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This textbook is intended for a senior-level course in digital systems design. The
book covers both basic principles of digital system design and the use of a hardware
description language, VHDL, in the design process. After basic principles have been
covered, design is best taught by using examples. For this reason, many digital sys-
tem design examples, ranging in complexity from a simple binary adder to a micro-
processor, are included in the text.

Students using this textbook should have completed a course in the fundamen-
tals of logic design, including both combinational and sequential circuits. Although
no previous knowledge of VHDL is assumed, students should have programming
experience using a modern high-level language such as C. A course in assembly lan-
guage programming and basic computer organization is also very helpful, especial-
ly for Chapter 9.

Because students typically take their first course in logic design two years
before this course, most students need a review of the basics. For this reason,
Chapter 1 includes a review of logic design fundamentals. Most students can
review this material on their own, so it is unnecessary to devote much lecture time
to this chapter. However, a good understanding of timing in sequential circuits
and the principles of synchronous design is essential to the digital system design
process.

Chapter 2 starts with an overview of modern design flow. It also summarizes
various technologies for implementation of digital designs. Then, it introduces the
basics of VHDL, and this hardware description language is used throughout the
rest of the book. Additional features of VHDL are introduced on an as-needed
basis, and more advanced features are covered in Chapter 8. From the start, we
relate the constructs of VHDL to the corresponding hardware. Some textbooks
teach VHDL as a programming language and devote many pages to teaching the
language syntax. Instead, our emphasis is on how to use VHDL in the digital design
process. The language is very complex, so we do not attempt to cover all its fea-
tures. We emphasize the basic features that are necessary for digital design and
omit some of the less-used features. Use of standard IEEE VHDL libraries is
introduced in this chapter and only IEEE standard libraries are used throughout
the text.

Preface

vii

00Prelims.qxd  3/21/07  10:13 PM  Page vii



VHDL is very useful in teaching top-down design. We can design a system at a
high level and express the algorithms in VHDL. We can then simulate and debug
the designs at this level before proceeding with the detailed logic design. However,
no design is complete until it has actually been implemented in hardware and the
hardware has been tested. For this reason, we recommend that the course include
some lab exercises in which designs are implemented in hardware. We introduce
simple programmable logic devices (PLDs) in Chapter 3 so that real hardware can
be used early in the course if desired. Chapter 3 starts with an overview of pro-
grammable logic devices and presents simple programmable logic devices first,
followed by an introduction to complex programmable logic devices (CPLDs) and
Field Programmable Gate Arrays (FPGAs). There are many products in the mar-
ket, and it is good for students to learn about commercial products. However, it is
more important for them to understand the basic principles in the construction
of these programmable devices. Hence we present the material in a generalized
fashion, with references to specific products as examples. The material in this
chapter also serves as an introduction to the more detailed treatment of FPGAs in
Chapter 6.

Chapter 4 presents a variety of design examples, including both arithmetic
and non-arithmetic examples. Simple examples such as a BCD to 7-segment
display decoder to more complex examples such as game scoreboards, keypad
scanners and binary dividers are presented. The chapter presents common tech-
niques used for computer arithmetic, including carry look-ahead addition, and
binary multiplication and division. Use of a state machine for sequencing the
operations in a digital system is an important concept presented in this chapter.
Synthesizable VHDL code is presented for the various designs. A variety of
examples are presented so that instructors can select their favorite designs for
teaching.

Use of sequential machine charts (SM charts) as an alternative to state graphs is
presented in Chapter 5. We show how to write VHDL code based on SM charts
and how to realize hardware to implement the SM charts. Then, the technique of
microprogramming is presented. Transformation of SM charts for different types
of microprogramming is discussed. Then, we show how the use of linked state
machines facilitates the decomposition of complex systems into simpler ones. The
design of a dice-game simulator is used to illustrate these techniques.

Chapter 6 presents issues related to implementing digital systems in Field
Programmable Gate Arrays. A few simple designs are first hand-mapped into
FPGA building blocks to illustrate the mapping process. Shannon’s expansion for
decomposition of functions with several variables into smaller functions is present-
ed. Features of modern FPGAs like carry chains, cascade chains, dedicated memory,
and dedicated multipliers are then presented. Instead of describing all features in
a selected commercial product, the features are described in a general fashion. Once
students understand the general principles, they will be able to understand and
use any commercial product they have to work with. This chapter also presents an
introduction to the processes and algorithms in the software design flow. Synthesis,
mapping, placement, and routing processes are briefly described. Optimizations
during synthesis are illustrated.

viii Preface
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Basic techniques for floating-point arithmetic are described in Chapter 7.
A simple floating-point format with 2’s complement numbers is presented and
then the IEEE standard floating-point formats are presented. A floating-point
multiplier example is presented starting with development of the basic algorithm,
then simulating the system using VHDL, and finally synthesizing and imple-
menting the system using an FPGA. Some instructors may prefer to cover
Chapter 8 and 9 before teaching Chapter 7. Chapter 7 can be omitted without
loss of any continuity.

By the time students reach Chapter 8, they should be thoroughly familiar with
the basics of VHDL.At this point we introduce some of the more advanced features
of VHDL and illustrate their use.The use of multi-valued logic, including the IEEE-
1164 standard logic, is one of the important topics covered. A memory model
with tri-state output busses is presented to illustrate the use of the multi-valued
logic.

Chapter 9 presents the design of a microprocessor, starting from the description
of the instruction set architecture (ISA). The processor is an early RISC processor,
the MIPS R2000. The important instructions in the MIPS ISA are described and a
subset is then implemented. The design of the various components of the processor,
such as the instruction memory module, data memory module and register file are
illustrated module by module. These components are then integrated together and
a complete processor design is presented.The model can be tested with a test bench,
or can be synthesized and implemented on an FPGA. In order to test the design on
an FPGA, one will need to write input-output modules for the design. This example
requires understanding of the basics of assembly language programming and com-
puter organization.

The important topics of hardware testing and design for testability are covered
in Chapter 10. This chapter introduces the basic techniques for testing combina-
tional and sequential logic. Then scan design and boundary-scan techniques, which
facilitate the testing of digital systems, are described. The chapter concludes with a
discussion of built-in self-test (BIST). VHDL code for a boundary-scan example
and for a BIST example is included. The topics in this chapter play an important
role in digital system design, and we recommend that they be included in any
course on this subject. Chapter 10 can be covered any time after the completion of
Chapter 8.

Chapter 11 presents three complete design examples that illustrate the use of
VHDL synthesis tools. First, a wristwatch design is presented. It shows the progress
of a design from a textual description to a state diagram and then a VHDL model.
This example illustrates modular design. The test bench for the wristwatch illustrates
the use of multiple procedure calls to facilitate the testing. The second example
describes the use of VHDL to model RAM memories. The third example, a serial
communications receiver-transmitter, should easily be understood by any student
who has completed the material through Chapter 8.

For instructors who used the first edition of this text, here is a mapping to help
them understand the changes in the second edition. The homegrown library BITLIB
is not used in this edition of the book.The IEEE numeric-bit library is used first until
multi-valued logic is introduced in Chapter 8. The multi-valued IEEE numeric-std
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library is used thereafter.All code has been converted to use IEEE standard libraries
instead of the BITLIB library.

Chapter 1 Simpler Mealy and Moore designs added. More detailed 
descriptions added to sequential circuit timing section.

Chapter 2 Overview of design flow and design technologies added.
Functions and procedures from old Chapter 2 moved to 
Chapter 8. Inertial delays and transport delays moved from 
Chapter 8 to Chapter 2. Synthesis is introduced in Chapter 2 
and all code presented is generally synthesizeable.

Chapter 3 Contains first part of old Chapter 3. New material on CPLDs
and FPGAs added. The design examples from old Chapter 3 
(traffic light, keypad scanner) are moved to Chapter 4.

Chapter 4 Several new examples are added. Old Chapter 4 examples are 
largely retained, but converted to synthesizeable code. Two
examples from old Chapter 3 are now here.

Chapter 5 Added more detailed treatment of microprogramming.

Chapter 6 New material on FPGAs in a generalized fashion, without 
making it specific to any commercial product, but drawing 
examples from several commercial devices. A brief treatment 
of software design flow including principles of mapping,
placement, routing added.

Chapter 7 IEEE floating point standards and floating point adder design 
added.

Chapter 8 Functions and procedures from old Chapter 2 moved to here.
Many sections from old Chapter 8 are still here. A memory
model previously in old Chapter 9 presented as example of 
multi-valued logic design in new Chapter 8

Chapter 9 This chapter is new. MIPS instruction set and design of a MIPS 
processor presented. Memory models from old Chapter 9 are 
moved to Chapter 8 or 11. Bus model from old Chapter 9 
omitted.

Chapter 10 Added details on boundary scan and STUMPS architecture.

Chapter 11 A new design (wristwatch) added. Memory timing models from 
old Chapter 9 appear here now. UART design from old
Chapter 11 retained. Microcontroller design is omitted.

This book is the result of many years of teaching a senior course in digital systems
design at the University of Texas at Austin. Throughout the years, the technology for
hardware implementation of digital systems has kept changing, but many of the same
design principles are still applicable. In the early years of the course,we handwired mod-
ules consisting of discrete transistors to implement our designs.Then integrated circuits

x Preface
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were introduced, and we were able to implement our designs using breadboards and
TTL logic. Now we are able to use FPGAs and CPLDs to realize very complex designs.
We originally used our own hardware description language together with a simulator
running on a mainframe computer.When PCs came along, we wrote an improved hard-
ware description language and implemented a simulator that ran on PCs.When VHDL
was adopted as an IEEE standard and became widely used in industry, we switched to
VHDL. The widespread availability of high-quality commercial CAD tools now
enables us to synthesize complex designs directly from the VHDL code.

All of the VHDL code in this textbook has been tested using the ModelSim sim-
ulator. The ModelSim software is available in a student edition, and we recommend
its use in conjunction with this text. The CD that accompanies this text provides a
link for downloading the ModelSim student edition and an introductory tutorial to
help students get started using the software. All of the VHDL code in this textbook
is available on the CD. The CD also contains two software packages, LogicAid and
SimUaid, which are useful in teaching digital system design. Instruction manuals
and examples of using this software are on the CD.
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This chapter reviews many of the logic design topics normally taught in a first course
in logic design. Some of the review examples that follow are referenced in later chap-
ters of this text. For more details on any of the topics discussed in this chapter, the
reader should refer to a standard logic design textbook such as Roth, Fundamentals
of Logic Design, 5th Edition (Thomson Brooks/Cole, 2004). First, we review combi-
national logic and then sequential logic. Combinational logic has no memory, so the
present output depends only on the present input. Sequential logic has memory, so
the present output depends not only on the present input but also on the past
sequence of inputs. The sections on sequential circuit timing and synchronous design
are particularly important, since a good understanding of timing issues is essential to
the successful design of digital systems.

1.1 Combinational Logic
Some of the basic gates used in logic circuits are shown in Figure 1-1. Unless otherwise
specified, all the variables that we use to represent logic signals will be two-valued, and
the two values will be designated 0 and 1.We will normally use positive logic, for which
a low voltage corresponds to a logic 0 and a high voltage corresponds to a logic 1.When
negative logic is used, a low voltage corresponds to a logic 1 and a high voltage corre-
sponds to a logic 0.

For the AND gate of Figure 1-1, the output C � 1 if and only if the input A � 1
and the input B � 1.We will use a raised dot or simply write the variables side by side
to indicate the AND operation; thus C � A AND B � A � B � AB. For the OR gate,
the output C � 1 if and only if the input A � 1 or the input B � 1 (inclusive OR). We
will use � to indicate the OR operation; thus C � A OR B � A � B. The NOT gate,
or inverter, forms the complement of the input; that is, if A � 1, C � 0, and if A � 0,
C � 1. We will use a prime (�) to indicate the complement (NOT) operation, so
C � NOT A � A�. The exclusive-OR (XOR) gate has an output C � 1 if A � 1 and
B � 0 or if A � 0 and B � 1. The symbol � represents exclusive OR, so we write

C � A XOR B � AB � � A�B � A � B (1-1)

The behavior of a combinational logic circuit can be specified by a truth table
that gives the circuit outputs for each combination of input values. As an example,

C H A P T E R

1
Review of Logic Design
Fundamentals

1
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consider the full adder of Figure 1-2, which adds two binary digits (X and Y) and a carry
(Cin) to give a sum (Sum) and a carry out (Cout).The truth table specifies the adder out-
puts as a function of the adder inputs. For example, when the inputs are X � 0, Y � 0
and Cin � 1, adding the three inputs gives 0 � 0 � 1 � 01, so the sum is 1 and the carry
out is 0. When the inputs are 011, 0 � 1 � 1 � 10, so Sum � 0 and Cout � 1. When the
inputs are X � Y � Cin � 1, 1 � 1 � 1 � 11, so Sum � 1 and Cout � 1.

2 Review of Logic Design Fundamentals

A
B

C A
B

C

A
B

CA C

AND: C = A B OR: C = A + B

NOT: C = A′ Exclusive OR: C = A ⊕ B

FIGURE 1-1: Basic
Gates

X

Y

Cin

Cout

Sum

(a) Full adder module (b) Truth table

Full
Adder

X Y Cin Cout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

FIGURE 1-2: Full
Adder

We will derive algebraic expressions for Sum and Cout from the truth table. From
the table, Sum � 1 when X � 0, Y � 0, and Cin � 1. The term X �Y �Cin equals 1 only
for this combination of inputs. The term X�YCin� � 1 only when X � 0, Y � 1,
and Cin � 0. The term XY �Cin� is 1 only for the input combination X � 1, Y � 0, and
Cin � 0. The term XYCin is 1 only when X � Y � Cin � 1. Therefore, Sum is formed
by ORing these four terms together:

Sum � X �Y �Cin � X �YCin� � XY �Cin� � XYCin (1-2)

Each of the terms in this sum of products (SOP) expression is 1 for exactly one
combination of input values. In a similar manner, Cout is formed by ORing four
terms together:

Cout � X�YCin � XY�Cin � XYCin� � XYCin (1-3)

Each term in Equations (1-2) and (1-3) is referred to as a minterm, and these
equations are referred to as minterm expansions. These minterm expansions can
also be written in m-notation or decimal notation as follows:

Sum � m1 � m2 � m4 � m7 � �m(1, 2, 4, 7)

Cout � m3 � m5 � m6 � m7 � �m(3, 5, 6, 7)

The decimal numbers designate the rows of the truth table for which the correspon-
ding function is 1. Thus Sum � 1 in rows 001, 010, 100, and 111 (rows 1, 2, 4, 7).

01Ch01.qxd  3/21/07  1:41 PM  Page 2



A logic function can also be represented in terms of the inputs for which the func-
tion value is 0. Referring to the truth table for the full adder, Cout � 0 when X � Y �
Cin � 0. The term (X � Y � Cin) is 0 only for this combination of inputs. The term (X
� Y � Cin�) is 0 only when X � Y � 0 and Cin � 1. The term (X � Y� � Cin) is 0 only
when X � Cin � 0 and Y � 1. The term (X� � Y � Cin) is 0 only when X � 1 and Y �
Cin � 0. Cout is formed by ANDing these four terms together:

Cout � (X � Y � Cin)(X � Y � Cin�)(X � Y� � Cin)(X� � Y � Cin) (1-4)

Cout is 0 only for the 000, 001, 010, and 100 rows of the truth table and, therefore,
must be 1 for the remaining four rows. Each of the terms in the Product of Sums (POS)
expression in Equation (1-4) is referred to as a maxterm, and (1-4) is called a maxterm
expansion. This maxterm expansion can also be written in decimal notation as

Cout � M0 � M1 � M2 � M4 � �M(0, 1, 2, 4)

where the decimal numbers correspond to the truth table rows for which Cout � 0.

1.2 Boolean Algebra and Algebraic Simplification
The basic mathematics used for logic design is Boolean algebra. Table 1-1
summarizes the laws and theorems of Boolean algebra. They are listed in dual
pairs; for example, Equation (1-10D) is the dual of (1-10). They can be verified
easily for two-valued logic by using truth tables. These laws and theorems can be
used to simplify logic functions so they can be realized with a reduced number of
components.

A very important law in Boolean algebra is the DeMorgan’s law. DeMorgan’s
laws stated in Equations (1-16, 1-16D) can be used to form the complement of an
expression on a step-by-step basis. The generalized form of DeMorgan’s law in
Equation (1-17) can be used to form the complement of a complex expression in
one step. Equation (1-17) can be interpreted as follows: To form the complement
of a Boolean expression, replace each variable by its complement; also replace
1 with 0, 0 with 1, OR with AND, and AND with OR. Add parentheses as
required to assure the proper hierarchy of operations. If AND is performed
before OR in F, then parentheses may be required to assure that OR is per-
formed before AND in F �.

Example Find the complement of F if

F � X � E �K (C (AB � D�) � 1 � WZ� (G�H � 0))

F � � X � (E � K � � (C� � (A� � B�) D � 0) (W � � Z � (G � H �) � 1))

Additional parentheses in F � were added when an AND operation in F was replaced with an
OR. The dual of an expression is the same as its complement, except that the variables are
not complemented.

1.2 Boolean Algebra and Algebraic Simplification 3
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4 Review of Logic Design Fundamentals

Operations with 0 and 1:

X � 0 � X (1-5) X � 1 � X (1-5D)

X � 1 � 1 (1-6) X � 0 � 0 (1-6D)

Idempotent laws:

X � X � X (1-7) X � X � X (1-7D)

Involution law:

(X�)� � X (1-8)

Laws of complementarity:

X � X� � 1 (1-9) X � X � � 0 (1-9D)

Commutative laws:

X � Y � Y � X (1-10) XY � YX (1-10D)

Associative laws:

(X � Y ) � Z � X � (Y � Z ) (1-11) (XY )Z � X(YZ ) � XYZ (1-11D)

� X � Y � Z

Distributive laws:

X(Y � Z ) � XY � XZ (1-12) X � YZ � (X � Y ) (X � Z ) (1-12D)

Simplification theorems:

XY � XY� � X (1-13) (X � Y ) (X � Y�) � X (1-13D)

X � XY � X (1-14) X(X � Y ) � X (1-14D)

(X � Y �)Y � XY (1-15) XY� � Y � X � Y (1-15D)

DeMorgan’s laws:

(X � Y � Z � . . .)� � X�Y�Z� . . . (1-16) (XYZ . . .)� � X� � Y� � Z� � . . . (1-16D)

[f(X1, X2, . . ., Xn, 0, 1, �, �)]� � f(X1�, X2�, . . ., Xn�, 1, 0, � , �) (1-17)

Duality:

(X � Y � Z � . . .)D � XYZ . . . (1-18) (XYZ . . .)D � X � Y � Z � . . . (1-18D)

[f(X1, X2, . . . , Xn, 0, 1, �, �)]D � f(X1, X2, . . . , Xn, 1, 0, � , �) (1-19)

Theorem for multiplying out and factoring:

(X � Y )(X � � Z ) � XZ � X �Y (1-20) XY � X�Z � (X � Z )(X� � Y ) (1-20D)

Consensus theorem:

XY � YZ � X�Z � XY � X�Z (1-21) (X � Y )(Y � Z )(X� � Z ) (1-21D)
� (X � Y )(X� � Z )

TABLE 1-1: Laws
and Theorems of
Boolean Algebra

01Ch01.qxd  3/21/07  1:41 PM  Page 4



Four ways of simplifying a logic expression using the theorems in Table 1-1 are
as follows:

1. Combining terms. Use the theorem XY � XY� � X to combine two terms.
For example,

ABC �D� � ABCD� � ABD� [X � ABD�, Y � C]

When combining terms by this theorem, the two terms to be combined
should contain exactly the same variables, and exactly one of the variables
should appear complemented in one term and not in the other. Since X �
X � X, a given term may be duplicated and combined with two or more other
terms. For example, the expression for Cout in Equation (1-3) can be simplified
by combining the first and fourth terms, the second and fourth terms, and the
third and fourth terms:

Cout � (X�YCin � XYCin) � (XY�Cin � XYCin) � (XYCin� � XYCin)

� YCin � XCin � XY (1-22)

Note that the fourth term in Equation (1-3) was used three times.

The theorem can still be used, of course, when X and Y are replaced with
more complicated expressions. For example,

(A � BC)(D � E�) � A�(B� � C�)(D � E�) � D � E�

[X � D � E�, Y � A � BC, Y� � A�(B� � C�)]

2. Eliminating terms. Use the theorem X � XY � X to eliminate redundant
terms if possible; then try to apply the consensus theorem (XY � X�Z � YZ �
XY � X�Z) to eliminate any consensus terms. For example,

A�B � A�BC � A�B [X � A�B]

A�BC� � BCD � A�BD � A�BC� � BCD [X � C, Y � BD, Z � A�B]

3. Eliminating literals. Use the theorem X � X�Y � X � Y to eliminate redun-
dant literals. Simple factoring may be necessary before the theorem is
applied. For example,

A�B � A�B�C�D� � ABCD� � A�(B � B�C �D�) � ABCD� (by (1-12))

� A�(B � C �D�) � ABCD� (by (1-15D))

� B(A� � ACD�) � A�C�D� (by (1-10))

� B(A� � CD�) � A�C�D� (by (1-15D))

� A�B � BCD� � A�C�D� (by (1-12))

The expression obtained after applying 1, 2, and 3 will not necessarily have a
minimum number of terms or a minimum number of literals. If it does not and
no further simplification can be made using 1, 2, and 3, deliberate introduction
of redundant terms may be necessary before further simplification can be made.

4. Adding redundant terms. Redundant terms can be introduced in several
ways, such as adding XX�, multiplying by (X � X�), adding YZ to XY � X�Z

1.2 Boolean Algebra and Algebraic Simplification 5
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(consensus theorem), or adding XY to X. When possible, the terms added
should be chosen so that they will combine with or eliminate other terms. For
example,

WX � XY � X �Z� � WY�Z� (Add WZ� by the consensus theorem.)

� WX � XY � X �Z� � WY�Z� � WZ� (Eliminate WY �Z�.)

� WX � XY � X �Z� � WZ� (Eliminate WZ�.)

� WX � XY � X �Z�

When multiplying out or factoring an expression, in addition to using the
ordinary distributive law (1-12), the second distributive law (1-12D) and
theorem (1-20) are particularly useful. The following is an example of multi-
plying out to convert from a product of sums to a sum of products:

(A � B � D)(A � B� � C�)(A� � B � D�)(A� � B � C �)

� (A � (B � D)(B� � C�))(A� � B � C �D�) (by (1-12D))

� (A � BC � � B�D)(A� � B � C �D�) (by (1-20))

� A(B � C �D�) � A�(BC� � B�D) (by (1-20))

� AB � AC �D� � A�BC� � A�B�D (by (1-12))

Note that the second distributive law (1-12D) and theorem (1-20) were applied
before the ordinary distributive law. Any Boolean expression can be factored
by using the two distributive laws  (1-12 and 1-12D) and theorem (1-20).As an
example of factoring, read the steps in the preceding example in the reverse
order.

The following theorems apply to exclusive-OR:

X � 0 � X (1-23)

X � 1 � X� (1-24)

X � X � 0 (1-25)

X � X� � 1 (1-26)

X � Y � Y � X (commutative law) (1-27)

(X � Y) � Z � X � (Y � Z) � X � Y � Z (associative law) (1-28)

X(Y � Z) � XY � XZ (distributive law) (1-29)

(X � Y)� � X � Y� � X� � Y � XY � X�Y� (1-30)

The expression for Sum in Equation (1-2) can be rewritten in terms of exclusive-
OR by using Equations (1-1) and (1-30):

Sum � X�(Y�Cin � YCin�) � X(Y�Cin� � YCin)

� X�(Y � Cin) � X(Y � Cin)� � X � Y � Cin (1-31)

The simplification rules that you studied in this section are important when a cir-
cuit has to be optimized to use a smaller number of gates.The existence of equivalent
forms also helps when mapping circuits into particular target devices where only cer-
tain types of logic (e.g., NAND only or NOR only) are available.

6 Review of Logic Design Fundamentals
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1.3 Karnaugh Maps
Karnaugh maps (K-maps) provide a convenient way to simplify logic functions of three
to five variables. Figure 1-3 shows a four-variable Karnaugh map. Each square in the
map represents one of the 16 possible minterms of four variables.A 1 in a square indi-
cates that the minterm is present in the function, and a 0 (or blank) indicates that the
minterm is absent.An X in a square indicates that we don’t care whether the minterm
is present or not. Don’t cares arise under two conditions: (1) The input combination
corresponding to the don’t care can never occur, and (2) the input combination can
occur, but the circuit output is not specified for this input condition.

The variable values along the edge of the map are ordered so that adjacent
squares on the map differ in only one variable. The first and last columns and the

1.3 Karnaugh Maps 7
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Four-Variable
Karnaugh Maps

top and bottom rows of the map are considered to be adjacent. Two 1’s in adja-
cent squares can be combined by eliminating one variable using xy � xy� � x.
Figure 1-3 shows a four-variable function with nine minterms and two don’t
cares. Minterms A�BC�D and A�BCD differ only in the variable C, so they can be
combined to form A�BD, as indicated by a loop on the map. Four 1’s in a sym-
metrical pattern can be combined to eliminate two variables. The 1’s in the four
corners of the map can be combined as follows:

(A�B�C�D� � AB�C�D�) � (A�B�CD� � AB�CD�) � B�C�D� � B�CD� � B�D�

as indicated by the loop. Similarly, the six 1’s and two X’s in the bottom half of the
map combine to eliminate three variables and form the term C. The resulting sim-
plified function is

F � A�BD � B�D� � C

The minimum sum-of-products representation of a function consists of a sum of
prime implicants.A group of one, two, four, or eight adjacent 1’s on a map represents
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a prime implicant if it cannot be combined with another group of 1’s to eliminate
a variable. A prime implicant is essential if it contains a 1 that is not contained
in any other prime implicant. When finding a minimum sum of products from a map,
essential prime implicants should be looped first, and then a minimum number of
prime implicants to cover the remaining 1’s should be looped. The Karnaugh map
shown in Figure 1-4 has five prime implicants and three essential prime implicants.
A�C� is essential because minterm m1 is not covered by any other prime implicant.
Similarly, ACD is essential because of m11, and A�B�D� is essential because of m2.
After looping the essential prime implicants, all 1’s are covered except m7. Since m7
can be covered by either prime implicant A�BD or BCD, F has two minimum forms:

F � A�C� � A�B�D� � ACD � A�BD

and

F � A�C� � A�B�D� � ACD � BCD

When don’t cares (X’s) are present on the map, the don’t cares are treated like
1’s when forming prime implicants, but the X’s are ignored when finding a minimum

8 Review of Logic Design Fundamentals
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set of prime implicants to cover all the 1’s. The following procedure can be used to
obtain a minimum sum of products from a Karnaugh map:

1. Choose a minterm (a 1) that has not yet been covered.
2. Find all 1’s and X’s adjacent to that minterm. (Check the n adjacent squares on

an n-variable map.)
3. If a single term covers the minterm and all the adjacent 1’s and X’s, then that

term is an essential prime implicant, so select that term. (Note that don’t cares are
treated like 1’s in steps 2 and 3 but not in step 1.)

4. Repeat steps 1, 2, and 3 until all essential prime implicants have been chosen.
5. Find a minimum set of prime implicants that cover the remaining 1’s on the map. (If

there is more than one such set, choose a set with a minimum number of literals.)

To find a minimum product of sums from a Karnaugh map, loop the 0’s instead
of the 1’s. Since the 0’s of F are the 1’s of F �, looping the 0’s in the proper way gives
the minimum sum of products for F�, and the complement is the minimum product

Prime implicants: A�C�, ACD, A�B�D�,

A�BD, BCD

Essential prime implicants: A�C�, ACD,

A�B�D�

01Ch01.qxd  3/21/07  1:41 PM  Page 8



of sums for F. For Figure 1-3, we can first loop the essential prime implicants of
F � (BC�D� and B�C�D, indicated by dashed loops) and then cover the remaining 0
with AB. Thus the minimum sum for F � is

F � � BC�D� � B�C�D � AB

from which the minimum product of sums for F is

F � (B� � C � D)(B � C � D�)(A� � B�)

1.3.1 Simplification Using Map-Entered Variables
Two four-variable Karnaugh maps can be used to simplify functions with five vari-
ables. If functions have more than five variables, map-entered variables can be used.
Consider a truth table as in Table 1-2. There are six input variables (A, B, C, D, E, F)
and one output variable (G). Only certain rows of the truth table have been speci-
fied. To completely specify the truth table, 64 rows will be required. The input com-
binations not specified in the truth table result in an output of 0.

1.3 Karnaugh Maps 9

A B C D E F G

0 0 0 0 X X 1
0 0 0 1 X X X
0 0 1 0 X X 1
0 0 1 1 X X 1
0 1 0 1 1 X 1
0 1 1 1 1 X 1
1 0 0 1 X 1 1
1 0 1 0 X X X
1 0 1 1 X X 1
1 1 0 1 X X X
1 1 1 1 X X 1

TABLE 1-2: Partial
Truth Table for a

Six-Variable
Function

Karnaugh map techniques can be extended to simplify functions such as this using
map-entered variables. Since E and F are the input variables with the most number of
don’t cares (X), a Karnaugh map can be formed with A, B, C, D and the remaining two
variables can be entered inside the map. Figure 1-5 shows a four-variable map with vari-
ables E and F entered in the squares in the map.When E appears in a square, this means
that if E � 1, the corresponding minterm is present in the function G, and if E � 0, the
minterm is absent. The fifth and sixth rows in the truth table result in the E in the box
corresponding to minterm 5 and minterm 7.The seventh row results in the F in the box
corresponding to minterm 9.Thus, the map represents the six-variable function

G(A, B, C, D, E, F) � m0 � m2 � m3 � Em5 � Em7 � Fm9 � m11 � m15
(� don’t care terms)

where the minterms are minterms of the variables A, B, C, D. Note that m9 is pres-
ent in G only when F � 1.

Next we will discuss a general method of simplifying functions using map-entered
variables. In general, if a variable Pi is placed in square mj of a map of function F, this
means that F � 1 when Pi � 1 and the variables are chosen so that mj � 1. Given a
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map with variables P1, P2, . . . entered into some of the squares, the minimum sum-
of-products form of F can be found as follows: Find a sum-of-products expression for
F of the form

F � MS0 � P1MS1 � P2MS2 � . . . (1-32)

where

• MS0 is the minimum sum obtained by setting P1 � P2 � . . . � 0.
• MS1 is the minimum sum obtained by setting P1 � 1, Pj � 0 ( j � 1), and replacing

all 1’s on the map with don’t cares.
• MS2 is the minimum sum obtained by setting P2 � 1, Pj � 0 ( j � 2), and replacing

all 1’s on the map with don’t cares.

Corresponding minimum sums can be found in a similar way for any remaining
map-entered variables.

The resulting expression for F will always be a correct representation of F. This
expression will be a minimum sum provided that the values of the map-entered vari-
ables can be assigned independently. On the other hand, the expression will not gener-
ally be a minimum sum if the variables are not independent (for example, if P1 � P2�).

For the example of Figure 1-5, maps for finding MS0, MS1, and MS2 are shown,
where E corresponds to P1 and F corresponds to P2. Note that it is not required to
draw a map for E � 1, F � 1, because E � 1 already covers cases with E � 1, F � 0
and E � 1, F � 1. The resulting expression is a minimum sum of products for G:

G � A�B� � ACD � EA�D � FAD

After some practice, it should be possible to write the minimum expression
directly from the original map without first plotting individual maps for each of the
minimum sums.

1.4 Designing With NAND and NOR Gates
In many technologies, implementation of NAND gates or NOR gates is easier than
that of AND and OR gates. Figure 1-6 shows the symbols used for NAND and NOR
gates. The bubble at a gate input or output indicates a complement. Any logic func-
tion can be realized using only NAND gates or only NOR gates.

10 Review of Logic Design Fundamentals
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1.4 Designing With NAND and NOR Gates 11

NAND:

NOR:

C = (AB)′ = A′ + B ′

C = (A + B)′ = A′B ′

C

C

C

C

A
B

A
B

A
B

A
B

≡

≡

FIGURE 1-6: NAND
and NOR Gates

Conversion from circuits of OR and AND gates to circuits of all NOR gates or
all NAND gates is straightforward. To design a circuit of NOR gates, start with a
product-of-sums representation of the function (circle 0’s on the Karnaugh map).
Then find a circuit of OR and AND gates that has an AND gate at the output. If an
AND gate output does not drive an AND gate input and an OR gate output does
not connect to an OR gate input, then conversion is accomplished by replacing all
gates with NOR gates and complementing inputs if necessary. Figure 1-7 illustrates
the conversion procedure for

Z � G(E � F)(A � B� � D)(C � D) � G(E � F)[(A � B�)C � D]

Conversion to a circuit of NAND gates is similar, except the starting point
should be a sum-of-products form for the function (circle 1’s on the map), and the
output gate of the AND-OR circuit should be an OR gate.

(a) AND-OR circuit

D
C

A
B ′ G

E
F

Z

(b) Equivalent NOR-gate circuit

A

G ′D
C ′B ′

E
F

Z

Double inversion cancels

Complemented input
cancels inversion

FIGURE 1-7:
Conversion to NOR
Gates

Even if AND and OR gates do not alternate, we can still convert a circuit of
AND and OR gates to a NAND or NOR circuit, but it may be necessary to add
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extra inverters so that each added inversion is canceled by another inversion. The
following procedure may be used to convert to a NAND (or NOR) circuit:

1. Convert all AND gates to NAND gates by adding an inversion bubble at the out-
put. Convert OR gates to NAND gates by adding inversion bubbles at the inputs.
(To convert to NOR, add inversion bubbles at all OR gate outputs and all AND
gate inputs.)

2. Whenever an inverted output drives an inverted input, no further action is needed,
since the two inversions cancel.

3. Whenever a noninverted gate output drives an inverted gate input or vice versa,
insert an inverter so that the bubbles will cancel. (Choose an inverter with the
bubble at the input or output, as required.)

4. Whenever a variable drives an inverted input, complement the variable (or add
an inverter) so the complementation cancels the inversion at the input.

In other words, if we always add bubbles (or inversions) in pairs, the function
realized by the circuit will be unchanged.To illustrate the procedure, we will convert
Figure 1-8(a) to NANDs. First, we add bubbles to change all gates to NAND gates
(Figure 1-8(b)).The highlighted lines indicate four places where we have added only
a single inversion. This is corrected in Figure 1-8(c) by adding two inverters and
complementing two variables.

12 Review of Logic Design Fundamentals
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1.5 Hazards in Combinational Circuits
When the input to a combinational circuit changes, unwanted switching transients
may appear in the output.These transients occur when different paths from input to
output have different propagation delays. If, in response to an input change and for
some combination of propagation delays, a circuit output may momentarily go to 0
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when it should remain a constant 1, we say that the circuit has a static 1-hazard.
Similarly, if the output may momentarily go to 1 when it should remain a 0, we say
that the circuit has a static 0-hazard. If, when the output is supposed to change from
0 to 1 (or 1 to 0), the output may change three or more times, we say that the circuit
has a dynamic hazard.

Consider the two simple circuits in Figure 1-9. Figure 1-9(a) shows an inverter and
an OR gate implementing the function A � A�. Logically, the output of this circuit is
expected to be a 1 always; however, a delay in the inverter gate can cause static haz-
ards in this circuit.Assume a nonzero delay for the inverter and that the value of A just
changed from 1 to 0.There is a short interval of time until the inverter delay has passed
when both inputs of the OR gate are 0 and hence the output of the circuit may momen-
tarily go to 0. Similarly, in the circuit in Figure 1-9(b), the expected output is always 0;
however, when A changes from 1 to 0, a momentary 1 appears at the output of the
inverter because of the delay.This circuit hence has a static 0-hazard.The hazard occurs
because both A and A� have the same value for a short duration after A changes.

1.5 Hazards in Combinational Circuits 13

(a) Simple circuit with static
1-hazard

(b) Simple circuit with static
0-hazard

A A + A′ A (A + A′ )′ = A A′FIGURE 1-9: Simple
Circuits Containing
Hazards

A static 1-hazard occurs in a sum-of-product implementation when two
minterms differing by only one input variable are not covered by the same product
term. Figure 1-10(a) illustrates another circuit with a static 1-hazard. If A � C � 1,
the output should remain a constant 1 when B changes from 1 to 0. However, as
shown in Figure 1-10(b), if each gate has a propagation delay of 10 ns, E will go to
0 before D goes to 1, resulting in a momentary 0 (a 1-hazard appearing in the output
F). As seen on the Karnaugh map, there is no loop that covers both minterm ABC
and AB�C. So if A � C � 1 and B changes from 1 to 0, BC immediately becomes 0,
but until an inverter delay passes, AB� does not become a 1. Both terms can momen-
tarily go to 0, resulting in a glitch in F. If we add a loop corresponding to the term
AC to the map and add the corresponding gate to the circuit (Figure 1-10(c)), this
eliminates the hazard. The term AC remains 1 while B is changing, so no glitch can
appear in the output. In general, nonminimal expressions are required to eliminate
static hazards.

To design a circuit that is free of static and dynamic hazards, the following pro-
cedure may be used:

1. Find a sum-of-products expression (Ft) for the output in which every pair of
adjacent 1s is covered by a 1-term. (The sum of all prime implicants will always
satisfy this condition.) A two-level AND-OR circuit based on this Ft will be free
of 1-, 0-, and dynamic hazards.

2. If a different form of circuit is desired, manipulate Ft to the desired form by sim-
ple factoring, DeMorgan’s laws, and so on. Treat each xi and xi� as independent
variables to prevent introduction of hazards.
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Alternatively, you can start with a product-of-sums expression in which every
pair of adjacent 0s is covered by a 0-term.

Given a circuit, one can identify the static hazards in it by writing an expression
for the output in terms of the inputs exactly as it is implemented in the circuit and
manipulating it to a sum-of-products form, treating xi and xi� as independent variables.
A Karnaugh map can be constructed and all implicants corresponding to each term
circled. If any pair of adjacent 1’s is not covered by a single term, a static 1-hazard can
occur. Similarly, a static 0-hazard can be identified by writing a product-of-sums
expression for the circuit.

1.6 Flip-Flops and Latches
Sequential circuits commonly use flip-flops as storage devices. There are several
types of flip-flops, such as Delay (D) flip-flops, J-K flip-flops, Toggle (T) flip-flops,
and so on. Figure 1-11 shows a clocked D flip-flop. This flip-flop can change state in
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response to the rising edge of the clock input.The next state of the flip-flop after the
rising edge of the clock is equal to the D input before the rising edge. The charac-
teristic equation of the flip-flop is therefore Q� � D, where Q� represents the next
state of the Q output after the active edge of the clock and D is the input before the
active edge.
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FIGURE 1-11:
Clocked D Flip-Flop
with Rising-Edge
Trigger
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FIGURE 1-12:
Clocked J-K
Flip-Flop

A clocked T flip-flop (Figure 1-13) changes state following the active edge of
the clock if T � 1, and no state change occurs if T � 0. T flip-flops are particularly
useful for designing counters. The characteristic equation for the T flip-flop is

Q� � QT� � Q�T � Q � T (1-34)

A J-K flip-flop is easily converted to a T flip-flop by connecting T to both J and
K. Substituting T for J and K in Equation (1-33) yields Equation (1-34).

FIGURE 1-13:
Clocked T Flip-Flop

Figure 1-12 shows a clocked J-K flip-flop and its truth table. Since there is a bub-
ble at the clock input, all state changes occur following the falling edge of the clock
input. If J � K � 0, no state change occurs. If J � 1 and K � 0, the flip-flop is set to 1,
independent of the present state. If J � 0 and K � 1, the flip-flop is always reset to 0.
If J � K � 1, the flip-flop changes state. The characteristic equation, derived from
the truth table in Figure 1-12, using a Karnaugh map is

Q� � JQ� � K�Q (1-33)
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S

R

P

Q

S R Q Q+

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 – 
1 1 1 – 

FIGURE 1-14: S-R
Latch

Two NOR gates can be connected to form an unclocked S-R (set-reset) flip-flop,
as shown in Figure 1-14. An unclocked flip-flop of this type is often referred to as
an S-R latch. If S � 1 and R � 0, the Q output becomes 1 and P � Q�. If S � 0 and
R � 1, Q becomes 0 and P � Q�. If S � R � 0, no change of state occurs. If R �
S � 1, P � Q � 0, which is not a proper flip-flop state, since the two outputs should
always be complements. If R � S � 1 and these inputs are simultaneously changed to
0, oscillation may occur. For this reason, S and R are not allowed to be 1 at the same
time. For purposes of deriving the characteristic equation, we assume that S � R � 1
never occurs, in which case Q� � S � R�Q. In this case, Q� represents the state after
any input changes have propagated to the Q output.

Latch 

Q

DG

G D Q Q+

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

D

D

G

Q Q+
 = DG + G′Q + (DQ)

FIGURE 1-15:
Transparent D
Latch

FIGURE 1-16:
Implementation of
D Latch

A gated D latch (Figure 1-15), also called a transparent D latch, behaves as fol-
lows: If the gate signal G � 1, then the Q output follows the D input (Q� � D). If
G � 0, then the latch holds the previous value of Q (Q� � Q). Essentially, the
device will not respond to input changes unless G � 1; it simples “latches” the pre-
vious input right before G became 0. Some refer to the D latch as a level-sensitive
D flip-flop. Essentially, if the gate input G is viewed as a clock, the latch can be
considered as a device that operates when the clock level is high and does
not respond to the inputs when the clock level is low. The characteristic equation
for the D latch is Q� � GD � G�Q. Figure 1-16 shows an implementation of the
D latch using gates. Since the Q� equation has a 1-hazard, an extra AND gate has
been added to eliminate the hazard.
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1.7 Mealy Sequential Circuit Design
There are two basic types of sequential circuits: Mealy and Moore. In a Mealy circuit,
the outputs depend on both the present state and the present inputs. In a Moore
circuit, the outputs depend only on the present state. A general model of a Mealy
sequential circuit consists of a combinational circuit, which generates the outputs and
the next state, and a state register, which holds the present state (see Figure 1-17).
The state register normally consists of D flip-flops. The normal sequence of events is
(1) the X inputs change to a new value; (2) after a delay, the corresponding Z outputs
and next state appears at the output of the combinational circuit; and (3) the next
state is clocked into the state register and the state changes.The new state feeds back
into the combinational circuit and the process is repeated.
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Combinational 
circuit 

State 
register 

Next state 

Inputs (X ) Outputs (Z )

Clock 

State 

FIGURE 1-17:
General Model of
Mealy Sequential
Machine

X Z

Clock 

FIGURE 1-18: Block
Diagram of a
Sequence Detector

1.7.1 Mealy Machine Design Example 1: Sequence Detector
To illustrate the design of a clocked Mealy sequential circuit, let us design a sequence
detector. The circuit has the form indicated in the block diagram in Figure 1-18.

The circuit will examine a string of 0’s and 1’s applied to the X input and generate
an output Z � 1 only when the input sequence ends in 1 0 1. The input X can
change only between clock pulses. The output Z � 1 coincides with the last 1 in 1 0 1.
The circuit does not reset when a 1 output occurs. A typical input sequence and the
corresponding output sequence are

X � 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

Z � 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

Let us construct a state graph for this sequence detector. We will start in a reset
state designated S0. If a 0 input is received, we can stay in state S0 as the input
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sequence we are looking for does not start with 0. However, if a 1 is received, the
circuit should go to a new state. Let us denote that state as S1. When in S1, if we
receive a 0, the circuit must change to a new state (S2) to remember that the first two
inputs of the desired sequence (1 0) have been received. If a 1 is received in state S2,
the desired input sequence is complete and the output should be a 1.The output will
be produced as a Mealy output and will coincide with the last 1 in the detected
sequence. Since we are designing a Mealy circuit, we are not going to go to a new
state that indicates the sequence 101 has been received. When we receive a 1 in S2,
we cannot go to the start state since the circuit is not supposed to reset with every
detected sequence. But the last 1 in a sequence can be the first 1 in another
sequence; hence, we can go to state S1. The partial state graph at this point is indi-
cated in Figure 1-19.
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FIGURE 1-19:
Partial State Graph
of the Sequence
Detector

When a 0 is received in state S2, we have received two 0’s in a row and must
reset the circuit to state S0. If a 1 is received when we are in S1, we can stay in
S1 because the most recent 1 can be the first 1 of a new sequence to be detected.
The final state graph is shown in Figure 1-20. State S0 is the starting state, state
S1 indicates that a sequence ending in 1 has been received, and state S2 indicates
that a sequence ending in 10 has been received. Converting the state graph to a
state table yields Table 1-3. In row S2 of the table, an output of 1 is indicated for
input 1.

FIGURE 1-20:
Mealy State Graph
for Sequence
Detector

Present Next State Present Output
State X � 0 X � 1 X � 0 X � 1

S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S1 0 1

TABLE 1-3: State
Table for Sequence

Detector
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Next, state assignment is performed, whereby specific flip-flop values are associ-
ated with specific states. There are two techniques to perform state assignment
(1) one-hot state assignment and (2) encoded state assignment. In one-hot state
assignment, one flip-flop is used for each state. Hence three flip-flops will be required
if this circuit is to be implemented using the one-hot approach. In encoded state
assignment, just enough flip-flops to have a unique combination for each state are
sufficient. Since we have three states, we need at least two flip-flops to represent all
states. We will use encoded state assignment in this design. Let us designate the two
flip-flops as A and B. Let the flip-flop states A � 0 and B � 0 correspond to state S0;
A � 0 and B � 1 correspond to state S1; and A � 1 and B � 0 correspond to state S2.
Now, the transition table of the circuit can be written as in Table 1-4.
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TABLE 1-4:
Transition Table for
Sequence Detector

A�B� Z
AB X � 0 X � 1 X � 0 X � 1

00 00 01 0 0
01 10 01 0 0
10 00 01 0 1

From this table, we can plot the K-maps for the next states and the output Z.The
next states are typically represented by A� and B�. The three K-maps are shown in
Figure 1-21.
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11

10 0 0

0

00

1

X X

0 1

1
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0

X X

0 1
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00

0

X X

1 0

00

01

11

10

1 0

00

01

11

10

1

A+
 = X ′B B+

 = X Z = XA

FIGURE 1-21:
K-Maps for Next
States and Output
of Sequence
Detector

The next step is deriving the flip-flop inputs to obtain the desired next states. If
D flip-flops are used, one simply needs to give the expected next state of the flip-
flop to the flip-flop input. So, for flip-flops A and B, DA � A� and DB � B�. The
resulting circuit is shown in Figure 1-22.

1.7.2 Mealy Machine Design Example 2: BCD to Excess-3
Code Converter

As an example of a more complex Mealy sequential circuit, we will design a serial code
converter that converts an 8-4-2-1 binary-coded-decimal (BCD) digit to an excess-
3-coded decimal digit. The input (X) will arrive serially with the least significant bit
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(LSB) first. The outputs will be generated serially as well. Table 1-5 lists the desired
inputs and outputs at times t0, t1, t2, and t3.After receiving four inputs, the circuit should
reset to its initial state, ready to receive another BCD digit.
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B ′ BA ′ A

D

X

D

Z

CKCK

Clock

FIGURE 1-22:
Circuit for Mealy
Sequence Detector

X Input (BCD) Z Output (excess-3)

t3 t2 t1 t0 t3 t2 t1 t0

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

TABLE 1-5: Code
Converter

The excess-3 code is formed by adding 0011 to the BCD digit. For example,

0 1 0 0 0 1 0 1

� 0 0 1 1 � 0 0 1 1

0 1 1 1 1 0 0 0

If all of the BCD bits are available simultaneously, this code converter can be
implemented as a combinational circuit with four inputs and four outputs. However,
here the bits arrive sequentially, one bit at a time. Hence we must implement this
code converter sequentially.

Let us now construct a state graph for the code converter (Figure 1-23(a)). Let
us designate the start state as S0. The first bit arrives and we need to add 1 to this
bit, as it is the LSB of 0011, the number to be added to the BCD digit to obtain the
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excess-3 code.At t0, we add 1 to the least significant bit, so if X � 0, Z � 1 (no carry),
and if X � 1, Z � 0 (carry � 1). Let us use S1 to indicate no carry after the first addi-
tion, and S2 to indicate a carry of 1 after the addition to the LSB.

At t1, we add 1 to the next bit, so if there is no carry from the first addition (state
S1), X � 0 gives Z � 0 � 1 � 0 � 1 and no carry (state S3), and X � 1 gives Z � 1 �
1 � 0 � 0 and a carry (state S4). If there is a carry from the first addition (state S2),
then X � 0 gives Z � 0 � 1 � 1 � 0 and a carry (S4), and X � 1 gives Z � 1 � 1 �
1 � 1 and a carry (S4).

At t2, 0 is added to X, and transitions to S5 (no carry) and S6 are determined in a
similar manner. At t3, 0 is again added to X, and the circuit resets to S0.

Figure 1-23(b) gives the corresponding state table. At this point, we should
verify that the table has a minimum number of states before proceeding (see
Section 1–9). Then state assignment must be performed. Since this state table has
seven states, three flip-flops will be required to realize the table in encoded state
assignment. In the one-hot approach, one flip-flop is used for each state. Hence
seven flip-flops will be required if this circuit is to be implemented using the one-
hot approach. The next step is to make a state assignment that relates the flip-
flop states to the states in the table. In the sequence detector example, we simply
did a straight binary state assignment. Here we are going to look for an optimal
assignment. The best state assignment to use depends on a number of factors. In
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many cases, we should try to find an assignment that will reduce the amount of
required logic. For some types of programmable logic, a straight binary state
assignment will work just as well as any other. For programmable gate arrays, a
one-hot assignment may be preferred. In recent years, with the abundance of
transistors on silicon chips, the emphasis on optimal state assignment has been
reduced.

In order to reduce the amount of logic required, we will make a state assignment
using the following guidelines (see Roth, Fundamentals of Logic Design, 5th Ed.
[Thomson Brooks/Cole, 2004] for details):

I. States that have the same next state (NS) for a given input should be given adja-
cent assignments (look at the columns of the state table).

II. States that are the next states of the same state should be given adjacent assign-
ments (look at the rows).

III. States that have the same output for a given input should be given adjacent
assignments.

Using these guidelines tends to clump 1’s together on the Karnaugh maps for the
next state and output functions. The guidelines indicate that the following states
should be given adjacent assignments:

I. (1, 2), (3, 4), (5, 6) (in the X � 1 column, S1 and S2 both have NS
S4; in the X � 0 column, S3 and S4 have NS S5,
and S5 and S6 have NS S0)

II. (1, 2), (3, 4), (5, 6) (S1 and S2 are NS of S0; S3 and S4 are NS of S1;
and S5 and S6 are NS of S4)

III. (0, 1, 4, 6), (2, 3, 5)

Figure 1-24(a) gives an assignment map, which satisfies the guidelines, and the
corresponding transition table. Since state 001 is not used, the next state and outputs
for this state are don’t cares. The next state and output equations are derived from
this table in Figure 1-25. Figure 1-26 shows the realization of the code converter
using NAND gates and D flip-flops.
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If J-K flip-flops are used instead of D flip-flops, the input equations for the J-K
flip-flops can be derived from the next state maps. Given the present state flip-flop
(Q) and the desired next state (Q�), the J and K inputs can be determined from
Table 1-6, also known as the excitation table. This table is derived from the truth
table in Figure 1-12.
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Code Converter

FIGURE 1-26:
Realization of Code
Converter
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Q Q� J K

0 0 0 X (No change in Q; J must be 0, K may be 1 to reset Q to 0.)
0 1 1 X (Change to Q � 1; J must be 1 to set or toggle.)
1 0 X 1 (Change to Q � 0; K must be 1 to reset or toggle.)
1 1 X 0 (No change in Q; K must be 0, J may be 1 to set Q to 1.)

TABLE 1-6:
Excitation Table for

a J-K Flip-Flop
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Figure 1-27 shows derivation of J-K flip-flop input equations for the state table
of Figure 1-23 using the state assignment of Figure 1-24. First, we derive the J-K
input equations for flip-flop Q1 using the Q1

� map as the starting point. From the
preceding table, whenever Q1 is 0, J � Q1

� and K � X. So, we can fill in the Q1 � 0
half of the J1 map the same as Q1

� and the Q1 � 0 half of the K1 map as all X’s.When
Q1 is 1, J1 � X and K1 � (Q1

�)�. So, we can fill in the Q1 � 1 half of the J1 map with
X’s and the Q1 � 1 half of the K1 map with the complement of the Q1

�. Since half of
every J and K map is don’t cares, we can avoid drawing separate J and K maps and
read the J’s and K’s directly from the Q� maps, as illustrated in Figure 1-27(b). This
shortcut method is based on the following: If Q � 0, then J � Q�, so loop the 1’s on
the Q � 0 half of the map to get J. If Q � 1, then K � (Q�)�, so loop the 0’s on the
Q � 1 half of the map to get K. The J and K equations will be independent of Q,
since Q is set to a constant value (0 or 1) when reading J and K. To make reading
the J’s and K’s off the map easier, we cross off the Q values on each map. In effect,
using the shortcut method is equivalent to splitting the four-variable Q� map into
two three-variable maps, one for Q � 0 and one for Q � 1.
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FIGURE 1-27:
Derivation of J-K
Input Equations

The following summarizes the steps required to design a sequential circuit:

1. Given the design specifications, determine the required relationship between the
input and output sequences. Then find a state graph and state table.

2. Reduce the table to a minimum number of states. First eliminate duplicate rows
by row matching; then form an implication table and follow the procedure in
Section 1.9.

01Ch01.qxd  3/21/07  1:41 PM  Page 24



3. If the reduced table has m states (2n-1 � m � 2n), n flip-flops are required. Assign
a unique combination of flip-flop states to correspond to each state in the
reduced table. This is the encoded state assignment technique. Alternately, a one-
hot assignment with m flip-flops can be used.

4. Form the transition table by substituting the assigned flip-flop states for each
state in the reduced state tables. The resulting transition table specifies the next
states of the flip-flops and the output in terms of the present states of the flip-
flops and the input.

5. Plot next-state maps and input maps for each flip-flop and derive the flip-flop
input equations. Derive the output functions.

6. Realize the flip-flop input equations and the output equations using the available
logic gates.

7. Check your design using computer simulation or another method.

Steps 2 through 7 may be carried out using a suitable computer-aided design
(CAD) program.

1.8 Moore Sequential Circuit Design
In a Moore circuit, the outputs depend only on the present state. Moore machines
are typically easier to design and debug compared to Mealy machines, but they
often contain more states than equivalent Mealy machines. In Moore machines,
there are no outputs that happen during the transition. The outputs are associated
entirely to the state.

1.8.1 Moore Machine Design Example 1: Sequence Detector
As an example, let us design the sequence detector of Section 1.7.1 using the Moore
Method.The circuit will examine a string of 0’s and 1’s applied to the X input and gen-
erate an output Z � 1 only when the input sequence ends in 101. The input X can
change only between clock pulses. The circuit does not reset when a 1 output occurs.

As in the Mealy machine example, we start in a reset state designated S0 in
Figure 1-28. If a 0 input is received, we can stay in state S0 as the input sequence we
are looking for does not start with 0. However, if a 1 is received, the circuit goes to
a new state, S1. When in S1, if we receive a 0, the circuit must change to a new state
(S2) to remember that the first two inputs of the desired sequence (10) have been
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FIGURE 1-28: State
Graph of the Moore
Sequence Detector
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received. If a 1 is received in state S2, the circuit should go to a new state to indicate
that the desired input sequence is complete. Let us designate this new state as S3. In
state S3, the output must have a value of 1. The outputs in states S0, S1 and S2 must
be 0’s. The sequence 100 resets the circuit to S0. A sequence 1010 takes the circuit
back to S2 because another 1 input should cause Z to become 1 again.

The state table corresponding to the circuit is given by Table 1-7. Note that there
is a single column for output because the output is determined by the present state
and does not depend on X. Note that this sequence detector requires one more state
than the Mealy sequence detector in Table 1-3, which detects the same input
sequence.
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TABLE 1-7: State
Table for Sequence

Detector

Next State
Present State X � 0 X � 1 Present Output (Z)

S0 S0 S1 0
S1 S2 S1 0
S2 S0 S3 0
S3 S2 S1 1

TABLE 1-8:
Transition Table for

Moore Sequence
Detector

A�B�

AB X � 0 X � 1 Z

00 00 01 0
01 11 01 0
11 00 10 0
10 11 01 1

Because there are four states, two flip-flops are required to realize the circuit.
Using the state assignment AB � 00 for S0, AB � 01 for S1, AB � 11 for S2, and
AB � 10 for S3, the transition table shown in Table 1-8 is obtained.

The output function Z � AB�. Note that Z depends only on the flip-flop states
and is independent of X, while for the corresponding Mealy machine, Z was a func-
tion of X. (It was equal to AX in Figure 1-21.) The transition table can be used to
write the next state maps and inputs to the flip-flops can be derived.

1.8.2 Moore Machine Design Example 2: NRZ to Manchester
Code Converter

As another example of designing a Moore sequential machine, we will design a con-
verter for serial data. Binary data is frequently transmitted between computers as a
serial stream of bits. Figure 1-29 shows three different coding schemes for serial
data.The example shows transmission of the bit sequence 0, 1, 1, 1, 0, 0, 1, 0.With the
NRZ (nonreturn-to-zero) code, each bit is transmitted for one bit time without any
change. In contrast, for the RZ (return-to-zero) code, a 0 is transmitted as 0 for one
full bit time, but a 1 is transmitted as a 1 for the first half of the bit time, and then
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the signal returns to 0 for the second half. For the Manchester code, a 0 is transmit-
ted as 0 for the first half of the bit time and a 1 for the second half, but a 1 is trans-
mitted as a 1 for the first half and a 0 for the second half. Thus, the Manchester
encoded bit always changes in the middle of the bit time.

We will design a Moore sequential circuit that converts an NRZ-coded bit
stream to a Manchester-coded bit stream (Figure 1-30). In order to do this, we
will use a clock (CLOCK2) that is twice the frequency of the basic bit clock. If
the NRZ bit is 0, it will be 0 for two CLOCK2 periods, and if it is 1, it will be 1
for two CLOCK2 periods. Thus, starting in the reset state (S0), the only two pos-
sible input sequences are 00 and 11, and the corresponding output sequences are
01 and 10. When a 0 is received, the circuit goes to S1 and outputs a 0; when the
second 0 is received, it goes to S2 and outputs a 1. Starting in S0, if a 1 is received,
the circuit goes to S3 and outputs a 1, and when the second 1 is received, it must
go to a state with a 0 output. Going back to S0 is appropriate since S0 has a 0 out-
put and the circuit is ready to receive another 00 or 11 sequence. When in S2, if
a 00 sequence is received, the circuit can go to S1 and then back to S2. If a
11 sequence is received in S2, the circuit can go to S3 and then back to S0. The cor-
responding Moore state table has two don’t cares, which correspond to input
sequences that cannot occur.
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Figure 1-31 shows the timing chart for the Moore circuit. Note that the
Manchester output is shifted one clock time with respect to the NRZ input. This
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shift occurs because a Moore circuit cannot respond to an input until the active edge
of the clock occurs. This is in contrast to a Mealy circuit, for which the output can
change after the input changes and before the next clock.

1.9 Equivalent States and Reduction
of State Tables
The concept of equivalent states is important for the design and testing of sequential
circuits. It helps to reduce the hardware consumed by circuits. Two states in a sequen-
tial circuit are said to be equivalent if we cannot tell them apart by observing input and
output sequences. Consider two sequential circuits, N1 and N2 (see Figure 1-32).
N1 and N2 could be copies of the same circuit. N1 is started in state si, and N2 is started
in state sj. We apply the same input sequence, X, to both circuits and observe the
output sequences, Z1 and Z2. (The underscore notation indicates a sequence.) If Z1
and Z2 are the same, we reset the circuits to states si and sj, apply a different input
sequence, and observe Z1 and Z2. If the output sequences are the same for all possi-
ble input sequences, we say the si and sj are equivalent (si � sj). Formally, we can
define equivalent states as follows: si � sj if and only if, for every input sequence X, the
output sequences Z1 � �1(si, X) and Z2 � �2(sj, X) are the same. This is not a very
practical way to test for state equivalence since, at least in theory, it requires input
sequences of infinite length. In practice, if we have a bound on number of states, then
we can limit the length of the test sequences.

A more practical way to determine state equivalence uses the state equivalence
theorem: si � sj if and only if for every single input X, the outputs are the same and the
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next states are equivalent.When using the definition of equivalence, we must consider
all input sequences, but we do not need any information about the internal state of the
system. When using the state equivalence theorem, we must look at both the output
and next state, but we need to consider only single inputs rather than input sequences.

The table of Figure 1-33(a) can be reduced by eliminating equivalent states.
First, observe that states a and h have the same next states and outputs when X � 0
and also when X � 1.Therefore, a � h so we can eliminate row h and replace h with
a in the table. To determine if any of the remaining states are equivalent, we will use
the state equivalence theorem. From the table, since the outputs for states a and b
are the same, a � b if and only if c � d and e � f. We say that c-d and e-f are implied
pairs for a-b. To keep track of the implied pairs, we make an implication chart, as
shown in Figure 1-33(b).We place c-d and e-f in the square at the intersection of row
a and column b to indicate the implication. Since states d and e have different
outputs, we place an X in the d-e square to indicate that d � e. After completing the
implication chart in this way, we make another pass through the chart. The e-g
square contains c-e and b-g. Since the c-e square has an X, c � e, which implies e � g,
so we X out the e-g square. Similarly, since a � g, we X out the f-g square. On the
next pass through the chart, we X out all the squares that contain e-g or f-g as
implied pairs (shown on the chart with dashed x’s). In the next pass, no additional
squares are X’ed out, so the process terminates. Since all the squares corresponding
to non-equivalent states have been X’ed out, the coordinates of the remaining
squares indicate equivalent state pairs. From the first column, a � b; from third col-
umn, c � d; and from the fifth column, e � f.

The implication table method of determining state equivalence can be summa-
rized as follows:

1. Construct a chart that contains a square for each pair of states.
2. Compare each pair of rows in the state table. If the outputs associated with states

i and j are different, place an X in square i-j to indicate that i � j. If the outputs
are the same, place the implied pairs in square i-j. (If the next states of i and j are
m and n for some input x, then m-n is an implied pair.) If the outputs and next
states are the same (or if i-j implies only itself), place a check (�) in square i-j to
indicate that i � j.

3. Go through the table square by square. If square i-j contains the implied pair
m-n, and square m-n contains an X, then i � j, and an X should be placed in
square i–j.

4. If any X’s were added in step 3, repeat step 3 until no more X’s are added.
5. For each square i-j that does not contain an X, i � j.

If desired, row matching can be used to partially reduce the state table before con-
structing the implication table. Although we have illustrated this procedure for a
Mealy table, the same procedure applies to a Moore table.

Two sequential circuits are said to be equivalent if every state in the first circuit
has an equivalent state in the second circuit, and vice versa.

Optimization techniques such as this are incorporated in CAD tools. The
importance of state minimization has slightly diminished in recent years due to
the abundance of transistors on chips; however, it is still important to do obvious
state minimizations to reduce the circuit’s area and power.
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1.10 Sequential Circuit Timing
The correct functioning of sequential circuits involves several timing issues.
Propagation delays of flip-flops, gates and wires, setup times and hold times of flip-
flops, clock synchronization, clock skew, etc become important issues while design-
ing sequential circuits. In this section, we look at various topics related to sequential
circuit timing.

30 Review of Logic Design Fundamentals

Present
State

Next State Present Output
1X = 0 X = 0 1

a c f 0

b d e 0

c ha g 0

d b g 0

e e b 0

f f a 0

g c g 0

0

0

0

0

1

1

1

h c             f 0            0

(a) State table reduction by row matching

c-d

e-f

f-g

b-c

f-g

a-d

e-g

e-g a-b

a-b

c-e

b-g

c- f

a-g

b

d

e

f

g

a b c d e f

c-d

e-f

f-g

b-c

f-g

a-d

e-g

e-g a-b

a-b

c-e

b-g

c-f

a-g

b

c

d

e

f

g

a b c d e f

a ≡ b iff c ≡ d and e ≡ f

(b) Implication chart (first pass) (c) After second and third passes

X = 0 1 X = 0 1
a c e 0 0
c a g 0 0
e e a 0 1
g c g 0 1

(d) Final reduced table

c

FIGURE 1-33: State
Table Reduction

01Ch01.qxd  3/21/07  1:41 PM  Page 30



1.10.1 Propagation Delays; Setup and Hold Times
There is a certain amount of time, albeit small, that elapses from the time the clock
changes to the time the Q output changes. This time, called propagation delay, is
indicated in Figure 1-34. The propagation delay can depend on whether the output
is changing from high to low or vice versa. In the figure, the propagation delay for
a low-to-high change in Q is denoted by tplh, and for a high-to-low change it is
denoted by tphl.

For an ideal D flip-flop, if the D input changed at exactly the same time as the
active edge of the clock, the flip-flop would operate correctly. However, for a real
flip-flop, the D input must be stable for a certain amount of time before the active
edge of the clock. This interval is called the setup time (tsu). Furthermore, D must be
stable for a certain amount of time after the active edge of the clock. This interval
is called the hold time (th). Figure 1-34 illustrates setup and hold times for a D flip-
flop that changes state on the rising edge of the clock. D can change at any time dur-
ing the shaded region on the diagram, but it must be stable during the time interval
tsu before the active edge and for th after the active edge. If D changes at any time
during the forbidden interval, it cannot be determined whether the flip-flop will
change state. Even worse, the flip-flop may malfunction and output a short pulse or
even go into oscillation. Minimum values for tsu and th and maximum values for tplh
and tphl can be read from manufacturers’ data sheets.
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1.10.2 Maximum Clock Frequency of Operation
In a synchronous sequential circuit, state changes occur immediately following the
active edge of the clock. The maximum clock frequency for a sequential circuit
depends on several factors. The clock period must be long enough so that all flip-
flop and register inputs will have time to stabilize before the next active edge of the
clock. Propagation delays and setup and hold times create complications in sequen-
tial circuit timing.

Consider a simple circuit of the form of Figure 1-35(a).The output of a D flip-flop
is fed back to its input through an inverter. Assume a clock as indicated by the wave-
form CLK in Figure 1-35(b). If the current output of the flip-flop is 1, a value of 0 will
appear at the flip-flop’s D input after the propagation delay of the inverter.Assuming
that the next active edge of the clock arrives after the setup time has elapsed, the out-
put of the flip-flop will change to 0. This process will continue, yielding the output Q
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of the flip-flop to be a waveform with twice the period of the clock. Essentially the
circuit behaves as a frequency divider.

If we increase the frequency of the clock slightly, the circuit will still work yield-
ing half of the increased frequency at the output. However, if we increase the
frequency to be very high, the output of the inverter may not get enough time to
stabilize and meet the setup time requirements. Similarly, if the inverter was very fast
and fed the inverted output to the D input extremely quickly, there will be timing
problems because the hold time of the flip-flop may not be met. So we can easily see
a variety of ways in which timing problems could arise from propagation delays and
setup and hold time requirements.

1.10.3 Timing Conditions for Proper Operation
For a circuit of the general form of Figure 1-17, assume that the maximum propa-
gation delay through the combinational circuit is tcmax and the maximum propaga-
tion delay from the time the clock changes to the time the flip-flop output changes
is tpmax, where tpmax is the maximum of tplh and tphl. There are four conditions this
circuit has to meet in order to ensure proper operation.

1. Clock period should be long enough to satisfy flip-flop setup time. The clock
period should be long enough to allow the flip-flop outputs to change and the
combinational circuitry to change while still leaving enough time to satisfy
the setup time. Once the clock arrives, it could take a delay of up to tpmax before
the flip-flop output changes.Then it could take a delay of up to tcmax before the
output of the combinational circuitry changes. Thus the maximum time from
the active edge of the clock to the time the change in Q propagates back to the
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D flip-flop inputs is tpmax � tcmax. In order to ensure proper flip-flop operation,
the combinational circuit output must be stable tsu before the end of the clock
period. If the clock period is tck,

tck 	 tpmax � tcmax � tsu

The difference between tck and (tpmax � tcmax � tsu) is referred to as the setup
time margin.

2. Clock period should be long enough to satisfy flip-flop hold time. A hold-
time violation could occur if the change in Q fed back through the combina-
tional circuit and caused D to change too soon after the clock edge. The hold
time is satisfied if

tpmin � tcmin 	 th

When checking for hold-time violations, the worst case occurs when the tim-
ing parameters have their minimum values. Since tpmin 
 th for normal flip-
flops, a hold-time violation due to Q changing does not occur.

3. External input changes to the circuit should satisfy flip-flop setup time. A setup
time violation could occur if the X input to the circuit changes too close to the
active edge of the clock. When the X input to a sequential circuit changes,
we must make sure that the input change propagates to the flip-flop inputs
such that the setup time is satisfied before the active edge of the clock. If X
changes tx time units before the active edge of the clock (see Figure 1-36), then
it could take up to the maximum propagation delay of the combinational cir-
cuit, before the change in X propagates to the flip-flop input.There should still
be a margin of tsu left before the edge of the clock. Hence, the setup time is
satisfied if

tx 	 tcxmax � tsu

where tcxmax is the maximum propagation delay from X to the flip-flop input.
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4. External input changes to the circuit should satisfy flip-flop hold times. In
order to satisfy the hold time, we must make sure that X does not change too
soon after the clock. If a change in X propagates to the flip-flop input in zero
time, X should not change for a duration of th after the clock edge.
Fortunately, it takes some positive propagation delay for the change in X
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to reach the flip-flop. If tcxmin is the minimum propagation delay from X to
the flip-flop input, changes in X will not reach the flip-flop input until at
least a time of tcxmin has elapsed after the clock edge. So, if X changes ty time
units after the active edge of the clock, then the hold time is satisfied if

ty 	 th � tcxmin

If ty is negative, X can change before the active clock edge and still satisfy
the hold time.

Given a circuit, we can determine the safe frequency of operation and safe
regions for input changes using the above principles.As an example, consider the fre-
quency divider circuit in Figure 1-35(a). If the minimum and maximum delays of the
inverter are 1 ns and 3 ns, and if tpmin and tpmax are 5 ns and 8 ns, the maximum fre-
quency at which it can be clocked can be derived using requirement (1) above.
Assume that the setup and hold times of the flip-flop are 4 ns and 2 ns. For proper
operation, tck 	 tpmax � tcmax � tsu. In this example, tpmax for the flip-flops is 8 ns, tcmax is
3 ns, and tsu is 4 ns. Hence

tck 	 8 � 3 � 4 � 15 ns

The maximum clock frequency is then 1/tck � 66.67 MHz. We should also make
sure that the hold time requirement is satisfied. Hold time requirement means that
the D input should not change before 2 ns after the clock edge. This will be satisfied
if tpmin � tcmin 	 2 ns. In this circuit, tpmin is 5 ns and tcmin is 1 ns. Thus the Q output is
guaranteed to not change until 5 ns after the clock edge, and at least 1 ns more
should elapse before the change can propagate through the inverter. Hence the
D input will not change until 6 ns after the clock edge, which automatically satisfies
the hold time requirements. Since there are no external inputs, these are the only
timing constraints that we need to satisfy.

Now consider a circuit as in Figure 1-37(a). Assume that the delay of the combi-
national circuit is in the range 2 to 4 ns, the flip-flop propagation delays are in the
range 5 to10 ns, the setup time is 8 ns, and hold time is 3 ns. In order to satisfy the
setup time, the clock period has to be greater than tpmax � tcmax � tsu. So

tck 	 10 � 4 � 8 � 22 ns

The hold time requirement is satisfied if the output does not change until 3 ns
after the clock. Here, the output is not expected to change until tpmin � tcmin. Since
tpmin is 5 ns and tcmin is 2 ns, the output is not expected to change until 7 ns, which
automatically satisfies the hold time requirement. This circuit has external inputs
that allow us to identify safe regions where the input X can change using require-
ments (3) and (4) above. The X input should be stable for a duration of tcxmax � tsu
(i.e., 4 ns � 8 ns) before the clock edge. Similarly, it should be stable for a duration
of th – tcxmin (i.e., 3 ns � 2 ns) after the clock edge. Thus, the X input should not
change 12 ns before the clock edge and 1 ns after the clock edge.Although the hold
time is 3 ns, we see that the input X can change 1 ns after the clock edge, because
it takes at least another 2 ns (minimum delay of combinational circuit) before the
input change can propagate to the D input of the flip-flop. The shaded regions in
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the waveform for X indicate safe regions where the input signal X may change
without causing erroneous operation in the circuit.

1.10.4 Glitches in Sequential Circuits
Sequential circuits often have external inputs that are asynchronous. Input changes can
cause temporary false values called glitches at the outputs and next states. For exam-
ple, if the state table of Figure 1-23(b) is implemented in the form of Figure 1-17, the
timing waveforms are as shown in Figure 1-38. Propagation delays in the flip-flop have
been neglected; hence state changes are shown to coincide with clock edges. In this
example, the input sequence is 0 0 1 0 1 0 0 1, and X is assumed to change in the mid-
dle of the clock pulse.At any given time, the next state and Z output can be read from
the next state table. For example, at time ta, State � S5 and X � 0, so Next State � S0
and Z � 0. At time tb following the rising edge of the clock, State � S0 and X is still 0,
so Next State � S1 and Z � 1. Then X changes to 1, and at time tc Next State � S2 and
Z � 0. Note that there is a glitch (sometimes called a false output) at tb. The Z output
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momentarily has an incorrect value at tb, because the change in X is not exactly
synchronized with the active edge of the clock. The correct output sequence, as indi-
cated on the waveform, is 1 1 1 0 0 0 1 1. Several glitches appear between the correct
outputs; however, these are of no consequence if Z is read at the right time. The glitch
in the next state at tb (S1) also does not cause a problem, because the next state has the
correct value at the active edge of the clock.

The timing waveforms derived from the circuit of Figure 1-26 are shown in
Figure 1-39. They are similar to the general timing waveforms given in Figure 1-38
except that State has been replaced with the states of the three flip-flops, and a
propagation delay of 10 ns has been assumed for each gate and flip-flop.
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1.10.5 Synchronous Design
One of the most commonly used digital design techniques is synchronous design. In
this type of design, a clock is used to synchronize the operation of all flip-flops, reg-
isters, and counters in the system. Synchronous circuits are more reliable compared
to asynchronous circuits. In synchronous circuits, events are expected to occur
immediately following the active edge of the clock. Outputs from one part have a
full clock cycle to propagate to the next part of the circuit. Synchronous design phi-
losophy makes design and debugging easier compared to asynchronous techniques.

Figure 1-40 illustrates a synchronous digital system. Assume that the system is
built from several modules or devices. The devices could be flip-flops, registers,
counters, adders, multipliers, and so on. All of the sequential devices are synchro-
nized with respect to the same clock in a synchronous system. A traditional way to
view a digital system is to consider it as a control section plus a data section.The var-
ious devices shown in Figure 1-40 are part of the data section. The control section is
a sequential machine that generates control signals to control the operation of the
data section. For example, if the data section contains a shift register, the control
section may generate signals that determine when the register is to be loaded (Ld)
and when it is to be shifted (Sh).A common clock synchronizes the operation of the
control and data sections. The data section may generate status signals (not shown
in this figure) that affect the control sequence. For example, if a data operation
produces an arithmetic overflow, then the data section might generate a condition
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signal V to indicate an overflow. The control section is also called controller and the
data section is often called architecture or data path.

In a synchronous digital system, we desire to see all changes happen immediately
at the active edge of the clock, but that might not happen in a practical circuit.
Modern integrated circuits (ICs) are fabricated at feature sizes such as or smaller
than 0.1 microns. Modern microprocessors are clocked at several gigahertz. In these
chips, wire delays are significant compared to the clock period. Even if two flip-flops
are connected to the same clock, the clock edge might arrive at the two flip-flops at
different times due to unequal wire delays. If unequal amounts of combinational cir-
cuitry (e.g., buffers or inverters) are used in the clock path to different devices, that
also could result in unequal delays, making the clock reach different devices at
slightly different times. This problem is called clock skew.

There are also problems that occur due to glitches in control signals. Consider
Figure 1-41, which illustrates the operation of a digital system that uses devices that
change state on the falling edge of the clock. Several flip-flops may change state in
response to this falling edge. The time at which each flip-flop changes state is deter-
mined by the propagation delay for that flip-flop. The changes in flip-flop states
in the control section will propagate through the combinational circuit that gener-
ates the control signals, and some of the control signals may change as a result. The
exact times at which the control signals change depend on the propagation delays in
the gate circuits that generate the signals as well as the flip-flop delays. Thus, after
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the falling edge of the clock, there is a period of uncertainty during which control
signals may change. Glitches and spikes may occur in the control signals due to haz-
ards. Furthermore, when signals are changing in one part of the circuit, noise may be
induced in another part of the circuit. As indicated by the shading in Figure 1-41,
there is a time interval after each falling edge of the clock in which there may be
noise in a control signal (CS), and the exact time at which the control signal changes
is not known.

If we want a device in the data section to change state on the falling edge of the
clock only if the control signal CS � 1, we can AND the clock with CS, as shown in
Figure 1-42(a). This technique is called clock gating. The transitions will occur in
synchronization with the clock CLK except for a small delay in the AND gate. The
gated CLK signal is clean because the clock is 0 during the time interval in which
the switching transients occur in CS.

Gating the clock with the control signal, as illustrated in Figure 1-42(a), can
solve some synchronization problems. However, clock gating can also lead to
clock skew and additional timing problems in high-speed circuits. Instead of gat-
ing the clock with the control signal, it is more desirable to use devices with clock
enable (CE) pins and feed the control signal to the enable pin, as illustrated in
Figure 1-42(b). Many registers, counters, and other devices used in synchronous
systems have an enable input. When enable � 1, the device changes state in
response to the clock, and when enable � 0, no state change occurs. Use of the
enable input eliminates the need for a gate on the clock input, and associated tim-
ing problems are avoided.
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CKClock

CS Enable
Clock

CS
CK

CLK

(a) Control signal gating (b) Use of a clock enable (CE)
      input to synchronize

FIGURE 1-42:
Techniques to
Synchronize
Control Signals

We discourage designers from gating clocks or feeding the output of combina-
tional circuits to clock inputs. While clock skew from wire delays is unavoidable to
some extent, clock skew due to combinational circuitry in the clock path can easily
be avoided. Circuits as in Figure 1-43 should be avoided as much as possible to min-
imize timing problems.

CS 

CLK 

DFF 

D Q

Q

DFF 

D

CLK 

Q

Q

FIGURE 1-43:
Examples of
Circuits to Avoid
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Due to wire delays or other unforeseen problems, at times we end up with cir-
cuits where the clock edge reaches different flip-flops at different times. Consider
the circuit in Figure 1-44, where the clock reaches the two flip-flops at slightly dif-
ferent times. Proper synchronous operation means that both flip-flops operate as if
they receive the same clock. Despite the delay in the clock to the second flip-flop,
its state change must be triggered before the new value of Q1 reaches D2. The max-
imum clock frequency for synchronous operation should be decided considering the
delay between the clocks as well.

1.10 Sequential Circuit Timing 39

Delay

Q1
CK

D1

Q2
CK

D2
+ +

Clock

X Z

FIGURE 1-44: A
Circuit with Clock
Skew

If devices do not have enables and synchronous operation cannot be obtained
without clock gating, we should pay attention to gate the clocks correctly. A device
with negative edge triggering can be made to function correctly by ANDing the
clock signal with the control signal, as in Figure 1-42(a). In the following paragraphs,
we describe issues associated with control signal gating for positive edge triggered
devices.

Figure 1-45 illustrates the operation of a digital system that uses devices that
change state on the rising edge of the clock. In this case, the switching transients that
result in noise and uncertainty will occur following the rising edge of the clock. The
shading indicates the time interval in which the control signal CS may be noisy. If
we want a device to change state on the rising edge of the clock when CS � 1, tran-
sition is expected at (a) and (c), but no change is expected at (b) since CS � 0 when
the clock edge arrives. In order to create a gated control signal, it is tempting to

Clock

Switching
transients

Control
signal (CS)

CLK1 =
Clock • CS

(a) (b)

State change initiated here

CLK2 = 

Clock + CS′

(c)

CS′

FIGURE 1-45:
Timing Chart for
System with Rising-
Edge Devices
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AND the clock with CS, as shown in Figure 1-46(a). The resulting signal, which goes
to the CK input of the device, may be noisy and timed incorrectly. In particular, the
CLK1 pulse at (a) will be short and noisy. It may be too short to trigger the device,
or it may be noisy and trigger the device more than once. In general, it will be out
of synchronization with the clock, because the control signal does not change until
after some of the flip-flops in the control circuit have changed state. The rising edge
of the pulse at (b) again will be out of synch with the clock, and it may be noisy. But
even worse, the device will trigger near point (b) when it should not trigger there at
all. Since CS � 0 at the time of the rising edge of the clock, triggering should not
occur until the next rising edge, when CS � 1.
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Clock
CS

CK
Rising-edge
device

CLK1

(a) With AND gate (b) With NAND gate

Clock
CS

CK

FIGURE 1-46:
Incorrect Clock
Gating for
Rising-Edge
Devices

CK
Clock

CS CLK2

FIGURE 1-47:
Correct Control
Signal Gating for
Rising-Edge Device

For a rising-edge device, if we changed the AND gate in Figure 1-42 to NAND gate
as in Figure 1-46(b), it would be incorrect because the synchronization will happen at
the wrong edge. The correct way to gate the control signal will be as in Figure 1-47,
which will result in the CK input to the device having a positive edge only when the
control signal is positive and clock is going to have a positive edge.The CK input is then

CLK2 � (CS � clock�)� � CS� � clock

The last waveform in Figure 1-45 illustrates this gated control signal. While this
circuit can solve the synchronization problem, we encourage designers to refrain
from gating clocks at all if possible.

In summary, synchronous design is based on the following principles:

• Method: All clock inputs to flip-flops, registers, counters, and so on are driven
directly from the system clock.

• Result: All state changes occur immediately following the active edge of
the clock signal.

• Advantage: All switching transients, switching noise, and so on occur between
clock pulses and have no effect on system performance.

Asynchronous design is generally more difficult than synchronous design.
Since there is no clock to synchronize the state changes, problems may arise when
several state variables must change at the same time. A race occurs if the final
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state depends on the order in which the variables change. Asynchronous design
requires special techniques to eliminate problems with races and hazards. On the
other hand, synchronous design has several disadvantages: In high-speed circuits
where the propagation delay in the wiring is significant, the clock signal must
be carefully routed so that it reaches all the clock inputs at essentially the same
time (i.e., to minimize clock skew). The maximum clock rate is determined by the
worst-case delay of the longest path. The system inputs may not be synchronized
with the clock, so use of synchronizers may be required. Synchronous systems also
consume more power than asynchronous systems. The clock distribution circuitry
in synchronous chips often consumes a significant fraction of the chip power.

1.11 Tristate Logic and Busses
Normally, if we connect the outputs of two gates or flip-flops together, the circuit will
not operate properly. It can also cause damage to the circuit. Hence, when we need to
connect multiple gate outputs to the same wire or channel,one way to do that is by using
tristate buffers.Tristate buffers are gates with a high impedance state (hi-Z) in addition
to high and low logic states. The high impedance state is equivalent to an open circuit.
In digital systems, transferring data back and forth between several system components
is often necessary. Tristate busses can be used to facilitate data transfers between regis-
ters. When several gates are connected onto a wire, what we expect is that at any one
point, one of the gates is going to actually drive the wire, and the other gates should
behave as if they are not connected to the wire.The high impedance state achieves this.

Tristate buffers can be inverting or non-inverting. The control input can be
active high or active low. Figure 1-48 shows four kinds of tristate buffers. B is the
control input used to enable or disable the buffer output. When a buffer is enabled,
the output (C) is equal to the input (A) or its complement. However, we can con-
nect two tristate buffer outputs, provided that only one output is enabled at a time.
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B A C
0 0 Hi-Z
0 1 Hi-Z
1 0 0
1 1 1
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B A C
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(b)

B A C
0 0 0
0 1 1
1 0 Hi-Z
1 1 Hi-Z

A

B
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(c)

B A C
0 0 1
0 1 0
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B
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FIGURE 1-48: Four
Kinds of Tristate
Buffers

Figure 1-49 shows a system with three registers connected to a tristate bus.
Each register is 8 bits wide, and the bus consists of 8 wires connected in parallel.
Each tristate buffer symbol in the figure represents 8 buffers operating in parallel
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FIGURE 1-49: Data
Transfer Using
Tristate Bus

Reg. ALda
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with a common enable input. Only one group of buffers is enabled at a time. For
example, if Enb � 1, the register B output is driven onto the bus. The data on the
bus is routed to the inputs of register A, register B, and register C. However, data
is loaded into a register only when its load input is 1 and the register is clocked.
Thus, if Enb � Ldc � 1, the data in register B will be copied into register C when
the active edge of the clock occurs. If Eni � Lda � Ldb � 1, the input data will be
loaded in registers A and B when the registers are clocked.

Problems
1.1 Write out the truth table for the following equation.

F � (A � B) � C � A� � (B� � C)

1.2 A full subtracter computes the difference of three inputs X, Y, and Bin, where Diff �
X – Y – Bin. When X � (Y � Bin), the borrow output Bout is set. Fill in the truth table
for the subtracter and derive the sum-of-products and product-of-sums equations for
Diff and Bout.

1.3 Simplify Z using a four-variable map with map-entered variables. ABCD represents
the state of a control circuit.Assume that the circuit can never be in state 0100, 0001,
or 1001.

Z � BC�DE � ACDF� � ABCD�F� � ABC�D�G � B�CD � ABC�D�H�

1.4 For the following functions, find the minimum sum of products using four-variable
maps with map-entered variables. In (a) and (b), mi represents a minterm of vari-
ables A, B, C, and D.

(a) F(A, B, C, D, E) � �m(0, 4, 6, 13, 14) � �d(2, 9) � E(m1 � m12)
(b) Z(A, B, C, D, E, F, G) � �m(2, 5, 6, 9) � �d(1, 3, 4, 13, 14) � E(m11 � m12)

� F(m10) � G(m0)
(c) H � A�B�CDF� � A�CD � A�B�CD�E � BCDF�
(d) G � C�E�F � DEF � AD�E�F� � BC�E�F � AD�EF�

Hint: Which variables should be used for the map sides and which variables should
be entered into the map?
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1.5 Identify the static 1-hazards in the following circuit. State the condition under which
each hazard can occur. Draw a timing diagram (similar to Figure 1–10(b)) that
shows the sequence of events when a hazard occurs.

Problems 43

C 

A′ 

D ′ 
C ′ 

G 

H 
F

a 

b 

a 

c 

a′ 
d 

F 

1 

2 

3 

4 
5 

1.6 Find all of the 1-hazards in the given circuit. Indicate what changes are necessary to
eliminate the hazards.

1.7 (a) Find all the static hazards in the following circuit. For each hazard, specify the
values of the input variables and which variable is changing when the hazard
occurs. For one of the hazards, specify the order in which the gate outputs must
change.

(b) Design a NAND-gate circuit that is free of static hazards to realize the same
function.

1.8 (a) Find all the static hazards in the following circuit. State the condition under
which each hazard can occur.

(b) Redesign the circuit so that it is free of static hazards. Use gates with at most
three inputs.

b′ 
d′ 

b 

c′ 

a′ 
c 
d′ 

F 

d′ 
a′ 
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b 

b′ 
c′ 

Z 

01Ch01.qxd  3/21/07  1:41 PM  Page 43



1.9 (a) Show how you can construct a T flip-flop using a J-K flip-flop.
(b) Show how you can construct a J-K flip-flop using a D flip-flop and gates.

1.10 Construct a clocked D flip-flop, triggered on the rising edge of CLK, using two
transparent D latches and any necessary gates. Complete the following timing dia-
gram, where Q1 and Q2 are latch outputs. Verify that the flip-flop output changes to
D after the rising edge of the clock.
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1.11 A synchronous sequential circuit has one input and one output. If the input
sequence 0101 or 0110 occurs, an output of two successive 1’s will occur. The first of
these 1’s should occur coincident with the last input of the 0101 or 0110 sequence.
The circuit should reset when the second 1 output occurs. For example,

input sequence: X � 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 . . .

output sequence: Z � 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 . . .

(a) Derive a Mealy state graph and table with a minimum number of states
(six states).

(b) Try to choose a good state assignment. Realize the circuit using J-K flip-flops
and NAND gates. Repeat using NOR gates. (Work this part by hand.)

(c) Check your answer to (b) using the LogicAid program.Also use the program to
find the NAND solution for two other state assignments.

1.12 A sequential circuit has one input (X) and two outputs (Z1 and Z2). An output Z1 � 1
occurs every time the input sequence 010 is completed provided that the sequence 100
has never occurred. An output Z2 � 1 occurs every time the input sequence 100 is
completed. Note that once a Z2 � 1 output has occurred, Z1 � 1 can never occur, but
not vice versa.

(a) Derive a Mealy state graph and table with a minimum number of states
(eight states).

(b) Try to choose a good state assignment. Realize the circuit using J-K flip-flops
and NAND gates. Repeat using NOR gates. (Work this part by hand.)

(c) Check your answer to (b) using the LogicAid program.Also use the program to
find the NAND solution for two other state assignments.

CLK 

D 

Q1 

Q2 
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1.13 A sequential circuit has one input (X) and two outputs (S and V). X represents a
4-bit binary number N, which is input least significant bit first. S represents a 4-bit
binary number equal to N � 2, which is output least significant bit first. At the
time the fourth input occurs, V � 1 if N � 2 is too large to be represented by 4 bits;
otherwise, V � 0. The value of S should be the proper value, not a don’t care, in
both cases. The circuit always resets after the fourth bit of X is received.

(a) Derive a Mealy state graph and table with a minimum number of states
(six states).

(b) Try to choose a good state assignment. Realize the circuit using D flip-flops and
NAND gates. Repeat using NOR gates. (Work this part by hand.)

(c) Check your answer to (b) using the LogicAid program.Also use the program to
find the NAND solution for two other state assignments.

1.14 A sequential circuit has one input (X) and two outputs (D and B). X represents a
4-bit binary number N, which is input least significant bit first. D represents a 4-bit
binary number equal to N – 2, which is output least significant bit first. At the time
the fourth input occurs, B � 1 if N – 2 is negative; otherwise, B � 0. The circuit
always resets after the fourth bit of X is received.

(a) Derive a Mealy state graph and table with a minimum number of states
(six states).

(b) Try to choose a good state assignment. Realize the circuit using J-K flip-flops
and NAND gates. Repeat using NOR gates. (Work this part by hand.)

(c) Check your answer to (b) using the LogicAid program.Also use the program to
find the NAND solution for two other state assignments.

1.15 A Moore sequential circuit has one input and one output.The output goes to 1 when
the input sequence 111 has occurred and the output goes to 0 if the input sequence
000 occurs. At all other times, the output holds its value.
Example:

X � 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0

Z � 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0

Derive a Moore state graph and table for the circuit.

1.16 Derive the state transition table and flip-flop input equations for a modulo-6 counter
that counts 000 through 101 and then repeats. Use J-K flip-flops.

1.17 Derive the state transition table and D flip-flop input equations for a counter that
counts from 1 to 6 and then repeats.

Problems 45
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1.18 Reduce the following state table to a minimum number of states.

46 Review of Logic Design Fundamentals

Present Next State Output
State X = 0 X = 1 X = 0 X = 1

A B G 0 1
B A D 1 1
C F G 0 1
D H A 0 0
E G C 0 0
F C D 1 1
G G E 0 0
H G D 0 0

1.19 A Mealy sequential circuit is implemented using the circuit shown in Figure 1-44.
Assume that if the input X changes, it changes at the same time as the falling edge
of the clock.

(a) Complete the timing diagram below. Indicate the proper times to read the
output (Z). Assume that “delay” is 0 ns and that the propagation delay for
the flip-flop and XOR gate has a nominal value of 10 ns. The clock period is
100 ns.

Clock 

X 

Q1 

Q2 

Z 

(b) Assume the following delays: XOR gate—10 to 20 ns, flip-flop propagation
delay—5 to 10 ns, setup time—5 ns, and hold time—2 ns. Also assume that the
“delay” is 0 ns. Determine the maximum clock rate for proper synchronous
operation. Consider both the feedback path that includes the flip-flop propaga-
tion delay and the path starting when X changes.

(c) Assume a clock period of 100 ns. Also assume the same timing parameters as in
(b). What is the maximum value that “delay” can have and still achieve proper
synchronous operation? That is, the state sequence must be the same as for no
delay.

1.20 Two flip-flops are connected as shown below. The delay represents wiring delay
between the two clock inputs, which results in clock skew. This can cause possible
loss of synchronization. The flip-flop propagation delay from clock to Q is 10 ns �
tp � 15 ns; the setup and hold times are 4 ns and 2 ns, respectively.
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(a) What is the maximum value that the delay can have and still achieve proper
synchronous operation? Draw a timing diagram to justify your answer.

Problems 47

D1 Q1 

Clk 
FF1 

Delay 

D2 Q2 

FF2 

(b) Assuming that the delay is � 3 ns, what is the minimum allowable clock period?

1.21 A D flip-flop has a propagation delay from clock to Q of 7 ns. The setup time of the
flip-flop is 10 ns and the hold time is 5 ns. A clock with a period of 50 ns (low until
25 ns, high from 25 to 50 ns, and so on) is fed to the clock input of the flip-flop.
Assume a two-level AND-OR circuitry between the external input signals and the
flip-flop inputs. Assume gate delays are between 2 and 4 ns. The flip-flop is positive
edge triggered.

(a) Assume the D input equals 0 from t � 0 until t � 10 ns, 1 from 10 until 35,
0 from 35 to 70, and 1 thereafter. Draw timing diagrams illustrating the clock,
D, and Q until 100 ns. If outputs cannot be determined (because of not satisfying
setup and hold times), indicate this by XX in the region.

(b) The D input of the flip-flop should not change between __ ns before the clock
edge and __ ns after the clock edge.

(c) External inputs should not change between __ ns before the clock edge and __ ns
after the clock edge.

1.22 A sequential circuit consists of a PLA and a D flip-flop, as shown.

X 

PLA 
D 

Q 

Z 

Clk 

      0   1      0   1 
0    0   1      0   1 
1    0   0      1   0 

Q+ Z 

Q 

X 

Clk 

Q 

Z 

20 40 60 80 120 
ns 
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(a) Complete the timing diagram, assuming that the propagation delay for the PLA
is in the range 5 to 10 ns, and the propagation delay from clock to output of the
D flip-flop is 5 to 10 ns. Use cross-hatching on your timing diagram to indicate
the intervals in which Q and Z can change, taking the range of propagation
delays into account.

(b) Assuming that X always changes at the same time as the falling edge of the
clock, what is the maximum setup and hold time specification that the flip-flop
can have and still maintain proper operation of the circuit?

1.23 A D flip-flop has a propagation delay from clock to Q of 15 ns. The setup time of
the flip-flop is 10 ns and the hold time is 2 ns. A clock with a period of 50 ns (low
until 25 ns, high from 25 to 50 ns, and so on) is fed to the clock input of the flip-flop.
The flip-flop is positive edge triggered. D goes up at 20, down at 40, up at 60, down
at 80, and so on. Draw timing diagrams illustrating the clock, D, and Q until 100 ns.
If outputs cannot be determined (because of not satisfying setup and hold times),
indicate it by placing XX in that region.

1.24 A D flip-flop has a setup time of 5 ns, a hold time of 3 ns, and a propagation delay
from the rising edge of the clock to the change in flip-flop output in the range of 6 to
12 ns. An OR gate delay is in the range of 1 to 4 ns.

(a) What is the minimum clock period for proper operation of the following circuit?
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D Q 

Clk 

X 

(b) What is the earliest time after the rising clock edge that X is allowed to change?
(c) Show how you can construct a T flip-flop using a J-K flip-flop using a block dia-

gram. Circuits inside the flip-flops are NOT to be shown.

1.25 In the following circuit, the XOR gate has a delay in the range of 2 to 16 ns. The
D flip-flop has a propagation delay from clock to Q in the range 12 to 24 ns.The setup
time is 8 ns, and the hold time is 4 ns.

D Q 

Clk 

X 

(a) What is the minimum clock period for proper operation of the circuit?
(b) What are the earliest and latest times after the rising clock edge that X is

allowed to change and still have proper synchronous operation? (Assume min-
imum clock period from (a).)

01Ch01.qxd  3/21/07  1:41 PM  Page 48



1.26 A Mealy sequential machine has the following state table:

Problems 49

NS Z
PS X � 0 X � 1 X � 0 X � 1

1 2 3 0 1
2 3 1 1 0
3 2 2 1 0

Complete the following timing diagram. Clearly mark on the diagram the times
at which you should read the values of Z. All state changes occur after the rising
edge of the clock.

D 

EN 

Qa 

CLK CLK 

EN 

D Qb D 

CLK 

EN 

D 

EN 

D 

1.27 (a) Do the following two circuits have essentially the same timing?
(b) Draw the timing for Qa and Qb given the timing diagram.
(c) If your answer to (a) is no, show what change(s) should be made in the second

circuit so that the two circuits have essentially the same timing (do not change
the flip-flop).

CLK 

X 

PS 

NS 

Z 

1 

1.28 A simple binary counter has only a clock input (CK1). The counter increments on
the rising edge of CK1.

(a) Show the proper connections for a signal En and the system clock (CLK), so
that when En � 1, the counter increments on the rising edge of CLK and when
En � 0, the counter does not change state.
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(b) Complete the following timing diagram. Explain, in terms of your diagram, why
the switching transients that occur on En after the rising edge of CLK do not
affect the proper operation of the counter.
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CLK 

En 

Ck1 

Counter 
state 

1.29 Referring to Figure 1-49, specify the values of Eni, Ena, Enb, Enc, Lda, Ldb, and
Ldc so that the data stored in Reg. C will be copied into Reg. A and Reg. B when
the circuit is clocked.
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As integrated circuit technology has improved to allow more and more components
on a chip, digital systems have continued to grow in complexity. While putting a few
transistors on an integrated circuit (IC) was a miracle when it happened, technology
improvements have advanced the VLSI (very large scale integration) field con-
tinually. The early integrated circuits belonged to SSI (small scale integration), MSI
(medium scale integration), or LSI (large scale integration) categories depending on
the density of integration. SSI referred to ICs with 1 to 20 gates, MSI referred to ICs
with 20 to 200 gates, and LSI referred to devices with 200 to a few thousand gates.
Many popular building blocks, such as adders, multiplexers, decoders, registers, and
counters, are available as MSI standard parts. When the term VLSI was coined,
devices with 10,000 gates were called VLSI chips. The boundaries between the dif-
ferent categories are fuzzy today. Many modern microprocessors contain more than
100 million transistors. Compared to what was referred to as VLSI in its initial days,
modern integration capability could be described as ULSI (ultra large scale integra-
tion). Despite the changes in integration ability and the fuzzy definition, the term
VLSI remains popular, while terms like LSI are not practically used any more.

As digital systems have become more complex, detailed design of the systems at
the gate and flip-flop level has become very tedious and time-consuming. Two or
three decades ago, digital systems were created using hand-drawn schematics,
bread-boards, and wires that were connected to the bread-board. Now, hardware
design often involves no hands-on tasks with bread-boards and wires.

In this chapter, first we present an introduction to computer-aided design. Then
we present an introduction to hardware description languages. Basic features of
VHDL are presented and examples are presented to illustrate how digital hardware
is described, simulated, and synthesized using VHDL. Advanced features of VHDL
are presented in Chapter 8.

2.1 Computer-Aided Design
Computer-aided design (CAD) tools have advanced significantly in the past decade,
and nowadays, digital design is performed using a variety of software tools.
Prototypes or even final designs can be created without discrete components and
interconnection wires.

C H A P T E R

2
Introduction to VHDL

51
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Figure 2-1 illustrates the steps in modern digital system design. Like any engi-
neering design, the first step in the design flow is formulating the problem, stating
the design requirements and arriving at the design specification. The next step is to
formulate the design at a conceptual level, either at a block diagram level or at an
algorithmic level.
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Requirements 

Design specifications 

Design entry 
VHDL, Verilog, schematic capture 

Simulation 

Logic synthesis 

Post synthesis simulation 

Mapping, placement, routing 

FPGA programming unit 

Configured FPGAs ASIC masks 

Design formulation 

FIGURE 2-1: Design
Flow in Modern
Digital System
Design

Design entry is the next step in the design flow. In olden days, this would have
been a hand-drawn schematic or blueprint. Now with CAD tools, the design con-
ceptualized in the previous step needs to be entered into the CAD system in an
appropriate manner. Designs can be entered in multiple forms. A few years ago,
CAD tools used to provide a graphical method to enter designs. This was called
schematic capture.The schematic editors typically were supplemented with a library
of standard digital building blocks like gates, flip-flops, multiplexers, decoders, coun-
ters, registers, and so on. ORCAD (a company that produced design automation
tools) provided a very popular schematic editor. Nowadays, hardware description
languages (HDLs) are used to enter designs. Two popular HDLs are VHDL and
Verilog. The acronym VHDL stands for VHSIC hardware description language,
and VHSIC in turn stands for very high speed integrated circuit.
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A hardware description language allows a digital system to be designed and
debugged at a higher level of abstraction than schematic capture with gates, flip-
flops, and standard MSI building blocks.The details of the gates and flip-flops do not
need to be handled during early phases of design. A design can be entered in what
is called a behavioral description of the design. In a behavioral HDL description,
one only specifies the general working of the design at a flow-chart or algorithmic
level without associating to any specific physical parts, components, or implementa-
tions. Another method to enter a design in VHDL and Verilog is the structural
description entry. In structural design, specific components or specific implementa-
tions of components are associated with the design. A structural VHDL or Verilog
model of a design can be considered as a textual description of a schematic diagram
that you would have drawn interconnecting specific gates and flip-flops.

Once the design has been entered, it is important to simulate it to confirm that
the conceptualized design does function correctly. Initially, one should perform the
simulation at the high-level behavioral model. This early simulation unveils prob-
lems in the initial design. If problems are discovered, the designer goes back and
alters the design to meet the requirements.

Once the functionality of the design has been verified through simulation, the next
step is synthesis. Synthesis means “conversion of the higher-level abstract description
of the design to actual components at the gate and flip-flop level.” Use of computer-
aided design tools to do this conversion (a.k.a. synthesis) is becoming widespread.The
output of the synthesis tool, consisting of a list of gates and a list of interconnections
specifying how to interconnect them, is often referred to as a netlist. Synthesis is anal-
ogous to writing software programs in a high-level language such as C and then using
a compiler to convert the programs to machine language. Just like a C compiler
can generate optimized or unoptimized machine code, a synthesis tool can generate
optimized or unoptimized hardware. The synthesis software generates different hard-
ware implementations depending on algorithms embedded in the software to perform
the translation and optimization techniques incorporated into the tool. A synthesis
tool is nothing but a compiler to convert design descriptions to hardware, and it is not
unusual to name synthesis packages with phrases similar to design compiler, silicon
compiler, and so on.

The next step in the design flow is post-synthesis simulation.The earlier simulation
at a higher level of abstraction does not take into account specific implementations of
the hardware components that the design is using. If post-synthesis simulation unveils
problems, one should go back and modify the design to meet timing requirements.
Arriving at a proper design implementation is an iterative process.

Next, a designer moves into specific realizations of the design. A design can be
implemented in several different target technologies. It could be a completely cus-
tom IC or it could be implemented in a standard part that is easily available from a
vendor. The target technologies that are commonly available now are illustrated in
Figure 2-2.

At the lowest level of sophistication and density is an old-fashioned printed
circuit board with off-the-shelf gates, flip-flops, and other standard logic building
blocks. Slightly higher in density are programmable logic arrays (PLAs), program-
mable array logic (PAL), and simple programmable logic devices (SPLDs). PLDs
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with higher density and gate count are called complex programmable logic devices
(CPLDs). Then there are the popular field programmable gate arrays (FPGAs)
and mask programmable gate arrays (MPGAs), or simply gate arrays. The highest
level of density and performance is a fully custom application-specific integrated
circuit (ASIC).

Two most common target technologies nowadays are FPGAs and ASICs. The
initial steps in the design flow are largely the same for either realization. Toward
the final stages in the design flow, different operations are performed depending on the
target technology.This is indicated in Figure 2-1.The design is mapped into specific tar-
get technology and placed into specific parts in the target ASIC or FPGA. The paths
taken by the connections between components are decided during the routing. If an
ASIC is being designed, the routed design is used to generate a photomask that will be
used in the IC manufacturing process. If a design is to be implemented in an FPGA,
the design is translated to a format specifying what is to be done to various program-
mable points in the FPGA. In modern FPGAs, programming simply involves writing a
sequence of 0’s and 1’s into the programmable cells in the FPGA, and no specific
programming unit other than a personal computer (PC) is required.

2.2 Hardware Description Languages
Hardware description languages (HDLs) are a popular mode of design entry. As
mentioned previously, two popular HDLs are VHDL and Verilog. This book uses
VHDL for illustrating principles of modern digital system design.
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VHDL is a hardware description language used to describe the behavior and
structure of digital systems. VHDL is a general-purpose HDL that can be used to
describe and simulate the operation of a wide variety of digital systems, ranging in
complexity from a few gates to an interconnection of many complex integrated
circuits. VHDL was originally developed under funding from the Department of
Defense (DoD) to allow a uniform method for specifying digital systems. When
VHDL was developed, the main purpose was to have a mechanism to describe
and document hardware unambiguously. Synthesizing hardware from high-level
descriptions was not one of the original purposes. The VHDL language has since
become an IEEE (Institute of Electronic and Electrical Engineers) standard, and it is
widely used in industry. IEEE created a VHDL standard in 1987 (VHDL-87) and
later modified the standard in 1993 (VHDL-93). Further revisions were done to the
standard in 2000 and 2002.

VHDL can describe a digital system at several different levels—behavioral, data
flow, and structural. For example, a binary adder could be described at the behav-
ioral level in terms of its function of adding two binary numbers without giving any
implementation details. The same adder could be described at the data flow level by
giving the logic equations for the adder. Finally, the adder could be described at the
structural level by specifying the gates and the interconnections between the gates
that comprise the adder.

VHDL leads naturally to a top-down design methodology, in which the system is
first specified at a high level and tested using a simulator. After the system is
debugged at this level, the design can gradually be refined, eventually leading to a
structural description closely related to the actual hardware implementation. VHDL
was designed to be technology independent. If a design is described in VHDL and
implemented in today’s technology, the same VHDL description could be used as a
starting point for a design in some future technology. Although initially conceived as
a hardware documentation language, most of VHDL can now be used for simulation
and logic synthesis.

Verilog is another popular HDL. It was developed by the industry at about
the same time the U.S. DoD was funding the creation of VHDL. Verilog was
introduced by Gateway Design Automation in 1984 as a proprietary HDL.
Synopsis created synthesis tools for Verilog around 1988. Verilog became an
IEEE standard in 1995.

VHDL has its syntactic roots in ADA while Verilog has its syntactic roots in C.
ADA was a general-purpose programming language, also sponsored by the
Department of Defense. Due to the similarity with C, some find Verilog easier or less
intimidating to learn. Many find VHDL to be excellent for supporting design and doc-
umentation of large systems. VHDL and Verilog enjoy approximately 50/50 market
share. Both languages can accomplish most requirements for digital design rather eas-
ily. Often design companies continue to use what they are used to, and hence, Verilog
users continue to use Verilog and VHDL users continue to use VHDL. If you know
one of these languages, it is not difficult to transition to the other.

More recently, there also have been efforts in system design languages such as
System C, Handel-C, and System Verilog. System C is created as an extension to
C��, and hence some who are very comfortable with general-purpose software
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development find it less intimidating. These languages are primarily targeted at
describing large digital systems at a high level of abstraction. They are primarily
used for verification and validation. When different parts of a large system are
designed by different teams, one team can use a system level behavioral description
of the block being designed by the other team during initial design. Problems that
might otherwise become obvious only during system integration may become evi-
dent in early stages reducing the design cycle for large systems. System-level simu-
lation languages are used during design of large systems.

2.2.1 Learning a Language
There are several challenges when you learn a new language, whether it be a lan-
guage for common communication (English, Spanish, French, etc.), a computer
language like C, or a special-purpose language such as VHDL. If it is not your first
language, you typically have a tendency to compare it to a language you know. In
the case of VHDL, if you already know another hardware description language, it is
good to compare it with VHDL, but you should be careful when comparing it with
languages like C. VHDL and Verilog have a very different purpose than languages
like C, and a comparison with C is not a meaningful activity. We will be describing
the language assuming it is your first HDL; however, we will assume basic knowl-
edge of computer languages like C and the basic compilation and execution flow.

When one learns a new language, one needs to study the alphabet of the new lan-
guage, its vocabulary, grammar, syntax rules, and semantics of language descriptions.
The process of learning VHDL is not much different. One needs to learn the alpha-
bet, vocabulary or lexical elements of the language, syntax (grammar and rules), and
semantics (meaning of descriptions). VHDL-87 uses the ASCII character set while
VHDL-93 allows use of the full ISO character set.The ISO character set includes the
ASCII characters and additionally includes accented characters. The ASCII charac-
ter set only includes the first 128 characters of the ISO character set. The lexical
elements of the language include various identifiers, reserved words, special symbols,
and literals. We have listed these in Appendix A. The syntax or grammar determines
what combinations of lexical elements can be combined to make valid VHDL
descriptions. These are the rules that govern the use of different VHDL constructs.
Then one needs to understand the semantics or meaning of VHDL descriptions. It is
here that one understands what descriptions represent combinational hardware ver-
sus sequential hardware. And just like fluency in a natural language comes by speak-
ing, reading, and writing the language, mastery of VHDL comes by repeated use of
the language to create models for various digital systems.

Since VHDL is a hardware description language, it differs from an ordinary pro-
gramming language in several ways. Most importantly, VHDL has statements that
execute concurrently since they must model real hardware in which the components
are all in operation at the same time. VHDL is popularly used for the purposes of
describing, documenting, simulating, and automatically generating hardware. Hence,
its constructs are tailored for these purposes. We will present the various methods to
model different kinds of digital hardware using examples in the following sections.
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2.3 VHDL Description of Combinational
Circuits
The biggest difficulty in modeling hardware using a general-purpose computer lan-
guage is representing concurrently operating hardware. Computer programs that
you are normally accustomed to are sequences of instructions with a well-defined
order. At any point of time during execution, the program is at a specific point in its
flow and it encounters and executes different parts of the program sequentially. In
order to model combinational circuits, which have several gates (all of which are
working simultaneously), one needs to be able to “simulate” the execution of sev-
eral parts of the circuit at the same time.

VHDL models combinational circuits by what are called concurrent statements.
Concurrent statements are statements which are always ready to execute. These are
statements which get evaluated any time and every time a signal on the right side of
the statement changes.

We will start by describing a simple gate circuit in VHDL. If each gate in the cir-
cuit of Figure 2-3 has a 5-ns propagation delay, the circuit can be described by two
VHDL statements as shown, where A, B, C, D, and E are signals. A signal in VHDL
usually corresponds to a signal in a physical system. The symbol “��” is the signal
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VHDL: VHSIC hardware description language
VHSIC: Very high speed integrated circuit
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ULSI: Ultra large scale integration
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ISO: International Standards Organization
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FPGA: Field programmable gate array
PLA: Programmable logic array
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PLD: Programmable logic device
CPLD: Complex programmable logic device
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assignment operator, which indicates that the value computed on the right side is
assigned to the signal on the left side. When the statements in Figure 2-3 are simu-
lated, the first statement will be evaluated anytime A or B changes, and the second
statement will be evaluated anytime C or D changes. Suppose that initially A � 1
and B � C � D � E � 0. If B changes to 1 at time 0, C will change to 1 at time � 5 ns.
Then E will change to 1 at time � 10 ns.

VHDL signal assignment statements, like the ones in the preceding example, are
examples of concurrent statements. The VHDL simulator monitors the right side of
each concurrent statement, and anytime a signal changes, the expression on the right
side is immediately re-evaluated. The new value is assigned to the signal on the left
side after an appropriate delay.This is exactly the way the hardware works.Anytime
a gate input changes, the gate output is recomputed by the hardware, and the out-
put changes after the gate delay. The location of the concurrent statement in the
program is not important.

When we initially describe a circuit, we may not be concerned about propaga-
tion delays. If we write

C <= A and B;
E <= C or D;

this implies that the propagation delays are 0 ns. In this case, the simulator will
assume an infinitesimal delay referred to as � (delta). Assume that initially A � 1
and B � C � D � E � 0. If B is changed to 1 at time � 1 ns, then C will change at
time 1 � � and E will change at time 1 � 2�.

Unlike a sequential program, the order of the preceding concurrent statements
is unimportant. If we write

E <= C or D;
C <= A and B;

the simulation results would be exactly the same as before.
In general, a signal assignment statement has the form

signal_name <= expression [after delay];

The expression is evaluated when the statement is executed, and the signal on the
left side is scheduled to change after delay.The square brackets indicate that after
delay is optional; they are not part of the statement. If after delay is omitted, then
the signal is scheduled to be updated after a delta delay. Note that the time at which
the statement executes and the time at which the signal is updated are not the same.

Even if a VHDL program has no explicit loops, concurrent statements may
execute repeatedly as if they were in a loop. Figure 2-4 shows an inverter with
the output connected back to the input. If the output is ‘0’, then this ‘0’ feeds back
to the input and the inverter output changes to ‘1’ after the inverter delay, assumed
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to be 10 ns. Then the ‘1’ feeds back to the input and the output changes to ‘0’ after
the inverter delay. The signal CLK will continue to oscillate between ‘0’ and ‘1’ as
shown in the waveform. The corresponding concurrent VHDL statement will
produce the same result. If CLK is initialized to ‘0’, the statement executes and CLK
changes to ‘1’ after 10 ns. Since CLK has changed, the statement executes again,
and CLK will change back to ‘0’ after another 10 ns. This process will continue
indefinitely.

The statement in Figure 2-4 generates a clock waveform with a half period of 10 ns.
On the other hand, the concurrent statement

CLK <= not CLK;

will cause a run-time error during simulation. Since there is 0 delay, the value of
CLK will change at times 0 � �, 0 � 2�, 0 � 3�, and so on. Since � is an infinitesi-
mal time, time will never advance to 1 ns.

In general, VHDL is not case sensitive; that is, uppercase and lowercase letters
are treated the same by the compiler and by the simulator. Thus, the statements

Clk <= NOT clk After 10 ns;

and

CLK <= not CLK after 10 ns;

would be treated exactly the same. Signal names and other VHDL identifiers may
contain letters, numbers, and the underscore character (_). An identifier must start
with a letter, and it cannot end with an underscore. Thus C123 and ab_23 are legal
identifiers, but 1ABC and ABC_ are not. Every VHDL statement must be termi-
nated with a semicolon. Spaces, tabs, and carriage returns are treated in the same
way. This means that a VHDL statement can be continued over several lines, or
several statements can be placed on one line. In a line of VHDL code, anything fol-
lowing a double dash (--) is treated as a comment. Words such as and, or, and after
are reserved words (or keywords) which have a special meaning to the VHDL com-
piler. In this text, we will put all reserved words in boldface type.

Figure 2-5 shows three gates that have the signal A as a common input and the
corresponding VHDL code. The three concurrent statements execute simultaneously
whenever A changes, just as the three gates start processing the signal change at the
same time. However, if the gates have different delays, the gate outputs can change
at different times. If the gates have delays of 2 ns, 1 ns, and 3 ns, respectively, and
A changes at time 5 ns, then the gate outputs D, E, and F can change at times 7 ns, 6 ns,
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and 8 ns, respectively. The VHDL statements work in the same way. Even though
the statements execute simultaneously, the signals D, E, and F are updated at times
7 ns, 6 ns, and 8 ns. However, if no delays were specified, then D, E, and F would all be
updated at time 5 � �.

In the preceding examples, every signal is of type bit, which means it can have a
value of ‘0’ or ‘1’. (Bit values in VHDL are enclosed in single quotes to distinguish
them from integer values.)

In digital design, we often need to perform the same operation on a group of
signals. A one-dimensional array of bit signals is referred to as a bit-vector. If a
4-bit vector named B has an index range 0 through 3, then the four elements of the
bit-vector are designated B(0), B(1), B(2), and B(3). One can declare a bit-vector
using a statement such as:

B: in bit_vector(3 downto 0);

The statement B <= "1100" assigns ‘1’ to B(3), ‘1’ to B(2), ‘0’ to B(1), and ‘0’ to B(0).
Figure 2-6 shows an array of four AND gates. The inputs are represented by bit-

vectors A and B, and the output by bit-vector C. Although we can write four VHDL
statements to represent the four gates, it is much more efficient to write a single
VHDL statement that performs the and operation on the bit-vectors A and B.When
applied to bit-vectors, the and operator performs the and operation on correspon-
ding pairs of elements.
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-- when A changes, these concurrent
-- statements all execute at the
-- same time
D <= A and B after 2 ns;
E <= not A after 1 ns;
F <= A or C after 3 ns;

-- the hard way
C(3) <= A(3) and B(3);
C(2) <= A(2) and B(2);
C(1) <= A(1) and B(1);
C(0) <= A(0) and B(0);

-- the easy way assuming C, A and
-- B are 4-bit bit-vectors

C <= A and B;
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A(2)
B(2)

A(1)
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FIGURE 2-6: Array
of AND Gates
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2.4 VHDL Modules
The general structure of a VHDL module is an entity description and an architec-
ture description. The entity description declares the input and output signals, and
the architecture description specifies the internal operation of the module. As an
example, consider Figure 2-7.The entity declaration gives the name two_gates to the
module. The port declaration specifies the inputs and outputs to the module. A, B,
and D are input signals of type bit, and E is an output signal of type bit. The archi-
tecture is named gates. The signal C is declared within the architecture since it is an
internal signal. The two concurrent statements that describe the gates are placed
between the keywords begin and end.
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entity two_gates is
port(A, B, D: in bit; E: out bit);

end two_gates;

architecture gates of two_gates is
signal C: bit;
begin
C <= A and B; -- concurrent
E <= C or D; -- statements

end gates;

C

D

A

B E

FIGURE 2-7: VHDL
Module with Two
Gates

The entity description can be considered as the black box picture of the module
being designed and its external interface (i.e., it represents the interconnections
from this module to the external world, as in Figure 2-8).

A
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D

E

FIGURE 2-8: Black
Box View of the
Two-Gate Module

Just as in the preceding simple example, when we describe a system in VHDL,
we must specify an entity and architecture at the top level and also specify an entity
and architecture for each of the component modules that are part of the system (see
Figure 2-9). Each entity declaration includes a list of interface signals that can
be used to connect to other modules or to the outside world. We will use entity dec-
larations of the form

entity entity-name is
[port(interface-signal-declaration);]

end [entity] [entity-name];
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The items enclosed in square brackets are optional. The interface-signal-
declaration normally has the following form:

list-of-interface-signals: mode type [:� initial-value]
{; list-of-interface-signals: mode type [:� initial-value]};

The curly brackets indicate zero or more repetitions of the enclosed clause.
Mode indicates the direction of information; whether information is flowing into the
port or out of it. Input port signals are of mode in, output port signals are of mode
out, and bidirectional signals are of mode inout. Type specifies the data type or kind
of information that can be communicated. So far, we have only used type bit and bit-
vector; other types are described in Section 2.10. The optional initial-value is
used to initialize the signals on the associated list; otherwise, the default initial value
is used for the specified type. For example, the port declaration

port(A, B: in integer :� 2; C, D: out bit);

indicates that A and B are input signals of type integer that are initially set to 2, and C
and D are output signals of type bit that are initialized by default to ‘0’. These initial
values are significant only for simulation and not for synthesis.

In addition to in, out and inout modes, there are two other modes: buffer and
linkage. The buffer mode is similar to inout mode, in that it can be read and writ-
ten into in the entity. The buffer mode is useful if a signal is truly an output, but we
would like to read the ports internally as well. A linkage port is useful when
VHDL entities are connected to non-VHDL entities. Both of these modes involve
several restrictions and we generally restrict ourselves to in, out and inout modes.
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FIGURE 2-9: VHDL
Program Structure

Associated with each entity is one or more architecture declarations of the form

architecture architecture-name of entity-name is
[declarations]

begin
architecture body

end [architecture] [architecture-name];

In the declarations section, we can declare signals and components that are
used within the architecture.The architecture body contains statements that describe
the operation of the module.
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Next, we will write the entity and architecture for a full adder module. A full
adder adds 2 bits and a carry input to generate a sum bit and a carry output bit. The
entity specifies the inputs and outputs of the adder module as shown in Figure 2-10.
The port declaration specifies that X,Y, and Cin are input signals of type bit, and that
Cout and Sum are output signals of type bit.
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entity FullAdder is
port(X, Y, Cin: in bit;   --Inputs

Cout, Sum: out bit);  --Outputs
end FullAdder;

FIGURE 2-10: Entity
Declaration for a
Full Adder Module

The operation of the full adder is specified by an architecture declaration:

architecture Equations of FullAdder is
begin -- concurrent assignment statements

Sum <= X xor Y xor Cin after 10 ns;
Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;

end Equations;

In this example, the architecture name (Equations) is arbitrary, but the entity
name (FullAdder) must match the name used in the associated entity declaration.
The VHDL assignment statements for Sum and Cout represent the logic equations
for the full adder. Several other architectural descriptions, such as a truth table or
an interconnection of gates, could have been used instead. In the Cout equation,
parentheses are required around (X and Y) since VHDL does not specify an order
of precedence for the logic operators except the NOT operator.

2.4.1 Four-Bit Full Adder
Next, we will show how to use the FullAddermodule defined above as a component
in a system, which consists of four full adders connected to form a 4-bit binary adder
(see Figure 2-11). We first declare the 4-bit adder as an entity (see Figure 2-12). Since
the inputs and the sum output are 4 bits wide, we declare them as bit-vectors which
are dimensioned 3 downto 0. (We could have used a range 1 to 4 instead).

Full 
adder 

Full 
adder 

CiCo
C1C2C3

S3 S2 S1 S0

B0A0B1A1B2A2A3 B3

Full 
adder 

Full 
adder 

FIGURE 2-11:
Four-Bit Binary
Adder
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Next, we specify the FullAdder as a component within the architecture of
Adder4 (Figure 2-12). The component specification is very similar to the entity dec-
laration for the full adder, and the input and output port signals correspond to those
declared for the full adder. Anytime a module created in one part of the code has
to be used in another part, a component declaration needs to be used. The compo-
nent declaration does not need to be in the same file where you are using the
component. It can be where the component entity and architecture are defined. It is
typical to create libraries of components for reuse in code, and typically the compo-
nent declarations are placed in the library file.

Following the component statement, we declare a 3-bit internal carry signal C. In
the body of the architecture, we create several instances of the FullAdder compo-
nent. (In CAD jargon, we “instantiate” four copies of the FullAdder.) Each copy
of FullAdder has a name (such as FA0) and a port map. The signal names follow-
ing the port map correspond one-to-one with the signals in the component port.
Thus, A(0), B(0), and Ci correspond to the inputs X,Y, and Cin, respectively. C(1) and
S(0) correspond to the Cout and Sum outputs. Note that the order of the signals in the
port map must be the same as the order of the signals in the port of the component
declaration.
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FIGURE 2-12: Structural Description of a 4-Bit Adder

entity Adder4 is
port(A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs

S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;
architecture Structure of Adder4 is
component FullAdder
port (X, Y, Cin: in bit;   -- Inputs

Cout, Sum: out bit); -- Outputs
end component;
signal C: bit_vector(3 downto 1); -- C is an internal signal
begin --instantiate four copies of the FullAdder
FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0));
FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1));
FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2));
FA3: FullAdder port map (A(3), B(3), C(3), Co, S(3));

end Structure;

In preparation for simulation, we can place the entity and architecture for the
FullAdder and for Adder4 together in one file and compile. Alternatively, we
could compile the FullAdder separately and place the resulting code in a library
which is linked in when we compile Adder4.

All of the simulation examples in this text use the ModelSim VHDL simulator
from Mentor Graphics. Most other VHDL simulators use similar command files and
can produce output in a similar format. We will use the following simulator com-
mands to test Adder4:
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add list A B Co C Ci S -- put these signals on the output list
force A 1111 -- set the A inputs to 1111
force B 0001 -- set the B inputs to 0001
force Ci 1 -- set Ci to 1
run 50 ns -- run the simulation for 50 ns
force Ci 0
force A 0101
force B 1110
run 50 ns

We have chosen to run the simulation for 50 ns since this is more than enough
time for the carry to propagate through all of the full adders. The simulation results
for the preceding command list are as follows:

ns delta a b co c ci s

0 +0 0000 0000 0 000 0 0000
0 +1 1111 0001 0 000 1 0000

10 +0 1111 0001 0 001 1 1111
20 +0 1111 0001 0 011 1 1101
30 +0 1111 0001 0 111 1 1001
40 +0 1111 0001 1 111 1 0001
50 +0 0101 1110 1 111 0 0001
60 +0 0101 1110 1 110 0 0101
70 +0 0101 1110 1 100 0 0111
80 +0 0101 1110 1 100 0 0011

The listing shows how the carry propagates one position every 10 ns. The full
adder inputs change at time � �:
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FA3 FA2 FA1 

0 0 0 

FA0 

0 

1 0 1 0 1 0 1 1 

1 0 0 0 0 

Time = Δ 

FA3 FA2 FA1 FA0 

1 1 1 1 

1 0 1 0 1 0 1 1 

1 1 0 0 
Time = 10 

0 

FA3 FA2 FA1 FA0 

1 1 0 1 

1 0 1 0 1 0 1 1 

1 1 1 0 
Time = 20  

0 

The sum and carry are computed by each FA and appear at the FA outputs 10 ns
later:

Since the inputs to FA1 have changed, the outputs change 10 ns later:
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The final simulation results are

1111 � 0001 � 1 � 0001 with a carry of 1 (at time � 40 ns) and

0101 � 1110 � 0 � 0011 with a carry of 1 (at time � 80 ns)

The simulation stops at 80 ns since no further changes occur after that time.
In this section we have shown how to construct a VHDL module using an entity-

architecture pair.The 4-bit adder module demonstrates the use of VHDL components
to write structural VHDL code. Components used within the architecture are declared
at the start of the architecture using a component declaration of the form

component component-name
port(list-of-interface-signals-and-their-types);

end component;

The port clause used in the component declaration has the same form as the port
clause used in an entity declaration. The connections to each component used in a
circuit are specified using a component instantiation statement of the form

label: component-name port map (list-of-actual-signals);

The list of actual signals must correspond one-to-one to the list of interface signals
specified in the component declaration.

2.4.2 Use of “Buffer” Mode
Let us consider the example in Figure 2-13. Assume that all variables are 0 at 0 ns,
but A changes to 1 at 10 ns.
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FIGURE 2-13: VHDL Code Which Will Not Compile

entity gates is
port(A, B, C: in bit; D, E: out bit);

end gates;

architecture example of gates is
begin
D <= A or B after 5 ns; -- statement 1
E <= C or D after 5 ns;  -- statement 2

end example;

The code in Figure 2-13 will not actually compile, simulate, or synthesize in most
tools because D is declared only as an output. Statement 2 uses D on the right side of
the assignment. Hence, D should be either inout or buffer mode as in Figure 2-14. Use
of inout mode results in the synthesis tools creating a truly bidirectional signal.
In actuality, D is not an external input to the circuit, and hence the mode buffer is
more appropriate.The mode buffer indicates a signal that is an output to the external
world; however, its value can also be read inside the entity’s architecture. The follow-
ing code uses buffer mode for signal D instead of out mode.
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All signals remain at ‘0’ until time 10 ns. The change in A at 10 ns results in
statement 1 reevaluating. The value of D becomes ‘1’ at time equal to 15 ns. The
change in D at time 15 ns results in statement 2 reevaluating. Signal E changes to ‘1’
at time 20 ns. The description represents two gates, each with a delay of 5 ns.

2.5 Sequential Statements and VHDL Processes
The concurrent statements from the previous section are useful in modeling combi-
national logic. Combinational logic constantly reacts to input changes. In contrast,
synchronous sequential logic responds to changes dependent on the clock. Many
input changes might be ignored since output and state changes occur only at valid
conditions of the clock. Modeling sequential logic requires primitives to model
selective activity conditional on clock, edge-triggered devices, sequence of opera-
tions, and so on. In this unit, we will learn VHDL processes which help to model
sequential logic.

A VHDL process has the following basic form:

process(sensitivity-list)
begin
sequential-statements

end process;

When a process is used, the statements between the begin and the end are exe-
cuted sequentially. The expression in parentheses after the word process is called
a sensitivity list, and the process executes whenever any signal in the sensitivity
list changes. For example, if the process begins with process(A, B, C), then the
process executes whenever any one of A, B, or C changes. Whenever one of the sig-
nals in the sensitivity list changes, the sequential statements in the process body are
executed in sequence one time. When a process finishes executing, it goes back to
the beginning and waits for a signal on the sensitivity list to change again.

When the concurrent statements

C <= A and B;  -- concurrent
E <= C or D;   -- statements
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FIGURE 2-14: VHDL Code Illustrating Use of Mode Buffer

entity gates is
port(A, B, C: in bit; D: buffer bit; E: out bit);

end gates;

architecture example of gates is
begin
D <= A or B after 5 ns;  -- statement 1
E <= C or D after 5 ns;  -- statement 2

end example;
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are used in a process, they become sequential statements executed in the order in
which they appear in the process. Remember that when they were concurrent state-
ments outside a process, their sequence did not matter. But, if they are in a process,
the sequence determines the order of execution.

process(A, B, C, D)
begin
C <= A and B; -- sequential
E <= C or D; -- statements

end process;

The process executes once when any of the signals A, B, C, or D changes. If C
changes when the process executes, then the process will execute a second time
because C is on the sensitivity list.

VHDL processes can be used for modeling combinational logic and sequential
logic; however, processes are not necessary for modeling combinational logic. They
are, however, required for modeling sequential logic. One should be very careful when
using processes to represent combinational logic. Consider the code in Figure 2-15,
where a process is used. One may write this code thinking of two cascaded gates; how-
ever, it does not actually represent such a circuit.
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FIGURE 2-15: VHDL Code with a Process

entity nogates is
port(A, B, C: in bit;

D: buffer bit;
E: out bit);

end nogates;

architecture behave of nogates is
begin
process(A, B, C)
begin
D <= A or B after 5 ns; -- statement 1
E <= C or D after 5 ns; -- statement 2

end process;
end behave;

The sensitivity list of the process only includes A, B, and C, the only external
inputs to the circuit. Let us assume that all variables are ‘0’ at 0 ns. Then A changes
to ‘1’ at 10 ns.That causes the process to execute. Both statements inside the process
execute once sequentially, but the change in D does not happen right at execution.
Hence, execution of statement 2 is with the value of D at the beginning of the
process. D becomes ‘1’ at 15 ns, but E stays at ‘0’. Since the change in D does not
propagate to signal E, this VHDL model is not equivalent to two gates. If D was
included in the sensitivity list of the process, the process would execute again mak-
ing E change at 20 ns. This would result in simulation outputs matching a circuitry
with cascaded gates, but it is preferable to realize gates using concurrent statements.
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Understanding sequential statements and operation of processes will take sev-
eral more examples. In the next section, we explain how simple flip-flops can be
modeled using processes, and then we explain the basics of the VHDL simulation
process. After that, we present more examples illustrating the working of processes
and the simulation process.

2.6 Modeling Flip-Flops Using VHDL Processes
A flip-flop can change state either on the rising or on the falling edge of the clock
input. This type of behavior is modeled in VHDL by a process. For a simple D flip-
flop with a Q output that changes on the rising edge of CLK, the corresponding
process is given in Figure 2-16.
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Q

DCLK 

DFF 

process(CLK)
begin
if CLK'event and CLK = '1' -- rising edge of CLK
then Q <= D;

end if;
end process;

FIGURE 2-16: VHDL
Code for a Simple
D Flip-Flop

In Figure 2-16, whenever CLK changes, the process executes once through and
then waits at the start of the process until CLK changes again.The if statement tests
for a rising edge of the clock, and Q is set equal to D when a rising edge occurs. The
expression CLK'event is used to accomplish the functionality of an edge-triggered
device.The expression 'event is a predefined attribute for any signal.There are two
types of signal attributes in VHDL, those that return values and those that return sig-
nals.The'event attribute returns a value.The expression CLK'event (read as “clock
tick event”) is TRUE whenever the signal CLK changes. If CLK = '1' is also TRUE,
this means that the change was from ‘0’ to ‘1’, which is a rising edge.

