
P1: JYS

MOBK046-FM MOBK046-Thornton.cls October 14, 2006 13:16

Introduction to Logic Synthesis
using Verilog HDL

i

Copyright © 2006 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Introduction to Logic Synthesis using Verilog HDL
Robert B. Reese and Mitchell A. Thornton
www.morganclaypool.com

ISBN-10: 1598291068 paperback
ISBN-13: 9781598291063 paperback

ISBN-10: 1598291076 ebook
ISBN-13: 9781598291070 ebook

DOI10.2200/S00060ED1V01Y200610DCS006

A Publication in the Morgan & Claypool Publishers’ series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #6

Lecture #6
Series Editor and Affliation: Mitchell A. Thornton, Southern Methodist University

Series ISSN: 1930-3166 print
Series ISSN: 1930-3174 electronic

First Edition
10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

P1: JYS

MOBK046-FM MOBK046-Thornton.cls October 14, 2006 13:16

Introduction to Logic Synthesis
using Verilog HDL

Robert B. Reese
Mississippi State University

Mitchell A. Thornton
Southern Methodist University

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #6

M
&C

Morgan &Claypool Publishers

iii

ABSTRACT
Introduction to Logic Synthesis Using Verilog HDL explains how to write accurate Verilog descrip-
tions of digital systems that can be synthesized into digital system net lists with desirable charac-
teristics. The book contains numerous Verilog examples that begin with simple combinational net-
works and progress to synchronous sequential logic systems. Common pitfalls in the development
of synthesizable Verilog HDL are also discussed along with methods for avoiding them. The tar-
get audience is any one with a basic understanding of digital logic principles who wishes to learn
how to model digital systems in the Verilog HDL in a manner that also allows for automatic syn-
thesis. A wide range of readers, from hobbyists and undergraduate students to seasoned profes-
sionals, will find this a compelling and approachable work. This book provides concise coverage of
the material and includes many examples, enabling readers to quickly generate high-quality syn-
thesizable Verilog models.

KEYWORDS
Verilog, Digital System Design, Digital Logic Synthesis, HDL (Hardware Description
Language), Combinational Logic, Sequential Logic.

iv

P1: JYS

MOBK046-FM MOBK046-Thornton.cls October 14, 2006 13:16

v

Contents

1. Digital Logic Review with Verilog Quickstart . 1

1.1 Learning Objectives . 1

1.2 Logic Synthesis Introduction and Motivation . 1

1.3 Combinational Logic in Verilog . 4

1.3.1 Assign Statements . 4

1.3.2 Always Procedural Blocks . 8

1.4 Combinational Building Blocks in Verilog . 11

1.4.1 Multibit/Multiinput Muxes, Verilog Hierarchical Design,

and Bus Notation . 11

1.4.2 Addition, Subtraction . 14

1.4.3 Multiplication, Division . 17

1.4.4 Shifting . 18

1.4.5 Tri-State Logic . 20

1.5 Sequential Logic in Verilog . 21

1.5.1 One-bit Storage Elements . 22

1.5.2 DFF Chains. .23

1.5.3 Asynchronous Versus Synchronous Inputs . 24

1.5.4 Registers, Counters, and Shift Registers . 26

1.6 Event-Driven Simulation and Verilog . 29

1.6.1 Event-Driven Simulation Basics . 29

1.6.2 Timing Considerations . 33

1.6.3 Presynthesis Versus Postsynthesis Simulation . 34

1.6.4 Blocking Versus Nonblocking Assignments and Synthesis 35

1.7 Verilog Coding Guidelines . 36

1.8 Summary . 37

2. Synchronous Sequential Circuit Design . 39

2.1 Learning Objectives . 39

2.2 Sequential Circuits . 39

2.2.1 Sequential Circuit Motivation . 40

2.2.2 Synchronizing Signals: The Clock . 41

2.2.3 Synchronous Sequential Circuit Architectures . 42

P1: JYS

MOBK046-FM MOBK046-Thornton.cls October 14, 2006 13:16

vi CONTENTS

2.3 Models of Finite State Machines . 44

2.3.1 Basics of Algorithmic State Machine (ASM) Charts 45

2.3.2 The ASM Chart Model and an Example Controller 48

2.3.3 The State Diagram Model . 52

2.4 State Assignment . 54

2.5 Low-Level Models of Controllers . 56

2.5.1 State Equations . 56

2.5.2 State Tables . 59

2.5.3 Controller Circuit Analysis . 61

2.6 Mealy and Moore Machine Conversion . 61

2.6.1 Mealy to Moore Machine Conversion . 62

2.6.2 Moore to Mealy Conversion . 63

2.6.3 State Machine Equivalence . 63

2.7 Verilog Descriptions of Synchronous Sequential Circuits . 64

2.7.1 Example Verilog Descriptions . 66

2.7.2 Verilog Descriptions for the Mealy Machine Model

of an Example Controller . 66

2.7.3 Verilog Descriptions for the Moore Machine Model

of an Example Controller . 70

2.8 Summary . 72

Biography . 75

P1: JYS

MOBK046-FM MOBK046-Thornton.cls October 14, 2006 13:16

vii

Preface

Modern digital logic design flows heavily utilize Hardware Description Languages (HDLs) for

specification, simulation, automatic synthesis, and validation of target digital systems. The use

of HDLs is an important skill for all digital designers to have and this book serves as a concise

introduction to one of the most popular HDLs in common use today, Verilog. We introduce

the Verilog language through examples as we review basic building blocks of combinational and

sequential digital system design. The focus will be to restrict the discussion to synthesizable

Verilog and to mention common pitfalls and how to avoid them.

The book is divided into two main chapters. The first chapter is devoted to a quick

review of digital logic building blocks and their corresponding Verilog descriptions. Verilog

descriptions are shown that correctly describe various logic elements as are those that show

common errors and the unintentional digital logic that is produced by a synthesis tool.

A discussion of the basic internal operation of a discrete event simulator is included to

help the reader gain an understanding of how the Verilog HDL is simulated. By understanding

how a simulator operates, insight is gained into how to write and debug Verilog HDL.

The second chapter focuses on synchronous sequential circuits and their use as

controllers for a datapath. Algorithmic State Machine (ASM) charts are described and

emphasized throughout the chapter since they are easily understandable by designers and can

be directly translated into a Verilog HDL module. An example design of a memory-zeroing

circuit is used to illustrate the topics of controller modeling and synthesis.

P1: JYS

MOBK046-FM MOBK046-Thornton.cls October 14, 2006 13:16

viii

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

1

C H A P T E R 1

Digital Logic Review with

Verilog Quickstart

This chapter assumes that the reader is already familiar with binary number representation and

digital logic principles, and provides a refresher course on these topics while introducing the

reader to the Verilog hardware description language (HDL), logic synthesis, and event-driven

simulation.

1.1 LEARNING OBJECTIVES
After reading this chapter, you will be able to perform the following tasks:

• Implement combinational gate networks and commonly used combinational building

blocks in Verilog.

• Express sequential storage elements and commonly used sequential building blocks in

Verilog.

• Discuss the role of logic synthesis in digital design.

• Discuss the principles behind event-driven simulation.

1.2 LOGIC SYNTHESIS INTRODUCTION AND MOTIVATION
Recall that a digital system performs logical and/or arithmetic computations on binary-valued

(0, 1) inputs using a mixture of combinational gates and sequential storage elements and produces

binary-valued outputs. Fig. 1.1 shows two representations for the combinational and sequential

elements of a digital system: (a) a schematic with gate symbols (graphical), and (b) a Boolean

equation (text). While a schematic offers a visual representation of the system’s operation that

can be intuitively easier to understand than a symbolic model, it becomes unwieldy and confusing

once the schematic’s symbol count exceeds a few 10s of symbols. Design entry and data sharing

for schematics is also problematic. Schematic entry tools supplied by different vendors have

different graphical user interfaces (GUIs), which must be relearned if a user switches design

entry tools. Furthermore, there is no standard data format for schematics, and thus a schematic

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

2 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.1: Combinational and sequential logic representations

file created by one schematic entry tool is not easily portable to a schematic entry tool produced

by a different vendor. This hinders design sharing between users who select different tools for

design entry.

A text format solves the data format portability problem, as all text editor programs can

process files that use the American Standard Code for Information Interchange (ASCII) for

character encoding. However, the syntax used to express a digital system’s operation must be

agreed upon by all parties for the design to be portable between different design tools and

users. There are several shortcomings in using Boolean equations for expressing complex digital

systems:

• Boolean equations are a low-level description of a system’s operation; it can be difficult

for an external reader to grasp a system’s functionality when it is specified as a sequence

of Boolean equations.

• There is no standard method for representing sequential behavior using Boolean equa-

tions, as many different notations exist.

• There is no standard method for representing Boolean operations on groups of signals

(busses), which is needed for reducing the number of Boolean statements that describe

a system.

• Arithmetic operations such as addition, subtraction, multiplication, etc. have to be

expressed as their component Boolean equations, increasing the number of Boolean

statements for describing a system.

In the late 1970s and throughout the 1980s, as computer tools became essential for designing

complex digital systems, many hardware description languages (HDLs) were created by different

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 3

companies and universities for describing the structure and operation of digital systems. Two

of these HDLs, Verilog and VHDL (a nested acronym that stands for VHISC HDL, where

VHSIC is very high speed integrated circuit), eventually emerged as the standard HDLs for

digital system representation. These two HDLs are adept at specifying digital system operation,

with Verilog being the more popular language within the United States. This book uses Verilog

as its HDL of choice. Verilog was initially a proprietary language, but was transitioned to the

public domain by Cadence Design Systems and was made an IEEE standard in 1995, with a

revised standard released in 2001 [1]. VHDL is an IEEE standard as well.

In Fig. 1.1(a), the Verilog representation of the combinational gate network is shown in

two forms. One form uses a one-to-one mapping of the Boolean operations to Verilog logical

operators (& is AND, | is OR, ∼ is NOT), which are the same logical operators used in

the C and C++ programming languages, and demonstrates that Boolean equations are easily

represented in Verilog. The second form that contains the always block is an alternate view of

the logic network’s operation, as it uses an if statement that specifies the output y as a choice

between the inputs of a, b. It is easier for an external reader to grasp the behavior of the logic

network when it is expressed in this form, as it is a familiar representation for any person who

has programmed in a high level language (HLL). Digital systems expressed in Verilog typically

use these behavioral-type statements instead of Boolean equations, because of the increased

clarity for external readers. The sequential network of Fig. 1.1(b) is also represented in Verilog

by using an always block, using the syntax rules defined in the Verilog standard for expressing

sequential behavior. Verilog syntax details are discussed on an as needed basis in the following

review sections on combinational and sequential logic. Only the Verilog subset required by the

design examples in this book is covered as the language contains many features that are outside

the scope of these design examples.

There are many ways to implement digital logic; the most common methods in use today

are field programmable gate arrays (FPGAs) or standard cells within an application specific

integrated circuit (ASIC). In brief, an FPGA contains programmable gates and routing that

can be configured to implement a digital system of the user’s choice. A logic synthesis tool is

used to convert a user’s digital system specified in an HDL to an FPGA implementation. The

logic synthesis tool performs optimizations to meet user-specified constraints concerning circuit

speed and gate count. Fig. 1.2 shows that the role of a logic synthesis tool is similar to that

of a compiler, whose function is to map a program specified in a high level language to an

implementation on a particular central processing unit (CPU).

With respect to Fig. 1.2 and the syntactical similarities between Verilog and common

high level languages, it is inaccurate to think of an HDL as a programming language. There

are fundamental differences between HDLs and high level programming languages that are

discussed in more detail in Sections 1.3 and 1.6.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

4 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.2: HDLs and logic synthesis

1.3 COMBINATIONAL LOGIC IN VERILOG
Fig. 1.3 shows the common Boolean functions in their truth table, gate symbol, Boolean equa-

tion, and Verilog representations. The Verilog Boolean operators are the same as the bitwise

logic operators used in the C and C++ programming languages. Verilog also possesses some

gate-level primitives that implement the standard Boolean functions, but this book’s examples

use the Boolean operators exclusively.

1.3.1 Assign Statements

Fig. 1.4 shows the gate logic and symbol for a 1-bit 2-to-1 multiplexer (mux) function; recall

that a 2-to-1 multiplexer passes one of the two inputs to the output based upon a select input.

In Fig. 1.4, the output Y is equal to the input B if the select input S is “1,” else the output Y is

equal to A.

Three different Verilog implementations of the 2-to-1 mux are used as an introduction to

Verilog combinational logic. Verilog is case sensitive with all keywords in lowercase; keywords

are italicized for emphasis in Fig. 1.5. The basic design unit in Verilog is the module, which

contains the module’s interface signals and statements that describe its behavior. The module

statement contains a list of the module interface signals, also known as ports, which can be

given in any order. The three variations of Fig. 1.5 only differ in how the module’s behavior is

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 5

FIGURE 1.3: Boolean logic functions

FIGURE 1.4: One-bit 2-to-1 multiplexer

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

6 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.5: One-bit 2-to-1 multiplexer implementations using assign statements

written, so the interface of the three modules remains the same. These examples have the input

signals first, followed by the output signal, but the order is arbitrary. The input and output

statements that follow the module declaration define the direction of each interface signal. A

port is declared bidirectional by using the inout keyword. These examples list all of the input

ports using a single input statement; individual input statements could have also been used.

Our examples use lowercase for user-defined names such as module and port names; uppercase

is commonly used as well. It is suggested that mixed case not be used for user-defined names,

as the tools that operate on the design data after they have been transformed from Verilog to

some intermediate format may have difficulty with mixed-case names.

An assign statement makes a continuous assignment of the right-side expression to the

net or port that appears on the left side, using the “=” operator. The best way to think of a

continuous assignment is that the right-side expression defines a block of combinational logic,

whose output is continuously connected, and thus continuously drives, the net or the port on the

left side. Fig. 1.5(a) uses a single assign statement to specify a 2-to-1 multiplexer using Boolean

operators. Fig. 1.5(b) divides the Boolean operators across multiple assign statements, using

internal nets (gate ports joined by a wire) na and nb in the last assign statement to implement

the final or gate. The wire statement is used to declare nets na and nb; this is not strictly

necessary as only multibit nets (busses) have to be explicitly declared. Fig. 1.5(c) uses the

conditional operator “?” in a single assignment to specify the multiplexer logic. The first operand

in the conditional operator is the select operand (i.e., s); if this operand evaluates as nonzero then

the second operand (i.e., a) is evaluated and returned, else the third operand is evaluated and

returned. A module is terminated using the endmodule keyword. All of these implementations

result in the same logic; none of them have any inherent advantages over the others.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 7

FIGURE 1.6: Assignment statement ordering

It was previously stated that it is inaccurate to think of an HDL as just another form of high

level programming language where wires are variables and a sequence of HDL statements are

semantically equivalent to a sequence of HLL statements. Fig. 1.6 shows assignment statements

in a HLL versus Verilog. In Fig. 1.6(a), the ordering of the assignment statements affects the final

y value as the statements are evaluated sequentially. In Fig. 1.6(b), it is seen that Verilog assign

statements describe hardware (gates) that operate concurrently, so the statement ordering does

not affect the final hardware that is generated. Another way of stating this is that the arrangement

of the gate symbols in a schematic does not affect the circuit function as long as the connections

between the gate symbols are the same.

