Design Recipes for FPGAs
Using Verilog and VHDL

Peter Wilson

ELSEVIER Newnes

First edition 2007
Second edition 2016

© 2016 Elsevier Ltd.
Previous edition: Copyright © 2007 Peter R. Wilson

Printed and bound in the United Kingdom

ISBN: 978-0-08-097129-2

http://store.elsevier.com/

Preface to the Second Edition

The original idea behind the first edition of this book was to collect some of the useful
methods for designing digital systems using FPGAs that I had accumulated over the years and
had been passing on to students in our courses at the University of Southampton. As a result,
the original book was written using VHDL, as this was very often the hardware description
language of choice for university students and for many courses (as was the case at
Southampton).

The intervening time has seen the development of other options, such as System-C or
System-Verilog (plus the continuing popularity of Verilog). One of the common questions
to me was “Why is there not a Verilog edition of this book?”. I have therefore taken the
opportunity with the second edition to introduce Verilog, to widen the applicability of the
book to as many designers as possible.

The second edition also offers the chance to correct errors and take on board the numerous
reviews over the past seven years since the first edition was published. For these comments
and suggestions I am most grateful to the readers of the book. FPGAs have also moved on in
leaps and bounds since the first edition, and this also gives an opportunity to update some of
the technological background and correct errors in the first edition.

Above all else, this book was not and is not intended to be a textbook for digital systems
design, but rather a useful handbook for designers to dip in and use wherever it can help.

I sincerely hope you find this book useful and good luck with your FPGA designs!

Peter Wilson
University of Bath

Preface to the First Edition

This book is designed to be a desktop reference for engineers, students and researchers who
use field programmable gate arrays (FPGAs) as their hardware platform of choice. This book
has been produced in the spirit of the “numerical recipe” series of books for various
programming languages — where the intention is not to teach the language per se, but rather
the philosophy and techniques required in making your application work. The rationale of this
book is similar in that the intention is to provide the methods and understanding to enable the
reader to develop practical, operational VHDL that will run correctly on FPGAs.

It is important to stress that this book is not designed as a language reference manual for
VHDL. There are plenty of those available and I have referenced them throughout the text.
This book is intended as a reference for design with VHDL and can be seen as complementary
to a conventional VHDL textbook.

Overview

The first part of the book provides a starting point for engineers who may have some digital
experience but not necessarily with FPGAs in particular, or with either of the languages
featured in this book (VHDL and Verilog). While the book is not intended to teach either
language, “primers” are given in both as aides de memoire to get started. An overview of the
main design approaches and tool flows is also provided as a starting point.

Introduction

1.1 Overview

The book is divided into five main parts. In the introductory part of the book, primers are
given on FPGAs (field-programmable gate arrays), Verilog and the standard design flow. In
the second part of the book, a series of complex applications that encompass many of the key
design problems facing designers today are worked through from start to finish in a practical
way. This will show how the designer can interpret a specification, develop a top-down design
methodology and eventually build in detailed design blocks perhaps developed previously or
by a third party. In the third part of the book, important techniques are discussed, worked
through and explained from an example perspective so you can see exactly how to implement
a particular function. This part is really a toolbox of advanced specific functions that are
commonly required in modern digital design. The fourth part on advanced techniques
discusses the important aspect of design optimization, that is, how can I make my design
faster, or more compact? The fifth part investigates the details of fundamental issues that are
implemented in VHDL and Verilog. This final part is aimed at designers with a limited VHDL
or Verilog coding background, perhaps those looking for simpler examples to get started, or to
solve a particular detailed issue.

1.2 Verilog vs. VHDL

One of the longest standing “arguments” between engineers in digital design has been the
issue of which is best—Verilog or VHDL? For many years this was partly a geographical
divide, with North America seeming to be mainly using Verilog and Europe going more for
VHDL, although this was not universal by any means. In many cases, the European academic
community was trending toward VHDL with its easy applicability to system level design, and
the perception that Verilog was really more a “low level” design language. With the advent of
SystemVerilog and the proliferation of design tools, these boundaries and arguments have
largely subsided, and most engineers realize that they can use IP blocks from either language
in most of the design tools. Of course, individuals will always have their own preferences;
however it is true to say that now it is genuinely possible to be language agnostic and use
whichever language and tools the user prefers. More often than not, the choice will depend on

http://dx.doi.org/10.1016/B978-0-08-097129-2.00001-5

three main factors: (a) the experience of the user (for example, they may have a background in
a particular language); (b) the tools available (for example, some tool flows may simply work
better with a particular language—SystemVerilog for instance may not be supported by the
tools available); and (c) corporate decisions (where the company or institution has a
preference for a specific language, and in turn this may mean that libraries must be in a
specific format and language). For researchers, there is a plethora of information on all design
languages available, with many example designs published on the web, making it relatively
simple to use one or another of the main languages, and sometimes even a mixture of
languages (using precompiled libraries, for example). Of course, this is also available to
employees of companies and free material is now widely available from sources such as Open
Cores (http://www.opencores.org), the Free Model Foundry (http://www.freemodelfoundry.
com/) and the Open Hardware Repository at CERN (http://www.ohwr.org/).

1.3 Why FPGAs?

There are numerous options for designers in selecting a hardware platform for custom
electronics designs, ranging from embedded processors, application specific integrated
circuits (ASICs), programmable microprocessors (PICs), FPGAs to programmable logic
devices (PLDs). The decision to choose a specific technology such as an FPGA should depend
primarily on the design requirements rather than a personal preference for one technique over
another. For example, if the design requires a programmable device with many design
changes, and algorithms using complex operations such as multiplications and looping, then it
may make more sense to use a dedicated signal processor device such as a DSP that can be
programmed and reprogrammed easily using C or some other high level language. If the speed
requirements are not particularly stringent and a compact cheap platform is required, then a
general purpose microprocessor such as a PIC, AVR, or MBED would be an ideal choice.
Finally, if the hardware requirements require a higher level of performance, say up to several
hundred megahertz operation, then an FPGA offers a suitable level of performance, while still
retaining the flexibility and reusability of programmable logic.

Other issues to consider are the level of optimization in the hardware design required. For
example, a simple software program can be written in C and then a microprocessor
programmed, but the performance may be limited by the inability of the processor to offer
parallel operation of key functions. This can be implemented much more directly in an FPGA
using parallelism and pipelining to achieve much greater throughput than would be possible
using a microprocessor. A general rule of thumb when choosing a hardware platform is to
identify both the design requirements and the possible hardware options and then select a
suitable platform based on those considerations. For example, if the design requires a basic
clock speed of up to 1 GHz then an FPGA would be a suitable platform. If the clock speed
could be 3-4 MHz, then the FPGA may be an expensive (overkill) option. If the design

http://www.open cores.org
http://www.freemodelfoundry.com/
http://www.freemodelfoundry.com/
http://www.ohwr.org/

requires a flexible processor option, although the FPGAs available today support embedded
processors, it probably makes sense to use a DSP or microprocessor. If the design requires
dedicated hardware functionality, then an FPGA is the route to take.

If the design requires specific hardware functions such as multiplication and addition, then a
DSP may well be the best route, but if custom hardware design is required, then an FPGA
would be the appropriate choice. If the design requires small simple hardware blocks, then a
PLD or CPLD may be the best option (compact, simple programmable logic); however, if the
design has multiple functions, or a combination of complex controller and specific hardware
functions, then the FPGA is the route to take. Examples of this kind of decision can be
dependent on the complexity of the hardware involved. For example, a high performance
signal processor with multiple parallel tasks will probably require an FPGA rather than a PLD
device, simply due to the complexity of the hardware involved. Another related issue is that of
flexibility and programmability. If an FPGA is used, and the resources are not used up on a
specific device (say up to 60% for example), if a communications protocol changes, or is
updated, then the device may well have enough headroom to support additional features, or
updates, in the future.

Finally, the cost of manufacture will be important for products in the field, as well as where
the device is deployed (in terms of the overall weight, power requirements, footprint, and
volume). Also, the need for upgrading firmware may mandate an FPGA to allow this to be
done easily. The use of an FPGA also allows much higher performance, particularly on high
speed links or memory, enabling the design to be somewhat tolerant of future changes.

1.4 Summary

Using the simple guidelines and with the aid of some of the examples in this book, an
engineer can hopefully make an intelligent choice about the best platform to choose, and also
which hardware device to select based on these assumptions. A nice aspect of most FPGA
design software packages is that multiple design platforms can be evaluated for performance
and utilization prior to making a final decision on the hardware of choice. This book will show
how both VHDL and Verilog can be used to solve typical design problems, and hopefully will
help designers get their own designs completed faster and more efficiently.

An FPGA Primer

2.1 Introduction

This section is an introduction to the Field Programmable Gate Array (FPGA) platform for
those unfamiliar with the technology. It is useful when designing hardware to understand that
the context that the hardware description language models (VHDL or Verilog) is important
and relevant to the ultimate design.

2.2 FPGA Evolution

Since the inception of digital logic hardware in the 1970s, there has been a plethora of
individual semiconductor digital devices leading to the ubiquitous TTL logic series still in use
today (74/54 series logic), now extended to CMOS technology (HC, AC, FC, FCT, HCT, and
so on). While these have been used extensively in printed circuit board (PCB) design and still
are today, there has been a consistent effort over the last 20 years to introduce greater
programmability into basic digital devices.

One of the reasons for this need is the dichotomy resulting from the two differing design
approaches used for many digital systems. On the hardware side, the drive is usually toward
ultimate performance, that is, faster, smaller, lower power, and cheaper. This often leads to
custom integrated circuit design (Application Specific Integrated Circuits or ASICs) where
each chip (ASIC) has to be designed, laid out, fabricated, and packaged individually. For large
production runs this is very cost effective, but obviously this approach is hugely expensive
(masks alone for a current silicon process may cost over $500,000) and time consuming (can
take up to a year or even more for large and complex designs).

From a software perspective, however, a more standard approach is to use a standard
processor architecture such as Intel Pentium, PowerPC or ARM, and develop software
applications that can be downloaded onto such a platform using standard software
development tools and cross compilers. This type of approach is obviously quicker to
implement an initial working platform; however, usually there is a significant overhead due to
the need for operating systems, compiler inefficiency and also a performance reduction due to
the indirect relationship between the hardware and the software on the processor. The other

http://dx.doi.org/10.1016/B978-0-08-097129-2.00002-7

issue from a hardware perspective is often the compromise necessary when using a standard
platform, for example will it be fast enough? Another key issue when designing hardware is
having access to that hardware. In many processor platforms, the detailed hardware is often
difficult to access directly or efficiently enough to meet the performance needs of the system,
and with the rigid architecture in terms of data bus and address bus widths on standard
processors, very often there is no scope for general purpose IO (Inputs and Outputs) which are
useful for digital designers.

As aresult, programmable devices have been developed as a form of intermediate approach:
hardware design on a high-performance platform, optimal resources with no operating system
required and reconfigurable as the devices can be reprogrammed.

2.3 Programmable Logic Devices

The first type of device to be programmable was the Programmable Array Logic (PAL) with a
typical layout as shown in Figure 2.1. This consists of an array of logic gates that could be
connected using an array of connections. These devices could support a small number of
flip-flops (usually <10) and were able to implement small state machines. These devices still
have a use for specific functions on a small scale, but clearly will be limited for more complex
applications. They are, however, still useful for low-cost and compact solutions to a specific
digital design requirement.

Complex Programmable Logic Devices (CPLD) such as shown in Figure 2.2 were developed
to address the limitations of simple PAL devices. These devices used the same basic principle
as PALs, but had a series of macro blocks (each roughly equivalent to a PAL) that were
connected using routing blocks. With, in some cases, many thousands of logical elements, the
CPLD can be extremely useful for implementing a programmable device with custom logic
functions and state machines. In some ways, the latest CPLD and early FPGA devices are
almost indistinguishable, with one crucial difference. The CPLD is a fixed array of logic, but
the FPGA uses complex logic blocks (discussed in the next section of this chapter). However,
CPLD:s are still of a relatively small scale, and the modern reconfigurable device of choice for
high performance is the FPGA.

2.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) were the next step from CPLDs. Instead of a fixed
array of gates, the FPGA uses the concept of a Complex Logic Block (CLB). This is
configurable and allows not only routing on the device, but also each logic block can be
configured optimally. A typical CLB is shown in Figure 2.3. This extreme flexibility is very
efficient as the device does not rely on the fixed logical resources (as in the case of a CPLD),

Clock D D
P LY .
[sss sasstesssssnss 1ot sesstansstanss iases: :]-:[‘D!_}L-'D
s
H HHHH }-}_[?4:]
0= S
= Ht +H ,‘E}—[%
0= SH—_J
=HEH SHEIERISIEL HH r—’f}_[?:ﬂ
D = <t I
- sssian =ee D,_,-'D
09 il
meemmees e D._-'D
[= S
= SIsSSiisiiiss H
Bl
0= SH—|
S
H - [
0= S |

Figure 2.1
Typical programmable logic device.

but rather is able to define whichever logical functions are required as part of the logic block
reconfiguration.

The CLB has a look-up table (LUT) that can be configured to give a specific type of logic
function when programmed. There is also a clocked d-type flip flop that allows the CLB to be
combinatorial (non-clocked) or synchronous (clocked), and there is also an enable signal. A
typical commercial CLB (in this case from Xilinx®) is shown in Figure 2.4 and this shows
clearly the two 4 input LUTs and various multiplexers and flip flops in a real device.

A typical FPGA will have hundreds or thousands of CLBs, of different types, on a single
device allowing very complex devices to be implemented on a single chip and configured

SCHOCE]

acrocel

il
7l
Macrocell 3
Macrocell 4

h 4

facrocell 1

| Macrocel 2|
[Macrocels |

acrocel &

Macrocell B
acrocell 7
Macrocel &

Macrocell 9-16

Wacrocel 4
Macrocel S
| Macrocel 5|
[Macrocel 7|
Macrocel &

T

E— Wacroce]

lacrocel 2
lacrocell 3

Wacrocell 4
Macrocel 5
Tacrocell &

A WE

Macrocell 7

Macrocell 9-16

¥

Macrocell 1
[Macrocel2 |
[Macrocels |
Macrocell 4
facrocel 5
hfacrocel &

acrocell 7

Macrocel &

Macrocell 25-32

PIA

v _JL

[ETE
Facrocell 2
3

hacroce
q

Macroce!
Macrocel 5

Macrocell B
Tacrocel 7

i |

acrocel 5
Macrocell 9-16

hacrocel T
| Macrocel 2|
| Macrocels |
[Macroceld |
Macrocel S
facrocel &
[Macrocell 7|

Wacrocel &
Macrocell 9-16

— Wacroce]

acrocel 2
lacrocel 3

Macrocell 4

Macrocell 5
Tacrocell &
Tacrocell 7

| Macrocel s |

Macrocell 9-16

1 B |

Figure 2.2

Macrocel §
Macrocell 9-16

v
Macrocell 1
facrocel 2
ffacrocel s |

acrocell 4
acrocel 3
hfacrocel &
hacrocell 7
| Macrocel

Macrocell 9-16

Complex programmable logic device.

Inputs

Clock

Enable

Figure 2.3
FPGA complex logic block.

C1-C4 T T |
ej w W
G4 —» > SR
\ control
G3 > Logic |le 2
G2 » func —)
G1 » i ID——D
4
L Logic | |41 T_D
func) | H S
Y
) | control
F3 » Logic [X2
F2 »| func - .)
®
F1 —»| < [
Clock \ 1
= X
Figure 2.4
Typical commercial CLB architecture.
o 1 2 g 4 5 c-1 & m o m+l m+2 m+3 Columns
Rows
Channels
2 |
n+1 ‘IO‘IO‘IO‘CLKM‘ ‘lo‘\o‘lo‘lo‘lo‘lo}a—T0p|09
n+1
n wlle|s|ecls|ee]|e slelels|e|s|@|@
n
-1 elle|a|lclale|el|e slelecls|e|sle|w
n-1
2 ‘IO‘IO‘S‘C‘S‘C‘C‘S‘ ‘S‘C‘C‘S‘C‘S‘IO‘IO‘
2
1 ellels|cls|e|c]|e slelecls|e|s|e|E
T T
ight
o Leit 105 I EINCRINEN NEHIREN G 000|000 Botom0s
0

Figure 2.5
FPGA structure of CLB.

easily. Modern FPGAs have enough capacity to hold a number of complex processors on a
single device. The layout of a typical FPGA (in CLB terms) is shown in Figure 2.5. As can be
surmised from this schematic, the FPGA has a level of complexity possible that is orders of
magnitude more than typical CPLD devices. With the advent of modern digital CMOS
processes down to 45 nm or even 28 nm and beyond, the integration of millions of logical
elements is now possible and to a speed unimaginable a decade previously—making
extremely high-performance devices now possible (even into the realm of Gb/s data

rates).

2.5 FPGA Design Techniques

When we design using a hardware description language (HDL), these logical expressions and
functions need to be mapped onto the low level logic blocks on an FPGA. In order to do this,
we need to carry out three specific functions:

1. Mapping: Logic functions mapped onto CLBs.
2. Placement: CLBs placed on FPGA.
3. Routing: Routed connections between CLBs.

It is clearly becoming impossible to design “by hand” using today’s complex designs; we
therefore rely on synthesis software to turn our HDL design description into the logic
functions that can be mapped onto the FPGA CLBs. This design flow is an iterative process
including optimization and implies a complete design flow. This will be discussed later in this
book in much more detail. One of the obvious aspects of FPGA design that must be
considered, however, is that of the available resources.

2.6 Design Constraints using FPGAs

It can be very easy to produce unrealistic designs using an HDL if the target FPGA platform is
not considered carefully. FPGAs obviously have a limited number of logic blocks and routing
resources, and the designer has to consider this. The style of HDL code used by the designer
should make the best use of resources, and this book will give examples of how that can be
achieved. HDL code may be transferable between technologies, but may need rewriting for
best results due to these constraints. For example, assumptions about the availability of
resources may lead to a completely different style of design. An example would be a complex
function that needed to be carried out numerous times. If the constraint was the raw
performance, and the device was large enough, then simply duplicating that function in the

hardware would enable maximum data rates to be achieved. On the other hand, if the device is
very small and can only support a smaller number of functions, then it would be up to the
designer to consider pipelining or resource sharing to enable the device to be programmed, but
obviously this would be at the cost of raw performance. The constraints placed on the designer
by the FPGA platform itself can therefore be a significant issue in the choice of device or
development platform.