If VHDL is used only for simulation purposes, one might use a statement such as

if CLK = '1'
...

and obtain action corresponding to rising edge. However, when VHDL code is used
to synthesize hardware, this statement will result in latches, whereas the expression
CLK'event results in edge-triggered devices.

If the flip-flop has a delay of 5 ns between the rising edge of the clock and the
change in the Q output, we would replace the statement Q <= D; with Q <= D
after 5 ns; in the preceding process.

The statements between begin and end in a process operate as sequential state-
ments. In the preceding process, Q <= D; is a sequential statement that only executes
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following the rising edge of CLK. In contrast, the concurrent statement Q <= D;
executes whenever D changes. If we synthesize the above process, the synthesizer
infers that Q must be a flip-flop since it only changes on the rising edge of CLK. If we
synthesize the concurrent statement Q <= D;, the synthesizer will simply connect D
to Q with a wire or a buffer.

In Figure 2-16, note that D is not on the sensitivity list because changing D will
not cause the flip-flop to change state. Figure 2-17 shows a transparent latch and its
VHDL representation. Both G and D are on the sensitivity list since if G � ‘1’, a
change in D causes Q to change. If G changes to ‘0’, the process executes, but Q does
not change.
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QD

G

process(G, D)
begin
if G = '1' then Q <= D; end if;

end process;

FIGURE 2-17:
VHDL Code for a
Transparent Latch

Q

DCLK 

ClrN DFF 

process(CLK, ClrN)
begin
if CLRn � '0' then Q <= '0';
else if CLK'event and CLK = '1'
then Q <= D;

end if;
end if;

end process;

FIGURE 2-18:
VHDL Code for a
D Flip-Flop with
Asynchronous
Clear

If a flip-flop has an active-low asynchronous clear input (ClrN) that resets the
flip-flop independently of the clock, then we must modify the process of Figure 2-16
so that it executes when either CLK or ClrN changes. To do this, we add ClrN to the
sensitivity list. The VHDL code for a D flip-flop with asynchronous clear is given in
Figure 2-18. Since the asynchronous ClrN signal overrides CLK, ClrN is tested first
and the flip-flop is cleared if ClrN is ‘0’. Otherwise, CLK is tested, and Q is updat-
ed if a rising edge has occurred.

In the preceding examples, we have used two types of sequential statements—
signal assignment statements and if statements. The basic if statement has the form

if condition then
sequential statements1

else sequential statements2
end if;
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The condition is a Boolean expression which evaluates to TRUE or FALSE. If
it is TRUE, sequential statements1 are executed; otherwise, sequential
statements2 are executed.

VHDL if statements are sequential statements that can be used within a
process, but they cannot be used as concurrent statements outside of a process.

The most general form of the if statement is

if condition then
sequential statements

{elsif condition then
sequential statements}
-- 0 or more elsif clauses may be included

[else sequential statements]
end if;

The curly brackets indicate that any number of elsif clauses may be included,
and the square brackets indicate that the else clause is optional. The example of
Figure 2-19 shows how a flow chart can be represented using nested ifs or the
equivalent using elsifs. In this example, C1, C2, and C3 represent conditions that
can be true or false, and S1, S2, . . . , S8 represent sequential statements. Each if
requires a corresponding end if, but elsifs do not.
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if (C1) then S1; S2;
else if (C2) then S3; S4;

else if (C3) then S5; S6;
else S7; S8;
end if;

end if;
end if;

if (C1) then S1; S2;
elsif (C2) then S3; S4;
elsif (C3) then S5; S6;
else S7; S8;

end if;

S1; S2; 

S5; S6; S7; S8; 

S3; S4; 

C1 

C3 

C2 

T F 

T F 

T F 

FIGURE 2-19:
Equivalent
Representations of
a Flow Chart Using
Nested Ifs and Elsifs
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Next, we will write a VHDL module for a J-K flip-flop (Figure 2-20). This flip-
flop has active-low asynchronous preset (SN) and clear (RN) inputs. State changes
related to J and K occur on the falling edge of the clock. In this chapter, we use a
suffix N to indicate an active-low (negative-logic) signal. For simplicity, we will
assume that the condition SN � RN � 0 does not occur.
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FIGURE 2-20:
J-K Flip-Flop

JKFF RN SN

QN Q

JK CLK 

The VHDL code for the J-K flip-flop is given in Figure 2-21. The port declara-
tion in the entity defines the input and output signals. Within the architecture we
define a signal Qint that represents the state of the flip-flop internal to the module.
The two concurrent statements after begin transmit this internal signal to the Q
and QN outputs of the flip-flop. We do it this way because an output signal in a port
cannot appear on the right side of an assignment statement within the architecture.
This is another solution to the problem presented in Figure 2-13. The flip-flop can
change state in response to changes in SN, RN, and CLK, so these three signals are
in the sensitivity list of the process. Since RN and SN reset and set the flip-flop inde-
pendently of the clock, they are tested first. If RN and SN are both ‘1’, then we test
for the falling edge of the clock. The condition (CLK'event and CLK � '0') is
TRUE only if CLK has just changed from ‘1’ to ‘0’. The next state of the flip-flop is
determined by its characteristic equation:

Q� � JQ� � K�Q

entity JKFF is
port(SN, RN, J, K, CLK: in bit; -- inputs

Q, QN: out bit);
end JKFF;

architecture JKFF1 of JKFF is
signal Qint: bit;   -- Qint can be used as input or output
begin
Q <= Qint;                 -- output Q and QN to port
QN <= not Qint;            -- combinational output

-- outside process

FIGURE 2-21: J-K Flip-Flop Model
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The 8-ns delay represents the time it takes to set or clear the flip-flop output
after SN or RN changes to ‘0’. The 10-ns delay represents the time it takes for Q to
change after the falling edge of the clock.

2.7 Processes Using Wait Statements
An alternative form for a process uses wait statements instead of a sensitivity list. A
process cannot have both wait statements and a sensitivity list. A process with wait
statements may have the form

process
begin
sequential-statements
wait-statement
sequential-statements
wait-statement
. . .

end process;

This process will execute the sequential-statements until a wait statement
is encountered. Then it will wait until the specified wait condition is satisfied. It will
then execute the next set of sequential-statements until another wait is
encountered. It will continue in this manner until the end of the process is reached.
Then it will start over again at the beginning of the process.

Wait statements can be of three different forms:

wait on sensitivity-list;
wait for time-expression;
wait until Boolean-expression;

The first form waits until one of the signals on the sensitivity-list changes.
For example, wait on A, B, C; waits until A, B, or C changes and then execution
proceeds. The second form waits until the time specified by time-expression has
lapsed. If wait for 5 ns is used, the process waits for 5 ns before continuing.
If wait for 0 ns is used, the wait is for one delta time. Wait statements of the form
wait for xxx ns are useful for writing VHDL code for simulation; however, they
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process(SN, RN, CLK)
begin
if RN = '0' then Qint <= '0' after 8 ns; -- RN = '0' will clear the FF
elsif SN = '0' then Qint <= '1' after 8 ns; -- SN='0' will set the FF
elsif CLK'event and CLK = '0' then -- falling edge of CLK

Qint <= (J and not Qint) or (not K and Qint) after 10 ns;
end if;

end process;
end JKFF1;
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should not be used when writing VHDL code for synthesis since they are not syn-
thesizable. For the third form of wait statement, the Boolean-expression is
evaluated whenever one of the signals in the expression changes, and the process
continues execution when the expression evaluates to TRUE. For example,

wait until A = B;

will wait until either A or B changes. Then A = B is evaluated and if the result is
TRUE, the process will continue; otherwise, the process will continue to wait until
A or B changes again and A = B is TRUE.

A process cannot have both wait statements and a sensitivity list. It is not accept-
able to have some of the signals to be in a sensitivity list and others in wait
statements.

After a VHDL simulator is initialized, it executes each process with a sensitivity
list one time through, and then waits at the beginning of the process for a change in
one of the signals on the sensitivity list. If a process has a wait statement, it will
initially execute until a wait statement is encountered. The following two processes
are equivalent:

process(A, B, C, D) process
begin begin
C <= A and B after 5 ns; C <= A and B after 5 ns;
E <= C or D after 5 ns; E <= C or D after 5 ns;

end process; wait on A, B, C, D;
end process;

The wait statement at the end of the process replaces the sensitivity list at the
beginning. In this way, both processes will initially execute the sequential statements
one time and then wait until A, B, C, or D changes.

The order in which sequential statements execute in a process is not necessarily
the order in which the signals are updated. Consider the following example:

process
begin
wait until clk'event and clk = '1';
A <= E after 10 ns; -- (1)
B <= F after 5 ns; -- (2)
C <= G; -- (3)
D <= H after 5 ns; -- (4)

end process;

This process waits for a rising clock edge. Suppose the clock rises at time � 20 ns.
Statements (1), (2), (3), (4) immediately execute in sequence. A is scheduled to
change to E at time � 30 ns; B is scheduled to change to F at time � 25 ns; C is
scheduled to change to G at time � 20 � delta; and D is scheduled to change to H
at time 25 ns. As the simulated time advances, first G changes. Then F and D change
at time � 25 ns, and finally E changes at time 30 ns.When clk changes to ‘0’, the wait
statement is reevaluated, but it keeps waiting until clk changes to ‘1’, and then the
remaining statements execute again.
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If several VHDL statements in a process update the same signal at a given time,
the last value overrides. For example,

process(CLK)
begin
if CLK'event and CLK = '0' then
Q <= A; Q <= B; Q <= C;

end if;
end process;

Every time CLK changes from ‘1’ to ‘0’, after delta time, Q will change to C.
A process must have either a sensitivity list or wait statements. The VHDL code

in Figure 2-22 will not simulate because there is no sensitivity list or wait statement.
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FIGURE 2-22: Example of VHDL Code That Will Not Simulate

entity gates is
port(A, B, C: in bit; D, E: out bit);

end gates;

architecture exam of gates is
begin
process
begin
D <= A or B after 2 ns;
E <= not C and A;

end process;
end exam;

In this section, we have introduced processes with sensitivity lists and processes
with wait statements. The statements within a process are called sequential state-
ments because they execute in sequence, in contrast with concurrent statements that
execute only when a signal on the right-hand-side changes. Signal assignment state-
ments can be either concurrent or sequential. However, if statements are always
sequential.

2.8 Two Types of VHDL Delays: Transport
and Inertial Delays
In one of the initial examples in this chapter, we used the statement

C <= A and B after 5 ns;

to model an AND gate with a propagation delay of 5 ns. The preceding statement
will model the AND gate’s delay; however, it also introduces some complication,
which many readers will not normally expect. If you simulate this AND gate with

02Ch02.qxd  3/13/07  3:14 PM  Page 75



inputs that change very often in comparison to the gate delay (e.g., at 1 ns, 2 ns,
3 ns, etc.), the simulation output will not show the changes.This is due to how VHDL
delays work.

VHDL provides two types of delays—transport delays and inertial delays. The
default delay is inertial delay; hence, the after clause in the preceding statement rep-
resents an inertial delay. Inertial delays are slightly different from simple delays that
readers normally assume.

Inertial delay is intended to model gates and other devices that do not propagate
short pulses from the input to the output. If a gate has an ideal inertial delay T, in
addition to delaying the input signals by time T, any pulse with a width less than T is
rejected. For example, if a gate has an inertial delay of 5 ns, a pulse of width 5 ns
would pass through, but a pulse of width 4.999 ns would be rejected. Real devices
do not behave in this way. Perhaps they would reject very narrow spurious pulses,
but it might be unreasonable to assume that all pulses narrower than the delay dura-
tion will be rejected. VHDL does allow one to model devices which reject only very
narrow pulses. Rejection of pulses of any arbitrary duration up to the specified iner-
tial delay can be modeled by adding a reject clause to the assignment statement.
A statement of the form

signal_name <= reject pulse-width after delay-time

evaluates the expression, rejects any pulses whose width is less than pulse-width,
and then sets the signal equal to the result after a delay of delay-time. In statements
of this type, the rejection pulse width must be less than the delay time.

The second type of VHDL delay is transport delay, which is intended to model
the delay introduced by wiring, simply delays an input signal by the specified delay
time. In order to model this delay, the key word transport must be specified in the
code. Figure 2-23 illustrates the difference between transport and inertial delays.
Consider the following VHDL statements:

Z1 <= transport X after 10 ns;  -- transport delay
Z2 <= X after 10 ns; -- inertial delay
Z3 <= reject 4 ns X after 10 ns; -- delay with specified

-- rejection pulse width
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FIGURE 2-23:
Transport and
Inertial Delays
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Z1 is the same as X, except that it is shifted 10 ns in time. Z2 is similar to Z1,
except the pulses in X shorter than 10 ns are filtered out and do not appear in Z2.
Z3 is the same as Z2, except that only the pulses of width less than 4 ns have been
rejected.

In general, using reject is equivalent to using a combination of an inertial delay
and a transport delay. The statement for Z3 given here could be replaced with the
concurrent statements:

Zm <= X after 4 ns; -- inertial delay rejects short pulses
Z3 <= transport Zm after 6 ns;   -- total delay is 10 ns

Note that these delays are relevant only for simulation. Understanding how inertial
delay works can remove a lot of frustration in your initial experience with VHDL sim-
ulation. The pulse rejection associated with inertial delay can inhibit many output
changes. In simulations with basic gates and simple circuits, one should make sure that
test sequences that you apply are wider than the inertial delays of the modeled devices.

2.9 Compilation, Simulation, and Synthesis
of VHDL Code
After describing a digital system in VHDL, simulation of the VHDL code is impor-
tant for two reasons. First, we need to verify the VHDL code correctly implements
the intended design, and second, we need to verify that the design meets its specifi-
cations. We first simulate the design and then synthesize it to the target technology
(e.g., FPGA or custom ASIC). In this section, first we describe steps in simulation
and then introduce synthesis. As illustrated in Figure 2-24, there are three phases in
the simulation of VHDL code: analysis (compilation), elaboration, and simulation.
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FIGURE 2-24:
Compilation,
Elaboration, and
Simulation of VHDL
Code

Before the VHDL model of a digital system can be simulated, the VHDL code
must first be compiled. The VHDL compiler, also called an analyzer, first checks the
VHDL source code to see that it conforms to the syntax and semantic rules of VHDL.
If there is a syntax error, such as a missing semicolon, or if there is a semantic error,
such as trying to add two signals of incompatible types, the compiler will output an
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error message.The compiler also checks to see that references to libraries are correct.
If the VHDL code conforms to all of the rules, the compiler generates intermediate
code, which can be used by a simulator or by a synthesizer.

In preparation for simulation, the VHDL intermediate code must be converted
to a form which can be used by the simulator. This step is referred to as elaboration.
During elaboration, a driver is created for each signal. Each driver holds the current
value of a signal and a queue of future signal values. Each time a signal is scheduled
to change in the future, the new value is placed in the queue along with the time at
which the change is scheduled. In addition, ports are created for each instance of a
component; memory storage is allocated for the required signals; the interconnec-
tions among the port signals are specified; and a mechanism is established for exe-
cuting the VHDL statements in the proper sequence. The resulting data structure
represents the digital system being simulated.

The simulation process consists of an initialization phase and actual simulation.
The simulator accepts simulation commands, which control the simulation of the
digital system and which specify the desired simulator output. VHDL simulation
uses what is known as discrete event simulation. The passage of time is simulated in
discrete steps in this method of simulation. The initialization phase is used to give
an initial value to the signal. During simulation, the VHDL statements are executed
and corresponding actions are scheduled. These actions are called transactions, and
the process is called scheduling a transaction. The scheduled action happens, not
necessarily when the statement executes, but when the scheduled time has been
reached. A transaction does not mean that there is a change in the value of a signal.
The new value for the signal after the transaction may be the same as the old value.
If a change in the value occurs, we say that an event has taken place.

To facilitate correct initialization, the initial value can be specified in the VHDL
model. In the absence of any specifications of the initial values, some simulator
packages will assign an initial value depending on the type of the signal. Please note
that this initialization is only for simulation and not for synthesis. During initializa-
tion, simulation time is set to zero and each process is activated. The process
“executes,” scheduling corresponding transactions; however, the scheduled transac-
tions do not happen until one reaches the time at which the scheduled transaction
is to occur. Execution of a process happens once, and then the process waits for a
signal in the sensitivity list to change.

Understanding the role of the delta (�) time delays is important when inter-
preting output from a VHDL simulator. Although the delta delays do not show up
on waveform outputs from the simulator, they show up on listing outputs. The sim-
ulator uses delta delays to make sure that signals are processed in the proper
sequence. Basically, the simulator works as follows: Whenever a component input
changes, the output is scheduled to change after the specified delay, or after � if no
delay is specified. When all input changes have been processed, simulated time is
advanced to the next time at which an output change is specified. When time is
advanced by a finite amount (1 ns for example), the � counter is reset and simula-
tion resumes. Real time does not advance again until all � delays associated with the
current simulation time have been processed.

The following example illustrates how the simulator works for the circuit of
Figure 2-25. Suppose that A changes at time � 3 ns. Statement 1 executes and B is
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A B C D

1 B <= not A;
2 C <= not B;
3 D <= not C after 5 ns;

ns delta A B C D
0 �0 0 1 0 1
3 �0 1 1 0 1
3 �1 1 0 0 1
3 �2 1 0 1 1
8 �0 1 0 1 0

FIGURE 2-25:
Illustration of Delta
Delays during
Simulation of
Concurrent
Statements

scheduled to change at time 3 � �. Then time advances to 3 � �, and statement
2 executes. C is scheduled to change at time 3 � 2�. Time advances to 3 � 2�, and
statement 3 executes. D is then scheduled to change at 8 ns. You might think the
change should occur at (3 � 2� � 5) ns. However, when time advances a finite
amount (as opposed to �, which is infinitesimal), the � counter is reset. For this rea-
son, when events are scheduled a finite time in the future, the �’s are ignored. Since
no further changes are scheduled after 8 ns, the simulator goes to an idle mode and
waits for another input change. The table gives the simulator output listing.

2.9.1 Simulation with Multiple Processes
If a model contains more than one process, all processes execute concurrently with
other processes. If there are concurrent statements outside processes, they also
execute concurrently. Statements inside of each process execute sequentially.
A process takes no time to execute unless it has wait statements in it. (Examples:
wait for 10 ns, wait for 0 ns, and wait on E.) Signals take delta time to
update when no delay is specified.

As an example of simulation of multiple processes, we trace execution of the
VHDL code shown in Figure 2-26.The keyword transport specifies the type of delay
as transport delay.

FIGURE 2-26: VHDL Code to Illustrate Process Simulation

entity simulation_example is
end simulation_example;

architecture test1 of simulation_example is
signal A,B: bit;
begin
P1: process(B)
begin
A <= '1';
A <= transport '0' after 5 ns;

end process P1;

P2: process(A)
begin
if A = '1' then B <= not B after 10 ns; end if;

end process P2;
end test1;

02Ch02.qxd  3/13/07  3:14 PM  Page 79



Figure 2-27 shows the drivers for the signals A and B as the simulation progresses.
After elaboration is finished, each driver holds ‘0’, since this is the default initial
value for a bit. When simulation begins, initialization takes place. Both processes are
executed simultaneously one time through, and then the processes wait until a signal
on the sensitivity list changes. When process P1 executes at zero time, two changes
in A are scheduled (A changes to ‘1’ at time � and back to ‘0’ at time � 5 ns).
Meanwhile, process P2 executes at zero time, but no change in B occurs, since A is
still ‘0’ during execution at time 0 ns. Time advances to �, and A changes to ‘1’. The
change in A causes process P2 to execute, and since A � ‘1’, B is scheduled to change
to ‘1’ at time 10 ns.The next scheduled change occurs at time � 5 ns, when A changes
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Example
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to ‘0’. This change causes P2 to execute, but B does not change. B changes to ‘1’ at
time � 10 ns.The change in B causes P1 to execute, and 2 changes in A are scheduled.
When A changes to ‘1’ at time 10 � �, process P2 executes, and B is scheduled to
change at time 20 ns. Then A changes at time 15 ns, and the simulation continues in
this manner until the run-time limit is reached. It should be understood that A
changes at 15 ns and not at 15 � �. The � delay comes into the picture only when no
time delay is specified.

VHDL simulators use event-driven simulation, as illustrated in the preceding
example. A change in a signal is referred to as an event. Each time an event occurs,
any processes that have been waiting on the event are executed in zero time, and
any resulting signal changes are queued up to occur at some future time. When all
the active processes are finished executing, simulation time is advanced to the time
for which the next event is scheduled, and the simulator processes that event. This
continues until either no more events have been scheduled or the simulation time
limit is reached.

When VHDL was originally created, simulation was the primary purpose; how-
ever, nowadays, one of the most important uses of VHDL is to synthesize or auto-
matically create hardware from a VHDL description. The synthesis software for
VHDL translates the VHDL code to a circuit description that specifies the needed
components and the connections between the components.The initial steps (analysis
and elaboration) in Figure 2-24 are common whether VHDL is used for simulation
or synthesis. The simulation and synthesis processes are shown in Figure 2-28.
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FIGURE 2-28:
Compilation,
Simulation, and
Synthesis of VHDL
Code

Although synthesis can be done in parallel to simulation, synthesis follows
simulation because designers would normally want to catch errors before
attempting to synthesize. After the VHDL code for a digital system has been
simulated to verify that it works correctly, the VHDL code can be synthesized
to produce a list of required components and their interconnections. The synthe-
sizer output can then be used to implement the digital system using specific
hardware, such as a CPLD or FPGA, or an ASIC. The CAD software used for
implementation generates the necessary information to program the CPLD or
FPGA hardware. In the case of an ASIC, it generates the mask required to cre-
ate the ASIC. Synthesis and implementation of digital logic from VHDL code is
discussed in more detail later.
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2.10 VHDL Data Types and Operators
2.10.1 Data Types
VHDL has several predefined data types. Signals can have these predefined data
types, or they can have a user-defined type. Some of the predefined types are as
follows:

bit ‘0’ or ‘1’
boolean FALSE or TRUE
integer an integer in the range �(231 � 1) to �(231 � 1) (some implementa-

tions support a wider range)
real floating-point number in the range �1.0E38 to � 1.0E38
character any legal VHDL character including upper- and lowercase letters, dig-

its, and special characters (each printable character must be enclosed
in single quotes; e.g., ‘d’, ‘7’, ‘�’)

time an integer with units fs, ps, ns, us, ms, sec, min, or hr

Note that the integer range for VHDL is symmetrical, even though the range for
a 32-bit 2’s complement integer is �231 to �(231 � 1).

Users can define and create their own data types. A common user-defined type
is the enumeration type in which all of the values are enumerated. For example, the
declarations

type state_type is (S0, S1, S2, S3, S4, S5);
signal state: state_type := S1;

define a signal called state that can have any one of the values S0, S1, S2, S3, S4, or S5
and is initialized to S1. If no initialization is given, the default initialization is the
leftmost element in the enumeration list, S0 in this example.

VHDL is a strongly typed language, so signals and variables of different types
generally cannot be mixed in the same assignment statement, and no automatic type
conversion is performed. Thus, the statement

A <= B or C;

is valid only if A, B, and C all have the same type or closely related types. If types
do not match, explicit type conversions should be performed, or “overloaded oper-
ators” should be created. Operator overloading is described in Sections 2.13 and 8.4.
The overloaded operators in the IEEE packages are presented in Section 2.13.

2.10.2 VHDL Operators
Predefined VHDL operators can be grouped into seven classes:

1. Binary logical operators: and or nand nor xor xnor
2. Relational operators: � /� � �� � ��
3. Shift operators: sll srl sla sra rol ror
4. Adding operators: � � & (concatenation)
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5. Unary sign operators: � �
6. Multiplying operators: * / mod rem
7. Miscellaneous operators: not abs **

When parentheses are not used, operators in class 7 have highest precedence
and are applied first, followed by class 6, then class 5, and so on. Class 1 operators
have lowest precedence and are applied last. Operators in the same class have the
same precedence and are applied from left to right in an expression.The precedence
order can be changed by using parentheses. Consider the following expression,
where A, B, C, and D are bit_vectors:

(A & not B or C ror 2 and D) = "110010"

Note that this is a relational expression performing an equality test; it is not an
assignment statement.

To evaluate the expression, the operators are applied in the order

not, &, ror, or, and, =

If A � “110”, B � “111”, C � “011000”, and D � “111011”, the computation
proceeds as follows:

not B = "000" (bit-by-bit complement)
A & not B = "110000" (concatenation)
C ror 2 = "000110" (rotate right 2 places)
(A & not B) or (C ror 2) = "110110" (bit-by-bit or)
(A & not B or C ror 2) and D = "110010" (bit-by-bit and)
[(A & not B or C ror 2 and D) = "110010"] = TRUE (the parentheses
force the equality test to be done last and the result is TRUE)

The binary logical operators (class 1) as well as not can be applied to bits,
booleans, bit_vectors, and boolean_vectors.The class 1 operators require 2 operands
of the same type, and the result is of that type.

The result of applying a relational operator (class 2) is always a Boolean
(FALSE or TRUE). Equals (�) and not equals (/�) can be applied to almost any
type. The other relational operators can be applied to any numeric or enumerated
type as well as to some array types. For example, if A � 5, B � 4, and C � 3, the
expression (A <= B) and (B <= C) evaluates to FALSE.

The shift operators can be applied to any bit_vector or boolean_vector. In the
following examples, A is a bit_vector equal to “10010101”:

A sll 2 is "01010100" (shift left logical, filled with '0')
A srl 3 is "00010010" (shift right logical, filled with '0')
A sla 3 is "10101111" (shift left arithmetic, filled with

right bit)
A sra 2 is "11100101" (shift right arithmetic, filled with

left bit)
A rol 3 is "10101100" (rotate left)
A ror 5 is "10101100" (rotate right)
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The � and � operators can be applied to integer or real numeric operands. The
� and � operators are not defined for bits or bit-vectors.That is why we had to make
a full adder by specifically creating carry and sum bits for each bit (Figure 2-12).
However, several standard libraries do provide functions for � and � that can work
on bit-vectors. If we use such a library, we can perform addition using the statement
C �� A � B. Some of the popular libraries are described in Section 2.13.

The & operator can be used to concatenate two vectors (or an element and a
vector, or two elements) to form a longer vector. For example, “010” & ‘1’ is “0101”
and “ABC” & “DEF” is “ABCDEF”.

The * and / operators perform multiplication and division on integer or floating-
point operands. The rem and mod operators calculate the remainder and modulus
for integer operands. The ** operator raises an integer or floating-point number to
an integer power, and abs finds the absolute value of a numeric operand.

2.11 Simple Synthesis Examples
Synthesis tools try to infer the hardware components needed by “looking” at the
VHDL code. In order for code to synthesize correctly, certain conventions must
be followed. When writing VHDL code, you should always keep in mind that you
are designing hardware, not simply writing a computer program. Each VHDL state-
ment implies certain hardware requirements. So, poorly written VHDL code may
result in poorly designed hardware. Even if VHDL code gives the correct result
when simulated, it may not result in hardware that works correctly when synthe-
sized. Timing problems may prevent the hardware from working properly even
though the simulation results are correct.

Consider the VHDL code in Figure 2-29. (Note that B is missing from the
process sensitivity list.) This code will simulate as follows: Whenever A changes,
it will cause the process to execute once. The value of C will reflect the values of
A and B when the process began. If B changes now, that will not cause the process
to execute.
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FIGURE 2-29: VHDL Code Example where Simulation and Synthesis Results in Different Outputs

entity Q1 is
port(A, B: in bit;

C: out bit);
end Q1;

architecture circuit of Q1 is
begin
process(A)
begin
C <= A or B after 5 ns;

end process;
end circuit;
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If this code is synthesized, most synthesizers will output an OR gate as in
Figure 2-30. The synthesizer will warn you that B is missing from the sensitivity
list, but will go ahead and synthesize the code properly. The synthesizer will also
ignore the 5-ns delay on the above statement. If you want to model an exact 5-ns
delay, you will have to use counters. The simulator output will not match the syn-
thesizer’s output since the process will not execute when B changes. This is an
example of where the synthesizer guessed a little more than what you wrote; it
assumed that you probably meant an OR gate and created that circuit (accompa-
nied by a warning). But this circuit functions differently from what simulated
before synthesis. It is important that you always check for synthesizer warnings of
missing signals in the sensitivity list. Perhaps the synthesizer helped you; perhaps
it created hardware that you did not intend to.
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FIGURE 2-31: Example VHDL Code

entity Q3 is
port(A,B,F, CLK: in bit;

G: out bit);
end Q3;

architecture circuit of Q3 is
signal C: bit;
begin
process(Clk)
begin
if (Clk = '1' and Clk'event) then
C <= A and B; -- statement 1
G <= C or F; -- statement 2

end if;
end process;

end circuit;

A 
C 

OR2 

B FIGURE 2-30:
Synthesizer
Output for Code
in Figure 2-29

Now, consider the VHDL code in Figure 2-31. What hardware will you get if you
synthesized this code?

Let us think about the block diagram of the circuit represented by this code with-
out worrying about the details inside. The block diagram is as shown in Figure 2-32.
The ability to hide details and use abstractions is an important part of good system
design.

Note that C is an internal signal, and therefore it does not show up in the block
diagram.
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FIGURE 2-33:
Hardware
Corresponding to
VHDL Code in
Figure 2-31

Now, let us think about the details of the circuit inside this block. This circuit is
not two cascaded gates; the signal assignment statements are in a process. An edge-
triggered clock is implied by the use of clk'event in the clock statement preceding
the signal assignment. Since the values of C and G need to be retained after the clock
edge, flip-flops are required for both C and G. Please note that a change in the value
of C from statement 1 will not be considered during the execution of statement 2 in
that pass of the process. It will be considered only in the next pass, and the flip-flop
for C makes this happen in the hardware also. Hence the code implies hardware
shown in Figure 2-33.

A

B

G

F

CLK 

FIGURE 2-32: Block
Diagram for VHDL
Code in Figure 2-31

We saw earlier that the following code represents a D-latch:

process(G, D)
begin
if G = '1' then Q <= D; end if;

end process;

Let us understand why this code does not represent an AND gate with G and
D as inputs. If G � ‘1’, an AND gate will result in the correct output to match the
if statement. However, what happens if currently Q � ‘1’ and then G changes
to ‘0’? When G changes to ‘0’, an AND gate would propagate that to the output;
however, the device we have modeled here should not. It is expected to make no
changes to the output if G is not equal to ‘1’. Hence, it is clear that this device has
to be a D-latch and not an AND gate.

In order to infer flip-flops or registers that change state on the rising edge of a
clock signal, an if-clause of the form

if clock'event and clock = '1' then . . . end if;

is required by most synthesizers. For every assignment statement between then and
end if above, a signal on the left side of the assignment will cause creation of a
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register or flip-flop.The moral to this story is, if you don’t want to create unnecessary
flip-flops, don’t put the signal assignments in a clocked process. If clock'event is
omitted, the synthesizer may produce latches instead of flip-flops.

Now consider the VHDL code in Figure 2-34. If you attempt to synthesize this
code, the synthesizer will generate an empty block diagram. This is because D, the
output of the above block, is never assigned. It will generate warnings that

Input <CLK> is never used.
Input <A> is never used.
Input <B> is never used.
Output <D> is never assigned.
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FIGURE 2-34: Example VHDL Code That Will Not Synthesize

entity no_syn is
port(A,B, CLK: in bit;

D: out bit);
end no_syn;

architecture no_synthesis of no_syn is
signal C: bit;

begin
process(Clk)
begin
if (Clk='1' and Clk'event) then
C <= A and B;

end if;
end process;

end no_synthesis;

2.12 VHDL Models for Multiplexers
A multiplexer is a combinational circuit and can be modeled using concurrent state-
ments only or using processes. A conditional signal assignment statement such as
when or a selective signal assignment statement using with select can be used to
model a multiplexer without processes. A case statement within a process can also
be used to make a model for a multiplexer.

2.12.1 Using Concurrent Statements
Figure 2-35 shows a 2-to-1 multiplexer (MUX) with two data inputs and one control
input.The MUX output is F � A� 	 I0 � A 	 I1.The corresponding VHDL statement is

F <= (not A and I0) or (A and I1);

Here, the MUX can be modeled as a single concurrent signal assignment state-
ment. Alternatively, we can represent the MUX by a conditional signal assignment
statement as shown in Figure 2-35. This statement executes whenever A, I0, or I1
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changes. The MUX output is I0 when A � ‘0’, and otherwise it is I1. In the condi-
tional statement, I0, I1, and F can either be bits or bit-vectors.

The general form of a conditional signal assignment statement is

signal_name <= expression1 when condition1
else expression2 when condition2
[else expressionN];

This concurrent statement is executed whenever a change occurs in a signal used in
one of the expressions or conditions. If condition1 is true, signal_name is set
equal to the value of expression1, otherwise if condition2 is true,signal_name
is set equal to the value of expression2, and so on. The line in square brackets
is optional. Figure 2-36 shows how two cascaded MUXes can be represented by a
conditional signal assignment statement. The output MUX selects A when E � ‘1’;
otherwise, it selects the output of the first MUX, which is B when D � ‘1’, or it is C.
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F <= I0 when A = '0' else I1;
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FIGURE 2-36:
Cascaded 2-to-1
MUXes

F <= A when E = '1'
else B when D = '1'
else C;

Figure 2-37 shows a 4-to-1 multiplexer (MUX) with four data inputs and two
control inputs, A and B. The control inputs select which one of the data inputs is
transmitted to the output. The logic equation for the 4-to-1 MUX is

F � A�B�I0 � A�BI1 � A B�I2 � A B I3

Thus, one way to model the MUX is with the VHDL statement

F <= (not A and not B and I0) or (not A and B and I1) or
(A and not B and I2) or (A and B and I3);
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FIGURE 2-37: 4-to-1
Multiplexer sel <= A&B;

--selected signal assignment statement
with sel select
F <= I0 when "00",

I1 when "01",
I2 when "10",
I3 when "11",

Another way to model the 4-to-1 MUX is to use a conditional assignment
statement:

F <= I0 when A&B = "00"
else I1 when A&B = "01"
else I2 when A&B = "10"
else I3;

The expression A&B means that A is concatenated with B; that is, the two bits A and
B are merged together to form a 2-bit vector.This bit-vector is tested and the appropri-
ate MUX input is selected. For example, if A � ‘1’ and B � ‘0’, A&B = “10” and I2 is
selected. Instead of concatenating A and B, we could use a more complex condition:

F <= I0 when A = '0' and B = '0'
else I1 when A = '0' and B = '1'
else I2 when A = '1' and B = '0'
else I3;

A third way to model the MUX is to use a selected signal assignment statement,
as shown in Figure 2-37. A&B cannot be used in this type of statement, so we con-
catenate A and B to create sel. The value of sel then selects the MUX input that is
assigned to F.

The general form of a selected signal assignment statement is

with expression_s select
signal_s <= expression1 [after delay-time] when choice1,

expression2 [after delay-time] when choice2,
. . .
[expression_n [after delay-time] when others];

This concurrent statement executes whenever a signal changes in any of the
expressions. First, expression_s is evaluated. If it equals choice1, signal_s is
set equal to expression1; if it equals choice2, signal_s is set equal to
expression2; and so on. If all possible choices for the value of expression_s are
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given, the last line should be omitted; otherwise, the last line is required. When it is
present, if expression_s is not equal to any of the enumerated choices,signal_s
is set equal to expression_n. Then signal_s is updated after the specified
delay-time, or after � if the after delay-time is omitted.

2.12.2 Using Processes
If a MUX model is used inside a process, a concurrent statement cannot be used. As
an alternative, the MUX can be modeled using a case statement:

case Sel is
when 0 => F <= I0;
when 1 => F <= I1;
when 2 => F <= I2;
when 3 => F <= I3;

end case;

The case statement has the general form

case expression is
when choice1 => sequential statements1
when choice2 => sequential statements2
. . .
[when others => sequential statements]

end case;

The expression is evaluated first. If it is equal to choice1, then sequen-
tial statements1 are executed; if it is equal to choice2, then sequential
statements2 are executed; and so on. All possible values of the expression
must be included in the choices. If all values are not explicitly given, a when oth-
ers clause is required in the case statement.

One might notice that combinational circuits can be described using concurrent
or sequential statements. Sequential circuits generally require a process statement.
Process statements can be used to make sequential or combinational circuits.

2.13 VHDL Libraries
VHDL libraries and packages are used to extend the functionality of VHDL by
defining types, functions, components, and overloaded operators. In standard
VHDL, some operations are valid only for certain data types. If those operations are
desired for other data types, one has to use function “overloading” to create an
“overloaded” operator. The concept of “function overloading” exists in many gen-
eral-purpose languages. It means that two or more functions may have the same
name, so long as the parameter types are sufficiently different enough to distinguish
which function is actually intended. Overloaded functions can also be created to
handle operations involving heterogeneous data types.
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In the initial days of CAD, every tool vendor used to create its own libraries and
packages. Porting designs from one environment to another became a problem
under those conditions.The IEEE has developed standard libraries and packages to
make design portability easier. The original VHDL standard only defines 2-valued
logic (bits and bit-vectors). One of the earliest extensions was to define multivalued
logic as an IEEE standard. The package IEEE.std_logic_1164 defines a std_logic
type that has nine values, including ‘0’, ‘1’, ‘X’ (unknown), and ‘Z’ (high impedance).
The package also defines std_logic_vectors, which are vectors of the std_logic type.
This standard defines logic operations and other functions for working with
std_logic and std_logic_vectors, but it does not provide for arithmetic operations.
The std_logic_1164 package and its use for simulation and synthesis will be
described in more detail in Chapter 8.

When VHDL became more widely used for synthesis, the IEEE introduced two
packages to facilitate writing synthesizable code: IEEE.numeric_bit and
IEEE.numeric_std. The former uses bit_vectors to represent unsigned and signed
binary numbers, and the latter uses std_logic_vectors. Both packages define over-
loaded logic and arithmetic operators for unsigned and signed numbers. Prior to
Chapter 8, we will use the numeric_bit package and unsigned numbers for arithmetic
operations.

To access functions and components from a library, you need a library statement
and a use statement. The statement

library IEEE;

allows your design to access all packages in the IEEE library. The statement

use IEEE.numeric_bit.all;

allows your design to use the entire numeric_bit package, which is found in the
IEEE library. Whenever a package is used in a module, the library and use state-
ments must be placed before the entity in that module period.

The numeric_bit package defines unsigned and signed types as unconstrained
arrays of bits:

type unsigned is array (natural range <>) of bit;
type signed is array (natural range <>) of bit;

Signed numbers are represented in 2’s complement form. The package contains
overloaded operators for arithmetic, relational, logical, and shifting operations on
unsigned and signed numbers.

Unsigned and signed types are basically bit-vectors. However, overloaded oper-
ators are defined for these types and not for bit-vectors. The statement

C <= A + B;

will cause a compiler error if A, B, and C are bit_vectors. If these signals are of type
unsigned or signed, the compiler will invoke the appropriate overloaded operator
to carry out the addition.
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The numeric_bit package defines the following overloaded operators:

arithmetic: �, �, *, /, rem, mod
relational:: �, /�, �, �, ��, ��
logical: not, and, or, nand, nor, xor, xnor
shifting: shift_left, shift_right, rotate_left, rotate_right, sll, srl, rol, ror

The arithmetic, relational, and logical operators (except not) each require a left
operand and a right operand. For arithmetic and relational operators, the following
left and right operand pairs are acceptable: unsigned and unsigned, unsigned and
natural, natural and unsigned, signed and signed, signed and integer, integer and
signed. For logical operators (except not), left and right operands must either both
be unsigned or both signed. When the � and – operators are used with unsigned
operands of different lengths, the shortest operand will be extended by filing in 0’s
on the left. Any carry is discarded so that the result has the same number of bits as
the longest operand. For example, when working with unsigned numbers

“1011” � “110” � “1011” � “0110” � “0001” and the carry is discarded.

The numeric_bit package provides an overloaded operator to add an integer to
an unsigned, but not to add a bit to an unsigned type. Thus, if A and B are unsigned,
A+B+1 is allowed, but a statement of the form

Sum <= A + B + carry;

is not allowed when carry is of type bit. The carry must be converted to unsigned
before it can be added to the unsigned vector A+B. The notation unsigned'(0 =>
carry) will accomplish the necessary conversion.

Figure 2-38 shows behavioral VHDL code that uses overloaded operators from
the numeric_bit package to describe a 4-bit adder with a carry input. The entity
declaration is the same as in Figure 2-12, except type unsigned is used instead of
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FIGURE 2-38: VHDL Code for 4-Bit Adder Using Unsigned Vectors

library IEEE;
use IEEE.numeric_bit.all;

entity Adder4 is
port(A, B: in unsigned(3 downto 0); Ci: in bit; -- Inputs

S: out unsigned(3 downto 0); Co: out bit); -- Outputs
end Adder4;

architecture overload of Adder4 is
signal Sum5: unsigned(4 downto 0);
begin
Sum5 <= '0' & A + B + unsigned'(0=>Ci); -- adder
S <= Sum5(3 downto 0);
Co <= Sum5(4);

end overload;

02Ch02.qxd  3/13/07  3:14 PM  Page 92



bit_vector. Because adding two 4-bit numbers produces a 5-bit sum, a 5-bit signal
(Sum5) is declared within the architecture. If we compute A � B, the result is only
4 bits. Since we want a 5-bit result, we must extend A to 5 bits by concatenating ‘0’
and A. (B will automatically be extended to match.) After Sum5 is calculated using
the overloaded operators from the numeric_bit package, it is split into a 4-bit sum
(S) and a carry (Co). Most synthesis tools will implement the code of Figure 2-38 as
an adder with a carry input and output. One version of the Xilinx synthesizer pro-
duces the result shown in Figure 2-39.
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FIGURE 2-39:
Synthesizer Output
for VHDL Code of
Figure 2-38

Useful conversion functions found in the numeric_bit package include the
following:

TO_INTEGER(A): converts an unsigned vector A to an integer
TO_UNSIGNED(B, N): converts an integer to an unsigned vector of length N
UNSIGNED(A): causes the compiler to treat a bit_vector A as an unsigned vector
BIT_VECTOR(B): causes the compiler to treat an unsigned vector B as a bit_vector

If multivalued logic is desired, one can use the IEEE standard numeric_std
package instead of the numeric_bit package. The numeric_std package defines
unsigned and signed types as std_logic vectors instead of bit_vectors. Three state-
ments are required to use this package:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

This package defines the same set of overloaded operators and functions on
unsigned and signed numbers as the numeric_bit package.

Another popular VHDL package used for simulation and synthesis with multi-
valued logic is the std_logic_arith package developed by Synopsis. This package
defines unsigned and signed types and overloaded operators similarly to the IEEE
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numeric_std package; however, the conversion functions have different names and
there are some other differences.A major deficiency of the std_logic_arith package
is that it does not define logic operations for unsigned or signed vectors. This pack-
age is not an IEEE standard even though it is commonly placed in the IEEE
library.

Yet another option is to use the std_logic_unsigned package, also developed by
Synopsis. This package does not define unsigned types, but instead it defines some
overloaded arithmetic operators for std_logic_vectors. These operators
std_logic_vectors as if they were unsigned numbers. When used in conjunction with
the std_logic_1164 package, both arithmetic and logic operations can be performed
on std_logic_vectors because the 1164 package defines the logic operations. The
std_logic_unsigned package is not an IEEE standard even though it is commonly
placed in the IEEE library. The VHDL code for the 4-bit adder of Figure 2-38 is
rewritten in Figure 2-40 using the std_logic_unsigned package. Because the package
provides an overloaded operator to add a std_logic bit to a std_logic_vector, type
conversion is not needed. The result of synthesizing this code is the same as that for
Figure 2-38.
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FIGURE 2-40: VHDL Code for 4-Bit Adder Using the std_logic_unsigned Package

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity Adder4 is
port(A, B: in std_logic_vector(3 downto 0); Ci: in std_logic; --Inputs

S: out std_logic_vector(3 downto 0); Co: out std_logic); --Outputs
end Adder4;

architecture overload of Adder4 is
signal Sum5: std_logic_vector(4 downto 0);
begin
Sum5 <= '0' & A + B + Ci; --adder
S <= Sum5(3 downto 0);
Co <= Sum5(4);

end overload;

In this section, we have discussed four different packages, which provide over-
loaded operators for arithmetic and relational operations. We will initially use the
numeric_bit package because it is easiest to use and it is an IEEE standard. Starting
in Chapter 8, we will use the IEEE numeric_std package because it is an IEEE stan-
dard, provides multivalued signals, and is similar in functionality to the numeric_bit
package. We have chosen not to use the std_logic_arith and std_logic_unsigned
packages because they are not IEEE standards and they have less functionality than
the IEEE numeric_std package.
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2.14 Modeling Registers and Counters Using
VHDL Processes
When several flip-flops change state on the same clock edge, statements represent-
ing these flip-flops can be placed in the same clocked process. Figure 2-41 shows
three flip-flops connected as a cyclic shift register. These flip-flops all change state
following the rising edge of the clock. We have assumed a 5-ns propagation delay
between the clock edge and the output change. Immediately following the clock
edge, the three statements in the process execute in sequence with no delay.The new
values of the Q’s are then scheduled to change after 5 ns. If we omit the delay and
replace the sequential statements with

Q1 <= Q3; Q2 <= Q1; Q3 <= Q2;

the operation is basically the same.The three statements execute in sequence in zero
time, and then the Q’s values change after a delta delay. In both cases, the old val-
ues of Q1, Q2, and Q3 are used to compute the new values. This may seem strange at
first, but that is the way the hardware works. At the rising edge of the clock, all of
the D inputs are loaded into the flip-flops, but the state change does not occur until
after a propagation delay.
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D Q1

D Q2

D Q3

CLK 
process(CLK)
begin
if CLK'event and CLK = '1' then
Q1 <= Q3 after 5 ns;
Q2 <= Q1 after 5 ns;
Q3 <= Q2 after 5 ns;

end if;
end process;

FIGURE 2-41: Cyclic
Shift Register

Figure 2-42 shows a simple register that can be loaded or cleared on the rising
edge of the clock. If CLR � ‘1’, the register is cleared, and if Ld � ‘1’, the D inputs
are loaded into the register. This register is fully synchronous so that the Q outputs
only change in response to the clock edge and not in response to a change in Ld or
CLR. In the VHDL code for the register, Q and D are bit-vectors dimensioned
3 downto 0. Since the register outputs can only change on the rising edge of
the clock, CLR is not on the sensitivity list. It is tested after the rising edge of the
clock. If CLR � Ld � ‘0’, no change of Q occurs. Since CLR is tested before Ld, if
CLR � ‘1’, the elsif prevents Ld from being tested and CLR overrides Ld.
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Next, we will model a left shift register using a VHDL process. The register in
Figure 2-43 is similar to that in Figure 2-42, except that we have added a left shift
control input (LS). When LS is ‘1’, the contents of the register are shifted left and
the rightmost bit is set equal to Rin. The shifting is accomplished by taking the right-
most 3 bits of Q, Q(2 downto 0), and concatenating them with Rin. For example,
if Q � “1101” and Rin � ‘0’, then Q(2 downto 0) & Rin � “1010”, and this value
is loaded back into the Q register on the rising edge of CLK. The code implies that
if CLR � Ld � LS � ‘0’, then Q remains unchanged.
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process(CLK)
begin
if CLK'event and CLK = '1' then
if CLR = '1' then Q <= "0000";
elsif Ld = '1' then Q <= D;
end if;

end if;
end process;

FIGURE 2-42:
Register with
Synchronous Clear
and Load

Q3 Q2 Q1 Q0
Ld

CLR

CLKD3 D2 D1 D0

Register

process(CLK)
begin
if CLK'event and CLK = '1' then
if CLR = '1' then Q <= "0000";
elsif Ld = '1' then Q <= D;
elsif LS = '1' then Q <= Q(2 downto 0) & Rin;

end if;
end if;

end process;

FIGURE 2-43: Left Shift Register with Synchronous Clear and Load

CLK
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Ld

CLR Left SR

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Rin

Figure 2-44 shows a simple synchronous counter. On the rising edge of the clock,
the counter is cleared when ClrN � ‘0’, and it is incremented when ClrN � En � ‘1’.
In this example, the signal Q represents the 4-bit value stored in the counter. Since
addition is not defined for bit-vectors, we have declared Q to be of type unsigned.Then
we can increment the counter using the overloaded “ � ” operator that is defined in
the ieee.numeric_bit package. The statement Q <= Q + 1; increments the counter.
When the counter is in state “1111”, the next increment takes it back to state “0000”.

Now, let us create a VHDL model for a generic counter, the 74163. It is a 4-bit
fully synchronous binary counter, which is available in both TTL and CMOS logic
families.Although rarely used in new designs at present, it represents a general type
of counter that is found in many CAD design libraries. In addition to performing the
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counting function, it can be cleared or loaded in parallel. All operations are syn-
chronized by the clock, and all state changes take place following the rising edge of
the clock input. A block diagram of the counter is provided in Figure 2-45.

This counter has four control inputs—ClrN, LdN, P, and T. P and T are used to
enable the counting function. Operation of the counter is as follows:

1. If ClrN � ‘0’, all flip-flops are set to ‘0’ following the rising clock edge.
2. If ClrN � ‘1’ and LdN � ‘0’, the D inputs are transferred in parallel to the

flip-flops following the rising clock edge.
3. If ClrN � LdN � ‘1’ and P � T � ‘1’, the count is enabled and the counter state

will be incremented by 1 following the rising clock edge.

If T � ‘1’, the counter generates a carry (Cout) in state 15, so

Cout � Q3 Q2 Q1 Q0 T

The truth table in Figure 2-45 summarizes the operation of the counter. Note
that ClrN overrides the load and count functions in the sense that when ClrN � ‘0’,
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signal Q: unsigned (3 downto 0);
-----------
process (CLK)
begin
if CLK'event and CLK = '1' then
if ClrN = '0' then Q <= "0000";
elsif En = '1' then Q <= Q + 1;
end if;

end if;
end process;

FIGURE 2-44: VHDL Code for a Simple Synchronous Counter

Q3 Q2 Q1 Q0

Counter 

En 

CLR 

CLK 

Q

ClrN 

LdN
ClrN

P
T

Clk

74163

Q3 Q2 Q1

D2 D1 D0

Q0

D3

Cout P
T
Ld
Clr

Control Signals            Next State
ClrN + Q2

+ Q1
+ Q0

+

D3
Q3 

present state + 1

0 X X
LdN PT Q3

D2 D1 D0 (parallel load)
Q2 Q1 Q0

(no change)
(increment count)

(clear)
X1

11

1

1

1 0
0

0 0 0 0

FIGURE 2-45: 74163
Counter Operation
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clearing occurs regardless of the values of LdN, P, and T. Similarly, LdN overrides
the count function.The ClrN input on the 74163 is referred to as a synchronous clear
input because it clears the counter in synchronization with the clock, and no clear-
ing can occur if no clock pulse is present.

The VHDL description of the counter is shown in Figure 2-46. Q represents the
four flip-flops that comprise the counter. The counter output, Qout, changes whe
never Q changes. The carry output is computed whenever Q or T changes. The first
if statement in the process tests for a rising edge of Clk. Since clear overrides load
and count, the next if statement tests ClrN first. Since load overrides count, LdN is
tested next. Finally, the counter is incremented if both P and T are ‘1’. Since Q is of
type unsigned, we can use the overloaded "+" operator from the ieee.numeric_bit
package to add 1 to increment the counter. The expression Q+1 would not be legal
if Q were a bit-vector since addition is not defined for bit-vectors.
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FIGURE 2-46: 74163 Counter Model

-- 74163 FULLY SYNCHRONOUS COUNTER

library IEEE;
use IEEE.numeric_bit.all;

entity c74163 is
port(LdN, ClrN, P, T, Clk: in bit;

D: in unsigned(3 downto 0);
Cout: out bit; Qout: out unsigned(3 downto 0));

end c74163;

architecture b74163 of c74163 is
signal Q: unsigned(3 downto 0);   -- Q is the counter register
begin
Qout <= Q;
Cout <= Q(3) and Q(2) and Q(1) and Q(0) and T;
process(Clk)
begin
if Clk'event and Clk = '1' then -- change state on rising edge
if ClrN = '0' then Q <= "0000";
elsif LdN = '0' then Q <= D;
elsif (P and T) = '1' then Q <= Q + 1;
end if;

end if;
end process;

end b74163;

To test the counter, we have cascaded two 74163’s to form an 8-bit counter
(Figure 2-47).When the counter on the right is in state 1111 and T1 � ‘1’, Carry1 � ‘1’.
Then for the left counter, PT � ‘1’ if P � ‘1’. If PT � ‘1’, on the next clock the right
counter is incremented to 0000 at the same time the left counter is incremented.
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Figure 2-48 shows the VHDL code for the 8-bit counter. In this code we have used
the c74163 model as a component and instantiated two copies of it. For convenience
in reading the output, we have defined a signal Count, which is the integer equiva-
lent of the 8-bit counter value. The function to_integer converts an unsigned
vector to an integer.

Let us now synthesize the VHDL code for a left shift register (Figure 2-43).
Before synthesis is started, we must specify a target device (e.g., a particular FPGA
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FIGURE 2-48: VHDL for 8-Bit Counter

--Test module for 74163 counter

library IEEE;
use IEEE.numeric_bit.ALL;

entity eight_bit_counter is
port(ClrN, LdN, P, T1, Clk: in bit;

Din1, Din2: in unsigned(3 downto 0);
Count: out integer range 0 to 255;
Carry2: out bit);

end eight_bit_counter;

architecture cascaded_counter of eight_bit_counter is
component c74163
port(LdN, ClrN, P, T, Clk: in bit;

D: in unsigned(3 downto 0);
Cout: out bit; Qout: out unsigned(3 downto 0));

end component;

signal Carry1: bit;
signal Qout1, Qout2: unsigned(3 downto 0);
begin
ct1: c74163 port map (LdN, ClrN, P, T1, Clk, Din1, Carry1, Qout1);
ct2: c74163 port map (LdN, ClrN, P, Carry1, Clk, Din2, Carry2, Qout2);
Count <= to_integer(Qout2 & Qout1);

end cascaded_counter;
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FIGURE 2-47: Two
74163 Counters
Cascaded to Form
an 8-Bit Counter
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or CPLD) so that the synthesizer knows what components are available. Let us
assume that the target is a CPLD or FPGA that has D flip-flops with clock enable
(D-CE flip-flops). Q and D are 4-bit vectors. Because updates to Q follow
"CLK'event and CLK = '1' then", this infers that Q must be a register com-
posed of four flip-flops, which we will label Q3, Q2, Q1, and Q0. Since the flip-flops
can change state when Clr, Ld, or Ls is ‘1’, we connect the clock enables to an OR
gate whose output is Clr � Ld � Ls.Then we connect gates to the D inputs to select
the data to be loaded into the flip-flops. If Clr � ‘0’ and Ld � ‘1’, D is loaded into
the register on the rising clock edge. If Clr � Ld � ‘0’ and Ls � ‘1’, then Q2 is
loaded into Q3, Q1 is loaded into Q2, and so on. Figure 2-49 shows the logic circuit
for the first two flip-flops. If Clr � ‘1’, the D flip-flop inputs are ‘0’and the register
is cleared.

100 Introduction to VHDL

CE D

Q3

CE D

Q2

CLK CLK Clr 

Ld 

Ls 

Clr' Ld D3 Clr' Ld' Ls Q2 D2 Q1Clr' Ld Clr' Ld' Ls 

FIGURE 2-49:
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Code for Left Shift
Register from
Figure 2-43

A VHDL synthesizer cannot synthesize delays. Clauses of the form "after
time-expression" will be ignored by most synthesizers, but some synthesizers
require that after clauses be removed. Although initial values for signals may be
specified in port and signal declarations, these initial values are ignored by the
synthesizer. A reset signal should be provided if the hardware must be set to a spe-
cific initial state. Otherwise, the initial state of the hardware may be unknown and
the hardware may malfunction. When an integer signal is synthesized, the integer is
represented in hardware by its binary equivalent. If the range of an integer is not
specified, the synthesizer will assume the maximum number of bits, usually 32. Thus

signal count: integer range 0 to 7;

would result in a 3-bit counter, but

signal count: integer;

could result in a 32-bit counter.
VHDL signals retain their current values until they are changed. This can result

in creation of unwanted latches when the code is synthesized. For example, in a com-
binational process, the statement

if X = '1' then B <= 1; end if;
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would create latches to hold the value of B when X changes to ‘0’. To avoid creation
of unwanted latches in a combinational process, always include an else clause in
every if statement. For example,

if X = '1' then B <= 1 else B <= 0; end if;

would create a MUX to switch the value of B from 1 to 0.

2.15 Behavioral and Structural VHDL
Any circuit or device can be represented in multiple forms of abstraction. Consider
the different representations for a NAND gate, as illustrated in Figure 2-50. When
hearing the term NAND, different designers, depending on the domain of their
design level, think of these different representations of the same NAND device.
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Some would think of just a block representing the behavior of a NAND operator,
as illustrated in Figure 2-50(a). Some others might think of the four gates in a
CMOS 7400 chip, as in Figure 2-50(b). For designers who work at the logic level,
they think of the logic symbol for a NAND gate, as in Figure 2-50(c).Transistor-level
circuit designers think of the transistor-level circuit to achieve the NAND function-
ality, as in Figure 2-50(d). What passes through the mind of a physical level designer
is the layout of a NAND gate, as in Figure 2-50(e). All of the figures represent the
same device, but they differ in the amount of detail provided in the description.

Just as a NAND gate can be described in different ways, any logic circuit can be
described with different levels of detail. Figure 2-51 indicates a behavioral level repre-
sentation of the logic function F � ab � bc, whereas Figures 2-52 represents 2 equiva-
lent structural representations.The functionality specified in the abstract description in
Figure 2-51 can be achieved in different ways, two examples of which are by using two
AND gates and one OR gate or three NAND gates.A structural description gives dif-
ferent descriptions for Figures 2-52(a) and 2-52(b), whereas the same behavioral
description could result in either of these two representations.A structural description
specifies more details, whereas the behavioral level description only specifies the
behavior at a higher level of abstraction.
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FIGURE 2-51: A
Block Diagram with
A, B, C as Inputs
and F = AB + BC as
Output

FIGURE 2-52: Two
Implementations of
F = AB + BC

You noticed that the same circuit can be described in different ways. Similarly,
VHDL allows you to create design descriptions at multiple levels of abstraction. The
most common ones are behavioral models, dataflow (register transfer language
[RTL]) models, and structural models. Behavioral VHDL models describe the circuit
or system at a high level of abstraction without implying any particular structure or
technology. Only the overall behavior is specified. In contrast, in structural models, the
components used and the structure of the interconnection between the components
are clearly specified. Structural models may be detailed enough to specify use of par-
ticular gates and flip-flops from specific libraries/packages. The structural VHDL
model is at a low level of abstraction. VHDL code can be written at an intermediate
level of abstraction, at the dataflow level or RTL level, in addition to pure behavioral
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level or structural level. Register transfer languages have been used for decades to
describe the behavior of synchronous systems where a system is viewed as registers
plus control logic required to perform loading and manipulation of registers. In the
dataflow model, data path and control signals are specified. The working of the sys-
tem is described in terms of the data transfer between registers.

If designs are specified at higher levels of abstraction, they need to get converted
to the lower levels in order to get implemented. In the early days of design automation,
there were not enough automatic software tools to perform this conversion; hence,
designs needed to be specified at the lower levels of abstraction. Designs were entered
using schematic capture or lower levels of abstraction. Nowadays, synthesis tools per-
form very efficient conversion of behavioral level designs into target technologies.

Behavioral and structural design techniques are often combined. Different parts
of the design are often done with different techniques. State-of-the-art design automa-
tion tools generate efficient hardware for logic and arithmetic circuits; hence, a large
part of those designs is done at the behavioral level. However, memory structures
often need manual optimizations and are done by custom design, as opposed to
automatic synthesis.

2.15.1 Modeling a Sequential Machine
In this section, we discuss several ways of writing VHDL descriptions for sequential
machines. Let us assume that we have to write a behavioral model for a Mealy sequen-
tial circuit represented by the state table in Figure 2-53 (note that this is the BCD to
excess-3 code converter designed in Chapter 1).A block diagram of this state machine
is also shown in Figure 2-53. This view of the circuit can be used to write its entity
description. Please note that the current state and next state are not visible externally.
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FIGURE 2-53:
State Table and
Block Diagram of
Sequential Machine

There are several ways to model this sequential machine. One approach would
be to use two processes to represent the two parts of the circuit. One process mod-
els the combinational part of the circuit and generates the next state information
and outputs.The other process models the state register and updates the state at the
appropriate edge of the clock. Figure 2-54 illustrates such a model for this Mealy
machine. The first process represents the combinational circuit. At the behavioral
level, we will represent the state and next state of the circuit by integer signals ini-
tialized to 0. Please remember that this initialization is meaningful only for simula-
tions. Since the circuit outputs, Z and Nextstate, can change when either the State or
X changes, the sensitivity list includes both State and X. The case statement tests the
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value of State, and depending on the value of X, Z and Nextstate are assigned new
values.The second process represents the state register.Whenever the rising edge of
the clock occurs, State is updated to the value of Nextstate, so CLK appears in the
sensitivity list. The second process will simulate correctly if written as

process(CLK) -- State Register
begin
if CLK = '1' then -- rising edge of clock (simulation)

State <= Nextstate;
end if;

end process;

but in order to synthesize with edge-triggered flip-flops, the clk'event attribute
must be used, as in

process(CLK) -- State Register
begin -- (synthesis)
if CLK'event and CLK = '1' then -- rising edge of clock

State <= Nextstate;
end if;

end process;

In Figure 2-54, State is an integer with range 0 to 6. The statement when
others => null is not actually needed here because the outputs and next states
of all possible values of State are explicitly specified; however, it should be included
whenever the else clause of any if statement is omitted or when actions for all
possible values of State are not specified.The null implies no action, which is appro-
priate since the other values of State should never occur. If else clauses are omitted
or actions for any conditions are unspecified, synthesis typically results in creation
of latches.
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FIGURE 2-54: Behavioral Model for Excess-3 Code Converter

-- This is a behavioral model of a Mealy state machine (Figure 2-53)
-- based on its state table. The output (Z) and next state are
-- computed before the active edge of the clock. The state change
-- occurs on the rising edge of the clock.

entity Code_Converter is
port(X, CLK: in bit;

Z: out bit);
end Code_Converter;

architecture Behavioral of Code_Converter is
signal State, Nextstate: integer range 0 to 6;
begin
process(State, X) -- Combinational Circuit
begin
case State is
when 0 =>
if X = '0' then Z <= '1'; Nextstate <= 1;
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A simulator command file that can be used to test Figure 2-54 is as follows:

add wave CLK X State NextState Z
force CLK 0 0, 1 100 -repeat 200
force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350
run 1600

The first command specifies the signals that are to be included in the waveform
output.The next command defines a clock with a period of 200 ns. CLK is ‘0’ at time
0 ns, is ‘1’ at time 100 ns, and repeats every 200 ns. In a command of the form

force signal_name v1 t1, v2 t2, . . .

signal_name gets the value v1 at time t1, the value v2 at time t2, and so on. X
is ‘0’ at time 0 ns, changes to ‘1’ at time 350 ns, changes to ‘0’ at time 550 ns, and so
on. The X input corresponds to the sequence 0010 1001, and only the times at which
X changes are specified. Execution of the preceding command file produces the
waveforms shown in Figure 2-55.

In Chapter 1, we manually designed this state machine (Figure 1-26). This cir-
cuitry contained three flip-flops, four 3-input NAND gates, two 3-input NAND
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else Z <= '0'; Nextstate <= 2; end if;
when 1 =>
if X = '0' then Z <= '1'; Nextstate <= 3;
else Z <= '0'; Nextstate <= 4; end if;

when 2 =>
if X = '0' then Z <= ‘0’; Nextstate <= 4;
else Z <= '1'; Nextstate <= 4; end if;

when 3 =>
if X = '0' then Z <= '0'; Nextstate <= 5;
else Z <= '1'; Nextstate <= 5; end if;

when 4 =>
if X = '0' then Z <= '1'; Nextstate <= 5;
else Z <= '0'; Nextstate <= 6; end if;

when 5 =>
if X = '0' then Z <= '0'; Nextstate <= 0;
else Z <= '1'; Nextstate <= 0; end if;

when 6 =>
if X = '0' then Z <= '1'; Nextstate <= 0;
else Z <= '0'; Nextstate <= 0; end if;

when others => null; -- should not occur
end case;

end process;

process(CLK) -- State Register
begin
if CLK'EVENT and CLK = '1' then -- rising edge of clock
State <= Nextstate;

end if;
end process;

end Behavioral;
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gates, and one inverter. The behavioral model of Figure 2-54 may not result in exactly
that circuit. In fact, when we synthesized it using Xilinx ISE tools, we got a circuit
that contains seven D-flip-flops, fifteen 2-input AND gates, three 2-input OR gates,
and one 7-input OR gate. Apparently, the Xilinx synthesis tool may be using one-
hot design by default, instead of encoded design. One-hot design is a popular
approach for FPGAs, where flip-flops are abundant.

Figure 2-56 shows an alternative behavioral model for the code converter that
uses a single process instead of two processes.The next state is not computed explic-
itly, but instead the state register is updated directly to the proper next state value
on the rising edge of the clock. Since Z can change whenever State or X changes, Z
should not be computed in the clocked process. Instead, we have used a conditional
assignment statement to compute Z. If Z were updated in the clocked process, then
a flip-flop would be created to store Z and Z would be updated at the wrong time. In
general, the two-process model for a state machine is preferable to the one-process
model, since the former corresponds more closely to the hardware implementation
which uses a combinational circuit and a state register.
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FIGURE 2-56: Behavioral Model for Code Converter Using a Single Process

-- This is a behavioral model of the Mealy state machine for BCD to
-- Excess-3 Code Converter based on its state table. The state change
-- occurs on the rising edge of the clock. The output is computed by a
-- conditional assignment statement whenever State or Z changes.

entity Code_Converter is
port(X, CLK: in bit;

Z: out bit);
end Code_Converter;

architecture one_process of Code_Converter is
signal State: integer range 0 to 6 := 0;
begin
process(CLK)
begin
if CLK'event and CLK = '1' then
case State is

when 0 =>
if X = '0' then State <= 1; else State <= 2; end if;
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Another way to model this Mealy machine is using the dataflow approach
(i.e., using equations).The dataflow VHDL model of Figure 2-57 is based on the next
state and output equations, which are derived in Chapter 1 (Figure 1-25). The flip-
flops are updated in a process that is sensitive to CLK. When the rising edge of the
clock occurs, Q1, Q2, and Q3 are all assigned new values. A 10-ns delay is included to
represent the propagation delay between the active edge of the clock and the change
of the flip-flop outputs. Even though the assignment statements in the process are
executed sequentially, Q1, Q2, and Q3 are all scheduled to be updated at the same
time, T � �, where T is the time at which the rising edge of the clock occurred. Thus,
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when 1 =>
if X � '0' then State <= 3; else State <= 4; end if;

when 2 =>
State <= 4;

when 3 =>
State <= 5;

when 4 =>
if X � '0' then State <= 5; else State <= 6; end if;

when 5 =>
State <= 0;

when 6 =>
State <= 0;

end case;
end if;

end process;
Z <= '1' when (State = 0 and X = '0') or (State = 1 and X = '0')

or (State = 2 and X = '1') or (State = 3 and X = '1')
or (State = 4 and X = '0') or (State = 5 and X = '1')
or State = 6

else '0';
end one_process;

FIGURE 2-57: Sequential Machine Model Using Equations

-- The following is a description of the sequential machine of
-- the BCD to Excess-3 code converter in terms of its next state
-- equations. The following state assignment was used:
-- S0-->0; S1-->4; S2-->5; S3-->7; S4-->6; S5-->3; S6-->2

entity Code_Converter is
port(X, CLK: in bit;

Z: out bit);
end Code_Converter;

architecture Equations of Code_Converter is
signal Q1, Q2, Q3: bit;
begin
process(CLK)
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the old value of Q1 is used to compute Q2
�, and the old values of Q1, Q2, and Q3 are

used to compute Q3
�. The concurrent assignment statement for Z causes Z to be

updated whenever a change in X or Q3 occurs. The 20-ns delay represents two gate
delays. Note that in order to do VHDL modeling at this level, we need to perform
state assignments, derive next state equations, and so on. In contrast, at the behav-
ioral level, the state table was sufficient to create the VHDL model.

Yet another approach to creating a VHDL model of the aforementioned Mealy
machine is to create a structural model describing the gates and flip-flops in the cir-
cuit. Figure 2-58 shows a structural VHDL representation of the circuit of Figure 1-20.
Note that the designer had to manually perform the design and obtain the gate level
circuitry here in order to create a model as in Figure 2-58. Seven NAND gates, three
D flip-flops, and one inverter are used in the design presented in Chapter 1. When
primitive components like gates and flip-flops are required, each of these components
can be defined in a separate VHDL module. Depending on which CAD tools are
used, the component modules can be included in the same file as the main VHDL
description, or they be inserted as separate files in a VHDL project. The code in
Figure 2-58 requires component modules DFF, Nand3, Nand2, and Inverter. CAD
tools might include packages with similar components. If such packages are used, one
should use the exact component names and port-map statements that match the
input-output signals of the component in the package. The DFF module is as follows:

--D Flip-Flop
entity DFF is
port(D, CLK: in bit;

Q: out bit; QN: out bit := '1');
-- initialize QN to '1' since bit signals are defaulted to '0'
end DFF;
architecture SIMPLE of DFF is
begin
process(CLK) -- process is executed when CLK changes
begin
if CLK'event and CLK = '1' then -- rising edge of clock
Q <= D after 10 ns;
QN <= not D after 10 ns;

end if;
end process;

end SIMPLE;
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begin
if CLK = '1' and CLK'event then -- rising edge of clock
Q1 <= not Q2 after 10 ns;
Q2 <= Q1 after 10 ns;
Q3 <= (Q1 and Q2 and Q3) or (not X and Q1 and not Q3) or

(X and not Q1 and not Q2) after 10 ns;
end if;

end process;
Z <= (not X and not Q3) or (X and Q3) after 20 ns;

end Equations;
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2.15 Behavioral and Structural VHDL 109

FIGURE 2-58: Structural Model of Sequential Machine

-- The following is a STRUCTURAL VHDL description of
-- the circuit to realize the BCD to Excess-3 code Converter.
-- This circuit was illustrated in Figure 1-20.
-- Uses components NAND3, NAND2, INVERTER and DFF
-- The component modules can be included in the same file
-- or they can be inserted as separate files.

entity Code_Converter is
port(X,CLK: in bit;

Z: out bit);
end Code_Converter;

architecture Structure of Code_Converter is
component DFF
port(D, CLK: in bit; Q: out bit; QN: out bit := '1');

end component;
component Nand2
port(A1, A2: in bit; Z: out bit);

end component;
component Nand3
port(A1, A2, A3: in bit; Z: out bit);

end component;
component Inverter
port(A: in bit; Z: out bit);

end component;
signal A1, A2, A3, A5, A6, D3: bit;
signal Q1, Q2, Q3: bit;
signal Q1N, Q2N, Q3N, XN: bit;
begin
I1: Inverter port map (X, XN);
G1: Nand3 port map (Q1, Q2, Q3, A1);
G2: Nand3 port map (Q1, Q3N, XN, A2);
G3: Nand3 port map (X, Q1N, Q2N, A3);
G4: Nand3 port map (A1, A2, A3, D3);
FF1: DFF port map (Q2N, CLK, Q1, Q1N);
FF2: DFF port map (Q1, CLK, Q2, Q2N);
FF3: DFF port map (D3, CLK, Q3, Q3N);
G5: Nand2 port map (X, Q3, A5);
G6: Nand2 port map (XN, Q3N, A6);
G7: Nand2 port map (A5, A6, Z);

end Structure;

The Nand3 module is as follows:

--3 input NAND gate
entity Nand3 is
port(A1, A2, A3: in bit; Z: out bit);

end Nand3;
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architecture concur of Nand3 is
begin
Z <= not (A1 and A2 and A3) after 10 ns;

end concur;

The Nand2 and Inverter modules are similar except for the number of inputs.We
have assumed a 10-ns delay in each component, and this can easily be changed to
reflect the actual delays in the hardware being used.

Since Q1, Q2, and Q3 are initialized to ‘0’, the complementary flip-flop outputs
(Q1N, Q2N, and Q3N) are initialized to ‘1’. G1 is a three-input NAND gate with
inputs Q1, Q2, Q3, and output A1. FF1 is a D flip-flop with the D input connected to
Q2N. Executing the simulator command file given next produces the waveforms of
Figure 2-59, which are very similar to Figure 1-39.

add wave CLK X Q1 Q2 Q3 Z
force CLK 0 0, 1 100 -repeat 200
force X 0 0, 1 350, 0 550, 1 750, 0 950, 1 1350
run 1600
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If we synthesized this structural description, we would get exactly the same
circuit that we had in mind. Now the circuit includes only three D-flip-flops, three
2-input NAND gates, and four 3-input NAND gates. Compare it against the seven
D-flip-flops, fifteen 2-input AND gates, three 2-input OR gates, and one 7-input
OR gate generated when Figure 2-54 was synthesized. When the designer speci-
fied all components and their interconnections, the synthesizer tool did not have
to infer or “guess.”

Those who have developed C code with assembly inlining may feel some similar-
ity to the phenomenon occurring here. By inlining the assembly code, you can pre-
cisely describe what microprocessor instruction sequence you want to be used, and
the compiler gives you that. In a similar way, the synthesizer does not actually have
to translate any structural descriptions that the designer wrote; it simply gives the
hardware that the designer specified in a structural fashion. Some optimizing tools
are capable of optimizing imperfect circuits that you might have specified. In general,
you have more control of the generated circuitry when you use structural coding.
However, it takes a lot more effort to produce a structural model because one needs
to perform state assignments, derive next-state equations, and so on. Time-to-market
is an important criterion for success in the IC market, and hence designers often use
behavioral design in order to achieve quick time-to-market.Additionally, CAD tools
have matured significantly during the past decade, and most synthesis tools are capa-
ble of producing efficient hardware for arithmetic and logic circuits.

02Ch02.qxd  3/13/07  3:14 PM  Page 110



2.16 Variables, Signals, and Constants
So far, we have used only signals in the VHDL code and have not used variables.
VHDL also provides variables as in other general-purpose high-level languages.
Variables may be used for local storage in processes. They can also be used in pro-
cedures and functions (which are yet to be introduced). A large part of what is
described in this section is relevant only for simulation.

A variable declaration has the form

variable list_of_variable_names: type_name [ := initial_value];

Variables must be declared within the process in which they are used and are
local to that process. (An exception to this rule is shared variables, which are not dis-
cussed in this text.) Signals, on the other hand, must be declared outside of a process.
Signals declared at the start of an architecture can be used anywhere within that
architecture. A signal declaration has the form

signal list_of_signal_names: type_name [ := initial_value];

Variables are updated using a variable assignment statement of the form

variable_name := expression;

When this statement is executed, the variable is instantaneously updated with no
delay, not even a delta delay. In contrast, consider a signal assignment of the form

signal_name <= expression [after delay];

The expression is evaluated when this statement is executed, and the signal is
scheduled to change after delay. If no delay is specified, then the signal is scheduled
to be updated after a delta delay.

It is incorrect to use

variable_name <= expression [after delay];

2.16 Variables, Signals, and Constants 111

When to Use a Signal versus Variable: If whatever you are modeling actually
corresponds to some physical signal in your circuit, you should use a signal. If
whatever you are modeling is simply a temporary value that you are using for
convenience of programming, a variable will be sufficient. Values represented
using variables will not appear on any physical wire in the implied circuit. If
you would like them to appear, you should use signals.

The examples in Figures 2-60 and 2-61 illustrate the difference between using
variables and signals in a process. The variables must be declared and initialized
inside the process, whereas the signals must be declared and initialized outside the
process. In Figure 2-60, if trigger changes at time � 10 ns, Var1, Var2, and Var3 are
computed sequentially and updated instantly, and then Sum is computed using the
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new variable values. The sequence is Var1 � 2 � 3 � 5, Var2 � 5, Var3 � 5. Then
Sum � 5 � 5 � 5 is computed. Since Sum is a signal, it is updated � time later, so
Sum � 15 at time � 10 � �. In summary, variables work just as variables you
are used to in another language, whereas signals get updated with time delays. In
Figure 2-61, if trigger changes at time � 10 ns, signals Sig1, Sig2, Sig3, and Sum are
all computed at time 10 ns, but the signals are not updated until time 10 � �. The
old values of Sig1 and Sig2 are used to compute Sig2 and Sig3. Therefore, at time �
10 � �, Sig1 � 5, Sig2 � 1, Sig3 � 2, and Sum � 6.
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FIGURE 2-60: Process Using Variables and Corresponding Simulation Output

entity dummy is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;
begin
process
variable var1: integer:=1;
variable var2: integer:=2;
variable var3: integer:=3;
begin
wait on trigger;
var1 := var2 + var3;
var2 := var1;
var3 := var2;
sum <= var1 + var2 + var3;

end process;
end var;

FIGURE 2-61: Process Using Signals and Corresponding Simulation Output

entity dummy is
end dummy;

architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sig1: integer:=1;
signal sig2: integer:=2;
signal sig3: integer:=3;
begin
process
begin
wait on trigger;
sig1 <= sig2 + sig3;
sig2 <= sig1;
sig3 <= sig2;
sum <= sig1 + sig2 + sig3;

end process;
end sig;

Simulation Output of 2-60

ns delta trigger Var1 Var2 Var3 Sum
0 �0 0 1 2 3 0
0 �1 0 1 2 3 0
10 �0 1 5 5 5 0
10 �1 1 5 5 5 15

Simulation Output of 2-61

ns delta trigger Sig1 Sig2 Sig3 Sum
0 �0 0 1 2 3 0
0 �1 0 1 2 3 0
10 �0 1 1 2 3 0
10 �1 1 5 1 2 6
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During simulation, initialization makes the process execute once, and it stops
when wait statements are encountered. Hence, simulation outputs can vary depend-
ing on whether the wait statements are put at the beginning of the process, end of
the process, or whether a sensitivity list is used. Figures 2-62 and 2-63 illustrate var-
ious possibilities. Please remember that these differences are not important when
VHDL is used for synthesis of hardware. These are subtle differences that only
affect simulation of behavioral VHDL.
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FIGURE 2-62: Process Using Variables and Corresponding Simulation Output

entity dummy is
end dummy;

architecture var of dummy is
signal trigger, sum: integer:=0;
begin
process(trigger)
variable var1: integer:=1;
variable var2: integer:=2;
variable var3: integer:=3;
begin
var1 := var2 + var3;
var2 := var1;
var3 := var2;
sum <= var1 + var2 + var3;

end process;
end var;

Simulation Output of 2-62

ns delta trigger Var1 Var2 Var3 Sum
0 �0 0 1 2 3 0
0 �1 0 5 5 5 15
10 �0 1 10 10 10 15
10 �1 1 10 10 10 30

FIGURE 2-63: Process Using Signals and Corresponding Simulation Output

entity dummy is
end dummy;

architecture sig of dummy is
signal trigger, sum: integer:=0;
signal sig1: integer:=1;
signal sig2: integer:=2;
signal sig3: integer:=3;
begin
process(trigger)
begin
sig1 <= sig2 + sig3;
sig2 <= sig1;
sig3 <= sig2;
sum <= sig1 + sig2 + sig3;

end process;
end sig;

Simulation Output of 2-63

ns delta trigger Sig1 Sig2 Sig3 Sum
0 �0 0 1 2 3 0
0 �1 0 5 1 2 6
10 �0 1 5 1 2 6
10 �1 1 3 5 1 8
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2.16.1 Constants
Like variables, constants are also used for convenience of programming.

A common form of constant declaration is

constant constant_name: type_name := constant_value;

A constant delay1 of type time, having the value of 5 ns, can be defined as

constant delay1: time := 5 ns;

Constants declared at the start of an architecture can be used anywhere with-
in that architecture, but constants declared within a process are local to that
process.

Variables, signals, and constants can have any one of the predefined VHDL
types, or they can have a user-defined type.

2.17 Arrays
Digital systems often use memory arrays. VHDL arrays can be used to specify the
values to be stored in these arrays.A key feature of VLSI circuits is the repeated use
of similar structures. Arrays in VHDL can be used while modeling the repetition.

In order to use an array in VHDL, we must first declare an array type and
then declare an array object. For example, the following declaration defines a
one-dimensional array type named SHORT_WORD:

type SHORT_WORD is array (15 downto 0) of bit;

An array of this type has an integer index with a range from 15 downto 0, and
each element of the array is of type bit. SHORT_WORD is the name of the newly
created data type. We may note that SHORT_WORD is nothing but a bit_vector of
size 16.

Now, we can declare array objects of type SHORT_WORD as follows:

signal DATA_WORD: SHORT_WORD;
variable ALT_WORD: SHORT_WORD := "0101010101010101";
constant ONE_WORD: SHORT_WORD := (others => '1');

Three different arrays are defined by the preceding statements. DATA_WORD
is a signal array of 16 bits, indexed 15 downto 0, which is initialized (by default) to
all ‘0’ bits. ALT_WORD is a variable array of 16 bits, which is initialized to alter-
nating 0’s and 1’s. ONE_WORD is a constant array of 16 bits; all bits are set to 1 by
(others => '1').

We can reference individual elements of the defined array by specifying an index
value. For example, ALT_WORD(0) accesses the rightmost bit of ALT_WORD. We
can also specify a portion of the array by specifying an index range: ALT_WORD(5
downto 0) accesses the low-order 6 bits of ALT_WORD, which have an initial value
of “010101”.

114 Introduction to VHDL
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The array type and array object declarations illustrated here have the general
forms

type array_type_name is array index_range of element_type;
signal array_name: array_type_name [ := initial_values];

In the preceding declaration, signal may be replaced with variable or constant.

2.17.1 Matrices
Multidimensional array types may also be defined with two or more dimensions.
The following example defines a two-dimensional array variable, which is a matrix
of integers with four rows and three columns:

type matrix4x3 is array (1 to 4, 1 to 3) of integer;
variable matrixA: matrix4x3 := ((1, 2, 3), (4, 5, 6), (7, 8, 9),

(10, 11, 12));

The variable matrixA will be initialized to

1 2 3

4 5 6

7 8 9

10 11 12

The array element matrixA(3, 2) references the element in the third row and second
column, which has a value of 8.

When an array type is declared, the dimensions of the array may be left unde-
fined. This is referred to as an unconstrained array type. For example,

type intvec is array (natural range <>) of integer;

declares intvec as an array type that defines a one-dimensional array of integers
with an unconstrained index range of natural numbers. The default type for array
indices is integer, but another type may be specified. Since the index range is not
specified in the unconstrained array type, the range must be specified when the
array object is declared. For example,

signal intvec5: intvec(1 to 5) := (3, 2, 6, 8, 1);

defines a signal array named intvec5 with an index range of 1 to 5 that is initialized
to 3, 2, 6, 8, 1. The following declaration defines matrix as a two-dimensional array
type with unconstrained row and column index ranges:

type matrix is array (natural range <>, natural range <>) of
integer;

Example
Parity bits are often used in digital communication for error detection and correction. The
simplest of these involve transmitting one additional bit with the data, a parity bit. Use
VHDL arrays to represent a parity generator that generates a 5-bit-odd-parity generation for
a 4-bit input number using the look-up table (LUT) method.
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Answer

The input word is a 4-bit binary number. A 5-bit odd-parity representation will contain
exactly an odd number of 1’s in the output word. This can be accomplished by the read-only
memory (ROM) method using a look-up table of size 16 entries 
 5 bits. The look-up table
is indicated in Figure 2-64.
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FIGURE 2-64: LUT
Contents for a
Parity Code
Generator

Input (LUT Address) Output (LUT Data)

A B C D P Q R S T

0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 1 1 1
0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1 1
0 1 1 0 0 1 1 0 1
0 1 1 1 0 1 1 1 0
1 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1
1 0 1 1 1 0 1 1 0
1 1 0 0 1 1 0 0 1
1 1 0 1 1 1 0 1 0
1 1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1

The VHDL code for the parity generator is illustrated in Figure 2-65.The IEEE numeric bit pack-
age is used here. X and Y are defined to be unsigned vectors.The first four bits of the output are
identical to the input. Hence, instead of storing all five bits of the output, we might store only the
parity bit and then concatenate it to the input bits. In the VHDL code (Figure 2-65), a new data
type OutTable is defined to be an array of 16 bits.A constant table of type OutTable is defined
using the following statement:

type OutTable is array(0 to 15) of bit;

The index of this array is an integer in the range 0 to 15. Hence, unsigned vector X needs to
be converted to an integer first, which can be done using the to_integer function defined
in the library.

FIGURE 2-65: Parity Code Generator Using the LUT Method

library IEEE;
use IEEE.numeric_bit.all;

entity parity_gen is
port(X: in unsigned(3 downto 0);

Y: out unsigned(4 downto 0));
end parity_gen;

architecture Table of parity_gen is
type OutTable is array(0 to 15) of bit;
signal ParityBit: bit;
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Predefined unconstrained array types in VHDL include bit_vector and string,
which are defined as follows:

type bit_vector is array (natural range <>) of bit;
type string is array (positive range <>) of character;

The characters in a string literal must be enclosed in double quotes. For exam-
ple, “This is a string.” is a string literal. The following example declares a constant
string1 of type string:

constant string1: string(1 to 29) :=

"This string is 29 characters."

A bit_vector literal may be written either as a list of bits separated by commas
or as a string. For example, (‘1’,’0’,’1’,’1’,’0’) and “10110” are equivalent forms. The
following declares a constant A that is a bit_vector with a range 0 to 5:

constant A: bit_vector(0 to 5) := "101011";

After a type has been declared, a related subtype can be declared to include a
subset of the values specified by the type. For example, the type SHORT_WORD,
which was defined at the start of this section, could have been defined as a subtype
of bit_vector:

subtype SHORT_WORD is bit_vector (15 downto 0);

Two predefined subtypes of type integer are POSITIVE, which includes all positive
integers, and NATURAL, which includes all positive integers and 0.

2.18 Loops in VHDL
Often, we encounter systems where some activity is happening in a repetitive fash-
ion. VHDL loop statements can be used to express this behavior. A loop statement
is a sequential statement. VHDL has several kinds of loop statements including for
loops and while loops.

1. infinite loop

Infinite loops are undesirable in common computer languages, but they can
be useful in hardware modeling where a device works continuously and con-
tinues to work until the power is off.
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constant OT: OutTable := ('1','0','0','1','0','1','1','0',
'0','1','1','0','1','0','0','1');

begin
ParityBit <= OT(to_integer(X));
Y <= X & ParityBit;

end Table;
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The general form for an infinite loop is

[loop-label:] loop
sequential statements

end loop [loop-label];

An exit statement of the form

exit; or exit when condition;

may be included in the loop. The loop will terminate when the exit statement
is executed, provided that the condition is TRUE.

2. for loop

One way to augment the basic loop is the for loop, where the number of invo-
cations of the loop can be specified.

The general form of a for loop is

[loop-label:] for loop-index in range loop
sequential statements

end loop [loop-label];

The loop-index is automatically defined when the loop is entered, and it
should not explicitly be declared. It is initialized to the first value in the range
and then the sequential statements are executed. The range is specified,
for example as 0 to n, where n can be a constant or variable.The loop-index
can be used within the sequential statements inside the loop, but it can-
not be changed within the loop.When the end of the loop is reached, the loop-
index is set to the next value in the range and the sequential state-
ments are executed again. This process continues until the loop has been
executed for every value in the range, and then the loop terminates. After the
loop terminates, the loop-index is no longer available.

We could use this type of a loop in behavioral models.The following excerpt
models a 4-bit adder.The loop index (i) will be initialized to 0 when the for loop
is entered, and the sequential statements will be executed. Execution will be
repeated for i � 1, i � 2, and i � 3; then the loop will terminate. The carry out
from one iteration (cout) is copied to the carry in (cin) before the end of the
loop. Since variables are used for the sum and carry bits, the update of carry out
happens instantaneously. Code like this often appears in VHDL functions and
procedures (described in Chapter 8):

loop1: for i in 0 to 3 loop
cout := (A(i) and B(i)) or (A(i) and cin) or (B(i) and cin);
sum(i) := A(i) xor B(i) xor cin;
cin := cout;

end loop loop1;

You could also use the for loop construct to create multiple copies of a
basic cell. When the preceding code is synthesized, the synthesizer typically
provides four copies of a 1-bit adder connected in a ripple carry fashion.
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3. while loop

In the for loop, the loop index cannot be changed by the programmer.
However, in the while loop, the loop index can be manipulated by the pro-
grammer. So incrementing the loop index by 2 can be done in the while
loop. As in while loops in most languages, a condition is tested before each
iteration. The loop is terminated if the condition is false. The general form
of a while loop is

[loop-label:] while condition loop
sequential statements

end loop [loop-label];

This construct is primarily for simulation.

Figure 2-66 illustrates a while loop that models a down counter. We use
the while statement to continue the decrementing process until the stop is
encountered or the counter reaches 0. The counter is decremented on every
rising edge of clk until either the count is 0 or stop is 1.

2.19 Assert and Report Statements 119

FIGURE 2-66: Use of While Loop

while stop = '0' and count /= 0 loop
wait until clk'event and clk = '1';
count <= count – 1 ;

wait for O ns;
end loop;

2.19 Assert and Report Statements
Once a VHDL model for a system is made, the next step is to test it. A model must
be tested and validated before it can be successfully used. VHDL provides some
special statements, such as assert, report, and severity, to aid in the testing and vali-
dation process.

The assert statement checks to see if a certain condition is true, and, if not, it
causes an error message to be displayed. One form of the assert statement is

assert boolean-expression
report string-expression
[severity severity-level;]

The assert statement specifies a Boolean expression which indicates the condition
to be met. If the condition has not been met, an assertion violation has occurred. If an
assertion violation occurs during simulation, the simulator reports it with the
string-expression provided in the report clause. If the boolean-expression
is false, then the string-expression is displayed on the monitor along with the
severity-level. If the boolean-expression is true, no message is displayed.
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There are four possible severity-levels: note, warning, error, and failure.We can
include one of these to indicate the degree to which the violation of the particular
assertion affects the operation of the model. For instance, a serious violation may have
to be flagged as a failure, whereas some minor violation only needs to be flagged as a
note or warning. The action taken for these severity-levels depends on the simulator.
The severity-level is optional.

If the assert clause is omitted, then the report is always made. Thus, the statement

report "ALL IS WELL";

will display the message “ALL IS WELL” whenever the statement is executed.
Assert and report statements are very useful for creation of test benches. A test

bench is a piece of VHDL code that can provide input combinations to test a VHDL
model for the system under test. It provides stimuli to the system/circuit under test.
Test benches are frequently used during simulation to provide sequences of inputs to
the circuit/VHDL model under test. Figure 2-67 shows a test-bench for testing the
4-bit binary adder that we created earlier in this chapter. The adder we are testing
will be treated as a component and embedded in the test bench program.The signals
generated within the test bench are interfaced to the adder, as shown in Figure 2-67.
The test bench code in Figure 2-68 uses constant arrays to define the test inputs for
the adder and the expected outputs. It uses a for loop to select the inputs from the
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FIGURE 2-68: Test Bench for 4-Bit Adder

entity TestAdder is
end TestAdder;

architecture test1 of TestAdder is
component Adder4
port(A, B: in bit_vector(3 downto 0); Ci: in bit;

S: out bit_vector(3 downto 0); Co: out bit);
end component;
constant N: integer := 11;
type bv_arr is array(1 to N) of bit_vector(3 downto 0);
type bit_arr is array(1 to N) of bit;
constant addend_array: bv_arr := ("0111", "1101", "0101", "1101",

"0111", "1000", "0111", "1000", "0000", "1111", "0000");
constant augend_array: bv_arr := ("0101", "0101", "1101", "1101",

"0111", "0111", "1000", "1000", "1101", "1111", "0000");
constant cin_array: bit_arr := ('0', '0', '0', '0', '1', '0', '0',

'0', '1', '1', '0');
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arrays. It uses assert and report statements to check the outputs and report whether
the output matched the expected output for the particular combination of inputs.The
assert statement is meaningful only for simulation. During synthesis, the synthesizer
may simply assume that the assertion violation does not exist.

We will provide another example to illustrate how a waveform input can be pro-
vided in a test bench. In earlier examples in this chapter, we used simulator com-
mands to test VHDL models. Figure 2-69 illustrates a piece of VHDL code that

2.19 Assert and Report Statements 121

constant sum_array: bv_arr := ("1100", "0010", "0010", "1010",
"1111", "1111", "1111", "0000", "1110", "1111", "0000");

constant cout_array: bit_arr := ('0', '1', '1', '1', '0', '0', '0',
'1', '0', '1', '0');

signal addend, augend, sum: bit_vector(3 downto 0);
signal cin, cout: bit;
begin
process
begin
for i in 1 to N loop

addend <= addend_array(i);
augend <= augend_array(i);
cin <= cin_array(i);
wait for 40 ns;
assert (sum = sum_array(i) and cout = cout_array(i))
report "Wrong Answer"
severity error;

end loop;
report "Test Finished";

end process;
add1: adder4 port map (addend, augend, cin, sum, cout);

end test1;

FIGURE 2-69: Generating a Test Sequence for Testing VHDL Model for Code Converter

entity test_code_conv is
end test_code_conv;

architecture tester of test_code_conv is
signal X, CLK, Z: bit;
component Code_Converter is
port(X, CLK: in bit;

Z: out bit);
end component;
begin
clk <= not clk after 100 ns;
X <= '0', '1' after 350 ns, '0' after 550 ns, '1' after

750 ns, '0' after 950 ns, '1' after 1350 ns;
CC: Code_Converter port map (X, clk, Z);

end tester;

02Ch02.qxd  3/13/07  3:14 PM  Page 121



accomplishes exactly the same testing that was done using simulator commands in
Figure 2-55. A time-varying signal is provided to input X using the statement

X <= '0', '1' after 350 ns, '0' after 550ns, '1' after 750 ns, '0'
after 950 ns, '1' after 1350 ns;

In this chapter, we have covered the basics of VHDL. We have shown how to use
VHDL to model combinational logic and sequential machines. Since VHDL is a
hardware description language, it differs from an ordinary programming language in
several ways. Most importantly, VHDL statements execute concurrently, since they
must model real hardware in which the components are all in operation at the same
time. Statements within a process execute sequentially, but the processes themselves
operate concurrently. VHDL signals model actual signals in the hardware, but vari-
ables may be used for internal computation that is local to processes, procedures, and
functions. We will cover more advanced features of VHDL in Chapter 8.

Problems
2.1 (a) What do the acronyms VHDL and VHSIC stand for?

(b) How does a hardware description language like VHDL differ from an ordinary
programming language?

(c) What are the advantages of using a hardware description language as compared
with schematic capture in the design process?

2.2 (a) Which of the following are legal VHDL identifiers? 123A, A_123, _A123,
A123_, c1__c2, and, and1

(b) Which of the following identifiers are equivalent? aBC, ABC, Abc, abc

2.3 Given the concurrent VHDL statements:

B <= A and C after 3ns;
C <= not B after 2ns;

(a) Draw the circuit the statements represent.
(b) Draw a timing diagram if initially A � B � ‘0’ and C � ‘1’, and A changes to ‘1’

at time 5 ns.

2.4 Write a VHDL description of the following combinational circuit using concurrent
statements. Each gate has a 5-ns delay, excluding the inverter, which has a 2-ns delay.
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2.5 (a) Write VHDL code for a full subtracter using logic equations.
(b) Write VHDL code for a 4-bit subtracter using the module defined in (a) as a

component.

2.6 Write VHDL code for the following circuit.Assume that the gate delays are negligible.

(a) Use concurrent statements.
(b) Use a process with sequential statements.

Problems 123
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2.7 In the following VHDL code, A, B, C, and D are integers that are 0 at time 10 ns.
If D changes to 1 at 20 ns, specify the times at which A, B, and C will change and the
values they will take.

process(D)
begin
A <= 1 after 5 ns;
B <= A + 1;    -- executes before A changes
C <= B after 10 ns; -- executes before B changes

end process;

2.8 (a) What device does the following VHDL code represent?

process(CLK, Clr, Set)
begin
if Clr = '1' then Q <= '0';
elsif Set = '1' then Q <= '1';
elsif CLK'event and CLK <= '0' then
Q <= D;

end if;
end process;

(b) What happens if Clr � Set � ‘1’ in the device in part (a)?

2.9 Write a VHDL description of an S-R latch using a process.

2.10 An M-N flip-flop responds to the falling clock edge as follows:

If M � N � ‘0’, the flip-flop changes state.
If M � ‘0’ and N � ‘1’, the flip-flop output is set to ‘1’.
If M � ‘1’ and N � ‘0’, the flip-flop output is set to ‘0’.
If M � N � ‘1’, no change of flip-flop state occurs.
The flip-flop is cleared asynchronously if CLRn � ‘0’.

Write a complete VHDL module that implements an M-N flip-flop.
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2.11 A DD flip-flop is similar to a D flip-flop, except that the flip-flop can change state
(Q � � D) on both the rising edge and falling edge of the clock input. The flip-flop
has a direct reset input, R, and R � ‘0’ resets the flip-flop to Q � ‘0’ independent
of the clock. Similarly, it has a direct set input, S, that sets the flip-flop to ‘1’ inde-
pendent of the clock. Write a VHDL description of a DD flip-flop.

2.12 An inhibited toggle flip-flop has inputs I0, I1, T, and Reset, and outputs Q and QN.
Reset is active high and overrides the action of the other inputs. The flip-flop works
as follows. If I0 � ‘1’, the flip-flop changes state on the rising edge of T; if I1 � ‘1’,
the flip-flop changes state on the falling edge of T. If I0 � I1 � ‘0’, no state change
occurs (except on reset).Assume the propagation delay from T to output is 8 ns and
from reset to output is 5 ns.

(a) Write a complete VHDL description of this flip-flop.
(b) Write a sequence of simulator commands that will test the flip-flop for the input

sequence I1 � ‘1’, toggle T twice, I1 � ‘0’, I0 � ‘1’, toggle T twice.

2.13 In the following VHDL process A, B, C, and D are all integers that have a value of
0 at time � 10 ns. If E changes from ‘0’ to ‘1’ at time � 20 ns, specify the time(s) at
which each signal will change and the value to which it will change. List these
changes in chronological order (20, 20 � �, 20 � 2�, etc.).

p1: process
begin
wait on E;
A <= 1 after 5 ns;
B <= A + 1;
C <= B after 10 ns;
wait for 0 ns;
D <= B after 3 ns;
A <= A + 5 after 15 ns;
B <= B + 7;

end process p1;

2.14 In the following VHDL process A, B, C, and D are all integers that have a value of
0 at time � 10 ns. If E changes from ‘0’ to ‘1’ at time � 20 ns, specify the time(s) at
which each signal will change and the value to which it will change. List these
changes in chronological order (20, 20 � �, 20 � 2�, etc.).

p2: process(E)
begin
A <= 1 after 5 ns;
B <= A + 1;
C <= B after 10 ns;

D <= B after 3 ns;
A <= A + 5 after 15 ns;
B <= B + 7;

end process p2;
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2.15 For the following VHDL code, assume that D changes to ‘1’ at time 5 ns. Give the
values of A, B, C, D, E, and F each time a change occurs. That is, give the values at
time 5 ns, 5 � �, 5 � 2�, and so on. Carry this out until either 20 steps have occurred,
until no further change occurs, or until a repetitive pattern emerges.

entity prob is
port(D: inout bit);

end prob;

architecture q1 of prob is
signal A, B, C, E, F: bit;

begin
C <= A;
A <= (B and not E) or D;
P1: process (A)
begin
B <= A;

end process P1;
P2: process
begin
wait until A = '1';
wait for 0 ns;
E <= B after 5 ns;
D <= '0';
F <= E;

end process P2;
end architecture q1;

2.16 Assuming B is driven by the simulator command

force B 0 0, 1 10, 0 15, 1 20, 0 30, 1 35

draw a timing diagram illustrating A, B, and C if the following concurrent state-
ments are executed:

A <= transport B after 5 ns;
C <= B after 8 ns;

2.17 Assuming B is driven by the simulator command

force B 0 0, 1 4, 0 10, 1 15, 0 20, 1 30, 0 40

draw a timing diagram illustrating A, B, and C if the following concurrent
statements are executed:

A <= transport B after 5 ns;
C <= B after 5 ns;

2.18 In the following VHDL code, A, B, C, and D are bit signals that are ‘0’ at time � 4 ns.
If A changes to 1 at time 5 ns, make a table showing the values of A, B, C, and D as
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a function of time until time � 18 ns. Include deltas. Indicate the times at which each
process begins executing.

P1: process(A)
begin
B <= A after 5 ns;
C <= B after 2 ns;

end process;
P2: process
begin
wait on B;
A <= not B;
D <= not A xor B;

end process;

2.19 If A � “101”, B � “011”, and C � “010”, what are the values of the following
statements?

(a) (A & B) or (B & C)
(b) A ror 2
(c) A sla 2
(d) A & not B = "111110"
(e) A or B and C

2.20 Consider the following VHDL code:

entity Q3 is
port(A, B, C, F, Clk: in bit;

E: out bit);
end Q3;

architecture Qint of Q3 is
signal D, G: bit;

begin
process(Clk)
begin
if Clk'event and Clk = '1' then

D <= A and B and C;
G <= not A and not B;
E <= D or G or F;

end if;
end process;

end Qint;

(a) Draw a block diagram for the circuit (no gates—at block level only).
(b) Give the circuit generated by the preceding code (at the gate level)

2.21 Implement the following VHDL code using these components: D flip-flops with clock
enable, a multiplexer, an adder, and any necessary gates.Assume that Ad and Ora will
never be ‘1’ at the same time, and only enable the flip-flops when Ad or Ora is ‘1’.
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library IEEE;
use IEEE.numeric_bit.all;

entity module1 is
port(A, B: in unsigned (2 downto 0);

Ad, Ora, clk: in bit;
C: out unsigned (2 downto 0));

end module1;

architecture RT of module1 is
begin
process(clk)
begin
if clk = '1' and clk'event then
if Ad = '1' then C <= A + B; end if;
if Ora = '1' then C <= A or B; end if;

end if;
end process;

end RT;

2.22 Draw the circuit represented by the following VHDL process. Use only two
gates.

process(clk, clr)
begin
if clr = '1' then Q <= '0';
elsif clk'event and clk = '0' and CE = '1' then
if C = '0' then Q <= A and B;
else Q <= A or B; end if;

end if;
end process;

Why is clr on the sensitivity list but C is not?

2.23 (a) Write a selected signal assignment statement to represent the 4-to-1 MUX
shown below. Assume that there is an inherent delay in the MUX that causes
the change in output to occur 10 ns after a change in input.

(b) Repeat (a) using a conditional signal assignment statement.
(c) Repeat (a) using a process and a case statement.
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2.24 (a) Write a VHDL process that is equivalent to the following concurrent statement:

A <= B1 when C = 1 else B2 when C = 2 else B3 when C = 3 else 0;

(b) Draw a circuit to implement the following VHDL statement:

A <= B1 when C1 = '1' else B2 when C2 = '1' else
B3 when C3 = '1' else '0';

where all signals are of type bit.

2.25 Write a VHDL description of an SR latch.

(a) Use a conditional assignment statement.
(b) Use the characteristic equation.
(c) Use logic gates.

2.26 For the VHDL code of Figure 2-38, what will be the values of S and Co if A � “1101”,
B � “111”, and Ci � ‘1’?

2.27 Write VHDL code to add a positive integer B (B � 16) to a 4-bit bit-vector A to
produce a 5-bit bit-vector as a result. Use an overloaded operator in the IEEE
numeric bit package to do the addition. Use calls to conversion functions as needed.
The final result should be a bit-vector, not an unsigned vector.

2.28 A 4-bit magnitude comparator chip (e.g., 74LS85) compares two 4-bit numbers A and
B and produces outputs to indicate whether A � B, A � B, or A � B.There are three
output signals to indicate each of the above conditions. Note that exactly one of the
output lines will be high and the other two lines will be low at any time. The chip is a
cascadable chip and has three inputs, A � B.IN, A � B.IN, and A � B.IN, in order to
allow cascading the chip to make 8-bit or bigger magnitude comparators.

(a) Draw block diagram of a 4-bit magnitude comparator
(b) Draw a block diagram to indicate how you can construct an 8-bit magnitude

comparator using two 4-bit magnitude comparators.
(c) Write behavioral VHDL description for the 4-bit comparator.
(d) Write VHDL code for the 8-bit comparator using two 4-bit comparators as

components.

2.29 Write a VHDL module that describes a 16-bit serial-in, serial-out shift register with
inputs SI (serial input), EN (enable), and CK (clock, shifts on rising edge) and a serial
output (SO).

2.30 A description of a 74194 four-bit bidirectional shift register follows:
The CLRb input is asynchronous and active low and overrides all the other control
inputs.All other state changes occur following the rising edge of the clock. If the control
inputs S1 � S0 � 1, the register is loaded in parallel. If S1 � 1 and S0 � 0, the register
is shifted right and SDR (serial data right) is shifted into Q3. If S1 � 0 and S0 � 1, the
register is shifted left and SDL is shifted into Q0. If S1 � S0 � 0, no action occurs.
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(a) Write a behavioral-level VHDL model for the 74194.
(b) Draw a block diagram and write a VHDL description of an 8-bit bidirectional shift

register that uses two 74194’s as components.The parallel inputs and outputs to the
8-bit register should be X(7 downto 0) and Y(7 downto 0).The serial inputs should
be RSD and LSD.

2.31 A synchronous (4-bit) up/down decade counter with output Q works as follows: All
state changes occur on the rising edge of the CLK input, except the asynchronous
clear (CLR). When CLR � 0, the counter is reset regardless of the values of the
other inputs.

If the LOAD input is 0, the data input D is loaded into the counter.
If LOAD � ENT � ENP � UP � 1, the counter is incremented.
If LOAD � ENT � ENP � 1 and UP � 0, the counter is decremented.
If ENT � UP � 1, the carry output (CO) � 1 when the counter is in state 9.
If ENT � 1 and UP � 0, the carry output (CO) � 1 when the counter is in state 0.

(a) Write a VHDL description of the counter.
(b) Draw a block diagram and write a VHDL description of a decimal counter that

uses two of the above counters to form a two-decade decimal up/down counter
that counts up from 00 to 99 or down from 99 to 00.

(c) Simulate for the following sequence: load counter with 98, increment three
times, do nothing for two clocks, decrement four times, and clear.

2.32 Write a VHDL model for a 74HC192 synchronous 4-bit up/down counter. Ignore all
timing data. Your code should contain a statement of the form process(DOWN,
UP, CLR, LOADB)

2.33 Consider the following 8-bit bi-directional synchronous shift register with parallel
load capability. The notation used to represent the input/output pins is explained
below.

CLR Asynchronous Clear, overrides all other inputs
Q(7:0) 8-bit output
D(7:0) 8-bit input
S0, S1 mode control inputs
LSI serial input for left shift
RSI serial input for right shift

The mode control inputs work as follows:
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S0 S1 Action

0 0 No action
0 1 Right shift
1 0 Left shift
1 1 Load parallel data (i.e., Q � D)

(a) Write an entity description for this shift register.
(b) Write an architecture description of this shift register.
(c) Draw a block diagram illustrating how two of these can be connected to form a

16-bit cyclic shift register, which is controlled by signals L and R. If L � ‘1’ and
R � ‘0’, then the 16-bit register is cycled left. If L � ‘0’ and R � ‘1’, the register
is cycled right. If L � R � ‘1’, the 16-bit register is loaded from X(15:0). If L �
R � ‘0’, the register is unchanged.

(d) Write an entity description for the module in part (c).
(e) Write an architecture description using the module from parts (a) and (b).

2.34 Complete the following VHDL code to implement a counter that counts in the
following sequence: Q � 1000, 0111, 0110, 0101, 0100, 0011, 1000, 0111, 0110, 0101,
0100, 0011, . . . (repeats). The counter is synchronously loaded with 1000 when
Ld8 � ‘1’. It goes through the prescribed sequence when Enable � ‘1’. The counter
outputs S5 � ‘1’ whenever it is in state 0101. Do not change the entity in any way.
Your code must be synthesizable.

library IEEE;
use IEEE.numeric_bit.all;

entity countQ1 is
port(clk, Ld8, Enable: in bit; S5: out bit;

Q: out unsigned(3 downto 0));
end countQ1;

2.35 A synchronous 4-bit UP/DOWN binary counter has a synchronous clear signal CLR
and a synchronous load signal LD. CLR has higher priority than LD. Both CLR and
LD are active high. D is a 4-bit input to the counter and Q is the 4-bit output from
the counter. UP is a signal that controls the direction of counting. If CLR and LD are
not active and UP � 1, the counter increments. If CLR and LD are not active and
UP 0, the counter decrements. All changes occur on the falling edge of the clock.

(a) Write a behavioral VHDL description of the counter.
(b) Use the above UP/DOWN counter to implement a synchronous modulo 6

counter that counts from 1 to 6. This modulo 6 counter has an external reset
which, if applied, makes the count � 1. A count enable signal CNT makes it
count in the sequence 1, 2, 3, 4, 5, 6, 1, 2, . . . incrementing once for each clock
pulse. You should use any necessary logic to make the counter go to count � 1
after count � 6. The modulo 6 counter only counts in the UP sequence. Provide
a textual/pictorial description of your approach.

(c) Write a behavioral VHDL description for the modulo-6 counter in part (b).
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2.36 Examine the following VHDL code and complete the following exercises:

entity Problem
port(X, CLK: in bit;

Z1, Z2: out bit);
end Problem;

architecture Table of Problem is
signal State, Nextstate: integer range 0 to 3 := 0;

begin
process(State, X)   --Combinational Circuit
begin
case State is

when 0 =>
if X = '0' then Z1 < = '1'; Z2 <= '0'; Nextstate < = 0;
else Z1 < = '0'; Z2 < = '0'; Nextstate < = 1; end if;

when 1 => 
if X = '0' then Z1 < = '0'; Z2 <= '1'; Nextstate < = 1;
else Z1 < = '0'; Z2 < = '1'; Nextstate < = 2; end if;

when 2 =>
if X = '0' then Z1 < = '0'; Z2 <= '1'; Nextstate < = 2;
else Z1 < = '0'; Z2 < = '1'; Nextstate < = 3; end if;

when 3 =>
if X = '0' then Z1 < = '0'; Z2 <= '0'; Nextstate < = 0;
else Z1 < = '1'; Z2 < = '0'; Nextstate < = 1; end if;

end case;
end process;
process(CLK)      --State Register
begin
if CLK'event and CLK = '1' then --rising edge of clock

State <= Nextstate;
end if;

end process;
end Table;

(a) Draw a block diagram of the circuit implemented by this code.
(b) Write the state table that is implemented by this code.

2.37 (a) Write a behavioral VHDL description of the state machine you designed in
Problem 1.13. Assume that state changes occur on the falling edge of the clock
pulse. Instead of using if-then-else statements, represent the state table and output
table by arrays. Compile and simulate your code using the following test sequence:

X � 1101 1110 1111

X should change 1/4 clock period after the rising edge of the clock.

(b) Write a data flow VHDL description using the next state and output equations
to describe the state machine. Indicate on your simulation output at which times
S and V are to be read.

Problems 131

02Ch02.qxd  3/13/07  3:14 PM  Page 131



(c) Write a structural model of the state machine in VHDL that contains the inter-
connection of the gates and D flip-flops.

2.38 (a) Write a behavioral VHDL description of the state machine that you designed in
Problem 1.14. Assume that state changes occur on the falling edge of the clock
pulse. Use a case statement together with if-then-else statements to represent the
state table. Compile and simulate your code using the following test sequence:

X � 1011 0111 1000

X should change 1/4 clock period after the falling edge of the clock.
(b) Write a data flow VHDL description using the next state and output equations

to describe the state machine. Indicate on your simulation output at which times
D and B should be read.

(c) Write a structural model of the state machine in VHDL that contains the inter-
connection of the gates and J-K flip-flops.

2.39 A Moore sequential machine with two inputs (X1 and X2) and one output (Z) has
the following state table:

132 Introduction to VHDL

Present Next State Output
State X1X2 � 00 01 10 11 (Z ) 

1 1 2 2 1 0
2 2 1 2 1 1

Present Next state Output
State X1X2 � 00 01 11 (Z1Z2)

1 3 2 1 00
2 2 1 3 10
3 1 2 3 01

Write VHDL code that describes the machine at the behavioral level. Assume
that state changes occur 10 ns after the falling edge of the clock, and output changes
occur 10 ns after the state changes.

2.40 Write VHDL code to implement the following state table. Use two processes. State
changes should occur on the falling edge of the clock. Implement the Z1 and Z2 out-
puts using concurrent conditional statements. Assume that the combinational part
of the sequential circuit has a propagation delay of 10 ns, and the propagation delay
between the rising-edge of the clock and the state register output is 5 ns.

2.41 In the following code, state and nextstate are integers with a range of 0 to 2.

process(state, X)
begin
case state is
when 0 => if X = '1' then nextstate <= 1;
when 1 => if X = '0' then nextstate <= 2;
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when 2 => if X = '1' then nextstate <= 0;
end case;

end process;

(a) Explain why a latch would be created when the code is synthesized.
(b) What signal would appear at the latch output?
(c) Make changes in the code which would eliminate the latch.

2.42 For the process given below, A, B, C, and D are all integers that have a value of 0 at
time � 10 ns. If E changes from ‘0’ to ‘1’ at time 20 ns, specify all resulting changes.
Indicate the time at which each change will occur, the signal/variable affected, and
the value to which it will change.

process
variable F: integer: =1; variable A: integer: =0;

begin
wait on E;
A := 1;
F := A + 5;
B <= F + 1 after 5 ns;
C <= B + 2 after 10 ns;
D <= C + 5 after 15 ns;
A := A + 5;

end process;

2.43 What is wrong with the following model of a 4-to-1 MUX? (It is not a syntax error.)

architecture mux_behavioral of 4to1mux is
signal sel: integer range 0 to 3;
begin
process(A, B, I0, I1, I2, I3)
begin
sel <= 0;
if A = '1' then sel <= sel + 1; end if;
if B = '1' then sel <= sel + 2; end if;
case sel is

when 0 => F <= I0;
when 1 => F <= I1;
when 2 => F <= I2;
when 3 => F <= I3;

end case;
end process;

end mux_behavioral;

2.44 When the following VHDL code is simulated, A is changed to ‘1’ at time 5 ns. Make
a table that shows all changes in A, B, and D and the times at which they occur
through time � 40 ns.

entity Q1F00 is
port(A: inout bit);

end Q1F00;
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architecture Q1F00 of Q1F00 is
signal B, D: bit;

begin
D <= A xor B after 10 ns;
process(D)

variable C: bit;
begin

C := not D;
if C = '1' then

A <= not A after 15 ns;
end if;
B <= D;

end process;
end Q1F00;

2.45 What device does the following VHDL code represent?

process(CLK, RST)
variable Qtmp: bit;

begin
if RST '1' then Qtmp := '0';
elsif CLK'event and CLK = '1' then

if T = '1' then
Qtmp := not Qtmp;

end if;
end if;
Q <= Qtmp;

end process;

2.46 (a) Write a VHDL module for a LUT with four inputs and three outputs. The 
3-bit output should be a binary number equal to the number of 1’s in the LUT
input.

(b) Write a VHDL module for a circuit that counts the number of 1’s in a 12-bit
number. Use three of the modules from (a) along with overloaded addition
operators.

(c) Simulate your code and test if for the following data inputs:

111111111111, 010110101101, 100001011100

2.47 Implement a 3-to-8 decoder using a LUT. Give the LUT truth table and write the
VHDL code. The inputs should be A, B, and C and the output should be an 8-bit
unsigned vector.

2.48 A(1 to 20) is an array of 20 integers. Write VHDL code that finds the largest integer
in the array

(a) Using a for loop
(b) Using a while loop
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2.49 Write VHDL code to test a Mealy sequential circuit with one input (X) and one out-
put (Z). The code should include the Mealy circuit as a component. Assume the
Mealy circuit changes state on the rising edge of CLK. Your test code should gen-
erate a clock with 100 ns period. The code should apply the following test sequence:

X � 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0

X should change 10 ns after the rising edge of CLK. Your test code should read Z
at an appropriate time and verify that the following output sequence was generated:

Z � 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0

Report an error if the output sequence from the Mealy circuit is incorrect; other-
wise, report “sequence correct.” Complete the following architecture for the tester:

architecture test1 of tester is
component Mealy
-- sequential circuit to be tested; assume this component
-- is available in your design; do NOT write code for the
-- component
port(X, CLK: in bit; Z: out bit);

end component;
signal XA: bit_vector(0 to 11) := "011011011100";
signal ZA: bit_vector(0 to 11) := "100110110110";

2.50 Write a VHDL test bench that will test the VHDL code for the sequential circuit of
Figure 2-58. Your test bench should generate all ten possible input sequences (0000,
1000, 0100, 1100, . . . ) and verify that the output sequences are correct. Remember
that the components have a 10-ns delay. The input should be changed 1/4 of a clock
period after the rising edge of the clock and the output should be read at the appro-
priate time. Report “Pass” if all sequences are correct; otherwise, report “Fail.”

2.51 Write a test bench to test the counter of Problem 2.34. The test bench should gen-
erate a clock with a 100-ns period. The counter should be loaded on the first clock;
then it should count for five clocks; then it should do nothing for two clocks; then it
should continue counting for ten clocks. The test bench port should output the cur-
rent time (in time units, not the count) whenever S5 � ‘1’. Use only concurrent
statements in your test bench.

2.52 Complete the following VHDL code to implement a test bench for the sequential
circuit SMQ1. Assume that the VHDL code for the SMQ1 sequential circuit mod-
ule is already available. Use a clock with a 50-ns half-period. Your test bench should
test the circuit for the input sequence X � 1, 0, 0, 1, 1. Assume that the correct out-
put sequence for this input sequence is 1, 1, 0, 1, 0. Use a single concurrent statement
to generate the X sequence.The test bench should read the values of output Z at the
proper times and compare them with the correct values of Z. The correct answer is
stored as a bit-vector constant:

answer(1 to 5) � “11010”;
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The port signal correct should be set to TRUE if the answer is correct; otherwise,
it should be set to FALSE. Make sure that your read Z at the correct time. Use wait
statements in your test bench.

entity testSMQ1 is
port(correct: out Boolean);

end testSMQ1;
architecture testSM of testSMQ1 is
component SMQ1 -- the sequential circuit module
port(X, CLK: in bit; Z: out bit);

end component;
constant answer: bit_vector(1 to 5) := "11010";

begin
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Chapter 1 illustrated how the same digital circuit can be implemented using a variety
of standard building blocks. If we can put several of these building blocks into an
integrated circuit (IC) and provide the user with mechanisms to modify the
configuration, we can implement almost any circuit within a chip. This is the general
principle of programmable logic devices.

This chapter introduces the use of programmable logic devices in digital design.
Read-only memories (ROMs), programmable logic arrays (PLAs), and program-
mable array logic (PAL) devices are discussed first. Then complex programmable
logic devices (CPLDs) and field programmable gate arrays (FPGAs) are intro-
duced. Use of these devices allows us to implement complex logic functions, which
require many gates and flip-flops, with a single IC.Although FPGAs are introduced,
only an overview is provided in this chapter. A detailed treatment of FPGAs is pro-
vided in Chapter 6.

3.1 Brief Overview of Programmable
Logic Devices
Designers have always liked programmable logic devices such as PALs and FPGAs
for implementation of digital circuits. First, there is reasonable integration ability,
allowing implementation of a significant amount of functionality into one physical
chip. Programmable logic devices remove the use of multiple off-the-shelf devices
and the inconvenience and unreliability associated with external wires. Second,
there is the increased ability to change designs. Many of the programmable devices
allow easy reprogramming. In general, it is easier to change the design in case of
errors or changes in design specifications. Nowadays, programmable logic comes in
different types: devices that can be programmed only once and those that can be
reprogrammed many times.

Figure 3-1 illustrates a classification of popular programmable logic devices.
Programmable logic can be considered to fall into field programmable logic and
factory programmable logic. The term field indicates that this type of device is
programmed in the user’s “field” rather than in a semiconductor fab. Often, many
may refer to programmable logic to mean devices that are field programmable.

C H A P T E R

3
Introduction to Programmable
Logic Devices
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Programmable
Logic Devices

However, there are factory programmable devices, too. These are generic devices
which can be programmed at the factory to meet customers’ requirements. The pro-
gramming technology uses an irreversible process; hence, programming can be done
only once. Examples of factory programmable logic are mask programmable gate
arrays (MPGAs) and read-only memories (ROMs). The earliest generations of
many programmable devices were programmable only at the factory.

Read-only memories can be considered as an early form of programmable logic.
While primarily meant for use as memory, ROMs can be used to implement any
combinational circuitry. This will be illustrated later in Section 3.2.1. MPGAs are
traditional gate arrays, which require a mask to be designed. MPGAs are often sim-
ply called gate arrays and have been a popular technology for creating application-
specific integrated circuits (ASICs).

User programmable logic in the form of AND-OR circuits was developed
at the beginning of the 1970s. By 1972–1973, one-time field programmable logic
arrays that permitted instant customizations by designers were available.
Some referred to these devices as field programmable logic arrays or FPLAs.
Monolithic Memories Inc. (MMI), a company that was bought by Advanced
Micro Devices (AMD), created integrated circuits called programmable logic
arrays (PLAs) in 20- and 24-pin packages that could yield the same functionality
as 5 to 20 off-the-shelf chips. A similar device is the programmable array logic or
PAL.

PALs and PLAs contain arrays of gates. In the PLA, there is a programmable
AND array and a programmable OR array, allowing users to implement combina-
tional functions in two levels of gates. The PAL is a special case of a PLA, in that the
OR array is fixed and only the AND array is programmable. Many PALs also contain
flip-flops.
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In the 1970s and 1980s, PALs and PLAs were very popular. Part of the popularity
was due to the ease of design. MMI and Advanced Micro Devices created a simple
programming language, called PALASM, to easily convert Boolean equations
into PLA configurations. PALASM made programming PALs and PLAs relatively
simple.

The early programmable devices allowed only one-time programming. The next
technological innovation that helped programmable logic was advancement in era-
sure of programmable devices. In early days, erasure of programmable logic used
ultraviolet light. With ultraviolet light, erasing the configuration of a device meant
removing the device from the circuit and placing it in an ultraviolet environment.
Hence, in-circuit erasure was not possible. Ultraviolet erasers were slow; typically
10 or 15 minutes were required to perform erasures. Then electrically erasable tech-
nology came along. This led to the creation of field programmable logic arrays that
can be easily and quickly erased and reprogrammed without removing the chip
from the board.

The early PALs and PLAs were soon followed by CMOS electrically erasable
programmable logic devices (PLDs). While the term PLDs can be used to refer to
any programmable logic devices, there are a set of devices, including the popular
PALCE22V10, that are often referred to as PLDs. PLDs contain macroblocks
with arrays of gates, multiplexers, flip-flops, or other standard building blocks.
Several of these macroblocks appear in a PLD. Lattice Semiconductor created
similar devices with easy reprogrammability and called its line of devices GALs or
generic array logic.

Now, many refer to PLAs, PALs, GALs, PLDs, and PROMs collectively as sim-
ple PLDs (SPLDs) in contrast to another type of product that has come on the mar-
ket, complex PLDs (CPLDs). As the name suggests, CPLDs have more integration
capability than SPLDs. They come in sizes ranging from 500 to 16,000 gates. CPLDs
essentially put multiple PLDs into the same chip with some kind of an interconnec-
tion circuit, typically a crossbar switch.

In the late 1980s, Xilinx started using static random-access memory (RAM) stor-
age elements to hold configuration information for programmable devices and cre-
ated devices called FPGAs that can integrate a fairly large amount of logic. Contrary
to their names, the basic building blocks in these devices were not arrays of gates but
were bigger and complex blocks containing static RAMs and multiplexers. Several
PLD vendors and gate array companies soon jumped into the market, creating a
variety of FPGA architectures, some of which used reprogrammable technologies
and others of which used one-time programmable fuse technologies. The FPGA
technology has continually improved in the last 15 years. Now, there are FPGAs that
can contain more than 5 million gates.

Programmable logic devices basically contain an array of basic building blocks
which can be used to implement whatever functionality one desires. Different pro-
grammable devices differ in the building blocks or the amount of programmability
they provide. Table 3-1 illustrates a comparison of various programmable logic
devices. FPGAs are bigger and more complex than CPLDs. The routing resources
in FPGAs are more complex than those in simple programmable devices. The vari-
ety of alternate routes that can be taken causes the paths taken by signals to be
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unpredictable. FPGAs are more expensive than CPLDs and SPLDs. They contain
more overhead for programming. In this chapter, we describe various programma-
ble devices, including SPLDs, CPLDs, and FPGAs.
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TABLE 3-1:
A Comparison of

Programmable
Devices

SPLD CPLD FPGA

Density Low Low to Medium Medium to High 3,000
Few hundred gates 500 to 12,000 gates to 5,000,000 gates

Timing Predictable Predictable Unpredictable

Cost Low Low to Medium Medium to High

Major Lattice Semiconductor Xilinx Xilinx
Vendors Cypress Altera Altera

AMD Lattice Semiconductor
Actel

Example Lattice Semiconductor Xilinx Xilinx
Device GAL16LV8 CoolRunner Virtex
Families GAL22V10 XC9500 Spartan

Cypress Altera Altera
PALCE16V8 MAX Stratix

AMD Lattice
22V10 Mach

ECP

Actel
Accelerator

3.2 Simple Programmable Logic Devices
With the advent of CPLDs and FPGAs, the early generation programmable logic
devices, such as ROMs, PALs, PLAs, and PLDs, can be collectively called simple
programmable logic devices (SPLDs). In this section, we describe the implementa-
tion of digital circuits in simple PLDs.

Many names and abbreviations in this field have historically been used to
refer to specific types of programmable devices; however, one may not find
the name to be meaningful. Consider PALs and PLAs. Both are arrays of
logic. The fact that PLAs contain programmable AND and OR arrays and
PALs contain only programmable AND arrays is due to nothing but historical
reasons. PALs and PLAs could very well be named the other way around. But
it is important for students to understand what these names popularly refer to
because they will need to communicate with fellow designers and other design
teams. Conventions are important in facilitating communication.
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3.2.1 Read-Only Memories
A read-only memory (ROM) consists of an array of semiconductor devices that are
interconnected to store an array of binary data. Once binary data is stored in the
ROM, it can be read out whenever desired, but the data that is stored cannot
be changed under normal operating conditions. Figure 3-2(a) shows a ROM that
has three input lines and four output lines. Figure 3-2(b) shows a typical truth table,
which relates the ROM inputs and outputs. For each combination of input values on
the three input lines, the corresponding pattern of 0’s and 1’s appears on the ROM
output lines. For example, if the combination ABC � 010 is applied to the input
lines, the pattern F0F1F2F3 � 0111 appears on the output lines. Each of the output
patterns that is stored in the ROM is called a word. Since the ROM has three input
lines, we have 23 � 8 different combinations of input values. Each input combination
serves as an address, which can select one of the eight words stored in the memory.
Since there are four output lines, each word is four bits long, and the size of this
ROM is 8 words � 4 bits.
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FIGURE 3-2:
An 8-Word � 4-Bit
ROM

(a) Block diagram (b) Truth table for ROM

A B C F0 F1 F2 F3

0 0 0 0 0 1 1 
0 0 0 0 1 1 1 

1 1 1 1 0 1 1 
0 0 1 1 1 1 1 

0 0 1 1 0 1 1 
0 0 1 1 0 0 1 
0 0 0 1 0 1 1 

0 1 1 1 0 1 0 Typical data
stored in ROM
(23 words of
4 bits each)

3 Input
lines

ROM
8 words
× 4 bits

A 

B 

C 

F0 F1 F2 F3

4 Output lines

A ROM which has n input lines and m output lines (Figure 3-3) contains an
array of 2n words, and each word is m bits long. The input lines serve as an address
to select one of the 2n words. When an input combination is applied to the ROM,
the pattern of 0’s and 1’s stored in the corresponding word in the memory appears
at the output lines. For the example in Figure 3-3, if 00 . . . 11 is applied to the input
(address lines) of the ROM, the word 110 . . . 010 will be selected and transferred to

FIGURE 3-3:
Read-Only Memory
with n Inputs and
m Outputs n Input

lines

m Output lines

ROM
2n words
× m bits

n Input
Variables

m Output
Variables

Typical data
array stored
in ROM
(2n words of
m bits each)

00 . . . 00 100 . . . 110
010 . . . 111

11 . . . 00
11 . . . 01
11 . . . 10
11 . . . 11

...
..
.

00 . . . 01
00 . . . 10
00 . . . 11

101 . . . 101
110 . . . 010

001 . . . 011
110 . . . 110
011 . . . 000
111 . . . 101
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the output lines. A 2n � m ROM can realize m functions of n variables since it can
store a truth table with 2n rows and m columns. Typical sizes for commercially avail-
able ROMs range from 32 words � 4 bits to 512K words � 8 bits, or larger.

A ROM basically consists of a decoder and a memory array. When a pattern
of n 0’s and 1’s is applied to the decoder inputs, exactly one of the 2n decoder
outputs is 1. This decoder output line selects one of the words in the memory
array, and the bit pattern stored in this word is transferred to the memory output
lines.

Basic types of ROMs include mask programmable ROMs, user programmable
ROMs (PROMs), erasable programmable ROMs (usually called EPROMs), elec-
trically erasable and programmable ROMs (EEPROMs), and flash memories.
In the mask programmable ROM, the data array is permanently stored at the time
of manufacture.This is accomplished by selectively including or omitting the switch-
ing elements at the row-column intersections of the memory array. This requires
preparation of a special “mask,” which is used during fabrication of the integrated
circuit. Preparation of this mask is expensive, so use of mask programmable ROMs
is economically feasible only if a large quantity (typically several thousand or more)
is required with the same data array. There are also one-time user programmable
ROMs or PROMs.

Modification of the data stored in a ROM is often necessary during the devel-
opmental phases of a digital system, so EPROMs are used instead of mask
programmable ROMs. EPROMs use a special charge-storage mechanism to enable
or disable the switching elements in the memory array. An EPROM programmer
is used to provide appropriate voltage pulses to store electronic charges in the
memory array locations. The data stored in this manner is generally permanent
until erased using ultraviolet light. After erasure, a new set of data can be stored in
the EPROM.

The EEPROM is similar to an EPROM, except that erasure is accomplished
using electrical pulses instead of ultraviolet light. A traditional EEPROM can be
erased and reprogrammed only a limited number of times, typically 100 to 1000
times. Flash memories are similar to EEPROMs, except that they use a different
charge-storage mechanism. They usually have built-in programming and erasure
capability so that data can be written to the flash memory while it is in a circuit with-
out the need for a separate programmer.

A ROM can implement any combinational circuit. Essentially, if the outputs for
all combinations of inputs are stored in the ROM, the outputs can be “looked up”
in the table stored in the ROM. The ROM method is also called the look-up table
(LUT) method for this reason.

Consider the implementation of a 2-bit adder in a ROM. This adder must add
two 2-bit numbers. Since the maximum value of a 2-bit number is 3, the maximum
sum is 6, necessitating 3 bits for the sum. The truth table for such an adder is illus-
trated in Figure 3-4. We could also design a 2-bit full adder assuming a carry input
in addition to the two 2-bit numbers.

