2

The sensitivity list of the process only includes A, B, and C, the only external
inputs to the circuit. Let us assume that all variables are ‘0’ at 0 ns. Then A changes
to ‘1’ at 10 ns. That causes the process to execute. Both statements inside the process
execute once sequentially, but the change in D does not happen right at execution.
Hence, execution of statement 2 is with the value of D at the beginning of the
process. D becomes ‘1’ at 15 ns, but E stays at ‘0’. Since the change in D does not
propagate to signal E, this VHDL model is not equivalent to two gates. If D was
included in the sensitivity list of the process, the process would execute again mak-
ing E change at 20 ns. This would result in simulation outputs matching a circuitry
with cascaded gates, but it is preferable to realize gates using concurrent statements.

2.6

FIGURE 2-16: VHDL
Code for a Simple
D Flip-Flop

2.6 Modeling Flip-Flops Using VHDL Processes 69

Understanding sequential statements and operation of processes will take sev-
eral more examples. In the next section, we explain how simple flip-flops can be
modeled using processes, and then we explain the basics of the VHDL simulation
process. After that, we present more examples illustrating the working of processes
and the simulation process.

Modeling Flip-Flops Using VHDL Processes

A flip-flop can change state either on the rising or on the falling edge of the clock
input. This type of behavior is modeled in VHDL by a process. For a simple D flip-
flop with a Q output that changes on the rising edge of CLK, the corresponding
process is given in Figure 2-16.

Q
| process (CLK)
begin
DFF if CLK'event and CLK = '1' -- rising edge of CLK
then Q <= D;
end 1if;
CLK D end process;

In Figure 2-16, whenever CLK changes, the process executes once through and
then waits at the start of the process until CLK changes again. The 1 f statement tests
for a rising edge of the clock, and Q is set equal to D when a rising edge occurs. The
expression CLK' event is used to accomplish the functionality of an edge-triggered
device. The expression 'event is a predefined attribute for any signal. There are two
types of signal attributes in VHDL, those that return values and those that return sig-
nals. The ' event attribute returns a value. The expression CLK ' event (read as “clock
tick event”) is TRUE whenever the signal CLK changes. If CLK = '1" is also TRUE,
this means that the change was from ‘0’ to ‘1°, which is a rising edge.

If VHDL is used only for simulation purposes, one might use a statement such as

if CLK = '1'

and obtain action corresponding to rising edge. However, when VHDL code is used
to synthesize hardware, this statement will result in latches, whereas the expression
CLK'event results in edge-triggered devices.

If the flip-flop has a delay of 5 ns between the rising edge of the clock and the
change in the Q output, we would replace the statement Q <=D; with Q<=D
after 5 ns;in the preceding process.

The statements between begin and end in a process operate as sequential state-
ments. In the preceding process, Q <= D; is a sequential statement that only executes

70 Introduction to VHDL

FIGURE 2-17:
VHDL Code for a
Transparent Latch

FIGURE 2-18:
VHDL Code for a
D Flip-Flop with
Asynchronous
Clear

following the rising edge of CLK. In contrast, the concurrent statement Q <=D;
executes whenever D changes. If we synthesize the above process, the synthesizer
infers that Q must be a flip-flop since it only changes on the rising edge of CLK. If we
synthesize the concurrent statement Q <= D;, the synthesizer will simply connect D
to Q with a wire or a buffer.

In Figure 2-16, note that D is not on the sensitivity list because changing D will
not cause the flip-flop to change state. Figure 2-17 shows a transparent latch and its
VHDL representation. Both G and D are on the sensitivity list since if G = ‘1’, a
change in D causes Q to change. If G changes to ‘0’, the process executes, but Q does
not change.

—PD Q— process (G, D)
begin

g if G = '1' then Q <= D; end if;
end process;

If a flip-flop has an active-low asynchronous clear input (CIlrN) that resets the
flip-flop independently of the clock, then we must modify the process of Figure 2-16
so that it executes when either CLK or CirN changes. To do this, we add CIrN to the
sensitivity list. The VHDL code for a D flip-flop with asynchronous clear is given in
Figure 2-18. Since the asynchronous CIrN signal overrides CLK, CIrN is tested first
and the flip-flop is cleared if CIrN is ‘0’. Otherwise, CLK is tested, and Q is updat-
ed if a rising edge has occurred.

Q
process(CLK, C1rN)
begin
if CLRn = '0' then Q <= '0';
else if CLK'event and CLK = '1'
DFF O— CIrN then Q <= D:
end if;
A end if;
‘ ‘ end process;
CLK D

In the preceding examples, we have used two types of sequential statements—
signal assignment statements and 1 f statements. The basic 1f statement has the form

if condition then

sequential statementsl
else sequential statements2
end if;

FIGURE 2-19:
Equivalent
Representations of
a Flow Chart Using
Nested Ifs and Elsifs

2.6 Modeling Flip-Flops Using VHDL Processes 71

The condition is a Boolean expression which evaluates to TRUE or FALSE. If
itis TRUE, sequential statementsl are executed; otherwise, sequential
statements?2 are executed.
VHDL 1if statements are sequential statements that can be used within a
process, but they cannot be used as concurrent statements outside of a process.
The most general form of the i f statement is

if condition then
sequential statements
{elsif condition then
sequential statements}
-- 0 ormore elsif clauses may be included
[else sequential statements]
end if;

The curly brackets indicate that any number of e1s1f clauses may be included,
and the square brackets indicate that the else clause is optional. The example of
Figure 2-19 shows how a flow chart can be represented using nested ifs or the
equivalent using e1s1 fs. In this example, C1, C2, and C3 represent conditions that
can be true or false, and S1, S2, ..., S8 represent sequential statements. Each if
requires a corresponding end 1if, but els1fs do not.

4

A
S5; S6; S7; S8;
\4 4

if (C1) then S1; S2;
else if (C2) then S3; S4; if (C1) then S1; S2;
else if (C3) then S5; S6; elsif (C2) then S3; S4;
else S7; S8; elsif (C3) then S5; S6;
end 1if; else S7; S8;
end if; end if;
end if;

72 Introduction to VHDL

FIGURE 2-20:
J-K Flip-Flop

Next, we will write a VHDL module for a J-K flip-flop (Figure 2-20). This flip-
flop has active-low asynchronous preset (SN) and clear (RN) inputs. State changes
related to J and K occur on the falling edge of the clock. In this chapter, we use a
suffix N to indicate an active-low (negative-logic) signal. For simplicity, we will
assume that the condition SN = RN = 0 does not occur.

QN Q
RN —O JKFF O—— SN
K CLK

The VHDL code for the J-K flip-flop is given in Figure 2-21. The port declara-
tion in the entity defines the input and output signals. Within the architecture we
define a signal Q, , that represents the state of the flip-flop internal to the module.
The two concurrent statements after begin transmit this internal signal to the Q
and QN outputs of the flip-flop. We do it this way because an output signal in a port
cannot appear on the right side of an assignment statement within the architecture.
This is another solution to the problem presented in Figure 2-13. The flip-flop can
change state in response to changes in SN, RN, and CLK, so these three signals are
in the sensitivity list of the process. Since RN and SN reset and set the flip-flop inde-
pendently of the clock, they are tested first. If RN and SN are both ‘1°, then we test
for the falling edge of the clock. The condition (CLK'event and CLK = '0") is
TRUE only if CLK has just changed from ‘1’ to ‘0’. The next state of the flip-flop is
determined by its characteristic equation:

0" =70 +K'Q

FIGURE 2-21: J-K Flip-Flop Model

entity JKFF is
port(SN, RN, 1J,

K, CLK: 1in bit; -- inputs

Q, QN: out bit);

end JKFF;

architecture JKFF1l of JKFF is

signal Qint: bit;
begin

Q <= Qint;

QN <= not Qint;

-- Qint can be used as 1input or output

-- output Q and QN to port
-- combinational output
-- outside process

2.7 Processes Using Wait Statements 73

process(SN, RN, CLK)

begin
if RN = '0' then Qint <= '0' after 8 ns; -- RN = '0' will clear the FF
elsif SN = '0' then Qint <= '1' after 8 ns; -- SN='0' will set the FF
elsif CLK'event and CLK = '0' then -- falling edge of CLK

Qint <= (J and not Qint) or (not K and Qint) after 10 ns;

end if;

end process;

end JKFF1;

2.7

The 8-ns delay represents the time it takes to set or clear the flip-flop output
after SN or RN changes to ‘0’. The 10-ns delay represents the time it takes for Q to
change after the falling edge of the clock.

Processes Using Wait Statements

An alternative form for a process uses wait statements instead of a sensitivity list. A
process cannot have both wait statements and a sensitivity list. A process with wait
statements may have the form

process

begin
sequential-statements
wait-statement
sequential-statements
wait-statement

end process;

This process will execute the sequential-statements until a wait statement
is encountered. Then it will wait until the specified wait condition is satisfied. It will
then execute the next set of sequential-statements until another wait is
encountered. It will continue in this manner until the end of the process is reached.
Then it will start over again at the beginning of the process.

Wait statements can be of three different forms:

wait on sensitivity-1list;
wait for time-expression;
wait until Boolean-expression;

The first form waits until one of the signals on the sensitivity-list changes.
For example,wait on A, B, C; waits until A, B, or C changes and then execution
proceeds. The second form waits until the time specified by time-expression has
lapsed. If wait for 5 ns is used, the process waits for 5 ns before continuing.
If wait for O ns is used, the wait is for one delta time. Wait statements of the form
wait for xxx ns are useful for writing VHDL code for simulation; however, they

74 Introduction to VHDL

should not be used when writing VHDL code for synthesis since they are not syn-
thesizable. For the third form of wait statement, the Boolean-expression is
evaluated whenever one of the signals in the expression changes, and the process
continues execution when the expression evaluates to TRUE. For example,

wait until A = B;

will wait until either A or B changes. Then A = B is evaluated and if the result is
TRUE, the process will continue; otherwise, the process will continue to wait until
A or B changes again and A = B is TRUE.

A process cannot have both wait statements and a sensitivity list. It is not accept-
able to have some of the signals to be in a sensitivity list and others in wait
statements.

After a VHDL simulator is initialized, it executes each process with a sensitivity
list one time through, and then waits at the beginning of the process for a change in
one of the signals on the sensitivity list. If a process has a wait statement, it will
initially execute until a wait statement is encountered. The following two processes
are equivalent:

process(A, B, C, D) process
begin begin
C <= A and B after 5 ns; C <= A and B after 5 ns;
E <= C or D after 5 ns; E <= C or D after 5 ns;
end process; wait on A, B, C, D;

end process;

The wait statement at the end of the process replaces the sensitivity list at the
beginning. In this way, both processes will initially execute the sequential statements
one time and then wait until A, B, C, or D changes.

The order in which sequential statements execute in a process is not necessarily
the order in which the signals are updated. Consider the following example:

process
begin
wait until clk'event and clk = '1';
A <= E after 10 ns; -- (D
B <= F after 5 ns; -- (2
C <= G; -- (3
D <= H after 5 ns; -- (4

end process;

This process waits for a rising clock edge. Suppose the clock rises at time = 20 ns.
Statements (1), (2), (3), (4) immediately execute in sequence. A is scheduled to
change to E at time = 30 ns; B is scheduled to change to F at time = 25 ns; C is
scheduled to change to G at time = 20 + delta; and D is scheduled to change to H
at time 25 ns. As the simulated time advances, first G changes. Then F and D change
at time = 25 ns, and finally E changes at time 30 ns. When c/k changes to ‘0’, the wait
statement is reevaluated, but it keeps waiting until c/k changes to ‘1’, and then the
remaining statements execute again.

2.8 Two Types of VHDL Delays: Transport and Inertial Delays 75

If several VHDL statements in a process update the same signal at a given time,
the last value overrides. For example,

process (CLK)
begin
if CLK'event and CLK = '0' then
Q <=A; Q<=B; Q<=C;
end if;
end process;

Every time CLK changes from ‘1’ to “0’, after delta time, Q will change to C.
A process must have either a sensitivity list or wait statements. The VHDL code
in Figure 2-22 will not simulate because there is no sensitivity list or wait statement.

FIGURE 2-22: Example of VHDL Code That Will Not Simulate

entity gates is
port(A, B, C: 1in bit; D, E: out bit);
end gates;

architecture exam of gates is
begin
process
begin
D <= A or B after 2 ns;
E <= not C and A;
end process;
end exam;

In this section, we have introduced processes with sensitivity lists and processes
with wait statements. The statements within a process are called sequential state-
ments because they execute in sequence, in contrast with concurrent statements that
execute only when a signal on the right-hand-side changes. Signal assignment state-
ments can be either concurrent or sequential. However, if statements are always
sequential.

2.8 Two Types of VHDL Delays: Transport
and Inertial Delays

In one of the initial examples in this chapter, we used the statement

C <= A and B after 5 ns;

to model an AND gate with a propagation delay of 5 ns. The preceding statement
will model the AND gate’s delay; however, it also introduces some complication,
which many readers will not normally expect. If you simulate this AND gate with

76 Introduction to VHDL

FIGURE 2-23:
Transport and
Inertial Delays

inputs that change very often in comparison to the gate delay (e.g., at 1 ns, 2 ns,
3 ns, etc.), the simulation output will not show the changes. This is due to how VHDL
delays work.

VHDL provides two types of delays—transport delays and inertial delays. The
default delay is inertial delay; hence, the after clause in the preceding statement rep-
resents an inertial delay. Inertial delays are slightly different from simple delays that
readers normally assume.

Inertial delay is intended to model gates and other devices that do not propagate
short pulses from the input to the output. If a gate has an ideal inertial delay 7, in
addition to delaying the input signals by time 7, any pulse with a width less than T'is
rejected. For example, if a gate has an inertial delay of 5 ns, a pulse of width 5 ns
would pass through, but a pulse of width 4.999 ns would be rejected. Real devices
do not behave in this way. Perhaps they would reject very narrow spurious pulses,
but it might be unreasonable to assume that all pulses narrower than the delay dura-
tion will be rejected. VHDL does allow one to model devices which reject only very
narrow pulses. Rejection of pulses of any arbitrary duration up to the specified iner-
tial delay can be modeled by adding a reject clause to the assignment statement.
A statement of the form

signal_name <= reject pulse-width after delay-time

evaluates the expression, rejects any pulses whose width is less than pulse-width,
and then sets the signal equal to the result after a delay of delay-time. In statements
of this type, the rejection pulse width must be less than the delay time.

The second type of VHDL delay is transport delay, which is intended to model
the delay introduced by wiring, simply delays an input signal by the specified delay
time. In order to model this delay, the key word transport must be specified in the
code. Figure 2-23 illustrates the difference between transport and inertial delays.
Consider the following VHDL statements:

Z1 <= transport X after 10 ns; -- transport delay
Z2 <= X after 10 ns; -- 1inertial delay
Z3 <= reject 4 ns X after 10 ns; -- delay with specified

-- rejection pulse width

| | | |
| 10ns | 13ns 5ns |

I I
I I

X1 |
}— 10ns :
| | I I ons o

2| : ninn
| |
| | | | | |
| | I I

Z; I | I |
[[I I
[: } I
| | |

Z3) I | ’—
| | |
| | | | i |
T T T T T 1
0 10 20 30 40 50

2.9

FIGURE 2-24:
Compilation,
Elaboration, and
Simulation of VHDL
Code

2.9 Compilation, Simulation, and Synthesis of VHDL Code 77

Z, is the same as X, except that it is shifted 10 ns in time. Z, is similar to Z,,
except the pulses in X shorter than 10 ns are filtered out and do not appear in Z,.
Z, is the same as Z,), except that only the pulses of width less than 4 ns have been
rejected.

In general, using reject is equivalent to using a combination of an inertial delay
and a transport delay. The statement for Z, given here could be replaced with the
concurrent statements:

m <= X after 4 ns; -- inertial delay rejects short pulses
Z3 <= transport Zm after 6 ns; -- total delay 1is 10 ns

Note that these delays are relevant only for simulation. Understanding how inertial
delay works can remove a lot of frustration in your initial experience with VHDL sim-
ulation. The pulse rejection associated with inertial delay can inhibit many output
changes. In simulations with basic gates and simple circuits, one should make sure that
test sequences that you apply are wider than the inertial delays of the modeled devices.

Compilation, Simulation, and Synthesis
of VHDL Code

After describing a digital system in VHDL, simulation of the VHDL code is impor-
tant for two reasons. First, we need to verify the VHDL code correctly implements
the intended design, and second, we need to verify that the design meets its specifi-
cations. We first simulate the design and then synthesize it to the target technology
(e.g., FPGA or custom ASIC). In this section, first we describe steps in simulation
and then introduce synthesis. As illustrated in Figure 2-24, there are three phases in
the simulation of VHDL code: analysis (compilation), elaboration, and simulation.

Resource Simulator

/ libravies \ Comiands
VHDL Intermediat Simulation
source Compiler |'Ntermedialel \y/orking)
== » (analyzer) library —pp-| Elaborator ————pp-{ Simulator
code code Data

structure Simulator
output

Before the VHDL model of a digital system can be simulated, the VHDL code
must first be compiled. The VHDL compiler, also called an analyzer, first checks the
VHDL source code to see that it conforms to the syntax and semantic rules of VHDL.
If there is a syntax error, such as a missing semicolon, or if there is a semantic error,
such as trying to add two signals of incompatible types, the compiler will output an

78 Introduction to VHDL

error message. The compiler also checks to see that references to libraries are correct.
If the VHDL code conforms to all of the rules, the compiler generates intermediate
code, which can be used by a simulator or by a synthesizer.

In preparation for simulation, the VHDL intermediate code must be converted
to a form which can be used by the simulator. This step is referred to as elaboration.
During elaboration, a driver is created for each signal. Each driver holds the current
value of a signal and a queue of future signal values. Each time a signal is scheduled
to change in the future, the new value is placed in the queue along with the time at
which the change is scheduled. In addition, ports are created for each instance of a
component; memory storage is allocated for the required signals; the interconnec-
tions among the port signals are specified; and a mechanism is established for exe-
cuting the VHDL statements in the proper sequence. The resulting data structure
represents the digital system being simulated.

The simulation process consists of an initialization phase and actual simulation.
The simulator accepts simulation commands, which control the simulation of the
digital system and which specify the desired simulator output. VHDL simulation
uses what is known as discrete event simulation. The passage of time is simulated in
discrete steps in this method of simulation. The initialization phase is used to give
an initial value to the signal. During simulation, the VHDL statements are executed
and corresponding actions are scheduled. These actions are called transactions, and
the process is called scheduling a transaction. The scheduled action happens, not
necessarily when the statement executes, but when the scheduled time has been
reached. A transaction does not mean that there is a change in the value of a signal.
The new value for the signal after the transaction may be the same as the old value.
If a change in the value occurs, we say that an event has taken place.

To facilitate correct initialization, the initial value can be specified in the VHDL
model. In the absence of any specifications of the initial values, some simulator
packages will assign an initial value depending on the type of the signal. Please note
that this initialization is only for simulation and not for synthesis. During initializa-
tion, simulation time is set to zero and each process is activated. The process
“executes,” scheduling corresponding transactions; however, the scheduled transac-
tions do not happen until one reaches the time at which the scheduled transaction
is to occur. Execution of a process happens once, and then the process waits for a
signal in the sensitivity list to change.

Understanding the role of the delta (A) time delays is important when inter-
preting output from a VHDL simulator. Although the delta delays do not show up
on waveform outputs from the simulator, they show up on listing outputs. The sim-
ulator uses delta delays to make sure that signals are processed in the proper
sequence. Basically, the simulator works as follows: Whenever a component input
changes, the output is scheduled to change after the specified delay, or after A if no
delay is specified. When all input changes have been processed, simulated time is
advanced to the next time at which an output change is specified. When time is
advanced by a finite amount (1 ns for example), the A counter is reset and simula-
tion resumes. Real time does not advance again until all A delays associated with the
current simulation time have been processed.

The following example illustrates how the simulator works for the circuit of
Figure 2-25. Suppose that A changes at time = 3 ns. Statement 1 executes and B is

FIGURE 2-25
lllustration of Delta
Delays during
Simulation of
Concurrent
Statements

2.9 Compilation, Simulation, and Synthesis of VHDL Code 79

A B C D ns delta| A B C D
0 +0 0 1 0 1
3 +0 11 0 1
3 +1 1 0 0 1
3 +2 1 0 1 1
8 +0 1 0 1 0

1 B <= not A;
2 C <= not B;
3 D <= not C after 5 ns;

scheduled to change at time 3 + A. Then time advances to 3 + A, and statement
2 executes. C is scheduled to change at time 3 + 2A. Time advances to 3 + 2A, and
statement 3 executes. D is then scheduled to change at 8 ns. You might think the
change should occur at (3 + 2A + 5) ns. However, when time advances a finite
amount (as opposed to A, which is infinitesimal), the A counter is reset. For this rea-
son, when events are scheduled a finite time in the future, the A’s are ignored. Since
no further changes are scheduled after 8 ns, the simulator goes to an idle mode and
waits for another input change. The table gives the simulator output listing.

2.9.1 Simulation with Multiple Processes

If a model contains more than one process, all processes execute concurrently with
other processes. If there are concurrent statements outside processes, they also
execute concurrently. Statements inside of each process execute sequentially.
A process takes no time to execute unless it has wait statements in it. (Examples:
wait for 10 ns, wait for O ns, and wait on E.) Signals take delta time to
update when no delay is specified.

As an example of simulation of multiple processes, we trace execution of the
VHDL code shown in Figure 2-26. The keyword transport specifies the type of delay
as transport delay.

FIGURE 2-26: VHDL Code to lllustrate Process Simulation

signal A,B: bit;

begin
P1: process(B)
begin
A<= "1";

end process P1l;

P2: process(A)
begin

end process P2;
end testl;

entity simulation_example is
end simulation_example;

architecture testl of simulation_example is

A <= transport '0O' after 5 ns;

if A = '1l'" then B <= not B after 10 ns; end if;

80 Introduction to VHDL

FIGURE 2-27:
Signal Drivers
for Simulation
Example

Figure 2-27 shows the drivers for the signals A and B as the simulation progresses.
After elaboration is finished, each driver holds ‘0’, since this is the default initial
value for a bit. When simulation begins, initialization takes place. Both processes are
executed simultaneously one time through, and then the processes wait until a signal
on the sensitivity list changes. When process P, executes at zero time, two changes
in A are scheduled (A changes to ‘1’ at time A and back to ‘0’ at time = 5 ns).
Meanwhile, process P, executes at zero time, but no change in B occurs, since A is
still ‘0’ during execution at time 0O ns. Time advances to A, and A changes to ‘1’. The
change in A causes process P, to execute, and since A = ‘1’, B is scheduled to change
to ‘1’ at time 10 ns. The next scheduled change occurs at time = 5 ns, when A changes

Queued Current
values value
After elaboration: 0 A
time=0 5 g
After initidization: | 0 @3 T@a 0 — A
time=0 5 ;
Simulation step: '0@5 17— A
time=A @1 p ;
0 —» A
time=5
1@10 0 —pB
'0@15 1T@10+A 0 7 A
time=10
oL > B
@15 17— A
time=10+A
@20 1 ——p B
0 —P A
time=15
'0@20 1" ——pB

FIGURE 2-28:
Compilation,
Simulation, and
Synthesis of VHDL
Code

2.9 Compilation, Simulation, and Synthesis of VHDL Code 81

to ‘0. This change causes P, to execute, but B does not change. B changes to ‘1’ at
time = 10 ns. The change in B causes P, to execute, and 2 changes in A are scheduled.
When A changes to ‘1’ at time 10 + A, process P, executes, and B is scheduled to
change at time 20 ns. Then A changes at time 15 ns, and the simulation continues in
this manner until the run-time limit is reached. It should be understood that A
changes at 15 ns and not at 15 + A. The A delay comes into the picture only when no
time delay is specified.

VHDL simulators use event-driven simulation, as illustrated in the preceding
example. A change in a signal is referred to as an event. Each time an event occurs,
any processes that have been waiting on the event are executed in zero time, and
any resulting signal changes are queued up to occur at some future time. When all
the active processes are finished executing, simulation time is advanced to the time
for which the next event is scheduled, and the simulator processes that event. This
continues until either no more events have been scheduled or the simulation time
limit is reached.

When VHDL was originally created, simulation was the primary purpose; how-
ever, nowadays, one of the most important uses of VHDL is to synthesize or auto-
matically create hardware from a VHDL description. The synthesis software for
VHDL translates the VHDL code to a circuit description that specifies the needed
components and the connections between the components. The initial steps (analysis
and elaboration) in Figure 2-24 are common whether VHDL is used for simulation
or synthesis. The simulation and synthesis processes are shown in Figure 2-28.

VHDL Simulator
libraries commands
i Intermediate i
VHDL . code]]
code | Compiler » Simulator > Simulator
output
P Synthesizer Implementer Hardware

Although synthesis can be done in parallel to simulation, synthesis follows
simulation because designers would normally want to catch errors before
attempting to synthesize. After the VHDL code for a digital system has been
simulated to verify that it works correctly, the VHDL code can be synthesized
to produce a list of required components and their interconnections. The synthe-
sizer output can then be used to implement the digital system using specific
hardware, such as a CPLD or FPGA, or an ASIC. The CAD software used for
implementation generates the necessary information to program the CPLD or
FPGA hardware. In the case of an ASIC, it generates the mask required to cre-
ate the ASIC. Synthesis and implementation of digital logic from VHDL code is
discussed in more detail later.

82 Introduction to VHDL

2.10

VHDL Data Types and Operators

2.10.1 Data Types

VHDL has several predefined data types. Signals can have these predefined data
types, or they can have a user-defined type. Some of the predefined types are as
follows:

bit ‘0 or ‘1’

boolean = FALSE or TRUE

integer an integer in the range — (23 — 1) to +(2* — 1) (some implementa-
tions support a wider range)

real floating-point number in the range —1.0E38 to + 1.0E38

character any legal VHDL character including upper- and lowercase letters, dig-
its, and special characters (each printable character must be enclosed
in single quotes; e.g., ‘d’,“7’,‘+")

time an integer with units fs, ps, ns, us, ms, sec, min, or hr

Note that the integer range for VHDL is symmetrical, even though the range for
a 32-bit 2’s complement integer is —23! to +(23! — 1).

Users can define and create their own data types. A common user-defined type
is the enumeration type in which all of the values are enumerated. For example, the
declarations

type state_type is (SO, S1, S2, S3, S4, S5);
signal state: state_type := SI1;

define a signal called state that can have any one of the values S, S, S,, S;, S,, or S
and is initialized to S,. If no initialization is given, the default initialization is the
leftmost element in the enumeration list, S in this example.

VHDL is a strongly typed language, so signals and variables of different types
generally cannot be mixed in the same assignment statement, and no automatic type
conversion is performed. Thus, the statement

A <= B or (C;

is valid only if A, B, and C all have the same type or closely related types. If types
do not match, explicit type conversions should be performed, or “overloaded oper-
ators” should be created. Operator overloading is described in Sections 2.13 and 8.4.
The overloaded operators in the IEEE packages are presented in Section 2.13.

2.10.2 VHDL Operators

Predefined VHDL operators can be grouped into seven classes:

1. Binary logical operators: and or nand nor xor xnor
2. Relational operators: = /= < <= > >=

3. Shift operators: sll srl sla sra rol ror

4. Adding operators: + — & (concatenation)

2.10 VHDL Data Types and Operators 83

5. Unary sign operators: + —
6. Multiplying operators: * / mod rem
7. Miscellaneous operators: not abs **

When parentheses are not used, operators in class 7 have highest precedence
and are applied first, followed by class 6, then class 5, and so on. Class 1 operators
have lowest precedence and are applied last. Operators in the same class have the
same precedence and are applied from left to right in an expression. The precedence
order can be changed by using parentheses. Consider the following expression,
where A, B, C,and D are bit_vectors:

(A & not Bor C ror 2 and D) = "110010"

Note that this is a relational expression performing an equality test; it is not an
assignment statement.
To evaluate the expression, the operators are applied in the order

not, &, ror, or, and, =

If A=*-110", B=“111", C = “011000”, and D = “111011”, the computation
proceeds as follows:

not B = "000" (bit-by-bit complement)

A & not B = "110000" (concatenation)

C ror 2 = "000110" (rotate right 2 places)

(A & not B) or (C ror 2) = "110110" (bit-by-bit or)

(A & not B or C ror 2) and D = "110010" (bit-by-bit and)

[(A & not Bor C ror 2 and D) = "110010"] = TRUE (the parentheses
force the equality test to be done Tast and the result is TRUE)

The binary logical operators (class 1) as well as not can be applied to bits,
booleans, bit_vectors, and boolean_vectors. The class 1 operators require 2 operands
of the same type, and the result is of that type.

The result of applying a relational operator (class 2) is always a Boolean
(FALSE or TRUE). Equals (=) and not equals (/=) can be applied to almost any
type. The other relational operators can be applied to any numeric or enumerated
type as well as to some array types. For example, if A =5, B =4, and C = 3, the
expression (A <= B) and (B <= C) evaluates to FALSE.

The shift operators can be applied to any bit_vector or boolean_vector. In the
following examples, A is a bit_vector equal to “10010101”:

A s11 2 1is "01010100" (shift left Togical, filled with '0")

A srl 3 is "00010010" (shift right Togical, filled with '0")

A sla 3 1is "10101111" (shift left arithmetic, filled with
right bit)

A sra 2 is "11100101" (shift right arithmetic, filled with
left bit)

A rol 3 is "10101100" (rotate left)

A ror 5 is "10101100" (rotate right)

84 Introduction to VHDL

2.1

The + and — operators can be applied to integer or real numeric operands. The
+ and — operators are not defined for bits or bit-vectors. That is why we had to make
a full adder by specifically creating carry and sum bits for each bit (Figure 2-12).
However, several standard libraries do provide functions for + and — that can work
on bit-vectors. If we use such a library, we can perform addition using the statement
C <= A + B.Some of the popular libraries are described in Section 2.13.

The & operator can be used to concatenate two vectors (or an element and a
vector, or two elements) to form a longer vector. For example, “010” & ‘17 is “0101”
and “ABC” & “DEF” is “ABCDEF”.

The * and / operators perform multiplication and division on integer or floating-
point operands. The rem and mod operators calculate the remainder and modulus
for integer operands. The ** operator raises an integer or floating-point number to
an integer power, and abs finds the absolute value of a numeric operand.

Simple Synthesis Examples

Synthesis tools try to infer the hardware components needed by “looking” at the
VHDL code. In order for code to synthesize correctly, certain conventions must
be followed. When writing VHDL code, you should always keep in mind that you
are designing hardware, not simply writing a computer program. Each VHDL state-
ment implies certain hardware requirements. So, poorly written VHDL code may
result in poorly designed hardware. Even if VHDL code gives the correct result
when simulated, it may not result in hardware that works correctly when synthe-
sized. Timing problems may prevent the hardware from working properly even
though the simulation results are correct.

Consider the VHDL code in Figure 2-29. (Note that B is missing from the
process sensitivity list.) This code will simulate as follows: Whenever A changes,
it will cause the process to execute once. The value of C will reflect the values of
A and B when the process began. If B changes now, that will not cause the process
to execute.

FIGURE 2-29: VHDL Code Example where Simulation and Synthesis Results in Different Outputs

entity Q1 is

end Q1;

begin
process (A)
begin

end process;
end circuit;

port(A, B: 1in bit;
C: out bit);

architecture circuit of Q1 i1is

C <= A or B after 5 ns;

2.11 Simple Synthesis Examples 85

If this code is synthesized, most synthesizers will output an OR gate as in
Figure 2-30. The synthesizer will warn you that B is missing from the sensitivity
list, but will go ahead and synthesize the code properly. The synthesizer will also
ignore the 5-ns delay on the above statement. If you want to model an exact 5-ns
delay, you will have to use counters. The simulator output will not match the syn-
thesizer’s output since the process will not execute when B changes. This is an
example of where the synthesizer guessed a little more than what you wrote; it
assumed that you probably meant an OR gate and created that circuit (accompa-
nied by a warning). But this circuit functions differently from what simulated
before synthesis. It is important that you always check for synthesizer warnings of
missing signals in the sensitivity list. Perhaps the synthesizer helped you; perhaps
it created hardware that you did not intend to.

FIGURE 2-30: B)

Synthesizer ’
Output for Code

in Figure 2-29 OR2

Now, consider the VHDL code in Figure 2-31. What hardware will you get if you
synthesized this code?

FIGURE 2-31: Example VHDL Code

entity Q3 is
port(A,B,F, CLK: 1in bit;
G: out bit);
end Q3;

architecture circuit of Q3 i1is
signal C: bit;

begin
process (Clk)
begin
if (Clk = '1' and Clk'event) then
C <= A and B; -- statement 1
G <= Cor F; -- statement 2
end 1if;

end process;
end circuit;

Let us think about the block diagram of the circuit represented by this code with-
out worrying about the details inside. The block diagram is as shown in Figure 2-32.
The ability to hide details and use abstractions is an important part of good system
design.

Note that C is an internal signal, and therefore it does not show up in the block
diagram.

86 Introduction to VHDL

FIGURE 2-32: Block
Diagram for VHDL
Code in Figure 2-31

FIGURE 2-33:
Hardware
Corresponding to
VHDL Code in
Figure 2-31

Now, let us think about the details of the circuit inside this block. This circuit is
not two cascaded gates; the signal assignment statements are in a process. An edge-
triggered clock is implied by the use of c1k'event in the clock statement preceding
the signal assignment. Since the values of C and G need to be retained after the clock
edge, flip-flops are required for both C and G. Please note that a change in the value
of C from statement 1 will not be considered during the execution of statement 2 in
that pass of the process. It will be considered only in the next pass, and the flip-flop
for C makes this happen in the hardware also. Hence the code implies hardware
shown in Figure 2-33.

DFF

gj}t’ Q c ”

CLK >

We saw earlier that the following code represents a D-latch:

process (G, D)
begin

if G = '1l' then Q <= D; end if;
end process;

Let us understand why this code does not represent an AND gate with G and
D as inputs. If G = ‘1’, an AND gate will result in the correct output to match the
if statement. However, what happens if currently Q = ‘1’ and then G changes
to ‘0’? When G changes to ‘0’, an AND gate would propagate that to the output;
however, the device we have modeled here should not. It is expected to make no
changes to the output if G is not equal to ‘1’. Hence, it is clear that this device has
to be a D-latch and not an AND gate.

In order to infer flip-flops or registers that change state on the rising edge of a
clock signal, an if-clause of the form

if clock'event and clock = '1' then ... end if;

is required by most synthesizers. For every assignment statement between then and
end if above, a signal on the left side of the assignment will cause creation of a

2.12 VHDL Models for Multiplexers 87

register or flip-flop. The moral to this story is, if you don’t want to create unnecessary
flip-flops, don’t put the signal assignments in a clocked process. If clock'event is
omitted, the synthesizer may produce latches instead of flip-flops.

Now consider the VHDL code in Figure 2-34. If you attempt to synthesize this
code, the synthesizer will generate an empty block diagram. This is because D, the
output of the above block, is never assigned. It will generate warnings that

Input <CLK> 1is never used.
Input <A> is never used.
Input 1is never used.
Output <D> is never assigned.

FIGURE 2-34: Example VHDL Code That Will Not Synthesize

entity no_syn is
port(A,B, CLK:

in bit;

D: out bit);

end no_syn;

architecture no_synthesis of no_syn is

signal C: bit;
begin

process (Clk)

begin

if (Clk="1' and Clk'event) then

C <= A and
end 1if;
end process;
end no_synthesis;

2.12

B;

VHDL Models for Multiplexers

A multiplexer is a combinational circuit and can be modeled using concurrent state-
ments only or using processes. A conditional signal assignment statement such as
when or a selective signal assignment statement using with select can be used to
model a multiplexer without processes. A case statement within a process can also
be used to make a model for a multiplexer.

2.12.1 Using Concurrent Statements

Figure 2-35 shows a 2-to-1 multiplexer (MUX) with two data inputs and one control
input. The MUX outputis F'= A" - I, + A - I,.The corresponding VHDL statement is

F <= (not A and I0) or (A and Il);

Here, the MUX can be modeled as a single concurrent signal assignment state-
ment. Alternatively, we can represent the MUX by a conditional signal assignment

statement as shown in Figure 2-35. This statement executes whenever A, [, or I,

88 Introduction to VHDL

FIGURE 2-35: 2-to-1
Multiplexer

FIGURE 2-36:
Cascaded 2-to-1
MUXes

-- conditional signal assignment statement

F <= 10 when A = '0' else I1;

changes. The MUX output is /, when A = ‘0, and otherwise it is /,. In the condi-
tional statement, 1, I, and F can either be bits or bit-vectors.
The general form of a conditional signal assignment statement is
signal_name <= expressionl when conditionl
else expression2 when condition2
[else expressionN];

This concurrent statement is executed whenever a change occurs in a signal used in
one of the expressions or conditions. If conditionl is true, signal_name is set
equal to the value of expressionl,otherwise if condition2 is true, signal_name
is set equal to the value of expression2, and so on. The line in square brackets
is optional. Figure 2-36 shows how two cascaded MUXes can be represented by a
conditional signal assignment statement. The output MUX selects A when E = ‘1’;
otherwise, it selects the output of the first MUX, which is B when D = ‘1, or it is C.

c F <= A when E = '1'
else B when D = '1'
B F else C;
A

Figure 2-37 shows a 4-to-1 multiplexer (MUX) with four data inputs and two
control inputs, A and B. The control inputs select which one of the data inputs is
transmitted to the output. The logic equation for the 4-to-1 MUX is

F=A'B'l,+A'Bl, + AB'l, +t ABI,
Thus, one way to model the MUX is with the VHDL statement

F <= (not A and not B and I0) or (not A and B and I1) or
(A and not B and I2) or (A and B and I3);

FIGURE 2-37: 4-to-1
Multiplexer

2.12 VHDL Models for Multiplexers 89

Another way to model the 4-to-1 MUX is to use a conditional assignment
statement:

F <= 10 when A&B "00"
else I1 when A&B "o1"
else I2 when A& = "10"
else I3;

The expression A&B means that A is concatenated with B; that is, the two bits A and
B are merged together to form a 2-bit vector. This bit-vector is tested and the appropri-
ate MUX input is selected. For example, if A = ‘1" and B = ‘0°, A&B = “10” and /, is
selected. Instead of concatenating A and B, we could use a more complex condition:

F <= I0 when A '0' and B '0'
else I1 when A '0' and B '1’
else I2 when A = '1l' and B = '0'
else I3;

A third way to model the MUX is to use a selected signal assignment statement,
as shown in Figure 2-37. A&B cannot be used in this type of statement, so we con-
catenate A and B to create sel. The value of sel then selects the MUX input that is
assigned to F.

lg —— sel <= A&B;
--selected signal assignment statement

l— | with sel select

MUX — F F <= I0 when ll00",
I, I1 when "01",

I2 when "10",

Iy I3 when "11",

A B

The general form of a selected signal assignment statement is

with expression_s select
signal_s <= expressionl [after delay-time] when choicel,
expression2 [after delay-time] when choice2,

[expression_n [after delay-time] when others];

This concurrent statement executes whenever a signal changes in any of the
expressions. First, expression_s is evaluated. If it equals choicel, signal_sis
set equal to expressionl; if it equals choice2, signal_s is set equal to
expression2; and so on.If all possible choices for the value of expression_s are

90 Introduction to VHDL

2.13

given, the last line should be omitted; otherwise, the last line is required. When it is
present, if expression_s is not equal to any of the enumerated choices, signal_s
is set equal to expression_n. Then signal_s is updated after the specified
delay-time,or after A if the after delay-time is omitted.

2.12.2 Using Processes

If a MUX model is used inside a process, a concurrent statement cannot be used. As
an alternative, the MUX can be modeled using a case statement:

case Sel is

when 0 => F <= I0;

when 1 => F <= I1;

when 2 => F <= 1I2;

when 3 => F <= I3;
end case;

The case statement has the general form

case expression is
when choicel => sequential statementsl
when choice2 => sequential statements?2

[when others => sequential statements]
end case;

The expression is evaluated first. If it is equal to choicel, then sequen-
tial statementsl are executed;if it is equal to choice2, then sequential
statements?2 are executed; and so on. All possible values of the expression
must be included in the choices. If all values are not explicitly given, a when oth-
ers clause is required in the case statement.

One might notice that combinational circuits can be described using concurrent
or sequential statements. Sequential circuits generally require a process statement.
Process statements can be used to make sequential or combinational circuits.

VHDVL Libraries

VHDL libraries and packages are used to extend the functionality of VHDL by
defining types, functions, components, and overloaded operators. In standard
VHDL, some operations are valid only for certain data types. If those operations are
desired for other data types, one has to use function “overloading” to create an
“overloaded” operator. The concept of “function overloading” exists in many gen-
eral-purpose languages. It means that two or more functions may have the same
name, so long as the parameter types are sufficiently different enough to distinguish
which function is actually intended. Overloaded functions can also be created to
handle operations involving heterogeneous data types.

2.13 VHDL Libraries 91

In the initial days of CAD, every tool vendor used to create its own libraries and
packages. Porting designs from one environment to another became a problem
under those conditions. The IEEE has developed standard libraries and packages to
make design portability easier. The original VHDL standard only defines 2-valued
logic (bits and bit-vectors). One of the earliest extensions was to define multivalued
logic as an IEEE standard. The package IEEE.std_logic_1164 defines a std_logic
type that has nine values, including ‘0’,‘1’,*X” (unknown), and ‘Z’ (high impedance).
The package also defines std_logic_vectors, which are vectors of the std_logic type.
This standard defines logic operations and other functions for working with
std_logic and std_logic_vectors, but it does not provide for arithmetic operations.
The std_logic_1164 package and its use for simulation and synthesis will be
described in more detail in Chapter 8.

When VHDL became more widely used for synthesis, the IEEE introduced two
packages to facilitate writing synthesizable code: ITEEE.numeric_bit and
IEEE.numeric_std. The former uses bit_vectors to represent unsigned and signed
binary numbers, and the latter uses std_logic_vectors. Both packages define over-
loaded logic and arithmetic operators for unsigned and signed numbers. Prior to
Chapter 8, we will use the numeric_bit package and unsigned numbers for arithmetic
operations.

To access functions and components from a library, you need a library statement
and a use statement. The statement

Tibrary IEEE;
allows your design to access all packages in the IEEE library. The statement
use IEEE.numeric_bit.all;

allows your design to use the entire numeric_bit package, which is found in the
IEEE library. Whenever a package is used in a module, the library and use state-
ments must be placed before the entity in that module period.

The numeric_bit package defines unsigned and signed types as unconstrained
arrays of bits:

type unsigned 1is array (natural range <>) of bit;
type signed 1is array (natural range <>) of bit;

Signed numbers are represented in 2’s complement form. The package contains
overloaded operators for arithmetic, relational, logical, and shifting operations on
unsigned and signed numbers.

Unsigned and signed types are basically bit-vectors. However, overloaded oper-
ators are defined for these types and not for bit-vectors. The statement

C <= A + B;

will cause a compiler error if A, B, and C are bit_vectors. If these signals are of type
unsigned or signed, the compiler will invoke the appropriate overloaded operator
to carry out the addition.

92 Introduction to VHDL

The numeric_bit package defines the following overloaded operators:

arithmetic: +, —, *, /, rem, mod

relational:: =, /=, >, <, >=, <=

logical: not, and, or, nand, nor, xor, Xnor

shifting: shift_left, shift_right, rotate_left, rotate_right, sll, srl, rol, ror

The arithmetic, relational, and logical operators (except not) each require a left
operand and a right operand. For arithmetic and relational operators, the following
left and right operand pairs are acceptable: unsigned and unsigned, unsigned and
natural, natural and unsigned, signed and signed, signed and integer, integer and
signed. For logical operators (except not), left and right operands must either both
be unsigned or both signed. When the + and — operators are used with unsigned
operands of different lengths, the shortest operand will be extended by filing in 0’s
on the left. Any carry is discarded so that the result has the same number of bits as
the longest operand. For example, when working with unsigned numbers

“1011” + “110” = “1011” + “0110” = “0001” and the carry is discarded.

The numeric_bit package provides an overloaded operator to add an integer to
an unsigned, but not to add a bit to an unsigned type. Thus, if A and B are unsigned,
A+B+1 is allowed, but a statement of the form

Sum <= A + B + carry;

is not allowed when carry is of type bit. The carry must be converted to unsigned
before it can be added to the unsigned vector A+B. The notation unsigned' (0 =>
carry) will accomplish the necessary conversion.

Figure 2-38 shows behavioral VHDL code that uses overloaded operators from
the numeric_bit package to describe a 4-bit adder with a carry input. The entity
declaration is the same as in Figure 2-12, except type unsigned is used instead of

FIGURE 2-38: VHDL Code for 4-Bit Adder Using Unsigned Vectors

Tibrary IEEE;

entity Adder4 is

begin

Co <= Sum5(4);
end overload;

use IEEE.numeric_bit.all;

port(A, B: 1in unsigned(3 downto 0); Ci: 1in bit; -- Inputs
S: out unsigned(3 downto 0); Co: out bit); -- Outputs
end Adder4;

architecture overload of Adder4 is
signal Sum5: unsigned(4 downto 0);

Sum5 <= '0' & A + B + unsigned'(0=>Ci); -- adder
S <= Sum5(3 downto 0);

FIGURE 2-39:
Synthesizer Output
for VHDL Code of
Figure 2-38

2.13 VHDL Libraries 93

bit_vector. Because adding two 4-bit numbers produces a 5-bit sum, a 5-bit signal
(Sum)) is declared within the architecture. If we compute A + B, the result is only
4 bits. Since we want a 5-bit result, we must extend A to 5 bits by concatenating ‘0’
and A. (B will automatically be extended to match.) After SumS5 is calculated using
the overloaded operators from the numeric_bit package, it is split into a 4-bit sum
(8) and a carry (C,). Most synthesis tools will implement the code of Figure 2-38 as
an adder with a carry input and output. One version of the Xilinx synthesizer pro-
duces the result shown in Figure 2-39.

[Co>

Useful conversion functions found in the numeric_bit package include the
following:

TO_INTEGER(A) : converts an unsigned vector A to an integer
TO_UNSIGNED(B, N): converts an integer to an unsigned vector of length N
UNSIGNED(A) : causes the compiler to treat a bit_vector A as an unsigned vector
BIT_VECTOR(B) : causes the compiler to treat an unsigned vector B as a bit_vector

If multivalued logic is desired, one can use the IEEE standard numeric_std
package instead of the numeric_bit package. The numeric_std package defines
unsigned and signed types as std_logic vectors instead of bit_vectors. Three state-
ments are required to use this package:

Tlibrary IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

This package defines the same set of overloaded operators and functions on
unsigned and signed numbers as the numeric_bit package.

Another popular VHDL package used for simulation and synthesis with multi-
valued logic is the std_logic_arith package developed by Synopsis. This package
defines unsigned and signed types and overloaded operators similarly to the IEEE

94 Introduction to VHDL

numeric_std package; however, the conversion functions have different names and
there are some other differences. A major deficiency of the std_logic_arith package
is that it does not define logic operations for unsigned or signed vectors. This pack-
age is not an IEEE standard even though it is commonly placed in the IEEE
library.

Yet another option is to use the std_logic_unsigned package, also developed by
Synopsis. This package does not define unsigned types, but instead it defines some
overloaded arithmetic operators for std_logic_vectors. These operators
std_logic_vectors as if they were unsigned numbers. When used in conjunction with
the std_logic_1164 package, both arithmetic and logic operations can be performed
on std_logic_vectors because the 1164 package defines the logic operations. The
std_logic_unsigned package is not an IEEE standard even though it is commonly
placed in the IEEE library. The VHDL code for the 4-bit adder of Figure 2-38 is
rewritten in Figure 2-40 using the std_logic_unsigned package. Because the package
provides an overloaded operator to add a std_logic bit to a std_logic_vector, type
conversion is not needed. The result of synthesizing this code is the same as that for
Figure 2-38.

FIGURE 2-40: VHDL Code for 4-Bit Adder Using the std_logic_unsigned Package

Tibrary IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity Adder4 is

port(A, B: 1in std_logic_vector(3 downto 0); Ci: in std_logic; --Inputs
S: out std_logic_vector(3 downto 0); Co: out std_logic); --Outputs

end Adder4;

architecture overload of Adder4 is
signal Sum5: std_logic_vector(4 downto 0);

begin

Sum5 <= '0' & A + B + Ci; --adder
S <= Sum5(3 downto 0);

Co <= Sum5(4);
end overload;

In this section, we have discussed four different packages, which provide over-
loaded operators for arithmetic and relational operations. We will initially use the
numeric_bit package because it is easiest to use and it is an IEEE standard. Starting
in Chapter 8, we will use the IEEE numeric_std package because it is an IEEE stan-
dard, provides multivalued signals, and is similar in functionality to the numeric_bit
package. We have chosen not to use the std_logic_arith and std_logic_unsigned
packages because they are not IEEE standards and they have less functionality than
the IEEE numeric_std package.

2.14

FIGURE 2-41: Cyclic
Shift Register

2.14 Modeling Registers and Counters Using VHDL Processes 95

Modeling Registers and Counters Using
VHDL Processes

When several flip-flops change state on the same clock edge, statements represent-
ing these flip-flops can be placed in the same clocked process. Figure 2-41 shows
three flip-flops connected as a cyclic shift register. These flip-flops all change state
following the rising edge of the clock. We have assumed a 5-ns propagation delay
between the clock edge and the output change. Immediately following the clock
edge, the three statements in the process execute in sequence with no delay. The new
values of the Q’s are then scheduled to change after 5 ns. If we omit the delay and
replace the sequential statements with

Q1 <= Q3; Q2 <= Q1; Q3 <= Q2;

the operation is basically the same. The three statements execute in sequence in zero
time, and then the Q’s values change after a delta delay. In both cases, the old val-
ues of Q,, Q,, and Q, are used to compute the new values. This may seem strange at
first, but that is the way the hardware works. At the rising edge of the clock, all of
the D inputs are loaded into the flip-flops, but the state change does not occur until
after a propagation delay.

CLK progess(CLK)
begin
[““" if CLK'event and CLK = '1l' then
D Qo Ql <= Q3 after 5 ns;

Q2 <= Q1 after 5 ns;
Q3 <= Q2 after 5 ns;

Li end if;
D Qg —! end process;

Figure 2-42 shows a simple register that can be loaded or cleared on the rising
edge of the clock. If CLR = ‘1’, the register is cleared, and if Ld = ‘1°, the D inputs
are loaded into the register. This register is fully synchronous so that the Q outputs
only change in response to the clock edge and not in response to a change in Ld or
CLR. In the VHDL code for the register, Q and D are bit-vectors dimensioned
3 downto 0. Since the register outputs can only change on the rising edge of
the clock, CLR is not on the sensitivity list. It is tested after the rising edge of the
clock. If CLR = Ld = ‘0’, no change of Q occurs. Since CLR is tested before Ld, if
CLR = ‘1", the elsif prevents Ld from being tested and CLR overrides Ld.