Fig. 1.7 shows another difference between an HLL and the Verilog HDL. In an HLL,

multiple assignments to the same variable result in the variable’s value being the result of the last

assignment. In Verilog, multiple assign statements to the same wire causes the gate outputs

of the logic implementation to be connected together. The only time that this is allowed is

for tri-state logic implementation, in which only one of the tri-state gates driving the wire is

FIGURE 1.7: Continuous assignments to the same wire

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

8 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

asserted at a given time. The Verilog assign statements in Fig. 1.7(b) are illegal as this does not

implement tri-state drivers; correct implementation of tri-state logic is discussed in Section 1.4.

1.3.2 Always Procedural Blocks

While combinational logic can be described using assign statements, higher complexity com-

binational logic blocks are better described using always procedural blocks for several reasons:

• Powerful statements like if, if-else, case and looping constructs can only be used in

always blocks; these statements are useful for implementing complex combinational

blocks with greater clarity and in a more concise manner than is possible with assign

statements.

• Multiple output nets can be assigned within a single always block.

• Sequential logic can only be specified within always blocks.

Fig. 1.8 serves as an introduction to always blocks by showing the implementation of the 2-to-1

multiplexer of Fig. 1.5 using three variations that each use an always block. For combinational

logic, an always block header contains an event list that is designated by “@(net1 or net2

or . . . netN)” where changes (events) on nets 1, 2, . . . ,N cause the logic represented by the

always block to evaluate their inputs. For combinational logic, any net that appears on the right

side of an “=” operator in the always block should be included in the event list. The body

FIGURE 1.8: 1-bit 2-to-1 multiplexer using always procedural blocks

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 9

of an always block can be one or more statements; begin and end keywords are used to

group multiple statements. The statement “reg y;” is included in each of the three modules

of Fig. 1.8 as any net that is assigned within an always block must be declared as a reg type;

this does not imply that this net is driven by a register or sequential logic.

Fig. 1.8(a) implements the multiplexer using an if-else statement, with the if-body

evaluated for a nonzero (true) conditional expression and the else clause evaluated otherwise.

Keywords begin and end can be used to place multiple statements in an if-body or else clause.

Fig. 1.8(b) implements the multiplexer using Boolean operators, while Fig. 1.8(c) distributes

the Boolean operators using intermediate nets and multiple assignments. The “=” operator

when used in an always block is called a blocking assignment, this terminology is discussed in

more detail in Section 1.6, which covers event-driven simulation principles. The always block

of Fig. 1.8(c) uses an implicit event list designated by “@∗,” which means that all nets on the

right side of the assignments are included in the event list.

The semantics of the net assignments in an always blocks differs significantly from

assign statements in that statements in an always block use the same sequential execution

model as the statements in an HLL.

• The logic synthesized for an always block duplicates the assignments’ behavior as-

suming that the assignments are evaluated sequentially. This means that the order in

which assignments are written in an always blocks affects the logic that is synthesized.

• Because of the sequential nature of an always block, the same net can be assigned

multiple times in an always block; the last assignment takes precedence.

Fig. 1.9 shows a case in which multiple blocking assignments are made to a net in the same

always block, with assignment ordering affecting the synthesized logic. In Fig. 1.9(a), the

clr input takes precedence over the ld input if both are “1,” while in Fig. 1.9(b) the opposite

holds true. Observe that in the two always blocks, if both ld and clr are “0,” then the initial

assignment of q=q old sets the value of q. This is a common coding style used in combinational

logic always blocks in that a default assignment is made to an output at the block’s beginning,

which is then overridden by later assignments in the block based upon the assertion of other

inputs.

The use of a default assignment to the output net of a combinational always block

guarantees that the output net is the target of an assignment for any input combination. If there

is some logic path through the always block that does not assign a value to the output net, then

a latch is inferred on that output as shown in Fig. 1.10. A latch is a sequential logic element,

and should not be synthesized in an always block that is meant to implement combinational

logic. Inferred latches are a common coding mistake for users who are new to Verilog and logic

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

10 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.9: The sequential nature of always blocks

synthesis in general. Fig. 1.10(a) shows that an inferred latch is placed on the net output q

because there is no assignment to q if ld is “0.” Fig. 1.10(b) corrects this mistake by assigning

a default value to the q output net. Fig. 1.10 gives a peek at how to specify sequential logic in

Verilog; Section 1.5 covers this in detail.

Another viewpoint of an always block’s functionality is that it is a complex form of

an assign statement. A module can have multiple always blocks, with each always block

representing discrete logic blocks, just as a module can have multiple assign statements. The

ordering of always blocks in a module does not affect the logic that is synthesized, for the same

reason that assign statement ordering does not affect synthesized logic. Except for tri-state

logic implementations, the same output net cannot be driven from multiple always blocks, just

as the same net cannot be driven from multiple assign statements, because the gate drivers

synthesized for the output net in each always block will be connected together.

FIGURE 1.10: A common mistake with combinational always blocks: inferred latches

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 11

1.4 COMBINATIONAL BUILDING BLOCKS IN VERILOG
This section discusses common combinational building blocks and their implementation in

Verilog, with new Verilog concepts introduced as they are required.

1.4.1 Multibit/Multiinput Muxes, Verilog Hierarchical Design, and Bus Notation

The 1-bit 2-to-1 mux of Fig. 1.4 can be extended to an N-bit 2-to-1 mux by paralleling N of

the 1-bit muxes as shown in Fig. 1.11 for N = 4. The inputs a , b and the output y now become

4-bit wide busses, labeled as a[3:0], b[3:0], and y[3:0], respectively. The individual bits of these

busses are labeled as a[0], a[1], etc., and connect to the appropriate data ports on each of the

1-bit 2-to-1 muxes. The s control input of the four 1-bit muxes are tied together so that the s

input selects the four data bits of the a and b inputs in parallel. Specifying this in Verilog requires

introducing the Verilog syntax for busses and hierarchical modules. In Verilog, a port or wire that

is greater than 1 bit in width is officially referred to as a vector, but is informally referred to as a

bus in this book. The bus indices can be arbitrary values in Verilog, but our examples assume that

a bus carries an N-bit quantity whose most significant bit is N − 1 and whose least significant

FIGURE 1.11: 4-bit 2-to-1 multiplexer implementations

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

12 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

bit is 0, to form a range N − 1 to 0. In Verilog, this range is declared as “[N − 1 : 0],” so a 4-bit

bus has the range “[3:0].” Individual wires in the bus are labeled as netname[0], netname[1],

etc. The 4-bit 2-to-1 mux in Fig. 1.11 thus has Verilog port names for the busses of a[3:0],

b[3:0], and y[3:0]. Observe that in the module interface of Fig. 1.11(a), the a, b inputs use

a separate input statement from the s input because their widths are different.

The module in Fig. 1.11(a) is a hierarchical module, because it uses four instances of

the previously described mux2to1 module to implement the 4-bit 2-to-1 mux. Each instance

statement contains the module name (i.e., mux2to1), a user-defined instance name (i.e., u3),

and a terminal list that describes how the instance’s ports connect to nets or ports within the

hierarchical module. This example uses named association within the terminal list, using the

syntax “.instance port(netname)” to connect an instance port to the netname in the hierarchical

module. A shorthand notation can be used in which the instance port names are not specified,

with the hierarchical nets in the terminal list assumed to connect to instance ports in the order in

which the instance ports are declared within the instance module. Named association is clearer

and less prone to careless error, so all examples in this book used named association for terminal

lists in instances.

Fig. 1.11(b) shows the 4-bit 2-to-1 mux implemented with the same assign state-

ment used for the 1-bit version in Fig. 1.5(a), by simply changing the module interface to

accommodate the 4-bit data ports. This illustrates Verilog’s capability of specifying N-bit wide

operations as easily as 1-bit wide operations. This is a powerful mechanism that improves a

designer’s productivity, allowing designers to focus on higher complexity designs.

Fig. 1.12 shows a 4-bit 4-to-1 mux implemented using 4-bit 2-to-1 muxes. While this

is one of the traditional implementation methods for higher level muxes and the Verilog

FIGURE 1.12: Four-bit 2-to-1 multiplexer implementations

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 13

FIGURE 1.13: Verilog implementations of a 4-bit 2-to-1 multiplexer

specification could be structured in this manner, it may or may not be an efficient imple-

mentation for a particular target technology, such as an FPGA. It is the function of the logic

synthesis tool to map a Verilog specification to a target technology using the most efficient gate

structure for that technology, so the Verilog descriptions of combinational building blocks that

offer clarity and leave out implementation details are usually preferred.

Fig. 1.13 gives two Verilog specifications for this 4-bit 4-to-1 bit mux that only specify the

multiplexer’s functionality, not the implementation. Both Verilog modules use always blocks,

but Fig. 1.13(a) uses an if-else chain for the logic while Fig. 1.13(b) uses a case statement. In

Fig. 1.13(a), the equality operator == is used to compare the s select input against the 2-bit

binary constants 2’b00, 2’b01, 2b’10 in the if-else chain, corresponding to the assignments

of y=a, y=b, and y=c. If none of these comparisons are true, then the last else clause makes

the assignment y=d. The case statement used in Fig. 1.13(b) is a shorthand notation for an

if-else chain; there is no advantage to either form in terms of the logic that is synthesized. The

default clause in the case statement is the clause that is chosen if s does match any of the

previous values given for s. Observe that in both always blocks, the output y is guaranteed to

be assigned some value due to the use of the last else clause in Fig. 1.13(a) and the default clause

in Fig. 1.13(b). This is important, as it prevents a latch from being inferred on the y output.

This is the first time that a Verilog module has used a constant that was greater than a

single bit in width. The general format of an unsigned integer constant is [size]’baseDDDD..D,

where size is the number of bits in the constant, base is a single letter designating the base, and

DDDD..D are digits in the specified base. Supported bases are d/D (decimal), b/B (binary),

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

14 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

o/O (octal), and h/H (hex). The default base is decimal; all other bases must use a base specifi-

cation. The size specification is optional; it is sized by the logic synthesis tool to match the sizes

of other operands in the associated expression. A constant is left padded with zeros if necessary.

1.4.2 Addition, Subtraction

Fig. 1.14(a) shows the truth table, Boolean equations, and logic symbol for a binary full adder.

The A, B, and Ci (carry-in) inputs are summed using binary arithmetic to produce the S (sum)

and Co (carry-out) outputs. Fig. 1.14(b) shows a 4-bit adder using a ripple-carry adder con-

figuration in which four 1-bit binary full adders are used, with the carry-out of full adder i

as the carry-in to full adder i + 1. While this is the most gate-efficient implementation for

an N-bit adder, it is also the slowest as the longest delay path passes through the carry chain

of all N full adders. There are many other adder structures, such as carry lookahead and carry

select, that are better suited for larger values of N given a particular maximum delay constraint,

FIGURE 1.14: Binary full adder and a ripple-carry 4-bit adder

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 15

FIGURE 1.15: Verilog 4-bit adder implementations

but the N value at which one adder implementation becomes better than another is dependent

on the implementation technology. For example, one FPGA vendor may implement fast carry

chains so a ripple-carry structure may have the same delay as a carry lookahead structure for

N < 12, while for a different FPGA vendor this may be true for N < 8. As such, for small

to medium sized adders it is generally better to specify a behavioral implementation of the

addition using the Verilog “+” operator instead of a structural implementation, and let the logic

synthesis tool choose the best adder structure. For large adders, FPGA vendors will typically

supply a parameterized library element that offers performance and gate count tradeoffs for

their particular architecture. Increased performance comes at increased gate count, which is a

well-known tradeoff in digital system design.

The Verilog module of Fig. 1.15(a) implements a 4-bit addition using the continuous

assignment s = a + b. The use of the “+” operator leaves the logic synthesis tool free to choose

the adder structure that will best meet any user-specified constraint, such as delay or area. The

Verilog module of Fig. 1.15(b) also implements a 4-bit addition, except that it also provides

carry-in and carry-out ports, similar to the adder of Fig. 1.14(b). The addition performed in the

first assignment statement “y = ” is a 5-bit sum with the fifth bit used as the carry-out signal.

The concatenation operator {} is used to transform the 4-bit a, b operands to 5-bit operands

by appending a most significant bit of 0. The carry-in bit is concatenated with four leading “0”s

by the {4’b0,ci} operation and is also part of the sum in the first assignment. The sum output

s is the lower 4 bits of the 5-bit y internal sum.

A full subtractor and an N-bit subtractor can be derived in a similar manner to that of

the full adder and N-bit ripple-carry adder. As with addition, subtraction is supported within

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

16 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.16: Adder/subtractor implementations

Verilog by the subtraction operator “−.” Fig. 1.16(a) shows an adder/subtractor implementation

that uses a multiplexer to select between addition “+” and subtraction “−” operations based on

the sub input. While this may be the most intuitive way to construct an adder/subtractor, it

is not necessarily the most efficient as it implies separate subtraction and addition blocks. The

traditional implementation of an adder/subtractor is shown in Fig. 1.16(b), which uses the fact

that a-b is equal to a+∼b+1, that is, add the 2’s complement of b to a to perform the subtraction.

It is obvious that Fig. 1.16(b) can be implemented in fewer gates than that of Fig. 1.16(a) if both

structures are mapped in a straightforward manner to gate primitives. However, because the two

Verilog modules are functionally equivalent, when the Verilog operators are mapped to Boolean

equations and logic optimization is done, one might expect that the same implementation is

created for both. However, it is dependent on the particular logic synthesis tool that is used as to

whether one of the two Verilog modules in Fig. 1.16 is implemented in a more efficient manner

than the other. This example is given to illustrate that logic synthesis is not a magic panacea

that removes all responsibility from the designer for creating efficient implementations. The

manner in which the Verilog RTL (Register Transfer Level) is written can affect the efficiency

of the resulting implementations, and a good designer is always aware of this.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 17

FIGURE 1.17: The multiplication operation for unsigned numbers

1.4.3 Multiplication, Division

Fig. 1.17 shows an unsigned 3 × 3 multiplication. A k-bit multiplicand and an m-bit multiplier

produce a (k + m)-bit product. Typically, the operands in a multiplication are of the same

length, so two n-bit operands form a 2n-bit product. Depending on the implementation, some

of the product bits may have to be discarded; choosing which bits to discard depends on the

fixed-point representation chosen for the two operands.