This 2-bit adder can be implemented with a 16 � 3 ROM. The input numbers
(X and Y) must be connected to the four address lines, and the three data lines will
produce the sum bits.
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Example
Compute the size of the ROM required to implement an 8-to-3 priority encoder.

Solution

An encoder performs the inverse function of a decoder. An 8-to-3 priority encoder is illus-
trated in Figure 3-6. If input yi is 1 and the other inputs are 0, then the abc outputs represent
a binary number equal to i.An additional output d is used to indicate invalid outputs.A value
of 1 on bit d indicates that the output bits a, b, and c are valid. If more than one input is 1 in
a priority encoder, the highest numbered input determines the output. The truth table in
Figure 3-6 illustrates the output combinations for each input combination. The X’s in the
truth table indicate “don’t cares.” As illustrated, the 8-to-3 priority encoder has eight inputs
and four outputs. Hence, it needs a 28 � 4 bit ROM.

Comment

There will be 256 entries in this ROM. When all the “don’t cares” in the truth table in
Figure 3-6 are expanded, it does result in 256 entries.
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FIGURE 3-4: Block
Diagram and Truth
Table of a 2-Bit
Adder
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X1 X0
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0 0  1 
0 0  1 0  1 
0 0  1 1  1 
0 1  0 0  0 
0 1  0 1  1 
0 1  1 0  1 
0 1  1 1  0 
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FIGURE 3-5: ROM
Implementation
of a 2-Bit Full
Adder
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Figure 3-5 illustrates the ROM implementation of this 2-bit full adder.Assuming
the connections that are shown, the contents of the ROM in its 16 locations should
be 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, and 6, respectively (representing the digits in
decimal). The LSB of the sum will come from the LSB of the data bus.
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Example
Implement, in ROM, a sequential machine whose state table is given in Figure 3-7. You may
note that this is the BCD to excess-3 code converter that we designed in Chapter 1.

144 Introduction to Programmable Logic Devices

y0 y1 y2 y3 y4 y5 y6 y7 a b c d

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1
X 1 0 0 0 0 0 0 0 0 1 1
X X 1 0 0 0 0 0 0 1 0 1
X X X 1 0 0 0 0 0 1 1 1
X X X X 1 0 0 0 1 0 0 1
X X X X X 1 0 0 1 0 1 1
X X X X X X 1 0 1 1 0 1
X X X X X X X 1 1 1 1 1

FIGURE 3-6: 8-to-3 Priority Encoder

y0

y1

y2

y3

y4

y5

y6

y7

a

b

c

d

8-to-3 
Priority 
encoder 

PS X = 0 X = 1

NS 

S0
S1
S2
S3
S4
S5
S6

S1
S3
S4
S5
S5
S0
S0

S2
S4
S4
S5
S6
S0

—

Z

X = 0 X = 1

1 
1 
0 
0 
1 
0 
1 

0
0
1
1
0
1
—

FIGURE 3-7:
State Table for a
Sequential Circuit

Solution

A sequential circuit can easily be designed using a ROM and flip-flops. The combinational
part of the sequential circuit can be realized using the ROM. The ROM can be used to real-
ize the output functions and the next state functions. The state of the circuit can then be
stored in a register of D flip-flops and fed back to the input of the ROM. Use of D flip-flops
is preferable to J-K flip-flops since using 2-input flip-flops would require increasing the num-
ber of inputs for the flip-flops (which are outputs from the ROM). The fact that the D flip-
flop input equations would generally require more gates than the J-K equations is of no
consequence since the size of the ROM depends only on the number of inputs and outputs
and not on the complexity of the equations being realized. For this reason, the state assign-
ment used is also of little importance, and, generally, a state assignment in straight binary
order is as good as any.

In order to realize the above sequential machine, a ROM and three D flip-flops are nec-
essary. The ROM will generate the next state equations and output Z from the present states
and input X. Hence, the ROM needs four address lines (three coming from flip-flops and one
for X) and it should provide four outputs (three next state bits and output Z). Figure 3-8 illus-
trates the general organization of the implementation. Since the ROM has four inputs, it con-
tains 24 � 16 words. In general, a Mealy sequential circuit with i inputs, j outputs, and k state
variables can be realized using k D flip-flops and a ROM with i � k inputs (2i�k words) and
j � k outputs.
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Now, let us derive the contents of the ROM.Table 3-2 gives the truth table for the sequen-
tial circuit, which implements the state table of Figure 3-7 with the “don’t cares” replaced by
0’s and using a straight binary state assignment.
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FIGURE 3-8:
Realization of a
Mealy Sequential
Circuit with a ROM
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TABLE 3-2:
ROM Truth Table

Assuming that Q3, Q2, Q1, and X are connected to the address lines in that order, with X
connected to the LSB, the contents of the ROM to implement this sequential machine are
3, 4, 7, 8, 8, 9, A, B, B, C, 0, 1, 1, 0, 0, and 0 (in hexadecimal representation). The hexadecimal
(hex) representation is a concise and convenient way to represent the outputs. The output Z
will come from the LSB of the data lines. The next state information will be available from
the three MSBs of the ROM data lines.

Q3 Q2 Q1 X Q3
� Q2

� Q1
� Z

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 1 1
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1
1 1 0 0 0 0 0 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
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3.2.2 Programmable Logic Arrays
A programmable logic array (PLA) performs the same basic function as a ROM.
A PLA with n inputs and m outputs (Figure 3-9) can realize m functions of n vari-
ables. The internal organization of the PLA is different from that of the ROM.
The decoder is replaced with an AND array that realizes selected product terms of the
input variables. The OR array OR’s together the product terms needed to form
the output functions.
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FIGURE 3-9:
Programmable
Logic Array
Structure

Figure 3-10 shows a PLA that realizes the following functions:

F0 � �m(0, 1, 4, 6) � A�B� � AC� (3-1)

F1 � �m(2, 3, 4, 6, 7) � B � AC�

F2 � �m(0, 1, 2, 6) � A�B� � BC�

F3 � �m(2, 3, 5, 6, 7) � AC � B

The above logic functions contain three variables. In a PLA implementation,
each product term in the equation is created first, and then required product terms
are OR’ed using the OR gate. Hence, product terms can be shared while using the
PLA. Instead of minimizing each function separately, we want to minimize the total
number of product terms. There are five distinct product terms in the above four
equations. Figure 3-10 illustrates a PLA with three inputs, five product terms, and
four outputs, implementing the above four equations. It should be noted that the
number of terms in each equation is not important, as long as there are AND gates
to generate all product terms required for all outputs together.

Internally, the PLA may use NOR-NOR logic instead of AND-OR logic.
The array shown in Figure 3-10 is thus equivalent to the nMOS PLA structure of
Figure 3-11. Logic gates are formed in the array by connecting nMOS switching
transistors between the column lines and the row lines.
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FIGURE 3-12:
nMOS NOR Gate

FIGURE 3-13:
Conversion of 
NOR-NOR to 
AND-OR

Figure 3-12 shows the implementation of a two-input NOR gate using nMOS tran-
sistors. The transistors act as switches, so if the gate input is a logic 0, the transistor
is off. If the gate input is a logic 1, the transistor provides a conducting path to ground.
If X1 � X2 � 0, both transistors are off, and the pull-up resistor brings the Z output to
a logic 1 level (�V). If either X1 or X2 is 1, the corresponding transistor is turned
on, and Z � 0. Thus, Z � (X1 � X2)� � X1�X2�, which corresponds to a NOR gate.
The part of the PLA array that realizes F0 is equivalent to the NOR-NOR gate struc-
ture shown in Figure 3-13. After canceling the extra inversions, this reduces to an
AND-OR structure.

The contents of a PLA can be specified by a modified truth table. Table 3-3
specifies the PLA in Figure 3-10. The input side of the table specifies the product
terms. The symbols 0, 1, and – indicate whether a variable is complemented, not
complemented, or not present in the corresponding product term. The output side
of the table specifies which product terms appear in each output function. A 1 or 0
indicates whether a given product term is present or not present in the correspon-
ding output function. Thus, the first row of Table 3-3 indicates that the term A�B�
is present in output functions F0 and F2, and the second row indicates that AC� is
present in F0 and F1.

Next, we will realize the following functions using a PLA:

F1 � �m(2, 3, 5, 7, 8, 9, 10, 11, 13, 15) (3-2)

F2 � �m(2, 3, 5, 6, 7, 10, 11, 14, 15)

F3 � �m(6, 7, 8, 9, 13, 14, 15)

Source, drain, and gate are the names of the three terminals of the metal oxide
semiconductor (MOS) transistor.The gate is the one that is used to control the
ON/OFF action. There are two types of MOS transistors, n-channel MOS
(nMOS) and p-channel MOS (pMOS). The illustrations in this section use
nMOS transistors. A popular technology since the 1990s is complementary
MOS (CMOS), where nMOS and pMOS transistors are used together in a
complementary fashion.
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If we minimize each function separately, the result is

F1 � bd � b�c � ab� (3-3)

F2 � c � a�bd

F3 � bc � ab�c� � abd

If we implement these reduced equations in a PLA, a total of eight different
product terms (including c) are required.

Instead of minimizing each function separately, we want to minimize the total
number of rows in the PLA table. In this case, the number of terms in each equation
is not important, since the size of the PLA does not depend on the number of terms
within an equation. Equations (3-3) are plotted on the Karnaugh maps shown in
Figure 3-14. Since the term ab�c� is already needed for F3, we can use it in F1 instead
of ab�. The other two 1’s in ab� are covered by the b�c term. This eliminates the need
to use a row of the PLA table for ab�. Since the terms a�bd and abd are needed in F2
and F3, respectively, we can replace bd in F1 with a�bd � abd.This eliminates the need
for a row to implement bd. Since b�c and bc are used in F1 and F3, respectively, we can
replace c in F2 with b�c � bc.The resulting Equations (3-4) correspond to the reduced
PLA table (Table 3-4). Instead of using Karnaugh maps to reduce the number of rows
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Product Inputs Outputs
Term A B C F0 F1 F2 F3

A�B� 0 0 — 1 0 1 0
AC� 1 — 0 1 1 0 0
B — 1 — 0 1 0 1
BC� — 1 0 0 0 1 0
AC 1 — 1 0 0 0 1

TABLE 3-3:
PLA Table for
Equations 3-1
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FIGURE 3-14:
Multiple-Output
Karnaugh Maps

a b c d F1 F2 F3

0 1 — 1 1 1 0
1 1 — 1 1 0 1
1 0 0 — 1 0 1
— 0 1 — 1 1 0
— 1 1 — 0 1 1

TABLE 3-4:
Reduced PLA Table F1 � a�bd � abd � ab�c� � b�c (3-4)

F2 � a�bd � b�c � bc

F3 � abd � ab�c� � bc

03Ch03.qxd  3/13/07  3:16 PM  Page 149



in the PLA, the Espresso algorithm can be used. This complex algorithm is described
in Logic Minimization Algorithms for VLSI Synthesis by Brayton [12].

Equations (3-4) have only five different product terms, so the PLA table has only
five rows. This is a significant improvement over Equations (3-3), which require eight
product terms. Figure 3-15 shows the corresponding PLA structure, which has four
inputs, five product terms, and three outputs. A dot at the intersection of a word line
and an input or output line indicates the presence of a switching element in the array.
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A PLA table is significantly different than a truth table for a ROM. In a truth
table, each row represents a minterm; therefore, exactly one row will be selected
by each combination of input values. The 0’s and l’s of the output portion of the
selected row determine the corresponding output values. On the other hand, each
row in a PLA table represents a general product term. Therefore, zero, one, or more
rows may be selected by each combination of input values. To determine the value
of F for a given input combination, the values of F in the selected rows of the PLA
table must be OR’ed together. The following examples refer to the PLA table of
Table 3-4. If abcd � 0001, no rows are selected, and all Fi�s are 0. If abcd � 1001,
only the third row is selected, and F1F2F3 � 101. If abcd � 0111, the first and fifth
rows are selected. Therefore, F1 � 1 � 0 � 1, F2 � 1 � 1 � l, and F3 � 0 � 1 � 1.

Next, we realize the sequential machine BCD to excess-3 code converter of
Figure 1-23 using a PLA and three D flip-flops. The circuit structure is the same as
Figure 3-8, except that the ROM is replaced by a PLA. The required PLA table,
based on the equations given in Figure 1-25, is shown in Table 3-5.

Product Term Q1 Q2 Q3 X Q1
� Q2

� Q3
� Z

Q2� — 0 — — 1 0 0 0
Q1 1 — — — 0 1 0 0
Q1Q2Q3 1 1 1 — 0 0 1 0
Q1Q3�X� 1 — 0 0 0 0 1 0
Q1�Q2�X 0 0 — 1 0 0 1 0
Q3�X� — — 0 0 0 0 0 1
Q3X — — 1 1 0 0 0 1

TABLE 3-5:
PLA Table
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3.2.3 Programmable Array Logic
The PAL (programmable array logic) is a special case of the programmable logic
array in which the AND array is programmable and the OR array is fixed. The
basic structure of the PAL is the same as the PLA shown in Figure 3-9. Because
only the AND array is programmable, the PAL is less expensive than the more gen-
eral PLA, and the PAL is easier to program. For this reason, logic designers fre-
quently use PALs to replace individual logic gates when several logic functions
must be realized.

Figure 3-16(a) represents a segment of an unprogrammed PAL. The symbol 
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Noninverted output

Inverted output

represents an input buffer, which is logically equivalent to

A buffer is used since each PAL input must drive many AND gate inputs.
When the PAL is programmed, some of the interconnection points are pro-
grammed to make the desired connections to the AND gate inputs. Connections
to the AND gate inputs in a PAL are represented by X’s as shown in the follow-
ing diagram:

A 
B 
C 

A B C A B C 

A B C 

≡ 

As an example, we will use the PAL segment of Figure 3-16(a) to realize
the function I1I�2 � I�1I2. The X�s in Figure 3-16(b) indicate that I1 and I�2 lines are
connected to the first AND gate, and the I�1 and I2 lines are connected to the other
gate.

When designing with PALs, we must simplify our logic equations and try to fit
them into one (or more) of the available PALs. Unlike the more general PLA, the
AND terms cannot be shared among two or more OR gates; therefore, each func-
tion to be realized can be simplified by itself without regard to common terms. For
a given type of PAL, the number of AND terms that feed each output OR gate is
fixed and limited. If the number of AND terms in a simplified function is too large,
we may be forced to choose a PAL with more gate inputs and fewer outputs.

As an example of programming a PAL, we will implement a full adder. The logic
equations for the full adder are

Sum � X �Y �Cin� X �YCin� � XY �Cin� � XYCin

Cout � XCin � YCin � XY
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Figure 3-17 shows a section of a PAL where each OR gate is driven by four AND
gates. The X’s on the diagram show the connections that are programmed into the
PAL to implement the full adder equations. For example, the first row of X’s imple-
ments the product term X�Y�Cin.
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Typical combinational PALs have from 10 to 20 inputs and from 2 to 10 outputs,
with 2 to 8 AND gates driving each OR gate. PALs are also available that contain
D flip-flops with inputs driven from the programmable array logic. Such PALs are
called sequential PALs. They provide a convenient way of realizing sequential
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circuits. Figure 3-18 shows a segment of a sequential PAL. The D flip-flop is driven
from an OR gate, which is fed by two AND gates. The flip-flop output is fed back to
the programmable AND array through a buffer. Thus, the AND gate inputs can be
connected to A, A�, B, B�, Q, or Q�. The diagram shows the realization of the next
state equation:

Q� � D � A�BQ� � AB�Q

The flip-flop output is connected to an inverting tristate buffer, which is enabled
when EN � 1.
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A few decades ago, PALs were very popular among digital system designers.
A very popular PAL was the 16R4. This PAL has an AND gate array with 16 input
variables, and it has four D flip-flops. Nowadays, several other programmable
devices, such as GALs (described in the next section), CPLDs, and FPGAs, have
arrived. PALs have practically disappeared; hence, we do not describe further any
of the traditional PAL devices.

3.2.4 Programmable Logic Devices/Generic Array Logic
PALs and PLAs have been very popular for implementing small circuitry and interface
logic often needed by designers. As integrated circuit technology has improved, a
wide variety of other programmable logic devices have become available. Traditional
PALs are not reprogrammable. However, there are flash erasable/reprogrammable
PALs now. Often, these are referred to as PLDs.

The 22CEV10 (Figure 3-19) is a CMOS electrically erasable PLD that can be
used to realize both combinational and sequential circuits. The abbreviation PLD
has been used as a generic term for all programmable logic devices and also
refers to specific devices such as the 22CEV10. In addition to the AND-OR
arrays that the PALs have, most PLDs have some type of a macroblock that con-
tains some multiplexers and some additional programmability. These PLDs are
named with reference to their input and output capability. For instance, the
22CEV10 has 12 dedicated input pins and 10 pins that can be programmed as
either inputs or outputs. It contains 10 D flip-flops and 10 OR gates. The number
of AND gates that feeds each OR gate ranges from 8 through 16. Each OR gate
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drives an output logic macrocell. Each macrocell contains one of the 10 D flip-flops.
The flip-flops have a common clock, a common asynchronous reset (AR) input,
and a common synchronous preset (SP) input. The name 22V10 indicates a ver-
satile PAL with a total of 22 input and output pins, 10 of which are bidirectional
I/O (input/output) pins.

Figure 3-20 shows the details of a 22CEV10 output macrocell. The connections to
the output pins are controlled by programming this macrocell. The output MUX con-
trol inputs S1 and S0 select one of the data inputs. For example, S1S0 � 10 selects data
input 2. Each macrocell has two programmable interconnect bits. S1 or S0 is connected
to ground (logic 0) when the corresponding bit is programmed. Erasing a bit discon-
nects the control line (S1 or S0) from ground and allows it to float to logic 1.When S1 �
1, the flip-flop is bypassed, and the output is from the OR gate. The OR gate output is
connected to the I/O pin through the multiplexer and the output buffer. The OR gate
is also fed back so that it can be used as an input to the AND gate array. If S1 � 0, then
the flip-flop output is connected to the output pin, and it is also fed back so that it can
be used for AND gate inputs.When S0 � 1, the output is not inverted, so it is an active
high.When S0 � 0, the output is inverted, so it is an active low.The output pin is driven
by a tristate inverting buffer. When the buffer output is in a high-impedance state, the

FIGURE 3-19: Block Diagram for 22V10
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OR gate and flip-flop are disconnected from the output pin, and the pin can be used as
an input. The dashed lines in Figure 3-20(a) show the path when both S1 and S0 are 0,
and the dashed lines in Figure 3-20(b) show the path when both S1 and S0 are 1. Note
that in the first case, the flip-flop output Q is inverted by the output buffer, and in the
second case the OR gate output is inverted twice, so there is no net inversion.
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Several PLDs similar to the 22V10 have been popular.Typically these PLDs had
8 to 12 I/O pins. Each output pin is typically connected to an output macrocell, and
each macrocell has a D flip-flop. The I/O pins can be programmed so that they act
as inputs or as combinational or flip-flop outputs. Some of the PLDs have a dedi-
cated clock input, and the others have a dual-purpose pin that can be used either as
a clock or as an input.All the PLDs typically have tristate buffers at the outputs, and
some of them have a dedicated output enable (Ō̄¯Ē).
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Lattice Semiconductor created similar devices which are in-circuit programma-
ble and called them generic array logic (GAL). GALs are perfect for implementing
small amounts of interface logic, often called “glue” logic. Most of the common
PLDs, like the PALCE22V10, PALCE20V8, and so on, have GAL equivalents,
called GAL22V10, GAL20V8, and so on.

Design Flow for PLDs
Computer-aided design programs for PALs and PLDs are widely available. Such
programs accept logic equations, truth tables, state graphs, or state tables as inputs
and automatically generate the required bit patterns. These patterns can then be
downloaded into a PLD programmer, which will create the necessary connections
and verify the operation of the PAL. Many of the newer types of PLDs are erasable
and reprogrammable in a manner similar to EPROMs and EEPROMs. Hence, in
these newer devices, bit patterns corresponding to the required EEPROM content
will be generated by the software.

PALASM and ABEL are examples of two languages that were popularly used
with PALs and PLDs. PALASM is a PLD design language from MMI and AMD.
ABEL is a PLD design language from DATA I/O. Intel used to manufacture PLDs
and had a PLD language called PLDShell. While PALASM and ABEL can still be
used, nowadays designs for GALs can be done using hardware description lan-
guages such as VHDL or Verilog.

3.3 Complex Programmable Logic Devices
Improvements in integrated circuit technology have made it possible to create pro-
grammable ICs equivalent to several PLDs in the same chip. These chips are called
complex programmable logic devices (CPLDs).When storage elements such as flip-
flops are also included on the same IC, a small digital system can be implemented
with a single CPLD.

CPLDs are an extension of the PAL concept. In general, a CPLD is an IC that
consists of a number of PAL-like logic blocks together with a programmable inter-
connect matrix. CPLDs typically contain 500 to 10,000 logic gates. Essentially,
several PLDs are interconnected using a crossbar-like switch and fabricated inside
the same IC.An N � M crossbar switch is one in which each of the N input lines can
be connected to any of the M output lines simultaneously. It is expensive to build
these switches; however, use of such a switch results in predictable timing. Many
CPLDs are electronically erasable and reprogrammable and are sometimes
referred to as EPLDs (erasable PLDs).

A typical CPLD contains a number of macrocells that are grouped into function
blocks. Connections between the function blocks are made through an interconnection
array. Each macrocell contains a flip-flop and an OR gate, which has its inputs
connected to an AND gate array. Some CPLDs are based on PALs, in which case
each OR gate has a fixed set of AND gates associated with it. Other CPLDs
are based on PLAs, in which case any AND gate output within a function block can
be connected to any OR gate input in that block.
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Xilinx, Altera, Lattice Semiconductor, Cypress, and Atmel are the major CPLD
manufacturers in the market today. The major products available on the market are
listed in Table 3-6. Some vendors specify their gate capacities in usable gates, and
some specify it in terms of logic elements.
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3.3.1 An Example CPLD: The Xilinx CoolRunner
Xilinx has two major series of CPLDs, the CoolRunner and the XC9500. Figure 3-21
shows the basic architecture of a CoolRunner family CPLD, the Xilinx XCR3064XL.
This CPLD has four function blocks, and each block has 16 associated macrocells

TABLE 3-6:
Major CPLDs and

their Approximate
Capacity

Vendor CPLD family Gate Count

Xilinx CoolRunner-II 750 to 12K

CoolRunner XPLA3 750 to 12K

XC9500XV 800 to 6400

XC9500 800 to 6400

XC9500XL 800 to 6400

Atmel CPLD ATF15 750 to 3000 usable gates

CPLD-2 22V10 500 usable gates

Cypress Delta39K 30K to 200K

Flash370i 800 to 3200

Quantum38K 30K to 100K

Ultra37000 960 to 7700

MAX340 high-density EPLDs 600 to 3750

Lattice ispXPLD 5000MX 75K to 300K

Semiconductor ispMACH 4000B/C/V/Z 640 to 10,240

Altera MAX II 240 to 2210 logic elements

MAX3000 600 to 10K usable gates

MAX7000 600 to 10K usable gates

FIGURE 3-21: Architecture of Xilinx CoolRunner XCR3064XL CPLD
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(MC1, MC2, . . .). Each function block is a programmable AND-OR array that is
configured as a PLA. Each macrocell contains a flip-flop and multiplexers that route
signals from the function block to the input/output (I/O) block or to the interconnect
array (IA). The interconnect array selects signals from the macrocell outputs or
I/O blocks and connects them back to function block inputs.Thus, a signal generated in
one function block can be used as an input to any other function block.The I/O blocks
provide an interface between the bidirectional I/O pins on the IC and the interior of
the CPLD.

Figure 3-22 shows how a signal generated in the PLA (function block) is routed
to an I/O pin through a macrocell. Any of the 36 inputs from the IA (or their com-
plements) can be connected to any inputs of the 48 AND gates. Each OR gate can
accept up to 48 product term inputs from the AND array. The macrocell logic in this
diagram is a simplified version of the actual logic. The first mux (1) can be pro-
grammed to select the OR gate output or its complement.The mux (2) at the output
of the macrocell can be programmed to select either the combinational output (G)
or the flip-flop output (Q). This output goes to the interconnect array and to
the output cell. The output cell includes a three-state buffer (3) to drive the I/O pin.
The buffer enable input can be programmed from several sources.When the I/O pin
is used as an input, the buffer must be disabled.
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FIGURE 3-22: CPLD
Function Block
and Macrocell
(Simplified Version
of XCR3064XL)
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Figure 3-23 shows how a Mealy sequential machine with two inputs, two outputs,
and two flip-flops can be implemented by a CPLD. Four macrocells are required,
two to generate the D inputs to the flip-flops and two to generate the Z outputs.The
flip-flop outputs are fed back to the AND array inputs via the interconnection
matrix (not shown). The number of product terms required depends on the com-
plexity of the equations for the D’s and the Z’s.

CPLD Implementation of a Parallel Adder with Accumulator
Assume that we need to implement an adder with an accumulator, as in Figure 3-24,
in a CPLD. The accumulator register needs one flip-flop for each bit. Each bit also
needs to generate the sum and carry bits corresponding to that bit.
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Implementation of
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Figure 3-25 shows how three bits of such a parallel adder with an accumulator
can be implemented using a CPLD. Each bit of the adder requires two macrocells.
One of the macrocells implements the sum function and an accumulator flip-flop.
The other macrocell implements the carry, which is fed back into the AND array.
The Ad signal can be connected to the enable input (CE) of each flip-flop via an
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AND gate (not shown). Each bit of the adder requires eight product terms (four for
the sum, three for the carry, and one for CE). For each accumulator flip-flop,

Di � Xi
� � Si � Xi � Yi � Ci

If the flip-flops are programmed as T flip-flops, then the logic for the sum can be
simplified. For each accumulator flip-flop

Xi
� � Xi � Yi � Ci

Therefore, the T input is

Ti � Xi
� � Xi � Yi � Ci

The add signal can be AND’ed with the Ti input so that the flip-flop state only
can change when Ad � 1:

Ti � Ad(Yi � Ci) � Ad Yi Ci� � Ad Yi� Ci

The equation for carry is

Ci�1 � XiYi � XiCi � YiCi

3.4 Field Programmable Gate Arrays
In this section, we introduce field programmable gate arrays (FPGAs). FPGAs are
ICs that contain an array of identical logic blocks with programmable interconnec-
tions. The user can program the functions realized by each logic block and the con-
nections between the blocks. FPGAs have revolutionized the way prototyping and
designing are done.The flexibility offered by reprogrammable FPGAs has enhanced
the design process.While different kinds of programmable devices had been around,
when Xilinx used static RAM (SRAM) storage elements to create programmable
logic blocks and introduced its family of XC2000 devices in 1985, the world received
a totally new and powerful technology. There are a variety of FPGA products avail-
able in the market now. Xilinx, Altera, Lattice Semiconductor, Actel, Cypress,
QuickLogic, and Atmel are examples of companies that design and sell FPGAs.

FPGAs provide several advantages over traditional gate arrays or mask pro-
grammable gate arrays (MPGAs).A traditional gate array can be used to implement
any circuit but is programmable only in the factory. A specific mask to match the
particular circuit is created in order to fabricate the gate array. The design time of a
gate-array-based IC is a few months. FPGAs are standard off-the-shelf products.
Manufacturing time reduces from months to hours as one adopts FPGAs instead of
MPGAs. Design iterations become easier with FPGAs. This is a tremendous advan-
tage when it comes to time-to-market. It becomes easy to correct mistakes that creep
into designs. Mistakes and design specification changes become less costly. Prototyping
cost is reduced. At low volumes, FPGAs are cheaper than MPGAs.

FPGAs have disadvantages, too. FPGAs are less dense than traditional gate arrays
(MPGAs). In FPGAs, a lot of resources are spent to merely achieve the programma-
bility. MPGAs have better performance than FPGAs. Programmable points have
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resistance and capacitance. They slow down signals, so FPGAs are slower than tradi-
tional gate arrays.Also, interconnection delays are unpredictable in FPGAs. PLDs, like
PALs and GALs, are simple and inexpensive. CPLDs are faster than FPGAs and are
cheaper.The overhead for programmability is fairly low in PALs and CPLDs.The main
advantage of CPLDs over FPGAs is the lower cost and predictability in timing.

Several commercial FPGAs are listed in Table 3-7. As we notice, some of these
chips contain logic equivalent to 5 million gates. The capacity of some FPGAs is
specified in number of look-up tables (LUTs). Due to the large capacity, it is possible
to prototype or even manufacture large systems in a single FPGA. In this chapter,
we describe the basic organization of FPGAs. Design examples with FPGAs are
presented in Chapter 6.
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TABLE 3-7:
Examples of

Commercial FPGAs

Vendor FPGA Product Capacity (Approx) in Gates/LUTs

Xilinx Spartan-II 15K to 200K
Spartan-IIE 50K to 600K
Spartan-3 50K to 5M
Virtex-5 19,200 to 207,360 LUTs
Virtex 57,906 to 1,124,022
Virtex-E 71,693 to 4,074,387
Virtex-II 40K to 8M

Altera ACEX 1K 56K to 257K
APEX II 1.9M to 5.25M
FLEX 10K 10K to 50K
Stratix/Stratix II 10,570 to 132,540 logic elements

Lattice Semiconductor LatticeECP2 6K to 68K LUTs
Lattice SC 15.2K to 115.2K LUTs
ispXPGA 139K to 1.25M
MachXO 256 to 2280 LUTs
LatticeECP 6.1K to 32.8K LUTs

Actel Axcelerator 125K To 2M
eX 3K to 12K
ProASIC3 30K to 3M
MX 3K to 54K

Quick Logic Eclipse/EclipsePlus 248K to 662K
Quick RAM 45K to 176K
pASIC 3 5K to 75K

Atmel AT40K 5K to 40K
AT40KAL 5K to 50K

3.4.1 Organization of FPGAs
Figure 3-26 shows the layout of a typical FPGA. The interior of FPGAs typically
contains three elements that are programmable:

Programmable logic blocks
Programmable input/output blocks
Programmable routing resources
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Arrays of programmable logic blocks are distributed within the FPGA. These
logic blocks are surrounded by input/output (I/O) interface blocks.These I/O blocks
can be considered to be on the periphery of the chip. They connect the logic signals
to FPGA pins. The space between the logic blocks is used to route connections
between the logic blocks.

The “field” programmability in FPGAs is achieved by reconfigurable
elements, which can be programmed or reconfigured by the user. As mentioned,
there are three major programmable elements in FPGAs: the logic block, the
interconnect, and the input/output block. Programmable logic blocks are created
by using multiplexers, look-up tables, and AND-OR or NAND-NAND arrays.
“Programming” them means changing the input or control signals to the multi-
plexers, changing the look-up table contents, or selecting/not selecting particular
gates in AND-OR gate blocks. For a programmable interconnect, “programming”
means making or breaking specific connections. This is required to interconnect
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FIGURE 3-26: Layout of a Typical FPGA
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various blocks in the chip and to connect specific I/O pins to specific logic
blocks. Programmable I/O blocks denote blocks which can be programmed to be
input, output, or bidirectional lines. Typically, they can also be “programmed” to
adjust the properties of their buffers such as inverting/noninverting, tristate, pas-
sive pull-up, or even to adjust the slew rate, which is the rate of change of signals
on that pin.

What makes an FPGA distinct from a CPLD is the flexible general-purpose inter-
connect. In a CPLD, the interconnect is fairly restricted. The general-purpose
interconnect in an FPGA gives it a lot of flexibility, but it also has the disadvantage
of being slow. A connection from one part of the chip to another part might have to
travel through several programmable interconnect points, resulting in large and
unpredictable signal delays.

While Figure 3-26 was used to illustrate the general structure of an FPGA, not
all FPGAs look like that. Commercial FPGAs use a variety of architectures. The
FPGA architecture or organization refers to the manner or topology in which the
logic blocks and interconnect resources are distributed inside the FPGA.The organ-
ization that is presented in Figure 3-26 is often referred to as symmetrical array
architecture. If we examine the various FPGAs that have been on the market since
their inception in the late 1980s, we could classify them into four different basic
architectures or topologies:

Matrix-based (symmetrical array) architectures
Row-based architectures
Hierarchical PLD architectures
Sea-of-gates architecture

These architectures are illustrated in Figure 3-27.

Matrix-Based (Symmetrical Array) Architectures
The logic blocks in this type of FPGA are organized in a matrix-like fashion as illus-
trated in Figure 3-27(a). Most Xilinx FPGAs belong to this category. The
logic blocks in these architectures are typically of a large granularity (capable of
implementing four-variable functions or more). These architectures typically
contain 8 � 8 arrays in the smaller chips and 100 � 100 or larger arrays in the bigger
chips. The routing resources are interspersed between the logic blocks. The routing
in these architectures is often called two-dimensional channeled routing since rout-
ing resources are generally available in horizontal and vertical directions.

Row-Based Architectures
These architectures were inspired by traditional gate arrays. The logic blocks in this
architecture are organized in rows, as illustrated in Figure 3-27(b). Thus, there are
rows of logic blocks and routing resources. The routing resources interspersed
between the rows can be used to interconnect the various logic blocks. Traditional
mask programmable gate arrays use very similar architectures. The routing in these
architectures is often called one-dimensional channeled routing because the routing
resources are located as a channel in between rows of logic resources. Some Actel
FPGAs employ this architecture.
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Hierarchical Architectures
In some FPGAs, blocks of logic cells are grouped together by a local interconnect
and several such groups are interconnected by another level of interconnect. For
instance, in Altera APEX20 and APEX II FPGAs, 10 or so logic elements are con-
nected to form what Altera calls a logic array block (LAB), and then several LABs
are connected to form a MEGALAB. Thus, there is a hierarchy in the organization
of these FPGAs. These FPGAs contain clusters of logic blocks with localized
resources for interconnection.The global interconnect network is used for the inter-
connections between the clusters of logic blocks in these FPGAs.

Sea-of-Gates Architecture
The sea-of-gates architecture is yet another manner to organize the logic blocks
and interconnect in an FPGA. The general FPGA fabric consists of a large
number of gates, and then there is an interconnect superimposed on the sea of
gates as illustrated in Figure 3-27(d). Plessey, a manufacturer who was in the
FPGA market in the mid-1990s, made FPGAs of this architecture. The basic cell
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FIGURE 3-27: Typical Architectures for FPGAs
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they used was a NAND gate, in contrast to the larger basic cells used by manu-
facturers like Xilinx. While the terminology sea of gates is the most popular, there
are also terminologies like sea of cells and sea of tiles to indicate the topology of
FPGAs with a large number of fine-grain logic cells. The Actel Fusion FPGAs
contain a sea of tiles, where each tile can be configured as a three-input logic func-
tion or a flip-flop/latch.

3.4.2 FPGA Programming Technologies
FPGAs consist of a large number of logic blocks interspersed with a programmable
interconnect. The logic block is programmable in the sense that the same building
block can be “programmed” or “configured” to create any desired circuitry. There is
also programmability in the interconnections between the logic blocks.

Several techniques have been used to achieve the programmable interconnections
between FPGAs. The term programming technology is used here to denote the tech-
nology by which the programmability in an FPGA is achieved. In some devices, the
reconfigurability is achieved by changing the contents of static RAM cells. In some
devices, it is achieved by using flash memory cells. In others, it is achieved by fusing
metal links. In general, FPGAs use one of the following programming methods:

StaticRAM programming technology
EPROM/EEPROM/flash programming technology
Antifuse programming technology

The SRAM Programming Technology
The SRAM programming technology involves creating reconfigurability by bits
stored in static RAM (SRAM) cells.The logic blocks, I/O blocks, and interconnect can
be made programmable by using configuration bits stored in SRAM. Reconfigurable
logic blocks can easily be implemented as LUTs, which is the same approach as the
ROM method described in Section 3.2.1. Sixteen SRAM cells can implement any
function of four variables. The programmable interconnect can also be achieved by
SRAM. The key idea is to use pass transistors to create switches and then control
them using the SRAM content. Consider the arrangement in Figure 3-28(a). The
SRAM cell is connected to the gate of the pass transistor. When the SRAM cell con-
tent is 0, the pass transistor is OFF, and hence no connection exists between points
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FIGURE 3-29:
Typical Six-
Transistor SRAM
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A and B. A closed path can be achieved by turning the pass transistor ON by making
the SRAM cell content 1. SRAM bits can be used to construct routing matrices by
using multiplexers as in Figure 3-28(b). Changing the contents of the SRAM in the
arrangement in Figure 3-28(b) will allow the designer to change what is connected to
point X. The bits that are stored in the SRAM for deciding the LUT functionality or
interconnection are called configuration bits.

A SRAM cell usually takes six transistors, as illustrated in Figure 3-29. Four
cross-coupled transistors are required to create a latch, and two additional transis-
tors are used to control passing data bits into the latch. When the Word Line is set

to high, the values on the Bit Line will be latched into the cell.This is the write oper-
ation. The read operation is performed by precharging the Bit Line and ¯¯¯¯Bit¯Line¯¯¯¯¯¯¯ to
a logic 1 and then setting Word Line to high.The contents stored in the cell will then
appear on the Bit Line. Some SRAM cell implementations only use five transistors.
One advantage of using static RAM is that it is volatile and you can write new con-
tents again and again.This provides flexibility during prototyping and development.
Another advantage is that the fabrication steps for making SRAM cells are not
different from the steps for making logic. The major disadvantage of the SRAM
programming technology is that five or six transistors are used for every SRAM cell.
This adds a tremendous cost to the chip. For example, if an FPGA has 1 million pro-
grammable points, it means that approximately 5 or 6 million transistors are spent
in achieving this programmability.

Being volatile can become a disadvantage when an FPGA is used in the final
product. Hence, when SRAM FPGAs are used, a nonvolatile device such as an
EPROM should be used to permanently store the configuration bits. Typically, what
is done is to use the EPROM as a “boot ROM.” The EPROM contents are trans-
ferred to the SRAM when power comes up.
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Xilinx FPGAs were the first FPGAs to use SRAM as the programming tech-
nology. In fact, it is the flexibility and reprogrammability of SRAM FPGAs that
caused FPGAs to become widely popular. Now, many companies use the SRAM
programming technology for their FPGAs.

EPROM/EEPROM Programming Technology
In the EPROM/EEPROM programming technology, EPROM cells are used to
control programmable connections. Assume that EPROM/EEPROM cells are used
instead of the SRAM cells in Figure 3-28.A transistor with two gates, a floating gate
and a control gate, is used to create an EPROM cell. Figure 3-30 illustrates an
EPROM cell. The pull-up resistor connects the drain of the transistor to the power
supply (labeled Vdd in the figure). To turn the transistor off, charge can be injected
on the floating gate using a high voltage between the control gate and the drain of
the transistor.This charge increases the threshold voltage of the transistor and turns
it off. The charge can be removed by exposing the floating gate to ultraviolet light.
This lowers the threshold voltage of the transistor and makes it function normally.
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EPROMs are slower than SRAM; hence, SRAM-based FPGAs can be pro-
grammed faster. EPROMs also require more processing steps than SRAM. EPROM-
based switches have high ON resistance and high static power consumption. The
EEPROM is similar to EPROM, but removal of the gate charge can be done
electrically.

Flash memory is a form of EEPROM that allows multiple locations to be erased
in one operation. Flash memory stores information in floating-gate transistors as in
traditional EPROM. The floating gate is isolated by an insulating oxide layer, and
hence any electrons placed there are trapped. The cell is read by placing a specific
voltage on the control gate. When the voltage to read is placed, electrical current will
or will not flow depending on the threshold voltage of the cell, which is controlled by
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the number of electrons trapped in the floating gate. In some devices, the information
is stored as absence or presence of current. In some advanced devices, the amount of
current flow is sensed, and hence multiple bits of information can be stored in a cell.
To erase, a large voltage differential is placed between the control gate and source,
which pulls electrons off. Flash memory is erased in segments/sectors; all cells in a
block are erased at the same time.

The Antifuse Programming Technology
In some FPGAs, the programmable connections between different points are achieved
by what is called an “antifuse.” Contrary to fuse wires that blow open when high cur-
rent passes through them, the “antifuse” programming element changes from high
resistance (open) to low resistance (closed) when a high voltage is applied to it.
Antifuses are often built using dielectric layers between N� diffusion and polysilicon
layers or by amorphous silicon between metal layers. Antifuses are normally OFF;
permanently connected links are created when they are programmed. The process
is irreversible, and hence antifuse FPGAs are only one-time programmable. Pro-
gramming an antifuse requires applying a high voltage and currents in excess of normal
currents. Special programming transistors larger than normal transistors are incorpo-
rated into the device in order to accomplish the programming.There are different anti-
fuse technologies; a popular one is the Via antifuse technology.

Antifuse technology has the advantage that the area consumed by the program-
mable switch is small. Another advantage is that antifuse-based connections are
faster than SRAM- and EEPROM-based switches. The disadvantage of the antifuse
technology is that it is not reprogrammable. It is a permanent connection; if an error
or design change necessitates reprogramming, a new device is required.

Comparison of Programming Technologies
Table 3-8 compares the characteristics of the major programming technologies
used by FPGAs. Only the SRAM and EEPROM programming technologies
allow in-circuit programmability. In-circuit programmability means that an FPGA
can be reprogrammed without removing it from the board in which it is used.
In-circuit programmability is not possible in traditional EPROM-based devices,
but EEPROM/flash technologies allow in-circuit reprogrammability.
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Programming Area 
Technology Volatility Programmability Overhead Resistance Capacitance

SRAM Volatile In-circuit Large Medium High
reprogrammable to high

EPROM Nonvolatile Out-of-circuit Small High High
reprogrammable

EEPROM Nonvolatile In-circuit Medium High High
reprogrammable to high

Antifuse Nonvolatile Not reprogrammable Small Small Small

TABLE 3-8: Characteristics of the Major FPGA Programming Technologies
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SRAM FPGAs have several disadvantages: high area overhead, large delays,
volatility, and so on. However, the in-circuit programmability and fast programmability
have made them very popular. SRAM FPGAs are more expensive than other types of
FPGAs because each programmable point uses six transistors.This extra hardware con-
tributes only to the reprogrammability but not to the actual circuitry realized with the
FPGA. EEPROM/flash-based FPGAs are comparable to SRAM FPGAs in many
aspects; however, they are not as fast as SRAM FPGAs.

3.4.3 Programmable Logic Block Architectures
FPGAs in the past have employed different kinds of programmable logic blocks as
the basic building block. In this section, we present some generalized versions of
typical building blocks in commercial FPGAs.

The logic blocks vary in the basic components they use. For instance, some FPGAs
use LUT-based logic blocks, while others use multiplexers and logic gates to build
their logic blocks. There also have been FPGAs where logic blocks simply consisted
of transistor pairs (e.g., crosspoint FPGAs). Logic building blocks in early Altera
FPGAs were PLD blocks. There were also FPGAs that used NAND gates as the
building block (e.g., Plessey).

The logic blocks also vary in their architecture and size. Some FPGAs use large
basic blocks, which can implement large functions (several five-variable or four-
variable functions) and have several flip-flops in each basic block. In contrast, there
are FPGA building blocks which only allow a three-variable function or a flip-flop in
one block. Some FPGAs allow choices as to whether latched/unlatched or both kinds
of outputs can be brought out. Some FPGAs allow one to control the type of flip-
flop that is realized. Some allow positive edge/negative edge clock, direct set/reset
inputs to the flip-flop, and so on. Different FPGA manufacturers use different names
(often trademarked) to denote their logic blocks. In the Xilinx literature, a program-
mable logic block is called a Configurable Logic Block (CLB).Altera calls their basic
blocks Logic Elements (LE) and a collection of 8 or 10 of them Logic Array Blocks
(LABs). The basic cells in Actel Fusion FPGAs are referred to as VersaTiles.

Look-Up Table–Based Programmable Logic Blocks
Many LUT-based FPGAs use a four-variable look-up table plus a flip-flop as the
basic element and then combine several of them in various topologies. Consider the
structure in Figure 3-31. There are two four-variable look-up tables (often denoted
by the short form LUT4) and two flip-flops in this programmable logic block. The
LUT4 can also be called a four-variable function generator since it can generate any
function of four variables. The two LUT4s can generate any two functions of four
variables. The inputs to the X-function generator are called X1, X2, X3, and X4, and
the inputs to the Y-function generator are called Y1, Y2, Y3, and Y4. The functions
can be steered to the output of the block (X and Y) in combinational or latched
form. There are two D flip-flops in the logic block. The D flip-flops are versatile in
the sense that they have clock enable, direct set, and direct reset inputs. A multi-
plexer selects between the combinatorial output and the latched version of the out-
put. The little box with “M” in it (beneath the multiplexer) indicates a memory cell
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FIGURE 3-31:
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that is required to provide appropriate select signals to select between the latched
and unlatched form of the function.An early Xilinx FPGA, the XC3000, used build-
ing blocks very similar to this structure.

Let us assume that we want to implement the function F1 � A�B�C � A�BC� �
AB using an FPGA with programmable logic blocks as in Figure 3-31. Since this is
a three-variable function, a four-input LUT is more than sufficient to implement the
function. The path highlighted in Figure 3-32 assumes that the X-function generator
(top LUT) is used. Let us assume that X1 is the LSB and X4 is the MSB to the LUT.
Since function F1 only uses three variables, the X4 input is not used. A truth table
can be constructed to represent the function, and the LUT contents can be derived.

The LUT contents to implement function F1 will be 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0,
0, 0, 1, 1. The first 8 bits in the LUT reflect the truth table outputs when the function
is represented in a truth table form. Since input X4 is not grounded, the first 8 bits
are repeated to take care of the possibility that the X4 input might stay at a logic 1
when it is unused. Since the functions are stored in LUT form, the number of terms
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in the function is not important. Common minimizations to reduce the number of
terms are not relevant. The number of variables is what is important.

Many commercial FPGAs use LUTs. Examples are the Xilinx Spartan/Virtex,
Altera Cyclone II/APEX II, QuickLogic Eclipse/PolarPro, and Lattice Semiconductor
ECP. Many of these FPGAs put two or more four-input LUTs into a block in various
topologies. Some FPGAs also provide multiplexers in addition to look-up tables.

Logic Blocks Based on Multiplexers and Gates
Some FPGAs use multiplexers as the basic building block. As you know, any combi-
national function can be implemented using multiplexers alone. In the most naïve
method, a 4-to-1 multiplexer can generate any two-input function. If inverted
inputs can be provided, a 4-to-1 multiplexer can generate any three-input function.
Examples of multiplexer-based basic blocks are given in Figure 3-33. Logic
blocks similar to these were used in early Actel FPGAs such as the ACT I and ACT II.
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FIGURE 3-33:
Multiplexer-Based
Logic Blocks in
FPGAs
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Let us assume that we want to implement the function F1 � A�B�C � A�BC� �
AB using an FPGA with programmable logic blocks consisting of 4-to-1 multiplex-
ers.Two of the three-input variables can be connected to the multiplexer select lines.
Then we have to provide appropriate signals to the multiplexer data input lines in
order to realize the function. To derive these inputs, we will first construct a truth
table of the function as shown below:
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Let us assume that A and B are connected to the select inputs of the multiplexer.
Next, we will derive values of inputs to provide to the multiplexer input lines in terms
of the third variable in the function. The third variable is C, and by providing one of
the four values {C, C�, 0, 1}, any three-variable function can be expressed. Considering
the first two rows of the truth table, it can be seen that F � C when AB � 00. Similarly,
considering the third and fourth rows of the truth table, F � C� when AB � 01.When
AB � 10, F � 0 irrespective of the value of C. Similarly, when AB � 11, the value
of the function equals 1. The last column in the truth table presents the required
multiplexer inputs. Hence, one 4-to-1 multiplexer with the connections shown in
Figure 3-34 can implement function F1.

FIGURE 3-34:
Multiplexer
Implementing
Function F1
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Programming 
Company Device Names General Architecture Logic Block Type Technology

Actel ProASIC/ProASIC3/ Sea of Tiles Multiplexers & Basic Gates SRAM
ProASICplus

SX/SXA/eX/MX Sea of Modules Multiplexers & Basic Gates Antifuse
Accelerator Sea of Modules Multiplexers & Basic Gates SRAM
Fusion Sea of Tiles Multiplexers & Basic Gates Flash, SRAM

Xilinx Virtex Symmetrical Array LUT SRAM
Spartan Symmetrical Array LUT SRAM

Atmel AT40KAL Cell Based Multiplexers & Basic Gates SRAM

QuickLogic Eclipse II Flexible Clock LUT SRAM
PolarPro Cell Based LUT SRAM

Altera Cyclone II Two-Dimensional Row LUT SRAM
and Column Based

Stratix II Two-Dimensional Row LUT SRAM
and Column Based

APEX II Row and Column, but LUT SRAM
Hierarchical Interconnect

TABLE 3-9: Architecture, Technology, and Logic Block Types of Commercial FPGAs

In the past three sections, we have provided an overview of the general archi-
tecture, logic block types, and programming technologies that can be used to build
FPGAs. The general architecture, programming technology, and logic block types of
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several example commercial FPGAs are summarized in Table 3-9. LUT-based
FPGAs are very common, especially for Xilinx and Altera. Actel is the manufactur-
er of multiplexer-based FPGAs. SRAM programming technology, while expensive,
is also common.

3.4.4 Programmable Interconnects
A key element of an FPGA is the general-purpose programmable interconnect
interspersed between the programmable logic blocks. There are different types of
interconnection resources in all commercial FPGAs. Every vendor has its own spe-
cific names for the different types of interconnects in its FPGA.

Interconnects in Symmetric Array FPGAs
In this section, we discuss some of the basic elements used for interconnection in
symmetric array FPGAs.

General-Purpose Interconnect: Many FPGAs use switch matrices that provide
interconnections between routing wires connected to the switch matrix. Figure 3-35(a)
illustrates interconnecting logic blocks in an FPGA using switch matrices.
Many FPGAs use this type of interconnect. A typical switch matrix is illustrated in
Figure 3-35(b), where there is a switch at each intersection (i.e., wherever the lines
cross). A switch matrix that supports every possible connection from every wire to
every other wire is very expensive. The connectivity is often limited to some subset of
a full crossbar connection; moreover, not all connections might be possible simulta-
neously. In the switch matrix illustrated in Figure 3-35(b), each wire from a side of the
switch can be routed to other wires using some combination of the switches. In order
to support this type of a connection, each cross point in the switch matrix must
support six possible interconnections as marked in Figure 3-35(c).

Depending on the programming technology, SRAM cells, flash memory cells, or
antifuse connections control the configuration of the switches. The switch matrices
interspersed between the logic blocks in an FPGA allow general-purpose intercon-
nectivity between arbitrary points in the chip. However, the switch matrices are
expensive in area and time (delay). If a signal passes through several of these switch
matrices, it could contribute to a significant signal delay. Moreover, the delays are
variable and unpredictable depending on the number of the switch matrices
involved in each signal. In contrast, the interconnection resources in a CPLD are
more restricted. However, interconnections in CPLDs result in smaller and more
predictable delays.

Direct Interconnects: Many FPGAs provide special connections between adja-
cent logic blocks. These interconnects are fast because they do not go through the
routing matrix. Many FPGAs provide direct interconnections to the four nearest
neighbors: top, bottom, left, and right. Figure 3-36 illustrates examples of direct
connections. In some cases, there are special interconnections to eight neighboring
blocks, including the diagonally located logic blocks (Figure 3-36(b)). The direct
interconnections do not go through the switch matrix but are implemented with
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dedicated switches, resulting in smaller delays.These types of direct interconnects are
used in some Xilinx FPGAs.

Global Lines: For purposes like high fan-out and low-skew clock distribution, most
FPGAs provide routing lines that span the entire width of the device/height of the
device. A limited number (two or four) of such global lines is provided by many
FPGAs in the horizontal and vertical directions. Figure 3-37 illustrates horizontal
long lines (global lines) in an example FPGA. The logic blocks often have tristate
buffers to connect to the global lines.
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FIGURE 3-36: Direct
Interconnects
between
Neighboring
Logic Blocks

FIGURE 3-37:
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Interconnects in Row-Based FPGAs
Many of the interconnect resources mentioned previously are very characteristic of
symmetric array devices with a two-dimensional array of logic blocks (e.g., Xilinx). In
devices that are row based, there are rows of logic blocks, and there are channels of
switches to enable connections between the logic blocks. Several switches are used to
route a signal from a logic block in one row to another logic block elsewhere in the
chip.There are arrays of switches in the routing channel between the rows of logic.The
routing resources in these FPGAs are very similar to routing in traditional gate arrays.

Clock Skew
There are several million gates in modern FPGA chips. When a clock is dis-
tributed to various parts of such a large chip, the delays in the wire carrying
the clock can result in the clock edge arriving at different times at different
parts. This difference in the actual edge of the clock as it arrives at different
flip-flops or other devices is called clock skew. Clock skew is a problem in
large systems, including modern microprocessors. Carefully planned clock dis-
tribution circuits are implemented in most systems in order to minimize the
effect of clock skew. Modern FPGAs provide specialized clock distribution
circuitry in order to create a clock of sufficient strength and low skew.
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The interconnects in row-based channeled architecture can be classified into
two categories: nonsegmented routing and segmented routing. In order to under-
stand different types of channel routing, consider the connections x, y, and z in
Figure 3-38(a). Figure 3-38(b) indicates what is called as a nonsegmented channel
routing architecture. There are three horizontal rows or tracks in this figure. There
are several vertical wires and switches at the crosspoints. The switches technically
can use any programming technology (SRAM, EPROM, or antifuse), although
FPGAs that use this type of routing are typically antifuse FPGAs. Desired connec-
tivity is obtained by programming the appropriate switches. Connectivity between
the points marked x is obtained by the two switches at row 1, columns 1 and 4.
Typically this is called net x. Net x simply means a wire that is named x. The
connectivity for net y is obtained by programming the switches at row 2, columns 3
and 8. It may be noticed that row 1 cannot be used for any other connections other
than net x. Similarly, row 2 is exclusively used for net y.Thus, a problem with this type
of interconnect resource is that a full-length track (i.e., an entire row) is used even
for a short net. The area overhead of this type of routing is very high for this reason.
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FIGURE 3-38:
Typical Routing
Resources in a 
Row-Based FPGA
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In order to reduce the area overhead associated with using full-length tracks for
each net, we can use segmented tracks, as in Figure 3-38(c). Instead of being full
length, a track is divided into segments. If a track in row 1 is segmented into two seg-
ments, we could use the same track for one more net. For example, nets x and z can
both be routed on row 1 in Figure 3-38(c). That is the principle of segmented track
routing. More nets can be routed using the same number of tracks; however, when
long nets are desired, intersegment switches must be used to join the segments.
These switches introduce more resistance and capacitance into the net. However,
the overall routing resource area will reduce with segmented routing.

3.4.5 Programmable I/O Blocks in FPGAs
The I/O pads on an FPGA are connected to programmable input/output blocks,
which facilitate connecting the signals from FPGA logic blocks to the external
world in desired forms and formats. I/O blocks on modern FPGAs allow use of the
pin as input and/or output, in direct (combinational) or latched forms, in tristate true
or inverted forms, and with a variety of I/O standards.

Figure 3-39 shows an example configurable input/output block (I/OB). Each
I/OB has a number of I/O options, which can be selected by configuration memory
cells, indicated by boxes with an M. The I/O pad can be programmed to be an out-
put or an input. To use the cell as an output, the tristate buffer must be enabled. To
use the cell as an input, the tristate control must be set to place the tristate buffer,
which drives the output pin, in the high-impedance state.

Flip-flops are provided so that input and output values can be stored within the
I/O block. The flip-flops are bypassed when direct input or output is desired.
The input flip-flop on many FPGAs can be programmed to act as an edge-triggered
D flip-flop or as a transparent latch. Even if the I/O pin is not used, the I/O flip-flops
can still be used to store data.

The configuration memory cells (marked M) allow control of various aspects asso-
ciated with the I/O block.An output signal can be inverted by the I/O block if desired.
The inversion is done using an XOR gate.The output signal goes through an exclusive-
OR gate, where it is either complemented or not, depending on the contents of the
configuration bit in the OUT-INVERT cell. The 3-STATE INVERT configuration bit
allows one to create an active high or active low tristate control signal. If the 3-STATE
signal is 1 and the 3-STATE INVERT bit is 0 (or if the 3-STATE signal is 0 and the
3 STATE INVERT bit is 1), the output buffer has a high-impedance output. Otherwise,
the buffer drives the output signal to the I/O pad.When the I/O pad is used as an input,
the output buffer must be in the high-impedance state. An external signal coming into
the I/O pad goes through a buffer and then to the input of a D flip-flop.The buffer out-
put provides a DIRECT IN signal to the logic array.Alternatively, the input signal can
be stored in the D flip-flop, which provides the LATCHED IN signal to the logic array.

The LATCHED OUTPUT configuration bit allows one to provide the output in
latched or combinational form. Depending on how the LATCHED OUTPUT bit is
programmed, either the OUT signal or the flip-flop output goes to the output buffer.
The SLEW RATE bit controls the rate at which the output signal can change.When the
output drives an external device, reduction of the slew rate is desirable to reduce the
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induced noise that can occur when the output changes rapidly. When the PASSIVE
PULL-UP bit is set, a pull-up resistor is connected to the I/O pad.This internal pull-up
resistor can be used to avoid floating inputs.The highlighted path indicates the I/O block
in an output configuration, with tristate enabled and with a passive pull-up resistor.
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I/O Standards
Early FPGAs provided TTL and CMOS signal compatibility, but nowadays
there are many more standards for input/output signals. I/O blocks on mod-
ern FPGAs allow transforming signals to a variety of I/O signal standards,
some of which are as follows:

LVTTL: low-voltage transistor-transistor logic
PCI: peripheral component interconnect

FIGURE 3-39: Programmable I/O Block for an FPGA
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LVCMOS: low-voltage complementary metal-oxide semiconductor
LVPECL: low-voltage positive emitter-coupled logic
SSTL: stub-series terminated logic
AGP: advanced graphics port
CTT: center tap terminated
GTL: gunning transceiver logic
HSTL: high-speed transceiver logic

Some of these standards use 5 volts whereas some use 3.3 volts or even
1.5 volts. The LVTTL is an example of a 3.3-V standard that can tolerate 5-V
signals.The LVCMOS2 is a 2.5-V signal standard which can tolerate 5-V signals.
The PCI standard has 5-V and 3.3-V versions. Some standards need an input
voltage reference.

3.4.6 Dedicated Specialized Components in FPGAs
In the early days, FPGAs were simply logic blocks of medium or low complexity,
integrated with programmable I/O and interconnect. More recently, FPGA vendors
have incorporated embedded processors, digital signal processing (DSP) processors,
dedicated multipliers, dedicated memory, analog-to-digital (A/D) converters, and
so on into FPGAs. These specialized components help to efficiently achieve the
provided special-purpose functionality. For instance, if dedicated multipliers are not
provided, we will have to implement multipliers using general-purpose logic blocks,
albeit in an inefficient manner.

Dedicated Memory
A key feature of modern FPGAs is the embedding of dedicated memory blocks
(RAM) onto the chip. The embedded RAM can be used to implement the memory
needs of the circuit being designed. It could be a table storing constants/coefficients
during processing, or it could be implementing memory for an embedded processor
that you are designing using the FPGA. Modern FPGAs include 16K to 10M bits of
memory. The width of the embedded RAM often can be adjusted. Let us assume
that there are 32K of SRAM bits provided as blocks of RAM. This RAM can be
used as 32K � 1, 16K � 2, 8K � 4, or 4K � 8. Essentially there are several tiles or
blocks of memory. They can be placed in different ways to achieve different aspect
ratios. The number of address lines and data lines get adjusted according to the
aspect ratio, as illustrated in Table 3-10.

Dedicated Arithmetic Units
Many users of FPGAs use them to implement arithmetic logic. When logic is imple-
mented in FPGA logic blocks, the implementation generally takes more area and
power and is slower than custom implementations. Hence, if most of the target users
use arithmetic units such as adders and multipliers, it is beneficial to provide sup-
port for such dedicated operations inside the chip. Most FPGAs provide dedicated
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TABLE 3-10:
Variable-Width

RAM Aspect Ratios

TABLE 3-11:
Examples of FPGAs

with Dedicated
Multipliers

Width Depth Addr Bus Data Bus

1 32K 15 bits 1 bit
2 16K 14 bits 2 bits
4 8K 13 bits 4 bits
8 4K 12 bits 8 bits

16 2K 11 bits 16 bits

fast-carry logic to create fast adders. Nowadays, many FPGAs also contain dedicat-
ed multipliers (see Table 3-11). Thus, instead of mapping a multiplier into several
logic blocks, dedicated multipliers provided on the FPGA fabric can be used. These
dedicated multipliers are more efficient than a multiplier we could implement using
the programmable logic in the FPGA. As indicated in Table 3-11, many Xilinx and
Altera FPGAs provide 18 bit � 18 bit multipliers.

Dedicated 
FPGA Multipliers

Xilinx Virtex-4, 18 � 18 
Virtex-II Pro/X, multipliers
Spartan-3E,
Spartan 3/3L

Altera 18 � 18 
Stratix II multipliers
Cyclone II

Digital Signal Processing Blocks
Multiplication is a common operation in DSP. Hence the dedicated multipliers help
DSP applications. Similar to multipliers, an FPGA vendor can provide DSP building
blocks such as hardware for fast Fourier transforms (FFTs), finite impulse response
(FIR) filters, infinite impulse response (IIR) filters, and so on. Encryption/decryption,
compression/decompression, and security functions can also be provided. Once a
large amount of specialized components are provided, a large part of an FPGA may
be unused in applications that do not warrant such specialized components. In some
FPGAs, DSP support is limited to the dedicated multipliers.

Embedded Processors
Many modern FPGAs contain an entire processor core (see Table 3-12). This is
extremely useful when designers use hybrid solutions, where part of a system is in a
programmable processor, but part of the system is implemented in hardware. Circuitry
that needs a large amount of flexibility can be implemented in the microprocessor, but
circuit parts that need better performance than that of a programmable processor can
be implemented in the FPGA logic blocks. Some FPGAs include the core of a small
MIPS processor such as the MIPS R 4000, and some include an embedded version of
the IBM PowerPC processor. Some FPGAs include custom processors designed by the
FPGA vendors such as the MicroBlaze from Xilinx and the Nios processor from Altera.
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TABLE 3-12:
Examples of FPGAs

with Embedded
Microprocessors

FPGA Embedded Processor

Xilinx IBM 400 MHz
Virtex-4, PowerPC
Virtex-II Pro/X

Xilinx MicroBlaze
Spartan-3E, PicoBlaze
Spartan 3/3l

Altera Nios II
Stratix II
Cyclone II

Altera ARM,
APEX MIPS,
APEX II Nios

Altera ARM 9
Excalibur

Actel ARM7
Fusion

Content Addressable Memories

In some FPGAs, the memory blocks can be used as content addressable
memories (CAMs). The general concept of a memory is that the user provides a
memory address and the memory unit responds with the content. A CAM is a
special kind of memory in which the content, not the address, is used to search
the memory. We provide a data element, and the CAM responds with addresses
where that data was found. CAMs contain more logic than RAMs because all
locations of the memory have to be searched simultaneously to see whether the
particular content is in any of the locations. Some FPGAs allow embedded CAM
(e.g., Altera APEX II).

The Actel Fusion architecture, shown in Figure 3-40, provides several special-
ized components, including embedded RAM, decryption, and A/D converters.
At the core of the chip are tiles of logic blocks (VersaTiles in Actel terminology).
The embedded RAM is in the form of rows of SRAM blocks above and below
the tiles of logic blocks. Several specialized components appear below the
SRAM blocks in the bottom. There is a dedicated decryption unit that imple-
ments the AES decryption algorithm. (AES stands for Advanced Encryption
Standard, which has been the cryptograhic standard for the U.S. government
since 2001.) There is an analog-to-digital converter (ADC) that accepts inputs
from several analog quads, which are circuitry to condition analog signals
received by the FPGA. The analog quads contain circuitry to monitor and
condition signals according to voltage, current, and temperature.
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FIGURE 3-40: Overview of the Actel Fusion Chip (© 2006 Actel Corporation)

3.4.7 Applications of FPGAs
FPGAs have become a popular mode of circuit implementation for various
applications:

Rapid Prototyping
FPGAs are very useful for building rapid prototypes of large systems. A designer
can build proof-of-concept systems very quickly using field programmable gate
arrays. Since FPGAs are large enough to contain 5 million or more gates, many large
real-world systems can be prototyped using a single FPGA. If a single FPGA will
not suffice, multiple FPGAs can be interconnected to realize large systems. Rapid
prototyping of large systems is done by using boards with multiple FPGAs and plug-
ging multiple boards into a backplane (motherboard).
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As Final Product in Medium-Speed Systems
Circuits realized using FPGAs typically operate in the 150–200-MHz clock rate. For
applications where this speed is sufficient, FPGAs can be used for the final product
itself as opposed to the prototype. When an FPGA is used as the final product,
enhancements to the system can be done as software updates rather than hardware
changes. Modern FPGA speeds are adequate for many applications.

Reconfigurable Circuits and Systems
The reprogrammability of FPGAs lends itself to building dynamically recon-
figurable circuits and systems. SRAM-based FPGAs make it possible to implement
“soft” hardware. FPGAs have been used to design circuits and systems that need
multiple functionalities at various times.

As an example, consider a reprogrammable Tomahawk missile that the Navy
designed using FPGAs. [46] The conventional Tomahawk is a long-range Navy cruise
missile designed to perform a variety of missions. The Navy designed a reconfig-
urable Tomahawk, which can operate in one of two modes, depending on the mission
at hand. Rather than designing separate logic for each mode, the missile designers
used FPGAs so that the configuration for each mode can be kept on-board in ROM.
Depending on the mode of operation, the FPGA could be configured in midflight.

Glue Logic
FPGAs have become the medium of choice for implementing interface or glue logic
between modules and components. Small changes in interface protocols or formats
would conventionally necessitate building new interface logic.With SRAM FPGAs, the
new interface logic can be implemented on the same FPGA as in a software update.

Hardware Accelerators/Coprocessors
A software application running on a conventional system can be accelerated if a
coprocessor/accelerator can implement some key routines/kernels from the applica-
tion in hardware.An FPGA can be used to implement the key kernel.A SRAM-based,
reconfigurable FPGA is well suited for this type of use because depending on the
application running, different kernels can be dynamically programmed into the FPGA.
This approach has been demonstrated for applications, such as pattern matching.
FPGA-based hardware is used for several applications, including computer architec-
ture simulator acceleration, emulation boards, hardware test/verification, and so on.

3.4.8 Design Flow for FPGAs
Sophisticated CAD tools are available to assist with the design of systems using
programmable gate arrays. Designs can be entered in many ways.

In the early days of FPGAs, designs were entered using schematic entry or even
lower levels of design entry tools. Low-level design entry means less abstraction,
whereas high-level means entering designs at a higher level of abstraction (e.g.,
behavioral VHDL/Verilog description). Early FPGA tools allowed low-level utili-
ties to enter logic equations, Karnaugh maps, and so on into specific logic blocks in
the FPGA. Schematic capture technique means that the designer develops a
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schematic of the design. Schematic diagrams utilizing standard hardware compo-
nents are created and entered into the CAD software.

Nowadays, automatic synthesis tools are available that will take a VHDL descrip-
tion of the system as an input and generate an interconnection of gates and flip-flops
to realize the system. Behavioral models can be translated into design implementa-
tions reasonably efficiently. Synthesis tools have advanced significantly in the last
decade.

One method of designing a digital system with an FPGA uses the following steps:

1. Create a behavioral, register-transfer level (RTL), or structural model of the
design in a hardware description language such as VHDL or Verilog.

2. Simulate and debug the design.
3. Synthesize the design targeting the desired device.
4. Run a mapping/partitioning program. This program will break the logic diagram

into pieces that will fit into the configurable logic blocks.
5. Run an automatic place and route program. This will place the logic blocks in

appropriate places in the FPGA and then route the interconnections between the
logic blocks.

6. Run a program that will generate the bit pattern necessary to program the
FPGA.

7. Download the bit pattern into the internal configuration cells in the FPGA, and
test the operation of the FPGA.

Steps 3, 4, and 5 are often integrated in modern CAD tools. However, the
processes mentioned in the steps are happening whether presented as one step or
several steps. This is analogous to how general-purpose compilers have integrated
compiling and assembling steps. In the early days of high-level language compilers,
the term compiling only meant translation into an assembly language format.
Converting from assembly language to machine language code was considered the
assembler’s job. Nowadays, the steps are integrated in most high-level language
compilation environments.

In SRAM-based FPGAs, when the final system is built, the bit pattern for pro-
gramming the FPGA is normally stored in an EPROM and automatically loaded
into the FPGA when the power is turned on. The EPROM is connected to the
FPGA, as shown in Figure 3-41. The FPGA resets itself after the power has been
applied. Then it reads the configuration data from the EPROM by supplying a
sequence of addresses to the EPROM inputs and storing the EPROM output data
in the FPGA internal configuration memory cells.This is not required in flash mem-
ory based FPGAs because the flash technology is nonvolatile. In antifuse FPGAs,
the configuration bits permanently alter the switches.
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In this chapter we have introduced several different types of programmable
logic devices and used them for designing circuits. The technology underlying
early programmable logic devices, such as ROMs, PALs, and PLAs, was presented
first. Simple PLDs and GALs were presented next. Examples were presented to
illustrate implementations of simple logic functions in these devices. CPLDs and
FPGAs were presented next. The discussion on FPGAs was limited to an
overview of the general technology underlying this class of devices. General
organization of FPGAs, general structure of logic blocks, typical programming
techniques, and so on were discussed. More details on FPGAs will be presented in
Chapter 6.

Problems
3.1 What is the size of the smallest ROM that is needed to implement the following?

(a) An 8-bit full adder (assume carry-in and carry-out)
(b) A BCD-to-binary converter (2 BCD digits)
(c) A 4-to-1 MUX
(d) A 32-bit adder (adds two 32-bit numbers to give a 33-bit sum)
(e) A 3-to-8 decoder
(f) A 32-bit adder (no carry in or carry out)
(g) A 16 � 16 bit multiplier
(h) A 16-bit full adder (with carry-in and carry-out)
(i) An 8-to-3 priority encoder
(j) A 10-to-4 priority encoder
(k) An 8-to-1 multiplexer

3.2 Given F � A�B� � BC� and G � AC � B�, write a complete VHDL module that
realizes the functions F and G using an 8-word � 2-bit ROM. Include the array type
declaration and the constant declaration that defines the contents of the ROM.

3.3 Implement the following state table using a ROM and two D flip-flops. Use a straight
binary state assignment.

(a) Show the block diagram and the ROM truth table. Truth table column headings
should be in the order Q1 Q0 X D1 D0 Z.

(b) Write VHDL code for the implementation. Use an array to represent the ROM
table, and use two processes.
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Present Next State Output (Z)
State X � 0 X � 1 X � 0 X � 1

S0 S0 S1 0 1
S1 S2 S3 1 0
S2 S1 S3 1 0
S3 S3 S2 0 1
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3.4 The following state table is implemented using a ROM and two D flip-flops (falling
edge triggered):
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Q1
+Q2

+ Z
Q1Q2 X � 0 X � 1 X � 0 X � 1

00 01 10 0 1
01 10 00 1 1
10 00 01 1 0

(a) Draw the block diagram.
(b) Write VHDL code that describes the system.Assume that the ROM has a delay

of 10 ns, and each flip-flop has a propagation delay of 15 ns.

3.5 Find a minimum-row PLA to implement the following three functions:

f(A, B, C, D) � �m(3, 6, 7, 11, 15)

g(A, B, C, D) � �m(1, 3, 4, 7, 9, 13)

h(A, B, C, D) � �m(4, 6, 8, 10, 11, 12, 14, 15)

(a) Use Karnaugh maps to find common terms. Give the logic equations with common
terms underlined, the PLA table, and also a PLA diagram similar to Figure 3-15.

(b) Use the Espresso multiple-output simplification routine that is in LogicAid.
Compare the LogicAid results with part (a). They might not be exactly the same
since LogicAid Espresso only finds minimum row tables; it does not necessarily
minimize the number of variables in each AND term. Note: Enter the variable
names A, B, C, D, F, G, and H in LogicAid. Printouts with variable names X1, X2,
X3, X4, and so on are not acceptable.

3.6 Find a minimum-row PLA table to implement the following sets of functions.

(a) f1 (A, B, C, D) � �m(0, 2, 3, 6, 7, 8, 9, 11, 13),
f2 (A, B, C, D) � �m(3, 7, 8, 9, 13),
f3 (A, B, C, D) � �m(0, 2, 4, 6, 8, 12, 13)

(b) f1 (A, B, C, D) � cd � ad � a�bc�d�
f2 (A, B, C, D) � bc�d� � ac� � ad�

3.7 (a) Find a minimum-row PLA table to implement the following equations:

x (A, B, C, D) � �m(0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15)

y (A, B, C, D) � �m(0, 1, 4, 5, 8, 10, 11, 12, 14, 15)

z (A, B, C, D) � �m(0, 1, 3, 4, 5, 7, 9, 11, 15)

(b) Indicate the connections that will be made to program a PLA to implement
your solution to part (a) on a diagram similar to Figure 3-15.

3.8 Write VHDL code that describes the output macrocell of a 22V10 (the part
enclosed by a box on Figure 3-20).The entity should include S1 and S0. Note that the
flip-flop has an asynchronous reset (AR) and a synchronous preset (SP).
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3.9 An N-bit bidirectional shift register has N parallel data inputs, N outputs, a left serial
input (LSI), a right serial input (RSI), a clock input, and the following control signals:

Load: Load the parallel data into the register (load overrides shift).
Rsh: Shift the register right (LSI goes into the left end).
Lsh: Shift the register left (RSI goes into the right end).

(a) If the register is implemented using a 22V10, what is the maximum value of N?
(b) Give equations for the rightmost two cells.

3.10 Show how the left shift register of Figure 2-43 could be implemented using a CPLD.
Draw a diagram similar to Figure 3-25. Give the equations for the flip-flop D inputs.

3.11 A Mealy sequential circuit with four output variables is realized using a 22V10.
What is the maximum number of input variables it can have? What is the maximum
number of states? Can any Mealy circuit with these numbers of inputs and outputs
be realized with a 22V10? Explain.

3.12 (a) What is the difference between a traditional gate array and an FPGA?
(b) What are the different types of FPGAs based on architecture (organization)?
(c) What are the different programming technologies for FPGAs?
(d) What is the main advantage of SRAM FPGAs?
(e) What is the main advantage of antifuse FPGAs?
(f) What are the major programmable elements in an FPGA?
(g) What are the disadvantages of SRAM FPGAs?
(h) What are the disadvantages of antifuse FPGAs?
(i) How many transistors are typically required to make an SRAM cell?
(j) What is an MPGA?
(k) What is the difference between a CPLD and an FPGA?
(l) What is an advantage of a CPLD over an FPGA?
(m) What is the advantage of an FPGA over a CPLD?
(n) Name three vendors of CPLDs.
(o) Name three vendors of FPGAs.

3.13 (a) In what type of applications should a designer use a CPLD rather than an FPGA?
(b) In what type of applications should a designer use an MPGA rather than an

FPGA?
(c) In what type of applications should a designer use an FPGA rather than an

MPGA?
(d) A company is designing an experimental product, which is in version 1 now. It

is expected that the product will undergo several revisions. The company’s plan
is to use an FPGA for the actual design. What type of FPGA (SRAM or anti-
fuse) should be used?

(e) A company is designing a product using an FPGA.The company’s plan is to use
an FPGA for the actual design. The product has undergone several revisions
and is fairly stable. Minimizing area, power, and cost is important for the com-
pany. What type of FPGA (SRAM or antifuse) should be used?
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(f) A company is designing a product. It expects to sell 1000 copies of it. Should the
company use an MPGA or FPGA for this product?

(g) A company is designing a product. It expects to sell 100 million copies of it.
Should the company use an MPGA or an FPGA for this product?

3.14 (a) Implement the function F1 � A�BC � B�C � AB using an FPGA with pro-
grammable logic blocks consisting of 4-to-1 multiplexers. Assume inputs and
their complements are available as in Figure 3-34.

(b) Implement the function F1 � A�B � AB� � AC� � A�C using a multiplexer.
What is the size of the smallest multiplexer needed, assuming inputs and their
complements are available?

3.15 (a) Route the ‘w’, ‘x’, ‘y’, and ‘z’ nets on the nonsegmented tracks shown below. Use
the minimum number of tracks possible.

(b) Route the ‘w’, ‘x’, ‘y’, and ‘z’ nets on the segmented tracks shown below. Use the
minimum number of tracks possible.
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3.16 Consider the following programmable I/O block:
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Highlight the connections to configure this I/O block as an INPUT pin. Specify
the five configuration bits and the value of T.
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In this chapter, we present several VHDL design examples to illustrate the design
of small digital systems. We present the concept of dividing a design into a con-
troller and a data path and using the control circuit to control the sequence of
operations in a digital system. We use VHDL to describe a digital system at the
behavioral level so that we can simulate the system to test the algorithms used. We
also show how designs have to be coded structurally if specific hardware structures
are to be generated.

In any design, first you should understand the problem and the design specifi-
cations clearly. If the problem has not been stated clearly, try to get the features
of the design clarified. In real-world designs, if another team or a client company
is providing your team with the specifications, getting the design specifications
clarified properly can save you a lot of grief later. Good design starts with a clear
specification document.

Once the problem has been stated clearly, often designers start thinking about
the basic blocks necessary to accomplish what is specified. Designers often think of
standard building blocks, such as adders, shift registers, counters, and so on.
Traditional design methodology splits a design into a “data path” and a “con-
troller.” The term data path refers to the hardware that actually performs the data
processing. The controller sends control signals or commands to the data path, as
in Figure 4-1. The controller can obtain feedback in the form of status signals from
the data path.

In the context of a microprocessor, the data path is the arithmatic logic unit
(ALU) that performs the core of the processing. The controller is the control logic
that sends appropriate control signals to the data path, instructing it to perform
addition, multiplication, shifting, or whatever action is called for by the instruction.

C H A P T E R

4
Design Examples

190
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FIGURE 4-1:
Separation of a
Design into Data
Path and Controller

04Ch04.qxd  3/13/07  3:18 PM  Page 190



Many have a tendency to consider the term data path to be synonymous with the
data bus, but data path in traditional design terminology refers to the actual data
processing unit.

Maintaining a distinction between data path and controller helps in debugging
(i.e., finding errors in the design). It also helps while modifying the design. Many
modifications can be accomplished by changing only the control path because the
same data path can support the new requirements. The controller can generate the
new sequence of control signals to accomplish the functionality of the modified
design. Design often involves refining the data path and controller in iterations.

In this chapter, we will discuss various design examples. Several arithmetic and
nonarithmetic examples are presented. Nonarithmetic examples include a seven-
segment decoder, a traffic light, a scoreboard, and a keypad scanner. Arithmetic
circuits such as adders, multipliers, and dividers are presented.

4.1 BCD to Seven-Segment Display Decoder
Seven-segment displays are often used to display digits in digital counters, watches,
and clocks. A digital watch displays time by turning on a combination of the
segments on a seven-segment display. For this example, the segments are labeled as
follows, and the digits have the forms as indicated in Figure 4-2.
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FIGURE 4-2:
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Let us design a BCD to seven-segment display decoder. BCD stands for binary-
coded decimal. In this format, each digit of a decimal number is encoded into 4-bit
binary representation. This decoder is a purely combinational circuit, and hence no
state machine is involved here.A block diagram of the decoder is shown in Figure 4-3.
The decoder for one BCD digit is presented.
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We will create a behavioral VHDL architectural description of this BCD to
seven-segment decoder by using a single process with a case statement to model this
combinational circuit, as in Figure 4-4. The sensitivity list of the process consists of
the BCD number (4 bits).
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FIGURE 4-4: Behavioral VHDL Code for BCD to Seven-Segment Decoder

entity bcd_seven is
port(bcd: in bit_vector(3 downto 0);

seven: out bit_vector(7 downto 1));
–– LSB is segment a of the display. MSB is segment g

end bcd_seven;

architecture behavioral of bcd_seven is
begin
process (bcd)
begin
case bcd is
when "0000" => seven <= "0111111";
when "0001" => seven <= "0000110";
when "0010" => seven <= "1011011";
when "0011" => seven <= "1001111";
when "0100" => seven <= "1100110";
when "0101" => seven <= "1101101";
when "0110" => seven <= "1111101";
when "0111" => seven <= "0000111";
when "1000" => seven <= "1111111";
when "1001" => seven <= "1101111";
when others => null;

end case;
end process;

end behavioral;

4.2 A BCD Adder
In this example, we design a two-digit BCD adder, which will add two BCD num-
bers and produce the sum in BCD format. In BCD representation, each decimal
digit is encoded into binary. For instance, decimal number 97 will be represented as
1001 0111 in the BCD format, where the first 4 bits represent digit 9 and the next
4 bits represent digit 7. Note that the BCD representation is different from the binary
representation of 97, which is 1100001. It takes 8 bits to represent 97 in BCD,
whereas the binary representation of 97 (1100001) only requires 7 bits. The 4-bit
binary combinations 1010, 1011, 1100, 1101, 1110, and 1111 corresponding to
hexadecimal numbers A to F are not used in the BCD representation. Since 6 out
of 16 representations possible with 4 binary bits are skipped, a BCD number will
take more bits than the corresponding binary representation.
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When BCD numbers are added, each sum digit should be adjusted to skip the
six unused codes. For instance, if 6 is added with 8, the sum is 14 in decimal form.
A binary adder would yield 1110, but the lowest digit of the BCD sum should read 4.
In order to obtain the correct BCD digit, 6 should be added to the sum whenever it
is greater than 9. Figure 4-5 illustrates the hardware that will be required to perform
the addition of two BCD digits.A binary adder adds the least significant digits. If the
sum is greater than 9, an adder adds 6 to yield the correct sum digit and a carry digit
to be added with the next digit. The addition of the higher digits is performed in a
similar fashion.
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The VHDL code for the BCD adder is shown in Figure 4-6.The input BCD num-
bers are represented by X and Y. The BCD sum of two 2-digit BCD numbers can
exceed two digits, and hence three BCD digits are provided for the sum, which is
represented by Z. The unsigned type from the IEEE numeric_bit library is used to
represent X, Y, and Z. Aliases are defined to denote each digit of each BCD num-
ber. For example, the upper digit of X can be denoted by Xdig1 by using the VHDL
statement

alias Xdig1: unsigned(3 downto 0) is X(7 downto 4);

This statement allows us to use the name Xdig1 whenever we wish to refer to the
upper digit of X. If BCD numbers 97 and 38 are added, the sum is 135, and hence,
Zdig2 equals 1, Zdig1 equals 3 and Zdig0 equals 5.

The overloaded ‘�’ operator from the IEEE numeric_bit library is used for
adding each BCD digit. Adding two 4-bit vectors can result in a 5-bit sum. The
sums are temporarily stored in S0 and S1, which are declared to be 5-bit numbers.
Since we want a 5-bit result, we must extend Xdig0 to 5 bits by concatenating ‘0’
and Xdig0. (Ydig0 will automatically be extended to match.) Hence

S0 <= '0' & Xdig0 + Ydig0;
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FIGURE 4-6: VHDL Code for BCD Adder

library IEEE;
use IEEE.numeric_bit.all;

entity BCD_Adder is
port(X, Y: in unsigned(7 downto 0);

Z: out unsigned(11 downto 0));
end BCD_Adder;

architecture BCDadd of BCD_Adder is
alias Xdig1: unsigned(3 downto 0) is X(7 downto 4);
alias Xdig0: unsigned(3 downto 0) is X(3 downto 0);
alias Ydig1: unsigned(3 downto 0) is Y(7 downto 4);
alias Ydig0: unsigned(3 downto 0) is Y(3 downto 0);
alias Zdig2: unsigned(3 downto 0) is Z(11 downto 8);
alias Zdig1: unsigned(3 downto 0) is Z(7 downto 4);
alias Zdig0: unsigned(3 downto 0) is Z(3 downto 0);
signal S0, S1: unsigned(4 downto 0);
signal C: bit;
begin
S0 <= '0' & Xdig0 + Ydig0; -- overloaded +
Zdig0 <= S0(3 downto 0) + 6 when S0 > 9

else S0(3 downto 0); -- add 6 if needed
C <= '1' when S0 > 9 else '0';
S1 <= '0' & Xdig1 + Ydig1 + unsigned'(0=>C);

-- type conversion done on C before adding
Zdig1 <= S1(3 downto 0) + 6 when S1 > 9

else S1(3 downto 0);
Zdig2 <= "0001" when S1 > 9 else "0000";

end BCDadd;

accomplishes the addition of the least significant digits. During the addition of the
second digit, the carry digit from the addition of the XDig0 and Ydig0 is also added.
The carry bit C must be converted to the unsigned type before it can be added to
Xdig1 � Ydig1. The notation unsigned'(0=>C) accomplishes this conversion.
Thus, the addition of the second digit is accomplished by the statement

S1 <= '0' & Xdig1 + Ydig1 + unsigned'(0=>C);

4.3 32-Bit Adders
Let us assume that we have to design a 32-bit adder. A simple manner to construct
an adder is to build a ripple-carry adder, as in Figure 4-7. In this type of adder,
32 copies of a 1-bit full adder are connected in succession to create the 32-bit adder.
The carry “ripples” from the least significant bit to the most significant bit. If gate
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delays are tg, a 1-bit adder delay is 2tg (assuming a sum-of-products expression for sum
and carry, and ignoring delay for inverters), and a 32-bit ripple-carry adder will take
approximately 64 gate delays. For instance, if gate delays are 1 ns, the maximum
frequency at which the 32-bit ripple-carry adder can operate is approximately
16 MHz. This is inadequate for many applications. Hence, designers often resort to
faster adders.

4.3.1 Carry Look-Ahead Adders
A popular fast-addition technique is carry look-ahead (CLA) addition. In the carry
look-ahead adder, the carry signals are calculated in advance, based on the input sig-
nals. For any bit position i, we can see that a carry will be generated if the corre-
sponding input bits (i.e., Ai, Bi) are ‘1’ or if there was a carry-in to that bit and at
least one of the input bits are ‘1’. In other words, bit i has carry-out if Ai and Bi are
‘1’ (irrespective of carry-in to bit i); bit i also has a carry-out if Ci � ‘1’ and either Ai
or Bi is ‘1’. Thus, for any stage i, the carry-out is

Ci � 1 � AiBi � (Ai � Bi) � Ci (4-1)

The “�” stands for the exclusive OR operation. Equation (4-1) simply
expresses that there is a carry out from a bit position if it generated a carry by
itself (i.e., AiBi � ‘1’) or it simply propagated the carry from the lower bit for-
warded to it (i.e., (Ai � Bi) � Ci).

Since AiBi � ‘1’ indicates that a stage generated a carry, a general generate (Gi)
function may be written as

Gi � AiBi (4-2)

Similarly, since (Ai � Bi) indicates whether a stage should propagate the carry
it receives from the lower stage, a general propagate (Pi) function may be written as

Pi � Ai � Bi (4-3)

Notice that the propagate and generate functions only depend on the input bits
and can be realized with one or two gate delays. Since there will be a carry whether
one of Ai or Bi is ‘1’ or both are ‘1’, we can also write the propagate expression as

Pi � Ai � Bi (4-4)

where the OR operation is substituted for the XOR operation. Logically this
propagate function also results in the correct carry-out; however, traditionally it
has been customary to define the propagate function as the XOR; that is, the bit

4.3 32-Bit Adders 195

FIGURE 4-7:
A 32-Bit Ripple-
Carry Adder

Full 
adder 

Full 
adder 

Full 
adder 

Full 
adder 

Co Ci
C1C2

S1

B20A0B1A1B2A2A31 B31

S0S2S31

C3

04Ch04.qxd  3/13/07  3:18 PM  Page 195



position simply propagates a carry (without generating a carry by itself). Also, typ-
ically, the sum signal is expressed as

Si � Ai � Bi � Ci � Pi � Ci (4-5)

The expression Pi � Ci can be used for sum only if Pi is defined as Ai � Bi.
The carry-out equation can be rewritten by substituting (4-2) and (4-3) in (4-1)

for Gi and Pi as

Ci�1 � Gi � PiCi (4-6)

In a 4-bit adder, the Ci’s can be generated by repeatedly applying Equation (4-6)
as follows:

C1 � G0 � P0C0 (4-7)

C2 � G1 � P1C1 � G1 � P1G0 � P1P0C0 (4-8)

C3 � G2 � P2C2 � G2 � P2G1 � P2P1G0 � P2P1P0C0 (4-9)

C4 � G3 � P3C3 � G3 � P3G2 � P3P2G1 � P3P2P1G0 � P3P2P1P0C0 (4-10)

These carry bits are the look-ahead carry bits. They are expressed in terms of
Pi’s, Gi’s, and C0. Thus, the sum and carry from any stage can be calculated without
waiting for the carry to ripple through all the previous stages. Since Gi’s and Pi’s can
be generated with one or two gate delays, the Ci’s will be available in three or four
gate delays. The advantage is that these delays will be the same independent of the
number of bits we need to add, in contrast to the ripple counter. Of course, this is
achieved with the extra gates to generate the look-ahead carry bits. A 4-bit carry
look-ahead adder can now be built, as illustrated in Figure 4-8.
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The disadvantage of the carry look-ahead adder is that the look-ahead carry
logic, as in Equations (4-7) through (4-10), is not simple. It gets quite complicated
for more than 4 bits. For that reason, carry look-ahead adders are usually imple-
mented as 4-bit modules and are used in a hierarchical structure to realize adders
that have multiples of 4 bits. Figure 4-9 shows the block diagram for a 16-bit
carry look-ahead adder. Four carry look-ahead adders, similar to the one shown in
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Figure 4-8, are used. Instead of relying on each 4-bit adder to send its carry-out to
the next 4-bit adder, the carry look-ahead logic generates input carry bits to be fed
to each 4-bit adder. This is accomplished by computing a group propagate (PG)
and group generate (GG) signal, which is produced by each 4-bit adder. The next
level of carry look-ahead logic uses these group propagates�generates and gener-
ates the required carry bits in parallel. The propagate for a group is true if all the
propagates in that group are true. The generate for a group is true if the MSB gen-
erated a carry or if a lower bit generated a carry and every higher bit in the group
propagated it. Thus

PG � P3P2P1P0 (4-11)

GG � G3 � P3G2 � P3P2G1 � P3P2P1G0 (4-12)

The group propagate PG and generate GG will be available after three and four
gate delays, respectively (one or two additional delays than the Pi and Gi signals,
respectively). Figure 4-10 illustrates the VHDL description of a 4-bit carry look-
ahead adder.
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FIGURE 4-10: VHDL Description of a 4-Bit Carry Look-Ahead Adder

entity CLA4 is
port(A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs

S: out bit_vector(3 downto 0); Co, PG, GG: out bit);  -- Outputs
end CLA4;

architecture Structure of CLA4 is
component GPFullAdder
port(X, Y, Cin: in bit; -- Inputs

G, P, Sum: out bit); -- Outputs
end component;
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component CLALogic is
port(G, P: in bit_vector(3 downto 0); Ci: in bit; -- Inputs

C: out bit_vector(3 downto 1); Co, PG, GG: out bit);  -- Outputs
end component;

signal G, P: bit_vector(3 downto 0); -- carry internal signals
signal C: bit_vector(3 downto 1);
begin --instantiate four copies of the GPFullAdder
CarryLogic: CLALogic port map (G, P, Ci, C, Co, PG, GG);
FA0: GPFullAdder port map (A(0), B(0), Ci, G(0), P(0), S(0));
FA1: GPFullAdder port map (A(1), B(1), C(1), G(1), P(1), S(1));
FA2: GPFullAdder port map (A(2), B(2), C(2), G(2), P(2), S(2));
FA3: GPFullAdder port map (A(3), B(3), C(3), G(3), P(3), S(3));

end Structure;

entity CLALogic is
port(G, P: in bit_vector(3 downto 0); Ci: in bit; -- Inputs

C: out bit_vector(3 downto 1); Co, PG, GG: out bit);  -- Outputs
end CLALogic;

architecture Equations of CLALogic is
signal GG_int, PG_int: bit;
begin -- concurrent assignment statements
C(1) <= G(0) or (P(0) and Ci);
C(2) <= G(1) or (P(1) and G(0)) or (P(1) and P(0) and Ci);
C(3) <= G(2) or (P(2) and G(1)) or (P(2) and P(1) and G(0)) or

(P(2) and P(1) and P(0) and Ci);
PG_int <= P(3) and P(2) and P(1) and P(0);
GG_int <= G(3) or (P(3) and G(2)) or (P(3) and P(2) and G(1)) or

(P(3) and P(2) and P(1) and G(0));
Co <= GG_int or (PG_int and Ci);
PG <= PG_int;
GG <= GG_int;

end Equations;

entity GPFullAdder is
port(X, Y, Cin: in bit; -- Inputs

G, P, Sum: out bit); -- Outputs
end GPFullAdder;

architecture Equations of GPFullAdder is
signal P_int: bit;
begin -- concurrent assignment statements
G <= X and Y;
P <= P_int;
P_int <= X xor Y;
Sum <= P_int xor Cin;

end Equations;
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VHDL code for a 16-bit carry look-ahead adder can be developed by instanti-
ating four copies of the 4-bit carry look-ahead adder and one additional copy of the
carry look-ahead logic. A 64-bit adder can be built by one more level of block carry
look-ahead logic. The delay increases only by two gate delays when the adder size
increases from 16 bits to 64 bits. Developing VHDL code for 16-bit carry look-
ahead logic is left as an exercise.

Figure 4-11 illustrates behavioral VHDL code for a 32-bit adder using
the overloaded ‘�’ operator from IEEE numeric_bit library. If this code is syn-
thesized, depending on the tools used and the target technology, an adder
with characteristics in between a ripple-carry adder and a fast two-level adder
will be obtained. The various topologies result in different area, power, and delay
characteristics.
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FIGURE 4-11: Behavioral Model for a 32-Bit Adder

library IEEE;
use IEEE.numeric_bit.all;

entity Adder32 is
port(A, B: in unsigned(31 downto 0); Ci: in bit; -- Inputs

S: out unsigned(31 downto 0); Co: out bit);  -- Outputs
end Adder32;

architecture overload of Adder32 is
signal Sum33: unsigned(32 downto 0);
begin
Sum33 <= '0' & A + B + unsigned'(0=>Ci); -- adder
S <= Sum33(31 downto 0);
Co <= Sum33(32);

end overload;

Example
If gate delays are tg, what is the delay of the fastest 32-bit adder? Assume that the amount of
hardware consumed is not a constraint. Only speed is important.

Answer

We can express each sum bit of a 32-bit adder as a sum of products expression of the input bits.
There will be 33 such equations, including one for the carry out bit. These equations will be
very long, and some of them could include 60� variables in the product term. Nevertheless, if
gates with any number of inputs are available, theoretically a two-level adder can be made.
Although it is not very practical, theoretically, the delay of the fastest adder will be 2tg if gate
delays are tg.
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Example
Is ripple-carry adder the smallest 32-bit adder?

Answer 

A 32-bit ripple-carry adder uses 32 1-bit adders. We could design a 32-bit serial adder using a
single 1-bit full adder. The input numbers are shifted into the adder, one bit at a time, and carry
output from addition of each pair of bits is saved in a flip-flop and fed back to the next addition.
The hardware illustrated in Figure 4-12 accomplishes this.The delay of adder will be 32 (2tg � tff),
where 2tg is the delay of the 1-bit full adder, and tff is the delay of the flip-flop (including setup
time). If a flip-flop delay is at least two gate delays, the delay of the 32-bit serial adder will be at
least 128tg. The adder hardware is simple; however, there is also the control circuitry to generate
32 shift signals. The registers storing the operands must have shift capability as well.
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FIGURE 4-12:
A 32-Bit Serial
Adder Built from a
Single 1-Bit Adder
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Even if you write VHDL code based on dataflow equations, as in Figure 4-10, that
does not guarantee that the synthesizer will produce a carry look-ahead adder with
the delay characteristics we discussed.The software might optimize the synthesis out-
put depending on the specific hardware components available in the target technology.
For instance, if you are using an FPGA with fast adder support, the software may map
some of the functions into the fast adder circuitry. Depending on the number of
FPGA logic blocks and interconnects used, the delays will be different from the man-
ual calculations. The delays of a ripple-carry, carry look-ahead, and serial adder for a
gate-based implementation are presented in Table 4-1 for various adder sizes. We can
see that the carry look-ahead adder is very attractive for large adders.

Ripple-Carry Serial Adder 
Adder size Adder Delay CLA Delay Delay

4 bit 8tg 5–6tg 16tg
16 bit 32tg 7–8tg 64tg
32 bit 64tg 9–10tg 128tg
64 bit 128tg 9–10tg 256tg

TABLE 4-1:
Comparison of

Ripple-Carry and
Carry Look-Ahead

Adders
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4.4 Traffic Light Controller
Let us design a sequential traffic light controller for the intersection of street A
and street B. Each street has traffic sensors, which detect the presence of vehicles
approaching or stopped at the intersection. Sa � ‘1’ means a vehicle is approach-
ing on street A, and Sb � ‘1’ means a vehicle is approaching on street B. Street A
is a main street and has a green light until a car approaches on B. Then the lights
change, and B has a green light. At the end of 50 seconds, the lights change back
unless there is a car on street B and none on A, in which case the B cycle is
extended for 10 additional seconds. If cars continue to arrive on street B and no
car appears on street A, B continues to have a green light. When A is green, it
remains green at least 60 seconds, and then the lights change only when a car
approaches on B. Figure 4-13 shows the external connections to the controller.
Three of the outputs (Ga, Ya, and Ra) drive the green, yellow, and red lights on
street A. The other three (Gb, Yb, and Rb) drive the corresponding lights on
street B.
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FIGURE 4-13: Block
Diagram of Traffic
Light Controller
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Figure 4-14 shows a Moore state graph for the controller. For timing purposes,
the sequential circuit is driven by a clock with a 10-second period. Thus, a state
change can occur at most once every 10 seconds. The following notation is used:
GaRb in a state means that Ga � Rb � 1 and all the other output variables are 0.
Sa’Sb on an arc implies that Sa � 0 and Sb � 1 will cause a transition along that
arc. An arc without a label implies that a state transition will occur when the clock
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occurs, independent of the input variables. Thus, the green A light will stay on for
six clock cycles (60 seconds) and then change to yellow if a car is waiting on B
street.

The VHDL code for the traffic light controller (Figure 4-15) represents the state
machine with two processes. Whenever the state, Sa, or Sb changes, the first process
updates the outputs and nextstate. When the rising edge of the clock occurs, the sec-
ond process updates the state register. The case statement illustrates use of a when
clause with a range. Since states S0 through S4 have the same outputs, and the next
states are in numeric sequence, we use a when clause with a range instead of five
separate when clauses:

when 0 to 4 => Ga <= '1'; Rb <= '1'; nextstate <= state + 1;
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FIGURE 4-15: VHDL Code for Traffic Light Controller

entity traffic_light is
port(clk, Sa, Sb: in bit;

Ra, Rb, Ga, Gb, Ya, Yb: inout bit);
end traffic_light;

architecture behave of traffic_light is
signal state, nextstate: integer range 0 to 12;
type light is (R, Y, G);
signal lightA, lightB: light; -- define signals for waveform output
begin
process(state, Sa, Sb)
begin
Ra <= '0'; Rb <= '0'; Ga <= '0'; Gb <= '0'; Ya <= '0'; Yb <= '0';
case state is
when 0 to 4 => Ga => '1'; Rb => '1'; nextstate => state+1;
when 5 => Ga <= '1'; Rb <= '1';
if Sb = '1' then nextstate <= 6; end if;

when 6 => Ya <= '1'; Rb <= '1'; nextstate <= 7;
when 7 to 10 => Ra <= '1'; Gb <= '1'; nextstate <= state+1;
when 11 => Ra <= '1'; Gb <= '1';
if (Sa='1' or Sb='0') then nextstate <= 12; end if;

when 12 => Ra <= '1'; Yb <= '1'; nextstate <= 0;
end case;

end process;
process(clk)
begin
if clk'event and clk = '1' then
state <= nextstate;

end if;
end process;
lightA <= R when Ra='1' else Y when Ya='1' else G when Ga='1';
lightB <= R when Rb='1' else Y when Yb='1' else G when Gb='1';

end behave;
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For each state, only the signals that are ‘1’ are listed within the case statement.
Since in VHDL a signal will hold its value until it is changed, we should turn
off each signal when the next state is reached. In state 6 we should set Ga to ‘0’,
in state 7 we should set Ya to ‘0’, and so on. This could be accomplished by insert-
ing appropriate statements in the when clauses. For example, we could insert
Ga <= '0' in the when 6 => clause. An easier way to turn off the outputs is to
set them all to ‘0’ before the case statement, as shown in Figure 4-15. At first, it
seems that a glitch might occur in the output when we set a signal to ‘0’ that should
remain ‘1’. However, this is not a problem because the sequential statements with-
in a process execute instantaneously. For example, suppose that at time � 20 ns a
state change from S2 to S3 occurs. Ga and Rb are ‘1’, but as soon as the process
starts executing, the first line of code is executed and Ga and Rb are scheduled to
change to ‘0’ at time 20 � �. The case statement then executes, and Ga and Rb are
scheduled to change to ‘1’ at time 20 � �. Since this is the same time as before, the
new value (‘1’) preempts the previously scheduled value (‘0’), and the signals
never change to ‘0’.

Before completing the design of the traffic controller, we will test the VHDL
code to see that it meets specifications. As a minimum, our test sequence should
cause all of the arcs on the state graph to be traversed at least once. We may
want to perform additional tests to check the timing for various traffic condi-
tions, such as heavy traffic on both A and B, light traffic on both, heavy traffic
on A only, heavy traffic on B only, and special cases such as a car failing to move
when the light is green, a car going through the intersection when the light is
red, and so on.

To make it easier to interpret the simulator output, we define a type named light
with the values R, Y, and G and two signals, lightA and lightB, which can assume
these values. Then we add code to set lightA to R when the light is red, to Y when
the light is yellow, and to G when the light is green. The following simulator com-
mand file first tests the case where both self-loops on the graph are traversed and
then the case where neither self-loop is traversed:

add wave clk SA SB state lightA lightB
force clk 0 0, 1 5 sec -repeat 10 sec
force SA 1 0, 0 40, 1 170, 0 230, 1 250 sec
force SB 0 0, 1 70, 0 100, 1 120, 0 150, 1 210, 0 250, 1 270 sec

The test results in Figure 4-16 verify that the traffic lights change at the specified
times.
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4.5 State Graphs for Control Circuits
Before continuing with additional examples, we describe the notation we use on
control state graphs, and then state the conditions that must be satisfied to have a
proper state graph. We usually label control state graphs using variable names
instead of 0’s and 1’s. This makes the graph easier to read, especially when the num-
ber of inputs and outputs is large. If we label an arc on a Mealy state graph
XiXj�ZpZq, this means if inputs Xi and Xj are 1 (we don’t care what the other input
values are), the outputs Zp and Zq are 1 (and the other outputs are 0), and we will
traverse this arc to go to the next state. For example, for a circuit with four inputs
(X1, X2, X3, X4) and four outputs (Z1, Z2, Z3, Z4), the label X1X4��Z2Z3 is equivalent
to 1--0�0110. In general, if we label an arc with an input expression, I, we will tra-
verse the arc when I � 1. For example, if the input label is AB � C�, we will traverse
the arc when AB � C� � 1.

In order to have a completely specified proper state graph in which the next
state is always uniquely defined for every input combination, we must place the
following constraints on the input labels for every state Sk:

1. If Ii and Ij are any pair of input labels on arcs exiting state Sk, then Ii Ij � 0 if 
i � j.

2. If n arcs exit state Sk and the n arcs have input labels I1, I2, . . ., In, respectively, then
I1 � I2 � . . . � In � 1.

Condition 1 assures us that at most one input label can be 1 at any given time, and
condition 2 assures us that at least one input label will be 1 at any given time.
Therefore, exactly one label will be 1, and the next state will be uniquely defined for
every input combination. For example, consider the partial state graph in Figure 4-17,
where I1 � X1, I2 � X1�X2�, and I3 � X1�X2:
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FIGURE 4-17:
Example Partial
State Graph Sk

Sp Sq

X1

(X1) (X1X2) = 0′ ′ 
(X1) (X1X2) = 0′ 
(X1X2) (X1X2) = 0′ ′ ′ 
X1 + X1X2 + X1X2 = 1′ ′ ′ 

X1X2′ ′ X1X2′ 

Conditions 1 and 2 are satisfied for Sk.
An incompletely specified proper state graph must always satisfy condition 2,

and it must satisfy condition 1 for all combinations of values of input variables that
can occur for each state Sk. Thus, the partial state graph in Figure 4-18 represents
part of a proper state graph only if input combination X1 � X2 � 1 cannot occur in
state Sk.
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If there are three input variables (X1, X2, X3), the preceding partial state graph
represents the following state table row:

000 001 010 011 100 101 110 111

Sk Sk Sk Sq Sq Sp Sp — —

4.6 Scoreboard and Controller
In this example, we will design a simple scoreboard, which can display scores
from 0 to 99 (decimal). The input to the system should consist of a reset signal
and control signals to increment or decrement the score. The two-digit decimal
count gets incremented by 1 if increment signal is true and is decremented by 1
if decrement signal is true. If increment and decrement are true simultaneously,
no action happens.

The current count is displayed on seven-segment displays. In order to prevent
accidental erasure, the reset button must be pressed for five consecutive cycles in
order to erase the scoreboard. The scoreboard should allow down counts to correct
a mistake (in case of accidentally incrementing more than required).

4.6.1 Data Path
At the core of the design will be a two-digit BCD counter to perform the counting.
Two seven-segment displays will be needed to display the current score.We will also
require BCD to seven-segment decoders to facilitate the display of each BCD digit.
Figure 4-19 illustrates a block diagram of the system. Since true reset should happen
only after pressing reset for five clock cycles, we will also use a 3-bit reset counter
called rstcnt.
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4.6.2 Controller
The controller for this circuit works as follows. There are two states in this finite state
machine (FSM), as indicated in Figure 4-20. In the initial state (S0), the BCD counter
is cleared. The reset counter is also made equal to 0. Essentially, S0 is an initialization
state where all the counters are cleared.After the initial start state, the FSM moves to
the next state (S1), which is where counting gets done. In this state, in every clock
cycle, incrementing or decrementing is done according to the input signals. If reset sig-
nal rst arrives, the rstcnt is incremented. If reset count has already reached 4, and reset
command is still persisting in the fifth clock cycle, a transition to state S0 is made. If
the inc signal is present and dec is not present, the BCD counter is incremented. The
notation add1 on the arc on the top right is used to indicate that the BCD counter
is incremented. If the dec signal is present and inc is not present, the BCD counter is
decremented.The notation sub1 on the arc on the bottom right is used to indicate that
the BCD counter is decremented. In any cycle that the reset signal is not present, the
rstcnt is cleared. If both the inc and dec signals are true, or neither are true, the reset
counter (rstcnt) is cleared and the BCD counter is left unchanged.
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FIGURE 4-20: State
Graph for
Scoreboard
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4.6.3 VHDL Model
The VHDL code for the scoreboard is given in Figure 4-21. The two seven-segment
displays, seg7disp1 and seg7disp2, are declared as unsigned 7-bit vectors. The
segments of the seven-segment display are labeled a through g, as in Figure 4-19.
The unsigned type is used so that the overloaded ‘�’ operator can be used for incre-
menting the counter by 1. The decoder for the seven-segment display can be imple-
mented as an array or look-up table. The look-up table consists of ten 7-bit vectors.
A new datatype called sevsegarray is defined for the array of the seven-segment
values corresponding to each BCD digit. It is a two-dimensional array with 10 ele-
ments, each of which is a 7-bit unsigned vector.The look-up table must be addressed
with an integer data type; hence, the conversion function to_integer is used to
generate the array index. The expression to_integer(BCD0) converts BCD0 to
integer type and the statement

seg7disp0 <= seg7rom(to_integer(BCD0));
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FIGURE 4-21: VHDL Code for Scoreboard

library IEEE;
use IEEE.numeric_bit.all; -- any package with overloaded add and subtract

entity Scoreboard is
port(clk, rst, inc, dec: in bit;

seg7disp1, seg7disp0: out unsigned(6 downto 0));
end Scoreboard;

architecture Behavioral of Scoreboard is
signal State: integer range 0 to 1;
signal BCD1, BCD0: unsigned(3 downto 0) := "0000"; -- unsigned bit vector
signal rstcnt: integer range 0 to 4 := 0;
type sevsegarray is array (0 to 9) of unsigned(6 downto 0);
constant seg7Rom: sevsegarray :=

("0111111", "0000110", "1011011", "1001111", "1100110", "1101101", "1111100",
"0000111", "1111111", "1100111"); -- active high with "gfedcba" order

begin
process(clk)
begin
if clk'event and clk = '1' then
case State is
when 0 => -- initial state
BCD1 <= "0000"; BCD0 <= "0000"; -- clear counter
rstcnt <= 0; -- reset RESETCOUNT
State <= 1;

when 1 => -- state in which the scoreboard waits for inc and dec
if rst = '1' then
if rstcnt = 4 then -- checking whether 5th reset cycle
State <= 0;

else rstcnt <= rstcnt + 1;
end if;

elsif inc = '1' and dec = '0' then
rstcnt <= 0;
if BCD0 < "1001" then
BCD0 <= BCD0 + 1; -- library with overloaded "+" required

elsif BCD1 < "1001" then
BCD1 <= BCD1 + 1;
BCD0 <= "0000";

end if;

accesses the appropriate element from the array seg7rom to convert the decimal
digit to the seven-segment form. BCD addition is accomplished with the overloaded
‘�’ operator. If the current count is less than 9, it is incremented. If it is 9, adding 1
results in a 0, but the next digit should be incremented. Similarly, decrementing from
0 is performed by borrowing a 1 from the next higher digit.
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4.7 Synchronization and Debouncing
The inc, dec, and rst signals to the scoreboard in the previous design are external inputs.
An issue in systems involving external inputs is synchronization. Outputs from a key-
pad or push-button switches are not synchronous to the system clock signal. Since they
will be used as inputs to a synchronous sequential circuit, they should be synchronized.

Another issue in systems involving external inputs is switch bounce. When
a mechanical switch is closed or opened, the switch contact will bounce, causing
noise in the switch output, as shown in Figure 4-22(a). The contact may bounce for
several milliseconds before it settles down to its final position.After a switch closure
has been detected, we must wait for the bounce to settle before reading the key.
In any circuit involving mechanical switches, we should debounce the switches.
Debouncing means removing the transients in the switch output.

Flip-flops are very useful devices when contacts need to be synchronized and
debounced. Figure 4-22(b) shows a proposed debouncing and synchronizing circuit.
In this design, the clock period is greater than the bounce time. If the rising edge of
the clock occurs during the bounce, either a 0 or 1 will be clocked into the flip-flop
at t1. If a 0 was clocked in, a 1 will be clocked in at the next active clock edge (t2). So
it appears that QA will be a debounced and synchronized version of K. However,
a possibility of failure exists if the switch changes very close to the clock edge such
that the setup or hold time is violated. In this case the flip-flop output QA may oscil-
late or otherwise malfunction. Although this situation will occur very infrequently,
it is best to guard against it by adding a second flip-flop. We will choose the clock
period so that any oscillation at the output of QA will have died out before the next
active edge of the clock so that the input DB will always be stable at the active clock
edge. The debounced signal, QB, will always be clean and synchronized with the
clock, although it may be delayed up to two clock cycles after the switch is pressed.
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elsif dec = '1' and inc = '0' then
rstcnt <= 0;
if BCD0 > "0000" then
BCD0 <= BCD0 - 1; -- library with overloaded "-" required

elsif BCD1 > "0000" then
BCD1 <= BCD1 - 1;
BCD0 <= "1001";

end if;
elsif (inc = '1' and dec = '1') or (inc = '0' and dec = '0') then
rstcnt <= 0;

end if;
end case;

end if;
end process;
seg7disp0 <= seg7rom(to_integer(BCD0)); -- type conversion function from
seg7disp1 <= seg7rom(to_integer(BCD1)); -- IEEE numeric_bit package used

end Behavioral;
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4.7.1 Single Pulser
One assumption in the scoreboard design is that each time the inc and dec signals
are provided, they last only for one clock cycle. Digital systems generally run at
speeds higher than actions by humans, and it is very difficult for humans to produce
a signal that only lasts for a clock pulse. If the pressing of the button lasted longer
than a clock cycle, the counters will continue to get incremented in the aforemen-
tioned design. A solution to the problem is to develop a circuit that generates a sin-
gle pulse for a human action of pressing a button or switch. Such a circuit can be
used in a variety of applications involving humans, push buttons, and switches.

Now, let us design a single pulser circuit that delivers a synchronized pulse that
is a single clock cycle long, when a button is pressed. The circuit must sense the
pressing of a button and assert an output signal for one clock cycle. Then the output
stays inactive until the button is released.

Let us create a state diagram for the single pulser. The single pulser circuit must
have two states: one in which it will detect the pressing of the key and one in which
it will detect the release of the key. Let us call the first state S0 and the second state
S1. Let us use the symbol SYNCPRESS to denote the synchronized key press.When
the circuit is in state S0 and the button is pressed, the system produces the single
pulse and moves to state S1. The single pulse is a Mealy output as the state changes
from S0 to S1. Once the system is in state S1, it waits for the button to be released.
As soon as it is released, it moves to the start state S0 waiting for the next button
press. The single pulse output is true only during the transition from S0 to S1. The
state diagram is illustrated in Figure 4-23.

Since there are only two states for this circuit, it can be implemented using one
flip-flop. A single pulser can be implemented as in Figure 4-24. The first block con-
sists of the circuitry in Figure 4-22(b) and generates a synchronized button press,
SYNCPRESS. The flip-flop implements the two states of the state machine. Let us
assume the state assignments are S0 � 0 and S1 � 1. In such a case, the Q output of
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the flip-flop is synonymous with S1, and the Q� output of the flip-flop is synonymous
with S0. The equation for the single pulse SP is

SP � S0 � SYNCPRESS

It may also be noted that S0 � S1�. Including the two flip-flops inside the syn-
chronizing block, three flip-flops can provide debouncing, synchronization, and
single pulsing. If button pushes can be passed through such a circuit, a single pulse
that is debounced and synchronized, with respect to the system clock, can be
obtained. It is a good practice to feed external push-button signals through such a
circuit in order to obtain controlled and predictable operation.
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FIGURE 4-24:
Single Pulser and
Synchronizer
Circuit

D Q

CE 
Q ′

Clk 

PRESS 

SYNCPRESS 

SP 

S1

S1 = S0

Synchronizing 
circuit 

1 1 0  1 
1 0 1  1 
1 1 0  1 

1 1 0 1  
1 0 0 1 1  1 
0 0 0 0    
1 0 0 1 1  1 

1 1 0 1      
1 0 0 0 1 1 1  1 

(13) 
(11) 

(143) 

Multiplicand 
Mutliplier 

Partial 
products 

Note that each partial product is either the multiplicand (1101) shifted over
by the appropriate number of places or zero. Instead of forming all the partial

FIGURE 4-23: State
Diagram of Single
Pulser S0 S1

SYNCPRESS/SP 

(SYNCPRESS)′ 
(SYNCPRESS)′ 

SYNCPRESS 

4.8 Add-and-Shift Multiplier
In this section, we will design a multiplier for unsigned binary numbers.When we form
the product A � B, the first operand (A) is called the multiplicand, and the second
operand (B) is called the multiplier. As illustrated here, binary multiplication requires
only shifting and adding. In the following example, we multiply 1310 by 1110 in binary:
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products first and then adding, each new partial product is added in as soon as it
is formed, which eliminates the need for adding more than two binary numbers
at a time.

Multiplication of two 4-bit numbers requires a 4-bit multiplicand register, a 4-bit
multiplier register, a 4-bit full adder, and an 8-bit register for the product. The prod-
uct register serves as an accumulator to accumulate the sum of the partial products.
If the multiplicand were shifted left each time before it was added to the accumula-
tor, as was done in the previous example, an 8-bit adder would be needed. So it is
better to shift the contents of the product register to the right each time, as shown
in the block diagram of Figure 4-25. This type of multiplier is sometimes referred to
as a serial-parallel multiplier, since the multiplier bits are processed serially, but the
addition takes place in parallel. As indicated by the arrows on the diagram, 4 bits
from the accumulator (ACC) and 4 bits from the multiplicand register are connect-
ed to the adder inputs; the 4 sum bits and the carry output from the adder are con-
nected back to the accumulator. When an add signal (Ad) occurs, the adder outputs
are transferred to the accumulator by the next clock pulse, thus causing the multi-
plicand to be added to the accumulator. An extra bit at the left end of the product
register temporarily stores any carry that is generated when the multiplicand
is added to the accumulator. When a shift signal (Sh) occurs, all 9 bits of ACC are
shifted right by the next clock pulse.
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Since the lower 4 bits of the product register are initially unused, we will store
the multiplier in this location instead of in a separate register. As each multiplier bit
is used, it is shifted out the right end of the register to make room for additional
product bits. A shift signal (Sh) causes the contents of the product register (includ-
ing the multiplier) to be shifted right one place when the next clock pulse occurs.
The control circuit puts out the proper sequence of add and shift signals after a start
signal (St � 1) has been received. If the current multiplier bit (M) is 1, the multipli-
cand is added to the accumulator followed by a right shift; if the multiplier bit is 0,
the addition is skipped, and only the right shift occurs. The multiplication example
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The control circuit must be designed to output the proper sequence of add and
shift signals. Figure 4-26 shows a state graph for the control circuit. In Figure 4-26,
S0 is the reset state, and the circuit stays in S0 until a start signal (St � 1) is
received. This generates a Load signal, which causes the multiplier to be loaded
into the lower 4 bits of the accumulator (ACC) and the upper 5 bits of the accu-
mulator to be cleared. In state S1, the low-order bit of the multiplier (M) is tested.
If M � 1, an add signal is generated, and if M � 0, a shift signal is generated.
Similarly, in states S3, S5, and S7, the current multiplier bit (M) is tested to deter-
mine whether to generate an add or shift signal. A shift signal is always generated
at the next clock time following an add signal (states S2, S4, S6, and S8). After four
shifts have been generated, the control network goes to S9, and a done signal is
generated before returning to S0.
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FIGURE 4-26: State
Graph for Binary
Multiplier Control
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(13 � 11) is reworked below, showing the location of the bits in the registers at each
clock time.
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The behavioral VHDL model (Figure 4-27) corresponds directly to the state graph.
Since there are 10 states, we have declared an integer ranging from 0 to 9 for the state
signal. The signal ACC represents the 9-bit accumulator output. The statement

alias M: bit is ACC(0);

allows us to use the name M in place of ACC(0).The notation when 1�3�5�7 =>means
that when the state is 1 or 3 or 5 or 7, the action that follows occurs. All register oper-
ations and state changes take place on the rising edge of the clock. For example, in
state 0, if St is ‘1’, the multiplier is loaded into the accumulator at the same time
the state changes to 1. The expression '0' & ACC(7 downto 4) + Mcand is used to
compute the sum of two 4-bit unsigned vectors to give a 5-bit result. This represents
the adder output, which is loaded into ACC at the same time the state counter is incre-
mented. The right shift on ACC is accomplished by loading ACC with ‘0’ concatenat-
ed with the upper 8 bits of ACC. The expression '0' & ACC(8 downto 1) could
be replaced with ACC srl 1.
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FIGURE 4-27: Behavioral Model for 4 � 4 Binary Multiplier

–– This is a behavioral model of a multiplier for unsigned
–– binary numbers. It multiplies a 4-bit multiplicand
–– by a 4-bit multiplier to give an 8-bit product.

–– The maximum number of clock cycles needed for a
–– multiply is 10.

library IEEE;
use IEEE.numeric_bit.all;

entity mult4X4 is
port(Clk, St: in bit;

Mplier, Mcand: in unsigned(3 downto 0);
Done: out bit);

end mult4X4;

architecture behave1 of mult4X4 is
signal State: integer range 0 to 9;
signal ACC: unsigned(8 downto 0); -- accumulator
alias M: bit is ACC(0); -- M is bit 0 of ACC
begin
process(Clk)
begin
if Clk'event and Clk = '1' then -- executes on rising edge of clock
case State is
when 0 => -- initial State
if St = '1' then
ACC(8 downto 4) <= "00000"; -- begin cycle
ACC(3 downto 0) <= Mplier; -- load the multiplier
State <= 1;

end if;
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The Done signal needs to be turned on only in state 9. If we had used the state-
ment when 9 => State <= 0; Done <= '1', Done would be turned on at the
same time State changes to 0. This is too late, since we want Done to turn on when
State becomes 9. Therefore, we used a separate concurrent assignment statement.
This statement is placed outside the process so that Done will be updated whenever
State changes.

As the state graph for the multiplier (Figure 4-26) indicates, the control performs
two functions—generating add or shift signals as needed and counting the number of
shifts. If the number of bits is large, it is convenient to divide the control circuit into
a counter and an add-shift control, as shown in Figure 4-28(a). First, we will derive a
state graph for the add-shift control that tests St and M and outputs the proper
sequence of add and shift signals (Figure 4-28(b)). Then we will add a completion
signal (K) from the counter that stops the multiplier after the proper number of shifts
have been completed. Starting in S0 in Figure 4-28(b), when a start signal St � 1 is
received, a load signal is generated and the circuit goes to state S1. Then if M � 1, an
add signal is generated and the circuit goes to state S2; if M � 0, a shift signal is
generated and the circuit stays in S1. In S2, a shift signal is generated since a shift
always follows an add.The graph of Figure 4-28(b) will generate the proper sequence
of add and shift signals, but it has no provision for stopping the multiplier.

In order to determine when the multiplication is completed, the counter is
incremented each time a shift signal is generated. If the multiplier is n bits, n shifts
are required. We will design the counter so that a completion signal (K) is gener-
ated after n – 1 shifts have occurred. When K � 1, the circuit should perform one
more addition if necessary and then do the final shift. The control operation in
Figure 4-28(c) is the same as Figure 4-28(b) as long as K � 0. In state S1, if K � 1,
we test M as usual. If M � 0, we output the final shift signal and go to the done
state (S3); however, if M � 1, we add before shifting and go to state S2. In state S2,
if K � 1, we output one more shift signal and then go to S3. The last shift signal
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when 1 | 3 | 5 | 7 => -- "add�shift" State
if M = '1' then -- add multiplicand

ACC(8 downto 4) <= '0' & ACC(7 downto 4) + Mcand;
State <= State + 1;

else
ACC <= '0' & ACC(8 downto 1); -- shift accumulator right
State <= State + 2;

end if;
when 2 | 4 | 6 | 8 => -- "shift" State
ACC <= '0' & ACC(8 downto 1); -- right shift
State <= State + 1;

when 9 => -- end of cycle
State <= 0;

end case;
end if;

end process;
Done <= '1' when State = 9 else '0';

end behave1;
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will increment the counter to 0 at the same time the add-shift control goes to the
done state.

As an example, consider the multiplier of Figure 4-25, but replace the control cir-
cuit with Figure 4-28(a). Since n � 4, a 2-bit counter is needed to count the four
shifts, and K � 1 when the counter is in state 3 (112). Table 4-2 shows the operation
of the multiplier when 1101 is multiplied by 1011. S0, S1, S2, and S3 represent states
of the control circuit (Figure 4-28(c)). The contents of the product register at each
step are the same as given on page 212.

At time t0, the control is reset and waiting for a start signal. At time t1, the start
signal St is 1, and a Load signal is generated. At time t2, M � 1, so an Ad signal is
generated. When the next clock occurs, the output of the adder is loaded into the
accumulator and the control goes to S2.At t3, an Sh signal is generated, so at the next
clock shifting occurs and the counter is incremented.At t4, M � 1, so Ad � 1, and the
adder output is loaded into the accumulator at the next clock. At t5 and t6, shifting
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TABLE 4-2:
Operation of

Multiplier Using a
Counter

Time State Counter Product Register St M K Load Ad Sh Done

t0 S0 00 000000000 0 0 0 0 0 0 0
t1 S0 00 000000000 1 0 0 1 0 0 0
t2 S1 00 000001011 0 1 0 0 1 0 0
t3 S2 00 011011011 0 1 0 0 0 1 0
t4 S1 01 001101101 0 1 0 0 1 0 0
t5 S2 01 100111101 0 1 0 0 0 1 0
t6 S1 10 010011110 0 0 0 0 0 1 0
t7 S1 11 001001111 0 1 1 0 1 0 0
t8 S2 11 100011111 0 1 1 0 0 1 0
t9 S3 00 010001111 0 1 0 0 0 0 1
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and counting occur. At t7, three shifts have occurred and the counter state is 11, so
K � 1. Since M � 1, addition occurs and control goes to S2. At t8, Sh � K � 1, so at
the next clock the final shift occurs and the counter is incremented back to state 00.
At t9, a Done signal is generated.

The multiplier design given here can easily be expanded to 8, 16, or more bits
simply by increasing the register size and the number of bits in the counter.The add-
shift control would remain unchanged.

4.9 Array Multiplier
An array multiplier is a parallel multiplier that generates the partial products in a
parallel fashion. The various partial products are added as soon as they are avail-
able. Consider the process of multiplication as illustrated in Table 4-3. Two 4-bit
unsigned numbers, X3X2X1X0 and Y3Y2Y1Y0, are multiplied to generate a product
that is possibly 8 bits. Each of the XiYj product bits can be generated by an AND
gate. Each partial product can be added to the previous sum of partial products
using a row of adders. The sum output of the first row of adders, which adds the first
two partial products, is S13S12S11S10, and the carry output is C13C12C11C10. Similar
results occur for the other two rows of adders. (We have used the notation Sij and
Cij to represent the sums and carries from the ith row of adders.)

216 Design Examples

X3 X2 X1 X0 Multiplicand
Y3 Y2 Y1 Y0 Multiplier

X3Y0 X2Y0 X1Y0 X0Y0 Partial product 0
X3Y1 X2Y1 X1Y1 X0Y1 Partial product 1
C12 C11 C10 First row carries

C13 S13 S12 S11 S10 First row sums
X3Y2 X2Y2 X1Y2 X0Y2 Partial product 2
C22 C21 C20 Second row carries

C23 S23 S22 S21 S20 Second row sums
X3Y3 X2Y3 X1Y3 X0Y3 Partial product 3
C32 C31 C30 Third row carries

C33 S33 S32 S31 S30 Third row sums
P7 P6 P5 P4 P3 P2 P1 P0 Final product

TABLE 4-3: Four-bit
Multiplier Partial

Products

Figure 4-29 shows the array of AND gates and adders to perform this multipli-
cation. If an adder has three inputs, a full adder (FA) is used, but if an adder has only
two inputs, a half-adder (HA) is used. A half-adder is the same as a full adder with
one of the inputs set to 0. This multiplier requires 16 AND gates, 8 full adders, and
4 half-adders.After the X and Y inputs have been applied, the carry must propagate
along each row of cells, and the sum must propagate from row to row. The time
required to complete the multiplication depends primarily on the propagation delay
in the adders. The longest path from input to output goes through 8 adders. If tad is
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the worst-case (longest possible) delay through an adder, and tg is the longest AND
gate delay, then the worst-case time to complete the multiplication is 8tad � tg.

In general, an n-bit-by-n-bit array multiplier would require n2 AND gates, n(n� 2)
full adders, and n half-adders. So the number of components required increases
quadratically. For the serial-parallel multiplier previously designed, the amount of
hardware required in addition to the control circuit increases linearly with n.

For an n � n array multiplier, the longest path from input to output goes
through n adders in the top row, n � 1 adders in the bottom row, and n � 3 adders
in the middle rows. The corresponding worst-case multiply time is (3n � 4)tad � tg.
The longest delay in a circuit is called critical path. The worst-case delay can be
improved to 2ntad � tg by forwarding carry from each adder to the diagonally lower
adder rather than the adder on the left side. When n � 4, both expressions are the
same; however, for larger values of n, it is beneficial to pass carry diagonally as
opposed to rippling it to the left. Note that this multiplier has no sequential logic
or registers.

The shift-and-add multiplier that we previously designed requires 2n clocks to
complete the multiply in the worst case, although this can be reduced to n clocks
using a technique discussed in the next section. The minimum clock period depends
on the propagation delay through the n-bit adder as well as the propagation delay
and setup time for the accumulator flip-flops.

4.9.1 VHDL Coding
If the topology has to be exactly what the designer wants, we need to do structural
coding as shown in Figure 4-30. If we made a behavioral model of a multiplier with-
out specifying the topology, the topology generated by the synthesizer would
depend on the synthesis tool. Here, we present a structural model for an array
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218 Design Examples

FIGURE 4-30: VHDL Code for 4 � 4 Array Multiplier

entity Array_Mult is
port(X, Y: in bit_vector(3 downto 0);

P: out bit_vector(7 downto 0));
end Array_Mult;

architecture Behavioral of Array_Mult is
signal C1, C2, C3: bit_vector(3 downto 0);
signal S1, S2, S3: bit_vector(3 downto 0);
signal XY0, XY1, XY2, XY3: bit_vector(3 downto 0);
component FullAdder
port(X, Y, Cin: in bit;

Cout, Sum: out bit);
end component;
component HalfAdder
port(X, Y: in bit;

Cout, Sum: out bit);
end component;
begin
XY0(0) <= X(0) and Y(0); XY1(0) <= X(0) and Y(1);
XY0(1) <= X(1) and Y(0); XY1(1) <= X(1) and Y(1);
XY0(2) <= X(2) and Y(0); XY1(2) <= X(2) and Y(1);
XY0(3) <= X(3) and Y(0); XY1(3) <= X(3) and Y(1);

XY2(0) <= X(0) and Y(2); XY3(0) <= X(0) and Y(3);
XY2(1) <= X(1) and Y(2); XY3(1) <= X(1) and Y(3);
XY2(2) <= X(2) and Y(2); XY3(2) <= X(2) and Y(3);
XY2(3) <= X(3) and Y(2); XY3(3) <= X(3) and Y(3);

FA1: FullAdder port map (XY0(2), XY1(1), C1(0), C1(1), S1(1));
FA2: FullAdder port map (XY0(3), XY1(2), C1(1), C1(2), S1(2));
FA3: FullAdder port map (S1(2), XY2(1), C2(0), C2(1), S2(1));
FA4: FullAdder port map (S1(3), XY2(2), C2(1), C2(2), S2(2));
FA5: FullAdder port map (C1(3), XY2(3), C2(2), C2(3), S2(3));
FA6: FullAdder port map (S2(2), XY3(1), C3(0), C3(1), S3(1));
FA7: FullAdder port map (S2(3), XY3(2), C3(1), C3(2), S3(2));
FA8: FullAdder port map (C2(3), XY3(3), C3(2), C3(3), S3(3));
HA1: HalfAdder port map (XY0(1), XY1(0), C1(0), S1(0));
HA2: HalfAdder port map (XY1(3), C1(2), C1(3), S1(3));
HA3: HalfAdder port map (S1(1), XY2(0), C2(0), S2(0));
HA4: HalfAdder port map (S2(1), XY3(0), C3(0), S3(0));

P(0) <= XY0(0); P(1) <= S1(0); P(2) <= S2(0);
P(3) <= S3(0); P(4) <= S3(1); P(5) <= S3(2);
P(6) <= S3(3); P(7) <= C3(3);

end Behavioral;

–– Full Adder and half adder entity and architecture descriptions
–– should be in the project
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multiplier. Full-adder and half-adder modules are created and used as components
for the array multiplier. The full adders and half adders are interconnected accord-
ing to the array multiplier topology. Several instantiation (port map) statements are
used for this purpose.

4.10 A Signed Integer�Fraction Multiplier
Several algorithms are available for multiplication of signed binary numbers. The
following procedure is a straightforward way to carry out the multiplication:

1. Complement the multiplier if negative.
2. Complement the multiplicand if negative.
3. Multiply the two positive binary numbers.
4. Complement the product if it should be negative.

Although this method is conceptually simple, it requires more hardware and
computation time than some of the other available methods.