96 Introduction to VHDL

FIGURE 2-42:
Register with
Synchronous
and Load

Clear

bbb
Ld—— begin
_ CLR—— if CLK'event and CLK = '1' then
Register if CLR = '1' then Q <= "0000";
elsif Ld = '1' then Q <= D;
D3 D, D; Do CI/'\K end if;
T T T T | end if;
end process;

Next, we will model a left shift register using a VHDL process. The register in
Figure 2-43 is similar to that in Figure 2-42, except that we have added a left shift
control input (LS). When LS is ‘1, the contents of the register are shifted left and
the rightmost bit is set equal to R, . The shifting is accomplished by taking the right-
most 3 bits of 0,Q(2 downto 0),and concatenating them with R, . For example,
if 0 = “1101”and R, = ‘0’,then Q(2 downto 0) & Rin = “1010”,and this value
is loaded back into the Q register on the rising edge of CLK. The code implies that
if CLR = Ld = LS = ‘0’, then Q remains unchanged.

FIGURE 2-43: Left Shift Register with Synchronous Clear and Load

Js (L Jl JO process (CLK)
‘——tg begin
e if CLK'event and CLK = '1' then
LR LSRRy~ if CLR = '1' then Q <= "0000";
CLK . b D D elsif Ld = '1' then Q <= D;
G G elsif LS = '1' then Q <= Q(2 downto 0) & Rin;
| T T T T end 1if;
end 1if;
end process;

Figure 2-44 shows a simple synchronous counter. On the rising edge of the clock,
the counter is cleared when CIrN = ‘0’, and it is incremented when CIrN = En = ‘1’.
In this example, the signal Q represents the 4-bit value stored in the counter. Since
addition is not defined for bit-vectors, we have declared Q to be of type unsigned. Then
we can increment the counter using the overloaded “ + ” operator that is defined in
the ieee.numeric_bit package. The statement Q <= Q + 1; increments the counter.
When the counter is in state “1111”, the next increment takes it back to state “0000”.

Now, let us create a VHDL model for a generic counter, the 74163. It is a 4-bit
fully synchronous binary counter, which is available in both TTL and CMOS logic
families. Although rarely used in new designs at present, it represents a general type
of counter that is found in many CAD design libraries. In addition to performing the

2.14 Modeling Registers and Counters Using VHDL Processes 97

FIGURE 2-44: VHDL Code for a Simple Synchronous Counter

Q
‘ ‘ ‘ signal Q: unsigned (3 downto 0);
Q% Q Q Q process (CLK)
Enpe—r begin
CLRb— CIrN if CLK'event and CLK = '1' then
Counter if CIrN = '0' then Q <= "0000";
elsif En = '1' then Q <= Q + 1;
CLK end if;
end if;

FIGURE 2-45: 74163
Counter Operation

end process;

counting function, it can be cleared or loaded in parallel. All operations are syn-
chronized by the clock, and all state changes take place following the rising edge of
the clock input. A block diagram of the counter is provided in Figure 2-45.

This counter has four control inputs—CIrN, LdN, P,and T. P and T are used to

enable the counting function. Operation of the counter is as follows:

1.
2.

3.

If CIrN = (¢, all flip-flops are set to ‘0’ following the rising clock edge.

If CIrN =°1" and LdN = ‘0’, the D inputs are transferred in parallel to the
flip-flops following the rising clock edge.

If ClrN = LdN = ‘1’and P = T = ‘1’, the count is enabled and the counter state
will be incremented by 1 following the rising clock edge.

If T = ‘1", the counter generates a carry (C_) in state 15, so

that CIrN overrides the load and count functions in the sense that when CIrN =

Coul = Q3 Q2 Ql QO r

The truth table in Figure 2-45 summarizes the operation of the counter. Note
40”

Con | Q3 Q2 Q1 Qo _r .« '||:"
74163 Ldb— LdN
BRRRED
Control Signals Next State
ChrN LdN PT | Q3 Q Qi Qg
0 X X 0 0 0 0 (clear)
1 0 X D; D, D; Dy (paralle load)
1 1 0 Qs Q2 Qi Qo (increment count)
1 1 1 present state + 1 (no change)

98 Introduction to VHDL

clearing occurs regardless of the values of LdN, P, and T. Similarly, LdN overrides
the count function. The CIrN input on the 74163 is referred to as a synchronous clear
input because it clears the counter in synchronization with the clock, and no clear-
ing can occur if no clock pulse is present.

The VHDL description of the counter is shown in Figure 2-46. Q represents the
four flip-flops that comprise the counter. The counter output, Q_ , changes whe
never Q changes. The carry output is computed whenever Q or T changes. The first
if statement in the process tests for a rising edge of Clk. Since clear overrides load
and count, the next if statement tests CIrN first. Since load overrides count, LdN is
tested next. Finally, the counter is incremented if both P and 7 are ‘1’. Since Q is of
type unsigned, we can use the overloaded "+" operator from the ieee.numeric_bit
package to add 1 to increment the counter. The expression Q+1 would not be legal
if Q were a bit-vector since addition is not defined for bit-vectors.

FIGURE 2-46: 74163 Counter Model

Tibrary IEEE;

entity c74163 is
port(LdN, CIrN,

-- 74163 FULLY SYNCHRONOUS COUNTER

use IEEE.numeric_bit.all;

P, T, Clk: in bit;

D: 1in unsigned(3 downto 0);
Cout: out bit; Qout: out unsigned(3 downto 0));

end c74163;
architecture b74163 of c74163 is
signal Q: unsigned(3 downto 0); -- Q is the counter register
begin
Qout <= Q;
Cout <= Q(3) and Q(2) and Q(1) and Q(0) and T;
process (Clk)
begin
if Clk'event and Clk = '1"' then -- change state on rising edge
if CIrN = '0' then Q <= "0000";
elsif LdN = '0' then Q <= D;
elsif (P and T) = '1' then Q <= Q + 1;
end if;
end if;
end process;
end b74163;

To test the counter, we have cascaded two 74163’s to form an 8-bit counter
(Figure 2-47). When the counter on the right is in state 1111 and 7', = ‘1°, Carryl = ‘1".
Then for the left counter, PT = ‘1’ if P = ‘1’.If PT = ‘1’, on the next clock the right
counter is incremented to 0000 at the same time the left counter is incremented.

FIGURE 2-47: Two
74163 Counters
Cascaded to Form
an 8-Bit Counter

2.14 Modeling Registers and Counters Using VHDL Processes 99

Qoutz Qoutl
— —
L] L]
Cary2 Q3 Q2 Q1 Qo P <_Ca$ry1 Q3 Q2 Q1 Qo PP
Cot p1e3 T Cot 24163 T
Ldp— LdN Ldp— LdN
D; D, D; D, Clrp—CIrN Ds D, D, D, Clrp— CIrN
Pt R
Din2 Din1
Clk

Figure 2-48 shows the VHDL code for the 8-bit counter. In this code we have used
the 74163 model as a component and instantiated two copies of it. For convenience
in reading the output, we have defined a signal Count, which is the integer equiva-
lent of the 8-bit counter value. The function to_integer converts an unsigned
vector to an integer.

Let us now synthesize the VHDL code for a left shift register (Figure 2-43).
Before synthesis is started, we must specify a target device (e.g., a particular FPGA

FIGURE 2-48: VHDL for 8-Bit Counter

Tibrary IEEE;

port(CIrN,

--Test module for 74163 counter

use IEEE.numeric_bit.ALL;

entity eight_bit_counter is

LdN, P, T1, Clk: 1in bit;

Dinl, Din2: 1in unsigned(3 downto 0);
Count: out integer range 0 to 255;

Carry2: out bit);
end eight_bit_counter;

architecture cascaded_counter of eight_bit_counter is
component c74163
port(LdN, CIrN, P, T, Clk: 1in bit;
D: 1in unsigned(3 downto 0);
Cout: out bit; Qout: out unsigned(3 downto 0));
end component;

signal Carryl: bit;

signal Qoutl, Qout2: unsigned(3 downto 0);

begin
ctl: c74163 port map (LdN, ClrN, P, T1, Clk, Dinl, Carryl, Qoutl);
ct2: c74163 port map (LdN, ClrN, P, Carryl, Clk, Din2, Carry2, Qout2);
Count <= to_integer(Qout2 & Qoutl);

end cascaded_counter;

100 introduction to VHDL

FIGURE 2-49:
Synthesis of VHDL
Code for Left Shift
Register from
Figure 2-43

or CPLD) so that the synthesizer knows what components are available. Let us
assume that the target is a CPLD or FPGA that has D flip-flops with clock enable
(D-CE flip-flops). Q and D are 4-bit vectors. Because updates to Q follow
"CLK'event and CLK = "1" then", this infers that Q must be a register com-
posed of four flip-flops, which we will label Q,, Q,, O, and Q,. Since the flip-flops
can change state when Clr, Ld, or Ls is ‘1’, we connect the clock enables to an OR
gate whose outputis Clr + Ld + Ls.Then we connect gates to the D inputs to select
the data to be loaded into the flip-flops. If Clr = ‘0’ and Ld = ‘1°, D is loaded into
the register on the rising clock edge. If Clr = Ld = ‘0’ and Ls = ‘1", then Q, is
loaded into Q,, Q, is loaded into Q,, and so on. Figure 2-49 shows the logic circuit
for the first two flip-flops. If Clr = ‘1°, the D flip-flop inputs are ‘0’and the register
is cleared.

Q3 Q

CE D CE D

T
Clr CLK CLK
Ld
Ls

Cr Ld Dy CIfLd Ls Q, CIr Ld D, CIrLd LsQ,

A VHDL synthesizer cannot synthesize delays. Clauses of the form "after
time-expression" will be ignored by most synthesizers, but some synthesizers
require that after clauses be removed. Although initial values for signals may be
specified in port and signal declarations, these initial values are ignored by the
synthesizer. A reset signal should be provided if the hardware must be set to a spe-
cific initial state. Otherwise, the initial state of the hardware may be unknown and
the hardware may malfunction. When an integer signal is synthesized, the integer is
represented in hardware by its binary equivalent. If the range of an integer is not
specified, the synthesizer will assume the maximum number of bits, usually 32. Thus

signal count: integer range 0 to 7;
would result in a 3-bit counter, but
signal count: integer;

could result in a 32-bit counter.

VHDL signals retain their current values until they are changed. This can result
in creation of unwanted latches when the code is synthesized. For example, in a com-
binational process, the statement

if X = '1' then B <= 1; end 1if;

2.15

FIGURE 2-50:
Different Levels of
Abstraction of a
NAND Device

2.15 Behavioral and Structural VHDL 101

would create latches to hold the value of B when X changes to ‘0’. To avoid creation
of unwanted latches in a combinational process, always include an else clause in
every if statement. For example,

if X = '1' then B <= 1 else B <= 0; end 1if;

would create a MUX to switch the value of B from 1 to 0.

Behavioral and Structural VHDL

Any circuit or device can be represented in multiple forms of abstraction. Consider
the different representations for a NAND gate, as illustrated in Figure 2-50. When
hearing the term NAND, different designers, depending on the domain of their
design level, think of these different representations of the same NAND device.

NOT AND
(@) Behavior
C <= not(A and B) |-
CMOS 7400
1
21& b3 !
4 SSI Gates
(b) 5|& b—6
Lz
13| o—11
9 |
Al y
© c Logic
Bi
Vdd
A—] b—B Y
(d) c Transistor
A—
B
Y

(® Layout

102 Introduction to VHDL

FIGURE 2-51: A
Block Diagram with
A, B, C as Inputs
and F= AB + BC as
Output

FIGURE 2-52: Two
Implementations of
F=AB+ BC

Some would think of just a block representing the behavior of a NAND operator,
as illustrated in Figure 2-50(a). Some others might think of the four gates in a
CMOS 7400 chip, as in Figure 2-50(b). For designers who work at the logic level,
they think of the logic symbol for a NAND gate, as in Figure 2-50(c). Transistor-level
circuit designers think of the transistor-level circuit to achieve the NAND function-
ality, as in Figure 2-50(d). What passes through the mind of a physical level designer
is the layout of a NAND gate, as in Figure 2-50(e). All of the figures represent the
same device, but they differ in the amount of detail provided in the description.

Just as a NAND gate can be described in different ways, any logic circuit can be
described with different levels of detail. Figure 2-51 indicates a behavioral level repre-
sentation of the logic function F = ab + bc, whereas Figures 2-52 represents 2 equiva-
lent structural representations. The functionality specified in the abstract description in
Figure 2-51 can be achieved in different ways, two examples of which are by using two
AND gates and one OR gate or three NAND gates. A structural description gives dif-
ferent descriptions for Figures 2-52(a) and 2-52(b), whereas the same behavioral
description could result in either of these two representations. A structural description
specifies more details, whereas the behavioral level description only specifies the
behavior at a higher level of abstraction.

A —»
B— — F=AB+BC
C—»
A A
B B
C C
(a) using AND-OR (b) using NAND

You noticed that the same circuit can be described in different ways. Similarly,
VHDL allows you to create design descriptions at multiple levels of abstraction. The
most common ones are behavioral models, dataflow (register transfer language
[RTL]) models, and structural models. Behavioral VHDL models describe the circuit
or system at a high level of abstraction without implying any particular structure or
technology. Only the overall behavior is specified. In contrast, in structural models, the
components used and the structure of the interconnection between the components
are clearly specified. Structural models may be detailed enough to specify use of par-
ticular gates and flip-flops from specific libraries/packages. The structural VHDL
model is at a low level of abstraction. VHDL code can be written at an intermediate
level of abstraction, at the dataflow level or RTL level, in addition to pure behavioral

FIGURE 2-53:

State Table and
Block Diagram of
Sequential Machine

2.15 Behavioral and Structural VHDL 103

level or structural level. Register transfer languages have been used for decades to
describe the behavior of synchronous systems where a system is viewed as registers
plus control logic required to perform loading and manipulation of registers. In the
dataflow model, data path and control signals are specified. The working of the sys-
tem is described in terms of the data transfer between registers.

If designs are specified at higher levels of abstraction, they need to get converted
to the lower levels in order to get implemented. In the early days of design automation,
there were not enough automatic software tools to perform this conversion; hence,
designs needed to be specified at the lower levels of abstraction. Designs were entered
using schematic capture or lower levels of abstraction. Nowadays, synthesis tools per-
form very efficient conversion of behavioral level designs into target technologies.

Behavioral and structural design techniques are often combined. Different parts
of the design are often done with different techniques. State-of-the-art design automa-
tion tools generate efficient hardware for logic and arithmetic circuits; hence, a large
part of those designs is done at the behavioral level. However, memory structures
often need manual optimizations and are done by custom design, as opposed to
automatic synthesis.

2.15.1 Modeling a Sequential Machine

In this section, we discuss several ways of writing VHDL descriptions for sequential
machines. Let us assume that we have to write a behavioral model for a Mealy sequen-
tial circuit represented by the state table in Figure 2-53 (note that this is the BCD to
excess-3 code converter designed in Chapter 1). A block diagram of this state machine
is also shown in Figure 2-53. This view of the circuit can be used to write its entity
description. Please note that the current state and next state are not visible externally.

NS z ‘s - __ .
PS | X=0 X=1|X=0 X=1 > > Comk_)maponal NS >
circuit >
20 gl 32 i 8 State
1 3 4 ’
S, Sy Ss 0 1 CLK —>— ___________ > register
S3 Ss S5 0 1
S, | Ss Sg 1 0
5 | So So 0 1 PS
Sg So — 1 —

There are several ways to model this sequential machine. One approach would
be to use two processes to represent the two parts of the circuit. One process mod-
els the combinational part of the circuit and generates the next state information
and outputs. The other process models the state register and updates the state at the
appropriate edge of the clock. Figure 2-54 illustrates such a model for this Mealy
machine. The first process represents the combinational circuit. At the behavioral
level, we will represent the state and next state of the circuit by integer signals ini-
tialized to 0. Please remember that this initialization is meaningful only for simula-
tions. Since the circuit outputs, Z and Nextstate, can change when either the State or
X changes, the sensitivity list includes both State and X. The case statement tests the

104 introduction to VHDL

value of State, and depending on the value of X, Z and Nextstate are assigned new
values. The second process represents the state register. Whenever the rising edge of
the clock occurs, State is updated to the value of Nextstate, so CLK appears in the
sensitivity list. The second process will simulate correctly if written as

process (CLK) -- State Register
begin
if CLK = '1" then -- rising edge of clock (simulation)
State <= Nextstate;
end if;

end process;

but in order to synthesize with edge-triggered flip-flops, the c1k'event attribute
must be used, as in

process (CLK) -- State Register
begin -- (synthesis)
if CLK'event and CLK = '"1' then -- rising edge of clock
State <= Nextstate;
end if;

end process;

In Figure 2-54, State is an integer with range 0 to 6. The statement when
others => nul1 is not actually needed here because the outputs and next states
of all possible values of State are explicitly specified; however, it should be included
whenever the else clause of any if statement is omitted or when actions for all
possible values of State are not specified. The null implies no action, which is appro-
priate since the other values of State should never occur. If else clauses are omitted
or actions for any conditions are unspecified, synthesis typically results in creation
of latches.

FIGURE 2-54: Behavioral Model for Excess-3 Code Converter

-- This is a behavioral model of a Mealy state machine (Figure 2-53)
-- based on its state table. The output (Z) and next state are

-- computed before the active edge of the clock. The state change

-- occurs on the rising edge of the clock.

entity Code_Converter is
port(X, CLK: 1in bit;
Z: out bit);
end Code_Converter;

architecture Behavioral of Code_Converter is
signal State, Nextstate: integer range 0 to 6;
begin

process(State, X) -- Combinational Circuit

begin

case State is
when 0 =>
if X = '0' then Z <= '1'; Nextstate <= 1;

else Z <=
when 1 =>
if X
else
when 2
if X
else
when 3
if X
else
when 4
if X
else
when 5
if X
else <=
when 6 =>
if X = '0'
else 7Z <=
when others
end case;
end process;

0’
<=
>
0"
<=
>
'
<=
>
'
<=
>
'

NI N NI N

Nl

process (CLK)
begin

2.15 Behavioral and Structural VHDL 105

'0'; Nextstate <= 2; end if;

then Z <= '1'; Nextstate <= 3;
'0'; Nextstate <= 4; end if;

then Z <= ‘0’; Nextstate <= 4;
'l'; Nextstate <= 4; end if;

then Z <= '0'; Nextstate <= 5;
'1l'"; Nextstate <= 5; end 1if;

then Z <= '1'; Nextstate <= 5;
'0'; Nextstate <= 6; end if;

then Z <= '0'; Nextstate <= 0;
'1l'"; Nextstate <= 0; end if;

then Z <= '"1'; Nextstate <= 0;

'0'; Nextstate <= 0; end if;
=> null; -- should not occur

-- State Register

if CLK'EVENT and CLK = '"1' then -- rising edge of clock
State <= Nextstate;

end if;
end process;
end Behavioral;

A simulator command file that can be used to test Figure 2-54 is as follows:

add wave CLK X State NextState Z

force CLK 0 0, 1 100 -repeat 200

force X 0 0, 1 350, O 550, 1 750, O 950, 1 1350
run 1600

The first command specifies the signals that are to be included in the waveform
output. The next command defines a clock with a period of 200 ns. CLK is ‘0’ at time
0 ns, is ‘17 at time 100 ns, and repeats every 200 ns. In a command of the form

force signal_name vl tl1, v2 t2,

signal_name gets the value v1 at time t1, the value v2 at time t2, and so on. X
is ‘0’ at time 0 ns, changes to ‘1’ at time 350 ns, changes to ‘0’ at time 550 ns, and so
on. The X input corresponds to the sequence 0010 1001, and only the times at which
X changes are specified. Execution of the preceding command file produces the
waveforms shown in Figure 2-55.

In Chapter 1, we manually designed this state machine (Figure 1-26). This cir-
cuitry contained three flip-flops, four 3-input NAND gates, two 3-input NAND

106 Introduction to VHDL

FIGURE 2-55:
Simulator Output
for Excess-3 Code
Converter

Ielk [7 LTI 11 [I 1
Ix O I [
Istate {0 X1 X3 X5 X0 X2 X4 X5 Xo)
Inextstate {1 X3 X5 Yo XzX2 Xa X5 X0 X2)
Iz [T 1 1 | [1
0 500 1000 1500

gates, and one inverter. The behavioral model of Figure 2-54 may not result in exactly
that circuit. In fact, when we synthesized it using Xilinx ISE tools, we got a circuit
that contains seven D-flip-flops, fifteen 2-input AND gates, three 2-input OR gates,
and one 7-input OR gate. Apparently, the Xilinx synthesis tool may be using one-
hot design by default, instead of encoded design. One-hot design is a popular
approach for FPGAs, where flip-flops are abundant.

Figure 2-56 shows an alternative behavioral model for the code converter that
uses a single process instead of two processes. The next state is not computed explic-
itly, but instead the state register is updated directly to the proper next state value
on the rising edge of the clock. Since Z can change whenever State or X changes, Z
should not be computed in the clocked process. Instead, we have used a conditional
assignment statement to compute Z. If Z were updated in the clocked process, then
a flip-flop would be created to store Z and Z would be updated at the wrong time. In
general, the two-process model for a state machine is preferable to the one-process
model, since the former corresponds more closely to the hardware implementation
which uses a combinational circuit and a state register.

FIGURE 2-56: Behavioral Model for Code Converter Using a Single Process

-- This is a behavioral model of the Mealy state machine for BCD to

-- Excess-3 Code Converter based on its state table. The state change
-- occurs on the rising edge of the clock. The output is computed by a
-- conditional assignment statement whenever State or Z changes.

entity Code_Converter is

port(X, CLK: 1in bit;
Z: out bit);
end Code_Converter;

architecture one_process of Code_Converter is
signal State: integer range 0 to 6 := 0;
begin

process (CLK)

begin

if CLK'event and CLK = '1' then
case State is
when 0 =>
if X = '0' then State <= 1; else State <= 2; end if;

2.15 Behavioral and Structural VHDL 107

when 1 =>
if X = '0' then State <= 3; else State <= 4; end if;
when 2 =>
State <= 4;
when 3 =>
State <= 5;
when 4 =>
if X = '0' then State <= 5; else State <= 6; end if;
when 5 =>
State <= 0;
when 6 =>
State <= 0;
end case;
end if;

end process;

Z <= '1l' when (State = 0 and X = '0') or (State =1 and X = '0")
or (State =2 and X = '1'") or (State =3 and X = '1")
or (State =4 and X = '0') or (State =5 and X = '1")
or State = 6
else '0';

end one_process,;

Another way to model this Mealy machine is using the dataflow approach
(i.e., using equations). The dataflow VHDL model of Figure 2-57 is based on the next
state and output equations, which are derived in Chapter 1 (Figure 1-25). The flip-
flops are updated in a process that is sensitive to CLK. When the rising edge of the
clock occurs, Q,, Q,,and Q, are all assigned new values. A 10-ns delay is included to
represent the propagation delay between the active edge of the clock and the change
of the flip-flop outputs. Even though the assignment statements in the process are
executed sequentially, Q,, Q,, and Q, are all scheduled to be updated at the same
time, T + A, where T is the time at which the rising edge of the clock occurred. Thus,

FIGURE 2-57: Sequential Machine Model Using Equations

-- The following 1is a description of the sequential machine of
-- the BCD to Excess-3 code converter in terms of its next state
-- equations. The following state assignment was used:

-- S0-->0; S1-->4; S2-->5; S3-->7; S4-->6; S5-->3; S6-->2

entity Code_Converter is
port(X, CLK: 1in bit;
Z: out bit);
end Code_Converter;

architecture Equations of Code_Converter is
signal Q1, Q2, Q3: bit;
begin

process (CLK)

108 Introduction to VHDL

begin
if CLK = '1' and CLK'event then -- rising edge of clock
Q1 <= not Q2 after 10 ns;
Q2 <= Q1 after 10 ns;
Q3 <= (Q1 and Q2 and Q3) or (not X and Q1 and not Q3) or
(X and not Q1 and not Q2) after 10 ns;
end 1if;
end process;
Z <= (not X and not Q3) or (X and Q3) after 20 ns;
end Equations;

the old value of Q, is used to compute Q7 , and the old values of Q,, Q,, and Q, are
used to compute Q7. The concurrent assignment statement for Z causes Z to be
updated whenever a change in X or Q, occurs. The 20-ns delay represents two gate
delays. Note that in order to do VHDL modeling at this level, we need to perform
state assignments, derive next state equations, and so on. In contrast, at the behav-
ioral level, the state table was sufficient to create the VHDL model.

Yet another approach to creating a VHDL model of the aforementioned Mealy
machine is to create a structural model describing the gates and flip-flops in the cir-
cuit. Figure 2-58 shows a structural VHDL representation of the circuit of Figure 1-20.
Note that the designer had to manually perform the design and obtain the gate level
circuitry here in order to create a model as in Figure 2-58. Seven NAND gates, three
D flip-flops, and one inverter are used in the design presented in Chapter 1. When
primitive components like gates and flip-flops are required, each of these components
can be defined in a separate VHDL module. Depending on which CAD tools are
used, the component modules can be included in the same file as the main VHDL
description, or they be inserted as separate files in a VHDL project. The code in
Figure 2-58 requires component modules DFF, Nand3, Nand2, and Inverter. CAD
tools might include packages with similar components. If such packages are used, one
should use the exact component names and port-map statements that match the
input-output signals of the component in the package. The DFF module is as follows:

--D Flip-Flop
entity DFF is
port(D, CLK: 1in bit;
Q: out bit; QN: out bit := '1");
-- initialize QN to 'l' since bit signals are defaulted to 'O’
end DFF;
architecture SIMPLE of DFF is

begin
process (CLK) -- process is executed when CLK changes
begin
if CLK'event and CLK = '"1' then -- rising edge of clock

Q <= D after 10 ns;
QN <= not D after 10 ns;
end if;
end process;
end SIMPLE;

FIGURE 2-58: Structural Model of Sequential Machine

2.15 Behavioral and Structural VHDL 109

-- The following is a STRUCTURAL VHDL description of
-- the circuit to realize the BCD to Excess-3 code Converter.

-- This circuit was illustrated in Figure 1-20.

-- Uses components NAND3, NAND2, INVERTER and DFF
-- The component modules can be included in the same file

-- or they can be inserted as separate files.

entity Code_Converter is
port(X,CLK: 1in bit;
Z: out bit);
end Code_Converter;

architecture Structure of Code_Converter is

component DFF

port(D, CLK: 1in bit; Q: out bit; QN: out bit

end component;

component Nand?2
port(Al, A2: 1in bit; Z: out bit);

end component;

component Nand3
port(Al, A2, A3: 1in bit; Z: out bit);

end component;

component Inverter
port(A: 1in bit; Z: out bit);

end component;

signal Al, A2, A3, A5, A6, D3: bit;

signal Q1, Q2, Q3: bit;

signal QIN, Q2N, Q3N, XN: bit;

begin
I1: Inverter port map (X, XN);
Gl: Nand3 port map (Ql, Q2, Q3, Al);
G2: Nand3 port map (Ql, Q3N, XN, A2);
G3: Nand3 port map (X, QIN, Q2N, A3);
G4: Nand3 port map (Al, A2, A3, D3);
FF1: DFF port map (Q2N, CLK, Ql, QIN);
FF2: DFF port map (Ql, CLK, Q2, Q2N);
FF3: DFF port map (D3, CLK, Q3, Q3N);
G5: Nand2 port map (X, Q3, A5);
G6: Nand2 port map (XN, Q3N, A6);
G7: Nand2 port map (A5, A6, Z);

end Structure;

The Nand3 module is as follows:

--3 input NAND gate
entity Nand3 is

port(Al, A2, A3: 1in bit;

end Nand3;

= '1");

Z: out bit);

110 Introduction to VHDL

FIGURE 2-59:
Waveforms for
Code Converter

architecture concur of Nand3 is
begin

Z <= not (Al and A2 and A3) after 10 ns;
end concur;

The Nand2 and Inverter modules are similar except for the number of inputs. We
have assumed a 10-ns delay in each component, and this can easily be changed to
reflect the actual delays in the hardware being used.

Since Q,, Q,, and Q, are initialized to ‘0’, the complementary flip-flop outputs
(Q,N, O,N, and Q,N) are initialized to ‘1’. G, is a three-input NAND gate with
inputs Q,, Q,, Q,, and output A,. FF, is a D flip-flop with the D input connected to
O,N. Executing the simulator command file given next produces the waveforms of
Figure 2-59, which are very similar to Figure 1-39.

add wave CLK X Q1 Q2 Q3 Z

force CLK 0 0, 1 100 -repeat 200

force X 0 0, 1 350, 0 550, 1 750, O 950, 1 1350
run 1600

/clk I 1 I 1 1 I 1 I I 1 I 1
Ix — f —_ 1 [
fglt T gl I 1
192 1 I
g3+ 0 01 - LT
/z LI 1 1 1 I LT L
0 500 1000 1500

If we synthesized this structural description, we would get exactly the same
circuit that we had in mind. Now the circuit includes only three D-flip-flops, three
2-input NAND gates, and four 3-input NAND gates. Compare it against the seven
D-flip-flops, fifteen 2-input AND gates, three 2-input OR gates, and one 7-input
OR gate generated when Figure 2-54 was synthesized. When the designer speci-
fied all components and their interconnections, the synthesizer tool did not have
to infer or “guess.”

Those who have developed C code with assembly inlining may feel some similar-
ity to the phenomenon occurring here. By inlining the assembly code, you can pre-
cisely describe what microprocessor instruction sequence you want to be used, and
the compiler gives you that. In a similar way, the synthesizer does not actually have
to translate any structural descriptions that the designer wrote; it simply gives the
hardware that the designer specified in a structural fashion. Some optimizing tools
are capable of optimizing imperfect circuits that you might have specified. In general,
you have more control of the generated circuitry when you use structural coding.
However, it takes a lot more effort to produce a structural model because one needs
to perform state assignments, derive next-state equations, and so on. Time-to-market
is an important criterion for success in the IC market, and hence designers often use
behavioral design in order to achieve quick time-to-market. Additionally, CAD tools
have matured significantly during the past decade, and most synthesis tools are capa-
ble of producing efficient hardware for arithmetic and logic circuits.

2.16

2.16 Variables, Signals, and Constants 111

Variables, Signals, and Constants

So far, we have used only signals in the VHDL code and have not used variables.
VHDL also provides variables as in other general-purpose high-level languages.
Variables may be used for local storage in processes. They can also be used in pro-
cedures and functions (which are yet to be introduced). A large part of what is
described in this section is relevant only for simulation.

A variable declaration has the form

variable list_of_variable_names: type_name [:= initial_value];

Variables must be declared within the process in which they are used and are
local to that process. (An exception to this rule is shared variables, which are not dis-
cussed in this text.) Signals, on the other hand, must be declared outside of a process.
Signals declared at the start of an architecture can be used anywhere within that
architecture. A signal declaration has the form

signal Tist_of_signal_names: type_name [:= initial_valuel;
Variables are updated using a variable assignment statement of the form
variable_name := expression;

When this statement is executed, the variable is instantaneously updated with no
delay, not even a delta delay. In contrast, consider a signal assignment of the form

signal_name <= expression [after delay];

The expression is evaluated when this statement is executed, and the signal is
scheduled to change after delay. If no delay is specified, then the signal is scheduled
to be updated after a delta delay.

It is incorrect to use

variable_name <= expression [after delay];

When to Use a Signal versus Variable: If whatever you are modeling actually
corresponds to some physical signal in your circuit, you should use a signal. If
whatever you are modeling is simply a temporary value that you are using for
convenience of programming, a variable will be sufficient. Values represented
using variables will not appear on any physical wire in the implied circuit. If
you would like them to appear, you should use signals.

The examples in Figures 2-60 and 2-61 illustrate the difference between using
variables and signals in a process. The variables must be declared and initialized
inside the process, whereas the signals must be declared and initialized outside the
process. In Figure 2-60, if trigger changes at time = 10 ns, Varl, Var2, and Var3 are
computed sequentially and updated instantly, and then Sum is computed using the

112 Introduction to VHDL

FIGURE 2-60: Process Using Variables and Corresponding Simulation Output

entity dummy is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;

begin
process

variable varl: integer:=1;

Simulation Output of 2-60
ns delta | trigger Varl Var2 Var3 Sum

. . . . 0 +0 0 1 2 3 0
variable var2: integer:=2; 0 +1 0 1 2 3 0
variable var3: integer:=3; 10 +0 1 5 5 5 0
begin 10 +1 1 5 5 5 15

wait on trigger;
varl := var2 + var3;
var2 := varl;

var3 := varz2;

sum <= varl + var2 + var3;

end process;
end var;

new variable values. The sequence is Varl =2 + 3 =5, Var2 = 5, Var3 = 5. Then
Sum =5 + 5 + 5 is computed. Since Sum is a signal, it is updated A time later, so
Sum =15 at time = 10 + A. In summary, variables work just as variables you
are used to in another language, whereas signals get updated with time delays. In
Figure 2-61, if trigger changes at time = 10 ns, signals Sigl, Sig2, Sig3, and Sum are
all computed at time 10 ns, but the signals are not updated until time 10 + A. The
old values of Sigl and Sig2 are used to compute Sig2 and Sig3. Therefore, at time =
10 + A, Sigl =5, Sig2 = 1, Sig3 = 2, and Sum = 6.

FIGURE 2-61: Process Using Signals and Corresponding Simulation Output

entity dummy is
end dummy;

end process;
end sig;

architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sigl: integer:=1;

signal sig2: integer:=2;

signal sig3: integer:=3;

begin Simulation Output of 2-61
process ns delta | trigger Sigl Sig2 Sig3 Sum
begin _ 0 +0 | 0 12 3 0

wait on trigger; 0 +1 0 1 2 3 0
sigl <= sig2 + sig3; 10 +0 1 1 2 3 0
sig2 <= sigl; 10 +1 1 5 1 2 6
sig3 <= sig2;

sum <= sigl + sig2 + sig3;

2.16 Variables, Signals, and Constants 113

During simulation, initialization makes the process execute once, and it stops
when wait statements are encountered. Hence, simulation outputs can vary depend-
ing on whether the wait statements are put at the beginning of the process, end of
the process, or whether a sensitivity list is used. Figures 2-62 and 2-63 illustrate var-
ious possibilities. Please remember that these differences are not important when
VHDL is used for synthesis of hardware. These are subtle differences that only
affect simulation of behavioral VHDL.

FIGURE 2-62: Process Using Variables and Corresponding Simulation Output

entity dummy 1is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;

begin . .
process (trigger) Simulation Output of 2-62
variable varl: integer:=1; ns delta | trigger Varl Var2 Var3 Sum
variable var2: integer:=2; 8 +? 8 % % g 12
3 — 2 +
Z:;}:b1e var3: integer:=3; 0 +o 1 1 1 n 13
10 +1 1 10 10 10 30
varl := var2 + var3;
var2 := varl;
var3 := varz;

sum <= varl + var2 + vars3;
end process;
end var;

FIGURE 2-63: Process Using Signals and Corresponding Simulation Output

entity dummy is
end dummy;

architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sigl: integer:=1;

signal sig2: integer:=2;

signal sig3: integer:=3; Simulation Output of 2-63
begin ns delta | trigger Sigl Sig2 Sig3 Sum
process(trigger) 0 +0 0 1 2 3 0
A I R
sigl <= sig2 + sig3;
sig2 <= sigl; 10 +1 1 3 5 1 8
sig3 <= sig2;

sum <= sigl + sig2 + sig3;
end process;
end sig;

114 Introduction to VHDL

2.17

2.16.1 Constants

Like variables, constants are also used for convenience of programming.
A common form of constant declaration is

constant constant_name: type_name := constant_value;
A constant delayl of type time, having the value of 5 ns, can be defined as
constant delayl: time := 5 ns;

Constants declared at the start of an architecture can be used anywhere with-
in that architecture, but constants declared within a process are local to that
process.

Variables, signals, and constants can have any one of the predefined VHDL
types, or they can have a user-defined type.

Arrays

Digital systems often use memory arrays. VHDL arrays can be used to specify the
values to be stored in these arrays. A key feature of VLSI circuits is the repeated use
of similar structures. Arrays in VHDL can be used while modeling the repetition.

In order to use an array in VHDL, we must first declare an array type and
then declare an array object. For example, the following declaration defines a
one-dimensional array type named SHORT_WORD:

type SHORT_WORD 1is array (15 downto 0) of bit;

An array of this type has an integer index with a range from 15 downto 0, and
each element of the array is of type bit. SHORT_WORD is the name of the newly
created data type. We may note that SHORT_WORD is nothing but a bit_vector of
size 16.

Now, we can declare array objects of type SHORT_WORD as follows:

signal DATA_WORD: SHORT_WORD;
variable ALT_WORD: SHORT_WORD := "0101010101010101";
constant ONE_WORD: SHORT_WORD := (others => '1');

Three different arrays are defined by the preceding statements. DATA_WORD
is a signal array of 16 bits, indexed 15 downto 0, which is initialized (by default) to
all ‘0’ bits. ALT_WORD is a variable array of 16 bits, which is initialized to alter-
nating 0’s and 1’s. ONE_WORD is a constant array of 16 bits; all bits are set to 1 by
(others => "1").

We can reference individual elements of the defined array by specifying an index
value. For example, ALT_WORD(0) accesses the rightmost bit of ALT_WORD.We
can also specify a portion of the array by specifying an index range: ALT_WORD (5
downto 0) accesses the low-order 6 bits of ALT_WORD, which have an initial value
of “010101”.

I
Example

2.17 Arrays 115

The array type and array object declarations illustrated here have the general
forms

type array_type_name 1is array index_range of element_type;
signal array_name: array_type_name [:= initial_values];

In the preceding declaration, signal may be replaced with variable or constant.

2.17.1 Matrices

Multidimensional array types may also be defined with two or more dimensions.
The following example defines a two-dimensional array variable, which is a matrix
of integers with four rows and three columns:

type matrix4x3 1is array (1 to 4, 1 to 3) of integer;
variable matrixA: matrix4x3 := ((1, 2, 3), (4, 5, 6), (7, 8, 9),
(10, 11, 12));

The variable matrixA will be initialized to

1 2 3
4 5 6
7 8 9
10 11 12

The array element matrixA(3, 2) references the element in the third row and second
column, which has a value of 8.

When an array type is declared, the dimensions of the array may be left unde-
fined. This is referred to as an unconstrained array type. For example,

type intvec 1is array (natural range <>) of integer;

declares intvec as an array type that defines a one-dimensional array of integers
with an unconstrained index range of natural numbers. The default type for array
indices is integer, but another type may be specified. Since the index range is not
specified in the unconstrained array type, the range must be specified when the
array object is declared. For example,

signal intvec5: intvec(l to 5) := (3, 2, 6, 8, 1);

defines a signal array named intvec5 with an index range of 1 to 5 that is initialized
to 3,2, 6,8, 1. The following declaration defines matrix as a two-dimensional array
type with unconstrained row and column index ranges:

type matrix is array (natural range <>, natural range <>) of
integer;

Parity bits are often used in digital communication for error detection and correction. The
simplest of these involve transmitting one additional bit with the data, a parity bit. Use
VHDL arrays to represent a parity generator that generates a 5-bit-odd-parity generation for
a 4-bit input number using the look-up table (LUT) method.

116 Introduction to VHDL

Answer

The input word is a 4-bit binary number. A 5-bit odd-parity representation will contain
exactly an odd number of 1’s in the output word. This can be accomplished by the read-only
memory (ROM) method using a look-up table of size 16 entries X 5 bits. The look-up table
is indicated in Figure 2-64.

FIGURE 2-64: LUT Input (LUT Address) Output (LUT Data)

Contents for a A B C D P 0 R S T

err';yrac‘;‘;fe o o0 o0 o]0 o 0o o0 1
0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 1 1 1
0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1 1
0 1 1 0 0 1 1 0 1
0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1
1 0 1 1 1 0 1 1 0
1 1 0 0 1 1 0 0 1
1 1 0 1 1 1 0 1 0
1 1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1

The VHDL code for the parity generator is illustrated in Figure 2-65. The IEEE numeric bit pack-
age is used here. X and Y are defined to be unsigned vectors. The first four bits of the output are
identical to the input. Hence, instead of storing all five bits of the output, we might store only the
parity bit and then concatenate it to the input bits. In the VHDL code (Figure 2-65), a new data
type OutTabTe is defined to be an array of 16 bits. A constant table of type OutTab1e is defined
using the following statement:

type OutTable 1is array(0 to 15) of bit;

The index of this array is an integer in the range 0 to 15. Hence, unsigned vector X needs to
be converted to an integer first, which can be done using the to_integer function defined
in the library.

FIGURE 2-65: Parity Code Generator Using the LUT Method

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity parity_gen is
port(X: 1in unsigned(3 downto 0);
Y: out unsigned(4 downto 0));
end parity_gen;

architecture Table of parity_gen is
type OutTable dis array(0 to 15) of bit;
signal ParityBit: bit;

2.18 Loops in VHDL 117

constant OT: OutTable := ('1','0','0','1','0','1','1','0",

begin

'0','1','1','0','1','0',IO','].');

ParityBit <= OT(to_integer(X));
Y <= X & ParityBit;

end Table;

2.18

Predefined unconstrained array types in VHDL include bit_vector and string,
which are defined as follows:

type bit_vector 1is array (natural range <>) of bit;
type string 1is array (positive range <>) of character;

The characters in a string literal must be enclosed in double quotes. For exam-
ple, “This is a string.” is a string literal. The following example declares a constant
stringl of type string:

constant stringl: string(l to 29) :=
"This string is 29 characters."

A bit_vector literal may be written either as a list of bits separated by commas
or as a string. For example, (‘1°,0°,1°,1°,0’) and “10110” are equivalent forms. The
following declares a constant A that is a bit_vector with a range O to 5:

constant A: bit_vector(0 to 5) := "101011";

After a type has been declared, a related subtype can be declared to include a
subset of the values specified by the type. For example, the type SHORT_WORD,
which was defined at the start of this section, could have been defined as a subtype
of bit_vector:

subtype SHORT_WORD 1is bit_vector (15 downto 0);

Two predefined subtypes of type integer are POSITIVE, which includes all positive
integers, and NATURAL, which includes all positive integers and 0.

Loops in VHDL

Often, we encounter systems where some activity is happening in a repetitive fash-
ion. VHDL loop statements can be used to express this behavior. A loop statement
is a sequential statement. VHDL has several kinds of loop statements including for
loops and while loops.

1. infinite loop

Infinite loops are undesirable in common computer languages, but they can
be useful in hardware modeling where a device works continuously and con-
tinues to work until the power is off.

118 Introduction to VHDL

The general form for an infinite loop is

[Toop-Tabel:] Toop
sequential statements
end Toop [Toop-Tabel];

An exit statement of the form
exit; or exit when condition;

may be included in the loop. The loop will terminate when the exit statement
is executed, provided that the condition is TRUE.

. for loop

One way to augment the basic loop is the for loop, where the number of invo-
cations of the loop can be specified.
The general form of a for loop is

[Toop-TabeTl:] for Toop-index in range Tloop
sequential statements
end Toop [loop-Tabel];

The Toop-index is automatically defined when the loop is entered, and it
should not explicitly be declared. It is initialized to the first value in the range
and then the sequential statements are executed. The range is specified,
for example as 0 to n, where # can be a constant or variable. The Toop-1index
can be used within the sequential statements inside the loop, but it can-
not be changed within the loop. When the end of the loop is reached, the Toop-
index is set to the next value in the range and the sequential state-
ments are executed again. This process continues until the loop has been
executed for every value in the range, and then the loop terminates. After the
loop terminates, the Toop-index is no longer available.

We could use this type of a loop in behavioral models. The following excerpt
models a 4-bit adder. The loop index (i) will be initialized to 0 when the for loop
is entered, and the sequential statements will be executed. Execution will be
repeated for i = 1,i = 2, and i = 3; then the loop will terminate. The carry out
from one iteration (cout) is copied to the carry in (cin) before the end of the
loop. Since variables are used for the sum and carry bits, the update of carry out
happens instantaneously. Code like this often appears in VHDL functions and
procedures (described in Chapter 8):

Toopl: for i in 0 to 3 Tloop
cout := (A(i) and B(i)) or (A(i) and cin) or (B(i) and cin);
sum(i) := A(i) xor B(i) xor cin;
cin := cout;

end Toop Toopl;

You could also use the for loop construct to create multiple copies of a
basic cell. When the preceding code is synthesized, the synthesizer typically
provides four copies of a 1-bit adder connected in a ripple carry fashion.

2.19 Assert and Report Statements 119

3. while loop

In the for loop, the loop index cannot be changed by the programmer.
However, in the while loop, the loop index can be manipulated by the pro-
grammer. So incrementing the loop index by 2 can be done in the while
loop. As in while loops in most languages, a condition is tested before each
iteration. The loop is terminated if the condition is false. The general form
of a while loop is

[Toop-Tabel:] while condition Toop
sequential statements
end Toop [loop-Tabel];

This construct is primarily for simulation.

Figure 2-66 illustrates a while loop that models a down counter. We use
the while statement to continue the decrementing process until the stop is
encountered or the counter reaches 0. The counter is decremented on every
rising edge of c1k until either the count is 0 or stop is 1.

FIGURE 2-66: Use of While Loop

while stop = '0' and count /= 0 Toop
wait until clk'event and clk = '1"';
count <= count - 1 ;

wait for O ns;

end Toop;

2.19

Assert and Report Statements

Once a VHDL model for a system is made, the next step is to test it. A model must
be tested and validated before it can be successfully used. VHDL provides some
special statements, such as assert, report, and severity, to aid in the testing and vali-
dation process.

The assert statement checks to see if a certain condition is true, and, if not, it
causes an error message to be displayed. One form of the assert statement is

assert boolean-expression
report string-expression
[severity severity-level;]

The assert statement specifies a Boolean expression which indicates the condition
to be met. If the condition has not been met, an assertion violation has occurred. If an
assertion violation occurs during simulation, the simulator reports it with the
string-expression provided in the report clause. If the boolean-expression
is false, then the string-expression is displayed on the monitor along with the
severity-Tlevel. If the boolean-expression is true, no message is displayed.

120 Introduction to VHDL

FIGURE 2-67:
Interfacing of
Signals while Using
a Test Bench to Test
a 4-Bit Adder

There are four possible severity-Tevels:note, warning, error, and failure. We can
include one of these to indicate the degree to which the violation of the particular
assertion affects the operation of the model. For instance, a serious violation may have
to be flagged as a failure, whereas some minor violation only needs to be flagged as a
note or warning. The action taken for these severity-levels depends on the simulator.
The severity-level is optional.

If the assert clause is omitted, then the report is always made. Thus, the statement

report "ALL IS WELL";

will display the message “ALL IS WELL” whenever the statement is executed.
Assert and report statements are very useful for creation of test benches. A test
bench is a piece of VHDL code that can provide input combinations to test a VHDL
model for the system under test. It provides stimuli to the system/circuit under test.
Test benches are frequently used during simulation to provide sequences of inputs to
the circuit/VHDL model under test. Figure 2-67 shows a test-bench for testing the
4-bit binary adder that we created earlier in this chapter. The adder we are testing
will be treated as a component and embedded in the test bench program. The signals
generated within the test bench are interfaced to the adder, as shown in Figure 2-67.
The test bench code in Figure 2-68 uses constant arrays to define the test inputs for
the adder and the expected outputs. It uses a for loop to select the inputs from the

Addend

A
Augend B
Test Carry in -lC 4-Bit
bench sum SI adder
- Carry out Co

FIGURE 2-68: Test Bench for 4-Bit Adder

end TestAdder;

end component;

entity TestAdder s

architecture testl of TestAdder is
component Adder4
port(A, B: 1in bit_vector(3 downto 0); Ci: 1in bit;
S: out bit_vector(3 downto 0); Co: out bit);

constant N: integer := 11;

type bv_arr dis array(l to N) of bit_vector(3 downto 0);

type bit_arr dis array(l to N) of bit;

constant addend_array: bv_arr := ("0111", "1101", "0101", "1101",

"0111", "1io000", "O111", "1000", "O0O0OO", "1111", "0000");
constant augend_array: bv_arr := ("O101", "0101", "1101", "1101",
110111|| , ||0111|| , ||1000|| , "1000" , II1101H , " 1111" , "0000") ;
constant cin_array: bit_arr := ('0', 'O', 'O', 'O', '1', 'O', '0O'",
'0', lll, lll’ IOI);

2.19 Assert and Report Statements 121

constant sum_array: bv_arr := ("1100", "0010", "0010", "1010",
"i111", "1111", "1111", "OOOO", "1110", "1111", "0000");
constant cout_array: bit_arr := ('0', '1', '1', '1', 'O0', '0', '0O',
'1', |0|, |1|’ |0|);
signal addend, augend, sum: bit_vector(3 downto 0);
signal cin, cout: bit;
begin
process
begin
for i in 1 to N Toop
addend <= addend_array(i);
augend <= augend_array(i);
cin <= cin_array(i);
wait for 40 ns;
assert (sum = sum_array(i) and cout = cout_array(i))
report "Wrong Answer"
severity error;
end Toop;
report "Test Finished";
end process;
addl: adder4 port map (addend, augend, cin, sum, cout);
end testl;

arrays. It uses assert and report statements to check the outputs and report whether
the output matched the expected output for the particular combination of inputs. The
assert statement is meaningful only for simulation. During synthesis, the synthesizer
may simply assume that the assertion violation does not exist.

We will provide another example to illustrate how a waveform input can be pro-
vided in a test bench. In earlier examples in this chapter, we used simulator com-
mands to test VHDL models. Figure 2-69 illustrates a piece of VHDL code that

FIGURE 2-69: Generating a Test Sequence for Testing VHDL Model for Code Converter

entity test_code_conv is
end test_code_conv;

architecture tester of test_code_conv is
signal X, CLK, Z: bit;
component Code_Converter 1is
port(X, CLK: 1in bit;
Z: out bit);
end component;
begin
clk <= not clk after 100 ns;
X <= '0', 'l' after 350 ns, '0O' after 550 ns, 'l' after
750 ns, '0' after 950 ns, 'l' after 1350 ns;
CC: Code_Converter port map (X, clk, Z2);
end tester;

122 Introduction to VHDL

2.1

2.2

2.3

24

accomplishes exactly the same testing that was done using simulator commands in
Figure 2-55. A time-varying signal is provided to input X using the statement

X <= "'0', '1l'" after 350 ns, '0' after 550ns, 'l' after 750 ns, 'O’
after 950 ns, 'l' after 1350 ns;

In this chapter, we have covered the basics of VHDL. We have shown how to use
VHDL to model combinational logic and sequential machines. Since VHDL is a
hardware description language, it differs from an ordinary programming language in
several ways. Most importantly, VHDL statements execute concurrently, since they
must model real hardware in which the components are all in operation at the same
time. Statements within a process execute sequentially, but the processes themselves
operate concurrently. VHDL signals model actual signals in the hardware, but vari-
ables may be used for internal computation that is local to processes, procedures, and
functions. We will cover more advanced features of VHDL in Chapter 8.