2.7 Development Kits and Boards

There are now a wide array of development kits to suit all levels of budget and performance
requirements from the manufacturers themselves, or from third-party companies specializing
in development kits and board design. With the FPGA manufacturers being proactive in
providing design software on the web (often for free for noncommercial purposes), it has
become much less of a hurdle for engineers to obtain access to both the design tools and the
hardware to test out their concepts.

One of the major advantages with the modern development boards is that they tend to have an
FPGA device that can generally handle almost all the major building blocks (processors,
display drivers, network stacks) even on a relatively low-end device. The beauty of the boards
too is that with the development of multiple layer PCB designs, most of the common interface
elements can also be integrated on a very small board. With both Xilinx and Altera supporting
credit card sized boards, these are well within the reach of students and engineers on a very
small budget. Mid-Range boards are also available for more lab based usage, such as the DE
series of boards from Terasic, based around the Altera FPGA devices, starting with the credit
card sized DEO-Nano, DEO and continuing up in power and complexity. An excellent starter
board, for example, is the DEQ board, which is slightly larger than its DEO successor, but
perhaps a little easier to use in terms of access to switches and plugs. This board has two
40-way GPIO (General Purpose Input Output) connectors for general interfacing, a VGA
output, PS/2 input, Ethernet, USB, SD Card socket and a selection of LEDs, switches, and
buttons. This board is shown in Figure 2.6. There is a series of boards available for the Xilinx
FPGAs, with similar ranges of options with an example being the Nexsys 3™ board from
Digilent® which has a similar range of IO capability to the Altera based boards. The Nexsys
3™ board is shown in Figure 2.7.

With such an extensive range of options and prices, it is now a matter of choice in many cases
which platform to use. Each one will have its strengths and weaknesses, and the designer is
able to select the device and board to develop their own design, taking into account their own
requirements and constraints.

2.8 Summary

This chapter introduces the basic technology behind FPGAs and their development. The key
design issues are highlighted and some of the important design techniques introduced. Later
chapters in this book will develop these in more detail either from a detailed design
perspective or from a methodology point of view.

A VHDL Primer: The Essentials

3.1 Introduction

This chapter of the book is not intended as a comprehensive VHDL reference book as there
are many excellent texts available that fit that purpose, including Zwolinski [1], Navabi [2], or
Ashenden [3] (full details are provided in the References heading).

Instead, this chapter is designed to give concise and useful summary information on important
language constructs and usage in VHDL, hopefully helpful and easy to use, but not
necessarily comprehensive. The information is helpful enough for the reader to understand the
key concepts in this book; however, I would thoroughly recommend obtaining access to a
textbook on VHDL or Verilog if the reader is serious in becoming expert in HDL design for
digital systems. This book is intended as a complement to a textbook.

This chapter will introduce the key concepts in VHDL and the important syntax required for
most VHDL designs, particularly with reference to FPGAs. In most cases, the decision to use
VHDL over other languages such as Verilog or SystemC will have less to do with designer
choice and more to do with software availability and company decisions. Over the last decade
or so, a war of words has raged between the VHDL and Verilog communities about which is
the best language, and in most cases it is completely pointless as the issue is more about
design than syntax. There are numerous differences in the details between VHDL and Verilog,
but the fundamental philosophical difference historically has been the design context of the
two languages.

Verilog has come from a bottom-up tradition and has been heavily used by the IC industry for
cell-based design, whereas the VHDL language has been developed much more from a
top-down perspective. Of course, these are generalizations and largely out of date in a modern
context, but the result is clearly seen in the basic syntax and methods of the two languages.
While this has possibly been the case in the past, with the advent of the higher level
“SystemVerilog” variant of Verilog providing much of the same capability as VHDL at the
system level, this has also become popular.

Unfortunately, while there are many languages now available to designers, most of the FPGA
design tools support subsets, and therefore in some cases support for SystemVerilog may be

http://dx.doi.org/10.1016/B978-0-08-097129-2.00003-9

Functiona\

Behavioxa\

Structural\

Figure 3.1
VHDL models with different architectures.

patchy. It is therefore useful to describe using VHDL and Verilog; however, this book will also
provide some introductory material to SystemVerilog for completeness.

Without descending into a minute dissection of the differences between Verilog and VHDL,
one important aspect of VHDL is the ability to use multiple levels of model with different
architectures as shown in Figure 3.1.

This is not unique to VHDL, and in fact Verilog does have the concept of different behavior in
a single module; however, it is explicitly defined in VHDL and is extremely useful in putting
together practical multi-level designs in VHDL. The division of a model into its interface part
(the entity in VHDL) and the behavior part (the architecture in VHDL) is an incredibly
practical approach for modeling multiple behavior for a single interface and makes model
exchange and multiple implementation practical.

The remainder of this chapter will describe the key parts of VHDL, starting with the definition
of a basic model structure using entities and architectures, discuss the important variable
types, review the methods of encapsulating concurrent, sequential and hierarchical behavior
and finally introduce the important fundamental data types required in VHDL.

3.2 Entity: Model Interface

3.2.1 The Entity Definition

The VHDL entity defines how a design element described in VHDL connects to other VHDL
models and also defines the name of the model. The entity also allows the definition of any
parameters that are to be passed into the model using hierarchy. The basic template for an
entity is as follows:

1 entity <name> is

2
3 end entity <name>;

If the entity has the name fest then the entity template could be either:

1 entity test is
2 end entity test;

or:

1 entity test is
2 end test;

3.2.2 Ports

The method of connecting entities together is using ports. These are defined in the entity using
the following method:

1 port (
2 —— 1list of port declarations
3)

The port declaration defines the type of connection and direction where appropriate. For
example, the port declaration for an input bit called in1 would be:

1 inl : in bit;
And if the model had two inputs (inl and in2) of type bit and a single output (outl) of type bit
then the declaration of the ports would be defined as follows:

1 port (

2 inl, in2 : in bit;

3 outl : out bit

4)s

As the connection points between entities are effectively the same as those inter-process
connections, they are effectively signals and can be used as such within the VHDL of the model.

3.2.3 Generics

If the model has a parameter, then this is defined using generics. The general declaration of
generics is shown below:

1 generic (
2 —— Jist of generic declarations
3)

In the case of generics, the declaration is similar to that of a constant with the form as shown
below:

1 paraml : integer := 4;

Taking an example of a model that had two generics, gain (integer) and time_delay (time),
they could be defined in the entity as follows:

generic (

gain : integer := 4;
time_delay : time =
)

1
2
3 10 ns;
4

3.2.4 Constants

It is also possible to include model specific constants in the entity using the standard
declaration of constants method previously described; for example:

1 constant : rpullup : real := 1000.0;

3.2.5 Entity Examples

To illustrate a complete entity, we can bring together the ports and generics examples
previously shown and construct the complete entity for this example:

entity test is

)
constant : rpullup : real := 1000.0;
end entity test;

1

2 port (

3 inl, in2 : in bit;

4 outl : out bit;

5)

6 generic (

7 gain : integer := 4;
8 time_delay : time := 10 ns;
9

0

1

[

3.3 Architecture: Model Behavior

3.3.1 Basic Definition of An Architecture

While the entity describes the interface and parameter aspects of the model, the architecture

defines the behavior. There are several types of VHDL architecture and VHDL allows
different architectures to be defined for the same entity. This is ideal for developing

behavioral, RTL, and gate level architectures that can be incorporated into designs and tested

using the same test benches.

The basic approach for declaring an architecture could be as follows:

1 architecture behavior of test is
2 —— architecture declarations

3 begin

4 —— architecture contents

5 end architecture behavior;

or

1 architecture behavior of test is
2 —— architecture declarations
3 begin

4 —— architecture contents
5 end behavior;

3.3.2 Avrchitecture Declaration Section

After the declaration of the architecture name and before the begin statement, any local signals
or variables can be declared. For example, if there were two internal signals to the architecture
called sigl and sig2, they could be declared in the declaration section of the model as follows:

1 architecture behavior of test is
2 signal sigl, sig2 : bit;
3 begin

Then the signals can be used in the architecture statement section.

3.3.3 Avrchitecture Statement Section

VHDL architectures can have a variety of structures to achieve different types of functionality.
Simple combinatorial expressions use signal assignments to set new signal values as shown
below:

1 outl <= inl and in2 after 10 ns;

Note that for practical design, the use of the after 10 ns statement is not synthesizable. In
practice, the only way to ensure correct synthesizable design is to either make the design delay
insensitive or synchronous. The design of combinatorial VHDL will result in additional delays
due to the technology library gate delays, potentially resulting in glitches or hazards. An
example of a multiple gate combinatorial architecture, using internal signal declarations is
given below:

1 architecture behavioral of test is
2 signal intl, int2 : bit;

3 begin

4 intl <= inl and in2;

5 int2 <= 1in3 or in4;

6 outl <= intl xor int2;

7 end architecture behavioral;

3.4 Process: Basic Functional Unit in VHDL

The process in VHDL is the mechanism by which sequential statements can be executed in the
correct sequence, and with more than one process, concurrently. Each process consists of a
sensitivity list, declarations, and statements. The basic process syntax is given below:

1 process sensitivity_list is
—— declaration part

3 begin

4 —— Statement part

5 end process;
The sensitivity list allows a process to be activated when a specific signal changes value; for
example a typical usage would be to have a global clock and reset signal to control the activity
of the process, as follows:

1 process (clk, rst) is

2 begin

3 —— process statements

4 end process;
In this example, the process would only be activated when either clk or rst changed value.
Another way of encapsulating the same behavior is to use a wait statement in the process so
that the process is automatically activated once, and then waits for activity on either signal
before running the process again. The same process could then be written as follows:

1 process

2 begin

3 —— process statements
4 wait on clk, rst;

5 end process;

In fact, the location of the wait statement is not important, as the VHDL simulation cycle
executes each process once during initialization, and so the wait statement could be at the start
or the end of the process and the behavior would be the same in both cases.

In the declaration section of the process, signals and variables can be defined locally as
described previously; for example, a typical process may look like the following:

1 process (a) is

2 signal na : bit;

3 begin

4 na <= not a;

5 end process;
The local signal na and the process are activated by changes on the signal a which is externally
declared (with respect to the process).

3.5 Basic Variable Types and Operators

3.5.1 Constants

When a value needs to be static throughout a simulation, the type of element to use is a constant.
This is often used to initialize parameters or to set fixed register values for comparison.
A constant can be declared for any defined type in VHDL with examples as follows:

1 constant a : integer :=1;

2 constant b : real := 0.123;
3 constant ¢ : std_logic := 0;

3.5.2 Signals

Signals are the link between processes and sequential elements within processes. They are
effectively wires in the design and connect all the design elements together. When simulating
signals, the simulator will in turn look at updating the signal values and also checking the
sensitivity lists in processes to see whether any changes have occurred that will mean that
processes become active.

Signals can be assigned immediately or with a time delay, so that an event is scheduled for
sometime in the future (after the specified delay). It is also important to recognize that signals
are not the same as a set of sequential program code (such as in C), but are effectively
concurrent signals that will not be able to be considered stable until the next time the process
is activated.

Examples of signal declaration and assignment are shown below:

1 signal sigl : integer := 0;
2 signal sig2 : integer := 1;
3 sigl <= 14;

4 sigl <= sig2;

5 sigl <= sig2 after 10 ns;

3.5.3 Variables

While signals are the external connections between processes, variables are the internal values
within a process. They are only used in a sequential manner, unlike the concurrent nature of
signals within and between processes. Variables are used within processes and are declared
and used as follows:

1 variable varl : integer := 0;
2 variable var2 : integer := 1;
3 varl := var2;

Notice that there is no concept of a delay in the variable assignment; if you need to schedule
an event, it is necessary to use a signal.

3.5.4 Boolean Operators

VHDL has a set of standard Boolean operators built in, which are self explanatory. The list of
operators are and, or, nand, not, nor, xor. These operators can be applied to BIT, BOOLEAN,
or logic types with examples as follows:

1 outl <= inl and inZ;

2 out2 <= 1in3 or in4;
3 outb <= not inb;

3.5.5 Arithmetic Operators

There are a set of arithmetic operators built into VHDL which again are self explanatory and
these are described and examples provided as follows:

Operator Description Example

+ Addition outl <=in1 +in2;

- Subtraction outl <=in1-in2;

* Multiplication outl <=in1*in2;
/ Division outl <=in1/in2;
abs Absolute Value absin1 <= abs(in1);
mod Modulus modin1 <= mod(in1);
rem Remainder remin1 <=rem(in1);
** Exponent outl <=in1 ** 3;

3.5.6 Comparison Operators

VHDL has a set of standard comparison operators built in, which are self explanatory. The
operators are =, / =, <, <=, >, >=. These operators can be applied to a variety of types as

follows:
1 inl <1
2 inl /= in2

3 in2 >= 0.4
3.5.7 Logical Shifting Functions

VHDL has a set of six built-in logical shift functions which are summarized in the following
table:

sra
rol
ror

Shift Right Arithmetic
Rotate Left
Rotate Right

Operator Description Example
sl Shift Left Logical reg <=regsll 2;
srl Shift Right Logical reg <= regsrl 2;
sla Shift Left Arithmetic reg <=regsla 2;

reg <=regsra 2;
reg <=regrol 2;
reg <= regror 2;

3.5.8 Concatenation

The concatenation function in VHDL is denoted by the & symbol and is used as follows:

1 A <= 1111;
2 B <= 000
3 outl <= A & B & 1;

outl = 11110001;

3.6 Decisions and Loops

3.6.1 If-Then-Else

The basic syntax for a simple if statement is as follows:

1 if (condition) then
2 —— Statements
3 end if;

The condition is a Boolean expression, of the form a > b or a = b. Note that the comparison
operator for equality is a single =, not to be confused with the double == used in some
programming languages. For example, if two signals are equal, then setting an output high
would be written in VHDL as:

1 if (a =b) then

2 outl <= 1;
3 end if;

If the decision needs to have both the if and else options, then the statement is extended as
follows:

1 if (condition) then
2 —— Statements

3 else

4 —— Statements

5 end if;

So in the previous example, we could add the else statements as follows:

1 if (a=Db) then
2 outl <= 1;

3 else

4 outl <= 0;

5 end if;

And finally, multiple if conditions can be implemented using the general form:

1 if (conditionl) then

2 —— Statements

3 elsif (condition2)

4 —— Statements

5 —— more elsif conditions & statements
6 else

7 —— Statements

8 end if;

With an example:

if (a > 10) then
outl <= 1;

elsif(a > 5) then
outl <= 0;

AW =

5 else

6 outl <= 1;
7 end if;
3.6.2 Case

As we have seen with the if statement, it is relatively simple to define multiple conditions, but
it becomes a little cumbersome, and so the case statement offers a simple approach to
branching, without having to use Boolean conditions in every case. This is especially useful
for defining state diagrams or for specific transitions between states using enumerated types.
An example of a case statement is:

1 case testvariable is
2 when 1 =>

3 outl <= 1;

4 when 2 =>

5 out2 <= 1;

6 when 3 =>

7 outld <= 1;

8 end case;

This can be extended to a range of values, not just a single value:

1 case test is
2 when 0 to 4 => outl <= 1;

It is also possible to use Boolean conditions and equations. In the case of the default option
(i.e., when none of the conditions have been met), then the term “when others” can
be used:

1 case test is
2 when 0 => outl <= 1;
3 when others => outl <= 0;
4 end case;
3.6.3 For

The most basic loop in VHDL is the for loop. This is a loop that executes a fixed number of
times. The basic syntax for the for loop is shown below:

1 for loopvar in start to finish Toop

2 —— TJoop statements

3 end loop;
It is also possible to execute a loop that counts down rather than up, and the general form of
this loop is:

1 for loopvar in start downto finish Tloop

2 —— Joop statements
3 end Tloop;

A typical example of a for loop would be to pack an array with values bit by bit, for example:

signal a : std_logic_vector(7 downto 0);

1

2 for i in 0 to 7 loop
3 a(i) <= 1;

4 end Toop;

3.6.4 While and Loop

Both the while and loop loops have an indeterminant number of loops, compared to the fixed
number of loops in a for loop and as such are usually not able to be synthesized. For FPGA
design, they are not feasible as they will usually cause an error when the VHDL model is
compiled by the synthesis software.

3.6.5 Exit

The exit command allows a for loop to be exited completely. This can be useful when a
condition is reached and the remainder of the loop is no longer required. The syntax for the
exit command is shown below:

for i in 0 to 7 Toop

1
2 if (1 =4) then
3 exit;
4 endif;
5 endloop;
3.6.6 Next

The next command allows a for loop iteration to be exited; this is slightly different from the
exit command in that the current iteration is exited, but the overall loop continues onto the
next iteration. This can be useful when a condition is reached and the remainder of the
iteration is no longer required. An example for the next command is shown below:

1 for i in 0 to 7 loop
2 if (i =4) then
3 next;

4 endif;

5 endloop;

3.7 Hierarchical Design

3.7.1 Functions

Functions are a simple way of encapsulating behavior in a model that can be reused in
multiple architectures. Functions can be defined locally to an architecture or more commonly
in a package (discussed in Part 2 of this book), but in this section the basic approach of

defining functions will be described. The simple form of a function is to define a header with
the input and output variables as shown here:

1 function name (input declarations) return output_type is
2 —— variable declarations

3 begin

4 —— function body

5 end

For example, a simple function that takes two input numbers and multiplies them together
could be defined as follows:

1 function mult (a,b : integer) return integer is
2 begin

3 return a x b;

4 end;

3.7.2 Packages

Packages are a common single way of disseminating type and function information in the
VHDL design community. The basic definition of a package is as follows:

package name is

—— package header contents
end package;
package body name 1is

—— package body contents
end package body;

AN AW =

As can be seen, the package consists of two parts, the header and the body. The header is the
place where the types and functions are declared, and the package body is where the
declarations themselves take place.