The next method we describe requires only the ability to complement the multi-
plicand. Complementation of the multiplier or product is not necessary.Although the
method works equally well with integers or fractions, we illustrate the method with
fractions, since we will later use this multiplier as part of a multiplier for floating-
point numbers. Using 2’s complement for negative numbers, we will represent signed
binary fractions in the following form:

0.101 �5�8 1.011 �5�8
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entity FullAdder is
port(X, Y, Cin: in bit;

Cout, Sum: out bit);
end FullAdder;

architecture equations of FullAdder is
begin
Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end equations;

entity HalfAdder is
port(X, Y: in bit;

Cout, Sum: out bit);
end HalfAdder;

architecture equations of HalfAdder is
begin
Sum <= X xor Y;
Cout <= X and Y;

end equations;
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The digit to the left of the binary point is the sign bit, which is 0 for positive
fractions and 1 for negative fractions. In general, the 2’s complement of a binary
fraction F is F * � 2 � F.Thus, �5�8 is represented by 10.000 � 0.101 � 1.011. (This
method of defining 2’s complement fractions is consistent with the integer case
(N* � 2n � N), since moving the binary point n � 1 places to the left is equivalent
to dividing by 2n�1.) The 2’s complement of a fraction can be found by starting at the
right end and complementing all the digits to the left of the first 1, the same as for
the integer case. The 2’s complement fraction 1.000 . . . is a special case. It actually
represents the number �1, since the sign bit is negative and the 2’s complement of
1.000 . . . is 2 � 1 � 1. We cannot represent �1 in this 2’s complement fraction sys-
tem, since 0.111 . . . is the largest positive fraction.
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Binary Fixed-Point Fractions
Fixed-point numbers are number formats in which the decimal or binary
point is at a fixed location. We can have a fixed-point 8-bit number format
where the binary point is assumed to be after 4 bits (i.e., 4 bits for the frac-
tional part and 4 bits for the integer part). If the binary point is assumed to
be located two more bits to the right, there will be 6 bits for the integral
part and 2 bits for the fraction. The range and precision of the numbers that
can be represented in the different formats depend on the location of the
binary point. For instance, if there are 4 bits for the fractional part and 4 bits
for the integer, the range, assuming unsigned numbers, is 0.00 to 15.925.
If only 2 bits are allowed for the fractional part and 6 bits for the integer,
the range increases; however, the precision reduces. Now, the range would
be 0.00 to 63.75, but the fractional part can be specified only as a multiple
of 0.25.

Let us say we need to represent �13.45 in a 2’s complement fixed-point
number representation with four fractional bits.To convert any decimal frac-
tion into the binary fraction, one technique is to repeatedly multiply the
fractional part (only the fractional part in each intermediate step) with 2. So,
starting with 0.45, the repeated multiplication results in

0.90
1.80
1.60
1.20
0.40
0.80
1.60
1.20

Now, the binary representation can be obtained by considering the digits
in bold. An appropriate representation can be obtained depending on the
number of bits available (e.g., 0111 if 4 bits are available, 01110011 if 8 bits are
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When multiplying signed binary numbers, we must consider four cases:

4.10 A Signed Integer/Fraction Multiplier 221

available, and so on). The representation for decimal number 13.45 in the
fixed-point format with four binary places will be as follows:

13.45: 1101.0111

Note that the represented number is only an approximation of the actual
number. The represented number can be converted back to decimal and seen
to be 13.4375 (slightly off from the number we started with). The representa-
tion approaches the actual number as more and more binary places are added
to the representation.

Negative fractions can be represented in 2’s complement form. Let us rep-
resent �13.45 in 2’s complement form. This cannot be done if we have only
four places for the integer. We need to have at least 5 bits for the integer in
order to handle the sign. Assuming 5 bits are available for the integer, in a
9-bit format,

13.45: 01101.0111

1’s complement 10010.1000

2’s complement 10010.1001

Hence �13.45 � 10010.1001 in this representation.

Multiplicand Multiplier

� �
� �
� �
� �

When both the multiplicand and the multiplier are positive, standard binary
multiplication is used. For example,

0.1 1 1 (�7�8) ; Multiplicand

� 0.1 0 1 (�5�8) ; Multiplier

(0. 0 0)0 1 1 1 (�7�64) ; Note: The proper representation
(0.)0 1 1 1 (�7�16) ; of the fractional partial products
0. 1 0 0 0 1 1 (�35�64) requires extension of the sign

bit past the binary point, as
indicated in parentheses. (Such
extension is not necessary in
the hardware.)

When the multiplicand is negative and the multiplier is positive, the procedure
is the same as in the previous case, except that we must extend the sign bit of the

04Ch04.qxd  3/13/07  3:18 PM  Page 221



multiplicand so that the partial products and final product will have the proper neg-
ative sign. For example,

222 Design Examples

1.1 0 1 (�3�8)

� 0.1 0 1 (�5�8)

(1. 1 1)1 1 0 1 (�3�64) ; Note: The extension of the sign bit
(1.)1 1 0 1 (�3�16) ; provides proper representation of

1. 1 1 0 0 0 1 (�15�64) the negative products.

When the multiplier is negative and the multiplicand is positive, we must make
a slight change in the multiplication procedure. A negative fraction of the form 1.g
has a numeric value �1 � 0.g; for example, 1.011 � �1 � 0.011 � �(1 � 0.011) �
�0.101 � �5�8. Thus, when multiplying by a negative fraction of the form 1.g, we
treat the fraction part (.g) as a positive fraction, but the sign bit is treated as �1.
Hence, multiplication proceeds in the normal way as we multiply by each bit of the
fraction and accumulate the partial products. However, when we reach the negative
sign bit, we must add in the 2’s complement of the multiplicand instead of the mul-
tiplicand itself. The following example illustrates this:

When both the multiplicand and multiplier are negative, the procedure is the
same as before. At each step, we must be careful to extend the sign bit of the partial
product to preserve the proper negative sign, and at the final step we must add in
the 2’s complement of the multiplicand, since the sign bit of the multiplier is nega-
tive. For example,

0.1 0 1 (�5�8)

� 1.1 0 1 (�3�8)

(0. 0 0)0 1 0 1 (�5�64)
(0.)0 1 0 1 (�5�16)

(0.)0 1 1 0 0 1
1. 0 1 1 (�5�8) ; Note: The 2’s complement of the
1. 1 1 0 0 0 1 (�15�64) multiplicand is added at this point.

1.1 0 1 (�3�8)

� 1.1 0 1 (�3�8)

(1. 1 1)1 1 0 1 (�3�64) ; Note: Extend sign bit.
(1.)1 1 0 1 (�3�16)

1. 1 1 0 0 0 1
0. 0 1 1 (�3�8) ; Add the 2’s complement of the
0. 0 0 1 0 0 1 (�9�64) multiplicand.
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In summary, the procedure for multiplying signed 2’s complement binary
fractions is the same as for multiplying positive binary fractions, except that we
must be careful to preserve the sign of the partial product at each step, and if
the sign of the multiplier is negative, we must complement the multiplicand
before adding it in at the last step. The hardware is almost identical to that used
for multiplication of positive numbers, except a complementer must be added for
the multiplicand.

Figure 4-31 shows the hardware required to multiply two 4-bit fractions (includ-
ing the sign bit).A 5-bit adder is used so the sign of the sum is not lost due to a carry
into the sign bit position. The M input to the control circuit is the currently active
bit of the multiplier. Control signal Sh causes the accumulator to shift right one
place with sign extension. Ad causes the ADDER output to be loaded into the left
5 bits of the accumulator. The carry-out from the last bit of the adder is discarded,
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Load

M

Cm

Done

Clk

since we are doing 2’s complement addition. Cm causes the multiplicand (Mcand)
to be complemented (1’s complement) before it enters the adder inputs. Cm is also
connected to the carry input of the adder so that when Cm � 1, the adder adds 1
plus the 1’s complement of Mcand to the accumulator, which is equivalent to adding
the 2’s complement of Mcand. Figure 4-32 shows a state graph for the control cir-
cuit. Each multiplier bit (M) is tested to determine whether to add and shift or
whether to just shift. In state S7, M is the sign bit, and if M � 1, the complement of
the multiplicand is added to the accumulator.

When the hardware in Figure 4-31 is used, the add and shift operations must be
done at two separate clock times. We can speed up operation of the multiplier by

FIGURE 4-31: Block
Diagram for 2’s
Complement
Multiplier
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moving the wires from the adder output one position to the right (Figure 4-33) so
that the adder output is already shifted over one position when it is loaded into the
accumulator. With this arrangement, the add and shift operations can occur at
the same clock time, which leads to the control state graph of Figure 4-34. When the
multiplication is complete, the product (6 bits plus sign) is in the lower 3 bits of A fol-
lowed by B. The binary point then is in the middle of the A register. If we wanted it
between the left 2 bits, we would have to shift A and B left one place.
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FIGURE 4-32: State
Graph for 2’s
Complement
Multiplier
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FIGURE 4-33: Block
Diagram for Faster
Multiplier
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A behavioral VHDL model for this multiplier is shown in Figure 4-35. Shifting
the A and B registers together is accomplished by the sequential statements

A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);

Although these statements are executed sequentially, A and B are both sched-
uled to be updated at the same delta time. Therefore, the old value of A(0) is used
when computing the new value of B.
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Graph for Faster
Multiplier

FIGURE 4-35: Behavioral Model for 2’s Complement Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity mult2C is
port(CLK, St: in bit;

Mplier, Mcand : in unsigned(3 downto 0);
Product: out unsigned (6 downto 0);
Done: out bit);

end mult2C;

architecture behave1 of mult2C is
signal State: integer range 0 to 5;
signal A, B: unsigned(3 downto 0);
alias M: bit is B(0);
begin
process(CLK)
variable addout: unsigned(3 downto 0);
begin
if CLK'event and CLK = '1' then
case State is
when 0 => –– initial State
if St = '1' then
A <= "0000"; –– begin cycle
B <= Mplier; –– load the multiplier
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State <= 1;
end if;

when 1 | 2 | 3 =>  -- "add�shift" states
if M = '1' then
addout := A + Mcand; -- add multiplicand to A and shift
A <= Mcand(3) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);

else
A <= A(3) & A(3 downto 1);  –– arithmetic right shift
B <= A(0) & B(3 downto 1);

end if;
State <= State + 1;

when 4 =>
if M = '1' then

addout := A + not Mcand + 1;
-- add 2's complement when sign bit of multiplier is 1

A <= not Mcand(3) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);

else
A <= A(3) & A(3 downto 1); –– arithmetic right shift
B <= A(0) & B(3 downto 1);

end if;
State <= 5;

when 5 =>
State <= 0;

end case;
end if;

end process;
Done <= '1' when State = 5 else '0';
Product <= A(2 downto 0) & B; –– output product

end behave1;

A variable addout has been defined to represent the 5-bit output of the adder.
In states 1 through 4, if the current multiplier bit M is ‘1’, then the sign bit of
the multiplicand followed by 3 bits of addout are loaded into A.At the same time, the
low-order bit of addout is loaded into B along with the high-order 3 bits of B.
The Done signal is turned on when control goes to state 5, and then the new value
of the product is outputted.

Before continuing with the design, we will test the behavioral level VHDL code
to make sure that the algorithm is correct and consistent with the hardware block
diagram. At early stages of testing, we will want a step-by-step printout to verify the
internal operations of the multiplier and to aid in debugging, if required. When we
think that the multiplier is functioning properly, then we will only want to look at
the final product output so that we can quickly test a large number of cases.

Figure 4-36 shows the command file and test results for multiplying �5�8 by
�3�8. A clock is defined with a 20-ns period. The St signal is turned on at 2 ns and
turned off one clock period later. By inspection of the state graph, the multiplica-
tion requires six clocks, so the run time is set at 120 ns.
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To thoroughly test the multiplier, we need to test not only the four standard cases
(� �,��, ��, and ��) but also special cases and limiting cases. Test values for the
multiplicand and multiplier should include 0, the largest positive fraction, the most neg-
ative fraction, and all 1’s. We will write a VHDL test bench to test the multiplier. The
test bench will provide a sequence of values for the multiplicand and the multiplier.
Thus, it provides stimuli to the system under test, the multiplier.The test bench can also
check for the correctness of the multiplier output.The multiplier we are testing will be
treated as a component and embedded in the test bench program. The signals gener-
ated within the test bench are interfaced to the multiplier as shown in Figure 4-37.
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FIGURE 4-36: Command File and Simulation Results for (�5�8 by –3�8)

–– command file to test signed multiplier
add list CLK St State A B Done Product
force st 1 2, 0 22
force clk 1 0, 0 10 – repeat 20
–– (5�8 * -3�8)
force Mcand 0101
force Mplier 1101
run 120

ns delta CLK St State A B Done Product
0 +1 1 0 0 0000 0000 0 0000000
2 +0 1 1 0 0000 0000 0 0000000

10 +0 0 1 0 0000 0000 0 0000000
20 +1 1 1 1 0000 1101 0 0000000
22 +0 1 0 1 0000 1101 0 0000000
30 +0 0 0 1 0000 1101 0 0000000
40 +1 1 0 2 0010 1110 0 0000000
50 +0 0 0 2 0010 1110 0 0000000
60 +1 1 0 3 0001 0111 0 0000000
70 +0 0 0 3 0001 0111 0 0000000
80 +1 1 0 4 0011 0011 0 0000000
90 +0 0 0 4 0011 0011 0 0000000
100 +2 1 0 5 1111 0001 1 1110001
110 +0 0 0 5 1111 0001 1 1110001
120 +1 1 0 0 1111 0001 0 1110001

TESTER MULTIPLIER 

St

Mplier

CLK

Mcand

Product
Done

FIGURE 4-37:
Interface between
Multiplier and Its
Test Bench

Figure 4-38 shows the VHDL code for the multiplier test bench. The test
sequence consists of 11 sets of multiplicands and multipliers, provided in the
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FIGURE 4-38: Test Bench for Signed Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity testmult is
end testmult;

architecture test1 of testmult is
component mult2C
port(CLK, St: in bit;

Mplier, Mcand: in unsigned(3 downto 0);
Product: out unsigned(6 downto 0);
Done: out bit);

end component;

constant N: integer := 11;
type arr is array(1 to N) of unsigned(3 downto 0);
type arr2 is array(1 to N) of unsigned(6 downto 0);
constant Mcandarr: arr := ("0111", "1101", "0101", "1101", "0111",

"1000", "0111", "1000", "0000", "1111", "1011");
constant Mplierarr: arr := ("0101", "0101", "1101", "1101", "0111",

"0111", "1000", "1000", "1101", "1111", "0000");
constant Productarr: arr2 := ("0100011", "1110001", "1110001",

"0001001", "0110001", "1001000",
"1001000", "1000000", "0000000",
"0000001", "0000000");

signal CLK, St, Done: bit;
signal Mplier, Mcand: unsigned(3 downto 0);
signal Product: unsigned(6 downto 0);
begin
CLK <= not CLK after 10 ns;
process
begin
for i in 1 to N loop

Mcand <= Mcandarr(i);
Mplier <= Mplierarr(i);
St <= '1';
wait until CLK = '1' and CLK'event;
St <= '0';
wait until Done = '0' and Done'event;
assert Product = Productarr(i) -- compare with expected answer
report "Incorrect Product"
severity error;

end loop;
report "TEST COMPLETED";

end process;
mult1: mult2c port map(CLK, St, Mplier, Mcand, Product, Done);

end test1;
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Mcandarr and Mplierarr arrays. The expected outputs from the multiplier are pro-
vided in another array, the Productarr, in order to test the correctness of the multi-
plier outputs. The test values and results are placed in constant arrays in the VHDL
code. A component declaration is done for the multiplier. A port map statement is
used to create an instance of the multiplier. The tester also generates the clock and
start signal. The for loop reads values from the Mcandarr and Mplierarr arrays and
then sets the start signal to ‘1’. After the next clock, the start signal is turned off.
Then the test bench waits for the Done signal. When the trailing edge of Done
arrives, the multiplier output is compared against the expected output in the array
Productar. An error is reported if the answers do not match. Since the Done signal
is turned off at the same time the multiplier control goes back to S0, the process
waits for the falling edge of Done before looping back to supply new values of
Mcand and Mplier. Note that the port map statement is outside the process that
generates the stimulus. The multiplier constantly receives some set of inputs and
generates the corresponding set of outputs.

Figure 4-39 shows the command file and simulator output. We have annotated
the simulator output to interpret the test results. The –NOtrigger together with
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FIGURE 4-39: Command File and Simulation of Signed Multiplier

–– Command file to test results of signed multiplier
add list -NOtrigger Mplier Mcand product -Trigger done
run 1320

ns delta mplier mcand product done
0 +1 0101 0111 0000000 0
90 +2 0101 0111 0100011 1 5�8 * 7�8 = 35�64

110 +2 0101 1101 0100011 0
210 +2 0101 1101 1110001 1 5�8 * -3�8 = -15�64
230 +2 1101 0101 1110001 0
330 +2 1101 0101 1110001 1 -3�8 * 5�8 = -15�64
350 +2 1101 1101 1110001 0
450 +2 1101 1101 0001001 1 -3�8 * -3�8 = 9�64
470 +2 0111 0111 0001001 0
570 +2 0111 0111 0110001 1 7�8 * 7�8 = 49�64
590 +2 0111 1000 0110001 0
690 +2 0111 1000 1001000 1 7�8 * -1 = -7�8
710 +2 1000 0111 1001000 0
810 +2 1000 0111 1001000 1 -1 * 7�8 = -7�8
830 +2 1000 1000 1001000 0
930 +2 1000 1000 1000000 1 -1 * -1 = -1 (error)
950 +2 1101 0000 1000000 0
1050 +2 1101 0000 0000000 1 -3�8 * 0 = 0
1070 +2 1111 1111 0000000 0
1170 +2 1111 1111 0000001 1 -1�8 * -1�8 = 1�64
1190 +2 0000 1011 0000001 0
1290 +2 0000 1011 0000000 1 0 * -3�8 = 0
1310 +2 0101 0111 0000000 0
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the –Trigger done in the list statement causes the output to be displayed only
when the Done signal changes. Without the –NOtrigger and –Trigger, the output
would be displayed every time any signal on the list changed. All the product
outputs are correct, except for the special case of �1 � �1 (1.000 � 1.000), which
gives 1.000000 (�1) instead of �1. This occurs because no representation of �1 is
possible without adding another bit.

Next, we refine the VHDL model for the signed multiplier by explicitly defining
the control signals and the actions that occur when each control signal is asserted.
The VHDL code (Figure 4-40) is organized in a manner similar to the Mealy machine
model of Figure 1-17. In the first process, the Nextstate and output control signals
are defined for each present State. In the second process, after waiting for the rising
edge of the clock, the appropriate registers are updated and the State is updated. We
can test the VHDL code of Figure 4-40 using the same test file we used previously
and verify that we get the same product outputs.
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FIGURE 4-40: Model for 2’s Complement Multiplier with Control Signals

–– This VHDL model explicitly defines control signals.

library IEEE;
use IEEE.numeric_bit.all;

entity mult2C is
port(CLK, St: in bit;

Mplier, Mcand: in unsigned(3 downto 0);
Product: out unsigned (6 downto 0);
Done: out bit);

end mult2C;

–– This architecture of a 4-bit multiplier for 2's complement numbers
–– uses control signals.

architecture behave2 of mult2C is
signal State, Nextstate: integer range 0 to 5;
signal A, B, compout, addout: unsigned(3 downto 0);
signal AdSh, Sh, Load, Cm: bit;
alias M: bit is B(0);
begin
process(State, St, M)
begin
Load <= '0'; AdSh <= '0'; Sh <= '0'; Cm <= '0'; Done <= '0';
case State is
when 0 => -- initial state
if St = '1' then Load <= '1'; Nextstate <= 1; end if;

when 1 � 2 � 3 = > -- "add�shift" State
if M = '1' then AdSh < = '1';
else Sh <= '1';
end if;
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4.11 Keypad Scanner
In this example, we design a scanner for a keypad with three columns and four rows
as in Figure 4-41. The keypad is wired in matrix form with a switch at the intersec-
tion of each row and column. Pressing a key establishes a connection between a row
and column.The purpose of the scanner is to determine which key has been pressed
and output a binary number N � N3N2N1N0, which corresponds to the key number.
For example, pressing key 5 must output 0101, pressing the * key must output 1010,
and pressing the # key must output 1011. When a valid key has been detected, the
scanner should output a signal V for one clock time. Assume that only one key is

4.11 Keypad Scanner 231

Nextstate <= State + 1;
when 4 => -- add complement if sign
if M = '1' then -- bit of multiplier is 1
Cm <= '1'; AdSh <= '1';

else Sh <= '1';
end if;
Nextstate <= 5;

when 5 => -- output product
Done <= '1';
Nextstate <= 0;

end case;
end process;

compout <= not Mcand when Cm = '1' else Mcand; -- complementer
addout <= A + compout + unsigned'(0=>Cm); -- 4-bit adder with carry in

process (CLK)
begin
if CLK'event and CLK = '1' then -- executes on rising edge
if Load = '1' then -- load the multiplier
A <= "0000";
B <= Mplier;

end if;
if AdSh = '1' then -- add multiplicand to A and shift
A <= compout(3) & addout(3 downto 1);
B <= addout(0) & B(3 downto 1);

end if;
if Sh = '1' then
A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);

end if;
State <= Nextstate;

end if;
end process;
Product <= A(2 downto 0) & B;

end behave2;
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pressed at a time. The design must include hardware to protect the circuitry from
malfunction due to keypad bounces.

232 Design Examples

FIGURE 4-41:
Keypad with Three
Columns and Four
Rows

FIGURE 4-42: Block
Diagram for
Keypad Scanner

FIGURE 4-43:
Scanner Modules
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The overall block diagram of the circuit is presented in Figure 4-42. The keypad
contains resistors that are connected to ground. When a switch is pressed, a path is
established from the corresponding column line to the ground. If a voltage can be
applied on the column lines C0, C1, and C2, then the voltage can be obtained on the
row line corresponding to the key that is pressed. One among the rows R0, R1, R2, or
R3 will have an active signal.

We will divide the design into several modules, as shown in Figure 4-43. The first
part of the design will be a scanner that scans the rows and columns of the keypad.
The keyscan module generates the column signals to scan the keypad. The
debounce module generates a signal K when a key has been pressed and a signal Kd
after it has been debounced. When a valid key is detected, the decoder determines
the key number from the row and column numbers.
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4.11.1 Scanner
We will use the following procedure to scan the keypad: First apply logic 1’s to
columns C0, C1, and C2 and wait. If any key is pressed, a 1 will appear on R0, R1, R2,
or R3. Then apply a 1 to column C0 only. If any of the Ri’s is 1, a valid key is detected.
If R0 is received, we know that switch 1 was pressed. If R1, R2, or R3 is received,
switch 4, 7, or * was pressed. If so, set V � 1 and output the corresponding N. If no
key is detected in the first column, apply a 1 to C1 and repeat. If no key is detected
in the second column, repeat for C2. When a valid key is detected, apply 1’s to C0,
C1, and C2 and wait until no key is pressed. This last step is necessary so that only
one valid signal is generated each time a key is pressed.

4.11.2 Debouncer
As discussed in the scoreboard example, we need to debounce the keys to avoid
malfunctions due to switch bounce. Figure 4-44 shows a proposed debouncing and
synchronizing circuit. The four row signals are connected to an OR gate to from sig-
nal K, which turns on when a key is pressed and a column scan signal is applied. The
debounced signal Kd will be fed to the sequential circuit.
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FIGURE 4-44:
Debouncing and
Synchronizing
Circuit
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4.11.3 Decoder
The decoder determines the key number from the row and column numbers using the
truth table given in Table 4-4.The truth table has one row for each of the 12 keys.The
remaining rows have don’t care outputs since we have assumed that only one key is
pressed at a time. Since the decoder is a combinational circuit, its output will change

R3 R2 R1 R0 C0 C1 C2 N3 N2 N1 N0

0 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0 1 1
0 0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 1 0 0 1 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 1 0 0 1
1 0 0 0 1 0 0 1 0 1 0 (*)
1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 1 1 (#)

TABLE 4-4: Truth Table for Decoder

Logic Equations for Decoder

N3 = R2C0' + R3C1'

N2 = R1 + R2C0

N1 = R0C0' + R2'C2 + R1'R0'C0

N0 = R1C1 + R1'C2 + R3'R1'C1'
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as the keypad is scanned. At the time a valid key is detected (K � 1 and V � 1), its
output will have the correct value and this value can be saved in a register at the same
time the circuit goes to S5.

4.11.4 Controller
Figure 4-45 shows the state diagram of the controller for the keypad scanner. It
waits in S1 with outputs C0 � C1 � C2 � 1 until a key is pressed. In S2, C0 � 1, so if
the key that was pressed is in column 0, K � 1, and the circuit outputs a valid signal
and goes to S5. Signal K is used instead of Kd, since the key press is already
debounced. If no key press is found in column 0, column 1 is checked in S3, and if
necessary, column 2 is checked in S4. In S5, the circuit waits until all keys are released
and Kd goes to 0 before resetting.
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Kd K ′

Kd ′

Kd

Kd ′
K/V K/V

1/V
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K ′S1

C0C1C2

C0C1C2

S5

S2

C0

S0

0 

S3

C1

S4

C2

FIGURE 4-45: State
Graph for Keypad
Scanner

The state diagram in Figure 4-45 works for many cases; however, it does have
some timing problems. Let us analyze the following situations.

1. Is K true whenever a button is pressed?
No. Although K is true if any one of the row signals R1, R2, R3, or R4 is true,
if the column scan signals are not active, none of R1–R4 can be true, although
the button is pressed.

2. Can Kd be false when a button is continuing to be pressed?
Yes. Signal Kd is nothing but K delayed by two clock cycles. K can go to 0
during the scan process even when the button is being pressed. For instance,
consider the case when a key in the rightmost column is pressed. During scan
of the first two columns, K goes to 0. If K goes to 0 at any time, Kd will go to
zero two cycles later. Hence, neither K nor Kd is synonymous to pressing the
button.

3. Can you go from S5 to S1 when a button is still pressed?
In the state diagram in Figure 4-45, the S4-to-S5 transition could happen when
Kd is false. Kd might have become false while scanning C0 and C1. Hence, it
is possible that we reach back to S1 when the key is still being pressed. As an
example, let us assume that a button is pressed in column C2. This is to be
detected in S4. However, during the scanning process in S2 and S3, K is 0;
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hence, two cycles later Kd will be 0 even if the button stays pressed. During
the scan in S4, the correct key can be found; however, the system can reach
S5 when Kd is still 0 and a malfunction can happen. S5 is intended to sense
the release of the key. However, Kd is not synonymous to pressing the but-
ton and Kd� does not truly indicate that the button got released. Since Kd�
can appear when the button is still pressed, if you reach S5 when Kd� is true
due to scanning activity in a previous state, the system can go from S5 to S1
without a key release. In such a case, the same key may be read multiple
times.

4. What if a key is pressed for only one or two clock cycles?
If the key is pressed and released very quickly, there would be problems
especially if the key is in the third column. By the time the scanner reaches
state S4, the key might have been released already.The key should be pressed
long enough for the scanner to go through the longest path in the state graph
from S0 to S5. This may not be a serious problem because usually the digital
system clock is much faster than any mechanical switch.

These problems can be fixed by assuring that we can reach S5 only if Kd is true.
A modified state diagram is presented in Figure 4-46. Before transitioning to state
S5, this circuit waits in state S2, S3, and S4 until Kd also becomes 1.
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FIGURE 4-46:
Modified State
Graph for Keypad
Scanner

4.11.5 VHDL Code
The VHDL code used to implement the design is shown in Figure 4-47.The decoder
equations as well as the equations for K and V are implemented by concurrent
statements. The process implements the next state equations for the keyscan and
debounce flip-flops.

FIGURE 4-47: VHDL Code for Scanner

entity scanner is
port(R0, R1, R2, R3, CLK: in bit;

C0, C1, C2: inout bit;
N0, N1, N2, N3, V: out bit);

end scanner;
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architecture behavior of scanner is
signal QA, K,Kd: bit;
signal state, nextstate: integer range 0 to 5;
begin
K <= R0 or R1 or R2 or R3; -- this is the decoder section
N3 <= (R2 and not C0) or (R3 and not C1);
N2 <= R1 or (R2 and C0);
N1 <= (R0 and not C0) or (not R2 and C2) or (not R1 and not R0 and C0);
N0 <= (R1 and C1) or (not R1 and C2) or (not R3 and not R1 and not C1);

process(state, R0, R1, R2, R3, C0, C1, C2, K, Kd, QA)
begin
C0 <= '0'; C1 <= '0'; C2 <= '0'; V <= '0';
case state is
when 0 => nextstate < = 1;
when 1 => C0 <= '1'; C1 <= '1'; C2 <= '1';
if (Kd and K) = '1' then nextstate <= 2;
else nextstate <= 1;
end if;

when 2 => C0 <= '1';
if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
elsif K = '0' then nextstate <= 3;
else nextstate <= 2;
end if;

when 3 => C1 <= '1';
if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
elsif K = '0' then nextstate <= 4;
else nextstate <= 3;
end if;

when 4 => C2 <= '1';
if (Kd and K) = '1' then V <= '1'; nextstate <= 5;
else nextstate <= 4;
end if;

when 5 => C0 <= '1'; C1 <= '1'; C2 <= '1';
if Kd = '0' then nextstate <= 1;
else nextstate <= 5;
end if;

end case;
end process;

process(CLK)
begin
if CLK = '1' and CLK'EVENT then
state <= nextstate;
QA <= K;
Kd <= QA;

end if;
end process;

end behavior;
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4.11.6 Test Bench for Keypad Scanner
This VHDL code would be very difficult to test by supplying waveforms for the
inputs R0, R1, R2, and R3, since these inputs depend on the column outputs (C0, C1,
C2). A much better way to test the scanner is by using a test bench in VHDL. The
scanner we are testing will be treated as a component and embedded in the test
bench program. The signals generated within the test bench are interfaced to the
scanner as shown in Figure 4-48. The test bench simulates a key press by supplying
the appropriate R signals in response to the C signals from the scanner. When test
bench receives V � 1 from the scanner, it checks to see if the value of N corresponds
to the key that was pressed.
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FIGURE 4-48:
Interface for Test
Bench

TEST1 SCANNER 

R3–0

C2–0

V
N3–0

CLK 

The VHDL code for the keypad test bench is shown in Figure 4-49. A copy of
the scanner is instantiated within the test1 architecture, and connections to the
scanner are made by the port map. The sequence of key numbers used for testing
is stored in the array KARRAY. The tester simulates the keypad operation using

FIGURE 4-49: VHDL for Scanner Test Bench

library IEEE;
use IEEE.numeric_bit.all;

entity scantest is
end scantest;

architecture test1 of scantest is
component scanner
port(R0, R1, R2, R3, CLK: in bit;

C0, C1, C2: inout bit;
N0, N1, N2, N3, V: out bit);

end component;

type arr is array (0 to 23) of integer; –– array of keys to test
constant KARRAY: arr := (2,5,8,0,3,6,9,11,1,4,7,10,1,2,3,4,5,6,7,8,9,10,11,0);
signal C0, C1, C2, V, CLK, R0, R1, R2, R3: bit; –– interface signals
signal N: unsigned(3 downto 0);
signal KN: integer; –– key number to test
begin
CLK <= not CLK after 20 ns; –– generate clock signal
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–– this section emulates the keypad
R0 <= '1' when (C0='1' and KN=1) or (C1='1' and KN=2) or (C2='1' and KN=3)

else '0';
R1 <= '1' when (C0='1' and KN=4) or (C1='1' and KN=5) or (C2='1' and KN=6)

else '0';
R2 <= '1' when (C0='1' and KN=7) or (C1='1' and KN=8) or (C2='1' and KN=9)

else '0';
R3 <= '1' when (C0='1' and KN=10) or (C1='1' and KN=0) or (C2='1' and KN=11)

else '0';

process -- this section tests scanner
begin
for i in 0 to 23 loop -- test every number in key array

KN <= KARRAY(i); -- simulates keypress
wait until (V = '1' and rising_edge(CLK));
assert (to_integer(N) = KN) -- check if output matches
report "Numbers don't match"
severity error;

KN <= 15; -- equivalent to no key pressed
wait until rising_edge(CLK); – wait for scanner to reset
wait until rising_edge(CLK);
wait until rising_edge(CLK);

end loop;
report "Test Complete.";

end process;
scanner1: scanner port map(R0,R1,R2,R3,CLK,C0,C1,C2,N(0),N(1),N(2),N(3),V);

–– connect test1 to scanner
end test1;

concurrent statements for R0, R1, R2, and R3. Whenever C0, C1, C2, or the key
number (KN) changes, new values for the Rs are computed. For example, if KN � 5
(to simulate pressing key 5), then R0R1R2R3 � 0100 is sent to the scanner when
C0C1C2 � 010. The test process is as follows:

1. Read a key number from the array to simulate pressing a key.
2. Wait until V � 1 and the rising edge of the clock occurs.
3. Verify that the N output from the scanner matches the key number.
4. Set KN � 15 to simulate no key pressed. (Since 15 is not a valid key number, all

R’s will go to 0.)
5. Wait until Kd � 0 before selecting a new key.

Key presses in row order and column order are tried using the various numbers
in KARRAY. The test bench uses assert statements to test whether the reported
number matches the key pressed. The report statement is used to report an error if
the scanner generates the wrong key number, and it will report “Testing Complete.”
when all keys have been tested.
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4.12 Binary Dividers 239

4.12 Binary Dividers
4.12.1 Unsigned Divider
We will consider the design of a parallel divider for positive binary numbers.As an
example, we will design a circuit to divide an 8-bit dividend by a 4-bit divisor to
obtain a 4-bit quotient. The following example illustrates the division process:

1010     Quotient
Divisor    1101    10000111       Dividend

1101
(135 ÷ 13 = 10 with

a remainder of 5)
0111
0000

1111
1101

0101
0000
0101        Remainder

Just as binary multiplication can be carried out as a series of add and shift oper-
ations, division can be carried out by a series of subtract and shift operations.To con-
struct the divider, we will use a 9-bit dividend register and a 4-bit divisor register, as
shown in Figure 4-50. During the division process, instead of shifting the divisor
right before each subtraction, we will shift the dividend to the left. Note that an
extra bit is required on the left end of the dividend register so that a bit is not lost
when the dividend is shifted left. Instead of using a separate register to store the
quotient, we will enter the quotient bit-by-bit into the right end of the dividend reg-
ister as the dividend is shifted left.

X8 X7 X6 X5 X3 X2 X1 X0
Sh
LdX4

Clock 

Control 

Subtractor 
and 

comparator 

Dividend register 

Y3 Y2 Y1 Y0
0 

V
(Overflow
indicator)

St (Start signal)

Sh

C

Su

FIGURE 4-50: Block
Diagram for
Parallel Binary
Divider

The preceding division example (135 divided by 13) is reworked next, showing
the location of the bits in the registers at each clock time. Initially, the dividend and
divisor are entered as follows:

0 1 0 0 0 0 1 1 1

1 1 0 1
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Subtraction cannot be carried out without a negative result, so we will shift
before we subtract. Instead of shifting the divisor one place to the right, we will shift
the dividend one place to the left:

Dividing line between dividend and quotient

1 0 0 0 0 1 1 1 0

1 1 0 1 Note that after the shift, the rightmost position
in the dividend register is “empty.”

Subtraction is now carried out and the first quotient digit of 1 is stored in the
unused position of the dividend register:

0 0 0 1 1 1 1 1 1 first quotient digit

Next we shift the dividend one place to the left:

0 0 1 1 1 1 1 1 0

1 1 0 1

Since subtraction would yield a negative result, we shift the dividend to the left
again, and the second quotient bit remains zero:

0 1 1 1 1 1 1 0 0

1 1 0 1

Subtraction is now carried out, and the third quotient digit of 1 is stored in the
unused position of the dividend register:

0 0 0 1 0 1 1 0 1 third quotient digit

A final shift is carried out and the fourth quotient bit is set to 0:

0 0 1 0 1 1 0 1 0

remainder quotient

The final result agrees with that obtained in the first example.
If, as a result of a division operation, the quotient contains more bits than

are available for storing the quotient, we say that an overflow has occurred.
For the divider of Figure 4-50, an overflow would occur if the quotient is greater
than 15, since only 4 bits are provided to store the quotient. It is not actually nec-
essary to carry out the division to determine if an overflow condition exists, since
an initial comparison of the dividend and divisor will tell if the quotient will be
too large. For example, if we attempt to divide 135 by 7, the initial contents of the
registers are

0 1 0 0 0 0 1 1 1

0 1 1 1

Since subtraction can be carried out with a nonnegative result, we should sub-
tract the divisor from the dividend and enter a quotient bit of 1 in the rightmost

240 Design Examples
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place in the dividend register. However, we cannot do this because the rightmost
place contains the least significant bit of the dividend, and entering a quotient bit
here would destroy that dividend bit. Therefore, the quotient would be too large to
store in the 4 bits we have allocated for it, and we have detected an overflow con-
dition. In general, for Figure 4-50, if initially X8X7X6X5X4 	 Y3Y2Y1Y0 (i.e., if the left
5 bits of the dividend register exceed or equal the divisor), the quotient will be
greater than 15 and an overflow occurs. Note that if X8X7X6X5X4 	 Y3Y2Y1Y0, the
quotient is

The operation of the divider can be explained in terms of the block diagram of
Figure 4-50. A shift signal (Sh) will shift the dividend one place to the left. A sub-
tract signal (Su) will subtract the divisor from the five leftmost bits in the dividend
register and set the quotient bit (the rightmost bit in the dividend register) to 1. If
the divisor is greater than the five leftmost dividend bits, the comparator output is
C � 0; otherwise, C � 1. Whenever C � 0, subtraction cannot occur without a neg-
ative result, so a shift signal is generated. Whenever C � 1, a subtract signal is gen-
erated, and the quotient bit is set to 1. The control circuit generates the required
sequence of shift and subtract signals.

Figure 4-51 shows the state diagram for the control circuit. When a start signal
(St) occurs, the 8-bit dividend and 4-bit divisor are loaded into the appropriate reg-
isters. If C is 1, the quotient would require five or more bits. Since space is only pro-
vided for a 4-bit quotient, this condition constitutes an overflow, so the divider is
stopped and the overflow indicator is set by the V output. Normally, the initial value
of C is 0, so a shift will occur first, and the control circuit will go to state S2. Then, if
C � 1, subtraction occurs. After the subtraction is completed, C will always be 0, so
the next clock pulse will produce a shift.This process continues until four shifts have
occurred and the control is in state S5. Then a final subtraction occurs, if necessary,
and the control returns to the stop state. For this example, we will assume that when
the start signal (St) occurs, it will be 1 for one clock time, and then it will remain 0
until the control circuit is back in state S0. Therefore, St will always be 0 in states S1
through S5.

X8X7X6X5X4X3X2X1X0

Y3Y2Y1Y0
	

X8X7X6X5X40000
Y3Y2Y1Y0

�
X8X7X6X5X4 � 16

Y3Y2Y1Y0
	 16
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St′/0 St/Load C′/Sh C/Su

C′/Sh

C/SuC′/Sh

C/Su

C′/Sh

C′/0
C/Su

S1 S2

S3S4S5

C/V

S0
(stop)

FIGURE 4-51: State
Diagram for
Divider Control
Circuit

Table 4-5 gives the state table for the control circuit. Since we assumed that St � 0
in states S1, S2, S3, and S4, the next states and outputs are “don’t cares” for these states
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when St � 1.The entries in the output table indicate which outputs are 1. For example,
the entry Sh means Sh � 1 and the other outputs are 0.

242 Design Examples

StC StC
State 00 01 11 10 00 01 11 10

S0 S0 S0 S1 S1 0 0 Load Load
S1 S2 S0 — — Sh V — —
S2 S3 S2 — — Sh Su — —
S3 S4 S3 — — Sh Su — —
S4 S5 S4 — — Sh Su — —
S5 S0 S0 — — 0 Su — —

This example illustrates a general method for designing a divider for unsigned
binary numbers, and the design can easily be extended to larger numbers such as 16
bits divided by 8 bits or 32 bits divided by 16 bits. Using a separate counter to count
the number of shifts is recommended if more than four shifts are required.

4.12.2 Signed Divider
We now design a divider for signed (2’s complement) binary numbers that divides a
32-bit dividend by a 16-bit divisor to give a 16-bit quotient.Although algorithms exist
to divide the signed numbers directly, such algorithms are rather complex. So we take
the easy way out and complement the dividend and divisor if they are negative; when
division is complete, we complement the quotient if it should be negative.

Figure 4-52 shows a block diagram for the divider. We use a 16-bit bus to load
the registers. Since the dividend is 32 bits, two clocks are required to load the upper
and lower halves of the dividend register, and one clock is needed to load the divi-
sor. An extra sign flip-flop is used to store the sign of the dividend. We will use a
dividend register with a built-in 2’s complementer. The subtracter consists of an
adder and a complementer, so subtraction can be accomplished by adding the
2’s complement of the divisor to the dividend register. If the divisor is negative,
using a separate step to complement it is unnecessary; we can simply disable the
complementer and add the negative divisor instead of subtracting its complement.
The control circuit is divided into two parts—a main control, which determines the
sequence of shifts and subtracts, and a counter, which counts the number of shifts.
The counter outputs a signal K � 1 when 15 shifts have occurred. Control signals
are defined as follows:

LdU Load upper half of dividend from bus.
LdL Load lower half of dividend from bus.
Lds Load sign of dividend into sign flip-flop.
S Sign of dividend.
Cm1 Complement dividend register (2’s complement).
Ldd Load divisor from bus.
Su Enable adder output onto bus (Ena) and load upper half of dividend

from bus.

TABLE 4-5: State
Table for Divider

Control Circuit

04Ch04.qxd  3/13/07  3:18 PM  Page 242



Cm2 Enable complementer. (Cm2 equals the complement of the sign bit of
the divisor, so a positive divisor is complemented and a negative divisor
is not.)

Sh Shift the dividend register left one place and increment the counter.
C Carry output from adder. (If C � 1, the divisor can be subtracted from

the upper dividend.)
St Start.
V Overflow.
Qneg Quotient will be negative. (Qneg � 1 when the sign of the dividend and

divisor are different.)
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4-Bit 
counter 

S

FIGURE 4-52: Block
Diagram for Signed
Divider

The procedure for carrying out the signed division is as follows:

1. Load the upper half of the dividend from the bus, and copy the sign of the divi-
dend into the sign flip-flop.

2. Load the lower half of the dividend from the bus.
3. Load the divisor from the bus.
4. Complement the dividend if it is negative.
5. If an overflow condition is present, go to the done state.
6. Else carry out the division by a series of shifts and subtracts.
7. When division is complete, complement the quotient if necessary, and go to the

done state.

Testing for overflow is slightly more complicated than for the case of unsigned
division. First, consider the case of all positive numbers. Since the divisor and quotient
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are each 15 bits plus sign, their maximum value is 7FFFh. Since the remainder must
be less than the divisor, its maximum value is 7FFEh. Therefore, the maximum divi-
dend for no overflow is

divisor � quotient � remainder � 7FFFh � 7FFFh � 7FFEh � 3FFF7FFFh

If the dividend is 1 larger (3FFF8000h), division by 7FFFh (or anything smaller) will
give an overflow.We can test for the overflow condition by shifting the dividend left
one place and then comparing the upper half of the dividend (divu) with the divi-
sor. If divu 	 divisor, the quotient would be greater than the maximum value, which
is an overflow condition. For the preceding example, shifting 3FFF8000h left once
gives 7FFF0000h. Since 7FFFh equals the divisor, there is an overflow. On the other
hand, shifting 3FFF7FFFh left gives 7FFEFFFEh, and since 7FFEh 
 7FFFh, no
overflow occurs when dividing by 7FFFh.

Another way of verifying that we must shift the dividend left before testing for
overflow is as follows. If we shift the dividend left one place and then divu 	 divi-
sor, we could subtract and generate a quotient bit of 1. However, this bit would
have to go in the sign bit position of the quotient. This would make the quotient
negative, which is incorrect. After testing for overflow, we must shift the dividend
left again, which gives a place to store the first quotient bit after the sign bit. Since
we work with the complement of a negative dividend or a negative divisor, this
method for detecting overflow will work for negative numbers, except for the spe-
cial case where the dividend is 80000000h (the largest negative value). Modifying
the design to detect overflow in this case is left as an exercise.

Figure 4-53 shows the state graph for the control circuit.When St � 1, the registers
are loaded. In S2, if the sign of the dividend (S) is 1, the dividend is complemented. In
S3, we shift the dividend left one place and then we test for overflow in S4. If C � 1,
subtraction is possible, which implies an overflow, and the circuit goes to the done
state. Otherwise, the dividend is shifted left. In S5, C is tested. If C � 1, then Su � 1,
which implies Ldu and Ena, so the adder output is enabled onto the bus and loaded
into the upper dividend register to accomplish the subtraction. Otherwise, Sh � 1 and
the dividend register is shifted. This continues until K � 1, at which time the last shift
occurs if C � 0, and the circuit goes to S6.Then if the sign of the divisor and the saved
sign of the dividend are different, the dividend register is complemented so that the
quotient will have the correct sign.
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–/Ldl S/Cm1 Ldd

S ′/Ldd

–/Sh

C/V

St/Ldu Lds

C/SuC/Su
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C ′ Qneg ′/0
C ′ Qneg/Cm1

S0 S1 S2 S3

S5S6
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C ′/Sh

St ′/0
Rdy

FIGURE 4-53: State
Graph for Signed
Divider Control
Circuit
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The VHDL code for the signed divider is shown in Figure 4-54. Since the 1’s
complementer and adder are combinational circuits, we have represented their
operation by concurrent statements. All the signals that represent register outputs
are updated on the rising edge of the clock, so these signals are updated in the
process after waiting for CLK to change to '1'. The counter is simulated by a signal,
count. For convenience in listing the simulator output, we have added a ready signal
(Rdy), which is turned on in S0 to indicate that the division is completed.
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FIGURE 4-54: VHDL Model of 32-Bit Signed Divider

library IEEE;
use IEEE.numeric_bit.all;

entity sdiv is
port(CLK, St: in bit;

Dbus: in unsigned(15 downto 0);
Quotient: out unsigned(15 downto 0);
V, Rdy: out bit);

end sdiv;

architecture Signdiv of Sdiv is
signal State: integer range 0 to 6;
signal Count: unsigned(3 downto 0); -- integer range 0 to 15
signal Sign, C, Cm2: bit;
signal Divisor, Sum, Compout: unsigned(15 downto 0);
signal Dividend: unsigned(31 downto 0);
alias Acc: unsigned(15 downto 0) is Dividend(31 downto 16);
begin -- concurrent statements
Cm2 <= not divisor(15);
compout <= divisor when Cm2 = '0' -- 1's complementer

else not divisor;
Sum <= Acc + compout + unsigned'(0=>Cm2); -- adder output
C <= not Sum(15);
Quotient <= Dividend(15 downto 0);
Rdy <= '1' when State = 0 else '0';
process(CLK)
begin
if CLK'event and CLK = '1' then -- wait for rising edge of clock

case State is
when 0 =>
if St = '1' then

Acc <= Dbus; -- load upper dividend
Sign <= Dbus(15);
State <= 1;
V <= '0'; -- initialize overflow
Count <= "0000"; -- initialize counter

end if;
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when 1 =>
Dividend (15 downto 0) <= Dbus; -- load lower dividend
State <= 2;

when 2 =>
Divisor <= Dbus;
if Sign = '1' then -- two's complement Dividend if necessary

dividend <= not dividend + 1;
end if;
State <= 3;

when 3 =>
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
Count <= Count+1; State <= 4;

when 4 =>
if C = '1' then -- C

v <= '1'; State <= 0;
else -- C'
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
Count <= Count+1; State <= 5;

end if;
when 5 =>
if C = '1' then -- C

ACC <= Sum; -- subtract
dividend(0) <= '1';

else
Dividend <= Dividend(30 downto 0) & '0'; -- left shift
if Count = 15 then State <= 6; end if; -- KC'
Count <= Count+1;

end if;
when 6 =>
state <= 0;
if C = '1' then -- C
Acc <= Sum; -- subtract
dividend(0) <= '1'; State <= 6;

elsif (Sign xor Divisor(15)) = '1' then -- C'Qneg
Dividend <= not Dividend + 1;

end if; -- 2's complement Dividend
end case;

end if;
end process;

end signdiv;

We are now ready to test the divider design by using the VHDL simulator.
We will need a comprehensive set of test examples that will test all the different
special cases that can arise in the division process. To start with, we need to test
the basic operation of the divider for all the different combinations of signs for
the divisor and dividend (��, ��, ��, and ��). We also need to test the
overflow detection for these four cases. Limiting cases must also be tested,
including largest quotient, zero quotient, and so on. Use of a VHDL test bench is
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convenient because the test data must be supplied in sequence at certain times,
and the length of time to complete the division is dependent on the test data.
Figure 4-55 shows a test bench for the divisor. The test bench contains a dividend
array and a divisor array for the test data. The notation X“07FF00BB” is the
hexadecimal representation of a bit string. The process in testsdiv first puts the
upper dividend on Dbus and supplies a start signal. After waiting for the clock, it
puts the lower dividend on Dbus. After the next clock, it puts the divisor on
Dbus. It then waits until the Rdy signal indicates that division is complete before
continuing. Count is set equal to the loop-index, so that the change in Count can
be used to trigger the listing output.

4.12 Binary Dividers 247

FIGURE 4-55: Test Bench for Signed Divider

library IEEE;
use IEEE.numeric_bit.all;

entity testsdiv is
end testsdiv;

architecture test1 of testsdiv is
component sdiv
port(CLK, St: in bit;

Dbus: in unsigned(15 downto 0);
Quotient: out unsigned(15 downto 0);
V, Rdy: out bit);

end component;

constant N: integer : = 12; -- test sdiv1 N times
type arr1 is array(1 to N) of unsigned(31 downto 0);
type arr2 is array(1 to N) of unsigned(15 downto 0);
constant dividendarr: arr1 := (X"0000006F", X"07FF00BB", X"FFFFFE08",

X"FF80030A", X"3FFF8000", X"3FFF7FFF", X"C0008000", X"C0008000",
X"C0008001", X"00000000", X"FFFFFFFF", X"FFFFFFFF");

constant divisorarr: arr2 := (X"0007", X"E005", X"001E", X"EFFA", X"7FFF",
X"7FFF", X"7FFF", X"8000", X"7FFF", X"0001", X"7FFF", X"0000");

signal CLK, St, V, Rdy: bit;
signal Dbus, Quotient, divisor: unsigned(15 downto 0);
signal Dividend: unsigned(31 downto 0);
signal Count: integer range 0 to N;

begin
CLK <= not CLK after 10 ns;
process
begin
for i in 1 to N loop

St <= '1';
Dbus <= dividendarr(i) (31 downto 16);
wait until (CLK'event and CLK = '1');

04Ch04.qxd  3/13/07  3:18 PM  Page 247



Figure 4-56 shows the simulator command file and output. The –NOtrigger,
together with the –Trigger count in the list statement, causes the output to be
displayed only when the count signal changes. Examination of the simulator output
shows that the divider operation is correct for all of the test cases, except for the
following case:

C0008000h � 7FFFh � �3FFF8000 � 7FFFh � �8000h � 8000h

In this case, the overflow is turned on, and division never occurs. In general, the
divider will indicate an overflow whenever the quotient should be 8000h (the most
negative value). This occurs because the divider basically divides positive numbers,
and the largest positive quotient is 7FFFh. If it is important to be able to generate
the quotient 8000h, the overflow detection can be modified so it does not generate
an overflow in this special case.

248 Design Examples

Dbus <= dividendarr(i) (15 downto 0);
wait until (CLK'event and CLK = '1');
Dbus <= divisorarr(i);
St <= '0';
dividend <= dividendarr(i) (31 downto 0); –– save dividend for listing
divisor <= divisorarr(i); –– save divisor for listing
wait until (Rdy = '1');
count <= i; –– save index for triggering

end loop;
end process;
sdiv1: sdiv port map(CLK, St, Dbus, Quotient, V, Rdy);

end test1;

FIGURE 4-56: Simulation Test Results for Signed Divider

–– Command file to test results of signed divider
add list -hex -NOtrigger dividend divisor Quotient V -Trigger count
run 5300

ns delta dividend divisor quotient v count
0 +0 00000000 0000 0000 0 0

470 +3 0000006F 0007 000F 0 1
910 +3 07FF00BB E005 BFFE 0 2
1330 +3 FFFFFE08 001E FFF0 0 3
1910 +3 FF80030A EFFA 07FC 0 4
2010 +3 3FFF8000 7FFF 0000 1 5
2710 +3 3FFF7FFF 7FFF 7FFF 0 6
2810 +3 C0008000 7FFF 0000 1 7
3510 +3 C0008000 8000 7FFF 0 8
4210 +3 C0008001 7FFF 8001 0 9
4610 +3 00000000 0001 0000 0 A
5010 +3 FFFFFFFF 7FFF 0000 0 B
5110 +3 FFFFFFFF 0000 0002 1 C
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In this chapter, we presented several design examples. The examples included
several arithmetic and nonarithmetic circuits.A seven-segment display, a BCD adder,
a traffic light controller, a scoreboard, and a keypad scanner are examples of non-
arithmetic circuits presented in the chapter.We also described algorithms for addition,
multiplication, and division of unsigned and signed binary numbers. Specific designs
such as the carry look-ahead adder and the array multiplier were presented. We
designed digital systems to implement these algorithms.After developing a block dia-
gram for such a system and defining the required control signals, we used state graphs
to define a sequential machine that generates control signals in the proper sequence.
We used VHDL to describe the systems at several different levels so that we can sim-
ulate and test for correct operation of the systems we have designed.

Problems
4.1 Design the correction circuit for a BCD adder that computes Z digit 0 and C for S0

(see Figures 4-5 and 4-6). This correction circuit adds “0110” to S0 if S0 � 9. This is
the same as adding “0AA0” to S0, where A � ‘1’ if S0 � 9. Draw a block diagram for
the correction circuit using one full adder, three half-adders, and a logic circuit to
compute A. Design a circuit for A using a minimum number of gates. Note that the
maximum possible value of S0 is 10010.

4.2 (a) If gate delays are 5 ns, what is the delay of the fastest 4-bit ripple carry adder?
Explain your calculation.

(b) If gate delays are 5 ns, what is the delay of the fastest 4-bit adder? What kind of
an adder will it be? Explain your calculation.

4.3 Develop a VHDL model for a 16-bit carry look-ahead adder utilizing the 4-bit
adder from Figure 4-10 as a component.

4.4 Derive generates, propagates, group generates, group propagates, and the final sum
and carry out for the 16-bit carry look ahead adder of Figure 4-9, while adding 0101
1010 1111 1000 and 0011 1100 1100 0011.

4.5 (a) Write a VHDL module that describes one bit of a full adder with accumulator.
The module should have two control inputs, Ad and L. If Ad � 1, the Y input
(and carry input) are added to the accumulator. If L � 1, the Y input is loaded
into the accumulator.

(b) Using the module defined in (a), write a VHDL description of a 4-bit subtracter
with accumulator. Assume negative numbers are represented in 1’s comple-
ment. The subtracter should have control inputs Su (subtract) and Ld (load).

4.6 (a) Implement the traffic-light controller of Figure 4-14 using a modulo 13 counter
with added logic. The counter should increment every clock, with two excep-
tions. Use a ROM to generate the outputs.
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(b) Write a VHDL description of your answer to (a).
(c) Write a test bench for part (b) and verify that your controller works correctly.

Use concurrent statements to generate test inputs for Sa and Sb.

4.7 Make the necessary additions to the following state graph so that it is a proper, com-
pletely specified state graph. Demonstrate that your answer is correct. Convert the
graph to a state table using 0’s and 1’s for inputs and outputs.
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4.8 Write synthesizable VHDL code that will generate the given waveform (W). Use a
single process. Assume that a clock with a 1 
s period is available as an input.

29 µs 43 µs 
(repeat) 

W 29 µs 43 µs 

4.9 A BCD adder adds two BCD numbers (each of range 0 to 9) and produces the sum in
BCD form. For example, if it adds 9 (1001) and 8 (1000) the result would be 17 (1 0111).
Implement such a BCD adder using a 4-bit binary adder and appropriate control
circuitry.Assume that the two BCD numbers are already loaded into two 4-bit registers
(A and B), and there is a 5-bit sum register (S) available. You need some kind of cor-
rection to get the sum in the BCD form, because the binary adder produces results in
the range 0000 to 1111 (plus a carry in some cases). If any addition is required for this
correction, use the same adder (i.e., you can use only one adder). Use multiplexers at
the adder inputs to steer the appropriate numbers to the adder in each cycle. Assume
a start signal to initiate the addition and a done signal to indicate completion.

(a) Draw a block diagram of the system. Label each component appropriately to
indicate its functionality and size.

(b) Describe step-by-step the algorithm that you would use to perform the addi-
tion. Explain and illustrate the correction step.

(c) Draw a state graph for the controller.
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4.10 Write VHDL code for a shift register module that includes a 16-bit shift register, a
controller, and a 4-bit down counter. The shifter can shift a variable number of bits
depending on a count provided to the shifter module. Inputs to the module are a
number N (indicating shift count) in the range 1 to 15, a 16-bit vector par_in, a clock,
and a start signal, St. When St � ‘1’, N is loaded into the down counter, and par_in
is loaded into the shift register. Then the shift register does a cycle left shift N times,
and the controller returns to the start state. Assume that St is only ‘1’ for one clock
time. All operations are synchronous on the falling edge of the clock.

(a) Draw a block diagram of the system and define any necessary control signals.
(b) Draw a state graph for the controller (two states).
(c) Write VHDL code for the shift-register module. Use two processes (one for the

combinational part of the circuit, and one for updating the registers).

4.11 (a) Figure 4-12 shows the block diagram for a 32-bit serial adder with accumulator.
The control circuit uses a 5-bit counter, which outputs a signal K � 1 when it is
in state 11111. When a start signal (St) is received, the registers should be
loaded. Assume that St will remain 1 until the addition is complete. When the
addition is complete, the control circuit should go to a stop state and remain
there until St is changed back to 0. Draw a state diagram for the control circuit
(excluding the counter).

(b) Write the VHDL for the complete system, and verify its correct operation.

4.12 A block diagram for a 16-bit 2’s complement serial subtracter is given here. When
St � 1, the registers are loaded and then subtraction occurs. The shift counter, C,
produces a signal C15 � 1 after 15 shifts. V should be set to 1 if an overflow occurs.
Set the carry flip-flop to 1 during load in order to form the 2’s complement. Assume
that St remains 1 for one clock time.

(a) Draw a state diagram for the control (two states).
(b) Write VHDL code for the system. Use two processes. The first process should

determine the next state and control signals; the second process should update
the registers on the rising edge of the clock.
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4.13 This problem involves the design of a BCD to binary converter. Initially a three-digit
BCD number is placed in the A register. When a St signal is received, conversion to
binary takes place, and the resulting binary number is stored in the B register. At
each step of the conversion, the entire BCD number (along with the binary number)
is shifted one place to the right. If the result in a given decade is greater than or equal
1000, the correction circuit subtracts 0011 from that decade. (If the result is less than
1000, the correction circuit leaves the contents of the decade unchanged.) A shift
counter is provided to count the number of shifts. When conversion is complete, the
maximum value of B will be 999 (in binary). Note: B is 10 bits.

(a) Illustrate the algorithm starting with the BCD number 857, showing A and B at
each step.

(b) Draw the block diagram of the BCD-to-binary converter.
(c) Draw a state diagram of the control circuit (three states). Use the following

control signals: St: start conversion; Sh: shift right; Co: subtract correction if
necessary; and C9: counter is in state 9, or C10: counter is in state 10. (Use either
C9 or C10 but not both.)

(d) Write a VHDL description of the system.

4.14 This problem involves the design of a circuit that finds the square root of an 8-bit
unsigned binary number N using the method of subtracting out odd integers. To
find the square root of N, we subtract 1, then 3, then 5, and so on, until we can no
longer subtract without the result going negative. The number of times we subtract
is equal to the square root of N. For example, to find : 27 � 1 � 26; 26 � 3 � 23;
23 � 5 � 18; 18 � 7 � 11; 11 � 9 � 2; 2 � 11 (can’t subtract). Since we subtracted
five times, � 5. Note that the final odd integer is 1110 � 10112, and this consists
of the square root (1012 � 510) followed by a 1.

(a) Draw a block diagram of the square rooter that includes a register to hold N, a
subtracter, a register to hold the odd integers, and a control circuit. Indicate where
to read the final square root. Define the control signals used on the diagram.

(b) Draw a state graph for the control circuit using a minimum number of states.
The N register should be loaded when St � 1.When the square root is complete,
the control circuit should output a done signal and wait until St � 0 before
resetting.

4.15 This problem concerns the design of a multiplier for unsigned binary numbers that
multiplies a 4-bit number by a 16-bit number to give a 20-bit product. To speed up
the multiplication, a 4-by-4 array multiplier is used so that we can multiply by 4 bits
in one clock time instead of only by 1 bit at each clock time. The hardware includes
a 24-bit accumulator register that can be shifted right 4 bits at a time using a control
signal Sh4. The array multiplier multiplies 4 bits by 4 bits to give an 8-bit product.
This product is added to the accumulator using an Ad control signal. When a St
signal occurs, the 16-bit multiplier is loaded into the lower part of the A register. A
done signal should be turned on when the multiplication is complete. Since both the
array multiplier and adder are combinational circuits, the 4-bit multiply and the
8-bit add can both be completed in the same clock cycle. Do NOT include the array

√27

√27
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multiplier logic in your code, just use the overloaded “*” operator. If D and E are
4-bit unsigned numbers, D * E will compute an 8-bit product.
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(a) Draw a state graph for the controller (10 states)
(b) Write VHDL code for the multiplier. Use two processes (a combinational

process and a clocked process). All signals should be of type unsigned or bit.

4.16 (a) Estimate how many AND gates and adders will be required for a 16-bit � 16-bit
array multiplier.

(b) What is the longest delay in a 16 � 16 array multiplier, assuming an AND gate
delay is tg, and adder delay (full adder and half adder) is tad?

4.17 (a) Draw the organization of an 8 � 8 array multiplier and calculate how many full
adders, half-adders, and AND gates are required.

(b) Highlight the critical path in your answer to (a) (If there are many equivalent
ones, highlight any one of them.)

(c) What is the longest delay in an 8 � 8 array multiplier, assuming an AND gate
delay is tg � 1 ns, and adder delay (full adder and half adder) is tad � 2 ns?

(d) For an 8-bit � 8-bit add-and-shift multiplier (similar to Figure 4-25), how fast must
the clock be in order to complete the multiplication in the same time as in part (c)?

4.18 An n � n array multiplier, as in Figure 4-29, takes 3n � 4 adder delays � 1 gate
delay to calculate a product. Design an array multiplier which is faster than this for
n � 4. (Hint: Instead of passing carry output to the left adder, pass it to the diago-
nally lower one, speeding up the critical path. This topology is called “multiplier
using carry-save adder.”)

4.19 The block diagram for a multiplier for signed (2’s complement) binary numbers is
shown in Figure 4-33. Give the contents of the A and B registers after each clock
pulse when multiplicand � �1/8 and multiplier � �3/8.
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4.20 In Section 4.10 we developed an algorithm for multiplying signed binary fractions,
with negative fractions represented in 2’s complement.

(a) Illustrate this algorithm by multiplying 1.0111 by 1.101.
(b) Draw a block diagram of the hardware necessary to implement this algorithm

for the case where the multiplier is 4 bits, including sign, and the multiplicand is
5 bits, including sign.

4.21 The objective of this problem is to use VHDL to describe and simulate a multiplier
for signed binary numbers using Booth’s algorithm. Negative numbers should be
represented by their 2’s complement. Booth’s algorithm works as follows, assuming
each number is n bits including sign: Use an (n � 1)-bit register for the accumulator
(A) so the sign bit will not be lost if an overflow occurs. Also, use an (n � 1)-bit reg-
ister (B) to hold the multiplier and an n-bit register (C) to hold the multiplicand.

1. Clear A (the accumulator), load the multiplier into the upper n bits of B, clear B0,
and load the multiplicand into C.

2. Test the lower two bits of B (B1B0).
If B1B0 � 01, then add C to A (C should be sign-extended to n � 1 bits
and added to A using an (n � 1)-bit adder).
If B1B0 � 10, then add the 2’s complement of C to A.
If B1B0 � 00 or 11, skip this step.

3. Shift A and B together right one place with sign extended.
4. Repeat steps 2 and 3, n � 1 more times.
5. The product will be in A and B, except ignore B0.

Example for n � 5: Multiply �9 by �13.

A B B1B0
1. Load registers. 000000 100110 10 C � 10111
2. Add 2’s comp. of C to A. 001001

001001 100110
3. Shift A&B. 000100 110011 11
3. Shift A&B. 000010 011001 01
2. Add C to A. 110111

111001 011001
3. Shift A&B. 111100 101100 00
3. Shift A&B. 111110 010110 10
2. Add 2’s comp. of C to A. 001001

000111 010110
3. Shift A&B. 000011 101011

Final result: 0001110101 � �117

(a) Draw a block diagram of the system for n � 8. Use 9-bit registers for A and B,
a 9-bit full adder, an 8-bit complementer, a 3-bit counter, and a control circuit.
Use the counter to count the number of shifts.

(b) Draw a state graph for the control circuit.When the counter is in state 111, return
to the start state at the time the last shift occurs (three states should be sufficient).
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(c) Write behavioral VHDL code for the multiplier.
(d) Simulate your VHDL design using the following test cases (in each pair, the

second number is the multiplier):

01100110 � 00110011

10100110 � 01100110

01101011 � 10001110

11001100 � 10011001

Verify that your results are correct.

4.22 Design a multiplier that will multiply two 16-bit signed binary integers to give a
32-bit product. Negative numbers should be represented in 2’s complement form.
Use the following method: First complement the multiplier and multiplicand if they
are negative, multiply the positive numbers, and then complement the product if
necessary. Design the multiplier so that after the registers are loaded, the multipli-
cation can be completed in 16 clocks.

(a) Draw a block diagram of the multiplier. Use a 4-bit counter to count the num-
ber of shifts. (The counter will output a signal K � 1 when it is in state 15.)
Define all condition and control signals used on your diagram.

(b) Draw a state diagram for the multiplier control using a minimum number of
states (five states).When the multiplication is complete, the control circuit should
output a done signal and then wait for ST � 0 before returning to state S0.

(c) Write a VHDL behavioral description of the multiplier without using control
signals (for example, see Figure 4-35) and test it.

(d) Write a VHDL behavioral description using control signals (for example, see
Figure 4-40) and test it.

4.23 This problem involves the design of a parallel adder-subtracter for 8-bit numbers
expressed in sign and magnitude notation. The inputs X and Y are in sign and mag-
nitude, and the output Z must be in sign and magnitude. Internal computation may
be done in either 2’s complement or 1’s complement (specify which you use), but no
credit will be given if you assume the inputs X and Y are in 1’s or 2’s complement.
If the input signal Sub � 1, then Z � X � Y, else Z � X � Y. Your circuit must
work for all combinations of positive and negative inputs for both add and subtract.
You may use only the following components: an 8-bit adder, a 1’s complementer (for
the input Y), a second complementer (which may be either 1’s complement or 2’s
complement—specify which you use), and a combinational logic circuit to generate
control signals. (Hint: �X � Y � � (X � Y). Also generate an overflow signal that
is 1 if the result cannot be represented in 8-bit sign and magnitude.)

(a) Draw the block diagram. No registers, multiplexers, or tristate busses are allowed.
(b) Give a truth table for the logic circuit that generates the necessary control sig-

nals. Inputs for the table should be Sub, Xs, and Ys in that order, where Xs is the
sign of X and Ys is the sign of Y.

(c) Explain how you would determine the overflow and give an appropriate equation.
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4.24 Four push buttons (B0, B1, B2, and B3) are used as inputs to a logic circuit.Whenever
a button is pushed, it is debounced and then the circuit loads the button number in
binary into a 2-bit register (N). For example, if B2 is pushed, the register output
becomes N � 102. The register holds this value until another button is pushed. Use
a total of two flip-flops for debouncing. Use a 10-bit counter as a clock divider to
provide a slow clock for debouncing. Kd is a signal which is 1 when any button has
been pushed and debounced.

(a) Draw a state graph (two states) to generate the signal that loads the register
when Kd � 1.

(b) Draw a logic circuit diagram showing the 10-bit counter, the 2-bit register N,
and all necessary gates and flip-flops.

4.25 Design a 4 � 4 keypad scanner for the following keypad layout.
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(a) Assuming only one key can be pressed at a time, find the equations for a
number decoder given R3�0 and C3�0, whose output corresponds to the binary
value of the key. For example, the F key will return N3�0 � 1111 in binary,
or 15.

(b) Design a debouncing circuit that detects when a key has been pressed or
depressed. Assume switch bounce will die out in one or two clock cycles. When
a key has been pressed, K � 1 and Kd is the debounced signal.

(c) Design and draw a state graph that performs the keyscan and issues a valid
pulse when a valid key has been pressed using inputs from part (b).

(d) Write a VHDL description of your keypad scanner and include the decoder,
debouncing circuit, and scanner.

4.26 This problem concerns the design of a divider for unsigned binary numbers that will
divide a 16-bit dividend by an 8-bit divisor to give an 8-bit quotient.Assume that the
start signal (ST � 1) is 1 for exactly one clock time. If the quotient would require
more than 8 bits, the divider should stop immediately and output V � 1 to indicate
an overflow. Use a 17-bit dividend register and store the quotient in the lower 8 bits
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of this register. Use a 4-bit counter to count the number of shifts, together with a
subtract-shift controller.

(a) Draw a block diagram of the divider.
(b) Draw a state graph for the subtract-shift controller (three states).
(c) Write a VHDL description of the divider. Use two processes, similar to

Figure 4-40.
(d) Write a test bench for your divider (similar to Figure 4-55).

4.27 A block diagram and state graph for a divider for unsigned binary numbers is shown
below. This divider divides a 16-bit dividend by a 16-bit divisor to give a 16-bit quo-
tient. The divisor can be any number in the range 1 to 216 � 1. The only case where
an overflow can occur is when the divisor is 0. Control signals are defined as follows:
Ld1: load the divisor from the input bus; Ld2: load the dividend from the input bus
and clear ACC; Sh: left shift ACC & Dividend; Su: load the subtractor output into
ACC and set the lower quotient bit to 1; K � 1 when 15 shifts have been made.
Write complete VHDL code for the divider. All signals must be of type unsigned or
bit. Use two processes.
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4.28 A block diagram for a divider that divides an 8-bit unsigned number by a 4-bit
unsigned number to give a 4-bit quotient is given below. Note that the Xi inputs to
the subtractors are shifted over one position to the left.This means that the shift-and-
subtract operation can be completed in one clock time instead of two. Depending on
the borrow from the subtractor, a shift or shift-and-subtract operation occurs at each
clock time, and the division can always be completed in four clock times after the
registers are loaded. Ignore overflow.When the start signal (St) is 1, the X and Y reg-
isters are loaded. Assume that the start signal (St) is 1 for only one clock time.
Sh causes X to shift left with 0 fill. SubSh causes the subtractor output to be loaded
into the left part of X, and at the same time the rest of X is shifted left.
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(a) Draw a state graph for the controller (5 states).
(b) Complete the VHDL code given below. Registers and signals should be of type

unsigned so that overloaded operators may be used. Write behavioral code that
uses a single process.

library IEEE;
use IEEE.numeric_bit.all;

entity divu is
port(dividend: in unsigned(7 downto 0);

divisor: in unsigned(3 downto 0);
St, clk: in bit;
quotient: out unsigned(3 downto 0));

end entity divu;

architecture div of divu is

4.29 An older model Thunderbird car has three left (LA, LB, LC) and three right (RA,
RB, RC) tail lights which flash in unique patterns to indicate left and right turns.

258 Design Examples

X0 X1 X2 X3 X4 X5 X6 X7 

Y0 Y1 Y2 Y3 
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B = borrow 
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LC  LB LA RA  RB RC LC  LB LA RA  RB RC 

LEFT turn pattern RIGHT turn pattern 

Design a Moore sequential circuit to control these lights. The circuit has three
inputs LEFT, RIGHT, and HAZ. LEFT and RIGHT come from the driver’s turn
signal switch and cannot be 1 at the same time. As indicated above, when LEFT � 1
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the lights flash in a pattern LA on; LA and LB on; LA, LB, and LC on; all off; and
then the sequence repeats. When RIGHT � 1, a similar sequence appears on lights
RA, RB, and RC, as indicated on the right side of the picture. If a switch from LEFT
to RIGHT (or vice versa) occurs in the middle of a flashing sequence, the circuit
should immediately go to the IDLE (lights off) state and then start the new
sequence. HAZ comes from the hazard switch, and when HAZ � 1, all six lights
flash on and off in unison. HAZ takes precedence if LEFT or RIGHT is also on.

Assume that a clock signal is available with a frequency equal to the desired
flashing rate.

(a) Draw the state graph (eight states).
(b) Realize the circuit using six D flip-flops, and make a one-hot state assignment

such that each flip-flop output drives one of the six lights directly. (You may use
LogicAid.)

(c) Realize the circuit using three D flip-flops, using the guidelines from Section 1.7
to determine a suitable encoded state assignment. Note the tradeoff between
more flip-flops and more gates in (b) and (c).

4.30 Design a sequential circuit to control the motor of a tape player. The logic circuit
will have five inputs and three outputs. Four of the inputs are the control buttons on
the tape player. The input PL is 1 if the play button is pressed, the input RE is 1 if
the rewind button is pressed, the input FF is 1 if the fast forward button is pressed,
and the input ST is 1 if the stop button is pressed. The fifth input to the control cir-
cuit is M, which is 1 if the special “music sensor” detects music at the current tape
position. The three outputs of the control circuit are P, R, and F, which make the
tape play, rewind, and fast forward, respectively, when 1. No more than one output
should ever be on at a time; all outputs off causes the motor to stop. The buttons
control the tape as follows: If the play button is pressed, the tape player will start
playing the tape (output P � 1). If the play button is held down and the rewind but-
ton is pressed and released, the tape player will rewind to the beginning of the cur-
rent song (output R � 1 until M � 0) and then start playing. If the play button is
held down and the fast forward button is pressed and released, the tape player will
fast forward to the end of the current song (output F � 1 until M � 0) and then start
playing. If rewind or fast forward is pressed while play is released, the tape player
will rewind or fast forward the tape. Pressing the stop button at any time should stop
the tape player motor.

(a) Construct a state graph chart for the tape player controller. You may assume
that only one of the four buttons can be pressed at any given time.

(b) Write VHDL code for the controller.

Problems 259
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A state machine is often used to control a digital system that carries out a step-
by-step procedure or algorithm. State diagrams or state graphs with circles rep-
resenting states and arcs representing transitions have traditionally been used to
specify the operation of the controller state machine. As an alternative to using
state graphs, a special type of flow chart, called a state machine chart, or SM chart,
may be used to describe the behavior of a state machine. These charts are also
called algorithmic state machine charts, or ASM charts. SM charts are often used
to design control units for digital systems.

In this chapter, we first describe the properties of SM charts and how they are used
in the design of state machines. Then we show examples of SM charts for a multiplier
and a dice game controller. We construct VHDL descriptions of these systems from
the SM charts, and we simulate the VHDL code to verify correct operation. We then
proceed with the design and show how the SM chart can be realized with hardware.
We then introduce microprogramming as a technique to implement the SM chart.

5.1 State Machine Charts
SM charts resemble software flow charts. Flow charts have been very useful in soft-
ware design for decades, and in a similar fashion, SM charts have been useful in
hardware design. This is especially true in behavioral-level design entry.

SM charts offer several advantages over state graphs. It is often easier to under-
stand the operation of a digital system by inspection of the SM chart instead of the
equivalent state graph. A proper state graph has to obey some conditions: (1) One
and exactly one transition from a state must be true at any time, and (2) the next
state must be uniquely defined for every input combination. These conditions are
automatically satisfied for an SM chart. An SM chart also directly leads to a hard-
ware realization. A given SM chart can be converted into several equivalent forms,
and different forms might naturally result in different implementations. Hence, a
designer may optimize and transform SM charts to suit the implementation
style�technology that he or she is looking for.

An SM chart differs from an ordinary flow chart in that certain specific rules must
be followed in constructing the SM chart. When these rules are followed, the SM
chart is equivalent to a state graph, and it leads directly to a hardware realization.

C H A P T E R

5

260

SM Charts and
Microprogramming
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5.1 State Machine Charts 261

Figure 5-1 shows the three principal components of an SM chart. The state of the
system is represented by a state box. The state box contains a state name, followed by
a slash (�) and an optional output list.After a state assignment has been made, a state
code may be placed outside the box at the top.A decision box is represented by a dia-
mond-shaped symbol with true and false branches. The condition placed in the box
is a Boolean expression that is evaluated to determine which branch to take.The con-
ditional output box, which has curved ends, contains a conditional output list. The
conditional outputs depend on both the state of the system and the inputs.

state_name/ 
output list 

xxx 

(a) State box 

condition 

 (true 
branch) 

(false 
branch) 1 0 

conditional
output list

(b) Decision box 
(c) Conditional 
      output box 

Optional 
state code 

FIGURE 5-1:
Principal
Components
of an SM Chart

S1/Z1 Z2

X1

Z3 Z4

X3

X2 Z5

n 3 2 1 

0 1 

0 1 

0 1 

One state 

One entrance path 

Link 
path a 

Link 
path b 

n exit paths

SM 
block 

FIGURE 5-2:
Example of an 
SM Block

An SM chart is constructed from SM blocks. Each SM block (Figure 5-2) contains
exactly one state box, together with the decision boxes and conditional output boxes
associated with that state. An SM block has one entrance path and one or more exit
paths. Each SM block describes the machine operation during the time that the
machine is in one state.When a digital system enters the state associated with a given
SM block, the outputs on the output list in the state box become true.The conditions
in the decision boxes are evaluated to determine which paths are followed through
the SM block. When a conditional output box is encountered along such a path, the
corresponding conditional outputs become true. If an output is not encountered
along a path, that output is false by default. A path through an SM block from
entrance to exit is referred to as a link path.
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For the example of Figure 5-2, when state S1 is entered, outputs Z1 and Z2 become 1.
If input X1 � 0, Z3 and Z4 also become 1. If X1 � X2 � 0, at the end of the state time,
the machine goes to the next state via exit path 1. On the other hand, if X1 � 1 and 
X3 � 0, the output Z5 is l, and exiting to the next state will occur via exit path 3. Since
Z3 and Z4 are not encountered along this link path, Z3 � Z4 � 0 by default.

A given SM block can generally be drawn in several different forms. Figure 5-3
shows two equivalent SM blocks. In both (a) and (b), the output Z2 � 1 if X1 � 0;
the next state is S2 if X2 � 0 and S3 if X2 � 1.As illustrated in this example, the order
in which the inputs are tested may affect the complexity of the SM chart.
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FIGURE 5-3:
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Blocks

The SM charts of Figures 5-4(a) and (b) each represent a combinational cir-
cuit, since there is only one state and no state change occurs. The output is Z1 � 1
if A � BC � 1; otherwise Z1 � 0. Figure 5-4(b) shows an equivalent SM chart in
which the input variables are tested individually. The output is Z1 � 1 if A � 1 or
if A � 0, B � 1, and C � 1. Hence

Z1 � A � A�BC � A � BC

which is the same output function realized by the SM chart of Figure 5-4(a).
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FIGURE 5-4:
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Circuit
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5.1 State Machine Charts 263

Certain rules must be followed when constructing an SM block. First, for every
valid combination of input variables, there must be exactly one exit path defined.
This is necessary since each allowable input combination must lead to a single next
state. Second, no internal feedback within an SM block is allowed. Figure 5-5 shows
incorrect and correct ways of drawing an SM block with feedback.

0 
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S0 /

X
0 

1 

S0 /

X

(a) Incorrect (b) Correct 

FIGURE 5-5:
SM Block with
Feedback
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X1 X2 X3
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(a) Parallel form 

(b) Serial form 

FIGURE 5-6:
Equivalent SM
Blocks

As shown in Figure 5-6(a), an SM block can have several parallel paths that lead
to the same exit path, and more than one of these paths can be active at the same time.
For example, if X1 � X2 � 1 and X3 � 0, the link paths marked with dashed lines are
active, and the outputs Z1, Z2, and Z3 are 1.Although Figure 5-6(a) would not be a valid
flow chart for a program for a serial computer, it presents no problems for a state
machine implementation.The state machine can have a multiple-output circuit that gen-
erates Z1, Z2, and Z3 at the same time. Figure 5-6(b) shows a serial SM block, which
is equivalent to Figure 5-6(a). In the serial block, only one active link path between
entrance and exit is possible. For any combination of input values, the outputs will be the
same as in the equivalent parallel form. The link path for X1 � X2 � 1 and X3 � 0
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is shown with a dashed line, and the outputs encountered on this path are Z1, Z2, and Z3.
Regardless of whether the SM block is drawn in serial or parallel form, all the tests take
place within one clock time. In the rest of this text, we use only the serial form for
SM charts.

It is easy to convert a state graph for a sequential machine to an equivalent SM
chart. The state graph of Figure 5-7(a) has both Moore and Mealy outputs. The
equivalent SM chart has three blocks—one for each state. The Moore outputs (Za,
Zb, Zc) are placed in the state boxes, since they do not depend on the input. The
Mealy outputs (Z1, Z2) appear in conditional output boxes, since they depend
on both the state and input. In this example, each SM block has only one decision
box, since only one input variable must be tested. For both the state graph and SM
chart, Zc is always 1 in state S2. If X � 0 in state S2, Z1 � 1 and the next state is S0.
If X � 1, Z2 � 1 and the next state is S2. We have added a state assignment (S0 � 00,
S1 � 01, S2 � 11) next to the state boxes.
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Conversion of a
State Graph to an
SM Chart

Figure 5-8 shows a timing chart for the SM chart of Figure 5-7 with an input
sequence X � 1, 1, 1, 0, 0, 0. In this example, all state changes occur immediately
after the rising edge of the clock. Since the Moore outputs (Za, Zb, Zc) depend on
the state, they can change only immediately following a state change. The Mealy
outputs (Z1, Z2) can change immediately after a state change or an input change.
In any case, all outputs will have their correct values at the time of the active clock
edge.
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5.2 Derivation of SM Charts 265

5.2 Derivation of SM Charts
The method used to derive an SM chart for a sequential control circuit is similar to
that used to derive the state graph. First, we should draw a block diagram of the
system we are controlling. Next, we should define the required input and output sig-
nals to the control circuit. Then we can construct an SM chart that tests the input
signals and generates the proper sequence of output signals. In this section, we give
two examples of derivation of SM charts.

5.2.1 Binary Multiplier
The first example is an SM chart for control of the binary multiplier shown in
Figures 4-25 and 4-28(a). The add-shift control generates the required sequence of
add and shift signals.The counter counts the number of shifts and outputs K � 1 just
before the last shift occurs. The SM chart for the multiplier control (Figure 5-9)
corresponds closely to the state graph of Figure 4-28(c). In state S0, when the start
signal St is 1, the registers are loaded. In S1, the multiplier bit M is tested. If M � 1,
an add signal is generated and the next state is S2. If M � 0, a shift signal is gener-
ated and K is tested. If K � 1, this will be the last shift and the next state is S3. In S2,
a shift signal is generated, since a shift must always follow an add. If K � 1, the
circuit goes to S3 at the time of the last shift; otherwise, the next state is S1. In S3, the
done signal is turned on.

Conversion of an SM chart to a VHDL process is straightforward.A case statement
can be used to specify what happens in each state. Each condition box corresponds
directly to an if statement (or an elsif). Figure 5-10 shows the VHDL code for the SM
chart in Figure 5-9. Two processes are used. The first process represents the combina-
tional part of the circuit, and the second process updates the state register on the rising
edge of the clock.The signals Load, Sh, and Ad are turned on in the appropriate states,
and they must be turned off when the state changes. A convenient way to do this is to
set them all to 0 at the start of the process.This VHDL code only models the controller.
It assumes the presence of adders and shifters (shift registers) in the architecture and
generates the appropriate signals to load the registers, to add and�or to shift.

Clock 
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X

Za

Zb

Zc

Z1

Z2

S0 S1 S2 S2 S0 S0

FIGURE 5-8: Timing
Chart for Figure 5-7
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266 SM Charts and Microprogramming

FIGURE 5-10: Behavioral VHDL for Multiplier Controller (SM Chart of Figure 5-9)

entity Mult is
port(CLK, St, K, M: in bit;

Load, Sh, Ad, Done: out bit);
end Mult;

architecture SMbehave of Mult is
signal State, Nextstate: integer range 0 to 3;
begin
process(St, K, M, State) -- start if state or inputs change
begin
Load <= '0'; Sh <= '0'; Ad <= '0'; Done <= '0';
case State is

when 0 =>
if St = '1' then -- St (state 0)
Load <= '1';
Nextstate <= 1;

else Nextstate <= 0; -- St'
end if;

when 1 =>
if M = '1' then -- M (state 1)

Ad <= '1';
Nextstate <= 2;

else -- M'
Sh <= '1';
if K = '1' then Nextstate <= 3; -- K
else Nextstate <= 1; -- K'
end if;

end if;

S0 /

St 

Load 

S1/

M 

Sh 

K 
S2/Sh

Ad 

S3/Done K 

1 

1 
1 

0 

0 

0 

0 

1 

FIGURE 5-9: SM
Chart for Binary
Multiplier

05Ch05.qxd  3/13/07  3:20 PM  Page 266



5.2 Derivation of SM Charts 267

5.2.2 A Dice Game
As a second example of SM chart construction, we will design an electronic dice
game. This game is popularly known as craps in the United States. The game
involves two dice, each of which can have a value between 1 and 6.Two counters are
used to simulate the roll of the dice. Each counter counts in the sequence 1, 2, 3, 4,
5, 6, 1, 2, . . . . Thus, after the “roll” of the dice, the sum of the values in the two coun-
ters will be in the range 2 through 12. The rules of the game are as follows:

1. After the first roll of the dice, the player wins if the sum is 7 or 11. The player
loses if the sum is 2, 3, or 12. Otherwise, the sum the player obtained on the first
roll is referred to as a point, and he or she must roll the dice again.

2. On the second or subsequent roll of the dice, the player wins if the sum equals
the point, and he or she loses if the sum is 7. Otherwise, the player must roll again
until he or she finally wins or loses.

Figure 5-11 shows the block diagram for the dice game. The inputs to the dice
game come from two push buttons, Rb (roll button) and Reset. Reset is used to

when 2 =>
Sh <= '1'; -- (state 2)
if K = '1' then Nextstate <= 3; -- K
else Nextstate <= 1; -- K'
end if;

when 3 =>
Done <= '1'; -- (state 3)
Nextstate <= 0;

end case;
end process;
process(CLK)
begin
if CLK = '1' and CLK'event then
State <= Nextstate; -- update state on rising edge

end if;
end process;

end SMbehave;
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initiate a new game. When the roll button is pushed, the dice counters count at a
high speed, so the values cannot be read on the display. When the roll button is
released, the values in the two counters are displayed.

Figure 5-12 shows a flow chart for the dice game. After rolling the dice, the sum
is tested. If it is 7 or 11, the player wins; if it is 2, 3, or 12, he or she loses. Otherwise
the sum is saved in the point register, and the player rolls again. If the new sum
equals the point, the player wins; if it is 7, he or she loses. Otherwise, the player rolls
again. If the Win light or Lose light is not on, the player must push the roll button
again. After winning or losing, he or she must push Reset to begin a new game. We
will assume at this point that the push buttons are properly debounced and that
changes in Rb are properly synchronized with the clock. A method for debouncing
and synchronization was discussed in Chapter 4.
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The components for the dice game shown in the block diagram (Figure 5-11)
include an adder, which adds the two counter outputs, a register to store the point,
test logic to determine conditions for win or lose, and a control circuit. Input signals
to the control circuit are defined as follows:

D7 � 1 if the sum of the dice is 7

D711 � 1 if the sum of the dice is 7 or 11
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5.2 Derivation of SM Charts 269

D2312 � 1 if the sum of the dice is 2, 3, or 12

Eq � 1 if the sum of the dice equals the number stored in the point
register

Rb � 1 when the roll button is pressed

Reset � 1 when the reset button is pressed

Outputs from the control circuit are defined as follows:

Roll � 1 enables the dice counters

Sp � 1 causes the sum to be stored in the point register

Win � 1 turns on the win light

Lose � 1 turns on the lose light

The Rb and Roll signals may look synonymous; however, they are different. We
are using electronic dice counters, and Roll is the signal to let the counters continue
to count. Rb is a push-button signal requesting that the dice be rolled. Thus, Rb is an
input to the control circuit, while Roll is an output from the control circuit. When
the control circuit is in a state looking for a new roll of the dice, whenever the push
button is pressed (i.e., Rb is activated), the control circuit will generate the Roll sig-
nal to the electronic dice.

We now convert the flow chart for the dice game to an SM chart for the control cir-
cuit using the control signals defined above. Figure 5-13 shows the resulting SM chart.

The control circuit waits in state S0 until the roll button is pressed (Rb � 1).
Then, it goes to state S1, and the roll counters are enabled as long as Rb � 1.As soon
as the roll button is released (Rb � 0), D711 is tested. If the sum is 7 or 11, the circuit
goes to state S2 and turns on the Win light; otherwise, D2312 is tested. If the sum is
2, 3, or 12, the circuit goes to state S3 and turns on the Lose light; otherwise, the sig-
nal Sp becomes 1 and the sum is stored in the point register. It then enters S4 and
waits for the player to “roll the dice” again. In S5, after the roll button is released, if
Eq � 1, the sum equals the point and state S2 is entered to indicate a win. If D7 � 1,
the sum is 7 and S3 is entered to indicate a loss. Otherwise, control returns to S4 so
that the player can roll again.When in S2 or S3, the game is reset to S0 when the Reset
button is pressed.

Instead of using an SM chart, we could construct an equivalent state graph
from the flow chart. Figure 5-14 shows a state graph for the dice game controller.
The state graph has the same states, inputs, and outputs as the SM chart. The arcs
have been labeled consistently with the rules for proper state graphs given in
Section 4.5. Thus, the arcs leaving state S1 are labeled Rb, Rb�D711, Rb�D�711D2312,
and Rb�D�711D�2312.

Before proceeding with the design, it is important to verify that the SM chart (or
state graph) is correct. We will write a behavioral VHDL description based on the
SM chart and then write a test bench to simulate the roll of the dice. Initially, we will
write a dice game module that contains the control circuit, point register, and com-
parator (see Figure 5-11). Later, we will add the counters and adder so that we can
simulate the complete dice game.
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The VHDL code for the dice game in Figure 5-15 corresponds directly to the SM
chart of Figure 5-13.The case statement in the first process tests the state, and in each
state nested if-then-else (or elsif) statements are used to implement the conditional
tests. In State 1 the Roll signal is turned on when Rb is 1. If all conditions test false,
Sp is set to 1 and the next state is 4. In the second process, the state is updated after
the rising edge of the clock, and if Sp is 1, the sum is stored in the point register.

We are now ready to test the behavioral model of the dice game. It is not con-
venient to include the counters that generate random numbers in the initial test,
since we want to specify a sequence of dice rolls that will test all paths on the SM
chart. We could prepare a simulator command file that would generate a
sequence of data for Rb, Sum, and Reset. This would require careful analysis of
the timing to make sure that the input signals change at the proper time. A bet-
ter approach for testing the dice game is to design a VHDL test bench module to
monitor the output signals from the dice game module and supply a sequence of
inputs in response.
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FIGURE 5-15: Behavioral Model for Dice Game Controller

entity DiceGame is
port(Rb, Reset, CLK: in bit;

Sum: in integer range 2 to 12;
Roll, Win, Lose: out bit);

end DiceGame;

architecture DiceBehave of DiceGame is
signal State, Nextstate: integer range 0 to 5;
signal Point: integer range 2 to 12;
signal Sp: bit;
begin
process(Rb, Reset, Sum, State)
begin
Sp <= '0'; Roll <= '0'; Win <= '0'; Lose <= '0';
case State is

when 0 => if Rb = '1' then Nextstate <= 1; end if;
when 1 =>
if Rb = '1' then Roll <= '1';
elsif Sum = 7 or Sum = 11 then Nextstate <= 2;
elsif Sum = 2 or Sum = 3 or Sum = 12 then Nextstate <= 3;
else Sp <= '1'; Nextstate <= 4;
end if;

when 2 => Win <= '1';
if Reset = '1' then Nextstate <= 0; end if;

when 3 => Lose <= ‘1’;
if Reset = '1' then Nextstate <= 0; end if;
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Figure 5-16 shows the DiceGame connected to a module called GameTest.
GameTest needs to perform the following functions:

1. Initially supply the Rb signal.
2. When the DiceGame responds with a Roll signal, supply a Sum signal, which rep-

resents the sum of the two dice.
3. If no Win or Lose signal is generated by the DiceGame, repeat steps 1 and 2 to

roll again.
4. When a Win or Lose signal is detected, generate a Reset signal and start again.

272 SM Charts and Microprogramming

when 4 => if Rb = '1' then Nextstate <= 5; end if;
when 5 =>
if Rb = '1' then Roll <= '1';
elsif Sum = Point then Nextstate <= 2;
elsif Sum = 7 then Nextstate <= 3;
else Nextstate <= 4;
end if;

end case;
end process;

process(CLK)
begin
if CLK'event and CLK = '1' then

State <= Nextstate;
if Sp = '1' then Point <= Sum; end if;

end if;
end process;

end DiceBehave;

GameTest DiceGame 

Rb 

Reset 

CLK 

Sum 

Roll 

Win 

Lose 

FIGURE 5-16: Dice
Game with Test
Bench

Figure 5-17 shows an SM chart for the GameTest module. Rb is generated in
state T0. When DiceGame detects Rb, it goes to S1 and generates Roll. When
GameTest detects Roll, the Sum that represents the next roll of the dice is read
from Sumarray(i) and i is incremented. When the state goes to T1, Rb goes to 0. The
DiceGame goes to S2, S3, or S4 and GameTest goes to T2. The Win and Lose out-
puts are tested in state T2. If Win or Lose is detected, a Reset signal is generated
before the next roll of the dice. After N rolls of the dice, GameTest goes to state T3,
and no further action occurs.
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5.2 Derivation of SM Charts 273

GameTest (Figure 5-18) implements the SM chart for the GameTest module.
It contains an array of test data, a concurrent statement that generates the clock,
and two processes. The first process generates Rb, Reset, and Tnext (the next state)
whenever Roll, Win, Lose, or Tstate changes. The second process updates Tstate (the
state of GameTest). When running the simulator, we want to display only one line
of output for each roll of the dice. To facilitate this, we have added a signal Trig1,
which changes every time state T2 is entered.

Tester (Figure 5-19) connects the DiceGame and GameTest components so
that the game can be tested. Figure 5-20 shows the simulator command file and out-
put. The listing is triggered by Trig1 once for every roll of the dice. The run 2000
command runs for more than enough time to process all the test data.

T0 / Rb

Sum = Sumarray (i)
i = i + 1

T1 /

Reset 

Roll 

Win or 
Lose 

0 

1 

0 

1 

T2 /

i ≥ N T3 / (Stop)1 

0

FIGURE 5-17: SM
Chart for Dice
Game Test

FIGURE 5-18: Dice Game Test Module

entity GameTest is
port(Rb, Reset: out bit;

Sum: out integer range 2 to 12;
CLK: inout bit;
Roll, Win, Lose: in bit);

end GameTest;
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architecture dicetest of GameTest is
signal Tstate, Tnext: integer range 0 to 3;
signal Trig1: bit;
type arr is array(0 to 11) of integer;
constant Sumarray:arr := (7, 11, 2, 4, 7, 5, 6, 7, 6, 8, 9, 6);
begin

CLK <= not CLK after 20 ns;
process(Roll, Win, Lose, Tstate)
variable i: natural; -- i is initialized to 0
begin

case Tstate is
when 0 => Rb <= '1'; -- wait for Roll

Reset <= '0';
if i >= 12 then Tnext <= 3;
elsif Roll = '1' then
Sum <= Sumarray(i);
i := i + 1;
Tnext <= 1;

end if;
when 1 => Rb <= '0'; Tnext <= 2;
when 2 => Tnext <= 0;

Trig1 <= not Trig1; -- toggle Trig1
if (Win or Lose) = '1' then
Reset <= '1';

end if;
when 3 => null; -- Stop state

end case;
end process;

process(CLK)
begin
if CLK = '1' and CLK'event then

Tstate <= Tnext;
end if;

end process;
end dicetest;

FIGURE 5-19: Tester for DiceGame

entity tester is
end tester;

architecture test of tester is
component GameTest
port(Rb, Reset: out bit;

Sum: out integer range 2 to 12;
CLK: inout bit;
Roll, Win, Lose: in bit);

end component;
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component DiceGame
port(Rb, Reset, CLK: in bit;

Sum: in integer range 2 to 12;
Roll, Win, Lose: out bit);

end component;

signal rb1, reset1, clk1, roll1, win1, lose1: bit;
signal sum1: integer range 2 to 12;
begin
Dice: Dicegame port map (rb1, reset1, clk1, sum1, roll1, win1, lose1);
Dicetest: GameTest port map (rb1, reset1, sum1, clk1, roll1, win1, lose1);

end test;

FIGURE 5-20: Simulation and Command File for Dice Game Tester

add list �dicetest�trig1 -NOTrigger sum1 win1 lose1 �dice�point
run 2000

ns delta trig1 sum1 win1 lose1 point
0 �0 0 2 0 0 2

100 �3 0 7 1 0 2
260 �3 0 11 1 0 2
420 �3 0 2 0 1 2
580 �2 1 4 0 0 4
740 �3 1 7 0 1 4
900 �2 0 5 0 0 5
1060 �2 1 6 0 0 5
1220 �3 1 7 0 1 5
1380 �2 0 6 0 0 6
1540 �2 1 8 0 0 6
1700 �2 0 9 0 0 6
1860 �3 0 6 1 0 6

5.3 Realization of SM Charts
Methods used to realize SM charts are similar to the methods used to realize state
graphs. As with any sequential circuit, the realization will consist of a combina-
tional subcircuit, together with flip-flops for storing the state of the circuit. In
some cases, it may be possible to identify equivalent states in an SM chart and
eliminate redundant states using the same method as was used for reducing state
tables. However, an SM chart is usually incompletely specified in the sense that all
inputs are not tested in every state, which makes the reduction procedure more
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difficult. Even if the number of states in an SM chart can be reduced, it is not
always desirable to do so, since combining states may make the SM chart more dif-
ficult to interpret.

Before deriving next state and output equations from an SM chart, a state
assignment must be made. The best way of making the assignment depends on how
the SM chart is realized. If gates and flip-flops (or the equivalent PLD realization)
are used, the guidelines for state assignment given in Section 1.7 may be useful. If
programmable gate arrays are used, a one-hot assignment may be best, as explained
in Section 6.9.

As an example of realizing an SM chart, consider the SM chart in Figure 5-21.

276 SM Charts and Microprogramming

S0/Za

S2/Zc

S1/Zb

Z1 Z2

X

1 0 

X

X

1 

1 

0 

0 

00

01 

11 

Link 1 

Link 2 

Link 3 

FIGURE 5-21:
Example SM Chart
for Implementation

We have made the state assignment AB � 00 for S0, AB � 01 for S1, and AB � 11
for S2. After a state assignment has been made, output and next-state equations can
be read directly from the SM chart. Since the Moore output Za is 1 only in state 00,
Za � A�B�. Similarly, Zb � A�B and Zc � AB. The conditional output Z1 � ABX�,
since the only link path through Z1 starts with AB � 11 and takes the X � 0 branch.
Similarly, Z2 � ABX. There are three link paths (labeled link 1, link 2, and link 3 in
Figure 5-21), which terminate in a state that has B � 1. Link 1 starts with a present
state AB � 00, takes the X � 1 branch, and terminates on a state in which B � 1.
Therefore, the next state of B (B�) equals 1 when A�B�X � 1. Link 2 starts in state 01,
takes the X � 1 branch, and ends in state 11, so B� has a term A�BX. Similarly, B� has
a term ABX from link 3. The next state equation for B thus has three terms corre-
sponding to the three link paths:

B� � A�B�X � A�BX � ABX

link 1 link 2 link 3
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5.3 Realization of SM Charts 277

Similarly, two link paths terminate in a state with A � 1, so

A� � A�BX � ABX
These output and next state equations can be simplified with Karnaugh maps using
the unused state assignment (AB � 10) as a “don’t care” condition.

As illustrated above for flip-flops A and B, the procedure for deriving the next
state equation for a flip-flop Q from the SM chart is as follows:

1. Identify all of the states in which Q � 1.
2. For each of these states, find all the link paths that lead into the state.
3. For each of these link paths, find a term that is 1 when the link path is followed.

That is, for a link path from Si to Sj, the term will be 1 if the machine is in state
Si and the conditions for exiting to Sj are satisfied.

4. The expression for Q� (the next state of Q) is formed by OR’ing together the
terms found in step 3.

5.3.1 Implementation of Binary Multiplier Controller
Next, consider the SM chart for the multiplier control repeated here, in Figure 5-22.

S0 
/

St 

Load 

S1/

M

Sh 

K 
S2/Sh

Ad 

S3/Done K

1 

1 
1 0 

0 

0 

0 

1 

FIGURE 5-22: SM
Chart for Multiplier
Controller

We can realize this SM chart with two D flip-flops and a combinational circuit.
Let us assume that the state assignments are AB � 00 for S0, AB � 01 for S1, AB �
10 for S2, and AB � 11 for S3.

The logic equations for the multiplier control and the next state equations can
be derived by tracing link paths on the SM chart and then simplifying the resulting
equations. First, let us consider the control signals. Load is true only in S0 and only
if St is true. Hence, Load � S0St � A�B�St. Similarly, Ad is true only in S1 and only
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if M is true. Hence, Ad � A�BM. Done is a Moore output in S3, and hence Done �
S3 � AB. In summary, the logic equations for the multiplier control are

Load � A�B�St

Sh � A�BM�(K� � K) � AB�(K� � K) � A�BM� � AB�

Ad � A�BM

Done � AB

The next state equations can be derived by inspection of the SM chart and con-
sidering the state assignments. A is true in states S2 and S3. State S2 is the next state
when current state is S1 and M is true (A�BM). State S3 is the next state when cur-
rent state is S1, M is false, and K is true (A�BM�K) and when current state is S2 and
K is true (AB�K). Hence, we can write that

A� � A�BM�K � A�BM � AB�K � A�B(M � K) � AB�K

Similarly, we can derive the next state equation for B by inspection of the ASM
diagram:

B� � A�B�St � A�BM�(K� � K) � AB�(K� � K) � A�B�St � A�BM� � AB�

The multiplier controller can be implemented in a hardwired fashion by two flip-
flops and a few logic gates. The logic gates implement the next state equations and
control signal equations. The circuit can be implemented with discrete gates or in a
PLA, CPLD, or FPGA.

Table 5-1 illustrates a state transition table for the multiplier control. Each row in
the table corresponds to one of the link paths in the SM chart. Since S0 has two exit
paths, the table has two rows for present state S0. The first row corresponds to the
St � 0 exit path, so the next state and outputs are 0. In the second row, St � 1, so the
next state is 01 and the other outputs are 1000. Since St is not tested in states S1, S2,
and S3, St is a “don’t care” in the corresponding rows. The outputs for each row can
be filled in by tracing the corresponding link paths on the SM chart. For example, the
link path from S1 to S2 passes through conditional output Ad, so Ad � 1 in this row.
Since S2 has a Moore output Sh, Sh � 1 in both of the rows for which AB � 10.

278 SM Charts and Microprogramming

TABLE 5-1: State
Transition Table for

Multiplier Control

A B St M K A� B� Load Sh Ad Done

S0 0 0 0 — — 0 0 0 0 0 0
0 0 1 — — 0 1 1 0 0 0

S1 0 1 — 0 0 0 1 0 1 0 0
0 1 — 0 1 1 1 0 1 0 0
0 1 — 1 — 1 0 0 0 1 0

S2 1 0 — — 0 0 1 0 1 0 0
1 0 — — 1 1 1 0 1 0 0

S3 1 1 — — — 0 0 0 0 0 1

The design may also be implemented with ROM. If it has to be implemented
using the ROM method, we can calculate the size of the ROM as follows. There are
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5.4 Implementation of the Dice Game 279

five different inputs to the combinational circuit here (A, B, St, M, and K). Hence,
the ROM will have 32 entries. The combinational circuit should generate six signals
(four control signals plus two next states). Hence, each entry has to be 6 bits wide.
Thus, this design can be implemented using a 32 � 6 ROM and two D flip-flops. If
the combinational logic is implemented with a PLA instead of a ROM, the PLA
table is the same as the state transition table. The PLA would have 5 inputs, 6 out-
puts, and 8 product terms.

If a ROM is used, the table must be expanded to 25 � 32 rows since there are
five inputs. To expand the table, the dashes in each row must be replaced with all
possible combinations of 0’s and l’s. If a row has n dashes, it must be replaced with
2n rows. For example, the fifth row in Table 5-1 would be replaced with the follow-
ing 4 rows:

0 1 0 1 0 1 0 0 0 1 0
0 1 0 1 1 1 0 0 0 1 0
0 1 1 1 0 1 0 0 0 1 0
0 1 1 1 1 1 0 0 0 1 0

The added entries are printed in boldface.

5.4 Implementation of the Dice Game
We can realize the SM chart for the dice game (Figure 5-13) using combinational
circuitry and three D flip-flops, as shown in Figure 5-23. We use a straight binary
state assignment.The combinational circuit has nine inputs and seven outputs.Three
of the inputs correspond to current state, and three of the outputs provide the next
state information. All inputs and outputs are listed at the top of Table 5-2. The state
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FIGURE 5-23:
Realization of Dice
Game Controller
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transition table has one row for each link path on the SM chart. In state ABC � 000,
the next state is A�B�C� � 000 or 001, depending on the value of Rb. Since state
001 has four exit paths, the table has four corresponding rows. When Rb is 1, Roll is
1 and there is no state change.When Rb � 0 and D711 is 1, the next state is 010.When
Rb � 0 and D2312 � 1, the next state is 011. For the link path from state 001 to 100,
Rb, D711, and D2312 are all 0, and Sp is a conditional output. This path corresponds to
row 4 of the state transition table, which has Sp � 1 and A�B�C� � 100. In state
010, the Win signal is always on, and the next state is 010 or 000, depending on the
value of Reset. Similarly, Lose is always on in state 011. In state 101, A�B�C� � 010
if Eq � l; otherwise, A�B�C� � 011 or 100, depending on the value of D7. Since
states 110 and 111 are not used, the next states and outputs are don’t cares when
ABC � 110 or 111.

We can use Table 5-2 and derive equations for the control signals and the next
state equations. The required equations can be derived from Table 5-2 using the
method of map-entered variables (see Chapter 1) or using a CAD program such as
LogicAid.These equations can also be derived by tracing link paths on the SM chart
and then simplifying the resulting equations using the “don’t care” next states.

Figure 5-24 shows K-maps for A�, B�, and Win, which were plotted directly from
the table. Since A, B, C, and Rb have assigned values in most of the rows of the table,
these four variables are used on the map edges, and the remaining variables are
entered within the map. (Chapter 1 described the K-map technique that uses map-
entered variables.) E1, E2, E3, and E4 on the maps represent the expressions given
below the maps. From the A� column in the table, A� is 1 in row 4, so we should enter
D�711D�2312 in the ABCRb � 0010 square of the map. To save space, we define E1 �
D�711D�2312 and place E1 in the square. Since A� is 1 in rows 11, 12, and 16, 1’s are
placed on the map squares ABCRb � 1000, 1001, and 1011. From row 13, we place
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TABLE 5-2: State
Transition Table
(PLA Table) for

Dice Game

ABC Rb Reset D7 D711 D2312 Eq A� B� C� Win Lose Roll Sp

1 000 0 — — — — — 0 0 0 0 0 0 0
2 000 1 — — — — — 0 0 1 0 0 0 0
3 001 1 — — — — — 0 0 1 0 0 1 0
4 001 0 — — 0 0 — 1 0 0 0 0 0 1
5 001 0 — — 0 1 — 0 1 1 0 0 0 0
6 001 0 — — 1 — — 0 1 0 0 0 0 0
7 010 — 0 — — — — 0 1 0 1 0 0 0
8 010 — 1 — — — — 0 0 0 1 0 0 0
9 011 — 1 — — — — 0 0 0 0 1 0 0

10 011 — 0 — — — — 0 1 1 0 1 0 0
11 100 0 — — — — — 1 0 0 0 0 0 0
12 100 1 — — — — — 1 0 1 0 0 0 0
13 101 0 — 0 — — 0 1 0 0 0 0 0 0
14 101 0 — 1 — — 0 0 1 1 0 0 0 0
15 101 0 — — — — 1 0 1 0 0 0 0 0
16 101 1 — — — — — 1 0 1 0 0 1 0
17 110 — — — — — — — — — — — — —
18 111 — — — — — — — — — — — — —
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5.4 Implementation of the Dice Game 281

E2 � D�7Eq� in the 1010 square. In rows 7 and 8, Win is always 1 when ABC � 010,
so 1’s are plotted in the corresponding squares of the Win map.

The resulting equations are

A� � A�B�C Rb�D�711D�2312 � AC� � ARb � AD�7Eq� (5-1)

B� � A�B�C Rb�(D711 � D2312) � BReset� � AC Rb�(Eq � D7)

C� � B�Rb � A�B�C D�711D2312 � BC Reset� � AC D7Eq�

Win � BC�

Lose � BC

Roll � B�CRb

Sp � A�B�C Rb�D�711D�2312

These equations can be implemented in any standard technology (using discrete
gates, PALs, GALs, CPLDs, or FPGAs).

The dice game controller can also be realized using a ROM. A ROM (LUT)
implementation of the game controller will need 512 entries (since there are 9
inputs). Each entry must be 7 bits wide (3 bits for next states and 4 bits for out-
puts). The ROM is very large because of the large number of inputs involved. The
ROM method is hence not very desirable for state machines with a large number
of inputs.

We now write a dataflow VHDL model for the dice game controller based on
the block diagram of Figure 5-11 and Equations (5-1). The corresponding VHDL
architecture is shown in Figure 5-25. The process updates the flip-flop states and the
point register when the rising edge of the clock occurs. Generation of the control
signals and D flip-flop input equations is done using concurrent statements. In par-
ticular, D7, D711, D2312, and Eq are implemented using conditional signal assign-
ments. As an alternative, all the signals and D input equations could have been
implemented in a process with a sensitivity list containing A, B, C, Sum, Point, Rb,
D7, D711, D2312, Eq, and Reset. If the architecture of Figure 5-25 is used with the test
bench of Figure 5-19, the results are identical to those obtained with the behavioral
architecture in Figure 5-15.
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FIGURE 5-24: Maps
Derived from
Table 5-2

E1 � D�711D�2312 R � Reset

E2 � D�7Eq� E3 � D711 � D�711D2312 � D711 � D2312

E4 � Eq � Eq�D7 � Eq � D7
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To complete the VHDL implementation of the dice game, we add two modulo-6
counters as shown in Figures 5-26 and 5-27.The counters are initialized to 1, so the sum
of the two dice will always be in the range 2 through 12.When Cnt1 is in state 6, the next
clock sets it to state 1, and Cnt2 is incremented (or Cnt2 is set to 1 if it is in state 6).
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FIGURE 5-25: Dataflow Model for Dice Game (Based on Equations (5-1))

architecture Dice_Eq of DiceGame is
signal Sp,Eq,D7,D711,D2312: bit:= '0';
signal DA,DB,DC,A,B,C: bit:='0';
signal Point: integer range 2 to 12;
begin
process(CLK)
begin
if CLK = '1' and CLK'event then
A <= DA; B <= DB; C <= DC;
if Sp = '1' then Point <= Sum; end if;

end if;
end process;
Win <= B and not C;
Lose <= B and C;
Roll <= not B and C and Rb;
Sp <= not A and not B and C and not Rb and not D711 and not D2312;
D7 <= '1' when Sum = 7 else '0';
D711 <= '1' when (Sum = 11) or (Sum = 7) else '0';
D2312 <= '1' when (Sum = 2) or (Sum = 3) or (Sum = 12) else '0';
Eq <= '1' when Point = Sum else '0';
DA <= (not A and not B and C and not Rb and not D711 and not D2312) or

(A and not C) or (A and Rb) or (A and not D7 and not Eq);
DB <= ((not A and not B and C and not Rb) and (D711 or D2312)) or

(B and not Reset) or ((A and C and not Rb) and (Eq or D7));
DC <= (not B and Rb) or (not A and not B and C and not D711 and D2312) or

(B and C and not Reset) or (A and C and D7 and not Eq);
end Dice_Eq;

FIGURE 5-26: Counter for Dice Game

entity Counter is
port(Clk, Roll: in bit;

Sum: out integer range 2 to 12);
end Counter;

architecture Count of Counter is
signal Cnt1, Cnt2: integer range 1 to 6:= 1;
begin
process(Clk)
begin
if Clk = '1' then
if Roll = '1' then
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5.5 Microprogramming 283

This section has illustrated one way of realizing an SM chart. The implementa-
tion can use discrete gates, a PLA, a ROM, or a PAL. Alternative procedures are
available that make it possible to reduce the size of the PLA or ROM by adding
some components to the circuit. These methods are generally based on transforma-
tion of the SM chart to different forms and techniques, such as microprogramming.

5.5 Microprogramming
Microprogramming is a technique to implement the control unit of a digital system.
In order to realize a control unit, we can inspect the state diagram or SM chart, write
the logic equations for the control outputs and the next states, and implement the

if Cnt1 = 6 then Cnt1 <= 1; else Cnt1 <= Cnt1 + 1; end if;
if Cnt1 = 6 then
if Cnt2 = 6 then Cnt2 <= 1; else Cnt2 <= Cnt2 + 1; end if;

end if;
end if;

end if;
end process;
Sum <= Cnt1 + Cnt2;

end Count;

FIGURE 5-27: Complete Dice Game

entity Game is
port(Rb, Reset, Clk: in bit;

Win, Lose: out bit);
end Game;

architecture Play1 of Game is
component Counter
port(Clk, Roll: in bit;

Sum: out integer range 2 to 12);
end component;

component DiceGame
port(Rb, Reset, CLK: in bit;

Sum: in integer range 2 to 12;
Roll, Win, Lose: out bit);

end component;

signal roll1: bit;
signal sum1: integer range 2 to 12;
begin
Dice: Dicegame port map (Rb, Reset, Clk, sum1, roll1, Win, Lose);
Count: Counter port map (Clk, roll1, sum1);

end Play1;
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state machine using gates and flip-flops. Sections 5.3 and 5.4 demonstrated this
process for the binary multiplier and the dice game, respectively. This method of
implementation is called hardwiring, to indicate that the control signals are gener-
ated using fixed (hardwired) logic circuitry.

In contrast, an alternative approach called microprogramming has been devel-
oped for designing control units for complex digital systems. Proposed by Maurice
Wilkes in 1951, microprogramming is building a special computer for executing
the algorithmic flow chart describing the controller of a system. This development
stemmed from the separation of architecture and controller, which we described at
the beginning of Chapter 4. Once the architecture and controller are clearly delin-
eated, the controller flow chart systematically specifies all the controller signals that
should be generated at each time during the flow of control from the reset state
through each of the other states. By inspection of the SM chart for the shift and add
binary multiplier in Figure 5-28(a), we can write pseudocode for the multiplier con-
troller operation, as illustrated in Figure 5-28(b). This multiplier was presented in
detail in Chapter 4.

Such a description of the controller easily makes us see the correspondence of
the controller activity to a normal computer program. Microprogramming devel-
oped from exactly this realization.

If a memory can store all control signals and the next state information corre-
sponding to each state for each input condition, we should be able to realize the con-
troller by just “sequencing” through the memory. For this reason, microprogrammed
controllers are also often called sequencers.The memory that stores the control words
is called the control store or microprogram memory.

Microprogramming seemed extremely attractive in an era where the complexity
of digital systems was growing prohibitively. Since debugging was done manually in
those days, it was very hard to identify and correct errors. The systematic nature of
microprogramming made debugging systems easier. Changes to systems can be
implemented relatively easily. Errors can be identified and corrected easily. This
made microprogramming very popular.

The disadvantage of microprogramming is that it is slow. A memory access is
required to access the control word from the control store. Hardwiring results in
faster systems because hardwired control signals are generated by logic gates, and
they are typically faster than memory.

Early microprocessors such as Intel 8086 and Motorola 68000 were micropro-
grammed. These microprocessors supported a variety of memory addressing
modes with base registers and index registers. They allowed operands to be
accessed directly from memory and results be written directly to memory. Many
complex instructions that performed a series of fundamental operations were
available on these processors. Microprogramming was convenient when the control
signals for the several operations needed for a complex instruction could be sys-
tematically specified in the microprogram word. It would have been extremely
hard to implement these microprocessors with hardwiring.

Many things have changed since then. In the late 1970s, it was observed that in
many microprocessors, more than half of the chip area was spent in the controller (i.e.,
the data path of the processor occupied less than half the chip area). The complexity
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of the microprocessors led researchers and designers to the RISC (Reduced
Instruction Set Computing) era. RISC microprocessors are simpler, have fewer mem-
ory addressing modes, and need simpler control units. Computer-aided design (CAD)
tools have improved, and the designers’ capability to debug has improved. Today
microprogramming may be used only for microprocessors with complex instruction
set architectures (ISAs); however, it is a powerful concept and a very elegant one.

Microprogramming can be implemented in a variety of ways. The general idea is
to store a control word corresponding to each state. The control word is also called
a microinstruction. The microinstruction specifies the outputs to be generated. It
also specifies where the next microinstruction can be found. This corresponds to the
state transitions in the state diagram or SM chart.

S0/ 

St 

Load 

S1/ 

M 

Sh 

K 
S2/Sh 

Ad 

S3/Done K 

1 

1 

0 

0 

0 

1 0 

1 

FIGURE 5-28: SM
Chart and Operation
Flow of the
Multiplier

S0: if St is true, produce Load Signal and go to S1,
else return to S0

S1: if M is true, produce Ad and go to S2,
else produce Sh, check whether K is 1;
if K is 1 go to S3;
if K is 0, go to S1;

S2: produce Sh;
if K � 0, go to S1;
else go to S3;

S3: produce Done and go to S0

(b) Pseudo code representing the operation of the
multiplier controller

(a) SM chart for Multiplier
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5.5.1 Two-Address Microcode
Figure 5-29 illustrates a suitable hardware arrangement for a typical microprogram
implementation. Each ROM location stores a control word or microinstruction.The
only inputs to the ROM come from the state register.A multiplexer with each of the
inputs can be used to selectively test at most one variable in each state. This multi-
plexer is used to indicate whether the selected control signal (as indicated by TEST)
is true or false.Another multiplexer is used to select which next state should control
branch to. This technique is called two-address microcoding because the next states
corresponding to both true and false conditions of the test signal are explicitly spec-
ified in the microinstruction.
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TEST NSF NST OUTPUT 

MUX 
Inputs 

Register 

MUX . . 
. 

  

Microprogram ROM 
(Control store) 

FIGURE 5-29:
Typical Hardware
Arrangement for
Microprogramming

The ROM output has four fields:TEST, NSF, NST, and OUTPUT.TEST controls
the input MUX, which selects one of the inputs to be tested in each state. If this
input is 0 (false), then the second MUX selects the NSF field as the next state. If the
input is 1 (true), it selects the NST field as the next state. The OUTPUT bits corre-
spond to the control signals. Note that in order to use this hardware arrangement,
the SM chart must have only Moore outputs, since the outputs can be a function
only of the state.

SM Chart Transformations for Microprogramming
Transformations are performed on the SM chart to facilitate easy and efficient
microprogramming. We do not want a naïve look-up table method where all com-
binations of inputs and present states are directly specified. We transform the SM
chart in such a way that only one entry is required per state. Some of the transfor-
mations do increase the number of states; however, the achieved microprogram size
is still significantly smaller than the ROM size in a naïve LUT method.

Eliminate Conditional Outputs
It is desirable to construct the controller as a Moore machine so that there will be
no conditional control signals. If control signals are conditional on some inputs, we
should store control signals corresponding to different combinations of inputs.
Hence, the first step in transforming a state diagram or SM chart for easy micro-
programming is to convert it into a Moore state machine. Any Mealy machine can
be converted into a Moore machine by adding an appropriate number of addi-
tional states.
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5.5 Microprogramming 287

Allow Only Single Qualifier per State
The inputs that are tested in each state of the state machine are called qualifiers in
the microprogram literature. For example, in Figure 5-28, St, M, and K are qualifiers.
States S0 and S2 contain only one qualifier, but state S1 tests qualifiers M and K. The
multiple qualifiers in S1 led to nested if statements in the pseudo code in Figure 5-28.
Microprogramming can be done with multiple qualifiers per state; however, it is sim-
pler to implement microprogramming when only one variable is tested in each state.

Thus, microprogramming becomes easy if the following two transformations are
done on SM charts:

1. Eliminate all conditional outputs by transforming to a Moore machine
2. Test only one input (qualifier) in each state

Let us transform the SM chart of the multiplier for microprogramming. First, we
will convert it to a Moore machine by adding a state for each conditional output
(i.e., each oval in the SM chart). That results in additional states S01 in state S0 for
the conditional output Load, S11 in the original state S1 for the conditional output
Ad, and S12 in S1 for the conditional output Sh. Fortunately, no more than one qual-
ifier is tested in any state. The modified SM chart is shown in Figure 5-30.

S0 
/

St 

S1/

M

K

K

S12 
/Sh

S3 
/Done

1 

1 

1 0 

0 

0 

0 

1 

S11/Ad

S2 
/Sh

S01/
 
Load

FIGURE 5-30:
Multiplier SM Chart
with No
Conditional
Outputs (Derived
from Figure 5-28)

The corresponding actions can be described by the following pseudocode:

S0: if St is true, go to S01,
else go to S0;

S01: produce Load; Go to S1;
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S1: if M is true, go to S11, else go to S12;
S11: produce Ad; go to S2;
S12: produce Sh; if K = 0, go to S1; else go to S3;
S2: produce Sh;

if K=0, go to S1;
else go to S3;

S3: produce Done; go to S0;

At this stage, the transformed SM chart can be inspected for eliminating redundant
states. Can states S11 and S2 be combined? Since the add operation has to be
performed before shift, the Ad control signal should appear ahead of the Sh control
signal. Hence, S11 and S2 cannot be combined.

Now, let us inspect states S12 and S2. States S12 and S2 perform exactly the same
tasks and have the same next states. Hence, they can be combined. This is an exam-
ple of potential state minimizations after the transformation. Let us denote the new
combined state as S2. The improved SM chart is shown in Figure 5-31.
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S1/
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S3/Done
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FIGURE 5-31:
Modified Multiplier
SM Chart After
State Minimization
is Applied to
Figure 5-30

The microprogram will look as in Table 5-3, assuming a straight binary state
assignment in the sequence S0, S01, S1, S11, S2, and S3. Since there are three inputs, St,
M, and K, a 4-to-1 MUX will be sufficient to select the appropriate qualifier. The
multiplexer connections are assumed to be as in Figure 5-32.

Let us look at the first row in Table 5-3. It corresponds to state S0, which is
encoded as 000. The input tested is St. Since St is connected to input 0 of the multi-
plexer, the TEST field for this row is 00. If St is false, the next state is S0, leading
to 000 in the NSF field. If St is true, the next state is S01, leading to the 001 bits in the
NST field. The control signals Load, Ad, Sh, and Done are 0 in state S0.
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FIGURE 5-32:
4-to-1 MUX for
Microprogramming
the Multiplier (Two
Address Microcode)
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TABLE 5-3: Two
Address

Microprogram for
Multiplier. Both

NST and NSF
Specified

(Corresponds to
Figure 5-29)

State ABC TEST NSF NST Load Ad Sh Done

S0 000 00 000 001 0 0 0 0
S01 001 11 010 010 1 0 0 0
S1 010 01 100 011 0 0 0 0
S11 011 11 100 100 0 1 0 0
S2 100 10 010 101 0 0 1 0
S3 101 11 000 000 0 0 0 1

The microcode for state S01 is shown in the second row. State S01 generates the
Load signal and the controller transitions to state S1. No input signals are tested. In
the multiplexer in Figure 5-32, we provide a value of ‘1’ to the last unused muliplexer
input. So we can mark the TEST field as 11, corresponding to the last input of the mul-
tiplexer. In state S1, input signal M is tested. Since M is connected to input 1 of the
multiplexer, the TEST field for the third row is 01. In a similar fashion, all rows of
Table 5-3 are filled.

Since there are six states, three flip-flops will be required. The ROM that stores
this microprogram will need six entries, one for each state. Each entry will need
12 bits, including 2 bits for TEST, 3 bits for NSF, 3 for NST, and 4 bits for control
signals Load, Ad, Sh, and Done. ABC represents the address at which the microin-
struction is stored.

The hardware arrangement in Figure 5-29 is for microprogramming with two
next state addresses and single qualifier per state. Single qualifier microprogram-
ming means that only one input can be tested in a state. Two address microcoding
means that next states for both possible input values (i.e., next state if the input is
true (NST) and next state if the input is false (NSF)), are explicitly specified in the
control word. (Figure 5-29 could be modified to allow Mealy outputs by replacing
the OUTPUT field with OUTPUTF and OUTPUTT, and adding a MUX to select
one of the two output fields.)

5.5.2 Single-Qualifier, Single-Address Microcode
In the microprogram of Table 5-3, each microinstruction can specify two potential
next states, the next state if the input is true and the next state if the input is false.
The microcode for the different states can be located in any sequence because the
next microinstruction for each state is specified without assuming any default flow
of control.
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The aforementioned microprogram resembles software, but in conventional
programs, control flows in sequence except when branch and jump instructions alter
the control flow. If a branch is not taken, control simply flows to the next instruc-
tion. If we could take advantage of a similar structure, each microprogram entry will
need to specify only one next state address.

Let us consider what we should do in order to make the default next state be
the state located in the next row. In that case, the state assignments should be such
that, if the qualifier (input) is false, the next state should be the current state incre-
mented by 1. The next state when the qualifier is true will be the only next state
explicitly specified in the microcode. If the qualifier is false, control simply goes to
the next row to get the succeeding microinstruction.

This type of microprogram can be implemented using the hardware arrange-
ment shown in Figure 5-33. Since control normally just advances to the next loca-
tion, a counter can be effectively used. This counter is analogous to a program
counter (PC) in a microprocessor.The counter points to the current state of the con-
troller, analogous to a PC pointing to the next instruction to be fetched. Each ROM
location stores a control word or microinstruction. The OUTPUT bits correspond
to the control signals. The TEST bits specify the qualifier being tested and the NST
bits indicate the target microinstruction if the qualifier is true. A multiplexer is used
to indicate whether the selected control signal (as indicated by TEST) is true or
false. If the qualifier is false, the counter increments to point to the next microin-
struction. This corresponds to the default next state. If the qualifier is true, the
counter should load the NST bits as the location of the next microinstruction. This
is the explicitly specified next state. A counter with parallel load capability is the
ideal building block for this module. The multiplexer selects the relevant qualifier
and its output is used to decide whether the counter should count sequentially or
load the next state indicated by NST.
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TEST NST OUTPUT 

MUX 
Inputs 

Counter 

. . 
. 

  

Data Load Count 

Load/Count ′ 

Next 
state 
(true) 

Microprogram ROM 
(Control store) 

FIGURE 5-33:
Microprogrammed
System with Single
Address Microcode

The state assignment for the single-address microcoding has to be done carefully.
(In contrast, in the two-address microcoding that was discussed earlier, any state
assignment was acceptable.) In the current technique, the assignments should meet
the condition that for every state, one of the next states should be current state’s
assignment incremented by one (the default next state). For each condition box, for
the false branch, the next state must be assigned in sequence, if possible. If this is
not possible, extra states (called X-states) must be added. The required number of
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X-states can be reduced by assigning long strings of states in sequence. To facilitate
this, it may be necessary to complement some of the variables that are tested.

Figure 5-34 illustrates the modified SM chart for a binary multiplier with a serial
state assignment for single address microcoding. For state S0, input St is comple-
mented, so that S01 can be the default next state, as in Figure 5-34(a). If input St is
not complemented, an extra state will be required as in Figure 5-34(b). State S2 is
the default successor for state S1. In state S2, we use K�, so that S3 can be the default
successor to S2. Thus, in Figure 5-34(a), states S0, S01, S1, S2, and S3 can be assigned
sequential values from 0 to 4. The explicit next state, corresponding to the qualifier
being true, can have any assignment. We assign 5 to state S11. If variable K was used
instead of K�, an extra state would be required on the path from S2 to S1, when
K equals 0. As Figure 5-34(b) illustrates, two extra states will be required if input
variables cannot be complemented.
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FIGURE 5-34:
Modified SM Chart
for Binary
Multiplier with
Serial State
Assignment for
Single-Address
Microcoding

Table 5-4 illustrates the single-address microprogram for the multiplier. The modi-
fied SM chart, with the minimum number of states (Figure 5-34(a)), is used. Since there
are three inputs, St�, M, and K�, a 4-to-1 MUX will be sufficient to select the appropri-
ate qualifier. The multiplexer connections are assumed to be as in Figure 5-35.
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FIGURE 5-35:
Multiplexer for
Microprogramming
the Multiplier
(Single-Address
Microcode)
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The single-address microprogram in Table 5-4 consists of six entries of 9 bits each
in contrast to the two-address microprogram in Table 5-3, which needs six entries of
12 bits each.

If the multiplier controller is implemented by a standard ROM (LUT) method,
the ROM size must be 32 � 6. There are four states, necessitating two flip-flops and
two next state equations. There are three inputs St, M, and K. Hence, the state table
for this state machine will have 32 rows. There will be two next state equations and
four outputs, necessitating 6 bits in each entry. A comparison of the ROM (LUT)
method with the microcoded implementations is shown in Table 5-5. If the state
machine had a large number of inputs, the size of the ROM in naïve LUT method
will be prohibitively large.

292 SM Charts and Microprogramming

TABLE 5-4:
Single-Address

Microprogram for
Multiplier (Only

NST Specified)

State ABC TEST NST Load Ad Sh Done

S0 000 00 000 0 0 0 0
S01 001 11 010 1 0 0 0
S1 010 01 101 0 0 0 0
S2 011 10 010 0 0 1 0
S3 100 11 000 0 0 0 1
S11 101 11 011 0 1 0 0

TABLE 5-5:
Comparison of

Different
Implementations of

the Multiplier
Control

Size of ROM

Method # entries � width # bits

ROM method with original SM chart 32 � 6 192 bits
Two-address microcode 6 � 12 72 bits
Single-address microcode 6 � 9 54 bits

5.5.3 Microprogramming the Dice Controller
Let us realize the dice controller that we described earlier by microprogramming.
It can be microprogrammed using two-address microcoding or single-address
microcoding.

Two-Address Microcode Implementation for the Dice Controller
We first discuss the two-address microcoding of the dice controller using the hard-
ware arrangement in Figure 5-29. In order to perform microcoding, we need to
modify the SM chart. First, all the outputs must be converted to Moore outputs.
Second, only one input variable must be tested in each state. This corresponds
directly to the block diagram of Figure 5-29, since the TEST field can select only one
input to test in each state and the output depends only on the state. Figure 5-36
shows a modified version of the dice game SM chart.

Next, we derive the microprogram (Table 5-6) using a straight binary state
assignment.The variables Rb, D711, D2312, Eq, D7, and Reset must be tested, so we will
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5.5 Microprogramming 293

use an 8-to-1 MUX (Figure 5-37). When TEST � 001, Rb is selected, and so on.
In state S13 the next state is always 0111, so NSF � NST � 0111 and the TEST field
is a “don’t care.” Each row in the ROM table corresponds to a link path on the SM
chart. For example, in S2, the test field 110 selects Reset. If Reset � 0, NSF � 0100 is
selected, and if Reset � 1, NST � 0000 is selected. In S2, the output Win � 1 and the
other outputs are 0.
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FIGURE 5-36: SM
Chart with Moore
Outputs and One
Qualifier per State
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Single-Address Microcode for the Dice Controller
Single-address microcode will use the hardware as in the block diagram of Figure 5-33.
This circuit uses a counter instead of the state register. Only one target, the NST field,
is specified. The TEST field selects one of the inputs to be tested in each state. If the
selected input is 1 (true), the NST field is loaded into the counter. If the selected input
is 0, the counter is incremented.