As seen in Fig. 1.17, a binary multiplication operation is an AND operation. Each bit

of the multiplier is AND’ed with the multiplicand to form partial products, which are summed

to form the product. An intuitive implementation of a multiplier that directly maps from

the operations of Fig. 1.17 is shown in Fig. 1.18(a). This is a combinational array multiplier

and while it is intuitive and functionally correct, there are other array multiplier structures

that offer higher performance as the operand size increases. Fig. 1.18(b) shows the 3 × 3

FIGURE 1.18: (a) An intuitive 3 × 3 array multiplier and (b) a 3 × 3 multiplier in Verilog

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

18 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

multiplication implemented in a Verilog module using the “∗” operator. For the same reasons

as the “+” operation, it is usually advantageous to use the “∗” operator for small to medium

width multipliers and let the logic synthesis tool choose the best multiplier structure. For

multipliers with large width operands, most logic synthesis tools have a library of multiplier

implementations that offer performance versus gate count tradeoffs. It must also be noted that

the multiplier implementation also depends on whether the operands are unsigned or signed (2’s

complement); the multiplier synthesized by the Verilog “∗” operator is an unsigned multiplier.

The division operation is only mentioned briefly here as it is similar to multiplication in

terms of logic synthesis. Verilog has a division operator (“/”) that will synthesize to an unsigned

combinational division implementation. However, as with multiplication, most logic synthesis

tools offer a parameterized library module for division that provides choices for unsigned versus

signed operands, the sizes of the dividend, remainder and quotient, and performance versus

gate count tradeoffs.

1.4.4 Shifting

Right and left shift operations by a single bit position on 8-bit values are shown in Figs. 1.19(a)

and 1.19(b), respectively. The si value is the bit shifted into the vacant bit position, which is

the most significant bit for a right shift, and the least significant bit for a left shift. A 1-bit

shift implementation is simply wiring, as shown by the Verilog concatenation statements that

accomplish the shift. The right shift operation copies the upper 7 bits of a to the lower 7 bits

of y, with the most significant bit of y filled by si. The left shift operation copies the lower

7 bits of a to the upper 7 bits of y, with the least significant bit filled by si.

Fig. 1.20(a) shows a multiplexer implementation of an 8-bit shift block that can shift left

by 1 bit, right by 1 bit, or pass its input through unchanged. The Verilog implementation of this

shift block is shown in Fig. 1.20(b). Verilog also has left (<<) and right shift (>>) operators

that can be used for shifting; both of these operators use a zero for the shift input bit. The

Verilog module in Fig. 1.20(b) allows the user to control the value of the shift input bit (si).

The shifter implemented in Fig. 1.20 only shifts by one position; a shifter that can

shift multiple positions is called a barrel shifter. Fig. 1.21(a) shows the traditional multiplexer

implementation of a 32-bit barrel shifter that shifts left by 0 to 31 positions based on the 5-bit s

FIGURE 1.19: Right/left shift operations

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 19

FIGURE 1.20: Verilog left/right shift by one example

FIGURE 1.21: Barrel shifter (32-bit, left shift)

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

20 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

input. Each stage of the barrel shifter corresponds to a fixed shift by a power of 2 (16, 8, 4, 2, 1)

controlled by a bit in s . The composition of the five stages produces a shift amount between 0 and

31. The Verilog implementation of this shifter is implemented by a single continuous assignment

statement of y = a << s. This again illustrates the power of an HDL to hide implementation

details from a designer and to specify complex logic blocks in a very compact manner.

1.4.5 Tri-State Logic

Fig. 1.22(a) shows the operation of a tri-state buffer with a high true enable. A tri-state buffer

can be thought of as a noninverting buffer with a switch on its output. When the buffer is

enabled, the output is driven by the noninverting buffer. When the buffer is disabled, the

output is disconnected from the noninverting buffer, and the output is left floating or in the

high-impedance logic state. The high-impedance logic state is traditionally indicated by the “Z”

value. Two common uses of tri-state logic are shown in Figs. 1.22(b) and Figs. 1.22(c). The

half-duplex link shown in Fig. 1.22(b) between blocks 1 and 2 allows communication in either

FIGURE 1.22: Tri-state logic and sample uses

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 21

FIGURE 1.23: Tri-state logic in Verilog

direction over a single wire, but only one of the blocks can be driving the wire at a particular

time. Tri-state buffers can also be used to implement bus multiplexing as shown in Fig. 1.22(c).

Tri-state logic is most commonly used for signals that drive off-chip to a shared bus, but some

FPGA vendors implement on-chip tri-state logic as well.

An example of tri-state bus multiplexing and its implementation in Verilog is given in

Fig. 1.23. Each adder input in Fig. 1.23(a) is selected from two different 8-bit values, where

the multiplexing is done by tri-state buffers. The Verilog implementation in Fig. 1.23(b) uses

internal wires p and q as the adder inputs. Wire p has two continuous assignments, with each

assignment using a conditional statement that selects between an input port value (a, b) and

an 8-bit tri-state value given as 8’bzzzzzzzz. The assignment of “z” to a bit value in Verilog

implies a tri-state driver when the Verilog is synthesized. Inferred tri-state drivers are the only

time that multiple continuous assignments can be made to the same wire in Verilog. Some

synthesis tools may replace tri-state bus multiplexing with equivalent logic multiplexing if the

target implementation technology does not support tri-state drivers.

1.5 SEQUENTIAL LOGIC IN VERILOG
This section reviews sequential systems, 1-bit storage elements, and common sequential building

blocks, along with their Verilog implementations.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

22 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.24: Level-sensitive and edge-triggered devices in Verilog

1.5.1 One-bit Storage Elements

A sequential system differs from a combinational system in that the sequential system has internal

state (or memory) and thus its outputs are dependent upon both its external inputs and internal

state. One-bit storage elements are used for state storage in a sequential system. Fig. 1.24(a)

shows the logic symbol, Verilog implementation, and timing diagram for a level-sensitive

1-bit storage element known as a D-latch. The device is termed level-sensitive because when the

gate (G) signal is high, then the Q output follows the D input, i.e., the latch is in transparent

mode. When G drops low, then the latch’s internal state becomes equal to the last D input value

when G was high. The Verilog implementation of a D-latch is an always block that makes

a nonblocking assignment (“<=”) of d to q when the g input is nonzero. Observe that if the g

input is zero, then the always block does not make any assignment to q, causing the synthesis

tool to infer a latch on the q output as the q output must retain its last known d value when

g was nonzero. Nonblocking assignments (“<=”) as opposed to blocking assignments (“=”)

should be used in always blocks that are used to synthesize sequential logic; this is discussed

in more detail in Section 1.6.

Fig. 1.24(b) gives the logic symbol, Verilog implementation, and timing diagram for a

rising edge-triggered 1-bit storage element known as a data flip-flop (DFF). The DFF is said

to be edge-triggered as the DFF’s internal state is only affected on the active edge of the clock

(clk) input, which causes the internal state to become equal to the D input value. The q output

always reflects the internal state of the DFF. The DFF shown in Fig. 1.24(b) is rising-edge

triggered; the logic symbol for a falling-edge triggered DFF has a bubble on the clock input.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 23

The D input of the DFF is said to be synchronous with respect to the clock input as the D input

only affects the Q output on the active clock edge. The Verilog DFF implementation indicates

the sensitivity of the DFF to the rising clock edge by using the keyword posedge (positive edge)

in the event list of the always block. The d input does not appear on the event list of the

always block as it is the clk input that triggers a possible change to the q output, not the d

input. The body of the always block simply makes a nonblocking assignment of d to q.

In general, edge-triggered storage elements are preferred to level-sensitive storage ele-

ments because of simpler timing requirements, and as such, this book uses DFFs exclusively in

its designs. You may be familiar with other types of edge-triggered storage elements such as the

JK flip-flop or T (toggle) flip-flop; these devices are DFFs with extra logic placed around them.

The 1-bit edge-triggered storage elements provided by FPGA vendors are DFFs because of

their simplicity and speed.

1.5.2 DFF Chains

The always blocks of Fig. 1.25(a) can be somewhat confusing to readers who are new to logic

synthesis in that all of these Verilog code fragments synthesize to the same chain of DFFs as

shown. This occurs because each nonblocking assignment synthesizes to a single DFF whose

FIGURE 1.25: Synthesizing a chain of DFFs versus a wire

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

24 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

input happens to be the output of another nonblocking assignment. The ordering of these

nonblocking assignments within an always block does not matter since they are assignments

to different outputs, and these nonblocking assignments can be either in a singlealways block or

in separate always blocks as shown. The key factor is that each of the nonblocking assignments

is protected by “posedge clk” in the event list of the various always blocks, causing a DFF

to be synthesized for that assignment. The timing diagram in Fig. 1.25(a) shows that the

edge-triggered nature of the DFF causes the qa, qb, and qc outputs to change to the DFF

input value at the rising clock edge. Contrast this to the blocking assignments in Fig. 1.25(b)

that are not protected by “posedge clk” in the event list. This causes combinational logic to

be synthesized, which simplifies to a wire from the input a to the three outputs qa, qb, and qc.

Changes on the input a are immediately propagated by the wire to the qa, qb, and qc outputs

as shown in the timing diagram.

1.5.3 Asynchronous Versus Synchronous Inputs

Fig. 1.26 illustrates the differences between asynchronous and synchronous inputs to a DFF.

An asynchronous input affects the DFF’s internal state independent of the active clock edge,

while a synchronous input requires an active clock edge. The DFF in Fig. 1.26(a) has high-true

reset (R) and low-true set (S) asynchronous inputs; the polarity of these inputs is arbitrary and

opposite polarities were chosen for example purposes. The event list of the Verilog always block

uses “posedge r” and “negedge s” to indicate that these inputs are high-true and low-true

inputs, respectively. It is unfortunate that the Verilog keywords posedge/negedge are required

for use with asynchronous inputs as well as with the clock input, as it implies that asynchronous

inputs are edge-triggered in the same way as the clock input. However, this is not the case as

asynchronous inputs are level-sensitive inputs, and force the DFF output either low or high as

long as they are asserted, overriding the clock input. The posedge/negedge keywords used

with asynchronous inputs indicate the leading edge of the assertion level for that input. In the

always block of Fig. 1.26(a), observe that the if-else chain has the asynchronous input behavior

specified first (r, s), and the synchronous behavior in the last else clause, indicating that the

asynchronous inputs take precedence over the clock input. This if-else chain format must be

followed with the asynchronous behavior specified first and synchronous behavior specified last

for a logic synthesis tool to correctly infer a DFF with asynchronous inputs. The ordering of

asynchronous inputs in the if-else chain determines their priority. The timing diagram of Fig.

1.26(a) indicates that the DFF’s internal state is affected upon assertion of an asynchronous

input.

Fig. 1.26(b) shows a DFF with synchronous clear (clr) and preset (pre) inputs. The

naming of these inputs is arbitrary; in this example different names were chosen from the

asynchronous set and reset inputs of Fig. 1.26(a) to avoid confusion. Observe that the only

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 25

FIGURE 1.26: Asynchronous versus synchronous inputs to a DFF

input that appears in the event list of the always block is the clock (clk) input as this DFF

has no asynchronous inputs. The logic shown is a conceptual gate-level implementation of the

synchronous clear and preset operations that are specified in the always block; be aware that

the target implementation technology determines the actual synthesized logic. The always

block is written such that the lowest priority assignment to the q output is done first, and the

highest priority assignment to q is made last. An if-else chain similar to that of Fig. 1.26(a) could

have also been written; unlike the asynchronous always block, there is no particular format for

specification of synchronous logic. The timing diagram of Fig 1.26(b) indicates that assertion

of a synchronous input does not affect the DFF’s internal state until the next active clock edge.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

26 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

In general, asynchronous inputs to DFFs are reserved for power-on logic, while synchronous

inputs are used during normal operation.

1.5.4 Registers, Counters, and Shift Registers

The combinational building blocks of Section 1.4 and DFFs can be combined to form commonly

used sequential building blocks such as registers, counters, and shift registers. A common need

in a sequential system is the ability to store an N-bit value over several clock periods. Paralleling

N-DFFs forms a block that can store an N-bit value, but the problem with DFFs is that they

can change value on every active clock edge. Fig. 1.27 shows that a register is built by combining

a DFF with a 2-to-1 multiplexer to form a device that only changes its value when the load

(ld) input is asserted on the active clock edge. The register contained in Fig. 1.27 is an 8-bit

register with an asynchronous low-true reset (r). The multiplexer steers the external d input of

the register to the D input of the DFF when ld is asserted, causing a new value to be loaded

on the next active clock edge. If the ld input is negated, then the register’s output is steered

back to the DFF input so that the next active clock edge simply loads the register’s old value,

thus retaining the register’s contents. The gate-level implementation in Fig. 1.27 is provided for

conceptual purposes; the actual gate-level implementation depends on the target technology.

The Verilog implementation is an always block of sequential logic whose synchronous section

FIGURE 1.27: Register with low-true asynchronous reset

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 27

FIGURE 1.28: Binary up-counter with low-true asynchronous reset

is an if statement that assigns the d input to the q output whenever the ld input is nonzero. If

the ld input is zero, then no assignment is made to q, causing it to retain its last value.

Fig. 1.28 gives the logic symbol, conceptual gate-level logic diagram, timing diagram, and

Verilog implementation for an 8-bit up-counter. In comparison to the register, the up-counter

logic symbol has one extra control signal named en; the counter increases by one when en is

asserted on an active clock edge. The timing diagram shows the counter loaded with the value

17 by asserting ld on an active clock edge, followed by assertion of en for two consecutive clock

cycles causing the counter to increase to 18, and then to 19. The counter then holds the value 19

stable as both ld and en are negated for the remaining clock cycles. The Verilog implementation

is the same as for the register except that the always block contains an extra if statement that

performs the increment of q<=q + 8’b1 when en is nonzero. The if statement for the load

capability follows the if statement for the increment operation, giving load precedence over

increment if both ld and en are asserted in the same clock cycle. This matches the multiplexer

structure that is shown in the conceptual gate-level logic diagram. As one might expect, counters

are useful for counting the number of operations performed in a digital system. However, another

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

28 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.29: Shift register (left shift) with low-true asynchronous reset

common use of counters is for providing addresses to a memory system, as memory locations

are typically accessed in a sequential fashion.

Fig. 1.29 gives the logic symbol, conceptual gate-level logic diagram, timing diagram,

and Verilog implementation for an 8-bit shift register (left shift). This has the same structure

as the counter except that the incrementer in the multiplexer feedback path has been replaced

by a 1-bit wired shift-left using the si input as shift-in for the least significant bit. The timing

diagram loads the shift register with the value 17, and then shifts this value to the left in the next

consecutive clock cycle by asserting the en input. The result of the first shift left is 34 (17*2+0)

as the si input is “0,” while the result of the following left shift is 69 (34*2 +1) because si is now

“1.” The Verilog implementation is the same as for the counter, except that the if statement that

implemented the increment operation has been replaced by an if statement that implements the

shift-left capability. One use of shift registers is for fast multiplication or division by 2. Another

more common usage is for serial communication, which sends or receives an N-bit datum 1 bit

at a time over a serial link.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 29

1.6 EVENT-DRIVEN SIMULATION AND VERILOG
In previous sections, combinational and sequential building blocks have been presented along

with their Verilog representations; these building blocks are used to form digital systems. To

verify the functionality of a digital system, both the Verilog code and the synthesized gate-level

netlist can be simulated in a digital logic simulator. This section covers the basics of how digital

logic simulators operate, and the differences between Verilog simulation (presynthesis) and

gate-level simulation (postsynthesis).