Problems

(a) What do the acronyms VHDL and VHSIC stand for?

(b) How does a hardware description language like VHDL differ from an ordinary
programming language?

(c¢) What are the advantages of using a hardware description language as compared
with schematic capture in the design process?

(a) Which of the following are legal VHDL identifiers? 123A, A_123, _Al123,
Al123_, cl__c2, and, andl
(b) Which of the following identifiers are equivalent? aBC, ABC, Abc, abc

Given the concurrent VHDL statements:

B <= A and C after 3ns;
C <= not B after 2ns;

(a) Draw the circuit the statements represent.
(b) Draw a timing diagram if initially A = B = ‘0’ and C = ‘1’, and A changes to ‘1’
at time 5 ns.

Write a VHDL description of the following combinational circuit using concurrent
statements. Each gate has a 5-ns delay, excluding the inverter, which has a 2-ns delay.

@JW
.

Problems 123

2.5 (a) Write VHDL code for a full subtracter using logic equations.
(b) Write VHDL code for a 4-bit subtracter using the module defined in (a) as a
component.

2.6 Write VHDL code for the following circuit. Assume that the gate delays are negligible.

(a) Use concurrent statements.
(b) Use a process with sequential statements.

Oo0Ow>»

2.7 In the following VHDL code, A, B, C, and D are integers that are 0 at time 10 ns.
If D changes to 1 at 20 ns, specify the times at which A, B, and C will change and the
values they will take.

process (D)

begin
A <= 1 after 5 ns;
B <=A+ 1; -- executes before A changes
C <= B after 10 ns; -- executes before B changes

end process;

2.8 (a) What device does the following VHDL code represent?

process(CLK, Clr, Set)
begin
if Clr = '1'" then Q <= '0';
elsif Set = '1' then Q <= '1';
elsif CLK'event and CLK <= '0' then
Q <= D;
end 1if;
end process;

(b) What happens if Clr = Set = ‘1’ in the device in part (a)?
2.9 Write a VHDL description of an S-R latch using a process.

2.10 An M-N flip-flop responds to the falling clock edge as follows:

If M = N = ‘0’, the flip-flop changes state.

If M = ‘0’ and N = ‘1’, the flip-flop output is set to ‘1°.
If M = ‘1’ and N = ‘0’, the flip-flop output is set to ‘0.
If M = N = ‘1’, no change of flip-flop state occurs.
The flip-flop is cleared asynchronously if CLRn = ‘0.

Write a complete VHDL module that implements an M-N flip-flop.

124 introduction to VHDL

2.1

2.12

2.13

2.14

A DD flip-flop is similar to a D flip-flop, except that the flip-flop can change state
(Q* = D) on both the rising edge and falling edge of the clock input. The flip-flop
has a direct reset input, R, and R = ‘0’ resets the flip-flop to Q = ‘0’ independent
of the clock. Similarly, it has a direct set input, S, that sets the flip-flop to ‘1’ inde-
pendent of the clock. Write a VHDL description of a DD flip-flop.

An inhibited toggle flip-flop has inputs /0, /1, T, and Reset, and outputs Q and ON.
Reset is active high and overrides the action of the other inputs. The flip-flop works
as follows. If /0 = ‘1, the flip-flop changes state on the rising edge of T;if /1 = ‘1’,
the flip-flop changes state on the falling edge of 7. If /0 = /1 = ‘0’, no state change
occurs (except on reset). Assume the propagation delay from 7 to output is 8 ns and
from reset to output is 5 ns.

(a) Write a complete VHDL description of this flip-flop.
(b) Write a sequence of simulator commands that will test the flip-flop for the input
sequence /1 = ‘1’, toggle T twice, I1 = ‘0’, [0 = ‘1’, toggle T twice.

In the following VHDL process A, B, C, and D are all integers that have a value of
0 at time = 10 ns. If E changes from ‘0’ to ‘1’ at time = 20 ns, specify the time(s) at
which each signal will change and the value to which it will change. List these
changes in chronological order (20,20 + A, 20 + 2A, etc.).

pl: process

begin
wait on E;
A <= 1 after 5 ns;
B <= A + 1;

C <= B after 10 ns;
wait for 0 ns;
D <= B after 3 ns;
A <= A + 5 after 15 ns;
B <= B + 7;

end process pl;

In the following VHDL process A, B, C, and D are all integers that have a value of
0 at time = 10 ns. If E changes from ‘0’ to ‘1’ at time = 20 ns, specify the time(s) at
which each signal will change and the value to which it will change. List these
changes in chronological order (20,20 + A, 20 + 2A, etc.).

p2: process(E)

begin
A <= 1 after 5 ns;
B <= A + 1;
C <= B after 10 ns;

D <= B after 3 ns;

A <= A + 5 after 15 ns;
B <= B + 7;

d process p2;

Problems 125

2.15 For the following VHDL code, assume that D changes to ‘1’ at time 5 ns. Give the
values of A, B, C, D, E, and F each time a change occurs. That is, give the values at
time 5ns,5 + A,5 + 2A,and so on. Carry this out until either 20 steps have occurred,
until no further change occurs, or until a repetitive pattern emerges.

entity prob is
port(D: 1inout bit);
end prob;

architecture gl of prob is
signal A, B, C, E, F: bit;
begin
C <= A;
A <= (B and not E) or D;
P1: process (A)
begin
B <= A;
end process P1;
P2: process
begin
wait until A = '1';
wait for 0 ns;
E <= B after 5 ns;
D <= '0';
F <= E;
end process P2;
end architecture ql;

2.16 Assuming B is driven by the simulator command
force B 0 0, 1 10, 0 15, 1 20, 0 30, 1 35

draw a timing diagram illustrating A, B, and C if the following concurrent state-
ments are executed:

A <= transport B after 5 ns;
C <= B after 8 ns;

2.17 Assuming B is driven by the simulator command
force B O O, 1 4, 0 10, 1 15, 0 20, 1 30, 0 40

draw a timing diagram illustrating A, B, and C if the following concurrent
statements are executed:

A <= transport B after 5 ns;
C <= B after 5 ns;

2.18 In the following VHDL code, A, B, C, and D are bit signals that are ‘0’ at time = 4 ns.
If A changes to 1 at time 5 ns, make a table showing the values of A, B, C,and D as

126 Introduction to VHDL

a function of time until time = 18 ns. Include deltas. Indicate the times at which each
process begins executing.

P1: process(A)
begin
B <= A after 5 ns;
C <= B after 2 ns;
end process;
P2: process
begin
wait on B;
A <= not B;
D <= not A xor B;
end process;

219 If A = “101”, B = “0117, and C = “010”, what are the values of the following
statements?

(a (A &B) or (B & O
(b) A ror 2

(¢) A sla 2

(d A & not B = "111110"
(¢) A or B and C

2.20 Consider the following VHDL code:

entity Q3 is
port(A, B, C, F, Clk: 1in bit;
E: out bit);
end Q3;

architecture Qint of Q3 is
signal D, G: bit;
begin
process (Clk)
begin
if Clk'event and Clk = '1' then
D <= A and B and C;
G <= not A and not B;
E <= D or G or F;
end if;
end process;
end Qint;

(a) Draw a block diagram for the circuit (no gates—at block level only).
(b) Give the circuit generated by the preceding code (at the gate level)

2.21 Implement the following VHDL code using these components: D flip-flops with clock
enable, a multiplexer, an adder, and any necessary gates. Assume that Ad and Ora will
never be ‘1’ at the same time, and only enable the flip-flops when Ad or Ora is ‘1°.

Problems 127

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity modulel is
port(A, B: 1in unsigned (2 downto 0);
Ad, Ora, clk: in bit;
C: out unsigned (2 downto 0));
end modulel;

architecture RT of modulel is
begin
process (clk)
begin
if clk = '1' and clk'event then
if Ad = '1' then C <= A + B; end if;
if Ora = '1l' then C <= A or B; end if;
end if;
end process;
end RT;

2.22 Draw the circuit represented by the following VHDL process. Use only two
gates.

process(clk, clr)
begin
if clr = '1' then Q <= '0';
elsif clk'event and clk = '0' and CE = '1' then
if C = '0' then Q <= A and B;
else Q <= A or B; end if;
end if;
end process;

Why is clr on the sensitivity list but C is not?

2.23 (a) Write a selected signal assignment statement to represent the 4-to-1 MUX
shown below. Assume that there is an inherent delay in the MUX that causes
the change in output to occur 10 ns after a change in input.

(b) Repeat (a) using a conditional signal assignment statement.
(¢) Repeat (a) using a process and a case statement.

A

B’

128 Introduction to VHDL

2.24

2.25

2.26

2.27

2.28

2.29

2.30

(a) Write a VHDL process that is equivalent to the following concurrent statement:
A <= Bl when C = 1 else B2 when C = 2 else B3 when C = 3 else 0;
(b) Draw a circuit to implement the following VHDL statement:

A <= Bl when C1 = '1l' else B2 when C2 = '1' else
B3 when C3 = '1' else '0';

where all signals are of type bit.

Write a VHDL description of an SR latch.

(a) Use a conditional assignment statement.
(b) Use the characteristic equation.
(¢) Use logic gates.

For the VHDL code of Figure 2-38, what will be the values of S and Co if A = “1101”,
B =“111",and Ci = ‘1’?

Write VHDL code to add a positive integer B (B < 16) to a 4-bit bit-vector A to
produce a 5-bit bit-vector as a result. Use an overloaded operator in the IEEE
numeric bit package to do the addition. Use calls to conversion functions as needed.
The final result should be a bit-vector, not an unsigned vector.

A 4-bit magnitude comparator chip (e.g., 741.S85) compares two 4-bit numbers A and
B and produces outputs to indicate whether A < B, A = B, or A > B.There are three
output signals to indicate each of the above conditions. Note that exactly one of the
output lines will be high and the other two lines will be low at any time. The chip is a
cascadable chip and has three inputs, A > B.IN, A = B.IN,and A < B.IN, in order to
allow cascading the chip to make 8-bit or bigger magnitude comparators.

(a) Draw block diagram of a 4-bit magnitude comparator

(b) Draw a block diagram to indicate how you can construct an 8-bit magnitude
comparator using two 4-bit magnitude comparators.

(¢) Write behavioral VHDL description for the 4-bit comparator.

(d) Write VHDL code for the 8-bit comparator using two 4-bit comparators as
components.

Write a VHDL module that describes a 16-bit serial-in, serial-out shift register with
inputs S7 (serial input), EN (enable), and CK (clock, shifts on rising edge) and a serial
output (SO).

A description of a 74194 four-bit bidirectional shift register follows:

The CLRbD input is asynchronous and active low and overrides all the other control
inputs. All other state changes occur following the rising edge of the clock. If the control
inputs S, = S, = 1, the register is loaded in parallel. If §; = 1 and §, = 0, the register
is shifted right and SDR (serial data right) is shifted into Q.. If S, = 0 and §, = 1, the
register is shifted left and SDL is shifted into Q. If S, = S, = 0, no action occurs.

2.31

2.32

2.33

Problems 129

Q@B Q2 Q1 QO
| | | |

SDR — — SDL
S1 — 74194 0— CLRb
SO — — CLK

I I I I
D3 D2 D1 DO

(a) Write a behavioral-level VHDL model for the 74194.

(b) Draw a block diagram and write a VHDL description of an 8-bit bidirectional shift
register that uses two 74194’s as components. The parallel inputs and outputs to the
8-bit register should be X(7 downto 0) and Y(7 downto 0). The serial inputs should
be RSD and LSD.

A synchronous (4-bit) up/down decade counter with output Q works as follows: All
state changes occur on the rising edge of the CLK input, except the asynchronous
clear (CLR). When CLR = 0, the counter is reset regardless of the values of the
other inputs.

If the LOAD input is 0, the data input D is loaded into the counter.

If LOAD = ENT = ENP = UP = 1, the counter is incremented.

If LOAD = ENT = ENP = 1 and UP = 0, the counter is decremented.

If ENT = UP = 1, the carry output (CO) = 1 when the counter is in state 9.

If ENT = 1 and UP = 0, the carry output (CO) = 1 when the counter is in state 0.

(a) Write a VHDL description of the counter.

(b) Draw a block diagram and write a VHDL description of a decimal counter that
uses two of the above counters to form a two-decade decimal up/down counter
that counts up from 00 to 99 or down from 99 to 00.

(¢) Simulate for the following sequence: load counter with 98, increment three
times, do nothing for two clocks, decrement four times, and clear.

Write a VHDL model for a 74HC192 synchronous 4-bit up/down counter. Ignore all
timing data. Your code should contain a statement of the form process (DOWN,
UP, CLR, LOADB)

Consider the following 8-bit bi-directional synchronous shift register with parallel
load capability. The notation used to represent the input/output pins is explained
below.

CLR Asynchronous Clear, overrides all other inputs
Q(7:0) 8-bit output

D(7:0) 8-bit input

S0,S1 mode control inputs

LSI serial input for left shift

RSI serial input for right shift

The mode control inputs work as follows:

130 Introduction to VHDL

2.34

2.35

S0 S1 | Action

0 No action

1 Right shift

0 Left shift

1 Load parallel data (i.e., Q = D)

—_ -0 O

(a) Write an entity description for this shift register.

(b) Write an architecture description of this shift register.

(¢) Draw a block diagram illustrating how two of these can be connected to form a
16-bit cyclic shift register, which is controlled by signals L. and R. If L = ‘1’ and
R = ‘0, then the 16-bit register is cycled left. If L = ‘0’ and R = ‘1’, the register
is cycled right. If L = R = ‘1, the 16-bit register is loaded from X(15:0). If L. =
R = ‘0, the register is unchanged.

(d) Write an entity description for the module in part (c).

(e) Write an architecture description using the module from parts (a) and (b).

Complete the following VHDL code to implement a counter that counts in the
following sequence: Q = 1000, 0111, 0110, 0101, 0100, 0011, 1000, 0111, 0110, 0101,
0100, 0011, ... (repeats). The counter is synchronously loaded with 1000 when
Ld8 = ‘1. Tt goes through the prescribed sequence when Enable = ‘1’. The counter
outputs S5 = ‘1’ whenever it is in state 0101. Do not change the entity in any way.
Your code must be synthesizable.

Tlibrary IEEE;
use IEEE.numeric_bit.all;

entity countQl is
port(clk, Ld8, Enable: 1in bit; S5: out bit;
Q: out unsigned(3 downto 0));
end countQl;

A synchronous 4-bit UP/DOWN binary counter has a synchronous clear signal CLR
and a synchronous load signal LLD. CLR has higher priority than LD. Both CLR and
LD are active high. D is a 4-bit input to the counter and Q is the 4-bit output from
the counter. UP is a signal that controls the direction of counting. If CLR and LD are
not active and UP = 1, the counter increments. If CLR and LD are not active and
UP 0, the counter decrements. All changes occur on the falling edge of the clock.

(a) Write a behavioral VHDL description of the counter.

(b) Use the above UP/DOWN counter to implement a synchronous modulo 6
counter that counts from 1 to 6. This modulo 6 counter has an external reset
which, if applied, makes the count = 1. A count enable signal CNT makes it
count in the sequence 1,2, 3,4,5,6,1,2,...incrementing once for each clock
pulse. You should use any necessary logic to make the counter go to count = 1
after count = 6. The modulo 6 counter only counts in the UP sequence. Provide
a textual/pictorial description of your approach.

(¢) Write a behavioral VHDL description for the modulo-6 counter in part (b).

Problems 131

2.36 Examine the following VHDL code and complete the following exercises:

entity Problem
port(X, CLK: 1in bit;
Z1, Z2: out bit);
end Problem;

architecture Table of Problem is
signal State, Nextstate: integer range 0 to 3 := 0;
begin
process(State, X) --Combinational Circuit
begin
case State is
when 0 =>
if X = '0" then 71 < = '"1"; Z2 <= '0'; Nextstate < = 0;
else Z1 < = '0'; Z2 < = '0'; Nextstate < = 1; end if;
when 1 =>
if X = '0' then 71 < = '0'; Z2 <= '1l'; Nextstate < = 1;
else 71 < = '0"; Z2 < = '1l"; Nextstate < = 2; end if;
when 2 =>
if X = '0' then Z1 < = '0'; Z2 <= '1l'; Nextstate < = 2;
else 71 < = '0"; Z2 < = '"1'; Nextstate < = 3; end if;
when 3 =>
if X = '0' then Z1 < = '0'; 7Z2 <= '0'; Nextstate < = 0;
else 71 < = "1'; Z2 < = '0'; Nextstate < = 1; end if;
end case;
end process;
process (CLK) --State Register
begin
if CLK'event and CLK = '1' then --rising edge of clock
State <= Nextstate;
end if;
end process;
end Table;

(a) Draw a block diagram of the circuit implemented by this code.
(b) Write the state table that is implemented by this code.

2.37 (a) Write a behavioral VHDL description of the state machine you designed in
Problem 1.13. Assume that state changes occur on the falling edge of the clock
pulse. Instead of using if-then-else statements, represent the state table and output
table by arrays. Compile and simulate your code using the following test sequence:

X =1101 1110 1111
X should change 1/4 clock period after the rising edge of the clock.
(b) Write a data flow VHDL description using the next state and output equations

to describe the state machine. Indicate on your simulation output at which times
S and V are to be read.

132 Introduction to VHDL

(¢) Write a structural model of the state machine in VHDL that contains the inter-
connection of the gates and D flip-flops.

2.38 (a) Write a behavioral VHDL description of the state machine that you designed in
Problem 1.14. Assume that state changes occur on the falling edge of the clock
pulse. Use a case statement together with if-then-else statements to represent the
state table. Compile and simulate your code using the following test sequence:

X =1011 0111 1000

X should change 1/4 clock period after the falling edge of the clock.

(b) Write a data flow VHDL description using the next state and output equations
to describe the state machine. Indicate on your simulation output at which times
D and B should be read.

(¢) Write a structural model of the state machine in VHDL that contains the inter-
connection of the gates and J-K flip-flops.

2.39 A Moore sequential machine with two inputs (X, and X,) and one output (Z) has
the following state table:

Present Next State Output
State XX, =00 01 10 1 2)
1 ‘ 1 2 2 1‘ 0
2 2 1 2 1 1

Write VHDL code that describes the machine at the behavioral level. Assume
that state changes occur 10 ns after the falling edge of the clock, and output changes
occur 10 ns after the state changes.

2.40 Write VHDL code to implement the following state table. Use two processes. State
changes should occur on the falling edge of the clock. Implement the Z, and Z, out-
puts using concurrent conditional statements. Assume that the combinational part
of the sequential circuit has a propagation delay of 10 ns, and the propagation delay
between the rising-edge of the clock and the state register output is 5 ns.

Present Next state Output
State | XX,=00 01 11| (Z,Z)
1 3 2 1 00
2 2 1 3 10
3 1 2 3 01

2.41 In the following code, state and nextstate are integers with a range of 0 to 2.

process(state, X)
begin
case state is
when 0 => if X '1l' then nextstate <= 1;
when 1 => if X = '0' then nextstate <= 2;

Problems 133

when 2 => if X = '1l' then nextstate <= 0;
end case;
end process;

(a) Explain why a latch would be created when the code is synthesized.
(b) What signal would appear at the latch output?
(¢) Make changes in the code which would eliminate the latch.

2.42 For the process given below, A, B, C, and D are all integers that have a value of 0 at
time = 10 ns. If £ changes from ‘0’ to ‘1’ at time 20 ns, specify all resulting changes.
Indicate the time at which each change will occur, the signal/variable affected, and
the value to which it will change.

process
variable F: integer: =1; variable A: integer: =0;
begin
wait on E;
A =1,
F = A+ 5;
B <= F + 1 after 5 ns;
C <= B + 2 after 10 ns;
D <= C + 5 after 15 ns;
A :=A + 5;
end process;

2.43 What is wrong with the following model of a 4-to-1 MUX? (It is not a syntax error.)

architecture mux_behavioral of 4tolmux is
signal sel: integer range 0 to 3;

begin
process(A, B, IO, I1, I2, I3)
begin
sel <= 0;
if A = '1l' then sel <= sel + 1; end if;
if B = '1' then sel <= sel + 2; end if;
case sel is
when 0 => F <= I0;
when 1 => F <= I1;
when 2 => F <= 1I2;
when 3 => F <= I3;
end case;

end process;
end mux_behavioral;

2.44 When the following VHDL code is simulated, A is changed to ‘1’ at time 5 ns. Make
a table that shows all changes in A, B, and D and the times at which they occur
through time = 40 ns.

entity Q1F00 is
port(A: inout bit);
end Q1F00;

134 Introduction to VHDL

architecture Q1F00 of Q1F00 is
signal B, D: bit;
begin
D <= A xor B after 10 ns;
process (D)
variable C: bit;
begin
C := not D;
if C = '1' then
A <= not A after 15 ns;
end if;
B <= D;
end process;
end Q1F00;

2.45 What device does the following VHDL code represent?

process (CLK, RST)
variable Qtmp: bit;
begin
if RST '1' then Qtmp := '0';
elsif CLK'event and CLK = '1' then
if T = '1' then
Qtmp := not Qtmp;
end if;
end 1if;
Q <= Qtmp;
end process;

2.46 (a) Write a VHDL module for a LUT with four inputs and three outputs. The

2.47

3-bit output should be a binary number equal to the number of 1’s in the LUT
input.

(b) Write a VHDL module for a circuit that counts the number of 1’s in a 12-bit
number. Use three of the modules from (a) along with overloaded addition
operators.

(c¢) Simulate your code and test if for the following data inputs:

111111111111, 010110101101, 100001011100

Implement a 3-to-8 decoder using a LUT. Give the LUT truth table and write the
VHDL code. The inputs should be A, B, and C and the output should be an 8-bit
unsigned vector.

2.48 A(1to20) is an array of 20 integers. Write VHDL code that finds the largest integer

in the array

(a) Using a for loop
(b) Using a while loop

2.49

2.50

2.51

2.52

Problems 135

Write VHDL code to test a Mealy sequential circuit with one input (X) and one out-
put (Z). The code should include the Mealy circuit as a component. Assume the
Mealy circuit changes state on the rising edge of CLK. Your test code should gen-
erate a clock with 100 ns period. The code should apply the following test sequence:

X=0110,1,1,0,1,1,1,0,0

X should change 10 ns after the rising edge of CLK. Your test code should read Z
at an appropriate time and verify that the following output sequence was generated:

Z=100,1,1,01,1,0,1,1,0

Report an error if the output sequence from the Mealy circuit is incorrect; other-
wise, report “sequence correct.” Complete the following architecture for the tester:

architecture testl of tester is
component Mealy
-- sequential circuit to be tested; assume this component
-- is available 1in your design; do NOT write code for the
-- component
port(X, CLK: 1in bit; Z: out bit);
end component;
signal XA: bit_vector(0 to 11)
signal ZA: bit_vector(0 to 11)

"011011011100";
"100110110110";

Write a VHDL test bench that will test the VHDL code for the sequential circuit of
Figure 2-58. Your test bench should generate all ten possible input sequences (0000,
1000, 0100, 1100, . . .) and verify that the output sequences are correct. Remember
that the components have a 10-ns delay. The input should be changed 1/4 of a clock
period after the rising edge of the clock and the output should be read at the appro-
priate time. Report “Pass” if all sequences are correct; otherwise, report “Fail.”

Write a test bench to test the counter of Problem 2.34. The test bench should gen-
erate a clock with a 100-ns period. The counter should be loaded on the first clock;
then it should count for five clocks; then it should do nothing for two clocks; then it
should continue counting for ten clocks. The test bench port should output the cur-
rent time (in time units, not the count) whenever S5 = ‘1°. Use only concurrent
statements in your test bench.

Complete the following VHDL code to implement a test bench for the sequential
circuit SMQ1. Assume that the VHDL code for the SMQI1 sequential circuit mod-
ule is already available. Use a clock with a 50-ns half-period. Your test bench should
test the circuit for the input sequence X = 1,0,0, 1, 1. Assume that the correct out-
put sequence for this input sequence is 1, 1,0, 1, 0. Use a single concurrent statement
to generate the X sequence. The test bench should read the values of output Z at the
proper times and compare them with the correct values of Z. The correct answer is
stored as a bit-vector constant:

answer(1 to 5) = “110107;

136 Introduction to VHDL

The port signal correct should be set to TRUE if the answer is correct; otherwise,
it should be set to FALSE. Make sure that your read Z at the correct time. Use wait
statements in your test bench.

entity testSMQl is
port(correct: out Boolean);
end testSMQ1;
architecture testSM of testSMQl is
component SMQl -- the sequential circuit module
port(X, CLK: 1in bit; Z: out bit);
end component;
constant answer: bit_vector(l to 5) := "11010";
begin

3.1

Introduction to Programmable
Logic Devices

Chapter 1 illustrated how the same digital circuit can be implemented using a variety
of standard building blocks. If we can put several of these building blocks into an
integrated circuit (IC) and provide the user with mechanisms to modify the
configuration, we can implement almost any circuit within a chip. This is the general
principle of programmable logic devices.

This chapter introduces the use of programmable logic devices in digital design.
Read-only memories (ROMs), programmable logic arrays (PLAs), and program-
mable array logic (PAL) devices are discussed first. Then complex programmable
logic devices (CPLDs) and field programmable gate arrays (FPGAs) are intro-
duced. Use of these devices allows us to implement complex logic functions, which
require many gates and flip-flops, with a single IC. Although FPGAs are introduced,
only an overview is provided in this chapter. A detailed treatment of FPGAs is pro-
vided in Chapter 6.

000000000 00
Brief Overview of Programmable
Logic Devices

Designers have always liked programmable logic devices such as PALs and FPGAs
for implementation of digital circuits. First, there is reasonable integration ability,
allowing implementation of a significant amount of functionality into one physical
chip. Programmable logic devices remove the use of multiple off-the-shelf devices
and the inconvenience and unreliability associated with external wires. Second,
there is the increased ability to change designs. Many of the programmable devices
allow easy reprogramming. In general, it is easier to change the design in case of
errors or changes in design specifications. Nowadays, programmable logic comes in
different types: devices that can be programmed only once and those that can be
reprogrammed many times.

Figure 3-1 illustrates a classification of popular programmable logic devices.
Programmable logic can be considered to fall into field programmable logic and
factory programmable logic. The term field indicates that this type of device is
programmed in the user’s “field” rather than in a semiconductor fab. Often, many
may refer to programmable logic to mean devices that are field programmable.

137

138 Introduction to Programmable Logic Devices

FIGURE 3-1: Major
Programmable
Logic Devices

Programmable L ogic

Factory Programmable Field Programmable
Devices Devices
ROM MPGA SPLD CPLD FPGA
Read-Only Mask Simple Complex Field
Memory Programmable Programmable Programmable Programmable
Gate Array Logic Device Logic Device Gate Array
PROM PLA PAL GAL
Programmable Programmable Programmable Generic
Read-Only Logic Array Array Logic Array Logic
Memory

However, there are factory programmable devices, too. These are generic devices
which can be programmed at the factory to meet customers’ requirements. The pro-
gramming technology uses an irreversible process; hence, programming can be done
only once. Examples of factory programmable logic are mask programmable gate
arrays (MPGAs) and read-only memories (ROMs). The earliest generations of
many programmable devices were programmable only at the factory.

Read-only memories can be considered as an early form of programmable logic.
While primarily meant for use as memory, ROMs can be used to implement any
combinational circuitry. This will be illustrated later in Section 3.2.1. MPGAs are
traditional gate arrays, which require a mask to be designed. MPGAs are often sim-
ply called gate arrays and have been a popular technology for creating application-
specific integrated circuits (ASICs).

User programmable logic in the form of AND-OR circuits was developed
at the beginning of the 1970s. By 1972-1973, one-time field programmable logic
arrays that permitted instant customizations by designers were available.
Some referred to these devices as field programmable logic arrays or FPLAs.
Monolithic Memories Inc. (MMI), a company that was bought by Advanced
Micro Devices (AMD), created integrated circuits called programmable logic
arrays (PLAs) in 20- and 24-pin packages that could yield the same functionality
as 5 to 20 off-the-shelf chips. A similar device is the programmable array logic or
PAL.

PALs and PLAs contain arrays of gates. In the PLA, there is a programmable
AND array and a programmable OR array, allowing users to implement combina-
tional functions in two levels of gates. The PAL is a special case of a PLA, in that the
OR array is fixed and only the AND array is programmable. Many PALs also contain
flip-flops.

3.1 Brief Overview of Programmable Logic Devices 139

In the 1970s and 1980s, PALs and PLLAs were very popular. Part of the popularity
was due to the ease of design. MMI and Advanced Micro Devices created a simple
programming language, called PALASM, to easily convert Boolean equations
into PLA configurations. PALASM made programming PALs and PLAs relatively
simple.

The early programmable devices allowed only one-time programming. The next
technological innovation that helped programmable logic was advancement in era-
sure of programmable devices. In early days, erasure of programmable logic used
ultraviolet light. With ultraviolet light, erasing the configuration of a device meant
removing the device from the circuit and placing it in an ultraviolet environment.
Hence, in-circuit erasure was not possible. Ultraviolet erasers were slow; typically
10 or 15 minutes were required to perform erasures. Then electrically erasable tech-
nology came along. This led to the creation of field programmable logic arrays that
can be easily and quickly erased and reprogrammed without removing the chip
from the board.

The early PALs and PLAs were soon followed by CMOS electrically erasable
programmable logic devices (PLDs). While the term PLDs can be used to refer to
any programmable logic devices, there are a set of devices, including the popular
PALCE22V10, that are often referred to as PLDs. PLDs contain macroblocks
with arrays of gates, multiplexers, flip-flops, or other standard building blocks.
Several of these macroblocks appear in a PLD. Lattice Semiconductor created
similar devices with easy reprogrammability and called its line of devices GALs or
generic array logic.

Now, many refer to PLAs, PALs, GALs, PLDs, and PROM:s collectively as sim-
ple PLDs (SPLDs) in contrast to another type of product that has come on the mar-
ket, complex PLDs (CPLDs). As the name suggests, CPLDs have more integration
capability than SPLDs. They come in sizes ranging from 500 to 16,000 gates. CPLDs
essentially put multiple PLDs into the same chip with some kind of an interconnec-
tion circuit, typically a crossbar switch.

In the late 1980s, Xilinx started using static random-access memory (RAM) stor-
age elements to hold configuration information for programmable devices and cre-
ated devices called FPGAs that can integrate a fairly large amount of logic. Contrary
to their names, the basic building blocks in these devices were not arrays of gates but
were bigger and complex blocks containing static RAMs and multiplexers. Several
PLD vendors and gate array companies soon jumped into the market, creating a
variety of FPGA architectures, some of which used reprogrammable technologies
and others of which used one-time programmable fuse technologies. The FPGA
technology has continually improved in the last 15 years. Now, there are FPGAs that
can contain more than 5 million gates.

Programmable logic devices basically contain an array of basic building blocks
which can be used to implement whatever functionality one desires. Different pro-
grammable devices differ in the building blocks or the amount of programmability
they provide. Table 3-1 illustrates a comparison of various programmable logic
devices. FPGAs are bigger and more complex than CPLDs. The routing resources
in FPGAs are more complex than those in simple programmable devices. The vari-
ety of alternate routes that can be taken causes the paths taken by signals to be

140 Introduction to Programmable Logic Devices

TABLE 3-1:

A Comparison of
Programmable
Devices

3.2

SPLD CPLD FPGA
Density Low Low to Medium Medium to High 3,000
Few hundred gates 500 to 12,000 gates | to 5,000,000 gates
Timing Predictable Predictable Unpredictable
Cost Low Low to Medium Medium to High
Major Lattice Semiconductor | Xilinx Xilinx
Vendors | Cypress Altera Altera
AMD Lattice Semiconductor
Actel
Example | Lattice Semiconductor | Xilinx Xilinx
Device GAL16LV8 CoolRunner Virtex
Families | GAL22V10 XC9500 Spartan
Cypress Altera Altera
PALCE16V8 MAX Stratix
AMD Lattice
22V10 Mach
ECP
Actel

Accelerator

unpredictable. FPGAs are more expensive than CPLDs and SPLDs. They contain
more overhead for programming. In this chapter, we describe various programma-
ble devices, including SPLDs, CPLDs, and FPGA:s.

Many names and abbreviations in this field have historically been used to
refer to specific types of programmable devices; however, one may not find
the name to be meaningful. Consider PALs and PLAs. Both are arrays of
logic. The fact that PLAs contain programmable AND and OR arrays and
PALs contain only programmable AND arrays is due to nothing but historical
reasons. PALs and PLAs could very well be named the other way around. But
it is important for students to understand what these names popularly refer to
because they will need to communicate with fellow designers and other design
teams. Conventions are important in facilitating communication.

Simple Programmable Logic Devices

With the advent of CPLDs and FPGAs, the early generation programmable logic
devices, such as ROMs, PALs, PLAs, and PLDs, can be collectively called simple
programmable logic devices (SPLDs). In this section, we describe the implementa-
tion of digital circuits in simple PLDs.

FIGURE 3-2:
An 8-Word X 4-Bit
ROM

FIGURE 3-3:
Read-Only Memory
with n Inputs and
m Outputs

3.2 Simple Programmable Logic Devices 141

3.2.1 Read-Only Memories

A read-only memory (ROM) consists of an array of semiconductor devices that are
interconnected to store an array of binary data. Once binary data is stored in the
ROM, it can be read out whenever desired, but the data that is stored cannot
be changed under normal operating conditions. Figure 3-2(a) shows a ROM that
has three input lines and four output lines. Figure 3-2(b) shows a typical truth table,
which relates the ROM inputs and outputs. For each combination of input values on
the three input lines, the corresponding pattern of 0’s and 1’s appears on the ROM
output lines. For example, if the combination ABC = 010 is applied to the input
lines, the pattern FF F,F, = 0111 appears on the output lines. Each of the output
patterns that is stored in the ROM is called a word. Since the ROM has three input
lines, we have 23 = 8 different combinations of input values. Each input combination
serves as an address, which can select one of the eight words stored in the memory.
Since there are four output lines, each word is four bits long, and the size of this
ROM is 8 words X 4 bits.

ABC Fo Fi Fp F3
A— ROM 000 1010
3 Input
lines B —| 8 words 001 1 010
— 4 hit ’
c X 4 bits 010 0 1 1 1| qypical daa
011 0 1 0 1] storedinROM
l l 1 1 100 1 1 0 0 (2wordsof
Fo Fi F, Fy 101 0 0 O 1| 4bitseach)
[— 110 1 1 1 1
4 Output lines 111 01 0 1
(a) Block diagram (b) Truth table for ROM

A ROM which has # input lines and m output lines (Figure 3-3) contains an
array of 2" words, and each word is m bits long. The input lines serve as an address
to select one of the 2" words. When an input combination is applied to the ROM,
the pattern of 0’s and 1’s stored in the corresponding word in the memory appears
at the output lines. For the example in Figure 3-3,if 00 . . . 11 is applied to the input
(address lines) of the ROM, the word 110 . . . 010 will be selected and transferred to

n Input m Output
Variables Variables
n Input : ROM 8282 (1)28112
lines | | | 2 Wwords 0---10 | 101---101| Typi
: xm bits Typical data
l t ----- 1 11 00 001 011 innROM
R , T T (2" words of
m Output lines 11---01 110- - - 110| m bits each)
11---10 011 - - - 000
1m---11 111 - - 101

142 Introduction to Programmable Logic Devices

the output lines. A 2" X m ROM can realize m functions of n variables since it can
store a truth table with 2" rows and m columns. Typical sizes for commercially avail-
able ROMs range from 32 words X 4 bits to 512K words X 8 bits, or larger.

A ROM basically consists of a decoder and a memory array. When a pattern
of n 0’s and 1’s is applied to the decoder inputs, exactly one of the 2" decoder
outputs is 1. This decoder output line selects one of the words in the memory
array, and the bit pattern stored in this word is transferred to the memory output
lines.

Basic types of ROMs include mask programmable ROMs, user programmable
ROMs (PROMs), erasable programmable ROMs (usually called EPROMs), elec-
trically erasable and programmable ROMs (EEPROMs), and flash memories.
In the mask programmable ROM, the data array is permanently stored at the time
of manufacture. This is accomplished by selectively including or omitting the switch-
ing elements at the row-column intersections of the memory array. This requires
preparation of a special “mask,” which is used during fabrication of the integrated
circuit. Preparation of this mask is expensive, so use of mask programmable ROMs
is economically feasible only if a large quantity (typically several thousand or more)
is required with the same data array. There are also one-time user programmable
ROMs or PROMs.

Modification of the data stored in a ROM is often necessary during the devel-
opmental phases of a digital system, so EPROMs are used instead of mask
programmable ROMs. EPROMs use a special charge-storage mechanism to enable
or disable the switching elements in the memory array. An EPROM programmer
is used to provide appropriate voltage pulses to store electronic charges in the
memory array locations. The data stored in this manner is generally permanent
until erased using ultraviolet light. After erasure, a new set of data can be stored in
the EPROM.

The EEPROM is similar to an EPROM, except that erasure is accomplished
using electrical pulses instead of ultraviolet light. A traditional EEPROM can be
erased and reprogrammed only a limited number of times, typically 100 to 1000
times. Flash memories are similar to EEPROMs, except that they use a different
charge-storage mechanism. They usually have built-in programming and erasure
capability so that data can be written to the flash memory while it is in a circuit with-
out the need for a separate programmer.

A ROM can implement any combinational circuit. Essentially, if the outputs for
all combinations of inputs are stored in the ROM, the outputs can be “looked up”
in the table stored in the ROM. The ROM method is also called the look-up table
(LUT) method for this reason.

Consider the implementation of a 2-bit adder in a ROM. This adder must add
two 2-bit numbers. Since the maximum value of a 2-bit number is 3, the maximum
sum is 6, necessitating 3 bits for the sum. The truth table for such an adder is illus-
trated in Figure 3-4. We could also design a 2-bit full adder assuming a carry input
in addition to the two 2-bit numbers.

This 2-bit adder can be implemented with a 16 X 3 ROM. The input numbers
(X and Y') must be connected to the four address lines, and the three data lines will
produce the sum bits.

FIGURE 3-4: Block
Diagram and Truth
Table of a 2-Bit

Adder

FIGURE 3-5: ROM
Implementation
of a 2-Bit Full

Adder

Example

3.2 Simple Programmable Logic Devices 143

X1 Xo Y1 Yo

w
N

wn
=

w
o

X7 it 3 <um
2 Adder 7
Y ——

RPRRRRPRPPRPOOOOOOOO
PFRPRRROOOORRRROOOO
PRPOORROORROORROO
PORORORORORORORO
PRPRORROOROO0OO00O0O
FOOROORRORRORROO
ORrORROROORORRORO

Figure 3-5 illustrates the ROM implementation of this 2-bit full adder. Assuming
the connections that are shown, the contents of the ROM in its 16 locations should
be 0,1,2,3,1,2,3,4,2,3,4,5,3,4,5, and 6, respectively (representing the digits in
decimal). The LSB of the sum will come from the LSB of the data bus.

Dyol—> S,
Xo —

0 AZ 16x3 Dl Sl
Y, —{a, ROM

Yo — Ag LSB
LSB

Compute the size of the ROM required to implement an 8-to-3 priority encoder.

Solution

An encoder performs the inverse function of a decoder. An 8-to-3 priority encoder is illus-
trated in Figure 3-6. If input y, is 1 and the other inputs are 0, then the abc outputs represent
a binary number equal to i. An additional output d is used to indicate invalid outputs. A value
of 1 on bit d indicates that the output bits a, b, and c are valid. If more than one input is 1 in
a priority encoder, the highest numbered input determines the output. The truth table in
Figure 3-6 illustrates the output combinations for each input combination. The X’s in the
truth table indicate “don’t cares.” As illustrated, the 8-to-3 priority encoder has eight inputs
and four outputs. Hence, it needs a 28 X 4 bit ROM.

Comment

There will be 256 entries in this ROM. When all the “don’t cares” in the truth table in
Figure 3-6 are expanded, it does result in 256 entries.

144 ntroduction to Programmable Logic Devices

FIGURE 3-6: 8-to-3 Priority Encoder

Yo—*

Y1—> -

yps| 8103 a
Priority Db

Y31 encoder | ¢

Yq—>

Y5 —>

Y6 —>| —d

Y7—>

|

Example
FIGURE 3-7:

State Table for a
Sequential Circuit

Yo Yi Yo Vi Ya Y5 Y Y, | @a b ¢ d
0 o0 0 O O O 0 o010 0 O 0
1 0 0 0O O O 0 o]0 0 O 1
X 1 o o0 o0 o0 o0 o0|0 0 1 1
X X 1 0 o o ©o0 o]0 1 o0 1
X X X 1 0 o o0 o]0 1 1 1
X X X X 1 0 0 o1 0 o0 1
X X X X X 1 o o |1 o0 1 1
X X X X X X 1 o1 1 o 1
X X X X X X X 111 1 1 1

Implement, in ROM, a sequential machine whose state table is given in Figure 3-7. You may
note that this is the BCD to excess-3 code converter that we designed in Chapter 1.

NS Z
PS X=0 X=1 X=0 X=1
So S, S, 1 0
S, S S 1 0
S, Sa S, 0 1
Ss Ss Ss 0 1
S S Sg 1 0
Sg So So 0 1
Se So — 1 —
Solution

A sequential circuit can easily be designed using a ROM and flip-flops. The combinational
part of the sequential circuit can be realized using the ROM. The ROM can be used to real-
ize the output functions and the next state functions. The state of the circuit can then be
stored in a register of D flip-flops and fed back to the input of the ROM. Use of D flip-flops
is preferable to J-K flip-flops since using 2-input flip-flops would require increasing the num-
ber of inputs for the flip-flops (which are outputs from the ROM). The fact that the D flip-
flop input equations would generally require more gates than the J-K equations is of no
consequence since the size of the ROM depends only on the number of inputs and outputs
and not on the complexity of the equations being realized. For this reason, the state assign-
ment used is also of little importance, and, generally, a state assignment in straight binary
order is as good as any.

In order to realize the above sequential machine, a ROM and three D flip-flops are nec-
essary. The ROM will generate the next state equations and output Z from the present states
and input X. Hence, the ROM needs four address lines (three coming from flip-flops and one
for X) and it should provide four outputs (three next state bits and output Z). Figure 3-8 illus-
trates the general organization of the implementation. Since the ROM has four inputs, it con-
tains 2% = 16 words. In general, a Mealy sequential circuit with i inputs, j outputs, and k state
variables can be realized using k D flip-flops and a ROM with i + k inputs (27*¥ words) and
j + k outputs.

3.2 Simple Programmable Logic Devices 145

FIGURE 3-8: X —— A Dy .z
Realization of a LSB Qf
Mealy Sequential D, D; |Q
Circuit with a ROM —a>
. ROM
AL 16 words Q|
» A, X4hits D, D> Q
> A3 —>
Q+
D3 3 > D3 Q3
—>
Clock

Now, let us derive the contents of the ROM. Table 3-2 gives the truth table for the sequen-
tial circuit, which implements the state table of Figure 3-7 with the “don’t cares” replaced by
0’s and using a straight binary state assignment.

TABLE 3-2: Q, Q, Q, X Q;’ Q; 1+ V4
ROM Truth Table 0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0

0 0 1 0 0 1 1 1

0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 0

0 1 0 1 1 0 0 1

0 1 1 0 1 0 1 0

0 1 1 1 1 0 1 1

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 0 0 1

1 1 0 0 0 0 0 1

1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0

Assuming that Q,, Q,, Q,, and X are connected to the address lines in that order, with X
connected to the LSB, the contents of the ROM to implement this sequential machine are
3,4,7,8,8,9,A,B,B,C,0,1,1,0,0,and 0 (in hexadecimal representation). The hexadecimal
(hex) representation is a concise and convenient way to represent the outputs. The output Z
will come from the LSB of the data lines. The next state information will be available from
the three MSBs of the ROM data lines.

146 Introduction to Programmable Logic Devices

FIGURE 3-9:
Programmable
Logic Array
Structure

3.2.2 Programmable Logic Arrays

A programmable logic array (PLA) performs the same basic function as a ROM.
A PLA with n inputs and m outputs (Figure 3-9) can realize m functions of » vari-
ables. The internal organization of the PLA is different from that of the ROM.
The decoder is replaced with an AND array that realizes selected product terms of the
input variables. The OR array OR’s together the product terms needed to form
the output functions.

| PLA |
' |
|
4> >
ninput) I "1 AND . OR |
lines I - aray : array [
+—— |
' > |
| / |
| } l { |
k Word
lines m Output lines

Figure 3-10 shows a PLA that realizes the following functions:
F,=2m(0,1,4,6) = A'B' + AC' (3-1)
F, =3m(2,3,4,6,7) = B+ AC’
F,=2m(0,1,2,6) = A'B' + BC'
F,=3m(2,3,5,6,7) = AC + B

The above logic functions contain three variables. In a PLA implementation,
each product term in the equation is created first, and then required product terms
are OR’ed using the OR gate. Hence, product terms can be shared while using the
PLA. Instead of minimizing each function separately, we want to minimize the total
number of product terms. There are five distinct product terms in the above four
equations. Figure 3-10 illustrates a PLA with three inputs, five product terms, and
four outputs, implementing the above four equations. It should be noted that the
number of terms in each equation is not important, as long as there are AND gates
to generate all product terms required for all outputs together.

Internally, the PLA may use NOR-NOR logic instead of AND-OR logic.
The array shown in Figure 3-10 is thus equivalent to the nMOS PLA structure of
Figure 3-11. Logic gates are formed in the array by connecting nMOS switching
transistors between the column lines and the row lines.

3.2 Simple Programmable Logic Devices 147

FIGURE 3-10: A B C
PLA with Three
Inputs, Five Product *— ‘o *—
Terms, and Four
Outputs (Logic y v
Level) rC T r - T] — — OR array
\	l AP T - - - - — - T — =
L/	
ﬂ I ac	
o—	J : :
2	
—	'
R M=	
\	oac ! o
/' trrp Al	
[|
AND array
Fo Fy Fa Fs
FIGURE 3-11: Inputs
PLA with Three - A ~
Inputs, Five Product A B C
Terms, and Four %7
I(-)uth;Jts (Transistor NV O+ 4V 1V
eve
Y bV by ot otd
+V-MWA T 1
_'Q _'i AC’ L 1] L5
+V - MA _|_f|_ _|_f|_ T T
=1 = B L L]
+V WA _|_f|_ T T
1 BC’ L 1 L
+V WA T = T
VIV _|—5— _|—E4— AC £
HL L f._

Outputs

148 Introduction to Programmable Logic Devices

FIGURE 3-12:
nMOS NOR Gate

FIGURE 3-13:
Conversion of
NOR-NOR to
AND-OR

Source, drain, and gate are the names of the three terminals of the metal oxide
semiconductor (MOS) transistor. The gate is the one that is used to control the
ON/OFF action. There are two types of MOS transistors, n-channel MOS
(nMOS) and p-channel MOS (pMOS). The illustrations in this section use
nMOS transistors. A popular technology since the 1990s is complementary
MOS (CMOS), where nMOS and pMOS transistors are used together in a
complementary fashion.

Figure 3-12 shows the implementation of a two-input NOR gate using nMOS tran-
sistors. The transistors act as switches, so if the gate input is a logic 0, the transistor
is off. If the gate input is a logic 1, the transistor provides a conducting path to ground.
It X, = X, = 0, both transistors are off, and the pull-up resistor brings the Z output to
a logic 1 level (+V). If either X, or X, is 1, the corresponding transistor is turned
on,and Z = 0. Thus, Z = (X, + X,)’ = X,'X,’, which corresponds to a NOR gate.
The part of the PLA array that realizes Fj, is equivalent to the NOR-NOR gate struc-
ture shown in Figure 3-13. After canceling the extra inversions, this reduces to an
AND-OR structure.

+V 7= N
Ao >0 AR’ A —>0-

B«[>o—[><>—o Ba[>o—

o ’ é%

c{oPo— AC

Fo

The contents of a PLA can be specified by a modified truth table. Table 3-3
specifies the PLA in Figure 3-10. The input side of the table specifies the product
terms. The symbols 0, 1, and — indicate whether a variable is complemented, not
complemented, or not present in the corresponding product term. The output side
of the table specifies which product terms appear in each output function. A 1 or 0
indicates whether a given product term is present or not present in the correspon-
ding output function. Thus, the first row of Table 3-3 indicates that the term A'B’
is present in output functions F and F,, and the second row indicates that AC" is
present in Fjand F|.

Next, we will realize the following functions using a PLA:

F,=3m(2,3,5,7,8,9,10,11,13,15) (3-2)
F,=3m(2,3,5,6,7,10,11,14,15)
F, =3m(6,7,8,9,13, 14,15)

TABLE 3-3:
PLA Table for
Equations 3-1

FIGURE 3-14:
Multiple-Output
Karnaugh Maps

TABLE 3-4:
Reduced PLA Table

3.2 Simple Programmable Logic Devices 149

Product Inputs Outputs

Term A B C Fy F, F, Fy
A'B’' 0 0 — 1 0 1 0
AC’ 1 — 0 1 1 0 0
B — 1 — 0 1 0 1
BC’ 1 0 0 0 1 0
AC 1 — 1 0 0 0 1

If we minimize each function separately, the result is
F,=bd+ b'c+ ab’ (3-3)
F,=c+a'bd
F,=bc+ ab'c’ + abd

If we implement these reduced equations in a PLA, a total of eight different
product terms (including c) are required.