For example, a function could be described in the package body and the function is declared in
the package header. Take a simple example of a function used to carry out a simple logic
function:

1 andl0 = and(a,b,c,d,e,f,g,h,i,3)
The VHDL function would be something like the following:

1 function andl0 (a,b,c,d,e,f,qg,h,i,j : bit) return bit is

2 begin

3 return a and b and ¢ and d and e and f and g and h and i and jJ;
4 end;

The resulting package declaration would then use the function in the body and the function
header in the package header thus:

1 package new_functions is

2 function andl0 (a,b,c,d,e,f,g,h,i,j : bit) return bit;
3 end;
4
5

package body new_functions is

6 function andl0 (a,b,c,d,e,f,g,h,i,J : bit) return bit is

7 begin

8 return a and b and ¢ and d and e and f and g and h and i and j;
9 end;

0

—_

end;

3.7.3 Components

While procedures, functions, and packages are useful in including behavioral constructs
generally, with VHDL being used in a hardware design context, often there is a need to
encapsulate design blocks as a separate component that can be included in a design, usually
higher in the system hierarchy.

The method for doing this in VHDL is called a component. Caution needs to be exercised with
components as the method of including components changed radically between VHDL 1987
and VHDL 1993, as such care needs to be taken to ensure that the correct language definitions
are used consistently.

Components are a way of incorporating an existing VHDL entity and architecture into a new
design without including the previously created model. The first step is to declare the
component in a similar way that functions need to be declared. For example, if an entity is
called and4, and it has four inputs (a,b,c,d of type bit) and one output (q of type bit), then the
component declaration would be of the form shown here:

1 component and4
2 port (a,b,c,d : in bit; g : out bit);
3 end component;

Then this component can be instantiated in a netlist form in the VHDL model architecture:

1 dl : and4 port map (a, b, c, d, g);
Note that in this case, there is no explicit mapping between port names and the signals in the
current level of VHDL; the pins are mapped in the same order as defined in the component

declaration. If each pin is to be defined independently of the order of the pins, then the explicit
port map definition needs to be used:

1 dl: and4 port map (a => a, b => b, c=>c, d=>d, g=>q) ;
The final thing to note is that this is called the default binding. The binding is the link between
the compiled architecture in the current library and the component being used. It is possible,

for example, to use different architectures for different instantiated components using the
following statement for a single specific device:

1 for dl : and4 use entity work.and4(behavior) port map (a,b,c,d,q);
or the following to specify a specific device for all the instantiated components:

1 for all : and4 use entity work.and4(behavior) port map (a,b,c,d,q);

3.7.4 Procedures

Procedures are similar to functions, except that they have more flexibility in the parameters, in
that the direction can be in, out or inout. This is useful in comparison to functions where there
is generally only a single output (although it may be an array) and avoids the need to create a
record structure to manage the return value. Although procedures are useful, they should be
used only for small specific functions. Components should be used to partition the design, not
procedures, and this is especially true in FPGA design, as the injudicious use of procedures
can lead to bloated and inefficient implementations, although the VHDL description can be
very compact. A simple procedure to execute a full adder could be of the form:

procedure full_adder (a,b : in bit; sum, carry : out bit) is

1

2 begin

3 sum := a xor b;

4 carry := a and b;
5 end;

Notice that the syntax is the same as that for variables (not signals), and that multiple outputs
are defined without the need for a return statement.

3.8 Debugging Models

3.8.1 Assertions

Assertions are used to check if certain conditions have been met in the model and are
extremely useful in debugging models. Some examples:

1 assert value <= max_value

2 report Value too large;
3 assert clock_width >= 100 ns
4
5

report clock width too small;
severity failure;

3.9 Basic Data Types

3.9.1 Basic Types

VHDL has the following standard types defined as built-in data types:

e Dbit

* Boolean

e bit_vector
* integer

e real

3.9.2 Data Type: bit

The bit data type is the simple logic type built into VHDL. The type can have two legal values
0 or 1. The elements defined as of type bit can have the standard VHDL built-in logic
functions applied to them. Examples of signal and variable declarations of type bit follow:
signal ina : bit;

variable inb : bit := 0;

ina <= inb and inc;
ind <=1 after 10 ns;

B W =

3.9.3 Data Type: Boolean

The Boolean data type is primarily used for decision making, so the test value for if statements
is a Boolean type. The elements defined as of type Boolean can have the standard VHDL
built-in logic functions applied to them. Examples of signal and variable declarations of type
Boolean follow:

1 signal testl : Boolean;

2 variable test? : Boolean := false;

3.9.4 Data Type: Integer

The basic numeric type in VHDL is the integer and is defined as an integer in the range
—2147483647 to +2147483647. There are obviously implications for synthesis in the
definition of integers in any VHDL model, particularly the effective number of bits, and so it
is quite common to use a specified range of integer to constrain the values of the signals or
variables to within physical bounds. Examples of integer usage follow:

1 signal intl : integer;
2 variable int2: integer := 124;

There are two subtypes (new types based on the fundamental type) derived from the integer
type which are integer in nature, but simply define a different range of values, as described in
the following subsections.

3.9.5 Integer Subtypes: Natural

The Natural subtype is used to define all integers greater than and equal to zero. They are
actually defined with respect to the high value of the integer range as follows:

1 natural values : 0 to integer’high

3.9.6 Integer Subtypes: Positive

The Positive subtype is used to define all integers greater than and equal to one. They are
actually defined with respect to the high value of the integer range as follows:

1 positive values : 1 to integer’high

3.9.7 Data Type: Character

In addition to the numeric types inherent in VHDL, there are also the complete set of ASCII
characters available for designers. There is no automatic conversion between characters and a
numeric value per se, but there is an implied ordering of the characters defined in the VHDL
standard (IEEE Std 1076-1993). The characters can be defined as individual characters or
arrays of characters to create strings. The best way to consider characters is as an
enumerated type.

3.9.8 Data Type: Real

Floating point numbers are used in VHDL to define real numbers and the predefined floating
point type in VHDL is called real. This defines a floating point number in the range —1.0e38
to +10e38. This is an important issue for many FPGA designs, as most commercial synthesis
products do not support real numbers precisely because they are floating point. In practice it is
necessary to use integer or fixed point numbers which can be directly and simply synthesized
into hardware. An example of defining real signals or variables is shown here:

1 signal realno : real;
2 variable realno : real := 123.456;

3.9.9 Data Type: Time

Time values are defined using the special time type. These not only include the time value, but
also the unit separated by a space. The basic range of the time type value is between
—2147483647 to 2147483647 and the basic unit of time is defined as the femtosecond (fs).
Each subsequent time unit is derived from this basic unit of the fs as shown here:

1 ps = 1000 fs;
2 ns = 1000 ps;
3 us = 1000 ns;
4 ms = 1000 us;
5 min = 60 sec;
6 hr = 60 min;

Examples of time definitions are shown here:

1 delay : time := 10 ns;
2 wait for 20 us;

3 y <= x after 10 ms;

4 z <=y after delay;

3.10 Summary

This chapter provides a very brief introduction to VHDL and is certainly not a comprehensive
reference. It enables the reader, hopefully, to have enough knowledge to understand the syntax

of the examples in this book. The author strongly recommends that anyone serious about
design with VHDL should also obtain a detailed and comprehensive reference book on
VHDL, such as Zwolinski [1] (a useful introduction to digital design with VHDL (and a
common student textbook)) or Ashenden [3] (a more heavy-duty VHDL reference that is
perhaps more comprehensive, but less easy for a beginner to VHDL).

A Verilog Primer: The Essentials

4.1 Introduction

Verilog has been the primary hardware description language (HDL) for digital design
worldwide for probably more than 30 years, but it is only relatively recently that it has begun
to extend beyond its original focus of IC design into the FPGA arena outside the USA.

Verilog as an HDL does have several advantages over other HDLs such as VHDL, as it is both
C-like and also very compact. This makes writing models in Verilog very straightforward for
digital designers with some software background, and fast.

The reduced scale of the syntax (i.e., its compact nature) also makes it less prone to typing
errors simply due to the fewer number of characters often required compared to other
languages.

This chapter will provide a primer for the basics of Verilog, and as for the VHDL primer, the
reader is referred to a large number of textbooks and references (also many online sources) for
more detailed language descriptions and examples. The purpose of this chapter is as a “quick
start” and to provide an overview of the key language features rather than as a full-blown
reference.

4.2 Modules

Verilog is a language that defines the functional blocks using a “module” concept. The basic
principle is that a module will carry out some function (rather like a procedure in C) but the
ultimate goal is that the module will eventually be synthesized into hardware.

A module is defined by the keyword module and endmodule with the general framework as
shown:

1 module modulename(list of connections);
2

3 //contents of the model here

4

5 endmodule

The top level module that will be simulated will not necessarily have any connections or
parameters.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00004-0

4.3 Connections

Once we have a basic module definition (with a name) the next step is to connect it up.
Consider the example of an 8-bit counter that has a clock (clk) and reset (rst) input, with the
output word defined as dout (7 down to 0) The module definition needs to be modified to
include the names of the ports in the header as shown here:

1 module counter (clk,rst,dout);
2
3 //contents of the model here
4
5

endmodule

The module can also be written with the port names spread over several lines such as:

1 module counter (

2 clk,

3 rst,

4 dout

5)3

6

7 //contents of the model here
8

9

endmodule

The obvious question is “why would we do that?” However, this way makes it simple to add
descriptive comments next to each port name definition, which can be extremely helpful in
debugging the model.

Comments in Verilog use the // notation (the same as in C++) and so we could write the
module header with some additional comments as shown below. As you can see, we can put
helpful comments such as the active clock edge (rising or falling), whether the reset signal is
active high or low, and finally the width of the dout variable.

module counter (
clk, // Clock Signal (Rising Edge)
rst, // reset Signal (Active High)

dout // Counter Output (7:0)
)

//contents of the model here

O 00 1 AN N W=

endmodule

The final step at this point of model creation is to define the type of the ports, in terms of
direction. For example, are they inputs, outputs or both? Also, what is the width of the bus if
they are composite (multiple value) ports? In this simple example, the clk and rst ports are
both inputs, and the dout port is an output, of width 8 (tagged with indices 7 down to 0 in
classical digital designer format).

This definition is done using the keywords input, output or inout and the expanded port
definitions are given here.

1 module counter (

2 clk, // Clock Signal (Rising Edge)
3 rst, // reset Signal (Active High)
4 dout // Counter Qutput (7:0)

5)3

6 // port declarations

7 input clk;

8 input rst;

9 output [7:0] dout;

10

11 //contents of the model here

12

13 endmodule

4.4 Wires and Registers

Once a module has been declared and its ports defined, it is then necessary to make those
available internally to the module for use as connections. The most basic connection type is
called a wire and this is exactly as its name suggests, simply a direct connection.

If we take our counter example, in order to make each port available for internal coding, we
need to setup a wire for each input. These are defined using the wire keyword and the
extended module is given as follows:

module counter (

1

2 clk, // Clock Signal (Rising Edge)
3 rst, // reset Signal (Active High)
4 dout // Counter Output (7:0)

5)s

6 // port declarations

7 input clk;

8 input rst;

9 output [7:0] dout;

10

11 // wire definitions

12 wire clk;

13 wire rst;

14

15 //contents of the model here

16

17 endmodule

But what about the counter output? Why did we not simply assign a wire type to the dout
variable? The answer is that wire is essentially combinatorial (i.e., a direct connection)
whereas the output is synchronous and needs to be held in a register. In Verilog we denote this
using the reg keyword rather than the simple wire and so the dout variable needs to be defined
as shown below. Notice that the declaration of the register also needs to have the bus defined
in an identical manner to the port declaration.

1 module counter (

2 clk, // Clock Signal (Rising Edge)
3 rst, // reset Signal (Active High)
4 dout // Counter Output (7:0)

5)

6 // port declarations

7 input clk;

8 input rst;

9 output [7:0] dout;

10

11 // wire definitions

12 wire clk;

13 wire rst;

14

15 // Register definitions

16 reg [7:0] dout;

17

18 //contents of the model here

19

20 endmodule

4.5 Defining the Module Behavior

When we define the module behavior there are several ways in which this can be done. Verilog
is in nature a “bottom up” style language and therefore we need to think in terms of assigning
signals directly, or acting in terms of hardware “blocks.” The two types of behavioral block
that we will consider first are the always and initial blocks.

The always block is a way of defining a section of code that will always be activated—in other
words the same as a VHDL process, it is a block of hardware that is always active. The initial
block, in contrast, is activated on startup, and used to initialize conditions, then never used
again.

In order to illustrate how this works in practice we can consider our simple counter. The basic
behavior of this module is to count on a rising clock edge, and increment the counter by one,
unless the reset is high, in which case the output value will be set to zero.

The basic outline of the always block is as shown here:

1 always @ (posedge clk) // Count on the Rising Edge of the Clock
2 begin: counter // Start of the Count — block name count

3

4 // Count Code

5

6 end // End of the Count — end of block counter

If we look at this code, we can see that the always keyword is used to define the block and that
it is activated by the function posedge—in other words the rising edge of the clk clock signal.
The code is contained between a begin and end, with the name after the begin defining a block

name—which is useful in complex designs for the identification of specific signals within
blocks.

The final step in the development of our counter is to therefore define the behavior, and
implement the check for reset active high and the counter itself.

module counter (

1

2 clk, // Clock Signal (Rising Edge)
3 rst, // reset Signal (Active High)
4 dout // Counter Qutput (7:0)

5)

6 // port declarations

7 input clk;

8 input rst;

9 output [7:0] dout;

10

11 // wire definitions

12 wire clk;

13 wire rst;

14

15 // Register definitions
16 reg [7:0] dout;

18 always @ (posedge clk) // Count on the Rising Edge of the Clock
19 begin: COUNTER // Start of the Counter — block name COUNTER

21 if (rst == 1’bl) begin

22 dout <= #1 8’b00000000;

23 end

24 else begin

25 dout <= #1 dout + 1;

26 end

27

28 end // End of the Counter — end of block COUNTER
29

30 endmodule

4.6 Parameters

The module parameters are defined using the keyword parameter with an example given
below, where the parameter buswidth is defined as a parameter with a default value of 8, and a
second parameter # is defined as 4.

module modulename(interface ports);

parameter buswidth = 8;

parameter n = 4;
...contents of the model here

[NV, IOV SR

endmodule

These parameters (buswidth and n) can then be assigned when the module is instantiated using
the following approach:

1 moduleinstance #(8,4) modulename(list of ports);

If a parameter local to the module is required then we can use the keyword localparam to
define a parameter that will just be available inside the module.

4.7 Variables

As we have seen with the section on wires and registers, wires are simply connection points,
and registers are used to store variables. Therefore, as we have seen previously, registers can
be used to store data for the interface section of the model, but also for internal variables.

4.8 Data Types

The basic data type of the register (reg) is a simple digital logic type with four values
(0,1,Z,X), with the default value of X. The register data type can then be used as a building
block to create more complex types such as buffers of a specific size. For example, to create a
register of width 4 bits, with the name reg4 use the following syntax:

1 reg[3:0] reg4;

4.9 Decision Making

The most basic decision-making element is the if statement, and this can be used in a very
simple manner as shown in the basic example below, where the variable y is checked and
depending on its value, the register dout will be assigned the value of a or b.

1 if (y == 1)
2 dout = a;
3 else

4 dout = b;

If the decision making requires more than a single statement per choice, then use the
keywords begin and end to wrap up several statements such as:

1 if (y == 1)
2 begin

3 dout = a;
4 cout = d;
5 end

6 else

7 begin

8 dout = b;
9 cout = e;
10 end

Finally, if statements can also be nested to provide multiple options, as can be seen in the
following example, where if y=1, then the second nested if checks for the value of the
variable x.

1 if (y == 1)
2 begin
3 if ((x ==1)
4 dout = a;
5 else
6 cout = d;
7 end
8 else
9 begin
10 dout = b;
11 cout = e;
12 end

4.10 Loops

There are two ways of looping in Verilog, for and repeat. For loops are very similar to C,
setting up the start, end and increment values. For example, to set up a loop to carry out a
function on each bit of a 32 bit bus, a for loop could be used in this way:

1 for(i = 0;1<32;1 =1 + 1)
2 // Complete the function using the loop variable i
3 end

The repeat function could be done in a similar way using the repeat function, where the loop
is handled incrementing the defined number of times, and then it is up to the designer to
increment the value (in this case 1).

1 repeat (32)

2 // Complete the function using the loop variable i
3 i=1+1;

4 end

4.11 Summary

This chapter is a very brief introduction to basic Verilog. For a more comprehensive overview
there are many useful references online, such as http://www.asic-world.com/verilog/, or the
excellent text by Zwolinski [4]. It should be noted that in this book we are purely considering
Verilog, but there is a modern variant called “SystemVerilog” which has more high level and
abstract functionality than basic Verilog. However, not all the FPGA tools support
SystemVerilog yet, but Verilog is fairly universally usable for any FPGA tool flow.

http://www.asic-world.com/verilog/

Design Automation of FPGAs

5.1 Introduction

With the increasing complexity and size of digital designs targeted at FPGAs, the days of hand
designing the logic code for hardware at the lowest level (i.e., able to be downloaded directly
to the device) have long gone. Designers now must rely on design automation tools to manage
the code, syntax checking, simulation, and synthesis functions. In this chapter we will
introduce some of the key concepts and highlight how they can be used most effectively.

5.2 Simulation

5.2.1 Simulators

Simulators are a key aspect of the design of FPGAs. They are how we understand the behavior
of our designs, check the results are correct, identify syntax errors and even check
postsynthesis functionality to ensure that the designs will operate as designed when deployed
in a real device. There are a number of simulators available (all the main design automation
vendors provide software) and the FPGA vendors also will supply a simulator usually
wrapped up with the design flow software for their own devices. This altruistic approach is
very useful in learning to use FPGAs as, while they are clearly going to be targeted with
libraries at the vendor’s devices, the basic simulators tend to be fully featured enough to be
very useful for most circumstances. One of the most prevalent simulators is the ModelSim®
from Mentor Graphics, which is generally wrapped in with the Altera and Xilinx design
software kits and is very commonly used in universities for teaching purposes. It is a
general-purpose simulator which can cater for VHDL, Verilog, SystemVerilog and a mixture
of all these languages in a general simulation framework. A screen shot of ModelSim in use is
shown in Figure 5.1 and it shows the compilation window and a waveform viewer. There are
other ways to use the tool including a transcript window and variable lists rather than
waveforms—useful in seeing transitions or events.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00005-2

Figure 5.1
ModelSim simulator user interface.