1.6.1 Event-Driven Simulation Basics

Various approaches have been taken in the past in creating digital logic simulators. One of

the first approaches is that of a so-called Levelized Compiled Code (LCC) simulation. The

advantage of this approach is speed since each circuit is transformed into a computer program

that is compiled. The disadvantage of this approach is that all timing information is lost and

thus these types of simulations are often referred to as 0-delay (zero-delay) simulations.

In order to generate timing information, an event-based simulation model is typically

used. An event is defined as a logic-value change in a net at some instant in time. Event-

driven (ED) simulations are quite different from LCC since events can occur simultaneously

in time in real circuits and thus the parallelism inherent in logic circuits is more accurately

modeled. To illustrate how a basic ED simulator operates, consider the example circuit in

Fig. 1.30.

In the example circuit, all of the nets are given labels (A–F, H, K–N, P). Events are defined

for a net when a logic level changes. In a basic ED simulator, a list or a queue is maintained that

contains every net for which an event occurred at some instant of time. After this event list is

built, it is traversed and a new list is built, called the gate queue. Whenever an event occurs on

FIGURE 1.30: Example circuit for ED simulation

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

30 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.31: Timing wheel diagram

an input net to a gate, the simulator must simulate the gate to determine if the gate output net

undergoes a corresponding event. The event queue and the gate queue are alternately formed

and processed and the simulation is over when the queues are empty. Because the event and

gate queues are alternately filled, processed, and emptied, this structure is sometimes referred

to as the “timing wheel” and a diagram of a timing wheel is depicted in Fig. 1.31. The smaller

box in the upper-left corner represents a new set of input stimulus values that initiate events

on the input nets and cause a new simulation to occur. These are typically referred to as “test

vectors” and the choice of an appropriate set of test vectors is a very important factor in effective

simulation as well as using an efficient and timing accurate simulator. Here, we will focus on

the anatomy of the timing accurate simulator only.

Using the timing wheel structure and the concept of an event-driven simulation, the

example circuit is used to describe how the ED simulation occurs. Consider that the example

circuit has been fully simulated for a test vector of A=1, B=1, C=0, D=0, E=1, F=0 and

that at some instant in time the input test vector changes to A=0, B=0, C=0, D=0, E=1,

F=1. This will cause events to occur on nets A, B, and F as shown in Fig. 1.32. In the figure,

affected nets are shown with a previous logic value and the current logic value separated by a

FIGURE 1.32: ED simulation example

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 31

FIGURE 1.33: Event and gate queue content

slash. Whenever these two values are different, an event has occurred and these are denoted by

the use of a bold-italic font.

The first step of the simulation is to build a list of events in the event queue. Each event

may have other information included in the queue entry such as the net identifier, the new logic

value, and other information. A very simplified figure illustrating the event content is shown in

Fig. 1.33.

At this point in the simulation, the name of each net and the current logic value are

stored in the event queue for all detected events. The simulator engine will next process this

list of events and together with a graph depicting the circuit structure, the gate queue will be

filled with a list of gates for which each event is driving (or fanning in to). As an example,

event entries for nets A and B both serve as inputs to gate G1; thus this gate is placed in the

gate queue along with all current input values. Note that G1 is placed in the gate queue only

once.

As each event is processed, it is actually removed from the queue. However to better

describe these concepts, we will leave previous events in the event queue diagram and draw the

newer events to the left. As sets of events progress from left to right, a notion of time can be

inferred from the simulation. For now we are assuming all gates have an equal delay and this is

referred to as a “unit-time” simulation model. To complete this part of the simulation, each gate

in the gate queue is simulated and if an event occurs on the gate output a corresponding entry is

placed into the now empty event queue. Two time units later, the queue diagrams are shown in

Fig. 1.34 and the corresponding circuit (or netlist) is shown in schematic form in Fig. 1.35. At

this point one more gate will be scheduled for simulation (the inverter G6) and no more gates

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

32 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 1.34: Event and gate queues at simulation time 3

will be scheduled afterward, yielding a total simulation time of four units. Bold font is used for

events (previous/current logic values that differ) that have been processed during this time, with

bold-italic font used for events that are yet to be processed. Since actual gate-level simulations

are being performed, only those gates in the circuit that require simulation are simulated. As

an example, gate G2 was never simulated for this test vector. Although only gates that require

simulation are simulated, it is possible that the same gate can be simulated more than once for a

single simulation run. Another important aspect of ED simulation is that the order in which the

gates are simulated inside the gate queue does not matter; the scheduling mechanism ensures

that all gates present in the gate queue for a given time instant are operating in parallel.

FIGURE 1.35: Example circuit with event annotations at simulation time 3

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 33

FIGURE 1.36: Example showing two simulations for same gate

1.6.2 Timing Considerations

As mentioned previously, a gate may be scheduled for simulation more than once for a particular

test vector. This occurs when unequal delay paths are present in a circuit and actually allows

for more accurate timing behavior in the simulated circuit. As an example, consider the simple

circuit and the associated event and gate queue content in Fig. 1.36. In this example, the

bottom-left corner of the figure contains the LCC code (in the C programming language) and

the associated output waveform (all zero-valued) when the input vector changes from (0,0) to

(1,1). On the right side of the figure, the queue content and the resulting output waveform are

shown for a unit-delay ED simulation. Note that the AND gate is scheduled for simulation

twice, once when the top-most input net undergoes an event, and then one time unit later when

the output of the inverter causes an event to occur. This more accurately describes real circuit

behavior and the output waveform shows that the AND gate outputs a logic-1 value briefly due

to the delay in the inverter.

The unequal delays in the paths from the primary circuit inputs to the AND gate inputs

cause the circuit output to go high for an amount of time equal to the unit-delay associ-

ated with the inverter. For more accurate timing, variable-delay nominal values could be used

since a single time value is still inadequate to accurately capture detailed timing informa-

tion. It is possible to also run three simulations using minimal, maximal, and nominal delays

but this increases the overall design time and some timing errors can still be masked. Most

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

34 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

event-driven simulators operate with worst-case delay models and thus produce pessimistic

timing results.

1.6.3 Presynthesis Versus Postsynthesis Simulation

Verilog simulators are event driven, and the Verilog code that has been used in the examples to

this point all use zero-delay assignments, either blocking, nonblocking, or continuous. Nonzero

delays can be specified in Verilog assignments by using a # operator and a delay value. However,

the examples in this book all use zero-delay assignments as the provided Verilog code is written

for synthesis purposes, and the gate-level netlist synthesized from the Verilog code provides

the delays. When simulating Verilog, one must be aware if the simulation is presynthesis (also

known as functional) or postsynthesis, as the postsynthesis simulation reflects the timing delays of

the implementation technology. Fig. 1.37(a) shows the C code of Fig. 1.36 written as a Verilog

always block and synthesized to two different implementation technologies. The functional

simulation in Fig. 1.37(a) shows no glitch on the output Y when A and B both transition to

1 simultaneously as it is a zero-delay simulation. The postsynthesis simulation in Fig. 1.37(b)

has a timing glitch on the output Y as the implementation technology uses discrete gates with

physical delays. Fig. 1.37(c) shows a different implementation technology in which the synthesis

tool maps the always block logic to a 4 location by a 1-bit (4 × 1) memory device (a lookup

table). This eliminates the intermediate C value, and thus there is no glitch in the Y output of

the simulation even though the memory device has a nonzero delay. Presynthesis simulation

FIGURE 1.37: Presynthesis versus postsynthesis simulation

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 35

requires much less CPU time than postsynthesis simulation for complex systems that require a

large number of test vectors for verification.

1.6.4 Blocking Versus Nonblocking Assignments and Synthesis

In the synthesis examples presented to this point, blocking assignments (“=”) are used in always

blocks that synthesize combinational logic, while nonblocking assignments (“<=”) are used in

always blocks that synthesize to sequential logic. This is due to the manner in which these two

assignment types are handled by the Verilog event-driven simulation model, and its translation

to hardware elements. What follows is a simplified explanation of the differences between these

two assignment types; the reader is referred to [1] for a complete discussion. Zero-delay blocking

assignments are so named because the assignment of the right-hand side (RHS) to the left-

hand side (LHS) is completed without any intervening Verilog code allowed to execute, i.e., the

assignment blocks the execution of the other Verilog code. For nonblocking assignments within

an always block, all RHS expressions are evaluated, and are only assigned to the LHS targets after

the always block completes. This causes a logic synthesis tool to treat blocking assignments

differently from nonblocking assignments in terms of the synthesized logic. Fig. 1.38(a) shows

an always block with two blocking assignments whose event list contains “posedge clk,”

inferring that the logic to be synthesized is edge triggered. The first blocking assignment

“q1 = d” is triggered on the rising clock edge, and thus a DFF is synthesized to represent

this assignment. Because this is a blocking assignment, the assignment is assumed to complete

before the next assignment. Thus, the q1 on the RHS of the second assignment “q2 = q1” is

the q1 after the clock edge has occurred, or is the q1 that represents the output of the synthesized

FIGURE 1.38: Blocking versus nonblocking assignments

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

36 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

DFF. The second blocking assignment “q2 = q1” copies this q1 to the q2, which synthesizes

to a wire as previously seen in Fig. 1.25(b).

Contrast this with Fig. 1.38(b), which is the same always block except that the blocking

assignments have been replaced by nonblocking assignments. In this case, the RHS values of d

and q1 are their values at the time the process is triggered by the rising clock edge as all RHS

values of all nonblocking assignments are evaluated before any nonblocking LHS assignments

are made. This causes the synthesis tool to infer a DFF for each of these assignments, forming

the DFF chain as shown in Fig. 1.38(b).

1.7 VERILOG CODING GUIDELINES
The following list contains a few guidelines adopted from [3] for the Verilog HDL that will

help users who are new to logic synthesis to write the Verilog RTL code that will synthesize to

the user’s expected hardware realization.

1. Use blocking assignments (“=”) in always blocks that are meant to represent combi-

national logic.

2. Use nonblocking assignments (“<=”) in always blocks that are meant to represent

sequential logic.

3. Do not mix blocking and nonblocking assignments in the same always block. If

an always block contains a significant amount of combinational logic that requires

intermediate wires (and thus, intermediate assignments), then place this logic in a

separate always block.

4. If an always block for combinational logic contains complicated logic pathways due

to if-else branching or other logic constructs, then assign every output a default value at

the beginning of the block. This ensures that all outputs are assigned a value regardless

of the path taken through the logic, avoiding inferred latches on outputs.

5. Do not make assignments to the same output from multiple always blocks.

Also, pay attention to any warnings that the logic synthesis tool issues when compiling and

synthesizing the Verilog RTL. These warnings provide alerts for unusual conditions that often

indicate a mistake in coding. A few common warnings provided by Verilog logic synthesis tools

are as follows (exact wording is simulation tool dependent):

1. “Input X is unused (does not drive any logic).” This means that the synthesized logic

does not make use of a particular input.

2. “Output X is stuck at VDD (or GND).” This means that in the synthesized logic there

is an output that has been reduced to a fixed “1” or “0” with no gating.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

DIGITAL LOGIC REVIEW WITH VERILOG QUICKSTART 37

FIGURE 1.39: Combinational loop

3. “Outputs X and Y share the same net.” This means that the logic for outputs X and Y

is the same, and that outputs X and Y are driven by the same gate.

4. “Output X has no driver.” This means that an output has never been assigned, and thus

no logic has been synthesized to drive it.

5. “Combinational loop detected on net X.” This means that the synthesis tool has found

a feedback path from a combinational gate output back to one of its inputs without an

intervening latch or DFF. Unless an asynchronous (i.e., no clock is used) digital system

is being designed, this is an error in coding as all feedback paths should be broken

by a sequential element. 1.39(a) shows an example of a combinational loop formed by

feeding the output of an adder back to one of its inputs. For a nonzero value on the input

a, this causes the adder to oscillate with a period equal to the delay path through the

adder. To correctly sum the previous adder output with a new input value, a sequential

element such as a DFF must be placed in the feedback path. This allows the clock

signal to control the sequencing of new output values from the adder.

1.8 SUMMARY
Hardware description languages and logic synthesis offer a powerful mechanism for the speci-

fication and implementation of digital systems. This chapter has reviewed digital logic funda-

mentals in a Verilog HDL context, which is our HDL of choice in this book.

P1: IML/FFX P2: IML

MOBK046-01 MOBK046-Thornton.cls October 14, 2006 13:14

38

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

39

C H A P T E R 2

Synchronous Sequential

Circuit Design

This chapter will review the underlying theory of sequential circuits and will heavily emphasize

synchronous sequential circuits. Topics such as ASM charts, state encoding, Verilog descrip-

tions, and their effect on resulting automatically synthesized circuits are included. These types

of circuits are very common and useful when they are used as controllers for guiding input data

through a data processing circuit.

2.1 LEARNING OBJECTIVES
After reading this chapter, you will be able to perform the following tasks:

• Describe a synchronous sequential circuit in contrast to other types of circuits.

• Express the operation of a synchronous sequential circuit in terms of an Algorithmic

State Machine (ASM) chart and other common models.

• Understand how a synchronous sequential circuit can be used as a controller for a

datapath.

• Describe what state encoding is and what the effects are in terms of the resulting

synchronous circuit.

• Develop a Register Transfer Level (RTL) Verilog description of a synchronous sequential

circuit.

• Be familiar with different Verilog coding styles for a synchronous sequential circuit.

• Develop either Mealy- or Moore-type synchronous sequential circuits and understand

their differences in output signal timing.

2.2 SEQUENTIAL CIRCUITS
Sequential circuits differ from combinational logic circuits in that the outputs of these circuits

depend on both the input signals and the value of an internal state. The state value is present

by way of a memory capability in the sequential circuit. Memory circuits can be constructed

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

40 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

in a variety of ways including the 1-bit storage elements described in Chapter 1. Sequential

circuits can be broadly classified as being synchronous or asynchronous referring to the presence

or absence of a periodic signal as an input.

2.2.1 Sequential Circuit Motivation

The common sequential devices described in Chapter 1 are used so commonly that we refer

to them as sequential logic building blocks. In general, a sequential circuit may have any set of

arbitrary states and these types of circuits are extremely useful in the design of digital circuits in

the role of a controller. We will use the terms “controller” and “sequential circuit” interchangeably

in the following text, although we will always assume that we are dealing with synchronous

controllers, those that depend on a synchronizing clock signal for state changes.

There is interest in synchronous controllers since they are very commonly used as part

of an entire digital system, including processors, bus bridges, physical layer protocol devices,

and other digital circuits. These types of digital systems can be viewed as being composed of

two main subcircuits: a datapath and a controller. Although this chapter is not devoted entirely

to datapath + controller circuit design, a brief description of the architecture of these types of

circuits is provided here to give context for the remainder of the discussion on controllers.