Instead of minimizing each function separately, we want to minimize the total
number of rows in the PLA table. In this case, the number of terms in each equation
is not important, since the size of the PLA does not depend on the number of terms
within an equation. Equations (3-3) are plotted on the Karnaugh maps shown in
Figure 3-14. Since the term ab’c’ is already needed for F,, we can use it in F, instead
of ab’. The other two 1’s in ab’ are covered by the b'c term. This eliminates the need
to use a row of the PLA table for ab’. Since the terms a’bd and abd are needed in F,
and F;, respectively, we can replace bd in F, with a’bd + abd. This eliminates the need
for a row to implement bd. Since b’c and bc are used in F, and F, respectively, we can
replace ¢ in F, with b'c + bc. The resulting Equations (3-4) correspond to the reduced
PLA table (Table 3-4). Instead of using Karnaugh maps to reduce the number of rows

abd \ ab’c’
ab ab ab
cd 00 01 11 A0 cd 00 01 11 10 cd 00 01 11 \10
00 (T) 00 00 m

o1 [~ WJ
A =[Ao
| W]y

01 ﬁf: I'I:]
u 7|l
10] 4

SiD)

=]
H

\ =
e
—

F,=abd + ab'c’ + bc

F1 Fa Fs
a b ¢ d|F F, F
o 1 — 1 10 F,=a'bd + abd + ab'c’ + b'c (3-4)
T ! 0 1 E,=a'bd + b'c + bc
1 0 0 1
0 1 0
1 1T 1

~ oo
|

150 Introduction to Programmable Logic Devices

FIGURE 3-15:
PLA Realization of
Equations (3-4)

TABLE 3-5:
PLA Table

in the PLA, the Espresso algorithm can be used. This complex algorithm is described
in Logic Minimization Algorithms for VLSI Synthesis by Brayton [12].

Equations (3-4) have only five different product terms, so the PLA table has only
five rows. This is a significant improvement over Equations (3-3), which require eight
product terms. Figure 3-15 shows the corresponding PLA structure, which has four
inputs, five product terms, and three outputs. A dot at the intersection of a word line
and an input or output line indicates the presence of a switching element in the array.

Inputs

a b c d

YIVIVY

a’bd
abd
ab’c’ Word
b’c lines
bc
Fi F2 F3
%/_’
Outputs

A PLA table is significantly different than a truth table for a ROM. In a truth
table, each row represents a minterm; therefore, exactly one row will be selected
by each combination of input values. The 0’s and I’s of the output portion of the
selected row determine the corresponding output values. On the other hand, each
row in a PLA table represents a general product term. Therefore, zero, one, or more
rows may be selected by each combination of input values. To determine the value
of F for a given input combination, the values of F in the selected rows of the PLA
table must be OR’ed together. The following examples refer to the PLA table of
Table 3-4. If abcd = 0001, no rows are selected, and all F;'s are 0. If abcd = 1001,
only the third row is selected, and F,F,F, = 101. If abcd = 0111, the first and fifth
rows are selected. Therefore, F, =1+ 0=1,F,=1+1=Land F;,=0+1=1.

Next, we realize the sequential machine BCD to excess-3 code converter of
Figure 1-23 using a PLA and three D flip-flops. The circuit structure is the same as
Figure 3-8, except that the ROM is replaced by a PLA. The required PLA table,
based on the equations given in Figure 1-25, is shown in Table 3-5.

ProductTerm | Q, Q, Q, X | Qf Q7 Q;F
Q, — —
Q1 1
Q,Q,Q, 1
Q,Q:X’ 1
0

Q,Q,X
%
Q3X - -

0
1
0

- =2 000 O0CO|N

[=NeNeNeNeNe R
[eNeNeNeNel o]
OO0 == =00

1
0
0
1

\O\Ol

3.2 Simple Programmable Logic Devices 151

3.2.3 Programmable Array Logic

The PAL (programmable array logic) is a special case of the programmable logic
array in which the AND array is programmable and the OR array is fixed. The
basic structure of the PAL is the same as the PLA shown in Figure 3-9. Because
only the AND array is programmable, the PAL is less expensive than the more gen-
eral PLA, and the PAL is easier to program. For this reason, logic designers fre-
quently use PALs to replace individual logic gates when several logic functions
must be realized.
Figure 3-16(a) represents a segment of an unprogrammed PAL. The symbol

Noninverted output
Inverted output

represents an input buffer, which is logically equivalent to

A buffer is used since each PAL input must drive many AND gate inputs.
When the PAL is programmed, some of the interconnection points are pro-
grammed to make the desired connections to the AND gate inputs. Connections
to the AND gate inputs in a PAL are represented by X’s as shown in the follow-
ing diagram:

Ai
e = HH D
Ci

As an example, we will use the PAL segment of Figure 3-16(a) to realize
the function /,I; + I}1,. The X's in Figure 3-16(b) indicate that /, and I, lines are
connected to the first AND gate, and the I} and /, lines are connected to the other
gate.

When designing with PALs, we must simplify our logic equations and try to fit
them into one (or more) of the available PALs. Unlike the more general PLA, the
AND terms cannot be shared among two or more OR gates; therefore, each func-
tion to be realized can be simplified by itself without regard to common terms. For
a given type of PAL, the number of AND terms that feed each output OR gate is
fixed and limited. If the number of AND terms in a simplified function is too large,
we may be forced to choose a PAL with more gate inputs and fewer outputs.

As an example of programming a PAL, we will implement a full adder. The logic
equations for the full adder are

Sum = X'Y'C+ X'YC,+ XY'C,+ XYC,,
C,, = XC, +YC, + XY

152 Introduction to Programmable Logic Devices

FIGURE 3-16:
PAL Segment

FIGURE 3-17:

Implementation of
a Full Adder Using

a PAL

Output

(a) Unprogrammed

) I

) 1o+l
X%

(b) Programmed

Figure 3-17 shows a section of a PAL where each OR gate is driven by four AND
gates. The X’s on the diagram show the connections that are programmed into the
PAL to implement the full adder equations. For example, the first row of X’s imple-
ments the product term X' Y'C

e—
43

:j:r%*%i>5um
HHHED-

Typical combinational PALs have from 10 to 20 inputs and from 2 to 10 outputs,
with 2 to 8 AND gates driving each OR gate. PALs are also available that contain
D flip-flops with inputs driven from the programmable array logic. Such PALs are
called sequential PALs. They provide a convenient way of realizing sequential

O < X

FIGURE 3-18:
Segment of a
Sequential PAL

3.2 Simple Programmable Logic Devices 153

circuits. Figure 3-18 shows a segment of a sequential PAL. The D flip-flop is driven
from an OR gate, which is fed by two AND gates. The flip-flop output is fed back to
the programmable AND array through a buffer. Thus, the AND gate inputs can be
connected to A, A’, B, B, Q, or Q'. The diagram shows the realization of the next
state equation:

Q"=D=ABQ’'+ AB'Q

The flip-flop output is connected to an inverting tristate buffer, which is enabled
when EN = 1.

AN BB QQ Clock EN

! > Q
A Inverting
3-state

Q’ output

Qg\ buffer

B

L —

Programmable AND array

A few decades ago, PALs were very popular among digital system designers.
A very popular PAL was the 16R4. This PAL has an AND gate array with 16 input
variables, and it has four D flip-flops. Nowadays, several other programmable
devices, such as GALs (described in the next section), CPLDs, and FPGAs, have
arrived. PALs have practically disappeared; hence, we do not describe further any
of the traditional PAL devices.

3.2.4 Programmable Logic Devices/Generic Array Logic

PALs and PLAs have been very popular for implementing small circuitry and interface
logic often needed by designers. As integrated circuit technology has improved, a
wide variety of other programmable logic devices have become available. Traditional
PALs are not reprogrammable. However, there are flash erasable/reprogrammable
PALs now. Often, these are referred to as PLDs.

The 22CEV10 (Figure 3-19) is a CMOS electrically erasable PLD that can be
used to realize both combinational and sequential circuits. The abbreviation PLD
has been used as a generic term for all programmable logic devices and also
refers to specific devices such as the 22CEV10. In addition to the AND-OR
arrays that the PALs have, most PLDs have some type of a macroblock that con-
tains some multiplexers and some additional programmability. These PLDs are
named with reference to their input and output capability. For instance, the
22CEV10 has 12 dedicated input pins and 10 pins that can be programmed as
either inputs or outputs. It contains 10 D flip-flops and 10 OR gates. The number
of AND gates that feeds each OR gate ranges from 8 through 16. Each OR gate

154 Introduction to Programmable Logic Devices

FIGURE 3-19: Block Diagram for 22V10

i

CLK/I, 4

011

11

!
~
Programmable AND array
(44x132)
8 10 12 14 16 }I 16 14 12 10 8
Reset= Output | | Output | | | Output [| | Output | | Output | | Output | | | Output Output | | Output Output
Logic Logic Logic Logic Logic Logic Logic | | | Logi ic []] i
N | 11| Hl i | | K Log | | K Logic ogic | | | Logic Logic
Macro _>Macro __>Macro __>Macr0 >Macro >Ma(:ro >Macro __>Macro >Macro __>Macro Preset
Cell Cell Cell Cel [17] cet]| cel [T cat [T cel [T cel [T cel [®
110, 110, 110, 110, 110, 110 110, 110, 110, 110,

drives an output logic macrocell. Each macrocell contains one of the 10 D flip-flops.
The flip-flops have a common clock, a common asynchronous reset (AR) input,
and a common synchronous preset (SP) input. The name 22V10 indicates a ver-
satile PAL with a total of 22 input and output pins, 10 of which are bidirectional
I/0 (input/output) pins.

Figure 3-20 shows the details of a 22CEV10 output macrocell. The connections to
the output pins are controlled by programming this macrocell. The output MUX con-
trol inputs §; and S select one of the data inputs. For example, §,§; = 10 selects data
input 2. Each macrocell has two programmable interconnect bits. S, or S is connected
to ground (logic 0) when the corresponding bit is programmed. Erasing a bit discon-
nects the control line (S, or) from ground and allows it to float to logic 1. When §, =
1, the flip-flop is bypassed, and the output is from the OR gate. The OR gate output is
connected to the I/O pin through the multiplexer and the output buffer. The OR gate
is also fed back so that it can be used as an input to the AND gate array. If §; = 0, then
the flip-flop output is connected to the output pin, and it is also fed back so that it can
be used for AND gate inputs. When §) = 1, the output is not inverted, so it is an active
high. When §) = 0, the output is inverted, so it is an active low. The output pin is driven
by a tristate inverting buffer. When the buffer output is in a high-impedance state, the

FIGURE 3-20: PLD
Output Macrocell

3.2 Simple Programmable Logic Devices 155

OR gate and flip-flop are disconnected from the output pin, and the pin can be used as
an input. The dashed lines in Figure 3-20(a) show the path when both §; and S are 0,
and the dashed lines in Figure 3-20(b) show the path when both S, and S are 1. Note
that in the first case, the flip-flop output Q is inverted by the output buffer, and in the
second case the OR gate output is inverted twice, so there is no net inversion.

: 2
Output
AR
| Ll>°_'3 select /Oy
$ D Q———=l0_MUX_ t——- >0+ K
CK—p Q__l- w1 S S,
[

SP | \ J_

_ -0 Programmable
MUX interconnects

ot » 2
| AR _Lvo:,\?, Output
1 | T 110,

00

|

|

f
1=

c
= Xo
A

|

|

|

|

|

|

|

|

|

|

|

DQ >0 Mux [— ==K
CK— Q@ 1 S1 S !
[|
SP J__ |
i |
|
L

(b) Pathswith S, =S,=1

Several PLDs similar to the 22V10 have been popular. Typically these PLDs had
8 to 12 I/O pins. Each output pin is typically connected to an output macrocell, and
each macrocell has a D flip-flop. The I/O pins can be programmed so that they act
as inputs or as combinational or flip-flop outputs. Some of the PLDs have a dedi-
cated clock input, and the others have a dual-purpose pin that can be used either as
a clock or as an input. All the PLDs typically have tristate buffers at the outputs, and
some of them have a dedicated output enable (OFE).

156 Introduction to Programmable Logic Devices

3.3

Lattice Semiconductor created similar devices which are in-circuit programma-
ble and called them generic array logic (GAL). GALs are perfect for implementing
small amounts of interface logic, often called “glue” logic. Most of the common
PLDs, like the PALCE22V10, PALCE20VS, and so on, have GAL equivalents,
called GAL22V10, GAL20VS, and so on.

Design Flow for PLDs

Computer-aided design programs for PALs and PLDs are widely available. Such
programs accept logic equations, truth tables, state graphs, or state tables as inputs
and automatically generate the required bit patterns. These patterns can then be
downloaded into a PLD programmer, which will create the necessary connections
and verify the operation of the PAL. Many of the newer types of PLDs are erasable
and reprogrammable in a manner similar to EPROMs and EEPROMs. Hence, in
these newer devices, bit patterns corresponding to the required EEPROM content
will be generated by the software.

PALASM and ABEL are examples of two languages that were popularly used
with PALs and PLDs. PALASM is a PLD design language from MMI and AMD.
ABEL is a PLD design language from DATA 1/O. Intel used to manufacture PLDs
and had a PLD language called PLDShell. While PALASM and ABEL can still be
used, nowadays designs for GALs can be done using hardware description lan-
guages such as VHDL or Verilog.

Complex Programmable Logic Devices

Improvements in integrated circuit technology have made it possible to create pro-
grammable ICs equivalent to several PLDs in the same chip. These chips are called
complex programmable logic devices (CPLDs). When storage elements such as flip-
flops are also included on the same IC, a small digital system can be implemented
with a single CPLD.

CPLDs are an extension of the PAL concept. In general, a CPLD is an IC that
consists of a number of PAL-like logic blocks together with a programmable inter-
connect matrix. CPLDs typically contain 500 to 10,000 logic gates. Essentially,
several PLDs are interconnected using a crossbar-like switch and fabricated inside
the same IC. An N X M crossbar switch is one in which each of the N input lines can
be connected to any of the M output lines simultaneously. It is expensive to build
these switches; however, use of such a switch results in predictable timing. Many
CPLDs are electronically erasable and reprogrammable and are sometimes
referred to as EPLDs (erasable PLDs).

A typical CPLD contains a number of macrocells that are grouped into function
blocks. Connections between the function blocks are made through an interconnection
array. Each macrocell contains a flip-flop and an OR gate, which has its inputs
connected to an AND gate array. Some CPLDs are based on PALs, in which case
each OR gate has a fixed set of AND gates associated with it. Other CPLDs
are based on PLAs, in which case any AND gate output within a function block can
be connected to any OR gate input in that block.

3.3 Complex Programmable Logic Devices 157

Xilinx, Altera, Lattice Semiconductor, Cypress, and Atmel are the major CPLD
manufacturers in the market today. The major products available on the market are
listed in Table 3-6. Some vendors specify their gate capacities in usable gates, and
some specify it in terms of logic elements.

TABLE 3-6: I
Major CPLDs and Vendor CPLD family Gate Count
their Approximate Xilinx CoolRunner-II 750 to 12K
Capacity CoolRunner XPLA3 750 to 12K
XC9500XV 800 to 6400
XC9500 800 to 6400
XC9500XL 800 to 6400
Atmel CPLD ATF15 750 to 3000 usable gates
CPLD-2 22V10 500 usable gates
Cypress Delta39K 30K to 200K
Flash370i 800 to 3200
Quantum38K 30K to 100K
Ultra37000 960 to 7700
MAX340 high-density EPLDs 600 to 3750
Lattice ispXPLD 5000MX 75K to 300K
Semiconductor ispMACH 4000B/C/V/Z 640 to 10,240
Altera MAX 1l 240 to 2210 logic elements
MAX3000 600 to 10K usable gates
MAX7000 600 to 10K usable gates
3.3.1 An Example CPLD: The Xilinx CoolRunner
Xilinx has two major series of CPLDs, the CoolRunner and the XC9500. Figure 3-21
shows the basic architecture of a CoolRunner family CPLD, the Xilinx XCR3064XL.
This CPLD has four function blocks, and each block has 16 associated macrocells
FIGURE 3-21: Architecture of Xilinx CoolRunner XCR3064XL CPLD
(| l«e— MC1 MC1 — |t
=0 [*1LMC2 | FUNCTION 36 36 FUNCTION | MC2 [—»= (=
i e : BLOCK BLOCK F
-] l«—]{ MC16 MC16 |— [
@ T 16 16 I
o Inter-
16 16
9 < connect
. — MC1 array MC1 |—= |t
* /o [1LMC2 | FUNCTION 36 (I1A) 36 FUNCTION | MC2 |—=| ==
: -~ 3 BLOCK BLOCK N e H
\ - <— MC16 MC16 |— [
T 16 16 I
16 16

158 Introduction to Programmable Logic Devices

FIGURE 3-22: CPLD
Function Block
and Macrocell
(Simplified Version
of XCR3064XL)

(MC1, MC2, ...). Each function block is a programmable AND-OR array that is
configured as a PLA. Each macrocell contains a flip-flop and multiplexers that route
signals from the function block to the input/output (I/O) block or to the interconnect
array (IA). The interconnect array selects signals from the macrocell outputs or
I/O blocks and connects them back to function block inputs. Thus, a signal generated in
one function block can be used as an input to any other function block. The I/O blocks
provide an interface between the bidirectional I/O pins on the IC and the interior of
the CPLD.

Figure 3-22 shows how a signal generated in the PLA (function block) is routed
to an I/O pin through a macrocell. Any of the 36 inputs from the IA (or their com-
plements) can be connected to any inputs of the 48 AND gates. Each OR gate can
accept up to 48 product term inputs from the AND array. The macrocell logic in this
diagram is a simplified version of the actual logic. The first mux (1) can be pro-
grammed to select the OR gate output or its complement. The mux (2) at the output
of the macrocell can be programmed to select either the combinational output (G)
or the flip-flop output (Q). This output goes to the interconnect array and to
the output cell. The output cell includes a three-state buffer (3) to drive the I/O pin.
The buffer enable input can be programmed from several sources. When the 1/O pin
is used as an input, the buffer must be disabled.

36 Inputs from |1A
A
48 AND gates

; Z '/10f160Rgaie£
Programmable select to IA tolA
~a

1/0 pin

D Q
CE

Programmable

—>CK |w_ enable
Flip-flop
Part of PLA Simplified macrocell Output cell

Figure 3-23 shows how a Mealy sequential machine with two inputs, two outputs,
and two flip-flops can be implemented by a CPLD. Four macrocells are required,
two to generate the D inputs to the flip-flops and two to generate the Z outputs. The
flip-flop outputs are fed back to the AND array inputs via the interconnection
matrix (not shown). The number of product terms required depends on the com-
plexity of the equations for the D’s and the Z’s.

CPLD Implementation of a Parallel Adder with Accumulator

Assume that we need to implement an adder with an accumulator, as in Figure 3-24,
in a CPLD. The accumulator register needs one flip-flop for each bit. Each bit also
needs to generate the sum and carry bits corresponding to that bit.

FIGURE 3-23: CPLD
Implementation of
a Mealy Machine

FIGURE 3-24: N-Bit
Parallel Adder with
Accumulator

FIGURE 3-25: CPLD
Implementation of
a Parallel Adder
with Accumulator

3.3 Complex Programmable Logic Devices 159

X1 X3
l l l Macrocells
T D, - Q1
]/
‘! NP2 [er Q
AND S
array NN > 7
10 22
NNNNNANVS N\NNNANNANNNANY
e X Xy Xy
| | | |
Q Q -]Q Q R Q Q Q Accumulator
N N Register
CE D CE D CE D CE D gl
| i i N
CLK
CIrN
Sn Xn Si X S2 X2 S1 X1
— Full — Full — Full — Full
w | adder | .| adder | adder adder |,
Cne1 g Ch Giv1 1 Ci C3 T C2 f ¢;=0
Yn Yi Y2 Y1

Figure 3-25 shows how three bits of such a parallel adder with an accumulator
can be implemented using a CPLD. Each bit of the adder requires two macrocells.
One of the macrocells implements the sum function and an accumulator flip-flop.
The other macrocell implements the carry, which is fed back into the AND array.
The Ad signal can be connected to the enable input (CE) of each flip-flop via an

YVYVYY J v
Y\ Cy
J
C0—> \—\ SO - XO
Y0—> ‘ RN Cz
AND L~
Y, —p array Y\ S X1
1 !) FF
T N Cs
Yz—b /_/
Y \ S X2
! > FF

3

160 Introduction to Programmable Logic Devices

3.4

AND gate (not shown). Each bit of the adder requires eight product terms (four for
the sum, three for the carry, and one for CE). For each accumulator flip-flop,

D;=X=85=X0Y,0C

If the flip-flops are programmed as T flip-flops, then the logic for the sum can be
simplified. For each accumulator flip-flop

X' =X0Y,0C
Therefore, the T input is
r=X'®X,=Y,®C

The add signal can be AND’ed with the T, input so that the flip-flop state only
can change when Ad = 1:

T.=Ad(Y,®C)=AdY,C' +AdY/C,
The equation for carry is

C, = XY, + XC,+ YC,

Field Programmable Gate Arrays

In this section, we introduce field programmable gate arrays (FPGAs). FPGAs are
ICs that contain an array of identical logic blocks with programmable interconnec-
tions. The user can program the functions realized by each logic block and the con-
nections between the blocks. FPGAs have revolutionized the way prototyping and
designing are done. The flexibility offered by reprogrammable FPGAs has enhanced
the design process. While different kinds of programmable devices had been around,
when Xilinx used static RAM (SRAM) storage elements to create programmable
logic blocks and introduced its family of XC2000 devices in 1985, the world received
a totally new and powerful technology. There are a variety of FPGA products avail-
able in the market now. Xilinx, Altera, Lattice Semiconductor, Actel, Cypress,
QuickLogic, and Atmel are examples of companies that design and sell FPGAs.

FPGAs provide several advantages over traditional gate arrays or mask pro-
grammable gate arrays (MPGASs). A traditional gate array can be used to implement
any circuit but is programmable only in the factory. A specific mask to match the
particular circuit is created in order to fabricate the gate array. The design time of a
gate-array-based IC is a few months. FPGAs are standard off-the-shelf products.
Manufacturing time reduces from months to hours as one adopts FPGAs instead of
MPGAs. Design iterations become easier with FPGAs. This is a tremendous advan-
tage when it comes to time-to-market. It becomes easy to correct mistakes that creep
into designs. Mistakes and design specification changes become less costly. Prototyping
cost is reduced. At low volumes, FPGAs are cheaper than MPGA:s.

FPGAs s have disadvantages, too. FPGAs are less dense than traditional gate arrays
(MPGA:S). In FPGAs, a lot of resources are spent to merely achieve the programma-
bility. MPGAs have better performance than FPGAs. Programmable points have

TABLE 3-7:
Examples of
Commercial FPGAs

3.4 Field Programmable Gate Arrays 161

resistance and capacitance. They slow down signals, so FPGAs are slower than tradi-
tional gate arrays. Also, interconnection delays are unpredictable in FPGAs. PLDs, like
PALs and GALs, are simple and inexpensive. CPLDs are faster than FPGAs and are
cheaper. The overhead for programmability is fairly low in PALs and CPLDs. The main
advantage of CPLDs over FPGA:s is the lower cost and predictability in timing.

Several commercial FPGAs are listed in Table 3-7. As we notice, some of these
chips contain logic equivalent to 5 million gates. The capacity of some FPGAs is
specified in number of look-up tables (LUTs). Due to the large capacity, it is possible
to prototype or even manufacture large systems in a single FPGA. In this chapter,
we describe the basic organization of FPGAs. Design examples with FPGAs are
presented in Chapter 6.

Vendor FPGA Product Capacity (Approx) in Gates/LUTs
Xilinx Spartan-Il 15K to 200K
Spartan-IIE 50K to 600K
Spartan-3 50K to 5M
Virtex-5 19,200 to 207,360 LUTs
Virtex 57,906 to 1,124,022
Virtex-E 71,693 to 4,074,387
Virtex-1l 40K to 8M
Altera ACEX 1K 56K to 257K
APEX Il 1.9M to 5.25M
FLEX 10K 10K to 50K
Stratix/Stratix Il 10,570 to 132,540 logic elements
Lattice Semiconductor LatticeECP2 6K to 68K LUTs
Lattice SC 15.2K to 115.2K LUTs
ispXPGA 139K to 1.25M
MachXO 256 to 2280 LUTs
LatticeECP 6.1K to 32.8K LUTs
Actel Axcelerator 125K To 2M
eX 3K to 12K
ProASIC3 30K to 3M
MX 3K to 54K
Quick Logic Eclipse/EclipsePlus 248K to 662K
Quick RAM 45K to 176K
pASIC 3 5K to 75K
Atmel AT40K 5K to 40K
AT40KAL 5K to 50K

3.4.1 Organization of FPGAs

Figure 3-26 shows the layout of a typical FPGA. The interior of FPGAs typically
contains three elements that are programmable:

Programmable logic blocks
Programmable input/output blocks
Programmable routing resources

162 Introduction to Programmable Logic Devices

FIGURE 3-26: Layout of a Typical FPGA

1L F

E N\

o

- Programmable Logic Block

Programmable)
Interconnect Area

-

Programmable 1/0 Block

ll:

]]

f
Lk

Arrays of programmable logic blocks are distributed within the FPGA. These
logic blocks are surrounded by input/output (I/O) interface blocks. These I/O blocks
can be considered to be on the periphery of the chip. They connect the logic signals
to FPGA pins. The space between the logic blocks is used to route connections
between the logic blocks.

The “field” programmability in FPGAs is achieved by reconfigurable
elements, which can be programmed or reconfigured by the user. As mentioned,
there are three major programmable elements in FPGAs: the logic block, the
interconnect, and the input/output block. Programmable logic blocks are created
by using multiplexers, look-up tables, and AND-OR or NAND-NAND arrays.
“Programming” them means changing the input or control signals to the multi-
plexers, changing the look-up table contents, or selecting/not selecting particular
gates in AND-OR gate blocks. For a programmable interconnect, “programming”
means making or breaking specific connections. This is required to interconnect

3.4 Field Programmable Gate Arrays 163

various blocks in the chip and to connect specific I/O pins to specific logic
blocks. Programmable I/O blocks denote blocks which can be programmed to be
input, output, or bidirectional lines. Typically, they can also be “programmed” to
adjust the properties of their buffers such as inverting/noninverting, tristate, pas-
sive pull-up, or even to adjust the slew rate, which is the rate of change of signals
on that pin.

What makes an FPGA distinct from a CPLD is the flexible general-purpose inter-
connect. In a CPLD, the interconnect is fairly restricted. The general-purpose
interconnect in an FPGA gives it a lot of flexibility, but it also has the disadvantage
of being slow. A connection from one part of the chip to another part might have to
travel through several programmable interconnect points, resulting in large and
unpredictable signal delays.

While Figure 3-26 was used to illustrate the general structure of an FPGA, not
all FPGAs look like that. Commercial FPGAs use a variety of architectures. The
FPGA architecture or organization refers to the manner or topology in which the
logic blocks and interconnect resources are distributed inside the FPGA.The organ-
ization that is presented in Figure 3-26 is often referred to as symmetrical array
architecture. If we examine the various FPGAs that have been on the market since
their inception in the late 1980s, we could classify them into four different basic
architectures or topologies:

Matrix-based (symmetrical array) architectures
Row-based architectures

Hierarchical PLD architectures

Sea-of-gates architecture

These architectures are illustrated in Figure 3-27.

Matrix-Based (Symmetrical Array) Architectures

The logic blocks in this type of FPGA are organized in a matrix-like fashion as illus-
trated in Figure 3-27(a). Most Xilinx FPGAs belong to this category. The
logic blocks in these architectures are typically of a large granularity (capable of
implementing four-variable functions or more). These architectures typically
contain 8 X 8 arrays in the smaller chips and 100 X 100 or larger arrays in the bigger
chips. The routing resources are interspersed between the logic blocks. The routing
in these architectures is often called two-dimensional channeled routing since rout-
ing resources are generally available in horizontal and vertical directions.

Row-Based Architectures

These architectures were inspired by traditional gate arrays. The logic blocks in this
architecture are organized in rows, as illustrated in Figure 3-27(b). Thus, there are
rows of logic blocks and routing resources. The routing resources interspersed
between the rows can be used to interconnect the various logic blocks. Traditional
mask programmable gate arrays use very similar architectures. The routing in these
architectures is often called one-dimensional channeled routing because the routing
resources are located as a channel in between rows of logic resources. Some Actel
FPGAs employ this architecture.

164 Introduction to Programmable Logic Devices

FIGURE 3-27: Typical Architectures for FPGAs

Interconnect
Interconnect
> e e e e e
I I I I I I 1 I
Logic block —)
T T T T T T T T
Il Il il il il il Il il
Il I Il Il Il Il Il Il
I I I I I I I I
Logicblock)
(a) Matrix based (symmetrical array) (b) Row based
000000 — 1 000000
000000 [S— L1 o 000000
600000 | B — 8 |sacooo Logic block
000000 | — [—] F— — [0o0o0o000 1 17 17 1 1 17
coocooof 3 (| —— =2 |oooooo L I I i L L
000000 Q — 1 @ 000000
000000 Q Q 000000 ,——| ,——| ,——| ,——| ,——| ,——|
sosees | 3 - I o
000000 1 1 000000
/000000 8_ A 8 000000 ,__l ,__l ,__l ,__l ,__l ,__l
Group Global
! ° : ° Interconnect
of logic ° inter- ° mlmlmlm ! el overlaved on
blocks connect Iy rlay
(withloead 222 2] £ e B R R I
interconnect) Goooan| B — 8 |e50000
000000 | —]] 5 [ccccee i e e T e A
gooa0o| 2 — —Z |20 I R A
oooooo | @ [| I | @ |oooooo
000000 Q Q 000000
s0000o | S S |eooeoon mlmlmlml el
eo0000| 3 S |ecocoo I 6 oy o
000000 8— — 3 000000
0000 00O ey | 000000
(c) Hierarchical (d) Seaof gates

Hierarchical Architectures

In some FPGAs, blocks of logic cells are grouped together by a local interconnect
and several such groups are interconnected by another level of interconnect. For
instance, in Altera APEX20 and APEX II FPGAs, 10 or so logic elements are con-
nected to form what Altera calls a logic array block (LAB), and then several LABs
are connected to form a MEGALAB. Thus, there is a hierarchy in the organization
of these FPGAs. These FPGAs contain clusters of logic blocks with localized
resources for interconnection. The global interconnect network is used for the inter-
connections between the clusters of logic blocks in these FPGAs.

Sea-of-Gates Architecture

The sea-of-gates architecture is yet another manner to organize the logic blocks
and interconnect in an FPGA. The general FPGA fabric consists of a large
number of gates, and then there is an interconnect superimposed on the sea of
gates as illustrated in Figure 3-27(d). Plessey, a manufacturer who was in the
FPGA market in the mid-1990s, made FPGAs of this architecture. The basic cell

FIGURE 3-28:
Routing with Static
RAM Programming
Technology

3.4 Field Programmable Gate Arrays 165

they used was a NAND gate, in contrast to the larger basic cells used by manu-
facturers like Xilinx. While the terminology sea of gates is the most popular, there
are also terminologies like sea of cells and sea of tiles to indicate the topology of
FPGAs with a large number of fine-grain logic cells. The Actel Fusion FPGAs
contain a sea of tiles, where each tile can be configured as a three-input logic func-
tion or a flip-flop/latch.

3.4.2 FPGA Programming Technologies

FPGAs s consist of a large number of logic blocks interspersed with a programmable
interconnect. The logic block is programmable in the sense that the same building
block can be “programmed” or “configured” to create any desired circuitry. There is
also programmability in the interconnections between the logic blocks.

Several techniques have been used to achieve the programmable interconnections
between FPGAs. The term programming technology is used here to denote the tech-
nology by which the programmability in an FPGA is achieved. In some devices, the
reconfigurability is achieved by changing the contents of static RAM cells. In some
devices, it is achieved by using flash memory cells. In others, it is achieved by fusing
metal links. In general, FPGAs use one of the following programming methods:

StaticRAM programming technology
EPROM/EEPROM/flash programming technology
Antifuse programming technology

The SRAM Programming Technology

The SRAM programming technology involves creating reconfigurability by bits
stored in static RAM (SRAM) cells. The logic blocks, I/O blocks, and interconnect can
be made programmable by using configuration bits stored in SRAM. Reconfigurable
logic blocks can easily be implemented as LUTs, which is the same approach as the
ROM method described in Section 3.2.1. Sixteen SRAM cells can implement any
function of four variables. The programmable interconnect can also be achieved by
SRAM. The key idea is to use pass transistors to create switches and then control
them using the SRAM content. Consider the arrangement in Figure 3-28(a). The
SRAM cell is connected to the gate of the pass transistor. When the SRAM cell con-
tent is 0, the pass transistor is OFF, and hence no connection exists between points

M=SRAM cell
M P—
Q — X
R—— ,
s Tologic
—) | cell input
A B Routing
i M|M
Routing Routing wire ..
wire wire
(a) Passtransistor (b) Multiplexer controlled

connecting two points by two memory cells

166 Introduction to Programmable Logic Devices

FIGURE 3-29:
Typical Six-
Transistor SRAM
Cell

A and B. A closed path can be achieved by turning the pass transistor ON by making
the SRAM cell content 1. SRAM bits can be used to construct routing matrices by
using multiplexers as in Figure 3-28(b). Changing the contents of the SRAM in the
arrangement in Figure 3-28(b) will allow the designer to change what is connected to
point X. The bits that are stored in the SRAM for deciding the LUT functionality or
interconnection are called configuration bits.

A SRAM cell usually takes six transistors, as illustrated in Figure 3-29. Four
cross-coupled transistors are required to create a latch, and two additional transis-
tors are used to control passing data bits into the latch. When the Word Line is set

Word line

T

Vad

o b | @

I—} Bit line

Qs

Bit line 4—'—|

Qs

o | L

— gnd

to high, the values on the Bit Line will be latched into the cell. This is the write oper-
ation. The read operation is performed by precharging the Bit Line and Bit Line to
a logic 1 and then setting Word Line to high. The contents stored in the cell will then
appear on the Bit Line. Some SRAM cell implementations only use five transistors.
One advantage of using static RAM is that it is volatile and you can write new con-
tents again and again. This provides flexibility during prototyping and development.
Another advantage is that the fabrication steps for making SRAM cells are not
different from the steps for making logic. The major disadvantage of the SRAM
programming technology is that five or six transistors are used for every SRAM cell.
This adds a tremendous cost to the chip. For example, if an FPGA has 1 million pro-
grammable points, it means that approximately 5 or 6 million transistors are spent
in achieving this programmability.

Being volatile can become a disadvantage when an FPGA is used in the final
product. Hence, when SRAM FPGAs are used, a nonvolatile device such as an
EPROM should be used to permanently store the configuration bits. Typically, what
is done is to use the EPROM as a “boot ROM.” The EPROM contents are trans-
ferred to the SRAM when power comes up.

FIGURE 3-30:
The EPROM
Programming
Technology

3.4 Field Programmable Gate Arrays 167

Xilinx FPGAs were the first FPGAs to use SRAM as the programming tech-
nology. In fact, it is the flexibility and reprogrammability of SRAM FPGAs that
caused FPGAs to become widely popular. Now, many companies use the SRAM
programming technology for their FPGAs.

EPROM/EEPROM Programming Technology

In the EPROM/EEPROM programming technology, EPROM cells are used to
control programmable connections. Assume that EPROM/EEPROM cells are used
instead of the SRAM cells in Figure 3-28. A transistor with two gates, a floating gate
and a control gate, is used to create an EPROM cell. Figure 3-30 illustrates an
EPROM cell. The pull-up resistor connects the drain of the transistor to the power
supply (labeled V,, in the figure). To turn the transistor off, charge can be injected
on the floating gate using a high voltage between the control gate and the drain of
the transistor. This charge increases the threshold voltage of the transistor and turns
it off. The charge can be removed by exposing the floating gate to ultraviolet light.
This lowers the threshold voltage of the transistor and makes it function normally.

Vop
Pull-up
resistor
Bit line
Control gate

% ‘ EPROM transistor

Floating gate
Word line

—gnd

EPROMs are slower than SRAM; hence, SRAM-based FPGAs can be pro-
grammed faster. EPROMs also require more processing steps than SRAM. EPROM-
based switches have high ON resistance and high static power consumption. The
EEPROM is similar to EPROM, but removal of the gate charge can be done
electrically.

Flash memory is a form of EEPROM that allows multiple locations to be erased
in one operation. Flash memory stores information in floating-gate transistors as in
traditional EPROM. The floating gate is isolated by an insulating oxide layer, and
hence any electrons placed there are trapped. The cell is read by placing a specific
voltage on the control gate. When the voltage to read is placed, electrical current will
or will not flow depending on the threshold voltage of the cell, which is controlled by

168 Introduction to Programmable Logic Devices

the number of electrons trapped in the floating gate. In some devices, the information
is stored as absence or presence of current. In some advanced devices, the amount of
current flow is sensed, and hence multiple bits of information can be stored in a cell.
To erase, a large voltage differential is placed between the control gate and source,
which pulls electrons off. Flash memory is erased in segments/sectors; all cells in a
block are erased at the same time.

The Antifuse Programming Technology

In some FPGAs, the programmable connections between different points are achieved
by what is called an “antifuse.” Contrary to fuse wires that blow open when high cur-
rent passes through them, the “antifuse” programming element changes from high
resistance (open) to low resistance (closed) when a high voltage is applied to it.
Antifuses are often built using dielectric layers between N+ diffusion and polysilicon
layers or by amorphous silicon between metal layers. Antifuses are normally OFF;
permanently connected links are created when they are programmed. The process
is irreversible, and hence antifuse FPGAs are only one-time programmable. Pro-
gramming an antifuse requires applying a high voltage and currents in excess of normal
currents. Special programming transistors larger than normal transistors are incorpo-
rated into the device in order to accomplish the programming. There are different anti-
fuse technologies; a popular one is the Via antifuse technology.

Antifuse technology has the advantage that the area consumed by the program-
mable switch is small. Another advantage is that antifuse-based connections are
faster than SRAM- and EEPROM-based switches. The disadvantage of the antifuse
technology is that it is not reprogrammable. It is a permanent connection; if an error
or design change necessitates reprogramming, a new device is required.

Comparison of Programming Technologies

Table 3-8 compares the characteristics of the major programming technologies
used by FPGAs. Only the SRAM and EEPROM programming technologies
allow in-circuit programmability. In-circuit programmability means that an FPGA
can be reprogrammed without removing it from the board in which it is used.
In-circuit programmability is not possible in traditional EPROM-based devices,
but EEPROM/flash technologies allow in-circuit reprogrammability.

TABLE 3-8: Characteristics of the Major FPGA Programming Technologies

Programming Area

Technology Volatility Programmability Overhead Resistance Capacitance

SRAM Volatile In-circuit Large Medium High
reprogrammable to high

EPROM Nonvolatile Out-of-circuit Small High High
reprogrammable

EEPROM Nonvolatile In-circuit Medium High High
reprogrammable to high

Antifuse Nonvolatile Not reprogrammable Small Small Small

3.4 Field Programmable Gate Arrays 169

SRAM FPGAs have several disadvantages: high area overhead, large delays,
volatility, and so on. However, the in-circuit programmability and fast programmability
have made them very popular. SRAM FPGAs are more expensive than other types of
FPGAs s because each programmable point uses six transistors. This extra hardware con-
tributes only to the reprogrammability but not to the actual circuitry realized with the
FPGA. EEPROM/flash-based FPGAs are comparable to SRAM FPGAs in many
aspects; however, they are not as fast as SRAM FPGAs.

3.4.3 Programmable Logic Block Architectures

FPGA:s in the past have employed different kinds of programmable logic blocks as
the basic building block. In this section, we present some generalized versions of
typical building blocks in commercial FPGAs.

The logic blocks vary in the basic components they use. For instance, some FPGAs
use LUT-based logic blocks, while others use multiplexers and logic gates to build
their logic blocks. There also have been FPGAs where logic blocks simply consisted
of transistor pairs (e.g., crosspoint FPGAs). Logic building blocks in early Altera
FPGAs were PLD blocks. There were also FPGAs that used NAND gates as the
building block (e.g., Plessey).

The logic blocks also vary in their architecture and size. Some FPGAs use large
basic blocks, which can implement large functions (several five-variable or four-
variable functions) and have several flip-flops in each basic block. In contrast, there
are FPGA building blocks which only allow a three-variable function or a flip-flop in
one block. Some FPGAs allow choices as to whether latched/unlatched or both kinds
of outputs can be brought out. Some FPGAs allow one to control the type of flip-
flop that is realized. Some allow positive edge/negative edge clock, direct set/reset
inputs to the flip-flop, and so on. Different FPGA manufacturers use different names
(often trademarked) to denote their logic blocks. In the Xilinx literature, a program-
mable logic block is called a Configurable Logic Block (CLB). Altera calls their basic
blocks Logic Elements (LE) and a collection of 8 or 10 of them Logic Array Blocks
(LABSs). The basic cells in Actel Fusion FPGAs are referred to as VersaTiles.

Look-Up Table-Based Programmable Logic Blocks

Many LUT-based FPGAs use a four-variable look-up table plus a flip-flop as the
basic element and then combine several of them in various topologies. Consider the
structure in Figure 3-31. There are two four-variable look-up tables (often denoted
by the short form LUT4) and two flip-flops in this programmable logic block. The
LUT4 can also be called a four-variable function generator since it can generate any
function of four variables. The two LUT4s can generate any two functions of four
variables. The inputs to the X-function generator are called X, X,, X;, and X,, and
the inputs to the Y-function generator are called Y, Y,, Y;, and Y,. The functions
can be steered to the output of the block (X and Y) in combinational or latched
form. There are two D flip-flops in the logic block. The D flip-flops are versatile in
the sense that they have clock enable, direct set, and direct reset inputs. A multi-
plexer selects between the combinatorial output and the latched version of the out-
put. The little box with “M” in it (beneath the multiplexer) indicates a memory cell

170 Introduction to Programmable Logic Devices

FIGURE 3-31:
A Look-Up
Table-Based
Programmable
Logic Block

FIGURE 3-32:
Highlighting Paths
for Function F,

Xy ——1
X, I X-Function
| generator
X3 LUT4
I
Xy
I
Y, | | I
I _ I
Y, Y-Function Y
I generator '
Y3 I LUT4
Y4 |

that is required to provide appropriate select signals to select between the latched
and unlatched form of the function. An early Xilinx FPGA, the XC3000, used build-
ing blocks very similar to this structure.

Let us assume that we want to implement the function F, = A'B'C + A'BC’ +
AB using an FPGA with programmable logic blocks as in Figure 3-31. Since this is
a three-variable function, a four-input LUT is more than sufficient to implement the
function. The path highlighted in Figure 3-32 assumes that the X-function generator
(top LUT) is used. Let us assume that X is the LSB and X is the MSB to the LUT.
Since function F| only uses three variables, the X, input is not used. A truth table
can be constructed to represent the function, and the LUT contents can be derived.

The LUT contents to implement function F, will be 0,1,1,0,0,0,1,1,0,1, 1,0,
0,0,1, 1. The first 8 bits in the LUT reflect the truth table outputs when the function
is represented in a truth table form. Since input X, is not grounded, the first 8 bits
are repeated to take care of the possibility that the X, input might stay at a logic 1
when it is unused. Since the functions are stored in LUT form, the number of terms

c 1Ay
B _1X X-Function
.| generator
i LUT4
I x,
I
| v,
I
Y2 Y-Function
| y.| generator
| LUT4
Ya

FIGURE 3-33:
Multiplexer-Based
Logic Blocks in
FPGAs

3.4 Field Programmable Gate Arrays 171

in the function is not important. Common minimizations to reduce the number of
terms are not relevant. The number of variables is what is important.

Many commercial FPGAs use LUTs. Examples are the Xilinx Spartan/Virtex,
Altera Cyclone II/APEX II, QuickLogic Eclipse/PolarPro, and Lattice Semiconductor
ECP. Many of these FPGAs put two or more four-input LUTs into a block in various
topologies. Some FPGAs also provide multiplexers in addition to look-up tables.

Logic Blocks Based on Multiplexers and Gates

Some FPGAs use multiplexers as the basic building block. As you know, any combi-
national function can be implemented using multiplexers alone. In the most naive
method, a 4-to-1 multiplexer can generate any two-input function. If inverted
inputs can be provided, a 4-to-1 multiplexer can generate any three-input function.
Examples of multiplexer-based basic blocks are given in Figure 3-33. Logic
blocks similar to these were used in early Actel FPGAs such as the ACT I and ACT II.

— DOO
—Pot 4401 b o
D.. MUX
10 DFF
— Dll
Sl SO T
CLK CLR

@ (b)

Let us assume that we want to implement the function F, = A’'B'C + A’BC" +
AB using an FPGA with programmable logic blocks consisting of 4-to-1 multiplex-
ers. Two of the three-input variables can be connected to the multiplexer select lines.
Then we have to provide appropriate signals to the multiplexer data input lines in
order to realize the function. To derive these inputs, we will first construct a truth
table of the function as shown below:

Mux Input in Terms of {0, 1, C, C}
} q
re
} 0
} 1

s as000O0O| >

B C
(VI
0 1
1 0
1 1
0 o
0 1
1 0
1 1

- 000 —-=-0|mm

172 Introduction to Programmable Logic Devices

FIGURE 3-34:
Multiplexer
Implementing
Function F,

Let us assume that A and B are connected to the select inputs of the multiplexer.
Next, we will derive values of inputs to provide to the multiplexer input lines in terms
of the third variable in the function. The third variable is C, and by providing one of
the four values {C, C’,0, 1}, any three-variable function can be expressed. Considering
the first two rows of the truth table, it can be seen that F = C when AB = 00. Similarly,
considering the third and fourth rows of the truth table, F = C’ when AB = 01. When
AB =10, F = 0 irrespective of the value of C. Similarly, when AB = 11, the value
of the function equals 1. The last column in the truth table presents the required
multiplexer inputs. Hence, one 4-to-1 multiplexer with the connections shown in
Figure 3-34 can implement function F,.

c— Dy
C"— Do 4101 -
1
0—|pyy MUX
1——Dn
S1 So
A B

In the past three sections, we have provided an overview of the general archi-
tecture, logic block types, and programming technologies that can be used to build
FPGAs. The general architecture, programming technology, and logic block types of

TABLE 3-9: Architecture, Technology, and Logic Block Types of Commercial FPGAs

Programming
Company Device Names General Architecture Logic Block Type Technology
Actel ProASIC/ProASIC3/ | Sea of Tiles Multiplexers & Basic Gates | SRAM
ProASICp!us
SX/SXA/eX/MX Sea of Modules Multiplexers & Basic Gates | Antifuse
Accelerator Sea of Modules Multiplexers & Basic Gates | SRAM
Fusion Sea of Tiles Multiplexers & Basic Gates | Flash, SRAM
Xilinx Virtex Symmetrical Array LUT SRAM
Spartan Symmetrical Array LUT SRAM
Atmel AT40KAL Cell Based Multiplexers & Basic Gates | SRAM
QuickLogic | Eclipse I Flexible Clock LUT SRAM
PolarPro Cell Based LUT SRAM
Altera Cyclone 1l Two-Dimensional Row LUT SRAM
and Column Based
Stratix Il Two-Dimensional Row LUT SRAM
and Column Based
APEX Il Row and Column, but LUT SRAM
Hierarchical Interconnect

3.4 Field Programmable Gate Arrays 173

several example commercial FPGAs are summarized in Table 3-9. LUT-based
FPGAs are very common, especially for Xilinx and Altera. Actel is the manufactur-
er of multiplexer-based FPGAs. SRAM programming technology, while expensive,
is also common.

3.4.4 Programmable Interconnects

A key element of an FPGA is the general-purpose programmable interconnect
interspersed between the programmable logic blocks. There are different types of
interconnection resources in all commercial FPGAs. Every vendor has its own spe-
cific names for the different types of interconnects in its FPGA.

Interconnects in Symmetric Array FPGAs

In this section, we discuss some of the basic elements used for interconnection in
symmetric array FPGAs.

General-Purpose Interconnect: Many FPGAs use switch matrices that provide
interconnections between routing wires connected to the switch matrix. Figure 3-35(a)
illustrates interconnecting logic blocks in an FPGA using switch matrices.
Many FPGAs use this type of interconnect. A typical switch matrix is illustrated in
Figure 3-35(b), where there is a switch at each intersection (i.e., wherever the lines
cross). A switch matrix that supports every possible connection from every wire to
every other wire is very expensive. The connectivity is often limited to some subset of
a full crossbar connection; moreover, not all connections might be possible simulta-
neously. In the switch matrix illustrated in Figure 3-35(b), each wire from a side of the
switch can be routed to other wires using some combination of the switches. In order
to support this type of a connection, each cross point in the switch matrix must
support six possible interconnections as marked in Figure 3-35(c).

Depending on the programming technology, SRAM cells, flash memory cells, or
antifuse connections control the configuration of the switches. The switch matrices
interspersed between the logic blocks in an FPGA allow general-purpose intercon-
nectivity between arbitrary points in the chip. However, the switch matrices are
expensive in area and time (delay). If a signal passes through several of these switch
matrices, it could contribute to a significant signal delay. Moreover, the delays are
variable and unpredictable depending on the number of the switch matrices
involved in each signal. In contrast, the interconnection resources in a CPLD are
more restricted. However, interconnections in CPLDs result in smaller and more
predictable delays.

Direct Interconnects: Many FPGAs provide special connections between adja-
cent logic blocks. These interconnects are fast because they do not go through the
routing matrix. Many FPGAs provide direct interconnections to the four nearest
neighbors: top, bottom, left, and right. Figure 3-36 illustrates examples of direct
connections. In some cases, there are special interconnections to eight neighboring
blocks, including the diagonally located logic blocks (Figure 3-36(b)). The direct
interconnections do not go through the switch matrix but are implemented with

174 Introduction to Programmable Logic Devices

FIGURE 3-35: | | |
Routing Matrix for iog —> Looi e

; _|Logic| _ _|Logic __|Logic| _
General Purpose_ Block Block > Block
Interconnection in — — — — — —

an FPGA [A
SNilCh Py Switch

Mérix Matrix ——@——
| 4 |
_|Logic _|Logic| > Logic|
| Block N | Block | Block N
[[| [

(€)
Cy C, Cs Cy
A B, /,’IA\\‘\\
‘‘ ’ ‘ 1 /, | \\
", 1 \
Ay B, . :
* P
F\ 5 1 ﬂ
Az B3 | 4
\\ | 6 ,
4\ ! ,/3
N 1 7
Ay ' By \\'/19
D, D, D; D,
(b) (©

dedicated switches, resulting in smaller delays. These types of direct interconnects are
used in some Xilinx FPGAs.

Global Lines: For purposes like high fan-out and low-skew clock distribution, most
FPGAs provide routing lines that span the entire width of the device/height of the
device. A limited number (two or four) of such global lines is provided by many
FPGAs in the horizontal and vertical directions. Figure 3-37 illustrates horizontal
long lines (global lines) in an example FPGA. The logic blocks often have tristate
buffers to connect to the global lines.