This method requires that the SM chart be modified, as shown in Figure 5-38, and
that the state assignment be made in a serial fashion. If serial state assignment is not
possible, extra states are added. The required number of X-states can be reduced by
assigning long strings of states in sequence. To facilitate this, it may be necessary to
complement some of the variables that are tested. In Figure 5-38, Rb and Reset have
each been complemented in two places, and the 0 and 1 branches have been inter-
changed accordingly.With this change, states 0000, 0001, . . . , 1000 are in sequence. S3
has been assigned 1001, and before adding an X-state, NSF was 0000 and NST was
1001, so neither next state was in sequence. Therefore, X-state SX was added with a
sequential assignment 1010; the next state of SX is always 0000. If we assign 1011 to
S2, the next states would be 1011 and 0000, and neither next state would be in
sequence. We could solve the problem by adding an X-state. A better approach is to

294 SM Charts and Microprogramming

TABLE 5-6:
Two-Address

Microprogram for
Dice Game

State ABCD TEST NSF NST Roll Sp Win Lose

S0 0000 001 0000 0001 0 0 0 0
S1 0001 001 0010 0001 1 0 0 0
S11 0010 010 0011 0100 0 0 0 0
S12 0011 011 0101 0110 0 0 0 0
S2 0100 110 0100 0000 0 0 1 0
S13 0101 xxx 0111 0111 0 1 0 0
S3 0110 110 0110 0000 0 0 0 1
S4 0111 001 0111 1000 0 0 0 0
S5 1000 001 1001 1000 1 0 0 0
S51 1001 100 1010 0100 0 0 0 0
S52 1010 101 0111 0110 0 0 0 0
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D711
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FIGURE 5-37: MUX
for Two-Address
Microcoding of
Dice Game
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assign 1111 to S2, as shown. Since incrementing 1111 goes to 0000, one of the next
states is in sequence, and no X-state is required.

The inputs tested by the MUX in Figure 5-39 are similar to Figure 5-37, except
D7 and Reset have been complemented, and both Rb and Rb� are needed. Since
NST is always 0000 in state Sx, a 1 input to multiplexer is needed.The corresponding
microprogram ROM table is given in Table 5-7.
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A comparison of the naïve LUT (ROM) method implementation with the
microprogrammed implementations is given in Table 5-8. The ROM method with
original SM chart (Figure 5-13) needs 29 entries because it needs three state vari-
ables and six inputs. The three next state variables and four outputs necessitate 7
bits in each entry. The two-address microcode entry is based on Table 5-7 and the
single-address microcode entry is based on Table 5-6.
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TABLE 5-7:
Microprogram for

Dice Game with
Single-Address

Microcoding

State ABCD TEST NST Roll Sp Win Lose

S0 0000 000 0000 0 0 0 0
S1 0001 001 0001 1 0 0 0
S11 0010 010 1111 0 0 0 0
S12 0011 011 1001 0 0 0 0
S13 0100 111 0101 0 1 0 0
S4 0101 000 0101 0 0 0 0
S5 0110 001 0110 1 0 0 0
S51 0111 100 1111 0 0 0 0
S52 1000 101 0101 0 0 0 0
S3 1001 110 1001 0 0 0 1
Sx 1010 111 0000 0 0 0 0
S2 1111 110 1111 0 0 1 0

TABLE 5-8:
Comparison of

Different
Implementations of

Dice Controller

Size of ROM

Method # entries � width # bits

ROM method with original SM chart 512 � 7 3584 bits
Two-address microcode 11 � 15 165 bits
Single-address microcode 12 � 11 132 bits

The methods we have just studied for implementing SM charts are examples of
microprogramming. The counter in Figure 5-33 is analogous to the program counter
in a computer, which provides the address of the next instruction to be executed.The
ROM output is a microinstruction, which is executed by the remaining hardware.
Each microinstruction is like a conditional branch instruction that tests an input and
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5.6 Linked State Machines 297

branches to a different address if the test is true; otherwise, the next instruction in
sequence is executed. The output field in the microinstruction has bits that control
the operation of the hardware.

5.6 Linked State Machines
When a sequential machine becomes large and complex, it is desirable to divide the
machine up into several smaller machines that are linked together. Each of the smaller
machines is easier to design and implement. Also, one of the submachines may be
“called” in several different places by the main machine.This is analogous to dividing a
large software program into procedures that are called by the main program.

Figure 5-40 shows the SM charts for two serially linked state machines.The main
machine (machine A) executes a sequence of “some states” until it is ready to call
the submachine (machine B). When state SA is reached, the output signal ZA acti-
vates machine B. Machine B then leaves its idle state and executes a sequence of
“other states.” When it is finished, it outputs ZB before returning to the idle state.
When machine A receives ZB, it continues to execute “other states.” Figure 5-40
assumes that the two machines have a common clock.

SOME 
STATES 

SA/ZA 

ZB 

OTHER 
STATES 

IDLE 

ZA 

OTHER 
STATES 

SB/ZB 
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1 

1 

0 

Machine A 
(calling machine) 

Machine B 
(called machine) 

FIGURE 5-40: SM
Charts for Serially
Linked State
Machines

As an example of using linked state machines, we split the SM chart of Figure 5-13
into two linked SM charts. In Figure 5-13, Rb is used to control the roll of the dice
in states S0 and S1 and in an identical way in states S4 and S5. Since this function is
repeated in two places, it is logical to use a separate machine for the roll control
(Figure 5-41(b)). Use of the separate roll control allows the main dice control
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(Figure 5-41(a)) to be reduced from six states to four states. The main control gener-
ates an En_roll (enable roll) signal in T0 and then waits for a Dn_roll (done rolling) sig-
nal before continuing. Similar action occurs in T1. The roll control machine waits in
state S0 until it gets an En_roll signal from the main dice game control.Then, when the
roll button is pressed (Rb � 1), the machine goes to S1 and generates a Roll signal.
It remains in S1 until Rb � 0, in which case the Dn_roll signal is generated, and the
machine goes back to state S0.
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In this chapter we described a procedure for digital system design based on SM
charts.An SM chart is equivalent to a state graph, but it is usually easier to understand
the system operation by inspection of the SM chart.After we have drawn a block dia-
gram for a digital system, we can represent the control unit by an SM chart. Next we
can write a behavioral VHDL description of the system based on this chart. Using a
test bench written in VHDL, we can simulate the VHDL code to verify that the sys-
tem functions according to specifications. After making any necessary corrections to
the VHDL code and SM chart, we can proceed with the detailed logic design of the
system. Rewriting the VHDL architecture to describe the system operation, in terms
of control signals and logic equations, allows us to verify that our design is correct.

We also presented techniques for implementing control units: hardwiring and
microprogramming. We showed how logic equations can easily be derived by trac-
ing link paths on an SM chart. Hardwired control units can easily be implemented
from these equations.Then we presented microprogramming. In this technique, con-
trol words are stored in the microprogram memory. The size of the microprogram is
reduced by transforming the SM chart into a form in which only one input is tested
in each state. For complex systems, we can split the control unit into several sections
by using linked state machines.

Problems
5.1 (a) Construct an SM chart equivalent to the following state table. Test only one

variable in each decision box. Try to minimize the number of decision boxes.
(b) Write a VHDL description of the state machine based on the SM chart.

Present Next State Output (Z1Z2)
State X1X2 � 00 01 10 11 X1X2 � 00 01 10 11

S0 S3 S2 S1 S0 00 10 11 01
S1 S0 S1 S2 S3 10 10 11 11
S2 S3 S0 S1 S1 00 10 11 01
S3 S2 S2 S1 S0 00 00 01 01

Present Next State Output (Z1Z2Z3)
State X1X2 � 00 01 10 11 X1X2 � 00 01 10 11

S0 S1 S1 S1 S1 000 100 110 010
S1 S1 S1 S0 S0 001 001 001 001

5.2 Construct an SM chart that is equivalent to the following state table. Test only one
variable in each decision box. Try to minimize the number of decision boxes. Show
Mealy and Moore outputs on the SM chart.

5.3 An association has 15 voting members. Executive meetings of this association can
be held only if more than half (i.e., at least 8) the members are present (i.e., 8 is the
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minimum quorum required to hold meetings). Classified matters can be discussed and
voted on only if two-thirds the members are present.The chairman can cast two votes
if the quorum is met, but an even number of members (including the chairman) are
present. Above the room door there are three lights, GREEN, BLUE, and RED, to
indicate the quorum status. Derive an SM chart for a system that will indicate whether
minimum quorum is met (GREEN), classified matters can be discussed (BLUE), or
quorum met, but even members (RED). GREEN and RED lights may be present at
the same time or GREEN, BLUE, and RED lights may be present simultaneously.

Assume that there is a single door to the meeting room and that it is fitted with
two photocells. One photocell (PHOTO1) is on the inner side of the door and the
other (PHOTO2) is on the outer side. Light beams shine on each photocell, produc-
ing a false output from the cell; a true output from a photocell arises when the light
beam is interrupted. Assume that once a person starts through a door, the process
is completed before another one can enter or leave (i.e., only one person enters or
leaves at a time). If PHOTO1 is followed by PHOTO2, a sequencer generates a
LEAVE signal and if PHOTO2 is followed by PHOTO1, the sequencer generates an
ENTER signal.At most one ENTER or LEAVE will be true at any time.Assume that
these signals will be true until you read them. Basically you read the signal and pro-
vide a signal to the door controller indicating that the door is READY to let the next
person in or out.

(a) Draw a block diagram for the data section of this circuit. Assume that ENTER
and LEAVE signals are available for you (i.e., you do not need to generate
them for this part of the question).

(b) Draw an SM chart for the controller.Write the steps required to accomplish the
design. Define all control signals used.

(c) Draw an SM chart for a circuit that generates ENTER and LEAVE.

5.4 (a) Draw the block diagram for a divider that divides an 8-bit dividend by a 5-bit divi-
sor to give a 3-bit quotient. The dividend register should be loaded when St � 1.

(b) Draw an SM chart for the control circuit.
(c) Write a VHDL description of the divider based on your SM chart. Your VHDL

should explicitly generate the control signals.
(d) Give a sequence of simulator commands that would test the divider for the case

93 divided by 17.

5.5 Draw an SM chart for the BCD to binary converter of Problem 4.13.

5.6 Draw an SM chart for the square root circuit of Problem 4.14.

5.7 Draw an SM chart for the binary multiplier of Problem 4.22.

5.8 Design a binary-to-BCD converter that converts a 10-bit binary number to a 3-digit
BCD number.Assume that the binary number is � 999. Initially the binary number is
placed in register B. When a St signal is received, conversion to BCD takes place, and
the resulting BCD number is stored in the A register (12 bits). Initially A contains

300 SM Charts and Microprogramming
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0000 0000 0000. The conversion algorithm is as follows: If the digit in any decade of
A is � 0101, add 0011 to that decade. Then shift the A register together with the B
register one place to the left. Repeat until 10 shifts have occurred.At each step, as the
left shift occurs, this effectively multiplies the BCD number by 2 and adds in the next
bit of the binary number.

(a) Illustrate the algorithm by converting 100011101 to BCD.
(b) Draw the block diagram of the binary-to-BCD converter. Use a counter

to count the number of shifts. The counter should output a signal C10 after
10 shifts have occurred.

(c) Draw an SM chart for the converter (three states).
(d) Write a VHDL description of the converter.

5.9 Design a multiplier for 16-bit binary integers. Use a design similar to Figures 4-33
and 4-34.

(a) Draw the block diagram. Add a counter to the control circuit to count the num-
ber of shifts.

(b) Draw the SM chart for the controller (three states). Assume that the counter
outputs K � 1 after 15 shifts have occurred.

(c) Write VHDL code for your design.

5.10 The block diagram for an elevator controller for a building with two floors is shown
below. The inputs FB1 and FB2 are floor buttons in the elevator. The inputs CALL1
and CALL2 are call buttons in the hall. The inputs FS1 and FS2 are floor switches
that output a 1 when the elevator is at the first or second floor landing. Outputs UP
and DOWN control the motor, and the elevator is stopped when UP � DOWN � 0.
N1 and N2 are flip-flops that indicate when the elevator is needed on the first or
second floor. R1 and R2 are signals that reset these flip-flops. DO � 1 causes the
door to open, and DC � 1 indicates that the door is closed. Draw an SM chart for
the elevator controller (four states).

Problems 301

Storage 
circuit 
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5.11 Write a test bench for the elevator controller of Problem 5.10. The test bench has
two functions: to simulate the operation of the elevator (including the door opera-
tion) and to provide a sequence of button pushes to test the operation of the
controller.

To simulate the elevator: If the elevator is on the first floor (FS1 � 1) and an UP
signal is received, wait 1 second and turn off FS1; then wait 10 seconds and turn on
FS2; this simulates the elevator moving from the first floor to the second. Similar
action should occur if the elevator is on the second floor (FS2 � 1) and a DOWN
signal is received. When a door open signal is received (DO � 1), set door closed
(DC) to 0, wait 5 seconds, and then set DC � 1.

Test sequence: CALL1, 2, FB2, 4, FB1, 1, CALL2, 10, FB2.
Assume each button is held down for 1 s and then released. The numbers

between buttons are the delays in seconds between button pushes; this delay is in
addition to the 1 s the button is held down.

Complete the following test bench:

entity test_el is
end test_el;

architecture eltest of test_el is
component elev_control
port(CALL1, CALL2, FB1, FB2, FS1, FS2, DC, CLK: in bit;

UP, DOWN, DO: out bit);
end component;

5.12 For the following SM chart:

302 SM Charts and Microprogramming

S0/ 

X2 

Z1 

X1 

Z2 

S1/Z1 

X3 Z3 X2 

S2/Z1 

X1 

1 0 

0 1 

0 

1 

0 

1 

0 

1 

(a) Draw a timing chart that shows the clock, the state (S0, S1, or S2), the inputs (X1,
X2, and X3), and the outputs. The input sequence is X1 X2 X3 � 011, 101, 111,
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010, 110, 101, 001. Assume that all state changes occur on the rising edge of the
clock, and the inputs change between clock pulses.

(b) Use the state assignment S0: AB � 00; S1: AB � 01; S2: AB � 10. Derive the next
state and output equations by tracing link paths. Simplify these equations using
the don’t care state (AB � 11).

(c) Realize the chart using a PLA and D flip-flops. Give the PLA table (state tran-
sition table).

(d) If a ROM is used instead of a PLA, what size ROM is required? Give the first
five rows of the ROM table. Assume a naïve ROM method is used (i.e., a full
look-up table).

5.13 For the given SM chart:

Problems 303

X3 

1 

0 

Z2 Z3 

S2/ 

S0/ 

X1 

S1/Z3 

0 

Z1 

X5 

X2 

1 

0 1 

X4 

1 

0 

001  (Q3 Q2 Q1) 

010 100 

1 

0 

(a) Complete the following timing diagram (assume that X1 � 1, X2 � 0, X3 � 0,
X5 � 1, and X4 is as shown). Flip-flops change state on falling edge of clock.

Clock 

X4 

Q2 

Q3 

Z3 

(b) Using the given one-hot state assignment, derive the minimum next state and
output equations by inspection of the SM chart.

(c) Write a VHDL description of the digital system.
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5.14 (a) Draw an SM chart that is equivalent to the state graph of Figure 4-46.
(b) If the SM chart is implemented using a PLA and three flip-flops (A, B, C), give

the PLA table (state transition table). Use a straight binary state assignment.
(c) Give the equation for A� determined by inspection of the PLA table.
(d) If a one-hot state assignment is used, give the next-state and output equations.

5.15 (a) Write VHDL code that describes the following SM chart. Assume that state
changes occur on the falling edge of the clock. Use two processes.

304 SM Charts and Microprogramming

S0/0 

X1 

Z2 

S1/Z1 

X2 

Z3 

X3 

S2/0 

X2 

Z1 

X1 

Z3 
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1 
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1 
0 
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0 

(b) The SM chart is to be implemented using a PLA and two flip-flops (A and B).
Complete the following state transition table (PLA table) by tracing link paths.
Find the equation for A� by inspection of the PLA table.

Clock 
X1 
X2 
X3 

State 
Z1 
Z2 
Z3 

S0 

A B X1 X2 X3 A� B� Z1 Z2 Z3

(c) Complete the following timing diagram.

5.16 Realize the following SM chart using a ROM with a minimum number of inputs,
a multiplexer, and a loadable counter (like the 74163). The ROM should generate
NST. The multiplexer inputs are selected as shown in the table beside the SM chart.

(a) Draw the block diagram.
(b) Convert the SM chart to the proper format.Add a minimum number of extra states.
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(c) Make a suitable state assignment and give the first five rows of the ROM table.
(d) Write a VHDL description of the system using a ROM.

Problems 305
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X1 
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5.17 Realize the SM chart of Problem 5.16 using the two-address microprogramming
structure shown in Figure 5-29.

(a) Convert the SM chart to the proper form by adding a minimum number of
states to the given chart.

(b) Write the microprogram required to implement the circuit.
(c) What is the size of the ROM required for microprogramming?
(d) What is the size of the ROM if no microprogram is used, but the traditional

ROM method is used to implement the original SM chart?

5.18 The following SM chart is to be realized using the two-address microprogramming
structure shown in Figure 5-29.

X1 

X2 X3 
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Qc Qb Qa T1 T0 CF BF AF CT BT AT Z1 Z2 Z3

0 0 0

(a) Convert the SM chart to the proper form by adding a minimum number of
states to the given diagram. Make a suitable state assignment.

(b) Write the microprogram required to implement this SM chart.
(c) Draw a block diagram showing how the SM chart can be realized using a ROM,

multiplexers, and flip-flops.

5.19 (a) What are the conditions an SM chart must satisfy in order to realize it using
single-address microprogramming with a counter, ROM, and multiplexer as in
Figure 5-33?

(b) Give the modified SM chart and the required state assignment if the SM chart
of Problem 5.16 is realized with this kind of microprogramming.

5.20 (a) What are the conditions an SM chart must satisfy in order to realize it using
single-address microprogramming with a counter, ROM, and multiplexer as in
Figure 5-33?

(b) Give the modified SM chart and the required state assignment if the SM chart
of Problem 5.18 is realized with this kind of microprogramming.

5.21 Realize the SM chart given here using a ROM, a counter, and a 4-to-1 multiplexer.

Z2 

0 

S2/Z3 
X3 

X1 

1 0 

1 

S1 Z2 

S0 

X1 

X2 
0 1 Z1 

0 1 
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(a) Draw a block diagram. Show the MUX inputs.
(b) Change the SM chart to the proper form. Mark required changes on the

given chart.
(c) Make a suitable state assignment. Give the first six rows of the ROM table.

5.22 Realize the SM chart of Problem 5.21 using the two-address microprogramming
hardware structure shown in Figure 5-29.

(a) Convert the SM chart to the proper form by adding a minimum number of
states to the given diagram. What are the changes needed?

(b) Write the microcode for implementing this state machine using the indicated
hardware.You may indicate states in the microcode using the state names S0, S1,
and so on instead of using a bit assignment. Indicate the MUX connections
(inputs) necessary to understand your microcode.

(c) What is the size of the microcode ROM? Explain your calculation.
(d) If the given (original) SM chart is implemented using a traditional ROM

method, how big a ROM is needed? Explain your calculation.

5.23 The following SM chart is to be realized using single-address microprogramming.

Problems 307

S0/Z1 

X1 

S1/Z2 

X1 

S2/Z1 

X3 

S3/Z1 Z2 

X2 

S4/Z2 

X3 

S5/Z1 Z2 

X3 

1 

1 

1 

1 

1 

0 

0 

1 0 

0 

0 

0 

(a) Show the new SM chart and show the state assignments. The MUX inputs are
1, X1, X2, and X3. Do not invert inputs. Add extra states if necessary.

(b) Write the microcode for implementing this state machine using single-address
microprogramming.

(c) If the given (original) SM chart is implemented using a traditional ROM
method, how big a ROM is needed? Explain your calculation.
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5.24 Given the following SM chart,

308 SM Charts and Microprogramming

S0/Z1

X1 

Z3 

1 0 

X2 

Z2 

X3 

X2 

1 

1 

1 

0 

0 

0 

S1/Z3 S2/Z4 

(a) Derive the next state and output equations, assuming the following state assign-
ment: S0 � 00, S1 � 01, S2 � 10.

(b) Convert the SM chart to a form where it can be implemented by single- address
microprogramming, with only next state true (NST) specified in the micropro-
gram. Show the new SM chart and show the new state assignments.

(c) Write the single-address microprogram required to implement this circuit.
(d) What is the size of the microprogram ROM for single-address microprogram-

ming of the modified SM chart?

5.25 The SM charts for three linked machines are given below. All state changes occur
during the falling edge of a common clock. Complete a timing chart including ST,
Wa, A, B, C, and D. All state machines start in the state with an asterisk (*).

P0/ST* 

1 

0 

P1/Wa 

A B 
1 0 

S0/A*

ST 

S1/D 

C 

S2/ 

C 

T0/B* 

ST 

T1/C 

D 

T2/B 

0 0 

0 

0 

0 

1 

1 

1 

1 1 

5.26 SM charts for two linked state machines are shown below. Machine T starts in state
T0, and machine S starts in S0. Draw a timing chart that shows CLK, the states of
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T and S, and signals P, R, and D for 10 clocks. All state changes occur on the rising
edge of the clock.

Problems 309
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5.27 The SM charts for two linked state machines are given below.

(a) Complete the timing diagram given below.
(b) For the SM chart on the left, make a one-hot state assignment, and derive D

flip-flop input equations and output equations by inspection.

X1 

A 

1 

0 

S0/ 

S1/ 

B 
0 

1 

S2/Z1 

A 

1 

0 

T0/Z2 

X2 

1 

0 

T1/ 

B 

CLK 
X1 
X2 

S 
T 
A 
B 

Z1 

S0 

Z2 

T0 

05Ch05.qxd  3/13/07  3:20 PM  Page 309



C H A P T E R

6

310

This chapter describes various issues related to implementing designs in FPGAs.
A few simple designs are hand-mapped into FPGA building blocks to illustrate
tradeoffs arising from the structure of the basic FPGA building block. Shannon’s
expansion for decomposition of large functions into smaller functions is pre-
sented. Issues of the one-hot method of state assignment, which is particularly
suitable for FPGA-like technology, are discussed. The design flow is described,
and synthesis, mapping, and placement issues are discussed briefly. Features of
several commercial FPGAs appear in discussions and examples, but we avoid pre-
senting the entire architecture of any commercial FPGA family. Instead, the basic
principles are presented in a general fashion. Once you understand the funda-
mentals, you will be able to refer to manufacturers’ data books and Web pages for
more detailed descriptions of the particular devices you want to use/understand
in more detail.

6.1 Implementing Functions in FPGAS

Typically behavioral, RTL, or structural models of designs are created in a language
such as VHDL or Verilog, and automatic CAD software is used to synthesize, map,
partition, place, and route the design into an FPGA. To understand issues associated
with partitioning a design into an FPGA, let us design some small components using
FPGAs.

Let us assume that we want to design a 4-to-1 multiplexer using an FPGA
whose logic block is represented by Figure 6-1(a). This building block contains
two 4-variable function generators, X and Y, and two flip-flops. The X function
generator can generate any functions of X1, X2, X3, and X4. Similarly, the Y func-
tion generator can create any function of Y1, Y2, Y3, and Y4. Latched or unlatched
forms of the generated functions can be brought to the output of the logic block.
The latched outputs are QX and QY; the combinational outputs are X and Y.
Assuming that the multiplexer inputs are I0, I1, I2, and I3, and that the multiplexer
selects are S1 and S0, the output equation for the multiplexer can be written as
follows:

M � S1�S0�I0 � S1�S0I1 � S1S0�I2 � S1S0I3 (6-1)

Designing with Field
Programmable Gate Arrays
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6.1 Implementing Functions in FPGAs 311

A 4-to-1 multiplexer can be decomposed into three 2-to-1 multiplexers as illus-
trated in Figure 6-1(b):

M1 � S0�I0 � S0I1

M2 � S0�I2 � S0I3

A third 2-to-1 multiplexer must now be used to create the output of the 4-to-1
multiplexer:

M � S1�M1 � S1M2

LUT4 
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Y4 
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LUT4 
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FF 
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FF 
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S 
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CE 

CE 

(a) 

2-to-1
MUX 

2-to-1
MUX 

2-to-1

MUX 
S0

S0

S1

I0

I1

I2

I3

0 

1 

(b) 

M1

M2

M

FIGURE 6-1:
(a) Example
Building Block for
an FPGA; (b) 4-to-1
Multiplexer Using
2-to-1 Multiplexers

The output is the same as the expected output of the 4-to-1 multiplexer (M).
Two of the 2-to-1 multiplexers (M1 and M2) can be implemented in one logic
block, and a second logic block can be used to implement the third multiplexer
(M). Thus, two logic blocks will be required to implement a 4-to-1 multi-
plexer using this type of logic block. The functions generated by the first logic
block are

X � M1 � S0�I0 � S0I1

Y � M2 � S0�I2 � S0I3

Only half of the second logic block is used. The X function generator creates the
function

M � S1�M1 � S1M2

The path used by M1 and M2 is highlighted in Figure 6-2. The flip-flops are
unused in this design.

Many modern FPGAs use a four-input look-up table (LUT) as a basic building
block. Many designers refer to this building block as LUT4. It can implement a func-
tion (1-bit) of any four variables. It takes 16 bits of SRAM in order to realize the
four-input LUT using the SRAM technology.
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Example
What are the contents of the look-up tables implementing the multiplexers in Figure 6-2?

Answer

As illustrated in the figure, three look-up tables are used to implement functions M1, M2, and
M. All of them are essentially 2-to-1 multiplexers. Assuming X1 and Y1 are the LSBs and X4

and Y4 are the MSBs of the LUT addresses, one can create the truth tables for each LUT as
shown. When S0 is 0, the output (X) equals I0, and when S0 is 1, the output equals I1. Let us
denote the three LUTs as LUT-M1, LUT-M2, and LUT-M.

312 Designing with Field Programmable Gate Arrays

FIGURE 6-2:
Highlighting Paths
for a 4-to-1 Mux
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Inputs Output

X4 X3(S0) X2(I1) X1(I0) X

x 0 0 0 0
x 0 0 1 1
x 0 1 0 0
x 0 1 1 1
x 1 0 0 0
x 1 0 1 0
x 1 1 0 1
x 1 1 1 1

The MSB of each LUT is unused. The contents of the first 8 locations of the LUT should
be duplicated for the next 8 locations, since irrespective of the value of X4, we expect it to
behave like a 2-to-1 multiplexer. Hence, the contents of LUT-M1 are the following:

LUT-M1 – 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1

Since all three LUTs in Figure 6-2 are implementing 2-to-1 multiplexers, they have identical
contents for the input connections shown. The contents of the second and third LUTs are the
following:

LUT-M2 – 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1

LUT-M – 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1
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6.1 Implementing Functions in FPGAs 313

Some FPGAs provide two 4-variable function generators and a method to
combine the output of the two function generators. Consider the logic block
in Figure 6-3. This programmable logic block has nine logic inputs (X1, X2, X3, X4,
Y1, Y2, Y3, Y4, and C). It can generate two independent functions of four
variables:

f1(X1, X2, X3, X4) and f2(Y1, Y2, Y3, Y4)

The logic block can also generate a function Z, which depends on f1, f2, and C.
Several programmable multiplexers are used to select what is brought out at the
combinational outputs (Xout, Yout) and the sequential outputs (QX, QY). The
block can generate any function of five variables in the form Z � f1(F1, F2, F3, F4)�
C� � f2(F1, F2, F3, F4) � C. It can also generate some functions of six, seven, eight, and
nine variables. A Xilinx FPGA from the past, the XC4000, uses a similar structure
for its logic blocks.

FIGURE 6-3:
Example
Programmable
Logic Block with
Three Look-Up
Tables

C

X

Z

Y

LUT4

X Function
generator

LUT4

Y Function
generator

X1

X2

X3

X4

Y1

Y2

Y3

Y4

FF

QX

Xout

QY

Yout

D QS

R

FF
D QS

R

=  Programmable MUX

CE

CE

Z Function
generator

LUT3

Now consider the implementation of a 4-to-1 multiplexer using this FPGA
building block. A 4-to-1 multiplexer can be implemented using a single logic block
of this FPGA, as highlighted in Figure 6-4. The X function generator (LUT4) imple-
ments the function M1 � S0�I0 � S0I1, the Y function generator (LUT4) implements
the function M2 � S0�I2 � S0I3, and the Z function generator implements the
function M � S1�M1 � S1M2. The input C is used to feed in select signal S1 for use in
the Z function generator. This design needs no flip-flops or latches.

Often, there are many ways to map the same design. The 4-to-1 multiplexer
(shown in Figure 6-4) was generated using the C input of the block. The multi-
plexer can be created even without using the C input. The first two terms of
the multiplexer’s equation (Equation (6-1)) have four variables S0, S1, I0 and I1.
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The third and fourth terms of the equation have four variables S0, S1, I2, and I3.
Thus, a four-variable function generator can implement the first two terms, and
another four-variable function generator can implement the third and fourth
terms. However, now the outputs of the two four-variable function generators
need to be combined. The Z function generator can be used for this purpose. In
this case, the X function generator (LUT4) generates the function

F1 � S1�S0�I0 � S1�S0I1 (6-1a)

which is the first half of the function in Equation (6-1). The Y function generator
(LUT4) generates the function

F2 � S1S0�I2 � S1S0I3 (6-1b)

which is the second half of the function in Equation (6-1). The Z function generator
(LUT3) performs an OR function of the F1 and F2 functions

Z � F1 � F2 (6-2)

In this case, the C input is not required. This is an example of how mapping soft-
ware has choices in the mapping of circuitry into resources available in the target
technology.

The preceding example illustrated that it is very expensive to create multiplex-
ers using LUTs. Three 4-input function generators (LUTs) are required to create a
4-to-1 multiplexer. Since 16 SRAM cells are required to create a four-variable func-
tion generator, 48 memory cells are required to create a 4-to-1 multiplexer using the
FPGA building block in Figure 6-2.
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FIGURE 6-4:
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6.1 Implementing Functions in FPGAs 315

Eight memory cells are required to create a three-variable function generator
(LUT3). Hence, the multiplexer in Figure 6-3 needs 40 memory cells (16 cells for X,
16 cells for Y, and 8 cells for Z). The contents of these memory cells are part of what
we need to download into the FPGA in order to program it.

When the programmable logic block of an FPGA is a large unit with the ability
to realize a fairly complex multivariable function, it is possible that a large part
of each logic block may go unused. Let us consider an example. Assume that we
must design a 4-bit circular shift register in an FPGA, whose building block is
similar to the one in Figure 6-1(a). In a circular shift register, the output of the
rightmost flip-flop is fed back to the input of the leftmost flip-flop. Such a shift reg-
ister is also called a ring counter. Since four flip-flops are required for a 4-bit shift
register, two such basic building blocks will be required to realize this circuit. The
four next state equations are D1 � Q4, D2 � Q1, D3 � Q2, and D4 � Q3. Two next
state equations can be realized using the combinatorial function generators in one
logic block. Figure 6-5b highlights the active paths for the shift register.The X func-
tion generator is used to generate D1 � Q4 and the Y function generator is used to
generate D2 � Q1.

Notice that the four-variable function generators are largely unused in this
example, because the next state equations for the flip-flops are rather simple; they
depend only on the current state of the preceding flip-flop (i.e., a single-variable
function). However, even if a function generator is used for a single-variable func-
tion, the rest of the function generator cannot be used for anything else.

FIGURE 6-5:
(a) Circular Shift
Register;
(b) Implementation
Using Simple FPGA
Building Block
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Example
How many programmable logic blocks similar to the one in Figure 6-1(a) will be required to
create a 3-to-8 decoder?

Answer

4. A 3-to-8 decoder has three inputs and eight outputs. Each output will need a three-variable
function generator. Since what is available in the logic block in Figure 6-1(a) is a four-variable
function generator, we will have to use one such function generator to create one output.Thus,
eight function generators (i.e., eight 4-input LUTs) will be required to create a 3-to-8 decoder.
One logic block shown in Figure 6-1(a) can generate two outputs. So four such programmable
logic blocks will be required to create a 3-to-8 decoder.

If the LUTs are SRAM based, 128 SRAM cells are required to implement the 3-to-8
decoder using the LUT-based FPGA. This decoder will only need eight 3-input AND gates
and three inverters, if implemented using logic gates. Thus, LUTs are very expensive for
implementing certain functions.

Some FPGAs use multiplexers and gates as a basic building block. Some FPGAs
(e.g., the Xilinx Spartan) provide LUTs and multiplexers. The mapping software
looks at the resources available in the target technology (i.e., the specific FPGA that
is used) and translates the design into the available building blocks.

6.2 Implementing Functions Using Shannon’s
Decomposition
Shannon’s expansion theorem can be used to decompose functions of large num-
bers of variables into functions of fewer variables. In the previous section, we
decomposed a 4-to-1 multiplexer into 2-to-1 multiplexers in order to implement it
in a logic block with four-variable function generators. Shannon’s expansion offers
a general decomposition technique for any function.

Let us illustrate Shannon’s decomposition for realizing any six-variable function
Z(a, b, c, d, e, f ). First, expand the function as follows:

Z(a, b, c, d, e, f ) � a� � Z(0, b, c, d, e, f ) � a � Z(l, b, c, d, e, f ) � a�Z0 � aZ1 (6-3)

We can verify that Equation (6-3) is correct by first setting a to 0 on both sides
and then setting a to 1 on both sides. Since the equation is true for both a � 0 and
a � 1, it is always true. Equation (6-3) leads directly to the circuit of Figure 6-6(a),
which uses two cells to realize Z0 and Z1. Half of a third cell is used to realize the
three-variable function, Z � a�Z0 � aZ1.

As an example, consider the following function:

Z � abcd�ef � � a�b�c�def � � b�cde�f
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6.2 Implementing Functions Using Shannon’s Decomposition 317

Setting a � 0 gives

Z0 � 0 � bcd�ef � � 1 � b�c�def � � b�cde�f � b�c�def � � b�cde�f

and setting a � 1 gives

Z1 � 1 � bcd�ef � � 0 � b�c�def � � b�cde�f � bcd�ef � � b�cde�f.

Since Z0 and Z1 are five-variable functions, each of them needs a five-input LUT.
Irrespective of the number of terms in a function, as long as there are only five
variables, it can be realized by one five-input LUT. Then a 2-to-1 multiplexer or
another LUT5 will be required to generate Z from Z0 and Z1.

If only four-input LUTs are available, the five-variable functions should be
further decomposed into four-variable functions. This can be done by applying
Shannon’s expansion theorem twice, first expanding about a and then expanding
about b. Or it can be done in one step by decomposing into four component func-
tions as follows:

Z(a, b, c, d, e, f ) � a�b� � Z(0, 0, c, d, e, f ) � a�b � Z(0, 1, c, d, e, f )
� ab� � Z(1, 0, c, d, e, f ) � ab � Z(1, 1, c, d, e, f )

� a�b� � Y0 � a�b � Y1 � ab� � Y2 � ab � Y3 (6-4)

Figure 6-6(b) illustrates the realization of a general six-variable function using
four-variable functions.

FIGURE 6-6:
Realization of 
Six-Variable
Functions Using
(a) Five-Variable
and (b) Four-
Variable Function
Generators
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Now let us consider the decomposition of function

Z � abcd�ef � � a�b�c�def � � b�cde�f
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into four-variable functions. Let us apply Shannon’s expansion around a and b.

• Substituting a � b � 0 gives Y0 � c�def� � cde�f
• Substituting a � 0, b � 1 gives Y1 � 0
• Substituting a � 1, b � 0 gives Y2 � cde�f,
• Substituting a � b � 1 gives Y3 � cd�ef�

In a general implementation, seven 4-variable function generators will be required
to implement a six-variable function as in Figure 6-6(b). However, in this example,
one of the four-variable functions obtained by decomposing is the null function,
which results in a simpler function:

Z � a�b� � Y0 � ab� � Y2 � ab � Y3

Five 4-variable function generators will be sufficient to implement this function, one
each for Y0, Y2, and Y3, one for generating Z1 � ab� � Y2 � ab � Y3, and another one
for generating a�b� � Y0 � Z1. Figure 6-7 illustrates the implementation of the function
Z � abcd�ef� � a�b�c�def� � b�cde�f, using only four-variable function generators.
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FIGURE 6-7:
Example Function
Implementation
Using Four-Variable
Function
Generators
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Any seven-variable function can be realized with six or fewer LUT5s. The
expansion for a general seven-variable function is

Z(a, b, c, d, e, f, g) � a�b� � Z(0, 0, c, d, e, f, g) � a�b � Z(0, 1, c, d, e, f, g)
� ab� � Z(1, 0, c, d, e, f, g) � ab � Z(1, 1, c, d, e, f, g)

� a�b� � Y0 � a�b � Y1 � ab� � Y2 � ab � Y3 (6-5)

Here Y0, Y1, Y2, and Y3 are five-variable functions of c, d, e, f, and g. Equation (6-5)
can be obtained by applying the expansion theorem twice, first expanding about a and
then expanding about b. As an example, consider the seven-variable function:

Z � c�de�fg � bcd�e�fg� � a�c�def �g � a�b�d�ef �g� � ab�defg�

• Substituting a � b � 0 gives Y0 � c�de�fg � c�def �g � d�ef �g�
• Substituting a � 0, b � 1 gives Y1 � c�de�fg � cd�e�fg� � c�def �g
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• Substituting a � 1, b � 0 gives Y2 � c�de�fg � defg�
• Substituting a � b � 1 gives Y3 � c�de�fg � cd�e�fg�

This function can be implemented using six 5-variable function generators. Four of
the function generators will implement the functions, Y0, Y1, Y2, and Y3. A fifth
function generator implements the four-variable function, Z0 � a�b� � Y0 � a�b � Y1,
and the remaining function generator implements a five-variable function, Z � Z0 �
ab� � Y2 � ab � Y3.

Shannon’s decomposition allows us to decompose an n-variable function into two
n � 1 variable functions and multiplexers. As we saw in the earlier part of this chap-
ter, it is very inefficient to realize multiplexers using LUTs. As the number of vari-
ables (n) increases, the number of look-up tables required to realize an n-variable
function increases rapidly.Availability of multiplexers can greatly reduce the number
of LUTs needed. For this reason, some FPGAs provide multiplexers in addition to
LUT4s.

Example
Implement a seven-variable function using four-input LUTs and 2-to-1 multiplexers.

Answer

Shannon’s expansion can be used to obtain the following decompositions:

7-variable function generator � two 6-variable function generators � a 2-to-1 mux . . . (i)

6-variable function generator � two 5-variable function generators � a 2-to-1 mux . . . (ii)

5 variable function generator � two 4-variable function generators � a 2-to-1 mux . . . (iii)

Substituting (iii) into (ii), we obtain

6-variable function generator � four 4-variable function generators
� three 2-to-1 muxes . . . (iv)

Substituting (iv) into (i), we obtain

7-variable function generator � eight 4-variable function generators � seven 2-to-1 muxes

Thus a seven-variable function can be implemented as in Figure 6-8.

If only four-variable LUTs are available, a seven-variable function needs fif-
teen 4-variable LUTs. A 2-to-1 multiplexer is cheaper than a four-input LUT, and
hence it is implemented using eight 4-input LUTs and seven 2-to-1 multiplexers
in Figure 6-8.

The Xilinx Spartan FPGA is an example of an FPGA that provides multiplex-
ers in addition to the general four-variable LUTs. A logic unit in these FPGAs is
called a slice, and a slice may be represented in a simple fashion as in Figure 6-9.
It contains two 4-input LUTs and two 2-to-1 multiplexers (plus other logic not
shown here). A seven-variable function can be realized using four such slices, as in
Figure 6-10. Dotted lines are used to indicate each slice.
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FIGURE 6-8: A
Seven-Variable
Function Using
Four-Input LUTs
and 2-to-1 Muxes
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Simplified View
of a Xilinx Spartan
Slice

As another example, let us generate a parity function using four-variable func-
tion generators. The parity function is defined as

F � A � B � C � D � E
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FIGURE 6-10:
Implementing a
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which has 16 terms when expanded to a sum of products, but it is a five-variable
function. Any five-variable function can be decomposed into two 4-variable func-
tions using Shannon’s expansion and can be realized using two 4-input LUTs and
a 2-to-1 multiplexer. Two four-variable function generators are sufficient for this
specific function because it can be broken down into a 4-variable parity function
and an XOR with the fifth variable.

6.3 Carry Chains in FPGAS

The most naïve method for creating an adder with FPGAs would be to use FPGA
logic blocks to generate the sum and carry for each bit. A four-variable look-up
table (which is the standard building block nowadays) can generate the sum, and
another LUT4 will typically be required to realize the carry equation.The carry out-
put from each bit has to be forwarded to the next bit using interconnect resources.
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But since addition is a fundamental and commonplace operation, many FPGAs pro-
vide dedicated circuitry for generating and propagating carry bits to subsequent
higher bits. Typically, a dedicated carry chain is implemented. As an example, con-
sider the carry chain illustrated in Figure 6-11. Each LUT generates the sum bit of
the corresponding input bits (a, b, and Carry-in).The carry chain generates the carry
in parallel and feeds it using the dedicated interconnect to the LUT implementing
the sum of the next bit.
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FIGURE 6-11: Carry
Chains for Fast
Addition
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Without such a carry chain, an n-bit adder typically will take 2n logic blocks
(if a logic block is an LUT4), whereas with the carry chain, n logic blocks (albeit
with additional dedicated circuitry) are sufficient. Dedicated circuitry generates
the carry and routes it directly to the next LUT4. The hardware for the carry
generation will be unused in many circuits, but because addition is a common
operation, it is generally worthwhile to include such circuitry in the FPGA
logic block.

6.4 Cascade Chains in FPGAS

Some FPGAs contain support for cascading outputs from FPGA blocks in series.The
common types of cascading are the AND configuration and the OR configuration.
Instead of using separate function generators to perform AND or OR functions
of logic block outputs, the output from one logic block can be directly fed to the cas-
cade circuitry to create AND or OR functions of the logic block outputs. Figure 6-12
illustrates the cascade chains in an example FPGA that uses four-input LUTs
for function generation. So if an OR operation of 32 variables is desired, we can
accomplish this using eight logic blocks. Each logic block will generate a four-
variable OR, and the cascading OR gate can be used to OR the output from the pre-
vious logic block. Cascading AND and exclusive OR gates are also provided in some
FPGAs. In look-up table–based FPGAs, these types of cascade chains may be called
LUT chains.

FIGURE 6-12:
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6.5 Examples of Logic Blocks in Commercial
FPGAS

We provide three examples of commercial FPGA logic blocks. They are from Xilinx,
Altera, and Actel.The Xilinx and Altera architectures both use four-variable look-up
tables as their basic building block.The Actel basic block uses multiplexers and gates.

6.5.1 The Xilinx Configurable Logic Block
Xilinx Spartan and Virtex family FPGAs use two or four copies of a basic block
called a slice, illustrated in Figure 6-13, to form a configurable logic block (CLB). CLB
is the Xilinx terminology for the programmable logic block in Xilinx’s FPGAs. Each
slice contains two function generators, the G function generator and the F function
generator. Additionally, there are two multiplexers, F5 and FX, for function
implementation. In order to implement a four-variable LUT, 16 SRAM bits are
required, so a slice contains 32 bits of SRAM in order to generate the combinational
function. The F5 multiplexer can be used to combine the outputs of two 4-variable
function generators to form a five-variable function generator.The select input of the
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FIGURE 6-13:
Simplified View of
the Xilinx Spartan
and Virtex Slice
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multiplexer is available to feed in the fifth input variable. All inputs of the FX multi-
plexer are accessible, allowing the creation of several two-variable functions.This mul-
tiplexer can be used to combine the F5 outputs from two slices to form a six-input
function. Each slice also contains two flip-flops that can be configured as edge-
sensitive D flip-flops or as level-sensitive latches. There is support for fast carry gen-
eration for addition.There is also additional logic to generate a few specific logic func-
tions in addition to the general four-variable LUT.

6.5.2 The Altera Logic Element
Altera’s name for its basic logic block is the logic element (LE). Figure 6-14 illus-
trates a simplified view of the logic element of the Altera Stratix FPGA. Each LE
contains a four-variable LUT and a flip-flop. It can implement any function of four
variables. The output can come out directly from the combinational logic or from
the flip-flop.A cascade chain provides connections to adjacent LEs so that functions
of more than four variables can be implemented. There is also a fast carry chain in
order to allow high-speed addition. The flip-flop can be cleared or set asynchro-
nously. Since it is a simplified view, many details are left out.The flip-flop output can
be fed back as an input to the LUT. There are also additional logic gates to manip-
ulate some of the LUT inputs.

FIGURE 6-14:
Simplified View
of the Altera
Stratix Logic
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6.5.3 The Actel Fusion VersaTile
The building block in the Actel Fusion architecture, illustrated in Figure 6-15, con-
sists of multiplexers and gates. Actel calls their basic block the VersaTile. The
VeraTile block has four inputs, X1, X2, X3, and Xc as illustrated in Figure 6-15. Each
VersaTile can be configured to be any of the following:

• a three-input logic function
• a latch with a clear or set
• a D-flip-flop with clear or set
• a D flip-flop with enable, clear, or set

When used as a three-input logic function, the inputs are X1, X2, and X3. When
used for the latch/flip-flop, input X2 is typically used for the clock. Inputs X1 and Xc
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are used for flip-flop enable and clear signals. The logic block provides duplicate
outputs tailored for fast local connections or efficient long-line connections, but for
simplicity we only show one output in Figure 6-15. The VersaTile is of significantly
finer grain than the four-input LUTs in many other FPGAs. The granularity of this
building block is comparable to that of standard gate arrays (i.e., traditional gate
arrays that are mask programmable).
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FIGURE 6-15: Simplified View of the Actel Fusion and ProAS1C Logic Block (© 2006 Actel Corporation)
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6.6 Dedicated Memory in FPGAS

Many applications need memory. It could be for storing a table of constants to be
used as coefficients during processing, or it could be for implementing instruction
and data memories for an embedded processor that you are designing using the
FPGA. Early FPGAs did not contain any dedicated memory. Designers typically
interfaced the FPGAs to external memory chips when memory was desired. As chip
densities have increased, FPGA designers started to incorporate dedicated memory
on FPGA chips, eliminating the need to interface them with external memory chips.

Modern FPGAs include 16K to 10M bits of dedicated memory.Table 6-1 presents
the amount of dedicated RAM in some FPGAs. As an example, the Xilinx Virtex-5
contains 1 to 10M bits of dedicated memory. Similarly, the Altera Stratix II contains
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6.6 Dedicated Memory in FPGAs 327

409K to 9M bits of memory.The Actel Fusion contains 27 to 270K bits of memory.The
dedicated memory is typically implemented using a few (4–1000) large blocks of ded-
icated SRAM located in the FPGA. Figure 6-16 indicates a typical organization for
the dedicated RAM blocks. In many FPGAs, they are situated outside the region of
the logic block arrays (e.g., Xilinx Virtex/Spartan and Actel Fusion). In some FPGAs
(e.g., Altera Stratix), there are columns of memory in a few different locations in the
FPGA. In many FPGAs, the SRAM blocks are of one size (e.g., 18Kb in Xilinx
Virtex). In some FPGAs, there are blocks of different sizes. For example, the Altera
Stratix II has 512b, 4Kb, and 512Kb blocks). The dedicated memory on the Xilinx
FPGAs is called block RAM. The dedicated memory on the Altera FPGAs is called
TriMatrix memory. Some FPGAs provide parity bits in the SRAM.The parity bits are
included when calculating the dedicated RAM size in the literature from some ven-
dors; other vendors exclude the parity bits and count only the usable dedicated RAM.

FIGURE 6-16:
Embedded RAMs
in FPGAs

Array of
Logic Blocks

SRAM Blocks

SRAM Blocks

A key feature of the dedicated RAM on modern FPGAs is the ability to adjust
the width of the RAM. As shown in Table 6-1, there are several tiles or blocks of
memory. They can be placed in various ways to achieve different aspect ratios. Let
us assume that there are 32K bits of SRAM provided as blocks of RAM. This RAM
can be used as 32K � 1, 16K � 2, 8K � 4, or 4K � 8. Thus, the width of the RAM
can be adjusted depending on the needs of the application. One application may
need byte-wide memories; another application may need 64-bit-wide memories.

LUT-based FPGAs offer another alternative for memory. If only small amounts
of memory are required, it is possible to create that memory using the bits in the
LUTs (i.e., without using the dedicated memory). As you know, a four-variable LUT
contains 16 bits of storage.We can create small amounts of memory by combining the
storage cells from the LUTs. Two 4-input LUTs (as in Figure 6-17) can be used to
create a 32 � 1 memory or a 16 � 2 memory. When used as a 32 � 1 memory, there
must be five address lines and one data line (i.e., D1 and D2 must be connected). The
top LUT must be enabled when the MSB of the address is 0, and the bottom LUT
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FIGURE 6-17:
Creating Memory
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must be enabled when the MSB of the address is 1. This can be done using the high-
est bit of the address and an inverter. When used as a 16 � 2 memory, both LUTs are
enabled, and data lines D1 and D2 are brought out in parallel. Memory created from
LUT cells is called distributed memory (in Xilinx terminology).As the term indicates,
this memory is distributed throughout the chip inside the logic blocks.A disadvantage
of distributed memory is that once the LUT memory is used in this fashion, the logic
block is generally unusable.The LUT memory can be used as asynchronous memory;
it can also be combined with the logic block flip-flops to create synchronous memory.
Table 6-2 presents the amount of LUT-based memory available in some FPGAs.

6.6.1 VHDL Models for Inferring Memory in FPGAs
Embedded memory on FPGAs can be instantiated using behavioral VHDL models.
Memories can be synchronous or asynchronous. An asynchronous read operation
means that the data from the addressed location is available on the output bus after

TABLE 6-1:
Size of Dedicated
RAM in Example

FPGAs

FPGA Family Dedicated RAM Size (Kb) Organization

Xilinx Virtex 5 1152–10368 64–576 18Kb blocks

Xilinx Virtex 4 864–9936 48–552 18Kb blocks

Xilinx Virtex-II 72–3024 4–168 18Kb blocks

Xilinx Spartan 3E 72–648 4–36 18Kb blocks

Altera Stratix II 409–9163 104–930 512b blocks
78–768 4Kb blocks
0–9 512Kb blocks

Altera Cyclone II 117–1125 26–250 4Kb blocks

Lattice SC 1054–7987 56–424 18Kb blocks

Actel Fusion 27–270 6–60 4Kb blocks
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6.6 Dedicated Memory in FPGAs 329

the access time, irrespective of the clock. In contrast, in synchronous memory, read
and write control lines will have an impact only if the clock is active. In some mem-
ories, write is synchronous and read is asynchronous.

Modern synthesis tools are capable of inferring embedded memory from high-
level constructs. Figure 6-18 illustrates VHDL code that creates a synchronous-
write, asynchronous-read memory. The memory array is represented by an array of
unsigned vectors. Since Address is typed as an unsigned vector, it must be converted
to an integer in order to index the memory array; hence we use the IEEE.numer-
ic_bit library and its conversion functions. A data type called RAM is defined as an
array of 128 elements, each of which is 32 bits. The signal DATAMEM is of type
RAM.The memory array is not initialized here; however, it may be initialized to any
desired values. The write operation is performed inside the process, and only at the
positive edge of the clock. The read operation is outside the process; hence it occurs
irrespective of the clock. Synthesis using current Xilinx tools results in distributed
memory for this code. Distributed memory is ideal for asynchronous memory, since
the LUT generates its output asynchronously. In contrast, the code in Figure 6-19
infers block RAM. In this code sequence, the read statement appears inside the
process, and read also happens only at the clock edge.

FPGA Family LUT-Based RAM (Kb) No. of LUTs

Xilinx Virtex 5 320–3420 19200–207,360

Xilinx Virtex 4 96–987 12288–126,336

Xilinx Virtex-II 8–1456 512–93,184

Xilinx Spartan 3E 15–231* 1920–29,504

Altera Stratix II 195–2242** 12480–143,520

Altera Cyclone II 72–1069** 4608–68,416

Lattice SC 245–1884 15200–115,200

Lattice ECP2 12–136 6000–68,000

* does not use all of the LUTs as distributed RAM

** calculated from LUT counts

TABLE 6-2:
LUT-Based RAM
in Some FPGAs

FIGURE 6-18: Behavioral VHDL Code That Typically Infers LUT-Based Memory

library IEEE;
use IEEE.numeric_bit.all;

entity Memory is
port(Address: in unsigned(6 downto 0);

CLK, MemWrite: in bit;
Data_In: in unsigned(31 downto 0);
Data_Out: out unsigned(31 downto 0));

end Memory;

architecture Behavioral of Memory is
type RAM is array (0 to 127) of unsigned(31 downto 0);
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If the ROM method is used for implementing circuits, the synthesis tools may
infer RAM in order to implement the look-up tables. As an example, consider the
creation of a 4 � 4 multiplier using a look-up table method, as illustrated by the
VHDL code in Figure 6-20. Since it uses the look-up table method, the product
values for each of the input combinations are stored in a look-up table. Since the
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FIGURE 6-19: Behavioral VHDL Code That Typically Infers Dedicated Memory

library IEEE;
use IEEE.numeric_bit.all;

entity Memory is
port(Address: in unsigned(6 downto 0);

CLK, MemWrite: in bit;
Data_In: in unsigned(31 downto 0);
Data_Out: out unsigned(31 downto 0));

end Memory;

architecture Behavioral of Memory is
type RAM is array (0 to 127) of unsigned(31 downto 0);
signal DataMEM: RAM;  -- no initial values
begin
process(CLK)
begin
if CLK'event and CLK = '1' then
if MemWrite = '1' then

DataMEM(to_integer(Address)) <= Data_In;  -- Synchronous Write
end if;
Data_Out <= DataMEM(to_integer(Address));  -- Synchronous Read

end if;
end process;

end Behavioral;

signal DataMEM: RAM;  -- no initial values
begin
process(CLK)
begin
if CLK'event and CLK = '1' then

if MemWrite = '1' then
DataMEM(to_integer(Address)) <= Data_In;  -- Synchronous Write

end if;
end if;

end process;

Data_Out <= DataMEM(to_integer(Address));  -- Asynchronous Read
end Behavioral;
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multiplicand and multiplier are 4 bits each, there are 256 possible combinations
of inputs. A constant array is used to store the product array. The multiplicand is
0000 for the first 16 entries; hence the product is 0 for the first 16 entries. The mul-
tiplicand is 0001 for the next 16 entries; hence the product ranges from 0 to 15
(decimal) as the multiplier changes from 0 to 15. VHDL code for this multiplier
is presented in Figure 6-20. If this code is synthesized, current Xilinx tools infer
distributed RAM to store the product values. Distributed RAM is inferred to
implement asynchronous reads since the LUTs in the logic blocks can continu-
ously update the outputs as the inputs change. No clock is required. However, it
might be desirable to store the arrays in the dedicated block RAM, especially if
we do not want to waste LUTs for realizing memory. If the read operation is made
synchronous, as in

process(CLK)
begin

if CLK'event and CLK = '1' then
Product <= PROD_ROM(to_integer(Mplier & Mcand));

-- read Product LUT (Synchronously)
end if;

end process;

current synthesis tools from Xilinx infer dedicated block RAM to store the
256 product values.

FIGURE 6-20: Look-Up Table–Based 4 � 4 Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity LUTmult is
port(Mplier, Mcand: in unsigned(3 downto 0);

Product: out unsigned(7 downto 0));
end LUTmult;

architecture ROM1 of LUTmult is
type ROM is array (0 to 255) of unsigned(7 downto 0);
constant PROD_ROM: ROM: =

(x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00", x"00",

x"00", x"01", x"02", x"03", x"04", x"05", x"06", x"07", x"08", x"09", x"0A", x"0B", x"0C", x"0D", x"0E", x"0F",

x"00", x"02", x"04", x"06", x"08", x"0A", x"0C", x"0E", x"10", x"12", x"14", x"16", x"18", x"1A", x"1C", x"1E",

x"00", x"03", x"06", x"09", x"0C", x"0F", x"12", x"15", x"18", x"1B", x"1E", x"21", x"24", x"27", x"2A", x"2D",

x"00", x"04", x"08", x"0C", x"10", x"14", x"18", x"1C", x"20", x"24", x"28", x"2C", x"30", x"34", x"38", x"3C",

x"00", x"05", x"0A", x"0F", x"14", x"19", x"1E", x"23", x"28", x"2D", x"32", x"37", x"3C", x"41", x"46", x"4B",

x"00", x"06", x"0C", x"12", x"18", x"1E", x"24", x"2A", x"30", x"36", x"3C", x"42", x"48", x"4E", x"54", x"5A",

x"00", x"07", x"0E", x"15", x"1C", x"23", x"2A", x"31", x"38", x"3F", x"46", x"4D", x"54", x"5B", x"62", x"69",

x"00", x"08", x"10", x"18", x"20", x"28", x"30", x"38", x"40", x"48", x"50", x"58", x"60", x"68", x"70", x"78",

x"00", x"09", x"12", x"1B", x"24", x"2D", x"36", x"3F", x"48", x"51", x"5A", x"63", x"6C", x"75", x"7E", x"87",

x"00", x"0A", x"14", x"1E", x"28", x"32", x"3C", x"46", x"50", x“5A”, x"64", x"6E", x"78", x"82", x"8C", x"96",
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6.7 Dedicated Multipliers in FPGAs
Many modern FPGAs provide dedicated multipliers. Suppose that a designer
wants a 16 � 16 multiplier. If dedicated multipliers are not provided, several
programmable logic blocks will be used to create the 16 � 16 multiplier. Such a
multiplier will be expensive in terms of the number of blocks and interconnect
resources used; it will also be slow due to the switches involved in interconnect-
ing the parts of the multiplier. Dedicated multipliers will be more area-efficient
and will be faster than multipliers realized using logic blocks. Since multiplica-
tion is an important operation in many applications involving FPGAs, many
commercial FPGAs provide dedicated multipliers. For instance, Xilinx Virtex-
4/Spartan-3, and Altera Stratix/Cyclone FPGAs contain 18 � 18 multipliers.
These multipliers take two 18-bit operands and produce a 36-bit product, as
illustrated in Figure 6-21. It is possible to load the multiplicand and multiplier
into optional registers and load the product into an optional product register.
The inputs to the multipliers can come from external pins or they can come from
other logic in the FPGA.

When multiplication of numbers larger than 18 bits is required, several of the
dedicated built-in multipliers can be put together. If A and B are 32 bits, and C, D,
E, and F are the 16-bit components of A and B such that

A � C � 216 � D

B � E � 216 � F

then AB � CE � 232 � (DE � CF) � 216 � DF. This means that four multipliers to
generate the partial products CE, DE, CF, and DF, and several adders to add the
partial products are required.

332 Designing with Field Programmable Gate Arrays

FIGURE 6-21:
Dedicated
Multipliers

18 × 18 
Multiplier 

18 

18 

36 

Multiplier 

Multiplicand 

Product 

x"00", x"0B", x"16", x"21", x"2C", x"37", x"42", x"4D", x"58", x"63", x"6E", x"79", x"84", x"8F", x"9A", x"A5",

x"00", x"0C", x"18", x"24", x"30", x"3C", x"48", x"54", x"60", x"6C", x"78", x"84", x"90", x"9C", x"A8", x"B4",

x"00", x"0D", x"1A", x"27", x"34", x"41", x"4E", x"5B", x"68", x"75", x"82", x"8F", x"9C", x"A9", x"B6", x"C3",

x"00", x"0E", x"1C", x"2A", x"38", x"46", x"54", x"62", x"70", x"7E", x"8C", x"9A", x"A8", x"B6", x"C4", x"D2",

x"00", x"0F", x"1E", x"2D", x"3C", x"4B", x"5A", x"69", x"78", x"87", x"96", x"A5", x"B4", x"C3", x"D2", x"E1");

begin
Product <= PROD_ROM(to_integer(Mplier&Mcand));  -- read Product LUT
end ROM1;
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Synthesis tools are capable of inferring dedicated multipliers on FPGAs that
provide them. For instance, if the VHDL code in Figure 6-22 is synthesized for
Xilinx Spartan devices using Xilinx ISE tools, the synthesis tool infers four dedi-
cated 18 � 18 multipliers. When the code in Figure 6-22 is synthesized, several
logic blocks in the FPGA are used in addition to the four multipliers. The logic
blocks are used to realize the adders for the partial products. Sixty-four I/O pins
are used to provide the multiplicand and multiplier, and 64 I/O pins are used for
the output. Here external pins are used to provide inputs to the multipliers, but
the inputs to the multipliers may also come from the embedded memory in the
FPGAs or the optional registers.

library IEEE;
use IEEE.numeric_bit.all;

entity multiplier is
port(A, B: in unsigned (31 downto 0);

C: out unsigned (63 downto 0));
end multiplier;

architecture mult of multiplier is
begin
C <= A * B;

end mult;

FIGURE 6-22: VHDL Code That Infers Dedicated Multipliers

6.8 Cost of Programmability
The programmability in an FPGA comes with a significant amount of hardware
cost. In a SRAM-based FPGA, such as the Xilinx XC4000, Virtex, and Spartan
families, SRAM is used for creating the logic blocks, the programmable intercon-
nects, and the programmable I/O blocks. The logic blocks in many modern FPGAs
contain four-variable function generators. A four-variable function generator takes
16 bits of SRAM. Logic functions are realized by loading appropriate bits into the
LUTs. Additionally, several multiplexers are used to select among various generated
functions, to choose between latched and unlatched outputs, or to generate func-
tions of more variables. One bit of SRAM are required to implement the select
input of the 2-to-1 multiplexers, and 2 bits of SRAM are required for select lines
of the programmable 4-to-1 multiplexers. Consider the logic block in Figure 6-23.
The small boxes with M marked in them indicate memory cells required to
program the multiplexers. A memory cell is used to select an external clock-enable
signal. Another memory cell is used to invert the clock. A total of 46 memory cells
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FIGURE 6-23: Logic
Block with Several
Programmable
SRAM Cells
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are required to configure this logic block. The 40 memory cells in the three func-
tion generators (LUTs) might be implementing a simple one-variable function or
a complex five-variable function.

We will use one more example to illustrate the overhead of programmability.
Figure 6-15 illustrated a logic block of the Actel Fusion FPGA. Each switch shown
in the figure needs a flash memory cell. The various flash memory cells required to
program this logic block constitute the overhead of programmability of this logic
block.

The I/O blocks also contain several programmable points. Consider the I/O
block in Figure 6-24. Memory bits for controlling the configuration are indicated by
the boxes marked with M. They are used to enable tristate output, to invert outputs,
to enable the latching of output, to control the slew rate of the signal, to enable pull-
up resistors, and so on.

Each SRAM cell typically takes six transistors. A flash memory cell consumes
approximately 25% of an SRAM cell’s area. The various programmable points add
flexibility to the FPGA; however, the flexibility comes with the cost associated with
the SRAM/flash memory cells. Table 6-3 shows the number of configuration bits in
a few Xilinx Spartan and Virtex FPGAs. A Virtex-II FPGA, the XC2V40, which has
512 four-variable LUTs, needs 338,976 configuration bits. Another Virtex-II FPGA,
the XC2V8000, has 93,184 four-variable LUTs and needs more than 26 million con-
figuration bits. Thus, it is clear that the flexibility and programmability of the FPGA
comes at a high cost.
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Device # of Configuration # of Logic # Usable
Vendor Family Device Bits Blocks # of LUTs I/O Pins

Xilinx Virtex-5 XC5VLX30 8.4M 4,800 19,200 400
XC5VLX330 79.7M 51,840 207,360 1200

Xilinx Virtex-II XC2V40 0.3M 256 512 88
XC2V8000 26.2M 46,592 93,184 1108

Xilinx Spartan 3E XC3S100E 0.6M 960 1,920 108
XC3S1600E 6.0M 14,752 29,504 376

Altera Stratix II EP2S15 4.7M 6,240 12,480 366
EP2S180 49.8M 71,760 143,520 1170

Altera Stratix EP1S10 3.5M 10,570 10,570 426
EP1S80 23.8M 79,040 79,040 1238

Altera Cyclone II EP2C5 1.3M 4,608 4,608 158
EP2C70 14.3M 68,416 68,416 622

TABLE 6-3: Number of Configuration Bits in Example FPGAs

FIGURE 6-24:
Programmable
Points in FPGA I/O
Block (Indicated by
Boxes with ‘M’)
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6.9 FPGAS and One-Hot State Assignment
When designing with FPGAs, it may not be important to minimize the number
of flip-flops used in the design. Instead, we should try to reduce the total number
of logic cells used and try to reduce the interconnections between cells. In order to
design faster logic, we should try to reduce the number of cells required to realize
each equation. Using a one-hot state assignment will often help to accomplish this.
One-hot assignment takes more flip-flops than encoded assignment; however,
the next state equations for flip-flops are often simpler in the one-hot method than
the equations in the encoded method.

The one-hot assignment uses one flip-flop for each state, so a state machine with
N states requires N flip-flops. Exactly one flip-flop is set to 1 in each state. For exam-
ple, a system with four states (T0, T1, T2, and T3) could use four flip-flops (Q0, Q1, Q2,
and Q3) with the following state assignment:

T0: Q0Q1Q2Q3 � 1000, T1: 0100, T2: 0010, T3: 0001 (6-6)

The other 12 combinations are not used.
We can write next state and output equations by inspection of the state graph or

by tracing link paths on an SM chart. Consider the partial state graph given in
Figure 6-25. The next state equation for flip-flop Q3 could be written as

Q3
� � X1Q0Q1�Q2�Q3� � X2Q0�Q1Q2�Q3� � X3Q0�Q1�Q2Q3� � X4Q0�Q1�Q2�Q3

However, since Q0 � 1 implies Q1 � Q2 � Q3 � 0, the Q1�Q2�Q3� term is redundant
and can be eliminated. Similarly, all the primed state variables can be eliminated from
the other terms, so the next state equation reduces to

Q3
� � X1Q0 � X2Q1 � X3Q2 � X4Q3

Note that each term contains exactly one state variable. Similarly, each term in each
output equation contains exactly one state variable:

Z1 � X1Q0 � X3Q2, Z2 � X2Q1 � X4Q3

When a one-hot assignment is used, the next state equation for each flip-flop will
contain one term for each arc leading into the corresponding state (or for each link
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FIGURE 6-25:
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path leading into the state). In general, each term in every next state equation and
in every output equation will contain exactly one state variable.

When a one-hot assignment is used, resetting the system requires that one flip-
flop be set to 1 instead of resetting all flip-flops to 0. If the flip-flops used do not
have a preset input (as is the case for the Xilinx 3000 series), then we can modify the
one-hot assignment by replacing Q0 with Q0� throughout. For the preceding assign-
ment, the modification is

T0: Q0Q1Q2Q3 � 0000, T1: 1100, T2: 1010, T3: 1001 (6-7)

and the modified equations are

Q3
� � X1Q0� � X2Q1 � X3Q2 � X4Q3

Z1 � X1Q0� � X3Q2, Z2 � X2Q1 � X4Q3

Another way to solve the reset problem without modifying the one-hot assignment
is to add an extra term to the equation for the flip-flop, which should be 1 in the start-
ing state. If the system is reset to state 0000 after power-up, we can add the term
Q0�Q1�Q2�Q3� to the equation for Q0

�. Then, after the first clock, the state will change
from 0000 to 1000 (T0), which is the correct starting state. In general, both an assignment
with a minimum number of state variables and a one-hot assignment should be tried to
see which one leads to a design with the smallest number of logic cells. Alternatively, if
speed of operation is important, the design that leads to the fastest logic should be cho-
sen.When a one-hot assignment is used, more next state equations are required, but in
general both the next state and output equations will contain fewer variables.An equa-
tion with fewer variables generally requires fewer logic cells to realize. The more cells
cascaded, the longer the propagation delay and the slower the operation.

6.10 FPGA Capacity: Maximum Gates versus
Usable Gates
You often come across gate counts of FPGAs. As you know, many FPGAs are not
structured as arrays of gates. Some are simply arrays of look-up tables rather than
arrays of gates. So what does the gate count of an FPGA mean?

The number of raw gates that have gone into building an FPGA is not an interest-
ing or useful metric to an FPGA user.What is useful to the user is a count of the circuitry
that can fit into a particular FPGA.This is called the equivalent gate count. But, as you
might know, this type of achievable gate count will depend on the type of circuitry, the
type of interconnections between different parts of the circuitry, and so on.

Gate counts are estimated in many different ways.An approximate equivalent gate
count can be established for a logic block by considering circuits that can be imple-
mented in a logic block, and the total gate count can be estimated by multiplying it with
the number of logic blocks in the FPGA.This gate count is likely to be higher than the
gate count of practical circuitry that can be realized in the FPGA. A better gate count
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estimate can be derived using benchmark circuits. PREP is an organization that facili-
tates standard benchmark circuits for ASIC and FPGA benchmarking. Assume that a
particular circuitry typically takes 2000 gates in ASIC, and if an FPGA device can fit
20 copies of that circuitry, an FPGA vendor may estimate the maximum gate count of
its FPGA as 40K. Since the circuit is simply replicated and no actual interconnection
exists between the copies, this count is also likely to be higher than the gate count of
practical circuitry that can be realized in the FPGA. Some FPGA vendors provide a
typical gate count by adjusting the maximum gate count with some weighting schemes.
The benchmarks gathered and distributed by PREP can be useful in the benchmark-
ing of FPGAs.

It is very difficult to estimate gate counts of FPGAs in which logic is imple-
mented with LUTs. A four-input LUT may be used to implement a four-variable
logic function with one or more product terms, or it can be used to store 16 bits of
information. When the LUTs are used as RAM, higher gate counts may be
obtained. Hence, depending on the portion of LUTs used as RAM, we can estimate
different gate counts for the same FPGA. Vendors often compute their “system
gates” count by considering a fraction of CLBs (say, 20–30%) as RAM.

Altera provides two types of gate counts for its APEX family: maximum gates
and usable gates. The APEX II devices range from 1.9 million to 5.25 million maxi-
mum gates, but the typical gate count is published as 600K to 3 million. Some FPGA
vendors provide their chip capacities with a count of the logic blocks (logic ele-
ments) rather than a gate count.
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PREP Benchmarks
The Programmable Electronics Performance Company (PREP) was a non-
profit organization that gathered and distributed a series of benchmarks for
programmable ASICs. The nine PREP benchmark circuits in the PREP 1.3
suite were as follows:

1. An 8-bit datapath consisting of a 4-to-1 MUX, a register, and a shift register
2. An 8-bit timer-counter consisting of two registers, a 4-to-1 MUX, a counter,

and a comparator
3. A small state machine (8 states, 8 inputs, and 8 outputs)
4. A larger state machine (16 states, 8 inputs, and 8 outputs)
5. An ALU consisting of a 4 � 4 multiplier, an 8-bit adder, and an 8-bit register
6. A 16-bit accumulator
7. A 16-bit counter with synchronous load and enable
8. A 16-bit prescaled counter with load and enable
9. A 16-bit address decoder

PREP’s online information included Verilog and VHDL source code and
test benches (provided by Synplicity). PREP also made additional synthesis
benchmarks available, including a bit-slice processor, multiplier, and R4000
MIPS RISC microprocessor.
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6.11 Design Translation (Synthesis)
In the early sections of this chapter, we hand-mapped some designs into FPGA logic
blocks. This process is analogous to writing assembly language programs for micro-
processors. It is tedious. Productivity of designers will be very low if they can only
enter designs at that level. Just as the majority of the programs in the modern-day
world are written in high-level languages like C and translated by a compiler,
modern-day digital designs are done at behavioral or RTL level and translated to
target devices. This applies not only for FPGAs, but also for ASIC design.

A number of CAD tools are now available that take a VHDL description of a dig-
ital system and automatically generate a circuit description that implements the digital
system. The term synthesis refers to the translation of an abstract high-level design to
a circuit description, typically in the form of a logic schematic. The input to the CAD
tool is a behavioral or structural VHDL/Verilog model. The output from the synthesis
tools may be a logic schematic together with an associated wirelist, which implements
the digital system as an interconnection of gates, flip-flops, registers, counters, multi-
plexers, adders, and other basic logic blocks. This representation is called a netlist. The
circuit can now be targeted for an FPGA, a CPLD, or an ASIC.

Typical computer-aided design flow involves the following steps:
Design translation (synthesis) and optimization
Mapping
Placement
Routing

These steps are illustrated in Figure 6-26. In this section, we describe design trans-
lation and optimization techniques. The mapping, placement, and routing of designs
are described in the next section.

Even if VHDL code compiles and simulates correctly, it may not necessarily syn-
thesize correctly. And even if the VHDL code does synthesize correctly, the result-
ing implementation may not be very efficient. In general, synthesis tools will accept
only a subset of VHDL as input. Other changes must be made in the VHDL code
so the synthesis tool “understands” the intent of the designer. Further changes in the
VHDL code may be required in order to produce an efficient implementation.

In VHDL, a signal may represent the output of a flip-flop or register, or it may rep-
resent the output of a combinational logic block. The synthesis tool will attempt to
determine what is intended from the context. For example, the concurrent statement

A <= B and C;

implies that A should be implemented using combinational logic. On the other
hand, if the sequential statements

wait until clock'event and clock = '1';
A <= B and C;

appear in a process, this implies that A represents a register (or flip-flop) that
changes state on the rising edge of the clock.
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When integer signals are used, specifying the integer range is important. If no
range is specified, the VHDL synthesizer may interpret an integer signal to repre-
sent a 32-bit register, since the maximum size of a VHDL integer is 32 bits. When
the integer range is specified, most synthesizers will implement integer addition and
subtraction using binary adders with the appropriate number of bits.

Most VHDL synthesizers do a line-by-line translation of VHDL into gates, reg-
isters, multiplexers, and other general components with very little optimization up
front. Then the resulting design is optimized. Synthesizers associate particular
VHDL constructs with particular hardware structures. For instance, case statements
typically result in multiplexers. Use of ‘�,’ ‘�,’ and comparison results in the use of
an adder, use of shift operators results in the use of a shift register, and so on.

During the initial translation of the VHDL code and during the optimization
phase, the synthesis tool will select components from those available in its library.
Several different component libraries may be provided to allow implementation
with different technologies.

6.11.1 Synthesis of a Case Statement
The example of Figure 6-27 shows how the Synopsis Design Compiler implements a
case statement using multiplexers and gates. Figure 6-27(a) shows the code. The inte-
gers a and b are each implemented with 2-bit binary numbers.Two 4-to-1 multiplexers
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FIGURE 6-26: CAD
Design Flow
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(b) Synthesized circuit before optimization 
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(c) Logic optimization 
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(d) Synthesized circuit after optimization 

entity case_example is
port(a: in integer range 0 to 3;

b: out integer range 0 to 3);
end case_example;

architecture test1 of case_example is
begin
process(a)
begin
case a is

when 0 => b <= 1;
when 1 => b <= 3;
when 2 => b <= 0;
when 3 => b <= 1;

end case;
end process;

end test1;
(a) VHDL code for case example

FIGURE 6-27: Synthesis of a Case Statement
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are required. The 2 bits of a are used as control inputs to the multiplexer. The multi-
plexer inputs are hardwired to a logic 1 or a logic 0. Figure 6-27(b) shows the hardware
that will be generated by a typical synthesizer.

Most modern synthesizers will also perform optimizations to reduce the logic
that is generated. Because the MUX inputs are constants, elimination of the mux
and several gates are possible by inspection of the truth table in Figure 6-27(c). The
optimized output equations are b1 � a1�a0 � (a1 � a0�)� and b0 � (a1a0�)�. An opti-
mized circuit for the code in Figure 6-27(a) consists only of a NOR, a NAND, and a
NOT gate. Figure 6-27(d) shows the resulting circuit after optimization.

Unintentional Latch Creation
In general, when a VHDL signal is assigned a value, it will hold that value until it
is assigned a new value. Because of this property, some VHDL synthesizers will
infer a latch when none is intended by the designer. Figure 6-28(a) shows an exam-
ple of a case statement that creates an unintended latch. The case statement results
in a 4-to-1 multiplexer whose data inputs are set to the values in each case. The
select lines are controlled by the value of a. Since the value of b is not specified if a
is not equal to 0, 1, or 2, the synthesizer assumes that the value of b should be held
in a latch if a � 3.

When a � 3, the previous value of b should be used as the output. This necessi-
tates a latch whose D input � a0. In order to hold the value in the latch, the latch
gate control signal G should be 0 when a � 3. Thus G � (a1a0)�. A naïve synthesiz-
er might generate a 4-to-1 mulitplexer and a latch as in Figure 6-28(c). The latch can
be eliminated by replacing the word null in the VHDL code with b <= '0' as in
Figure 6-28(b). If this change is made, most synthesizers will generate only a multi-
plexer and no latch.
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entity latch_example is
port(a: in integer range 0 to 3;

b: out bit);
end latch_example;

architecture test1 of latch_example is
begin
process(a)
begin
case a is

when 0 => b <= '1';
when 1 => b <= '0';
when 2 => b <= '1';
when others => null;

end case;
end process;

end test1;
(a) VHDL code that infers a latch

FIGURE 6-28: Example of Unintentional Latch Creation
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entity latch_example is
port(a: in integer range 0 to 3;

b: out bit);
end latch_example;

architecture test1 of latch_example is
begin
process(a)
begin
case a is

when 0 => b <= '1';
when 1 => b <= '0';
when 2 => b <= '1';
when 3 => b <= '0';

end case;
end process;

end test1;
(b) Modified code not resulting in latch

(c) Synthesized circuit for code in (a) 
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Most modern synthesizers also perform optimizations to reduce the logic that is
generated. For example, a 4-to-1 multiplexer is not required for this circuit. As easy
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way to derive the optimized circuit is by inspection of the truth table in Figure 6-28(d).
We may easily observe that when a equals 0, 1, or 2, b � a0�. An optimizing synthesiz-
er might generate a single NOT gate for the code, as in Figure 6-28(e). If the null state-
ment was not removed, this optimizing synthesizer would generate a latch also as in
Figure 6-28(d) (i.e., with the unintended latch).

6.11.2 Synthesis of if Statements
When if statements are used, care should be taken to specify a value for each
branch. For example, if a designer writes

if A = '1' then Nextstate <= 3; Z<= 1;
end if;

he or she may intend for Nextstate to retain its previous value if A � ‘1’, and the
code will simulate correctly. However, the synthesizer might interpret this code to
mean if A � ‘1’, then Nextstate is unknown (‘X’), and the result of the synthesis may
be incorrect. Also, it will result in latches for Z. For this reason, it is always best to
include an else clause in every if statement. For example,

if A = '1' then Nextstate <= 3; Z<=1;
else Nextstate <= 2; Z<= 0;

end if;

is unambiguous.
The example of Figure 6-29 shows how a typical synthesizer implements an 

if-then-elsif-else statement using a multiplexer and gates. Figure 6-29(b)
represents the truth table corresponding to the various input combinations. C is
selected if A � 1; D is selected if A � 0 and B � 0; and E is selected if A � 0 and
B � 1. Figure 6-29(c) indicates the synthesized hardware. A and B are used as
select signals of the multiplexer.
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entity if_example is
port(A, B: in bit;

C, D, E: in bit_vector(2 downto 0);
Z: out bit_vector(2 downto 0));

end if_example;

architecture test1 of if_example is
begin
process(A, B)
begin
if A = '1' then Z <= C;
elsif B = ‘0’ then Z <= D;
else Z <= E;
end if;

end process;
end test1;

(a) VHDL code for if example

FIGURE 6-29: Synthesis of an if Statement
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Example
What hardware does the statement

LE <= (A <= B);

result in? Assume that A and B are 4-bit vectors.

Answer

The result is a 4-bit comparator. Only one of the <= symbols indicates an assignment. The
<= symbol between A and B is a relational operator. The right side of the assignment
symbol returns a TRUE or ‘1’ if A is less than or equal to B. Hence, if A is less than or
equal to B, LE is set to ‘1.’ Otherwise, LE will be ‘0.’

Most standard comparators come with EQUAL_TO (EQ), GREATER_THAN (GT),
and LESS_THAN (LT) outputs. In this case, LE should be ‘1’ if EQUAL_TO or
LESS_THAN is true. Figure 6-30 illustrates the hardware.
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(b) Equivalent truth table 
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(c) Synthesized hardware for code in (a)

FIGURE 6-30:
Hardware for Less
Than or Equal To
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A

B

LE 

EQ 
4

4

LT 

GT 

4-Bit 
comparator  

6.11.3 Synthesis of Arithmetic Components
CAD tools for synthesis have design libraries that include components to imple-
ment the operations defined in the numeric packages. The example of Figure 6-31
uses IEEE numeric_std library. When this code is synthesized, the result includes
library components that implement a 4-bit comparator, a 4-bit binary adder with a
4-bit accumulator register, and a 4-bit counter. Some synthesis tools will implement
the counter with a 4-bit adder with a “0001” input and then optimize the result to
eliminate unneeded gates. The resulting hardware is shown in Figure 6-31(b).
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library IEEE;
use IEEE.numeric_bit.all;

entity examples is
port(signal clock: in bit;

signal A, B: in signed(3 downto 0);
signal ge: out boolean;
signal acc: inout signed(3 downto 0) := "0000";
signal count: inout unsigned(3 downto 0) := "0000");

end examples;

architecture x1 of examples is
begin
ge <= (A >= B);  -- 4-bit comparator
process
begin
wait until clock'event and clock = '1';
acc <= acc + B;  -- 4-bit register and 4-bit adder
count <= count + 1;  -- 4-bit counter

end process;
end x1;

(a) VHDL code

FIGURE 6-31: VHDL Code Example for Synthesis and Corresponding Hardware

(b) Synthesized hardware for the VHDL code in (a) 
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Example
Generate optimized hardware for the following statement, assuming A is a 4-bit vector:

EQ3 <= (A = 3);

Answer

A 4-bit comparator can be used to realize this statement. One input to the comparator will
be A, and the other input will be the number 3 (i.e., 0011) (binary).

But since we know that one input is constantly 3, we could optimize it further to result in
an AND gate and two inverters as in Figure 6-32.
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FIGURE 6-32:
Optimized
Hardware for
Equality Checker

a3

a2

a1

a0

A = 3

EQ3 

Some synthesizers will not automatically provide this optimized hardware. Under such
circumstances, we can alter the VHDL source code to

EQ3 <= not A(3) and not A(2) and A(1) and A(0);

This statement will result in the four-input AND gate of Figure 6-32.

Different kinds of optimizations are required for different target technologies.
For instance, reduction in absolute number of gates is important for a gate-based
target technology, but if an FPGA with LUTs is the target technology, optimization
does not need to consider absolute number of gates in the design. It only needs to
optimize the number of LUTs.

6.11.4 Area, Power, and Delay Optimizations
Most VHDL synthesizers allow the design to be optimized for maximum speed or
for minimum chip area. Power consumption has also recently become a major
design constraint along with area and delay. Typically, optimizing for one constraint
will worsen the performance of another. For example, when improving speed, area
might worsen. Improving speed often means that some operation that is being
performed serially, reusing some gates, may have to be performed in parallel. Hence,
often improving the speed results in increasing the number of components.
Consider a serial adder, which is used to perform 4-bit addition, versus a fully
parallel combinational 4-bit adder that uses a lot more hardware to achieve much
better speed. When optimizing for area, an effort is made to decrease the number of
components, which in turn often increases the critical path. Critical path means the
longest delay in the circuit.
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CAD tools incorporate gate libraries. The libraries provide various options for
achieving requirements on area, speed, and power. Gates and building blocks that
are optimized individually for area, speed, or power or collectively for two or more
of these can be obtained, and depending on the designer’s specifications, appropri-
ate elements from the libraries can be used.

Area and delay of a circuit are often inversely related to each other. Energy and
delay are also inversely related. The Area-Time (AT) product and Energy-Delay
(ED) product are popularly used metrics to describe the quality of a circuit. Area-
Time2 (AT2) and Energy-Delay2 (ED2) are also used as metrics to measure the
quality of circuits and systems.

In spite of the inverse relationships between area and delay or energy and delay,
there are optimizations that simultaneously improve area, delay, and power. For
example, consider the optimizations in Figure 6-27(b) to (d) and the optimization in
Figure 6-28(c) to (e). These optimizations at the logic level perform the required
task in an effective way resulting in less hardware, less area, less power, and sur-
prisingly smaller critical path, too.

When designing with FPGAs, we should keep in mind that optimizations for
discrete gates are not necessarily the best optimizations for FPGAs. As an example,
consider function minimization. In a SRAM FPGA, the important issue is to mini-
mize the number of variables in an expression. Minimizing the number of terms in
an equation is not required because the entire truth table is stored in LUT form.
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Major Vendors of CAD Tools

Cadence
Synopsis
Mentor Graphics

Major Vendors of FPGA CAD tools

Xilinx
Altera
Actel

6.12 Mapping, Placement, and Routing
Once the design is translated by synthesis and the netlist is generated, the resulting
design must be mapped into a specific implementation technology. Implementation
technologies include gate arrays, FPGAs, CPLDs, and ASIC standard cell designs.
Mapping, placement, and routing are the three major steps that happen in order to
transform the design in netlist form to the appropriate target technology.
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6.12.1 Mapping
Mapping is the process of binding technology-dependent circuits of the target tech-
nology to the technology-independent circuits in the design. As you know, a design
can be implemented in multiple ways: using multiplexers, using ROM or LUTs,
using NAND gates, using NOR gates, or using AND-OR gates. Designs can also be
implemented as a combination of several of these technologies.

If we are using a gate-array based on standard cells, the netlist needs to be
“mapped” into the standard cells. If we are using a field programmable gate array
with LUTs, the design needs to be transferred or “mapped” into the LUTs. If we are
using a field programmable gate array with only 4-to-1 multiplexers, the design
needs to be mapped into a structure which only needs multiplexers. If a target tech-
nology contains only two-input NAND gates, the design needs to be mapped to a
form that uses only two-input NAND gates. We did this process manually for a shift
register and multiplexer at the beginning of this chapter. CAD tools use mapping
software to accomplish this task.
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Standard Cell Approach Standard cell design is a common technique for
integrated circuit design. The design is mapped into a library of standard logic
gates. Typically NOT, AND, NAND, OR, NOR, XOR, XNOR, and so on are
available. CAD tools that support standard cell design methodology will also
usually contain a library of complex functions and standard building blocks
such as multiplexers, decoders, encoders, comparators, and counters. The
design is mapped into a form that contains only cells available in the library.
The cells are placed in rows that are separated by routing channels as in
Figure 6-33. Some cells may be used only for routing between rows of cells.
Such cells are called feedthrough cells. For the standard cell methodology to
be effective, the height of cells should be the same. But it is possible to include
memory modules, specialized arithmetic modules, and so on.

6.12.2 Place and Route
Placement is the process of taking defined logic and input/output (I/O) blocks
(modules) from the technology mapper and assigning them to physical locations of
the target implementation. It involves determining the positions of the sub-blocks
in the design area. Placement choices matter because they impact subsequent rout-
ing. A good placement algorithm will try to reduce area and delay. Area and delay
are partly determined by wiring. Algorithms typically estimate wire length and
decide on appropriate placement choices. Complicated placement algorithms are
not desirable because they consume too much run time.

Routing is the process of interconnecting the sub-blocks in a design. The
choices for routing are greatly dependent on placement; hence place and route
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are often done in tandem. Routing may be done in multiple steps. Global routing
decisions can be made to minimize routing wire length, and then detailed routing
of sections can be done. When only a part of a circuit is changed, incremental
routing is useful.

Usually heuristics are used to perform placement. Most placement techniques
start with an initial solution and then try to improve it with alternate placements.
For instance, two blocks in one placement can be swapped to get an alternate place-
ment, and wire length is evaluated for both the choices.The process is repeated until
no further improvements are possible.

Simulated annealing techniques are used in the place and route process. Annealing
is a term from metallurgy. Simulated annealing algorithms quickly and effectively
optimize solutions over large state spaces. Simulated annealing does not guarantee
the optimal solution, but it can produce a solution close to the global minimum in
much less time than an exhaustive search. The simulated annealing process starts
with a feasible solution (i.e., legal but not necessarily optimal) and searches for bet-
ter solutions by making random modifications (permutations). An iterative
improvement algorithm accepts only better solutions in each step. Algorithms that
accept only better moves are considered greedy algorithms. But if we only accept
better placements, we could be caught in a local minimum. It has been shown that it
is beneficial occasionally to accept “bad moves.” Often, these “bad moves” will let
the algorithm reach a global minimum.

Accepting a bad move is certainly a risk. We can take more risks in the begin-
ning of the simulated annealing process, but we need to be more conservative
toward the later stages because there might not be sufficient time left to refine the
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solution to an acceptable level. In simulated annealing algorithms, the algorithms
have a concept of a temperature, as in physical annealing in metallurgy. The tem-
perature is high in the beginning and keeps reducing. Simulated annealing algo-
rithms allow risky moves depending on the temperature. As the temperature is
reduced, the probability of accepting bad moves decreases. Eventually, the algo-
rithm defaults to a greedy algorithm that only accepts positive moves. Figure 6-34
illustrates the difference between simulated annealing and iterative improvement
algorithms. The y-axis is the cost (or figure of merit) of the solution. The x-axis
indicates the steps during the process.
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In simulated-annealing place-and-route algorithms, an initial placement is
assumed and cost of alternate placement is estimated. Typically, the cost of a place-
ment indicates the amount of routing that is needed. A move is considered better if
it produces a better cost figure (for instance, wire length).

The ability of the tools to map and route designs depends on the algorithms in
the tools and the granularity of the resources. Figure 6-35 shows a routed FPGA
implementing an example design. (It is actually the dice game of Chapter 5, imple-
mented in an early Xilinx FPGA, the XC3000.) The boxes on the periphery are
the I/O blocks. Obviously, only a few of them on the top left corner and on the bot-
tom side are used. The logic blocks in the middle are utilized, while several logic
blocks are unused. Synthesis tools will provide a synthesis report giving the num-
ber and percentage of logic blocks used, number and percentage of flip-flops used,
and so on.

The utilization of an FPGA depends on the nature of the logic blocks, the effi-
ciency of the mapping tools, the routing resources, the efficiency of the routing
tools, and so on. If logic blocks are of large granularity, it is very likely that parts
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of logic blocks are unused. For instance, we saw that the shift register design in
Figure 6-5 did not utilize a large part of the function generator. Similarly, the mul-
tiplexer designs in Figures 6-2 and 6-4 did not utilize the flip-flops on the logic
block.

In this chapter we described several types of FPGAs and procedures for design-
ing with these devices. Nowadays, sophisticated CAD tools are available to assist
with the design of systems using programmable gate arrays. However, in this chap-
ter, several hand designs were presented first to illustrate the underlying steps in
CAD tools. Techniques to decompose functions of several variables into functions
with fewer variables were illustrated. Features of modern FPGAs, such as embed-
ded memory, embedded multipliers, and carry and cascade chains, were described.
A brief overview of the synthesis, mapping, placement, and routing process was
presented.

Problems
6.1 An 8-bit right shift register with parallel load is to be implemented using an FPGA

with logic blocks as in Figure 6-1(a). The flip-flops are labeled X7X6X5X4X3X2X1X0.
The control signals N and S operate as follows: N � 0, do nothing; NS � 11, right
shift; NS � 10, load. The serial input for right shift is SI.

(a) How many logic blocks are required?
(b) Show the required connections for the rightmost block on a copy of Figure 6-1(a).

Connect N to CE.
(c) Give the function generator outputs for this block.

6.2 Implement a 2-bit binary counter using one logic block as in Figure 6-1(a). A0 is the
least significant bit, and A1 is the most significant bit of the counter.The counter has
a synchronous load (Ld). The counter operates as follows:

En � 0 No change.
En � 1, Ld � 1 Load A0 and A1 with external inputs U and V on rising edge

of clock.
En � 1, Ld � 0 Increment counter on rising edge of clock.

(a) Give the next-state equations for A0 and A1.
(b) Show all required inputs and connections on a copy of Figure 6-1(a). Show the

connection paths with heavy lines. Use the CE input. Give the function realized
by each four-input LUT.

6.3 Design a 4-bit right-shift register using an FPGA with logic blocks as in Figure 6-1(a).
When the register is clocked, the register loads if Ld � 1 and En � 1, it shifts right
when Ld � 0 and En � 1, and nothing happens when En � 0. Si and So are the shift
input and output of the register. D3�0 and Q3�0 are the parallel inputs and outputs,
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respectively. The next-state equation for the leftmost flip-flop is Q3
� � En�Q3 � En

(Ld D3 � Ld� Si).

(a) Give the next-state equations for the other three flip-flops.
(b) Determine the minimum number of Figure 6-1(a) logic blocks required to

implement the shift register.
(c) For the left block, give the input connections and the internal paths on a copy

of Figure 6-1(a). Also, give the X and Y functions.

6.4 The next-state equations for a sequential circuit with two flip-flops (Q1 and Q2),
input signals R, S, T, and an output P are

D1 � Q1
� � Q2R � Q1S

D2 � Q2
� � Q1 � Q2�T

The output equation is P � Q2RT � Q1ST.

(a) Explain how this sequential circuit can be implemented using a single Figure 6-3
logic block. Write the equation that each function generator in the block will
implement.

(b) Mark (highlight) the input signals, state and output variables, and the activated
paths on a copy of Figure 6-3.

6.5 (a) Implement an 8-to-1 multiplexer using a minimum number of logic blocks of
the type shown in Figure 6-1(a). Give the X and Y functions for each block and
show the connections between blocks.

(b) Repeat (a) using logic blocks of Figure 6-3. Give X, Y, and Z for each block.
(c) What are the LUT contents for the design in part (a)?
(d) What are the LUT contents for the design in part (b)?

6.6 (a) Write VHDL code that describes the logic block of Figure 6-1(a). Use the follow-
ing entity:

entity Figure6_1a is
port(X_in, Y_in: in unsigned(1 to 4);

clk, CE: in bit;
Qx, Qy: out bit;
X, Y: inout bit;
XLUT, YLUT: in unsigned(0 to 15));

end Figure6_1a;

(b) Write structural VHDL code that instantiates two Figure6_1a block compo-
nents to implement the 4-to-1 MUX of Figure 6-2. When you instantiate a
block, use the actual bit patterns stored in XLUT and YLUT to specify the
function generated by each of the LUTs.

6.7 (a) Write VHDL code that describes the logic block of Figure 6-3. Use an entity
similar to Problem 6.6(a), except add ZLUT and SA, SB, SC, and SD. SA, SB,
SC, and SD represent the programmable select bits that control the four
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MUXes. These bits should be assigned values of ‘0’ or ‘1’ when the block com-
ponent is instantiated.

(b) Write structural VHDL code that instantiates two Figure6_3 block compo-
nents to implement the code converter of Figure 1-26. When you instantiate a
block component, use the actual bit patterns stored in XLUT, YLUT, and
ZLUT to specify the function generated by each of the LUTs.

6.8 (a) How many logic blocks as in Figure 6-1(a) are required to create a 4-to-16 decoder?
(b) Give the contents of the LUTs in the first logic block.

6.9 (a) How many logic blocks as in Figure 6-3 are required to create an 8-to-3 priority
encoder?

(b) Give the contents of the LUTs in the first logic block.

6.10 Show how to realize the following combinational function using two Figure 6-1(a)
logic blocks. Show the connections on a copy of Figure 6-1(a) and give the functions
X and Y for both blocks.

F � X1�X2X3�X6 � X2�X3�X4X6� � X2X3�X4� � X2X3X4�X6 � X3�X4X5X6� � X7

6.11 Realize the following next-state equation using a minimum number of Figure 6-1(a)
logic blocks. Draw a diagram that shows the connections to the logic blocks and give
the functions X and Y for each cell. (The equation is already in minimum form.)

Q� � UQV�W � U�Q�VX�Y� � UQX�Y � U�Q�V�Y � U�Q�XY � UQVW�
� U �Q�V�X

6.12 What is the minimum number of Figure 6-3 logic blocks required to realize the
following function?

X � X1�X2�X3�X4�X5 � X1X2X3X4X5 � X5�X6X7�X8�X9 � X5�X6�X7X8X9�

If your answer is 1, show the required input connections on a copy of Figure 6-3, and
mark the internal connection paths with heavy lines. If your answer is greater than 1,
draw a block diagram showing the cell inputs and interconnections between cells. In
any case, give the functions to be realized by each X, Y, and Z function generator.

6.13 Given Z(T, U, V, W, X, Y) � VW�X � U�V�WY � TV�WY�,

(a) Show how Z can be realized using a single Figure 6-3 logic block. Show the cell
inputs on a copy of Figure 6-3, indicate the internal connections in the cell, and
specify the functions X, Y, and Z.

(b) Show how Z can be realized using two Figure 6-1(a) logic blocks. Draw a dia-
gram showing the inputs to each cell, the interconnections between cells, and
the X and Y functions for each cell.

6.14 Use Shannon’s expansion theorem around a and b for the function

Y � abcde � cde�f � a�b�c�def � bcdef� � ab�cd�ef � � a�bc�de�f � abcd�e�f
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so that it can be implemented using only four-variable function generators. Draw a
block diagram to indicate how Y can be implemented using only four-variable
function generators. Indicate the function realized by each four-variable function
generator.

6.15 Use Shannon’s expansion theorem around e and f for the function

Y � ab�cdef � a�bc�d�e � b�c�ef � � abcde�f

so that it can be implemented using a minimum number of four-variable functions.
Rewrite Y to indicate how it will be implemented using four-variable function gen-
erators and draw a block diagram. Indicate the function generated by each function
generator.

6.16 (a) Use Shannon’s expansion theorem around a for the function

Y � ab�cd�e � a�bc�d�e � b�c�e � abcde

so that it can be implemented using four-variable functions.
(b) Use the expanded function to show how Y can be implemented using one

Figure 6-3 logic block. Mark (highlight) the input signals and the activated paths
on a copy of Figure 6-3.

(c) Give the contents of the three LUTs.

6.17 (a) If logic blocks of Figure 6-1(a) are used, how many LUTs are required to build
a 4-bit adder with accumulator?

(b) If an FPGA with built-in carry chain logic as in Figure 6-11 is used, how many
four-input LUTs are required?

(c) Design a 4-bit adder-subtractor with accumulator using an FPGA with carry
chain logic and four-input LUTs.Assume a control signal Su which is 0 for addi-
tion and 1 for subtraction. Show the required connections on a diagram similar
to Figure 6-11 and give the function realized by each LUT.

6.18 A 4 � 4 array multiplier (Figure 4-29) is to be implemented using an FPGA.

(a) Partition the logic so that it fits in a minimum number of Figure 6-1(a) logic
blocks. Draw loops around each set of components that will fit in a single logic
block. Determine the total number of four-input LUTs required.

(b) Repeat part (a), except assume that carry chain logic is available.

6.19 (a) Use Shannon’s expansion theorem to expand the following function around A
and then expand each sub-function around D:

Z � AB�CD�E�F � A�BC�D�EF� � B�C�E�F � A�BC�E�F� � ABCDE

(b) Explain how the expanded function could be implemented using two Xilinx
Virtex FPGA slices (Figure 6-13). On the slice diagrams, label the inputs to the
LUTs (function generators) and draw the connection paths within the slice.
Give the function implemented by each LUT.
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6.20 (a) Indicate the connections of the switches in Figure 6-15 to realize the function

Z � AB�C � A�BC� � BC

(b) Indicate the connections of the switches in Figure 6-15 to realize the function

F � AB � A�C

(c) Indicate the connections of the switches in Figure 6-15 to realize a latch as in
Figure 2-17.

(d) Indicate the connections of the switches in Figure 6-15 to realize a D flip-flop.

6.21 The logic equations for a sequential network with five inputs, two flip-flops, and two
outputs are

Q1
� � Q1(Q2ABC) � Q1�(Q2�CDE)

Q2
� � Q1�

Z1 � Q1�Q2�AB � Q1�Q2�A�B� � Q1Q2�AB� � Q1Q2(A� � B � C)

Z2 � Q1A� � Q1B � Q2�

How many Virtex slices (Figure 6-13) are required to implement the logic equa-
tions, including the flip-flops? Specify the inputs to each slice and the functions
realized by each LUT.

6.22 Perform a survey of FPGA chips now on the market.

(a) Generate a table like Table 6-1 for current FPGAs.
(b) Generate a table like Table 6-2 for current FPGAs.

6.23 Show how 32 � 32-bit unsigned multiplication can be accomplished using four 16 �
16-bit multipliers and several adders. Draw a block diagram showing the required
connections.

6.24 Fast shifting can be accomplished by using dedicated multipliers. Shifting left N
places is equivalent to multiplying by 2N.

(a) Given that A is a 16-bit unsigned number and 0 � N � 15, show how to
construct a left shifter using a multiplier and a decoder.

(b) Write VHDL code that infers this type of shifter.
(c) Repeat (a) and (b) for a right shifter. Hint: Multiply by 215�N and select the

appropriate 16 bits of the 32-bit product.

6.25 Make a one-hot state assignment for Figure 4-28(c). Derive the next state and
output equations by inspection.

6.26 Make a one-hot state assignment for Figure 4-53 and write the next state and out-
put equations by inspection. Then change the state assignment so that S0 is assigned
0000000, S1 is assigned 1100000, S2 is 1010000, and so on and rewrite the equations
for this assignment.
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6.27 Assume that a sequential system with four states is to be implemented using a one-
hot state assignment, but the flip-flops do not have preset input. The flip-flops do
have a reset input; hence, it is beneficial to have 0000 as the starting state. What
should be the state assignments for the other states if one wants to take advantage
of the one-hot assignment scheme? Explain.

6.28 For the given state graph,

(a) Derive the simplified next-state and output equations by inspection. Use the
following one-hot state assignment for flip-flops Q0Q1Q2Q3: S0, 1000; S1, 0100;
S2, 0010; S3, 0001.

(b) How many Virtex slices (Figure 6-13) are required to implement these equations?
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6.29 Make any necessary changes in the VHDL code for the traffic light controller
(Figure 4-15) so that it can be synthesized without latches using whatever synthesis
tool you have available. Synthesize the code using a suitable FPGA or CPLD as a
target.

6.30 Synthesize the behavioral model of the 2’s complement multiplier (Figure 4-35)
using whatever synthesis tool you have available. Then synthesize the model with
control signals (Figure 4-40) and compare the results (number of flip-flops, number
of LUTs, number of slices, etc.). Try different synthesis options such as optimizing
for area or speed, and different finite-state machine encoding algorithms such as
one-hot, compact, and so on and compare the results.Which combination of options
uses the least resources?

6.31 Consider the VHDL code

entity example is
port(a: in integer range 0 to 3;

b: out integer range 0 to 3);
end example;
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architecture test2 of example is
begin
process(a)
begin
case a is

when 0 => b <= 3;
when 1 => b <= 2;
when 2 => b <= 1;
when 3 => b <= 1;

end case;
end process;

end test2;

(a) Show the hardware you would obtain if you synthesize the preceding VHDL
code without any optimizations. Explain your reasoning.

(b) Show optimized hardware emphasizing minimum area. Show the steps/reasoning
by which you obtained the optimized hardware.

6.32 Draw the hardware structures that will be inferred by typical synthesizers from the
code excerpts that follow. A, B, and E are 4-bit vectors. C and D are 2-bit numbers.
clock is a 1-bit signal. Draw the structure and mark the inputs and outputs.

(a) process(clock)
begin

A <= A(3) & A(3 downto 1);
B <= A(0) & B(3 downto 1);

end process;

(b) architecture test2 of example is
begin
process(C)
begin
case C is

when 0 => D <= 3;
when 1 => D <= 2;
when 2 => D <= 0;
when others => null; -- preserver value

end case;
end process;

end test2;

(c) architecture test2 of example is
begin
process(C)
begin

case C is
when 0 => E <= A + B;
when 1 => E <= A sra 2;
when 2 => E <= A - B;
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when 3 => E <= A;
end case;

end process;
end test2;

6.33 (a) Draw a logic diagram (use gates, adders, muxes, D flip-flops, etc.) that shows
the result of synthesizing the following VHDL code. A, B, and C are unsigned
vectors dimensioned 2 downto 0.

process(CLK)
if CLK'event and CLK = 0 then
if C0 � '1' then C <= not A; end if;
if Ad � '1' then C <= A + B; end if;
if Sh � '1' then C <= C sra 1; end if;

end if;

(b) Describe in one or two sentences what this circuit does.

6.34 Draw the hardware structures that will be inferred by typical synthesizers from the
code excerpts below. If any ambiguities exist in the code, mention what you are
assuming. Show optimized and unoptimized hardware.

(a) architecture test2 of example is
begin
process(a)
begin
case a is

when 0 => b <= 2;
when 1 => b <= 0;
when 2 => b <= 3;
when 3 => b <= 1;

end case;
end process;

end test2;

(b) if arg1 > arg2 and arg1 > arg3 then
result <= arg1;

else
result <= '0';

end if;

6.35 What hardware does the statement

F <= (A >= B);

result in? Assume that A and B are 8-bit vectors.

6.36 Generate optimized hardware for the following statement, assuming A is a 4-bit
vector:

F <= (A = 9);
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Floating-point numbers are frequently used for numerical calculations in computing
systems. Arithmetic units for floating-point numbers are considerably more complex
than those for fixed-point numbers. Floating-point numbers allow very large or very
small numbers to be specified. This chapter first describes a simple representation for
floating-point numbers. Then it describes the IEEE floating-point standard. Next, an
algorithm for floating-point multiplication is developed and tested using VHDL.Then
the design of the floating-point multiplier is completed and implemented using an
FPGA. Floating-point addition, subtraction, and division are also briefly described.

7.1 Representation of Floating-Point Numbers
A simple representation of a floating-point (or real) number (N) uses a fraction (F),
base (B), and exponent (E), where N � F � BE. The base can be 2, 10, 16, or any
other number. The fraction and the exponent can be represented in many formats.
For example, they can be represented by 2’s complement formats, sign-magnitude
form, or another number representation. There are a variety of floating-point for-
mats depending on how many bits are available for F and E, what the base is, and
how negative numbers are represented for F and E. The base can be implied or
explicit. Depending on all these choices, a wide variety of floating-point formats
have existed in the past.

7.1.1 A Simple Floating-Point Format Using 2’s Complement
In this section, we describe a floating-point format where negative exponents and
fractions are represented using the 2’s complement form. The base for the exponent
is 2. Hence, the value of the number is N � F � 2E. In a typical floating-point num-
ber system, F is 16 to 64 bits long and E is 8 to 15 bits long. In order to keep the
examples in this section simple and easy to follow, we will use a 4-bit fraction and a
4-bit exponent, but the concepts presented here can easily be extended to more bits.

The fraction and the exponent in this system will use 2’s complement. (Refer to
Section 4.10 for a discussion of 2’s complement fractions.) We will use 4 bits for the
fraction and 4 bits for the exponent. The fractional part will have a leading sign bit
and three actual fraction bits. The implied binary point is after the first bit. The sign
bit is 0 for positive numbers and 1 for negative numbers.

C H A P T E R
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As an example, let us represent decimal 2.5 in this 8-bit 2’s complement floating-
point format.

2.5 � 0010.1000

� 1.010 � 21 (standardized normal representation)

� 0.101 � 22 (4-bit 2’s complement fraction)

Therefore,

F � 0.101 E � 0010 N � 5/8 � 22

If the number was �2.5, the same exponent can be used, but the fraction must have
a negative sign. The 2’s complement representation for the fraction is 1.011.
Therefore,

F � 1.011 E � 0010 N � �5/8 � 22

Other examples of floating-point numbers using a 4-bit fraction and a 4-bit
exponent are

F � 0.101 E � 0101 N � 5/8 � 25

F � 1.011 E � 1011 N � �5/8 � 2�5

F � 1.000 E � 1000 N � �1 � 2�8

In order to utilize all the bits in F and have the maximum number of significant
figures, F should be normalized so that its magnitude is as large as possible. If F is
not normalized, we can normalize F by shifting it left until the sign bit and the next
bit are different. Shifting F left is equivalent to multiplying by 2, so every time we
shift we must decrement E by 1 to keep N the same. After normalization, the mag-
nitude of F will be as large as possible, since any further shifting would change the
sign bit. In the following examples, F is unnormalized to start with and then it is nor-
malized by shifting left.

Unnormalized: F � 0.0101 E � 0011 N � 5/16 � 23 � 5/2

Normalized: F � 0.101 E � 0010 N � 5/8 � 22 � 5/2

Unnormalized: F � 1.11011 E � 1100 N � �5/32 � 2�4 � �5 � 2�9

(shift F left) F � 1.1011 E � 1011 N � �5/16 � 2�5 � �5 � 2�9

Normalized: F � 1.011 E � 1010 N � �5/8 � 2�6 � �5 � 2�9

The exponent can be any number between �8 and �7.The fraction can be any num-
ber between �1 and �0.875.

Zero cannot be normalized, so F � 0.000 when N � 0. Any exponent could then
be used; however, it is best to have a uniform representation of 0. In this format, we
will associate the negative exponent with the largest magnitude with the fraction 0.
In a 4-bit 2’s complement integer number system, the most negative number is 1000,
which represents �8. Thus when F and E are 4 bits, 0 is represented by

F � 0.000 E � 1000 N � 0.000 � 2�8

Some floating-point systems use a biased exponent, so E � 0 is associated with 
F � 0.
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7.1.2 The IEEE 754 Floating-Point Formats
The IEEE 754 is a floating-point standard established by IEEE in 1985. It contains
two representations for floating-point numbers, the IEEE single precision format
and the IEEE double precision format. The IEEE 754 single precision representa-
tion uses 32 bits and the double precision system uses 64 bits.

Although 2’s complement representations are very common for negative num-
bers, the IEEE floating-point representations do not use 2’s complement for either
the fraction or the exponent. The designers of IEEE 754 desired a format that was
easy to sort and hence adopted a sign-magnitude system for the fractional part and
a biased notation for the exponent.

The IEEE 754 floating-point formats need three subfields: sign, fraction, and
exponent. The fractional part of the number is represented using a sign-magnitude
representation in the IEEE floating-point formats (i.e., there is an explicit sign
bit (S) for the fraction). The sign is 0 for positive numbers and 1 for negative num-
bers. In a binary normalized scientific notation, the leading bit before the binary
point is always 1 and hence the designers of the IEEE format decided to make it
implied, representing only the bits after the binary point. In general, the number
is of the form

N � (�1)S � (1 � F) � 2E

where S is the sign bit, F is the fractional part, and E is the exponent. The base of
the exponent is 2. The base is implied (i.e., it is not stored anywhere in the repre-
sentation). The magnitude of the number is 1 � F because of the omitted leading 1.
The terms significand means the magnitude of the fraction and is 1 � F in the IEEE
format. But often the terms significand and fraction are used interchangeably by
many, including in this book.

The exponent in the IEEE floating-point formats uses what is known as a biased
notation. A biased representation is one in which every number is represented by
the number plus a certain bias. In the IEEE single precision format, the bias is 127.
Hence, if the exponent is �1, it will be represented by �1 � 127 � 128. If the
exponent is �2, it will be represented by �2 � 127 � 125. Thus, exponents less than
127 indicate actual negative exponents and exponents greater than 127 indicate
actual positive exponents. The bias is 1023 in the double precision format.

If a positive exponent becomes too large to fit in the exponent field, the situa-
tion is called overflow, and if a negative exponent is too large to fit in the exponent
field, that situation is called underflow.

The IEEE Single Precision Format
The IEEE single precision format uses 32 bits for representing a floating-point
number, divided into three subfields, as illustrated in Figure 7-1.The first field is the
sign bit for the fractional part. The next field consists of 8 bits which are used for
the exponent. The third field consists of the remaining 23 bits and is used for the
fractional part.

The sign bit reflects the sign of the fraction. It is 0 for positive numbers and 1 for
negative numbers. In order to represent a number in the IEEE single precision
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format, first it should be converted to a normalized scientific notation with exactly
one bit before the binary point, simultaneously adjusting the exponent value.

The exponent representation that goes into the second field of the IEEE 754
representation is obtained by adding 127 to the actual exponent of the number
when represented in the normalized form. Exponents in the range 1–254 are used
for representing normalized floating-point numbers. Exponent values 0 and 255 are
reserved for special cases, which will be discussed later.

The representation for the 23-bit fraction is obtained from the normalized
scientific notation by dropping the leading 1. Zero cannot be represented in this fash-
ion; hence it is treated as a special case (explained later). Since every number in the
normalized scientific notation will have a leading 1, this leading 1 can be dropped so
that one more bit can be packed into the significand (fraction).Thus, a 24-bit fraction
can be represented using the 23 bits in the representation.The designers of the IEEE
formats wanted to make highest use of all the bits in the exponent and fraction fields.

In order to understand the IEEE format, let us represent 13.45 in the IEEE
floating-point format. We can see that 0.45 is a recurring binary fraction and hence

13.45 � 1101.01 1100 1100 1100 . . . . . . . . . with the bits 1100 continuing to recur

Normalized scientific representation yields

13.45 � 1.10101 1100 1100 . . . � 23

Since the number is positive, the sign bit for the IEEE 754 representation is 0.
The exponent in the biased notation will be 127 � 3 � 130, which in binary

format is 10000010.
The fraction is 1.10101 1100 1100 . . . . . . . . . (with 1100 recurring). Omitting

the leading 1, the 23 bits for the fractional part are

10101 1100 1100 1100 1100 11

Thus, the 32 bits are

0 10000010 10101 1100 1100 1100 1100 11

as illustrated in Figure 7-2.
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FIGURE 7-1: IEEE
Single Precision
Floating-Point
Format

S Exponent Fraction

1 bit 8 bits 23 bits

FIGURE 7-2: IEEE
Single Precision
Floating-Point
Representation
for 13.45

S Exponent Fraction

0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

The 32 bits can be expressed more conveniently in a hexadecimal (hex) format as

4157 3333
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The number �13.45 can be represented by changing only the sign bit (i.e., the
first bit must be 1 instead of 0). Hence, the hex number C157 3333 represents �13.45
in IEEE 754 single precision format.

The IEEE Double Precision Format
The IEEE double precision format uses 64 bits for representing a floating-point num-
ber, as illustrated in Figure 7-3. The first bit is the sign bit for the fractional part. The
next 11 bits are used for the exponent, and the remaining 52 bits are used for the
fractional part.

7.1 Representation of Floating-Point Numbers 365

FIGURE 7-3: IEEE
Double Precision
Floating-Point
Format

S Exponent Fraction

1 bit 11 bits 52 bits

As in the single precision format, the sign bit is 0 for positive numbers and 1 for
negative numbers.

The exponent representation used in the second field is obtained by adding the
bias value of 1023 to the actual exponent of the number in the normalized form.
Exponents in the range 1–2046 are used for representing normalized floating-point
numbers. Exponent values 0 and 2047 are reserved for special cases.

The representation for the 52-bit fraction is obtained from the normalized sci-
entific notation by dropping the leading 1 and considering only the next 52 bits.

As an example, let us represent 13.45 in IEEE double precision floating-point
format. Converting 13.45 to a binary representation,

13.45 � 1101.01 1100 1100 1100 . . . . . . . . . with the bits 1100 continuing to recur

In normalized scientific representation,

13.45 � 1.10101 1100 1100 . . . � 23

The exponent in biased notation will be 1023 � 3 � 1026, which in binary
representation is

10000000010

The fraction is 1.10101 1100 1100 . . . . . . . . . (with 1100 recurring). Omitting the
leading 1, the 52 bits of the fractional part are

10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

Thus, the 64 bits are

0 10000000010 10101 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

as illustrated in Figure 7-4. The 64 bits can be expressed more conveniently in a
hexadecimal format as

402A E666 6666 6666

07Ch07.qxd  3/13/07  3:22 PM  Page 365



The number �13.45 can be represented by changing only the sign bit (i.e., the first
bit must be 1 instead of 0). Hence, the hex number C02A E666 6666 6666 represents
�13.45 in IEEE 754 double precision format.

Special Cases in the IEEE 754 Standard
The IEEE 754 standard has several special cases, which are illustrated in Figure 7-5.
These include 0, infinity, denormalized numbers, and NaN (Not a Number) rep-
resentations. The smallest and the highest exponents are used to denote these
special cases.
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FIGURE 7-4: IEEE
Double Precision
Floating-Point
Representation
for 13.45

S Exponent Fraction

0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Fraction (cont’d)

FIGURE 7-5: Special
Cases in the IEEE
754 Floating-Point
Formats

Object 
Single Precision Double Precision Represented

Exponent Fraction Exponent Fraction

0 0 0 0 0
0 nonzero 0 nonzero � denormalized 

number
255 0 2047 0 � infinity
255 nonzero 2047 nonzero NaN (not a 

number)

Zero The IEEE format specifies 0 to be the representation with 0’s in all bits (i.e., all
exponent and fraction bits are 0). Zero is specified as a special case in the format due
to the difficulty in representing 0 in a normalized format. When using the usual con-
vention for IEEE format normalized numbers, we would add a leading 1 to the frac-
tional part, but that would make it impossible to represent 0.

Denormalized Numbers The smallest normalized number that the single preci-
sion format can represent is

1.0 � 2�126

Numbers between this number and 0 cannot be expressed in the normalized format.
If normalization is not made a requirement of the format, we could represent
numbers smaller than 1.0 � 2�126. Hence, the IEEE floating-point format allows
denormalized numbers as a special case. If the exponent is 0 and the fraction is
nonzero, the number is considered denormalized. Now, the smallest number that
can be represented is

0.00000000000000000000001 � 2�126, which is 1.0 � 2�149.
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Thus, denormalization allows numbers between 1.0 � 2�126 and 1.0 � 2�149 to be
represented.

For double precision, the denormalized range allows numbers between 1.0 � 2�1022

and 1.0 � 2�1074.

Infinity Infinity is represented by the highest exponent value together with a frac-
tion of 0. In the case of single precision representation, the exponent is 255, and for
double precision, it is 2047.

Not a Number (NaN) The IEEE 754 standard has a special representation to rep-
resent the result of invalid operations, such as 0/0. This special representation is
called NaN or Not a Number. If the exponent is 255 and the fraction is any nonze-
ro number, it is considered to be NaN or Not a Number.

Rounding When the number of bits available is fewer than the number of bits
required to represent a number, rounding is employed. It is desirable to round to the
nearest value. We can round up if the number is higher than halfway between and
round down if the number is less than halfway between. Another option is to trun-
cate, ignoring the bits beyond the allowable number of bits. We must keep more bits
in intermediate representations to achieve higher accuracy. The IEEE standard
requires two extra bits in intermediate representations in order to facilitate better
rounding. The two bits are called guard and round. Sometimes, a third intermediate
bit is used in rounding in addition to the guard and round bits. It is called sticky bit.
The sticky bit is set whenever there are nonzero bits to the right of the round bit.

The biggest challenge is when the number falls halfway in between. The IEEE
standard has four different rounding modes:

• Round up Round toward positive infinity. Round up to the next higher
number.

• Round down Round toward negative infinity. Round down to the nearest
smaller number.

• Truncate Round toward zero. Ignore bits beyond the allowable number of
bits. Same as truncation in sign magnitude.

• Unbiased If the number falls halfway between, round up half the time and
round down half the time. In order to achieve rounding up half
the time, add 1 if the lowest bit retained is 1, and truncate if it is 0.
This is based on the assumption that a 0 or 1 appears in the low-
est retained bit with an equal probability. One consequence of this
rounding scheme is that the rounded number always has a 0 in the
lowest place.

7.2 Floating-Point Multiplication
Given two floating-point numbers, and the product is

(F1 � 2E1) � (F2 � 2E2) � (F1 � F2) � 2(E1�E2) � F � 2E

(F2 � 2E2),(F1 � 2E1)

7.2 Floating-Point Multiplication 367
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The fraction part of the product is the product of the fractions, and the exponent
part of the product is the sum of the exponents. Hence, a floating-point multiplier
consists of two major components: a fraction multiplier, and an exponent adder.The
details of floating-point multiplication will depend on the precise formats in which
the fraction multiplication and exponent addition are performed.

Fraction multiplication can be done in many ways. If the IEEE format is used, mul-
tiplication of the magnitude can be done and then the signs can be adjusted. If 2’s com-
plement fractions are used, we can use a fraction multiplier that handles signed 2’s
complement numbers directly. We discussed such a fraction multiplier in Chapter 4.

Addition of the exponents can be done with a binary adder. If the IEEE formats
are directly used, the representations must be carefully adjusted in order to obtain
the correct result. For instance, if exponents of two floating-point numbers in the
biased format are added, the sum contains twice the bias value. To get the correct
exponent, the bias value must be subtracted from the sum.

The 2’s complement system has several interesting properties for performing arith-
metic. Hence, many floating-point arithmetic units convert the IEEE notation to 2’s
complement and then use the 2’s complement internally for carrying out the floating-
point operations. Then the final result is converted back to IEEE standard notation.

The general procedure for performing floating-point multiplication is the
following:

1. Add the two exponents.
2. Multiply the two fractions (significands).
3. If the product is 0, adjust the representation to the proper representation for 0.
4. a. If the product fraction is too big, normalize by shifting it right and increment-

ing the exponent.
b. If the product fraction is too small, normalize by shifting left and decrement-

ing the exponent.
5. If an exponent underflow or overflow occurs, generate an exception or error

indicator.
6. Round to the appropriate number of bits. If rounding resulted in loss of normal-

ization, go to step 4 again.

Note that, in addition to adding the exponents and multiplying the fractions, sev-
eral steps—such as normalizing the product, handling overflow and underflow, and
rounding to the appropriate number of bits—also need to be done. We assume that
the two numbers are properly normalized to start with, and we want the final result
to be normalized.

Now, we discuss the design of a floating-point multiplier. We use 4-bit fractions
and 4-bit exponents, with negative numbers represented in 2’s complement.

The fundamental steps are to add the exponents (step 1) and multiply the frac-
tions (step 2). However, several special cases must be considered. If F is 0, we must
set the exponent E to the largest negative value (1000) (step 3). A special situation
occurs if we multiply �1 by �1 (1.000 � 1.000). The result should be �1. Since we
cannot represent �1 as a 2’s complement fraction with a 4-bit fraction, this special
case necessitates right shifting as in step 4. To correct this situation, we right shift the
significand (fraction) and increment the exponent. Essentially, we set F � 1/2 (0.100)
and add 1 to E. This results in the correct answer, since 1 � 2E � 1/2 � 2E � 1.

368 Floating-Point Arithmetic
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When we multiply the fractions, the result could be unnormalized. For example,

This is situation 4.b in the preceding list. In this case, we normalize the result by
shifting the fraction left one place and subtracting 1 from the exponent to com-
pensate. Finally, if the resulting exponent is too large in magnitude to represent in
our number system, we have an exponent overflow. (An overflow in the negative
direction is referred to as an underflow.) Since we are using 4-bit exponents, if the
exponent is not in the range 1000 to 0111 (�8 to �7), an overflow has occurred.
Since an exponent overflow cannot be corrected, an overflow indicator should be
turned on (step 5).

A flow chart for this floating-point multiplier is shown in Figure 7-6. After
multiplying the fraction, all the special cases are tested for. Since F1 and F2 are nor-
malized, the smallest possible magnitude for the product is 0.01, as indicated in the
preceding example. Therefore, only one left shift is required to normalize F.

(0.1 � 2E1) � (0.1 � 2E2) � 0.01 � 2E1 � E2 � 0.1 � 2E1 � E2 �1

7.2 Floating-Point Multiplication 369

FIGURE 7-6: Flow
Chart for Floating-
Point Multiplica-
tion with 2’s
Complement
Fractions/
Exponents
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The hardware required to implement the multiplier (Figure 7-7) consists of an
exponent adder, a fraction multiplier, and a control unit that provides the signals to
perform the appropriate operations of right shifting, left shifting, exponent incre-
menting/decrementing, and so on.

Exponent Adder: Since 2’s complement addition results with the sum in the proper
format, the design of the exponent adder is straightforward. A 5-bit full adder is used
as the exponent adder as demonstrated in Figure 7-7.When the fraction is normalized,
the exponent will have to be correspondingly incremented or decremented. Also, in
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FIGURE 7-7: Major
Components of a
Floating-Point
Multiplier St
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the special case when product is 0, the register should be set to the value 1000. The
register has control signals for incrementing, decrementing, and setting to the most
negative value (SM8).

The register which holds the sum is made into a 5-bit register to handle special
situations. When the exponents are added, an overflow can occur. If E1 and E2 are
positive and the sum (E) is negative, or if E1 and E2 are negative and the sum is
positive, the result is a 2’s complement overflow. However, this overflow might be
corrected when 1 is added to or subtracted from E during normalization or correc-
tion of fraction overflow. To allow for this case, we have made the X register 5 bits
long. When E1 is loaded into X, the sign bit must be extended so that we have a cor-
rect 2’s complement representation. Since there are two sign bits, if the addition of
E1 and E2 produces an overflow, the lower sign bit will get changed, but the high-
order sign bit will be unchanged. Each of the following examples has an overflow,
since the lower sign bit has the wrong value:

7 � 6 � 00111 � 00110 � 01101 � 13 (maximum allowable value is 7)

�7 � (�6) � 11001 � 11010 � 10011 � �13 (maximum allowable negative 
value is �8)

The following example illustrates the special case where an initial fraction over-
flow and exponent overflow occurs, but the exponent overflow is corrected when
the fraction overflow is corrected:

(1.000 � 2�3) � (1.000 � 2�6) � 01.000000 � 2�9 � 00.100000 � 2�8

Fraction Multiplier: The fraction multiplier that we designed in Section 4.10 han-
dles 2’s complement fractions in a straightforward manner. Hence, we adapt that
design for the floating-point multiplier. It implements a shift and add multiplier
algorithm. Since we are multiplying 3 bits plus sign by 3 bits plus sign, the result will
be 6 bits plus sign. After the fraction multiplication, the 7-bit result (F) will be the
lower 3 bits of A concatenated with B. The multiplier has its own control unit that
generates appropriate shift and add signals depending on the multiplier bits.

Main Control Unit: The SM chart for the main controller (Figure 7-8) of the
floating-point multiplier is based on the flow chart. This controller is called main
controller to distinguish it from the controller for the multiplier, which is a separate
state machine that is linked into the main controller.

The SM chart uses the following inputs and control signals:

St Start the floating-point multiplication.
Mdone Fraction multiply is done.
FZ Fraction is zero.
FV Fraction overflow (fraction is too big).
Fnorm F is normalized.
EV Exponent overflow.
Load Load F1, E1, F2, E2 into the appropriate registers (also clear A in

preparation for multiplication).
Adx Add exponents; this signal also starts the fraction multiplier.

7.2 Floating-Point Multiplication 371

07Ch07.qxd  3/13/07  3:22 PM  Page 371



SM8 Set exponent to minus 8 (to handle special case of 0).
RSF Shift fraction right; also increment E.
LSF Shift fraction left; also decrement E.
V Overflow indicator.
Done Floating-point multiplication is complete.

The SM chart for the main controller has four states. In S0, the registers are loaded
when the start signal is 1. In S1, the exponents are added, and the fraction multiply
is started. In S2, we wait until the fraction multiply is done and then test for special
cases and take appropriate action. It may seem surprising that the tests on FZ, FV,
and Fnorm can all be done in the same state since they are done in sequence on the
flow chart. However, FZ, FV, and Fnorm are generated by combinational circuits
that operate in parallel and hence can be tested in the same state. However, we must
wait until the exponent has been incremented or decremented at the next clock
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FIGURE 7-8: SM
Chart for Floating-
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before we can check for exponent overflow in S3. In S3, the Done signal is turned on
and the controller waits for St � 0 before returning to S0.

The state graph for the multiplier control (Figure 7-9) is similar to Figure 4-34,
except that the load state is not needed because the registers are loaded by the main
controller. Add and shift operations are performed in one state because as seen in
Figure 7-7(c), the sum wires from the adder are shifted by 1 before loading into the
accumulator register. When Adx � 1, the multiplier is started, and Mdone is turned
on when the multiplication is completed.
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FIGURE 7-9:
State Graph for
Multiplier Control
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The VHDL behavioral description (Figure 7-10) uses three processes. The main
process generates control signals based on the SM chart. A second process gener-
ates the control signals for the fraction multiplier.The third process tests the control
signals and updates the appropriate registers on the rising edge of the clock. In
state S2 of the main process, A � “0000” implies that F � 0 (FZ � 1 on the SM
chart). If we multiply 1.000 � 1.000, the result is A & B � “01000000”, and a frac-
tion overflow has occurred (FV � 1). If A(2) � A(1), the sign bit of F and the
following bit are the same and F is unnormalized (Fnorm � 0). In state S3, if the two
high-order bits of X are different, an exponent overflow has occurred (EV � 1).

The registers are updated in the third process. The variable addout represents
the output of the 4-bit full adder, which is part of the fraction multiplier. This adder
adds the 2’s complement of C to A when Cm � 1. When Load � 1, the sign-
extended exponents are loaded into X and Y. When Adx � 1, vectors X and Y are

FIGURE 7-10: VHDL Code for Floating-Point Multiplier

library IEEE;
use IEEE.numeric_bit.all;

entity FMUL is
port(CLK, St: in bit;

F1, E1, F2, E2: in unsigned(3 downto 0);
F: out unsigned(6 downto 0);
V, done: out bit);

end FMUL;
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architecture FMULB of FMUL is
signal A, B, C: unsigned(3 downto 0); -- fraction registers
signal X, Y: unsigned(4 downto 0); -- exponent registers
signal Load, Adx, SM8, RSF, LSF: bit;
signal AdSh, Sh, Cm, Mdone: bit;
signal PS1, NS1: integer range 0 to 3; -- present and next state
signal State, Nextstate: integer range 0 to 4; -- multiplier control state
begin
main_control: process(PS1, St, Mdone, X, A, B)
begin
Load <= '0'; Adx <= '0'; NS1 <= 0; -- clear control signals
SM8 <= '0'; RSF <= '0'; LSF <= '0'; V <= '0'; F <= "0000000";
done <= '0';
case PS1 is

when 0 => F <= "0000000"; -- clear outputs
done <= '0'; V <= '0';
if St = '1' then Load <= '1'; NS1 <= 1; end if;

when 1 => Adx <= '1'; NS1 <= 2;
when 2 =>
if Mdone = '1' then -- wait for multiply
if A = 0 then -- zero fraction
SM8 <= '1';

elsif A = 4 and B = 0 then
RSF <= '1'; -- shift AB right

elsif A(2) = A(1) then -- test for unnormalized
LSF <= '1'; -- shift AB left

end if;
NS1 <= 3;

else
NS1 <= 2;

end if;
when 3 => -- test for exp overflow
if X(4) /= X(3) then V <= '1'; else V <= '0'; end if;
done <= '1';
F <= A(2 downto 0) & B; -- output fraction
if ST = '0' then NS1 <= 0; end if;

end case;
end process main_control;

mul2c: process(State, Adx, B) -- 2's complement multiply
begin
AdSh <= '0'; Sh <= ‘0’; Cm <= '0'; Mdone <= '0'; -- clear control signals
Nextstate <= 0;
case State is

when 0 => -- start multiply
if Adx = '1' then
if B(0) = '1' then AdSh <= '1'; else Sh <= '1'; end if;
Nextstate <= 1;

end if;
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when 1 | 2 => -- add/shift state
if B(0) = '1' then AdSh <= '1'; else Sh <= '1'; end if;
Nextstate <= State + 1;

when 3 =>
if B(0) = '1' then Cm <= '1'; AdSh <= '1'; else Sh <= '1'; end if;
Nextstate <= 4;

when 4 =>
Mdone <= '1'; Nextstate <= 0;

end case;
end process mul2c;

update: process -- update registers
variable addout: unsigned(3 downto 0);
begin

wait until CLK = '1' and CLK'event;
PS1 <= NS1;
State <= Nextstate;
if Cm = '0' then addout := A + C;
else addout := A - C;
end if; -- add 2’s comp. of C
if Load = '1' then

X <= E1(3) & E1; Y <= E2(3) & E2;
A <= "0000"; B <= F1; C <= F2;

end if;
if ADX = '1' then X <= X + Y; end if;
if SM8 = '1' then X <= "11000"; end if;
if RSF = '1' then A <= '0' & A(3 downto 1);
B <= A(0) & B(3 downto 1);
X <= X + 1;

end if; -- increment X
if LSF = '1' then

A <= A(2 downto 0) & B(3); B <= B(2 downto 0) & '0';
X <= X + 31;

end if; -- decrement X
if AdSh = '1' then
A <= (C(3) xor Cm) & addout(3 downto 1); -- load shifted adder
B <= addout(0) & B(3 downto 1); -- output into A & B

end if; 
if Sh � '1' then
A <= A(3) & A(3 downto 1); -- right shift A & B
B <= A(0) & B(3 downto 1); -- with sign extend

end if;
end process update;

end FMULB;

added. When SM8 � 1, �8 is loaded into X. When AdSh � 1, A is loaded with the
sign bit of C (or the complement of the sign bit if Cm � 1), concatenated with bits
3 downto 1 of the adder output, and the remaining bit of addout is shifted into the
B register.
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Testing the VHDL code for the floating-point multiplier must be done carefully
to account for all the special cases in combination with positive and negative frac-
tions, as well as positive and negative exponents. Figure 7-11 shows a command file
and some test results. This is not a complete test.