A general block diagram of a digital system composed of a datapath and a controller is

shown in Fig. 2.1. The datapath is the portion of the circuit that contains components that

transform input data signals into output data signals. Datapaths may be purely combinational

or they may also contain synchronous components such as dedicated counters. The controller

FIGURE 2.1: Diagram of digital circuit composed of a datapath and a controller

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 41

subcircuit is responsible for guiding the input signals through various components in the data-

path and can allow the “sharing” of components in a datapath. For example, if a digital system

needs to apply a multiplication operation to two different sets of input signals, but only one

multiplier circuit is present in the datapath, the controller can generate signals that sequences

and allows different input signals to be present at the multiplier circuit inputs at different times.

Common types of signals that the controller circuit provides to a datapath include device reset

signals, multiplexer select signals, register load and clear signals, and in general any signal that is

considered to be a “control” versus a “data” signal. The controller may also receive input signals

generated by the datapath. An example might be a completion signal generated by a datapath

component that would in turn be used by the controller to change state.

2.2.2 Synchronizing Signals: The Clock

In this chapter, we focus on synchronous circuits, which are those that require a synchronizing

periodic signal (or a clock signal) as an input. Fig. 2.2 illustrates a typical clock signal as a

voltage versus time plot with various parameters such as period (τ), frequency (f), pulse width

(PW), pulse height (PH), and duty cycle (DC) as a percentage depicted. The clock signal in the

figure is ideal in that it is depicted with zero-valued rise- and fall-times. In reality, the rise- and

fall-times are finite valued and not necessarily equal; however, unless stated specifically, we can

assume this ideal model for the purposes of our discussion. The PH parameter is shown in units

of voltage, which is the most common unit used for modern digital circuits since they are based

on voltage mode circuits at the transistor level.

During the simulation of synchronous circuits using Verilog, it is necessary to generate

a clock signal. This can be accomplished by a separate Verilog module for that purpose. Two

Verilog modules are shown in Fig. 2.3 that can serve as clock signal generators. The first module

clk gen1 produces an output clock signal that is composed of exactly 50 clock cycles. The

FIGURE 2.2: Typical synchronous sequential circuit clock signal

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

42 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

module clk_gen1(clk);

output clk;

reg clk; module clk_gen2(clk);

initial output clk;

begin reg clk;

clk = 1’b0; initial clk = 1’b0;

repeat (100) always #5 clk = ∼clk;

#5 clk = ∼clk; endmodule

end

endmodule

FIGURE 2.3: Verilog modules for clock signal generation

repeat (100) statement causes the Verilog line #5 clk = ∼clk; to be repeated 100 times.

Every 5 simulation time units, the clock signal changes polarity so 10 time units are required for

one complete period. The clk gen2 module generates a clock signal that continually oscillates

until the simulation is halted, because the #5 clk = ∼clk; statement is present in an always

block. The clock signal produced by the Verilog modules in Fig. 2.3 have duty cycles of 50%,

a pulse width of 5 simulation time units, and a period of 10 simulation time units. More

sophisticated clock generators can be written that allow for varying the duty cycle of the clock

generation circuit.

For practical reasons in terms of circuit synthesis, the clock generator module should be

written as a separate module and not included as part of the module containing your circuit

design description, since the purpose of the clock generator module is for simulation only. After

your circuit has been simulated and you are ready to synthesize it, you will not want the synthesis

tool to produce clock generation circuitry. By keeping the clock generator as a separate module,

you can remove it from your file when you are ready to synthesize the circuit and provide the

synthesis tool with only the module describing the circuit under design.

Many synthesis tools only support a synthesizable subset of the Verilog language. As an

example, the clock signal generation modules in Fig. 2.3 cannot be simulated using the Altera

Quartus tool since the timing delay parameters (e.g., #5) are not supported since the Quartus

tool is designed for synthesis and supports only the synthesizable constructs of Verilog. Other

simulation tools may require the insertion of simulator directives such as $stop or $finish in

the clock modules for proper operation.

2.2.3 Synchronous Sequential Circuit Architectures

Just as combinational logic circuits are commonly modeled as binary-valued Boolean functions,

it is also common and convenient to model controller circuits based on a mathematical model

known as an automaton. The two most popular automata models for controller circuits are

referred to as Moore or Mealy machines, named after researchers who published early papers

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 43

on their structure [4, 5]. The distinguishing characteristic between Mealy and Moore machines

is that the output of a Moore machine depends only upon the state of the sequential circuit

whereas the output signals of a Mealy machine depend upon both the state and the input signals

of the circuit. This has a practical effect in that the output signals of a Moore machine only change

after output logic delays following a clock signal edge whereas the output signals of a Mealy

machine may change at any time shortly after an input signal changes value. Because the outputs

may change at any time for a Mealy machine, the outputs for a given state transition can only be

considered to be valid shortly after a state transition that occurs in relation to a clock edge event.

Block diagrams of the architecture of synchronous Mealy and Moore machines are shown

in Fig. 2.4. Each of these is shown with n input lines, m output lines, k present state values, and

q excitation values. The k present state values are the content of the k 1-bit storage memory

elements called the state of the circuit. The q excitation values are used as inputs to the storage

devices so that their content may change during the next clock event. If the storage devices

are simple registers or D flip-flops, then the k = q and the q signals are referred to as the

next state. The m output signals are produced by the lower combinational logic blocks in the

figure. Note that the output combinational logic is optional for the Moore model. Many times

Moore machines are designed such that some or all of the k state values are the desired circuit

output signals. This is generally desirable in terms of timing since the output signals of a Moore

machine that are actually the present state values will only change shortly after a clock event

and will remain stable until the next clock event.

FIGURE 2.4: Block diagrams of Mealy and Moore machine digital circuitry

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

44 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

In comparing the two diagrams in Fig. 2.4, the Moore model has the same structure

as the Mealy model with the exception of a missing bus connecting the input signals to the

output combinational logic block. This has a practical effect in terms of building circuits that

adhere to the Mealy- or Moore-type structure. In reality, it is usually the case that some outputs

are derived directly from the present state values only and we will refer to these as “Moore-

type” outputs. Other outputs may depend on both the input values and the present state; these

are the “Mealy-type” outputs. Circuits containing both Moore-type and Mealy-type outputs

are still technically Mealy machines. It is usually desirable from a design point of view to build

circuits with as many Moore-type outputs as possible since those output signals have the desired

property of changing only shortly after a clock event and they remain stable throughout the

entire clock period.

Since Moore and Mealy machine models are mathematical structures, there is a rigorous

theoretical background underlying the Mealy and Moore models referred to as the automata

theory. The automata theory is the basis behind the traditional model of computation and

is used for many purposes other than controller circuit design, including computer program

compiler construction, proofs of algorithm complexity, and the specification and classification

of computer programming languages [6]. While these subjects are not covered here, we mention

this in order to point out that the synchronous sequential circuits we are studying here are a

subset of the more general category of automata models.

Because automata are mathematical models that produce values dependent upon some

internal state and possibly some dependent input values, they are also often referred to as state

machines. An automaton may allow for a finite or an infinite set of possible states and furthermore,

they may have deterministic or nondeterministic behavior. A deterministic state machine is one

whose outputs are always the same for a given internal state and a set of dependent input

values. A finite state machine (FSM) is one where all possible state values form a finite set. The

synchronous sequential circuits that are the focus of this chapter are conveniently modeled as

deterministic finite state machines that are modeled as either Mealy or Moore machines. For

this reason, these types of circuit models are sometimes referred to as FSMs in the literature.

Although an FSM refers to a type of mathematical model of an automaton, it is sometimes the

case that designers refer to a controller as an FSM when technically a controller is a circuit that

is a realization or embodiment of an FSM model.

2.3 MODELS OF FINITE STATE MACHINES
FSMs are commonly modeled by digital designers in a variety of ways, including state diagrams,

state equations, state tables, and algorithmic state machine (ASM) charts. This section will provide

an overview of each of these types of models for an example FSM. Our method for controller

circuit design will involve specifying the behavior by first developing an FSM model and then

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 45

translating the model into a Verilog description, which in turn will be synthesized yielding a

circuit realization. Verilog descriptions are also models but we will describe the development of

these models in a separate section since our preferred approach for controller design is to first

develop an ASM chart and then to translate the chart into a Verilog description.

2.3.1 Basics of Algorithmic State Machine (ASM) Charts

Algorithmic State Machine (ASM) charts are a way to model a synchronous sequential cir-

cuit and these are our preferred model to use before the generation of a Verilog description

commences. There are several reasons for this preference:

• ASM charts strictly adhere to a few rules and this allows them to be easily translated

directly into the Verilog HDL description.

• ASM charts are usually much easier to comprehend by a human than a Verilog listing.

• The combination of ASM charts and a Verilog listing provides a very powerful and

comprehensive form of documentation for a synchronous sequential circuit.

• ASM charts provide an easy way to distinguish between Moore- and Mealy-type out-

puts.

ASM charts are a rigorous form of flowcharts that were initially introduced for describing

software programs. ASM charts consist of three different symbols connected by directed edges

that depict the flow of events within a circuit. As shown in Fig. 2.5, a single rectangular box is

present for each state, an oval is present for circuit outputs that depend on both input values

and the current state (note that these dependent output ovals are only present in Mealy model

descriptions), and the diamond shaped symbols are used for decisions in next-state transitions

based on circuit inputs.

The rectangular state-representing symbol is sometimes optionally shown with a state

encoding or a state name. If these are present in the ASM chart, they should be shown outside

the box since everything inside the state-representing symbol refers to an unconditional (or

Moore-type) output signal. It is also common to designate one of the state-representing signals

as a “reset” or “initialization” state. While there is no strict convention for denoting this state,

common practice is to have a flow direction symbol pointing to the rectangle with the other end

labeled “RESET.” State-representing symbols may have one or more flow direction symbols

pointing to them but they should always have exactly one exiting flow direction symbol.

The diamond-shaped decision symbol is used to allow signal flow to vary in a conditional

manner based on an input signal. Decision symbols should always contain an input signal name

or a Boolean expression composed of input signals. Basic decision symbols are single-bit valued

which implies that they have exactly two exiting flow direction symbols, one indicating that

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

46 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

FIGURE 2.5: Symbols used in ASM charts

the contained expression or input signal is a “1” and the other indicating evaluation to a “0.”

Each of the two exiting flow direction arrows is labeled by having either a 0 or a 1 next to

them. A basic decision symbol always has a single input flow direction symbol originating from

either a state-representing symbol or another basic decision symbol. The two outputs of a basic

decision symbol should either point to a conditional output symbol or to a state-representation

symbol.

A conditional output symbol is only used in Mealy machine ASM representations. These

symbols always have exactly one entering and one exiting direction flow symbol. Output signals

or equations defining output signals are contained within conditional flow boxes. In a correctly

drawn ASM chart, the entering direction flow symbol to a conditional symbol must always

originate from an output of a decision flow symbol. For this reason, the output designated by

the conditional symbol depends (or is conditional upon) on the input signal in the decision flow

symbol. These ASM chart symbols are sometimes referred to as Mealy output symbols since

they denote outputs that depend on both the current state and an input signal value. The exiting

flow direction arrow points to a state-representing symbol or another basic decision symbol.

We refer to the diamond-shaped symbol as a basic decision symbol since some designers

use a more general decision symbol with more than two output flow direction arrows that depend

on more than one input signal. The more complex generalized decision symbol can always be

represented by a cascade of basic decision symbols, each labeled with a single input signal and

having two (binary) exiting flow arrows. The order of the cascade of basic symbols does not

matter since evaluation of a path through the decision boxes is assumed to occur simultaneously,

shortly after a clock event in a synchronous sequential circuit; nevertheless, some people prefer

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 47

FIGURE 2.6: Complex and corresponding basic ASM charts

using these more general decision symbols since they avoid the issue of ordering in a cascade of

basic decision symbols. A common way to draw a general decision symbol is shown in Fig. 2.6

on the top and two corresponding cascades of basic decision symbols are shown below.

All the three ASM chart portions shown in Fig. 2.6 are equivalent. The top decision

symbol has three exiting flow symbols that correspond in total with all four different 2-bit

values of the input signal pair A, B. In the worst case, the general decision symbol would have

four different exiting flow symbols corresponding to the four different 2-bit valuations of the

ordered pair of input signals A, B = {00,01,10,11}. For conciseness, the don’t care x is used to

indicate that if the input signal A = 0, the activated path in the chart is to the ASM symbol

m. The two cascades of basic decision symbols are identical to the generalized symbol. There

are advantages and disadvantages of each convention. The advantage of the generalized symbol

is clearly the conciseness of the ASM chart. Also, if fully generalized decision boxes are used

everywhere, the rule about the exiting flow symbol from conditional output symbols may be

simplified to state that they must always point to a state-representing symbol. It is permissible to

insert conditional output symbols in intermediate stages of cascades of flow symbols, provided

that they follow all decision symbols whose input signals affect the conditional output signal.

The disadvantage of the generalized decision symbol is that the designer must ensure that

all possible combinations of input variables are uniquely covered. That is, there must be one

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

48 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

and only one exiting decision symbol for all possible combinations of input signals inside the

generalized decision symbol.

Finally, because there are two possible ways to express the generalized decision symbol

using basic decision symbol cascades in Fig. 2.6, many designers who are just learning about

ASM charts mistakenly assume that the order in which the decision boxes are encountered

have some bearing on the underlying circuit. This is not the case since ASM charts represent

synchronous sequential circuits. In synchronous sequential circuits, all decision boxes are eval-

uated as soon as the input signals change regardless of the order in which they are drawn in an

ASM chart. This can allow the paths through the decision cascades to change as input signals

change. However, in terms of effecting state transitions, only the activated path shortly after a

clock event matters.

2.3.2 The ASM Chart Model and an Example Controller

The same example FSM is used for all the models described in this chapter. The example is

intended to represent a controller circuit that receives inputs from a datapath that consists of

a memory with extra circuitry that allows for writing a sequence of zero values over a range

of addresses. The additional circuitry in the datapath consists of two registers for holding the

lower and upper addresses, a counter for generating intermediate addresses, a comparator for

determining when the upper address value has been reached, and multiplexers for switching the

memory device input signals between the “zeroing” function and normal operation. A simplified

block diagram of the datapath is shown in Fig. 2.7 with the controller circuit represented as a

large box at the bottom of the diagram.

The datapath is designed to allow the memory to either function normally or in a zeroing

mode. During normal functioning, addresses (addr[5:0]) are connected to the memory address

input (addr) through the uppermost multiplexer (M1) and data to be written to the memory is

passed through the lowermost multiplexer (M2) to the memory data input port. In the zeroing

mode, the multiplexer select lines are changed to connect the output of the counter to the

memory address input and the connection to a constant logic “0” to the memory data input port

(din). One of the purposes of the controller circuit is to generate the appropriate multiplexer

select line values.