5.2.2 Test Benches

The overall goal of any hardware design is to ensure that the design meets the requirements of
the design specification. In order to measure and determine whether this is indeed the case, we
need not only to simulate the design representation in a hardware description language (such
as VHDL or Verilog), but also to ensure that whatever tests we undertake are appropriate and
demonstrate that the specification has been met.

The way that designers can test their designs in a simulator is by creating a test bench. This is
directly analogous to a real experimental test bench in the sense that stimuli are defined and
the responses of the circuit measured to ensure that they meet the specification.

In practice, the test bench is simply a model that generates the required stimuli and checks the
responses. This can be in such a way that the designer can view the waveforms and manually
check them, or by using appropriate HDL constructs to check the design responses
automatically.

5.2.3 Test Bench Goals

The goals of any test bench are twofold. The first is primarily to ensure that correct operation
is achieved. This is essentially a functional test. The second goal is to ensure that a
synthesized design still meets the specification (particularly with a view to timing errors).

5.2.4 Simple Test Bench: Instantiating Components

Consider a simple model of a VHDL counter given as follows:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4

5 entity counter is

6 generic (

7 n : integer := 4

8)

9 port (

10 clk : in std_logic;

11 rst : in std_logic;

12 output : out std_logic_vector((n—-1) downto 0)
13)

14 end;

15

16 architecture simple of counter is

17 begin

18 process(clk, rst)

19 variable count : unsigned((n-1) downto 0);
20 begin

21 if rst = 0’ then

22 count := (others => '0’);

23 elsif rising_edge(clk) then

24 count := count + 1;

25 end if;

26 output <= std_logic_vector(count);
27 end process;

28 end;

This simple model is a simple counter with a clock and reset signal, and to test the operation
of the component we need to do several things.

First, we must include the component in a new design. So we need to create a basic test bench.
The listing below shows how a basic entity (with no connections) is created, and then the
architecture contains both the component declaration and the signals to test the design.

1 library ieee;

2 use ieee.std_logic_l164.all;

3 use ieee.numeric_std.all;

4

5 entity CounterTest is

6 end CounterTest;

7

8 architecture stimulus of CounterTest is
9 signal rst : std_logic := 0’

10 signal clk : std_logic:="0";

11 signal count : std_logic_vector (3 downto 0);
12

13 component counter

14 port(

15 clk : in std_logic;

16 rst : in std_logic;

17 output : out std_logic_vector(3 downto 0)
18)

19 end component;

20 for all : counter use entity work.counter ;

21

22 begin

23 DUT: counter port map(clk=>clk,rst=>rst,output=>count);
24 clk <= not clk after 1 us;

25 process

26 begin

27 rst<="0",’1" after 2.5 us;

28 wait;

29 end process;

30 end;

This test bench will compile in a simulator, and needs to have definitions of the input stimuli
(clk and rst) that will exercise the circuit under test (CUT).

If we wish to add stimuli to our test bench we have some significant advantages over our
model; the most appealing is that we generally do not need to adhere to any design rules or
even make the code synthesizable. Test bench code is generally designed to be off chip and
therefore we can make the code as abstract or behavioral as we like and it will still be fit for
purpose. We can use wait statements, file read and write, assertions and other
nonsynthesizable code options.

5.2.5 Adding Stimuli

In order to add a basic set of stimuli to our test bench, we could simply define the values of the
input signals clk and rst with a simple signal assignment:

1 clk <= "1°

2 rst <= '0";
Clearly this is not a very complex or dynamic test bench, so to add a sequence of events we
can modify the signal assignments to include numerous value, time pairs defining a sequence
of values.

In our simple example, we wish to go from a reset state to actively counting and so after the rst
signal has been initialized to 0, and then set to 1, the clk signal will then increment the
counter. In our example we have used a process to set up the clock repetition and a separate
process to initialize and then remove the reset.

1 clk <= not clk after 1 us;
2 process

3 begin

4 rst<="0",'1" after 2.5 us;
5 wait;

6 end process;

Figure 5.2
ModelSim simulator waveform results.

While this method is useful for small circuits, clearly for more complex realistic designs it is
of limited value. Another approach is to define a constant array of values that allow a number
of tests to be carried out with a relatively simple test bench and applying a different set of
stimuli and responses in turn. The resulting behavior can then be analyzed looking at the
waveforms with measurements and markers to ensure the correct timing and functionality, as
is shown in Figure 5.2.

For example, we can exhaustively test our simple two-input logic design using a set of data in
arecord. A record is simply a collection of types grouped together defined as a new type. With
a new composite type, such as a record, we can then create an array, just as in any standard
type. This requires another type declaration, of the array type itself. With these two new types
we can simply declare a constant (of type data_array) that is an array of record values (of type
testdata) that fully describe the data set to be used to test the design. Notice that the type
data_array does not have a default range, but that this is defined by the declaration in this
particular test bench. The beauty of this approach is that we can change from a system that
requires every test stimulus to be defined explicitly, to one where a generic test data process
will read values from predefined arrays of data. In the simple test example presented here, an
example process to apply each set of test data in turn could be implemented as follows:

1 process

2 begin

3 for i in test_data’range loop
4 in0 <= test_data(i).in0;
5 inl <= test_data(i).inl;
6 wait for 100 ns;

7 end loop

8 wait;

9 end process;

There are several interesting aspects to this piece of test bench VHDL. The first is that we can
use behavioral VHDL (wait for 100 ns) as we are not constrained to synthesize this to
hardware. Secondly, by using the range operator, the test bench becomes unconstrained by the

size of the data set. Finally, the individual record elements are accessed using the hierarchical
construct test_data(i).in0O or test_data(i).in1 respectively.

5.2.6 Assertions

Assertions are a method of mechanically testing values of variables under strict conditions and
are prevalent in automated tests of circuits. This is a method by which the timing and values of
variables (i.e., signals) can be evaluated against test criteria in a test bench and thus the
process of model validation can be automated. This is particularly useful for large designs and
also to ensure that any changes do not violate the overall design. It is important to note that
assertions are not used in many senses to debug a model, but rather to check it is correct in a
more formal sense.

For example, we can set an internal variable (flag) to highlight a certain condition (for
example, that two outputs have been set to ‘1’), and then use this with an assert statement to
report this to the designer and when it has occurred. For example, consider this simple VHDL
code:

1 assert flag = (x1 and x2)
2 report “The condition has been violated: circuit error”
3 severity Error;

If the condition occurs, then during a simulation the assertion will take place and the message
reported in the transcript:

1 # *x The condition has been violated: circuit error
2 # Time: 100 ns Iteration: 0 Instance: /testbench

This is very useful from a verification perspective as the user can see exactly when the error
occurred, but it is a bit cumbersome for debug purposes. The severity of the assertion can be
one of note, warning, error, and failure.

The same basic mechanism operates in Verilog, with the same keyword assert being used. If
we consider the same example, the Verilog code would be something like this:

1 assert (x1 & x2) $error(”The condition has been violated: circuit error”)

In Verilog, the severity command resulting from the assertion can be $fatal, $error (which is
the default severity) and $warning.

5.3 Libraries

5.3.1 Introduction

A typical HDL such as Verilog or VHDL as a language on its own is actually very limited in
the breadth of the data types and primitive models available. As a result, libraries are required

to facilitate design reuse and standard data types for model exchange, reuse, and synthesis.
The primary library for standard VHDL design is the IEEE library. Within the IEEE Design
Automation Standards Committee (DASC), various committees have developed libraries,
packages, and extensions to standard VHDL. Some of these are listed below:

* IEEE Std 1076 Standard VHDL Language

* IEEE Std 1076.1 Standard VHDL Analog and Mixed-Signal Extensions (VHDL-AMS)

* IEEE Std 1076.1.1 Standard VHDL Analog and Mixed-Signal Extensions - Packages for
Multiple Energy Domain Support

* IEEE Std 1076.4 Standard VITAL ASIC (Application Specific Integrated Circuit)
Modeling Specification (VITAL)

* IEEE Std 1076.6 Standard for VHDL Register Transfer Level (RTL) Synthesis (SIWG)

* IEEE Std 1076.2 IEEE Standard VHDL Mathematical Packages (math)

* IEEE Std 1076.3 Standard VHDL Synthesis Packages (vhdlsynth)

* IEEE Std 1164 Standard Multivalue Logic System for VHDL Model Interoperability
(Std_logic_1164)

Each of these working groups consists of volunteers who come from a combination of
academia, EDA industry and user communities, and collaborate to produce the IEEE
Standards (usually revised every 4 years).

5.3.2 Using Libraries

In order to use a library, first the library must be declared: library ieee; for each library. Within
each library a number of VHDL packages are defined, which allow specific data types or
functions to be employed in the design. For example, in digital systems design, we require
logic data types, and these are not defined in the basic VHDL standard (1076). Standard
VHDL defines integer, Boolean, and bit types, but not a standard logic definition. This is
obviously required for digital design and an appropriate IEEE standard was developed for this
purpose, IEEE 1164. It is important to note that IEEE Std 1164 is NOT a subset of VHDL
(IEEE 1076), but is defined for hardware description languages in general.

5.3.3 Std_logic Libraries

In order to use a particular element of a package in a design, the user is required to declare
their use of a package using the USE command. For example, to use the standard IEEE logic
library, the user needs to add a declaration after the library declaration as follows:

1 use ieee.std_logic_1164.al11;

The std_logic_1164 package is particularly important for most digital designs, especially for
FPGA, because it defines the standard logic types used by ALL the commercially available

simulation and synthesis software tools and is included as a standard library. It incorporates
not only the definition of the standard logic types, but also conversion functions (to and from
the standard logic types) and also manages the conversion between signed, unsigned, and
logic array variables.

5.4 std_logic Type Definition

As it is such an important type, the std_logic type is described in this section. The type has the
following definition:

uninitialized. This signal hasn’t been set yet.
unknown. Impossible to determine this value/result.
logic 0

logic 1

High Impedance

Weak signal, can’t tell if it should be 0 or 1

Weak signal that should probably go to 0

Weak signal that should probably go to 1

Don’t care

P I-FSN-=OXC

These definitions allow resolution of logic signals in digital designs in a standard manner that
is predictable and repeatable across software tools and platforms. The operations that can be
carried out on the basic std_logic data types are the standard built-in VHDL logic functions:

e and
e nand
e or

e nor

e Xor

e Xnor
e ot

An example of the use of the std_logic library would be to define a simple logic gate, in this
case a three input nand gate as shown in the following listing. The logic pin types are now
defined using the IEEE standard library type std_logic rather than the default birt type.

library ieee;
use ieee.std_logic_1164.all;

entity nand3 is
port (
in0, inl, in2 : in std_logic;
outl : out std_logic
)
end;

OO 0NN AW~

—_

Specification

RTL HDL code entry |«

NO

RTL HDL
simulation OK?

YES

Synthesis to netlist

Netlist
simulation OK?

YES

Place and route

Timing
analysis OK?

YES

Test hardware

Figure 5.3
HDL based FPGA design flow.

11 architecture simple of nand3 1is
12 begin

13 outl <= in0 nand inl nand in2;
14 end;

5.5 Synthesis

5.5.1 Design Flow for Synthesis

The basic HDL design flow is shown in Figure 5.3 and, as can be seen from this figure,
synthesis is the key stage between high level design and the physical place and route which is
the final product of the design flow. There are several different types of synthesis ranging from
behavioral, to RTL and finally physical synthesis.

Behavioral synthesis is the mechanism by which high-level abstract models are synthesized to
an intermediate model that is physically realizable. Behavioral models that are not directly
synthesizable can be written in VHDL and so care must be taken with high-level models to
ensure that this can take place, in fact. There are limited tools that can synthesize behavioral
VHDL and these include the Behavioral Compiler from Synopsys, Inc. and MOODS, a
research synthesis platform from the University of Southampton.

RTL (Register Transfer Level) synthesis is what most designers call synthesis, and is the
mechanism whereby a direct translation of structural and register level VHDL can be
synthesized to individual gates targeted at a specific FPGA platform. At this stage, detailed
timing analysis can be carried out and an estimate of power consumption obtained. There are
numerous commercial synthesis software packages, including Design Compiler®, and
Synplify®, but this is not an exhaustive list as there are numerous offerings available at a
variety of prices.

Physical synthesis is the last stage in a synthesis design flow and is where the individual gates
are placed (using a floor plan) and routed on the specific FPGA platform.

5.5.2 Synthesis Issues

Synthesis basically transforms program-like VHDL into a true hardware design (netlist). It
requires a set of inputs, a VHDL description, timing constraints (when outputs need to be
ready, when inputs will be ready, data to estimate wire delay), a technology to map to (list of
available blocks and their size/timing information) and information about design priorities
(area vs. speed). For big designs, the VHDL will typically be broken into modules and then
synthesized separately. 10K gates per module was a reasonable size in the 1990s; however,
tools can handle a lot more now.

5.6 RTL Design Flow

Register Transfer Level (RTL) VHDL is the input to most standard synthesis software tools.
The VHDL must be written in a form that contains registers, state machines (FSM), and
combinational logic functions. The synthesis software translates these blocks and functions
into gates and library cells from the FPGA library. The RTL design flow is shown in

Figure 5.3. Using RTL VHDL restricts the scope of the designer as it precludes algorithmic
design, as we shall see later. This approach forces the designer to think at quite a low level,
making the resulting code sometimes verbose and cumbersome. It also forces structural
decisions early in the design process, which can be restrictive and not always advisable, or
helpful.

The design process starts from RTL (Register Transfer Level) VHDL, as follows:

* Simulation (RTL): needed to develop a test bench (VHDL).

* Synthesis (RTL): targeted at a standard FPGA platform.

* Timing Simulation (Structural) simulate to check timing.

* Place and Route using standard tools (e.g., Xilinx Design Manager).

Although there are a variety of software tools available for synthesis (such as
LeonardoSpectrum™ or Synplify), they all have generally similar approaches and design
flows.

5.7 Physical Design Flow

Synthesis generates a netlist of devices plus interconnections. The Place and Route software
figures out where the devices go and how to connect them. The results are not as good as
you’d perhaps like: a 40-60% utilization of devices and wires is typical. The designer can
trade off run time against greater utilization to some degree, but there are serious limits.
Typically the FPGA vendor will provide a software toolkit (such as the Xilinx Design
Navigator, or Altera’s Quartus® II tools) that manages the steps involved in physical design.
Regardless of the particular physical synthesis flow chosen, the steps required to translate the
VHDL or EDIF output from an RTL Synthesis software program into a physically
downloadable bit file are essentially the same and are listed here:

1. Translate

2. Map

3. Place

4. Route

5. Generate accurate timing models and reports
6. Create binary files for download to device

5.8 Place and Route

There are two main techniques to place and route in current commercial software: which are
recursive cut and simulated annealing.

5.8.1 Recursive Cut

In a recursive cut algorithm, we divide the netlist into two halves, and move devices between
halves to minimize the number of wires that cross cut (while keeping the number of devices in
each half the same). This is repeated to get smaller and smaller blocks.

5.8.2 Simulated Annealing

The simulated annealing method Laarhoven [9] uses a mathematical analogy of the cooling of
liquids into solid form to provide an optimal solution for complex problems. The method oper-
ates on the principle that annealed solids will find the lowest energy point at thermal equilibrium
and this is analogous to the optimal solution in a mathematical problem. The equation for

the energy probability used is defined by the Boltzmann distribution given by Equation (5.1):

1 E
P(E) = expl ———=1. 5.1

B =z p(kBT> oD
where Z(T) is the partition function, which is a normalization factor dependent on the
temperature T, kg is the Boltzmann constant, and E is the energy. This equation is modified
into a more general form, as given by (5.2), for use in the simulated annealing algorithm.

1 CG)

where Q(c) is a general normalization constant, with a control parameter c, which is analogous
to temperature in Equation (5.1). C(i) is the cost function used, which is analogous to

the energy in Equation (5.1). The parameters to be optimized are perturbed randomly, within a
distribution, and the model tested for improvement. This is repeated with the control parameter
decreased to provide a more stable solution. Once the solution approaches equilibrium,

then the algorithm can cease. A flowchart of the full algorithm applied is given in Figure 5.4.

5.9 Timing Analysis

Static timing analysis is the most commonly used approach. In static timing analysis, we
calculate the delay from each input to each output of all devices. The delays are added up
along each path through the circuit to get the critical path through the design and hence the
fastest design speed. This works as long as there are no cycles in the circuit; however, in these
cases the analysis becomes harder. Design software allows you to break cycles at registers to
handle feedback if this is the case. As in any timing analysis, the designer can trade off some
accuracy for run time. Digital simulation software such as ModelSim or Verilog will give fast
results, but will use approximate models of timing, whereas analog simulation tools like
SPICE will give more accurate numbers, but take much longer to run.

5.10 Design Pitfalls

The most common mistake that inexperienced designers make is simply making things too
complex. The best approach to successful design is to keep the design elements simple, and
the easiest way to manage that is efficient use of hierarchy. The second mistake that is closely

Improved ?

N
exp (ACI.J/C) > Random [0,1]?

v Yes

Accept | Don’t Accept
]

e
Yes

| Modify Control Parameter c |

NO/\ Yes . . "
System Frozen ? »> Finish Optimization >

»

Figure 5.4
Flowchart of the simulated annealing method.

related to design complexity is not testing enough. It is vital to ensure that all aspects of the
design are adequately tested. This means not only carrying out basic functional testing, but
also systematic testing, and checking for redundant states and potential error states. Another
common pitfall is to use multiple clocks unnecessarily. Multiple clocks can create
timing-related bugs that are transient or hardware dependent. They can also occur in hardware
and yet be missed by simulation.

5.10.1 |Initialization

Any default values of signals and variables are ignored. This means that you must ensure that

synchronous (or asynchronous) sets and resets must be used on all flip-flops to ensure a stable
starting condition. Remember that synthesis tools are basically stupid and follow a basic set of
rules that may not always result in the hardware that you expect.