When the VHDL code was synthesized for the Xilinx Spartan-3/Virtex-4 archi-
tectures using the Xilinx ISE tools, the result was 38 slices, 29 flip-flops, 72 four-input
LUTs, 27 I/O blocks, and one global clock circuitry. The output signals V, Done, and
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FIGURE 7-11: Test Data and Simulation Results for Floating-Point Multiplier

add list f x f1 e1 f2 e2 v done
force f1 0111 0, 1001 200, 1000 400, 0000 600, 0111 800
force e1 0001 0, 1001 200, 0111 400, 1000 600, 0111 800
force f2 0111 0, 1001 200, 1000 400, 0000 600, 1001 800
force e2 1000 0, 0001 200, 1001 400, 1000 600, 0001 800
force st 1 0, 0 20, 1 200, 0 220, 1 400, 0 420, 1 600, 0 620, 1 800, 0 820
force clk 0 0, 1 10 -repeat 20
run 1000

ns delta f x f1 e1 f2 e2 v done
0 �0 0000000 00000 0000 0000 0000 0000 0 0
0 �1 0000000 00000 0111 0001 0111 1000 0 0 (0.111 � 21) � (0.111 � 2�8)
10 �1 0000000 00001 0111 0001 0111 1000 0 0
30 �1 0000000 11001 0111 0001 0111 1000 0 0
150 �2 0110001 11001 0111 0001 0111 1000 0 1 = 0.110001 � 2�7

170 �2 0000000 11001 0111 0001 0111 1000 0 0
200 �0 0000000 11001 1001 1001 1001 0001 0 0 (1.001 � 2�7) � (1.001 � 21)
250 �1 0000000 11010 1001 1001 1001 0001 0 0
370 �2 0110001 11010 1001 1001 1001 0001 0 1 = 0.110001 � 2�6

390 �2 0000000 11010 1001 1001 1001 0001 0 0
400 �0 0000000 11010 1000 0111 1000 1001 0 0 (1.000 � 27) � (1.000 � 2�7)
430 �1 0000000 00111 1000 0111 1000 1001 0 0
450 �1 0000000 00000 1000 0111 1000 1001 0 0
570 �1 0000000 00001 1000 0111 1000 1001 0 0
570 �2 0100000 00001 1000 0111 1000 1001 0 1 = 0.100000 � 21

590 �2 0000000 00001 1000 0111 1000 1001 0 0
600 �0 0000000 00001 0000 1000 0000 1000 0 0 (0.000 � 2�8) � (0.000 � 2�8)
630 �1 0000000 11000 0000 1000 0000 1000 0 0
650 �1 0000000 10000 0000 1000 0000 1000 0 0
770 �1 0000000 11000 0000 1000 0000 1000 0 0
770 �2 0000000 11000 0000 1000 0000 1000 0 1 = 0.0000000 � 2�8

790 �2 0000000 11000 0000 1000 0000 1000 0 0
800 �0 0000000 11000 0111 0111 1001 0001 0 0 (0.111 � 27) � (1.001 � 21)
830 �1 0000000 00111 0111 0111 1001 0001 0 0
850 �1 0000000 01000 0111 0111 1001 0001 0 0
970 �2 1001111 01000 0111 0111 1001 0001 1 1 = 1.001111 � 28 (overflow)
990 �2 0000000 01000 0111 0111 1001 0001 0 0
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F were set to zero at the beginning of the process to eliminate unwanted latches.
An RTL-level design was also attempted, but the RTL design was not superior to
the synthesized behavioral design.

Now that the basic design has been completed, we need to determine how fast
the floating-point multiplier will operate and determine the maximum clock fre-
quency. Most CAD tools provide a way of simulating the final circuit taking into
account both the delays within the logic blocks and the interconnection delays.
If this timing analysis indicates that the design does not operate fast enough to meet
specifications, several options are possible. Most FPGAs come in several different
speed grades, so one option is to select a faster part. Another approach is to deter-
mine the longest delay path in the circuit and attempt to reroute the connections or
redesign that part of the circuit to reduce the delays.

7.3 Floating-Point Addition
Next, we consider the design of an adder for floating-point numbers. Two floating-
point numbers will be added to form a floating-point sum:

Again, we will assume that the numbers to be added are properly normalized and
that the answer should be put in normalized form. In order to add two fractions,
the associated exponents must be equal. Thus, if the exponents E1 and E2 are
different, we must unnormalize one of the fractions and adjust the exponent
accordingly. The smaller number is the one that should be adjusted so that if
significant digits are lost, the effect is not significant. To illustrate the process,
we add

Since E2 E1, we unnormalize the smaller number F2 by shifting right two times
and adding 2 to the exponent:

0.101 � 23 � 0.0101 � 24 � 0.00101 � 25

Note that shifting right one place is equivalent to dividing by 2, so each time we shift
we must add 1 to the exponent to compensate. When the exponents are equal, we
add the fractions:

(0.111 � 25) � (0.00101 � 25) � 01.00001 � 25

This addition caused an overflow into the sign bit position, so we shift right and add
1 to the exponent to correct the fraction overflow. The final result is

F � 2E � 0.100001 � 26

�

F1 � 2E1 � 0.111 � 25 and F2 � 2E2 � 0.101 � 23

(F1 � 2E1) � (F2 � 2E2) � F � 2E

7.3 Floating-Point Addition 377
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When one of the fractions is negative, the result of adding fractions may be
unnormalized, as illustrated in the following example:

(1.100 � 2�2) � (0.100 � 2�1)

� (1.110 � 2�1) � (0.100 � 2�1) (after shifting F1)

� 0.010 � 2�1 (result of adding fractions is unnormalized)

� 0.100 � 2�2 (normalized by shifting left and subtracting 1 from exponent)

In summary, the steps required to carry out floating-point addition are as follows:

1. Compare exponents. If the exponents are not equal, shift the fraction with the
smaller exponent right and add 1 to its exponent; repeat until the exponents are
equal.

2. Add the fractions (significands).
3. If the result is 0, set the exponent to the appropriate representation for 0 and exit.
4. If fraction overflow occurs, shift right and add 1 to the exponent to correct the

overflow.
5. If the fraction is unnormalized, shift left and subtract 1 from the exponent until

the fraction is normalized.
6. Check for exponent overflow. Set overflow indicator, if necessary.
7. Round to the appropriate number of bits.

Still normalized? If not, go back to step 4.

Figure 7-12 illustrates this procedure graphically. An optimization can be added to
step 1. We can identify cases where the two numbers are vastly different. If E1 ��
E2 and F2 is positive, F2 will become all 0’s as we right shift F2 to equalize the expo-
nents. In this case, the result is F � F1 and E � E1, so it is a waste of time to do the
shifting. If E1 �� E2 and F2 is negative, F2 will become all 1’s (instead of all 0’s) as
we right shift F2 to equalize the exponents. When we add the fractions, we will get
the wrong answer. To avoid this problem, we can skip the shifting when E1 �� E2
and set F � F1 and E � E1. Similarly, if E2 �� E1, we can skip the shifting and set
F � F2 and E � E2.

For the 4-bit fractions in our example, if |E1 � E2| � 3, we can skip the shift-
ing. For IEEE single precision numbers, there are 23 bits after the binary point;
hence if the exponent difference is greater than 23, the smaller number will
become 0 before the exponents are equal. In general, if the exponent difference
is greater than the number of available fractional bits, the sum should be set to
the larger number. If E1 �� E2, set F � F1 and E � E1. If E2 �� E1, set F � F2
and E � E2.

Inspection of this procedure illustrates that the following hardware units are
required to implement a floating-point adder:

• Adder (subtractor) to compare exponents (step 1a)
• Shift register to shift the smaller number to the right (step 1b)
• ALU (adder) to add fractions (step 2)
• Bidirectional shifter, incrementer/decrementer (steps 4, 5)
• Overflow detector (step 6)
• Rounding hardware (step 7)
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7.3 Floating-Point Addition 379

FIGURE 7-12: Flow
Chart for Floating-
Point Addition
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Many of these components can be combined. For instance, the register that
stores the fractions can be made a shift register in order to perform the shifts. The
register that stores the exponent can be a counter with increment/decrement
capability. Figure 7-13 shows a hardware arrangement for the floating-point
adder. The major components are the exponent comparator and the fraction
adder. Fraction addition can be done using 2’s complement addition. It is assumed
that the operands are delivered on an I/O bus. If the numbers are in a sign-
magnitude form as in the IEEE format, they can be converted to 2’s complement
numbers and then added. Special cases should be handled according to the
requirements of the format. The sum is written back into the Addend register in
Figure 7-13.
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Figure 7-14 shows VHDL code for a floating-point adder based on the IEEE sin-
gle precision floating-point format. This code is not a complete implementation of
the standard. It handles the special case of 0, but it does not deal with infinity,
unnormalized, and not-a-number formats. The final result is truncated instead of
rounded. Sign and magnitude format and biased exponents are used throughout,
except 2’s complement is used for the fraction addition.

FPinput is an input bus, and we assume that the input numbers represent
normalized floating-point numbers in IEEE standard format. In state 0, the first
number is split and loaded into S1, F1, and E1. These represent the sign of the frac-
tion, the magnitude of the fraction, and the biased exponent. When F1 is loaded,
the 23-bit fraction is prefixed by a 1 except in the special case of 0, in which case the
leading bit is a 0. Two 0’s are appended at the end of the fraction to conform to the
IEEE standard requirements (guard and round bits). In state 1, the second number
to be added is loaded into S2, F2, and E2. In state 2, the fraction with the smallest
exponent is unnormalized by shifting right and incrementing the exponent. When
this operation is complete, the exponents are equal, except in the special case when
F1 or F2 equals 0.
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7.3 Floating-Point Addition 381

FIGURE 7-14: VHDL Code for a Floating-Point Adder

library IEEE;
use IEEE.numeric_bit.all;

entity FPADD is
port(CLK, St: in bit; done, ovf, unf: out bit;

FPinput: in unsigned(31 downto 0); -- IEEE single precision FP format
FPsum: out unsigned(31 downto 0)); -- IEEE single precision FP format

end FPADD;

architecture FPADDER of FPADD is
-- F1 and F2 store significand with leading 1 and trailing 0's added
signal F1, F2: unsigned(25 downto 0);
signal E1, E2: unsigned(7 downto 0); -- exponents
signal S1, S2, FV, FU: bit;
-- intermediate results for 2's complement addition
signal F1comp, F2comp, Addout, Fsum: unsigned(27 downto 0);
signal State: integer range 0 to 6;
begin -- convert fractions to 2's comp and add
F1comp <= not ("00" & F1) + 1 when S1 = '1' else "00" & F1;
F2comp <= not ("00" & F2) + 1 when S2 = '1' else "00" & F2;
Addout <= F1comp + F2comp;
-- find magnitude of sum
Fsum <= Addout when Addout(27) = '0' else not Addout + 1;
FV <= Fsum(27) xor Fsum(26); -- fraction overflow
FU <= not F1(25); -- fraction underflow
FPsum <= S1 & E1 & F1(24 downto 2); -- pack output word
process(CLK)
begin
if CLK'event and CLK = '1' then
case State is
when 0 =>
if St = '1' then -- load E1 and F1
E1 <= FPinput(30 downto 23); S1 <= FPinput(31);
F1(24 downto 0) <= FPinput(22 downto 0) & "00";
-- insert 1 in significand (or 0 if the input number is 0)
if FPinput = 0 then F1(25) <= '0'; else F1(25) <= '1'; end if;
done <= '0'; ovf <= '0'; unf <= '0'; State <= 1;

end if;
when 1 => -- load E2 and F2
E2 <= FPinput(30 downto 23); S2 <= FPinput(31);
F2(24 downto 0) <= FPinput(22 downto 0) & "00";
if FPinput = 0 then F2(25) <= '0'; else F2(25) <= '1'; end if;
State <= 2;

when 2 => -- unnormalize fraction with smallest exponent
if F1 = 0 or F2 = 0 then State <= 3;
else
if E1 = E2 then State <= 3;
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elsif E1 < E2 then
F1 <= '0' & F1(25 downto 1); E1 <= E1 + 1;

else
F2 <= '0' & F2(25 downto 1); E2 <= E2 + 1;

end if;
end if;
when 3 => -- add fractions and check for fraction overflow
S1 <= Addout(27);
if FV = '0' then F1 <= Fsum(25 downto 0);
else F1 <= Fsum(26 downto 1); E1 <= E1 + 1; end if;
State <= 4;

when 4 => -- check for sum of fractions = 0
if F1 = 0 then E1 <= "00000000"; State <= 6;
else State <= 5; end if;

when 5 => -- normalize
if E1 = 0 then unf <= '1'; State <= 6;
elsif FU = '0' then State <= 6;
else F1 <= F1(24 downto 0) & '0'; E1 <= E1 - 1;
end if;

when 6 => -- check for exponent overflow
if E1 = 255 then ovf <= '1'; end if;
done <= '1'; State <= 0;

end case;
end if;

end process;
end FPADDER;

The fractions are added using 2’s complement arithmetic, which is performed by
concurrent statements. The input numbers are first converted to 2’s complement
representation. Two sign bits (00) are prefixed to F1, and the 2’s complement is
formed if S1 is 1 (negative). Two sign bits are used so that the sign is not lost if the
fraction addition overflows into the first sign bit. F2 is processed in a similar way.The
resulting numbers, F1comp and F2comp, are added and the sum is assigned to
Addout. The adder output is read in state 3. Fsum represents the magnitude of the
fraction, so Addout must be complemented if it is negative. Normally the two sign
bits of Fsum are “00”, so they are discarded and the result is stored back in F1, which
serves as a floating-point accumulator. The sign bit is extracted from the MSB of
Addout. Fraction overflow and underflow are indicated by FV and FU, respectively.
Fraction overflow can be detected by exclusive-OR of the highest two bits of
Addout.This is done as a concurrent statement. In case of fraction overflow, the sign
bits of Fsum are “01”, so FV � ‘1’, Fsum is right shifted before it is stored in F1, and
E1 is incremented. If the result of addition F1 � 0, E1 is set to 0 in state 4, and the
floating-point addition is complete. If F1 is unnormalized, it is normalized in state
5 by shifting F1 left and decrementing E1. Exponent overflow and underflow are
represented by ovf and unf, respectively. Since the normal range of biased expo-
nents is 1 to 254, an underflow occurs if E1 is decremented to 0, and unf is set to ‘1’
before exiting state 5. In state 6, if E1 � 255, this indicates an exponent overflow, and
ovf is set to ‘1’. The done signal is turned on before exiting state 6. S1, E1, and F1 are
merged by a concurrent statement to give the final sum, FPsum, in IEEE format.
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The floating-point adder was tested for the following cases.

7.4 Other Floating-Point Operations 383

Addend Augend Expected Result

IEEE Single IEEE Single IEEE Single 
Number (Binary) Precision Number (Binary) Precision Number (Binary) Precision

0 x00000000 0 x00000000 0 x00000000
1 � 20 x3F800000 1 � 20 x3F800000 1 � 21 x40000000

�1 � 20 xBF800000 �1 � 20 xBF800000 �1 � 21 xC0000000
1 � 20 x3F800000 �1 � 20 xBF800000 0 x00000000

1.111 . . . � 2127 x7F7FFFFF 1 � 20 x3F800000 1.111 . . . � 2127 x7F7FFFFF
�1.111 . . . � 2127 xFF7FFFFF �1 � 20 xBF800000 �1.111 . . . � 2127 xFF7FFFFF
1.111 . . . � 2127 x7F7FFFFF 1.111 . . . � 2127 x7F7FFFFF overflow
�1.111 . . . � 2127 xFF7FFFFF �1.111 . . . � 2127 xFF7FFFFF overflow

1.11 � 28 x43E00000 �1.11 � 26 xC2E00000 1.0101 � 28 x43A80000
�1.11 � 28 xC3E00000 1.11 � 26 x42E00000 �1.0101 � 28 xC3A80000

1.111 . . . � 2127 x7F7FFFFF 0.0 . . . 01 � 2127 x73800000 overflow
�1.111 . . . � 2127 xFF7FFFFF �0.0 . . . 01 � 2127 xF3800000 overflow
1.1 . . . 10 � 2127 x7F7FFFFE 0.0 . . . 01 � 2127 x73800000 1.111 . . . � 2127 x7F7FFFFF
�1.1 . . . 10 � 2127 xFF7FFFFE �0.0 . . . 01 � 2127 xF3800000 �1.111 . . . � 2127 xFF7FFFFF

1.1 � 2�126 X00C00000 �1.0 � 2�126 x80800000 underflow

7.4 Other Floating-Point Operations
7.4.1 Subtraction
Floating-point subtraction is the same as floating-point addition, except that we
must subtract the fractions instead of adding them. The rest of the steps remain
the same.

7.4.2 Division
The quotient of two floating-point numbers is

Thus, the basic rule for floating-point division is to divide the fractions and subtract
the exponents. In addition to considering the same special cases as for multiplica-
tion, we must test for divide by 0 before dividing. If F1 and F2 are normalized, then
the largest positive quotient (F) will be

0.1111 . . . /0.1000 . . . � 01.111 . . .

which is less than 102, so the fraction overflow is easily corrected. For example,

(0.110101 � 22) 	 (0.101 � 2�3) � 01.010 � 25 � 0.101 � 26

Alternatively, if F1 
 F2, we can shift F1 right before dividing and avoid fraction
overflow in the first place. In the IEEE format, when divide by 0 is involved, the
result can be set to NaN (Not a Number).

(F1 � 2E1) 	 (F2 � 2E2) � (F1/F2) � 2(E1�E2) � F � 2E
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In this chapter, we presented different representations of floating-point numbers.
IEEE floating-point single precision and double precision formats were discussed.
A floating-point format with 2’s complement numbers was also presented. Then we
presented a floating-point multiplier. We also presented a procedure to perform
addition of floating-point numbers. In the process of designing the multiplier, we
used the following steps:

1. Develop an algorithm for floating-point multiplication, taking all of the special
cases into account.

2. Draw a block diagram of the system and define the necessary control signals.
3. Construct an SM chart (or state graph) for the control state machine using a

separate linked state machine for controlling the fraction multiplier.
4. Write behavioral VHDL code.
5. Test the VHDL code to verify that the high-level design of the multiplier is correct.
6. Use the CAD software to synthesize the multiplier. Then implement the multi-

plier in the desired target technology (e.g., ASIC, FPGA, etc.).

Problems
7.1 (a) What is the biggest number that can be represented in the 8-bit 2’s complement

floating-point format with 4 bits for exponent and 4 for fraction?
(b) What is the smallest number that can be represented in the 8-bit 2’s comple-

ment format with 4 bits for exponent and 4 for fraction?
(c) What is the biggest normalized number that can be represented in the IEEE

single precision floating-point format?
(d) What is the smallest normalized number that can be represented in the IEEE

single precision floating-point format?
(e) What is the biggest normalized number that can be represented in the IEEE

double precision floating-point format?
(f) What is the smallest normalized number that can be represented in the IEEE

double precision floating-point format?

7.2 Convert the following decimal numbers in the IEEE single precision format.

(i) 25.25, (ii) 2000.25, (iii) 1, (iv) 0, (v) 1000, (vi) 8000, (vii) 106, (viii) �5.4, (ix) 1.0 �
2�140, (x) 1.5 � 109

7.3 Convert the following decimal numbers to IEEE double precision format.

(i) 25.25, (ii) 2000.25, (iii) 1, (iv) 0, (v) 1000, (vi) 8000, (vii) 106, (viii) �5.4, (ix) 1.0 �
2�140, (x) 1.5 � 109

7.4 What do the following hex representations mean if they are in IEEE single precision
format?

(i) ABABABAB, (ii) 45454545, (iii) FFFFFFFF, (iv) 00000000, (v) 11111111,
(vi) 01010101
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7.5 What do the following hex representations mean if they are in IEEE double preci-
sion format?

(i) ABABABAB 00000000, (ii) 45454545 00000001, (iii) FFFFFFFF 10001000,
(iv) 00000000 00000000, (v) 11111111 10001000, (vi) 01010101 01010101

7.6 (a) Represent �35.25 in IEEE single precision floating-point format.
(b) What does the hex number ABCD0000 represent if it is in IEEE single

precision floating-point format?

7.7 (a) Represent 25.625 in IEEE single precision floating-point format.
(b) Represent �15.6 in IEEE single precision floating-point format.

7.8 This problem concerns the design of a digital system that converts an 8-bit signed
integer (negative numbers are represented in 2’s complement) to a floating-point
number. Use a floating-point format similar to the ones used in Section 7.1.1
except the fraction should be 8 bits and the exponent 4 bits. The fraction should
be properly normalized.

(a) Draw a block diagram of the system and develop an algorithm for doing the
conversion. Assume that the integer is already loaded into an 8-bit register, and
when the conversion is complete the fraction should be in the same register.
Illustrate your algorithm by converting –27 to floating point.

(b) Draw a state diagram for the controller. Assume that the start signal is present
for only one clock time. (Two states are sufficient.)

(c) Write a VHDL description of the system.

7.9 (a) Multiply the following two floating-point numbers to give a properly normalized
result. Assume 4-bit 2’s complement format.

F1 � 1.011, E1 � 0101, F2 � 1.001, E2 � 0011

(b) Repeat (a) for

F1 � 1.011, E1 � 1011, F2 � 0.110, E2 � 1101

7.10 A floating-point number system uses a 4-bit fraction and a 4-bit exponent with neg-
ative numbers expressed in 2’s complement. Design an efficient system that will mul-
tiply the number by �4 (minus four). Take all special cases into account, and give a
properly normalized result.Assume that the initial fraction is properly normalized or
zero. Note: This system multiplies only by �4.

(a) Give examples of the normal and special cases that can occur (for multiplica-
tion by �4).

(b) Draw a block diagram of the system.
(c) Draw an SM chart for the control unit. Define all signals used.

7.11 Redesign the floating-point multiplier in Figure 7-7 using a common 5-bit full
adder connected to a bus instead of two separate adders for the exponents and
fractions.

Problems 385
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(a) Redraw the block diagram and be sure to include the connections to the bus
and include all control signals.

(b) Draw a new SM chart for the new control.
(c) Write the VHDL description for the multiplier or specify what changes need to

be made to an existing description.

7.12 This problem concerns the design of a circuit to find the square of a floating-point
number, F � 2E. F is a normalized 5-bit fraction, and E is a 5-bit integer; negative
numbers are represented in 2’s complement. The result should be properly normal-
ized. Take advantage of the fact that (�F)2 � F 2.

(a) Draw a block diagram of the circuit. (Use only one adder and one complementer.)
(b) State your procedure, taking all special cases into account. Illustrate your

procedure for

F � 1.0110 E � 00100

(c) Draw an SM chart for the main controller. You may assume that multiplication
is carried out using a separate control circuit, which outputs Mdone � 1 when
multiplication is complete.

(d) Write a VHDL description of the system.

7.13 Write a behavioral VHDL code for a floating-point multiplier using the IEEE single
precision floating-point format. Use an overloaded multiplication operator instead
of using an add-shift multiplier. Ignore special cases like infinity, denormalized, and
not-a-number formats. Truncate the final result instead of rounding.

7.14 Write a test bench for the floating-point adder of Figure 7-14.

7.15 Add the following floating-point numbers (show each step). Assume that each
fraction is 5 bits (including sign) and each exponent is 5 bits (including sign) with
negative numbers in 2’s complement.

F1 � 0.1011 E1 � 11111

F2 � 1.0100 E2 � 11101

7.16 Two floating-point numbers are added to form a floating-point sum:

Assume that F1 and F2 are normalized, and the result should be normalized.

(a) List the steps required to carry out floating-point addition, including all special
cases.

(b) Illustrate these steps for F1 � 1.0101, E1 � 1001, F2 � 0.1010, E2 � 1000. Note that
the fractions are 5 bits, including sign, and the exponents are 4 bits, including sign.

(c) Write a VHDL description of the system.

(F1 � 2E1) � (F2 � 2E2) � F � 2E
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7.17 For the floating-point adder of Figure 7-14, modify the VHDL code so that

(a) It handles IEEE standard single precision denormalized numbers both as input
and output.

(b) In state 2, it speeds up the processing when the exponents differ by more than 23.
(c) It rounds up instead of truncating the resulting fraction.

7.18 (a) Add the floating-point numbers 0.111 � 25 � 0.101 � 23 and normalize the result.
(b) Draw an SM chart for a floating-point adder that adds and .

Assume that the fractions are initially normalized (or zero) and the final result
should be normalized (or zero). A zero fraction should have an exponent of �8.
Set an exponent overflow flag (EV) if the final answer has an exponent overflow.
Each number to be added consists of a 4-bit fraction and a 4-bit exponent, with
negative numbers represented in 2’s complement.Assume that all registers (F1, E1,
F2, and E2) can be loaded in one clock time when a start signal (St) is received. If
E1 � E2, the control signal GT � 1, and if E1 � E2, the control signal LT � 1.
Define all other control signals used. Include the special case where �E1 � E2� � 3.

7.19 (a) Draw a block diagram for a floating-point subtracter. Assume that the inputs to
the subtracter are properly normalized, and the answer should be properly nor-
malized. The fractions are 8 bits including sign, and the exponents are 5 bits
including sign. Negative numbers are represented in 2’s complement.

(b) Draw an SM chart for the control circuit for the floating-point subtracter.
Define the control signals used, and give an equation for each control signal
used as an input to the control circuit.

(c) Write the VHDL description of the floating-point subtracter.

7.20 (a) State the steps necessary to carry out floating-point subtraction, including spe-
cial cases. Assume that the numbers are initially in normalized form, and the
final result should be in normalized form.

(b) Subtract the following (fractions are in 2’s complement):

(1.0111 � 2�3) � (1.0101 � 2�5)

(c) Write a VHDL description of the system. Fractions are 5 bits including sign, and
exponents are 4 bits including sign.

7.21 This problem concerns the design of a divider for floating point numbers:

Assume that F1 and F2 are properly normalized fractions (or 0), with negative
fractions expressed in 2’s complement. The exponents are integers with negative
numbers expressed in 2’s complement. The result should be properly normalized
if it is not zero. Fractions are 8 bits including sign, and exponents are 5 bits includ-
ing sign.

(F1 � 2E1) / (F2 � 2E2) � F � 2E

(F2 � 2E2)(F1 � 2E1)

Problems 387
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(a) Draw a flow chart for the floating-point divider. Assume that a divider is avail-
able that will divide two binary fractions to give a fraction as a result. Do not
show the individual steps in the division of the fractions on your flowchart, just
say “divide.” The divider requires that �F2� � �F1� before division is carried out.

(b) Illustrate your procedure by computing

0.111 � 23 / 1.011 � 2�2

When you divide F1 by F2, you don’t need to show the individual steps, just the
result of the division.

(c) Write a VHDL description for the system.

7.22 Assume that A, B, and C are floating-point numbers expressed in IEEE single
precision floating-point format and that floating-point addition is performed.

If A � 240, B � �240, C � 1, then

What is A � (B � C)? (i.e., B � C done first and then A added to it)
What is (A � B) � C? (i.e., A � B done first and then C added to it)

7.23 Assume that A, B, and C are floating-point numbers expressed in IEEE double
precision floating-point format and that floating-point addition is performed.

If A � 240, B � �240, C � 1, then

What is A � (B � C)? (i.e., B � C done first and then A added to it)
What is (A � B) � C? (i.e., A � B done first and then C added to it)

7.24 Assume that A, B, and C are floating-point numbers expressed in IEEE single
precision floating-point format and that floating-point addition is performed.

If A � 265, B � �265, C � 1, then

What is A � (B � C)? (i.e., B � C done first and then A added to it)
What is (A � B) � C? (i.e., A � B done first and then C added to it)

7.25 Assume that A, B, and C are floating-point numbers expressed in IEEE double
precision floating-point format and that floating-point addition is performed.

If A � 265, B � �265, C � 1, then

What is A � (B � C)? (i.e., B � C done first and then A added to it)
What is (A � B) � C? (i.e., A � B done first and then C added to it)

388 Floating-Point Arithmetic
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Up to this point, we have described the basic features of VHDL and how they can
be used in the digital system design process. In this chapter, we describe addi-
tional features of VHDL that illustrate its power and flexibility. VHDL functions
and procedures are presented. Several additional features, such as attributes,
function overloading, and generic and generate statements, are also presented.
The IEEE multivalued logic system and principles of signal resolution are
described. A simple memory model is presented to illustrate the use of tristate
signals.

8.1 VHDL Functions
A key feature of VLSI circuits is the repeated use of similar structures. VHDL
provides functions and procedures to easily express repeated invocation of the
same functionality or the repeated use of structures. We describe functions in this
section. Functions can return only a single value through a return statement.
Procedures are more general and complex than functions. They can return any
number of values using output parameters. Procedures are described in the next
section.

A function executes a sequential algorithm and returns a single value to the call-
ing program. When the following function is called, it returns a bit-vector equal to
the input bit-vector (reg) rotated one position to the right:

function rotate_right (reg: bit_vector)
return bit_vector is

begin
return reg ror 1;

end rotate_right;

A function call can be used anywhere that an expression can be used. For example, if
A � “10010101”, the statement

B <= rotate_right(A);

would set B equal to “11001010”, and leave A unchanged.

C H A P T E R

8
C h a p t e r  8

Additional Topics in VHDL
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The general form of a function declaration is

function function-name (formal-parameter-list)
return return-type is

[declarations]
begin
sequential statements -- must include return return-value;

end function-name;

The general form of a function call is

function_name(actual-parameter-list)

The number and type of parameters on the actual-parameter-list must match
the formal-parameter-list in the function declaration.The parameters are treat-
ed as input values and cannot be changed during the execution of the function.

Example
Write a VHDL function for generating an even parity bit for a 4-bit number.The input is a 4-bit
number and the output is a code word that contains the data and the parity bit. Figure 8-1 shows
the solution.
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FIGURE 8-1: Parity Generation Using a Function

–– Function example code without a loop
–– This function takes a 4-bit vector
–– It returns a 5-bit code with even parity

function parity (A: bit_vector(3 downto 0))
return bit_vector is

variable parity: bit;
variable B: bit_vector(4 downto 0);
begin
parity := a(0) xor a(1) xor a(2) xor a(3);
B := A & parity;
return B;

end parity;

If parity circuits are used in several parts in a system, we could call the function
each time it is desired.

Figure 8-2 illustrates a function using a for loop. In Figure 8-2, the loop index (i)
will be initialized to 0 when the for loop is entered, and the sequential statements will
be executed. Execution will be repeated for i � 1, i � 2, and i � 3; then the loop will
terminate.

If A, B, and C are integers, the statement C <= A + B will set C equal to the sum
of A and B. However, if A, B, and C are bit-vectors, this statement will not work,
since the “�” operation is not defined for bit-vectors. However, we can write a func-
tion to perform bit-vector addition. The function given in Figure 8-2 adds two 4-bit
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vectors plus a carry and returns a 5-bit vector as the sum.The function name is add4;
the formal parameters are A, B, and carry; and the return type is a bit-vector.
Variables cout and cin are defined to hold intermediate values during the calcula-
tion. The variable sum is used to store the value to be returned. When the function
is called, cin will be initialized to the value of the carry. The for loop adds the bits of
A and B serially in the same manner as a serial adder. The first time through the
loop, cout and sum(0) are computed using A(0), B(0), and cin. Then the cin value is
updated to the new cout value, and execution of the loop is repeated. During the
second time through the loop, cout and sum(1) are computed using A(1), B(1), and
the new cin. After four times through the loop, all values of sum(i) have been com-
puted and sum is returned. The total simulation time required to execute the add4
function is zero. Not even delta time is required, since all the computations are done
using variables, and variables are updated instantaneously.
The function call is of the form

add4(A, B, carry)

A and B may be replaced with any expressions that evaluate to bit-vectors with
dimensions 3 downto 0, and carry may be replaced with any expression that eval-
uates to a bit. For example, the statement

Z <= add4(X, not Y, '1');

calls the function add4. Parameters A, B, and carry are set equal to the values of X,
not Y, and '1', respectively. X and Y must be bit-vectors dimensioned 3 downto 0.
The function computes

Sum � A � B � carry � X � not Y � '1'

8.1 VHDL Functions 391

FIGURE 8-2: Add Function

–– This function adds two 4-bit vectors and a carry.
–– Illustrates function creation and use of loop
–– It returns a 5-bit sum

function add4 (A, B: bit_vector(3 downto 0); carry: bit)
return bit_vector is

variable cout: bit;
variable cin: bit := carry;
variable sum: bit_vector(4 downto 0) := "00000";
begin
loop1: for i in 0 to 3 loop

cout := (A(i) and B(i)) or (A(i) and cin) or (B(i) and cin);
sum(i) := A(i) xor B(i) xor cin;
cin := cout;

end loop loop1;
sum(4) := cout;
return sum;
end add4;

08Ch08.qxd  3/13/07  3:23 PM  Page 391



and returns this value. Since Sum is a variable, computation of Sum requires zero
time. After delta time, Z is set equal to the returned value of Sum. Since not Y �
‘1’ equals the 2’s complement of Y, the computation is equivalent to subtracting
by adding the 2’s complement. If we ignore the carry stored in Z(4), the result is
Z(3 downto 0) � X – Y.

Functions can be used to return an array.As an example, we will write a function
that inputs an array of numbers and returns an array which contains the square of
the input numbers. Figure 8-3 illustrates the function as well as the function call.The
number of input numbers is provided as a parameter to the function. In the illus-
trated call to the function, the numbers are 4 bits wide.

392 Additional Topics in VHDL

FIGURE 8-3: A Function to Compute Squares of an Array of Unsigned Numbers and Its Call

library IEEE;
use IEEE.numeric_bit.all;

entity test_squares is
port(CLK: in bit);

end test_squares;

architecture test of test_squares is
type FourBitNumbers is array (0 to 4) of unsigned (3 downto 0);
type squareNumbers is array (0 to 4) of unsigned (7 downto 0);
constant FN: FourBitNumbers := ("0001", "1000", "0011", "0010", "0101");
signal answer: squareNumbers;
signal length: integer := 4;

function squares (Number_arr: FourBitNumbers; length: positive)
return squareNumbers is

variable SN: squareNumbers;
begin

loop1: for i in 0 to length loop
SN(i) := Number_arr(i) * Number_arr(i);

end loop loop1;
return SN;
end squares;

begin
process(CLK)
begin
if CLK = '1' and CLK'EVENT then
answer <= squares(FN, length);
end if;

end process;
end test;
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Functions are frequently used to do type conversions. We already came across
type conversion functions in the IEEE numeric_bit library: to_integer(A) and
to_unsigned(B, N).The first one converts an unsigned-vector to an integer, and the
second one converts an integer to an unsigned-vector with the specified number of bits.

8.2 VHDL Procedures
Procedures facilitate decomposition of VHDL code into modules. Unlike functions,
which return only a single value through a return statement, procedures can return any
number of values using output parameters. The form of a procedure declaration is

procedure procedure_name (formal-parameter-list) is
[declarations]
begin
sequential statements

end procedure_name;

The formal-parameter-list specifies the inputs and outputs to the procedure
and their types. A procedure call is a sequential or concurrent statement of the form

procedure_name(actual-parameter-list);

As an example we will write a procedure Addvec, which will add two N-bit vectors and
a carry, and return an N-bit sum and a carry.We will use a procedure call of the form

Addvec(A, B, Cin, Sum, Cout, N);

where A, B, and Sum are N-bit vectors, Cin and Cout are bits, and N is an integer.
Figure 8-4 gives the procedure definition. Add1, Add2, and Cin are input parame-

ters, and Sum and Cout are output parameters. N is a positive integer that specifies the
number of bits in the bit-vectors.The addition algorithm is essentially the same as the
one used in the add4 function. C must be a variable, since the new value of C is need-
ed each time through the loop; however, Sum can be a signal since Sum is not used
within the loop. After N times through the loop, all the values of the signal Sum have
been computed, but Sum is not updated until a delta time after exiting from the loop.

Within the procedure declaration, the class, mode, and type of each parameter
must be specified in the formal-parameter-list. The class of each parameter
can be signal, variable, or constant. If the class of an input parameter is omitted, con-
stant is used as the default. If the class is a signal, then the actual parameter in the
procedure call must be a signal of the same type. Similarly, for a formal parameter of
class variable, the actual parameter must be a variable of the same type. However,
for a constant formal parameter, the actual parameter can be any expression that
evaluates to a constant of the proper type. This constant value is used inside the pro-
cedure and cannot be changed; thus, a constant formal parameter is always of mode
in. Signals and variables can be of mode in, out, or inout. Parameters of mode out and
inout can be changed in the procedure, so they are used to return values to the caller.

8.2 VHDL Procedures 393
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In procedure Addvec, parameters Add1, Add2, and Cin are, by default, of class
constant.Therefore, in the procedure call, Add1,Add2, and Cin can be replaced with
any expressions that evaluate to constants of the proper type and dimension. Since
Sum and Cout change within the procedure and are used to return values, they have
been declared as class signal. Thus, in the procedure call, Sum and Cout can be
replaced only with signals of the proper type and dimension.

The formal-parameter-list in a function declaration is similar to that of a
procedure, except parameters of class variable are not allowed. Furthermore, all
parameters must be of mode in, which is the default mode. Parameters of mode out or
inout are not allowed, since a function returns only a single value, and this value can-
not be returned through a parameter.Table 8-1 summarizes the modes and classes that
may be used for procedure and function parameters. A procedure can have output
parameters of mode out or inout.They can be signals or variables.They obviously can-
not be constants because constants cannot be modified.
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FIGURE 8-4: Procedure for Adding Bit-Vectors

–– This procedure adds two n-bit bit_vectors and a carry and
–– returns an n-bit sum and a carry. Add1 and Add2 are assumed
–– to be of the same length and dimensioned n-1 downto 0.

procedure Addvec (Add1, Add2: in bit_vector; Cin: in bit;
signal Sum: out bit_vector; signal Cout: out bit;
n: in positive) is

variable C: bit;
begin

C := Cin;
for i in 0 to n-1 loop

Sum(i) <= Add1(i) xor Add2(i) xor C;
C := (Add1(i) and Add2(i)) or (Add1(i) and C) or (Add2(i) and C);

end loop;
Cout <= C;

end Addvec;

TABLE 8-1:
Parameters for

Subprogram Calls

Actual Parameter
Mode Class Procedure Call Function Call

In1 Constant2 Expression Expression 
Signal Signal Signal
Variable Variable n�a

Out�inout Signal Signal n�a
Variable3 Variable n�a

1 Default mode for functions
2 Default for in mode
3 Default for out�inout mode

NOTE: n�a � “not applicable”
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8.3 Attributes
An important feature of the VHDL language is attributes. Attributes can be associ-
ated with signals. They can also be associated with arrays.

8.3.1 Signal Attributes
You have already used a signal attribute, the 'EVENT attribute, for creating edge-
triggered clocks. As you know, CLOCK'EVENT (read as “CLOCK tick EVENT”)
returns a value of TRUE if a change in signal CLOCK has just occurred.VHDL has
two types of attributes: (1) attributes that return a value and (2) attributes that
return a signal.

Table 8-2 gives several examples of attributes that return a value. In this table, S rep-
resents a signal name, and S is separated from an attribute name by a tick mark (single
quote). In VHDL, an event on a signal means a change in the signal. Thus, S'ACTIVE
(read as “S tick ACTIVE”) returns a value of TRUE if a transaction in S has just
occurred. A transaction occurs on a signal every time it is evaluated, regardless of
whether the signal changes or not. Consider the concurrent VHDL statement A <= B
and C. If B � 0, then a transaction occurs on A every time C changes, since A is recom-
puted every time C changes. If B � 1, then an event and a transaction occur on A every
time C changes.S'ACTIVE returns TRUE if S has just been re-evaluated, even if S does
not change. In contrast, S'EVENT returns TRUE only if a change has occurred in S. If
S changes at time T, then S'EVENT is true at time T but false at time T � �.
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TABLE 8-2:
Signal Attributes

That Return a
Value

Attribute Returns

S'ACTIVE True if a transaction occurred during the current
delta, else false

S'EVENT True if an event occurred during the current
delta, else false

S'LAST_EVENT Time elapsed since the previous event on S
S'LAST_VALUE Value of S before the previous event on S
S'LAST_ACTIVE Time elapsed since previous transaction on S

Table 8-3 gives signal attributes that create a signal. The brackets around (time)
indicate that (time) is optional. If (time) is omitted, then one delta is used. The
attribute S'DELAYED(time) creates a signal identical to S, except it is shifted by
the amount of time specified. The example in Figure 8-5 illustrates use of the attrib-
utes listed in Table 8-3. The signal C_delayed5 is the same as C shifted right by 5 ns.
The signal A_trans toggles every time B or C changes, since A has a transaction
whenever B or C changes. The initial computation of A <= B and C produces a
transaction on A at time � �, so A_trans changes to ‘1’ at that time. The signal
A'STABLE(time) is true if A has not changed during the preceding interval of
length (time). Thus, A_stable5 is false for 5 ns after A changes, and it is true other-
wise. The signal A'QUIET(time) is true if A has had no transactions during the
preceding interval of length (time). Thus, A_quiet5 is false for 5 ns after A has had a
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TABLE 8-3:
Signal Attributes

That Create
a Signal

Attribute Creates

S'DELAYED [(time)]* Signal same as S delayed by specified time

S'STABLE [(time)]* Boolean signal that is true if S had no
events for the specified time

S'QUIET [(time)]* Boolean signal that is true if S had no
transactions for the specified time

S'TRANSACTION Signal of type bit that changes for every
transaction on S

*Delta is used if no time is specified.

FIGURE 8-5: Examples of Signal Attributes

entity attr_ex is
port(B, C: in bit);

end attr_ex;

architecture test of attr_ex is
signal A, C_delayed5, A_trans: bit;
signal A_stable5, A_quiet5: boolean;
begin

A <= B and C;
C_delayed5 <= C'delayed(5 ns);
A_trans <= A'transaction;
A_stable5 <= A'stable(5 ns);
A_quiet5 <= A'quiet(5 ns);

end test;
(a) VHDL code for attribute test

B 
C 
A 

C_delayed5 
A_trans 

A_stable5 
A_quiet5 

10 20 
(b) Waveforms for attribute test 

30 40 50 0 

transaction.S'EVENT and not S'STABLE both return true if an event has occurred
during the current delta; however, they cannot always be used interchangeably, since
the former just returns a value and the latter returns a signal.

8.3.2 Array Attributes
Table 8-4 gives array attributes. In this table, A can either be an array name or an array
type. In the examples, ROM1 is a two-dimensional array for which the first index
range is 0 to 15, and the second index range is 7 downto 0. ROM1'LEFT(2) is 7,
since the left bound of the second index range is 7. Although ROM1 is declared as
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a signal, the array attributes also work with array constants and array variables. In the
examples, the results are the same if ROM1 is replaced with its type, ROM. For a vec-
tor (a one-dimensional array), N is 1 and can be omitted. If A is a bit-vector dimen-
sioned 2 to 9, then A'LEFT is 2 and A'LENGTH is 8.

8.3.3 Use of Attributes
Attributes are often used together with assert statements (see Section 2.19) for
error checking. The assert statement checks to see if a certain condition is true and,
if not, causes an error message to be displayed. We present two examples: one illus-
trating use of signal attributes and another one illustrating array attributes.

Use of Signal Attributes
Consider the process in Figure 8-6, which checks to see if the setup and hold times are
satisfied for a D flip-flop. We will use attributes 'EVENT and 'STABLE. 'STABLE is
an attribute that returns a Boolean signal if the signal has no events for a specified
time (i.e., a TRUE signal returned by this indicates that the signal was stable for a
specified time). For example, the signal A'STABLE(time) is true if A has not
changed during the preceding interval of length (time). Thus, A'stable(5) is false
for 5 ns after A changes, and it is true otherwise.

In the check process, after the active edge of the clock occurs, the D input is
checked to see if it has been stable for the specified setup_time. If not, a setup-time
violation is reported as an error. Then, after waiting for the hold_time, D is checked
to see if it has been stable during the hold-time period. If not, a hold-time violation
is reported as an error.
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TABLE 8-4:
Array Attributes

type ROM is array (0 to 15, 7 downto 0) of bit; 
signal ROM1 : ROM;

Attribute Returns Examples

A'LEFT(N) left bound of ROM1'LEFT(1) = 0
Nth index range ROM1'LEFT(2) = 7

A'RIGHT(N) right bound of ROM1'RIGHT(1) = 15
Nth index range ROM1'RIGHT(2) = 0

A'HIGH(N) largest bound of ROM1'HIGH(1) = 15
Nth index range ROM1'HIGH(2) = 7

A'LOW(N) smallest bound of ROM1'LOW(1) = 0
Nth index range ROM1'LOW(2) = 0

A'RANGE(N) Nth index range ROM1'RANGE(1) = 0 to 15
ROM1'RANGE(2) = 7 downto 0

A'REVERSE_RANGE(N) Nth index range ROM1'REVERSE_RANGE(1) =
reversed 15 downto 0

ROM1'REVERSE_RANGE(2) =
0 to 7

A'LENGTH(N) size of Nth index ROM1'LENGTH(1) = 16
range ROM1'LENGTH(2) = 8
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Use of Array Attributes in Vector Addition
As an example of using the assert statement together with array attributes, consider
the procedure illustrated in Figure 8-7 for adding bit-vectors. This procedure adds
two vectors of arbitrary size. The vectors should, however, be of the same length. It
is not required to pass the length of the arrays in the procedure call. Since vector
lengths are not passed as a parameter to the procedure, the procedure uses array
attributes and checks whether the lengths are equal. Figure 8-7 shows the code for
the procedure Addvec2. The inputs to the procedure include the two input vectors
and the carry in bit. The procedure creates a temporary variable, C, for the internal
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FIGURE 8-6: Process for Checking Setup and Hold Times

check: process
begin
wait until (Clk'event and CLK = '1');
assert (D'stable(setup_time))
report ("Setup time violation")
severity error;

wait for hold_time;
assert (D'stable(hold_time))
report ("Hold time violation")
severity error;

end process check;

FIGURE 8-7: Procedure for Adding Bit-Vectors

-- This procedure adds two bit_vectors and a carry and returns a sum
-- and a carry. Both bit_vectors should be of the same length.

procedure Addvec2 (Add1, Add2: in bit_vector; Cin: in bit;
signal Sum: out bit_vector;
signal Cout: out bit) is

variable C: bit := Cin;
alias n1: bit_vector(Add1'length-1 downto 0) is Add1;
alias n2: bit_vector(Add2'length-1 downto 0) is Add2;
alias S: bit_vector(Sum'length-1 downto 0) is Sum;
begin
assert ((n1'length = n2'length) and (n1'length = S'length))
report "Vector lengths must be equal!"
severity error;

for i in s'reverse_range loop -- reverse range makes you start from LSB
S(i) <= n1(i) xor n2(i) xor C;
C := (n1(i) and n2(i)) or (n1(i) and C) or (n2(i) and C);

end loop;
Cout <= C;

end Addvec2;
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carry and initializes it to the input carry, Cin. Then it creates aliases n1, n2, and S,
which have the same length as Add1, Add2, and Sum, respectively. These aliases are
dimensioned from their length minus 1 downto 0. Even though the ranges of Add1,
Add2, and Sum might be downto or to and might not include 0, the ranges for the
aliases are defined in a uniform manner to facilitate further computation. If the input
vectors and Sum are not the same length, an error message is reported. The sum and
carry are computed bit-by-bit in a loop. Since this loop must start with i � 0, the
range of i is the reverse of the range for S. Finally, the carry output, Cout, is set equal
to the corresponding temporary variable, C.

8.4 Creating Overloaded Operators
Let us understand how overloaded operators are created. Operator overloading
means that we will extend the definition of the operator to other data types in addi-
tion to the default data types that have already been defined. The operator will
implicitly call an appropriate function, which eliminates the need for an explicit
function or procedure call. When the compiler encounters a function declaration in
which the function name is an operator enclosed in double quotes, the compiler
treats this function as an operator overloading function.

The VHDL arithmetic operators, � and �, are defined to operate on integers,
but not on bit-vectors.We have been using the IEEE numeric_bit library in order to
access the overloaded arithmetic operators for bit-vectors using the unsigned type.
Let us create a “�” function for bit-vectors.

The package shown in Figure 8-8 illustrates the creation of a “�” function for bit-
vectors. It adds two bit-vectors and returns a bit-vector. This function uses aliases so
that it is independent of the ranges of the bit-vectors, but it assumes that the lengths
of the vectors are the same. It uses a for loop to do the bit-by-bit addition. Without
this overloaded function, the “�” function was not available for bit-vectors. The
IEEE numeric_bit only provides it for the unsigned type.
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FIGURE 8-8: VHDL Package with Overloaded Operators for Bit-Vectors

-- This package provides an overloaded function for the plus operator

package bit_overload is
function "+" (Add1, Add2: bit_vector)
return bit_vector;

end bit_overload;

package body bit_overload is
-- This function returns a bit_vector sum of two bit_vector operands
-- The add is performed bit by bit with an internal carry
function "+" (Add1, Add2: bit_vector)
return bit_vector is
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Overloading can also be applied to procedures and functions. Several procedures
can have the same name, and the type of the actual parameters in the procedure call
determines which version of the procedure is called. An examination of the IEEE
numeric_bit library illustrates that several overloaded operators and functions are
defined.

8.5 Multivalued Logic and Signal Resolution
In previous chapters, we have used 2-valued bit logic in our VHDL code. In order to
represent tristate buffers and buses, it is necessary to be able to represent a third
value, ‘Z’, which represents the high-impedance state. It is also at times necessary to
have a fourth value, ‘X’, to represent an unknown state. This unknown state may
occur if the initial value of a signal is unknown or if a signal is simultaneously driven
to two conflicting values, such as ‘0’ and ‘1’. If the input to a gate is ‘Z’, the gate out-
put may assume an unknown value, ‘X’.

We need multivalued logic in order to meet these requirements. The IEEE
numeric_std and the IEEE standard logic use a 9-valued logic. Different CAD tool
developers have defined 7-valued, 9-valued, and 11-valued logic conventions.

In this chapter, we will present two examples of multivalued logic, (1) a 4-valued
logic system and (2) the IEEE-1164 standard 9-valued logic system. The 4-valued
logic system is described in Section 8.5.1 and the 9-valued logic is explained in
Section 8.6.

8.5.1 A 4-Valued Logic System
Signals in a 4-valued logic can assume the four values: ‘X’, ‘0’, ‘1’, and ‘Z’, where each
of the symbols represent the following:

‘X’ Unknown
‘0’ 0
‘1’ 1
‘Z’ High impedance
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variable sum: bit_vector(Add1'length-1 downto 0);
variable c: bit := '0'; -- no carry in
alias n1: bit_vector(Add1'length-1 downto 0) is Add1;
alias n2: bit_vector(Add2'length-1 downto 0) is Add2;
begin
for i in sum'reverse_range loop
sum(i) := n1(i) xor n2(i) xor c;
c := (n1(i) and n2(i)) or (n1(i) and c) or (n2(i) and c);

end loop;
return (sum);

end "+";
end bit_overload;
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The high-impedance state is used for modeling tristate buffers and buses. This
unknown state can be used if the initial value of a signal is unknown or if a signal is
simultaneously driven to two conflicting values, such as ‘0’ and ‘1’.

Let us model tristate buffers using the 4-valued logic. Figure 8-9 shows two
tristate buffers with their outputs tied together, and Figure 8-10 shows the corre-
sponding VHDL representation. A new data type X01Z, which can assume the
four values ‘X’, ‘0’, ‘1’, and ‘Z’ is assumed. The tristate buffers have an active-high
output enable, so that when b � ‘1’ and d � ‘0’, f � a; when b � ‘0’ and d � ‘1’,
f � c; and when b � d � ‘0’, the f output assumes the high-Z state. If b � d � ‘1’,
an output conflict can occur. Two VHDL architecture descriptions are shown.
The first one uses two concurrent statements, and the second one uses two
processes. In either case, f is driven from two different sources, and VHDL uses
a resolution function to determine the actual output. For example, if a � c � d
� ‘1’ and b � ‘0’, f is driven to ‘Z’ by one concurrent statement or process, and f
is driven to ‘1’ by the other concurrent statement or process. The resolution func-
tion is automatically called to determine that the proper value of f is ‘1’. The res-
olution function will supply a value of ‘X’ (unknown) if f is driven to both ‘0’ and
‘1’ at the same time.
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FIGURE 8-9:
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FIGURE 8-10: VHDL Code for Tristate Buffers

use WORK.fourpack.all; -- fourpack is a resolved package for 4-variable logic
-- more details on resolution in next subsection

entity t_buff_exmpl is
port(a, b, c, d: in X01Z; -- signals are four-valued

f: out X01Z);
end t_buff_exmpl;

architecture t_buff_conc of t_buff_exmpl is
begin
f <= a when b = '1' else 'Z';
f <= c when d = '1' else 'Z';

end t_buff_conc;
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The code in Figure 8-10 utilizes a 4-valued logic package and corresponding signal
resolution functions. Let us understand how to create signal resolution functions.
A package, as described in the following subsection, is necessary to make the code in
Figure 8-10 work.

8.5.2 Signal Resolution Functions
VHDL signals may either be resolved or unresolved. Signal resolution is necessary
when different wires in a system are driving a common signal path. Signal resolution
means arriving at a resulting value when two or more different signals are connected
to the same point. VHDL with multivalued logic can be used to create resolutions
when signals are connected.

Resolved signals have an associated resolution function, and unresolved signals
do not. We have previously used signals of type bit, which are unresolved. With
unresolved signals, if we drive a bit signal B to two different values in two concur-
rent statements (or in two processes), the compiler will flag an error because there
is no way to determine the proper value of B.

Consider the following three concurrent statements, where R is a resolved signal
of type X01Z:

R <= transport '0' after 2 ns, 'Z' after 6 ns;
R <= transport '1' after 4 ns;
R <= transport '1' after 8 ns, '0' after 10 ns;

Assuming that R is initialized to ‘Z’, three drivers would be created for R, as shown
in Figure 8-11. Each time one of the unresolved signals s(0), s(1), or s(2) changes, the
resolution function is automatically called to determine the value of the resolved
signal, R.
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architecture t_buff_bhv of t_buff_exmpl is
begin
buff1: process(a, b)
begin
if (b = '1') then

f <= a;
else
f <= 'Z'; -- "drive" the output high Z when not enabled

end if;
end process buff1;

buff2: process(c, d)
begin

if (d = '1') then
f <= c;

else
f <= 'Z'; -- "drive" the output high Z when not enabled

end if;
end process buff2;

end t_buff_bhv;
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Since the X01Z logic has a symbol for high impedance, we can create resolution
functions to model the wires when multiple signals are connected. Figure 8-12 shows
how the resolution function for X01Z logic is defined in a package called fourpack.
First, an unresolved logic type u_X01Z is defined, along with the corresponding
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FIGURE 8-12: Resolution Function for X01Z Logic

package fourpack is
type u_x01z is ('X', '0', '1', 'Z'); -- u_x01z is unresolved
type u_x01z_vector is array (natural range <>) of u_x01z;
function resolve4 (s: u_x01z_vector) return u_x01z;
subtype x01z is resolve4 u_x01z;
-- x01z is a resolved subtype which uses the resolution function resolve4
type x01z_vector is array (natural range <>) of x01z;

end fourpack;

package body fourpack is
type x01z_table is array (u_x01z, u_x01z) of u_x01z;
constant resolution_table: x01z_table := (
('X','X','X','X'),
('X','0','X','0'),
('X','X','1','1'),
('X','0','1','Z'));

function resolve4 (s:u_x01z_vector)
return u_x01z is

variable result: u_x01z := 'Z';
begin
if (s'length = 1) then
return s(s'low);

else
for i in s'range loop

result := resolution_table(result, s(i));
end loop;

end if;
return result;

end resolve4;
end fourpack;
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In order to write VHDL code using X01Z logic, we need to define the required
operations for this type of logic. For example, AND and OR may be defined using
the following tables:
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‘X’ ‘0’ ‘1’ ‘Z’

‘X’ ‘X’ ‘X’ ‘X’ ‘X’
‘0’ ‘X’ ‘0’ ‘X’ ‘0’
‘1’ ‘X’ ‘X’ ‘1’ ‘1’
‘Z’ ‘X’ ‘0’ ‘1’ ‘Z’

Time s(0) s(1) s(2) R

0 ‘Z’ ‘Z’ ‘Z’ ‘Z’
2 ‘0’ ‘Z’ ‘Z’ ‘0’
4 ‘0’ ‘1’ ‘Z’ ‘X’
6 ‘Z’ ‘1’ ‘Z’ ‘1’
8 ‘Z’ ‘1’ ‘1’ ‘1’

10 ‘Z’ ‘1’ ‘0’ ‘X’

This table gives the resolved value of a signal for each pair of input values: ‘Z’
resolved with any value returns that value, ‘X’ resolved with any value returns ‘X’,
and ‘0’ resolved with ‘1’ returns ‘X’. The function resolve4 has an argument, s, which
represents a vector of one or more signal values to be resolved. If the vector is of
length 1, then the first (and only) element of the vector is returned. Otherwise, the
return value (the resolved signal) is computed iteratively by starting with result � ‘Z’
and recomputing result by a table look-up using each element of the s vector in
turn. In the example of Figure 8-11, the s vector has three elements, and resolve4
would be called at 0, 2, 4, 6, 8, and 10 ns to compute R. The following table shows the
result:

unconstrained array type, u_X01Z_vector. Then a resolution function, named
resolve4, is declared. Resolved X01Z logic is defined as a subtype of u_X01Z. The
subtype declaration contains the function name resolve4. This implies that whenever
a signal of type X01Z is computed, function resolve4 is called to compute the correct
value.

The resolution function, which is based on the operation of a tristate bus, is
specified by the following table:

AND 'X' '0' '1' 'Z'

'X' 'X' '0' 'X' 'X'
'0' '0' '0' '0' '0'
'1' 'X' '0' '1' 'X'
'Z' 'X' '0' 'X' 'X'

OR 'X' '0' '1' 'Z'

'X' 'X' 'X' '1' 'X'
'0' 'X' '0' '1' 'X'
'1' '1' '1' '1' '1'
'Z' 'X' 'X' '1' 'X'

The table on the left corresponds to the way an AND gate with 4-valued inputs
would work. If one of the AND gate inputs is ‘0’, the output is always ‘0’. If both
inputs are ‘1’, the output is ‘1’. In all other cases, the output is unknown (‘X’), since
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a high-Z gate input may act like either a ‘0’ or ‘1’. For an OR gate, if one of the
inputs is ‘1’, the output is always ‘1’. If both inputs are ‘0’, the output is ‘0’. In all
other cases, the output is ‘X’. AND and OR functions based on these tables can be
included in the package fourpack to overload the AND and OR operators.

While this section illustrated how resolved signals can be created, fortunately
you do not have to create such signals. Standard libraries with resolved data types
are available. The IEEE 1164 standard and IEEE_numeric_std are examples of
such multivalued logic libraries.

8.6 The IEEE 9-Valued Logic System
The IEEE 1164 standard specifies a 9-valued logic system with signal resolution.
The 9 logic values defined in this standard are

‘U’ Uninitialized
‘X’ Forcing unknown
‘0’ Forcing 0
‘1’ Forcing 1
‘Z’ High impedance
‘W’ Weak unknown
‘L’ Weak 0
‘H’ Weak 1
‘–’ Don’t care

The unknown, ‘0’, and ‘1’ values come in two strengths—forcing and weak. A forcing
‘1’ means that the signal is as perfect as the power supply voltage. A ‘weak 1’,
represented by ‘H’, means that the signal is logically high, but there is a voltage drop
(e.g., output of a pull-up resistor). A forcing ‘0’ represents a perfect ground, whereas
a ‘weak 0’ represents a signal which is logically ‘0’, but not exactly the ground voltage
(e.g., the output of a pull-down resistor). The 9-valued system has the representation
‘U’ for denoting uninitialized signals. Don’t care states can be represented by ‘–’.

If a forcing signal and a weak signal are tied together, the forcing signal domi-
nates. For example, if ‘0’ and ‘H’ are tied together, the result is ‘0’.The 9-valued logic
is useful in modeling the internal operation of certain types of ICs. In this text, we
will normally use only a subset of the IEEE values—‘X’, ‘0’, ‘1’, and ‘Z’.

The IEEE-1164 standard defines the AND, OR, NOT, XOR, and other functions
for 9-valued logic.The package IEEE.std_logic_1164 defines a std_logic type that uses
the 9-valued logic. It also specifies a number of subtypes of the 9-valued logic, such as
the X01Z subtype, which we have already been using. Analogous to bit-vectors, when
vectors are created with the std_logic type, they are called std_logic vectors.When bit-
vectors are used, typically they are initialized to ‘0’, whereas when the std_logic type
is used, the uninitilized value ‘U’ is the default value.

Table 8-5 shows the resolution function table for the IEEE 9-valued logic.The row
index values have been listed as comments to the right of the table.The resolution func-
tion table for X01Z logic is a subset of this table, as indicated by the black rectangle.
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Table 8-6 shows the AND function table for the IEEE 9-valued logic. The row
index values have been listed as comments to the right of the table. The AND
function table for X01Z logic is a subset of this table, as indicated by the black rec-
tangle. The IEEE-1164 standard first defines std_ulogic (unresolved standard
logic); then it defines the std_logic type as a subtype of std_ulogic with the associ-
ated resolution function.
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TABLE 8-5:
Resolution

Function Table for
IEEE 9-Valued Logic

--

CONSTANT resolution_table : stdlogic_table := (

-- | U X 0 1 Z W L H - | |
--

( 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U' ), -- | U |
( 'U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X' ), -- | X |
( 'U', 'X', '0', 'X', '0', '0', '0', '0', 'X' ), -- | 0 |
( 'U', 'X', 'X', '1', '1', '1', '1', '1', 'X' ), -- | 1 |
( 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X' ), -- | Z |
( 'U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X' ), -- | W |
( 'U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X' ), -- | L |
( 'U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X' ), -- | H |
( 'U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X' ) -- | - |
);

TABLE 8-6:
AND Table for IEEE

9-Valued Logic
--

CONSTANT and_table : stdlogic_table := (

-- | U X 0 1 Z W L H - | |
--

( 'U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U' ), -- | U |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ), -- | X |
( '0', '0', '0', '0', '0', '0', '0', '0', '0' ), -- | 0 |
( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ), -- | 1 |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ), -- | Z |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ), -- | W |
( '0', '0', '0', '0', '0', '0', '0', '0', '0' ), -- | L |
( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ), -- | H |
( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ) -- | - |
);

The and functions given in Figure 8-13 use Table 8-6. These functions provide for
operator overloading.This means that if we write an expression that uses the and oper-
ator, the compiler will automatically call the appropriate and function to evaluate the
and operation depending on the type of the operands. If and is used with bit variables,
the ordinary and function is used, but if and is used with std_logic variables, the
std_logic and function is called. Operator overloading also automatically applies
the appropriate and function to vectors.When and is used with bit-vectors, the ordinary
bit-by-bit and is performed, but when and is applied to std_logic vectors, the std_logic
and is applied on a bit-by-bit basis. The first and function in Figure 8-13 computes the
and of the left (l) and right (r) operands by doing a table look-up. Although the and
function is first defined for std_ulogic, it also works for std_logic since std_logic is a
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subtype of std_ulogic. The second and function works with std_logic vectors. Aliases
are used to make sure the index range is the same direction for both operands. If the
vectors are not the same length, the assert false always causes the message to be dis-
played. Otherwise, each bit in the result vector is computed by table look-up.
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FIGURE 8-13: AND Function for std_logic_vectors

function "and" (l: std_ulogic; r: std_ulogic) return UX01 is
begin
return (and_table(l, r));

end "and"; -- end of function for unresolved standard logic

function "and" (l, r: std_logic_vector) return std_logic_vector is
alias lv: std_logic_vector (1 to l'LENGTH) is l; --alias makes index range
alias rv: std_logic_vector (1 to r'LENGTH) is r; -- in same direction
variable result: std_logic_vector ( 1 to l'LENGTH );

begin
if (l'LENGTH /= r'LENGTH) then
assert FALSE
report "arguments of overloaded 'and' operator are not of the same length"
severity FAILURE;

else
for i in result'RANGE loop
result(i) := and_table(lv(i), rv(i));

end loop;
end if;
return result;

end "and";

If multivalued logic is desired, we can use the IEEE standard numeric_std pack-
age instead of the numeric_bit package that we have been using so far. The
IEEE.numeric_std package is similar to the IEEE.numeric_bit package, but it
defines unsigned and signed types as vectors of std_logic type instead of as vectors of
bits. It also defines the same set of overloaded operators and functions on unsigned
and signed numbers as the numeric_bit package.

A VHDL program that used vectors with the unsigned type can be ported to use
vectors with 9-valued logic by simply replacing the statement

use IEEE.numeric_bit.all;

with the statements

use IEEE.std_logic_1164.all; -- The IEEE.numeric_std package
-- uses the 1164 standard.

use IEEE.numeric_std.all;

The IEEE.numeric_std package uses the std_logic type from the 1164 standard.
Hence, both the statements need to be included. With these statements, the unsigned
type is considered to use 9-valued logic. No other changes in the program are
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required. If the original program used the type bit, they should be converted to the
std_logic type.

Other popular VHDL package used for simulation and synthesis with multival-
ued logic are the std_logic_arith package and the std_logic_unsigned package,
developed by Synopsis. These packages can be invoked by the following statements:

use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

In examples from now on, we will use the IEEE numeric_std package because it is
an IEEE standard and it is similar in functionality to the numeric_bit package that
we have been using so far. We have chosen not to use the std_logic_arith and
std_logic_unsigned packages because they are not IEEE standards and they have
less functionality than the IEEE numeric_std package.

8.7 SRAM Model Using IEEE 1164
In this section, we develop a VHDL model to represent the operation of a static
RAM (SRAM). RAM stands for random-access memory, which means that any
word in the memory can be accessed in the same amount of time as any other word.
Strictly speaking, ROM memories are also random access, but historically, the term
RAM is normally applied only to read-write memories. This model also illustrates
the usefulness of the multivalued logic system. Multivalued logic is used to model
tristate conditions on the memory data lines.

Figure 8-14 shows the block diagram of a static RAM with n address lines,
m data lines, and three control lines. This memory can store 2n words, each m bits
wide.The data lines are bidirectional in order to reduce the required number of pins
and the package size of the memory chip. When reading from the RAM, the data
lines are outputs; when writing to the RAM, the data lines serve as inputs. The three
control lines function as follows:

C̄̄̄̄¯S̄ When asserted low, chip select selects the memory chip so that memory
read and write operations are possible.

Ō̄̄ ¯Ē When asserted low, output enable enables the memory output onto an
external bus.

W̄̄̄¯̄Ē When asserted low, write enable allows data to be written to the RAM.
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We say that a signal is asserted when it is in its active state. An active-low signal is
asserted when it is low, and an active-high signal is asserted when it is high.

The truth table for the RAM (Table 8-7) describes its basic operation. High-Z in
the I�O column means that the output buffers have high-Z outputs, and the data
inputs are not used. In the read mode, the address lines are decoded to select m of
the memory cells, and the data comes out on the I�O lines after the memory access
time has elapsed. In the write mode, input data is routed to the latch inputs in the
selected memory cells when W̄̄̄¯̄Ē is low, but writing to the latches in the memory
cells is not completed until either W̄̄̄¯̄Ē goes high or the chip is deselected. The truth
table does not take memory timing into account.
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TABLE 8-7:
Truth Table for

Static RAM

C̄̄¯S̄ Ō̄¯Ē W̄̄̄̄ ¯Ē Mode I/O pins

H X X not selected high-Z
L H H output disabled high-Z
L L H read data out
L X L write data in

We now write a simple VHDL model for the memory that does not take timing
considerations into account. In Figure 8-15, the RAM memory array is represented
by an array of unsigned standard logic vectors (RAM1).This memory has 256 words,
each of which are 8 bits. Since Address is typed as an unsigned bit-vector, it must be
converted to an integer in order to index the memory array. The RAM process sets
the I�O lines to high-Z if the chip is not selected. If We_b � ‘1’, the RAM is in the
read mode, and IO is the data read from the memory array. If We_b � ‘0’, the mem-
ory is in the write mode, and the data on the I�O lines is stored in RAM1 on the
rising edge of We_b. If Address and We_b change simultaneously, the old value of
Address should be used. Address’delayed is used as the array index to delay Address
by one delta to make sure that the old address is used. Address’delayed uses one of
the signal attributes described earlier in this chapter (Table 8-3).This is a RAM with
asynchronous read and synchronous write.

FIGURE 8-15: Simple Memory Model

-- Simple memory model
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity RAM6116 is
port(Cs_b, We_b, Oe_b: in std_logic;

Address: in unsigned(7 downto 0);
IO: inout unsigned(7 downto 0));

end RAM6116;

architecture simple_ram of RAM6116 is
type RAMtype is array(0 to 255) of unsigned(7 downto 0);
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8.8 Model for SRAM Read�Write System
To illustrate further the use of multivalued logic, we present an example with a bidi-
rectional tristate bus. We will design a memory read-write system that reads the con-
tent of 32 memory locations from a RAM, increments each data value, and stores it
back into the RAM. A block diagram of the system is shown in Figure 8-16. In order
to hold the word that we read from memory, we use a data register. In order to hold
the memory address that we are accessing, we use a memory address register (MAR).
The system reads a word from the RAM, loads it into the data register, increments the
data register, stores the result back in the RAM, and then increments the memory
address register. This process continues until the memory address equals 32.

The data bus is used as a bidirectional bus. During the read operation, the mem-
ory output appears on the bus, and the data register output to the data bus will be
in a tristate condition. During the write operation, the data register output is on the
data bus and the memory will use it as input data.
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signal RAM1: RAMtype := (others => (others =>'0'));
-- Initialize all bits to ‘0’

begin
IO <= "ZZZZZZZZ" when Cs_b = '1' or We_b = '0' or Oe_b = '1'
else RAM1(to_integer(Address)); -- read from RAM

process(We_b, Cs_b)
begin
if Cs_b = '0' and rising_edge(We_b) then -- rising-edge of We_b
RAM1(to_integer(Address'delayed)) <= IO; -- write

end if;
end process;

end simple_ram;

FIGURE 8-16: Block
Diagram of RAM
Read-Write System
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Control signals required to operate the system are

ld_data load data register from Data Bus
en_data enable data register output onto Data Bus
inc_data increment Data Register
inc_addr increment MAR
W̄̄̄¯Ē Write Enable for SRAM
Ō̄̄¯Ē Output Enable for SRAM
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Figure 8-17 shows the SM chart for the system. The SM chart uses four states. In
the first state, the SRAM drives the memory data onto the bus and the memory data
is loaded into the Data Register. The control signal Ō̄̄ ¯Ē and ld_data are true in this
state. The Data Register is incremented in S1. The en_data control signal is true in
state S2, and hence the Data Register drives the bus. Write enable W̄̄̄¯Ē is an active-
low signal, which is asserted low only in S2, so that W̄̄̄¯Ē is high in the other states.The
contents of the data register thus get written to the RAM at the transition from S2
to S3. The memory address is incremented. The process continues until the address
is 32. State S3 checks this and produces a done signal when the address reaches 32.

8.8 Model for SRAM Read/Write System 411
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Figure 8-18 shows the VHDL code for the RAM system. The first process rep-
resents the SM chart, and the second process is used to update the registers on the
rising edge of the clock. A short delay is added when the address is incremented to
make sure the write to memory is completed before the address changes. A concur-
rent statement is used to simulate the tristate buffer, which enables the data regis-
ter output onto the I�O lines.

FIGURE 8-18: VHDL Code for RAM System

-- SRAM Read-Write System model
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity RAM6116_system is
end RAM6116_system;

architecture RAMtest of RAM6116_system is
component RAM6116 is
port(Cs_b, We_b, Oe_b: in std_logic;
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Address: in unsigned(7 downto 0);
IO: inout unsigned(7 downto 0));

end component RAM6116;

signal state, next_state: integer range 0 to 3;
signal inc_addr, inc_data, ld_data, en_data, Cs_b, clk, Oe_b, done: 

std_logic := '0';
signal We_b: std_logic := '1'; -- initialize to read mode
signal Data: unsigned(7 downto 0); -- data register
signal Address: unsigned(7 downto 0) := "00000000"; -- address register
signal IO: unsigned(7 downto 0); -- I�O bus
begin
RAM1: RAM6116 port map (Cs_b, We_b, Oe_b, Address, IO);
control: process(state, Address)
begin
--initialize all control signals (RAM always selected)
ld_data <= '0'; inc_data <= '0'; inc_addr <= '0'; en_data <= '0';
done <= '0'; We_b <= '1'; Cs_b <= '0'; Oe_b <= '1';

--start SM chart here
case state is

when 0 => Oe_b <= '0'; ld_data <= '1'; next_state <= 1;
when 1 => inc_data <= '1'; next_state <= 2;
when 2 => We_b <= '0'; en_data <= '1'; inc_addr <= '1'; next_state <= 3;
when 3 =>
if (Address = "00100000") then done <= '1'; next_state <= 3;
else next_state <= 0;
end if;

end case;
end process control;

--The following process is executed on the rising edge of a clock.
register_update: process(clk) -- process to update data register
begin
if rising_edge(clk) then
state <= next_state;
if (inc_data = '1') then data <= data + 1; end if;

-- increment data in data register
if (ld_data = '1') then data <= IO; end if;

-- load data register from bus
if (inc_addr = '1') then Address <= Address + 1 after 1 ns; end if;

-- delay added to allow completion of memory write
end if;

end process register_update;

-- Concurrent statements
clk <= not clk after 100 ns;
IO <= data when en_data = '1'
else "ZZZZZZZZ";

end RAMtest;
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This system can be modified to include all memory locations for testing the cor-
rectness of the entire SRAM. Memory systems are often tested by writing checker-
board patterns (alternate 0’s and 1’s) in all locations. For instance, we can write
01010101 (55 hexadecimal) into all odd addresses and 10101010 (hexadecimal AA)
into all even addresses. Then the odd and even locations can be swapped.
Developing VHDL code for such a system is left as an exercise problem.

8.9 Generics
Generics are commonly used to specify parameters for a component in such a way
that the parameter values may be specified when the component is instantiated. For
example, the rise and fall times for a gate could be specified as generics, and different
numeric values for these generics could be assigned for each instance of the gate. The
example of Figure 8-19 describes a two-input NAND gate whose rise and fall delay
times depend on the number of loads on the gate. In the entity declaration, Trise,Tfall,
and load are generics that specify the no-load rise time, the no-load fall time, and the
number of loads. In the architecture, an internal nand_value is computed whenever a
or b changes. If nand_value has just changed to a ‘1’, a rising output has occurred, and
the gate delay time is computed as

Trise � 3 ns * load

where 3 ns is the added delay for each load. Otherwise, a falling output has just
occurred and the gate delay is computed as

Tfall � 2 ns * load

where 2 ns is the added delay for each load.
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FIGURE 8-19: Rise�Fall Time Modeling Using Generic Statement

entity NAND2 is
generic(Trise, Tfall: time; load: natural);
port(a, b: in bit;

c: out bit);
end NAND2;

architecture behavior of NAND2 is
signal nand_value: bit;
begin
nand_value <= a nand b;
c <= nand_value after (Trise + 3 ns * load) when nand_value = '1'

else nand_value after (Tfall + 2 ns * load);
end behavior;

entity NAND2_test is
port(in1, in2, in3, in4: in bit;
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The entity NAND2_test tests the NAND2 component. The component declara-
tion in the architecture specifies default values for Trise, Tfall, and load. When U1
is instantiated, the generic map specifies different values for Trise, Tfall, and load.
When U2 is instantiated, no generic map is included, so the default values are used.

8.10 Named Association
Up to this point, we have used positional association in the port maps and generic
maps that are part of an instantiation statement. For example, assume that the entity
declaration for a full adder is

entity FullAdder is
port(X, Y, Cin: in bit; Cout, Sum: out bit);

end FullAdder;

The statement

FA0: FullAdder port map (A(0), B(0), '0', open, S(0));

creates a full adder and connects A(0) to the X input of the adder, B(0) to the Y
input, ‘0’ to the Cin input, leaves the Cout output unconnected, and connects S(0) to
the Sum output of the adder. The first signal in the port map is associated with the
first signal in the entity declaration, the second signal with the second signal, and so
on. In order to indicate no connection, the keyword open is used.

As an alternative,we can use named association, in which each signal in the port map
is explicitly associated with a signal in the port of the component entity declaration. For
example, the statement

FA0: FullAdder port map (Sum=>S(0), X=>A(0), Y=>B(0), Cin=>'0');

makes the same connections as the previous instantiation statement (i.e., Sum con-
nects to S(0), X connects to A(0), etc). When named association is used, the order in
which the connections are listed is not important, and any port signals not listed are
left unconnected. Use of named association makes code easier to read, and it offers
more flexibility in the order in which signals are listed.
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out1, out2: out bit);
end NAND2_test;

architecture behavior of NAND2_test is
component NAND2 is

generic(Trise: time := 3 ns; Tfall: time := 2 ns; load: natural := 1);
port(a, b: in bit; c: out bit);

end component;
begin
U1: NAND2 generic map (2 ns, 1 ns, 2) port map (in1, in2, out1);
U2: NAND2 port map (in3, in4, out2);

end behavior;
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When named association is used with a generic map, any unassociated generic
parameter assumes its default value. For example, if we replace the statement in
Figure 8-19 labeled U1 with

U1:NAND2 generic map (load => 3,Trise => 4ns) port map
(in1,in2,out1);

Tfall would assume its default value of 2 ns.

8.11 Generate Statements
In Chapter 2, we instantiated four full-adder components and interconnected them
to form a 4-bit adder. Specifying the port maps for each instance of the full adder
would become very tedious if the adder had 8 or more bits. When an iterative array
of identical components is required, the generate statement provides an easy way of
instantiating these components. The example of Figure 8-20 shows how a generate
statement can be used to instantiate four 1-bit full adders to create a 4-bit adder. A
5-bit vector is used to represent the carries, with Cin the same as C(0) and Cout the
same as C(4). The for loop generates four copies of the full adder, each with the
appropriate port map to specify the interconnections between the adders.

Another example where the generate statement would have been very useful is
the array multiplier. The VHDL code for the array multiplier (Chapter 4) used
repeated use of port map statements in order to instantiate each component. They
could have been replaced with generate statements.
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FIGURE 8-20: Adder4 Using Generate Statement

entity Adder4 is
port(A, B: in bit_vector(3 downto 0); Ci: in bit;   -- Inputs

S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;

architecture Structure of Adder4 is
component FullAdder
port(X, Y, Cin: in bit;     -- Inputs

Cout, Sum: out bit);  -- Outputs
end component;

signal C: bit_vector(4 downto 0);
begin
C(0) <= Ci;
-- generate four copies of the FullAdder
FullAdd4: for i in 0 to 3 generate
begin
FAx: FullAdder port map (A(i), B(i), C(i), C(i+1), S(i));

end generate FullAdd4;
Co <= C(4);

end Structure;
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In the preceding example, we used a generate statement of the form

generate_label: for identifier in range generate
[begin]
concurrent statement(s)

end generate [generate_label];

At compile time, a set of concurrent statement(s) is generated for each value of the
identifier in the given range. In Figure 8-20, one concurrent statement—a compo-
nent instantiation statement—is used. A generate statement itself is defined to be a
concurrent statement, so nested generate statements are allowed.

8.11.1 Conditional Generate
A generate statement with an if clause may be used to conditionally generate a set
of concurrent statement(s). This type of generate statement has the form

generate_label: if condition generate
[begin]

concurrent statement(s)
end generate [generate_label];

In this case, the concurrent statements(s) are generated at compile time only if the
condition is true.

Figure 8-21 illustrates the use of conditional compilation using a generate statement
with an if clause.An N-bit left-shift register is created if Lshift is true using the statement

genLS: if Lshift generate
shifter <= Q(N-1 downto 1) & Shiftin;

end generate;

If Lshift is false, a right-shift register is generated using another conditional
generate statement. The example also shows how generics and generate statements
can be used together. It illustrates the use of generic parameters to write a VHDL
model with parameters so that the size and function can be changed when it is
instantiated.
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FIGURE 8-21: Shift Register Using Conditional Compilation

entity shift_reg is
generic(N: positive := 4; Lshift: Boolean := true);-- generic parameters used
port(D: in bit_vector(N downto 1);

Qout: out bit_vector(N downto 1);
CLK, Ld, Sh, Shiftin: in bit);

end shift_reg;

architecture SRN of shift_reg is
signal Q, shifter: bit_vector(N downto 1);
begin
Qout <= Q;
genLS: if Lshift generate -- conditional generate of left shift register
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8.12 Files and TEXTIO
The ability to input files and text is very valuable while testing large VHDL designs.
This section introduces file input and output in VHDL. Files are frequently used
with test benches to provide a source of test data and to provide storage for test
results. VHDL provides a standard TEXTIO package that can be used to read or
write lines of text from or to a file.

Before a file is used, it must be declared using a declaration of the form

file file-name: file-type [open mode] is "file-pathname";

For example,

file test_data: text open read_mode is "c:\test1\test.dat"

declares a file named test_data of type text that is opened in the read mode. The
physical location of the file is in the test1 directory on the c: drive.

A file can be opened in read_mode, write_mode, or append_mode. In
read_mode, successive elements in the file can be read using the read procedure.
When a file is opened in write_mode, a new empty file is created by the host com-
puter’s file system, and successive data elements can be written to the file using the
write procedure. To write to an existing file, the file should be opened in the
append_mode.

A file can contain only one type of object, such as integers, bit-vectors, or text
strings, as specified by the file type. For example, the declaration

type bv_file is file of bit_vector;

defines bv_file to be a file type that can contain only bit-vectors. Each file type has
an associated implicit endfile function. A call of the form

endfile(file_name)

returns TRUE if the file pointer is at the end of the file.
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shifter <= Q(N-1 downto 1) & Shiftin;
end generate;
genRS: if not Lshift generate -- conditional generate of right shift register
shifter <= Shiftin & Q(N downto 2);

end generate;
process(CLK)
begin
if CLK'event and CLK = '1' then
if LD = '1' then Q <= D;
elsif Sh = '1' then Q <= shifter;
end if;

end if;
end process;

end SRN;
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The standard TEXTIO package that comes with VHDL contains declarations
and procedures for working with files composed of lines of text. The package spec-
ification for TEXTIO (see Appendix C) defines a file type named text:

type text is file of string;

The TEXTIO package contains procedures for reading lines of text from a file of
type text and for writing lines of text to a file.

Procedure readline reads a line of text and places it in a buffer with an asso-
ciated pointer. The pointer to the buffer must be of type line, which is declared in
the TEXTIO package as

type line is access string;

When a variable of type line is declared, it creates a pointer to a string. The code

variable buff: line;
. . .
readline(test_data, buff);

reads a line of text from test_data and places it in a buffer that is pointed to by buff.
After reading a line into the buffer, we must call a version of the read procedure one
or more times to extract data from the line buffer. The TEXTIO package provides
overloaded read procedures to read data of types bit, bit-vector, boolean, character,
integer, real, string, and time from the buffer. For example, if bv4 is a bit_vector of
length four, the call

read(buff, bv4);

extracts a 4-bit vector from the buffer, sets bv4 equal to this vector, and adjusts the
pointer buff to point to the next character in the buffer. Another call to read then
extracts the next data object from the line buffer.

A call to read may be of one of two forms:

read(pointer, value);
read(pointer, value, good);

where pointer is of type line and value is the variable into which we want to read the
data. In the second form, good is a boolean that returns TRUE if the read is suc-
cessful and FALSE if it is not. The size and type of value determines which of the
read procedures in the TEXTIO package is called. For example, if value is a string
of length 5, then a call to read reads the next five characters from the line buffer. If
value is an integer, a call to read skips over any spaces and then reads decimal dig-
its until a space or other nonnumeric character is encountered. The resulting string
is then converted to an integer. Characters, strings, and bit-vectors within files of
type text are not delimited by quotes.

To write lines of text to a file, we must call a version of the write procedure one
or more times to write data to a line buffer and then call writeline to write the line
of data to a file. The TEXTIO package provides overloaded write procedures to
write data of types bit, bit-vector, boolean, character, integer, real, string, and time
to the buffer. For example, the code
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variable buffw: line;
variable int1: integer;
variable bv8: bit_vector(7 downto 0);
. . .
write(buffw, int1, right, 6);
write(buffw, bv8, right, 10);
writeline(buffw, output_file);

converts int1 to a text string, writes this string to the line buffer pointed to by
buffw, and adjusts the pointer. The text will be right justified in a field six charac-
ters wide. The second call to write puts the bit_vector bv8 in a line buffer, and
adjusts the pointer. The 8-bit vector will be right justified in a field 10 characters
wide. Then writeline writes the buffer to the output_ file. Each call to write has
four parameters: (1) a buffer pointer of type line; (2) a value of any acceptable
type; (3) justification (left or right), which specifies the location of the text within
the output field; and (4) field width, an integer that specifies the number of char-
acters in the field.

As an example, we write a procedure to read data from a file and store the data
in a memory array. This procedure will later be used to load instruction codes into
a memory module for a computer system. The computer system can then be tested
by simulating the execution of the instructions stored in memory.The data in the file
will be of the following format:

address N comments
byte1 byte2 byte3 . . . byteN comments

The address consists of four hexadecimal digits, and N is an integer that indicates
the number of bytes of code that will be on the next line. Each byte of code consists
of two hexadecimal digits. Each byte is separated by one space, and the last byte
must be followed by a space. Anything following the last space will not be read and
will be treated as a comment. The first byte should be stored in the memory array
at the given address, the second byte at the next address, and so forth. For example,
consider the following file:

12AC 7 (7 hex bytes follow)
AE 03 B6 91 C7 00 0C
005B 2 (2 hex bytes follow)
01 FC<space>

When the fill_memory procedure is called using this file as an input, AE is stored in
12AC, 03 in 12AD, B6 in 12AE, 91 in 12AF, and so on.

Figure 8-22 gives VHDL code that calls the procedure fill_memory to read data
from a file and store it in an array named mem. Since TEXTIO does not include a
read procedure for hex numbers, the procedure fill_memory reads each hex value
as a string of characters and then converts the string to an integer. Conversion of a
single hex digit to an integer value is accomplished by table look-up. The constant
named lookup is an array of integers indexed by characters in the range ‘0’ to ‘F’.
This range includes the 23 ASCII characters: ‘0’, ‘1’, ‘2’, . . . , ‘9’, ‘:’, ‘;’, ‘�’, ‘�’, ‘�’,

8.12 Files and TEXTIO 419

08Ch08.qxd  3/13/07  3:23 PM  Page 419



420 Additional Topics in VHDL

FIGURE 8-22: VHDL Code to Fill a Memory Array from a File

library IEEE;
use IEEE.numeric_bit.all; -- to use TO_UNSIGNED(int, size)
use std.textio.all;

entity testfill is
end testfill;

architecture fillmem of testfill is
type RAMtype is array (0 to 8191) of unsigned(7 downto 0);
signal mem: RAMtype := (others => (others => '0'));

procedure fill_memory(signal mem: inout RAMType) is
type HexTable is array (character range <>) of integer;
-- valid hex chars: 0, 1, . . . A, B, C, D, E, F (upper-case only)
constant lookup: HexTable('0' to 'F'): =
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1,
-1, -1, -1, -1, 10, 11, 12, 13, 14, 15);

file infile: text open read_mode is "mem1.txt"; -- open file for reading
-- file infile: text is in "mem1.txt"; -- VHDL '87 version
variable buff: line;
variable addr_s: string(4 downto 1);
variable data_s: string(3 downto 1); -- data_s(1) has a space
variable addr1, byte_cnt: integer;
variable data: integer range 255 downto 0;
begin

while (not endfile(infile)) loop
readline(infile, buff);
read(buff, addr_s); -- read addr hexnum
read(buff, byte_cnt); -- read number of bytes to read
addr1 := lookup(addr_s(4)) * 4096 + lookup(addr_s(3)) * 256

+ lookup(addr_s(2)) * 16 + lookup(addr_s(1));
readline(infile, buff);
for i in 1 to byte_cnt loop
read(buff, data_s); -- read 2 digit hex data and a space
data := lookup(data_s(3)) * 16 + lookup(data_s(2));
mem(addr1) <= TO_UNSIGNED(data, 8);
addr1:= addr1 + 1;

end loop;
end loop;

end fill_memory;

‘?’, ‘@’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’. The corresponding array values are 0, 1, 2, . . . , 9, �1,
�1, �1, �1, �1, �1, �1, 10, 11, 12, 13, 14, 15. The �1 could be replaced with any
integer value, since the seven special characters in the index range should never
occur in practice. Thus, lookup(‘2’) is the integer value 2, lookup(‘C’) is 12, and so
forth.
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Procedure fill_memory calls readline to read a line of text that contains a hex
address and an integer. The first call to read reads the address string from the line
buffer, and the second call to read reads an integer, which is the byte count for the
next line. The integer addr1 is computed using the look-up table for each character
in the address string. The next line of text is read into the buffer, and a loop is used
to read each byte. Since data_s is three characters long, each call to read reads two
hex characters and a space. The hex characters are converted to an integer and then
to an unsigned vector, which is stored in the memory array. The address is incre-
mented before reading and storing the next byte. The procedure exits when the end
of file is reached.

This chapter has introduced several important features of VHDL. Functions and
procedures were introduced first. Attributes were presented next. Attributes associ-
ated with signals allow checking of setup and hold times and other timing specifica-
tions. Attributes associated with arrays allow us to write procedures that do not
depend on the manner in which the arrays are indexed. Operator overloading can
be used to extend the definition of VHDL operators so that they can be used with
different types of operands. The IEEE Standard 1164 defines a system of 9-valued
logic that is widely used with VHDL. Multivalued logic and the associated resolu-
tion functions allow us to model tristate buses and other systems where a signal is
driven from more than one source. Generics enable us to specify parameter values
for a component when the component is instantiated. Generate statements provide
an efficient way to describe systems that have an iterative structure. The TEXTIO
package provides a convenient way of doing file input and output.

Problems
8.1 Write a VHDL function that converts a 5-bit bit_vector to an integer. Note that the

integer value of the binary number a4a3a2a1a0 can be computed as

((((0 � a4)*2 � a3)*2 � a2)*2 � a1)*2 � a0

How much simulated time will it take for your function to execute?

8.2 Write a VHDL function that will create the 2’s complement of an n-bit vector. Use a
call of the form comp2(bit_vec, N) where N is the length of the vector. State any
assumptions you make about the range of bit_vec. Do the complement on a bit-by-bit
basis using a loop.
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begin
testbench: process
begin
fill_memory(mem);
-- insert code which uses memory data

end process;
end fillmem;
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8.3 Write a VHDL function which will return the largest integer in an array of N integers.
The function call should be of the form LARGEST(ARR, N).

8.4 A and B are bit-vectors that represent unsigned binary numbers. Write a VHDL
function that returns TRUE if A � B.The function call should be of the form GT(A,
B, N), where N is the length of the bit vectors. Do not call any functions of procedures
from within your code. Hint: Start comparing the most significant bits of A and B first
and proceed from left to right. As soon as you find a pair of unequal bits you can
determine whether or not A � B. For example, if A � 1011010 and B � 1010110, you
can determine that A � B when you make the fourth comparison.

8.5 What are the major differences between VHDL functions and VHDL procedures?

8.6 Write a VHDL procedure that counts the number of ones in an input bit-vector that
is N bits long (N 	 31). The output should be an unsigned vector that is 5 bits long.

8.7 X and Y are bit-vectors of length N that represent signed binary numbers, with
negative numbers represented in 2’s complement. Write a VHDL procedure that
will compute D � X � Y. This procedure should also return the borrow from the
last bit position (B) and an overflow flag (V). Do not call any other functions or
procedures in your code. The procedure call should be of the form SUBVEC(X, Y,
D, B, V, N);.

8.8 Write a VHDL module that implements a 4-digit BCD adder with accumulator (see
block diagram below). If LD � 1, then the contents of BCDacc are replaced with
BCDacc � BCDin. Each four-digit BCD signal should be represented by an array
of the following type:

type BCD4 is array (3 downto 0) of unsigned (3 downto 0);

Write a procedure that adds two BCD digits and a carry and returns a BCD
digit and a carry. Call this procedure concurrently four times in your code.
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8.9 For the following VHDL code, list the values of B and C at each time a change
occurs. Include all deltas, and stop your listing when time � 8 ns. Assume that B
is changed to “0110” at time 5 ns. Indicate the times at which procedure P1 is
called.
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entity Q1 is
port(B, C: inout bit_vector(3 downto 0));

end Q1;

architecture Q1 of Q1 is
procedure P1(signal A: inout bit_vector) is
begin
for i in 1 to 3 loop

A(i) <= A(i-1);
end loop;
A(0) <= A(3);

end P1;
begin
process
begin
wait until B'event;
P1(B);
wait for 1 ns;
P1(B);

end process;
C <= B;

end Q1;

8.10 The following VHDL code is part of a process. Assume that A � B � ‘0’ before the
code is executed. Give the values of the variables X1, X2, X3, and X4 immediately
after the code is executed.

wait until clock'event and clock = '1';
A <= not B;
A <= transport B after 5 ns;
wait for 5 ns;
X1 := A'event;
X2 := A'delayed'event;
X3 := A'last_event;
X4 := A'delayed'last_event;

8.11 Write a VHDL function that will take two integer vectors, A and B, and find the dot
product C � 
 ai * bi. The function call should be of the form DOT(A,B), where A
and B are integer vector signals. Use attributes inside the function to determine the
length and ranges of the vectors. Make no assumptions about the high and low val-
ues of the ranges. For example,

A(3 downto 1) � (1, 2, 3), B(3 downto 1) � (4, 5, 6), C � 3 * 6 � 2 * 5 � 1 * 4 � 32

Output a warning if the ranges are not the same.

8.12 Write a VHDL procedure that will add two n � m matrices of integers, C �� A � B.
The procedure call should be of the form addM(A, B, C). The procedure should
report an error if the number of rows in A and B are not the same or if the number
of columns in A and B are not the same. Make no assumptions about the high and low
values or direction of the ranges for either dimension.

Problems 423
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8.13 Write a VHDL procedure that will add two bit-vectors that represent signed binary
numbers. Negative numbers are represented in 2’s complement. If the vectors are of
different lengths, the shorter one should be sign-extended during the addition. Make
no assumptions about the range for either vector.The procedure call should be of the
form Add2(A, B, Sum, V), where V � 1 if the addition produces a 2’s complement
overflow.

8.14 A VHDL entity has inputs A and B, and outputs C and D.A and B are initially high.
Whenever A goes low, C will go high 5 ns later, and if A changes again, C will change
5 ns later. D will change if B does not change for 3 ns after A changes.

(a) Write the VHDL architecture with a process that determines the outputs
C and D.

(b) Write another process to check that B is stable 2 ns before and 1 ns after A goes
high. The process should also report an error if B goes low for a time interval
less than 10 ns.

8.15 Write an overloading function for the “�” operator for bit-vectors. Return a
boolean TRUE if A is less than B, otherwise return FALSE. Report an error if the
bit-vectors are of different lengths.

8.16 Write an overloading function for the unary “�” operator for bit-vectors. If A is a
bit-vector -A should return the 2’s complement of A.

8.17 Consider the following three concurrent statements, where R is a resolved signal of
type X01Z:

R <= transport '0' after 2 ns, 'Z' after 8 ns;
R <= transport '1' after 10 ns;
R <= transport '1' after 4 ns, '0' after 6 ns;

Draw the multiple drivers that will be created and the resolved output signal R from
time 0 until time 12 ns.

8.18 Write a VHDL description of an address decoder/address match detector. One
input to the address decoder is an 8-bit address, which can have any range with a
length of 8 bits; for example, bit_vector addr(8 to 15). The second input is
check: x01z_vector(5 downto 0).The address decoder will output Sel � ‘1’
if the upper 6 bits of the 8-bit address match the 6-bit check vector. For example, if
addr � “10001010” and check � “1000XX”, then Sel � ‘1’. Only the six leftmost bits
of addr will be compared; the remaining bits are ignored. An ‘X’ in the check vector
is treated as a don’t care.

8.19 Write a VHDL model for one flip-flop in a 74HC374 (octal D-type flip-flop with
three-state outputs). Use the IEEE-standard nine-valued logic package. Assume
that all logic values are ‘x’, ‘0’, ‘1’ or ‘z’. Check setup, hold, and pulse width specs
using assert statements. Unless the output is ‘z’, the output should be ‘x’ if CLK or
OC is ‘x’, or if an ‘x’ has been stored in the flip-flop.
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8.20 Write a VHDL function to compare two IEEE std_logic_vectors to see if they are
equal. Report an error if any bit in either vector is not ‘0’, ‘1’, or ‘�’ (don’t care), or
if the lengths of the vectors are not the same. The function call should pass only the
vectors. The function should return TRUE if the vectors are equal, else FALSE.
When comparing the vectors, consider that ‘0’ � ‘�’, and ‘1’ � ‘�’. Make no
assumptions about the index range of the two vectors (for example, one could be
1 to 7 and the other 8 downto 0).

8.21 Consider the following concurrent statements, where A, B, and C are of type
std_logic:

A <= transport '1' after 5 ns, '0' after 10 ns, 'Z' after 15 ns;
B <= transport '0' after 4 ns, 'Z' after 10 ns;
C <= A after 6 ns;
C <= transport A after 5 ns;
C <= reject 3 ns B after 4 ns;

(a) Draw drivers (see Figure 2-27) for signals A and B.
(b) Draw the three drivers s(0), s(1), and s(2) for C (similar to Figure 8-11).
(c) List the value for C each time it is resolved by the drivers, and draw a timing

chart for C.

8.22 Subtype X01LH of std_logic has values of ‘X’, ‘0’, ‘1’, ‘L’, and ‘H’. Complete the
following table for a resolution function of this subtype.
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‘X’ ‘0’ ‘1’ ‘L’ ‘H’

‘X’
‘0’
‘1’
‘L’
‘H’

8.23 Write an overloading function for “not”, where the input and returned value are
standard logic vectors. The “not” function should basically simulate a group of
inverters.The output bits should be one of the following: ‘U’, ‘0’, ‘1’, or ‘X’.An unini-
tialized input should give an uninitialized output.

8.24 In the following code, all signals are 1-bit std_logic. Draw a logic diagram that
corresponds to the code. Assume that a D flip-flop with CE is available.

F <= A when EA = '1' else B when EB = '1' else 'Z';
process(CLK)
begin
if CLK'event and CLK = '1' then
if Ld = '1' then A <= B; end if;
if Cm = '1' then A <= not A; end if;

end if;
end process;
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8.25 Design a memory-test system to test the first 256 bytes of a static RAM memory.
The system consists of simple controller, an 8-bit counter, a comparator, and a mem-
ory as shown below.The counter is connected to both the address and data (IO) bus
so that 0 will be written to address 0, 1 to address 1, 2 to address 2, . . . , and 255
to address 255. Then the data will be read back from address 0, address 1, . . . ,
address 255 and compared with the address. If the data does not match, the con-
troller goes to the fail state as soon as a mismatch is detected; otherwise, it goes to
a pass state after all 256 locations have been matched. Assume that OE_b � 0 and
CS_b � 0.

(a) Draw an SM chart or a state graph for the controller (five states). Assume
that the clock period is long enough so that one word can be read every clock
period.

(b) Write VHDL code for the memory-test system.
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Counter
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256 × 8 

ControlComparator

clk 

WEb 

Eq 
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address data 

K = 1 when counter is in state 255 

Eq = 1 when counter output = data from memory 

WEb = 0 enables tristate buffer 

8 

8 

8.26 Design a memory-test system similar to that of Problem 8.25, except write a
checkerboard pattern into memory (01010101 into address 0, 10101010 into address
1, etc.). Draw the block diagram and SM chart.

8.27 Design a memory tester that verifies the correct operation of a 6116 static RAM
(Figure 8-15).The tester should store a checkerboard pattern (alternating 0’s and 1’s
in the even addresses, and alternating 1’s and 0’s in the odd addresses) in all mem-
ory locations and then read it back. The tester should then repeat the test using the
reverse pattern.

(a) Draw a block diagram of the memory tester. Show and explain all control
signals.

(b) Draw an SM chart or state graph for the control unit. Use a simple RAM model
and disregard timing.

(c) Write VHDL code for the tester and use a test bench to verify its operation.
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8.28 A clocked T flip-flop has propagation delays from the rising edge of CLK to the
changes in Q and Q� as follows: If Q (or Q�) changes to 1, tplh � 8 ns, and if Q (or Q�)
changes to 0, tphl � 10 ns.The minimum clock pulse width is tck � 15 ns, the setup time
for the T input is tsu � 4 ns, and the hold time is th � 2 ns. Write a VHDL model for
the flip-flop that includes the propagation delay and that reports if any timing spec-
ification is violated. Write the model using generic parameters with default values.

8.29 (a) Write a model for a D flip-flop with a direct clear input. Use the following
generic timing parameters: tplh, tphl, tsu, th, and tcmin.The minimum allowable clock
period is tcmin. Report appropriate errors if timing violations occur.

(b) Write a test bench to test your model. Include tests for every error condition.

8.30 Write a VHDL model for an N-bit comparator using an iterative circuit. In the enti-
ty, use the generic parameter N to define the length of the input bit-vectors A and
B. The comparator outputs should be EQ � ‘1’ if A � B, and GT � ‘1’ if A � B.
Use a for loop to do the comparison on a bit-by-bit basis, starting with the high-
order bits. Even though the comparison is done on a bit-by-bit basis, the final values
of EQ and GT apply to A and B as a whole.

8.31 Four RAM memories are connected to CPU busses as shown below. Assume that
the following RAM component is available:

component SRAM
port(cs_b, we_b, oe_b: in bit;

address: in bit_vector(14 downto 0);
data: inout std_logic_vector(7 downto 0));

end component;

Write a VHDL code segment which will connect the four RAMs to the busses.
Use a generate statement and named association.

Problems 427
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8.32 Write structural VHDL code for a module that is an N-bit serial-in, serial-out right-
shift register. Inputs to the shift register are bit signals: SI (serial input), Sh (shift
enable), and CLK. Your module should include a generic in the entity declaration,
and a generate statement in the architecture.Assume that a component for a D flip-
flop with clock enable (CE) is available.

8.33 Write structural VHDL code for a module that has two inputs: an N-bit vector A, and
a control signal B (1 bit). The module has an N-bit output vector, C. When B � 1, C
�� A. When B � 0, C is all 0’s. Use a generic to specify the value of N (default � 4).
To implement the logic, use a generate statement that instantiates N 2-input AND
gates.

8.34 Create a 4 � 4 array multiplier using generate statements. Use full adder, half adder,
and AND gate components as in Chapter 4.

8.35 B is an integer array with range 0 to 4. Write a VHDL code segment which will read
a line of text from a file named “FILE2” and then read five integers into array B.
Assume that TEXTIO libraries are available.

8.36 Write a procedure that has an integer signal and a file name as parameters. Each
line of the file contains a delay value and an integer.The procedure reads a line from
the file, waits for the delay time, assigns the integer value to the signal, and then
reads the next line. The procedure should return when end-of-file is reached.

8.37 Write a procedure that logs the history of values of a bit-vector signal to a text file.
Each time the signal changes, write the current time and signal value to the file.VHDL
has a built in function called NOW that returns the current simulation time when it is
called.

428 Additional Topics in VHDL
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A microprocessor is an example of a complex digital system. In this chapter, we will
describe a microprocessor from MIPS Technologies, the MIPS R2000, and imple-
ment a subset of the MIPS processor’s instruction set architecture (ISA). The term
instruction set architecture denotes the instructions that are visible to the assembly
language programmer, the number of registers, the addressing modes, and the oper-
ations (opcodes) available in the particular processor. An introduction to the RISC
philosophy is presented first followed by a description of the MIPS ISA. The arith-
metic, memory access, and control transfer instructions of the MIPS are presented.
A design to implement a subset of the ISA is presented. A synthesizeable VHDL
model for the MIPS subset is then presented. Use of a test bench for testing the
design is illustrated.

9.1 The RISC Philosophy
Many early microprocessors, such as the Intel 8086 and Motorola 68000, incorporated
a variety of powerful instructions and addressing modes.A natural consequence of this
was the complexity of the design, especially the control unit complexity. These micro-
processors included a microprogrammed control unit because it was difficult to design
and debug a hardwired control unit for such complex digital systems. (See Chapter 5
for a discussion of tradeoffs between microprogramming and hardwiring.)

The value of simplicity became clearer in the late 1970s and early 1980s. The result
was the advent of RISC or the Reduced Instruction Set Computing philosophy. RISC
processors are a type of microprocessor that use a small and simple set of instructions
rather than a variety of complex instructions and versatile addressing modes. The first
RISC projects came from IBM, Stanford University, and The University of
California–Berkeley in the late 1970s and early 1980s. The IBM 801, Stanford MIPS,
and Berkeley RISC 1 and 2 were all designed with a similar philosophy, which has
become known as RISC. In contrast, earlier processors such as the Intel 8086 and the
Motorola 68000�68020 started to be called CISC (Complex Instruction Set Computing)
processors, after the advent of the RISC philosophy. The first generation of RISC
processors included MIPS R2000 from MIPS, SPARC from Sun Microsystems,
and RS�6000 from IBM. The IBM RS�6000 has evolved into the POWERPC and
POWER architecture.

C H A P T E R

9
Design of a RISC Microprocessor

429
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430 Design of a RISC Microprocessor

MIPS
MIPS Technologies is a computer manufacturer that has designed and sold
several RISC microprocessors starting with the MIPS R2000 processor in the
1980s. The term MIPS was commonly known to computer designers as a per-
formance metric, the Millions of Instructions Per Second metric. The MIPS in
the name of the MIPS Corporation, however, does not stand for that. It stands
for Microprocessor without hardware Interlock Processing System. In a
pipelined processor, there must exist a mechanism to enforce dependencies
between instructions. So, if one instruction needs the result of the previous
one, the second instruction should not proceed. Enforcing of this type of
dependency is usually done by hardware interlocks. The first MIPS processor,
however, did not have hardware interlocks. It reflected the early RISC
idealism that anything that can be done in software should be done in soft-
ware. Pipeline interlocks were implemented by software by inserting the
appropriate number of nop (no operation) instructions.

Certain design features have been characteristic of most RISC processors:

• Uniform instruction length: All instructions have the same length (e.g., 32 bits).
This is in sharp contrast to previous microprocessors, which contained instruc-
tions as small as a byte and as large as 16 bytes.

• Few instruction formats: The RISC ISAs emphasized having as few instruction
formats as possible and encoding the different fields in the instruction as uni-
formly as possible. This greatly simplifies instruction decoding.

• Few addressing modes: Most RISC processors support only one or two memory
addressing modes. Addressing modes offer different ways an instruction can
indicate the memory address to be accessed. Examples are direct addressing,
immediate addressing, base plus offset addressing, based indexed addressing,
and indirect addressing. Many RISC processors support only one addressing
mode. Typically, this addressing mode specifies addresses with a register and an
offset.

• Large number of registers: The RISC design philosophy generally incorporates a
larger number of registers to prevent the loss of performance by frequently
accessing memory. RISC processors are also often called register-register architec-
tures. All arithmetic operations operate on register operands. CISC architectures
typically contained 8 or 12 registers, whereas most RISC architectures contained
32 registers.

• Load�store architecture: RISC architectures are also called load�store archi-
tectures. The key idea is the absence of arithmetic instructions that directly
operate on memory operands (i.e., arithmetic instructions that take one or
more operands from memory). The only instructions that are allowed to access
memory are load and store instructions. The load instructions bring the data to
registers and arithmetic operations operate on the data in the registers. These
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architectures are also called register-register architectures because input and
output operands for computation operations are in registers. A load�store
architecture inherently means that it is also a register-register architecture.

• No implied operands or side-effects: Most earlier ISAs contained implied operands,
such as accumulators, or implied results (side-effects), such as flags (condition
codes), to indicate conditions such as carry, overflow, and negative. Implied
operands and side-effects can cause difficulties�challenges in pipelined and paral-
lel implementations. A principle behind RISC architectures is to have minimal
implied operands�operations and side-effects.

The RISC philosophy has been to adhere to the above features and embrace sim-
plicity of design.The terms RISC and CISC are used very often as antonyms, but per-
haps it is not clear how reduced is the opposite of complex. It is not even clear that
RISC processors have a smaller instruction set than prior CISC processors. Some
RISC ISAs have 100� instructions, whereas some CISC processors have only
80 instructions. However, these 80 CISC instructions could assume several address-
ing modes. A CISC processor, the Motorola 68020, supported up to 20 different
addressing modes. Considering all the different forms an instruction could take, most
RISC ISAs do contain fewer instructions than CISC ISAs.The key point in the RISC
philosophy has been the emphasis on simplicity: having only simple basic operations,
simplifying instruction formats, reducing the number of addressing modes, and elim-
inating complex operations.This computing paradigm could have been called Simple
Instruction Set Computing (SISC); however, SISC sounds like CISC.

CISC architectures are not without advantages. Instruction encoding is denser in
CISC than RISC. The fixed instruction width in RISC leads to using more bits than
necessary for some instructions. In CISC ISAs, every instruction is just as wide as it
needs to be. Hence, code size is smaller in the CISC case. If instruction memory size
has to be kept small, as in embedded environments, CISC ISAs have an advantage.

Most modern microprocessors have RISC ISAs. Some examples are the MIPS
R14000, Sun UltraSPARC, IBM PowerPC, and HP PA-RISC. The Pentium 4 or the
x86 processors in general are examples of modern processors with a CISC ISA. (The
term x86 is used to refer to the different processors that have used the ISA that orig-
inated with Intel 8086.This list includes Intel 8086, 80286, 80386, 80486, Pentium and
AMD K5, K6, Opteron, etc.)

Whether RISC or CISC is better was a topic of intense debate in the 1980s and
1990s. It has now become understood that decoding and processing is easy with a RISC
ISA; however, it also has been shown that hardware can translate complex CISC-style
instructions into RISC-style instructions and process them. Pentium 4 and other high-
end x86 processors of today have a CISC ISA; however, they use hardware to convert
each CISC instruction to one or more RISC-type instructions or microoperations
(called uops or R-ops) that can be pipelined easily. In spite of all arguments that have
taken place, there is no disagreement about the ease of implementation of RISC ISAs.

The MIPS instruction set architecture is one of the earliest RISC ISAs and is one
of the simplest ones. It only has one memory addressing mode. In contrast, another
early RISC architecture, the SPARC, has two memory addressing modes. The MIPS
ISA is described in detail in a book by Gerry Kane, MIPS RISC Architecture [26].

9.1 The RISC Philosophy 431

09Ch09.qxd  3/13/07  3:24 PM  Page 431



432 Design of a RISC Microprocessor

It is also described in the book Computer Organization and Design: The Hardware
Software Interface, by Patterson and Hennessey [37]. We provide a very concise
description of the MIPS ISA here.

The Single-Instruction Computer
It has also been shown in the past that a microprocessor can be designed with
a single instruction. This single instruction should be able to access memory
operands, do arithmetic operations, and do control transfers. A subtract
instruction that operates on memory operands, writes results to memory, and
branches to an address if the result of the subtraction is negative can be used
to write any program. Will such a single-instruction microprocessor qualify to
be called a RISC? Probably not. Although it is a single-instruction computer,
it is not a register-register architecture, and it is not an ISA that supports sim-
ple operations.We would classify it under a CISC category since every instruc-
tion is a complex branch and memory access instruction. More discussion of
such a computer and illustration of a program written using the single instruc-
tion can be found in [37].

9.2 The MIPS ISA
The MIPS ISA contains a set of simple arithmetic, logical, memory access, branch,
and jump instructions. The architecture emphasizes simplicity and excludes instruc-
tions that could take longer than the most common instructions.

There are 32 general-purpose registers in the MIPS architecture. Each register is
32 bits wide. The MIPS registers are referred to as $0, $1, $2, . . . , and $31 with a $ sign
as in [37]. The MIPS instructions follow a three-address format for ALU instructions,
meaning they specify two source addresses and one destination address. For example,
an add instruction that adds registers $3 and $4 and writes the result to $5 is written as

add $5, $3, $4

We will describe each group of instructions.

9.2.1 Arithmetic Instructions
The MIPS ISA contains instructions for performing addition, subtraction, multipli-
cation, and division of integers. The various arithmetic instructions are summarized
in Table 9-1. Addition and subtraction of signed or unsigned quantities can be
accomplished using the add, addu, sub, and subu instructions. Signed arithmetic
instructions detect overflows, whereas unsigned arithmetic instructions do not
detect overflows. For example, the instruction

sub $5, $3, $4
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will subtract the value in register $4 from the value in register $3 and write the result
to register $5. It is a signed instruction and overflow will be detected.

When an overflow is detected, it is handled as an exception. The address of the
instruction that caused the exception is saved and control is transferred to the oper-
ating system, which handles the exception.

Addition of the contents of a register with an immediate value specified in the
instruction can be done using the addi and addiu instructions. The instruction

addi $5, $3, 400

will add the value in register $3 to the immediate constant 400 and write the result
to register $5. The immediate constant is sign-extended before the addition. The
action of the addiu instruction is similar, except that the addiu instruction never
causes an overflow exception.

Multiplication of two 32-bit quantities results in a 64-bit result that cannot be
contained in one MIPS register. Hence, two special registers called HI and LO are
used by the MIPS processors to hold the products. Use of implied HI and LO regis-
ters is certainly a deviation from the RISC philosophy. Table 9-1 illustrates the mul-
tiply and divide instructions in the MIPS ISA and the use of the HI and LO registers.
The use of these special registers also necessitates special instructions to transfer

9.2 The MIPS ISA 433

Instruction Assembly Code Operation Comments

add add $s1, $s2, $s3 $s1 � $s2 � $s3 Overflow detected
subtract sub $s1, $s2, $s3 $s1 � $s2 � $s3 Overflow detected
add immediate addi $s1, $s2, k $s1 � $s2 � k k, a 16-bit constant,

is sign-extended and
added; 2’s complement
overflow detected

add unsigned addu $s1, $s2, $s3 $s1 � $s2 � $s3 Overflow not detected

subtract unsigned subu $s1, $s2, $s3 $s1 � $s2 � $s3 Overflow not detected

add immediate addiu $s1, $s2, k $s1 � $s2 � k Same as addi except
unsigned no overflow

move from mfc0 $s1, $epc $s1 � $epc epc is exception
co-processor program counter
register

multiply mult $s2, $s3 Hi, Lo � $s2 � $s3 64-bit signed product
in Hi, Lo

multiply unsigned multu $s2, $s3 Hi, Lo � $s2 � $s3 64-bit unsigned
product in Hi, Lo

divide div $s2, $s3 Lo � $s2 � $s3 Lo � quotient,
Hi � $s2 mod $s3 Hi � remainder

divide unsigned divu $s2, $s3 Lo � $s2 � $s3 Unsigned quotient 
Hi � $s2 mod $s3 and remainder

move from Hi mfhi $s1 $s1 � Hi Copy Hi to $s1

move from Lo mflo $s1 $s1 � Lo Copy Lo to $s1

TABLE 9-1:
Arithmetic

Instructions in the
MIPS ISA
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data from these registers to the required destination registers. The mfhi and mflo
instructions accomplish this task.

9.2.2 Logical Instructions
The logical instructions in the MIPS ISA are presented in Table 9-2. The MIPS ISA
contains logical instructions for performing bit-wise AND and OR of register con-
tents. The and and or instructions perform these operations for register operands.
The andi and ori instructions can be used when one operand is in a register and the
other operand is an immediate constant. The sll and srl instructions are provided to
perform logical left and right shifts of register contents (with zero fill). The number
of shifts is encoded as an immediate value in the instruction.

434 Design of a RISC Microprocessor

Instruction Assembly Code Operation Comments

and and $s1, $s2, $s3 $s1 � $s2 AND $s3 logical AND

or or $s1, $s2, $s3 $s1 � $s2 OR $s3 logical OR

and immediate andi $s1, $s2, k $s1 � $s2 AND k k is a 16-bit constant; 
k is 0-extended first

or immediate ori $s1, $s2, k $s1 � $s2 OR k k is a 16-bit constant; 
k is 0-extended first

shift left logical sll $s1, $s2, k $s1 � $s2 �� k Shift left by 5-bit
constant k

shift right logical srl $s1, $s2, k $s1 � $s2 �� k Shift right by 5-bit 
constant k

TABLE 9-2: Logical
Instructions in the

MIPS ISA

9.2.3 Memory Access Instructions
The only instructions in the MIPS ISA to access the memory are load and store
instructions. A load instruction transfers data from memory to the specified regis-
ter. A store instruction transfers data from a register to the specified memory
address.

The RISC researchers investigated the number of addressing modes that are
needed to efficiently code high-level language programs such as those in C. They
concluded that one addressing mode with a base register and an offset was sufficient.
The only addressing mode that is supported for memory instructions in the MIPS
processor is this addressing mode with one base register and a signed offset. The
memory address is computed as the sum of the register contents and the offset spec-
ified in the instruction.

Consider the MIPS load instruction

lw $5, 100($4)

This instruction computes the memory address as the sum of the value in register $4
and the offset 100. So if register $4 contains 4000, the effective address is 4100. The
content of memory location 4100 is moved to register $5 in the processor. In the case
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of sw $6, 100($8), the content of register $6 is written to the memory location
pointed to by the sum of the contents of register $8 and 100.

A group of 32 bits is called a word in the MIPS world. MIPS has instructions to
load and store words, halfwords (16 bits), or bytes (8 bits). These instructions are
summarized in Table 9-3.
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Instruction Assembly Code Operation Comments

load word lw $s1, k($s2) $s1 � Memory[$s2 � k] Read 32 bits from
memory; memory
address � register
content � k; 
k is 16-bit offset

store word sw $s1, k($s2) Memory[$s2 � k] � $s1 Write 32 bits to
memory; memory
address � register
content � k;
k is 16-bit offset;

load halfword lh $s1, k($s2) $s1 � Memory[$s2 � k] Read 16 bits from
memory; sign-extend
and load into register

store halfword sw $s1, k($s2) Memory[$s2 � k] � $s1 Write 16 bits to
memory

load byte lb $s1, k($s2) $s1 � Memory[$s2 � k] Read byte from
memory; sign-extend
and load to register

store byte sb $s1, k($s2) Memory[$s2 � k] � $s1 Write byte to memory

load byte lbu $s1, k($s2) $s1 � Memory[$s2 � k] Read byte from
unsigned memory; byte is

0-extended

load upper lui $s1, k $s1 � k * 216 Loads constant k to
immediate upper 16 bits of 

register

TABLE 9-3:
Memory Access

Instructions in the
MIPS ISA

9.2.4 Control Transfer Instructions
Typically program execution proceeds in a sequential fashion, but loops, proce-
dures, functions, and subroutines change the program control flow. A microproces-
sor needs branch and jump instructions in order to accomplish transfer of control
whenever nonsequential control flow is required. The MIPS ISA includes two con-
ditional branch instructions, branch on equal (beq) and branch on not equal (bne),
as illustrated in Table 9-4.

The MIPS instruction

beq $5, $4, 25

will compare the contents of $5 and $4 and branch to PC � 4 � 100 if $4 and $5
are equal. The constant offset provided in the branch instruction is specified in
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terms of the number of instructions from the current PC (program counter). MIPS
uses byte addressing, and hence the offset in words is multiplied by 4 to get the
offset in bytes. The program counter is assumed to point to the next instruction at
PC � 4 already; hence the target address is computed as PC � 4 � 4 * offset. The
offset is 16 bits long, however one bit is used for sign. Branching is thus possible
to only ���32K.

Having only two conditional branch instructions is in contrast to CISC
processors that provide branch on less than, branch on greater than, branch on
higher than, branch on lower than, branch on carry, branch on overflow, branch
on negative, and several such conditional branch instructions. The MIPS philoso-
phy was that only two conditional branch instructions are necessary and that
checking of other conditions can be accomplished using combinations of instruc-
tions. In order to facilitate checking of less than and greater than, MIPS ISA
provides the set on less than (slt) instructions. These are explicit compare instruc-
tions that will set an explicit destination register to 1 or 0 depending on the
results of the compare. The slt instruction is used along with a bne or beq instruc-
tion to create the effect of branch on less than, branch on greater than, and so on.
These instructions are used for implementing loop and if-then-else statements
from high-level languages.

436 Design of a RISC Microprocessor

Instruction Assembly Code Operation Comments

branch on equal beq $s1, $s2, k If ($s1 �� $s2) go to Branch if registers are
PC � 4 � k * 4 equal; PC-relative

branch; Target �
PC � 4 � Offset * 4;
k is sign-extended

branch on not bne $s1, $s2, k If ($s1 � � $s2) go to Branch if registers 
equal PC � 4 � k * 4 are not equal; 

PC-relative branch;
Target � PC � 4 �
Offset * 4; k is 
sign-extended

set on less than slt $s1, $s2, $s3 If ($s2 � $s3) $s1 � 1; Compare and set  
else $s1 � 0; (2’s complement)

set on less than slti $s1, $s2, k If ($s2 � k) $s1 � 1; Compare and set; k is
immediate else $s1 � 0; 16-bit constant; 

sign-extended and
compared

set on less than sltu $s1, $s2, $s3 If ($s2 � $s3) $s1 � 1; Compare and set; 
unsigned else $s1 � 0; natural numbers

set on less than sltiu $s1, $s2, k If ($s2 � k) $s1 � 1; Compare and set; 
immediate else $s1 � 0; natural numbers; 
unsigned k, the16-bit constant,

is sign-extended;
no overflow

TABLE 9-4:
Conditional Control

Related
Instructions in the

MIPS ISA
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The MIPS ISA also includes three unconditional jump instructions as illustrated
in Table 9-5. These instructions are used for implementing function and procedure
calls and returns.

9.2 The MIPS ISA 437

Instruction Assembly Code Operation Comments

jump j addr Go to addr * 4; Target address �
i.e., PC � addr * 4 Imm offset * 4; addr

is 26 bits

jump register jr $reg Go to $reg; $reg contains 32-bit
i.e., PC � $reg target address

jump and link jal addr return address � PC � 4; For procedure call, 
go to addr * 4 return address saved

in the link register $31

TABLE 9-5:
Unconditional

Control Transfer
Instructions in the

MIPS ISA

The jump instruction transfers control to the address specified in the instruction.
Since the MIPS instruction is 32 bits wide, the number of bits available for encoding
the address will be (32 � number of opcode bits). In the MIPS, the opcode consumes
6 bits; therefore, only 26 bits are available for the address in the jump instruction. In
order to increase the range of addresses to which control can be transferred, MIPS
designers consider the specified address as a word address (instead of a byte address)
and multiply the specified address by 4 to get the resulting byte address.

The jump register (jr) instruction is an indirect jump. In contrast, the jump
instruction described in the previous paragraph is called a direct jump because the
jump address is directly specified in the instruction itself. In the case of the jump reg-
ister instruction, the content of the register is used as the address to which program
should transfer control to. This type of branch instruction is very useful for imple-
menting case statements from high-level languages.

The jump and link (jal) instruction is specifically designed for procedure calls. It
computes the target address from the offset specified in the instruction, but in addi-
tion to transferring control to that address, it also saves the return address in link
register $31.The return address means the address control should return to after the
subroutine or procedure call is completed.The return address is equal to the current
PC � 4, since every instruction is four bytes wide and PC � 4 is the address of the
instruction following the current instruction (the jal instruction).

We have described the major classes of instructions in the MIPS ISA. In order
to become familiar with the instructions, let us practice some assembly language
programming.

Example
Write a MIPS assembly language program for the following program that adds two arrays
x(i) and y(i), each of which has 100 elements.

for i � 1,100, i�� ; repeat 100 times

y(i) � x(i) � y(i) ; add ith element of the arrays

Assume that the x and y arrays start at locations 4000 and 8000 (decimal).
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Answer

andi $3, $3, 0 ; initialize loop counter $3 to 0

andi $2, $2, 0 ; clear register for loop bound

addi $2, $2, 400 ; loop bound

$label: lw $15, 4000($3) ;load x(i) to R15

lw $14, 8000($3) ;load y(i) to R14

add $24, $15, $14 ; x(i) + y(i)

sw $24, 8000($3) ; save new y(i)

addi $3, $3, 4 ; update address register, address=
address + 4

bne $3, $2, $label ; check if loop counter=loop
bound

Several microprocessors with the MIPS ISA have been designed since the MIPS
R2000 was designed in the 1980s. In those days, the main processor could not inte-
grate the floating-point unit. Hence, the floating-point units were implemented as a
math coprocessor, the MIPS R2010. Nowadays, the floating-point unit is integrated
with the main CPU. The MIPS R2000 was followed by MIPS R3000, R4000, R8000,
R10000, R12000, and the R14000. They all have the MIPS ISA but different imple-
mentations with different levels of pipelining and different techniques to obtain high
performance.

9.3 MIPS Instruction Encoding
Adhering to the RISC philosophy, all instructions in the MIPS processor have the
same width, 32 bits. In a move toward simplicity, there are only three different
instruction formats for the MIPS instructions.The three formats are called R-format,
I-format, and J-format, as illustrated in Table 9-6.

438 Design of a RISC Microprocessor

Format Fields Used by

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31–26 25–21 20–16 15–11 10–6 5–0

R-format opcode rs rt rd shamt F_code ALU instructions except
(funct) immediate, Jump Register (JR)

I-format opcode rs rt offset�immediate Load, store, Immediate ALU,
beq, bne

J-format opcode target address Jump (J), Jump and Link (JAL)

TABLE 9-6: Instruction Formats in the MIPS ISA
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The R-format is primarily for ALU instructions which require three operands.
These ALU instructions have two source operands (input registers) and one
destination address (result register) to be specified. The jump register instruction
(jr) also uses this format. The instruction consists of six fields, the first of which is
the 6-bit opcode field. The opcode field is followed by the three register fields rs, rt,
and rd, each of which takes 5 bits. The first two are the source register fields, and the
third one is the destination register field. The next field is called shift amount
(shamt) field, which is used to specify the amount of shifting to be done in shift
instructions. Any number between 0 and 31 can be specified as the shift amount.
This field is used only in shift instructions. The last field is an additional opcode
field, called the function field funct or F_code. The first opcode field can encode
only 26 or 64 instructions. The MIPS processor does have more than 64 instructions
considering the different variations of loads (byte load, halfword load, word load,
floating-point loads, etc.). Hence, more than 6 bits are required to fully specify an
instruction.The MIPS designers chose a scheme in which the first 6 bits are 0 for the
R-format instructions, and then an additional field (the last 6 bits of the instruction)
is used to further identify the instruction.

The I-format is for arithmetic instructions, load�store instructions, and
branch instructions that need an immediate constant to be specified in the
instruction. These instructions need only two registers to be specified in addition
to the immediate constant. The opcode field takes 6 bits, and the two register
fields take 5 bits each. The remaining 16 bits are used as an immediate constant
to specify an operand for instructions such as addi, or to specify the offset in a
load�store instruction, or to specify the branch offset in a conditional branch
instruction.

The J-format is for jump instructions. The first 6 bits of the instruction word
are used for the opcode, and the remaining 26 bits are used to specify the jump
offset. Since the jump offset is specified as a word address rather than byte
address, the offset is first multiplied by 4 and then concatenated to the highest
4 bits of the PC to get the 32-bit target address. MIPS uses byte addressing for
accessing instructions and data.

Table 9-7 illustrates the instruction encoding for the MIPS instructions we
have discussed. The opcode, source, and destination are assigned the same field in
the instruction format as much as possible. The first 6 bits (bits 31–26) are for the
opcode in all the three different formats. The source and destination register fields
are in similar positions (bits 25–21, bits 20–16, and bits 15–11) as much as possible.
This greatly simplifies decoding.

The encoding is very regular; however, compromises had to be made to accom-
modate various instructions into the same width. For instance, the destination regis-
ter appears in different fields in three-register and two-register formats. Similarly, in
a load instruction, the second register field is a destination register; whereas in a
store instruction, it is the source of the data to be stored. In spite of these irregular-
ities, we can say that the encoding is largely regular.

To increase the familiarity with the MIPS instruction encoding, let us practice
some machine coding.
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Example
Create the machine code equivalent of the following assembly language program.

andi $3, $3, 0 ; initialize loop counter $3 to 0

andi $2, $2, 0 ; clear register for loop bound

addi $2, $2, 4000 ; loop bound register

$label: lw $15, 4000($3) ; load x(i) to R15

lw $14, 8000($3) ; load y(i) to R14

add $24, $15, $14 ; x(i) + y(i)

440 Design of a RISC Microprocessor

TABLE 9-7: Instruction Encoding for the MIPS Instructions

Fields

Bits Bits Bits Bits Bits Bits Instruction
Name Format 31–26 25–21 20–16 15–11 10–6 5–0 (operation dest, src1, src2)

add R 0 2 3 1 0 32 add $1, $2, $3
sub R 0 2 3 1 0 34 sub $1, $2, $3
addi I 8 2 1 100 addi $1, $2, 100
addu R 0 2 3 1 0 33 addu $1, $2, $3
subu R 0 2 3 1 0 35 subu $1, $2, $3
addiu I 9 2 1 100 addiu $1, $2, 100
mfc0 R 16 0 1 14 0 0 mfc0 $1, $epc
mult R 0 2 3 0 0 24 mult $2, $3
multu R 0 2 3 0 0 25 multu $2, $3
div R 0 2 3 0 0 26 div $2, $3
divu R 0 2 3 0 0 27 divu $2, $3
mfhi R 0 0 0 1 0 16 mfhi $1
mflo R 0 0 0 1 0 18 mflo $1
and R 0 2 3 1 0 36 and $1, $2, $3
or R 0 2 3 1 0 37 or $1, $2, $3
andi I 12 2 1 100 andi $1, $2, 100
ori I 13 2 1 100 ori $1, $2, 100
sll R 0 0 2 1 10 0 sll $1, $2, 10
srl R 0 0 2 1 10 2 srl $1, $2, 10
lw I 35 2 1 100 lw $1, 100($2)
sw I 43 2 1 100 sw $1, 100($2)
lui I 15 0 1 100 lui $1, 100
beq I 4 1 2 25 beq $1, $2, 25
bne I 5 1 2 25 bne $1, $2, 25
slt R 0 2 3 1 0 42 slt $1, $2, $3
slti I 10 2 1 100 slti $1, $2, 100
sltu R 0 2 3 1 0 43 sltu $1, $2, $3
sltiu I 11 2 1 100 sltiu $1, $2, 100
j J 2 2500 j 2500
jr R 0 31 0 0 0 8 jr $31
jal J 3 2500 jal 2500
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sw $24, 8000($3) ; save new y(i)

addi $3, $3, 4 ; update address register, address=
address + 4

bne $3, $2, $label ; Check if loop counter=
loop bound

Answer

The first instruction

andi $3, $3, 0

can be translated as follows. Table 9-7 shows that the opcode for andi is 12. Hence, the first
6 bits for the first instruction will be 001100, as indicated in row 1 (after the header row) of
Table 9-8. The source register field is next. It should be 00011 because the source register is
$3. The destination register field is next. It should be 00011 because the destination register
is $3.The immediate constant is 0 and leads to sixteen 0’s in bits 0 to 15.This explains the con-
tents of row 1. In hex representation, it becomes 3063 0000.