FIGURE 3-36: Direct
Interconnects
between
Neighboring

Logic Blocks

FIGURE 3-37:
Global Lines

3.4 Field Programmable Gate Arrays 175

Logic Logic Logic Logic Logic Logic
Block < Block > Block

Matri Matrix

3

== LI,

i i i Logic Logic Logic
Logic]| Logic|_| | Logic <] >
Block Block Block Block

Switch Switch
Matri Matrix —n — v v

x
x

))) Logic Logic Logic
L L L -
Bl B Bl Block Block Block

(€) (b)

tot o
HOH—
HoH-0—
o
toto-
o
toto-

|)
}Tr_lstate
s lines

I 4 4 s

Logic Logic Logic Logic
Block Block Block Block
Clock Skew

There are several million gates in modern FPGA chips. When a clock is dis-
tributed to various parts of such a large chip, the delays in the wire carrying
the clock can result in the clock edge arriving at different times at different
parts. This difference in the actual edge of the clock as it arrives at different
flip-flops or other devices is called clock skew. Clock skew is a problem in
large systems, including modern microprocessors. Carefully planned clock dis-
tribution circuits are implemented in most systems in order to minimize the
effect of clock skew. Modern FPGAs provide specialized clock distribution
circuitry in order to create a clock of sufficient strength and low skew.

Interconnects in Row-Based FPGAs

Many of the interconnect resources mentioned previously are very characteristic of
symmetric array devices with a two-dimensional array of logic blocks (e.g., Xilinx). In
devices that are row based, there are rows of logic blocks, and there are channels of
switches to enable connections between the logic blocks. Several switches are used to
route a signal from a logic block in one row to another logic block elsewhere in the
chip. There are arrays of switches in the routing channel between the rows of logic. The
routing resources in these FPGAs are very similar to routing in traditional gate arrays.

176 Introduction to Programmable Logic Devices

FIGURE 3-38:
Typical Routing
Resources in a
Row-Based FPGA

The interconnects in row-based channeled architecture can be classified into
two categories: nonsegmented routing and segmented routing. In order to under-
stand different types of channel routing, consider the connections x, y, and z in
Figure 3-38(a). Figure 3-38(b) indicates what is called as a nonsegmented channel
routing architecture. There are three horizontal rows or tracks in this figure. There
are several vertical wires and switches at the crosspoints. The switches technically
can use any programming technology (SRAM, EPROM, or antifuse), although
FPGASs that use this type of routing are typically antifuse FPGAs. Desired connec-
tivity is obtained by programming the appropriate switches. Connectivity between
the points marked x is obtained by the two switches at row 1, columns 1 and 4.
Typically this is called net x. Net x simply means a wire that is named x. The
connectivity for net y is obtained by programming the switches at row 2, columns 3
and 8. It may be noticed that row 1 cannot be used for any other connections other
than net x. Similarly, row 2 is exclusively used for net y. Thus, a problem with this type
of interconnect resource is that a full-length track (i.e., an entire row) is used even
for a short net. The area overhead of this type of routing is very high for this reason.

I y |

(a) Example nets

Fused switch
(b) Nonsegmented channel routing of example nets
Unfused switch
X y X z y z
~ l l —O— Intersegment switch
& O O O

(c) Segmented channel routing of example nets

3.4 Field Programmable Gate Arrays 177

In order to reduce the area overhead associated with using full-length tracks for
each net, we can use segmented tracks, as in Figure 3-38(c). Instead of being full
length, a track is divided into segments. If a track in row 1 is segmented into two seg-
ments, we could use the same track for one more net. For example, nets x and z can
both be routed on row 1 in Figure 3-38(c). That is the principle of segmented track
routing. More nets can be routed using the same number of tracks; however, when
long nets are desired, intersegment switches must be used to join the segments.
These switches introduce more resistance and capacitance into the net. However,
the overall routing resource area will reduce with segmented routing.

3.4.5 Programmable I/0 Blocks in FPGAs

The I/O pads on an FPGA are connected to programmable input/output blocks,
which facilitate connecting the signals from FPGA logic blocks to the external
world in desired forms and formats. I/O blocks on modern FPGAs allow use of the
pin as input and/or output, in direct (combinational) or latched forms, in tristate true
or inverted forms, and with a variety of I/O standards.

Figure 3-39 shows an example configurable input/output block (I/OB). Each
I/OB has a number of I/O options, which can be selected by configuration memory
cells, indicated by boxes with an M. The I/O pad can be programmed to be an out-
put or an input. To use the cell as an output, the tristate buffer must be enabled. To
use the cell as an input, the tristate control must be set to place the tristate buffer,
which drives the output pin, in the high-impedance state.

Flip-flops are provided so that input and output values can be stored within the
I/O block. The flip-flops are bypassed when direct input or output is desired.
The input flip-flop on many FPGAs can be programmed to act as an edge-triggered
D flip-flop or as a transparent latch. Even if the I/O pin is not used, the I/O flip-flops
can still be used to store data.

The configuration memory cells (marked M) allow control of various aspects asso-
ciated with the I/O block. An output signal can be inverted by the I/O block if desired.
The inversion is done using an XOR gate. The output signal goes through an exclusive-
OR gate, where it is either complemented or not, depending on the contents of the
configuration bit in the OUT-INVERT cell. The 3-STATE INVERT configuration bit
allows one to create an active high or active low tristate control signal. If the 3-STATE
signal is 1 and the 3-STATE INVERT bit is 0 (or if the 3-STATE signal is 0 and the
3 STATE INVERT bit is 1), the output buffer has a high-impedance output. Otherwise,
the buffer drives the output signal to the I/O pad. When the I/O pad is used as an input,
the output buffer must be in the high-impedance state. An external signal coming into
the I/O pad goes through a buffer and then to the input of a D flip-flop. The buffer out-
put provides a DIRECT IN signal to the logic array. Alternatively, the input signal can
be stored in the D flip-flop, which provides the LATCHED IN signal to the logic array.

The LATCHED OUTPUT configuration bit allows one to provide the output in
latched or combinational form. Depending on how the LATCHED OUTPUT bit is
programmed, either the OUT signal or the flip-flop output goes to the output buffer.
The SLEW RATE bit controls the rate at which the output signal can change. When the
output drives an external device, reduction of the slew rate is desirable to reduce the

178 Introduction to Programmable Logic Devices

FIGURE 3-39: Programmable 1/0 Block for an FPGA

CONFIGURATION BITS

Vce
ouT 3-STATE LATCHED SLEW PASSIVE
INVERT INVERT OUTPUT RATE PULL UP

NJ
4

M M M M
0 0 0 0

3-STATE T
(OUTPUT ENABLE)

ouT (@) OUTPUT
SIGNAL BUFFER
FLIP
FLOP
ENABLE CE 1/0 PAD
R
|
|
IN SIGNAL <&
IN SIGNAL Q Q D
(LATCHED) FLIP
FLOP
or
VOLTAGE
. ééTCH REFERENCE
R
| (GLOBAL RESET)

CLK CLK

induced noise that can occur when the output changes rapidly. When the PASSIVE
PULL-UP bit is set, a pull-up resistor is connected to the 1/O pad. This internal pull-up
resistor can be used to avoid floating inputs. The highlighted path indicates the I/O block
in an output configuration, with tristate enabled and with a passive pull-up resistor.

I/O Standards

Early FPGAs provided TTL and CMOS signal compatibility, but nowadays
there are many more standards for input/output signals. I/O blocks on mod-
ern FPGAs allow transforming signals to a variety of I/O signal standards,
some of which are as follows:

LVTTL: low-voltage transistor-transistor logic
PCIL: peripheral component interconnect

3.4 Field Programmable Gate Arrays 179

LVCMOS: low-voltage complementary metal-oxide semiconductor
LVPECL: low-voltage positive emitter-coupled logic

SSTL: stub-series terminated logic
AGP: advanced graphics port
CTT: center tap terminated

GTL: gunning transceiver logic
HSTL: high-speed transceiver logic

Some of these standards use 5 volts whereas some use 3.3 volts or even
1.5 volts. The LVTTL is an example of a 3.3-V standard that can tolerate 5-V
signals. The LVCMOS2 is a 2.5-V signal standard which can tolerate 5-V signals.
The PCI standard has 5-V and 3.3-V versions. Some standards need an input
voltage reference.

3.4.6 Dedicated Specialized Components in FPGAs

In the early days, FPGAs were simply logic blocks of medium or low complexity,
integrated with programmable I/O and interconnect. More recently, FPGA vendors
have incorporated embedded processors, digital signal processing (DSP) processors,
dedicated multipliers, dedicated memory, analog-to-digital (A/D) converters, and
so on into FPGAs. These specialized components help to efficiently achieve the
provided special-purpose functionality. For instance, if dedicated multipliers are not
provided, we will have to implement multipliers using general-purpose logic blocks,
albeit in an inefficient manner.

Dedicated Memory

A key feature of modern FPGAs is the embedding of dedicated memory blocks
(RAM) onto the chip. The embedded RAM can be used to implement the memory
needs of the circuit being designed. It could be a table storing constants/coefficients
during processing, or it could be implementing memory for an embedded processor
that you are designing using the FPGA. Modern FPGAs include 16K to 10M bits of
memory. The width of the embedded RAM often can be adjusted. Let us assume
that there are 32K of SRAM bits provided as blocks of RAM. This RAM can be
used as 32K X 1, 16K X 2, 8K X 4, or 4K X 8. Essentially there are several tiles or
blocks of memory. They can be placed in different ways to achieve different aspect
ratios. The number of address lines and data lines get adjusted according to the
aspect ratio, as illustrated in Table 3-10.

Dedicated Arithmetic Units

Many users of FPGAs use them to implement arithmetic logic. When logic is imple-
mented in FPGA logic blocks, the implementation generally takes more area and
power and is slower than custom implementations. Hence, if most of the target users
use arithmetic units such as adders and multipliers, it is beneficial to provide sup-
port for such dedicated operations inside the chip. Most FPGAs provide dedicated

180 Introduction to Programmable Logic Devices

TABLE 3-10:
Variable-Width
RAM Aspect Ratios

TABLE 3-11:
Examples of FPGAs
with Dedicated
Multipliers

Width Depth Addr Bus Data Bus

1 32K 15 bits 1 bit
2 16K 14 bits 2 bits
4 8K 13 bits 4 bits
8 4K 12 bits 8 bits
16 2K 11 bits 16 bits

fast-carry logic to create fast adders. Nowadays, many FPGAs also contain dedicat-
ed multipliers (see Table 3-11). Thus, instead of mapping a multiplier into several
logic blocks, dedicated multipliers provided on the FPGA fabric can be used. These
dedicated multipliers are more efficient than a multiplier we could implement using
the programmable logic in the FPGA. As indicated in Table 3-11, many Xilinx and
Altera FPGAs provide 18 bit X 18 bit multipliers.

Dedicated
FPGA Multipliers
Xilinx Virtex-4, 18 X 18
Virtex-1l Pro/X, multipliers
Spartan-3E,
Spartan 3/3L
Altera 18 X 18
Stratix Il multipliers
Cyclone 1l

Digital Signal Processing Blocks

Multiplication is a common operation in DSP. Hence the dedicated multipliers help
DSP applications. Similar to multipliers, an FPGA vendor can provide DSP building
blocks such as hardware for fast Fourier transforms (FFTs), finite impulse response
(FIR) filters, infinite impulse response (IIR) filters, and so on. Encryption/decryption,
compression/decompression, and security functions can also be provided. Once a
large amount of specialized components are provided, a large part of an FPGA may
be unused in applications that do not warrant such specialized components. In some
FPGAs, DSP support is limited to the dedicated multipliers.

Embedded Processors

Many modern FPGAs contain an entire processor core (see Table 3-12). This is
extremely useful when designers use hybrid solutions, where part of a system is in a
programmable processor, but part of the system is implemented in hardware. Circuitry
that needs a large amount of flexibility can be implemented in the microprocessor, but
circuit parts that need better performance than that of a programmable processor can
be implemented in the FPGA logic blocks. Some FPGAs include the core of a small
MIPS processor such as the MIPS R 4000, and some include an embedded version of
the IBM PowerPC processor. Some FPGAs include custom processors designed by the
FPGA vendors such as the MicroBlaze from Xilinx and the Nios processor from Altera.

TABLE 3-12:
Examples of FPGAs
with Embedded
Microprocessors

3.4 Field Programmable Gate Arrays 181

FPGA Embedded Processor
Xilinx IBM 400 MHz
Virtex-4, PowerPC
Virtex-Il Pro/X

Xilinx MicroBlaze
Spartan-3E, PicoBlaze
Spartan 3/3I

Altera Nios Il

Stratix Il

Cyclone Il

Altera ARM,

APEX MIPS,

APEX Il Nios

Altera ARM 9
Excalibur

Actel ARM7

Fusion

Content Addressable Memories

In some FPGAs, the memory blocks can be used as content addressable
memories (CAMs). The general concept of a memory is that the user provides a
memory address and the memory unit responds with the content. A CAM is a
special kind of memory in which the content, not the address, is used to search
the memory. We provide a data element, and the CAM responds with addresses
where that data was found. CAMs contain more logic than RAMs because all
locations of the memory have to be searched simultaneously to see whether the
particular content is in any of the locations. Some FPGAs allow embedded CAM
(e.g., Altera APEX II).

The Actel Fusion architecture, shown in Figure 3-40, provides several special-
ized components, including embedded RAM, decryption, and A/D converters.
At the core of the chip are tiles of logic blocks (VersaTiles in Actel terminology).
The embedded RAM is in the form of rows of SRAM blocks above and below
the tiles of logic blocks. Several specialized components appear below the
SRAM blocks in the bottom. There is a dedicated decryption unit that imple-
ments the AES decryption algorithm. (AES stands for Advanced Encryption
Standard, which has been the cryptograhic standard for the U.S. government
since 2001.) There is an analog-to-digital converter (ADC) that accepts inputs
from several analog quads, which are circuitry to condition analog signals
received by the FPGA. The analog quads contain circuitry to monitor and
condition signals according to voltage, current, and temperature.

182 Introduction to Programmable Logic Devices

FIGURE 3-40: Overview of the Actel Fusion Chip (© 2006 Actel Corporation)

Clock Circuitry ——
Oscillator
Phase Locked
Loop/Clock
Circuitry

<

X

&

m

9
Clock Circuitry

1/0 Bank O /0 Bank 1

Clock Circuitry
SRAM Blocks
1/0 Blocks
Logic Blocks

5

w

=

~

N
SRAM Blocks

Decryption User Nonvolétile
Block Flash ROM
A/ID
Converter
--— Clock Circuitry
I/0 Bank 3

3.4.7 Applications of FPGAs

FPGAs have become a popular mode of circuit implementation for various
applications:

Rapid Prototyping

FPGAs are very useful for building rapid prototypes of large systems. A designer
can build proof-of-concept systems very quickly using field programmable gate
arrays. Since FPGA s are large enough to contain 5 million or more gates, many large
real-world systems can be prototyped using a single FPGA. If a single FPGA will
not suffice, multiple FPGAs can be interconnected to realize large systems. Rapid
prototyping of large systems is done by using boards with multiple FPGAs and plug-
ging multiple boards into a backplane (motherboard).

3.4 Field Programmable Gate Arrays 183

As Final Product in Medium-Speed Systems

Circuits realized using FPGAs typically operate in the 150-200-MHz clock rate. For
applications where this speed is sufficient, FPGAs can be used for the final product
itself as opposed to the prototype. When an FPGA is used as the final product,
enhancements to the system can be done as software updates rather than hardware
changes. Modern FPGA speeds are adequate for many applications.

Reconfigurable Circuits and Systems

The reprogrammability of FPGAs lends itself to building dynamically recon-
figurable circuits and systems. SRAM-based FPGAs make it possible to implement
“soft” hardware. FPGAs have been used to design circuits and systems that need
multiple functionalities at various times.

As an example, consider a reprogrammable Tomahawk missile that the Navy
designed using FPGAs. [46] The conventional Tomahawk is a long-range Navy cruise
missile designed to perform a variety of missions. The Navy designed a reconfig-
urable Tomahawk, which can operate in one of two modes, depending on the mission
at hand. Rather than designing separate logic for each mode, the missile designers
used FPGAs so that the configuration for each mode can be kept on-board in ROM.
Depending on the mode of operation, the FPGA could be configured in midflight.

Glue Logic

FPGAs have become the medium of choice for implementing interface or glue logic
between modules and components. Small changes in interface protocols or formats
would conventionally necessitate building new interface logic. With SRAM FPGAs, the
new interface logic can be implemented on the same FPGA as in a software update.

Hardware Accelerators/Coprocessors

A software application running on a conventional system can be accelerated if a
coprocessor/accelerator can implement some key routines/kernels from the applica-
tion in hardware. An FPGA can be used to implement the key kernel. A SRAM-based,
reconfigurable FPGA is well suited for this type of use because depending on the
application running, different kernels can be dynamically programmed into the FPGA.
This approach has been demonstrated for applications, such as pattern matching.
FPGA-based hardware is used for several applications, including computer architec-
ture simulator acceleration, emulation boards, hardware test/verification, and so on.

3.4.8 Design Flow for FPGAs

Sophisticated CAD tools are available to assist with the design of systems using
programmable gate arrays. Designs can be entered in many ways.

In the early days of FPGAs, designs were entered using schematic entry or even
lower levels of design entry tools. Low-level design entry means less abstraction,
whereas high-level means entering designs at a higher level of abstraction (e.g.,
behavioral VHDL/Verilog description). Early FPGA tools allowed low-level utili-
ties to enter logic equations, Karnaugh maps, and so on into specific logic blocks in
the FPGA. Schematic capture technique means that the designer develops a

184 Introduction to Programmable Logic Devices

FIGURE 3-41:
EPROM
Connections for
SRAM FPGA
Initialization

schematic of the design. Schematic diagrams utilizing standard hardware compo-
nents are created and entered into the CAD software.

Nowadays, automatic synthesis tools are available that will take a VHDL descrip-
tion of the system as an input and generate an interconnection of gates and flip-flops
to realize the system. Behavioral models can be translated into design implementa-
tions reasonably efficiently. Synthesis tools have advanced significantly in the last
decade.

One method of designing a digital system with an FPGA uses the following steps:

1. Create a behavioral, register-transfer level (RTL), or structural model of the

design in a hardware description language such as VHDL or Verilog.

. Simulate and debug the design.

. Synthesize the design targeting the desired device.

4. Run a mapping/partitioning program. This program will break the logic diagram
into pieces that will fit into the configurable logic blocks.

5. Run an automatic place and route program. This will place the logic blocks in
appropriate places in the FPGA and then route the interconnections between the
logic blocks.

6. Run a program that will generate the bit pattern necessary to program the
FPGA.

7. Download the bit pattern into the internal configuration cells in the FPGA, and
test the operation of the FPGA.

W N

Steps 3, 4, and 5 are often integrated in modern CAD tools. However, the
processes mentioned in the steps are happening whether presented as one step or
several steps. This is analogous to how general-purpose compilers have integrated
compiling and assembling steps. In the early days of high-level language compilers,
the term compiling only meant translation into an assembly language format.
Converting from assembly language to machine language code was considered the
assembler’s job. Nowadays, the steps are integrated in most high-level language
compilation environments.

In SRAM-based FPGAs, when the final system is built, the bit pattern for pro-
gramming the FPGA is normally stored in an EPROM and automatically loaded
into the FPGA when the power is turned on. The EPROM is connected to the
FPGA, as shown in Figure 3-41. The FPGA resets itself after the power has been
applied. Then it reads the configuration data from the EPROM by supplying a
sequence of addresses to the EPROM inputs and storing the EPROM output data
in the FPGA internal configuration memory cells. This is not required in flash mem-
ory based FPGAs because the flash technology is nonvolatile. In antifuse FPGAs,
the configuration bits permanently alter the switches.

Address EPROM
(contains
configuration
data)

FPGA

Data

3.1

3.2

3.3

Problems 185

In this chapter we have introduced several different types of programmable
logic devices and used them for designing circuits. The technology underlying
early programmable logic devices, such as ROMs, PALs, and PLAs, was presented
first. Simple PLDs and GALs were presented next. Examples were presented to
illustrate implementations of simple logic functions in these devices. CPLDs and
FPGAs were presented next. The discussion on FPGAs was limited to an
overview of the general technology underlying this class of devices. General
organization of FPGAs, general structure of logic blocks, typical programming
techniques, and so on were discussed. More details on FPGAs will be presented in
Chapter 6.

Problems

What is the size of the smallest ROM that is needed to implement the following?

(a) An 8-bit full adder (assume carry-in and carry-out)
(b) A BCD-to-binary converter (2 BCD digits)

(¢) A 4-to-1 MUX

(d) A 32-bit adder (adds two 32-bit numbers to give a 33-bit sum)
(e) A 3-to-8 decoder

(f) A 32-bit adder (no carry in or carry out)

(g) A 16 X 16 bit multiplier

(h) A 16-bit full adder (with carry-in and carry-out)

(i) An 8-to-3 priority encoder

(j) A 10-to-4 priority encoder

(k) An 8-to-1 multiplexer

Given F = A'B’' + BC' and G = AC + B’, write a complete VHDL module that
realizes the functions F and G using an 8-word X 2-bit ROM. Include the array type
declaration and the constant declaration that defines the contents of the ROM.

Implement the following state table using a ROM and two D flip-flops. Use a straight
binary state assignment.

(a) Show the block diagram and the ROM truth table. Truth table column headings
should be in the order Q, Q, X D, D Z.

(b) Write VHDL code for the implementation. Use an array to represent the ROM
table, and use two processes.

Present Next State Output (2)
State X=0 X=1|X=0 X=1
S, S, S, 0 1
S, S, S, 1 0
S, S, S, 1 0
S S S, 0 1

3

186 Introduction to Programmable Logic Devices

34

3.5

3.6

3.7

3.8

The following state table is implemented using a ROM and two D flip-flops (falling
edge triggered):

Q,Q," z
Q0Q,| X=0 X=1|X=0 X=1
00 01 10 0 1
01 10 00 1 1
10 00 01 1 0

(a) Draw the block diagram.
(b) Write VHDL code that describes the system. Assume that the ROM has a delay
of 10 ns, and each flip-flop has a propagation delay of 15 ns.

Find a minimum-row PLA to implement the following three functions:

f(A, B, C, D) = 3m(3,6,7,11,15)
g(A, B, C, D) = Sm(1,3,4,7,9,13)
h(A, B, C, D) = Sm(4,6,8,10,11, 12, 14, 15)

(a) Use Karnaugh maps to find common terms. Give the logic equations with common
terms underlined, the PLA table, and also a PLA diagram similar to Figure 3-15.

(b) Use the Espresso multiple-output simplification routine that is in LogicAid.
Compare the LogicAid results with part (a). They might not be exactly the same
since LogicAid Espresso only finds minimum row tables; it does not necessarily
minimize the number of variables in each AND term. Note: Enter the variable
names A, B, C, D, E G,and H in LogicAid. Printouts with variable names X1, X2,
X3, X4, and so on are not acceptable.

Find a minimum-row PLA table to implement the following sets of functions.

@ f, (A B CD)=232m(0,2,3,6,7,8,9,11,13),
L (A B CD)=2m(3,7,8,9,13),
(A, B, C D) =3m(0,2,4,6,8,12,13)

(b) f, (A, B, C,D)=cd+ ad+ a'bc'd
L, (A, B, C D)=bc'd + ac' + ad’

(a) Find a minimum-row PLA table to implement the following equations:
x (A, B C D) =3m(0,1,4,5,6,7,8,9,11,12, 14, 15)
y (A, B, C, D) =32m(0,1,4,5,8,10,11, 12, 14, 15)
7 (A, B, C D)=32m(0,1,3,4,5,7,9,11,15)

(b) Indicate the connections that will be made to program a PLA to implement
your solution to part (a) on a diagram similar to Figure 3-15.

Write VHDL code that describes the output macrocell of a 22V10 (the part
enclosed by a box on Figure 3-20). The entity should include S, and S,,. Note that the
flip-flop has an asynchronous reset (AR) and a synchronous preset (SP).

3.9

3.10

3.13

Problems 187

An N-bit bidirectional shift register has N parallel data inputs, N outputs, a left serial
input (LSI), a right serial input (RSI), a clock input, and the following control signals:

Load: Load the parallel data into the register (load overrides shift).
Rsh: Shift the register right (LSI goes into the left end).
Lsh: Shift the register left (RSI goes into the right end).

(a) If the register is implemented using a 22V10, what is the maximum value of N?
(b) Give equations for the rightmost two cells.

Show how the left shift register of Figure 2-43 could be implemented using a CPLD.
Draw a diagram similar to Figure 3-25. Give the equations for the flip-flop D inputs.

A Mealy sequential circuit with four output variables is realized using a 22V10.
What is the maximum number of input variables it can have? What is the maximum
number of states? Can any Mealy circuit with these numbers of inputs and outputs
be realized with a 22V10? Explain.

(a) What is the difference between a traditional gate array and an FPGA?
(b) What are the different types of FPGAs based on architecture (organization)?
(¢) What are the different programming technologies for FPGAs?

(d) What is the main advantage of SRAM FPGAs?

(e) What is the main advantage of antifuse FPGAs?

(f) What are the major programmable elements in an FPGA?

(g) What are the disadvantages of SRAM FPGAs?

(h) What are the disadvantages of antifuse FPGAs?

(i) How many transistors are typically required to make an SRAM cell?
(j) What is an MPGA?

(k) What is the difference between a CPLD and an FPGA?

(I) What is an advantage of a CPLD over an FPGA?

(m) What is the advantage of an FPGA over a CPLD?

(n) Name three vendors of CPLDs.

(o) Name three vendors of FPGAs.

(a) In what type of applications should a designer use a CPLD rather than an FPGA?

(b) In what type of applications should a designer use an MPGA rather than an
FPGA?

(¢) In what type of applications should a designer use an FPGA rather than an
MPGA?

(d) A company is designing an experimental product, which is in version 1 now. It
is expected that the product will undergo several revisions. The company’s plan
is to use an FPGA for the actual design. What type of FPGA (SRAM or anti-
fuse) should be used?

(e) A company is designing a product using an FPGA. The company’s plan is to use
an FPGA for the actual design. The product has undergone several revisions
and is fairly stable. Minimizing area, power, and cost is important for the com-
pany. What type of FPGA (SRAM or antifuse) should be used?

188 Introduction to Programmable Logic Devices

(f) A company is designing a product. It expects to sell 1000 copies of it. Should the
company use an MPGA or FPGA for this product?

(g) A company is designing a product. It expects to sell 100 million copies of it.
Should the company use an MPGA or an FPGA for this product?

3.14 (a) Implement the function F, = A'BC + B'C + AB using an FPGA with pro-
grammable logic blocks consisting of 4-to-1 multiplexers. Assume inputs and
their complements are available as in Figure 3-34.
(b) Implement the function F;, = A'B + AB' + AC' + A'C using a multiplexer.
What is the size of the smallest multiplexer needed, assuming inputs and their
complements are available?

3.15 (a) Route the ‘w’,‘x’,‘y’, and ‘z’ nets on the nonsegmented tracks shown below. Use
the minimum number of tracks possible.
(b) Route the ‘w’,‘x’,‘y’, and ‘z’ nets on the segmented tracks shown below. Use the
minimum number of tracks possible.

L x| | z
I y

Fused switch

Nonsegmented tracks
Unfused switch

——O— Intersegment switch

Segmented tracks

3.16 Consider the following programmable I/O block:

CONFIGURATION BITS

Problems 189

Vce
ouT 3-STATE LATCHED SLEW PASSIVE
INVERT INVERT OUTPUT RATE PULL UP
M M M M M
? ? ? ? ?
3-STATE LT]D—
(OUTPUT ENABLE) ’ —| I:
our . O > D Q OUTPUT
SIGNAL MUX BUFFER
FLIP
FLOP
ENABLE CE /O PAD
R
L
INSIGNAL <& !
INSIGNAL g Q o b
(LATCHED) fLip
FLOP
& VOLTAGE
LATCH
ENABLE CE REFERENCE
R
| (GLOBAL RESET)

CLK CLK

Highlight the connections to configure this I/O block as an INPUT pin. Specify
the five configuration bits and the value of T.

CHAPTER

4

FIGURE 4-1:
Separation of a
Design into Data
Path and Controller

190

Design Examples

In this chapter, we present several VHDL design examples to illustrate the design
of small digital systems. We present the concept of dividing a design into a con-
troller and a data path and using the control circuit to control the sequence of
operations in a digital system. We use VHDL to describe a digital system at the
behavioral level so that we can simulate the system to test the algorithms used. We
also show how designs have to be coded structurally if specific hardware structures
are to be generated.

In any design, first you should understand the problem and the design specifi-
cations clearly. If the problem has not been stated clearly, try to get the features
of the design clarified. In real-world designs, if another team or a client company
is providing your team with the specifications, getting the design specifications
clarified properly can save you a lot of grief later. Good design starts with a clear
specification document.

Once the problem has been stated clearly, often designers start thinking about
the basic blocks necessary to accomplish what is specified. Designers often think of
standard building blocks, such as adders, shift registers, counters, and so on.
Traditional design methodology splits a design into a “data path” and a “con-
troller.” The term data path refers to the hardware that actually performs the data
processing. The controller sends control signals or commands to the data path, as
in Figure 4-1. The controller can obtain feedback in the form of status signals from
the data path.

In the context of a microprocessor, the data path is the arithmatic logic unit
(ALU) that performs the core of the processing. The controller is the control logic
that sends appropriate control signals to the data path, instructing it to perform
addition, multiplication, shifting, or whatever action is called for by the instruction.

Clock Data
in
Control gggg@l
inputs £
p_» Controller P E:ttt?
Status
signals
iData
out

4.1

FIGURE 4-2:
Seven-Segment
Display

FIGURE 4-3: Block
Diagram of a BCD
to Seven-Segment
Display Decoder

4.1 BCD to Seven-Segment Display Decoder 191

Many have a tendency to consider the term data path to be synonymous with the
data bus, but data path in traditional design terminology refers to the actual data
processing unit.

Maintaining a distinction between data path and controller helps in debugging
(i.e., finding errors in the design). It also helps while modifying the design. Many
modifications can be accomplished by changing only the control path because the
same data path can support the new requirements. The controller can generate the
new sequence of control signals to accomplish the functionality of the modified
design. Design often involves refining the data path and controller in iterations.

In this chapter, we will discuss various design examples. Several arithmetic and
nonarithmetic examples are presented. Nonarithmetic examples include a seven-
segment decoder, a traffic light, a scoreboard, and a keypad scanner. Arithmetic
circuits such as adders, multipliers, and dividers are presented.

BCD to Seven-Segment Display Decoder

Seven-segment displays are often used to display digits in digital counters, watches,
and clocks. A digital watch displays time by turning on a combination of the
segments on a seven-segment display. For this example, the segments are labeled as
follows, and the digits have the forms as indicated in Figure 4-2.

Let us design a BCD to seven-segment display decoder. BCD stands for binary-
coded decimal. In this format, each digit of a decimal number is encoded into 4-bit
binary representation. This decoder is a purely combinational circuit, and hence no
state machine is involved here. A block diagram of the decoder is shown in Figure 4-3.
The decoder for one BCD digit is presented.

LSB LSB
— 1A BCD a
to b ——
BCD — B Seven- (Cj Seven-segment
input se_gment output
—— C display ©
decoder f
— 1D 9 —

192 Design Examples

We will create a behavioral VHDL architectural description of this BCD to
seven-segment decoder by using a single process with a case statement to model this

combinational circuit, as in Figure 4-4. The sensitivity list of the process consists of
the BCD number (4 bits).

FIGURE 4-4: Behavioral VHDL Code for BCD to Seven-Segment Decoder

entity bcd_seven s
port(bcd: 1in bit_vector(3 downto 0);
seven: out bit_vector(7 downto 1));

end bcd_seven;

-— LSB is segment a of the display. MSB is segment g

architecture behavioral of bcd_seven is

begin
process (bcd)
begin
case bcd is
when "0000"
when "0001"
when "0010"
when "0011"
when "0100"
when "0101"
when "0110"
when "0111"
when "1000"
when "1001"
when others
end case;

end process;
end behavioral;

4.2

=> seven <= "0111111";
=> seven <= "0000110";
=> seven <= "1011011";
=> seven <= "1001111";
=> seven <= "1100110";
=> seven <= "1101101";
=> seven <= "1111101";
=> seven <= "0000111";
=> seven <= "1111111";
=> seven <= "1101111";
=> null;

A BCD Adder

In this example, we design a two-digit BCD adder, which will add two BCD num-
bers and produce the sum in BCD format. In BCD representation, each decimal
digit is encoded into binary. For instance, decimal number 97 will be represented as
1001 0111 in the BCD format, where the first 4 bits represent digit 9 and the next
4 bits represent digit 7. Note that the BCD representation is different from the binary
representation of 97, which is 1100001. It takes 8 bits to represent 97 in BCD,
whereas the binary representation of 97 (1100001) only requires 7 bits. The 4-bit
binary combinations 1010, 1011, 1100, 1101, 1110, and 1111 corresponding to
hexadecimal numbers A to F are not used in the BCD representation. Since 6 out
of 16 representations possible with 4 binary bits are skipped, a BCD number will
take more bits than the corresponding binary representation.

FIGURE 4-5:
Addition of Two
BCD Numbers

4.2 A BCD Adder 193

When BCD numbers are added, each sum digit should be adjusted to skip the
six unused codes. For instance, if 6 is added with 8, the sum is 14 in decimal form.
A binary adder would yield 1110, but the lowest digit of the BCD sum should read 4.
In order to obtain the correct BCD digit, 6 should be added to the sum whenever it
is greater than 9. Figure 4-5 illustrates the hardware that will be required to perform
the addition of two BCD digits. A binary adder adds the least significant digits. If the
sum is greater than 9, an adder adds 6 to yield the correct sum digit and a carry digit
to be added with the next digit. The addition of the higher digits is performed in a
similar fashion.

38 X digit1 Y digit 1 X digit 0 Y digit 0
+ 97 4 4 4 4
DF 3 9 8 7
+ 66
135 4-bit 4-bit
adder adder
1|C
545, 54,
\ D (>9) F (>9)
4-bit adder to 4-bit adder to
add 6 add 6
ifS;>9 ifSg>9
4 4
1 3 5
Z digit 2 Z digit 1 Z digit 0

The VHDL code for the BCD adder is shown in Figure 4-6. The input BCD num-
bers are represented by X and Y. The BCD sum of two 2-digit BCD numbers can
exceed two digits, and hence three BCD digits are provided for the sum, which is
represented by Z. The unsigned type from the IEEE numeric_bit library is used to
represent X, Y, and Z. Aliases are defined to denote each digit of each BCD num-
ber. For example, the upper digit of X can be denoted by Xdig! by using the VHDL
statement

alias Xdigl: unsigned(3 downto 0) is X(7 downto 4);

This statement allows us to use the name Xdig/ whenever we wish to refer to the
upper digit of X. If BCD numbers 97 and 38 are added, the sum is 135, and hence,
Zdig? equals 1, Zdigl equals 3 and Zdig0 equals 5.

The overloaded ‘+’ operator from the IEEE numeric_bit library is used for
adding each BCD digit. Adding two 4-bit vectors can result in a 5-bit sum. The
sums are temporarily stored in S0 and S1, which are declared to be 5-bit numbers.
Since we want a 5-bit result, we must extend Xdig0 to S bits by concatenating ‘0’
and Xdig0. (Ydig0 will automatically be extended to match.) Hence

SO <= '0' & Xdig0 + YdigO;

194 Design Examples

FIGURE 4-6: VHDL Code for BCD Adder

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity BCD_Adder is
port(X, Y: 1in unsigned(7 downto 0);
Z: out unsigned(ll downto 0));
end BCD_Adder;

architecture BCDadd of BCD_Adder is

alias Xdigl: unsigned(3 downto 0) is X(7 downto 4);
alias Xdig0: unsigned(3 downto 0) is X(3 downto 0);
alias Ydigl: unsigned(3 downto 0) is Y(7 downto 4);
alias Ydig0: unsigned(3 downto 0) is Y(3 downto 0);
alias Zdig2: unsigned(3 downto 0) 1is Z(11l downto 8);
alias Zdigl: unsigned(3 downto 0) 1is Z(7 downto 4);
alias Zdig0: unsigned(3 downto 0) 1is Z(3 downto 0);
signal SO, S1: unsigned(4 downto 0);

signal C: bit;

begin
SO <= '0' & Xdig0 + Ydig0; -- overloaded +
Zdig0 <= SO(3 downto 0) + 6 when SO > 9

else SO(3 downto 0); -- add 6 if needed
C <= "1" when SO > 9 else '0';
S1 <= '0'" & Xdigl + Ydigl + unsigned'(0=>0);

-- type conversion done on C before adding

Zdigl <= S1(3 downto 0) + 6 when S1 > 9

else S1(3 downto 0);
Zdig2 <= "0001" when S1 > 9 else "0000";

end BCDadd;

accomplishes the addition of the least significant digits. During the addition of the
second digit, the carry digit from the addition of the XDig0 and Ydig0 is also added.
The carry bit C must be converted to the unsigned type before it can be added to
Xdigl + Ydigl. The notation unsigned' (0=>C) accomplishes this conversion.
Thus, the addition of the second digit is accomplished by the statement

S1 <= '0' & Xdigl + Ydigl + unsigned'(0=>0);

4.3 32-Bit Adders

Let us assume that we have to design a 32-bit adder. A simple manner to construct
an adder is to build a ripple-carry adder, as in Figure 4-7. In this type of adder,
32 copies of a 1-bit full adder are connected in succession to create the 32-bit adder.
The carry “ripples” from the least significant bit to the most significant bit. If gate

FIGURE 4-7:
A 32-Bit Ripple-
Carry Adder

4.3 32-Bit Adders 195

As1 By A; By A1 By Ao By
VA L L Vo
C oo Ful | ,..C3 Full Ca | Full £ | N S
° adder adder adder adder !
} ! ! |
Sa1 S, Sy So

delays are 7,, a 1-bit adder delay is 2, (assuming a sum-of-products expression for sum
and carry, and ignoring delay for inverters), and a 32-bit ripple-carry adder will take
approximately 64 gate delays. For instance, if gate delays are 1 ns, the maximum
frequency at which the 32-bit ripple-carry adder can operate is approximately
16 MHz. This is inadequate for many applications. Hence, designers often resort to
faster adders.

4.3.1 Carry Look-Ahead Adders

A popular fast-addition technique is carry look-ahead (CLA) addition. In the carry
look-ahead adder, the carry signals are calculated in advance, based on the input sig-
nals. For any bit position i, we can see that a carry will be generated if the corre-
sponding input bits (i.e., A, B;) are ‘1’ or if there was a carry-in to that bit and at
least one of the input bits are ‘1°. In other words, bit i has carry-out if A, and B, are
‘1’ (irrespective of carry-in to bit i); bit i also has a carry-out if C; = ‘1’ and either A,
or B;is ‘1’. Thus, for any stage i, the carry-out is
C . ,=AB+(A®B) C (4-1)

The “@” stands for the exclusive OR operation. Equation (4-1) simply
expresses that there is a carry out from a bit position if it generated a carry by
itself (i.e., A,B; = ‘1’) or it simply propagated the carry from the lower bit for-
warded to it (i.e., (A, ® B,) - C)).

Since A,B; = ‘1’ indicates that a stage generated a carry, a general generate (G,)
function may be written as

G,= AB, (4-2)

Similarly, since (A; @ B,) indicates whether a stage should propagate the carry
it receives from the lower stage, a general propagate (P, function may be written as

P,=A,® B, (4-3)

Notice that the propagate and generate functions only depend on the input bits
and can be realized with one or two gate delays. Since there will be a carry whether
one of A, or B, is ‘1’ or both are ‘1°, we can also write the propagate expression as

P, =A;+ B, (4-4)
where the OR operation is substituted for the XOR operation. Logically this

propagate function also results in the correct carry-out; however, traditionally it
has been customary to define the propagate function as the XOR; that is, the bit

196 Design Examples

position simply propagates a carry (without generating a carry by itself). Also, typ-
ically, the sum signal is expressed as

S,=A,®B,®C,=P,®C, (4-5)

The expression P, ® C, can be used for sum only if P, is defined as A; ® B,
The carry-out equation can be rewritten by substituting (4-2) and (4-3) in (4-1)
for G, and P, as

C.,=G,+PC (4-6)
In a 4-bit adder, the C;’s can be generated by repeatedly applying Equation (4-6)

as follows:
C, =G,+P,C, (4-7)
C,=G +PC =G +PG,+PP,C, (4-8)
¢,=G,+prC,=G,+ PG, +P,PG,+ P,PPC (4-9)

¢,=G,+PC, =G, + PG, + PP,G, + P,PPG,+ P.P,PPC, (410)

These carry bits are the look-ahead carry bits. They are expressed in terms of
P’s, Gs,and C. Thus, the sum and carry from any stage can be calculated without
waiting for the carry to ripple through all the previous stages. Since G,’s and P;’s can
be generated with one or two gate delays, the C,’s will be available in three or four
gate delays. The advantage is that these delays will be the same independent of the
number of bits we need to add, in contrast to the ripple counter. Of course, this is
achieved with the extra gates to generate the look-ahead carry bits. A 4-bit carry
look-ahead adder can now be built, as illustrated in Figure 4-8.

FIGURE 4-8: Block Ay B, A, B, A B, Ag By
Diagram of a 4-Bit l l l l l l l l
CLA
A B A B A B A B
Partial Partial Partial Partial
full adder full adder full adder full adder
S G P C S G P C S G P C S G P C
R RN Y
Gy P3 Cs G, Py Gy G P C Go Po
Carry look-ahead logic C

The disadvantage of the carry look-ahead adder is that the look-ahead carry
logic, as in Equations (4-7) through (4-10), is not simple. It gets quite complicated
for more than 4 bits. For that reason, carry look-ahead adders are usually imple-
mented as 4-bit modules and are used in a hierarchical structure to realize adders
that have multiples of 4 bits. Figure 4-9 shows the block diagram for a 16-bit
carry look-ahead adder. Four carry look-ahead adders, similar to the one shown in

FIGURE 4-9: Block

Diagram of a 16-Bit

CLA

4.3 32-Bit Adders 197

Ais12 Bisap Ai1g Bug Ary Br4 Az B3

A B A B A B A B
4-Bit 4-Bit 4-Bit 4-Bit

CLA adder CLA adder CLA adder CLA adder

S G P C S G P C S G P C S G P C
T T NI LY
G3 P3 Cs G, P, G G Pt C Gy Po
Carry look-ahead logic o
GG PG

Figure 4-8, are used. Instead of relying on each 4-bit adder to send its carry-out to
the next 4-bit adder, the carry look-ahead logic generates input carry bits to be fed
to each 4-bit adder. This is accomplished by computing a group propagate (P)
and group generate (G ;) signal, which is produced by each 4-bit adder. The next
level of carry look-ahead logic uses these group propagates/generates and gener-
ates the required carry bits in parallel. The propagate for a group is true if all the
propagates in that group are true. The generate for a group is true if the MSB gen-
erated a carry or if a lower bit generated a carry and every higher bit in the group
propagated it. Thus

P, = P;P,P\P,

G; = G, + P,G, + P,P,G, + P,P,P G,

(4-11)
(4-12)

The group propagate P and generate G, will be available after three and four
gate delays, respectively (one or two additional delays than the P, and G, signals,
respectively). Figure 4-10 illustrates the VHDL description of a 4-bit carry look-
ahead adder.

FIGURE 4-10: VHDL Description of a 4-Bit Carry Look-Ahead Adder

entity CLA4 is
port(A, B:

S: out bit_vector(3 downto 0); Co,

end CLA4;

in bit_vector(3 downto 0); Ci:

in bit;
PG, GG: out bit);

-- Inputs
-- Outputs

architecture Structure of CLA4 is
component GPFullAdder

port(X, Y, Cin: 1in bit;
G, P, Sum: out bit);

end component;

-- Inputs
-- Outputs

198 Design Examples

component CLALogic is

port(G, P: 1in bit_vector(3 downto 0); Ci: 1in bit; -- Inputs
C: out bit_vector(3 downto 1); Co, PG, GG: out bit); -- Outputs
end component;
signal G, P: bit_vector(3 downto 0); -- carry internal signals
signal C: bit_vector(3 downto 1);
begin --instantiate four copies of the GPFullAdder

CarrylLogic: CLALogic port map (G, P, Ci, C, Co, PG, GQ);

FAO: GPFulTAdder port map (AC0), B(0), Ci, G(C0), P(0), S(C0));

FAl: GPFulTAdder port map (A(1), B(1), C(1), G(1), P(L), S(1);

FA2: GPFullAdder port map (A(2), B(2), C(2), G(2), P(2), S(2));

FA3: GPFulTAdder port map (A(C3), B(3), C(3), G(3), P(3), S(3));
end Structure;

entity CLALogic is
port(G, P: 1in bit_vector(3 downto 0); Ci: 1in bit; -- Inputs
C: out bit_vector(3 downto 1); Co, PG, GG: out bit); -- Outputs
end CLALogic;

architecture Equations of CLALogic is
signal GG_int, PG_int: bit;
begin -- concurrent assignment statements
C(1) <= G(0O) or (P(0) and Ci);
C(2) <= G(1) or (P(1) and G(0)) or (P(1) and P(0) and Ci);
C(3) <= G(2) or (P(2) and G(1)) or (P(2) and P(1) and G(0)) or
(P(2) and P(1) and P(0) and Ci);
PG_int <= P(3) and P(2) and P(1) and P(0);
GG_int <= G(3) or (P(3) and G(2)) or (P(3) and P(2) and G(1)) or
(P(3) and P(2) and P(1) and G(0));
Co <= GG_int or (PG_int and Ci);
PG <= PG_int;
GG <= GG_int;
end Equations;

entity GPFullAdder is
port(X, Y, Cin: 1in bit; -- Inputs
G, P, Sum: out bit); -- Outputs
end GPFullAdder;

architecture Equations of GPFullAdder is
signal P_int: bit;
begin -- concurrent assignment statements
G <= X and Y;
P <= P_int;
P_int <= X xor Y;
Sum <= P_int xor Cin;
end Equations;

4.3 32-Bit Adders 199

VHDL code for a 16-bit carry look-ahead adder can be developed by instanti-
ating four copies of the 4-bit carry look-ahead adder and one additional copy of the
carry look-ahead logic. A 64-bit adder can be built by one more level of block carry
look-ahead logic. The delay increases only by two gate delays when the adder size
increases from 16 bits to 64 bits. Developing VHDL code for 16-bit carry look-
ahead logic is left as an exercise.

Figure 4-11 illustrates behavioral VHDL code for a 32-bit adder using
the overloaded ‘+’ operator from IEEE numeric_bit library. If this code is syn-
thesized, depending on the tools used and the target technology, an adder
with characteristics in between a ripple-carry adder and a fast two-level adder
will be obtained. The various topologies result in different area, power, and delay
characteristics.

FIGURE 4-11: Behavioral Model for a 32-Bit Adder

Tibrary IEEE;

end Adder32;

begin

end overload;

I
Example

entity Adder32 is
port(A, B: 1in unsigned(31 downto 0); Ci: 1in bit; -- Inputs
S: out unsigned(31 downto 0); Co: out bit); -- Outputs

use IEEE.numeric_bit.all;

architecture overload of Adder32 is
signal Sum33: unsigned(32 downto 0);

Sum33 <= '0' & A + B + unsigned'(0=>Ci); -- adder
S <= Sum33(31 downto 0);
Co <= Sum33(32);

If gate delays are 7., what is the delay of the fastest 32-bit adder? Assume that the amount of
hardware consumed is not a constraint. Only speed is important.

Answer

We can express each sum bit of a 32-bit adder as a sum of products expression of the input bits.
There will be 33 such equations, including one for the carry out bit. These equations will be
very long, and some of them could include 60+ variables in the product term. Nevertheless, if
gates with any number of inputs are available, theoretically a two-level adder can be made.
Although it is not very practical, theoretically, the delay of the fastest adder will be 2tg if gate
delays are Ly

200 Design Examples

I
Example

FIGURE 4-12:

A 32-Bit Serial
Adder Built from a
Single 1-Bit Adder

TABLE 4-1:
Comparison of
Ripple-Carry and
Carry Look-Ahead
Adders

Is ripple-carry adder the smallest 32-bit adder?

Answer

A 32-bit ripple-carry adder uses 32 1-bit adders. We could design a 32-bit serial adder using a
single 1-bit full adder. The input numbers are shifted into the adder, one bit at a time, and carry
output from addition of each pair of bits is saved in a flip-flop and fed back to the next addition.
The hardware illustrated in Figure 4-12 accomplishes this. The delay of adder will be 32 (2tg + 1),
where 2t is the delay of the 1-bit full adder, and ¢, is the delay of the flip-flop (including setup
time). If a flip-flop delay is at least two gate delays, the delay of the 32-bit serial adder will be at
least 128¢,. The adder hardware is simple; however, there is also the control circuitry to generate
32 shift signals. The registers storing the operands must have shift capability as well.

Accumulator

ST I i
e I Sum;
9
- Full
Control circuit L’i I f
SI Y
K Sh »ISh |Y31|Y30| . | Y1|Y0 I Ly adder
Addend register

Clock Serial adder / Q D=

Clock

Sh

Even if you write VHDL code based on dataflow equations, as in Figure 4-10, that
does not guarantee that the synthesizer will produce a carry look-ahead adder with
the delay characteristics we discussed. The software might optimize the synthesis out-
put depending on the specific hardware components available in the target technology.
For instance, if you are using an FPGA with fast adder support, the software may map
some of the functions into the fast adder circuitry. Depending on the number of
FPGA logic blocks and interconnects used, the delays will be different from the man-
ual calculations. The delays of a ripple-carry, carry look-ahead, and serial adder for a
gate-based implementation are presented in Table 4-1 for various adder sizes. We can
see that the carry look-ahead adder is very attractive for large adders.

Ripple-Carry Serial Adder
Adder size Adder Delay ‘ CLA Delay ‘ Delay
4 bit 8t, 5-6t, 16t,
16 bit 32t, 7-8t, 64t
32 bit 64t 9-10t, 128t
64 bit 128t 9-10t 256t

Q
Q
«Q

4.4

FIGURE 4-13: Block
Diagram of Traffic
Light Controller

FIGURE 4-14: State
Graph for Traffic
Light Controller

4.4 Traffic Light Controller 201

Traffic Light Controller

Let us design a sequential traffic light controller for the intersection of street A
and street B. Each street has traffic sensors, which detect the presence of vehicles
approaching or stopped at the intersection. Sa = ‘1’ means a vehicle is approach-
ing on street A, and Sh = ‘1’ means a vehicle is approaching on street B. Street A
is a main street and has a green light until a car approaches on B. Then the lights
change, and B has a green light. At the end of 50 seconds, the lights change back
unless there is a car on street B and none on A, in which case the B cycle is
extended for 10 additional seconds. If cars continue to arrive on street B and no
car appears on street A, B continues to have a green light. When A is green, it
remains green at least 60 seconds, and then the lights change only when a car
approaches on B. Figure 4-13 shows the external connections to the controller.
Three of the outputs (Ga, Ya, and Ra) drive the green, yellow, and red lights on
street A. The other three (Gb, Yb, and Rb) drive the corresponding lights on
street B.