5.10.2 Floating Point Numbers and Operations

Data types using floating point are currently not supported by synthesis software tools. They
generally require 32 bits and the requisite hardware is just too large for most FPGA and ASIC
platforms.

5.11 Summary

This chapter has introduced the practical aspect of developing test benches and validating
VHDL models using simulation. This is an often overlooked skill in VHDL (or any hardware
description language) and is vital to ensuring correct behavior of the final implemented
design. We have also introduced the concept of design synthesis and highlighted the problem
of not only ensuring that a design simulates correctly, but also how we can make sure that the
design will synthesize to the target technology and still operate correctly with practical delays
and parasitics. Finally, we have raised some of the practical implementation issues and
potential problems that can occur with real designs, and these will be discussed in more detail
in Part 4 of this book.

An important concept useful to define here is the difference between validation and
verification. The terms are often confused, leading to problems in the final design and meeting
a specification. Validation is the task of ensuring that the design is doing the right thing. If the
specification asks for a low pass filter, then we must implement a low pass filter to have a valid
design. We can even be more specific and state that the design must perform within a
constraint. Verification, on the other hand, is much more specific and can be stated as doing
the right thing right. In other words, verification is ensuring that not only does our design do
what is required functionally, but in addition it must meet ALL the criteria defined by the
specification, preferably with some headroom to ensure that the design will operate to the
specification under all possible operating conditions.

Finally, we have introduced several design tools and it should be stressed that this in no way
indicates a preference, and of course there are a large number of design tools available
including some open source tools (many more than I have listed in this chapter). As is usual
with the world of design automation, it is really a matter of user preference as to which tools
are used.

Synthesis

6.1 Introduction

The original intention of hardware description languages was to have a design specification
language for digital circuits. The main goal of the work was to have a design representation
that could be simulated to test whether the specification was fit for purpose. When VHDL was
standardized as IEEE Standard 1076, the broader application of VHDL for not just simulation
but as an integral part of the hardware design flow became possible.

The original method of designing digital circuits was primarily through the development of
schematic based designs, using gate libraries to effectively generate RTL netlists directly from
the schematics. This is clearly a reasonable technique when the designs are relatively small,
but it quickly becomes apparent that for designs of any size this approach is simply not
realistic for modern FPGAs that require millions of gates.

EDA companies realized fairly early on in the HDL development process that if there was a
standard language that could represent a data flow and a control flow, then the potential existed
for automatically generating the gate level HDL from a higher level description, and RTL was
the obvious place to start. RTL (Register Transfer Logic) has the advantage of representing the
data flow and control flow directly, and can be mapped easily onto standard gate level logic.
The resulting synthesis software (such as the Design Compiler from Synopsys) quickly
established an important role in the digital design flow for both ASIC and FPGA designs and
has in fact proved to be the driving force in the explosion of productivity of digital designers.
The modern high density designs would not be possible without RTL synthesis.

For these reasons, modern day designers often simplify RTL synthesis to just “synthesis.”
However, this is not the whole story. As designs have continued to become more complex,
there has been an ever-increasing push to behavioral synthesis; however, there is not the same
support from the EDA industry for behavioral synthesis software.

6.1.1 HDL Supported in RTL Synthesis

While VHDL is standardized, synthesis is not, so the VHDL that can be synthesized is
a subset of the complete VHDL language. Another common problem for designers is the fact

http://dx.doi.org/10.1016/B978-0-08-097129-2.00006-4

that different synthesis software packages will give different output results for the same input
VHDL, even to the extent that some will synthesize and some will not under certain conditions.
This also applies in equal measure to Verilog models, where various constructs will be not

be able to be synthesized. Some of these are now discussed in the remainder of this chapter.

There are two types of unsupported elements in VHDL.:

* those that will cause a synthesis failure;
* those that are just ignored.

The failure elements are in many respects easier to manage as the synthesis software will
provide an error message. It is the ignored elements that can be more insidious as they can
obviously leave errors in the synthesized design that may not be picked up until the hardware
is tested.

Initial conditions

VHDL supports the initial condition being set for signals and variables; however, this is not
physically realized. In practice the initial conditions in the synthesized design are random and
so in a practical design a reset condition should always be defined using an external reset pin.
This is because, during synthesis, the initial conditions are ignored.

Concurrent edges

It is common to use a clock edge as a trigger for a model, so a simple VHDL model may have
a process to wait for the rising edge of a clock.

1 process (clk)

2 if rising_edge(clk) then
3 qout <= din;

4 end if;

5 end process;

Or in a similar way:

1 process (clk)

2 if clk’event and clk="1" then
3 gout <= din;

4 end if;

5 end process;

What is NOT valid is to have more than one rising edge as the trigger condition, as this would
fail the synthesis.

1 process (clk, clk2)

2 if rising_edge(clk) and rising_edge(clk2) then
3 gout <= din;

4 end if;

5 end process;

6.2 Numeric Types

Synthesis is only supported for numbers that have a finite range. For example, an integer type
with an undefined range (infinite) is not supported by synthesis software. In general terms it is
often required that designers specify the range of integers and other integer based numbers
prior to synthesis (such as signed or unsigned). This can be a subtle restriction as vectors that
have a number as the index must have this number defined in advance, so busses cannot be of
a variable size. Floating point (real) numbers are generally not supported by synthesis
software tools, as they do not have floating point libraries defined.

6.3 Wait Statements

Wait statements are only supported if the wait is of the form of an implied sensitivity list and a
specific value. So, if the statement is something like:

1 Wait on clk = "17;
then this is supported for synthesis. If the wait statement is dependent on a specific time delay

then this is NOT supported for synthesis. For example, a statement in VHDL such as this is
not supported:

1 Wait for 10 ns;

6.4 Assertions

Assertions in any form are ignored by the synthesis software.

6.5 Loops

The FOR loop is a special case of the general loop mechanism in VHDL and synthesis
requires that the range of the loop must be defined as a static value, globally. This means that
you cannot use variables to define the range of the FOR loop on the fly for synthesis. If a while
loop is implemented, then there has to be a wait statement in the loop somewhere; otherwise,
it becomes a potentially infinite loop.

6.6 Some Interesting Cases Where Synthesis May Fail

Unfortunately, there are differences between synthesis software packages and so care must be
taken to ensure interoperability between packages, particularly in multiteam designs or when
using third-party VHDL cores. The cores may have been synthesized using software different
from the one you are using in your design flow, so the advertised synthesizable core may not

always be synthesizable for you, in your design flow.

Because of this, it is usually a good idea to keep the VHDL as generic as possible and avoid
using tricks of a particular package if you plan to deliver IP cores or use different tools. This
may lead to slightly less compact VHDL, but the reliability of the VHDL will be greater, and
potential problems (which could cause significant delays later in the design process,
particularly in an integration phase) can be avoided.

One case is the use of different trigger variables in a process. For example, if there is a clock
and a reset signal, or a clock and an enable signal, it is tempting to combine the logic into one
expression such as:

1 if (clk’event and clk="1" and nrst =’0") then

2
3 end if;

However, in some synthesis software this would cause an error. It is always preferable to
separate these variables into nested if statements for three reasons:

1. The code will be more readable.
2. The chance of undefined logic states is reduced.
3. The synthesis software will not have a problem with your VHDL!

6.7 What Is Being Synthesized?

6.7.1 Overall Design Structure

The basic approach for synthesizing digital circuits is to consider every design block as a
combination of a controller and a data path. The controller is generally a finite state machine
(FSM), clocked, and the data path is usually combinatorial logic, but there may also be storage
in there and so a clock may also be required. The basic outline is shown in Figure 6.1.

6.7.2 Controller

The controller is producing the control signals for the data path logic and may also have
external control signals, so there are both internal and external control signals in the general
case. As this is a FSM, the design is synchronous and therefore is clocked and will generally
have a reset condition.

The controller can be represented using a state diagram or bubble diagram. This shows each
individual state and all the transitions between the states. The controller can be of two basic
types: Moore (where the output of the state machine is purely dependent on the state
variables) and Mealy (where the output can depend on the current state variable values AND
the input values). The behavior of the state machine is represented by the state diagram (also
sometimes called a state chart) as shown in Figure 6.2.

External control

Controller

i L Internal control

™\ Data
Input data path Output data
L logic

Clock

Figure 6.1
Synthesizable digital circuit.

Figure 6.2
Basic finite state machine.

The technique for modeling finite state machines will be covered later in this book, but the key
elements to remember are that, as this is a finite state machine, there are a finite number of
states, and hence the number of storage elements (D types) is implicit in this definition. Also,
the VHDL allows the definition of the state names as an enumerated type, which makes the
VHDL readable, easy to understand and also easily synthesizable.

For example, take a simple example of a 2-state machine, where the states are called ON and
OFF. If the onoff signal is low then the machine will be OFF and if the onoff switch is high,
then the state machine will go into the ON state.

To implement this simple state machine in VHDL, we can use a new type to represent the
states:

1 type states is (OFF, ON)
2 signal current_state, next_state : states;

Notice that in the FSM VHDL we have defined both the current and the next state. The main
part of the FSM can be easily implemented using a case statement in VHDL within a process
that waits for changes in both the current_state signal and any external variables or control
signals.

1 process (current_state, onoff)
2 begin

3 case current_state is
4 when OFF =>

5 if onoff = 1’ then
6 next_state <= ON;
7 end if;

8 when ON =>

9 if onoff = "0’ then
10 next_state <= OFF;
11 end if;

12 end case;

13 end process;

Elsewhere in the architecture, the current_state needs to be assigned to the next state as
follows:

1 current_state <= next_state;

If we were to do something similar using Verilog, then the first step of defining a new type
would be to specify the state names as defined below:

1 localparam ON = 1’d0;

2 Tocalparam OFF = 1dl;
This is obviously a very simple example with only two states, requiring just one bit (4 states
would require 2 bits, 8 states 3 and so on).

Using this definition, the state variables can then be defined using a simple register, and again
only one bit is required for that:

1 reg current_state = OFF;
2 reg next_state = 0OFF;

So, the current state and the next state variables have been defined, and the next step is to
define the state machine itself. We have several methods to implement this; however, if we
stick to the use of a case statement, then the following code would demonstrate the correct
behavior:

»| Register 5 Combinational . Register ICombmatlonal . Register '

logic logic

Clock
Figure 6.3
Data path.
1 always @« begin
2 // Next state logic
3 // State machine
4 case (current_state)
5 OFF: next_state = onoff ? OFF : ON;
6 ON: next_state = onoff ? ON : OFF;
7 default: next_state = OFF;
8 endcase

As with the VHDL example, the transition to the next state needs to be handled in a
synchronous manner, and in Verilog this could be using the rising edge of the clock once again:
1 always @ (posedge CLK) begin

current_state <= next_state;
3 end

6.7.3 Data Path

The data path logic is the logic (as the name suggests) to process the input data and generate
the correct output data. The functionality of the data path logic will usually be divided into
blocks and this offers the possibility of optimization for speed or area. For example, if area is
not an issue, but speed is the primary concern, then a large design could be constructed to
generate the output in potentially a single clock cycle. If the area is not an issue, but throughput
is required, then pipelining could be used to maximize the overall data rates, although the
individual latency may be high. Finally, if area is the critical factor, then single functional
blocks can be used and registers used to store intermediate values and the same function
applied repeatedly. Clearly this will be a lot slower, but potentially take a lot less space.

In the basic data path model there are blocks of combinational logic separated by registers.
Clearly there are options for optimizing the data flow by considering how best to move the
data between the registers for speed or area optimization.

It is important to ensure that some simple rules are followed to ensure robust synthesis. The
first is to make sure that each signal in the combinational block is defined for every cycle; in
other words it is important not to leave undefined branches in case or if statements. If this
occurs, then a memory latch is inferred and therefore a latch will be synthesized and as this is
not linked to the global clock, unpredictable behavior can result.

6.8 Summary

This chapter has introduced the concept of synthesis, both from a designer’s point of view and
also the implications of using certain types of VHDL with the intention of synthesizing it. The
assumptions and limitations of the various approaches have been described and some sensible
practical approaches to obtaining more robust designs defined.

Introduction to FPGA Applications

The aim is of the applications part of this book is to identify key points/issues and “nuggets”
of information that are of practical use to the designer. The technical information on the issues
provided later in the book are referenced, enabling the reader to see the “wood for the trees”
and select the “trees” they need to solve a particular issue. Each application uses a
combination of block diagrams, state diagrams and code snippets to explain the key concepts
in making the application work. Detailed analysis of specific aspects of the design are forward
referenced as required.

The first application is a high-speed video monitor system that requires the implementation of
a link to a video camera, and also interfaces to RAM and a hard disc. While this is a notional
system, the concept is in common usage in a variety of contexts. The techniques covered
include the interface to some standard camera formats, handling high speed serial data,
managing data storage, and finally integrating the data throughout effectively.

The second application is more about processing power and illustrates the practical aspects of
developing multiple processor cores on a standard FPGA platform and how that can be
managed in practice. To this end a simple processor is developed from scratch to illustrate
how those building blocks can be managed and implemented on an FPGA.

High Speed Video Application

7.1 Introduction

This application is designed to show how several high data rate applications can be handled
using VHDL on FPGAs. The system consists of a high-speed camera, processor core, disk
drive interface, RAM interface, and serial link to an external PC. The overall system has been
chosen to illustrate how to move large amounts of data around quickly and efficiently. The
outline of such a test application is shown in the following figure. As can be seen, there are
several key aspects involved, but mainly it is about moving large amounts of data around a
system quickly, efficiently, and reliably.

The basic system is shown in outline form in Figure 7.1:
The key performance aspect of this system is in the three interfaces:

¢ Camera to FPGA
¢ FPGA to PC/Hard Disc Drive (HDD)
« FPGA to RAM

If we consider the basic camera performance criteria, we have four issues to consider:

* Resolution

* Frame rate

* Color specification
* Clip size

In this example, the resolution is defined as being 640 x 480 pixels, the color mode is 24-bit
color (3 x 8 bit planes), the maximum frame rate is 100 per second and finally the basic clip
size is anything up to 10s.

What is not shown in the overview figure is the requirement for some basic control options
(such as play, record, store) to allow the stored clips to be replayed using a standard VGA
output (available on most FPGA development kits) or stored for long-term storage on a hard
disc drive (or similar high capacity storage device). This could be handled separately using a
PC interface, but that detail is beyond the scope of this basic system description.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00007-6

Figure 7.1
Video monitor system overview.

7.2 The Camera Link Interface

7.2.1 Hardware Interface

There are a number of approaches for linking cameras for the high-speed transfer of data, with
the two most common being USB (to PCs) and a standard Camera Link using LVDS serial
data transmission. The LVDS (Low Voltage Differential Swing) system is a differential serial
link that uses voltages of about 350 mV to transmit high-speed data with low noise and low
power. Many FPGA development kits have a standard LVDS bus available and this means that
the signals can be connected directly between the camera and the FPGA board to transfer data
from the camera to the FPGA and hence to the storage (either RAM or HDD).

7.2.2 Data Rates

The actual data rate required is theoretically the resolution multiplied by the frame rate
multiplied by the number of bits required for each pixel, which in this example would mean
the following calculation:

Data rate = Resolution * frame rate * bits/pixel (7.1)

which for the specification would mean a total data rate of:

Data rate = 640 % 480 % 100 % 24 (7.2)
Data rate = 737,280,000 bps (7.3)

This equates to a data rate of over 90 MB/s (megabytes per second) and as such is extremely
fast for a practical application. Even if the FPGA could run at 100 MHz, the margin on such a
system is pretty small.

7.2.3 The Bayer Pattern

Luckily, in practice, most camera systems do not use 24 bits in this raw fashion. Kodak has
developed the Bayer pattern which is a technique whereby instead of requiring each pixel to
have its own individual three color planes (requiring 24 bits in total), an array of color filters is
placed over the camera sensor and this limits the requirement for data bits per pixel to a single
8-bit byte (with a known color filter in place). The Bayer pattern is repeated over the image in
a fixed configuration to standardize this process. The Bayer pattern is shown in Figure 7.2.

Clearly, using this approach, the required data rate can be divided by three and reduces to a
more manageable 30 MB/s. Clearly, the disadvantage of this approach is that the resolution is
reduced; however, most images can be reconstructed fairly readily using a method of
interpolation which checks firstly which color the current pixel is (red, green, or blue, denoted
by R, G or B respectively) and then takes an average of the neighboring pixels of the missing
colors. For example, if the current pixel color is green, then the blue and red color of the
current pixel is obtained by averaging the neighboring blue (2) and red (2) pixels, respectively.

BEEEE
REIBER
EEEEEE
CRCIBCEER
=@ EFEEEE
&R /B.B.B.

Bayer pattern Bayer pattern extended
over an image

0.0 (0,0)

Figure 7.2
Basic Bayer pattern, and extended over a larger image area.

7.2.4 Memory Requirements

Taking the use of Bayer patterns to reduce the sheer amount of data required into account, this
means that the RAM requirements are still high; in this case for a 640 x 480 image size, this
will require a memory size of:

Memory size = resolution x* bits/pixel (7.4)
Memory size = resolution * 8 bits (7.5)
Memory size = 640 x 480 * & bits (7.6)
Memory size = 307,200 * 8 bits (per frame) @7

Clearly, a large memory is going to be required for any significant memory storage and it is
unlikely to be possible to store this on the FPGA itself. A more practical solution will be to use
some RAM connected to the FPGA (or perhaps available on the development board itself).
Options for the memory could include SDRAM or Flash memory. Both of these options will
be discussed in detail later in the book; however, it is useful to consider the advantages and
disadvantages of each approach in general. If we consider SDRAM (Synchronous Dynamic
Random Access Memory), the key aspects of this type of memory to consider are:

* This type of DRAM (Dynamic RAM) relies on transistor capacitance on gates to store
data.

* DRAM is much more compact than SRAM (Static RAM).

* DRAM cannot be synthesized; you need a separate DRAM chip.

* SDRAM requires a synchronization clock that is consistent with the rest of the hardware
system (it is designed to operate with microprocessors).

* DRAM data must be refreshed as it is stored charge and decays after a certain time.