We will also explain the encoding of the last instruction, bne $3, $2, label. The opcode is 5
(i.e., 000101). The next field corresponds to register $3, so it is 00011. The next field is 00010
to indicate the register $2. The byte offset should be �24, but the instruction is supposed to
contain the word offset which is �24 divided by 4 (i.e., �6). In 2’s complement representation,
it is 1010. Sign extending to fill the 16 bits, we get 1111111111111010, which will occupy bits 0
to 15.

Machine code corresponding to all the instructions is shown in Table 9-8.
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TABLE 9-8: MIPS
Machine Code for

Example. Binary as
Well as Hex

Representations
Shown

Bits Bits Bits Bits Bits Bits Equivalent 
Instruction 31–26 25–21 20–16 15–11 10–6 5–0 Hex

andi $3, $3, 0 001100 00011 00011 00000 00000 000000 3063 0000
andi $2, $2, 0 001100 00010 00010 00000 00000 000000 3042 0000
addi $2, $2, 4000 001000 00010 00010 00001 11110 100000 2042 0FA0
lw $15, 4000($3) 100011 00011 01111 00001 11110 100000 8C6F 0FA0
lw $14, 8000($3) 100011 00011 01110 00011 11101 000000 8C6E 1F40
add $24, $15, $14 000000 01111 01110 11000 00000 100000 01EE C020
sw $24, 8000($3) 101011 00011 11000 00011 11101 000000 AC78 1F40
addi $3, $3, 4 001000 00011 00011 00000 00000 000100 2063 0004
bne $3, $2, �6 000101 00011 00010 11111 11111 111010 1462 FFFA

9.4 Implementation of a MIPS Subset
In this section, we describe a simple implementation of a subset of the MIPS ISA,
This subset, illustrated in Table 9-9, includes most of the important instructions,
including ALU, memory access, and branch instructions. What we present in this
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442 Design of a RISC Microprocessor

TABLE 9-9: Subset
of MIPS

Instructions
Implemented in

This Chapter

add
Arithmetic subtract

add immediate

and
or
and immediate

Logical
or immediate
shift left logical
shift right logical

Data Transfer
load word
store word

branch on equal
Conditional branch branch on not equal

set on less than

jump
Unconditional branch jump register

section is a naïve implementation of this instruction set. Modern microprocessors
implement features such as multiple instruction issue, out-of-order execution, branch
prediction, and pipelining. For the sake of simplicity, what is presented here is a sim-
ple in-order, nonpipelined implementation. Some of the exercise problems describe
other implementations that will provide better performance.

9.4.1 Design of the Data Path
In order to design a microprocessor, first we examine the sequence of operations
during execution of instructions, and then we describe the nature of the hardware
required to accomplish the instruction execution. In general, any microprocessor
works in the following manner:

1. The processor fetches an instruction.
2. It decodes the instruction that was fetched. Decoding means identifying what the

instruction is.
3. It reads the operands and executes the instruction. For a RISC ISA, for arith-

metic instructions, the operands are in registers. The registers that contain the
input operands are called source registers. For memory access instructions,
addresses are computed using registers, and memory is accessed.After execution,
the processor writes the result of the instruction execution into the destination.
The destination is a register for all instructions other than the store instruction,
which has to write the result into the memory.

Hence, the design must contain a unit to fetch the instructions, a unit to decode
the instructions, an arithmetic and logic unit (ALU) to execute the instructions, a
register file to hold the operands, and the memory that stores instructions and data.
These components are described in the following subsections.
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Instruction Fetch Unit
In general, a microprocessor has a special register called the program counter (PC),
which points to the next instruction in the instruction memory. The PC sends this
address to the instruction memory (or the instruction caches), which sends the
instruction back. The processor increments the PC to point to the next instruction
to be fetched. A block diagram for this unit is shown in Figure 9-1.
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The next PC is one of the following, depending on the current instruction:

a. PC � 4: For instructions other than branch and jump instructions, the next
instruction is at address PC � 4, since four bytes are needed for the current
instruction.

b. PC_Branch: In the branch (bne and beq) instructions, the next PC is
obtained by adding the offset in the instruction to the current PC. In the
MIPS ISA, the branch offset is provided as a signed-word offset (number of
words to jump forward or backward). First the word offset is sign-extended,
converted to a byte offset by multiplying by 4, and then it is added to the cur-
rent PC. Thus, the next PC for branch instructions is

PC_Branch � PC � 4 � Offset * 4

c. PC_Jump: In the jump (J) instruction, the new target is provided in the
instruction. In the MIPS ISA, the opcode takes 6 out of the 32 bits. Hence,
the biggest jump address that can be encoded is only 26 bits. In order to com-
pute the 32-bit jump address, first, the 26-bit word address in the instruction
is shifted twice to the left, resulting in a 28-bit address, which is a byte address.
Then it is concatenated with the four highest bits of the PC, yielding a 32-bit
address. Thus, the next PC for jump instructions is

PC_Jump � PC31..28 		 Address * 4

where 		 stands for concatenation.

d. PC_JR: In the jump register (JR) instruction, the jump target is obtained from
the register specified in the instruction.Thus, the next PC for a JR instruction is

PC_JR � [REG]

where [REG] indicates contents of the register.
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The appropriate target addresses are computed and fed to the PC. A multiplexer is
used to select among the branch target, jump target, jump register target, or PC � 4,
depending on the instruction.

There are several choices as to when the target addresses are computed. The
default target, PC � 4, can be computed at instruction fetch itself, since it needs no
other information other than the PC itself. In conditional branch instructions, the
branch target (PC_Branch) computation can be done as soon as the instruction is
read; however, whether the branch is taken or not will not be known until the reg-
isters are read and compared. In the case of the jump instruction, the target
(PC_Jump) can be computed as soon as the instruction is fetched, since the infor-
mation for the target is available in the instruction itself. In a jump register ( jr)
instruction, the branch target (PC_JR) can be computed after the register is read.

Instruction Decode Unit
Decoding is fairly simple due to the simplicity of the RISC ISA.We can observe from
Table 9-7 that the instruction formats in the MIPS ISA are very regular and uniform.
The first 6 bits of the instruction specify the opcode in most cases. But, as described in
Section 9.3, for the R-format ALU instructions, the first 6 bits are 0, and the last 6 bits
of the instruction, called F_code, need to be used to further identify the instruction.

The opcode is used to identify the instruction and the instruction format used by
the instruction. The uniformity of the instruction format allows many of the instruc-
tion fields to be directly used for register addressing and control signal generation.
The instruction opcode bits are fed to a control unit that generates the various
control signals.

Instruction Execution Unit
Once the instruction is identified at the decode stage, the next task is to read the
operands and perform the operation. In RISC instruction sets, the operands are in
registers. The MIPS architecture contains 32 registers, and these registers are col-
lectively referred to as the register file.The register file should have at least two read
ports to support reading two operands at the same time, and it should have one
write port.

The operation of the register file is as follows. The registers that hold the input
operands are called source registers, and the register that should receive the result
is called the destination register. The source register addresses are applied to the
register file. The register file will produce the data from the corresponding registers
on the output data lines. This data is fed to the arithmetic and logic unit (ALU),
which executes the instruction. The ALU contains functional units such as adders
and shifters. It may also include more complex units such as multipliers, although
our restricted design here does not include multiplication.

In most instructions, the result from the ALU should be written into the desti-
nation register. To accomplish this, the ALU result is applied to the input data
lines of the register file. The destination register name and the register write (RegW)
command is applied to the register file.That causes the input data to get written into
the destination register.

444 Design of a RISC Microprocessor
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Figure 9-2 shows a block diagram of the datapath that is required to execute
the ALU and memory instructions. The data path includes an ALU, which will
perform the following operations: add, sub, and, and or. In the case of R-format
instructions, both operands for the ALU are read from the register file. In the case
of the I-format instructions, the immediate constant in the instruction is sign-
extended to create the second operand. Since one of the ALU operands comes
from either the register file or the sign extender, a multiplexer is required to select
the appropriate operand.

The ALU is also required for nonarithmetic instructions. For memory access
instructions, we have to first calculate the address to be accessed. The ALU can
be used for calculating the address. For address calculation for load and store
instructions, the first operand is obtained from the register specified in the
instruction and the second operand is obtained by sign-extending the immediate
offset specified in the instruction.

The ALU is required for conditional branch instructions also. As you know,
MIPS has only two branch instructions, branch on equal (beq) and branch not equal
(bne). The comparison for determining whether the registers are equal can be done
by the ALU. Both operands for this comparison can be obtained from the register
file. The data path also has to include a data memory unit because load and store
instructions have to access the data memory unit. Modern microprocessors contain
on-chip data caches.We will not be designing a data cache memory; however, we will
assume the presence of on-chip data memory that can be accessed by the instruc-
tions in one cycle after the data address is provided to the memory.

Overall Data Path
The overall data path is shown in Figure 9-3. It integrates the fetch and execute
hardware from Figures 9-1 and 9-2 and adds other required elements for correct
operation. In addition, control signals are shown.
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FIGURE 9-2: Required Data Path for Computation and Memory Instructions
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Figure 9-3 also shows use of several multiplexers and how the different bits
of the instruction are connected to the register file. As Table 9-6 illustrates, bits
21 to 25 of the instruction contains one of the source register addresses in all ALU
instructions. Hence, these bits can be directly connected to the first source register
address of the register file. Any instruction with a second register source contains
the register address in bits 16 to 20. Hence, these bits can also be directly connected
to the source register address of the register file. However, the destination register
address appears in different fields in different instructions. In R-format instructions,
the destination register address appears in bits 11 to 15. In I-format instructions,
however, the destination address is in bits 16 to 20. Hence, a multiplexer is required
to choose the appropriate destination register address. Another multiplexer choos-
es between the immediate operand or register operand for the ALU. A third multi-
plexer is used to select whether ALU output or memory data will be written to the
destination register.

Figure 9-3 also illustrates the details of the computation of the target addresses
in the various kinds of instructions. Default next address of PC � 4 is calculated
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with an adder. Addition of the branch offset to the PC is also done using a separate
adder. A multiplexer is used to select the appropriate PC.

In summary:

• MUX 1 selects a destination register address from an appropriate register field
depending on the instruction format. For R-format instructions, bits 20–16 yield
the destination address, and for I-format instructions, bits 15–11 of instruction
provide the destination address.

• MUX 2 selects whether the second operand for ALU comes from a register or an
immediate constant. For R-format ALU instructions and conditional branch
instructions, the register is chosen. For I-format ALU instructions, the immediate
constant provides the operand.

• MUX 3 selects between the memory or the ALU output for data to go into the
destination register. For load instructions, the memory data is chosen.

• MUX 4 selects between the four possible next PC values depending on the type
of instruction.

9.4.2 Instruction Execution Flow
Figure 9-4 illustrates the flow of execution for a possible implementation.

The first step is fetch for all instructions. The address in the program counter
(PC) is sent to the instruction memory unit. All instructions also need to update the
PC to point to the next instruction. While PC should be updated differently for
branch or jump instructions, the vast majority of instructions are in sequence, and
hence PC can be updated to point to the next instruction in sequence. Branch and
jump instructions can later modify the PC appropriately.

The second step is decode. Depending on the opcode that is encountered,
different actions follow. For R-type instructions, and for some I-type instructions
(e.g., bne and beq), both ALU operands are read from registers. For other I-type
instructions, one operand is read from the register file and the immediate con-
stant in the instruction is sign-extended as the other operand. Reading of a reg-
ister source satisfies requirements for a jump register ( jr) instruction, which is an
R-type instruction. The ALU operation required for each instruction is identified
during the decode step. For instance, the bne and beq instructions need a subtract
operation. The load and store instructions require an add operation. If the jump
opcode is encountered, a jump target is calculated. Since the jump instruction
does not need any further action, flow of control can go to step 1.

Step 3 is the actual execution of the instructions. Depending on the instruction,
different ALU operations are performed during this step. The different actions are
shown in boxes labeled 3a, 3b, and so on for the different types of instructions. Each
instruction goes through only one of these operations, depending on what type of
instruction it is. All instructions other than the jump instruction must come to this
step. The jump register ( jr) instruction does not need any arithmetic operation,
but the content of the register fetched during step 2 must be loaded into the PC.
For load and store instructions, the ALU performs an addition to calculate the
memory address.
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Step 4 varies widely between the instructions. Arithmetic and logic instructions
(of R-type and I-type) can write their computation result to the destination register.
Branch instructions must examine their condition and decide to take the branch or
not. If the branch is to be taken, the branch target address is calculated. For load
instructions, a memory read operation is initiated. For memory store instructions,
the data from the second source register is steered to the memory, and a memory
write operation is initiated. This is the final step for all instructions other than load
instructions.

Step 5 is required only for load instructions. The data output from memory is
written into the destination register.

We can implement this instruction flow in a variety of ways. In the most naïve
implementation, we can have a very slow clock and the processor performs all oper-
ations required for each instruction in one clock cycle. The disadvantage with this
scheme is that all instructions will be as slow as the slowest instruction because the
clock cycle has to be long enough for the slowest instruction. Another option is to
do an implementation where each instruction takes multiple cycles, but just enough
cycles to finish all operations for each class of instruction. For instance, Figure 9-4
can be considered as an SM chart with each box taking one cycle. In this case, a jump
instruction can finish in two cycles, while an ALU instruction needs four cycles and
a load instruction takes five cycles. In the next section, we present the VHDL model
of such an implementation.
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FIGURE 9-4: Flow Chart for Instruction Processing
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9.5 VHDL Model
The VHDL model for the processor is organized as in Figure 9-5.The instruction mem-
ory, data memory, and register file are created as components with their architecture
and entity descriptions. The main code, the MIPS entity embeds the control sequenc-
ing the instructions through the various stages of its operation. For simplicity we
combined the instruction and data memory units to be a single memory and illustrate
the use of the address and data buses. Later, when we use a test bench, we allow the
test bench to directly write into the instruction memory in order to deposit instructions
to be tested.

9.5 VHDL Model 449

FIGURE 9-5:
Organization of the
VHDL Model for
the Processor

Entity
Architecture

Entity
Architecture

MIPS 

Entity
Architecture

Register
file

Entity
Architecture

Memory 

Complete 
MIPS 

Data 

Addr 

Let us model the register and memory components first.

9.5.1 VHDL Model for the Register File
Figure 9-6 shows the VHDL model for the register file. The REG entity is used to
represent the 32 MIPS registers. Each register is 32 bits long. The destination regis-
ter address is DR, and the source register addresses are SR1 and SR2. Since there
are 32 registers, DR, SR1, and SR2 are 5 bits each. The outputs ReadReg1 and
ReadReg2 are the contents of the registers specified by SR1 and SR2. ReadReg1 is
fed straight to the ALU. ReadReg2 can be used as a second ALU input, or as the
input to data memory in the case of store instructions. The control signal RegW is
used to control the write operation to the register file. If RegW is true, the data on
lines Reg_In is written into the register pointed to by DR.

If this code is synthesized for a Xilinx Spartan FPGA, the reads have to be per-
formed asynchronously as in the provided code in order to get the register file
mapped into distributed RAM. As you know from Chapter 6, the Xilinx Spartan�
Virtex FPGAs contain dedicated block RAM. It is desirable to perform reads
synchronously; however, then the register file gets synthesized into BlockRAM with
current Xilinx synthesis tools. We used the asynchronous reads to allow generation
of distributed RAM for the register file.
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FIGURE 9-6: VHDL Code for Register File

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity REG is
port(CLK: in std_logic;

RegW: in std_logic;
DR, SR1, SR2: in unsigned(4 downto 0);
Reg_In: in unsigned(31 downto 0);
ReadReg1, ReadReg2: out unsigned(31 downto 0));

end REG;

architecture Behavioral of REG is
type RAM is array (0 to 31) of unsigned(31 downto 0);
signal Regs: RAM := (others => (others => '1')); -- set all reg bits to '1'

begin
process(clk)
begin
if CLK = '1' and CLK'event then
if RegW = '1' then
Regs(to_integer(DR)) <= Reg_In;

end if;
end if;

end process;
ReadReg1 <= Regs(to_integer(SR1)); -- asynchronous read
ReadReg2 <= Regs(to_integer(SR2)); -- asynchronous read

end Behavioral;

9.5.2 VHDL Model for Memory
Figure 9-7 illustrates the VHDL code for the memory unit.The VHDL model is sim-
ilar to the SRAM model that we did in Chapter 8. This SRAM model has tristated
input-output lines and allows easy testing with a test bench, where the test bench
can write instructions into the memory and the processor can read instruction and
read�write data. The test bench and the processor can drive the data bus of the
memory. Although Figure 9-3 illustrated separate instruction and data memories,
for convenience and for illustrating the use of address and data buses, we have used
a unified memory module which stores both instructions and data.The memory con-
sists of 128 locations, each 32 bits wide. We assume that the instructions are the first
64 words in the array, and the other 64 words are allocated for data memory.The sig-
nal Address specifies the location in memory to be read from or stored to. The
address bus is actually 32 bits wide, but we only use the seven lower bits since we
implement only a small memory.

The address bus will be driven by the processor appropriately for instruction
and data access. The address input may come from the program counter for read-
ing the instruction, or from the ALU that computes the address to access the
data portion of the memory. The chip select (CS) and write enable (WE) signals
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FIGURE 9-7: VHDL Code for the Unified Instruction�Data Memory

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Memory is
port(CS, WE, Clk: in std_logic;

ADDR: in unsigned(31 downto 0);
Mem_Bus: inout unsigned(31 downto 0));

end Memory;

architecture Internal of Memory is
type RAMtype is array (0 to 127) of unsigned(31 downto 0);
signal RAM1: RAMtype := (others => (others => '0'));
signal output: unsigned(31 downto 0);

begin
Mem_Bus <= (others => 'Z') when CS = '0' or WE = '1'

else output;
process(Clk)
begin
if Clk = '0' and Clk'event then
if CS = '1' and WE = '1' then
RAM1(to_integer(ADDR(6 downto 0))) <= Mem_Bus;

end if;
output <= RAM1(to_integer(ADDR(6 downto 0)));
end if;

end process;
end Internal;

allow the processor to control the reads and writes. When CS and WE are true,
the data on Mem_Bus gets written to the memory location pointed to by address
ADDR.

For simplicity, the address is shown as a word address in the VHDL code for
the memory. Hence, branch and jump offsets are used as such in Figure 9-8 without
multiplying by 4. In the actual MIPS processor, the memory is byte-addressable.
Therefore, each instruction memory access should obtain the data found in the spec-
ified location concatenated with the next three memory locations. For example, if
address � 0, the instruction register must be loaded with the contents of MEM[0],
MEM[1], MEM[2], and MEM[3]. The instructions are stored depending on the
endianness of the machine (See sidebar). Many modern microprocessors support
both big-endian and little-endian approaches.

9.5.3 VHDL Code for the Processor CPU
In this section, we present the VHDL code for the central processing unit (CPU) of
the microprocessor. The register module that was created in the earlier section is
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used here. Figure 9-8 shows a VHDL model for the MIPS instructions in Table 9-9.
The VHDL model generally follows the flow in Figure 9-4, implementing the fetch,
decode, and execute phases of an instruction. In order to increase the readability of
the code, several aliases are defined.The most significant 6 bits of the instruction are
denoted by the alias Opcode. The lowest 6 bits of the instruction are denoted with
the alias F_Code. The shift amount in shift instructions is denoted using NumShift.
The two register source fields are aliased to SR1 and SR2. The following statements
accomplish this aliasing:

alias opcode: unsigned(5 downto 0) is Instr(31 downto 26);
alias SR1: unsigned(4 downto 0) is Instr(25 downto 21);
alias SR2: unsigned(4 downto 0) is Instr(20 downto 16);
alias F_Code: unsigned(5 downto 0) is Instr(5 downto 0);
alias NumShift: unsigned(4 downto 0) is Instr(10 downto 6);

For readability of the code, we have also used constant declarations to associate the
various opcodes with the corresponding codes from Table 9-7. For instance, the load
instruction lw has 35 as its opcode, and the store instruction sw has 43 as its opcode.
Several statements, such as the following, are used in order to denote the various
opcodes:

constant lw  : unsigned(5 downto 0) := "100011";  -- 35
constant sw  : unsigned(5 downto 0) := "101011";  -- 43

Sign extension of the immediate quantity is accomplished by the following
statement:

Imm_Ext <= x"FFFF"&Instr(15 downto 0) when Instr(15) = '1' else
x"0000"&Instr(15 downto 0);

452 Design of a RISC Microprocessor

Little-Endian and Big-Endian
When we store 16-bit or 32-bit data into byte-addressable memory, there are
two possible ways to store the data: little-endian and big-endian. In a little-
endian system, the least significant byte in the sequence is stored first. In a
big-endian system, the most significant byte in the sequence is stored at the
lowest storage address (i.e., first). Let us consider how a MIPS instruction
will be stored into byte-addressable memory in the two systems. The MIPS
instruction andi $3, $3, 0 will be encoded as 30630000 (hex). When this
instruction is stored at address 2000, depending on whether big-endian or
little-endian system is used, the memory will look as follows:

Big-Endian Little-Endian 
Representation Representation

Address of 30630000hex of 30630000hex

2000 30 00
2001 63 00
2002 00 63
2003 00 30
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Following are the signals used in the VHDL model:

9.5 VHDL Model 453

MIPS Processor Model Signals:

CLK (input) Clock.

Rst (input) Synchronous reset.

CS (output) Memory chip select. When CS is active and WE is inactive, the memory module outputs 
the memory contents at the address specified by Addr to mem_bus.

WE (output) Memory write enable. When WE and CS are active, the memory module stores the contents 
of mem_bus to the location specified by Addr during the falling edge of the clock.

Addr (ouput) Memory address. During state 0 (fetch instruction from memory), Addr is connected to the 
PC. Otherwise, it is connected to the ALU result (32 bits).

Mem_Bus Tristate memory bus; carries data to and from the memory module. The MIPS module 
(in�out) outputs to the bus during memory writes. The memory module outputs to the bus during 

memory reads. When not in use, the bus is at ‘hi-Z’ (32 bits).

Op ALU operation select; determines the specific operation (e.g., add, and, or) to be performed 
by ALU. Determined during decode.

Format Indicates whether the current instruction is of R, I, or J format.

Instr The current instruction (32 bits).

Imm_Ext Sign-extended immediate constant from the instruction (32 bits).

PC Current program counter (32 bits).

NPC Next program counter (32 bits).

ReadReg1 Contents of the first source register (SR1) (32 bits).

ReadReg2 Contents of the second source register (SR2) (32 bits).

Reg_In Data input to registers. When executing a load instruction, Reg_In is connected to the 
memory bus. Otherwise, it is connected to the ALU result (32 bits).

ALU_InA First operand for the ALU (32 bits).

ALU_InB Second operand for the ALU. ALU_InB is connected to Imm_Ext during immediate mode 
instructions. Otherwise, it is connected to ReadReg2 (32 bits).

ALU_Result Output of ALU (32 bits).

ALUorMEM Select signal for the Reg_In multiplexer; indicates if the register input should come from 
the memory, or the ALU.

REGorIMM Select signal for the ALU_InB multiplexer; determines if the second ALU operand is a 
register output or sign extended immediate constant.

RegW Indicates if the destination register should be written to. Some instructions do not 
write any results to a register (e.g., branch, store).

FetchDorI Select signal for the Address multiplexer; determines if Addr is the location of an 
instruction to be fetched, or the location of data to be read or written.

Writing Control signal for the MIPS processor output to the memory bus. Except during memory 
writes, the output is ‘hi-Z’ so the bus can be used by other modules. Note Writing cannot 
be replaced with WE, because WE is of mode out. Writing is used in mode in too.

DR Address of destination register (5 bits).

State Current state.

nState Next state.
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Two processes are used in the code. Since we have used separate clock cycles for
the fetch operation, decode operation, execute operation, and so on, it is necessary
to save signals created during each stage for later use. The statements such as

OpSave <= Op;
REGorIMM_Save <= REGorIMM;
ALUorMEM_Save <= ALUorMEM;
ALU_Result_Save <= ALU_Result;

are used in the clocked process (the second process) for saving (explicit latching)
of the relevant signals.

454 Design of a RISC Microprocessor

FIGURE 9-8: VHDL Code for the MIPS Subset Implementation

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity MIPS is
port(CLK, RST: in std_logic;

CS, WE: out std_logic;
ADDR: out unsigned (31 downto 0);
Mem_Bus: inout unsigned(31 downto 0));

end MIPS;

architecture structure of MIPS is
component REG is

port(CLK: in std_logic;
RegW: in std_logic;
DR, SR1, SR2: in unsigned(4 downto 0);
Reg_In: in unsigned(31 downto 0);
ReadReg1, ReadReg2: out unsigned(31 downto 0));

end component;
type Operation is (and1, or1, add, sub, slt, shr, shl, jr);
signal Op, OpSave: Operation := and1;
type Instr_Format is (R, I, J); -- (Arithmetic, Addr_Imm, Jump)
signal Format: Instr_Format := R;
signal Instr, Imm_Ext: unsigned (31 downto 0);
signal PC, nPC, ReadReg1, ReadReg2, Reg_In: unsigned(31 downto 0);
signal ALU_InA, ALU_InB, ALU_Result: unsigned(31 downto 0);
signal ALU_Result_Save: unsigned(31 downto 0);
signal ALUorMEM, RegW, FetchDorI, Writing, REGorIMM: std_logic := '0';
signal REGorIMM_Save, ALUorMEM_Save: std_logic := '0';
signal DR: unsigned(4 downto 0);
signal State, nState: integer range 0 to 4 := 0;
constant addi: unsigned(5 downto 0) := "001000"; -- 8
constant andi: unsigned(5 downto 0) := "001100"; -- 12
constant ori:  unsigned(5 downto 0) := "001101"; -- 13
constant lw:  unsigned(5 downto 0) := "100011"; -- 35
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constant sw:  unsigned(5 downto 0) := "101011"; -- 43
constant beq:  unsigned(5 downto 0) := "000100"; -- 4
constant bne:  unsigned(5 downto 0) := "000101"; -- 5
constant jump: unsigned(5 downto 0) := "000010"; -- 2
alias opcode: unsigned(5 downto 0) is Instr(31 downto 26);
alias SR1: unsigned(4 downto 0) is Instr(25 downto 21);
alias SR2: unsigned(4 downto 0) is Instr(20 downto 16);
alias F_Code: unsigned(5 downto 0) is Instr(5 downto 0);
alias NumShift: unsigned(4 downto 0) is Instr(10 downto 6);
alias ImmField: unsigned (15 downto 0) is Instr(15 downto 0);

begin
A1: Reg port map (CLK, RegW, DR, SR1, SR2, Reg_In, ReadReg1, ReadReg2);
Imm_Ext <= x"FFFF" & Instr(15 downto 0) when Instr(15) = '1'

else x"0000" & Instr(15 downto 0); -- Sign extend immediate field
DR <= Instr(15 downto 11) when Format = R

else Instr(20 downto 16);        -- Destination Register MUX (MUX1)
ALU_InA <= ReadReg1;
ALU_InB <= Imm_Ext when REGorIMM_Save = '1' else ReadReg2; -- ALU MUX (MUX2)
Reg_in <= Mem_Bus when ALUorMEM_Save = '1' else ALU_Result_Save; -- Data MUX
Format <= R when Opcode = 0 else J when Opcode = 2 else I;
Mem_Bus <= ReadReg2 when Writing = '1' else

"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; -- drive memory bus only during writes
ADDR <= PC when FetchDorI = '1' else ALU_Result_Save; --ADDR Mux

process(State, PC, Instr, Format, F_Code, opcode, Op, ALU_InA, ALU_InB, Imm_Ext)
begin

FetchDorI <= '0'; CS <= '0'; WE <= '0'; RegW <= '0'; Writing <= '0';
ALU_Result <= "00000000000000000000000000000000";
npc <= pc; Op <= jr; REGorIMM <= '0'; ALUorMEM <= '0';
case state is

when 0 =>  --fetch instruction
nPC <= PC + 1; CS <= '1'; nState <= 1; -- increment by 1 since word address
FetchDorI <= '1';

when 1 =>
nState <= 2; REGorIMM <= '0'; ALUorMEM <= '0';
if Format = J then

nPC <= "000000" & Instr(25 downto 0); nState <= 0; --jump, and finish
-- offset not multiplied by 4 since mem is word address

elsif Format = R then -- register instructions
if F_code = "100000" then Op <= add;  -- add
elsif F_code = "100010" then Op <= sub;  -- subtract
elsif F_code = "100100" then Op <= and1; -- and
elsif F_code = "100101" then Op <= or1;  -- or
elsif F_code = "101010" then Op <= slt;  -- set on less than
elsif F_code = "000010" then Op <= shr;  -- shift right
elsif F_code = "000000" then Op <= shl;  -- shift left
elsif F_code = "001000" then Op <= jr;  -- jump register
end if;

elsif Format = I then -- immediate instructions
REGorIMM <= '1';
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if Opcode = lw or Opcode = sw or Opcode = addi then Op <= add;
elsif Opcode = beq or Opcode = bne then Op <= sub; REGorIMM <= '0';
elsif Opcode = andi then Op <= and1;
elsif Opcode = ori then Op <= or1;
end if;
if Opcode = lw then ALUorMEM <= '1'; end if;

end if;
when 2 =>
nState <= 3;
if OpSave = and1 then ALU_Result <= ALU_InA and ALU_InB;
elsif OpSave = or1 then ALU_Result <= ALU_InA or ALU_InB;
elsif OpSave = add then ALU_Result <= ALU_InA + ALU_InB;
elsif OpSave = sub then ALU_Result <= ALU_InA - ALU_InB;
elsif OpSave = shr then ALU_Result <= ALU_InB srl to_integer(numshift);
elsif OpSave = shl then ALU_Result <= ALU_InB sll to_integer(numshift);
elsif OpSave = slt then -- set on less than

if ALU_InA < ALU_InB then ALU_Result <= X"00000001";
else ALU_Result <= X"00000000";
end if;

end if;
if ((ALU_InA = ALU_InB) and Opcode = beq) or

((ALU_InA /= ALU_InB) and Opcode = bne) then
nPC <= PC + Imm_Ext; nState <= 0;

elsif opcode = bne or opcode = beq then nState <= 0;
elsif OpSave = jr then nPC <= ALU_InA; nState <= 0;
end if;

when 3 =>
nState <= 0;
if Format = R or Opcode = addi or Opcode = andi or Opcode = ori then

RegW <= '1';
elsif Opcode = sw then CS <= '1'; WE <= '1'; Writing <= '1';
elsif Opcode = lw then CS <= '1'; nState <= 4;
end if;

when 4 =>
nState <= 0; CS <= '1';
if Opcode = lw then RegW <= '1'; end if;

end case;
end process;

process(CLK)
begin

if CLK = '1' and CLK'event then
if rst = '1' then

State <= 0;
PC <= x"00000000";

else
State <= nState;
PC <= nPC;

end if;
if State = 0 then Instr <= Mem_Bus; end if;
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The multiplexer at the input of the program counter is not explicitly coded.
The various data transfers are coded behaviorally in the various states. A good
synthesizer will be able to generate the multiplexer to accomplish the various data
transfers. Similarly, the multiplexer to select the destination register address is
also not explicitly coded. If the synthesis tool generates inefficient hardware for
this multiplexed data transfer, we can code the multiplexer into the data path and
generate control signals for the select signals.

9.5.4 Complete MIPS
The processor module and the memory are integrated to yield the complete MIPS
model (Figure 9-9). Component descriptions are created for the processor and the
memory units. These components are integrated by using port-map statements. The
high-level entity is called Complete_MIPS. We have also brought out the address
and data buses as outputs from the high-level entity. If no outputs are shown in an
entity, when the code is synthesized, it results in empty blocks. Depending on the
synthesis tool, unused signals (and corresponding nets) may be deleted from
the synthesized circuit.

9.5 VHDL Model 457

if State = 1 then
OpSave <= Op;
REGorIMM_Save <= REGorIMM;
ALUorMEM_Save <= ALUorMEM;

end if;
if State = 2 then ALU_Result_Save <= ALU_Result; end if;

end if;
end process;

end structure;

FIGURE 9-9: VHDL Code Integrating the Processor and Memory Modules

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity Complete_MIPS is
port(CLK, RST: in std_logic;

A_Out, D_Out: out unsigned(31 downto 0));
end Complete_MIPS;

architecture model of Complete_MIPS is
component MIPS is

port(CLK, RST: in std_logic;
CS, WE: out std_logic;
ADDR: out unsigned(31 downto 0);
Mem_Bus: inout unsigned(31 downto 0));

end component;
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We synthesized the model shown in Figure 9-9. The Xilinx ISE tools targeted for
a Spartan 3 FPGA yield 1108 four-input LUTs, 660 slices, 111 flip-flops, and 1 block
RAM. The register file takes 194 four-input LUTs. Since one LUT can give 16 bits
of storage, thirty-two 32-bit registers would need the storage from 64 LUTs. Since
the register file has two read ports, it would need 128 LUTs. Additional LUTs are
required for the address decoder and the control signals. In order to implement the
design on a prototyping board, interface to the input and display modules should
be added.

9.5.5 Testing the Processor Model
The overall MIPS VHDL model is tested using a test bench illustrated in Figure 9-10.
The test bench must verify the proper operation of each implemented instruction.
The test bench consists of a MIPS program with test instructions and VHDL code to
load the program into memory and verify the program’s output. We use a constant
array of instructions that we want to write into the memory and a constant array of
expected outputs to which we will compare the processor execution result.

However, note that now the memory is connected to the processor and test
bench, and that means both our test bench and the processor will try to control the
two signals at the same time. One way to resolve this is to put muxes at the input
ports of the memory. There are a few muxes for that purpose: Address_Mux (for
choosing the address), CS_Mux for choosing the CS signal, and WE_Mux
(for choosing the WE signal). The select signal for the muxes is init. When the signal
is ‘1’, the three muxes select the address and CS and WE signals from the test bench.
Otherwise, these signals from the processor module are chosen. We also assert the
reset of our CPU throughout the initialization process to make sure the CPU does
not run until the test bench finishes writing the instructions into the memory. When
init is ‘0’, the CPU and memory are connected for normal operation.

As the MIPS program executes, each test instruction stores its result in a dif-
ferent register. After all of the test instructions have been executed, the program
performs a series of store instructions. Each of these instructions places the con-
tents of a different register onto the bus as it executes. So if there are 10 instruc-
tions that we want to verify, we also have 10 store word instructions. During each
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component Memory is
port(CS, WE, Clk: in std_logic;

ADDR: in unsigned(31 downto 0);
Mem_Bus: inout unsigned(31 downto 0));

end component;
signal CS, WE: std_logic;
signal ADDR, Mem_Bus: unsigned(31 downto 0);

begin
CPU: MIPS port map (CLK, RST, CS, WE, ADDR, Mem_Bus);
MEM: Memory port map (CS, WE, CLK, ADDR, Mem_Bus);
A_Out <= ADDR;
D_Out <= Mem_Bus;

end model;
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store, the value on the bus is compared to the expected result for that register with
an assert statement. In the MIPS processor, register $0 is always 0. We did not
implement that in the register file. Hence we clear register $0 using an instruction.
The first instruction in the test sequence does that. In normal MIPS processor code,
you will not find instructions with register $0 as the destination. Essentially, writes
to register $0 are ignored in MIPS.

9.5 VHDL Model 459

FIGURE 9-10: Test Bench for the Processor Model

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity MIPS_Testbench is
end MIPS_Testbench;

architecture test of MIPS_Testbench is
component MIPS
port(CLK, RST: in std_logic;

CS, WE: out std_logic;
ADDR: out unsigned (31 downto 0);
Mem_Bus: inout unsigned(31 downto 0));

end component;
component Memory
port(CS, WE, CLK: in std_logic;

ADDR: in unsigned(31 downto 0);
Mem_Bus: inout unsigned(31 downto 0));

end component;

constant N: integer : = 8;
constant W: integer : = 26;
type Iarr is array(1 to W) of unsigned(31 downto 0);
constant Instr_List: Iarr : = (
x"30000000", -- andi $0, $0, 0 => $0 = 0
x"20010006", -- addi $1, $0, 6 => $1 = 6
x"34020012", -- ori $2, $0, 18 => $2 = 18
x"00221820", -- add $3, $1, $2 => $3 = $1 + $2 = 24
x"00412022", -- sub $4, $2, $1 => $4 = $2 – $1 = 12
x"00222824", -- and $5, $1, $2 => $5 = $1 and $2 = 2
x"00223025", -- or $6, $1, $2 => $6 = $1 or $2 = 22
x"0022382A", -- slt $7, $1, $2 => $7 = 1 because $1<$2
x"00024100", -- sll $8, $2, 4 => $8 = 18 * 16 = 288
x"00014842", -- srl $9, $1, 1 => $9 = 6/2 = 3
x"10220001", -- beq $1, $2, 1 => should not branch
x"8C0A0004", -- lw $10, 4($0) => $10 = 5th instr = x"00412022" = 4268066
x"14620001", -- bne $1, $2, 1 => must branch to PC+1+1
x"30210000", -- andi $1, $1, 0 => $1 = 0 (skipped if bne worked correctly)
x"08000010", -- j 16         => PC = 16
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x"30420000", -- andi $2, $2, 0 => $2 = 0 (skipped if j 16 worked correctly)
x"00400008", -- jr $2 => PC = $2 = 18 = PC+1+1. $3 wrong if fails
x"30630000", -- andi $3, $3, 0 => $3 = 0 (skipped if jr $2 worked correctly)
x"AC030040", -- sw $3, 64($0) => Mem(64) = $3
x"AC040041", -- sw $4, 65($0) => Mem(65) = $4
x"AC050042", -- sw $5, 66($0) => Mem(66) = $5
x"AC060043", -- sw $6, 67($0) => Mem(67) = $6
x"AC070044", -- sw $7, 68($0) => Mem(68) = $7
x"AC080045", -- sw $8, 69($0) => Mem(69) = $8
x"AC090046", -- sw $9, 70($0) => Mem(70) = $9
x"AC0A0047" -- sw $10, 71($0) => Mem(71) = $10

);
-- The last instructions perform a series of sw operations that store
-- registers 3–10 to memory. During the memory write stage, the testbench
-- will compare the value of these registers (by looking at the bus value)
-- with the expected output. No explicit check/assertion for branch
-- instructions, however if a branch does not execute as expected, an error
-- will be detected because the assertion for the instruction after the
-- branch instruction will be incorrect.

type output_arr is array(1 to N) of integer;
constant expected: output_arr: = (24, 12, 2, 22, 1, 288, 3, 4268066);
signal CS, WE, CLK: std_logic : = '0';
signal Mem_Bus, Address, AddressTB, Address_Mux: unsigned(31 downto 0);
signal RST, init, WE_Mux, CS_Mux, WE_TB, CS_TB: std_logic;

begin
CPU: MIPS port map (CLK, RST, CS, WE, Address, Mem_Bus);
MEM: Memory port map (CS_Mux, WE_Mux, CLK, Address_Mux, Mem_Bus);

CLK <= not CLK after 10 ns;
Address_Mux <= AddressTB when init = '1' else Address;
WE_Mux <= WE_TB when init = '1' else WE;
CS_Mux <= CS_TB when init = '1' else CS;

process
begin
rst <= '1';
wait until CLK = '1' and CLK'event;

--Initialize the instructions from the testbench
init <= '1';
CS_TB <= '1'; WE_TB <= '1';
for i in 1 to W loop

wait until CLK = '1' and CLK'event;
AddressTB <= to_unsigned(i-1,32);
Mem_Bus <= Instr_List(i);

end loop;
wait until CLK = '1' and CLK'event;
Mem_Bus <= "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
CS_TB <= '0'; WE_TB <= '0';
init <= '0';
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The following command file was used to test the VHDL model. All the signals
that we are interested in are not available in the topmost entity, which here is the
test bench. In such cases, the full path describing the signal (specifically pointing to
the component in which the signal is appearing) must be provided for correct
simulation.The configure list -delta collapse command removes outputs
at intermediate deltas.

add list -hex sim:�mips_testbench�cpu�instr
add list -unsigned sim:�mips_testbench�cpu�npc
add list -unsigned sim:�mips_testbench�cpu�pc
add list -unsigned sim:�mips_testbench�cpu�state
add list -unsigned sim:�mips_testbench�cpu�alu_ina
add list -unsigned sim:�mips_testbench�cpu�alu_inb
add list -signed sim:�mips_testbench�cpu�alu_result
add list -signed sim:�mips_testbench�cpu�addr
configure list -delta collapse
run 2330

The simulation results are illustrated as follows:

MIPS 
Instruction ns Instr PC State ALU_InA ALU_InB ALU_Result Addr

andi $0, $0, 0 570 30000000 0 0 – – 0 0
908 30000000 1 1 – – 0 X
610 30000000 1 2 – 0 0 X
630 30000000 1 3 – 0 0 0

addi $1, $0, 6 650 30000000 1 0 0 0 0 1
670 20010006 2 1 0 6 0 0
690 20010006 2 2 0 6 6 0
710 20010006 2 3 0 6 0 6

ori $2, $0, 18 730 20010006 2 0 0 6 0 2
750 34020012 3 1 0 18 0 6
770 34020012 3 2 0 18 18 6
790 34020012 3 3 0 18 0 18

9.5 VHDL Model 461

wait until CLK = '1' and CLK'event;
rst <= '0';

for i in 1 to N loop
wait until WE = '1' and WE'event;  -- When a store word is executed
wait until CLK = '0' and CLK'event;
assert(to_integer(Mem_Bus) = expected(i))
report "Output mismatch:" severity error;

end loop;

report "Testing Finished:";
end process;

end test;
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add $3, $1, $2 810 34020012 3 0 0 18 0 3
830 00221820 4 1 6 6176 0 18
850 00221820 4 2 6 18 24 18
870 00221820 4 3 6 18 0 24

sub $4, $2, $1 890 00221820 4 0 6 18 0 4
910 00412022 5 1 18 6 0 24
930 00412022 5 2 18 6 12 24
950 00412022 5 3 18 6 0 12

and $5, $1, $2 970 00412022 5 0 18 6 0 5
990 00222824 6 1 6 18 0 12

1010 00222824 6 2 6 18 2 12
1030 00222824 6 3 6 18 0 2

or $6, $1, $2 1050 00222824 6 0 6 18 0 6
1070 00223025 7 1 6 18 0 2
1090 00223025 7 2 6 18 22 2
1110 00223025 7 3 6 18 0 22

slt $7, $1, $2 1130 00223025 7 0 6 18 0 7
1150 0022382A 8 1 6 18 0 22
1170 0022382A 8 2 6 18 1 22
1190 0022382A 8 3 6 18 0 1

sll $8, $2, 4 1210 0022382A 8 0 6 18 0 8
1230 00024100 9 1 0 18 0 1
1250 00024100 9 2 0 18 288 1
1270 00024100 9 3 0 18 0 288

srl $9, $1, 1 1290 00024100 9 0 0 18 0 9
1310 00014842 10 1 0 6 0 288
1330 00014842 10 2 0 6 3 288
1350 00014842 10 3 0 6 0 3

beq $1, $2, 1 1370 00014842 10 0 0 6 0 10
1390 10220001 11 1 6 18 0 3
1410 10220001 11 2 6 18 �12 3

lw $10, 4($0) 1430 10220001 11 0 6 18 0 11
1450 8C0A0004 12 1 0 – 0 �12
1470 8C0A0004 12 2 0 4 4 �12
1490 8C0A0004 12 3 0 4 0 4
1510 8C0A0004 12 4 0 4 0 4

bne $1, $2, 1 1530 8C0A0004 12 0 0 4 0 12
1550 14620001 13 1 24 1 0 4
1570 14620001 13 2 24 18 6 4

j 16 1590 14620001 14 0 24 18 0 14
1610 08000010 15 1 0 0 0 6

jr $2 1630 08000010 16 0 0 0 0 16
1650 00400008 17 1 18 0 0 6
1670 00400008 17 2 18 0 0 6

sw $3, 64($0) 1690 00400008 18 0 18 0 0 18
1710 AC030040 19 1 0 24 0 0
1730 AC030040 19 2 0 64 64 0
1750 AC030040 19 3 0 64 0 64
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The initial cycles that are used to load the instructions into the memory module
are not shown. The presented data corresponds to the cycles once the instruction
fetch by the processor begins. Only the first store instruction is shown here. But all
store instructions are tested in the test bench. More comprehensive tests can be
devised by reading the data from the stored locations in the memory.

In this chapter, we have presented a popular RISC instruction set, the MIPS. We
presented a design for a subset of the MIPS instruction set starting from the instruc-
tion set specification.We presented a synthesizable VHDL model.We illustrated the
use of a test bench to test the processor model.

Problems
9.1 What does the term ISA mean? Do the Pentium 4 and Pentium 3 have the same

ISA?

9.2 Microprocessor X has 30 instructions in its instruction set and microprocessor Y has
45 instructions in its instruction set. You are told that Y is a RISC processor. Can
you conclusively say that X is a RISC processor? Why or why not?

9.3 List four important characteristics that make a processor RISC type.

9.4 What is the difference between the MIPS addi instruction and addiu instruction?

9.5 What is the machine language encoding for the following MIPS instructions? Give
the answers in hexadecimal (hex). All offsets are in decimal.

(i) add $6, $7, $8
(ii) lw $5, 4($6)
(iii) addiu $3, $2, -2000
(iv) sll $3, $7, 12
(v) beq $6, $5, -16
(vi) j 4000

9.6 What is the machine language encoding for the following MIPS instructions? Give
the answers in hexadecimal (hex). All offsets are in decimal.

(i) addi $5, $4, 4000
(ii) sw $5, 20($3)
(iii) addu $4, $5, $3
(iv) bne $2, $3, 32
(v) jr $5
(vi) jal 8000

9.7 What MIPS instruction do the following hexadecimal (hex) numbers correspond
to? If it is not any instruction in Table 9-7, denote as an illegal opcode.
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(i) 33333300
(ii) 8D8D8D8D
(iii) 1777FF00
(iv) BDBD00BD
(v) 01010101

9.8 What MIPS instruction do the following hexadecimal (hex) numbers correspond
to? If it is not any instruction in Table 9-7, denote as an illegal opcode.

(i) 20202020
(ii) 00E70018
(iii) 13D300C8
(iv) 0192282A
(v) 0F6812A4

9.9 Write a MIPS assembly language program for the following pseudo code segment.
Assume the x and y arrays start at locations 4000 and 8000 (decimal).

for(i = 0; i < 100; i++)
x(i) = x(i) * y(i)

9.10 Write a MIPS assembly language program for the following pseudo code segment.
Assume the x and y arrays start at locations 4000 and 8000 (decimal).

for(i = 1; i < 100; i++)
x(i) = x(i) + x(i-1)

9.11 Write a MIPS assembly language program for the following pseudo code segment.
Assume the x and y arrays start at locations 4000 and 8000 (decimal), and a is at
location 12000 (decimal).

for(i = 0; i < 100; i++)
y(i) = a * x(i) + y(i)

9.12 Figure 9-8 presents a model for a subset of MIPS instructions. Synthesize the model
using current Xilinx software with a state of the art Xilinx FPGA as the target. How
many logic blocks, flip-flops, and memory blocks are used? (Note: Substitute a dif-
ferent FPGA company and its software to create variations of this question that suit
your environment.)

9.13 (a) Figure 9-8 presents a model for a subset of MIPS instructions. Enhance the
model by adding modules to interface the model to input switches and LEDs/
displays on an FPGA prototyping board. Your interface must be able to halt
operation of the MIPS processor and display the lower 8 bits of $1 on eight
LEDs. Your interface must also divide the prototyping board’s internal clock to
provide the model with a slow clock (e.g., 100-Hz clock). You may display addi-
tional information using other LEDs or display devices, depending on the capa-
bilities of your prototyping board. Synthesize the model and implement it on a
prototyping board.
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(b) For this question, use the model in part (a).Write a MIPS assembly language pro-
gram to create a rotating light (implemented using eight LEDs on the prototyp-
ing board). The light rotates from one LED to the next at a one second interval.

(c) For this question, you’ll use the model in part (a). Write a MIPS assembly lan-
guage program to create a traffic light controller. Implement your traffic light
with the following pattern:

Problems 465

Street A Street B

Red Yellow Green Red Yellow Green

0 0 1 1 0 0 (5 seconds)
0 1 0 1 0 0 (2 seconds)
1 0 0 1 0 0 (1 second)
1 0 0 0 0 1 (5 seconds)
1 0 0 0 1 0 (2 seconds)
1 0 0 1 0 0 (1 second), then repeats

9.14 Many microprocessors perform input-output operations by memory mapping.
Assume that memory location F0002F2F is a parallel port for the processor. Write
a MIPS program to generate a square wave with approximate frequency 8MHz on
LSB of the parallel port. Assume that you have a MIPS processor prototype based
on Figure 9-8, running with a 100-MHz clock.

9.15 (a) Add overflow detection to the add and addi instructions in the MIPS subset
VHDL code (Figure 9-8).

(b) Write a test bench to test your code from part (a).

9.16 (a) Add overflow detection to all overflow-capable instructions in the MIPS subset
that is implemented in Figure 9-8.

(b) Write a test bench to test your code from part (a).

9.17 (a) Add the MIPS instruction JAL (jump and link) to the MIPS subset VHDL code
(Figure 9-8). JAL is used for procedure calls. JAL jumpaddr puts the return
address (PC � 1) in register file $31 and then goes to jumpaddr for the next
instruction. (Note:The original MIPS used (PC � 4) and jumpaddr*4; however,
the implementation in Chapter 9 uses word addressing instead of byte addressing
so the “4” is replaced with “1”.) The JAL instruction uses the J format; therefore,
the first 6 bits are the opcode (3) and the remaining 26 bits are jumpaddr. Make
as few changes to the VHDL code as you need.

(b) Create a test bench to test this instruction.

9.18 (a) Add an instruction that multiplies two 16-bit numbers stored in the lower half
of two general-purpose registers and deposits the product into another 32-bit
register to the processor model in Figure 9-8. (Note: Such an instruction does
not exist in MIPS.)

(b) Create a test bench to test this instruction.

09Ch09.qxd  3/13/07  3:24 PM  Page 465



9.19 (This problem can be used as a term project. More information on pipelining can be
obtained from Reference 37.) Modern microprocessors employ pipelining to improve
instruction throughput. Consider a five-stage pipeline consisting of fetch, decode and
read registers, execute, memory access, and register write-back stages. During the first
stage, an instruction is fetched from the instruction memory. During the second stage,
the fetched instruction is decoded. The operand registers are also read during this
stage. During the third stage, the arithmetic or logic operation is performed on the
register data read during the second stage. During the fourth stage, in load/store
instructions, data memory is read/written into memory.Arithmetic instructions do not
perform any operation during this stage. During the fifth stage, arithmetic instructions
write the results to the destination register.

(a) Design a pipelined implementation of the MIPS design in Figure 9-8. Draw a
block diagram indicating the general structure of the pipeline. Write VHDL
code, synthesize it for an FPGA target, and implement it on an FPGA proto-
typing board. Assume that each stage takes one clock cycle. While implement-
ing on the prototyping board, use an 8-Hz clock.

Assume that instruction memory access and data memory access take only
one cycle. Instruction and data memories need to be separated (or must have
two ports) in order to allow simultaneous access from the first stage and fourth
stage.

An instruction can read the operands in second stage from the register file,
as long as there are no dependencies with an incomplete instruction (ahead of
it in the pipeline). If such a dependency exists, the current instruction in decode
stage must wait until the register data is ready. Each instruction should test for
dependencies with previous instructions. This can be done by comparing source
registers of the current instruction with destination registers of the incomplete
instructions ahead of the current instruction.

The register file is written into during stage 5 and read from during stage 2.
A reasonable assumption to make is that the write is performed during the first
half of the cycle and the read is performed during the second half of the cycle.
Assume that data written into the destination register during the first half of a
cycle can be read by another instruction during the second half of the same
cycle.

(b) How many cycles does it take to execute N instructions with no dependencies?
(c) How many cycles does it take to execute the following instruction sequence

through this pipeline?

add $5,$4,$3
add $6,$5,$4
add $7,$6,$5
add $8,$7,$6

9.20 (This problem can be used as a term project. More information on pipelining and
data forwarding can be obtained from Reference 37.) In Problem 9.19, it is assumed
that data should be written into the register file during the write-back stage of an
instruction before a subsequent instruction can read it. This introduces two idle
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cycles if instruction i � 1 is dependent on instruction i. A technique that many
processors use to solve this problem is called data forwarding. If an instruction
needs the result from an instruction ahead of it, the result is forwarded to the
current instruction.This can be done by having multiplexers at the input of the ALU
which take the operand either from the register file, the forwarding path from the
output of the ALU, or the output of the memory access stage (fourth stage).
The dependencies between instructions are clearly identified and then the multi-
plexers are appropriately controlled to forward the correct data.

(a) Design a pipelined implementation of the MIPS design in Figure 9-8 with data
forwarding. Draw a block diagram indicating the forwarding hardware. Write
VHDL code, synthesize it for an FPGA target, and implement it on an FPGA
prototyping board. While implementing on the prototyping board, use an 8-Hz
clock.

(b) Compare the number of cycles taken by the code in Problems 9.10 and 9.11 for
this design, the design in Problem 9.19, and the design in Figure 9-8.
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This chapter introduces digital system testing and design methods that make the sys-
tems easier to test. We have already discussed the use of testing during the design
process.We have written VHDL test benches to verify that the overall design and algo-
rithms used are correct. We have used simulation at the logic level to verify that
a design is logically correct and that it meets specifications.After the logic level design
of an IC is completed, additional testing can be done by simulating it at the circuit level
to verify that the design has been correctly implemented and that the timing is correct.

When a digital system is manufactured, further testing is required to verify that
it functions correctly. When multiple copies of an IC are manufactured, each copy
must be tested to verify that it is free from manufacturing defects. This testing
process can become very expensive and time consuming. With today’s complex ICs,
the cost of testing is a major component of the manufacturing cost. Therefore, it is
very important to develop efficient methods of testing digital systems and to design
the systems so that they are easy to test. Design for testability (DFT) is thus an
important issue in modern IC design.

In this chapter, we first discuss methods of testing combinational logic for the
basic types of faults that can occur. Then we describe methods for determining test
sequences for sequential logic. Automatic test pattern generators (ATPGs) are
employed in order to generate test sequences required for testing circuits and sys-
tems. One of the problems encountered is that normally we have access only to the
inputs and outputs of the circuit being tested and not to the internal state. To remedy
this problem, internal test points may be brought out to additional pins on the IC.
To reduce the number of test pins required, we introduce the concept of scan design,
in which the state of the system can be stored in a shift register and shifted out
serially. Finally, we discuss the concept of built-in self-test (BIST). By adding more
components to the IC, we can generate test sequences and verify the response to
these sequences internally without the need for expensive external testing.

10.1 Testing Combinational Logic
Two common types of faults are short circuits and open circuits. If the input to a gate
is shorted to ground, the input acts as if it is stuck at a logic 0. If the input to a gate is
shorted to a positive power supply voltage, the gate input acts as if it is stuck at a logic

C H A P T E R
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10.1 Testing Combinational Logic 469

1. If the input to a gate is an open circuit, the input may act as if it is stuck at 0 or
stuck at 1, depending on the type of logic being used. Thus, it is common practice to
model faults in logic circuits as stuck-at-1 (s-a-1) or stuck-at-0 (s-a-0) faults. To test a
gate input for s-a-0, the gate input must be 1 so a change to 0 can be detected.
Similarly, to test a gate input for s-a-1, the normal gate input must be 0 so a change
to 1 can be detected.

We can test an AND gate for s-a-0 faults by applying 1’s to all inputs, as shown in
Figure 10-1(a). The normal gate output is then 1, but if any input is s-a-0, the output
becomes 0.The notation 1:0 on the gate input a means that the normal value of a is 1,
but the value has changed to 0 because of the s-a-0 fault.The notation 1:0 at the gate
output indicates that this change has propagated to the gate output. We can test an
AND gate input for s-a-1 by applying 0 to the input being tested and 1’s to the other
inputs, as shown in Figure 10-1(b). The normal gate output then is 0, but if the input
being tested is s-a-1, the output becomes 1. To test OR gate inputs for s-a-1, we apply
0’s to all inputs, and if any input is s-a-1, the output will change to 1 (Figure 10-1(c)).To
test an OR gate input for s-a-0, we apply a 1 to the input under test and 0’s to the other
inputs. If the input under test is s-a-0, the output will change to 0 (Figure 10-1(d)). In
the process of testing the inputs to a gate for s-a-0 and s-a-1, we also can detect s-a-0
and s-a-1 faults at the gate output.
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FIGURE 10-1:
Testing AND and
OR Gates for
Stuck-At Faults

The two-level AND-OR circuit of Figure 10-2 has nine inputs and one output.
We assume that the OR gate inputs (p, q, and r) are not accessible, so the gates can-
not be tested individually. One approach to testing the circuit would be to apply all
29 � 512 different input combinations and observe the output. A more efficient
approach is based on testing for all s-a-0 and s-a-1 faults, as shown in Table 10-1. To
test the abc AND gate inputs for s-a-0, we must apply 1’s to a, b, and c, as shown in
Figure 10-2(a). Then, if any gate input is s-a-0, the gate output (p) will become 0. In
order to transmit the change to the OR gate output, the other OR gate inputs must
be 0. To achieve this, we can set d � 0 and g � 0 (e, f, h, and i are then don’t cares).
This test vector will detect p0 (p stuck-at-0) as well as a0, b0, and c0. In a similar
manner, we can test for d0, e0, f0, and q0 by setting d � e � f � 1 and a � g � 0.
A third test with g � h � i � 1 and a � d � 0 will test the remaining s-a-0 faults. To
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test a for s-a-1 (a1), we must set a � 0 and b � c � 1, as shown in Figure 10-2(b).
Then, if a is s-a-1, p will become 1. In order to transmit this change to the output, we
must have q � r � 0, as before. However, if we set d � g � 0 and e � f � h � i � 1,
we can test for d1 and g1 at the same time as a1. This same test vector also tests for
p1, q1, and r1. As shown in the table, we can test for b1, e1, and h1 with a single test
vector and test similarly for c1, f 1, and i1. Thus, we can test all s-a-0 and s-a-1 faults
with only six tests, whereas the brute-force approach would require 512 tests. When
we apply the six tests, we can determine whether or not a fault is present, but we
cannot determine the exact location of the fault. In the preceding analysis, we have
assumed that only one fault occurs at a time. In many cases the presence of multi-
ple faults will also be detected.
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FIGURE 10-2:
Testing an AND-OR
Circuit

TABLE 10-1: Test
Vectors for 
Figure 10-2

a b c d e f g h i Faults Tested

1 1 1 0 X X 0 X X a0, b0, c0, p0
0 X X 1 1 1 0 X X d0, e0, f0, q0
0 X X 0 X X 1 1 1 g0, h0, i0, r0
0 1 1 0 1 1 0 1 1 a1, d1, g1, p1, q1, r1
1 0 1 1 0 1 1 0 1 b1, e1, h1, p1, q1, r1
1 1 0 1 1 0 1 1 0 c1, f1, i1, p1, q1, r1

Testing multilevel circuits is considerably more complex than testing two-
level circuits. In order to test for an internal fault in a circuit, we must choose a
set of inputs that will excite that fault and then propagate the effect of that fault
to the circuit output. In Figure 10-3, a, b, c, d, and e are circuit inputs. If we want
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FIGURE 10-3: Fault
Detection Using
Path Sensitization

to test for gate input n s-a-1, n must be 0. This can be achieved if we make c � 0,
a � 0, and b � 1, as shown. In order to propagate the fault n s-a-1 to the output
F, we must make d � 1 and e � 0. With this set of inputs, if a, m, n, or p is s-a-1,
the output F will have the incorrect value and the fault can be detected.
Furthermore, if we change a to 1 and gate input a, m, n, or p is s-a-0, the output
F will change from 1 to 0. We say that the path through a, m, n, and p has been
sensitized, since any fault along that path can be detected. The method of path
sensitization allows us to test for a number of different stuck-at faults using
one set of circuit inputs.

Next, we try to determine a minimum set of test vectors to test the circuit of
Figure 10-4 for all single stuck-at-1 and stuck-at-0 faults. We assume that we can
apply inputs to A, B, C, and D and observe the output F and that the internal gate
inputs and outputs cannot be accessed. The general procedure to determine the test
vectors is the following:

1. Select an untested fault.
2. Determine the required ABCD inputs.
3. Determine the additional faults that are tested.
4. Repeat this procedure until tests are found for all of the faults.

Let us start by testing input p for s-a-1. In order to do this, we must choose inputs A,
B, C, and D such that p � 0, and if p is s-a-1, we must propagate this fault to the out-
put F so it can be observed. In order to propagate the fault, we must make c � 0 and
w � 1. We can make w � 1 by making t � 1 or u � 1. To make u � 1, we must have
both D and r � 1. Fortunately, our choice of C � 0 makes r � 1. To make p � 0, we
choose A � 0. By choosing B � 1, we can sensitize the path A-a-p-v-f-F so that the set
of inputs ABCD � 0101 will test for faults a1, p1, v1, and f1.This set of inputs also tests
for c s-a-1. We assume that c s-a-1 is a fault internal to the gate, so it is still possible to
have q � 0 and r � 1 if c s-a-1 occurs.
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To test for s-a-0 inputs along the path A-a-p-v-f-F, we can use the inputs ABCD �
1101. In addition to testing for faults a0, p0, v0, and f0, this input vector also tests the
following faults: b0, w0, u0, r0, q1, and d0. To determine tests for the remaining
stuck-at faults, we select an untested fault, determine the required ABCD inputs,
and then determine the additional faults that are tested. Then we can repeat this
procedure until tests are found for all of the faults. Table 10-2 lists a set five test vec-
tors that will test for all single stuck-at faults in Figure 10-4.
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FIGURE 10-4:
Example Circuit
for Stuck-At Fault
Testing (p stuck
at 1)

TABLE 10-2: Tests
for Stuck-At Faults

in Figure 10-4

Test
Vectors Normal Gate Inputs

A B C D a b p c q r d s t u v w F Faults Tested

0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 a1 p1 c1 v1 f1
1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 a0 b0 p0 q1 r0 d0 u0 v0 w0 f0
1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 b1 c0 s1 t0 v0 w0 f0
1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 a0 b0 d1 s0 t1 u1 w1 f1
1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 a0 b0 q0 r1 s0 t1 u1 w1 f1

In addition to stuck-at faults, other types of faults, such as bridging faults, may
occur. A bridging fault occurs when two unconnected signal lines are shorted
together. For a large combinational circuit, finding a minimum set of test vectors
that will test for all possible faults is very difficult and time consuming. For circuits
that contain redundant gates, testing for some of the faults may be impossible.
Even if a comprehensive set of test vectors can be found, applying all of the vec-
tors may take too much time and cost too much. For these reasons, it is common
practice to use a relatively small set of test vectors that will test most of the faults.
In general, determining such a set of vectors is a difficult and computationally
intensive problem. Many algorithms and corresponding computer programs have
been developed to generate such sets of test vectors. Computer programs have
also been developed to simulate faulty circuits. Such programs allow the user to
determine what percentage of possible faults are tested by a given set of input vec-
tors. The percentage of possible faults that can be tested by a set of input vectors
is called the coverage of the test vectors.
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10.2 Testing Sequential Logic
Testing sequential logic is generally much more difficult than testing combination-
al logic, because we must use sequences of inputs for testing. If we can observe only
the input and output sequences and not the state of the flip-flops in a sequential
circuit, a very large number of test sequences may be required. Basically, the prob-
lem is to determine if the circuit under test is equivalent to a correctly functioning
circuit. We will assume that the sequential circuit being tested has a reset input so
we can reset it to a known initial state. If we attempted to test the circuit using the
brute-force approach, we would reset the circuit to the initial state, apply a test
sequence, and observe the output sequence. If the output sequence was correct,
then we would repeat the test for another sequence. This process has to be repeated
for all possible input sequences. A large number of tests are required to test
exhaustively all states and all state transitions in the machine. Since the brute-force
approach is totally impractical, the question arises: Can we derive a relatively small
set of test sequences that will adequately test the circuit?

One way to derive test sequences for a sequential circuit is to convert it to an iter-
ative circuit.The iterative circuit means that the combinational part of the sequential
circuit is repeated several times to indicate the condition of the combinational part
of the circuit at each time. Since the iterative circuit is a combinational circuit, we
could derive test vectors for the iterative circuit using one of the standard methods
for combinational circuits.

As an example, Figure 10-5 shows a standard Mealy sequential circuit and the
corresponding iterative circuit. In these figures, X, Z, and Q can either be single vari-
ables or vectors. The iterative circuit has k � 1 identical copies of the combinational
network used in the sequential circuit, where k � 1 is the length of the sequence used
to test the sequential circuit. For the sequential circuit, X(t) represents a sequence of
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inputs in time. In the iterative circuit, X(0) X(1) . . . X(k) represents the same
sequence in space. Each cell of the iterative circuit computes Z(t) and Q(t � 1) in
terms of Q(t) and X(t). The leftmost cell computes the values for t � 0, the next cell
for t � 1, and so on. After the test vectors have been derived for the iterative circuit,
these vectors become the input sequences used to test the original sequential circuit.
The number of cells in the iterative circuit depends on the length of the sequences
required to test the sequential circuit.

Derivation of a small set of test sequences that will adequately test a sequential
circuit is generally difficult to do. Consider the state graph shown in Figure 10-6 and
the corresponding state table (Table 10-3). We assume that we can reset the circuit
to state S0. It is necessary that the test sequence cause the circuit to go through all
possible state transitions, but this is not an adequate test. For example, the input
sequence

X � 0 1 0 1 1 0 0 1 1

traverses all the arcs connecting the states and produces the output sequence

Z � 0 0 1 0 1 1 1 1 0

If we replace the arc from S3 to S0 with a self-loop, as shown by the dashed line, the
output sequence will be the same, but the new sequential machine is not equivalent
to the old one.

S0

S3S1

S2

0/1 

0/1 

1/1 1/1 

1/0 

0/1 

1/0 

0/0 

1/0 

FIGURE 10-6: State
Graph for Test
Example

TABLE 10-3: State
Table for 

Figure 10-6

Next State Output
Q1Q2 State X � 0 1 X � 0 1

00 S0 S0 S1 0 0
10 S1 S0 S2 1 1
01 S2 S3 S3 1 1
11 S3 S2 S0 1 0

A state graph in which every state can be reached from every other state is
referred to as strongly connected. A general test strategy for a sequential circuit with
a strongly connected state graph and no equivalent states is first to find an input
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sequence that will distinguish each state from the other states. Such an input sequence
is referred to as a distinguishing sequence. Two states of a state machine M are dis-
tinguishable if and only if there exists at least one finite input sequence, which, when
applied to M, causes different output sequences. If the output sequence is identical for
every possible input sequence, then obviously the states are equivalent. It has been
proved that if two states of machine M are distinguishable, they can be distinguished
by a sequence of length n � 1 or less, where n is the number of states in M [28]. Given
a distinguishing sequence, each entry in the state table can be verified.

For the example of Figure 10-6, one distinguishing sequence is 11. This distin-
guishing sequence can be obtained as follows. Divide the states S0, S1, S2, and S3 into
two groups, where the states in each group are equivalent if the test sequence is only
one-bit long. For instance,Table 10-3 shows that by applying a one bit test sequence,
we can distinguish between groups {S0, S3} and {S1, S2}. If the input is 1, output is 0
for {S0, S3} and 1 for {S1, S2}. States inside each partition are equivalent if the test
sequence is only a 1. Now, from Table 10-3, we can see that if we applied a test input
of 1 again, states in group {S0, S3} can be distinguished. The states in group {S1, S2}
can also be distinguished by the test input 1. Hence, the sequence 11 is sufficient to
distinguish among the four states. In the worst case, a sequence of three bits would
have been sufficient since there are only four states in the machine. If we start in S0,
the input sequence 11 gives the output sequence 01; for S1 the output is 11; for S2,
10; and for S3, 00. Thus, we can distinguish the four states by using the input
sequence 11. We can then verify every entry in the state table using the following
sequences, where R means reset to state S0:

Input Output Transition Verified

R 0 1 1 0 0 1 (S0 to S0)
R 1 1 1 0 1 1 (S0 to S1)
R 1 0 1 1 0 1 0 1 (S1 to S0)
R 1 1 1 1 0 1 1 0 (S1 to S2)
R 1 1 0 1 1 0 1 1 0 0 (S2 to S3)
R 1 1 1 1 1 0 1 1 0 0 (S2 to S3)
R 1 1 0 0 1 1 0 1 1 1 1 0 (S3 to S2)
R 1 1 0 1 1 1 0 1 1 0 0 1 (S3 to S0)

Another approach to deriving test sequences is based on testing for stuck-at
faults. Figure 10-7 shows the realization of Figure 10-6 using the following state
assignment: S0, 00; S1, 10; S2, 01; S3, 11. If we want to test for a s-a-1, we must first
excite the fault by going to state S1, in which Q1Q2 � 10 and then setting X � 0. In
normal operation, the next state will be S0. However, if a is s-a-1, then next state is
Q1Q2 � 01, which is S2. This test sequence can then be constructed as follows:

• To go to S1: reset followed by X � 1.
• To test a s-a-1: X � 0.
• To distinguish the state that is reached: X � 11.

The final sequence is R1011.The normal output is 0101, and the faulty output is 0110.
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We have shown some simple examples that illustrate some of the methods used
to derive test sequences for sequential circuits. As the number of inputs and states in
the circuit increases, the number and length of the required test sequence increases
rapidly, and the derivation of these test sequences becomes much more difficult.This,
in turn, means that the time and expense required to test the circuits increases rap-
idly with the number of inputs and states.

10.3 Scan Testing
The problem of testing a sequential circuit is greatly simplified if we can observe the
state of all the flip-flops instead of just observing the circuit outputs. For each state of
the flip-flops and for each input combination, we need to verify that the circuit out-
puts are correct and that the circuit goes to the correct next state. One approach
would be to connect the output of each flip-flop within the IC being tested to one of
the IC pins. Since the number of pins on the IC is very limited, this approach is not
very practical. So the question arises: How can we observe the state of all the flip-flops
without using up a large number of pins on the IC? If the flip-flops were arranged to
form a shift register, then we could shift out the state of the flip-flops bit by bit using
a single serial output pin on the IC. This leads to the concept of scan path testing.

Figure 10-8 shows a method of scan path testing based on two-port flip-flops.
In the usual way, the sequential circuit is separated into a combinational logic part
and a state register composed of flip-flops. Each of the flip-flops has two D inputs
and two clock inputs. When C1 is pulsed, the D1 input is stored in the flip-flop.
When C2 is pulsed, D2 is stored in the flip-flop. The Q output of each flip-flop is
connected to the D2 input of the next flip-flop to form a shift register. The next
state (Q1

�Q2
� . . . Qk

�) generated by the combinational logic is loaded into the
flip-flops when C1 is pulsed, and the new state (Q1 Q2 . . . Qk) feeds back into
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the combinational logic. When the circuit is not being tested, the system clock
(SCK � C1) is used. A set of inputs (X1X2 . . . Xn) is applied, the outputs (Z1Z2 . . .
Zm) are generated, SCK is pulsed, and the circuit goes to the next state.

Z1
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Zm

. . 
. Combinational logic 

D1
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Q
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SCK is system clock 

SDO is scan data output 
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Xn

. . 
. 

... 

... 

... 

FIGURE 10-8: Scan
Path Test Circuit
Using Two-Port
Flip-Flops

When the circuit is being tested, the flip-flops are set to a specified state by shift-
ing the state code into the register using the scan data input (SDI) and the test clock
(TCK). A test input vector (X1X2 . . . Xn) is applied, the outputs (Z1Z2 . . . Zm) are
verified, and SCK is pulsed to take the circuit to the next state.The next state is then
verified by pulsing TCK to shift the state code out of the scan data register via the
scan data output (SDO). This method reduces the problem of testing a sequential
circuit to that of testing a combinational circuit. Any of the standard methods can
be used to generate a set of test vectors for the combinational logic. Each test vector
contains (n � k) bits, since there are n X inputs and k state inputs to the combina-
tional logic. The X part of the test vector is applied directly, and the Q part is shifted
in via the SDI. In summary, the test procedure is as follows:

1. Scan in the test vector Qi values via SDI using the test clock TCK.
2. Apply the corresponding test values to the Xi inputs.
3. After sufficient time for the signals to propagate through the combinational

circuit, verify the output Zi values.
4. Apply one clock pulse to the system clock SCK to store the new values of Qi

�

into the corresponding flip-flops.
5. Scan out and verify the Qi values by pulsing the test clock TCK.
6. Repeat steps 1 through 5 for each test vector.

Steps 5 and 1 can overlap, since it is possible to scan in one test vector while scanning
out the previous test result.
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We will apply this method to test a sequential circuit with two inputs, three
flip-flops, and two outputs. The circuit is configured as in Figure 10-8 with
inputs X1X2, flip-flops Q1Q2Q3, and outputs Z1Z2. One row of the state transition
table is as follows:

Figure 10-9 shows the timing diagram for testing this row of the transition table.
First, 101 is shifted in using TCK, least significant bit (Q3) first. The input X1X2 � 00
is applied, and Z1Z2 � 10 is then read. SCK is pulsed and the circuit goes to state
010. As 010 is shifted out using TCK, 101 is shifted in for the next test. This process
continues until the test is completed.
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Q1Q2Q3 X1X2 � 00 01 11 10 00 01 11 10
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FIGURE 10-10: System with Flip-Flop Registers and Combinational Logic Blocks
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In general, a digital system implemented by an IC consists of flip-flop registers
separated by blocks of combinational logic, as shown in Figure 10-10(a). In order to
apply scan test to the IC, we need to replace the flip-flops with two-port flip-flops
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10.4 Boundary Scan 479

(or other types of scannable flip-flops) and link all the flip-flops into a scan chain,
as shown in Figure 10-10(b). Then we can scan test data into all the registers, apply
the test clock, and scan out the results.

When multiple ICs are mounted on a PC board, it is possible to chain together
the scan registers in each IC so that the entire board can be tested using a single
serial access port (Figure 10-11).

Scan register 
SDI 

Scan register 
SDO SDI SDO 

Scan register 
SDI SDO 

IC 1 IC 2 IC n

Test controller 
TCK 
SCK 
SDI 

FIGURE 10-11: Scan
Test Configuration
with Multiple ICs

10.4 Boundary Scan
As ICs have become more complex, with more and more pins, printed circuit
boards have become denser, with multiple layers and very fine traces. Testing
these PC boards after they have been loaded with complex ICs has become very
difficult. Testing a board by means of its edge connector does not provide
adequate testing and may require very long test sequences. When PC boards were
less dense with wider traces, testing was often done using a bed-of-nails test
fixture. This method used sharp probes to contact the traces on the board so
test data could be applied to and read from various ICs on the board. Bed-of-
nails testing is not practical for high-density PC boards with fine traces and
complex ICs.

Boundary scan test methodology was introduced to facilitate the testing of com-
plex PC boards. It is an integrated method for testing circuit boards with many ICs.
A standard for boundary scan testing was developed by the Joint Test Action Group
(JTAG), and this standard has been adopted as ANSI/IEEE Standard 1149.1,
“Standard Test Access Port and Boundary-Scan Architecture.” Many IC manufac-
turers make ICs that conform to this standard. Such ICs can be linked together on
a PC board so that they can be tested using only a few pins on the PC board edge
connector.

Figure 10-12 shows an IC with added boundary scan logic according to the IEEE
standard. One cell of the boundary scan register (BSR) is placed between each input
or output pin and the internal core logic. Four or five pins of the IC are devoted
to the test-access port, or TAP.The TAP controller and additional test logic are also
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480 Hardware Testing and Design for Testability

added to the core logic on the IC. The functions of the TAP pins (according to the
standard) are as follows:

TDI Test data input (this data is shifted serially into the BSR)
TCK Test clock
TMS Test mode select
TDO Test data output (serial output from the BSR)
TRST Test reset (resets the TAP controller and test logic; optional pin)

A PC board with several boundary scan ICs is shown in Figure 10-13. The
boundary scan registers in the ICs are linked serially in a single chain with input
TDI and output TDO. TCK, TMS, and TRST (if used) are connected in parallel to
all of the ICs. Using these signals, test instructions and test data can be clocked into
every IC on the board.
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Figure 10-12 illustrated the boundary scan cells on the periphery of each IC that
conforms to the boundary scan standard.The structure of a typical boundary scan cell
is shown in Figure 10-14.A boundary scan cell has two inputs,TDI serial input and the
parallel input pin. Similarly, it has two outputs, the serial out and the parallel data out.
When in the normal mode, data from the parallel input pin is routed to the internal
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core logic in the IC, or data from the core logic is routed to the output pin. When in
the shift mode, serial data from the previous cell is clocked into flip-flop Q1 at the
same time as the data stored in Q1 is clocked into the next boundary scan cell. After
Q2 is updated, test data can be supplied to the internal logic or to the output pin.

Figure 10-15 shows the basic boundary scan architecture that is implemented on
each boundary scan IC. The boundary scan register is divided into two parts. BSR1
represents the shift register, which consists of the Q1 flip-flops in the boundary scan
cells. BSR2 represents the Q2 flip-flops, which can be parallel-loaded from BSR1
when an update signal is received. The serial input data (TDI) can be shifted into
the boundary scan register (BSR1), through a bypass register, or into the instruction
register.The TAP controller on each IC contains a state machine (Figure 10-16).The
input to the state machine is TMS, and the sequence of 0’s and 1’s applied to TMS
determines whether the TDI data is shifted into the instruction register or through
the boundary scan cells. The TAP controller and the instruction register control the
operation of the boundary scan cells.

The TAP controller state machine has 16 states. States 9 through 15 are used
for loading and updating the instruction register, and states 2 through 8 are used for
loading and updating the data register (BSR1). The TRST signal, if used, resets the
state to Test-Logic-Reset. The state graph has the interesting property that, regard-
less of the initial state, a sequence of five 1’s on the TMS input will always reset the
machine to state 0.
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The following instructions are defined in the IEEE standard:

• BYPASS: This instruction allows the TDI serial data to go through a 1-bit bypass
register on the IC instead of through the boundary scan register. In this way, one
or more ICs on the PC board may be bypassed while other ICs are being tested.

• SAMPLE/PRELOAD: This instruction is used to scan the boundary scan register
without interfering with the normal operation of the core logic. Data is transferred
to or from the core logic from or to the IC pins without interference. Samples of
this data can be taken and scanned out through the boundary scan register. Test
data can be shifted into the BSR.

• EXTEST: This instruction allows board-level interconnect testing, and it also
allows testing of clusters of components that do not incorporate the boundary
scan test features. Test data is shifted into the BSR and then it goes to the output
pins. Data from the input pins is captured by the BSR.

• INTEST (optional): This instruction allows testing of the core logic by shifting test
data into the boundary scan register. Data shifted into the BSR takes the place of
data from the input pins, and output data from the core logic is loaded into the BSR.

• RUNBIST (optional): This instruction causes special built-in self-test (BIST)
logic within the IC to execute. (Section 10.5 explains how BIST logic can be used
to generate test sequences and check the test results.)

Several other optional and user-defined instructions may also be included.
The data paths between the IC pins, the boundary scan registers, and the core logic

depend on the instruction being executed as well as the state of the TAP controller.
Figures 10-17, 10-18, and 10-19 highlight the data paths for the Sample/Preload,
Extest, and Intest instructions. In each case, the boundary scan registers BSR1 and
BSR2 have been split into two sections—one associated with the input pins and one
associated with the output pins. Test data can be shifted into BSR1 from TDI and
shifted out to TDO.

For the Sample/Preload instruction (Figure 10-17) the core logic operates in the
normal mode with inputs from the input pins of the IC and outputs going to the
output pins. When the controller is in the CaptureDR state, BSR1 is parallel-loaded
from the input pins and from the outputs of the core logic. In the UpdateDR state,
BSR2 is loaded from BSR1.
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For the Extest instruction (Figure 10-18) the core logic is not used. In the
UpdateDR state, BSR1 is loaded into BSR2 and the data is routed to the output
pins of the IC. In the CaptureDR state, data from the input pins is loaded into
BSR1.

For the Intest instruction (Figure 10-19) the IC pins are not used. In the UpdateDR
state, test data that has previously been shifted into BSR1 is loaded into BSR2 and
routed to the core logic inputs. In the CaptureDR state, data from the core logic is
loaded into BSR1.

The following simplified example illustrates how the connections between two
ICs can be tested using the SAMPLE/PRELOAD and EXTEST instructions. The
test is intended to check for shorts and opens in the PC board traces. Both ICs have
two input pins and two output pins, as shown in Figure 10-20.Test data is shifted into
the BSRs via TDI. Then data from the input pins is parallel-loaded into the BSRs
and shifted out via TDO. We assume that the instruction register on each IC is
three bits long with EXTEST coded as 000 and SAMPLE/PRELOAD as 001. The
core logic in IC1 is an inverter connected as a clock oscillator and two flip-flops.The
core logic in IC2 is an inverter and XOR gate. The two ICs are interconnected to
form a 2-bit counter.
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The steps required to test the connections between the ICs are as follows:

1. Reset the TAP state machine to the Test-Logic-Reset state by inputting a
sequence of five 1’s on TMS.

2. Scan in the SAMPLE/PRELOAD instruction to both ICs using the sequences
for TMS and TDI given here. The state numbers refer to Figure 10-16.

State: 0 1 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 0 1 1 0 0 0 0 0 0 0 1 1 1
TDI: – – – – – 1 0 0 1 0 0 – –

The TMS sequence 01100 takes the TAP controller to the Shift-IR state. In
this state, copies of the SAMPLE/PRELOAD instruction (code 001) are
shifted into the instruction registers on both ICs. In the Update-IR state, the
instructions are loaded into the instruction decode registers. Then the TAP
controller goes back to the Select DR-scan state.

3. Preload the first set of test data into the ICs using the following sequences
for TMS and TDI:

State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 0 1 0 0 0 1 0 0 – –

Data is shifted into BSR1 in the Shift-DR state, and it is transferred to BSR2
in the Update-DR state. The result is as follows:
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D1 Q1

TDI TDO 

IC1 IC2 
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FIGURE 10-20:
Interconnection
Testing Using
Boundary Scan
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4. Scan in the EXTEST instruction to both ICs using the following sequences:

State: 2 9 10 11 11 11 11 11 11 12 15 2
TMS: 1 0 0 0 0 0 0 0 1 1 1
TDI: – – – 0 0 0 0 0 0 – –

The EXTEST instruction (000) is scanned into the instruction register in
state Shift-IR and loaded into the instruction decode register in state
Update-IR. At this point, the preloaded test data goes to the output pins,
and it is transmitted to the adjacent IC input pins via the printed circuit
board traces.

5. Capture the test results from the IC inputs. Scan this data out to TDO and
scan the second set of test data in using the following sequences:

State: 2 3 4 4 4 4 4 4 4 4 5 8 2
TMS: 0 0 0 0 0 0 0 0 0 1 1 1
TDI: – – 1 0 0 0 1 0 0 0 – –
TDO: – – x x 1 0 x x 1 0 – –

The data from the input pins is loaded into BSR1 in state Capture-DR. At this
time, if no faults have been detected, the BSRs should be configured as shown
below, where the X’s indicate captured data that is not relevant to the test.

1 0 

0 1 X 

0 0 

X 

1 0 

0 1 X 

0 0 

X TDO TDI 

BSR1 

BSR2 

0 1 0 1 

The test results are then shifted out of BSR1 in state Shift-DR as the new
test data is shifted in. The new data is loaded into BSR2 in the Update-IR
state.

6. Capture the test results from the IC inputs. Scan this data out to TDO and
scan all 0’s in using the following sequences:

State: 2 3 4 4 4 4 4 4 4 4 5 8 2 9 0
TMS: 0 0 0 0 0 0 0 0 0 1 1 1 1 1
TDI: – – 0 0 0 0 0 0 0 0 – – – –
TDO: – – x x 0 1 x x 0 1 – – – –

The data from the input pins is loaded into BSR1 in state Capture-DR. Then it
is shifted out in state Shift-DR as all 0’s are shifted in. The 0’s are loaded into
BSR2 in the Update-DR state. The controller then returns to the Test-Logic-
Reset state, and normal operation of the ICs can then occur. The interconnec-
tion test passes if the observed TDO sequences match the ones given above.

VHDL code for the basic boundary scan architecture of Figure 10-15 is given in
Figure 10-21. Only the three mandatory instructions (EXTEST, SAMPLE/PRELOAD,
and BYPASS) are implemented using a 3-bit instruction register.These instructions are
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coded as 000, 001, and 111, respectively. The number of cells in the BSR is a generic
parameter.A second generic parameter, CellType, is a bit_vector that specifies whether
each cell is an input cell or output cell. The case statement implements the TAP con-
troller state machine. The instruction code is scanned in and loaded into IDR in states
Capture-IR, Shift-IR, and Update-IR. The instructions are executed in states Capture-
DR, Shift-DR, and Update-DR. The actions taken in these states depend on the
instruction being executed. The register updates and state changes all occur on the
rising edge of TCK. The VHDL code implements most of the functions required by
the IEEE boundary scan standard, but it does not fully comply with the standard.

FIGURE 10-21: VHDL Code for Basic Boundary Scan Architecture

-- VHDL for Boundary Scan Architecture of Figure 10-15

entity BS_arch is
generic(NCELLS: natural range 2 to 120 := 2);

-- number of boundary scan cells
port(TCK, TMS, TDI: in bit;

TDO: out bit;
BSRin: in bit_vector(1 to NCELLS);
BSRout: inout bit_vector(1 to NCELLS);
CellType: bit_vector(1 to NCELLS));
-- '0' for input cell, '1' for output cell

end BS_arch;

architecture behavior of BS_arch is
signal IR, IDR: bit_vector(1 to 3); -- instruction registers
signal BSR1, BSR2: bit_vector(1 to NCELLS); -- boundary scan cells
signal BYPASS: bit; -- bypass bit
type TAPstate is (TestLogicReset, RunTest_Idle,
SelectDRScan, CaptureDR, ShiftDR, Exit1DR, PauseDR, Exit2DR, UpdateDR,
SelectIRScan, CaptureIR, ShiftIR, Exit1IR, PauseIR, Exit2IR, UpdateIR);

signal St: TAPstate; -- TAP Controller State
begin
process (TCK)
begin
if TCK'event and TCK='1' then
-- TAP Controller State Machine
case St is

when TestLogicReset =>
if TMS='0' then St <= RunTest_Idle; else St<=TestLogicReset; end if;

when RunTest_Idle =>
if TMS='0' then St <= RunTest_Idle; else St <= SelectDRScan; end if;

when SelectDRScan =>
if TMS='0' then St <= CaptureDR; else St <= SelectIRScan; end if;

when CaptureDR =>
if IDR = "111" then BYPASS <= '0';
elsif IDR = "000" then -- EXTEST (input cells capture pin data)
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BSR1 <= (not CellType and BSRin) or (CellType and BSR1);
elsif IDR = "001" then – SAMPLE�PRELOAD
BSR1 <= BSRin;

end if; -- all cells capture cell input data
if TMS='0' then St <= ShiftDR; else St <= Exit1DR; end if;

when ShiftDR =>
if IDR = "111" then BYPASS <= TDI; -- shift data through bypass reg.
else BSR1 <= TDI & BSR1(1 to NCELLS-1); end if;
-- shift data into BSR
if TMS='0' then St <= ShiftDR; else St <= Exit1DR; end if;

when Exit1DR =>
if TMS='0' then St <= PauseDR; else St <= UpdateDR; end if;

when PauseDR =>
if TMS='0' then St <= PauseDR; else St <= Exit2DR; end if;

when Exit2DR =>
if TMS='0' then St <= ShiftDR; else St <= UpdateDR; end if;

when UpdateDR =>
if IDR = "000" then -- EXTEST (update output reg. for output cells)
BSR2 <= (CellType and BSR1) or (not CellType and BSR2);

elsif IDR = "001" then -- SAMPLE�PRELOAD
BSR2 <= BSR1; -- update output reg. in all cells

end if;
if TMS='0' then St <= RunTest_Idle; else St <= SelectDRScan; end if;

when SelectIRScan =>
if TMS='0' then St <= CaptureIR; else St <= TestLogicReset; end if;

when CaptureIR =>
IR <= "001"; -- load 2 LSBs of IR with 01 as required by the standard
if TMS='0' then St <= ShiftIR; else St <= Exit1IR; end if;

when ShiftIR =>
IR <= TDI & IR(1 to 2); -- shift in instruction code
if TMS='0' then St <= ShiftIR; else St <= Exit1IR; end if;

when Exit1IR =>
if TMS='0' then St <= PauseIR; else St <= UpdateIR; end if;

when PauseIR =>
if TMS='0' then St <= PauseIR; else St <= Exit2IR; end if;

when Exit2IR =>
if TMS='0' then St <= ShiftIR; else St <= UpdateIR; end if;

when UpdateIR =>
IDR <= IR; -- update instruction decode register
if TMS='0' then St <= RunTest_Idle; else St <= SelectDRScan; end if;

end case;
end if;

end process;

TDO <= BYPASS when St = ShiftDR and IDR = "111" -- BYPASS
else BSR1(NCELLS) when St=ShiftDR -- EXTEST or SAMPLE�PRELOAD
else IR(3) when St=ShiftIR;

BSRout <= BSRin when (St = TestLogicReset or not (IDR = "000"))
else BSR2; -- define cell outputs

end behavior;
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VHDL code that implements the interconnection test example of Figure 10-20
is given in Figure 10-22. The TMS and TDI test patterns are the concatenation of
the test patterns used in steps 2 through 6.A copy of the basic boundary scan archi-
tecture is instantiated for IC1 and for IC2. The external connections and internal
logic for each IC are then specified. The internal clock frequency was arbitrarily
chosen to be different than the test clock frequency. The test process runs the
internal logic, then runs the scan test, and then runs the internal logic again. The
test results verify that the IC logic runs correctly and that the scan test produces
the expected results.

FIGURE 10-22: VHDL Code for Interconnection Test Example

-- Boundary Scan Tester

entity system is
end system;

architecture IC_test of system is
component BS_arch is
generic(NCELLS:natural range 2 to 120 := 4);
port(TCK, TMS, TDI: in bit;

TDO: out bit;
BSRin: in bit_vector(1 to NCELLS);
BSRout: inout bit_vector(1 to NCELLS);
CellType: in bit_vector(1 to NCELLS));
-- '0' for input cell, '1' for output cell

end component;

signal TCK, TMS, TDI, TDO, TDO1: bit;
signal Q0, Q1, CLK1: bit;
signal BSR1in, BSR1out, BSR2in, BSR2out: bit_vector(1 to 4);
signal count: integer := 0;

constant TMSpattern: bit_vector(0 to 62) :=
"011000000011100000000011110000000111000000000111000000000111111";

constant TDIpattern: bit_vector(0 to 62) :=
"000001001000000010001000000000000000001000100000000000000000000";

begin
BS1: BS_arch port map(TCK, TMS, TDI, TDO1, BSR1in, BSR1out, "0011");
BS2: BS_arch port map(TCK, TMS, TDO1, TDO, BSR2in, BSR2out, "0011");
-- each BSR has two input cells and two output cells
BSR1in(1) <= BSR2out(4); -- IC1 external connections
SR1in(2) <= BSR2out(3);
BSR1in(3) <= Q1; -- IC1 internal logic
BSR1in(4) <= Q0;
CLK1 <= not CLK1 after 7 ns; -- internal clock
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process(CLK1)
begin
if CLK1 = '1' then -- D flip-flops

Q0 <= BSR1out(1);
Q1 <= BSR1out(2);

end if;
end process;

BSR2in(1) <= BSR1out(4); -- IC2 external connections
BSR2in(2) <= BSR1out(3);
BSR2in(3) <= BSR2out(1) xor BSR2out(2); -- IC2 internal logic
BSR2in(4) <= not BSR2out(1);

TCK <= not TCK after 5 ns; -- test clock

process
begin

TMS <= '1';
wait for 70 ns; -- run internal logic
wait until TCK = '1';
for i in TMSpattern'range loop -- run scan test

TMS <= TMSpattern(i);
TDI <= TDIpattern(i);
wait for 0 ns;
count <= i + 1; -- count triggers listing output
wait until TCK = '1';

end loop;
wait for 70 ns; -- run internal logic
wait; -- stop

end process;
end IC_test;

10.5 Built-In Self-Test
As digital systems become more and more complex, they become much harder and
more expensive to test. One solution to this problem is to add logic to the IC so that
it can test itself. This is referred to as built-in self-test, or BIST. Figure 10-23 illus-
trates the general method for using BIST. An on-chip test generator applies test
patterns to the circuit under test. The resulting output is observed by the response
monitor, which produces an error signal if an incorrect output pattern is detected.

BIST is often used for testing memory. The regular structure of a memory chip
makes it easy to generate test patterns. Figure 10-24 shows a block diagram of a self-
test circuit for a RAM. The BIST controller enables the write-data generator
and address counter so that data is written to each location in the RAM. Then the
address counter and read-data generator are enabled, and the data read from each

10Ch10.qxd  3/13/07  3:25 PM  Page 490
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RAM location is compared with the output of the read-data generator to verify that
it is correct. Memory is often tested by writing checkerboard patterns (alternating
0’s and 1’s) in all memory locations and reading them back. For instance, we could
first write alternating 0’s and 1’s in all even addresses and alternating 1’s and 0’s in
all odd addresses. After reading these back, the odd and even address patterns can
be swapped to complete the test. In another test, the March test, each cell is read
and then the complemented value is written. This process is continued until the
entire memory array has been traversed. Then the process is repeated in the reverse
order of addresses.

FIGURE 10-23:
Generic BIST
Scheme
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FIGURE 10-24:
Self-Test Circuit
for RAM

The test circuit can be simplified by using a signature register. The signature reg-
ister compresses the output data into a short string of bits called a signature, and this
signature is compared with the signature for a correctly functioning component.
A multiple-input signature register (MISR) combines and compresses several
output streams into a single signature. Figure 10-25 shows a simplified version of the
RAM self-test circuit. The read-data generator and comparator have been elimi-
nated and replaced with a MISR. One type of MISR simply forms a check sum by
adding up all the data bytes stored in the RAM. When testing a ROM, Figure 10-25
can be simplified further, since no write-data generator is needed.
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Linear feedback shift registers (LFSRs) are often used to generate test patterns
and to compress test outputs into signatures. An LFSR is a shift register whose serial
input bit is a linear function of some bits of the current shift register content. The bit
positions that affect the serial input are called taps. The general form of a LFSR is a
shift register with two or more flip-flop outputs XOR’ed together and fed back into
the first flip-flop.The name linear comes from the fact that exclusive OR is equivalent
to modulo-2 addition, and addition is a linear operation. Figure 10-26 shows an exam-
ple of a LFSR. The outputs from the first and fourth flip-flops are XOR’ed together
and fed back into the D input of the first flip-flop; the taps are positions 1 and 4.
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generator 
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controller 

FIGURE 10-25:
Self-Test Circuit
for RAM with
Signature Register
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FIGURE 10-26:
Four-Bit Linear
Feedback Shift
Register (LFSR)

By proper choice of the outputs that are fed back through the exclusive OR gate,
it is possible to generate 2n – 1 different bit patterns using an n-bit shift register. All
possible patterns can be generated except for all 0’s. The patterns generated by the
LFSR of Figure 10-26 are

1000, 1100, 1110, 1111, 0111, 1011, 0101, 1010, 1101, 0110, 0011,

1001, 0100, 0010, 0001, 1000, . . .

These patterns have no obvious order, and they have certain randomness proper-
ties. Such an LFSR is often referred to as a pseudo-random pattern generator, or
PRPG. PRPGs are obviously very useful for BIST, since they can generate a large
number of test patterns with a small amount of logic circuitry. Table 10-4 gives a
feedback combination that will generate all 2n � 1 bit patterns for some LFSRs with
lengths in the range n � 4 to 32.
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If the all-0s test pattern is required, an n-bit LFSR can be modified by adding an
AND gate with n – 1 inputs, as shown in Figure 10-27 for n � 4. When in state 0001,
the next state is 0000; when in state 0000, the next state is 1000; otherwise, the
sequence is the same as for Figure 10-26.

TABLE 10-4:
Feedback for

Maximum-Length
LFSR Sequence

n Feedback

4, 6, 7 Q1 � Qn
5 Q2 � Q5
8 Q2 � Q3 � Q4 � Q8
12 Q1 � Q4 � Q6 � Q12
14, 16 Q3 � Q4 � Q5 � Qn
24 Q1 � Q2 � Q7 � Q24
32 Q1 � Q2 � Q22 � Q32
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FIGURE 10-27:
Modified LFSR with
0000 State

An MISR can be constructed by modifying a LFSR by adding XOR gates, as
shown in Figure 10-28.The test data (Z1Z2Z3Z4) is XOR’ed into the register with each
clock, and the final result represents a signature that can be compared with the signa-
ture for a known correctly functioning component.This type of signature analysis will
catch many, but not all, possible errors. An n-bit signature register maps all possible
input streams into one of the 2n possible signatures. One of these is the correct signa-
ture, and the others indicate that errors have occurred. The probability that an incor-
rect input sequence will map to the correct signature is of the order of 1/2n.
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Z1 Z 2 Z 3 Z 4FIGURE 10-28:
Multiple-Input
Signature Register
(MISR)

For the MISR of Figure 10-28, assume that the correct input sequence is 1010,
0001, 1110, 1111, 0100, 1011, 1001, 1000, 0101, 0110, 0011, 1101, 0111, 0010, 1100. This
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sequence maps to the signature 0010, assuming the initial contents of the MISR to
be 0000. Any input sequence that differs in one bit will map to a different signature.
For example, if 0001 in the sequence is changed to 1001, the resulting sequence maps
to 0000. Most sequences with two errors will be detected, but if we change 0001 to
1001 and 0010 to 0110 in the original sequence, the result maps to 0010, which is the
correct signature, so the errors would not be detected.

Several types of architectures have been proposed for BIST. Two popular exam-
ples are the STUMPS architecture and the BILBO architecture.

STUMPS stands for Self-Testing Using an MISR and Parallel SRSG. SRSG,
in turn, stands for Shift Register Sequence Generator. STUMPS is a BIST archi-
tecture that uses scan chains. An overview of the STUMPS architecture is shown in
Figure 10-29. A pseudo-random pattern generator feeds test stimulus to the scan
chains, and after a capture cycle, the test response analyzer receives the test
responses. The test procedure in STUMPS is the following:

1. Scan in patterns from the test pattern generator (LFSR) into all scan chains.
2. Switch to normal function mode and clock once with system clock.
3. Shift out scan chain into test response analyzer (MISR) where test signature is

generated.

FIGURE 10-29:
The STUMPS
Architecture
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If the scan chain contains 100 scan cells, steps 1 and 3 will take 100 clocks. All
scan chains should first be filled by the pseudo-random generator; hence, long scan
chains necessitate long testing times. Since one test is done per scan, the STUMPS
architecture is called a test-per-scan scheme. In order to reduce the testing time, a
large number of parallel scan chains can be used, which reduces the time for filling
the scan chains with the test since all scan chains can be loaded in parallel.

The STUMPS architecture was originally developed for self-testing of multi-
chip modules [7]. The scan chain on each logic chip (module) is loaded in parallel
from the pseudo-random pattern source. The number of clock cycles required is
equal to the number of flip-flops in the longest scan chain. If there are m scan cells
in the longest scan chain, it will take 2m � 1 cycles to perform one test (m cycles for
scan-in, one for capture, and m cycles for scan out). The shorter scan chains will
overflow into the MISR, but that will not affect the final correct signature.
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In order to reduce test-times, steps 1 and 3 can be overlapped.When the scan chain
is unloaded into the MISR after one test, simultaneously the next pseudo-random
pattern set from the SRSG can be loaded into the scan chain (i.e., when test response
from test I is being shifted out, test pattern for test I � 1 can be shifted in). Assuming
overlap between scan-out of a test and scan-in of the following test, each test vector
will take m � 1 cycles, and it will take n(m � 1) � m cycles to apply n test vectors,
including the m cycles taken for the last scan-out.

As opposed to the test-per-scan scheme just discussed, a test-per-clock scheme
can be used for faster testing. One such scheme is called the BILBO (Built-In Logic
Block Observer) technique. In BILBO schemes, the scan register is modified so that
parts of the scan register can serve as a state register, pattern generator, signature
register, or shift register. When used as a shift register, the test data can be scanned
in and out in the usual way. During testing, part of the scan register can be used as
a pattern generator (PRPG) and part as a signature register (MISR) to test one of
the combinational blocks. The roles can then be changed to test another combina-
tional block. When the testing is finished, the scan register is placed in the state reg-
ister mode for normal operation. After the BILBO registers are initialized, since
there is no loading of test patterns as in the case of scan chains, a test can be applied
in each clock cycle. Hence, this is categorized as a test-per-clock BIST scheme.
BILBO involves shorter test lengths, but more test hardware.

Figure 10-30 shows the placement of BILBO registers for testing a circuit with
two combinational blocks. Combinational circuit 1 is tested when the first BILBO is
used as a PRPG and the second as an MISR. The roles of the registers are reversed
to test combinational circuit 2. In the normal operating mode, both BILBOs serve as
registers for the associated combinational logic. To scan data in and out, both
BILBOs operate in the shift register mode.
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FIGURE 10-30: BIST
Using BILBO
Registers

Figure 10-31 shows the structure of one version of a 4-bit BILBO register. The
control inputs B1 and B2 determine the operating mode. Si and So are the serial
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input and output for the shift register mode. The Z’s are inputs from the combina-
tional logic. The equations for this BILBO register are

D1 � Z1 B1 � (Si B2� � FB B2) (B1� � B2)

Di � Zi B1 � Qi � 1 (B1� � B2) (i � 1)

When B1 � B2 � 0, these equations reduce to

D1 � Si and Di � Qi � 1 (i � 1)

which corresponds to the shift register mode. When B1 � 0 and B2 � 1, the equa-
tions reduce to

D1 � FB, Di � Qi � 1

which corresponds to the PRPG mode, and the BILBO register is equivalent to
Figure 10-26. When B1 � 1 and B2 � 0, the equations reduce to

D1 � Z1, Di � Zi

which corresponds to the normal operating mode. When B1 � B2 � 1, the equations
reduce to

D1 � Z1 � FB, Di � Zi � Qi � 1

D1 Q1
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FB FIGURE 10-31:
Four-Bit BILBO
Register
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FIGURE 10-32: VHDL Code for BILBO Register of Figure 10-31

entity BILBO is -- BILBO Register
generic (NBITS: natural range 4 to 8 := 4);
port (Clk, CE, B1, B2, Si: in bit;

So: out bit;
Z: in bit_vector(1 to NBITS);
Q: inout bit_vector(1 to NBITS));

end BILBO;

architecture behavior of BILBO is
signal FB: bit;

begin
Gen8: if NBITS = 8 generate
FB <= Q(2) xor Q(3) xor Q(NBITS); end generate;

Gen5: if NBITS = 5 generate
FB <= Q(2) xor Q(NBITS); end generate;

GenX: if not(NBITS = 5 or NBITS = 8) generate
FB <= Q(1) xor Q(NBITS); end generate;

process(Clk)
variable mode: bit_vector(1 downto 0);

begin
if (Clk = '1' and CE = '1') then
mode := B1 & B2;
case mode is

when "00" => -- Shift register mode
Q <= Si & Q(1 to NBITS-1);

when "01" => -- Pseudo Random Pattern Generator mode
Q <= FB & Q(1 to NBITS-1);

when "10" => -- Normal Operating mode
Q <= Z;

when "11" => -- Multiple Input Signature Register mode
Q <= Z(1 to NBITS) xor (FB & Q(1 to NBITS-1));

end case;
end if;

end process;
So <= Q(NBITS);

end behavior;

which corresponds to the MISR mode, and the BILBO register is equivalent to
Figure 10-28. In summary, the BILBO operating modes are as follows:

B1B2 Operating Mode

00 Shift register
01 PRPG
10 Normal
11 MISR

Figure 10-32 shows the VHDL description of an n-bit BILBO register. NBITS,
which equals the number of bits, is a generic parameter in the range 4 through 8.The
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The VHDL code for the system is given in Figure 10-34, and a test bench is given
in Figure 10-35. The system uses three BILBO registers and the 4-bit adder of
Figure 8-20. The test bench scans in a test vector to initialize the BILBO registers;
then it runs the test with registers A and B used as PRPGs and register C as a MISR.
The resulting signature is shifted out and compared with the correct signature.

FIGURE 10-33:
System with BILBO
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FIGURE 10-34: VHDL Code for System with BILBO Registers and Tester

entity BILBO_System is
port(Clk, LdA, LdB, LdC, B1, B2, Si: in bit;

So: out bit;
DBus: in bit_vector(3 downto 0);
Output: inout bit_vector(4 downto 0));

end BILBO_System;

register is functionally equivalent to Figure 10-31, except that we have added a clock
enable (CE). The feedback (FB) for the LFSR depends on the number of bits.

The system shown in Figure 10-33 illustrates the use of BILBO registers. In this
system, registers A and B can be loaded from the Dbus using the LDA and LDB
signals. Then the registers are added and the sum and carry are stored in register C.
When B1 & B2 � 10, the registers are in the normal mode (Test � 0), and loading
of the registers is controlled by LDA, LDB, and LDC. To test the adder, we first set
B1 & B2 � 00 to place the registers in the shift register mode and scan in initial val-
ues for A, B, and C. Then we set B1 & B2 � 01, which places registers A and B in
PRPG mode and register C in MISR mode. After 15 clocks, the test is complete.
Then we can set B1 & B2 � 00 and scan out the signature.
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10.5 Built-In Self-Test 499

architecture BSys1 of BILBO_System is
component Adder4 is
port(A, B: in bit_vector(3 downto 0); Ci: in bit;

S: out bit_vector(3 downto 0); Co: out bit);
end component;
component BILBO is
generic(NBITS: natural range 4 to 8 := 4);
port(Clk, CE, B1, B2, Si : in bit;

So: out bit;
Z: in bit_vector(1 to NBITS);
Q: inout bit_vector(1 to NBITS));

end component;

signal Aout, Bout: bit_vector(3 downto 0);
signal Cin: bit_vector(4 downto 0);
alias Carry: bit is Cin(4);
alias Sum: bit_vector(3 downto 0) is Cin(3 downto 0);
signal ACE, BCE, CCE, CB1, Test, S1, S2: bit;

begin
Test <= not B1 or B2;
ACE <= Test or LdA;
BCE <= Test or LdB;
CCE <= Test or LdC;
CB1 <= B1 xor B2;
RegA: BILBO generic map (4) port map(Clk, ACE, B1, B2, S1, S2, DBus, Aout);
RegB: BILBO generic map (4) port map(Clk, BCE, B1, B2, Si, S1, DBus, Bout);
RegC: BILBO generic map (5) port map(Clk, CCE, CB1, B2, S2, So, Cin, Output);
Adder: Adder4 port map(Aout, Bout, '0', Sum, Carry);

end BSys1;

FIGURE 10-35: Test Bench for BILBO System

-- System with BILBO test bench

entity BILBO_test is
end BILBO_test;

architecture Btest of BILBO_test is
component BILBO_System is
port(Clk, LdA, LdB, LdC, B1, B2, Si: in bit;

So: out bit;
DBus: in bit_vector(3 downto 0);
Output: inout bit_vector(4 downto 0));

end component;
signal Clk: bit := '0';
signal LdA, LdB, LdC, B1, B2, Si, So: bit := '0';
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In this chapter, we introduced the subject of testing hardware, including combi-
national circuits, sequential circuits, complex ICs, and PC boards. Use of scan tech-
niques for testing and built-in self-test has become a necessity as digital systems
have become more complex. It is very important that design for testability be
considered early in the design process so that the final hardware can be tested effi-
ciently and economically.

signal DBus: bit_vector(3 downto 0);
signal Output: bit_vector(4 downto 0);
signal Sig: bit_vector(4 downto 0);

constant test_vector: bit_vector(12 downto 0) := "1000110000000";
constant test_result: bit_vector(4 downto 0) := "01011";

begin
clk <= not clk after 25 ns;
Sys: BILBO_System port map(Clk,Lda,LdB,LdC,B1,B2,Si,So,DBus,Output);
process
begin
B1 <= '0'; B2 <= '0';         -- Shift in test vector
for i in test_vector'right to test_vector'left loop

Si <= test_vector(i);
wait until clk = '1';

end loop;

B1 <= '0'; B2 <= '1'; -- Use PRPG and MISR
for i in 1 to 15 loop

wait until clk = '1';
end loop;

B1 <= '0'; B2 <= '0'; -- Shift signature out
for i in 0 to 5 loop

Sig <= So & Sig(4 downto 1);
wait until clk � '1';

end loop;

if (Sig = test_result) then -- Compare signature
report "System passed test.";

else
report "System did not pass test!";

end if;

wait;
end process;

end Btest;
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Problems
10.1 (a) Determine the necessary inputs to the following circuit to test for u stuck-at-0.

(b) For this set of inputs, determine which other stuck-at faults can be tested.
(c) Repeat (a) and (b) for r stuck-at-1.
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10.2 For the following circuit,

(a) Determine the values of A, B, C, and D necessary to test for e s-a-1. Specify the
other faults tested by this input vector.

(b) Repeat (a) for g s-a-0.

i 
g 

h 

e 
d 

f 

b 
a 

c Z 

10.3 Find a minimum set of tests that will test all single stuck-at-0 and stuck-at-1 faults
in the following circuit. For each test, specify which faults are tested for s-a-0 and
for s-a-1.
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10.5 For the following circuit, specify a minimum set of test vectors for a, b, c, d, and e
that will test for all stuck-at faults. Specify the faults tested by each vector.
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10.6 For the following circuit, find a minimum number of test vectors that will test all
s-a-0 and s-a-1 faults at the AND and OR gate inputs. For each test vector, speci-
fy the values of A, B, C and D, and the stuck-at faults that are tested.

S1 

S2 S3 

1/0 
0/1 

1/1 

0/0 
0/1 

1/0 

10.7 Find a test sequence to test for b s-a-0 in the sequential circuit of Figure 10-7.

10.8 A sequential circuit has the following state graph:

The three states can be distinguished using the input sequence 11 and observing
the output. The circuit has a reset input, R, that resets the circuit to state S1. Give a

10.4 Give a minimum set of test vectors that will test for all stuck-at faults in the follow-
ing circuit. List the faults tested by each test vector.
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set of test sequences that will test every state transition and give the transition tested
by each sequence. (When you test a state transition, you must verify that the output
and the next state are correct by observing the output sequence.)

10.9 State graphs for two sequential machines are given below.The first graph represents
a correctly functioning machine, and the second represents the same machine with
a malfunction. Assuming that the two machines can be reset to their starting states
(S0 and T0), determine the shortest input sequence that will distinguish the two
machines.

0/1 
1/1 

1/0 
S0 S1 S2 S3 

0/1 0/1 
0/1 

1/0 1/0 

0/1 
1/1 

1/0 

0/1 0/1 0/1 

1/0 
1/0 T0 T1 T2 T3 

Q1
+Q2

+Q3
+ Z1Z2

Q1Q2Q3 X1X2 = 00 01 11 10 00 01 11 10

011 010 110 011 111 10 11 00 01

10.10 When testing a sequential circuit, what are the major advantages of using scan-
path testing compared to applying input sequences and observing output
sequences?

10.11 A scan path test circuit of the type shown in Figure 10-8 has three flip-flops, two
inputs, and two outputs. One row of the state table of the sequential circuit to be
tested is as follows:

For this row of the table, complete a timing chart similar to Figure 10-9 to show
how the circuit can be tested to verify the next states and outputs for inputs 00, 01,
and 10. Show the expected Z1 and Z2 outputs only at the time when they should
be read.

10.12 (a) Redraw the code converter circuit of Figure 1-26 in the form of Figure 10-8
using dual-port flip-flops.

(b) Determine a test sequence that will verify the first two rows of the transition
table of Figure 1-24(b). Draw a timing diagram similar to Figure 10-9 for your
test sequence.

10.13 (a) Write VHDL code for a dual-port flip-flop.
(b) Write VHDL code for your solution to Problem 10.12(a).
(c) Write a test bench that applies the test sequence from Problem 10.12(b), and

compare the resulting waveforms with your solution to Problem 10.12(b).
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10.14 Instead of using dual-port flip-flops of the type shown in Figure 10-8, scan testing
can be accomplished using standard D flip-flops with a mux on each D input to
select D1 or D2. Redraw the circuit of Figure 1-22 to establish a scan chain using D
flip-flops and muxes. A test signal (T) should control the muxes.

10.15 Referring to Figure 10-16, determine the sequence of TMS and TDI inputs required
to load the instruction register with 011 and the boundary scan register BSR2 with
1101. Start in state 0 and end in state 1. Give the sequence of states along with the
TMS and TDI inputs.

10.16 The INTEST instruction (code 010) allows testing of the core logic by shifting test
data into the boundary scan register (BSR1) and then updating BSR2 with this test
data. For input cells this data takes the place of data from the input pins. Output
data from the core logic is captured in BSR1 and then shifted out. For this problem,
assume that the BSR has three cells.

(a) Referring to Figure 10-16, give the sequence for TMS and TDI that will load the
instruction register with 010 and BSR2 with 011. Also give the state sequence,
starting in state 0.

(b) In the code of Figure 10-21, what changes or additions must be made in the last
BSRout assignment statement, in the CaptureDR state, and in the UpdateDR
state to implement the INTEST instruction?

10.17 Based on the VHDL code of Figure 10-21, design a two-cell boundary scan register.
The first cell should be an input cell, and the second cell an output cell. Do not design
the TAP controller; just assume that the necessary control signals like shift-DR,
capture-DR, and update-DR are available. Do not design the instruction register or
instruction decoding logic; just assume that the following signals are available: EXT
(EXTEST instruction is being executed), SPR (Sample/Preload instruction is being
executed), and BYP (Bypass instruction is being executed). Use two flip-flops for
BSR1, two flip-flops for BSR2, and one BYPASS flip-flop. In addition to the control
signals mentioned above, the inputs are Pin1 (from a pin), Core2 (from the core
logic), TDI, and TCK; outputs are Core1 (to core logic), Pin2 (to a pin), and TDO.
Use TCK as the clock input for all of the flip-flops. Draw a block diagram showing
the flip-flops, muxes, and so on.Then give the logic equations or connections for each
flip-flop D input, each CE (clock enable), and each MUX control input.

10.18 Simulate the boundary scan tester of Figure 10-22 and verify that the results are as
expected. Change the code to represent the case where the lower input to IC1 is
shorted to ground, simulate again, and interpret the results.

10.19 Write VHDL code for the boundary scan cell of Figure 10-14(b). Rewrite the
VHDL code of Figure 10-21 to use this boundary scan cell as a component in place
of some of the behavioral code for the BSR. Use a generate statement to instanti-
ate NCELLS copies of this component.Test your new code using the boundary scan
tester example of Figure 10-22.
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10.20 (a) Draw a circuit diagram for an LFSR with n � 5 that generates a maximum
length sequence.

(b) Add logic so that 00000 is included in the state sequence.
(c) Determine the actual state sequence.

10.21 (a) Draw a circuit diagram for an LFSR with n � 6 that generates a maximum
length sequence.

(b) Add logic so that 000000 is included in the sequence.
(c) Determine the 10 elements of the sequence starting in 101010.

10.22 (a) Write VHDL for an 8-bit MISR that is similar to Figure 10-28.
(b) Design a self-test circuit, similar to Figure 10-25, for a 6116 static RAM (see

Figure 8-15). The write-data generator should store data in the following
sequence: 00000000, 10000000, 11000000, . . . , 11111111, 01111111, 00111111, . . . ,
00000000.

(c) Write VHDL code to test your design. Simulate the system for at least one
example with no errors, one error, two errors, and three errors.

10.23 In the system of Figure 10-33, A, B, and C are BILBO registers.The B1 and B2 inputs
to each of the registers determine its BILBO operating mode as follows:

B1B2 � 00, shift register; B1B2 � 01, PRPG (pattern generator);

B1B2 � 10, normal system mode; B1B2 � 11, MISR (signature register).

The shifting into A, B, and C is always LSB first.When in the test mode, the Dbus
is not used. Specify the sequence of the Tester outputs (B1, B2, and Si) needed to per-
form the following operations:

(1) Load A with 1011 and B with 1110, clear C.
(2) Test the system by using A and B as pattern generators and C as a signature

register for four clock times.
(3) Shift the C register output into the tester.
(4) Return to the normal system mode.

B1 B2 Si � 0 0 0, . . .

10.24 Given the BILBO register shown below, specify B1 and B0 for each of the following
modes:

normal mode
shift register mode
PRPG (LSFR) mode
MISR mode

When in the PRPG mode, what sequence of states would be generated for Q1,
Q2, and Q3, assuming that the initial state is 001?
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In this chapter, we present additional examples that show how VHDL, together with
synthesis tools, can be used to simulate and design complex digital systems. We first
design a wristwatch with alarm and stopwatch functions. Simulation models for
memory chips with specific timing specifications are presented next. Finally, a
receiver-transmitter for a serial data port is presented.

11.1 Design of a Wristwatch
In this section, we will design a multifunction wristwatch that has time-keeping,
alarm, and stopwatch functions. The wristwatch has three buttons (B1, B2, and B3)
that are used to change the mode, set the time, set the alarm, start and stop the stop-
watch, and so on. Pushing button B1 changes the mode from Time to Alarm to
Stopwatch and back to Time. The functions of buttons B2 and B3 vary depending
on the mode and are explained in the following paragraphs.

11.1.1 Specifications
Operation in time mode: Display indicates the time and whether it is A.M. or P.M.
using the format hh:mm:ss (A or P). When in time mode, the alarm can be shut off
manually by pressing B3. Pushing B2 changes the state to Set Hours or Set Minutes
and back to Time mode. When in the Set Hours or Set Minutes state, each press of
B3 advances the hours or minutes by 1.
Operation in alarm mode: Display indicates the alarm time and whether it is A.M.
or P.M. using the format hh:mm (A or P). Pushing B2 changes the state to Set Alarm
Hours or Set Alarm Minutes and then back to Alarm.When in the Set Alarm Hours
or Set Alarm Minutes state, each press of B3 advances the alarm hours or minutes
by 1. When in the Alarm state, pressing B3 sets or resets the alarm. Once the alarm
starts ringing, it will ring for 50 seconds and then shut itself off. It can also be shut
off manually by pressing B3 in time mode.
Operation in the stopwatch mode: Display indicates stopwatch time in the format
mm:ss.cc (where cc is hundredths of a second). Pressing B2 starts the time counter,
pressing B2 again stops it, and then pressing B2 restarts it, and so on. Pressing B3
resets the time. Once the stopwatch is started, it will keep running even when the
wristwatch is in time or alarm mode.

C H A P T E R

11
Additional Design Examples

507
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11.1.2 Design Implementation
Figure 11-1 shows a block diagram for the design.The input module divides the system
clock down to a 100-Hz clock, CLK. It debounces the input buttons (PB1, PB2, and
PB3) and synchronizes them with CLK. Each time PB1, PB2, or PB3 is pressed, the
corresponding signal, B1, B2, or B3, will be 1 for exactly one clock time. The single
pulser circuitry that we designed in Section 4.7 can be used to build this module.

508 Additional Design Examples
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The wristwatch module contains the main control for the wristwatch; the clock
module, which implements the timekeeping and alarm functions; and the stopwatch
module, which implements the stopwatch functions. The 100-Hz clock (CLK) syn-
chronizes operation of the control unit and time registers. Figure 11-2 shows the
state graph for the controller. This state machine generates the following control
signals in response to pressing the buttons:

inch increments hours in the set_hours state
incm increments minutes in the set_minutes state
alarm_off turns off the alarm when it is ringing
incha increments hours for the alarm
incma increments minutes for the alarm
set_alarm toggles the alarm set on and off
start_stop starts or stops the stopwatch counter
reset resets the stopwatch counter
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Figure 11-3 shows the VHDL code for the wristwatch module. This module
instantiates the clock and stopwatch modules, and it implements the state machine.
This state machine tests the B1, B2, and B3 button signals and generates the control
signals. Following are some of the signal names used in the VHDL code:

am_pm A.M. or P.M. in time mode
aam_pm A.M. or P.M. in alarm mode
alarm_set indicates that alarm is set
ring indicates that alarm setting matches time counters,

if alarm is set
hours hours in time mode
ahours hours in alarm mode
minutes minutes in the time mode
aminutes minutes in the alarm mode
seconds seconds in the time mode
swhundredths hundredths of a second during stopwatch mode
swseconds seconds in stopwatch mode
swminutes minutes in stopwatch mode

11.1 Design of a Wristwatch 509
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library IEEE;
use IEEE.numeric_bit.all;

entity wristwatch is
port(B1, B2, B3, clk: in bit;

am_pm, aam_pm, ring, alarm_set: inout bit;
hours, ahours, minutes, aminutes, seconds: inout unsigned(7 downto 0);
swhundreths, swseconds, swminutes: out unsigned(7 downto 0));

end wristwatch;

FIGURE 11-3: VHDL Code for the Wristwatch Module
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architecture wristwatch1 of wristwatch is
component clock is
port(clk, inch, incm, incha, incma, set_alarm, alarm_off: in bit;

hours, ahours, minutes, aminutes, seconds: inout unsigned(7 downto 0);
am_pm, aam_pm, ring, alarm_set: inout bit);

end component;
component stopwatch is
port(clk, reset, start_stop: in bit;

swhundreths, swseconds, swminutes: out unsigned(7 downto 0));
end component;
type st_type is (time1, set_min, set_hours, alarm, set_alarm_hrs,

set_alarm_min, stop_watch);
signal state, nextstate: st_type;
signal inch, incm, alarm_off, set_alarm, incha, incma,

start_stop, reset: bit;
begin

clock1: clock port map(clk, inch, incm, incha, incma, set_alarm, alarm_off,
hours, ahours, minutes, aminutes, seconds, am_pm,
aam_pm, ring, alarm_set);

stopwatch1: stopwatch port map(clk, reset, start_stop, swhundreths,
swseconds, swminutes);

process(state, B1, B2, B3)
begin

alarm_off <= '0'; inch <= '0'; incm <= '0'; set_alarm <= '0'; incha <= '0';
incma <= '0'; start_stop <= '0'; reset <= '0';
case state is

when time1 =>
if B1 = '1' then nextstate <= alarm;
elsif B2 = '1' then nextstate <= set_hours;
else nextstate <= time1;
end if;
if B3 = '1' then alarm_off <= '1';
end if;

when set_hours =>
if B3 = '1' then inch <= '1'; nextstate <= set_hours;
else nextstate <= set_hours;
end if;
if B2 = '1' then nextstate <= set_min;
end if;

when set_min =>
if B3 = '1' then incm <= '1'; nextstate <= set_min;
else nextstate <= set_min;
end if;
if B2 = '1' then nextstate <= time1;
end if;

when alarm =>
if B1 = '1' then nextstate <= stop_watch;
elsif B2 = '1' then nextstate <= set_alarm_hrs;
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11.1 Design of a Wristwatch 511

The clock module contains the counters that keep track of time (hours, minutes,
and seconds) as well as the counters that are used to store the hour and minute set-
tings for the alarm (ahours and aminutes). Each of these counters stores a two-digit
BCD (binary-coded-decimal) number that is incremented at the appropriate time.
The module also contains a counter that divides the 100-Hz clock by 100 and pro-
vides a signal to increment the seconds counter.

The VHDL code in Figure 11-4 instantiates three counters labeled sec1, min1,
and hrs1.When the divide-by-100 counter is in state 99, it outputs a signal c99, which
is used as an increment signal to the sec1 counter. Sec1 counts the seconds, and when
the divide-by-100 counter rolls over, the seconds are incremented by 1 because
c99 � 1. Sec1 is a divide-by-60 counter, and when it reaches 59, it outputs a signal
s59. Min1 counts the minutes. It is incremented when s59 and c99 are both 1, and

else nextstate <= alarm;
end if;
if B3 = '1' then set_alarm <= '1'; nextstate <= alarm;
end if;

when set_alarm_hrs =>
if B2 = '1' then nextstate <= set_alarm_min;
else nextstate <= set_alarm_hrs;
end if;
if B3 = '1' then incha <= '1';
end if;

when set_alarm_min =>
if B2 = '1' then nextstate <= alarm;
else nextstate <= set_alarm_min;
end if;
if B3 = '1' then incma <= '1';
end if;

when stop_watch =>
if B1 = '1' then nextstate <= time1;
else nextstate <= stop_watch;
end if;
if B2 = '1' then start_stop <= '1';
end if;
if B3 = '1' then reset <= '1';
end if;

end case;
end process;
process(clk)
begin
if clk'event and clk = '1' then

state <= nextstate;
end if;

end process;
end wristwatch1;
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library IEEE;
use IEEE.numeric_bit.all;

entity clock is
port(clk, inch, incm, incha, incma, set_alarm, alarm_off: in bit;

hours, ahours, minutes, aminutes, seconds: inout unsigned(7 downto 0);
am_pm, aam_pm, ring, alarm_set: inout bit);

end clock;

architecture clock1 of clock is
component CTR_59 is
port(clk, inc, reset: in bit; dout: out unsigned(7 downto 0);

t59: out bit);
end component;
component CTR_12 is
port(clk, inc: in bit; dout: out unsigned(7 downto 0); am_pm: inout bit);

end component;
signal s59, m59, inchr, incmin, c99: bit;
signal alarm_ring_time: integer range 0 to 50;
signal div100: integer range 0 to 99;
begin
sec1: ctr_59 port map(clk, c99, '0', seconds, s59);
min1: ctr_59 port map(clk, incmin, '0', minutes, m59);
hrs1: ctr_12 port map(clk, inchr, hours, am_pm);
incmin <= (s59 and c99) or incm;
inchr <= (m59 and s59 and c99) or inch;
alarm_min: ctr_59 port map(clk, incma, '0', aminutes, open);
alarm_hr: ctr_12 port map(clk, incha, ahours, aam_pm);
c99 <= '1' when div100 = 99 else '0';
process(clk)
begin
if clk'event and clk = '1' then
if c99 = '1' then div100 <= 0;   -- divide by 100 counter
else div100 <= div100 + 1;
end if;
if set_alarm = '1' then
alarm_set <= not alarm_set;

end if;

FIGURE 11-4: VHDL Code of Clock Module

also when incm is 1 in the set_minutes state. A signal incmin is used to denote the
condition when minutes has to be incremented, whether due to pressing of a button
or due to a control signal while counting. When min1 reaches 59, it outputs a signal
m59. Hrs1 counts the hours and also toggles the am_pm flip-flop when time changes
from 11:59:59:99 to 12:00:00:00. Hrs1 is incremented when m59 � s59 � c99 � 1,
and also when inch is 1 in the set_hours state. A signal inchr denotes the condition
when the hour has to be incremented, whether due to pressing of a button or due to
a control signal while counting.
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if ((minutes = aminutes) and (hours = ahours) and (am_pm = aam_pm)) and
seconds = 0 and alarm_set = '1' then

ring <= '1';
end if;
if ring = '1' and c99 � '1' then
alarm_ring_time <= alarm_ring_time + 1;

end if;
if alarm_ring_time = 50 or alarm_off = '1' then
ring <= '0'; alarm_ring_time <= 0;

end if;
end if;

end process;
end clock1;

The clock VHDL code also implements the alarm functions. It instantiates coun-
ters for setting the alarm minutes and hours. The alarm_set flip-flop is toggled when
alarm_set is 1. The ring flip-flop is set to 1 when the alarm setting matches the time
counters and the alarm is set. Alarm_ring_time is a counter that counts seconds
when the alarm is ringing. The ring flip-flop is cleared after 50 seconds or when the
alarm_off signal is received.

The VHDL code in Figure 11-5 implements the stopwatch functions. It instantiates
counters for hundredths of a second, seconds, and minutes.When a start_stop signal is
received, the counting flip-flop is toggled. Ctr2 is a divide-by-100 BCD counter that
is incremented every clock when counting � 1. It generates a signal swc99 when it is in
state 99.VHDL code for the divide-by-100 counter is shown in Figure 11-6. Sec2 is the
seconds counter that is incremented when swc99 � 1. Sec2 generates a signal s59
when it is in state 59. The minutes counter, min2, is incremented when both s59 and
swc99 are 1.

library IEEE;
use IEEE.numeric_bit.all;

entity stopwatch is
port(clk, reset, start_stop: in bit;

swhundreths, swseconds, swminutes: out unsigned(7 downto 0));
end stopwatch;

architecture stopwatch1 of stopwatch is
component CTR_59 is
port(clk, inc, reset: in bit; dout: out unsigned(7 downto 0); t59: out bit);

end component;
component CTR_99 is
port(clk, inc, reset: in bit; dout: out unsigned(7 downto 0); t59: out bit);

end component;
signal swc99, s59, counting, swincmin: bit;

begin
ctr2: ctr_99 port map(clk, counting, reset, swhundreths, swc99);

FIGURE 11-5: VHDL Code of the Stopwatch Module
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FIGURE 11-6: VHDL Code for Divide-by-100 Counter

library IEEE;
use IEEE.numeric_bit.all;
--divide by 100 BCD counter
entity CTR_99 is
port(clk, inc, reset: in bit; dout: out unsigned(7 downto 0); t59: out bit);

end CTR_99;

architecture count99 of CTR_99 is
signal dig1, dig0: unsigned(3 downto 0);

begin
process(clk)
begin
if clk'event and clk = '1' then

if reset = '1' then dig0 <= "0000"; dig1 <= "0000";
else

if inc = '1' then
if dig0 = 9 then dig0 <= "0000";

if dig1 = 9 then dig1 <= "0000";
else dig1 <= dig1 + 1;
end if;

else dig0 <= dig0 + 1;
end if;

end if;
end if;

end if;
end process;
t59 <= '1' when (dig1 = 9 and dig0 = 9) else '0';
dout <= dig1 & dig0;

end count99;

--counts hundreths of seconds
sec2: ctr_59 port map(clk, swc99, reset, swseconds, s59);

--counts seconds
min2: ctr_59 port map(clk, swincmin, reset, swminutes, open);

--counts minutes
swincmin <= s59 and swc99;
process(clk)
begin

if clk'event and clk = '1' then
if start_stop = '1' then
counting <= not counting;

end if;
end if;

end process;
end stopwatch1;

VHDL code for the divide-by-60 counter (Figure 11-7) is straightforward. The
counter counts to 59 and then resets.
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FIGURE 11-7: VHDL Code of Divide-by-60 Counter

library IEEE;
use IEEE.numeric_bit.all;
--this counter counts seconds or minutes 0 to 59
entity CTR_59 is

port(clk, inc, reset: in bit; dout: out unsigned(7 downto 0); t59: out bit);
end CTR_59;

architecture count59 of CTR_59 is
signal dig1, dig0: unsigned(3 downto 0);

begin
process(clk)
begin
if clk'event and clk = '1' then

if reset = '1' then dig0 <= "0000"; dig1 <= "0000";
else

if inc = '1' then
if dig0 = 9 then dig0 <= "0000";

if dig1 = 5 then dig1 <= "0000";
else dig1 <= dig1 + 1;
end if;

else dig0 <= dig0 + 1;
end if;

end if;
end if;

end if;
end process;
t59 <= '1' when (dig1 = 5 and dig0 = 9) else '0';
dout <= dig1 & dig0;

end count59;

The hours counter (Figure 11-8) counts to 12 and then changes to 1 the next time
the increment signal is 1. It toggles the am_pm signal when the count changes from
11 to 12.