In this example, it is assumed that the memory with a zeroing capability circuit is interfaced

to other circuitry that is responsible for ensuring that the appropriate addresses are stored in

registers R1 and R2 before a zeroing operation is asserted. The zeroing operation is asserted by

external circuitry to indicate that the system should switch from normal operation to the zeroing

mode. This external input signal, zero, serves as input to the controller which in turn will issue

the appropriate signals to the datapath to initiate the zeroing mode. The overall circuit generates

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 49

FIGURE 2.7: Block diagram of a datapath and controller for an example digital system

one output, busy, that is generated by the controller outputs clr busy and set busy via a

JK flip-flop in the datapath. The output signal, busy, can be used by other external circuitry

to determine when normal memory reads and writes can occur. The two-input OR gate in the

datapath is needed to allow the single memory write enable (we) to be controlled externally

during normal memory operations, or by the controller during the zeroing operation. The

counter is responsible for generating the next incremental address to which a “0” value is to be

written during each clock cycle of a zeroing operation. This counter has the capability to have

an initial value loaded, in this case from R2, and is an up-counter. The output of the counter

is fanned out to both the M1 multiplexer and an input of a comparator. The purpose of the

comparator is to determine when the zeroing operation is complete. This is accomplished by

comparing each generated address from the counter with the last address to be zeroed present

in register R1. When the addresses are the same, the comparator outputs the signal cnt eq

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

50 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

TABLE 2.1: Example Controller Input and Output Signal Names

INPUTS OUTPUTS

DESCRIPTIVE DESCRIPTIVE

NAME PURPOSE NAME PURPOSE

Set busy Controller output indicating

zeroing operation has begun

zero External input

causing zeroing

operation to begin

Clr busy Controller output indicating

zeroing operation has ended

load cnt Controller output causing R2

content to be loaded into

counter

cnt eq Input from datapath

causing zeroing

operation to halt

addr sel Controller output connected

to select inputs of M1 and

M2

zero we Controller output asserting

the we input of the memory

cnt en Controller output asserting

the enable input of the

counter

that serves as an input to the controller, which in turn generates the control signals that allow

the datapath to resume operation as a normal memory unit.

Examination of the Fig. 2.7 indicates that our example controller has two input signals

from the datapath and produces six output signals that control the datapath. The inputs and

outputs of the controller are summarized in Table 2.1.

Fig. 2.8 contains an ASM chart that models the example controller. When constructing

the ASM chart, it is natural and easy to determine which outputs are Moore-type versus Mealy-

type—this is an advantage of the ASM chart. State s0 represented by the top state-representing

symbol is the state at which our example circuit is behaving as a normal memory. The decision

box below s0 indicates that at each clock event, the input zero is checked to determine if an

external request for a zeroing operation has been asserted, if so the controller transitions into

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 51

FIGURE 2.8: Example ASM chart for a controller

state s1, otherwise it remains in state s0. Note that whenever the controller is in state s0 and

zero is asserted, the conditional output set busy is asserted. This implies that set busy is

a Mealy-type output since it depends upon the input signal zero.

After zero has been detected as asserted, and the controller has transitioned into state s1,

it is necessary to load the counter in the datapath with a low-range value of the memory address

where the zeroing operation is to begin. This is accomplished when the controller asserts the

unconditional output ld cnt signal that is connected to the load input of the counter. The

purpose of state s1 is to initialize the counter to begin at the address that was loaded into

register R2. The controller stays in state s1 for exactly one clock cycle since there is no decision

block after the s1 block in the ASM chart.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

52 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

The controller transitions into state s2 and remains there as long as the zeroing operation

is occurring. While in state s2, the controller input cnt eq is checked at each clock cycle as

indicated by the lowermost decision box. The cnt eq signal is the output of the compara-

tor in the datapath and is asserted whenever the counter is equal to the upper range address

present in register R1. When cnt eq is asserted, the controller can then transition back to state

s0 and generate the appropriate control signals that cause the unit to resume operation as a

normal memory device. While the controller is in state s2, the three unconditional outputs

addr sel, zero we, and cnt en are asserted. The addr sel signal is connected to the select

lines of the multiplexers M1 and M2 and causes the addr input of the memory to receive data

from the counter and the din input of the memory device to be connected to a logic “0” value.

The zero we signal that is connected to the input of the OR gate is asserted, causing the mem-

ory device to be in the write mode. The cnt en signal is the enable signal for the counter, and

its assertion causes the counter to increase by one at each clock edge. Note that the clr busy

conditional output signal is asserted when the controller is in state s2 and the cnt eq signal

is asserted. The clr busy signal is also clearly a Mealy output since it depends upon both the

state (s2) and the controller input cnt eq.

The four unconditional outputs of the controller are the signals ld cnt, addr sel,

zero we, and cnt en. These depend only upon the state of the controller and for this reason

they appear (when asserted) inside the state-representation symbols. Typically, when uncondi-

tional outputs such as these four signals are not asserted, they are not present in the state boxes

of the ASM chart. For example, ld cnt=0 is not written inside the s0 or s2 box in the ASM

chart. The nonasserted values are referred to as default values and they have a direct translation

into default Verilog statements when a controller is described with Verilog.

2.3.3 The State Diagram Model

The state diagram model for a deterministic FSM is a directed graph with a vertex set where

each member of the set uniquely maps to each possible state and an edge set that represents

all possible transitions from one state to another during a single clock event. The vertices are

usually drawn as circles or ovals that are annotated with a label representing a state and the

edges may be labeled with circuit input and/or output values.

It is easy to recognize whether a state diagram represents a Mealy or a Moore machine

by examining the annotations on the graph edges. The state diagram for a Mealy machine

contains edge annotations of the form input/output where the “/” symbol is used to delimit

the input labels or values from the output labels or values. The inputs and outputs may be

given in terms of symbolic or numerical values. Fig. 2.9 is a Mealy-type state diagram repre-

sentation of our example controller with the numerically labeled edges. The edge labels should

be interpreted as the input and output signal values in the order (zero cnt eq/set busy

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 53

FIGURE 2.9: State diagram for a FSM representing a two-input/six-output Mealy machine

clr busy ld cnt addr sel zero we cnt en). If symbolic edge labels were used then in-

stead of 1x/101000 for the edge label indicating a transition from state s0 to s1, we would use

(zero x/set busy clr busy ld cnt addr sel zero we cnt en).

If the state diagram has no “input/output” designations on each transition arc, then the

machine is a Moore model. Moore machines have outputs that are dependent only on current

state values. In some cases the output signals may be equivalent to some or all of the state

bits. In general, the outputs are specified values in the vertices of the state transition diagram,

typically separated by the state values by using a “/”. Alternatively, the particular output signals

can directly be encoded into each state vector. Fig. 2.10 contains two state diagrams representing

Moore machines that are equivalent to the Mealy machine model shown in Fig. 2.9.

While these two state diagrams look the same, there are differences in the underly-

ing circuits that are synthesized from the two. The leftmost state diagram indicates the state

FIGURE 2.10: Two state diagram representations of the same Moore machine

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

54 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

symbolically {A, B, C, D, E} with the output signals shown to the right of the “/” symbol. The

rightmost state diagram gives the state encoding values explicitly and the output signals are the

least significant 6 bits of each state vector that are not present in bold. Note that an additional

bit is needed in each state vector (the bolded bit) since the output signals are identical for states

D and C. Referring to Fig. 2.4 where block diagrams of the architecture of controller circuits

are shown, note that the Moore model has a lower block labeled optional output logic. This

combinational logic is present when a circuit is synthesized from the state diagram on the left

in Fig. 2.10. In this case, it is a combinational logic circuit whose inputs are only the current

state values that are assigned to {A, B, C, D, E}. Because the outputs depend only on the state

values, this satisfies the definition of a Moore machine; however in this case, the outputs are

not registered. Conversely, when the circuit is synthesized from the state diagram on the right,

outputs are directly particular state values and are thus registered.

These two types of Moore circuits have advantages and disadvantages. When the combi-

national output logic block is used, the number of bits representing each state may be minimized

resulting in using fewer memory devices; however fewer memory devices can cause an increase

in the amount excitation combinational logic as well as requiring an output logic block. Ad-

ditionally, the production of the output signals by propagating current state values through an

output logic block causes their stabilization to occur at different times and can cause the signals

to exhibit static hazard behavior (bouncing or ringing) after each state transition. For these

reasons, we recommend that Moore machine always be implemented where output values are

state values directly when possible.

2.4 STATE ASSIGNMENT
State assignment is the process of assigning a unique bit string to each state represented in a

description of a controller circuit. An example of state assignment was given in the rightmost

state diagram of Fig. 2.10 where each state was labeled by a unique bit string rather than a

symbolic symbol as is shown in the ASM chart example in Fig. 2.8, the Mealy state diagram

in Fig. 2.9, and the leftmost Moore machine state diagram in Fig. 2.10. Before a controller

can be implemented, the symbolic symbols representing each state must be transformed into a

unique set of identifying bit strings. For each bit in these binary-valued state names, a memory

element is synthesized.

While any arbitrary assignment can be made to a state machine as long as each state

has a unique bit string, the exact assignment will affect the resulting synthesized logic in terms

of both area and maximum clock frequency. The theory of optimal state assignment has been

studied for many years and this problem has been proven to be intractable, which is to say that

no existing method is known for finding the best assignment that does not require runtime

proportional to trying all possibilities. Furthermore, the state assignment that yields the least

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 55

amount of circuitry is likely not the same as the state assignment that allows the circuit to be

clocked as fast as possible, so tradeoffs are present.

The minimum number of bits possible in a state encoding for a controller with N states

is �log2(N)�; thus for the example ASM chart above we need �log2(3)� = �1.5849� = 2 bits

for each state. Since there are 4! different possibilities, there are 24 different possible con-

troller circuits possible for a minimum state-bit encoding. As the number of states increases,

this combinatorial property increases dramatically, and this is only for minimal-bit encoding.

Furthermore, studies have shown that fewer than 5% of all possible minimal-bit encodings are

optimal in terms of area [7] for some controllers.

Because the problem is intractable, designers generally rely on using “rules of experience”

or heuristic methods to perform state encoding. A heuristic is an observation of behavior that

usually yields good results. As an example, for most controllers, if the state bits are mostly

the same (but at least one bit must differ) between adjacent states, then the resulting circuit is

generally a good tradeoff between speed and area. Adjacent states are any two states in an ASM

chart that are connected either by a single direction arrow or by a path through decision and

conditional outputs only. In the best case, we would have only a single bit changing in the state

encoding of two adjacent states and we would have as few state bits as possible labeling each

state. When this can be accomplished, it is referred to as a Gray code state encoding. However,

Gray code state encoding is not always possible depending on the shape of the ASM chart.

In our example ASM chart, Gray code state encoding is impossible since there are no possible

ways to assign unique bit strings to the adjacent pairs {(s0, s1), (s1, s2), (s2, s0)}.

The next best alternative is to assign bit patterns that differ by only two bits for every

adjacent pair of states. It turns out that this is always possible, and one way to achieve this is

to use the so-called one-hot encoding method. In one-hot encoding, the number of bits in each

state label is equal to the total number of states in the controller. The name one-hot comes from

the fact that for each bit string only a single bit is a “1” and all others are a “0.” As an example,

a one-hot encoding for the example ASM chart in Fig. 2.8 is {s0=001, s2=010, s3=100}.

Because only a single bit is a “1” in each encoding, we are guaranteed to have a distance of 2

between any two adjacent states regardless of the shape of the ASM chart.

Many times, state encoding simply does not matter and a simple arbitrary minimum as-

signment method works fine. When you develop your Verilog module, you will need to make an

arbitrary state assignment before synthesis (note that newer HDLs such as SystemVerilog allow

for symbolic enumerations that avoid this). We recommend that you make such an arbitrary

assignment and validate that your controller is functionally correct first. Only in later stages of

design iterations should you consider using a heuristic state assignment technique or an auto-

mated tool to optimize your design; however it is important to be aware of this issue. In highly

optimized designs, such as modern microprocessors, good state assignment is essential.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

56 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

It has also been our experience that one-hot encoding is generally only beneficial if

your controller has more than approximately 10 states, and this benefit is generally in terms of

increasing the maximum clock frequency. For small controllers, we recommend using a minimal-

bit encoding strategy and assigning the codes such that as many of the adjacent state pairs as

possible differ by a single bit. Finally, we note that some synthesis tools such as Synopsys Design

Compiler allow for separate scripts to be employed where a designer can specify a type of state

encoding to be used, such as one-hot. These tools analyze the Verilog code and automatically

invoke an automated state assignment algorithm to determine the actual state assignments based

on an area versus performance tradeoff constraint.

2.5 LOW-LEVEL MODELS OF CONTROLLERS
The preferred approach for controller design is to generate an ASM chart and then to im-

mediately transform this description into a corresponding Verilog RTL-level description. This

description can then be supplied as an input to a synthesis tool to produce a netlist file.

The synthesis task can be performed manually resulting in a low-level model of the

controller; however, this is not practical for controllers of even moderate size. For the sake of

completeness and pedagogy, we describe two low-level models of controllers in this section:

state equation descriptions and a state table.

2.5.1 State Equations

A set of state equations describing a controller consists of a complete set of transition equations

and output signal equations. State equations differ from binary Boolean logic equations in that

the concept of discrete time is included within them. For synchronous sequential circuits, state

equations are often written using a discrete time notation where t represents values in the current

state and t + 1 represents the next state. Transition equations are those that give information

about next state values, states at time t + 1, as a function of inputs and present state values,

states at time t. Output equations are those that provide information about output values at

time t as a function of input and state values at time t.

State equations may be written either before or after state assignment and memory element

selection. When they are written before state assignment, there is exactly one transition equation

for each state in the ASM chart and when they are written after state assignment and memory

element selection, there is exactly one transition equation for each bit in the state encoding bit

string. We refer to these forms as state-level and bit-level state equations, respectively.

2.5.1.1 Example of State-Level State Equations

State-level state equations can be directly derived from an ASM chart. Referring to the example

ASM chart in Fig. 2.8, we examine each state box to determine each state transition equation.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 57

The left-hand side of each transition equation is the state at time t + 1 and the right-hand side

consists of an expression that has a product term for every path entering the state box with all

products joined by the disjunctive (OR) operator. Consider state s0 in the ASM chart; there

are two paths possible to enter this state. One path occurs when the input zero is not asserted

and the current state is s0. The other path to enter state s0 occurs when cnt eq is asserted and

the current state is s2. Thus, the transition equation for state s0 becomes

s0(t + 1) = zero · s0(t) + cnt eq · s2(t).

The state box for state s1 has a single path entering it and that path occurs when the input zero

is asserted and the current state is s0. Note that we do not include the information about the

conditional output set busy, which is also in the path since a separate output equation will be

formed for this quantity. The product term formed for the transition into s1 is the conjunction

(AND) of zero and state s0:

s1(t + 1) = zero · s0(t).

The state box for s2 also has a single entering path and this path originates directly from the

state box of s1; thus the transition equation is very simple:

s2(t + 1) = s1(t).