* DRAM is slower than SRAM.

Static RAM (SRAM) can be considered in a similar way to a ROM chip and it also has
(differing) key aspects of behavior to consider:

* Memory cells are based on standard latches.

* SRAM is fast.

* SRAM is less compact than DRAM (or SDRAM).

* SRAM can be synthesized on an FPGA so is ideal for small, fast registers, or memory
blocks.

Static RAM is essentially asynchronous, but can be modified to behave synchronously (as
SDRAM is the synchronous equivalent of DRAM), and this is often called Synchronous
RAM. Flash memory is useful to consider at this point, even though its operation is
fundamentally different from the memory types considered thus far, simply because it is easy

to use and is commonly available on many FPGA development boards. Flash memory is
essentially a form of EEPROM (electrically programmable ROM) that can be used as a form
of persistent RAM. Why persistent? In Flash memory, the device memory is retained even
when the power is removed, so it is often used as a form of ROM, which makes it an
interesting memory to use on FPGA systems as it could be used to store the FPGA program,
but also used as a RAM storage (dynamically) for current data.

7.3 Getting Started

Now that the basic context of the design has been described and the basic specification firmed
up, the first stage of the actual design can start. In practice, many of the individual blocks may
exist in some form, but may need to be modified to fit the specific application requirements.
However, generally speaking it is sensible to start with a top-down design methodology. What
that means is that, based on the specification, a top level block can be designed that has the
correct pin interface (although this may change as the design is refined) and an outline block
structure that contains the functional blocks in the design. If we consider the design example
in this part of the book a typical starting point will be a top level diagram showing the basic
building blocks of the design and the overall interfaces. Some of the details will not be
complete at this stage, but we can start to construct a top level design and we can fill in the
details later as we go on with the details of each design block.

Figure 7.3 shows the outline top level design of the application.

The essential features of the design are captured in this sketch: the main functional blocks, the
key interfaces and also notice that we have identified a system clock and reset that will
propagate to all the individual functional blocks. Notice also that in the original design we did
not specify the user input mechanism: that is, how does the user control the camera interface
or store data? We have made a design decision at this point, which is to use a simple mouse
and keyboard interface to provide the user control to the FPGA system. This allows a flexible
approach, so in the first instance, we could use mouse keys or specific keys on the keyboard to
initiate a record sequence, or playback, or store, but ultimately, depending on how complex we
wish to make the design, it would be possible to design a simple user interface with buttons or
similar user interface features, actually on the display to allow controls to drive the system.

7.4 Specifying the Interfaces

From the sketch shown in Figure 7.1 we can begin to identify the interface requirements for
the top level design. First, we clearly need a clock and reset (active low), so keeping things
simple (always a good strategy) we can define the clock pin as clk and the reset pin as nrst.
These are standard logic connections, and so we will use the basic standard logic type defined
in the IEEE std_logic library. This does not define any details about the actual implementation

Figure 7.3
Top level design sketch.

of the pins (5V or 3.3V or even 1V), but simply the number of logic levels in the model. The
actual implementation is defined by the FPGA being used.

7.5 Defining the Top Level Design

For this design we must define a top level entity name, and also individual block names. It is
always a good idea to use meaningful names (unless they become unmanageable, in which
case acronyms can be helpful), and hierarchy can also help in keeping duplicate name
problems to a minimum. For example, in this case, the design is for an image handler and
storage interface, which is clearly a mouthful, so in this example, we will shorten it to [HSI
(remember that VHDL is case insensitive). Each main block below this top level will then
have the prefix ihsi_ to identify the block in the design. This also has the effect of keeping all
the blocks grouped together in the same place alphabetically in the compiled library, which

makes things easier to find. We can therefore produce the first initial top level entity for the
complete application:

Tibrary ieee;
use ieee.std_logic_1164.al11;
entity ihsi is
port (
clk : in std_logic;
nrst : in std_logic
)
end entity ihsi;

0N AN WA WN =

In Verilog this will become:

1 module ihsi (clk, nrst)
2 input clk;

3 input nrst;

4

5 endmodule;

We can then identify each major block that requires an external interface and add the requisite
connection points to the top level entity. It is worth remembering that at each stage of the
design, we do not need to have every block defined completely to test other parts of the design.
We can use behavioral models or even empty models to simply ensure that the interfaces are in
place and then replace each empty block with a fully functional one. We can also start with
behavioral models, replace with RTL models and finally even replace these with synthesized
ones. Thus, a complete system can be tested piece by piece until all the blocks are

in place.

7.6 System Block Definitions and Interfaces

7.6.1 Overall System Decomposition

In this specific application we have several important blocks with external interfaces
including:

¢ Mouse Controller (PS/2)

* Keyboard Controller (PS/2)
* Flash Memory

* VGA Output

e Camera Link

¢ PC Interface

We can take each of these interfaces in turn and specify the requisite interface connections
required for the design.

7.6.2 Mouse and Keyboard Interfaces

The mouse and keyboard PS/2 interfaces are relatively easy. Each of these has a clock and a
data connection and so for each we can define two pins as follows:

Mouse: mouse_clk, mouse_data

Keyboard: key_clk, key_data

In the general case, the PS/2 interface (to be covered in more detail in Part 3 of this book)
allows both directions to be used (i.e., device to controller and vice versa), so these
connections must be defined as INOUT std_logic connections in our top level entity.

7.6.3 Memory Interface

For the memory interface, we have two options. The first option is to define precisely the type
of memory we are going to use in this application (RAM, Flash, EEROM, DRAM, SRAM)
and produce a specific interface that will work for only that type of memory. Another
approach is to consider that we will treat whatever type of memory we have as generic RAM
internally, and to design a memory block that will interface to the actual memory—we will
treat the memory interface as essentially a virtual RAM block. For the initial design, therefore,
we can treat the memory as a simple synchronous RAM block that has a clock, data bus,
address bus, and write and read signals. For this initial interface, therefore, we will require the
following signals only in VHDL.:

Signal Name Direction Type Notes
Clock mem_clk out std_logic
Data bus mem_data(31:0) inout std_logic
Address bus | mem_addr(31:0) out std_logic
Write mem_nwr out std_logic | (active low)
Read mem_nrd out std_logic | (active low)

In Verilog, this will be almost identical, with the definition as follows:

More details on modeling the memory interface and dedicated memory itself is given in
Chapter 11.

Signal Name Direction Type Notes
Clock mem_clk out reg
Data bus mem_data inout reg [31:0]
Address bus | mem_addr out reg [31:0]
Write mem_nwr out reg (active low)
Read mem_nrd out reg (active low)

7.6.4 The Display Interface: VGA

For the VGA output (to be described later in this book in more detail) we require a specific
definition of pins for the connection to the VGA connector on a development board or system.
The first set of pins required in any VGA system is the clock and sync pins. The global VGA
clock needs to be set to a specific frequency (depending on the monitor), such as 25 MHz, and
this must be derived from the system clock on the FPGA board (say 100 MHz). The VGA
clock pin is called the pixel clock and we can use the naming convention of vga_ as a prefix,
followed by the functional name. So, for the pixel clock, the pin is named
vga_out_pixel_clock. In addition to the clock, there are three synchronization signals
required, the horizontal sync (vga_hsync), the vertical sync (vga_vsync), and the composite
sync (vga_comp_sync). Finally, there is a blank pulse (vga_out_blank_z). The set of pins
defined next are the three color data sets. VGA has three color planes (red, green, and blue),
each with a definition of 8 bits, giving 24 bits in total. As has been described previously, these
can be processed using a Bayer pattern, but when the final output pixel data is put together, all
three planes require some output values to be set (even if they are all zero). We can define
these pins as 8 bit vectors as follows:

1 vga_out_red : out std_logic_vector (7 downto 0);
2 vga_out_green : out std_logic_vector (7 downto 0);
3 vga_out_blue : out std_logic_vector (7 downto 0);

or in Verilog:

1 reg [7:0] vga_out_red;
2 reg [7:0] vga_out_green;
3 reg [7:0] vga_out_blue;

This provides a complete definition of the VGA interface to the monitor from the system as a
whole. More details of the VGA interface mechanism is given in Chapter 14.

7.7 The Camera Link Interface

The Camera Link standard has been devised to provide a generic 26-pin interface to a wide
range of digital cameras and as such we can specify a standard interface at the top level of our
design. Although the interface requires 26 pins, they are configured differentially, and so we
can specify the basic interface functionally using only 11 pins. There is a clock pin, which we
can define as camera_clk, and then four camera control lines defined as ccl to cc4,
respectively. Using the camera_ prefix, we can therefore name these as camera_ccl,
camera_cc2, camera_cc3, and camera_cc4. There are two serial communication lines, serTFG
(comms to frame grabber) and serTC (comms to camera), which we can name as
camera_sertfg and camera_sertc, respectively. Finally, we have the four connection pins from
the camera which will contain the data from the device and these are named camera_x0,
camera_x1, camera_x2, and camera_x3. Clearly, the actual interface requires differential
outputs, and so eventually an extra interface will be required to translate the simple form of
interface defined here to the specific pins of the connector.

7.8 The PC Interface

The interface to the PC could be using either a standard serial interface such as USB (covered
in Chapter 15) or using a direct interface to a hard disc drive (HDD).

The HDD interface offers a different challenge from the RAM memory interface discussed
previously. There are numerous standards for interfacing to HDDs including the major two in
current use IDE/AT and SCSI. SCSI (or Small Computers System Interface) is commonly
used for high-speed drives and has been historically used extensively in Unix based systems.
SCSI is a generic systems interface, and therefore it allows almost ANY type of device to be
attached to the system (SCSI) bus.

The IDE/AT standard was devised for HDDs only and so has the advantage of being
specifically designed for HDD interfaces. IDE (Intelligent Drive Electronics/AT Attachment)
drives are generally slower, but significantly cheaper than SCSI drives and so PCs tend to use
an IDE/ATA interface and higher end workstations will use SCSI drives instead.

In this context, the IDE/ATA drive is highly appropriate as the interface is much simpler than
the SCSI interface, and therefore more practical in developing a prototype system. If a more
advanced system is required, then clearly this can be changed later. The IDE approach is to
have a number of master and slave devices on the bus (anyone who has looked inside a PC
will recognize the need for setting a master/slave switch or jumper on a drive before
installation of an extra or new HDD). A bus controller sets a series of registers with
commands and the selected device on the chain will execute. It is worth noting that the bus
will operate at the speed of the slowest device on the chain.

There are a total of 13 registers in the IDE/ATA configuration. These registers are divided into
command block registers and control block registers. The command block registers are for
sending commands to the device or for posting the status of the device. The control block
registers are used for device control and for posting an alternate status. The full details of
interfacing to an IDE/ATA device is beyond the scope of this book and is not used in this
example.

The complexity of the IDE/ATA interface is such that it would probably take several thousand
lines of VHDL to implement completely. If the performance requirements were such that it
was essential, then the reader can find numerous sources of information to implement this
design, including the ATA 6/UDMA100 specification.

An alternative approach is to use a standard interface such as USB with memory buffering and
compression to manage the data storage issues, where the USB interface is discussed in detail
in Part 3 of this book.

7.9 Summary

In summary, this chapter shows how a high-level specification can be practically decomposed
into a series of manageable problems that may all have a relatively simple solution. The key to
successful systems design is to decompose the design into blocks that have a definable core
function. This can then be implemented directly in VHDL. The second aspect of the design is
to analyze the boundaries.

A common phrase coined by systems designers is “problems migrate to the boundaries.” In
other words, we can easily construct a VHDL design if we know the core functionality;
however, getting the individual blocks to communicate successfully is often much harder. As a
result, the designer often spends a lot of debug time in integrating a number of different
functions together, and being forced to rewrite large sections of code to make that happen.

A useful approach to handling this specific problem is to create empty VHDL models that do
not operate functionally, but do have the correct interfaces. These models can be tested with
basic communications test data to ensure that the correct signals are in place, the data can be
passed around the complete design at the required data rates, and that errors in signal names,
directions, and types can be sorted out prior to developing the core VHDL.

This chapter provides a useful introduction to the process of modeling and designing complex
systems using VHDL and Verilog. The general approach of thinking at a high level, without
going too deeply into the details of each block, has been highlighted.

Simple Embedded Processors

8.1 Introduction

This application example chapter concentrates on the key topic of integrating processors onto
FPGA designs. This ranges from simple 8-bit microprocessors up to large IP processor cores
that require an element of hardware-software co-design involved. This chapter will take the
reader through the basics of implementing a behavioral based microprocessor for evaluation
of algorithms, through to the practicalities of structurally correct models that can be
synthesized and implemented on an FPGA.

One of the major challenges facing hardware designers in the 21st century is the problem of
hardware-software co-design. This has moved on from a basic partitioning mechanism based
on standard hardware architectures to the current situation where the algorithm itself can be
optimized at a compilation level for performance or power by implementing appropriately at
different levels with hardware or software as required. This aspect suits FPGAs perfectly, as
they can handle fixed hardware architecture that runs software compiled onto memory, they
can implement optimal hardware running at much faster rates than a software equivalent
could, and there is now the option of configurable hardware that can adapt to the changing
requirements of a modified environment.

8.2 A Simple Embedded Processor

8.2.1 Embedded Processor Architecture

A useful example of an embedded processor is to consider a generic microcontroller in the
context of an FPGA platform. Take a simple example of a generic 8-bit microcontroller as
shown in Figure 8.1.

As can be seen from Figure 8.1, the microcontroller is a general-purpose microprocessor with
a simple clock (clk) and reset (clr), and three 8-bit ports (A, B, and C). Within the
microcontroller itself, there needs to be the following basic elements:

http://dx.doi.org/10.1016/B978-0-08-097129-2.00008-8

Port A
clk ——»
Generic
cr ——— microcontroller /l\,@>
K PortC >
Figure 8.1

Simple microcontroller.

1. A control unit: this is required to manage the clock and reset of the processor, manage the
data flow and instruction set flow, and control the port interfaces. There will also need to
be a program counter (PC).

2. An ALU: a microcontroller will need to be able to carry out at least some rudimentary

processing which is carried out in the ALU (Arithmetic Logic Unit).

An Address Bus.

A Data Bus.

Internal Registers.

An instruction decoder.

A ROM to hold the program.

NNk W

While each of these individual elements (1-6) can be implemented simply enough using a
standard FPGA, the ROM presents a specific difficulty. If we implement a ROM as a set of
registers, then obviously this will be hugely inefficient in an FPGA architecture. However, in
most modern FPGA platforms, there are blocks of RAM on the FPGA that can be accessed
and it makes a lot of sense to design a RAM block for use as a ROM by initializing it with the
ROM values on reset and then using that to run the program.

This aspect of the embedded core raises an important issue, which is the reduction in
efficiency of using embedded rather than dedicated cores. There is usually a compromise
involved and in this case it is that the ROM needs to be implemented in a different manner, in
this case with a hardware penalty. The second issue is what type of memory core to use.

In an FPGA RAM, the memory can usually be organized in a variety of configurations to vary
the depth (number of memory addresses required) and the width (width of the data bus). For
example, a 512 address RAM block, with an 8-bit address width would be equivalent to a 256
address RAM block with a 16-bit address width.

If the equivalent microcontroller ROM is, say, 12 bits wide and 256, then we can use a
256 x 16 RAM block and ignore the top 4 bits. The resulting embedded microcontroller core
architecture could be of the form shown in Figure 8.2.

Generic microcontroller

clk -
Control
Uil Registers () — Port Port A
clr A
(= Pgrt Port B)
PC <<
2]
=)
gC::) Pgrt PortC)
Instruction S
decoder Address bus
1 |
ALU =
Figure 8.2

Embedded microcontroller architecture.

8.2.2 Basic Instructions

When we program a microprocessor of any type, there are three different ways of representing
the code that will run on the processor. These are machine code (1s and 0s), assembler (low
level instructions such as LOAD, STORE), and high level code (such as C, Fortran, or Pascal).
Regardless of the language used, the code will always be compiled or assembled into machine
code at the lowest level for programming into memory. High level code (e.g., C) is compiled
and assembler code is assembled (as the name suggests) into machine code for the specific
platform.

Clearly a detailed explanation of a compiler is beyond the scope of this book, but the same
basic process can be seen in an assembler and this is useful to discuss in this context. Every
processor has a basic Instruction Set which is simply the list of functions that can be run in a
program on the processor. Take the simple example of the following pseudocode expression:

1 b=a+ 2;

In this example, we are taking the variable a and adding the integer value 2 to it, and then
storing the result in the variable b. In a processor, the use of a variable is simply a memory
location that stores the value, and so to load a variable we use an assembler command as
follows:

1 LOAD a

What is actually going on here? Whenever we retrieve a variable value from memory, the
implication is that we are going to put the value of the variable in the register called the

accumulator (ACC). The command “LOAD a” could be expressed in natural language as
“LOAD the value of the memory location denoted by a into the accumulator register ACC.”

The next stage of the process is to add the integer value 2 to the accumulator. This is a simple
matter, as instead of an address, the value is simply added to the current value stored in the
accumulator. The assembly language command would be something like:

1 ADD #x02

Notice that we have used the x to denote a hexadecimal number. If we wished to add a
variable, say called c, then the command would be the same, except that it would use the
address c instead of the absolute number. The command would therefore be:

1 ADD ¢

Now we have the value of a+2 stored in the accumulator register (ACC). This could be stored
in a memory location, or put onto a port (e.g., PORT A). It is useful to notice that for a number
we use the key character # to indicate that we are adding the value and not using the argument
as the address. In the pseudocode example, we are storing the result of the addition in the
variable called b, so the command would be something like this:

1 STORE b

While this is superficially a complete definition of the instruction set requirements, there is
one specific design detail that has to be decided on for any processor. This is the number of
instructions and the data bus size. If we have a set of instructions with the number of
instructions denoted by N, then the number of bits in the opcode (n) must conform to the
following rule:

N >=2" 8.1

In other words, the number of bits provides the number of unique different codes that can be
defined, and this defines the size of the instruction set possible. For example, if n = 3, then
with 3 bits there are 8 possible unique opcodes, and so the maximum size of the instruction
setis 8.