FIGURE 11-8: VHDL Code for Hours Counter

library IEEE;
use IEEE.numeric_bit.all;
––this counter counts hours 1 to 12 and toggles am_pm
entity CTR_12 is
port(clk, inc: in bit; dout: out unsigned(7 downto 0); am_pm: inout bit);

end CTR_12;

architecture count12 of CTR_12 is
signal dig0: unsigned(3 downto 0);
signal dig1: bit;
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11.1.3 Testing the Wristwatch
Next we will write a test bench for the wristwatch module (Figure 11-9). The test
bench must generate a series of button pushes as well as the 100-Hz clock, and it
must display the time, alarm settings, and stopwatch counters. In effect, the test bench
takes the place of the input and display modules in the overall design. To simplify
writing the test bench code, we have written two procedures. Procedure wait1(N1)
waits for N1 clocks each time it is called. Procedure push(button, N) simulates
pushing a button N times each time it is called.Thus push(B2, 23) simulates push-
ing B2 23 times. The push procedure simulates the output from the Input Module.
Therefore, each button signal is on for exactly one clock time, and it is synchronized
with CLK. The procedure waits 1.2 seconds after each button push. Testing should
also be done with longer and shorter wait times between button pushes. Because we
are using unsigned numbers and the numeric_bit package, all registers will be clear
when the test bench is started. If we used numeric_std instead, we would have to
reset all registers before running the simulation.

The test sequence we used is as follows:

1. Set the time to 11:58 P.M.
2. Set the alarm time to 12:00 A.M.
3. Set the alarm and change to time mode, and wait until the time rolls over at mid-

night.
4. Turn off the alarm 5 seconds later.
5. Change to stopwatch mode and start the stopwatch
6. Switch to time mode and wait for 10 seconds (stopwatch keeps running)
7. Switch back to stopwatch mode and wait until it reads 1 minute and 2 seconds
8. Stop the stopwatch, reset it, and return to time mode.

begin
process(clk)
begin
if clk'event and clk = '1' then

if inc = '1' then
if dig1 = '1' and dig0 = 2 then

dig1 <= '0'; dig0 <= "0001";
else

if dig0 = 9 then dig0 <= "0000"; dig1 <= '1';
else dig0 <= dig0 + 1;
end if;
if dig1 = '1' and dig0 = 1 then am_pm <= not am_pm;
end if;

end if;
end if;

end if;
end process;
dout <= "000" & dig1 & dig0;

end count12;
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FIGURE 11-9: Test Bench for Wristwatch

library IEEE;
use IEEE.numeric_bit.all;

entity testww is -- test bench for wristwatch
port(hours, ahours, minutes, aminutes, seconds,

swhundreths, swseconds, swminutes: inout unsigned(7 downto 0);
am_pm, aam_pm, ring, alarm_set: inout bit);

end testww;

architecture testww1 of testww is
component wristwatch is
port(B1, B2, B3, clk: in bit;

am_pm, aam_pm, ring, alarm_set: inout bit;
hours, ahours, minutes, aminutes, seconds: inout unsigned(7 downto 0);
swhundreths, swseconds, swminutes: out unsigned(7 downto 0));

end component;
signal B1, B2, B3, clk: bit;

begin
wristwatch1: wristwatch port map(B1, B2, B3, clk, am_pm, aam_pm, ring,

alarm_set, hours, ahours, minutes, aminutes,
seconds, swhundreths, swseconds, swminutes);

clk <= not clk after 5 ms;   -- generate 100 hz clock
process
procedure wait1   -- waits for N1 clocks
(N1: in integer)
variable count: integer;

begin
count := N1;
while count /= 0 loop
wait until clk'event and clk = '1';
count := count – 1;
wait until clk'event and clk = '0';

end loop;
end procedure wait1;
procedure push   -- simulates pushing a button N times
(signal button: out bit; N: in integer) is

begin
for i in 1 to N loop

button <= '1';
wait1(1);
button <= '0';
wait1(120);   -- wait 1200 ms between pushes

end loop;
end procedure push;
begin

wait1(10);   –- set time to 11:58 pm
push(b2, 1); push(b3, 23); push(b2, 1); push(b3, 57); push(b2, 1);
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We used the following commands to run the simulation with the preceding test
sequence.

vsim –t 1ms testww   –- set simulator resolution to 1 ms
add list –hex hours minutes seconds am_pm

ahours aminutes aam_pm ring
add list b1 b2 b3 wristwatch1/state
add list –hex swminutes swseconds –notrigger swhundredths
run 300000 ms

The test results showed that the wristwatch module functions according to the
specifications. When the wristwatch module is implemented using the Xillinx
Spartan 3 FPGA, it requires 87 slices, 80 flip-flops, and 158 four-input LUTs.
To complete the design, we still need to write code for the Input and Display
modules.

11.2 Memory Timing Models
When we design a complex digital system with several components, many timing
constraints must be satisfied in order for the system components to function
together properly. For example, if we are interfacing memory components to a
microprocessor bus, all bus interface timing specifications must be satisfied. In
order to simulate such a system using VHDL, we must develop accurate timing
models for each component. In this section we will develop a timing model for a
small static RAM. This will illustrate the process of going from manufacturer’s
specifications to a VHDL model that takes timing parameters into account. These
types of timing models are very useful when developing system on a chip (SoC)
designs.

518 Additional Design Examples

report "time should be 11:58 P.M.";
push(b1, 1);   -- set alarm to 12:00 am
push(b2, 1); push(b3, 24); push(b2, 2); push(b3, 1); push(b1, 2);
report "alarm should be set to 12:00 A.M.";
wait until hours = "00010010" and seconds = "00000101";
push(b3, 1);   -- turn alarm off at 12 hours and 5 seconds
push(b1, 2);   -- run stopwatch, go to time mode, go back to stopwatch
push(b2, 1); wait1(120); push(b1, 1); wait1(1000); push(b1, 2);
wait until swminutes = "00000001" and swseconds = "00000010";
--stop stopwatch after 1 min. and 2 sec., then reset

report "stopwatch should read 1 min. 2 sec.";
push(b2, 1); push(b3, 1); push(b1, 1);
wait;

end process;
end testww1;
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Figure 11-10 illustrates the block diagram of a 6116 static RAM, which can
store 2048 eight-bit words of data. This memory has 16,384 cells, arranged in a
128 � 128 memory matrix. The RAM contains address decoders and a memory
array. The address decoder is typically split into the column decoder and the row
decoder. The 11 address lines, which are needed to address the 211 bytes of data,
are divided into two groups, one for the column decoder and the other for the row
decoder. Lines A0 through A3 select eight columns in the matrix at a time, since
there are eight data lines for each address. Lines A4 through A10 select one of the
128 rows in the matrix. The data outputs from the matrix go through tristate
buffers before connecting to the data I/O lines. These buffers are disabled except
when reading from the memory.

Figure 11-10 also illustrates the connections of the chip select (C̄̄̄̄¯S̄), output enable
(Ō̄̄ ¯Ē), and write enable (W̄̄̄̄ ¯Ē) signals. The functions of these signals were explained
in Table 8-7.When C̄̄̄̄¯S̄ is high (i.e., not asserted), a 0 input reaches the two AND gates;
hence, the tristate control voltage is low, resulting in a high-Z output. Similarly, when
Ō̄̄¯Ē is high, even if chip select is asserted, the tristate control is inactive, resulting in
high-Z output.When chip select and W̄̄̄̄ ¯Ē are asserted, a write operation happens, and
the data on the I/O lines gets written into the RAM. When chip select and Ō̄̄ ¯Ē are
asserted and W̄̄̄̄ ¯Ē is not asserted, a read operation happens, and the RAM contents
appear on the I/O lines.
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FIGURE 11-10:
Block Diagram of
6116 Static RAM Row
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We presented some static RAM memory models in Section 8.7; however, the
models do not take into account timing specifications. Memory timing diagrams and
specifications must be considered when designing systems using the memory chips.
In this section, we present simulation models of memory chips with particular tim-
ing specifications.
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Let us consider a CMOS static RAM 6116, whose timing parameters are
defined in Table 11-1 for both read and write cycles. Specifications are given for the
6116 SA-15 RAM, which has a 15-ns access time. A dash in the table indicates that
either the specification was not relevant or that the manufacturer did not provide
the specification.

520 Additional Design Examples

TABLE 11-1:
Timing

Specifications for
CMOS Static RAM

6116 SA-15

Timing Specification

Parameter Symbol min(ns) max(ns)

Read cycle time tRC 15 —
Address access time tAA — 15
Chip select access time tACS — 15
Chip selection to output in low-Z tCLZ 5 —
Output enable to output valid tOE — 10
Output enable to output in low-Z tOLZ 0 —
Chip deselection to output in high-Z tCHZ 2* 10
Output disable to output in high-Z tOHZ 2* 8
Output hold from address change tOH 5 —

Write cycle time tWC 15 —
Chip selection to end of write tCW 13 —
Address valid to end of write tAW 14 —
Address setup time tAS 0 —
Write pulse width tWP 12 —
Write recovery time tWR 0 —
Write enable to output in high-Z tWHZ — 7
Data valid to end of write tDW 12 —
Data hold from end of write tDH 0 —
Output active from end of write tOW 0 —

*Estimated value, not specified by manufacturer.

Figure 11-11(a) shows the read cycle timing for the case where C̄̄̄̄¯S̄ and Ō̄̄¯Ē are
both low before the address changes. In this case, after the address changes, the old
data remains at the memory output for a time tOH; then there is a transition period
during which the data may change (as indicated by the cross-hatching). The new
data is stable at the memory output after the address access time, tAA. The address
must be stable for the read cycle time, tRC.

Figure 11-11(b) shows the timing for the case where Ō̄̄ ¯Ē is low and the address
is stable before C̄̄̄̄¯S̄ goes low. When C̄̄̄̄¯S̄ is high, Dout is in the high-Z state, as indi-
cated by a line halfway between ‘0’ and ‘1’. When C̄̄̄̄¯S̄ goes low, Dout leaves the
high-Z state after time tCLZ, there is a transition period during which the data may
change, and the new data is stable at time tACS after C̄̄̄̄¯S̄ changes. Dout returns to
high-Z at time tCHZ after C̄̄̄̄¯S̄ goes high.
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Figure 11-12 shows the write cycle timing for the case where Ō̄̄ ¯̄Ē is low during
the entire cycle and where writing to memory is controlled by W̄̄̄̄¯Ē. In this case, it
is assumed that C̄̄¯S̄ goes low before or at the same time as W̄̄̄̄¯Ē goes low, and goes
high before or at the same time as C̄̄¯S̄ does. The cross-hatching on C̄̄¯S̄ indicates the
interval in which it can go from high to low (or from low to high). The address must
be stable for the address setup time, tAS, before W̄̄̄̄¯Ē goes low. After time tWHZ, the
data out from the tristate buffers go to the high-Z state and input data may
be placed on the I/O lines. The data into the memory must be stable for the setup
time tDW before W̄̄̄̄¯Ē goes high, and then it must be kept stable for the hold time
tDH. The address must be stable for tWR after W̄̄̄̄¯Ē goes high. When W̄̄̄̄¯Ē goes high,
the memory switches back to the read mode. After tOW (min) and during region (a),
Dout goes through a transition period and then becomes the same as the data just
stored in the memory. Further change in Dout may occur if the address changes
or if C̄̄¯S̄ goes high. To avoid bus conflicts during region (a), Din should either be
high-Z or the same as Dout.
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FIGURE 11-13:
C̄̄¯S̄-Controlled
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-- memory model with timing (OE_b=0)
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity static_RAM is
generic(constant tAA: time := 15 ns;   -- 6116 static CMOS RAM

constant tACS: time := 15 ns;

FIGURE 11-14: Timing Simulation Model for 6116 Static CMOS RAM

Figure 11-13 shows the write cycle timing for the case where Ō̄̄¯̄Ē is low during the
entire cycle and where writing to memory is controlled by C̄̄̄S̄. In this case, it is assumed
that W̄̄̄̄¯Ē goes low before or at the same time as C̄̄̄S̄ goes low, and C̄̄̄S̄ goes high before
or at the same time as W̄̄̄̄¯Ē does.The address must be stable for the address setup time,
tAS, before C̄̄̄S̄ goes low.The data into the memory must be stable for the setup time tDW
before C̄̄̄S̄ goes high, and then it must be kept stable for the hold time tDH.The address
must be stable for tWR after C̄̄̄S̄ goes high. Note that this write cycle is very similar to
the W̄̄̄̄¯Ē-controlled cycle. In both cases, writing to memory occurs when both C̄̄̄S̄ and
W̄̄̄̄¯Ē are low, and writing is completed when either one goes high.

Next, we revise the RAM model presented in Figure 8-15 to include timing infor-
mation based on the read and write cycles shown in Figures 11-11, 11-12, and 11-13.We
assume that Ō̄̄¯̄Ē � ‘0’. The VHDL RAM timing model in Figure 11-14 uses a generic
declaration to define default values for the important timing parameters. Transport
delays are used throughout to avoid cancellation problems, which can occur with iner-
tial delays.The RAM process waits for a change in CS_b,WE_b, or the address. If a ris-
ing edge of WE_b occurs when CS_b is ‘0’, or a rising edge of CS_b occurs when WE_b
is ‘0’, this indicates the end of write, so the data is stored in the RAM, and then the data
is read back out after tOW. If a falling edge of WE_b occurs when CS_b � ‘0’, the RAM
switches to write mode and the data output goes to high-Z.
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constant tCLZ: time := 5 ns;
constant tCHZ: time := 2 ns;
constant tOH: time := 5 ns;
constant tWC: time := 15 ns;
constant tAW: time := 14 ns;
constant tWP: time := 12 ns;
constant tWHZ: time := 7 ns;
constant tDW: time := 12 ns;
constant tDH: time := 0 ns;
constant tOW: time := 0 ns);

port(CS_b, WE_b, OE_b: in std_logic;
Address: in unsigned(7 downto 0);
IO: inout unsigned(7 downto 0) := (others => 'Z'));

end Static_RAM;

architecture SRAM of Static_RAM is
type RAMtype is array(0 to 255) of unsigned(7 downto 0);
signal RAM1: RAMtype := (others => (others => '0'));

begin
RAM: process (CS_b, WE_b, Address)
begin
if CS_b='0' and WE_b='1' and Address'event then
–– read when address changes
IO <= transport "XXXXXXXX" after tOH,

Ram1(to_integer(Address)) after tAA; end if;
if falling_edge(CS_b)and WE_b='1' then
–– read when CS_b goes low
IO <= transport "XXXXXXXX" after tCLZ,

Ram1(to_integer(Address)) after tACS; end if;
if rising_edge(CS_b) then -- deselect the chip
IO <= transport "ZZZZZZZZ" after tCHZ;
if We_b='0' then -- CS-controlled write
Ram1(to_integer(Address'delayed)) <= IO; end if;

end if;
if falling_edge(WE_b) and CS_b='0' then -- WE-controlled write
IO <= transport "ZZZZZZZZ" after tWHZ; end if;

if rising_edge(WE_b) and CS_b='0' then
Ram1(to_integer(Address'delayed)) <= IO'delayed;
IO <= transport IO'delayed after tOW;   -- read back after write

–– IO'delayed is the value of IO just before the rising edge
end if;

end process RAM;

check: process
begin
if NOW /= 0 ns then
if address'event then
assert (address'delayed'stable(tWC))   -- tRC = tWC assumed
report “Address cycle time too short”
severity WARNING;
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end if;
–– The following code only checks for a WE_b controlled write:
if rising_edge(WE_b) and CS_b'delayed = '0' then
assert (address'delayed'stable(tAW))
report "Address not valid long enough to end of write"
severity WARNING;

assert (WE_b'delayed'stable(tWP))
report "Write pulse too short"
severity WARNING;

assert (IO'delayed’stable(tDW))
report "IO setup time too short"
severity WARNING;

wait for tDH;
assert (IO'last_event >= tDH)
report "IO hold time too short"
severity WARNING;

end if;
end if;
wait on CS_b, WE_b, Address;

end process check;
end SRAM;

If a rising edge of CS_b has occurred, the RAM is deselected, and the data output
goes to high-Z after the specified delay. Otherwise, if a falling edge of CS_b has
occurred and WE_b is ‘1’, the RAM is in the read mode. The data bus can leave the
high-Z state after time tCLZ (min), but it is not guaranteed to have valid data out until
time tACS (max). The region in between is a transitional region where the bus state is
unknown, so we model this region by outputting ‘X’ on the I/O lines. If an address
change has just occurred and the RAM is in the read mode (Figure 11-11(a)), the old
data holds its value for time tOH. Then the output is in an unknown transitional state
until valid data has been read from the RAM after time tAA.

The check process, which runs concurrently with the RAM process, tests to see
if some of the memory timing specifications are satisfied. NOW is a predefined
variable that equals the current time. (VHDL provides NOW in order to access
the current simulation time. It is actually a predefined function. It returns differ-
ent values when called at different times during the course of a simulation.) To
avoid false error messages, checking is not done when NOW � 0 or when the chip
is not selected. When the address changes, the process checks to see if the address
has been stable for the write cycle time (tWC) and outputs a warning message if it
is not. Since an address event has just occurred when this test is made,
Address’stable(tWC) would always return FALSE. Therefore, Address’delayed must
be used instead of Address so that Address is delayed one delta and the stability
test is made just before Address changes. Next, the timing specifications for write
are checked. First, we verify that the address has been stable for tAW. Then we
check to see that WE_b has been low for tWP. Finally, we check the setup and hold
times for the data.
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FIGURE 11-15: VHDL Code for Testing the RAM Timing Model

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity RAM_timing_tester is
end RAM_timing_tester;

architecture test1 of RAM_timing_tester is
component static_RAM is
port(CS_b, WE_b, OE_b: in std_logic;

Address: in unsigned(7 downto 0);
IO: inout unsigned(7 downto 0));

end component Static_RAM;
signal Cs_b, We_b: std_logic := '1';   -- active low signals
signal Data: unsigned(7 downto 0) := "ZZZZZZZZ";
signal Address: unsigned(7 downto 0):= "00000000";

begin
SRAM1: Static_RAM port map(Cs_b, We_b, '0', Address, Data);
process
begin

wait for 20 ns;
Address <= "00001000";             -- WE-controlled write
Cs_b <= transport '0', '1' after 50 ns;
We_b <= transport '0' after 8 ns, '1' after 40 ns;
Data <= transport "11100011" after 25 ns, "ZZZZZZZZ" after 55 ns;

wait for 60 ns;
Address <= "00011000"; -- RAM deselected
wait for 40 ns;
Address <= "00001000"; -- Read cycles
Cs_b <= '0';
wait for 40 ns;
Address <= "00010000";
Cs_b <= '1' after 40 ns;
wait for 40 ns;
Address <= "00011000"; -- RAM deselected
wait for 40 ns;
report "DONE";

end process;
end test1;

VHDL code for a partial test of the RAM timing model is shown in Figure 11-15.
This code runs a write cycle followed by two read cycles. The RAM is deselected
between cycles. Figure 11-16 shows the test results.We also tested the model for cases
where simultaneous input changes occur and cases where timing specifications are
violated, but these test results are not included here.
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FIGURE 11-17:
Serial Data
Transmission

11.3 A Universal Asynchronous Receiver
Transmitter
Most computers and microcontrollers have one or more serial data ports used to com-
municate with serial input/output devices such as keyboards and serial printers.By using
a modem (modulator-demodulator) connected to a serial port, serial data can be trans-
mitted to and received from a remote location via telephone lines (see Figure 11-17).
The serial communication interface, which receives and transmits serial data, is often
called a UART (universal asynchronous receiver-transmitter). In Figure 11-17, RxD is
the received serial data signal and TxD is the transmitted data signal.

Figure 11-18 shows the standard format for serial data transmission. Since there
is no clock line, the data (D) is transmitted asynchronously, one byte at a time. When
no data is being transmitted, D remains high. To mark the start of transmission,
D goes low for one bit time, which is referred to as the start bit. Then eight data bits
are transmitted, least significant bit first. When text is being transmitted, ASCII code
is usually used. In ASCII code, each alphanumeric character is represented by a 7-bit
code. The eighth bit may be used as a parity check bit. In the example, the letter U,
coded as 1010101, is transmitted followed by a 0 parity bit, so that the total number
of 1’s is even (even parity). After 8 bits are transmitted, D must go high for at least

FIGURE 11-16:
Test Results for
RAM Timing Model

/address

(a) Write cycle

/cs_b

/we_b

/data

00000000 00001000 00011000

XXXXXXXXZZZZZZZZ ZZZZZZZZ 11100011 ZZZZZZZZ

/address

/cs_b

/we_b

/data

(b) Two read cycles

00001000 00010000 00011000

XXXXXXXX 11100011 XXXXXXXX 00000000
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one bit time, which is referred to as the stop bit. Then transmission of another char-
acter can start at any time.

The number of bits transmitted per second is frequently referred to as the baud rate.
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FIGURE 11-18:
Standard Serial
Data Format

D

Start bit

0 1 0 1 0 1 0 1 0 1

7-bit ASCII code
LSB first
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8 data bits

FIGURE 11-19: UART Block Diagram
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When transmitting, the UART takes 8 bits of parallel data and converts the data
to a serial bit stream that consists of a start bit (logic ‘0’), 8 data bits (least signifi-
cant bit first), and one or more stop bits (logic ‘1’). When receiving, the UART
detects the start bit, receives the 8 data bits, and converts the data to parallel form
when it detects the stop bit. Since no clock is transmitted, the UART must synchro-
nize the incoming bit stream with the local clock.

We now design a simplified version of a UART similar to the one used within the
microcontroller MC6805, MC6811, and other microcontrollers. Figure 11-19 shows the
UART connected to the 8-bit data bus. The following six 8-bit registers are used:

RSR Receive shift register
RDR Receive data register
TDR Transmit data register
TSR Transmit shift register
SCCR Serial communications control register
SCSR Serial communications status register

The following discussion assumes that the UART is connected to a microcon-
troller data and address bus so that the CPU can read and write to the registers. RDR,
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TDR, SCCR, and SCSR are memory-mapped; that is, each register is assigned an
address in the microcontroller memory space. RDR, SCSR, and SCCR can drive the
data bus through tristate buffers; TDR and SCCR can be loaded from the data bus.

Besides the registers, the three main components of the UART are the baud
rate generator, the receiver controller, and the transmitter controller. The baud
rate generator divides down the system clock to provide the bit clock (BClk) with
a period equal to one bit time and also BClkX8, which has a frequency eight times
the BClk frequency.

The TDRE (Transmit Data Register Empty) bit in the SCSR is set when TDR
is empty. When the microcontroller is ready to transmit data, the following occurs:

1. The microcontroller waits until TDRE � ‘1’ and then loads a byte of data into
TDR and clears TDRE.

2. The UART transfers data from TDR to TSR and sets TDRE.
3. The UART outputs a start bit (‘0’) for one bit time and then shifts TSR right to

transmit the eight data bits followed by a stop bit (‘1’).

Figure 11-20 shows the SM chart for the transmitter.The corresponding sequen-
tial machine (SM) is clocked by the microcontroller system clock (CLK). In the
IDLE state, the SM waits until TDR has been loaded and TDRE is cleared. In the
SYNCH state, the SM waits for the rising edge of the bit clock (Bclkc) and then
clears the low-order bit of TSR to transmit a ‘0’ for one bit time. In the TDATA
state, each time Bclkcis detected, TSR is shifted right to transmit the next data bit,

528 Additional Design Examples

IDLE

Load TSR
Set TDRE

SYNCH

TDRE

BCLK 

0

Clear TSR(0)

TDATA

BCLK

0 1

0

Bct = 9

1
Shift TSR

inc Bct

0

1

Clear Bct
1

Start bit

FIGURE 11-20:
SM Chart for UART
Transmitter
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all; -– use this if unsigned type is used.

entity UART_Transmitter is
port(Bclk, sysclk, rst_b, TDRE, loadTDR: in std_logic;

DBUS: in unsigned(7 downto 0);
setTDRE, TxD: out std_logic);

end UART_Transmitter;

architecture xmit of UART_Transmitter is
type stateType is (IDLE, SYNCH, TDATA);
signal state, nextstate: stateType;
signal TSR: unsigned(8 downto 0);   -– Transmit Shift Register
signal TDR: unsigned(7 downto 0);   -– Transmit Data Register
signal Bct: integer range 0 to 9;    -– counts number of bits sent
signal inc, clr, loadTSR, shftTSR, start: std_logic;
signal Bclk_rising, Bclk_Dlayed: std_logic;

begin
TxD <= TSR(0);
setTDRE <= loadTSR;
Bclk_rising <= Bclk and (not Bclk_Dlayed);
-- indicates the rising edge of bit clock

Xmit_Control: process(state, TDRE, Bct, Bclk_rising)
begin
inc <= '0'; clr <= '0'; loadTSR <= '0'; shftTSR <= '0'; start <= '0';
-- reset control signals
case state is

when IDLE =>
if (TDRE = '0') then

FIGURE 11-21: VHDL Code for UART Transmitter

and the bit counter (Bct) is incremented. When Bct � 9, 8 data bits and a stop bit
have transmitted. Bct is then cleared and the SM goes back to IDLE.

The VHDL code for the UART transmitter (Figure 11-21) is based on the SM
chart of Figure 11-20. The use IEEE.numeric_std.all statement is not neces-
sary if std_logic_vector type is used. We use the unsigned type here and in the other
modules of the UART. The transmitter contains the TDR and TSR registers and the
transmit control. It interfaces with TDRE and the data bus (DBUS). The first
process represents the combinational network, which generates the nextstate and
control signals. The second process updates the registers on the rising edge of the
clock. The signal Bclk_rising is ‘1’ for one system clock time following the rising
edge of Bclk. To generate Bclk_rising, Bclk is stored in a flip-flop named
Bclk_Dlayed. Then Bclk_rising is ‘1’ if the current value of Bclk is ‘1’ and the previ-
ous value (stored in Bclk_Dlayed) is ‘0’. Thus,

Bclk_rising <= Bclk and not Bclk_Dlayed;
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loadTSR <= '1'; nextstate <= SYNCH;
else nextstate <= IDLE;
end if;

when SYNCH =>  –- synchronize with the bit clock
if (Bclk_rising � '1') then
start <= '1'; nextstate <= TDATA;

else nextstate <= SYNCH;
end if;

when TDATA =>
if (Bclk_rising = '0') then nextstate <= TDATA;
elsif (Bct /= 9) then
shftTSR <= '1'; inc <= '1'; nextstate <= TDATA;

else clr <= '1'; nextstate <= IDLE;
end if;

end case;
end process;

Xmit_update: process(sysclk, rst_b)
begin
if (rst_b = '0') then
TSR <= "111111111"; state <= IDLE; Bct <= 0; Bclk_Dlayed <= '0';

elsif (sysclk'event and sysclk = '1') then
state <= nextstate;
if (clr = '1') then Bct <= 0;
elsif (inc = '1') then
Bct <= Bct + 1;

end if;
if (loadTDR = '1') then TDR <= DBUS;
end if;
if (loadTSR = '1') then TSR <= TDR & '1';
end if;
if (start = '1') then TSR(0) <= '0';
end if;
if (shftTSR = '1') then TSR <= '1' & TSR(8 downto 1);
end if;
–- shift out one bit
Bclk_Dlayed <= Bclk;   -- Bclk delayed by 1 sysclk

end if;
end process;

end xmit;

The operation of the UART receiver is as follows:

1. When the UART detects a start bit, it reads in the remaining bits serially and
shifts them into the RSR.

2. When all the data bits and the stop bit have been received, the RSR is loaded into
the RDR, and the Receive Data Register Full (RDRF) flag in the SCSR is set.

3. The microcontroller checks the RDRF flag, and if it is set, the RDR is read and
the flag is cleared.
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FIGURE 11-22:
Sampling RxD with
BclkX8

4 clocks

* * *

Start bit First data bit Second data bit

BclkX8

*Read data at these points

RxD

8 clocks 8 clocks

The bit stream coming in on RxD is not synchronized with the local bit clock
(Bclk). If we attempted to read RxD at the rising edge of Bclk, we would have a
problem if RxD changed near the clock edge. We could have setup and hold time
problems. If the bit rate of the incoming signal differed from Bclk by a small
amount, we could end up reading some bits at the wrong time. To avoid these prob-
lems, we will sample RxD eight times during each bit time. (Some systems sample
16 times per bit.) We will sample on the rising edge of BclkX8. The arrows in Figure
11-22 indicate the rising edge of BclkX8. Ideally, we should read the bit value at the
middle of each bit time for maximum reliability. When RxD first goes to ‘0’, we will
wait for four BclkX8 periods, and we should be near the middle of the start bit.Then
we will wait eight more BclkX8 periods, which should take us near the middle of the
first data bit. We continue reading once every eight BclkX8 clocks until we have
read the stop bit.

Figure 11-23 shows an SM chart for the UART receiver. Two counters are
used. Ct1 counts the number of BclkX8 clocks. Ct2 counts the number of bits
received after the start bit. In the IDLE state, the SM waits for the start bit
(RxD � ‘0’) and then goes to the Start Detected state. The SM waits for the ris-
ing edge of BclkX8 (BclkX8c) and then samples RxD again. Since the start bit
should be ‘0’ for eight BclkX8 clocks, we should read ‘0’. Ct1 is still 0, so Ct1 is
incremented and the SM waits for BclkX8c. If RxD � ‘1’, this is an error condi-
tion and the SM clears Ct1 and resets to the IDLE state. Otherwise, the SM keeps
looping. When RxD is ‘0’ for the fourth time, Ct1 � 3, so Ct1 is cleared and the
state goes to Receive Data. In this state, the SM increments Ct1 after every ris-
ing edge of BclkX8. After the eighth clock, Ct1 � 7 and Ct2 is checked. If it is not
8, the current value of RxD is shifted into RSR, Ct2 is incremented, and Ct1 is
cleared. If Ct2 � 8, all 8 bits have been read and we should be in the middle of
the stop bit. If RDRF � ‘1’, the microcontroller has not yet read the previously
received data byte, and an overrun error has occurred, in which case the OE flag
in the status register is set and the new data is ignored. If RxD � ‘0’, the stop bit
has not been detected properly, and the framing error (FE) flag in the status reg-
ister is set. If no errors have occurred, RDR is loaded from RSR. In all cases,
RDRF is set to indicate that the receive operation is completed and the counters
are cleared.
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FIGURE 11-23: SM
Chart for UART
Receiver

The VHDL code for the UART receiver (Figure 11-24) is based on the SM chart
of Figure 11-23. The receiver contains the RDR and RSR registers and the receive
control. The control interfaces with SCSR, and RDR can drive data onto the data
bus. The first process represents the combinational network, which generates the
nextstate and control signals. The second process updates the registers on the rising
edge of the clock. The signal BclkX8_rising is ‘1’ for one system clock time follow-
ing the rising edge of BclkX8. BclkX8_rising is generated the same manner as
Bclk_rising.
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FIGURE 11-24: VHDL Code for UART Receiver

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all; -– to use unsigned type

entity UART_Receiver is
port(RxD, BclkX8, sysclk, rst_b, RDRF: in std_logic;

RDR: out unsigned(7 downto 0);
setRDRF, setOE, setFE: out std_logic);

end UART_Receiver;

architecture rcvr of UART_Receiver is
type stateType is (IDLE, START_DETECTED, RECV_DATA);
signal state, nextstate: stateType;
signal RSR: unsigned(7 downto 0); -- receive shift register
signal ct1 : integer range 0 to 7; -- indicates when to read the RxD input
signal ct2 : integer range 0 to 8; -- counts number of bits read
signal inc1, inc2, clr1, clr2, shftRSR, loadRDR: std_logic;
signal BclkX8_Dlayed, BclkX8_rising: std_logic;

begin
BclkX8_rising <= BclkX8 and (not BclkX8_Dlayed);

-- indicates the rising edge of bitX8 clock
Rcvr_Control: process(state, RxD, RDRF, ct1, ct2, BclkX8_rising)
begin
-- reset control signals
inc1 <= '0'; inc2 <= '0'; clr1 <= '0'; clr2 <= '0';
shftRSR <= '0'; loadRDR <= '0'; setRDRF <= '0'; setOE <= '0'; setFE <= '0';
case state is

when IDLE =>
if (RxD = '0') then nextstate <= START_DETECTED;
else nextstate <= IDLE;
end if;

when START_DETECTED =>
if (BclkX8_rising = '0') then nextstate <= START_DETECTED;
elsif (RxD = '1') then clr1 <= '1'; nextstate <= IDLE;
elsif (ct1 = 3) then clr1 <= '1'; nextstate <= RECV_DATA;
else inc1 <= '1'; nextstate <= START_DETECTED;
end if;

when RECV_DATA =>
if (BclkX8_rising = '0') then nextstate <= RECV_DATA;
else inc1 <= '1';
if (ct1 /= 7) then nextstate <= RECV_DATA;

-- wait for 8 clock cycles
elsif (ct2 /= 8) then
shftRSR <= '1'; inc2 <= '1'; clr1 <= '1'; -– read next data bit
nextstate <= RECV_DATA;

else
nextstate <= IDLE;
setRDRF <= '1'; clr1 <= '1'; clr2 <= '1';
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if (RDRF = '1') then setOE <= '1'; -– overrun error
elsif (RxD = '0') then setFE <= ‘1’; -– framing error
else loadRDR <= '1'; -– load recv data register
end if;

end if;
end if;

end case;
end process;

Rcvr_update: process(sysclk, rst_b)
begin
if (rst_b � '0') then state <= IDLE; BclkX8_Dlayed <= '0';
ct1 <= 0; ct2 <= 0;

elsif (sysclk'event and sysclk = '1') then
state <= nextstate;
if (clr1 = '1') then ct1 <= 0; elsif (inc1 = '1') then
ct1 <= ct1 + 1;

end if;
if (clr2 = '1') then ct2 <= 0; elsif (inc2 = '1') then
ct2 <= ct2 + 1;

end if;
if (shftRSR = '1') then RSR <= RxD & RSR(7 downto 1);
end if;
-- update shift reg.
if (loadRDR = '1') then RDR <= RSR;
end if;
BclkX8_Dlayed <= BclkX8; -- BclkX8 delayed by 1 sysclk

end if;
end process;

end rcvr;

Figure 11-25 shows the result of synthesizing the UART receiver using the Xilinx
Spartan 3 device FPGA series as a target. The resulting implementation requires
26 flip-flops, 21 slices, and 32 four-input LUTs.

Next we will design a programmable baud rate generator. Three bits in the
SCCR are used to select any one of eight baud rates. We will assume that the system
clock is 8 MHz and we want baud rates 300, 600, 1200, 2400, 4800, 9600, 19,200, and
38,400.The maximum BclkX8 frequency needed is 38,400 � 8 � 307,200.To get this
frequency, we should divide 8 MHz by 26.04. Since we can divide only by an integer,
we need to either accept a small error in the baud rate or adjust the system clock
frequency downward to 7.9877 MHz to compensate.

Figure 11-26 shows a block diagram for the baud rate generator. The 8-MHz sys-
tem clock is first divided by 13 using a counter. This counter output goes to an 8-bit
binary counter. The outputs of the flip-flops in this counter correspond to divide by
2, divide by 4, . . . , and divide by 256. One of these outputs is selected by a multi-
plexer. The MUX select inputs come from the lower 3 bits of the SCCR. The MUX
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FIGURE 11-27: VHDL Code for Baud Rate Generator

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;   -– for overloaded + operator and conversion functions

entity clk_divider is
port(Sysclk, rst_b: in std_logic;

Sel: in unsigned(2 downto 0);
BclkX8: buffer std_logic;
Bclk: out std_logic);

end clk_divider;

architecture baudgen of clk_divider is
signal ctr1: unsigned(3 downto 0) := "0000";   -- divide by 13 counter
signal ctr2: unsigned(7 downto 0) := "00000000";   -- div by 256 ctr
signal ctr3: unsigned(2 downto 0) := "000";   -- divide by 8 counter
signal Clkdiv13: std_logic;

Divide by 13
8-MHz clk

Divide by 256

Divide by 8

Bclk

BclkX8

SelectMUX

Clkdiv13

BclkX8
FIGURE 11-26:
Baud Rate
Generator

output corresponds to BclkX8, which is further divided by 8 to give Bclk. Assuming
an 8-MHz clock, the frequencies generated are given by the following table:

Select Bits BAUD Rate (Bclk)

000 38,462
001 19,231
010 9615
011 4808
100 2404
101 1202
110 601
111 300.5

The VHDL code for the baud rate generator is given in Figure 11-27. The first
process increments the divide-by-13 counter on the rising edge of the system clock.The
second process increments the divide-by-256 counter on the rising edge of Clkdiv13.
A concurrent statement generates the MUX output, BclkX8. The third process incre-
ments the divide-by-8 counter on the rising edge of BclkX8 to generate Bclk.
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FIGURE 11-28: VHDL Code for Complete UART

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity UART is
port(SCI_sel, R_W, clk, rst_b, RxD: in std_logic;

ADDR2: in unsigned(1 downto 0);
DBUS: inout unsigned(7 downto 0);
SCI_IRQ, TxD: out std_logic);

end UART;

architecture uart1 of UART is
component UART_Receiver
port(RxD, BclkX8, sysclk, rst_b, RDRF: in std_logic;

begin
process(Sysclk) -– first divide system clock by 13
begin
if (Sysclk'event and Sysclk = '1') then

if (ctr1 = "1100") then ctr1 <= "0000";
else ctr1 <= ctr1 + 1;
end if;

end if;
end process;
Clkdiv13 <= ctr1(3); -- divide Sysclk by 13

process(Clkdiv13) -- ctr2 is an 8-bit counter
begin
if (Clkdiv13'event and Clkdiv13 = '1') then
ctr2 <= ctr2 + 1;

end if;
end process;

BclkX8 <= ctr2(to_integer(sel));   -– select baud rate
process(BclkX8)
begin
if (BclkX8'event and BclkX8 = '1') then
ctr3 <= ctr3 + 1;

end if;
end process;
Bclk <= ctr3(2);   -- Bclk is BclkX8 divided by 8

end baudgen;

To complete the UART design, we need to interconnect the three components
we have designed, connect them to the control and status registers, and add the
interrupt generation logic and the bus interface. Figure 11-28 gives the VHDL code
for the complete UART.
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RDR: out unsigned(7 downto 0);
setRDRF, setOE, setFE: out std_logic);

end component;
component UART_Transmitter
port(Bclk, sysclk, rst_b, TDRE, loadTDR: in std_logic;

DBUS: in unsigned(7 downto 0);
setTDRE, TxD: out std_logic);

end component;
component clk_divider
port(Sysclk, rst_b: in std_logic;

Sel: in unsigned(2 downto 0);
BclkX8: buffer std_logic; Bclk: out std_logic);

end component;
signal RDR: unsigned(7 downto 0); -- Receive Data Register
signal SCSR: unsigned(7 downto 0); -- Status Register
signal SCCR: unsigned(7 downto 0); -- Control Register
signal TDRE, RDRF, OE, FE, TIE, RIE: std_logic;
signal BaudSel: unsigned(2 downto 0);
signal setTDRE, setRDRF, setOE, setFE, loadTDR, loadSCCR: std_logic;
signal clrRDRF, Bclk, BclkX8, SCI_Read, SCI_Write: std_logic;

begin
RCVR: UART_Receiver port map(RxD, BclkX8, clk, rst_b, RDRF, RDR,

setRDRF, setOE, setFE);
XMIT: UART_Transmitter port map(Bclk, clk, rst_b, TDRE, loadTDR,

DBUS, setTDRE, TxD);
CLKDIV: clk_divider port map(clk, rst_b, BaudSel, BclkX8, Bclk);
-- This process updates the control and status registers
process(clk, rst_b)
begin
if (rst_b='0') then
TDRE <= '1'; RDRF <= '0'; OE <= '0'; FE <= '0';
TIE <= '0'; RIE <= '0';

elsif (rising_edge(clk)) then
TDRE <= (setTDRE and not TDRE) or (not loadTDR and TDRE);
RDRF <= (setRDRF and not RDRF) or (not clrRDRF and RDRF);
OE <= (setOE and not OE) or (not clrRDRF and OE);
FE <= (setFE and not FE) or (not clrRDRF and FE);
if (loadSCCR = '1') then TIE <= DBUS(7); RIE <= DBUS(6);
BaudSel <= DBUS(2 downto 0);

end if;
end if;

end process;

-- IRQ generation logic
SCI_IRQ <= '1' when ((RIE='1' and (RDRF='1' or OE='1')) or

(TIE='1' and TDRE='1'))
else '0';

-- Bus Interface
SCSR <= TDRE & RDRF & "0000" & OE & FE;
SCCR <= TIE & RIE & "000" & BaudSel;
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SCI_IRQ is an interrupt signal that interrupts the CPU when the UART
receiver or transmitter needs attention. When the RIE (receive interrupt enable)
is set in SCCR, SCI_IRQ is generated whenever RDRF or OE is ‘1’. When TIE
(transmit interrupt enable) is set in SCCR, SCI_IRQ is generated whenever
TDRE is ‘1’.

The UART is interfaced to microcontroller address and data buses so that the
CPU can read and write to the UART registers when the UART is selected by
SCIsel � ‘1’. The last two bits of the address (ADDR2), together with the R_W sig-
nal, are used for register selection as follows:

ADDR2 R_W Action

00 0 DBUS ; RDR
00 1 TDR ; DBUS
01 0 DBUS ; SCSR
01 1 DBUS ; hi-Z
1– 0 DBUS ; SCCR
1– 1 SCCR ; DBUS

When the UART is not selected for reading, the data bus is driven to high-Z.
The VHDL code in Figure 11-28 was synthesized using the Xilinx SPARTAN 3

series FPGA as a target. The resulting implementation required 62 slices, 109 four-
input LUTs, and 74 flip-flops.

This chapter presented three examples for the use of VHDL in design and sim-
ulation of digital systems. Two design examples, a wristwatch and a UART, and a
simulation example, a memory chip, were presented. In the design examples, we
first developed a block diagram for the design and state machine charts repre-
senting the controller of the system. Then, we presented behavioral VHDL mod-
els for the various blocks in the system. Use of test benches is illustrated. The
VHDL code was then synthesized for FPGAs. Designs were downloaded and
operation verified.

We also presented a simulation model for a memory chip. This model included
timing parameters for the memory chip and built-in checks to verify that setup and
hold times and other timing specifications are met. Such models are helpful when
third party cores/chips are utilized during system on a chip (SoC) design.

SCI_Read <= '1' when (SCI_sel = '1' and R_W = '0') else '0';
SCI_Write <= '1' when (SCI_sel = '1' and R_W = '1') else '0';
clrRDRF <= '1' when (SCI_Read = '1' and ADDR2 = "00") else '0';
loadTDR <= '1' when (SCI_Write = '1' and ADDR2 = "00") else '0';
loadSCCR <= '1' when (SCI_Write = '1' and ADDR2 = "10") else '0';
DBUS <= "ZZZZZZZZ" when (SCI_Read = '0') -- tristate bus when not reading

else RDR when (ADDR2 = "00")
-– write appropriate register to the bus

else SCSR when (ADDR2 = "01")
else SCCR;   -- dbus = sccr, if ADDR2 is "10" or "11"

end uart1;
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Problems
11.1 Assume that you are implementing the wristwatch design from Section 11.1 on an

FPGA board. Design the input module for the wristwatch for the FPGA board that
you have and write the VHDL code.

11.2 Assume that you are implementing the wristwatch design from Section 11.1 on an
FPGA board. Design the display module for the wristwatch and write the VHDL
code. Use an FPGA board with an LCD display. Display the time, the alarm setting,
or the stopwatch time depending on which mode the wristwatch is in.

11.3 (a) Add a count-down timer mode to the wristwatch module of Figures 11-2 and
11-3. The timer should count seconds, minutes, and hours. When in the timer
state, B2 should change states to allow setting the hours, minutes, and seconds
with B3. When setting is complete and the wristwatch is back in the main timer
state, B3 should start the count-down. If B3 is pressed again, it should stop the
count-down; otherwise, the count-down stops when it reaches 00:00:00, in which
case the timer beeps for one second.

(b) Modify the test bench and test your timer.

11.4 The problem concerns the design of a simple calculator for adding unsigned binary
numbers. Operation is similar to a simple hand-held calculator, except all inputs and
outputs are in binary, and the only operation is �.The calculator displays 8 bits with
a binary point. The calculator has only five keys: 0, 1, . , �, and reset. Reset clears all
registers and resets the calculator to the starting state. After entering the first num-
ber, the � key terminates that entry and allows a second number to be entered.
When � is pushed again, the sum is put in the accumulator, and another number can
be entered. This continues until the calculator is reset. Note that there is no equals
key. You may assume that only normal input sequences occur, that is, a number will
always be entered each time before � is pressed. Before addition can be done, the
binary points of the numbers to be added must be aligned by shifting. If addition
produces an overflow, the overflow should be corrected if possible. If not, set E � 1
to indicate an error.

The keys are not encoded.The calculator has six input signals: zero, one, dot, plus,
reset, and V. Assume that all input signals are debounced, and V � 1 for one clock
time whenever a key is pressed. Outputs to the display are 8 bits from the A regis-
ter, RCTA (the number of bits to the right of the binary point), and E.

(a) Draw a block diagram for the calculator showing required registers, counters,
adders, and so on. Show the necessary control signals and tell what they mean.
For example, RSHA means right shift A. Specify the size of each register.

(b) Draw an SM chart for the main calculator code. Include inputting the binary
numbers, aligning the binary points, adding, and correcting for overflow if pos-
sible. Define all control signals used.
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(c) Write VHDL code for the main calculator module.
(d) Write a test bench for your VHDL module.

11.5 This question refers to static RAM read and write cycles (refer to Figures 11-11
and 11-12). Answer this question in general, not for any specific set of numeric
values.

(a) If W̄̄̄¯¯Ē � 1, and the address changes at the same time C̄̄̄ ¯S̄ goes to 0, what is the
maximum time before valid data is available at the RAM output? (Note: The
timing diagrams are not drawn to scale).

(b) What determines the maximum number of bytes per second that can be read
from the RAM? State any assumptions which you make.

(c) For a W̄̄̄¯¯Ē-controlled write cycle, what is the normal sequence of events which
occur when writing to RAM?

(d) State clearly what timing conditions must be satisfied in order to correctly write
data to the RAM. For example, W̄̄̄¯¯Ē must be 0 for at least twp.

11.6 Answer the following questions for the 6116 SA-15 static CMOS RAM. Refer to the
timing specifications in Table 11-1.

(a) What is the maximum clock frequency that can be used?
(b) What is the minimum time after a change in address or C̄̄̄ ¯S̄ at which valid data

can be read?
(c) For a W̄̄̄̄ ¯Ē-controlled write cycle, what is the earliest time new data can be driven

after W̄̄̄̄ ¯Ē goes low?
(d) For a write cycle, what is the minimum time that valid data must be driven onto

the data bus?

11.7 This problem concerns a simplified memory model for a 6116 CMOS RAM.
Assume that both C̄̄̄ ¯S̄ and Ō̄̄ ¯Ē are always low, so memory operation depends only
on the address and W̄̄̄̄ ¯Ē.

(a) Write a simple VHDL model for the memory that ignores all timing informa-
tion. (Your model should not contain C̄̄̄ ¯S̄ or Ō̄̄ ¯Ē.)

(b) Add the following timing specs to your model: tAA, tOH, tWHZ, and tOW. For reads,
Dout should go to “XXXXXXXX” (unknown) after tOH and then to valid data
out after tAA. For writes, Dout should go to high-Z after tWHZ, and it should go
to the value just stored after tOW.

(c) Add another process that gives appropriate error messages if any of the following
specs are not satisfied: tWP, tDW, and tDH.

11.8 A VHDL model that describes the operation of the 6116 memory is given in
Figure 11-14.

(a) Verify that the code will report a warning if the data setup time for writing to
memory is not met, if the data hold time for writing to memory is not met, or if
the minimum pulse width spec for WE_b is not met.
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(b) Indicate the changes and additions to the original VHDL code that are neces-
sary if OE_b (Ō̄̄ ¯Ē) is taken into account. Note that for reads, if OE_b goes low
after CS_b goes low, the tOE access time must be considered. Also note that
when OE_b goes high, the data bus will go high-Z after time tOHZ.

11.9 What modifications must be made in the check process in the VHDL 6116 RAM
timing model (Figure 11-14) in order to verify the address setup time (tAS) and the
write recovery time (tWR) specifications?

11.10 Consider the CS-controlled write cycle for a static CMOS RAM (Figure 11-13).What
VHDL code is needed in the check process in the timing model (Figure 11-14) to
verify the correct operation of a CS-controlled write? You must check timing speci-
fications such as tCW, tDW, and tDH.

11.11 A ROM (read-only memory) has an 8-bit address input, an output enable (OE), and
an 8-bit data output. When OE � 0, data � hi-Z; when OE � 1, data is read from
the ROM. Timing diagrams are shown below. Write a VHDL model for the ROM
that includes the timing specifications.
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11.12 A static RAM memory uses a W̄̄̄¯¯Ē controlled write cycle as shown in the figure.
This memory has a negative data hold time with a magnitude thn. This means that
as long as the setup time (tdw) is satisfied, it is okay for the input data to change
anytime during the interval thn before the rising edge of W̄̄̄¯¯Ē. Write a process that
will report an error if the input data (Dbus) changes at any time during the time
interval tdw to thn before W̄̄̄¯¯Ē rises.
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11.13 Make necessary changes in the UART receiver VHDL code so that it uses a 16X bit
clock instead of an 8X bit clock. Using a faster sampling clock can improve the noise
immunity of the receiver.

11.14 (a) Write a VHDL test bench for the UART. Include cases to test overrun error,
framing error, noise causing a false start, change of BAUD rate, and so on.
Simulate the VHDL code.

(b) If suitable hardware is available, write a simpler test bench to allow a loop-back
test with TxD externally connected to RxD. Synthesize the test bench along
with the UART, download to the target device, and verify correct operation of
the hardware.

11.15 Make necessary changes to the VHDL code to add a parity option to the UART
described in Section 11.3.Add 2 bits (P1P0) to the SCCR that select the parity mode
as follows:

P1P0 � 00 8 data bits, no parity bit
P1P0 � 01 7 data bits, 8th bit makes parity even
P1P0 � 10 7 data bits, 8th bit makes parity odd
P1P0 � 11 7 data bits, 8th bit is always ‘0’

The transmitter should generate the even, odd, or ‘0’ parity bit as specified. The
receiver should check the parity bit to verify that it is correct. If not, it should set a
PE (parity error) flag in the SCSR.

11.16 The operation of a synchronous receiver is somewhat similar to the UART receiver
discussed in Section 11.3, except both data (RxD) and a data clock (Dclk) are
transmitted so there is no need to synchronize data with a local clock, and no start
and stop bits are required. As shown below, when 8 bits of data are transmitted,
the clock is actually active for nine clock times and then it becomes inactive. On the
first eight clocks data is shifted into the receive shift register (RSR), and on
the ninth clock, the data is transferred to the receive data register (RDR) and the
RDRF flag is set.

(a) Draw a block diagram for the synchronous receiver, including a counter. (Note:
A state machine is not necessary, but generation of control signals Load and
Shift is required.)
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11.17 Write a test bench for the UART that performs a loop-back test.The test bench con-
nects the TxD output of the UART to the RxD input so that any data loaded into
TDR will automatically be transmitted from TxD, received into RxD, and loaded
into RDR. The test bench should simulate the action of a CPU that writes
“01010101” to TDR, reads the status register in a loop until RDRF � ‘1’, and then
reads from RDR.
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(b) Write synthesizable VHDL code that corresponds to (a). Signals Load and Shift
should appear explicitly in your code.
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Disclaimer: This VHDL summary is not complete and contains some special cases.
Only VHDL statements used in this text are listed. For a complete description of
VHDL syntax, refer to References 6, 9, and 23.

Notes:

• VHDL is not case sensitive.
• Signal names and other identifiers may contain letters, numbers, and the under-

score (_) character.
• An identifier must start with a letter.
• An identifier cannot end with an underscore.
• Every VHDL statement must be terminated with a semicolon.
• VHDL is a strongly typed language. In general, mixing of data types is not

allowed.

LEGEND
bold reserved word
[ ] optional items
{ } repeated zero or more times
| or

1. Predefined Types
bit ‘0’ or ‘1’
boolean FALSE or TRUE
integer an integer in the range �(231 � 1) to �(231 � 1) 

(some implementations support a wider range)
real floating-point number in the range �1.0E38 to 

�1.0E38
character any legal VHDL character including upper- and 

lowercase letters, digits, and special characters (each 
printable character must be enclosed in single quotes;
e.g., ‘d’, ‘7’, ‘�’)

time an integer with units fs, ps, ns, us, ms, sec, min, or hr
natural integers � 0
positive integers � 0
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bit_vector array of bits
string array of characters
delay_length time � 0

2. Operators By Increasing Precedence
1. Binary logical operators: and or nand nor xor xnor
2. Relational operators: � �� � �� � ��
3. Shift operators: sll srl sla sra rol ror
4. Adding operators: � � & (concatenation)
5. Unary sign operators: � �
6. Multiplying operators: * � mod rem
7. Miscellaneous operators: not abs **

3. Predefined Attributes
Signal attributes that return a value:

546 VHDL Language Summary

Signal attributes that create a signal:

Array attributes:
type ROM is array (0 to 15, 7 downto 0) of bit;
signal ROM1 : ROM;

Attribute Returns

S’ACTIVE true if a transaction occurred during the current delta, 
else false

S’EVENT true if an event occurred during the current delta, 
else false

S’LAST_EVENT time elapsed since the previous event on S

S’LAST_VALUE value of S before the previous event on S

S’LAST_ACTIVE time elapsed since previous transaction on S

Attribute Creates

S’DELAYED [(time)]* signal same as S delayed by specified time

S’STABLE [(time)]* boolean signal that is true if S had no events for the speci-
fied time

S’QUIET [(time)]* boolean signal that is true if S had no transactions for the
specified time

S’TRANSACTION signal of type bit that changes for every transaction
on S

*Delta is used if no time is specified.
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4. Predefined Functions
NOW returns current simulation time
FILE_OPEN([status], FileID, string, mode) open file
FILE_CLOSE(FileID) close file

5. Declarations
entity declaration:

entity entity-name is
[generic (list-of-generics-and-their-types);]
[port (interface-signal-declaration);]
[declarations]

end [entity] [entity-name];

interface-signal declaration:
list-of-interface-signals: mode type [:= initial-value]
{; list-of-interface-signals: mode type [:= initial-value]}

Note: An interface signal can be of mode in, out, inout, or buffer.

architecture declaration:
architecture architecture-name of entity-name is

[declarations] -- variable declarations not allowed
begin

architecture-body
end [architecture] [architecture-name];

VHDL Language Summary 547

Attribute Returns Examples

A’LEFT(N) left bound of ROM1’LEFT(1) � 0
Nth index range ROM1’LEFT(2) � 7

A’RIGHT(N) right bound of ROM1’RIGHT(1) � 15
Nth index range ROM1’RIGHT(2) � 0

A’HIGH(N) largest bound of ROM1’HIGH(1) � 15
Nth index range ROM1’HIGH(2) � 7

A’LOW(N) smallest bound of ROM1’LOW(1) � 0
Nth index range ROM1’LOW(2) � 0

A’RANGE(N) Nth index range ROM1’RANGE(1) � 0 to 15
ROM1’RANGE(2) � 7 downto 0

A’REVERSE_RANGE(N) Nth index range ROM1’REVERSE_RANGE(1) �
15 downto 0

reversed ROM1’REVERSE_RANGE(2) �
0 to 7

A’LENGTH(N) size of Nth index ROM1’LENGTH(1) � 16
range ROM1’LENGTH(2) � 8
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Note: The architecture body may contain component-instantiation statements,
processes, blocks, assignment statements, procedure calls, etc.

integer type declaration:
type type_name is range integer_range;

enumeration type declaration:
type type_name is (list-of-names-or-characters);

subtype declaration:
subtype subtype_name is type_name [index-or-range-constraint];

variable declaration:
variable list-of-variable-names: type_name [:= initial_value];

signal declaration:
signal list-of-signal-names: type_name [:= initial_value];

constant declaration:
constant constant_name: type_name := constant_value;

alias declaration:
alias identifier[:identifier-type] is item-name;

Note: Item-name can be a constant, signal, variable, file, function name, type name, etc.

array type and object declaration:
type array_type_name is array index_range of element_type;
signal|variable|constant array_name: array_type_name 
[:= initial_values];

procedure declaration:
procedure procedure-name (parameter list) is

[declarations]
begin

sequential statements
end procedure-name;

Note: Parameters may be signals, variables, or constants.

function declaration:
function function-name (parameter-list) return return-type is

[declarations]
begin

sequential statements -- must include return
return-value;

end function-name;

Note: Parameters may be signals or constants.
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library declaration:
library list-of-library-names;

use statement:
use library_name.package_name.item; (.item may be .all)

package declaration:
package package-name is

package declarations
end [package][package-name];

package body:
package body package-name is

package body declarations
end [package body][package name];

component declaration:
component component-name

[generic (list-of-generics-and-their-types);]
port (list-of-interface-signals-and-their-types);

end component;

file type declaration:
type file_name is file of type_name;

file declaration:
file file_name: file_type [open mode] is "file_pathname";

Note: Mode may be read_mode, write_mode, or append_mode.

6. Concurent Statements
signal assignment statement:

signal <= [reject pulse-width | transport] expression [after
delay_time];

Note: If signal assignment done as concurrent statement, signal value is recomputed
every time a change occurs on the right-hand side. If [after delay_time] is
omitted, signal is updated after delta time.

conditional assignment statement:
signal <= expression1 when condition1

else expression2 when condition2
. . .
[else expression];
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selected signal assignment statement:
with expression select

signal <= expression1 [after delay_time] when choice1,
expression2 [after delay_time] when choice2,
. . .
[expression [after delay_time] when others];

assert statement:
assert boolean-expression

[report string-expression]
[severity severity-level];

component instantiation:
label: component-name

[generic map (generic-association-list);]
port map (list-of-actual-signals);

Note: Use open if a component output has no connection

generate statements:
generate_label: for identifier in range generate
[begin]

concurrent statement(s)
end generate [generate_label];

generate_label: if condition generate
[begin]

concurrent statement(s)
end generate [generate_label];

process statement (with sensitivity list):
[process-label:] process (sensitivity-list)

[declarations]      -- signal declarations not allowed
begin

sequential statements
end process [process-label];

Note: This form of process is executed initially and thereafter only when an item on
the sensitivity list changes value. The sensitivity list is a list of signals. No wait state-
ments are allowed.

process statement (without sensitivity list):
[process-label:] process

[declarations] -- signal declarations not allowed
begin

sequential statements
end process [process-label];

Note: This form of process must contain one or more wait statements. It starts exe-
cution immediately and continues until a wait statement is encountered.
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procedure call:
procedure-name (actual-parameter-list);

Note: An expression may be used for an actual parameter of mode in; types of the
actual parameters must match the types of the formal parameters; open cannot be
used.

function call:
function-name (actual-parameter list)

Note: A function call is used within (or in place of) an expression. Function call is
not a statement by itself, it is part of a statement.

7. Sequential Statements
signal assignment statement:

signal <= [reject pulse-width | transport] expression [after
delay_time];

Note: If [after delay_time] is omitted, signal is updated after delta time.

variable assignment statement:
variable := expression;

Note: This can be used only within a process, function, or procedure. The variable is
always updated immediately.

wait statements can be of the form:
wait on sensitivity-list;
wait until boolean-expression;
wait for time-expression;

if statement:
if condition then

sequential statements
{elsif condition then

sequential statements} -- 0 or more elsif clauses may
be included

[else sequential statements]
end if;

case statement:
case expression is

when choice1 => sequential statements
when choice2 => sequential statements
. . .
[when others => sequential statements]

end case;
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for loop statement:
[loop-label:] for identifier in range loop

sequential statements
end loop [loop-label];

Note: You may use exit to exit the current loop.

while loop statement:
[loop-label:] while boolean-expression loop

sequential statements
end loop [loop-label];

exit statement:
exit [loop-label] [when condition];

assert statement:
assert boolean-expression

[report string-expression]
[severity severity-level];

report statement:
report string-expression

[severity severity-level];

procedure call:
procedure-name (actual-parameter-list);

Note: An expression may be used for an actual parameter of mode in; types of the
actual parameters must match the types of the formal parameters; open cannot be
used.

function call:
function-name (actual-parameter list)

Note: A function call is used within (or in place of) an expression. Function call is
not a statement by itself, it is part of a statement.
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The two packages from the IEEE libraries that we have used in the book are
NUMERIC_BIT and NUMERIC_STD. The headers of these packages read as
follows:

Standard VHDL Synthesis Package (1076.3, NUMERIC_BIT)

-- Developers: IEEE DASC Synthesis Working Group, PAR 1076.3
-- Purpose: This package defines numeric types and arithmetic functions
-- :for use with synthesis tools. Two numeric types are defined:
-- :--> UNSIGNED: represents an UNSIGNED number in vector form
-- :--> SIGNED: represents a SIGNED number in vector form
-- :The base element type is type BIT.
-- :The leftmost bit is treated as the most significant bit.
-- :Signed vectors are represented in two's complement form.
-- :This package contains overloaded arithmetic operators on
-- :the SIGNED and UNSIGNED types. The package also contains
-- :useful type conversions functions, clock detection
-- :functions, and other utility functions.

Standard VHDL Synthesis Package (1076.3, NUMERIC_STD)

-- Developers: IEEE DASC Synthesis Working Group, PAR 1076.3
-- Purpose: This package defines numeric types and arithmetic functions
-- :for use with synthesis tools. Two numeric types are defined:
-- :--> UNSIGNED: represents UNSIGNED number in vector form
-- :--> SIGNED: represents a SIGNED number in vector form
-- :The base element type is type STD_LOGIC.
-- :The leftmost bit is treated as the most significant bit.
-- :Signed vectors are represented in two's complement form.
-- :This package contains overloaded arithmetic operators on
-- :the SIGNED and UNSIGNED types. The package also contains
-- :useful type conversions functions.
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The entire package listings can be viewed at

http://www.eda.org/rassp/vhdl/models/standards/numeric_bit.vhd
http://www.eda.org/rassp/vhdl/models/standards/numeric_std.vhd

Useful conversion functions in the numeric_bit package:

TO_INTEGER(A): converts an unsigned (or signed) vector A to an integer
TO_UNSIGNED(B,N): converts an integer to an unsigned vector of length N
TO_SIGNED(B,N): converts an integer to an signed vector of length N
UNSIGNED(A): causes the compiler to treat a bit_vector A as an unsigned vector
SIGNED(A): causes the compiler to treat a bit_vector A as a signed vector
BIT_VECTOR(B): causes the compiler to treat an unsigned (or signed) vector
B as a bit_vector

The same conversion functions are available in the numeric_std package, except
replace bit_vector with std_logic_vector.

Notes:

1. The numeric_bit package provides an overloaded operator to add an integer to
an unsigned, but not to add a bit to an unsigned type. Thus, if A and B are
unsigned, A+B+1 is allowed, but a statement of the form

Sum <= A + B + carry;

is not allowed when carry is of type bit.The carry must be converted to unsigned before
it can be added to the unsigned vector A+B. The notation unsigned'(0=>carry)
will accomplish the necessary conversion. Use the statement 

Sum <= A + B + unsigned'(0=>carry);

2. If we want more bits in the sum than there are in the numbers being added, we
must extend the numbers  by concatenating ‘0’ . For example, if X and Y are 4 bits,
and a 5-bit sum including the carry out is desired, extend X to 5 bits by concate-
nating '0' and X. (Y will automatically be extended to match.) Hence:

Sum5 <= '0' & X + Y;

accomplishes the addition of two 4-bit numbers and provides a 5-bit sum.
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package TEXTIO is
-- Type definitions for text I�O:
type LINE is access STRING; -- A LINE is a pointer to a STRING value.
-- The predefined operators for this type are as follows:
-- function "=" (anonymous, anonymous: LINE) return BOOLEAN;
-- function "/=" (anonymous, anonymous: LINE) return BOOLEAN;
type TEXT is file of STRING; -- A file of variable-length ASCII records.
-- The predefined operators for this type are as follows:
-- procedure FILE_OPEN (file F: TEXT; External_Name; in STRING;
-- Open_Kind: in FILE_OPEN_KIND := READ_MODE);
-- procedure FILE_OPEN (Status: out FILE_OPEN_STATUS; file F: TEXT;
-- External_Name: in STRING;
-- Open_Kind: in FILE_OPEN_KIND := READ_MODE);
-- procedure FILE_CLOSE (file F: TEXT);
-- procedure READ (file F: TEXT; VALUE: out STRING);
-- procedure WRITE (file F: TEXT; VALUE: in STRING);
-- function ENDFILE (file F: TEXT) return BOOLEAN;
type SIDE is (RIGHT, LEFT); -- For justifying output data within fields.
-- The predefined operators for this type are as follows:
-- function "=" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function "/=" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function "<" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function "<=" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function ">" (anonymous, anonymous: SIDE) return BOOLEAN;
-- function ">=" (anonymous, anonymous: SIDE) return BOOLEAN;
subtype WIDTH is NATURAL; -- For specifying widths of output fields.

-- Standard text files:
file INPUT: TEXT open READ_MODE is "STD_INPUT";
file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";
-- Input routines for standard types:
procedure READLINE (file F: TEXT; L: inout LINE);
procedure READ (L: inout LINE; VALUE: out BIT; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out BIT);
procedure READ (L: inout LINE; VALUE: out BIT_VECTOR; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);
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procedure READ (L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out CHARACTER; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out CHARACTER);
procedure READ (L: inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out INTEGER);
procedure READ (L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out REAL);
procedure READ (L: inout LINE; VALUE: out STRING; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out STRING);
procedure READ (L: inout LINE; VALUE: out TIME; GOOD: out BOOLEAN);
procedure READ (L: inout LINE; VALUE: out TIME);
-- Output routines for standard types:
procedure WRITELINE (file F: TEXT; L: inout LINE);
procedure WRITE (L: inout LINE; VALUE: in BIT;

JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;

JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;

JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
procedure WRITE (L: inout LINE; VALUE: in CHARACTER;

JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
procedure WRITE (L: inout LINE; VALUE: in INTEGER;

JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
procedure WRITE (L: inout LINE; VALUE: in REAL;

JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
DIGITS: in NATURAL:= 0);

procedure WRITE (L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in TIME;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
UNIT: in TIME:= ns);

-- File position predicate:
-- function ENDFILE (file F: TEXT) return BOOLEAN;

end TEXTIO;
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For each of these projects, choose an appropriate FPGA or CPLD as a target device
and carry out the following steps:

1. Work out an overall design strategy for the system and draw block diagrams.
Divide the system into modules if appropriate. Develop an algorithm, SM charts,
or state graphs as appropriate for each module. Unless otherwise specified, your
design should be a synchronous system with appropriate circuits added to syn-
chronize the inputs with the clock.

2. Write synthesizable VHDL code for each module, simulate it, and debug it. To
avoid timing problems in the hardware, use signals instead of variables and make
sure the code synthesizes without latches. Use test benches when appropriate to
verify correct operation of each module.

3. Integrate the VHDL code for the modules, simulate, and test the overall system.
4. Make any needed changes and synthesize the VHDL code for the target device.

Simulate the system after synthesis.
5. Generate a bit file for the target device and download it.Verify that the hardware

works correctly.

P1. Push-Button Door Lock
Design a push-button door lock that uses a standard telephone keypad as input.
Use the keypad scanner designed in Chapter 4 as a module. The length of the com-
bination is 4 to 7 digits. To unlock the door, enter the combination followed by the
# key. As long as # is held down, the door will remain unlocked and can be opened.
When # is released, the door is relocked.To change the combination, first enter the
correct combination followed by the * key. The lock is then in the “store” mode.
The “store” indicator light comes on and remains on until the combination has
been successfully changed. Next enter the new combination (4 to 7 digits) fol-
lowed by #. Then enter the new combination a second time followed by #. If
the second time does not match the first time, the new combination must be
entered two times again. Store the combination in an array of eight 4-bit registers
or in a small RAM. Store the 4-bit key codes followed by the code for the # key.
Also provide a reset button that is not part of the keypad. When the reset button

A P P E N D I X

D
Projects

557

12Appendix.qxd  3/13/07  3:28 PM  Page 557



is pushed, the system enters the “store” state and a new combination may be
entered. Use a separate counter for counting the inputs as they come in. A 4-bit
code, a key-down signal (Kd), and a valid data signal (V) are available from the
keypad module.

P2. Synchronous Serial Peripheral Interface
Design an SPI (synchronous serial peripheral interface) module suitable for use
with a microcontroller. The SPI allows synchronous serial communication with
peripheral devices or with other microcontrollers.The SPI contains four registers—
SPCR (SPI control), SPSR (SPI status), SPDR (SPI data), and SPSHR (SPI shift
register). The following diagram shows how two SPIs can be connected for serial
communications. One SPI operates as a master and one as a slave. The master
provides the clock for synchronizing transmit and receive operations. When a byte
of data is loaded into the master SPSHR, it initiates serial transmission and sup-
plies a serial clock (SCK). Data is exchanged between the master and slave shift
registers in eight clocks. As soon as transmission is complete, data from each
SPSHR is transferred to the corresponding SPDR, and the SPI flag (SPIF) in the
SPSR is set.
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The function of the pins depends on whether the device is in master or slave mode:

MOSI—output for master, input for slave
MISO—input for master, output for slave
SCK—output for master, input for slave

The SPDR and SPSHR are mapped to the same address. Reading from this address
reads the SPDR, but writing loads the SPSHR. SPSR bit 7 is the SPI flag (SPIF).
SPSR may also contain error flags, but we will omit them from this design. The fol-
lowing sequence will clear SPIF:

Read SPSR when SPIF is set.
Read or write to the SPDR address.

The SPCR register contains the following bits:

SPIE—enable SPI interrupt
SPE—enable the SPI
MSTR—set to ‘1’ for master mode, ‘0’ for slave mode
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SPR1 and SPR0—set SCLK rate as follows:

SPR1&SPR0 � 00 SCK rate � Sysclk rate/2

SPR1&SPR0 � 01 SCK rate � Sysclk rate/4

SPR1&SPR0 � 10 SCK rate � Sysclk rate/16

SPR1&SPR0 � 11 SCK rate � Sysclk rate/32

P3. Bowling Score Keeper
The digital system shown below will be used to keep score for a bowling game. The
score-keeping system will score the game according to the following (regular) rules
of bowling: A game of bowling is divided into ten frames. During each frame, the
player gets two tries to knock down all of the bowling pins. At the beginning of a
frame, ten pins are set up. If the bowler knocks all ten pins down on his or her first
throw, then the frame is scored as a strike. If some (or all) of the pins remain stand-
ing after the first throw, the bowler gets a second try. If the bowler knocks down all
of the pins on the second try, the frame is scored as a spare. Otherwise, the frame
is scored as the total number of pins knocked down during that frame.
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The total score for a game is the sum of the number of pins knocked down plus
bonuses for scoring strikes and spares. A strike is worth 10 points (for knocking
down all ten pins) plus the number of pins knocked down on the next two throws
(not frames). A spare is worth 10 points (for knocking down ten pins) plus the num-
ber of pins knocked down on the next throw. If the bowler gets a spare on the tenth
frame, then he or she gets one more throw. The number of pins knocked down from
this extra throw are added to the current score to get the final score. If the bowler
gets a strike on the last frame, then he or she gets two more throws, and the number
of pins knocked down are added to the score. If the bowler gets a strike in frame
9 and 10, then he or she also gets two more throws, but the score from the first bonus
throw is added into the total twice (once for the strike in frame 9, once for the strike
in frame 10), and the second bonus throw is added in once. The maximum score for
a perfect game (all strikes) is 300. An example of bowling game scoring follows:
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First Second 
Frame Throw Throw Result Score

1 3 4 7 7
2 5 5 spare 7 � 10 � 17
3 7 1 8 17 � 7 (bonus for spare in 2) � 8 � 32

. . . . . . . . . . . . 87
9 10 — strike 87 � 10 � 97

10 10 — strike 97 � 10 (for this throw) � 10 (bonus for strike
in 9)

— 6 3 — 117 � 6 (bonus for strike in 9)
� 6 (bonus for strike in 10)
� 3 (bonus for strike in 10) � 132

The score-keeping system has the form shown in the preceding table. The con-
trol network has three inputs: APD (All Pins Down), LF (Last Frame), and UPD
(update). APD is 1 if the bowler has knocked all ten pins down (in either one or
two throws). LF is 1 if the frame counter is in state 9 (frame 10). UPD is a signal
to the network that causes it to update the score. UPD is 1 for exactly one clock
cycle after every throw the bowler makes. There are many clock cycles between
updates.

The control network has four outputs: AD, NF, FT, and Done. N represents the
number of pins knocked down on the current throw. If AD is 1, N will be added to
the score register on the rising edge of the next clock. If NF is 1, the frame counter
will increment on the rising edge of the next clock. FT is 1 when the first throw in a
frame is made. Done should be set to 1 when all ten frames and bonus throws, if
applicable, are complete.

Use a 10-bit score register and keep the score in BCD form rather than in binary.
That is, a score of 197 would be represented as 01 1001 0111. The lower two decimal
digits of the register should be displayed using two 7-segment LED indicators, and the
upper 2 bits can be connected to two single LEDs.When ADD � 1 and the register is
clocked, N should be added to the register. N is a 4-bit binary number in the range 0
through 10. Use a 4-bit BCD counter module for the middle BCD digit. Note that in
the lower 4 bits, you will add a binary number to a BCD digit to give a BCD digit and
a carry.

P4. Simple Microcomputer
Design a simple microcomputer for 8-bit signed binary numbers. Use a keypad for data
entry and a 256 � 8 static RAM memory. The microcomputer should have the follow-
ing 8-bit registers: A (accumulator), B (multiplier), MDR (memory data register),
PC (program counter), and MAR (memory address register). The IR (instruction
register) may be 5 to 8 bits, depending on how the instructions are encoded.The B reg-
ister is connected to the A register so that A and B can be shifted together during the
multiply. Only one 8-bit adder and one complementer is allowed. The microcomputer
should have a 256-word-by-8-bit memory for storing instructions and data. It should
have two modes: (a) memory load and (b) execute program. Use a DIP switch to select
the mode.
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Memory load mode operates as follows: Select mode � 0 and reset the system.
Then press two keys on the keypad followed by pushing a button to load each word
in memory. The first word is loaded at address 0, the second word at address 1, and
so on. Data should be loaded immediately following the program. Execution mode
operates as follows: Select mode � 1 and press reset. Execution begins with the
instruction at address 0.

Each instruction will be one or two words long. The first word will be the opcode,
and the second word (if any) will be an 8-bit memory address or immediate operand.
One bit in the opcode should distinguish between memory address or immediate
operand mode. Represent negative numbers in 2’s complement. Implement the
following instructions:

LDA �memadd� load A from the specified memory address
LDA �imm� load A with immediate data
STA �memadd� store A at the specified memory address
ADD �memadd� add data from memory address to A, set carry flag if carry,

set V if 2’s complement overflow
ADD �imm� add immediate data to A, set carry flag if carry, set V if

overflow
SUB �memadd� subtract data from memory address from A, set carry flag

if borrow, set V if 2’s complement overflow
SUB �imm� subtract immediate data from A, set carry flag if borrow, set

V if overflow
MUL �memadd� multiply data from memory address by B, result in A & B
MUL �imm� multiply immediate data by B
SWAP swap A and B
PAUSE pause until a button is pressed and released (Note: A regis-

ter should always be displayed on LEDs.)
JZ �target addr� jump to target address if A � 0
JC �target addr� jump to target address if carry flag (CF) is set
JV �target addr� jump to target address if overflow flag (V) is set

The control module should be implemented as a linked state machine, with a sep-
arate state machine for the multiplier control.Try to keep the number of states small.
(A good solution should have about ten states for the main control.) The multiplier
control should use a separate counter to count the number of shifts. Assume that the
clock speed is slow enough so that memory can be accessed in one clock period.

P5. Stack-Based Calculator
Design a stack-based calculator for 8-bit signed binary numbers. Input data to the
calculator can come from a keypad or from DIP switches with a separate push-but-
ton to enter the data. The calculator should have the following operations:

enter push the 8-bit input data onto the stack
0 – clear clear the top of the stack, reset the stack counter, reset overflow, and

so on.
1 – add replace the top two data entries on the stack with their sum
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2 – sub replace the top two data entries on the stack with their difference
(stack top—next entry)

3 – mul replace the top two data entries on the stack with their product (8 bits
� 8 bits to give 8-bit product)

4 – div replace the top two data entries on the stack with their quotient (stack
top / next entry) (8 bits divided by 8 bits to give 8-bit quotient)

5 – xchg exchange the top two data entries on the stack
6 – neg replace the top of the stack with its 2’s complement

Negative numbers should be represented in 2’s complement. Provide an overflow
indicator for 2’s complement overflow. This indicator should also be set if the prod-
uct requires more than 8 bits including sign or if divide by 0 is attempted.

Implement a stack module that has four 8-bit words. The stack should have the
following operations: push, pop, and exchange the top two words on the stack. The
top of the stack should always be displayed on eight LEDs. Include an indicator for
stack overflow (attempt to push a fifth word) and stack underflow (attempt to pop
an empty stack or to exchange the top of stack with an empty location).

Design the control unit for the calculator using linked state machines. Draw a
main SM chart with separate SM charts for the multiplier and divider control.When
you design the arithmetic unit, try to avoid adding unnecessary registers.You should
be able to implement the arithmetic unit with three registers (8 or 9 bits each), an
adder, two complementers, and so on.

P6. Floating-Point Arithmetic Unit
Design a floating-point arithmetic unit. Each floating-point number should have a
4-bit fraction and a 4-bit exponent, with negative numbers represented in 2’s com-
plement. (This is the notation used in the examples in Chapter 7.) The unit should
accept the following floating-point instructions:

001 FPL—load floating-point accumulator (fraction and exponent)
010 FPA—add floating-point operand to accumulator
011 FBS—subtract floating-point operand from accumulator
100 FPM—multiply accumulator by floating-point operand
101 FPD—(optional) divide floating-point accumulator by floating-point

operand

The result of each operation (4-bit fraction and 4-bit exponent) should be in the
floating-point accumulator. All output should be properly normalized. The accumu-
lator should always be displayed as hex digits on 7 segment LEDs. Use an LED to
indicate an overflow.

The input to the floating-point unit will come from a 4 � 4 hexadecimal keypad,
using a scanner similar to the one designed in Chapter 4. Each instruction will be rep-
resented by three hex digits from the keypad—the opcode, the fraction, and the
exponent. For example, FPA 1.011 � 2�3 is coded as 2 B D � 0010 1011 1101.Assume
that all inputs are properly normalized or zero. Your design should include the fol-
lowing modules: fraction unit, exponent unit, control module, and 4-bit binary to
seven-segment display conversion logic.
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P7. Tic-Tac-Toe Game
Design a machine to play the defensive game of tic-tac-toe using an FPGA. Input
will be a 3 � 3 keypad, a reset button, and a switch SW1. If SW1 is off, the machine
should always win if possible, or draw (nobody wins) if winning is not possible. If
SW1 is on, part of the machine’s logic should be bypassed so that the player can win
occasionally. Output will be a 3 � 3 array of LEDs with a red and a green LED in
each square. Use two LEDs to indicate player wins or machine wins. If the game is
a draw, light both LEDs. Since the machine is playing a defensive game, the human
player will always move first. Each time the player moves, the machine should wait
two seconds before making its move. Your VHDL code should represent a syn-
chronous digital system that makes efficient use of available hardware resources.

Here is one strategy for playing the game: (player � X, machine � O)

1. Player moves first.
2. Machine makes an appropriate initial move. If player starts in center, machine

plays corner; otherwise, machine plays center.
3. After each subsequent move by the player, the machine checks the following in

sequence:
(a) Two O’s in a row: machine plays in the third square and wins.
(b) Two X’s in a row: machine plays in the third square to block player.
(c) If it is the machine’s second move, a special move may be required: If play-

er’s first two moves are opposite corners, the machine’s second move must
be side. If player’s first move is center, the machine’s second move should be
corner if rule (b) does not apply.

(d) Two intersecting rows each contain only one X: Machine plays in the square
at the intersection of the two rows (this blocks the player from forcing a win).

(e) If there is no better move, play anywhere.

The preceding rules obviously apply only when the appropriate squares are empty.

P8. CORDIC Computing Unit
CORDIC (coordinate rotation digital computer) is a computing technique that
uses two-dimensional planar rotation to compute trigonometric functions.This algo-
rithm has a wide variety of applications, ranging from your calculator to global posi-
tioning systems. The algorithm is perfect for digital systems since computation is
merely a set of repeated adds and shifts. For details of this algorithm, review the
paper1. “A Survey of CORDIC Algorithms for FPGA-Based Computers,” located
at http://www.andraka.com�files�crdcsrvy.pdf.

Implement the CORDIC algorithm using an FPGA. Your implementation must
correctly produce the sine or cosine of an input angle ranging from �179 to �180
degrees, inclusive. You will only be required to satisfy 8-bit precision. Input will be
received in decimal format via a keypad. Three decimal digits will be input (most
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significant digit first) followed by a sign. The angle should be initially represented in
BCD and then converted to binary (negative angles represented 2’s complement).
Designate two special keys for sine and cosine. Output will be displayed on a set of
four 7-segment LEDs.

The following pseudocode demonstrates the basics of the CORDIC algorithm.
Read the document referenced above and then iterate through this process by hand
to help you understand this algorithm.

for i = 0 to n �� n-bit precision
dx = x�(2^i) �� x is 16-bit register representing

fractional values. It should be
�� initialized to .607 (1001_1011_0111_

0001). After the algorithm
�� completes, x holds cos(a). dx is also

16 bits.
dy = y�(2^i) �� y is a 16-bit register representing

fractional values. It should
�� be initialized to 0 (0000_0000_0000_

0000). After the
�� algorithm completes, y holds sin(a). dy

is also 16 bits.
da = arctan(2^-i) �� pre-calculated values in a lookup table

�� these values should be represented as
follows: upper

�� 8 bits whole number part, lower 8 bits
fractional part

�� a is the input angle represented with
at least 10 bits.

�� All input angles are whole numbers.
if (a >= 0) then

x = x - dy; a = a - da; y = y + dx;
else

x = x + dy; a = a + da; y = y - dx;
end if

end loop

When you work through this algorithm, notice that it does not produce the negative
and positive values associated with sine and cosine. Create separate logic to
determine the sign. The algorithm shown above only works for �90 to �90 input
angles. You can simplify your design if you do all calculations in the first quadrant
(e.g., sin(105) is the same as sin(75)).

P9. Calculator for Average and Standard Deviation
Design a special-purpose calculator to calculate the average and standard deviation
of a set of test scores. Input will be from a decimal keypad and output will be an
LCD display. Each test score will be an integer in the range 0 to 100. The number of
scores will be in the range 1 to 31.
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Entry sequence: For each score, enter one, two, or three digits followed by E
(enter). After all scores have been entered, press A to calculate the average and
then press D to compute the standard deviation. The average and standard devia-
tion should be displayed with one digit after the decimal point.

The formula for the standard deviation is

where A is the average. Use the latter form because it is not necessary to store the
N scores.

Your design should have three main modules: input, computation, and display.
The computation module computes the average and standard deviation of the input
data. All computation should be done with binary integers. The input data will be
scaled up by a factor of 10 and converted to binary by the input module. The out-
puts will be converted to decimal and scaled down by a factor of 10 by the display
module.

The input module should include a keypad scanner similar to the one designed
in Chapter 4. Every time a key is pressed, the scanner will debounce and decode the
key. It will then output a 4-bit binary code for the key that was pressed, along with
a valid signal (V). This input module will process the digits from the keypad scan-
ner and convert the input number to binary. This module should perform the fol-
lowing tasks:

1. If the input is a digit in the range 0 through 9, store it in a register. Ignore invalid
inputs.

2. After one, two, or three digits have been entered followed by E, check to see that
the number is within range (	 100). If not, turn on an error signal.

3. If the input number is in range, append BCD 0, which in effective multiplies by
10. Example: If the entry sequence is 7, 9, E, the BCD register should contain
0000 0111 1001 0000 (790).

4. Convert the BCD to binary and signal the computation unit when conversion is
complete.

5. When the A or D key is pressed, generate a signal for the computation module.

The computation module should have one register to accumulate the sum of the
inputs and another to accumulate the sum of the squares of the inputs. The data
input should be a binary integer with the decimal range 0 to 1000 (score � 10).
Assume three input control signals: V1 (valid data), A (compute and output the
average), S (compute and output the standard deviation). Ignore S unless compu-
tation of the average has been completed. The computation module should include
a square root circuit which will find the square root of a 18-bit binary integer to
give a 9-bit integer result. Refer to Reference 35 for a binary square root algo-
rithm. When testing the computation module, be sure to include the worst cases:
largest average with 31 inputs (s.d. should be 0), largest standard deviation with
30 inputs (average should be 500).

s.d � √ �
N

i�1
(xi � A)2

N
� √ �

N

i�1
xi

2

N
 � A2
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The display module should drive a two-line LCD display.This module serves two
functions: First it displays each number as it is being input, and second it displays the
average and standard deviation. During input, each valid decimal digit should be
shifted into the display. When E is pushed, the input number will remain displayed
until another key is pushed. After the average has been computed, the display mod-
ule should convert it to BCD and output it to the first line of the LCD display. After
the standard deviation has been computed, it should be converted to BCD and
displayed on the second line.

P10. Four-Function Decimal Calculator
Design a four-function hand-held calculator for decimal numbers and implement it
using an FPGA. The input will be a keypad and the output will be an LCD display.
When you implement your design on the FPGA, optimize for area since speed is
unimportant for a hand calculator. General operation of the calculator should be
similar to a standard four-function calculator.

The main calculator input keypad has 16 keys to be labeled as follows:

7  8  9  


4  5  6  *

1  2  3  –

0 . � �

Use one additional key for the clear function. The input and output will be a maxi-
mum of eight decimal digits and a decimal point with an optional minus sign.
Assume that at any time, any key may be pressed. Either take appropriate action or
ignore the key press. If more than eight digits are entered, extra digits are ignored.

If the answer requires more than eight digits, some digits to the right of the dec-
imal point are truncated.

Example: 123.45678 � 12345.678 � 12469.134

If more than eight digits are required to the left of the decimal point, display the
letter E to indicate an error. For numbers less than 1, display a 0 before the decimal
point.

Your calculator should have three modules. The input module scans, debounces,
and decodes the keypad. The main module accepts digits and commands from the
input module and processes them. The display module displays the input numbers
and results on an LCD display.

The main module should have two 8-digit BCD registers, A and B. Register A
should have an associated counter that counts the number of digits (ctrA), another
counter that counts the number of digits to the right of the decimal point (rctA), and
a sign flip-flop (signA). Register B should have similar associated hardware.As each
decimal digit is entered, its BCD code should be shifted into A. The result of each
computation should be placed in A. The display module should always display the
contents of A, along with the associated decimal point and sign. When the first digit
of a new number is entered into A, the previous contents of A should be transferred
to B. Although input and output is sign and magnitude BCD, internal computations
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should be done using 2’s complement binary arithmetic. A typical sequence of cal-
culations to add A and B is

1. Adjust A and B to align the decimal points.
2. Convert A and B to binary (Abin and Bbin).
3. Add Abin and Bbin
4. Convert the result to BCD, store in A.
5. If an overflow occurs, correct it if possible, else set the E (error) flag.

The display module should output signals to the LCD to properly display the contents
of the A register. After initializing and clearing the LCD, it should display “E” if the
error flip-flop is set. Otherwise it should output a minus sign if signA � ‘1’, followed
by up to eight digits with the decimal point in the correct place. Leading zeros should
be replaced by blanks.
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References 14, 19, 21, 27, 28, 39, 41, 46, and 48 are general references on digital logic
and digital system design. References 2, 3, 4, 15, 16, 20, 24, 30, 40, 42, 44, 47, 49, and
50 provide information on PLDs, FPGAs, and CPLDs. References 10, 21, 31, 38, 43,
45, and 52 provide a basic introduction to VHDL. References 5, 6, 8, 9, 17, 18, 22, 23,
33, 34 and 51 cover more advanced VHDL topics. References 1, 7, 11, 29, 32, and 36
relate to hardware testing and design for testability. The MIPS ISA and architec-
tures of several MIPS processors are described in references 13, 25, 26 and 37.
Reference 37 provides an excellent introduction to various computer organization
topics, the understanding of which will help in learning the material presented in
Chapter 9.
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0-hazard, 13–14
1-hazard, 13–14
22V10 (22CEV10), 153–155
2’s complement

floating point format using,
361–362

fractions, 219–221
multiplier, 223

4-valued logic system, 400
9-valued logic system, 405

Actel, 181–182, 325–326
Active-high signal, 409
Active-low signal, 409
Add-and shift multiplier, design

of, 210–216
Adders, 2, 63–66, 158–160,

192–200
BCD, 192–194
carry look-ahead, 195–200
full, 2
Full Adder, four-bit VHDL

module, 63–66
parallel, CPLD implementa-

tion of with accumulator,
158–160

ripple-carry, 194–195
32-bit, 194–200
VHDL design of, 192–200

Algorithmic State Machine
(ASM) charts, see State
Machine (SM) charts

Alias declaration, 193, 548
Altera, 140, 157, 161, 325
And function for std-logic,

406–407
AND gates, 1–2
ANSI/IEEE Standard 1149.1,

479–480, 483
Antifuse FPGAs, 165, 168
Application-specific integrated

circuit (ASIC), 54, 138
Architecture declaration, 61–63,

547
Area-Time (AT) product, 348
Arithmetic components,

synthesis of, 345–347

Arithmetic instructions, MIPS
ISA, 432–434

Arithmetic logic unit (ALU),
190, 442, 444

Array attributes, 396–397,
398–399, 546–547

predefined in VHDL,
546–547

use of, 398–399
vector addition, use of in,

398–399
Arrays, 114–117, 158, 216–217

interconnect (IA), 158
look-up table (LUT)

method, 115–117
matrices, 115
multiplier, VHDL design of,

216–219
unconstrained, 115
VHDL and, 114–117

Array declaration, 114–115, 548
Array multiplier, 216–218
ASIC, see Application-specific

integrated circuit (ASIC) 
ASM Chart, see SM chart
Assert statement, 119–122, 238,

550, 552
Associative law, 4, 6
Asynchronous design, 40–41
ATPG, see Automatic test

pattern generator
Attributes, 395–399, 546–547

array, 396–397, 398–399,
546–547

predefined in VHDL,
546–547

signal, 395–396, 397–398, 546
use of, 397–399
VHDL, 395–399, 546–547

Automatic test pattern 
generators (ATPGs), 468

Baud rate, 527, 536 
BCD, see Binary-coded-decimal

(BCD)
BCD to binary conversion, 252
Bed-of-nails test fixture, 479

Behavioral description, 53, 55,
101–107, 110

CAD design entry, 53
modeling a sequential

machine, 103–107
time-to-market criterion, 110
VHDL, 55, 101–107

Behavioral modeling in VHDL,
55, 102–106

Biased notation, IEEE 754 
floating-point formats, 363

Big-endian memory, 452
BILBO, 494–500
Binary-coded-decimal (BCD),

19–25, 191–192, 192–194
adder, VHDL design of,

192–194
Mealy machine conversion

to excess-3 code, 19–25
seven-segment display

decoder, VHDL design of,
191–192

Binary dividers, VHDL design
of, 239–249

Binary multipliers, 265–267,
277–279

derivation of SM chart,
265–267

implementation of SM chart,
277–279

BIST, see Built-in self-test
(BIST)

Bit-vector, 60
BlockRAM, 327
Boolean algebra, 3–6

DeMorgan’s law, 3
laws and theorems of, 4
logic design and, 3–6
simplification using, 5–6

Booth’s algorithm, 254
Boundary scan, 479–490

ANSI/IEEE Standard 1149.1
instructions, 479–480, 483

BYPASS, 483
EXTEST, 483, 484
IC connection steps, 485–486
INTEST, 483, 484
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Boundary scan (Continued)
Joint Test Action Group

(JTAG), 479
PC boards, testing, 479–490
register (BSR), 479–480
RUNBIST, 483
SAMPLE/PRELOAD, 483,

484
test-access port (TAP),

479–482
VHDL code for, 487–490

Bowling Score Keeper, 559
Buffer mode, VHDL modules,

62, 66–67
Buffers, tristate logic, 41,

401–402
Built-in logic block observer

(BILBO) technique,
495–500

Built-in self-test (BIST), 468,
490–500

built-in logic block observer
(BILBO) technique,
495–500

checkerboard patterns, 491
linear-feedback shift 

registers (LFSRs), 492–493
march test, 491
multiple-input signature

register (MISR), 491–492,
493–494

pseudo-random pattern 
generator (PRPG), 492

self-testing using an MISR
and parallel SRSG
(STUMPS), 494–495

shift register sequence 
generator (SRSG), 494

signature bits, 491
taps, 492
test bench for, 499–500
test-per-clock sheme, 495
test-per-scan scheme,

494–495
use of, 468, 490–491
VHDL code for BILBO 

registers, 497–499
Busses, tri-state logic, 41–42
BYPASS, boundary scan 

instruction, 483

CAD, see Computer-aided
design (CAD) 

Calculator
for average and standard

deviation, 564
four-function decimal, 566
stack-based, 561

Carry chains, FPGAs, 321–323
Carry look-ahead adder, 195–199
Cascade chains, FPGAs, 323
Case statement, 90, 265, 270,

340–344, 551
SM charts and, 265, 270
synthesis of a, 340–344

Central processing unit (CPU),
VHDL code for, 451–457

Channel routing, 176
Characteristic equation, 15
Checkerboard patterns, BIST,

413, 491
CISC, see Complex Instruction

Set Computing
Clock gating, 37–41
Clock skew, 37, 39, 175
CMOS, 148, 153, 179
Code, 77–81

analyzer, 77
compilation of, 77–81
elaboration, 78
simulation, 53, 77–81
synthesis of, 81, 84–87
VHDL, 77–81

Code converters, 19–25, 26–28
binary-coded-decimal (BCD)

to excess-3, 19–25
Mealy machine design of,

19–25
Moore machine design of,

26–28
nonreturn-to-zero (NRZ) to

Manchester, 26–28
Combinational circuits, 57–60

concurrent statements, 57–60
VHDL description of, 57–60

Combinational logic, 1–3, 12–14,
468–472

bridging faults, 472
dynamic hazards, 13
full adders, 2
gates, 1–2
hazards in combinational 

circuits, 12–14
logic design and, 1–3
maxterm expansion, 3
minterm expansion, 2
path sensitization, 471
propagation delays, 12–13
static hazards, 13
stuck-at-faults, 468–472
sum of products (SOP), 2
testing, 468–472
truth tables, 2

Command file examples, 65, 105,
110, 275, 461

Commutative law, 4, 6
Complex digital systems, VHDL

design of, 507–544
Complex Instruction Set

Computing (CISC),
429, 431

Complex programmable logic
devices (CPLDs), 54, 139,
156–160

CAD technology and post-
synthesis simulation, 54

erasable (EPLDs), 156
implementation of parallel

adder with accumulator,
158–160

interconnect array (IA), 158
types of and capacities, 157
Xilinx CoolRunner, example

of, 157–158
Component declaration, 64–66,

549
Component instantiation, 66, 550
Components, VHDL modules,

63–64, 66
Computer-aided design (CAD),

51–54
behavioral description, 53
design entry, 52
design flow in, 52
design requirements, 52
design specification, 52
formulation of design, 52
hardware description

languages (HDLs), 52–53
mapping, 54
netlist, 53
placing, 54
post-synthesis simulation, 53
routing, 54
schematic capture, 52
simulation, 53
structural description, 53
synthesis, 53
technology of, 53–54

Concurrent statements, 57–60,
87–90, 549–551

combinational circuits and,
57–60

multiplexer models using,
87–90

VHDL language for,
549–551

VHDL models and, 57–60,
87–90

Conditional assignment 
statement 87–88, 549

Conditions, 32–35, 261
SM charts, 261
timing, 32–35

Consensus theorem, 4–6
Constant declarations,

114, 548
Constant parameter, VHDL,

393–394
Content addressable memories

(CAMs), 181–182
Control circuits, design of state

graphs for, 204–205
Control signal (CS), 37–41
Control signal gating, 38
Control store, 284
Control transfer instructions,

MIPS ISA, 435–438
Controller, 37, 206, 234–235
Conversion functions,

93, 554
CoolRunner, 157–159
CORDIC, 563
Counters, modeling using VHDL

processes, 95–101
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CPLDs, see Complex 
programmable logic
devices (CPLDs)

Critical path, synthesis and, 217,
347

D flip-flops, 15
Data flow modeling in VHDL,

55, 102, 107
Data memory unit, MIPS subset

data path design, 445
Data path, 37, 190–191, 205,

442–447
aritmetic logic unit (ALU),

442, 444
data memory unit, 445
decode unit instruction, 444
defined, 190–191
destination register, 444
execution unit instruction,

444–447
fetch unit instruction,

443–444
MIPS subset, design of,

442–447
overall microprocessor

design of, 445–447
program counter (PC),

443–444
register file, 444
scoreboard, design of, 205
source registers, 444
synchronous design and, 37

Data types, VHDL, 82–84
Dataflow description, 55,

101–102, 107–108
modeling a sequential

machine, 107–108
VHDL, 55, 101–102, 107–108

Debouncing, design and,
208–210, 233

Decision box, SM charts, 261
Declarations in VHDL, 61–64,

547–549
Decode unit instruction, MIPS

subset data path design,
444

Dedicated arithmetic units,
FPGAs, 179–180, 332–333

Dedicated memory, FPGAs, 179,
326–332

block RAM, 327
distributed, 328
LUT-based, 327–328
TriMatrix, 327
VHDL models, 328–332

Delay (D) flip-flops, 14–15
Delays, see Timing
Delta (�) delay, 58, 78–79
DeMorgan’s law, 3
Denormalized numbers, IEEE

754 floating-point 
standard, 366–367

Design for testability (DFT),
468–506

Design translation, FPGAs,
339–353

mapping, 348–349
optimizations of area, power

and delay, 347–348
placement, 348, 349–353
routing, 348, 349–353
synthesis, 339–348

Design, 1–50, 156, 183–185,
190–259, 310–360, 507–544.
See also Computer-aided
design (CAD); Field 
programmable gate arrays
(FPGAs)

add-and shift multiplier,
example of, 210–216

array multiplier, example of,
216–219

BCD adder, example of,
192–194

BCD to seven-segment 
display decoder, example
of, 191–192

binary dividers, examples of,
239–249

complex digital systems,
examples of, 507–544

controller, 37, 206, 234–235
data path, 37, 190–191, 205
debouncing, 208–210, 233
decoders, 233–234
dividers, signed and

unsigned, 239–249
FPGAs, flow for, 183–185
implementing using field

programmable gate arrays
(FPGAs), 310–360

keypad scanner, example of,
231–238

logic, 1–50
PLDs, flow for, 156
RAM memory model,

519–526
scoreboard and controller,

example of, 205–208
signed integer/fraction multi-

plier, example of, 219–231
single pulser, 209–210
small digital systems,

examples of, 190–259
state graphs for control 

circuits, 204–205
synchronization, 208–210
synchronous, 36–41
test benches for, 227–229,

237–238, 246–248, 516–518
32-bit adder, example of,

194–200
traffic light controller,

example of, 201–203
universal asynchronous

receiver (UART), example
of, 526–539

using NAND and NOR
gates, 10–12

VHDL models, 190–259,
507–544

wristwatch, example of,
507–518

Destination register, MIPS 
subset data path design,
444

Dice game, 267–275, 279–283,
292–297

derivation of SM chart,
267–275

implementation of SM chart,
279–283

microprogramming the 
controller, 292–297

single-address microcode for,
294–297

two-address microcode for,
292–294

Digital signal processing blocks,
FPGAs, 180

Distinguishing sequence, 475
Distributed memory, 328
Distributed memory, FPGAs,

328
Distributive law, 4, 6
Dividers, 239–249

signed, design of, 242–249
unsigned, design of,

239–242
Division, 239–248
Don’t cares, 7–8
Door lock, 557
Double precision format, IEEE

754, 365–366
Dynamic hazards, 13

Edge triggered, 15, 37–40
Elaboration, 77
Elsif statements, 71
Embedded processors, FPGAs,

180–182
Encoded state assignment, 19
Energy-Delay (ED) product, 348
Entity declaration, 61–63, 547
Entrance path, SM charts, 261
Enumeration type declaration,

82, 548
EPROM/EEPROM 

programming technology,
FPGAs, 167–168

Equations, see Dataflow 
descriptions

Equivalent gate count, 337–338
Equivalent states, 28–30

defined, 28
implication table method,

29–30
sequential circuits and,

28–30
state equivalence theorem,

28–29
Erasable CPLDs (EPLDs), 156
Essential prime implicant, 8
Excitation table, 23
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Execution, 444–447, 447–448
flow of, 447–448
MIPS subset implementation,

444–447, 447–448
unit instruction, 444–447

Exit path, SM charts, 261
Exit statement, 118, 552
Exponents, 363–364, 366–374,

370–371
adder, 370–371
IEEE 754 floating-point 

formats use of, 363–364
special cases of IEEE 754

standard for, 366–367
EXTEST, boundary scan 

instruction, 483, 484

Falling edge, 37
Feedback, SM block with, 263
Fetch unit instruction, MIPS

subset data path design,
443–444

Field programmable gate arrays
(FPGAs), 54, 138, 139–140,
160–185, 310–360

Actel Fusion VersaTile,
325–326

Altera, 325
applications of, 182–183
CAD technology and 

post-synthesis simulation,
54

carry chains, 321–323
cascade chains, 323
dedicated memory, 326–332
dedicated multipliers,

332–333
dedicated specialized 

components, 179–182
design flow for, 183–185
design translation, 339–348
designing with, 310–360
equivalent gate count,

337–338
gates, maximum versus

usable, 337–338
hierachical architectures, 164
I/O blocks, programmable,

177–179
implementing functions in,

310–316, 316–321
interconnects, programmable,

173–177
introduction to, 138, 139–140,

160–161
logic block architectures,

programmable, 169–173
logic blocks, examples of,

324–326
mapping, 348–349
matrix-based (symmetrical

array) architectures, 163,
164

one-hot state assignment,
336–337

organization of, 161–165
placement, 348, 349–353
programmability cost,

333–335
Programmable Electronics

Performance Company
(PREP) benchmarks, 338

programming technologies,
165–169

routing, 348, 349–353
row-based architectures,

163–164
sea-of gates architecture,

164–165
Shannon’s decomposition,

316–321
slice, 319–321, 324
synthesis, 339–348
types of and capacities, 161
Xilinx, 324–325

File declaration, 417, 549
Files, VHDL, 417–421
Flash memories, 142
Flip-flops, 14–16, 19, 22–24,

25–26, 31, 33–34, 69–73
characteristic equation, 15
delay (D), 14–15
excitation table, 23
hold times, 31, 33–34
J-K, 15, 72–73
Mealy machine state 

assignment of, 19, 22–24
modeling using VHDL,

69–73
Moore machine state 

assignment of, 25–26
set-reset (S-R), 16
setup time, 31, 33–34
state assignment 19, 22–24,

25–26
toggle (T), 14, 15

Floating-point arthmetic,
361–388

addition, 377–383
division, 383–384
IEEE 754 formats,

363–367
multiplication, 367–377
numbers, representation of,

361–367
subtraction, 383
2’s complement, 361–362

Floating-point Arithmetic Unit,
562–563

For loops, 118, 390–391, 552
FPGAs, see Field programmable

gate arrays (FPGAs) 
Fraction multiplier, floating-point

multiplication, 371
Fractional part, IEEE 754 

floating-point 
formats, 363

Full Adder, four-bit module,
63–66

Function declaration, 390, 548

Function implementation,
310–316, 316–321

FPGAs, 31–316, 316–321
look-up tables (LUTs),

311–316
Shannon’s decomposition,

316–321
Functions, 389–393, 402–405,

547, 550
call, 390, 551
predefined, 547
signal resolution, 402–405
VHDL, 389–393, 402–405,

547

GAL, see Generic Array Logic
Gate arrays, see Mask program-

mable gate arrays
(MPGAs) 

Gated control signal, 38
Gated D latch, 16
Gates, 1–2, 10–12, 171–173,

337–338
bubbles at, 10
combinational logic and, 1–2
conversion of, 11–12
equivalent gate count,

337–338
FPGA capacity, 337–338
logic blocks based on, FPGA

use of, 171–173
maximum versus usable,

337–338
NAND, designing with,

10–12
NOR, designing with, 10–12

Generic array logic (GALs), 139,
153–156

Generate statements, 415–417,
550

Generics, VHDL, 413–414
Glitches, 35–36, 37–38

control signals (CS), 37–38
defined, 35
sequential circuits, 35–36

Glue logic, FPGAs, 183
Greedy algorithms, 350
Guard and round bits, IEEE 754

floating-point standard, 367

Handel-C, 55
Hardware accelerators/coproces-

sors, FPGAs, 183
Hardware description languages

(HDL), 52–53, 54–57
computer-aided design

(CAD) and, 52–53
Handel-C, 55
learning, 56
System C, 55–56
System Verilog, 55
Verilog, 55
VHDL, 55, 56

Hardwiring, SM charts, 284
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Hazard, 12–13
HDL, see Hardware description

languages (HDL) 
Hierachical architectures,

FPGAs, 164
Hold times, 31, 33–34

I-format, MIPS instruction,
438–441

I/O blocks, programmable in
FPGAs, 177–179

I/O standards, 178–179
Identifiers, VHDL, 59
IEEE 1164 standard, 405–408,

408–410
9-valued logic system,

405–408
SRAM model using, 408–410

IEEE 754 floating-point 
formats, 363–367

biased notation, 363
denormalized numbers,

366–367
double precision, 365–366
exponent, 363
fractional part, 363
infinity, 367
not a number (NaN), 367
overflow, 363, 369
rounding, 367
sign-magnitude system, 363
single precision, 363–365
underflow, 363, 369
zero, 366

IEEE standard libraries, 91–94,
407–408, 553

IEEE standard libraries, 91–94,
553–554

NUMERIC_BIT, 553
NUMERIC_STD, 554

If statements, 70–71, 265, 270,
344–345, 416–417, 551

conditional generate 
statement using, 416–417

SM charts and, 265, 270
synthesis of, 344–345
VHDL language for, 551

Implication table method of
state equivalence, 29–30

Inertial delays, 75–77
Infinity, IEEE 754 floating-point

standard, 367
Inout mode, VHDL modules,

62, 66
Input-output block, 177–179
Instruction encoding, MIPS,

438–441
Instruction Set Architecture

(ISA), 429, 432–438
Interconnect array (IA), 158
Interconnects, 173–177

clock skew, 175
direct, 173–174
general purpose, 173

global lines, 174–175
nonsegmeted channel routing

architecture, 176
programmable in FPGAs,

173–177
row-based FPGAs, in,

175–177
Interface-signal declaration, 61,

547
INTEST, boundary scan 

instruction, 483, 484
ISA, see Instruction Set

Architecture, 429
Iterative circuit, converting

sequential circuits to,
473–474

Iterative improvement 
algorithms, 350

J-format, MIPS instruction,
438–441

J-K flip-flops, 15, 72–73
Joint Test Action Group

(JTAG), 479
JTAG Standard, see ANSI/IEEE

Standard 1149.1

K-map, see Karnaugh maps
Karnaugh maps, 7–10

don’t cares, 7–8
map-entered variables,

simplification using, 9–10
minimum sum of 

products, 7–9
prime implicants, 7–8

Keypad scanner, design of,
231–238

Large scale integration (LSI), 51
Latch creation, unintentional in

synthesis, 342–344
Latches, 16
Lattice Semiconductor, 140, 156,

157, 161
LE, see Logic Element
Leading edge, see rising edge
LFSR, see Linear Feedback Shift

Register
Library declaration, 549
Libraries, 90–94, 553–554

IEEE standard, 553–554
VHDL, 90–94

Linear-feedback shift registers
(LFSRs), 492–493

Link path, SM charts, 261
Linked state machines, 297–299
Little-endian memory, 452
Load/store achitecture, RISC,

430–431
Logic blocks, examples of in

FPGAs, 324–326
Logic design, 1–50

Boolean algebra, 3–6
combinational, 1–3, 12–14

equivalent states, 28–30
flip-flops, 14–16
hazards in combinational 

circuits, 12–14
Karnaugh maps, 7–10
latches, 14–16
Mealy sequential circuits,

17–25
Moore sequential circuits,

25–28
NAND gates, 10–12
NOR gates, 10–12
review of fundamentals of,

1–50
sequential circuit timing,

30–41
state tables, reduction of,

28–30
tristate, 41–42

Logic Element, 325
Logical instructions, MIPS ISA,

434
Long lines, 174
Look-up tables (LUTs),

115–117, 142, 169–171,
287–297, 311–316,
327–328

array matrices, VHDL,
115–117

distributed memory and,
327–328

FPGA memory, LUT-based),
327–328

FPGAs, implementing func-
tions in, 311–316

method (ROM method),
115–117, 142

programmable logic blocks,
(LUT-based) for FPGAs,
169–171

Loops, 117–119, 390–391, 552
for statements, 118, 390–391,

552
infinite, 117–118
while statements, 119, 552

LSI, 51
LUTs, see Look-up tables

(LUTs)

Macrocells, 154–155, 156–158
CLPD function blocks,

156–158
GAL output logic, 154–155

Main control unit, floating-point
multiplication, 371–377

Manchester code, 27
Map-entered variables, 9–10,

280–281
Mapping designs, 54, 348–349

CAD, 54
FPGAs, 348–349
standard cell approach, 349

March test, BIST, 491
Mask programmable gate arrays

(MPGAs), 138
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Matrices, 115–117
Matrix-based (symmetrical

array) architectures,
FPGAs, 163, 164

Maxterm expansion, 3
Mealy sequential circuits, 17–25,

103–110
code converter, BCD to

excess-3, 19–25
design of, 17–25
excitation table, 23
general model of, 17
sequence detector, 17–19
state assignment, 19, 22
state graph, 17–18
transition table, 19
VHDL modeling of, 103–110

Medium-speed systems, FPGAs,
183

Memory, 138, 141–145, 284,
326–332, 434–435, 445,
450–451, 452, 518–526

access instructions, MIPS
ISA, 434–435

big-endian, 452
control store, 284
data unit, data path design

of, 445
dedicated, FPGAs, 326–332
distributed, FPGAs, 328
little-endian, 452
microprogramming, 284
RAM models, 519–526
read-only (ROM), 138,

141–145
RISC microprocessor design,

445, 450–451
testing, 491
timing models, VHDL design

of, 518–526
VHDL model for, 408–413,

450–451
Microcode, 286–289, 292–297

dice controller, implementa-
tion of, 292–297

single-qualifier, single-
address, 289–290, 294–297

two-address, 286–289,
292–294

Microcomputer, Simple 560-561
Microinstruction, 285, 296–297
Microprocessors, see MIPS

Processors, Reduced
Instruction Set Computing
(RISC)

Microprogramming, 283–297
control store, 284
memory, 284
microcode, 286–289, 292–297
microinstruction, 285,

296–297
sequencing, 284
single-qualifier, single-address

microcode, 289–290,
294–297

SM qualifiers, 287–289,
289–292

state machine (SM) charts
and, 283–297

two-address microcode,
286–289, 292–294

Minterm expansion, 2
MIPS Processor, 430, 432–448,

453–463
arithmetic instructions,

432–434
complete processor moel,

457–458
control transfer instructions,

435–438
data path design for 

subsets, 442–447
I-format, 438–441
instruction encoding,

438–441
Instruction Set Architecture

(ISA), 432–438
introduction to, 430
J-format, 438–441
logical instructions, 434
memory access instructions,

434–435
nop (no operation) 

instructions, 430
opcode (operations), 429, 439
R 14000, 431
R 2000, 430
R-format, 438–441
RISC processors and, 430,

432–448
signals for model of 

processor, 453
subset implementation,

441–448
test bench for processor

model, 459–461
testing processor model,

458–463
three-address format, 432
unconditional jump 

instructions, 437
VHDL code for subset

implementation, 454–457
MISR, see Multiple Input

Signature register
Mode, VHDL modules, 62
Modules, 61–67

architecture declaration,
61–63

components, 63–64, 66
entity declaration, 61–63
Full Adder, 63–66
VHDL, 61–67

Moore sequential circuits,
25–28 

code converter, NRZ to
Manchester, 26–28

sequence detector, 25–26
state assignment, 25–26
transition table, 26

MPGA, see Mask programmable
gate arrays (MPGAs) 

MSI, 51
Multiple-input signature 

register (MISR), 491–492,
493–494

Multiplexers (MUX), 87–90,
171–173

case statement, using, 90
concurrent statements, using,

87–90
logic blocks based on, FPGA

use of, 171–173
process statements, using, 90
VHDL models for, 87–90

Multiplicand, 210, 219–222
Multipliers, 210–216, 216–219,

219–231, 265–267, 277–279,
332–333

add-and-shift, VHDL design
of, 210–216

array, VHDL design of,
216–219

binary, 265–267, 277–279
dedicated, FPGAs, 332–333
signed integer/fraction,

VHDL design of, 219–231
Multivalued logic, 400–405,

405–408, 410–413
bidirectional tristate bus, 410
data register, 410
4-valued system, 400–408
IEEE 1164 standard, using,

405–408
9-valued system, 405–408
read/write system, 410–413
signal resolution functions,

402–405
SRAM models, 408–410,

410–413
MUX, see Multiplexers (MUX)

Named association, VHDL,
414–415

NaN, see Not a number
NAND gates, 10–12
NATURAL subtype, 117
Negative logic, 1
Netlist, synthesis output, 53, 339
NMOS, 148
Nonreturn-to-zero (NRZ) code

to Manchester, 26–28
Non-segmented tracks, 176
Nop (no operation) 

instructions, MIPS, 30
NOR gates, 10–12
Normalized floating point,

362–367
Not a number (NaN), IEEE 754

floating-point 
standard, 367

NOT gates, 1–2
NRZ code, see Non return to

zero code
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Numeric_bit package, 91–94,
407–408, 553

Numeric_std package, 91–94,
407–408, 553

One-hot state assignment, 19,
336–337

Opcode (operations), MIPS, 429,
439

Operators, VHDL, 82–84, 546
OR gates, 1–2
Output box, SM charts, 261
Overflow, IEEE 754 

exponents, 363, 369
Overloaded operators,

creating in VHDL, 399–400

PAL, see Programmable array
logic (PAL) 

Package declaration, 549
Parallel load, 96
Parameters, VHDL, 393–394
Parity, 115, 390, 526
Path sensitization, 471
PC boards, see Boundary scan
Placing designs, 54, 348, 349–353.

See also Routing
CAD, 54
FPGAs, 348, 349–353

PLAs, see Programmable logic
arrays (PLAs) 

PLDs, see Programmable logic
devices (PLDs)

PMOS, 148
Port map statements, 219, 229,

414–415
POS, see product of sum
POSITIVE subtype, 117
Post-synthesis simulation, 53
PREP Benchmarks, 338
Prime implicants, 7–8
Priority encoder, 143
Procedure declaration, 393, 548
Procedures, VHDL, 393–394, 551

call, 393, 551, 552
parameters and, 393–394
VHDL use of, 393–394

Process statements, 67–68, 90, 550
multiplexer modeling using,

90
sequential statements and,

67–68
VHDL language for, 550

Product of sums, 8
Program counter (PC), MIPS

subset data path design,
443–444

Programmability cost, FPGAs,
333–335

Programmable array logic (PAL),
53, 138–139, 151–153

CAD technology and post-
synthesis simulation, 53

implementation of, 151–153

overview of as PLDs,
138–139

Programmable Electronics
Performance Company
(PREP) benchmarks, 338

Programmable logic arrays
(PLAs), 53, 138, 146–150

CAD technology and post-
synthesis simulation, 53

implementation of, 146–150
overview of as PLDs, 138

Programmable logic devices
(PLDs), 137–189

application-specific 
integrated circuit (ASIC),
54, 138

classification of, 137–138
comparison of, 140
complex (CPLDs), 54, 139,

156–160
design flow for, 156
factory, 137–138, 160
field programmable gate

arrays (FPGAs), 137, 138,
139–140, 160–185

generic array logic (GALs),
139, 153–156

introduction to, 137–189
mask programmable gate

arrays (MPGAs), 138
mask programmable gate

arrays (MPGAs), 138
programmable array logic

(PAL), 138–139, 151–153
programmable logic arrays

(PLAs), 138, 146–150
read-only memory (ROM),

138, 141–145
simple (SPLDs), 53, 139,

140–156
Programming technologies,

165–169
antifuse, 168
comparison of, 168–169
EPROM/EEPROM, 167–168
FPGAs, 165–169
SRAM, 165–167

Propagation delays, 12–13, 31
combinational logic and,

12–13
defined, 31
dynamic hazards, 13
hold times, 31
sequential circuit timing and,

31
setup time, 31
static hazards, 13

PRPG, see Pseudo Random
Pattern Generator

Pseudo-random pattern 
generator (PRPG), 492

Qualifiers, SM charts and micro-
programming, 287–289,
289–292

Race, 40
R-format, MIPS instruction,

438–441
Random-access memory

(RAM), 408–409, 519–526.
See also Static RAM
(SRAM)

memory timing models,
VHDL design of, 519–526

use of, 408–409
Rapid prototyping, FPGAs, 182
Read-only memory (ROM),

115–117, 138, 141–145. See
also Look-up tables
(LUTs)

address, 141
flash memories, 142
look-up tables (LUTs), 142
method of implementation,

115–117, 142
programmable logic device,

use as a, 138, 141–145
types of, 142
word, 141

Reconfigurable circuits and 
systems, FPGAs, 183

Reduced Instruction Set
Computing (RISC),
429–467

central processing unit
(CPU), VHDL code for,
451–457

complete MIPS processor
model, 457–458

design features, 430–431
execution, 444–447, 447–448
Instruction Set Architecture

(ISA), 429, 432–438
load/store architecture,

430–431
memory, 434–435, 445,

450–451
microprocessor, 429–467
MIPS Technologies, 430,

432–448
philosophy, 429–432
processor model signals, 453
register file, 444, 449–450
register-register architec-

tures, 430
single-instruction computer,

432
subset implementation,

441–448, 454–4578
testing MIPS processor

model, 458–463
VHDL code for RISC subset

implementation, 454–457
VHDL models, 449–463

Register file, 444, 449–450
MIPS subset data path

design, 444
RISC microprocessor design,

444, 449–450
VHDL model for, 449–450
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Register-register architectures,
RISC, 430

Register transfer language
(RTL) models, 102–13

Registers, modeling using
VHDL processes, 95–101

Report statement, 119–122, 552
Reserved words, VHDL, 59
Resolution function, 401,

402–405
Return-to-zero (RZ) code, 26–27
RISC, see Reduced Instruction

Set Computing (RISC)
Rising edge, 15, 39–40
ROM method, 142–145
ROM, see Read-only memory

(ROM)
Round bits, 367
Rounding, IEEE 754 floating-

point standard, 367
Routing designs, 54, 348, 349–353

CAD, 54
FPGAs, 348, 349–353
greedy algorithms, 350
iterative improvement

algorithms, 350
simulated annealing, 350–351

Row-based architectures,
FPGAs, 163–164

RUNBIST, boundary scan
instruction, 483

RZ code, see Return to zero
code, 26

s-a-0, see Stuck at 0
s-a-1, see Stuck at 1
SAMPLE/PRELOAD, bound-

ary scan instruction, 483,
484

Scan data input (SDI), 477
Scan data output (SDO), 477
Scan path (design) testing, 468,

476–479
Schematic capture, 52
Scoreboard, design of, 205–208
Sea-of gates architecture,

FPGAs, 164–165
Sea of tiles, 165, 172, 181–182
Segmented tracks, 176
Selected signal assignment, 89,

550
Self-testing using an MISR and

parallel SRSG (STUMPS),
494–495

Sensitivity list, 67
Sequence detector, 17–19, 25–26

Mealy machine design of,
17–19

Moore machine design of,
25–26

Sequencing memory, 284
Sequential circuits, 17–25, 25–28,

28–30, 30–41, 473–476
clock gating, 37–41
clock skew, 37, 39

control signals (CS), 37–41
distinguishing sequence, 475
equivalent states and, 28–30
glitches in, 35–36
iterative circuit, converting

to, 473–474
maximum clock frequency of

operation, 31–32
Mealy, 17–25
Moore, 25–28
propagation delays, 31
strongly connected state

graph, 474–475
stuck-at-faults, 475–476
synchronous design, 36–41
testing, 473–476
timing conditions, 32–35
timing in, 30–41

Sequential statements, 67–69,
70–71, 551–552

if and elsif statements, 70–71
process statements, 67–68
VHDL language for, 551–552
VHDL processes, 67–69

Sensitivity list, 67
Set-reset (S-R) flip-flops, 16
Setup time, 31, 33–34
Severity statements, 119–120
Shannon’s expansion theorem,

316
Shannon’s decomposition,

FPGAs, 316–321
Shift register sequence generator

(SRSG), 494
Sign-magnitude system, IEEE

754 floating-point formats,
363

Signal assignment statements, 58,
549–551

Signal attributes, 395–396,
397–398, 546

creating signals, 396, 546
predefined in VHDL, 546
returning values, 395, 546
use of, 397–398

Signal declarations, 111–114, 548
Signal parameter, VHDL,

393–394
Signal resolution, VHDL,

400–408
Signals, MIPS processor models,

453
Signature bits, BIST, 491
Signed integer/fraction 

multiplier, VHDL design
of, 219–231

Signed type, 91–93
Simple programmable logic

devices (SPLDs), 53,
138–139, 140–156

CAD technology and post-
synthesis simulation, 53

generic array logic (GALs),
139, 153–156

implementation of, 140–156

programmable array logic
(PAL), 53, 138–139,
151–153

programmable logic arrays
(PLAs), 53, 138, 146–150

Simplification, 5–6, 9–10
Boolean algebra, using, 5–6
Karnaugh map-entered 

variables, using, 9–10
Simulated annealing, FPGA

design routing, 350–351
Simulation, 53, 77–81

delta (�) delay, 78–79
design conceptualization, 53
discrete event, 78
event, 78
initializing phase, 78
multiple processes, 79–81
post-synthesis, 53
scheduling a transaction, 78
VHDL code, 78–81

Single-instruction computer, 432
Single-precision format, IEEE

754, 363–365
Slew rate, FPGAs, 177
Slice, FPGAs, 319–321, 324
SM charts, see State Machine

(SM) charts
Small digital systems, VHDL

design of, 190–259
Small scale integration (SSI), 51
SOP, see sum of product
Source registers, MIPS subset

data path design, 444
Spartan, 140, 161, 319–321
SPLD, see Simple Programmable

Logic Device
SPLDs, see Simple programma-

ble logic devices (SPLDs)
S-R flip-flops, 16
SRAM, see Static RAM

(SRAM)
SRAM FPGAs, 165–168
SSI, 51
Standard Logic, see Std_logic
State assignment, 19, 22–24,

25–26, 82, 336–337
encoded, 19
enumeration type, 82
flip-flop values and, 19,

22–24, 25–26
FPGAs, 336–337
Mealy machine design, 19,

22–24
Moore machine design,

25–26
one-hot, 19, 336–337
transition table, 19, 26

State box, SM charts, 261
State graphs, 17–18, 204–205,

264, 474–475
control circuits, use of for,

204–205
conversion of, to SM charts,

264
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distinguishing sequence, 475
Mealy sequential circuit

design and, 17–18
strongly connected state

graph, 474–475
testing sequential circuits,

474–475
State Machine (SM) charts,

260–309
binary multipliers, 265–267,

277–279
blocks, 261–264
case statements in, 265, 270
decision box, 261
derivation of, 265–275
dice game, 267–275,

279–283
feedback, SM block with, 263
hardwiring, 284
implementation of, 277–279,

279–283
introduction to, 260–265
link path, 261
linked, 297–299
microprogramming, 283–297
output box, 261
parallel blocks, 263–264
qualifiers, 287–292
realization of, 275–279
ROM method of implemen-

tation, 287–279
serial blocks, 263–264
state box, 261
state graph, conversion to,

264
timing charts, 264–265

State tables, 18, 26, 28–30
equivalent states and, 28–30
Mealy machine design using,

18
Moore machine design using,

26
reduction of, 28–30

Static Hazard, 13
Static RAM (SRAM), 165–167,

408–410, 410–413
IEEE 1164 standard, using,

408–410
models, 408–410, 410–413
multivalued logic and,

408–410, 410–413
programming technology,

FPGAs, 165–167
Read/write system, using,

410–413
Std_logic, 93–94, 407–408, 553
Sticky bits, IEEE 754 floating-

point standard, 367
Strongly connected, 474
Structural description, 53, 55,

101–102, 108–110
CAD design entry, 53
modeling a sequential

machine, 108–110
VHDL, 55, 101–102, 108–110

Stuck-at-0 fault, 469–470
Stuck-at-1 fault, 469–470
Stuck-at-faults, 468–472,

475–476
combinational circuits,

468–472
sequential circuits, 475–476

STUMPS architecture, 494
Subset implementation, 441–448,

454–4578
data path, design of,

442–447
flow of execution, 447–448
MIPS, 441–448
VHDL code for, 454–457

Subtype, 117
Subtype declaration, 117, 548
Sum of products, 7
Sum of products (SOP), 2, 7–9

combinational logic and, 2
Karnaugh maps and, 7–9
minimum, 7–9

Synchronization, design and,
208–210

Synchronous clear, 96
Synchronous design, 36–41. See

also Design
architecture, 37
clock enable, 38
clock gating, 37–41
clock skew, 37, 39
control signals (CS), 37–41
controller, 37
data path, 37
rising-edge devices, 39–40

Synchronous Serial Peripheral
Interface, 558

Synthesis, 53, 81, 84–87,
339–348

Area-Time (AT) product,
348

arithmetic components, of,
345–347

CAD conversion, 53
case statement, of a, 340–344
critical path, 347
defined, 53
design translation, 339–348
Energy-Delay (ED) product,

348
examples of, 84–87, 341-347
FPGAs, 339–348
if statement, of a, 344–3454
latch creation, unintentional,

342–344
netlist, 53, 339
VHDL code, 81, 84–87

System C, 55–56
System Verilog, 55

T flip-flops, 15
TAP, 479–490
Taps, defined, 492
Test-access port (TAP),

479–482

Test benches, 120–122, 227–229,
237–238, 246–248, 459–461,
499–500, 516–518

assert statements in, 120–121
BILBO system, 499–500
binary dividers, 246–248
keypad scanner, 237–238
MIPS processor model,

459–461
port map statement, 229
report statements in, 120–121
signed integer/fraction multi-

plier, 227–229
use of, 120–122, 227
wristwatch design 

module, 516–518
Test-per-clock scheme, 495–500
Test-per-scan scheme, 494–495
Testing, 458–463, 468–506. See

also Test bench
automatic test pattern 

generators (ATPGs), 468
boundary scan, 479–490
bridging faults, 472
built-in self-test (BIST), 468,

490–500
combinational logic, 468–472
coverage of test vectors, 472
design for testability (DFT),

468–506
hardware testing, 468–506
MIPS processor model,

458–463
path sensitization, 471
scan path (design), 468,

476–479
sequential logic, 473–476
stuck-at-faults, 468–472,

475–476
TEXTIO package, VHDL,

417–421, 555–556
Three-address format, MIPS

ISA, 432
Tic-Tac-Toe Game, 563
Time-to-market criterion, 110
Timing, 30–41, 75–77, 78–79,

264–265, 347–348, 518–526
Area-Time (AT) product,

348
charts for SM charts, 264–265
clock skew, 37
conditions, 32–35
delta (�) delay, 78–79
design translation, optimiza-

tion of in FPGAs, 347–348
Energy-Delay (ED) product,

348
glitches in sequential circuits,

35–36
hold time, 31, 33–34
inertial delays, 75–77
maximum clock frequency of

operation, 31–32
memory timing models,

VHDL, 518–526

Index 579

14Index.qxd  3/13/07  2:27 PM  Page 579



Timing (Continued)
propagation delays, 31
RAM memory models,

519–526
sequential circuits and, 30–41
setup time, 31, 32–34
synchronous design, 36–41
transport delays, 75–77
VHDL design and, 518–526

Toggle (T) flip-flops, 14, 15
Traffic light controller, design of,

201–203
Trailing edge, see falling edge
Transactions in VHDL, 395
Transition tables, 19, 26
Transparent D-latch, 16
Transport delays, 75–77
Tristate logic, 41–42

buffers, 41
busses, 41–42
in VHDL, 401–402

Truncate, IEEE 754 
floating-point standard, 367

Type, 62, 545–546
predefined VHDL, 545–546
VHDL modules, 62

UART, see Universal
Asynchronous Receiver
Transmitter

Ultra large scale integration
(ULSI), 51

Unbiased rounding, IEEE 754
floating-point standard, 367

Unconditional jump instructions,
MIPS ISA, 437

Underflow, IEEE 754 exponents,
363, 369

Universal asynchronous receiver
(UART), 526–539

baud rate generator for, 534,
536–537

receiver for, 530–535
transmitter for, 526–530
VHDL code for, 537–539
VHDL design of, 526–539

Unsigned type, 91–93
Usable gates, 337
Use statement, 91, 549

Variables, 111–113
Variable assignment statement,

111, 551
Variable declarations, 111–114,

548
Variable parameter, VHDL,

393–394
Verilog, 55

VersaTile blocks, 325–326
Very high speed integrated

circuit (VHSIC), 52
Very large scale integration

(VLSI), 51
VHDL, 51–136, 389–428,

545–552. See also Design
and function, std-logic,

406–407
arrays, 114–117, 396–397,

398–399
assert statement, 119–122,

552
attributes, 395–399, 546–547
behavioral description, 53,

55, 101–107, 110
combinational circuits and,

57–60
compilation of code, 77–81
computer-aided design

(CAD), 51–54
concurrent statements,

57–60, 549–551
constant declarations, 114,

548
counters, modeling using,

95–101
data types, 82–84
dataflow description, 55,

101–102, 107–108
declarations, 114, 547–549
files, 417–421
flip-flops, modeling using,

69–73
functions, 389–393, 547
generate statements,

415–417, 550
generics, 413–414
hardware description 

languages (HDL), 52–53,
54–57

identifiers, 59
IEEE 1164 standard, using,

405–408, 408–410
if statements, 70–71, 416–417,

551
inertial delays, 75–77
introduction to, 51–136
language, 545–552
large scale integration (LSI),

51
libraries, 90–94
loops, 117–119, 390–391, 552
modules, 61–67
multiplexers, models for,

87–90
multivalued logic, 400–408
named association, 414–415

operators, 82–84, 546
overloaded operators,

creating, 399–400
parameters, 393–394
port map statements, 219,

414–415
procedures, 393–394
registers, modeling using,

95–101
report statement, 119–122,

552
reserved words, 59
sequential statements, 67–69,

551–552
signal attributes, 395–396,

397–398
signal declarations, 111–114,

548
signal resolution, 400–408
simulation, 53, 77–81
small scale integration (SSI),

51
static RAM (SRAM) mod-

els, 408–410, 410–413
structural description, 53, 55,

101–102, 108–110
synthesis, 53, 81, 84–87
test benches, 120–122
TEXTIO package, 417–421
transport delays, 75–77
types, 545–546
ultra large scale integration

(ULSI), 51
variable declarations,

111–114, 548
very high speed integrated

circuit (VHSIC), 52
very large scale integration

(VLSI), 51
wait statements, 73–75, 551

Virtex, 140, 161, 324, 327–329

Wait statements, 73–75, 551
While loops, 119, 552
Wristwatch, 507–518

implementation of, 508–516
specifications for, 507
test bench, 516–518
VHDL design of, 507–518

X01Z logic, 400
Xilinx, 140, 157–158, 161,

324–325
XOR gates, 1–2

Zero, IEEE 754 floating-point
standard, 366
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