Next, we need to determine the output equations. The output equations for the unconditional

outputs are very simple; they are equal to the state(s) in which they are asserted. If unconditional

outputs are asserted in more than one state (not the case in our example), all the states in which

they are asserted are joined together by the OR operation. The ASM chart in Fig. 2.8 has four

unconditional outputs and the respective output equations are

ld cnt(t) = s1(t),

addr sel(t) = s2(t),

zero we(t) = s2(t),

cnt en(t) = s2(t).

The final step is to develop the output equations for the conditional outputs. Conditional

outputs depend on both the present state and the inputs. The conditional output set busy

is asserted only when the input zero is asserted and the present state is s0. Likewise, the

conditional output clr busy depends on the input cnt eq and a present state value of s2.

The two conditional output equations are

set busy(t) = zero · s0(t),

clr busy(t) = cnt eq · s2(t).

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

58 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

2.5.1.2 Example of Bit-Level State Equations

Bit-level state equations depend on controller inputs and various output bits of the state holding

devices rather than the entire state. This means that bit-level state equations can only be

developed after state assignment has been performed. At the bit level, transition equations are

formed for each bit in the state values rather than each state.

It is the case that if one-hot encoding is used, the bit-level state equations can be immedi-

ately determined from the state-level state equations. Assume that the one-hot state assignment

{s0=001, s1=010, s2=100} is made with three flip-flops used as state holding elements. The

current state of the controller, si, is given as si = QC QB Q A where each Q represents a flip-flop

output. With this constraint, the bit-level state equations are the same as the state-level equa-

tions by substituting the flip-flop output value for each appropriate state value. This is possible

for two reasons:

1. In one-hot encoding there are the same number of state-level and bit-level transition

equations.

2. There is exactly one unique state bit asserted in each state of a one-hot encoded system.

In our example, QC replaces s0, QB replaces s1 and Q A replaces s2, and the bit-level state

equations are

QC (t + 1) = zero · QC (t) + cnt eq · Q A(t),

QB(t + 1) = zero · QC (t),

Q A(t + 1) = QB(t),

ld cnt(t) = Q A(t)QB(t)QC (t),

addr sel(t) = Q A(t)QB(t)QC (t),

zero we(t) = Q A(t)QB(t)QC (t),

cnt en(t) = Q A(t)QB(t)QC (t),

set busy(t) = zero · Q A(t)QB(t)QC (t),

clr busy(t) = cnt eq · Q A(t)QB(t)QC (t).

After the bit-level state equations are determined, excitation equations may be formed from the

transition equations. Recall that an excitation equation is one that describes the input to the state

holding device while a transition equation is one that describes the output of a state-holding

device in the next state as a function of controller inputs and other present state bit values. The

transformation from transition to excitation equations can be performed by using the state-

holding device characteristic. In this book we are only considering D flip-flops as state-holding

elements since they are the simplest to use and are the most predominant in programmable

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 59

logic. The characteristic input/output relation for the D flip-flop is very simple:

Q(t + 1) = D,

where Q(t + 1) represents the output of the D flip-flop after a clock edge and D is the syn-

chronous input. If we use three D flip-flops, DA, DB , and DC , to represent the present state of

the circuit, and use the D flip-flop characteristic equation and the bit-level transition equations,

then the excitation equations become

DC = zero · QC (t) + cnt eq · Q A(t),

DB = zero · QC (t),

DA = QB(t).

2.5.2 State Tables

In the previous section we showed how bit-level state equations are directly obtained from

state-level state equations when one-hot encoding is used. If one-hot encoding is not used, a

direct translation from state-level to bit-level state equations is not possible. One convenient

way to obtain the bit-level state equations is to use a state table.

State tables are tabular descriptions of synchronous state machines. Because these types

of circuits can be described as ASM charts or state diagrams which are both directed graphs, the

state table can be considered an adjacency matrix representation of these directed graphs with

extra information related to the external inputs and outputs. State tables are usually written with

a number of rows equivalent to the number of distinct states the corresponding circuit possesses

and with rows for each external input, each present-state bit, each next-state bit, and each circuit

output bit. If a state encoding of {s0=00, s1=01, s2=10} is used for the example controller

where the current state is si = Q A QB , the corresponding state table is shown in Table 2.2.

TABLE 2.2: State Table Representation of the Example Controller with Minimal State Encoding

PRESENT STATE NEXT STATE

zero Cnt eq QA(t) QB(t) QA(t + 1) QB(t + 1) set busy clr busy

0 X 0 0 0 0 0 0

1 X 0 0 0 1 1 0

x X 0 1 1 0 0 0

x 0 1 0 1 0 0 0

x 1 1 0 0 0 0 1

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

60 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

Each row in the state table corresponds to a path in the ASM chart. As an example the first

in the table indicates that if the present state is Q A(t)QB(t)=s0=00 and the input zero is not

asserted (i.e., zero=0), then the next state is Q A(t + 1)QB(t + 1)=s0=00 and the conditional

outputs are set busy=0 and clr busy=0. From the information in the state table, the bit-level

transition equations can be derived. Q A(t + 1) is asserted as shown in rows 5 and 6 of the table

and the corresponding transition equation is

Q A(t + 1) = QB(t) + cnt eq · Q A(t)QB(t).

Likewise, the state table indicates that QB(t + 1) is asserted in the third row when zero=1,

Q A(t)=0, and QB(t)=0. This yields the transition equation

QB(t + 1) = zero · Q A(t)QB(t).

Using the state table, a similar analysis as that for determining the transition equations is

performed for the conditional outputs yielding

set busy(t) = zero · Q A(t)QB(t),

clr busy(t) = cnt eq · Q A(t)QB(t).

The unconditional output equations are equal to the state values in which they are asserted as

before and they are given as

ld cnt(t) = s1(t) = Q A(t)QB(t),

addr sel(t) = s2(t) = Q A(t)QB(t),

zero we(t) = s2(t) = Q A(t)QB(t),

cnt en(t) = s2(t) = Q A(t)QB(t).

Using the D flip-flop characteristic, the corresponding excitation equations are

DA = QB(t) + cnt eq · Q A(t)QB(t),

DB = zero · Q A(t)QB(t).

Using the excitation equations and the output equations, a logic diagram can be drawn and

is shown in Fig. 2.11. Although basic logic gates are shown in Fig. 2.11, the actual logic

generated depends on the target technology. For example if a device in the Altera Flex10K is

used, four-input lookup tables (i.e., 16 × 1 memory circuits) are used instead of discrete logic

gates.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 61

FIGURE 2.11: Logic diagram corresponding to bit-level state equations with minimal encoding

2.5.3 Controller Circuit Analysis

The inverse problem of logic synthesis is that of analysis. The analysis problem gives a logic

diagram and requires the development of state equations. The procedure for determining a set

of state equations for a given circuit diagram is as follows:

1. Determine the combinational logic expressions that represent the memory device syn-

chronous input signals in terms of external inputs and present state variables.

2. Use the characteristic equations of the memory storage devices to find the next state

equations in terms of the memory device inputs.

3. Substitute the expressions found in step 1 into those of step 2 yielding the next-state

equations for each state bit.

4. Determine the output equations for each output bit by forming an equation based on

the present state values and the external circuit inputs.

2.6 MEALY AND MOORE MACHINE CONVERSION
All synchronous sequential circuits may be implemented based on either Mealy or Moore

machine models. Occasionally it is desirable to convert between Mealy and Moore machine

models of synchronous state machines. As an example, it may be advantageous to realize a

sequential circuit with outputs that are registered to avoid output signal changes in the mid-

dle of a clock period, or in other words, to ensure that the output is always valid except

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

62 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

during state transitions. One way to do this is to convert a Mealy machine description to

that of a Moore machine so that the circuit outputs are actually portions of the state en-

codings, or that they at least depend only on the state encodings. Conversely, transformation

of a Moore machine to a Mealy machine can lead to circuits that require fewer states and

hence memory storage elements that may result in a savings in area or component usage.

Although the examples of Mealy to Moore conversion and vice versa are shown using state

diagrams, the methodology for this conversion can also be accomplished directly with ASM

charts.

2.6.1 Mealy to Moore Machine Conversion

The procedure for conversion from a Mealy to a Moore machine is to augment the state vectors

with the output bits. All of the transition edges in a state diagram labeled with output bits

are replaced with edges with the output bits omitted and the next states have the output bits

appended to the original state vector encodings. As an example, consider the portion of the state

transition diagram in Fig. 2.12 that is originally in Mealy form on the left and is transformed

to Moore form on the right.

From the example in Fig. 2.12, it is seen that the transformation from a Mealy to a Moore

state transition diagram is accomplished by splitting states with more than one incoming edge

into separate states and then by preserving all destination states. The output values in the

Mealy machine are changed into additional bits in the state encodings. In the example these

new bits were appended to the end of the state vectors of the Mealy machine encodings but

in general they may be added anywhere within the state vectors as long as each resulting bit

FIGURE 2.12: Portion of a Mealy state machine transformed to a Moore machine

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 63

string is unique. It is easy to see that the Moore equivalent of a Mealy machine will generally

require more flip-flops since the number of states is increased and the state vectors grow in

length.

2.6.2 Moore to Mealy Conversion

When a designer wishes to minimize the number of memory elements required and it is not

necessary to have registered outputs of a synchronous sequential circuit, conversion from a

Mealy to a Moore model of the circuit can be advantageous. Since sequential circuits realized

from Mealy models generally require fewer states, the resulting circuit will usually require fewer

state holding elements; however, the amount of combinational logic may also increase so a

careful tradeoff should be performed if savings in area is the ultimate goal. The Moore to Mealy

translation process is performed in two steps. The first step translates a Moore to Mealy machine

and results in a state diagram with the same number of states. Clearly, there is no savings in

terms of states after this translation is performed thus a second step should be performed that

searches for equivalent states and collapses them into a single state. As an example of the first

step, Fig. 2.13 contains a portion of a state diagram for a Moore machine on the left with

the corresponding portion of the Mealy machine on the right. Essentially this transformation

involves pushing the output values from the state vector to the outgoing edge of each vertex

in the state diagram. The output values labeled A and B in Fig. 2.8 are those of the preceding

states that each respective edge originates from.

2.6.3 State Machine Equivalence

Two state machines are said to be equivalent if for all possible inputs the same outputs are

produced. In general, a given input/output behavior does not require a unique state machine.

FIGURE 2.13: Portion of a Moore state machine transformed to a Mealy machine

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

64 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

Many different state machines can exist with the same input/output behavior with different

numbers of internal states. As synchronous sequential circuit designers, we are interested in

specifying state machines with as few states as possible to minimize the number of state holding

elements.

During the process of transforming a Moore machine to a Mealy machine, it is always

desirable to determine if the transformed Mealy machine can be replaced by another equivalent

Mealy machine that is composed of fewer internal states. A methodology for minimizing

the number of required states in a state machine is to generate the state table model of the

circuit and then to search for equivalent states. Equivalent states are those for which the same

input/output behavior occurs. When two equivalent states are found, one is discarded from the

state table and all other occurrences of the discarded state are relabeled with the state that is

retained.

The methodology for finding equivalent states in a Mealy machine is a classic problem in

logic synthesis and design. One of the most common ways to find state equivalence involves the

use of implication tables as described in [8] and many other texts on basic digital logic design

and we refer the reader to these for more details.

2.7 VERILOG DESCRIPTIONS OF SYNCHRONOUS
SEQUENTIAL CIRCUITS

The design of synchronous sequential circuits usually begins with a high-level description

or notion of what the circuit is to accomplish in a behavioral sense. The first step in the

design process is to transform this behavior into a state machine model. Given the model, the

synchronous sequential circuit can be derived by a variety of means. In this text, we recommend

the following procedure:

1. Transform the behavioral description of the circuit into an ASM chart. It may be easier

for the designers who are more familiar with state diagrams to first generate another

model such as a state diagram before finally deriving the ASM chart; however after

experience with ASM chart generation has been obtained, most designers can generate

the ASM chart as a first step.

2. Once the ASM chart has been developed, the next step is to generate a Verilog de-

scription of the ASM chart. Different styles of Verilog descriptions can be generated at

this point, but all should synthesize into a controller with essentially the same timing

characteristics.

Many designers accomplish this first step by drawing an ASM chart or a state diagram. Typically,

the state encoding is unknown at this point and states are often given symbolic labels that may

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 65

be letters of alphabets or descriptive words. After the first model of the state machine has been

determined, an ASM chart is created if it has not already been produced. We strongly emphasize

and suggest that ASM charts be generated before writing the Verilog code description. The

“ASM first” approach is recommended because the rules of proper ASM chart production allow

a designer to easily transform the chart into a Verilog description without performing low-level

and tedious design work, such as state assignment and derivation of bit-level transition and

excitation equations that are required for tabular or equation descriptions. The latter is to be

avoided since simple changes in the circuit behavior result in more work to update the state

table or state equations and then the resulting Verilog code.

It is very easy to fall into the trap of generating the initial ASM chart and corresponding

Verilog description and to then modify only the Verilog code during design debugging. This

should be avoided at all costs since the ASM chart provides a quick graphical depiction of the

operation of the circuit and bugs can easily be detected by updating the ASM chart in each

design iteration.

In the previous section on ASM charts we mentioned the rules of their proper construction

as we described each symbol. We will group the rules together and restate them here for

conciseness.

1. State-representation symbols

a. Should only contain zero or more unconditional output expressions inside.

b. May or may not have state names or state encodings appear outside but near the

symbol.

c. Must have one or more flow direction symbols (arrows) pointing to them.

d. Must have a single flow direction symbol (arrow) exiting them.

2. Decision symbols

a. Should contain input signals or expressions dependent upon input signals only.

b. Must have a single flow direction symbol pointing to them that originates from a

state-representation symbol.

c. Must have two (single bit, basic decision symbol) or more (generalized decision

symbol) outgoing flow direction symbols.

d. Each outgoing flow direction symbol must be labeled with a unique and complete

set of all possible values of the input signals or set of expressions contained within

them.

e. All outgoing signal flow arrows must point to another decision symbol, a conditional

output symbol, or another state-representation symbol.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

66 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

3. Conditional output symbols

a. Must have exactly one incoming flow symbol in ASMs where generalized decision

symbols are used.

b. May have more than one incoming flow symbol if they all originate from decision

symbols in ASM charts containing cascades of decision symbols.

c. Must have exactly one outgoing flow symbol that points to another decision symbol

or a state-representation symbol.

d. The incoming flow signal must always originate from a decision symbol and never

from a state-representation symbol.

Although the rules above allow conditional output symbols to be interspersed among cascades of

decision symbols, we recommend that as a matter of practice, conditional output symbols always

follow complete cascades of decision symbols, which implies that all outgoing flow arrows from

conditional symbols will always point to state-representation symbols.