8.2.3 Fetch Execute Cycle

The standard method of executing a program in a processor is to store the program in memory
and then follow a strict sequence of events to carry out the instructions. The first stage is to use
the program counter to increment the program line; this then calls up the next command from
memory in the correct order, and then the instruction can be loaded into the appropriate
register for execution. This is called the fetch execute cycle.

What is happening at this point? First the contents of the program counter (PC) are loaded into
the memory address register (MAR). The data in the memory location are then retrieved and

loaded into the memory data register (MDR). The contents of the MDR can then be transferred
into the instruction register (IR). In a basic processor, the PC can then be incremented by one
(or in fact this could take place immediately after the PC has been loaded into the MDR). Once
the opcode (and arguments if appropriate) are loaded, then the instruction can be executed.
Essentially, each instruction has its own state machine and control path, which is linked to the
instruction register (IR) and a sequencer that defines all the control signals required to move
the data correctly around the memory and registers for that instruction. We will discuss
registers in the next section, but in addition to the program counter (PC), instruction register
(IR) and accumulator (ACC) mentioned already, we require two memory registers at a
minimum, the Memory Data Register (MDR) and Memory Address Register (MAR).

For example, consider the simple command LOAD a, from the previous example. What is
required to actually execute this instruction? First, the opcode is decoded and this defines that
the command is a LOAD command. The next stage is to identify the address. As the command
has not used the # symbol to denote an absolute address, this is stored in the variable a. The
next stage, therefore, is to load the value in location a into the MDR, by setting MAR =a

and then retrieving the value of a from the RAM. This value is then transferred to the
accumulator (ACC).

8.2.4 Embedded Processor Register Allocation

The design of the registers partly depends on whether we wish to clone a “real” device or
create a modified version that has more custom behavior. In either case there are some
mandatory registers that must be defined as part of the design. We can assume that we need an
accumulator (ACC), a program counter (PC), and the three input/output ports (PORTA,
PORTB, PORTC). Also, we can define the instruction register (IR), Memory Address Register
(MAR), Memory Data Register (MDR).

In addition to the data for the ports, we need to have a definition of the port direction and this
requires three more registers for managing the tristate buffers into the data bus to and from the
ports (DIRA, DIRB, DIRC). In addition to this, we can define a number (essentially arbitrary)
of registers for general purpose usage. In the general case the naming, order, and numbering of
registers does not matter; however, if we intend to use a specific device as a template, and
perhaps use the same bit code, then it is vital that the registers are configured in exactly the
same way as the original device and in the same order.

In this example, we do not have a base device to worry about, and so we can define the general
purpose registers (24 in all) with the names REGO to REG23. In conjunction with the general
purpose registers, we need to have a small decoder to select the correct register and put the
contents onto the data bus (F).

8.2.5 A Basic Instruction Set

In order for the device to operate as a processor, we must define some basic instructions in the
form of an instruction set. For this simple example we can define some very basic instructions
that will carry out basic program elements, ALU functions, memory functions. These are
summarized in the following list of instructions:

LOAD arg This command loads an argument into the accumulator. If the argument has the
prefix # then it is the absolute number, otherwise it is the address and this is taken from
the relevant memory address.

Examples:

LOAD #01

LOAD abc

STORE arg This command stores an argument from the accumulator into memory. If the
argument has the prefix # then it is the absolute address, otherwise it is the address and
this is taken from the relevant memory address.

Examples:

STORE #01

STORE abc

ADD arg This command adds an argument to the accumulator. If the argument has the
prefix # then it is the absolute number, otherwise it is the address and this is taken from the
relevant memory address.

Examples:

ADD #01

ADD abc

NOT This command carries out the NOT function on the accumulator.

AND arg This command ands an argument with the accumulator. If the argument has the
prefix # then it is the absolute number, otherwise it is the address and this is taken from the
relevant memory address.

Examples:

AND #01

AND abc

OR arg This command ors an argument with the accumulator. If the argument has the
prefix # then it is the absolute number, otherwise it is the address and this is taken from the
relevant memory address.

Examples:

OR #01

OR abc

XOR arg This command xors an argument with the accumulator. If the argument has the
prefix # then it is the absolute number, otherwise it is the address and this is taken from the
relevant memory address.

Examples:
XOR #01
XOR abc

* INC This command carries out an increment by one on the accumulator.

* SUB arg This command subtracts an argument from the accumulator. If the argument has
the prefix # then it is the absolute number, otherwise it is the address and this is taken from
the relevant memory address.

Examples:
SUB #01
SUB abc

* BRANCH arg This command allows the program to branch to a specific point in the
program. This may be very useful for looping and program flow. If the argument has the
prefix # then it is the absolute number, otherwise it is the address and this is taken from the
relevant memory address.

Examples:
BRANCH #01
BRANCH abc

In this simple instruction set, there are 10 separate instructions. This implies, from the rule
given in equation (8.1) previously in this chapter, that we need at least 4 bits to describe each
of the instructions given in the table above. Given that we wish to have 8 bits for each data
word, we need to have the ability to store the program memory in a ROM that has words of at
least 12 bits wide. In order to cater for a greater number of instructions, and also to handle the
situation for specification of different addressing modes (such as the difference between
absolute numbers and variables), we can therefore suggest a 16-bit system for the program
memory.

Notice that at this stage there are no definitions for port interfaces or registers. We can extend
the model to handle this behavior later.

8.2.6 Structural or Behavioral?

So far in the design of this simple microprocessor, we have not specified details beyond a
fairly abstract structural description of the processor in terms of registers and busses. At this
stage we have a decision about the implementation of the design with regard to the program
and architecture.

One option is to take a program (written in assembly language) and simply convert this into a
state machine that can easily be implemented in a VHDL model for testing out the algorithm.
Using this approach, the program can be very simply modified and recompiled based on
simple rules that restrict the code to the use of registers and techniques applicable to the
processor in question. This can be useful for investigating and developing algorithms, but is

more ideal than the final implementation as there will be control signals and delays due to
memory access in a processor plus memory configuration, that will be better in a dedicated
hardware design.

Another option is to develop a simple model of the processor that does have some of the
features of the final implementation of the processor, but still uses an assembly language
description of the model to test. This has advantages in that no compilation to machine code is
required, but there are still not the detailed hardware characteristics of the final processor
architecture that may cause practical issues on final implementation.

The third option is to develop the model of the processor structurally and then the machine
code can be read in directly from the ROM. This is an excellent approach that is very useful
for checking both the program and the possible quirks of the hardware/software combination,
as the architecture of the model reflects directly the structure of the model to be implemented
on the FPGA.

8.2.7 Machine Code Instruction Set

In order to create a suitable instruction set for decoding instructions for our processor, the
assembly language instruction set needs to have an equivalent machine code instruction set
that can be decoded by the sequencer in the processor. The resulting opcode/instruction table
is given here:

Command Opcode (Binary)
LOAD arg 0000
STORE arg 0001
ADD arg 0010
NOT 0011
AND arg 0100
OR arg 0101
XOR arg 0110
INC 0111
SUB arg 1000
BRANCH arg 1001

8.2.8 Structural Elements of the Microprocessor

Taking the abstract design of the microprocessor given in Figure 8.2 we can redraw with the
exact registers and bus configuration as shown in the structural diagram in Figure 8.3. Using

(1]

2O CONTROL
3 - 2
v v v
PC ACC MAR | | MDR IR
a2 a r 3 3 a
\ 4 \ 4 y v
< Internal bus >

Figure 8.3
Structural model of the microprocessor busses and major blocks.

this model we can create separate VHDL models for each of the blocks that are connected to
the internal bus and then design the control block to handle all the relevant sequencing and
control flags to each of the blocks in turn. Before this can be started, however, it makes sense
to define the basic criteria of the models and the first is to define the basic type. In any digital
model (as we have seen elsewhere in this book) it is sensible to ensure that data can be passed
between standard models and so in this case we shall use the std_logic_1164 library that is the
standard for digital models.

In order to use this library, each signal shall be defined in VHDL of the basic type std_logic
and also the library ieee.std_logic_1164.all shall be declared in the header of each of the
models in the processor.

Finally, each block in the processor shall be defined as a separate block for implementation in
VHDL or Verilog.

8.3 A Simple Embedded Processor Implemented in VHDL

8.3.1 Processor Functions Package

In order to simplify the VHDL for each of the individual blocks, a set of standard functions
have been defined in a package called processor_functions. This is used to defined useful
types and functions for this set of models. The VHDL for the package is given below:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 package processor_functions is

5 type opcode is (load, store, add, not, and, or, xor, inc, sub, branch);
6 function decode (word : std_logic_vector) return opcode;
7 constant n : integer := 16;

8 constant oplen : integer := 4;

9 type memory_array is array (0 to 2%x(n—oplen—1) of
10 std_Tlogic_vector(n—1 downto 0);

11 constant reg_zero : unsigned (n-1 downto 0) :=

12 (others => 0);

13 end package processor_functions;

14

15 package body processor_functions is

16 function decode (word : std_logic_vector) return opcode is
17 variable opcode_out : opcode;

18 begin

19 case word(n—1 downto n—oplen—1) is

20 when 0000 => opcode_out := load;

21 when 0001 => opcode_out := store;

22 when 0010 => opcode_out := add;

23 when 0011 => opcode_out := not;

24 when 0100 => opcode_out := and;

25 when 0101 => opcode_out := or;

26 when 0110 => opcode_out := xor;

27 when 0111 => opcode_out := inc;

28 when 1000 => opcode_out := sub;

29 when 1001 => opcode_out := branch;

30 when others => null;

31 end case;

32 return opcode_out;

33 end function decode;

34 end package body processor_functions;

8.3.2 The Program Counter

The program counter (PC) needs to have the system clock and reset connections, and the
system bus (defined as inout so as to be readable and writable by the PC register block). In
addition, there are several control signals required for correct operation. The first is the signal
to increment the PC (PC_inc), the second is the control signal to load the PC with a specified
value (PC_load) and the final is the signal to make the register contents visible on the internal
bus (PC_valid). This signal ensures that the value of the PC register will appear to be high
impedance (Z) when the register is not required on the processor bus. The system bus
(PC_bus) is defined as a std_logic_vector, with direction inout to ensure the ability to read and
write. The resulting VHDL entity is given here:

library ieee;

use ieee.std_logic_1164.al11;

entity pc is
port (

B W=

5 clk : in std_logic;

6 nrst : in std_logic;

7 pc_inc : in std_logic;

8 pc_load : in std_logic;

9 pc_valid : in std_logic;

10 pc_bus : inout std_logic_vector(n—1 downto 0)

11);

12 end entity pc;
The architecture for the program counter must handle all of the various configurations of the
program counter control signals and also the communication of the data into and from the
internal bus correctly. The PC model has an asynchronous part and a synchronous section. If
the PC_valid goes low at any time, the value of the PC_bus signal should be set to Z across all
of its bits. Also, if the reset signal goes low, then the PC should reset to zero.

The synchronous part of the model is the increment and load functionality. When the clk
rising edge occurs, then the two signals PC_load and PC_inc are used to define the function of
the counter. The precedence is that if the increment function is high, then regardless of the
load function, the counter will increment. If the increment function (PC_inc) is low, then the
PC will load the current value on the bus, if and only if the PC_load signal is also high. The
resulting VHDL is given as:

1 architecture rtl of pc is

2 signal counter : unsigned (n—1 downto 0);
3 begin

4 pc_bus <= std_logic_vector(counter)
5 when pc_valid = 1 else (others => z7);
6 process (clk, nrst) is

7 begin

8 if nrst = 0 then

9 count <= 0;

10 elsif rising_edge(clk) then

11 if pc_inc = 1 then

12 count <= count + 1;

13 else

14 if pc_load = 1 then

15 count <= unsigned(pc_bus);

16 end if;

17 end if;

18 end if;

19 end process;
20 end architecture rti;

8.3.3 The Instruction Register

The instruction register (IR) has the same clock and reset signals as the PC, and also the same
interface to the bus (IR_bus) defined as a std_logic_vector of type INOUT. The IR also has
two further control signals, the first being the command to load the instruction register
(IR_load), and the second being to load the required address onto the system bus
(IR_address). The final connection is the decoded opcode that is to be sent to the system

controller. This is defined as a simple unsigned integer value with the same size as the basic
system bus. The basic VHDL for the entity of the IR is given as follows:

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use work.processor_functions.all;
4 entity ir is

5 port (

6 clk : in std_logic;

7 nrst : in std_logic;

8 ir_load : in std_logic;

9 ir_valid : in std_logic;

10 ir_address : in std_logic;

11 ir_opcode : out opcode;

12 ir_bus : inout std_logic_vector(n—1 downto 0)
13)

14 end entity ir;

The function of the IR is to decode the opcode in binary form and then pass to the control
block. If the IR _valid is low, the the bus value should be set to Z for all bits. If the reset signal
(nsrt) is low, then the register value internally should be set to all Os.

On the rising edge of the clock, the value on the bus shall be sent to the internal register and
the output opcode shall be decoded asynchronously when the value in the IR changes. The
resulting VHDL architecture is given here:

1 architecture rtl of ir is

2

3 signal ir_internal : std_logic_vector (n—1 downto 0);
4 begin

5 ir_bus <= ir_internal

6 when ir_valid = 1 else (others => z);
7 ir_opcode <= decode(ir_internal);

8 process (clk, nrst) is

9 begin

10 if nrst = 0 then

11 ir_internal <= (others => 0);

12 elsif rising_edge(clk) then

13 if ir_load = 1 then

14 ir_internal <= ir_bus;

15 end if;

16 end if;

17 end process;

18 end architecture rti;

In this VHDL, notice that we have used the predefined function Decode from the
processor_functions package previously defined. This will look at the top 4 bits of the address
given to the IR and decode the relevant opcode for passing to the controller.

8.3.4 The Arithmetic and Logic Unit

The Arithmetic and Logic Unit (ALU) has the same clock and reset signals as the PC, and also
the same interface to the bus (ALU_bus) defined as a std_logic_vector of type INOUT. The
ALU also has three further control signals, which can be decoded to map to the eight
individual functions required of the ALU. The ALU also contains the Accumulator (ACC)
which is a std_logic_vector of the size defined for the system bus width. There is also a single
bit output ALU_zero which goes high when all the bits in the accumulator are zero. The basic
VHDL for the entity of the ALU is given as follows:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use work.processor_functions.all;

4 entity alu is

5 port (

6 clk : in std_logic;

7 nrst : in std_logic;

8 alu_cmd : in std_logic_vector(2 downto 0)
9 alu_zero : out std_logic;

10 alu_valid : in std_logic;

11 alu_bus : inout std_logic_vector(n—-1 downto 0)
12)

13 end entity alu;

The function of the ALU is to decode the ALU_cmd in binary form and then carry out the
relevant function on the data on the bus, and the current data in the accumulator. If the
ALU_valid is low, then the bus value should be set to Z for all bits. If the reset signal (nsrt) is
low, then the register value internally should be set to all Os. On the rising edge of the clock,
the value on the bus shall be sent to the internal register and the command shall be decoded.
The resulting VHDL architecture is given here:

1 architecture rtl of alu is

2 signal acc : std_logic_vector (n—1 downto 0);

3 begin

4 alu_bus <= acc
5 when acc_valid = 1 else (others => z);
6
7
8

alu_zero <=1 when acc = reg_zero else 0;
process (clk, nrst) is

begin
9 if nrst = 0 then
10 acc <= (others => 0);
11 elsif rising_edge(clk) then
12 case acc_cmd is
13 —— Jload the bus value into the accumulator
14 when 000 => acc <= alu_bus;
15 —— add the acc to the bus value
16 when 001 => acc <= add(acc,alu_bus);
17 —— not the bus value
18 when 010 => acc <= not alu_bus;
19 —— or the acc to the bus value

20 when 011 => acc <= acc or alu_bus;

21 —— and the acc to the bus value

22 when 100 => acc <= acc and alu_bus;
23 —— Xxor the acc to the bus value

24 when 101 => acc <= acc xor alu_bus;
25 —— 1increment acc

26 when 110 => acc <= acc + 1;

27 —— store the acc value

28 when 111 => alu_bus <= acc;

29 end if;

30 end process;

31 end architecture rtl;

8.3.5 The Memory

The processor requires a RAM memory, with an address register (MAR) and a data register
(MDR). There therefore needs to be a load signal for each of these registers: MDR_load and
MAR_load. As it is a memory, there also needs to be an enable signal (M_en), and also a
signal to denote Read or Write modes (M_rw). Finally, the connection to the system bus is a
standard inout vector as has been defined for the other registers in the microprocessor.

The basic VHDL for the entity of the memory block is given here:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use work.processor_functions.all;
4 entity memory is

5 port (

6 clk : in std_logic;

7 nrst : in std_Tlogic;

8 mdr_load : in std_logic;

9 mar_load : in std_logic;

10 mar_valid : in std_logic;

11 m_en : in std_logic;

12 m_rw : in std_logic;

13 mem_bus : inout std_logic_vector(n—1 downto 0)
14)

15 end entity memory;

The memory block has three aspects. The first is the function in which the memory address is
loaded into the memory address register (MAR). The second function is either reading from or
writing to the memory using the memory data register (MDR). The final function, or aspect, of
the memory is to store the actual program that the processor will run. In the VHDL model, we
will achieve this by using a constant array to store the program values.

The resulting basic VHDL architecture is given as follows:

architecture rtl of memory is
signal mdr : std_logic_vector(wordlen—1 downto 0);
signal mar : unsigned(wordlen—oplen—1 downto 0);
begin
mem_bus <= mdr

AN AW =

7 when mem_valid = 1 else (others => z);

8 process (clk, nrst) is

9 variable contents : memory_array;
10 constant program : contents :=

11 (

12 0 => 0000000000000011,

13 1 =>0010000000000100,

14 2 => 0001000000000101,

15 3 => 0000000000001100,

16 4 => 0000000000000011,

17 5 => 0000000000000000

18 others => (others => 0)

19)3

20 begin

21 if nrst = 0 then

22 mdr <= (others => 0);

23 mdr <= (others => 0);

24 contents := program;

25 elsif rising_edge(clk) then

26 if mar_load = 1 then

27 mar <= unsigned(mem_bus(n—oplen—1 downto 0))
28 elsif mdr_load = 1 then

29 mdr <= mem_bus;

30 elsif mem_en = 1 then

31 if mem_rw = 0 then

32 mdr <= contents(to_integer(mar));
33 else

34 mem(to_integer(mar)) := mdr;
35 end if;

36 end if;

37 end if;

38 end process;

39 end architecture rtl;

We can look at some of the VHDL in a bit more detail and explain what is going on at this
stage. There are two internal signals to the block, mdr and mar (the data and address,
respectively). The first aspect to notice is that we have defined the MAR as an unsigned rather
than as a std_logic_vector. We have done this to make indexing direct. The MDR remains as a
std_logic_vector. We can use an integer directly, but an unsigned translates easily into a
std_logic_vector.