Clock Sa Sh

Ga Ya Ra Gb Yb Rb

Figure 4-14 shows a Moore state graph for the controller. For timing purposes,
the sequential circuit is driven by a clock with a 10-second period. Thus, a state
change can occur at most once every 10 seconds. The following notation is used:
GaRb in a state means that Ga = Rb = 1 and all the other output variables are 0.
Sa’Sh on an arc implies that Sa = 0 and Sb = 1 will cause a transition along that
arc. An arc without a label implies that a state transition will occur when the clock

202 Design Examples

occurs, independent of the input variables. Thus, the green A light will stay on for
six clock cycles (60 seconds) and then change to yellow if a car is waiting on B
street.

The VHDL code for the traffic light controller (Figure 4-15) represents the state
machine with two processes. Whenever the state, Sa, or Sbh changes, the first process
updates the outputs and nextstate. When the rising edge of the clock occurs, the sec-
ond process updates the state register. The case statement illustrates use of a when
clause with a range. Since states S through S, have the same outputs, and the next
states are in numeric sequence, we use a when clause with a range instead of five
separate when clauses:

when 0 to 4 => Ga <= '1'; Rb <= '"1'; nextstate <= state + 1;

FIGURE 4-15: VHDL Code for Traffic Light Controller

entity traffic_light is
port(clk, Sa, Sb: 1in bit;
Ra, Rb, Ga, Gb, Ya, Yb: 1inout bit);
end traffic_light;

architecture behave of traffic_light is
signal state, nextstate: integer range 0 to 12;
type light is (R, Y, G);

signal TightA, 1ightB: 1light; -- define signals for waveform output
begin

process(state, Sa, Sbh)

begin

Ra <= '0'; Rb <= '0'; Ga <= '0'; Gb <= '0'"; Ya <= '0'; Yb <= '0';
case state is
when 0 to 4 => Ga => '1l'; Rb => '1'; nextstate => state+l;
when 5 => Ga <= '1'; Rb <= '1'";
if Sb = '1' then nextstate <= 6; end if;
when 6 => Ya <= '1'; Rb <= '"1l'; nextstate <= 7;
when 7 to 10 => Ra <= '1l'; Gb <= '"1l'; nextstate <= state+l;
when 11 => Ra <= '"1'; Gb <= '1';
if (Sa='1l' or Sb='0') then nextstate <= 12; end if;
when 12 => Ra <= '"1'; Yb <= 'l'; nextstate <= 0;
end case;
end process;
process (c1k)
begin
if clk'event and clk = '1' then
state <= nextstate;
end if;
end process;
TightA <= R when Ra='1l' else Y when Ya='l' else G when Ga='l";
1ightB <= R when Rb='1l' else Y when Yb='1l' else G when Gb='1";
end behave;

FIGURE 4-16: Test
Results for Traffic
Light Controller

4.4 Traffic Light Controller 203

For each state, only the signals that are ‘1’ are listed within the case statement.
Since in VHDL a signal will hold its value until it is changed, we should turn
off each signal when the next state is reached. In state 6 we should set Ga to ‘0’,
in state 7 we should set Ya to ‘0’, and so on. This could be accomplished by insert-
ing appropriate statements in the when clauses. For example, we could insert
Ga <= '0' in the when 6 => clause. An easier way to turn off the outputs is to
set them all to ‘0’ before the case statement, as shown in Figure 4-15. At first, it
seems that a glitch might occur in the output when we set a signal to ‘0’ that should
remain ‘1’. However, this is not a problem because the sequential statements with-
in a process execute instantaneously. For example, suppose that at time = 20 ns a
state change from §, to §; occurs. Ga and Rb are ‘1’, but as soon as the process
starts executing, the first line of code is executed and Ga and Rb are scheduled to
change to ‘0’ at time 20 + A.The case statement then executes, and Ga and Rb are
scheduled to change to ‘1’ at time 20 + A. Since this is the same time as before, the
new value (‘1”) preempts the previously scheduled value (‘0’), and the signals
never change to ‘0.

Before completing the design of the traffic controller, we will test the VHDL
code to see that it meets specifications. As a minimum, our test sequence should
cause all of the arcs on the state graph to be traversed at least once. We may
want to perform additional tests to check the timing for various traffic condi-
tions, such as heavy traffic on both A and B, light traffic on both, heavy traffic
on A only, heavy traffic on B only, and special cases such as a car failing to move
when the light is green, a car going through the intersection when the light is
red, and so on.

To make it easier to interpret the simulator output, we define a type named light
with the values R, Y, and G and two signals, lightA and lightB, which can assume
these values. Then we add code to set lightA to R when the light is red, to Y when
the light is yellow, and to G when the light is green. The following simulator com-
mand file first tests the case where both self-loops on the graph are traversed and
then the case where neither self-loop is traversed:

add wave clk SA SB state TightA TightB

force clk 0 0, 1 5 sec -repeat 10 sec

force SA° 1 0, 0 40, 1 170, 0 230, 1 250 sec

force SB 0 0, 1 70, 0 100, 1 120, O 150, 1 210, O 250, 1 270 sec

The test results in Figure 4-16 verify that the traffic lights change at the specified
times.

felk A LML U L U L A U A T L LA L LU

[sas |- - - J E | E

/sb - J f 1 G|] -
Istate XX 2 XBX4aXE 5 XeXT X)Xo X1} 11+ 12X o XTX2)& X4 X5 X6 X706 X8 X10X1X12)eH)
/lighta 9 - XY X T - - X9 ; XIYXT_- o)
Nightb £ N XX ; NCEE XY X5

0 50 100 150 200 250 300

204 Design Examples

4.5

FIGURE 4-17:
Example Partial
State Graph

State Graphs for Control Circuits

Before continuing with additional examples, we describe the notation we use on
control state graphs, and then state the conditions that must be satisfied to have a
proper state graph. We usually label control state graphs using variable names
instead of 0’s and 1’s. This makes the graph easier to read, especially when the num-
ber of inputs and outputs is large. If we label an arc on a Mealy state graph
Xl.X/./ ZZ, this means if inputs X, and X are 1 (we don’t care what the other input
values areq), the outputs Z, and Z, are 1 (and the other outputs are 0), and we will
traverse this arc to go to the next state. For example, for a circuit with four inputs
(X, X,, X;, X,) and four outputs (Z,, Z,, Z;, Z,), the label X, X,'/Z,Z. is equivalent
to 1--0/0110. In general, if we label an arc with an input expression, I, we will tra-
verse the arc when I = 1. For example, if the input label is AB + C’, we will traverse
the arc when AB + C' = 1.

In order to have a completely specified proper state graph in which the next
state is always uniquely defined for every input combination, we must place the
following constraints on the input labels for every state S,:

L. If J; and I; are any pair of input labels on arcs exiting state S, then [,/; = 0 if
i #].

2. If n arcs exit state S, and the n arcs have input labels 1, I, . . ., I ,respectively, then
L+L+--+1 =1

Condition 1 assures us that at most one input label can be 1 at any given time, and
condition 2 assures us that at least one input label will be 1 at any given time.
Therefore, exactly one label will be 1, and the next state will be uniquely defined for
every input combination. For example, consider the partial state graph in Figure 4-17,
where [, = X|, [, = X|'X,’,and I, = X' X:

(Xp) (XiX3)=0

(Xp) (XiX5)=0
(XiX3) (XX2)=0
X+ XiX5+X{X,= 1

Conditions 1 and 2 are satisfied for S,.

An incompletely specified proper state graph must always satisfy condition 2,
and it must satisfy condition 1 for all combinations of values of input variables that
can occur for each state S,. Thus, the partial state graph in Figure 4-18 represents
part of a proper state graph only if input combination X, = X, = 1 cannot occur in
state S,.

FIGURE 4-18:
Example Partial
State Graph

4.6

FIGURE 4-19:
Overview of
Simple Scoreboard

4.6 Scoreboard and Controller 205

If there are three input variables (X, X,, X;), the preceding partial state graph
represents the following state table row:

000 001 010 011 100 101 110 111

S, S, S, 5, S, S, — —

Scoreboard and Controller

In this example, we will design a simple scoreboard, which can display scores
from 0 to 99 (decimal). The input to the system should consist of a reset signal
and control signals to increment or decrement the score. The two-digit decimal
count gets incremented by 1 if increment signal is true and is decremented by 1
if decrement signal is true. If increment and decrement are true simultaneously,
no action happens.

The current count is displayed on seven-segment displays. In order to prevent
accidental erasure, the reset button must be pressed for five consecutive cycles in
order to erase the scoreboard. The scoreboard should allow down counts to correct
a mistake (in case of accidentally incrementing more than required).

4.6.1 Data Path

At the core of the design will be a two-digit BCD counter to perform the counting.
Two seven-segment displays will be needed to display the current score. We will also
require BCD to seven-segment decoders to facilitate the display of each BCD digit.
Figure 4-19 illustrates a block diagram of the system. Since true reset should happen
only after pressing reset for five clock cycles, we will also use a 3-bit reset counter
called rstent.

a a
INC—) i 2 I?CD . NP .
DEC— BCD N g
counter 7-segment e ’ ol e c
RESET — decoder
d d

206 Design Examples

FIGURE 4-20: State
Graph for
Scoreboard

4.6.2 Controller

The controller for this circuit works as follows. There are two states in this finite state
machine (FSM), as indicated in Figure 4-20. In the initial state (S), the BCD counter
is cleared. The reset counter is also made equal to 0. Essentially, S, is an initialization
state where all the counters are cleared. After the initial start state, the FSM moves to
the next state (S,), which is where counting gets done. In this state, in every clock
cycle, incrementing or decrementing is done according to the input signals. If reset sig-
nal rst arrives, the rstent is incremented. If reset count has already reached 4, and reset
command is still persisting in the fifth clock cycle, a transition to state S, is made. If
the inc signal is present and dec is not present, the BCD counter is incremented. The
notation addl on the arc on the top right is used to indicate that the BCD counter
is incremented. If the dec signal is present and inc is not present, the BCD counter is
decremented. The notation subl on the arc on the bottom right is used to indicate that
the BCD counter is decremented. In any cycle that the reset signal is not present, the
rstent is cleared. If both the inc and dec signals are true, or neither are true, the reset
counter (rstcnt) is cleared and the BCD counter is left unchanged.

rste (rstent=4)/
rstent=rstent +1 L
rsteincedec/

addl
/D rstent=0
fsteincedec/
rste(rstent=4)/- subl
rstent=0
rsteince dec,
rsteincedec/
rstent=0

4.6.3 VHDL Model

The VHDL code for the scoreboard is given in Figure 4-21. The two seven-segment
displays, seg7displ and seg7disp2, are declared as unsigned 7-bit vectors. The
segments of the seven-segment display are labeled a through g, as in Figure 4-19.
The unsigned type is used so that the overloaded ‘+’ operator can be used for incre-
menting the counter by 1. The decoder for the seven-segment display can be imple-
mented as an array or look-up table. The look-up table consists of ten 7-bit vectors.
A new datatype called sevsegarray is defined for the array of the seven-segment
values corresponding to each BCD digit. It is a two-dimensional array with 10 ele-
ments, each of which is a 7-bit unsigned vector. The look-up table must be addressed
with an integer data type; hence, the conversion function to_integer is used to
generate the array index. The expression to_integer (BCDO) converts BCDO to
integer type and the statement

seg7disp0 <= seg7rom(to_integer(BCD0));

4.6 Scoreboard and Controller 207

accesses the appropriate element from the array seg7rom to convert the decimal
digit to the seven-segment form. BCD addition is accomplished with the overloaded
‘+’ operator. If the current count is less than 9, it is incremented. If it is 9, adding 1
results in a 0, but the next digit should be incremented. Similarly, decrementing from
0 is performed by borrowing a 1 from the next higher digit.

FIGURE 4-21: VHDL Code for Scoreboard

Tibrary IEEE;
use IEEE.numeric_bit.all; -- any package with overloaded add and subtract

entity Scoreboard is
port(clk, rst, inc, dec: 1in bit;
seg7displ, seg7dispO: out unsigned(6 downto 0));
end Scoreboard;

architecture Behavioral of Scoreboard is
signal State: integer range 0 to 1;
signal BCD1, BCDO: unsigned(3 downto 0) := "0000"; -- unsigned bit vector
signal rstcnt: integer range 0 to 4 := 0;
type sevsegarray 1is array (0 to 9) of unsigned(6 downto 0);
constant seg7Rom: sevsegarray :=
("o111111", "O00OOO110", "1011011", "1001111", "1100110", "1101101", "11111l00",
"0000111", "1111111", "1100111"); -- active high with "gfedcba" order
begin
process(clk)
begin
if clk'event and clk = '1"' then
case State is

when 0 => -- initial state
BCD1 <= "0000"; BCDO <= "0000"; -- clear counter
rstcnt <= 0; -- reset RESETCOUNT
State <= 1;
when 1 => -- state in which the scoreboard waits for inc and dec
if rst = '1' then
if rstcnt = 4 then -- checking whether 5t reset cycle
State <= 0;
else rstcnt <= rstcnt + 1;
end if;
elsif inc = '1' and dec = '0' then

rstcnt <= 0;
if BCDO < "1001" then
BCDO <= BCDO + 1; -- library with overloaded "+" required
elsif BCD1 < "1001" then
BCD1 <= BCD1 + 1;
BCDO <= "0000";
end if;

208 Design Examples

end Behavioral;

4.7

elsif dec = '1l' and inc = '0' then
rstcnt <= 0;
if BCDO > "0000" then
BCDO <= BCDO - 1; -- library with overloaded "-" required
elsif BCD1 > "0000" then
BCD1 <= BCD1 - 1;
BCDO <= "1001";
end if;
elsif (inc = '1' and dec = '1'") or (inc = '0' and dec = '0') then
rstcnt <= 0;

end if;
end case;
end if;
end process;
seg7disp0 <= seg7rom(to_integer(BCD0)); -- type conversion function from
seg7displ <= seg7rom(to_integer(BCD1)); -- IEEE numeric_bit package used

Synchronization and Debouncing

The inc, dec, and rst signals to the scoreboard in the previous design are external inputs.
An issue in systems involving external inputs is synchronization. Outputs from a key-
pad or push-button switches are not synchronous to the system clock signal. Since they
will be used as inputs to a synchronous sequential circuit, they should be synchronized.

Another issue in systems involving external inputs is switch bounce. When
a mechanical switch is closed or opened, the switch contact will bounce, causing
noise in the switch output, as shown in Figure 4-22(a). The contact may bounce for
several milliseconds before it settles down to its final position. After a switch closure
has been detected, we must wait for the bounce to settle before reading the key.
In any circuit involving mechanical switches, we should debounce the switches.
Debouncing means removing the transients in the switch output.

Flip-flops are very useful devices when contacts need to be synchronized and
debounced. Figure 4-22(b) shows a proposed debouncing and synchronizing circuit.
In this design, the clock period is greater than the bounce time. If the rising edge of
the clock occurs during the bounce, either a 0 or 1 will be clocked into the flip-flop
at ¢,. If a 0 was clocked in, a 1 will be clocked in at the next active clock edge (z,). So
it appears that O, will be a debounced and synchronized version of K. However,
a possibility of failure exists if the switch changes very close to the clock edge such
that the setup or hold time is violated. In this case the flip-flop output O, may oscil-
late or otherwise malfunction. Although this situation will occur very infrequently,
it is best to guard against it by adding a second flip-flop. We will choose the clock
period so that any oscillation at the output of Q , will have died out before the next
active edge of the clock so that the input D , will always be stable at the active clock
edge. The debounced signal, Q,, will always be clean and synchronized with the
clock, although it may be delayed up to two clock cycles after the switch is pressed.

FIGURE 4-22:
Debouncing
Mechanical
Switches

4.7 Synchronization and Debouncing 209

J T T
Contact 0 [\W\V | ! WL Lo _
closure ! ! !

SR [O O

(a) Switch bouncing

Contact
closure

>CK >CcK

(b) Debouncing and synchronizing circuit

Da Qa Dg Qg[—

4.7.1 Single Pulser

One assumption in the scoreboard design is that each time the inc and dec signals
are provided, they last only for one clock cycle. Digital systems generally run at
speeds higher than actions by humans, and it is very difficult for humans to produce
a signal that only lasts for a clock pulse. If the pressing of the button lasted longer
than a clock cycle, the counters will continue to get incremented in the aforemen-
tioned design. A solution to the problem is to develop a circuit that generates a sin-
gle pulse for a human action of pressing a button or switch. Such a circuit can be
used in a variety of applications involving humans, push buttons, and switches.

Now, let us design a single pulser circuit that delivers a synchronized pulse that
is a single clock cycle long, when a button is pressed. The circuit must sense the
pressing of a button and assert an output signal for one clock cycle. Then the output
stays inactive until the button is released.

Let us create a state diagram for the single pulser. The single pulser circuit must
have two states: one in which it will detect the pressing of the key and one in which
it will detect the release of the key. Let us call the first state S, and the second state
S,. Let us use the symbol SYNCPRESS to denote the synchronized key press. When
the circuit is in state S, and the button is pressed, the system produces the single
pulse and moves to state S;. The single pulse is a Mealy output as the state changes
from §; to S,. Once the system is in state S|, it waits for the button to be released.
As soon as it is released, it moves to the start state S, waiting for the next button
press. The single pulse output is true only during the transition from §, to S,. The
state diagram is illustrated in Figure 4-23.

Since there are only two states for this circuit, it can be implemented using one
flip-flop. A single pulser can be implemented as in Figure 4-24. The first block con-
sists of the circuitry in Figure 4-22(b) and generates a synchronized button press,
SYNCPRESS. The flip-flop implements the two states of the state machine. Let us
assume the state assignments are S, = 0 and S, = 1. In such a case, the Q output of

210 Design Examples

FIGURE 4-23: State SYNCPRESS/SP SYNCPRESS

Diagram of Single

Pulser ‘
(SYNCPRESS) (SYNCPRESSY

FIGURE 4-24: SYNCPRESS

Single Pulser and PRESS — D QF—5;

Synchronizer Synchronizing
circuit

Circuit > Q §,=5,
Clk I _|_D
SP

the flip-flop is synonymous with $,, and the Q" output of the flip-flop is synonymous
with S.. The equation for the single pulse SP is

SP = SO - SYNCPRESS

It may also be noted that S, = §,". Including the two flip-flops inside the syn-
chronizing block, three flip-flops can provide debouncing, synchronization, and
single pulsing. If button pushes can be passed through such a circuit, a single pulse
that is debounced and synchronized, with respect to the system clock, can be
obtained. It is a good practice to feed external push-button signals through such a
circuit in order to obtain controlled and predictable operation.

4.8 Add-and-Shift Multiplier

In this section, we will design a multiplier for unsigned binary numbers. When we form
the product A X B, the first operand (A) is called the multiplicand, and the second
operand (B) is called the multiplier. As illustrated here, binary multiplication requires
only shifting and adding. In the following example, we multiply 13, by 11, in binary:

Multiplicand ——— 1 1 0 1 (13)
Mutliplier ———— 1 0 1 1 (11)
/1 101
1101
Partial }/170 0111
products | <=0 000
\ 100111
1101
10001111 (143)

Note that each partial product is either the multiplicand (1101) shifted over
by the appropriate number of places or zero. Instead of forming all the partial

FIGURE 4-25: Block
Diagram for Binary
Multiplier

4.8 Add-and-Shift Multiplier 211

products first and then adding, each new partial product is added in as soon as it
is formed, which eliminates the need for adding more than two binary numbers
at a time.

Multiplication of two 4-bit numbers requires a 4-bit multiplicand register, a 4-bit
multiplier register, a 4-bit full adder, and an 8-bit register for the product. The prod-
uct register serves as an accumulator to accumulate the sum of the partial products.
If the multiplicand were shifted left each time before it was added to the accumula-
tor, as was done in the previous example, an 8-bit adder would be needed. So it is
better to shift the contents of the product register to the right each time, as shown
in the block diagram of Figure 4-25. This type of multiplier is sometimes referred to
as a serial-parallel multiplier, since the multiplier bits are processed serially, but the
addition takes place in parallel. As indicated by the arrows on the diagram, 4 bits
from the accumulator (ACC) and 4 bits from the multiplicand register are connect-
ed to the adder inputs; the 4 sum bits and the carry output from the adder are con-
nected back to the accumulator. When an add signal (Ad) occurs, the adder outputs
are transferred to the accumulator by the next clock pulse, thus causing the multi-
plicand to be added to the accumulator. An extra bit at the left end of the product
register temporarily stores any carry that is generated when the multiplicand
is added to the accumulator. When a shift signal (S/) occurs, all 9 bits of ACC are
shifted right by the next clock pulse.

Product
A
 ACC N
Load 8| 7 6| 5] 4 3] 21 1] 0
C [Sh N | | | | | | |
Ad 1 1 1 1 1 | 1
Y - 1
T IR
Clk N
t g
[Multiplier
o | Done Cm 4-Bitadder
———»
| BN
et
- J
M Y
Multiplicand

Since the lower 4 bits of the product register are initially unused, we will store
the multiplier in this location instead of in a separate register. As each multiplier bit
is used, it is shifted out the right end of the register to make room for additional
product bits. A shift signal (S/) causes the contents of the product register (includ-
ing the multiplier) to be shifted right one place when the next clock pulse occurs.
The control circuit puts out the proper sequence of add and shift signals after a start
signal (St = 1) has been received. If the current multiplier bit (M) is 1, the multipli-
cand is added to the accumulator followed by a right shift; if the multiplier bit is 0,
the addition is skipped, and only the right shift occurs. The multiplication example

212 Design Examples

FIGURE 4-26: State
Graph for Binary
Multiplier Control

(13 X 11) is reworked below, showing the location of the bits in the registers at each
clock time.

initial contents of product register 00000101 1<«— M (11)
(add multiplicand since M = 1) 1101 (13)
after addition 0110111011

after shift 001101101«—M
(add multiplicand since M =1) 1101 |

after addition 100111101

after shift 010011110« M
(skip addition since M =0) L

after shift 001001111l«— M
(add multiplicand since M =1) 1101 '

after addition 100011111

after shift (final answer) 010001111} (143)

dividing line between product and multiplier

The control circuit must be designed to output the proper sequence of add and
shift signals. Figure 4-26 shows a state graph for the control circuit. In Figure 4-26,
S, is the reset state, and the circuit stays in S, until a start signal (St =1) is
received. This generates a Load signal, which causes the multiplier to be loaded
into the lower 4 bits of the accumulator (ACC) and the upper 5 bits of the accu-
mulator to be cleared. In state S, the low-order bit of the multiplier (M) is tested.
If M =1, an add signal is generated, and if M = 0, a shift signal is generated.
Similarly, in states S, S;, and S, the current multiplier bit (M) is tested to deter-
mine whether to generate an add or shift signal. A shift signal is always generated
at the next clock time following an add signal (states S,, S,, S, and S). After four
shifts have been generated, the control network goes to §,, and a done signal is
generated before returning to S,

St’/0

4.8 Add-and-Shift Multiplier 213

The behavioral VHDL model (Figure 4-27) corresponds directly to the state graph.
Since there are 10 states, we have declared an integer ranging from O to 9 for the state
signal. The signal ACC represents the 9-bit accumulator output. The statement

alias M: bit is ACC(0);

allows us to use the name M in place of ACC(0).The notation when 1|3|5|7 => means
that when the state is 1 or 3 or 5 or 7, the action that follows occurs. All register oper-
ations and state changes take place on the rising edge of the clock. For example, in
state 0, if St is ‘1°, the multiplier is loaded into the accumulator at the same time
the state changes to 1. The expression '0' & ACC(7 downto 4) + Mcand is used to
compute the sum of two 4-bit unsigned vectors to give a 5-bit result. This represents
the adder output, which is loaded into ACC at the same time the state counter is incre-
mented. The right shift on ACC is accomplished by loading ACC with ‘0’ concatenat-
ed with the upper 8 bits of ACC. The expression '0' & ACC(8 downto 1) could
be replaced with ACC srl1 1.

FIGURE 4-27: Behavioral Model for 4 x 4 Binary Multiplier

-- This is a behavioral model of a multiplier for unsigned

—-- binary numbers

. It multiplies a 4-bit multiplicand

-— by a 4-bit multiplier to give an 8-bit product.

—— The maximum number of clock cycles needed for a

-— multiply is 10

Tibrary IEEE;

use IEEE.numeric_bit.all;

entity mult4X4 is

port(Clk, St: 1in bit;
Mplier, Mcand: 1in unsigned(3 downto 0);
Done: out bit);

end mult4X4;

architecture behavel of mult4X4 is
signal State: integer range 0 to 9;

signal ACC: unsigned(8 downto 0); -- accumulator
alias M: bit is ACC(0); -- M is bit 0 of ACC
begin
process (Clk)
begin
if Clk'event and Clk = '1' then -- executes on rising edge of clock
case State is
when 0 => -- 1initial State
if St = '1' then
ACC(8 downto 4) <= "00000"; -- begin cycle
ACC(3 downto 0) <= Mplier; -- Toad the multiplier
State <= 1;

end if;

214 Design Examples

when 1 | 3 | 5| 7 = -- "add/shift" State
if M = '1' then -- add multiplicand
ACC(8 downto 4) <= '0' & ACC(7 downto 4) + Mcand;
State <= State + 1;
else
ACC <= '0" & ACC(8 downto 1); -- shift accumulator right
State <= State + 2;
end 1if;
when 2 | 4 | 6 | 8 => -- "shift" State
ACC <= '0" & ACC(8 downto 1); -- right shift

State <= State + 1;

when 9 => -- end of cycle
State <= 0;
end case;
end 1if;

end process;

Done <= 'l' when State = 9 else '0';

end behavel;

The Done signal needs to be turned on only in state 9. If we had used the state-
ment when 9 => State <= 0; Done <= "1", Done would be turned on at the
same time State changes to 0. This is too late, since we want Done to turn on when
State becomes 9. Therefore, we used a separate concurrent assignment statement.
This statement is placed outside the process so that Done will be updated whenever
State changes.

As the state graph for the multiplier (Figure 4-26) indicates, the control performs
two functions—generating add or shift signals as needed and counting the number of
shifts. If the number of bits is large, it is convenient to divide the control circuit into
a counter and an add-shift control, as shown in Figure 4-28(a). First, we will derive a
state graph for the add-shift control that tests St and M and outputs the proper
sequence of add and shift signals (Figure 4-28(b)). Then we will add a completion
signal (K) from the counter that stops the multiplier after the proper number of shifts
have been completed. Starting in S, in Figure 4-28(b), when a start signal St = 1 is
received, a load signal is generated and the circuit goes to state S,. Then if M = 1, an
add signal is generated and the circuit goes to state S,; if M = 0, a shift signal is
generated and the circuit stays in S,. In §,, a shift signal is generated since a shift
always follows an add. The graph of Figure 4-28(b) will generate the proper sequence
of add and shift signals, but it has no provision for stopping the multiplier.

In order to determine when the multiplication is completed, the counter is
incremented each time a shift signal is generated. If the multiplier is n bits, z shifts
are required. We will design the counter so that a completion signal (K) is gener-
ated after n — 1 shifts have occurred. When K = 1, the circuit should perform one
more addition if necessary and then do the final shift. The control operation in
Figure 4-28(c) is the same as Figure 4-28(b) as long as K = 0. In state S ,if K =1,
we test M as usual. If M = 0, we output the final shift signal and go to the done
state (S;); however,if M = 1, we add before shifting and go to state S,. In state §,,
if K =1, we output one more shift signal and then go to §,. The last shift signal

FIGURE 4-28:
Multiplier Control
with Counter

TABLE 4-2:
Operation of
Multiplier Using a
Counter

4.8 Add-and-Shift Multiplier 215

— Done

St—=| Add-shift | Load
M —= control Ad
Sh

Counter
(a) Multiplier control (b) State graph for add-shift control
St’/0
K’M’/Sh
M/Ad

(c) Final state graph for add-shift control

will increment the counter to 0 at the same time the add-shift control goes to the
done state.

As an example, consider the multiplier of Figure 4-25, but replace the control cir-
cuit with Figure 4-28(a). Since n = 4, a 2-bit counter is needed to count the four
shifts, and K = 1 when the counter is in state 3 (11,). Table 4-2 shows the operation
of the multiplier when 1101 is multiplied by 1011. §, S, S,, and S, represent states
of the control circuit (Figure 4-28(c)). The contents of the product register at each
step are the same as given on page 212.

At time £, the control is reset and waiting for a start signal. At time ¢, the start
signal St is 1, and a Load signal is generated. At time t,, M = 1, so an Ad signal is
generated. When the next clock occurs, the output of the adder is loaded into the
accumulator and the control goes to S,. At 7, an Sh signal is generated, so at the next
clock shifting occurs and the counter is incremented. Atz,, M = 1,50 Ad = 1,and the
adder output is loaded into the accumulator at the next clock. At ¢, and £, shifting

Time State Counter Product Register St M K | Load Ad Sh Done
t, S, 00 000000000 0 0 O 0 0 0 0
t, S, 00 000000000 1 0 O 1 0 0 0
t, S, 00 000001011 o 1 0 0 1 0 0
t, S, 00 011011011 o 1 0 0 0 1 0
t, S, 01 001101101 o 1 0 0 1 0 0
t S, 01 100111101 o 1 0 0 0 1 0
t, S, 10 010011110 0O 0 O 0 0 1 0
t, S, 11 001001111 o 1 1] 0 1 0 0
ty S, 11 100011111 o 1 1] 0 0o 1 0
t S 00 010001111 o 1 0 0 0 0 1

©
w

216 Design Examples

and counting occur. At z,, three shifts have occurred and the counter state is 11, so
K =1.Since M = 1, addition occurs and control goes to S,. At t,, Sh = K = 1, s0 at
the next clock the final shift occurs and the counter is incremented back to state 00.
At t,, a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits
simply by increasing the register size and the number of bits in the counter. The add-
shift control would remain unchanged.

4.9 Array Multiplier

An array multiplier is a parallel multiplier that generates the partial products in a
parallel fashion. The various partial products are added as soon as they are avail-
able. Consider the process of multiplication as illustrated in Table 4-3. Two 4-bit
unsigned numbers, X, X, X, X, and Y,Y,Y Y, are multiplied to generate a product
that is possibly 8 bits. Each of the XY product bits can be generated by an AND
gate. Each partial product can be addled to the previous sum of partial products
using a row of adders. The sum output of the first row of adders, which adds the first
two partial products, is S,,5,,5,,5,,, and the carry output is C,C,C,,C, . Similar
results occur for the other two rows of adders. (We have used the notation Sl.]. and
Cl.]. to represent the sums and carries from the ith row of adders.)

TABLE 4-3: Four-bit X, X, X, X, Multiplicand
Multiplier Partial Y, Y, Y, Y, Multiplier
Products XY, XY, X,Y, X,Y, Partial product 0
XY, LY, XY, XY, Partial product 1
C, G Co First row carries
Cis Si; S, S Sio First row sums
XY, XY, XY, XY, Partial product 2
C, G, Gy Second row carries
C, Sy S5, Sy S50 Second row sums
XY, XY, X\Y; XY, Partial product 3
G, G, G, Third row carries
G Sy S5, S5 S3 Third row sums
P, P, P, P, P, P, P, P, Final product

Figure 4-29 shows the array of AND gates and adders to perform this multipli-
cation. If an adder has three inputs, a full adder (FA) is used, but if an adder has only
two inputs, a half-adder (HA) is used. A half-adder is the same as a full adder with
one of the inputs set to 0. This multiplier requires 16 AND gates, 8 full adders, and
4 half-adders. After the X and Y inputs have been applied, the carry must propagate
along each row of cells, and the sum must propagate from row to row. The time
required to complete the multiplication depends primarily on the propagation delay
in the adders. The longest path from input to output goes through 8 adders. If 7, is

FIGURE 4-29: Block
Diagram of 4 X 4
Array Multiplier

4.9 Array Multiplier 217

I I I I I I
! ! ! XYo ! XYo ! XiYo ' XoYo
I I I I I I
I I I I I I
I I I I I I
! 'X3Y1 'XoY1 'X1Y1 "Xo Y1 !
I I I I I I
I I I I I I
I I I I I I
! ! Cio ! Cyp ! Cio! !
1 — {4 |
:X3Y2 Cis :X2Y2 Si3 :Xle Sip :XOYZ Si1 : S10 :
I I I I I P I
I I I I I 1 I
I I I I I I
I C I C I C I I I
‘ nl 22 N P m
S L e e e T :
XY [Caz [XpY3 [Saz XqYg [Sz2 XoYz [Sa1 | S | !
| | | R |
Ca, Car | Cy | ‘ ‘ ‘
FAl— Fal— FAl— HAl 1 1
Cas Sz S S SO : :
P, Pe . Ps . P, Py ‘ ‘

the worst-case (longest possible) delay through an adder, and tg is the longest AND
gate delay, then the worst-case time to complete the multiplication is 87, + Ly

In general, an n-bit-by-n-bit array multiplier would require n> AND gates, n(n— 2)
full adders, and » half-adders. So the number of components required increases
quadratically. For the serial-parallel multiplier previously designed, the amount of
hardware required in addition to the control circuit increases linearly with n.

For an n X n array multiplier, the longest path from input to output goes
through n adders in the top row, n — 1 adders in the bottom row, and n — 3 adders
in the middle rows. The corresponding worst-case multiply time is (3n — 4)t,, + o
The longest delay in a circuit is called critical path. The worst-case delay can be
improved to 2nf,; + l, by forwarding carry from each adder to the diagonally lower
adder rather than the adder on the left side. When n = 4, both expressions are the
same; however, for larger values of n, it is beneficial to pass carry diagonally as
opposed to rippling it to the left. Note that this multiplier has no sequential logic
or registers.

The shift-and-add multiplier that we previously designed requires 2n clocks to
complete the multiply in the worst case, although this can be reduced to n clocks
using a technique discussed in the next section. The minimum clock period depends
on the propagation delay through the n-bit adder as well as the propagation delay
and setup time for the accumulator flip-flops.

4.9.1 VHDL Coding

If the topology has to be exactly what the designer wants, we need to do structural
coding as shown in Figure 4-30. If we made a behavioral model of a multiplier with-
out specifying the topology, the topology generated by the synthesizer would
depend on the synthesis tool. Here, we present a structural model for an array

218 Design Examples

FIGURE 4-30: VHDL Code for 4 X 4 Array Multiplier

entity Array_Mult is
port(X, Y: 1in bit_vector(3 downto 0);
P: out bit_vector(7 downto 0));
end Array_Mult;

architecture Behavioral of Array_Mult is
signal Cl, C2, C3: bit_vector(3 downto 0);
signal S1, S2, S3: bit_vector(3 downto 0);
signal XY0, XY1, XY2, XY3: bit_vector(3 downto 0);
component FullAdder
port(X, Y, Cin: 1in bit;
Cout, Sum: out bit);
end component;
component HalfAdder
port(X, Y: 1in bit;
Cout, Sum: out bit);
end component;
begin
XY0(0) <= X(0) and Y(0); XYL(0) <= X(0) and Y(1);
XY0(1) <= X(1) and Y(0); XY1(1) <= X(1) and Y(1);
XY0(2) <= X(2) and Y(0); XY1(2) <= X(2) and Y(1);
XY0O(3) <= X(3) and Y(0); XY1(3) <= X(3) and Y(1);

XY2(0) <= X(0) and Y(2); XY3(0) <= X(0) and Y(3);
XY2(1) <= X(1) and Y(2); XY3(1) <= X(1) and Y(3);
XY2(2) <= X(2) and Y(2); XY3(2) <= X(2) and Y(3);
XY2(3) <= X(3) and Y(2); XY3(3) <= X(3) and Y(3);

FA1l: FullAdder port map (XY0(2), XY1(1), C1(0), C1(l), S1(1));
FA2: FullAdder port map (XY0(3), XY1(2), C1(1l), C1(2), S1(2));
FA3: FullAdder port map (S1(2), XY2(1), C2(0), C2(1), S2(1));

FA4: FullAdder port map (S1(3), XY2(2), C2(1), C2(2), S2(2));

FA5: FullAdder port map (C1(3), XY2(3), C2(2), C2(3), S2(3));

FA6: FullAdder port map (S2(2), XY3(1), C3(0), C3(1), S3(1));

FA7: FullAdder port map (S2(3), XY3(2), C3(1), C3(2), S3(2));

FA8: FullAdder port map (C2(3), XY3(3), C3(2), C3(3), S3(3));

HA1l: HalfAdder port map (XYO(1), XY1(0), C1(0), S1(0));

HA2: HalfAdder port map (XY1(3), C1(2), C1(3), S1(3));

HA3: HalfAdder port map (S1(1), XY2(0), C2(0), S2(0));

HA4: HalfAdder port map (S2(1), XY3(0), C3(0), S3(0));

P(0) <= XY0(0); P(1) <= S1(0); P(2) <= S2(0);
P(3) <= S3(0); P(4) <= S3(1); P(5) <= S3(2);
P(6) <= S3(3); P(7) <= C3(3);

end Behavioral;

—— Full Adder and half adder entity and architecture descriptions
—— should be 1in the project

4.10 A Signed Integer/Fraction Multiplier 219

entity FullAdder is

port(X, Y, Cin:

in bit;

Cout, Sum: out bit);

end FullAdder;

architecture equations of FullAdder is

begin

Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end equations;

entity HalfAdder is
port(X, Y: 1in bit;
Cout, Sum: out bit);

end HalfAdder;

architecture equations of HalfAdder is

begin

Sum <= X xor Y;

Cout <= X and Y;

end equations;

4.10

multiplier. Full-adder and half-adder modules are created and used as components
for the array multiplier. The full adders and half adders are interconnected accord-
ing to the array multiplier topology. Several instantiation (port map) statements are
used for this purpose.

A Signed Integer/Fraction Multiplier

Several algorithms are available for multiplication of signed binary numbers. The
following procedure is a straightforward way to carry out the multiplication:

1. Complement the multiplier if negative.

2. Complement the multiplicand if negative.

3. Multiply the two positive binary numbers.

4. Complement the product if it should be negative.

Although this method is conceptually simple, it requires more hardware and
computation time than some of the other available methods.

The next method we describe requires only the ability to complement the multi-
plicand. Complementation of the multiplier or product is not necessary. Although the
method works equally well with integers or fractions, we illustrate the method with
fractions, since we will later use this multiplier as part of a multiplier for floating-
point numbers. Using 2’s complement for negative numbers, we will represent signed
binary fractions in the following form:

0101 +5/8 1011 —5/8

220 Design Examples

The digit to the left of the binary point is the sign bit, which is 0 for positive
fractions and 1 for negative fractions. In general, the 2’s complement of a binary
fraction Fis F* = 2 — F.Thus, —5/8 is represented by 10.000 — 0.101 = 1.011. (This
method of defining 2’s complement fractions is consistent with the integer case
(N* = 2" — N), since moving the binary point n — 1 places to the left is equivalent
to dividing by 27~1.) The 2’s complement of a fraction can be found by starting at the
right end and complementing all the digits to the left of the first 1, the same as for
the integer case. The 2’s complement fraction 1.000 . . . is a special case. It actually
represents the number —1, since the sign bit is negative and the 2’s complement of
1.000 ...is 2 — 1 = 1. We cannot represent +1 in this 2’s complement fraction sys-
tem, since 0.111 . . . is the largest positive fraction.

Binary Fixed-Point Fractions

Fixed-point numbers are number formats in which the decimal or binary
point is at a fixed location. We can have a fixed-point 8-bit number format
where the binary point is assumed to be after 4 bits (i.e., 4 bits for the frac-
tional part and 4 bits for the integer part). If the binary point is assumed to
be located two more bits to the right, there will be 6 bits for the integral
part and 2 bits for the fraction. The range and precision of the numbers that
can be represented in the different formats depend on the location of the
binary point. For instance, if there are 4 bits for the fractional part and 4 bits
for the integer, the range, assuming unsigned numbers, is 0.00 to 15.925.
If only 2 bits are allowed for the fractional part and 6 bits for the integer,
the range increases; however, the precision reduces. Now, the range would
be 0.00 to 63.75, but the fractional part can be specified only as a multiple
of 0.25.

Let us say we need to represent —13.45 in a 2’s complement fixed-point
number representation with four fractional bits. To convert any decimal frac-
tion into the binary fraction, one technique is to repeatedly multiply the
fractional part (only the fractional part in each intermediate step) with 2. So,
starting with 0.45, the repeated multiplication results in

0.90
1.80
1.60
1.20
0.40
0.80
1.60
1.20

Now, the binary representation can be obtained by considering the digits
in bold. An appropriate representation can be obtained depending on the
number of bits available (e.g.,0111 if 4 bits are available, 01110011 if 8 bits are

4.10 A Signed Integer/Fraction Multiplier 221

available, and so on). The representation for decimal number 13.45 in the
fixed-point format with four binary places will be as follows:

13.45: 1101.0111

Note that the represented number is only an approximation of the actual
number. The represented number can be converted back to decimal and seen
to be 13.4375 (slightly off from the number we started with). The representa-
tion approaches the actual number as more and more binary places are added
to the representation.

Negative fractions can be represented in 2’s complement form. Let us rep-
resent —13.45 in 2’s complement form. This cannot be done if we have only
four places for the integer. We need to have at least 5 bits for the integer in
order to handle the sign. Assuming 5 bits are available for the integer, in a
9-bit format,

13.45: 01101.0111
1’s complement 10010.1000
2’s complement 10010.1001

Hence —13.45 = 10010.1001 in this representation.

When multiplying signed binary numbers, we must consider four cases:

Multiplicand Multiplier

+ +
- +
+ j—

When both the multiplicand and the multiplier are positive, standard binary
multiplication is used. For example,

0111 (+7/8) <« Multiplicand
xX0101 (+5/8) <« Multiplier
0.00)0111 (+7/64) < Note: The proper representation
0)0111 (+7/16) <« of the fractional partial products
0.100011 (+35/64) requires extension of the sign

bit past the binary point, as
indicated in parentheses. (Such
extension is not necessary in
the hardware.)

When the multiplicand is negative and the multiplier is positive, the procedure
is the same as in the previous case, except that we must extend the sign bit of the

222 Design Examples

multiplicand so that the partial products and final product will have the proper neg-

ative sign. For example,

1101
X 0101

(1L.11)1101
(1)1101

1.110001

(=3/8)

(+5/8)

(—=3/64) <« Note: The extension of the sign bit
(—=3/16) < provides proper representation of
(—15/64) the negative products.

When the multiplier is negative and the multiplicand is positive, we must make
a slight change in the multiplication procedure. A negative fraction of the form 1.g
has a numeric value —1 + 0.g; for example, 1.011 = —1 + 0.011 = —(1 — 0.011) =
—0.101 = —5/8. Thus, when multiplying by a negative fraction of the form 1.g, we
treat the fraction part (.g) as a positive fraction, but the sign bit is treated as —1.
Hence, multiplication proceeds in the normal way as we multiply by each bit of the
fraction and accumulate the partial products. However, when we reach the negative
sign bit, we must add in the 2’s complement of the multiplicand instead of the mul-
tiplicand itself. The following example illustrates this:

0101
X1101

(0.00)0101

(0)0101

(0)011001

1.011

1.110001

(+5/8)
(=3/8)
(+5/64)
(+5/16)

(—=5/8) — Note: The 2’s complement of the
(—15/64) multiplicand is added at this point.

When both the multiplicand and multiplier are negative, the procedure is the
same as before. At each step, we must be careful to extend the sign bit of the partial
product to preserve the proper negative sign, and at the final step we must add in
the 2’s complement of the multiplicand, since the sign bit of the multiplier is nega-

tive. For example,

1101
xX1101

(.11)1101

(1)1101

1.110001

0.011

0.001001

(=3/8)

(=3/8)

(—3/64) < Note: Extend sign bit.
(=3/16)

(+3/8) <« Add the 2’s complement of the

(+9/64) multiplicand.

FIGURE 4-31: Block
Diagram for 2's

Complement
Multiplier

4.10 A Signed Integer/Fraction Multiplier 223

In summary, the procedure for multiplying signed 2’s complement binary
fractions is the same as for multiplying positive binary fractions, except that we
must be careful to preserve the sign of the partial product at each step, and if
the sign of the multiplier is negative, we must complement the multiplicand
before adding it in at the last step. The hardware is almost identical to that used
for multiplication of positive numbers, except a complementer must be added for
the multiplicand.

Figure 4-31 shows the hardware required to multiply two 4-bit fractions (includ-
ing the sign bit). A 5-bit adder is used so the sign of the sum is not lost due to a carry
into the sign bit position. The M input to the control circuit is the currently active
bit of the multiplier. Control signal S4 causes the accumulator to shift right one
place with sign extension. Ad causes the ADDER output to be loaded into the left
5 bits of the accumulator. The carry-out from the last bit of the adder is discarded,

Product
7 Acc N
Load 81 7 6| 5 4 3, 2 1] 0
sh i i i i i i i
Clad__, i i i i i i i
A A
n Clk N\
~
t y y y y Y Multiplier
r 5-Bit full adder Ci |«SM_
Done
0 [i Y Y
s t t 1
[
Cm >
> 1’s Complementer

: LT

~"
Multiplicand

since we are doing 2’s complement addition. Cm causes the multiplicand (Mcand)
to be complemented (1’s complement) before it enters the adder inputs. Cm is also
connected to the carry input of the adder so that when Cm = 1, the adder adds 1
plus the 1’s complement of Mcand to the accumulator, which is equivalent to adding
the 2’s complement of Mcand. Figure 4-32 shows a state graph for the control cir-
cuit. Each multiplier bit (M) is tested to determine whether to add and shift or
whether to just shift. In state S., M is the sign bit, and if M = 1, the complement of
the multiplicand is added to the accumulator.

When the hardware in Figure 4-31 is used, the add and shift operations must be
done at two separate clock times. We can speed up operation of the multiplier by

224 Design Examples

FIGURE 4-32: State
Graph for 2's
Complement
Multiplier

FIGURE 4-33: Block
Diagram for Faster
Multiplier

M/Cm Ad

moving the wires from the adder output one position to the right (Figure 4-33) so
that the adder output is already shifted over one position when it is loaded into the
accumulator. With this arrangement, the add and shift operations can occur at
the same clock time, which leads to the control state graph of Figure 4-34. When the
multiplication is complete, the product (6 bits plus sign) is in the lower 3 bits of A fol-
lowed by B.The binary point then is in the middle of the A register. If we wanted it

between the left 2 bits, we would have to shift A and B left one place.

Load

St

r O ®™m 4 2 O O

Cm

AdSh

Done
>

“a

3

A

A

3

Y

1's COMPLEMENTER

[

A

Multiplicand

hd

Product
A
(accumulator) B N
2] 1 3 2] 1
| | | I |
I | I I I
| | | I |
| | I | I I I | x
-)
, '
Multiplier
4-BIT FULL ADDER C;, f(&—Cm

4.10 A Signed Integer/Fraction Multiplier 225

FIGURE 4-34: State st/
Graph for Faster
Multiplier

St/Load

M/AdSh
M’/sh

M/Cm AdSh
M’/Sh

M/AdSh
M’/Sh

M/AdSh
M’/Sh

A behavioral VHDL model for this multiplier is shown in Figure 4-35. Shifting
the A and B registers together is accomplished by the sequential statements

A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);

Although these statements are executed sequentially, A and B are both sched-
uled to be updated at the same delta time. Therefore, the old value of A(0) is used
when computing the new value of B.

FIGURE 4-35: Behavioral Model for 2's Complement Multiplier

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity mult2C is
port(CLK, St: 1in bit;
Mplier, Mcand : 1in unsigned(3 downto 0);
Product: out unsigned (6 downto 0);
Done: out bit);
end mult2C;

architecture behavel of mult2C is
signal State: integer range 0 to 5;
signal A, B: unsigned(3 downto 0);
alias M: bit is B(0);
begin
process (CLK)
variable addout: unsigned(3 downto 0);
begin
if CLK'event and CLK = '1' then
case State is
when 0 => -- initial State
if St = '1' then
A <= "0000"; -— begin cycle
B <= MpTlier; -- load the multiplier

226 Design Examples

else

end if;

when 4 =>
if M =

end process;

Product <= A(2
end behavel;

Done <= 'l' when State

State <= 1;
end 1if;
when 1 | 2 | 3 = -- "add/shift" states
if M = '1'" then
addout := A + Mcand; -- add multiplicand to A and shift

A <= Mcand(3) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);

A <= A(3) & A3 downto 1); -- arithmetic right shift
B <= A(0) & B(3 downto 1);

State <= State + 1;

'1l" then

addout := A + not Mcand + 1;

-- add 2's complement when sign bit of multiplier is 1
A <= not Mcand(3) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);

else
A <= A(3) & A3 downto 1); -- arithmetic right shift
B <= A(0) & B(3 downto 1);
end if;
State <= 5;
when 5 =>
State <= 0;
end case;
end if;

=5 else '0';
downto 0) & B; —-- output product

A variable addout has been defined to represent the 5-bit output of the adder.
In states 1 through 4, if the current multiplier bit M is ‘1°, then the sign bit of
the multiplicand followed by 3 bits of addout are loaded into A. At the same time, the
low-order bit of addout is loaded into B along with the high-order 3 bits of B.
The Done signal is turned on when control goes to state 5, and then the new value
of the product is outputted.

Before continuing with the design, we will test the behavioral level VHDL code
to make sure that the algorithm is correct and consistent with the hardware block
diagram. At early stages of testing, we will want a step-by-step printout to verify the
internal operations of the multiplier and to aid in debugging, if required. When we
think that the multiplier is functioning properly, then we will only want to look at
the final product output so that we can quickly test a large number of cases.

Figure 4-36 shows the command file and test results for multiplying +5/8 by
—3/8. A clock is defined with a 20-ns period. The St signal is turned on at 2 ns and
turned off one clock period later. By inspection of the state graph, the multiplica-
tion requires six clocks, so the run time is set at 120 ns.