2.7.1 Example Verilog Descriptions

There are a variety of ways to describe a controller given an ASM chart description. One way

to classify these different styles is through the number of always blocks used in the imple-

mentation. We will show three different Verilog listings that implement the example controller

described by the ASM chart in Fig. 2.8. An easy way to classify these different approaches is to

note that sections of the code represent the different blocks shown in the architecture models

shown in Fig. 2.4. A fourth Verilog example is shown that synthesizes the Moore machine

description of the controller modeled by the rightmost state diagram in Fig. 2.10.

2.7.2 Verilog Descriptions for the Mealy Machine Model of an Example Controller

In each of the three following Verilog modules we adhere to the coding guideline rule of using

blocking assignments inside always blocks that synthesize combinational logic and nonblock-

ing assignments for those always blocks that synthesize registered logic. Verilog always blocks

that synthesize into registered logic are those that utilize the Verilog keywords posedge or

negedge in the signal activation lists (i.e., the arguments of the always statement). It is possi-

ble to use blocking assignments in always blocks that produce registered logic but this can be

tricky since the sequential order of the assignments matters and an incorrect order can produce

the wrong results. For this reason, we promote and recommend using nonblocking assignments

in always blocks that produce registered logic as this allows designers to not be concerned about

the order of the assignment statements. The three examples that follow were constructed with a

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 67

correct ordering of the assignments meaning that it would be safe to use blocking assignments

in the following code listings as well as nonblocking.

In each of the following Verilog examples, we have included output ports for the current

state values as indicated by the comments in the modules. These output ports are for debugging

purposes only and are convenient during simulation. After the controller is verified to be working

properly, these output ports should be removed prior to synthesis.

Fig. 2.14 contains a Verilog code listing that reflects the behavior of the ASM chart in

Fig. 2.8.

The Verilog listing in Fig. 2.14 contains a single always block. When synthesized,

the always block in Fig. 2.14 is responsible for generating the logic present in the top two

module ramfsm_ex1 (state, addr_sel, cnt_en, ld_cnt, zero_we, set_busy,

clr_busy, clk, reset, zero, cnt_eq);

input clk, reset, zero, cnt_eq;

output [1:0] state; //state output for debugging

output addr_sel, cnt_en, ld_cnt, zero_we;

output set_busy, clr_busy;

reg [1:0] state;

// State Encoding Here

parameter S0=2’b00, S1=2’b01, S2=2’b10;

// Register and Combinational Transition logic here

always @(posedge clk or posedge reset)

begin

if (reset == 1’b1)

state<=S0;

else

case (state)

S0: if (zero == 1’b1) state <= S1;

S1: state <= S2;

S2: if (cnt_eq == 1’b1) state <= S0;

default: state <= S0;

endcase

end

// Combinational output logic here

assign set_busy = (state==S0 && zero==1’b1) ? 1’b1 : 1’b0;

assign ld_cnt = (state==S1) ? 1’b1 : 1’b0;

assign addr_sel = (state==S2) ? 1’b1 : 1’b0;

assign zero_we = (state==S2) ? 1’b1 : 1’b0;

assign cnt_en = (state==S2) ? 1’b1 : 1’b0;

assign clr_busy = (state==S2 && cnt_eq==1’b1) ? 1’b1 : 1’b0;

endmodule

FIGURE 2.14: Verilog code listing of an example controller with a single always block

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

68 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

rectangles in Fig. 2.4 of the Mealy machine model. These are the memory storage elements and

the combinational logic representing the excitation equations. The six concurrent statements

that occur just before the endmodule are responsible for generating the output logic as shown

in the bottommost rectangle in the Mealy model of Fig. 2.4. Referring back to the discussion

on discrete-event simulation, we know that these are asynchronous statements that may be

scheduled for simulation at any time an event occurs, meaning a signal on the right-hand

side of the statement changes value. This in turn represents unregistered outputs in terms

of synthesized combinational logic whose output changes shortly after any of the dependent

signals on the right-hand side of the statements toggle. It is also interesting to note that the

signals ld cnt, addr sel, zero we, and cnt en depend only on the present state. Hence, they

will change value only after a short time that the state changes and are Moore-type outputs

although they are not registered outputs. Although not shown in this example, it is possible to

have outputs that depend only on the present state but with more complicated logic combining

various bits of the present state in other controller examples. In this case output signals will all

change shortly after a state change but not necessarily at the exact same time due to propagation

through the output logic. The other two output signals, set busy and clr busy, depend not

only upon the present state, but also the input signals zero and cnt eq. This means that these

output signals may change either shortly after a state change or shortly after one of these input

signals toggles in value.

The next example, in Fig. 2.15, contains a Verilog code listing that has all the output

signals and transition logic generated from within an always block. Since this logic is generated

from within an always block that is not protected by a clock edge, the synthesized outputs

are not registered and combinational logic is produced. The first always block is responsible

for producing the memory elements represented by the middle block in the Mealy architecture

diagram in Fig. 2.4 while the second always block produces the combinational logic in the top

and bottom blocks of Fig. 2.4. Note that nonblocking (<=) assignments are used in the first

always block while blocking (=) assignments are used in the second always block. Also note

the inclusion of the default assignments for the outputs at the beginning of the combinational

always block. These are very important to remember to include to prevent the outputs from

being “stuck” in an asserted state. These assignments correspond to the nonasserted output

values that are generally not shown in the ASM chart.

The next example code listing is shown in Fig. 2.16 and contains sections of Verilog code

that each correspond to one of the blocks shown in the Mealy architecture model in Fig. 2.4. The

first always block is responsible for synthesizing the memory elements in the center block, the

second always block produces combinational logic that synthesizes the excitation logic block at

the top of the diagram, and the bottom set of six continuous assignment statements synthesizes

into the output combinational logic block.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

module ramfsm_ex2 (pstate, addr_sel, cnt_en, ld_cnt, zero_we,

set_busy, clr_busy, clk, reset, zero, cnt_eq);

input clk, reset, zero, cnt_eq;

output [1:0] pstate; //state output for debugging

output addr_sel, cnt_en, ld_cnt, zero_we;

output set_busy, clr_busy;

reg addr_sel, cnt_en, ld_cnt, zero_we, set_busy, clr_busy;

reg [1:0] pstate, nstate;

// State Encoding Here

parameter S0=2’b00, S1=2’b01, S2=2’b10;

// Register logic here

always @(posedge clk or posedge reset)

begin

if (reset == 1’b1) pstate <= S0;

else pstate <= nstate;

end

// Combinational transition and output logic here

always @(pstate)

begin

// We must include default values here

// to avoid inferred latches

set_busy = 1’b0;

ld_cnt = 1’b0;

clr_busy = 1’b0;

addr_sel = 1’b0;

zero_we = 1’b0;

cnt_en = 1’b0;

// Transition and output logic in case statement

case (pstate)

S0: if (zero == 1’b1)

begin

nstate = S1;

set_busy = 1’b1;

end

else nstate = S0;

S1: begin

nstate = S2;

ld_cnt = 1’b1;

end

S2: begin

if (cnt_eq == 1’b1)

begin

nstate = S0;

clr_busy = 1’b1;

end

else nstate = S2;

addr_sel = 1’b1;

zero_we = 1’b1;

cnt_en = 1’b1;

end

default: nstate = S0;

endcase

end

endmodule

FIGURE 2.15: Verilog listing of an example controller with two always blocks

69

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

70 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

module ramfsm_ex3 (pstate, addr_sel, cnt_en, ld_cnt, zero_we,

set_busy, clr_busy, clk, reset, zero, cnt_eq);

input clk, reset, zero, cnt_eq;

output [1:0] pstate; //state output for debugging

output addr_sel, cnt_en, ld_cnt, zero_we;

output set_busy, clr_busy;

reg [1:0] pstate, nstate;

// State Encoding Here

parameter S0=2’b00, S1=2’b01, S2=2’b10;

// Register logic here

always @(posedge clk or posedge reset)

begin

if (reset == 1’b1) pstate<=S0;

else pstate <= nstate;

end

// Combinational transition logic here

always @(pstate)

begin

case (pstate)

S0: if (zero == 1’b1)

nstate = S1;

else

nstate = S0;

S1: nstate = S2;

S2: if (cnt_eq == 1’b1)

nstate = S0;

else

nstate = S2;

default: nstate = S0;

endcase

end

// Combinational output logic here

assign set_busy = (pstate==S0 && zero==1’b1) ? 1’b1 : 1’b0;

assign ld_cnt = (pstate==S1) ? 1’b1 : 1’b0;

assign addr_sel = (pstate==S2) ? 1’b1 : 1’b0;

assign zero_we = (pstate==S2) ? 1’b1 : 1’b0;

assign cnt_en = (pstate==S2) ? 1’b1 : 1’b0;

assign clr_busy = (pstate==S2 && cnt_eq==1’b1) ? 1’b1 : 1’b0;

endmodule

FIGURE 2.16: Verilog listing of an example controller with two always blocks and concurrent assign-

ments for output logic

2.7.3 Verilog Descriptions for the Moore Machine Model of an Example Controller

The example controller described by the ASM chart in Fig. 2.8 was transformed to a Moore

machine represented by the rightmost state diagram in Fig. 2.10. As discussed previously, the

timing characteristics for the outputs of a Moore type controller differ in that they change value

only slightly after a clock event since the output signals are actually state bits.

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN 71

module ramfsm_ex4 (state, addr_sel, cnt_en, ld_cnt, zero_we, set_busy,

clr_busy, clk, reset, zero, cnt_eq);

input clk, reset, zero, cnt_eq;

output [6:0] state; //state output for debugging

output addr_sel, cnt_en, ld_cnt, zero_we;

output set_busy, clr_busy;

reg [6:0] state;

// State Encoding Here

parameter A=7’b0000000, B=7’b0101000, C=7’b0000111, D=7’b1000111 ,

E=7’b0010000;

// Register and Combinational Transition logic here

always @(posedge clk or posedge reset)

begin

if (reset == 1’b1)

state<=A;

else

case (state)

A: if (zero == 1’b1)

state <= B;

else

state <= A;

B: state <= C;

C: state <= D;

D: if (cnt_eq == 1’b1)

state <= E;

else

state <= D;

D: state <= E;

E: state <= A;

default: state <= A;

endcase

end

// Outputs are directly the state encoding signals

assign set_busy = state[5];

assign clr_busy = state[4];

assign ld_cnt = state[3];

assign addr_sel = state[2];

assign zero_we = state[1];

assign cnt_en = state[0];

endmodule

FIGURE 2.17: Verilog listing of an example controller with two always blocks and concurrent assign-

ments for output logic

Fig. 2.17 contains the Verilog description of the Moore-type controller and consists of

a single registered always block followed by a set of continuous assignments statements that

simply map certain state bits to the various output signals. This type of controller requires

more preliminary work to be performed since our preferred approach is to generate an ASM

chart that usually contains outputs that are both Mealy-type (i.e., conditional outputs) and

P1: IML/FFX P2: IML

MOBK046-02 MOBK046-Thornton.cls October 14, 2006 13:15

72 INTRODUCTION TO LOGIC SYNTHESIS USING VERILOG HDL

Moore-type (unconditional outputs). After generation of this type of ASM chart, the chart

must be converted into a chart with unconditional outputs only, and this involves performing

state assignments that map to the output signals. In certain cases, where it is desired to have

outputs that only change at clock edges, this is one way to generate such controllers.

2.8 SUMMARY
This chapter has provided a definition of sequential digital logic systems and focused specifically

on synchronous or clocked sequential logic. We have described how this class of circuits is very

useful for serving as controllers in a system containing a datapath. Models at various levels of

abstraction were described including ASM charts, state diagrams, state equations, and state

tables. Several design issues were discussed including conversions from Mealy- to Moore-type

models and vice versa, timing aspects of output signals from Moore versus Mealy machine based

controllers, and state assignment. We concluded this chapter with a discussion of various styles

for describing a controller in synthesizable Verilog and emphasized the design approach of first

creating an ASM chart and then translating it into a Verilog module.

P1: IML/FFX P2: IML

MOBK046-Reff MOBK046-Thornton.cls October 14, 2006 13:16

73

References

[1] IEEE Std. 1364-2001, IEEE Standard Verilog r© Hardware Description Language, p. 856.

[2] IEEE Std. 1364.1-2002, IEEE Standard for Verilog r© Register Transfer Level Synthesis,

p. 100.

[3] C. E. Cummings, “Nonblocking assignments in verilog synthesis, coding styles that kill!,”

SNUG-2000, San Jose, CA, 2000.

[4] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell System Tech. J., Vol. 34,

No. 5, pp. 1045–1079, 1955.

[5] E. F. Moore, “Gedanken experiments on sequential machines,” Automata Studies. Prince-

ton, NJ: Princeton University Press, pp. 129–153, 1956.

[6] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Compu-

tation. Reading, MA: Addison-Wesley, 1979.

[7] C. Maxfield, Bebop to the Boolean Boogie. Solana Beach, CA: Hightext Publications, 1995.

[8] M. M. Mano, Digital Design, 3rd edition, Upper Saddle River, NJ: Prentice Hall, 2002.

P1: IML/FFX P2: IML

MOBK046-Reff MOBK046-Thornton.cls October 14, 2006 13:16

74

P1: IML/FFX P2: IML

MOBK046-BIO MOBK046-Thornton.cls October 14, 2006 13:15

75

Biography
Robert B. Reese received the B.S. degree from Louisiana Tech University, Ruston, in 1979 and
the M.S. and Ph.D. degrees from Texas A&M University, College Station, in 1982 and 1985,
respectively, all in electrical engineering. He served as a Member of the Technical Staff of the
Microelectronics and Computer Technology Corporation (MCC), Austin, TX, from 1985 to
1988. Since 1988, he has been with the Department of Electrical and Computer Engineering at
Mississippi State University, Mississippi State, where he is an Associate Professor. Courses that
he teaches include VLSI systems, Digital System design, and Microprocessors. His research
interests include self-timed digital systems and computer architecture.
Mitchell A. Thornton received the BSEE degree from Oklahoma State University in
1985, the MSEE degree from the University of Texas in Arlington in 1990, and the MSCS
in 1993 and Ph.D. in computer engineering in 1995 from Southern Methodist University in
Dallas, Texas. His industrial experience includes full-time employment at E-Systems (now
L-3 communications) in Greenville, Texas and the Cyrix Corporation in Richardson, Texas
where he served in a variety of engineering positions between 1985 through 1992. From 1995
through 1999, he was a faculty member in the Department of Computer Systems Engineering
at the University of Arkansas and from 1999 through 2002 in the Department of Electrical and
Computer Engineering at Mississippi State University. Currently, he is a Professor of Com-
puter Science and Engineering and, by courtesy, Electrical Engineering at Southern Methodist
University. His research and teaching interests are in the general area of digital circuits and sys-
tems design with specific emphasis in EDA/CAD methods including asynchronous circuit and
computer arithmetic circuit synthesis, formal verification/validation and simulation of digital
systems, multiple-valued logic, and spectral techniques.

P1: IML/FFX P2: IML

MOBK046-BIO MOBK046-Thornton.cls October 14, 2006 13:15

76