4.10 A Signed Integer/Fraction Multiplier 227

FIGURE 4-36: Command File and Simulation Results for (+5/8 by -3/8)

-~ (5/8 * -3/8)
force Mcand 0101
run 120

ns delta

0 +1

2 +0

10 +0

20 +1

22 +0

30 +0

40 +1

50 +0

60 +1

70 +0

80 +1

90 +0
100 +2
110 +0
120 +1

FIGURE 4-37:

force Mplier 1101

(@)
-
~

HFOFRORORORORRORRK

Interface between

Multiplier and Its

Test Bench

[eNeoNololoNeNeNoNeNoNol i i el)

wn
~+
Q
~+
o

OQUUAEADWWNNRERERROOO

A
0000
0000
0000
0000
0000
0000
0010
0010
0001
0001
0011
0011
1111
1111
1111

—-— command file to test signed multiplier
add 1ist CLK St State A B Done Product

force st 1 2, 0 22
force clk 1 0, 0 10 - repeat 20

B
0000
0000
0000
1101
1101
1101
1110
1110
0111
0111
0011
0011
0001
0001
0001

Product
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000
1110001
1110001
1110001

|w)
o
=}
0]

ORPRPFRPOOOODO0OO0OOOOCOOO0O

To thoroughly test the multiplier, we need to test not only the four standard cases
(+ +,+—, —+,and ——) but also special cases and limiting cases. Test values for the
multiplicand and multiplier should include 0, the largest positive fraction, the most neg-
ative fraction, and all 1’s. We will write a VHDL test bench to test the multiplier. The
test bench will provide a sequence of values for the multiplicand and the multiplier.
Thus, it provides stimuli to the system under test, the multiplier. The test bench can also
check for the correctness of the multiplier output. The multiplier we are testing will be
treated as a component and embedded in the test bench program. The signals gener-
ated within the test bench are interfaced to the multiplier as shown in Figure 4-37.

TESTER

St

Mplier
Mcand
Done

\

——-

Product

e

CLK

-

MULTIPLIER

Figure 4-38 shows the VHDL code for the multiplier test bench. The test
sequence consists of 11 sets of multiplicands and multipliers, provided in the

228 Design Examples

FIGURE 4-38: Test Bench for Signed Multiplier

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity testmult is
end testmult;

architecture testl of testmult is
component mult2C
port(CLK, St: 1in bit;
Mplier, Mcand: 1in unsigned(3 downto 0);
Product: out unsigned(6 downto 0);
Done: out bit);
end component;

constant N: integer := 11;
type arr is array(l to N) of unsigned(3 downto 0);
type arr2 is array(l to N) of unsigned(6 downto 0);
constant Mcandarr: arr := ("O111", "1101", "o0101", "1101", "0111",
"1000", "O111", "1000", "000O0", "1111", "1011™);
constant Mplierarr: arr := ("O101", "O101", "1101", "1101", "0O111",
"o111", "1o00", "1000", "1101", "1111", "0000™);
constant Productarr: arr2 := ("0100011", "1110001", "1110001",
"0001001", "0110001", "1001000",
"1001000", "1000000", "0000000",
"0000001", "0000000™);
signal CLK, St, Done: bit;
signal Mplier, Mcand: unsigned(3 downto 0);
signal Product: unsigned(6 downto 0);
begin
CLK <= not CLK after 10 ns;
process
begin
for i in 1 to N Tloop
Mcand <= Mcandarr(i);
Mplier <= Mplierarr(i);

St <= '1';

wait until CLK = '1' and CLK'event;

St <= '0';

wait until Done = '0' and Done'event;

assert Product = Productarr(i) -- compare with expected answer

report "Incorrect Product”
severity error;
end loop;
report "TEST COMPLETED";
end process;
multl: mult2c port map(CLK, St, Mplier, Mcand, Product, Done);
end testl;

4.10 A Signed Integer/Fraction Multiplier 229

Mcandarr and Mplierarr arrays. The expected outputs from the multiplier are pro-
vided in another array, the Productarr, in order to test the correctness of the multi-
plier outputs. The test values and results are placed in constant arrays in the VHDL
code. A component declaration is done for the multiplier. A port map statement is
used to create an instance of the multiplier. The tester also generates the clock and
start signal. The for loop reads values from the Mcandarr and Mplierarr arrays and
then sets the start signal to ‘1’. After the next clock, the start signal is turned off.
Then the test bench waits for the Done signal. When the trailing edge of Done
arrives, the multiplier output is compared against the expected output in the array
Productar. An error is reported if the answers do not match. Since the Done signal
is turned off at the same time the multiplier control goes back to §, the process
waits for the falling edge of Done before looping back to supply new values of
Mcand and Mplier. Note that the port map statement is outside the process that
generates the stimulus. The multiplier constantly receives some set of inputs and
generates the corresponding set of outputs.

Figure 4-39 shows the command file and simulator output. We have annotated
the simulator output to interpret the test results. The -NOtrigger together with

FIGURE 4-39: Command File and Simulation of Signed Multiplier

—-- Command file to test results of signed multiplier
add Tist -NOtrigger Mplier Mcand product -Trigger done

run 1320

ns delta

0 +1

90 +2
110 +2
210 +2
230 +2
330 +2
350 +2
450 +2
470 +2
570 +2
590 +2
690 +2
710 +2
810 +2
830 +2
930 +2
950 +2
1050 +2
1070 +2
1170 +2
1190 +2
1290 +2
1310 +2

(o}
o
=}
m

mplier mcand product
0101 0111 0000000
0101 0111 0100011
0101 1101 0100011

5/8 * 7/8 = 35/64

0101 1101 1110001 5/8 * -3/8 = -15/64
1101 0101 1110001
1101 0101 1110001 -3/8 * 5/8 = -15/64

1101 1101 1110001
1101 1101 0001001
0111 0111 0001001
0111 0111 0110001
0111 1000 0110001
0111 1000 1001000
1000 0111 1001000
1000 0111 1001000
1000 1000 1001000
1000 1000 1000000
1101 0000 1000000
1101 0000 0000000
1111 1111 0000000
1111 1111 0000001
0000 1011 0000001
0000 1011 0000000
0101 0111 0000000

-3/8 * -3/8 = 9/64
7/8 * 7/8 = 49/64
7/8 * -1 = -7/8

-1 % 7/8 = -7/8

-1 * -1 = -1 (error)
-3/8 * 0 =0
-1/8 * -1/8 = 1/64

0* -3/8=0

ORrRrRrORrROFROROROFRFORORORFRFRORrRORO

230 Design Examples

the —Trigger done in the list statement causes the output to be displayed only
when the Done signal changes. Without the —-NOtrigger and —Trigger, the output
would be displayed every time any signal on the list changed. All the product
outputs are correct, except for the special case of —1 X —1 (1.000 X 1.000), which
gives 1.000000 (—1) instead of +1. This occurs because no representation of +1 is
possible without adding another bit.

Next, we refine the VHDL model for the signed multiplier by explicitly defining
the control signals and the actions that occur when each control signal is asserted.
The VHDL code (Figure 4-40) is organized in a manner similar to the Mealy machine
model of Figure 1-17. In the first process, the Nextstate and output control signals
are defined for each present State. In the second process, after waiting for the rising
edge of the clock, the appropriate registers are updated and the State is updated. We
can test the VHDL code of Figure 4-40 using the same test file we used previously
and verify that we get the same product outputs.

FIGURE 4-40: Model for 2's Complement Multiplier with Control Signals

-— This VHDL model explicitly defines control signals.

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity mult2C is
port(CLK, St: 1in bit;
Mplier, Mcand: 1in unsigned(3 downto 0);
Product: out unsigned (6 downto 0);
Done: out bit);
end mult2C;

-— This architecture of a 4-bit multiplier for 2's complement numbers
-- uses control signals.

architecture behave2 of mult2C is
signal State, Nextstate: integer range 0 to 5;
signal A, B, compout, addout: unsigned(3 downto 0);
signal AdSh, Sh, Load, Cm: bit;
alias M: bit is B(0);
begin
process(State, St, M)
begin
Load <= '0'; AdSh <= '0'; Sh <= '0'; Cm <= '0'; Done <= '0';
case State is

when 0 => -- initial state
if St = '1l' then Load <= 'l'; Nextstate <= 1; end if;
when 1 | 2 | 3 => -- "add/shift" State

if M = '1"'" then AdSh < = '1";
else Sh <= '1";
end if;

4.11 Keypad Scanner 231

Nextstate <= State + 1;
when 4 => -- add complement if sign
if M = '1' then -- bit of multiplier is 1
Cm <= '"1"'"; AdSh <= '1';
else Sh <= '1"';
end if;
Nextstate <= 5;
when 5 => -- output product
Done <= '1';
Nextstate <= 0;
end case;
end process;

compout <= not Mcand when Cm = '1l' else Mcand; -- complementer
addout <= A + compout + unsigned'(0=>Cm); -- 4-bit adder with carry in
process (CLK)
begin
if CLK'event and CLK = '1' then -- executes on rising edge
if Load = '1' then -- load the multiplier
A <= "0000";
B <= Mplier;
end if;
if AdSh = '1' then -- add multiplicand to A and shift

A <= compout(3) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);
end if;
if Sh = '1' then
A <= A(3) & A(C3 downto 1);
B <= A(0) & B(3 downto 1);
end if;
State <= Nextstate;
end if;
end process;
Product <= A(2 downto 0) & B;
end behave?;

4.11 Keypad Scanner

In this example, we design a scanner for a keypad with three columns and four rows
as in Figure 4-41. The keypad is wired in matrix form with a switch at the intersec-
tion of each row and column. Pressing a key establishes a connection between a row
and column. The purpose of the scanner is to determine which key has been pressed
and output a binary number N = N,N,N,N,, which corresponds to the key number.
For example, pressing key 5 must output 0101, pressing the * key must output 1010,
and pressing the # key must output 1011. When a valid key has been detected, the

scanner should output a signal V for one clock time. Assume that only one key is

232 Design Examples

pressed at a time. The design must include hardware to protect the circuitry from
malfunction due to keypad bounces.

FIGURE 4-41:
Keypad with Three
Columns and Four
Rows 7

Ol | o N
| ©O| O | W

The overall block diagram of the circuit is presented in Figure 4-42. The keypad
contains resistors that are connected to ground. When a switch is pressed, a path is
established from the corresponding column line to the ground. If a voltage can be
applied on the column lines C,, C,, and C,, then the voltage can be obtained on the
row line corresponding to the key that is pressed. One among the rows R, R, R,, or
R, will have an active signal.

FIGURE 4-42: Block
Diagram for
Keypad Scanner c, C, Co

"
1
1
= :
1 IR
G] R S Keypad —
%. : scanner, .
— : 7 8 9 'R, debouncer, N
- [~ [~ [~ 1 ™
: ! ! ! T & decoder
1 e
J%I
1
:'_/* _/0 _/# |R3
1 1 1 1 - \/
%u____________'

Clock

We will divide the design into several modules, as shown in Figure 4-43. The first
part of the design will be a scanner that scans the rows and columns of the keypad.
The keyscan module generates the column signals to scan the keypad. The
debounce module generates a signal K when a key has been pressed and a signal Kd
after it has been debounced. When a valid key is detected, the decoder determines
the key number from the row and column numbers.

FIGURE 4-43: Rs o

Scanner Modules 4 * l l

Kd
Keypad Debounce K Keyscan —V Decoder >N

r Yo j

FIGURE 4-44:
Debouncing and

Synchronizing

Circuit

4.11 Keypad Scanner 233

4.11.1 Scanner

We will use the following procedure to scan the keypad: First apply logic 1’s to
columns C,, C,,and C, and wait. If any key is pressed, a 1 will appear on R, R, R,,
or R,. Then apply a 1 to column C, only. If any of the R;’s is 1, a valid key is detected.
If R, is received, we know that switch 1 was pressed. If R, R), or R, is received,
switch 4, 7, or * was pressed. If so, set V = 1 and output the corresponding N. If no
key is detected in the first column, apply a 1 to C, and repeat. If no key is detected
in the second column, repeat for C,. When a valid key is detected, apply 1’s to C,
C,, and C, and wait until no key is pressed. This last step is necessary so that only
one valid signal is generated each time a key is pressed.

4.11.2 Debouncer

As discussed in the scoreboard example, we need to debounce the keys to avoid
malfunctions due to switch bounce. Figure 4-44 shows a proposed debouncing and
synchronizing circuit. The four row signals are connected to an OR gate to from sig-
nal K, which turns on when a key is pressed and a column scan signal is applied. The
debounced signal Kd will be fed to the sequential circuit.

R K
R% Da Qa Dg Qg Kd
R3

E CK |7 CK
CLK

4.11.3 Decoder

The decoder determines the key number from the row and column numbers using the
truth table given in Table 4-4. The truth table has one row for each of the 12 keys. The
remaining rows have don’t care outputs since we have assumed that only one key is
pressed at a time. Since the decoder is a combinational circuit, its output will change

TABLE 4-4: Truth Table for Decoder

R3 RZ R1 RO C0 C1 CZ N3 NZ N1 NO

0o 0 o0 1 1 o o]/ 0 o0 o0 1

0o 0 o0 1 0 1 ol o0 o0 1 0 .)

0 0 0 1 0 0 1 0 0 1 1 Logic Equations for Decoder
0 0 1 0 1 0 0 0 1 0 0 N, =R,C,' + R,C,'

0 0 1 0 0 1 0| o0 1 0 1

0 0 1 0 0 0 1 0 1 1 0 N, =R, + R,(,

o 1 0 0 1 0 o0 | 0 1 1 1 _ . . i

o 1 0 o 0 1 0|1 0o o o0 Ny=RoCo' + Ry'Co + RyRy'Co
0o 1 0 0 0 0 1 1 0 0 1 N,=R,C, +R,'C, + R,/'R,'C,'
1 0 0 0 1 o o0 |1 o0 1 0 (%

1 0o 0 0 o0 1 o|lo o0 o0 o0

1 0o 0 0 0 0 1 1 0 1 1 ®

234 Design Examples

FIGURE 4-45: State
Graph for Keypad
Scanner

as the keypad is scanned. At the time a valid key is detected (K =1 and V = 1), its
output will have the correct value and this value can be saved in a register at the same
time the circuit goes to S..

4.11.4 Controller

Figure 4-45 shows the state diagram of the controller for the keypad scanner. It
waits in S, with outputs C; = C, = C, = 1 until a key is pressed. In §,, C; = 1, so if
the key that was pressed is in column 0, K = 1, and the circuit outputs a valid signal
and goes to .. Signal K is used instead of Kd, since the key press is already
debounced. If no key press is found in column 0, column 1 is checked in S, and if
necessary, column 2 is checked in §,,. In S, the circuit waits until all keys are released
and Kd goes to 0 before resetting.

The state diagram in Figure 4-45 works for many cases; however, it does have
some timing problems. Let us analyze the following situations.

1. Is K true whenever a button is pressed?
No. Although K is true if any one of the row signals R, R,, R,, or R, is true,
if the column scan signals are not active, none of R —R, can be true, although
the button is pressed.

2. Can Kd be false when a button is continuing to be pressed?
Yes. Signal Kd is nothing but K delayed by two clock cycles. K can go to 0
during the scan process even when the button is being pressed. For instance,
consider the case when a key in the rightmost column is pressed. During scan
of the first two columns, K goes to 0. If K goes to 0 at any time, Kd will go to
zero two cycles later. Hence, neither K nor Kd is synonymous to pressing the
button.

3. Can you go from S, to S, when a button is still pressed?
In the state diagram in Figure 4-45, the §,-to-S§; transition could happen when
Kd is false. Kd might have become false while scanning C, and C,. Hence, it
is possible that we reach back to §; when the key is still being pressed. As an
example, let us assume that a button is pressed in column C,. This is to be
detected in S,. However, during the scanning process in §, and S,, K is 0;

4.11 Keypad Scanner 235

hence, two cycles later Kd will be 0 even if the button stays pressed. During
the scan in §,, the correct key can be found; however, the system can reach
S, when Kd is still 0 and a malfunction can happen. S5 is intended to sense
the release of the key. However, Kd is not synonymous to pressing the but-
ton and Kd' does not truly indicate that the button got released. Since Kd'
can appear when the button is still pressed, if you reach S when Kd' is true
due to scanning activity in a previous state, the system can go from S to §,
without a key release. In such a case, the same key may be read multiple
times.

. What if a key is pressed for only one or two clock cycles?

If the key is pressed and released very quickly, there would be problems
especially if the key is in the third column. By the time the scanner reaches
state §,, the key might have been released already. The key should be pressed
long enough for the scanner to go through the longest path in the state graph
from S, to S.. This may not be a serious problem because usually the digital
system clock is much faster than any mechanical switch.

These problems can be fixed by assuring that we can reach S only if Kd is true.

A modified state diagram is presented in Figure 4-46. Before transitioning to state
S, this circuit waits in state S,, S,, and S, until Kd also becomes 1.

FIGURE 4-46:
Modified State
Graph for Keypad
Scanner

Kd"+K’

4.11.5 VHDL Code

The VHDL code used to implement the design is shown in Figure 4-47. The decoder
equations as well as the equations for K and V are implemented by concurrent
statements. The process implements the next state equations for the keyscan and
debounce flip-flops.

FIGURE 4-47: VHDL Code for Scanner

entity scanner is
port(RO, R1l, R2,
co, C1, C2:
NO, N1, N2,

end scanner;

CLK: 1in bit;

inout bit;
N3, V: out bit);

236 Design Examples

architecture behavior of scanner i1is
signal QA, K,Kd: bit;
signal state, nextstate: integer range 0 to 5;
begin
K <= RO or R1 or R2 or R3; -- this is the decoder section
N3 <= (R2 and not CO) or (R3 and not Cl1l);
N2 <= R1 or (R2 and CO);
N1 <= (RO and not CO) or (not R2 and C2) or (not R1 and not RO and CO);
NO <= (R1 and C1) or (not R1l and C2) or (not R3 and not R1 and not Cl);

process(state, RO, R1, R2, R3, CO, C1, C2, K, Kd, QA
begin
CO <= '0'; C1 <= '0"'"; C2 <= '0"; V <="0";
case state is
when 0 => nextstate < = 1;
when 1 => CO <= '"1'; C1 <= '1'"; C2 <= "1'";
if (Kd and K) = '1' then nextstate <= 2;
else nextstate <= 1;
end 1if;
when 2 => C0 <= '1"';
if (Kd and K) = '"1' then V <= '1l'; nextstate <= 5;
elsif K = '0' then nextstate <= 3;
else nextstate <= 2;
end 1if;
when 3 = C1 <= '1"';
if (Kd and K) = '1'" then V <= 'l'; nextstate <= 5;
elsif K = '0' then nextstate <= 4;
else nextstate <= 3;
end if;
when 4 => C2 <= '1';
if (Kd and K) = '1' then V <= 'l'; nextstate <= 5;
else nextstate <= 4;
end if;
when 5 => CO <= '"1'; C1 <= '"1"'; C2 <= "1";
if Kd = '0' then nextstate <= 1;
else nextstate <= 5;
end if;
end case;
end process;

process (CLK)
begin
if CLK = '"1'" and CLK'EVENT then
state <= nextstate;

QA <= K;
Kd <= QA;
end if;

end process;
end behavior;

FIGURE 4-48: Rao
e |
Interface for Test Cop
DR S—
Bench v
TEST1 - N3 o SCANNER
|t
CLK

4.11 Keypad Scanner 237

4.11.6 Test Bench for Keypad Scanner

This VHDL code would be very difficult to test by supplying waveforms for the
inputs R, R,, R,, and R,, since these inputs depend on the column outputs (C,, C,,
C,). A much better way to test the scanner is by using a test bench in VHDL. The
scanner we are testing will be treated as a component and embedded in the test
bench program. The signals generated within the test bench are interfaced to the
scanner as shown in Figure 4-48. The test bench simulates a key press by supplying
the appropriate R signals in response to the C signals from the scanner. When test
bench receives V' = 1 from the scanner, it checks to see if the value of N corresponds
to the key that was pressed.

The VHDL code for the keypad test bench is shown in Figure 4-49. A copy of
the scanner is instantiated within the test/ architecture, and connections to the
scanner are made by the port map. The sequence of key numbers used for testing
is stored in the array KARRAY . The tester simulates the keypad operation using

FIGURE 4-49: VHDL for Scanner Test Bench

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity scantest is
end scantest;

architecture testl of scantest is
component scanner
port(RO, R1, R2, R3, CLK: 1in bit;

Co, C1, C2: 1dnout bit;
NO, N1, N2, N3, V: out bit);

end component;

type arr is array (0 to 23) of integer; -- array of keys to test
constant KARRAY: arr := (2,5,8,0,3,6,9,11,1,4,7,10,1,2,3,4,5,6,7,8,9,10,11,0);
signal CO, Ci1, C2, V, CLK, RO, R1, R2, R3: bit; —-- dinterface signals

signal N: unsigned(3 downto 0);

signal KN: 1integer; -- key number to test
begin

CLK <= not CLK after 20 ns; -- generate clock signal

238 Design Examples

-- this section emulates the keypad
RO <= "1" when (CO='1l"' and KN=1) or (Cl='1l"' and KN=2) or (C2='1l' and KN=3)

else '0';
R1 <= '"1' when (CO='1l"' and KN=4) or (Cl='1l' and KN=5) or (C2='1l' and KN=6)
else '0';
R2 <= '"1'" when (CO='1l"'" and KN=7) or (Cl='l"' and KN=8) or (C2='1l' and KN=9)
else '0';
R3 <= '"1'" when (CO='1"' and KN=10) or (Cl="1l' and KN=0) or (C2="1' and KN=11)
else '0';
process -- this section tests scanner
begin
for i in 0 to 23 Tloop -- test every number in key array
KN <= KARRAY(i); -- simulates keypress
wait until (V = '1'" and rising_edge(CLK));
assert (to_integer(N) = KN) -- check if output matches

report "Numbers don't match"
severity error;
KN <= 15; -- equivalent to no key pressed
wait until rising_edge(CLK); - wait for scanner to reset
wait until rising_edge(CLK);
wait until rising_edge(CLK);
end Toop;
report "Test Complete.";
end process;
scannerl: scanner port map(RO,R1,R2,R3,CLK,CO0,C1,C2,NC0),NC1),NC2),N(3),V);
-— connect testl to scanner

end testl;

concurrent statements for R, R,, R,, and R,. Whenever C,, C,, C,, or the key
number (KN) changes, new values for the Rs are computed. For example, if KN = 5
(to simulate pressing key 5), then R R R,R, = 0100 is sent to the scanner when
C,C,C, = 010. The test process is as follows:

. Read a key number from the array to simulate pressing a key.

. Wait until V = 1 and the rising edge of the clock occurs.

. Verify that the N output from the scanner matches the key number.

. Set KN = 15 to simulate no key pressed. (Since 15 is not a valid key number, all
R’s will go to 0.)

5. Wait until Kd = 0 before selecting a new key.

PR S

Key presses in row order and column order are tried using the various numbers
in KARRAY. The test bench uses assert statements to test whether the reported
number matches the key pressed. The report statement is used to report an error if
the scanner generates the wrong key number, and it will report “Testing Complete.”
when all keys have been tested.

4.12

FIGURE 4-50: Block
Diagram for
Parallel Binary
Divider

4.12 Binary Dividers 239

Binary Dividers

4.12.1 Unsigned Divider

We will consider the design of a parallel divider for positive binary numbers. As an
example, we will design a circuit to divide an 8-bit dividend by a 4-bit divisor to
obtain a 4-bit quotient. The following example illustrates the division process:

1010 Quotient
Divisor 1101 /10000111 Dividend
1101
(135+13=10 with 0111
a remainder of 5) 0000
1111
1101
0101
0000
0101 Remainder

Just as binary multiplication can be carried out as a series of add and shift oper-
ations, division can be carried out by a series of subtract and shift operations. To con-
struct the divider, we will use a 9-bit dividend register and a 4-bit divisor register, as
shown in Figure 4-50. During the division process, instead of shifting the divisor
right before each subtraction, we will shift the dividend to the left. Note that an
extra bit is required on the left end of the dividend register so that a bit is not lost
when the dividend is shifted left. Instead of using a separate register to store the
quotient, we will enter the quotient bit-by-bit into the right end of the dividend reg-
ister as the dividend is shifted left.

Dividend register

Sh sh
Xg | X7 | Xe | Xs | Xa | Xz | Xz [Xp | X L St (Start signal)
o T su
Subtractor C v
com?ar;(:ator Control | (Overflow
T T T T A indicator)
SRARARARA

The preceding division example (135 divided by 13) is reworked next, showing
the location of the bits in the registers at each clock time. Initially, the dividend and
divisor are entered as follows:

lo[1[oloflofol1]1]1]

[1l1]o]1]

240 Design Examples

Subtraction cannot be carried out without a negative result, so we will shift
before we subtract. Instead of shifting the divisor one place to the right, we will shift
the dividend one place to the left:

i <«<—— Dividing line between dividend and quotient
100001110

1101 . Note that after the shift, the rightmost position
in the dividend register is “empty.”

Subtraction is now carried out and the first quotient digit of 1 is stored in the
unused position of the dividend register:

00011111 x 1<«—first quotient digit
Next we shift the dividend one place to the left:
0011111 10
1101

Since subtraction would yield a negative result, we shift the dividend to the left

again, and the second quotient bit remains zero:
011111{100
1101 |

Subtraction is now carried out, and the third quotient digit of 1 is stored in the
unused position of the dividend register:

00010 1{1 0 1<«————third quotient digit

A final shift is carried out and the fourth quotient bit is set to 0:

00101{1010
| SN i —
remainder | quotient
The final result agrees with that obtained in the first example.

If, as a result of a division operation, the quotient contains more bits than
are available for storing the quotient, we say that an overflow has occurred.
For the divider of Figure 4-50, an overflow would occur if the quotient is greater
than 15, since only 4 bits are provided to store the quotient. It is not actually nec-
essary to carry out the division to determine if an overflow condition exists, since
an initial comparison of the dividend and divisor will tell if the quotient will be

too large. For example, if we attempt to divide 135 by 7, the initial contents of the
registers are

010000111
0111

Since subtraction can be carried out with a nonnegative result, we should sub-
tract the divisor from the dividend and enter a quotient bit of 1 in the rightmost

FIGURE 4-51: State
Diagram for
Divider Control
Circuit

4.12 Binary Dividers 241

place in the dividend register. However, we cannot do this because the rightmost
place contains the least significant bit of the dividend, and entering a quotient bit
here would destroy that dividend bit. Therefore, the quotient would be too large to
store in the 4 bits we have allocated for it, and we have detected an overflow con-
dition. In general, for Figure 4-50,if initially X X, X X. X, = Y,Y,Y| Y, (i.e.,if the left
5 bits of the dividend register exceed or equal the divisor), the quotient will be
greater than 15 and an overflow occurs. Note that if X X, X X. X, = Y,Y,Y Y|, the
quotient is

XX X XXX XoXi Xy _ XeXo X XsX0000 _ XgXoXoXsXy X 16 _
Y,V Y, B Y)Y, XY,V B

The operation of the divider can be explained in terms of the block diagram of
Figure 4-50. A shift signal (Sh) will shift the dividend one place to the left. A sub-
tract signal (Su) will subtract the divisor from the five leftmost bits in the dividend
register and set the quotient bit (the rightmost bit in the dividend register) to 1. If
the divisor is greater than the five leftmost dividend bits, the comparator output is
C = 0; otherwise, C = 1. Whenever C = 0, subtraction cannot occur without a neg-
ative result, so a shift signal is generated. Whenever C = 1, a subtract signal is gen-
erated, and the quotient bit is set to 1. The control circuit generates the required
sequence of shift and subtract signals.

Figure 4-51 shows the state diagram for the control circuit. When a start signal
(S?) occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate reg-
isters. If Cis 1, the quotient would require five or more bits. Since space is only pro-
vided for a 4-bit quotient, this condition constitutes an overflow, so the divider is
stopped and the overflow indicator is set by the V output. Normally, the initial value
of Cis 0, so a shift will occur first, and the control circuit will go to state S,. Then, if
C = 1, subtraction occurs. After the subtraction is completed, C will always be 0, so
the next clock pulse will produce a shift. This process continues until four shifts have
occurred and the control is in state S.. Then a final subtraction occurs, if necessary,
and the control returns to the stop state. For this example, we will assume that when
the start signal (S7) occurs, it will be 1 for one clock time, and then it will remain 0
until the control circuit is back in state S. Therefore, St will always be 0 in states S,
through S..

Table 4-5 gives the state table for the control circuit. Since we assumed that St = 0

in states S, S,, S;, and §,, the next states and outputs are “don’t cares” for these states

242 Design Examples

TABLE 4-5: State
Table for Divider
Control Circuit

when St = 1. The entries in the output table indicate which outputs are 1. For example,
the entry Sh means Sh = 1 and the other outputs are 0.

StC StC

State | 00 01 11 10| 00 01 11 10
So S So S, S| 0 0 Load Load
S, S, S§ — —|Sh Vv — —
S, s, §, — — | Sh Su — —
S, S, § — — | Sh Su — —
S, S S, — — | Sh Su — —
Se S S — — 1| 0 Su — —

This example illustrates a general method for designing a divider for unsigned
binary numbers, and the design can easily be extended to larger numbers such as 16
bits divided by 8 bits or 32 bits divided by 16 bits. Using a separate counter to count
the number of shifts is recommended if more than four shifts are required.

4.12.2 Signed Divider

We now design a divider for signed (2’s complement) binary numbers that divides a
32-bit dividend by a 16-bit divisor to give a 16-bit quotient. Although algorithms exist
to divide the signed numbers directly, such algorithms are rather complex. So we take
the easy way out and complement the dividend and divisor if they are negative; when
division is complete, we complement the quotient if it should be negative.

Figure 4-52 shows a block diagram for the divider. We use a 16-bit bus to load
the registers. Since the dividend is 32 bits, two clocks are required to load the upper
and lower halves of the dividend register, and one clock is needed to load the divi-
sor. An extra sign flip-flop is used to store the sign of the dividend. We will use a
dividend register with a built-in 2’s complementer. The subtracter consists of an
adder and a complementer, so subtraction can be accomplished by adding the
2’s complement of the divisor to the dividend register. If the divisor is negative,
using a separate step to complement it is unnecessary; we can simply disable the
complementer and add the negative divisor instead of subtracting its complement.
The control circuit is divided into two parts—a main control, which determines the
sequence of shifts and subtracts, and a counter, which counts the number of shifts.
The counter outputs a signal K = 1 when 15 shifts have occurred. Control signals
are defined as follows:

LdU Load upper half of dividend from bus.

LdL Load lower half of dividend from bus.

Lds Load sign of dividend into sign flip-flop.

S Sign of dividend.

Cml Complement dividend register (2’s complement).

Ldd Load divisor from bus.

Su Enable adder output onto bus (Ena) and load upper half of dividend
from bus.

4.12 Binary Dividers 243

Cm2 Enable complementer. (Cm2 equals the complement of the sign bit of
the divisor, so a positive divisor is complemented and a negative divisor

is not.)

Sh Shift the dividend register left one place and increment the counter.

C Carry output from adder. (If C = 1, the divisor can be subtracted from
the upper dividend.)

St Start.

Vv Overflow.

Oneg Quotient will be negative. (Qneg = 1 when the sign of the dividend and
divisor are different.)

FIGURE 4-52: Block Dbus
Diagram for Signed _tData in
Divider 6 "
Dividend
A\ . \ { cmi
| Acc (Remainder) ! Q (Quotient) | Ldu
‘ 16 B} Y T |Ldl
- c, Sh
\
16-Bit full add D = D
Cout ~olt it adder Cin [«—Cm2 Main
A control
Compout 16 Y« Y
cm2 4-Bit >
16-Bit complementer | counter
X
A Ldd S Lds
v
Divisor I: LSign I
X
$16

The procedure for carrying out the signed division is as follows:

1. Load the upper half of the dividend from the bus, and copy the sign of the divi-
dend into the sign flip-flop.

2. Load the lower half of the dividend from the bus.

3. Load the divisor from the bus.

4. Complement the dividend if it is negative.

5. If an overflow condition is present, go to the done state.

6. Else carry out the division by a series of shifts and subtracts.

7. When division is complete, complement the quotient if necessary, and go to the
done state.

Testing for overflow is slightly more complicated than for the case of unsigned
division. First, consider the case of all positive numbers. Since the divisor and quotient

244 Design Examples

FIGURE 4-53: State
Graph for Signed
Divider Control
Circuit

are each 15 bits plus sign, their maximum value is 7FFFh. Since the remainder must
be less than the divisor, its maximum value is 7FFEh. Therefore, the maximum divi-
dend for no overflow is

divisor X quotient + remainder = 7FFFh X 7FFFh + 7FFEh = 3FFF7FFFh

If the dividend is 1 larger (3FFF8000h), division by 7FFFh (or anything smaller) will
give an overflow. We can test for the overflow condition by shifting the dividend left
one place and then comparing the upper half of the dividend (divu) with the divi-
sor. If divu = divisor, the quotient would be greater than the maximum value, which
is an overflow condition. For the preceding example, shifting 3FFF8000h left once
gives 7FFF0000h. Since 7FFFh equals the divisor, there is an overflow. On the other
hand, shifting 3FFF7FFFh left gives 7FFEFFFEh, and since 7FFEh < 7FFFh, no
overflow occurs when dividing by 7FFFh.

Another way of verifying that we must shift the dividend left before testing for
overflow is as follows. If we shift the dividend left one place and then divu = divi-
sor, we could subtract and generate a quotient bit of 1. However, this bit would
have to go in the sign bit position of the quotient. This would make the quotient
negative, which is incorrect. After testing for overflow, we must shift the dividend
left again, which gives a place to store the first quotient bit after the sign bit. Since
we work with the complement of a negative dividend or a negative divisor, this
method for detecting overflow will work for negative numbers, except for the spe-
cial case where the dividend is 80000000h (the largest negative value). Modifying
the design to detect overflow in this case is left as an exercise.

Figure 4-53 shows the state graph for the control circuit. When St = 1, the registers
are loaded. In S, if the sign of the dividend (S) is 1, the dividend is complemented. In
S, we shift the dividend left one place and then we test for overflow in §,. If C =1,
subtraction is possible, which implies an overflow, and the circuit goes to the done
state. Otherwise, the dividend is shifted left. In S, C is tested. If C = 1, then Su =1,
which implies Ldu and Ena, so the adder output is enabled onto the bus and loaded
into the upper dividend register to accomplish the subtraction. Otherwise, S4 = 1 and
the dividend register is shifted. This continues until K = 1, at which time the last shift
occurs if C = 0, and the circuit goes to S,. Then if the sign of the divisor and the saved
sign of the dividend are different, the dividend register is complemented so that the
quotient will have the correct sign.

C’ Qneg’/0
C’ Qneg/Cm1l

4.12 Binary Dividers 245

The VHDL code for the signed divider is shown in Figure 4-54. Since the 1’s
complementer and adder are combinational circuits, we have represented their
operation by concurrent statements. All the signals that represent register outputs
are updated on the rising edge of the clock, so these signals are updated in the
process after waiting for CLK to change to '1'. The counter is simulated by a signal,
count. For convenience in listing the simulator output, we have added a ready signal
(Rdy), which is turned on in S, to indicate that the division is completed.

FIGURE 4-54: VHDL Model of 32-Bit Signed Divider

Tibrary IEEE;

use IEEE.numeric_bit.all;

entity sdiv is

port(CLK, St: 1in bit;
Dbus: 1in unsigned(15 downto 0);
Quotient: out unsigned(1l5 downto 0);
V, Rdy: out bit);

end sdiv;

architecture Signdiv of Sdiv is

signal State: integer range 0 to 6;

signal Count: unsigned(3 downto 0); -- integer range 0 to 15
signal Sign, C, Cm2: bit;

signal Divisor, Sum, Compout: unsigned(1l5 downto 0);

signal Dividend: unsigned(31 downto 0);

alias Acc: unsigned(15 downto 0) is Dividend(31 downto 16);

begin -- concurrent statements
Cm2 <= not divisor(15);
compout <= divisor when Cm2 = '0’ -- 1's complementer
else not divisor;
Sum <= Acc + compout + unsigned'(0=>Cm2); -- adder output

C <= not Sum(15);
Quotient <= Dividend(15 downto 0);
Rdy <= 'l' when State = 0 else '0';

process (CLK)
begin
if CLK'event and CLK = '1' then -- wait for rising edge of clock
case State is
when 0 =>
if St = '1' then

Acc <= Dbus; -- Toad upper dividend
Sign <= Dbus(15);
State <= 1;
V <= '0"; -- initialize overflow
Count <= "0000"; -- initialize counter

end if;

246 Design Examples

when 1 =>
Dividend (15 downto 0) <= Dbus; -- load lower dividend
State <= 2;
when 2 =>
Divisor <= Dbus;
if Sign = 'l' then -- two's complement Dividend if necessary
dividend <= not dividend + 1;
end if;
State <= 3;
when 3 =>
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
Count <= Count+l; State <= 4;
when 4 =>
if C = '1"' then -- C
v <= '1'; State <= 0;
else -- C'
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
Count <= Count+l; State <= 5;
end 1if;
when 5 =>
if C = '1' then -- C
ACC <= Sum; -- subtract
dividend(0) <= '1';
else
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
if Count = 15 then State <= 6; end if; -- KC'
Count <= Count+1l;
end if;
when 6 =>
state <= 0;
if C = '1" then -- C
Acc <= Sum; -- subtract
dividend(0) <= 'l'; State <= 6;
elsif (Sign xor Divisor(15)) = '1l' then -- C'Qneg
Dividend <= not Dividend + 1;
end if; -- 2's complement Dividend
end case;
end if;

end process;
end signdiv;

We are now ready to test the divider design by using the VHDL simulator.
We will need a comprehensive set of test examples that will test all the different
special cases that can arise in the division process. To start with, we need to test
the basic operation of the divider for all the different combinations of signs for
the divisor and dividend (++, +—, —+, and ——). We also need to test the
overflow detection for these four cases. Limiting cases must also be tested,
including largest quotient, zero quotient, and so on. Use of a VHDL test bench is

4.12 Binary Dividers 247

convenient because the test data must be supplied in sequence at certain times,
and the length of time to complete the division is dependent on the test data.
Figure 4-55 shows a test bench for the divisor. The test bench contains a dividend
array and a divisor array for the test data. The notation X“07FFO0BB” is the
hexadecimal representation of a bit string. The process in testsdiv first puts the
upper dividend on Dbus and supplies a start signal. After waiting for the clock, it
puts the lower dividend on Dbus. After the next clock, it puts the divisor on
Dbus. It then waits until the Rdy signal indicates that division is complete before
continuing. Count is set equal to the loop-index, so that the change in Count can
be used to trigger the listing output.

FIGURE 4-55: Test Bench for Signed Divider

Tibrary IEEE;
use IEEE.numeric_bit.all;

entity testsdiv is
end testsdiv;

architecture testl of testsdiv is
component sdiv
port(CLK, St: 1in bit;
Dbus: 1in unsigned(15 downto 0);
Quotient: out unsigned(15 downto 0);
V, Rdy: out bit);
end component;

constant N: integer : = 12; -- test sdivl N times

type arrl is array(l to N) of unsigned(31 downto 0);

type arr2 is array(l to N) of unsigned(15 downto 0);

constant dividendarr: arrl := (X"0000006F", X"O7FFOOBB", X"FFFFFEO08",
X"FF80030A", X"3FFF8000", X"3FFF7FFF", X"C0008000", X"C0008000",
X"C0008001", X"00000000", X"FFFFFFFF", X"FFFFFFFF");

constant divisorarr: arr2 := (X"0007", X"EOOS5", X"OO1lE", X"EFFA", X"7FFF",

X"7FFF", X"7FFF", X"8000", X"7FFF", X"0001", X"7FFF", X"0000");

signal CLK, St, V, Rdy: bit;

signal Dbus, Quotient, divisor: unsigned(15 downto 0);

signal Dividend: unsigned(31 downto 0);

signal Count: integer range 0 to N;

begin
CLK <= not CLK after 10 ns;
process
begin
for i in 1 to N Toop
St <= '1";

Dbus <= dividendarr(i) (31 downto 16);
wait until (CLK'event and CLK = '1');

248 Design Examples

Dbus <= dividendarr(i) (15 downto 0);
wait until (CLK'event and CLK = '"1");
Dbus <= divisorarr(i);

St <= '0';
dividend <= dividendarr(i) (31 downto 0); -- save dividend for Tisting
divisor <= divisorarr(i); -- save divisor for Tisting
wait until (Rdy = '1");
count <= 1; -- save index for triggering
end loop;
end process;
sdivl: sdiv port map(CLK, St, Dbus, Quotient, V, Rdy);

end testl;

Figure 4-56 shows the simulator command file and output. The -NOtrigger,
together with the -Trigger count in the list statement, causes the output to be
displayed only when the count signal changes. Examination of the simulator output
shows that the divider operation is correct for all of the test cases, except for the
following case:

C0008000h + 7FFFh = —3FFF8000 + 7FFFh = —8000h = 8000h

In this case, the overflow is turned on, and division never occurs. In general, the
divider will indicate an overflow whenever the quotient should be 8000h (the most
negative value). This occurs because the divider basically divides positive numbers,
and the largest positive quotient is 7FFFh. If it is important to be able to generate
the quotient 8000h, the overflow detection can be modified so it does not generate
an overflow in this special case.

FIGURE 4-56: Simulation Test Results for Signed Divider

—— Command file to test results of signed divider
add 1ist -hex -NOtrigger dividend divisor Quotient V -Trigger count

run 5300

ns delta

0 +0
470 +3
910 +3
1330 +3
1910 +3
2010 +3
2710 +3
2810 +3
3510 +3
4210 +3
4610 +3
5010 +3
5110 +3

dividend divisor quotient v count
00000000 0000 0000 O 0
0000006F 0007 000F O 1
07FFO0BB EO005 BFFE 0 2
FFFFFEO8 001E FFFO O 3
FF80030A EFFA 07FC 0 4
3FFF8000 7FFF 0000 1 5
3FFF7FFF 7FFF 7FFF 0 6
C0008000 7FFF 0000 1 7
C0008000 8000 7FFF 0 8
C0008001 7FFF 8001 O 9
00000000 0001 0000 O A
FFFFFFFF 7FFF 0000 O B

1 C

FFFFFFFF 0000 0002

4.1

4.2

4.3

4.4

4.5

4.6

Problems 249

In this chapter, we presented several design examples. The examples included
several arithmetic and nonarithmetic circuits. A seven-segment display,a BCD adder,
a traffic light controller, a scoreboard, and a keypad scanner are examples of non-
arithmetic circuits presented in the chapter. We also described algorithms for addition,
multiplication, and division of unsigned and signed binary numbers. Specific designs
such as the carry look-ahead adder and the array multiplier were presented. We
designed digital systems to implement these algorithms. After developing a block dia-
gram for such a system and defining the required control signals, we used state graphs
to define a sequential machine that generates control signals in the proper sequence.
We used VHDL to describe the systems at several different levels so that we can sim-
ulate and test for correct operation of the systems we have designed.

Problems

Design the correction circuit for a BCD adder that computes Z digit 0 and C for §
(see Figures 4-5 and 4-6). This correction circuit adds “0110” to S, if S, > 9. This is
the same as adding “0AA0” to S, where A = “17if §; > 9. Draw a block diagram for
the correction circuit using one full adder, three half-adders, and a logic circuit to
compute A. Design a circuit for A using a minimum number of gates. Note that the
maximum possible value of S is 10010.

(a) If gate delays are 5 ns, what is the delay of the fastest 4-bit ripple carry adder?
Explain your calculation.

(b) If gate delays are 5 ns, what is the delay of the fastest 4-bit adder? What kind of
an adder will it be? Explain your calculation.

Develop a VHDL model for a 16-bit carry look-ahead adder utilizing the 4-bit
adder from Figure 4-10 as a component.

Derive generates, propagates, group generates, group propagates, and the final sum
and carry out for the 16-bit carry look ahead adder of Figure 4-9, while adding 0101
1010 1111 1000 and 0011 1100 1100 0011.

(a) Write a VHDL module that describes one bit of a full adder with accumulator.
The module should have two control inputs, Ad and L. If Ad = 1, the Y input
(and carry input) are added to the accumulator. If L. = 1, the Y input is loaded
into the accumulator.

(b) Using the module defined in (a), write a VHDL description of a 4-bit subtracter
with accumulator. Assume negative numbers are represented in 1’s comple-
ment. The subtracter should have control inputs Su (subtract) and Ld (load).

(a) Implement the traffic-light controller of Figure 4-14 using a modulo 13 counter
with added logic. The counter should increment every clock, with two excep-
tions. Use a ROM to generate the outputs.

250 Design Examples

4.7

4.8

4.9

(b) Write a VHDL description of your answer to (a).
(¢) Write a test bench for part (b) and verify that your controller works correctly.
Use concurrent statements to generate test inputs for Sa and Sb.

Make the necessary additions to the following state graph so that it is a proper, com-

pletely specified state graph. Demonstrate that your answer is correct. Convert the
graph to a state table using 0’s and 1’s for inputs and outputs.

B’

B'C’

Write synthesizable VHDL code that will generate the given waveform (W). Use a
single process. Assume that a clock with a 1 s period is available as an input.

W |«—29 ps —»|«— 43 ps —»|«—29 s —»|+—43 us —»
: (repeat)

A BCD adder adds two BCD numbers (each of range 0 to 9) and produces the sum in
BCD form. For example, if it adds 9 (1001) and 8 (1000) the result would be 17 (1 0111).
Implement such a BCD adder using a 4-bit binary adder and appropriate control
circuitry. Assume that the two BCD numbers are already loaded into two 4-bit registers
(A and B), and there is a 5-bit sum register (S) available. You need some kind of cor-
rection to get the sum in the BCD form, because the binary adder produces results in
the range 0000 to 1111 (plus a carry in some cases). If any addition is required for this
correction, use the same adder (i.e., you can use only one adder). Use multiplexers at
the adder inputs to steer the appropriate numbers to the adder in each cycle. Assume
a start signal to initiate the addition and a done signal to indicate completion.

(a) Draw a block diagram of the system. Label each component appropriately to
indicate its functionality and size.

(b) Describe step-by-step the algorithm that you would use to perform the addi-
tion. Explain and illustrate the correction step.

(¢) Draw a state graph for the controller.

4.10

4.12

Problems 251

Write VHDL code for a shift register module that includes a 16-bit shift register, a
controller, and a 4-bit down counter. The shifter can shift a variable number of bits
depending on a count provided to the shifter module. Inputs to the module are a
number N (indicating shift count) in the range 1 to 15, a 16-bit vector par_in, a clock,
and a start signal, St. When St = ‘1’, N is loaded into the down counter, and par_in
is loaded into the shift register. Then the shift register does a cycle left shift N times,
and the controller returns to the start state. Assume that St is only ‘1’ for one clock
time. All operations are synchronous on the falling edge of the clock.

(a) Draw a block diagram of the system and define any necessary control signals.

(b) Draw a state graph for the controller (two states).

(¢) Write VHDL code for the shift-register module. Use two processes (one for the
combinational part of the circuit, and one for updating the registers).

(a) Figure 4-12 shows the block diagram for a 32-bit serial adder with accumulator.
The control circuit uses a 5-bit counter, which outputs a signal K = 1 when it is
in state 11111. When a start signal (S¢) is received, the registers should be
loaded. Assume that St will remain 1 until the addition is complete. When the
addition is complete, the control circuit should go to a stop state and remain
there until St is changed back to 0. Draw a state diagram for the control circuit
(excluding the counter).

(b) Write the VHDL for the complete system, and verify its correct operation.

A block diagram for a 16-bit 2’s complement serial subtracter is given here. When
St = 1, the registers are loaded and then subtraction occurs. The shift counter, C,
produces a signal C15 = 1 after 15 shifts. V should be set to 1 if an overflow occurs.
Set the carry flip-flop to 1 during load in order to form the 2’s complement. Assume
that St remains 1 for one clock time.

(a) Draw a state diagram for the control (two states).

(b) Write VHDL code for the system. Use two processes. The first process should
determine the next state and control signals; the second process should update
the registers on the rising edge of the clock.

| X(16) | X0,
4 xinae) YP_| Full S
- Y(16) [Do L
4 vINQ16)
L
Shift fLoad CAr e
Carry
CLK—+ Control X0 EF
St— YP—. ov Y

D
S——
il |ple

252 Design Examples

4.13

4.14

This problem involves the design of a BCD to binary converter. Initially a three-digit
BCD number is placed in the A register. When a St signal is received, conversion to
binary takes place, and the resulting binary number is stored in the B register. At
each step of the conversion, the entire BCD number (along with the binary number)
is shifted one place to the right. If the result in a given decade is greater than or equal
1000, the correction circuit subtracts 0011 from that decade. (If the result is less than
1000, the correction circuit leaves the contents of the decade unchanged.) A shift
counter is provided to count the number of shifts. When conversion is complete, the
maximum value of B will be 999 (in binary). Note: B is 10 bits.

(a) Illustrate the algorithm starting with the BCD number 857, showing A and B at
each step.

(b) Draw the block diagram of the BCD-to-binary converter.

(¢) Draw a state diagram of the control circuit (three states). Use the following
control signals: St: start conversion; Sh: shift right; Co: subtract correction if
necessary; and C9: counter is in state 9, or C10: counter is in state 10. (Use either
C9 or C10 but not both.)

(d) Write a VHDL description of the system.

This problem involves the design of a circuit that finds the square root of an 8-bit
unsigned binary number N using the method of subtracting out odd integers. To
find the square root of N, we subtract 1, then 3, then 5, and so on, until we can no
longer subtract without the result going negative. The number of times we subtract
is equal to the square root of N. For example, to find N27:27 — 1 =26:26 — 3 = 23;
23 -5=18;18 =7 =11;11 — 9 = 2;2 — 11 (can’t subtract). Since we subtracted
five times, V27 = 5. Note that the final odd integer is 11 10 = 1011, and this consists
of the square root (101, = 5,) followed by a 1.

(a) Draw a block diagram of the square rooter that includes a register to hold N, a
subtracter, a register to hold the odd integers, and a control circuit. Indicate where
to read the final square root. Define the control signals used on the diagram.

(b) Draw a state graph for the control circuit using a minimum number of states.
The N register should be loaded when St = 1. When the square root is complete,
the control circuit should output a done signal and wait until St = 0 before
resetting.

This problem concerns the design of a multiplier for unsigned binary numbers that
multiplies a 4-bit number by a 16-bit number to give a 20-bit product. To speed up
the multiplication, a 4-by-4 array multiplier is used so that we can multiply by 4 bits
in one clock time instead of only by 1 bit at each clock time. The hardware includes
a 24-bit accumulator register that can be shifted right 4 bits at a time using a control
signal Sh4. The array multiplier multiplies 4 bits by 4 bits to give an 8-bit product.
This product is added to the accumulator using an Ad control signal. When a St
signal occurs, the 16-bit multiplier is loaded into the lower part of the A register. A
done signal should be turned on when the multiplication is complete. Since both the
array multiplier and adder are combinational circuits, the 4-bit multiply and the
8-bit add can both be completed in the same clock cycle. Do NOT include the array

Problems 253

multiplier logic in your code, just use the overloaded “*” operator. If D and E are
4-bit unsigned numbers, D * E will compute an 8-bit product.

Ld -
Ad :
St >
—> Sha q A (24 bits)
? 8 * 8 ?16 +4
Control
Mult.
8-bit adder
Done «—
8
4x4 array
multiplier
oo
Mcand A[3:0]

(a) Draw a state graph for the controller (10 states)
(b) Write VHDL code for the multiplier. Use two processes (a combinational
process and a clocked process). All signals should be of type unsigned or bit.

4.16 (a) Estimate how many AND gates and adders will be required for a 16-bit X 16-bit
array multiplier.
(b) What is the longest delay in a 16 X 16 array multiplier, assuming an AND gate
delay is 7,, and adder delay (full adder and half adder) is z,,?

4.17 (a) Draw the organization of an 8 X 8 array multiplier and calculate how many full

adders, half-adders, and AND gates are required.

(b) Highlight the critical path in your answer to (a) (If there are many equivalent
ones, highlight any one of them.)

(¢) What is the longest delay in an 8 X 8 array multiplier, assuming an AND gate
delay is z, = 1 ns, and adder delay (full adder and half adder) is ¢, ; = 2 ns?

(d) For an 8-bit X 8-bit add-and-shift multiplier (similar to Figure 4-25), how fast must
the clock be in order to complete the multiplication in the same time as in part (c)?

4.18 An n X n array multiplier, as in Figure 4-29, takes 3n — 4 adder delays + 1 gate
delay to calculate a product. Design an array multiplier which is faster than this for
n > 4. (Hint: Instead of passing carry output to the left adder, pass it to the diago-
nally lower one, speeding up the critical path. This topology is called “multiplier
using carry-save adder.”)

4.19 The block diagram for a multiplier for signed (2’s complement) binary numbers is
shown in Figure 4-33. Give the contents of the A and B registers after each clock
pulse when multiplicand = —1/8 and multiplier = —3/8.

254 Design Examples

4.20 In Section 4.10 we developed an algorithm for multiplying signed binary fractions,

4.21

with negative fractions represented in 2’s complement.

(a) Illustrate this algorithm by multiplying 1.0111 by 1.101.

(b) Draw a block diagram of the hardware necessary to implement this algorithm
for the case where the multiplier is 4 bits, including sign, and the multiplicand is
5 bits, including sign.

The objective of this problem is to use VHDL to describe and simulate a multiplier
for signed binary numbers using Booth’s algorithm. Negative numbers should be
represented by their 2’s complement. Booth’s algorithm works as follows, assuming
each number is # bits including sign: Use an (n + 1)-bit register for the accumulator
(A) so the sign bit will not be lost if an overflow occurs. Also, use an (n + 1)-bit reg-
ister (B) to hold the multiplier and an n-bit register (C) to hold the multiplicand.

1. Clear A (the accumulator), load the multiplier into the upper n bits of B, clear B,
and load the multiplicand into C.
2. Test the lower two bits of B (B B,).
If B,B, =01, then add C to A (C should be sign-extended to n + 1 bits
and added to A using an (n + 1)-bit adder).
If B,B, = 10, then add the 2’s complement of C to A.
If B,B, = 00 or 11, skip this step.
3. Shift A and B together right one place with sign extended.
4. Repeat steps 2 and 3,7 — 1 more times.
5. The product will be in A and B, except ignore B,

Example for n = 5: Multiply —9 by —13.

A B BB,
. Load registers. 000000 100110 10 C =10111
2. Add 2’s comp. of C to A. 001001
001001 100110

y

3. Shift A&B. 000100 110011 11
3. Shift A&B. 000010 011001 01
2. Add Cto A. 110111

111001 011001
3. Shift A&B. 111100 101100 00
3. Shift A&B. 111110 010110 10

2. Add 2’s comp. of C to A. 001001
000111 010110
3. Shift A&B. 000011 101011

Final result: 0001110101 = +117

(a) Draw a block diagram of the system for n = 8. Use 9-bit registers for A and B,
a 9-bit full adder, an 8-bit complementer, a 3-bit counter, and a control circuit.
Use the counter to count the number of shifts.

(b) Draw a state graph for the control circuit. When the counter is in state 111, return
to the start state at the time the last shift occurs (three states should be sufficient).

4.22

4.23

Problems 255

(c¢) Write behavioral VHDL code for the multiplier.
(d) Simulate your VHDL design using the following test cases (in each pair, the
second number is the multiplier):

01100110 x 00110011
10100110 X 01100110
01101011 X 10001110
11001100 X 10011001

Verify that your results are correct.

Design a multiplier that will multiply two 16-bit signed binary integers to give a
32-bit product. Negative numbers should be represented in 2’s complement form.
Use the following method: First complement the multiplier and multiplicand if they
are negative, multiply the positive numbers, and then complement the product if
necessary. Design the multiplier so that after the registers are loaded, the multipli-
cation can be completed in 16 clocks.

(a) Draw a block diagram of the multiplier. Use a 4-bit counter to count the num-
ber of shifts. (The counter will output a signal K =1 when it is in state 15.)
Define all condition and control signals used on your diagram.

(b) Draw a state diagram for the multiplier control using a minimum number of
states (five states). When the multiplication is complete, the control circuit should
output a done signal and then wait for ST = 0 before returning to state S,,.

(¢) Write a VHDL behavioral description of the multiplier without using control
signals (for example, see Figure 4-35) and test it.

(d) Write a VHDL behavioral description using control signals (for example, see
Figure 4-40) and test it.

This problem involves the design of a parallel adder-subtracter for 8-bit numbers
expressed in sign and magnitude notation. The inputs X and Y are in sign and mag-
nitude, and the output Z must be in sign and magnitude. Internal computation may
be done in either 2’s complement or 1’s complement (specify which you use), but no
credit will be given if you assume the inputs X and Y are in 1’s or 2’s complement.
If the input signal Sub =1, then Z= X — Y, else Z =X + Y. Your circuit must
work for all combinations of positive and negative inputs for both add and subtract.
You may use only the following components: an 8-bit adder, a 1’s complementer (for
the input Y), a second complementer (which may be either 1’s complement or 2’s
complement—specify which you use), and a combinational logic circuit to generate
control signals. (Hint: =X + Y = — (X — Y). Also generate an overflow signal that
is 1 if the result cannot be represented in 8-bit sign and magnitude.)

(a) Draw the block diagram. No registers, multiplexers, or tristate busses are allowed.

(b) Give a truth table for the logic circuit that generates the necessary control sig-
nals. Inputs for the table should be Sub, Xs, and Ys in that order, where X is the
sign of X and Y is the sign of Y.

(¢) Explain how you would determine the overflow and give an appropriate equation.

256 Design Examples

4.24

4.25

4.26

Four push buttons (B, B,, B,, and B,) are used as inputs to a logic circuit. Whenever
a button is pushed, it is debounced and then the circuit loads the button number in
binary into a 2-bit register (V). For example, if B, is pushed, the register output
becomes N = 10,. The register holds this value until another button is pushed. Use
a total of two flip-flops for debouncing. Use a 10-bit counter as a clock divider to
provide a slow clock for debouncing. Kd is a signal which is 1 when any button has
been pushed and debounced.

(a) Draw a state graph (two states) to generate the signal that loads the register
when Kd = 1.

(b) Draw a logic circuit diagram showing the 10-bit counter, the 2-bit register N,
and all necessary gates and flip-flops.

Design a 4 X 4 keypad scanner for the following keypad layout.

C C C G

1123 |AF—Rg

4 5 6 B HR]_

7189 |Cl—R

(a) Assuming only one key can be pressed at a time, find the equations for a
number decoder given R,_, and C,_ , whose output corresponds to the binary
value of the key. For example, the F key will return N,_, = 1111 in binary,
or 15.

(b) Design a debouncing circuit that detects when a key has been pressed or
depressed. Assume switch bounce will die out in one or two clock cycles. When
a key has been pressed, K = 1 and Kd is the debounced signal.

(¢) Design and draw a state graph that performs the keyscan and issues a valid
pulse when a valid key has been pressed using inputs from part (b).

(d) Write a VHDL description of your keypad scanner and include the decoder,
debouncing circuit, and scanner.

This problem concerns the design of a divider for unsigned binary numbers that will
divide a 16-bit dividend by an 8-bit divisor to give an 8-bit quotient. Assume that the
start signal (ST = 1) is 1 for exactly one clock time. If the quotient would require
more than 8§ bits, the divider should stop immediately and output V = 1 to indicate
an overflow. Use a 17-bit dividend register and store the quotient in the lower 8 bits

4.27

4.28

Problems 257

of this register. Use a 4-bit counter to count the number of shifts, together with a
subtract-shift controller.

(a) Draw a block diagram of the divider.

(b) Draw a state graph for the subtract-shift controller (three states).

(c) Write a VHDL description of the divider. Use two processes, similar to
Figure 4-40.

(d) Write a test bench for your divider (similar to Figure 4-55).

A block diagram and state graph for a divider for unsigned binary numbers is shown
below. This divider divides a 16-bit dividend by a 16-bit divisor to give a 16-bit quo-
tient. The divisor can be any number in the range 1 to 2! — 1. The only case where
an overflow can occur is when the divisor is 0. Control signals are defined as follows:
Ld1:1oad the divisor from the input bus; Ld2: load the dividend from the input bus
and clear ACC; Sh: left shift ACC & Dividend; Su: load the subtractor output into
ACC and set the lower quotient bit to 1; K = 1 when 15 shifts have been made.
Write complete VHDL code for the divider. All signals must be of type unsigned or
bit. Use two processes.

Input Quotient
| ACC(16) | D"'d d(l;‘: l::LSdh
ividen Ld2
; Su Control
Ld1 = f f K

Subtractor |—> B (borrow) B St

— —/Ld2
Divisor <—Ld1

\ St/Ldl/' ~/Sh BK’/Sh

BK/0
St'/0 Sy S3
B’K/Su

B’K’/Su

A block diagram for a divider that divides an 8-bit unsigned number by a 4-bit
unsigned number to give a 4-bit quotient is given below. Note that the X, inputs to
the subtractors are shifted over one position to the left. This means that the shift-and-
subtract operation can be completed in one clock time instead of two. Depending on
the borrow from the subtractor, a shift or shift-and-subtract operation occurs at each
clock time, and the division can always be completed in four clock times after the
registers are loaded. Ignore overflow. When the start signal (St) is 1, the X and Y reg-
isters are loaded. Assume that the start signal (S7) is 1 for only one clock time.
Sh causes X to shift left with O fill. SubSh causes the subtractor output to be loaded
into the left part of X, and at the same time the rest of X is shifted left.

258 Design Examples

Load Dividend
SubSh
sh X | Xe | Xs | Xq | X3 | X5 | Xy | Xp

PP T

5-bif subtrdctor

Control

A A

B =horrow
Load—» Y3 | Y2 | Y1 [Yo

IR

Divisor

(a) Draw a state graph for the controller (5 states).

(b) Complete the VHDL code given below. Registers and signals should be of type
unsigned so that overloaded operators may be used. Write behavioral code that
uses a single process.

Tlibrary IEEE;
use IEEE.numeric_bit.all;

entity divu is
port(dividend: in unsigned(7 downto 0);
divisor: 1in unsigned(3 downto 0);
St, clk: 1in bit;
quotient: out unsigned(3 downto 0));
end entity divu;

architecture div of divu is

4.29 An older model Thunderbird car has three left (LA, LB, LC) and three right (RA,
RB, RC) tail lights which flash in unique patterns to indicate left and right turns.

LEFT turn pattern RIGHT turn pattern
LC LB LA RA RB RC LC LB LA RA RB RC
o o oOo]Oo O O ©c o o|O0 O O
©c O e | O O O © o OoO|e O O
O e e O O O O O O | e e O
® ¢ ¢/ O O O © O Ol e e e

Design a Moore sequential circuit to control these lights. The circuit has three
inputs LEFT, RIGHT, and HAZ. LEFT and RIGHT come from the driver’s turn
signal switch and cannot be 1 at the same time. As indicated above, when LEFT = 1

4.30

Problems 259

the lights flash in a pattern LA on; LA and LB on; LA, LB, and LC on; all off; and
then the sequence repeats. When RIGHT = 1, a similar sequence appears on lights
RA,RB, and RC, as indicated on the right side of the picture. If a switch from LEFT
to RIGHT (or vice versa) occurs in the middle of a flashing sequence, the circuit
should immediately go to the IDLE (lights off) state and then start the new
sequence. HAZ comes from the hazard switch, and when HAZ = 1, all six lights
flash on and off in unison. HAZ takes precedence if LEFT or RIGHT is also on.

Assume that a clock signal is available with a frequency equal to the desired
flashing rate.

(a) Draw the state graph (eight states).

(b) Realize the circuit using six D flip-flops, and make a one-hot state assignment
such that each flip-flop output drives one of the six lights directly. (You may use
LogicAid.)

(¢) Realize the circuit using three D flip-flops, using the guidelines from Section 1.7
to determine a suitable encoded state assignment. Note the tradeoff between
more flip-flops and more gates in (b) and (c).

Design a sequential circuit to control the motor of a tape player. The logic circuit
will have five inputs and three outputs. Four of the inputs are the control buttons on
the tape player. The input PL is 1 if the play button is pressed, the input RE is 1 if
the rewind button is pressed, the input FF is 1 if the fast forward button is pressed,
and the input ST is 1 if the stop button is pressed. The fifth input to the control cir-
cuit is M, which is 1 if the special “music sensor” detects music at the current tape
position. The three outputs of the control circuit are P, R, and F, which make the
tape play, rewind, and fast forward, respectively, when 1. No more than one output
should ever be on at a time; all outputs off causes the motor to stop. The buttons
control the tape as follows: If the play button is pressed, the tape player will start
playing the tape (output P = 1). If the play button is held down and the rewind but-
ton is pressed and released, the tape player will rewind to the beginning of the cur-
rent song (output R = 1 until M = 0) and then start playing. If the play button is
held down and the fast forward button is pressed and released, the tape player will
fast forward to the end of the current song (output F = 1 until M = 0) and then start
playing. If rewind or fast forward is pressed while play is released, the tape player
will rewind or fast forward the tape. Pressing the stop button at any time should stop
the tape player motor.

(a) Construct a state graph chart for the tape player controller. You may assume
that only one of the four buttons can be pressed at any given time.
(b) Write VHDL code for the controller.

260

5.1

SM Charts and
Microprogramming

A state machine is often used to control a digital system that carries out a step-
by-step procedure or algorithm. State diagrams or state graphs with circles rep-
resenting states and arcs representing transitions have traditionally been used to
specify the operation of the controller state machine. As an alternative to using
state graphs, a special type of flow chart, called a state machine chart,or SM chart,
may be used to describe the behavior of a state machine. These charts are also
called algorithmic state machine charts, or ASM charts. SM charts are often used
to design control units for digital systems.

In this chapter, we first describe the properties of SM charts and how they are used
in the design of state machines. Then we show examples of SM charts for a multiplier
and a dice game controller. We construct VHDL descriptions of these systems from
the SM charts, and we simulate the VHDL code to verify correct operation. We then
proceed with the design and show how the SM chart can be realized with hardware.
We then introduce microprogramming as a technique to implement the SM chart.

State Machine Charts

SM charts resemble software flow charts. Flow charts have been very useful in soft-
ware design for decades, and in a similar fashion, SM charts have been useful in
hardware design. This is especially true in behavioral-level design entry.

SM charts offer several advantages over state graphs. It is often easier to under-
stand the operation of a digital system by inspection of the SM chart instead of the
equivalent state graph. A proper state graph has to obey some conditions: (1) One
and exactly one transition from a state must be true at any time, and (2) the next
state must be uniquely defined for every input combination. These conditions are
automatically satisfied for an SM chart. An SM chart also directly leads to a hard-
ware realization. A given SM chart can be converted into several equivalent forms,
and different forms might naturally result in different implementations. Hence, a
designer may optimize and transform SM charts to suit the implementation
style/technology that he or she is looking for.

An SM chart differs from an ordinary flow chart in that certain specific rules must
be followed in constructing the SM chart. When these rules are followed, the SM
chart is equivalent to a state graph, and it leads directly to a hardware realization.

FIGURE 5-1:
Principal
Components
of an SM Chart

FIGURE 5-2:
Example of an
SM Block

5.1 State Machine Charts 261

Figure 5-1 shows the three principal components of an SM chart. The state of the
system is represented by a state box. The state box contains a state name, followed by
a slash (/) and an optional output list. After a state assignment has been made, a state
code may be placed outside the box at the top. A decision box is represented by a dia-
mond-shaped symbol with true and false branches. The condition placed in the box
is a Boolean expression that is evaluated to determine which branch to take. The con-
ditional output box, which has curved ends, contains a conditional output list. The
conditional outputs depend on both the state of the system and the inputs.

Optional
state code
l XXX (true (false conditional
State_name/ branch) 1 0 branch) output list
output list
v (c) Conditional
(a) State box (b) Decision box output box

An SM chart is constructed from SM blocks. Each SM block (Figure 5-2) contains
exactly one state box, together with the decision boxes and conditional output boxes
associated with that state. An SM block has one entrance path and one or more exit
paths. Each SM block describes the machine operation during the time that the
machine is in one state. When a digital system enters the state associated with a given
SM block, the outputs on the output list in the state box become true. The conditions
in the decision boxes are evaluated to determine which paths are followed through
the SM block. When a conditional output box is encountered along such a path, the
corresponding conditional outputs become true. If an output is not encountered
along a path, that output is false by default. A path through an SM block from
entrance to exit is referred to as a link path.

One entrance path

““block

262 SM Charts and Microprogramming

FIGURE 5-3:
Equivalent SM
Blocks

FIGURE 5-4:
Equivalent SM
Charts for a
Combinational
Circuit

For the example of Figure 5-2, when state S, is entered, outputs Z, and Z, become 1.
If input X, = 0, Z, and Z, also become 1. If X, = X, = 0, at the end of the state time,
the machine goes to the next state via exit path 1. On the other hand, if X, =1 and

= 0, the output Z, is 1, and exiting to the next state will occur via exit path 3. Since
Z and Z, are not encountered along this link path, Z, = Z, = 0 by default.

A given SM block can generally be drawn in several dlfferent forms. Figure 5-3
shows two equivalent SM blocks. In both (a) and (b), the output Z, =1 if X| = 0;
the next state is S, if X, = 0 and S, if X, = 1. As illustrated in this example the order
in which the 1nputs are tested may affect the complexity of the SM chart.

Ls | [|
@ ®)

The SM charts of Figures 5-4(a) and (b) each represent a combinational cir-
cuit, since there is only one state and no state change occurs. The outputis Z, = 1
if A + BC = 1; otherwise Z, = 0. Figure 5-4(b) shows an equivalent SM chart in
which the input variables are tested individually. The outputis Z, = 1if A =1 or
if A=0,B=1,and C = 1. Hence

Z,=A+A'BC=A+ BC
which is the same output function realized by the SM chart of Figure 5-4(a).

@ (b)

FIGURE 5-5:
SM Block with
Feedback

FIGURE 5-6:
Equivalent SM
Blocks

5.1 State Machine Charts 263

Certain rules must be followed when constructing an SM block. First, for every
valid combination of input variables, there must be exactly one exit path defined.
This is necessary since each allowable input combination must lead to a single next
state. Second, no internal feedback within an SM block is allowed. Figure 5-5 shows
incorrect and correct ways of drawing an SM block with feedback.

(@) Incorrect (b) Correct

As shown in Figure 5-6(a), an SM block can have several parallel paths that lead
to the same exit path, and more than one of these paths can be active at the same time.
For example, if X, = X, =1 and X, = 0, the link paths marked with dashed lines are
active, and the outputs Z,, Z,, and Z, are 1. Although Figure 5-6(a) would not be a valid
flow chart for a program for a serial computer, it presents no problems for a state
machine implementation. The state machine can have a multiple-output circuit that gen-
erates Z, Z,, and Z, at the same time. Figure 5-6(b) shows a serial SM block, which
is equivalent to Figure 5-6(a). In the serial block, only one active link path between
entrance and exit is possible. For any combination of input values, the outputs will be the
same as in the equivalent parallel form. The link path for X, =X, =1 and X, =0

(a) Parallel form

—_——
[@ TN

(b) Serial form

264 SM Charts and Microprogramming

FIGURE 5-7:
Conversion of a
State Graph to an
SM Chart

is shown with a dashed line, and the outputs encountered on this path are Z,, Z,, and Z..
Regardless of whether the SM block is drawn in serial or parallel form, all the tests take
place within one clock time. In the rest of this text, we use only the serial form for
SM charts.

It is easy to convert a state graph for a sequential machine to an equivalent SM
chart. The state graph of Figure 5-7(a) has both Moore and Mealy outputs. The
equivalent SM chart has three blocks—one for each state. The Moore outputs (Z,
Z,, Z) are placed in the state boxes, since they do not depend on the input. The
Mealy outputs (Z,, Z,) appear in conditional output boxes, since they depend
on both the state and input. In this example, each SM block has only one decision
box, since only one input variable must be tested. For both the state graph and SM
chart, Z_is always 1 in state S,. If X = 0 in state), Z, = 1 and the next state is S
If X = 1,Z, = 1 and the next state is S,. We have added a state assignment (S, = 00,
S, =01, S, = 11) next to the state boxes.

1/0 1/0
oD " EDm

0/Z,
(a) State graph

(b) Equivalent SM chart

Figure 5-8 shows a timing chart for the SM chart of Figure 5-7 with an input
sequence X = 1,1, 1, 0,0, 0. In this example, all state changes occur immediately
after the rising edge of the clock. Since the Moore outputs (Z, Z,, Z) depend on
the state, they can change only immediately following a state change. The Mealy
outputs (Z,, Z,) can change immediately after a state change or an input change.
In any case, all outputs will have their correct values at the time of the active clock
edge.

FIGURE 5-8: Timing
Chart for Figure 5-7

5.2

5.2 Derivation of SM Charts 265

Clock | | |
T
State Sp |

X

za4§‘|

Zy

ZC

Z;

Z;

Derivation of SM Charts

The method used to derive an SM chart for a sequential control circuit is similar to
that used to derive the state graph. First, we should draw a block diagram of the
system we are controlling. Next, we should define the required input and output sig-
nals to the control circuit. Then we can construct an SM chart that tests the input
signals and generates the proper sequence of output signals. In this section, we give
two examples of derivation of SM charts.

5.2.1 Binary Multiplier

The first example is an SM chart for control of the binary multiplier shown in
Figures 4-25 and 4-28(a). The add-shift control generates the required sequence of
add and shift signals. The counter counts the number of shifts and outputs K = 1 just
before the last shift occurs. The SM chart for the multiplier control (Figure 5-9)
corresponds closely to the state graph of Figure 4-28(c). In state S, when the start
signal St is 1, the registers are loaded. In S, the multiplier bit M is tested. If M = 1,
an add signal is generated and the next state is S,. If M = 0, a shift signal is gener-
ated and K is tested. If K = 1, this will be the last shift and the next state is S;. In S,
a shift signal is generated, since a shift must always follow an add. If K = 1, the
circuit goes to S3 at the time of the last shift; otherwise, the next state is §,. In S, the
done signal is turned on.

Conversion of an SM chart to a VHDL process is straightforward. A case statement
can be used to specify what happens in each state. Each condition box corresponds
directly to an if statement (or an elsif). Figure 5-10 shows the VHDL code for the SM
chart in Figure 5-9. Two processes are used. The first process represents the combina-
tional part of the circuit, and the second process updates the state register on the rising
edge of the clock. The signals Load, Sh,and Ad are turned on in the appropriate states,
and they must be turned off when the state changes. A convenient way to do this is to
set them all to 0 at the start of the process. This VHDL code only models the controller.
It assumes the presence of adders and shifters (shift registers) in the architecture and
generates the appropriate signals to load the registers, to add and/or to shift.

266 SM Charts and Microprogramming

FIGURE 5-9: SM
Chart for Binary
Multiplier

S,/Done

FIGURE 5-10: Behavioral VHDL for Multiplier Controller (SM Chart of Figure 5-9)

entity Mult is
port(CLK, St, K, M: 1in bit;
Load, Sh, Ad, Done: out bit);
end Mult;

architecture SMbehave of Mult is
signal State, Nextstate: integer range 0 to 3;
begin
process(St, K, M, State) -- start if state or inputs change
begin
Load <= '0'; Sh <= '0'; Ad <= '0'; Done <= '0';
case State is

when 0 =>
if St = '1' then -- St (state 0)
Load <= '1"';
Nextstate <= 1;
else Nextstate <= 0; -- St
end if;
when 1 =
if M = '1'" then -- M (state 1)
Ad <= '1";
Nextstate <= 2;
else -——- M'
Sh <= '1";
if K = '1' then Nextstate <= 3; -- K
else Nextstate <= 1; -- K'
end if;

end if;

5.2 Derivation of SM Charts 267

when 2 =>
Sh <= '1'; -- (state 2)
if K = '1' then Nextstate <= 3; -- K
else Nextstate <= 1; -— K
end if;

when 3 =>
Done <= '1"'; -- (state 3)
Nextstate <= 0;

end case;
end process;
process (CLK)
begin

if CLK = '1"

and CLK'event then

State <= Nextstate; -- update state on rising edge

end if;
end process;
end SMbehave;

FIGURE 5-11: Block
Diagram for Dice

5.2.2 A Dice Game

As a second example of SM chart construction, we will design an electronic dice
game. This game is popularly known as craps in the United States. The game
involves two dice, each of which can have a value between 1 and 6. Two counters are
used to simulate the roll of the dice. Each counter counts in the sequence 1,2, 3, 4,
5,6,1,2,....Thus, after the “roll” of the dice, the sum of the values in the two coun-
ters will be in the range 2 through 12. The rules of the game are as follows:

1. After the first roll of the dice, the player wins if the sum is 7 or 11. The player
loses if the sum is 2, 3, or 12. Otherwise, the sum the player obtained on the first
roll is referred to as a point, and he or she must roll the dice again.

2. On the second or subsequent roll of the dice, the player wins if the sum equals
the point, and he or she loses if the sum is 7. Otherwise, the player must roll again
until he or she finally wins or loses.

Figure 5-11 shows the block diagram for the dice game. The inputs to the dice
game come from two push buttons, Rb (roll button) and Reset. Reset is used to

T DiccGamemodue

|
| |
| |
G | |
ame 1-to-6 1-t0-6 | Roall N Rb
Counter Counter : —— Reset :
|
v v — |
| Adder | ! D7 | o | L
B — J{gl ________ ! Test [Dy ontrol !
| m > logic [D,y |
: . * E Lose |,
, | Point Comparator | 2! !
| | register !
! t Sp :

268 SM Charts and Microprogramming

FIGURE 5-12: Flow
Chart for Dice
Game

initiate a new game. When the roll button is pushed, the dice counters count at a
high speed, so the values cannot be read on the display. When the roll button is
released, the values in the two counters are displayed.

Figure 5-12 shows a flow chart for the dice game. After rolling the dice, the sum
is tested. If it is 7 or 11, the player wins; if it is 2, 3, or 12, he or she loses. Otherwise
the sum is saved in the point register, and the player rolls again. If the new sum
equals the point, the player wins; if it is 7, he or she loses. Otherwise, the player rolls
again. If the Win light or Lose light is not on, the player must push the roll button
again. After winning or losing, he or she must push Resef to begin a new game. We
will assume at this point that the push buttons are properly debounced and that
changes in Rb are properly synchronized with the clock. A method for debouncing
and synchronization was discussed in Chapter 4.

+l+

Roll dice

Store sumin

point register

Roll dice

Y

Win l v

Lose
o N
Reset
N Reset Y

The components for the dice game shown in the block diagram (Figure 5-11)
include an adder, which adds the two counter outputs, a register to store the point,
test logic to determine conditions for win or lose, and a control circuit. Input signals
to the control circuit are defined as follows:

D
D

= 1 if the sum of the dice is 7
= 1 if the sum of the dice is 7 or 11

7

711

5.2 Derivation of SM Charts 269

D,,, = 1if the sum of the dice is 2,3, or 12

Eq = 1 if the sum of the dice equals the number stored in the point
register

RD = 1 when the roll button is pressed

Reset =1 when the reset button is pressed

Outputs from the control circuit are defined as follows:

Roll =1 enables the dice counters

Sp = 1 causes the sum to be stored in the point register
Win =1 turns on the win light

Lose =1 turns on the lose light

The Rb and Roll signals may look synonymous; however, they are different. We
are using electronic dice counters, and Roll is the signal to let the counters continue
to count. Rb is a push-button signal requesting that the dice be rolled. Thus, Rb is an
input to the control circuit, while Roll is an output from the control circuit. When
the control circuit is in a state looking for a new roll of the dice, whenever the push
button is pressed (i.e., Rb is activated), the control circuit will generate the Roll sig-
nal to the electronic dice.

We now convert the flow chart for the dice game to an SM chart for the control cir-
cuit using the control signals defined above. Figure 5-13 shows the resulting SM chart.

The control circuit waits in state S, until the roll button is pressed (Rb = 1).
Then, it goes to state S, and the roll counters are enabled as long as Rb = 1. As soon
as the roll button is released (Rb = 0), D, is tested. If the sum is 7 or 11, the circuit
goes to state S, and turns on the Win light; otherwise, D,,,, is tested. If the sum is
2,3, or 12, the circuit goes to state S, and turns on the Lose light; otherwise, the sig-
nal Sp becomes 1 and the sum is stored in the point register. It then enters §, and
waits for the player to “roll the dice” again. In S, after the roll button is released, if
Eq = 1, the sum equals the point and state S, is entered to indicate a win. If D, = 1,
the sum is 7 and S, is entered to indicate a loss. Otherwise, control returns to §, so
that the player can roll again. When in S, or §,, the game is reset to S, when the Reset
button is pressed.

Instead of using an SM chart, we could construct an equivalent state graph
from the flow chart. Figure 5-14 shows a state graph for the dice game controller.
The state graph has the same states, inputs, and outputs as the SM chart. The arcs
have been labeled consistently with the rules for proper state graphs given in
Section 4.5. Thus, the arcs leaving state S1 are labeled Rb, Rb'D,,, Rb'D’,,,D
and Rb'D’,| D’ ;.

Before proceeding with the design, it is important to verify that the SM chart (or
state graph) is correct. We will write a behavioral VHDL description based on the
SM chart and then write a test bench to simulate the roll of the dice. Initially, we will
write a dice game module that contains the control circuit, point register, and com-
parator (see Figure 5-11). Later, we will add the counters and adder so that we can
simulate the complete dice game.

711 2312°

270 SM Charts and Microprogramming

FIGURE 5-13: SM
Chart for Dice
Game

The VHDL code for the dice game in Figure 5-15 corresponds directly to the SM
chart of Figure 5-13. The case statement in the first process tests the state, and in each
state nested if-then-else (or elsif) statements are used to implement the conditional
tests. In State 1 the Roll signal is turned on when Rb is 1. If all conditions test false,
Sp is set to 1 and the next state is 4. In the second process, the state is updated after
the rising edge of the clock, and if Sp is 1, the sum is stored in the point register.

We are now ready to test the behavioral model of the dice game. It is not con-
venient to include the counters that generate random numbers in the initial test,
since we want to specify a sequence of dice rolls that will test all paths on the SM
chart. We could prepare a simulator command file that would generate a
sequence of data for Rb, Sum, and Reset. This would require careful analysis of
the timing to make sure that the input signals change at the proper time. A bet-
ter approach for testing the dice game is to design a VHDL test bench module to
monitor the output signals from the dice game module and supply a sequence of
inputs in response.

5.2 Derivation of SM Charts 271

FIGURE 5-14: State

Rb’/0
Graph for Dice
Game Controller

Rb/O Rb/Roll

Rb'D;13/0 (s,

y

RO'D%1Doai o0
Reset’/0 Rb'D711D231,/Sp [

Rb’/0 ‘li”

RO/OS Ry Eqr D4/0

Rb/Eq/0 Rb'Eq/D,/0

FIGURE 5-15: Behavioral Model for Dice Game Controller

entity DiceGame is
port(Rb, Reset, CLK: 1in bit;
Sum: 1in integer range 2 to 12;

Rol11, Win, Lose: out bit);
end DiceGame;

architecture DiceBehave of DiceGame is
signal State, Nextstate: integer range 0 to 5;
signal Point: integer range 2 to 12;
signal Sp: bit;
begin
process(Rb, Reset, Sum, State)
begin
Sp <= '0'; Roll <= '0'; Win <= '0'; Lose <= '0';
case State is
when 0 => if Rb = '1l' then Nextstate <= 1; end if;
when 1 =>
if Rb = '"1' then Roll <= '1"';
elsif Sum = 7 or Sum = 11 then Nextstate <= 2;
elsif Sum 2 or Sum = 3 or Sum = 12 then Nextstate <= 3;
else Sp <= 'l'; Nextstate <= 4;
end if;
when 2 => Win <= '1"';
if Reset = '1l' then Nextstate <= 0; end if;
when 3 => Lose <= ‘1’;

if Reset = 'l' then Nextstate <= 0; end if;

272 SM Charts and Microprogramming

when 4 => if Rb = '1' then Nextstate <= 5; end if;
when 5 =>
if Rb = '1' then Roll <= '1';
elsif Sum = Point then Nextstate <= 2;
elsif Sum = 7 then Nextstate <= 3;
else Nextstate <= 4;
end if;
end case;
end process;

process (CLK)
begin
if CLK'event and CLK = '1' then
State <= Nextstate;
if Sp = '1' then Point <= Sum; end if;
end if;
end process;
end DiceBehave;

Figure 5-16 shows the DiceGame connected to a module called GameTest.
GameTest needs to perform the following functions:

1. Initially supply the Rb signal.

2. When the DiceGame responds with a Roll signal, supply a Sum signal, which rep-
resents the sum of the two dice.

3. If no Win or Lose signal is generated by the DiceGame, repeat steps 1 and 2 to
roll again.

4. When a Win or Lose signal is detected, generate a Reset signal and start again.

FIGURE 5-16: Dice Rb
Game with Test Reset
Bench >
CLK

GameTest > DiceGame
Roll

Win

Lose

Figure 5-17 shows an SM chart for the GameTest module. Rb is generated in
state T,. When DiceGame detects Rb, it goes to S, and generates Roll. When
GameTest detects Roll, the Sum that represents the next roll of the dice is read
from Sumarray(i) and i is incremented. When the state goes to T, Rb goes to 0. The
DiceGame goes to S,, S;, or S, and GameTest goes to T,. The Win and Lose out-
puts are tested in state T,. If Win or Lose is detected, a Reset signal is generated
before the next roll of the dice. After N rolls of the dice, GameTest goes to state T3,
and no further action occurs.

5.2 Derivation of SM Charts 273

FIGURE 5-17: SM
Chart for Dice
Game Test

T3/ (Stop)

Sum= Sumarray (i)
i=i+l

GameTest (Figure 5-18) implements the SM chart for the GameTest module.
It contains an array of test data, a concurrent statement that generates the clock,
and two processes. The first process generates Rb, Reset, and Tnext (the next state)
whenever Roll, Win, Lose, or Tstate changes. The second process updates Tstate (the
state of GameTest). When running the simulator, we want to display only one line
of output for each roll of the dice. To facilitate this, we have added a signal Trigl,
which changes every time state T, is entered.

Tester (Figure 5-19) connects the DiceGame and GameTest components so
that the game can be tested. Figure 5-20 shows the simulator command file and out-
put. The listing is triggered by Trigl once for every roll of the dice. The run 2000
command runs for more than enough time to process all the test data.

FIGURE 5-18: Dice Game Test Module

entity GameTest 1is
port(Rb, Reset: out bit;
Sum: out integer range 2 to 12;
CLK: 1inout bit;
Ro11, Win, Lose: 1in bit);
end GameTest;

274 sM Charts and Microprogramming

architecture dicetest of GameTest is
signal Tstate, Tnext: integer range 0 to 3;
signal Trigl: bit;
type arr is array(0 to 11) of integer;
constant Sumarray:arr := (7, 11, 2, 4, 7, 5,
begin
CLK <= not CLK after 20 ns;
process(Rol1l, Win, Lose, Tstate)
variable i: natural;
begin
case Tstate is
when 0 => Rb <= '1';
Reset <= '0';
if i >= 12 then Tnext <= 3;
elsif Roll = '"1' then
Sum <= Sumarray(i);

ii=1 + 1;
Thnext <= 1;
end if;

when 1 => Rb <= '0'; Tnext <= 2;

when 2 => Tnext <= 0;
Trigl <= not Trigl;
if (Win or Lose) = '1' then

Reset <= '1';

end if;

when 3 => null;

end case;
end process;

process (CLK)
begin
if CLK = '"1' and CLK'event then
Tstate <= Tnext;
end 1if;
end process;
end dicetest;

FIGURE 5-19: Tester for DiceGame

6, 7, 6, 8, 9, 6);

-- i is initialized to O

-- wait for Roll

-- toggle Trigl

-- Stop state

entity tester is
end tester;

architecture test of tester is
component GameTest
port(Rb, Reset: out bit;
Sum: out integer range 2 to 12;
CLK: 1inout bit;
Ro11, Win, Lose: 1in bit);
end component;

5.3 Realization of SM Charts 275

component DiceGame
port(Rb, Reset, CLK: 1in bit;
Sum: 1in integer range 2 to 12;
Rol1, Win, Lose: out bit);
end component;

signal rbl, resetl, clkl, rolll, winl, losel: bit;
signal suml: integer range 2 to 12;
begin
Dice: Dicegame port map (rbl, resetl, clkl, suml, roll1l, winl, losel);
Dicetest: GameTest port map (rbl, resetl, suml, clkl, rolll, winl, Tosel);
end test;

FIGURE 5-20: Simulation and Command File for Dice Game Tester

add 1ist /dicetest/trigl -NOTrigger suml winl Tosel /dice/point

run 2000
ns delta trigl suml winl TJlosel point
0 +0 0 2 0 0 2
100 +3 0 7 1 0 2
260 +3 0 11 1 0 2
420 +3 0 2 0 1 2
580 +2 1 4 0 0 4
740 +3 1 7 0 1 4
900 +2 0 5 0 0 5
1060 +2 1 6 0 0 5
1220 +3 1 7 0 1 5
1380 +2 0 6 0 0 6
1540 +2 1 8 0 0 6
1700 +2 0 9 0 0 6
1860 +3 0 6 1 0 6

5.3 Realization of SM Charts

Methods used to realize SM charts are similar to the methods used to realize state
graphs. As with any sequential circuit, the realization will consist of a combina-
tional subcircuit, together with flip-flops for storing the state of the circuit. In
some cases, it may be possible to identify equivalent states in an SM chart and
eliminate redundant states using the same method as was used for reducing state
tables. However, an SM chart is usually incompletely specified in the sense that all
inputs are not tested in every state, which makes the reduction procedure more

276 SM Charts and Microprogramming

FIGURE 5-21:
Example SM Chart
for Implementation

difficult. Even if the number of states in an SM chart can be reduced, it is not
always desirable to do so, since combining states may make the SM chart more dif-
ficult to interpret.

Before deriving next state and output equations from an SM chart, a state
assignment must be made. The best way of making the assignment depends on how
the SM chart is realized. If gates and flip-flops (or the equivalent PLD realization)
are used, the guidelines for state assignment given in Section 1.7 may be useful. If
programmable gate arrays are used, a one-hot assignment may be best, as explained
in Section 6.9.

As an example of realizing an SM chart, consider the SM chart in Figure 5-21.

We have made the state assignment AB = 00 for SO, AB = 01 for S|, and AB = 11
for S,. After a state assignment has been made, output and next-state equations can
be read directly from the SM chart. Since the Moore output Z is 1 only in state 00,
Z,=A'B'. Similarly, Z, = A'B and Z_= AB. The conditional output Z, = ABX’,
since the only link path through Z, starts with AB = 11 and takes the X = 0 branch
Similarly, Z, = ABX. There are three link paths (labeled link 1, link 2, and link 3 in
Figure 5-21), which terminate in a state that has B = 1. Link 1 starts with a present
state AB = 00, takes the X = 1 branch, and terminates on a state in which B = 1.
Therefore, the next state of B (B*) equals 1 when A’B’X = 1. Link 2 starts in state 01,
takes the X = 1 branch, and ends in state 11,50 B* has a term A’'BX. Similarly, B* has
a term ABX from link 3. The next state equation for B thus has three terms corre-
sponding to the three link paths:

Bt*=A'B'X+ A'BX + ABX
link1 link2 link 3

FIGURE 5-22: SM
Chart for Multiplier
Controller

5.3 Realization of SM Charts 277

Similarly, two link paths terminate in a state with A = 1, so
At =A'BX + ABX
These output and next state equations can be simplified with Karnaugh maps using
the unused state assignment (AB = 10) as a “don’t care” condition.
As illustrated above for flip-flops A and B, the procedure for deriving the next
state equation for a flip-flop O from the SM chart is as follows:

1. Identify all of the states in which Q = 1.

2. For each of these states, find all the link paths that lead into the state.

3. For each of these link paths, find a term that is 1 when the link path is followed.
That is, for a link path from §; to S, the term will be 1 if the machine is in state
S, and the conditions for ex1t1ng to S are satisfied.

4. The expression for Q" (the next state of Q) is formed by OR’ing together the
terms found in step 3.

5.3.1 Implementation of Binary Multiplier Controller
Next, consider the SM chart for the multiplier control repeated here, in Figure 5-22.

S,/Done

We can realize this SM chart with two D flip-flops and a combinational circuit.
Let us assume that the state assignments are AB = 00 for S, AB = 01 for S, AB =
10 for §,,and AB = 11 for §,.

The logic equations for the multiplier control and the next state equations can
be derived by tracing link paths on the SM chart and then simplifying the resulting
equations. First, let us consider the control signals. Load is true only in S; and only
if St is true. Hence, Load = S St = A’B’St. Similarly, Ad is true only in S, and only

278 SM Charts and Microprogramming

TABLE 5-1: State
Transition Table for
Multiplier Control

if M is true. Hence, Ad = A'BM. Done is a Moore output in S,, and hence Done =
S, = AB. In summary, the logic equations for the multiplier control are

Load = A'B'St
Sh=A'BM'(K' + K) + AB'(K' + K) = A'BM' + AB’
Ad = A'BM
Done = AB

The next state equations can be derived by inspection of the SM chart and con-
sidering the state assignments. A is true in states S, and §,. State S, is the next state
when current state is S, and M is true (A'BM). State S, is the next state when cur-
rent state is S, M is false, and K is true (A’BM'K) and when current state is S, and
K is true (AB'K). Hence, we can write that

At =A'BM'K + ABM + AB'K = AAB(M + K) + AB'K

Similarly, we can derive the next state equation for B by inspection of the ASM
diagram:

B* = A'B'St + A BM'(K' + K) + AB'(K' + K) = A'B'St + A'BM' + AB'

The multiplier controller can be implemented in a hardwired fashion by two flip-
flops and a few logic gates. The logic gates implement the next state equations and
control signal equations. The circuit can be implemented with discrete gates or in a
PLA, CPLD, or FPGA.

Table 5-1 illustrates a state transition table for the multiplier control. Each row in
the table corresponds to one of the link paths in the SM chart. Since S has two exit
paths, the table has two rows for present state S,. The first row corresponds to the
St = 0 exit path, so the next state and outputs are 0. In the second row, St = 1, so the
next state is 01 and the other outputs are 1000. Since St is not tested in states S, S,,
and S, St is a “don’t care” in the corresponding rows. The outputs for each row can
be filled in by tracing the corresponding link paths on the SM chart. For example, the
link path from §, to §, passes through conditional output Ad, so Ad = 1 in this row.
Since §, has a Moore output Sk, Sh = 1 in both of the rows for which AB = 10.

B* Load Sh Ad Done
0

St M K
0 — —

>
f

—_

| = o

|
|
=)

e
—“|==|OOOC|0CO|>
OO0 | == =00

- O O
O|=O|==0|OO0O
Ol =m0 a|=20
(=l Ne Nl ool
Ol =m|O0O—=~=a|OO
oo =0 O0O|OCO
=00 OO0 OO O

The design may also be implemented with ROM. If it has to be implemented
using the ROM method, we can calculate the size of the ROM as follows. There are

5.4

FIGURE 5-23:
Realization of Dice
Game Controller

5.4 Implementation of the Dice Game 279

five different inputs to the combinational circuit here (A, B, St, M, and K). Hence,
the ROM will have 32 entries. The combinational circuit should generate six signals
(four control signals plus two next states). Hence, each entry has to be 6 bits wide.
Thus, this design can be implemented using a 32 X 6 ROM and two D flip-flops. If
the combinational logic is implemented with a PLA instead of a ROM, the PLA
table is the same as the state transition table. The PLA would have 5 inputs, 6 out-
puts, and 8 product terms.

If a ROM is used, the table must be expanded to 2° = 32 rows since there are
five inputs. To expand the table, the dashes in each row must be replaced with all
possible combinations of 0’s and I’s. If a row has n dashes, it must be replaced with
2" rows. For example, the fifth row in Table 5-1 would be replaced with the follow-
ing 4 rows:

0

- s
- -0 O
-
_. O =0
-
[eNeNeNe)
[eNeNeNe)
[eNeNeNe)
-
[eNeNeNe)

0
0
0
The added entries are printed in boldface.

Implementation of the Dice Game

We can realize the SM chart for the dice game (Figure 5-13) using combinational
circuitry and three D flip-flops, as shown in Figure 5-23. We use a straight binary
state assignment. The combinational circuit has nine inputs and seven outputs. Three
of the inputs correspond to current state, and three of the outputs provide the next
state information. All inputs and outputs are listed at the top of Table 5-2. The state

Rb —»
Reset —» — Win
Dyyy —»] — Lose
— Rall
D; —»
D — Sp
2312 — ™
Eq — ct
Comb. D
» Circuit Q
C —1> CK
B+
_ D
B Q
— > CK
A+
D
. Q
A —> CK
Clock

280 SM Charts and Microprogramming

TABLE 5-2: State
Transition Table
(PLA Table) for
Dice Game

transition table has one row for each link path on the SM chart. In state ABC = 000,
the next state is A*B*C* = 000 or 001, depending on the value of Rb. Since state
001 has four exit paths, the table has four corresponding rows. When Rb is 1, Roll is
1 and there is no state change. When Rb = 0 and D,,, is 1, the next state is 010. When
Rb =0 and D,,,, = 1, the next state is 011. For the link path from state 001 to 100,
Rb, D,,,,and D, , are all 0, and Sp is a conditional output. This path corresponds to
row 4 of the state transition table, which has Sp = 1 and A*B*C* = 100. In state
010, the Win signal is always on, and the next state is 010 or 000, depending on the
value of Reset. Similarly, Lose is always on in state 011. In state 101, A*B*C* = 010
if Eq = 1; otherwise, A*B*C" = 011 or 100, depending on the value of D,. Since
states 110 and 111 are not used, the next states and outputs are don’t cares when
ABC =110 or 111.

We can use Table 5-2 and derive equations for the control signals and the next
state equations. The required equations can be derived from Table 5-2 using the
method of map-entered variables (see Chapter 1) or using a CAD program such as
LogicAid. These equations can also be derived by tracing link paths on the SM chart
and then simplifying the resulting equations using the “don’t care” next states.

Figure 5-24 shows K-maps for A", B*, and Win, which were plotted directly from
the table. Since A, B, C,and Rb have assigned values in most of the rows of the table,
these four variables are used on the map edges, and the remaining variables are
entered within the map. (Chapter 1 described the K-map technique that uses map-
entered variables.) E,, E,, E,, and E, on the maps represent the expressions given
below the maps. From the A* column in the table, A" is 1 in row 4,so we should enter
D',,,D’,,, in the ABCRb = 0010 square of the map. To save space, we define E, =
D', ,D',,, and place E, in the square. Since A" is 1 in rows 11, 12, and 16, 1’s are
placed on the map squares ABCRb = 1000, 1001, and 1011. From row 13, we place

ABC Rb Reset D, D,, D,,, Eq| A* B* C* Win Lose Roll Sp

1 000 O — - — — —1| 0 O 0 0 0 0 0

2 000 1 — - — — —| 0 O 1 0 0 0 0

3 001 1 — - — — —1| 0 o0 1 0 0 1 0

4 001 O — — 0 0 — | 1 0 0 0 0 0 1

5 001 O — — 0 1 — | 0 1 1 0 0 0 0

6 001 O — — 1 — — 1 0 1 0 0 0 0 0

7 010 — 0 - — — — 1 0 1 0 1 0 0 0

8 010 — 1 - — — —| 0 o0 0 1 0 0 0

9 011 — 1 — — — — | 0 o0 0 0 1 0 0

10 011 — 0 — — — — 1 0 1 1 0 1 0 0
11 100 O — — — — — 11 0 0 0 0 0 0
12 100 1 — — — — — 11 0 1 0 0 0 0
13 101 O — 0 — — 0 1 0 0 0 0 0 0
14 101 O — 1 — — 0 0o 1 1 0 0 0 0
15 101 O — — — — 1 0o 1 0 0 0 0 0
16 101 1 — — - — — 1 0 1 0 0 1 0
17 110 — — —_ — — —_ = - — — — —_ —
18 111 — — — — - - - - - — — —_— —

FIGURE 5-24: Maps
Derived from
Table 5-2

5.4 Implementation of the Dice Game 281

AB AB AB
CRb\ 00 01 11 10 CRb\ 00 01 11 10 CRb\ 00 01 11 10
00 (x2) o| [R]X) 0| |(1]x)
o1 %9 o1 R | X o1 Ll X J
1 (x| 1] 1 R | X 1 X
10| E1 X | B 10 | B |(R |(X)] Ba) 10 X
At B+ Win
E =D}, D, R = Reset
E,=DEq Ey; =Dy, + D5y Dyyyy = Dy + Dy

E,=Eq+ Eq'D,=Eq+ D,

E, = D', Eq’ in the 1010 square. In rows 7 and 8, Win is always 1 when ABC = 010,
so 1’s are plotted in the corresponding squares of the Win map.
The resulting equations are
A*=A'B'CRb'D’, D, +AC" + ARb + AD' Eq’ (5-1)
B* = A'B'CRb'(D,,, + D,,,,) + BReset' + AC Rb'(Eq + D.)

C*"=B'Rb+ A'B'CD’,,D,,, + BC Reset' + AC D,Eq’

71172312
Win = BC'

Lose = BC

Roll = B'CRb
Sp=A'B'CRb'D, D, ,

These equations can be implemented in any standard technology (using discrete
gates, PALs, GALs, CPLDs, or FPGAs).

The dice game controller can also be