1 signal mdr : std_logic_vector(wordlen—1 downto 0);
2 signal mar : unsigned(wordlen—oplen—1 downto 0);

The second aspect is to look at the actual program itself. We clearly have the possibility of a
large array of addresses, but in this case we are defining a simple three line program:

1 c=a+bh

The binary code is shown below:

1 0 => 0000000000000011
2 1 =>0010000000000100
3 2 => 0001000000000101
4 3 =>0000000000001100

5 4 => 0000000000000011
6 5 => 0000000000000000
7 Others => (others => 0)

For example, consider the line of the declared value for address 0. The 16 bits are defined as
0000000000000011. If we split this into the opcode and data parts we get the following:

1 Opcode 0000
2 Data 000000000011

In other words, this means LOAD the variable from address 3. Similarly, the second line is
ADD from 4, finally the third command is STORE in 5. In addresses 3, 4, and 5, the three data
variables are stored.

8.3.6 Microcontroller Controller

The operation of the processor is controlled in detail by the sequencer, or controller block. The
function of this part of the processor is to take the current program counter address, look up
the relevant instruction from memory, move the data around as required, setting up all the
relevant control signals at the right time, with the right values. As a result, the controller must
have the clock and reset signals (as for the other blocks in the design), a connection to the
global bus, and finally all the relevant control signals must be output. An example entity of a
controller is given here:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use work.processor_functions.all;
4 entity controller is

5 generic (

6 n : integer := 16

7)

8 port (

9 clk : in std_logic;

10 nrst : in std_logic;

11 ir_load : out std_logic;

12 ir_valid : out std_logic;

13 ir_address : out std_logic;

14 pc_inc : out std_logic;

15 pc_load : out std_logic;

16 pc_valid : out std_logic;

17 mdr_load : out std_logic;

18 mar_load : out std_logic;

19 mar_valid : out std_logic;

20 m_en : out std_logic;

21 m_rw : out std_logic;

22 alu_cmd : out std_Tlogic_vector(2 downto 0);
23 control_bus : inout std_logic_vector(n—1 downto 0)
24)

25 end entity controller;

Using this entity, the control signals for each separate block are then defined, and these can be
used to carry out the functionality requested by the program. The architecture for the

PC_BUS <=1
MAR _load <=1
PC<=PC+1

MDR_load <=1
IR_load <=1

MAR_load <=1
IR_address <=1

0p==STORE 0p/=STORE

ACC_valid <=1
MDR_load <=1

MDR _valid <=1
ALU_load <=1

MDR _valid <=1
ACC_load <=1

op!=ADD

ALU_add <=1 ALU_sub <=1

Figure 8.4
Basic processor controller state machine.

controller is then defined as a basic state machine to drive the correct signals. The basic state
machine for the processor is defined in Figure 8.4.

We can implement this using a basic VHDL architecture that implements each state using a
new state type and a case statement to manage the flow of the state machine. The basic VHDL
architecture follows and it includes the basic synchronous machine control section (reset and
clock) and the management of the next stage logic.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

architecture rtl of controller is
type states is (s0,s1,s2,s3,s4,s5,56,57,58,59,510);
signal current_state, next_state : states;
begin
state_sequence: process (clk, nrst) is
if nrst = 0 then
current_state <= s0;
else
if rising_edge(clk) then
current_state <= next_state;
end if;
end if;
end process state_sequence;

state_machine : process (present_state, opcode) is

16 —— state machine goes here

17 end process state_machine;

18 end architecture;
You can see from this VHDL that the first process (state_sequence) manages the transition of
the current_state to the next_state and also the reset condition. Notice that this is a
synchronous machine and as such waits for the rising_edge of the clock, and that the reset is
asynchronous. The second process (state_machine) waits for a change in the state or the
opcode and this is used to manage the transition to the next state, although the actual transition
itself is managed by the state_sequence process. This process is given in the VHDL here:

1 state_machine : process (present_state, opcode) is
2 begin

3 —— reset all the control signals
4 ir_load <=0

5 ir_valid <=0

6 ir_address <= 0

7 pc_inc <=0

8 pc_load <=0

9 pc_valid <=0

10 mdr_load <=0

11 mar_load <=0

12 mar_valid <=0

13 m_en <= 0

14 m_rw <=0

15 case current_state is
16 when s0 =>

17 pc_valid<=1

18 mar_load<= 1

19 pc_inc<=1

20 pc_load<=1

21 next_state<=s1;
22 when s1 =>

23 m_en<= 1

24 m_rw<= 1

25 next_state<=s2;
26 when s2 =>

27 mdr_valid<= 1

28 ir_load<= 1

29 next_state<=s3;
30 when s3 =>

31 mar_load<= 1

32 ir_address<= 1

33 if opcode = store then
34 next_state<=s4;
35 else

36 next_state <=s6;
37 end if;

38 when s4 =>

39 mdr_load<= 1

40 acc_valid<= 1

41 next_state<=sh;
42 when s5 =>

43 m_en <=1 ;

44 next_state <= s0;

45 when s6 =>

46 m_en<= 1 ; m_rw<=1 ;
47 if opcode = load then
48 next_state<=s7;

49 else

50 next_state <=s8;

51 end if;

52 when s7 =>

53 mdr_valid<= 1 ;

54 acc_load<= 1 ;

55 next_state<=s0;

56 when s8 =>

57 m_en<=1 ;

58 m_rw<= 1 ;

59 if opcode = add then
60 next_state<=s9;

61 else

62 next_state <=s10;
63 end if;

64 when s9 =>

65 alu_add <=1 ;

66 next_state<=s0;

67 when s10 =>

68 alu_sub <=1 ;

69 next_state<=s0;

70 end case;

71 end process state_machine;

8.3.7 Summary of a Simple Microprocessor Implemented in VHDL

Now that the important elements of the processor have been defined, it is a simple matter to
instantiate them in a basic VHDL netlist and create a microprocessor using these building
blocks. It is also a simple matter to modify the functionality of the processor by changing the
address/data bus widths or extend the instruction set.

8.4 A Simple Embedded Processor Implemented in Verilog

As in the case of the VHDL model we can implement common functions in a series of Verilog
files for use in the key blocks of the processor. The architecture has been implemented in a
slightly different manner, to illustrate a different approach. In both cases an internal bus has
been used, which is analogous to the approach taken in early processors; however, a more
direct approach can also be taken where the internal registers are accessed directly.

8.4.1 The Program Counter

The program counter (PC) needs to have the system clock and reset connections, and the
system bus (defined as inout so as to be readable and writable by the PC register block). In

addition, there are several control signals required for correct operation. The first is the signal
to increment the PC (pc_inc), the second is the control signal to load the PC with a specified
value (pc_load) and the final is the signal to make the register contents visible on the internal
bus (pc_valid). This signal ensures that the value of the PC register will appear to be high
impedance (Z) when the register is not required on the processor bus. The pc value output
(pc_bus) is defined as a standard logic type, with direction inout to ensure the ability to read
from and write to the bus.

The architecture for the program counter must handle all of the various configurations of the
program counter control signals and also the communication of the data into and from the
internal bus correctly. The PC model has an asynchronous part and a synchronous section. If
the pc_valid goes low at any time, the value of the pc_bus signal should be set to Z across all
of its bits. Also, if the reset signal goes low, then the PC should reset to zero.

The synchronous part of the model is the increment and load functionality. When the clk
rising edge occurs, then the two signals pc_load and pc_inc are used to define the function of
the counter. The precedence is that if the increment function is high, then regardless of the
load function, the counter will increment. If the increment function (pc_inc) is low, then the
PC will load the current value on the bus, if and only if the pc_load signal is also high.

The resulting Verilog code is given below:
‘define N 8

module pc (clk,nrst,pc_inc,pc_valid,pc_load,data);

input nrst;

input pc_inc;

input pc_valid;
9 input pc_load;

1
2
3
4
5 input clk;
6
7
8

10

11 inout [‘N—=1:0] data;

12

13 wire [‘N—1:0] data;

14

15 reg [‘N-=1:0] counter;

16

17 assign data = pc_valid ? counter : ‘N’bz;
18

19 always @(posedge clk) begin
20 if(nrst==0) begin

21 counter <= 0;

22 end

23 else begin

24 if(pc_inc==1) begin

25 counter <= counter + 1;
26 end

27 else begin

28 if(pc_load==1) begin

29 counter <= data;
30 end

31 else begin

32 counter <= 0;

33 end

34 end

35 end

36 end

37

38 endmodule

We can test this using a test bench that first resets the program counter (PC) to initialize it,
increments, then loads in a set value (in this case 4), resets the counter and finally sets the valid
signal to low so as to disable the output. This is shown in the following test bench Verilog:

‘define N 8

1
2
3
4 module pc_th();

5 // declare the counter signals
6 reg clk;

7 reg nrst;

8 reg pc_valid;

9 reg pc_load;

10 reg pc_inc;

11 wire [‘N-1:0] data;

12 reg [‘N-—1:0] datareg;

13

14 // Set up the initial variables and reset

15 initial begin

16 $display (”time\t clk reset inc load valid data”);
17 $monitor (”%g\t %b %b %b %b %b %b”,

18 $time, clk, nrst, pc_inc, pc_load, pc_valid, data);
19 clk = 1; // initialize the clock to 1

20 nrst = 1; // set the reset to 1 (not reset)

21 pc_valid = 0;

22 pc_inc =0;

23 pc_load = 0;

24 datareg = 4;

25 #5 nrst = 0; // reset = 0 : resets the counter

26 #10 nrst = 1; // reset back to 1 : counter can start
27 #10 pc_inc = 1;

28 #10 pc_inc = 0;

29 #10 pc_load = 1;

30 #10 datareqg = 8°bzzzzzzzz;

31 #10 pc_load = 0;

32 ##10 pc_inc = 1;

33 pc_valid = 1;

34 #50 pc_valid = 0; // reset back to 1 : counter can start
35 #200 $finish; // Finish the simulation

36 end

37

38 // Clock generator
39 always begin

40
41
42
43
44
45
46
47
48

The resulting waveform shows the behavior as predicted (Figure 8.5):

Figure 8.5
Basic processor PC simulation.

#5 clk = ~clk; // Clock every 5 time slots
end

assign data = datareg;

// Connect DUT to test bench
pc DUT (clk,nrst,pc_inc,pc_valid,pc_load,data);

endmodule

8.4.2 The Instruction Register

The Instruction Register (IR) in a simple microprocessor is a simple register with enough bits
for the address and opcode combined. For example, if the address requires 8 bits, and the
opcode also requires 8 bits, then the Instruction Register needs to be 16 bits wide (8 + 8). If the
output from the Memory Data Register goes onto the main bus, then this can be read into the

instruction register, which is 16 bits wide in this case.

The current value of the instruction register also can be read by the Memory Address Register
(MAR) or the Program Counter (PC) and so the stored value needs to be of type inout, so that

it can be made valid onto the internal system bus.

The instruction register (IR) therefore has clock and reset signals, and also the same interface
to the internal processor bus (ir_bus) defined as a standard logic of direction inout. The IR also
has two further control signals, the first being the command to load the instruction register
(ir_load), and the second being to make the required address available on the system bus
(ir_valid). This consists of the opcode and address, which can be used by the controller or

Program Counter.

The code for the Instruction Register is therefore given in the following listing:

1 ‘define 0P 8

2 ‘define ADDR 8

3

4 module ir (clk,nrst,ir_valid,ir_load,ir_bus);
5

6 input clk;

7 input nrst;

8 input ir_valid;

9 input ir_load;

10

11 inout [“OP+°ADDR—1:0] ir_bus;
12

13 wire [“OP+°ADDR—1:0] ir_bus;
14

15 reg [‘OP+‘ADDR—1:0] ir_reg;
16

17 assign ir_bus = ir_valid ? ir_reg : 16°bz;
18

19 always @(posedge clk) begin
20 if(nrst==0) begin

21 ir_reg <= 0;

22 end

23 else begin

24 if(ir_load==1) begin

25 ir_reg <= ir_bus;

26 end

27 end

28 end

29

30 endmodule

We can test this by loading in a sample instruction, and then setting it valid so that it is then
seen on the bus. The test bench to achieve this is shown here:

‘define 0P 8
‘define ADDR 8

1

2

3

4

5 module ir_tbh();
6 // declare the counter signals
7

8

reg clk;

reg nrst;
9 reg ir_valid;
10 reg ir_load;
11

12 wire [‘OP+°ADDR—-1:0] data;
13 reg [‘OP+°ADDR—1:0] datareg;

14

15 // Set up the initial variables and reset

16 initial begin

17 $display (”time\t clk reset inc load valid data”);
18 $monitor (”%g\t %b %b %b %b %b”,

19 $time, clk, nrst, ir_load, ir_valid, data);

20 clk = 1; // initialize the clock to 1

21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

nrst = 1; // set the reset to 1 (not reset)
ir_valid = 0;
ir_load = 0;
datareg = 16°b0000000000001111;
#5 nrst = 0; // reset = 0 : resets the counter
#10 nrst = 1; // reset back to 1 : counter can start
#10 ir_load = 1;
#10 ir_load = 0;
#10 datareg 16°bzzz2222222222227;
ir_valid = 1;
#50 ir_valid = 0; // reset back to 1 : counter can start
#200 $finish; // Finish the simulation
end

// Clock generator
always begin

#5 clk = ~clk; // Clock every 5 time slots
end

assign data = datareg;

// Connect DUT to test bench
ir DUT (clk,nrst,ir_valid,ir_load,data);

endmodule

The resulting waveform shows the behavior as predicted (Figure 8.6):

8.4.3 Memory Data Register

The memory data register is used to handle the data transferred to and from the memory unit,
and this can be handled either using a bus approach (which we have used in this architecture)
or separate data input and output declaration for the memory. In this case we will use a

Figure 8.6
Basic processor instruction register simulation.

separate input and output setting for the memory; therefore, the MDR becomes a simple
register which sets its output to the value of the memory output when its control signal
mdr_load is high. The Memory Data Register (MDR) in a simple microprocessor needs
enough bits for the address and opcode combined. For example, if the address requires 8 bits,
and the opcode also requires 8 bits, then the size of the register needs to be 16 bits wide

(8 + 8). If the output from the Memory Data Register goes onto the main bus, then this can be
read into the instruction register, which is also 16 bits wide in this case.

The Memory Data Register (MDR) therefore has clock and reset signals, and also the same
interface to the internal processor bus (mdr_bus) defined as a standard logic of direction inout.
The MDR also has a further control signal, to make the required data available on the system
bus (mdr_valid). This consists of the opcode and address, which can be used by the controller,
Accumulator or Instruction register.

The code for the Memory Data Register (MDR) is therefore given in the following listing:

1 ‘define 0P 8

2 ‘define ADDR 8

3

4 module mdr (clk,nrst,mdr_load,mdr_valid,mem_bus,mdr_bus);
5

6 input clk;

7 input nrst;

8 input mdr_valid;

9 input mdr_load;

10 input mem_bus;

11

12 inout [‘OP+°ADDR—1:0] mdr_bus;
13 input [“OP+°ADDR—1:0] mem_bus;
14

15 wire [“OP+°ADDR—1:0] mdr_bus;
16 wire [‘OP+°ADDR—1:0] mem_bus;
17

18 reg [‘OP+*ADDR—1:0] mdr_reg;
19

20 assign mdr_bus = mdr_valid ? mdr_reg : 16°bz;
21

22 always @(posedge clk) begin

23 if(nrst==0) begin

24 mdr_reg <= 0;

25 end

26 else begin

27 if(mdr_load==1) begin

28 mdr_reg <= mem_bus;

29 end

30 end

31 end

32

33 endmodule

We can test this by loading in a sample instruction, and then setting it valid so that it is seen on
the bus. The test bench to achieve this is shown here:

1 ‘define 0P 8

2 ‘define ADDR 8

3

4

5 module mdr_tb();

6 // declare the counter signals

7 reg clk;

8 reg nrst;

9 reg mdr_valid;

10 reg mdr_Tload;

11

12 wire [‘OP+‘ADDR—-1:0] data;

13 reg [OP+‘ADDR—-1:0] memory;

14

15 // Set up the initial variables and reset

16 initial begin

17 $display (”time\t clk reset inc load valid data”);
18 $monitor (”%g\t %b %b %b %b %b”,

19 $time, clk, nrst, mdr_load, mdr_valid, data);
20 clk = 1; // initialize the clock to 1

21 nrst = 1; // set the reset to 1 (not reset)
22 mdr_valid = 0;

23 mdr_load = 0;

24 memory = 16°b0000000000001111;

25 #5 nrst = 0; // reset = 0 : resets the counter
26 #10 nrst = 1; // reset back to 1 : counter can start
27 #10 mdr_load = 1;

28 #10 mdr_load = 0;

29 #10 memory = 16°bzzzzzzzz222222727;

30 mdr_valid = 1;

31 #50 mdr_valid = 0; // reset back to 1 : counter can start
32 #200 $finish; // Finish the simulation

33 end

34

35 // Clock generator

36 always begin

37 #5 clk = ~clk; // Clock every 5 time slots

38 end

39

40 //assign data = datareg;

41

42 // Connect DUT to test bench

43 mdr DUT (clk,nrst,mdr_load,mdr_valid,memory,data);
44

45 endmodule

The resulting waveform shows the behavior as predicted (Figure 8.7):

8.4.4 Memory Address Register

The memory address register is used to handle the address transferred to the memory unit, and
this can be handled either using a bus approach (which we have used in this architecture) or

Figure 8.7
Basic processor memory data register (MDR) simulation.

direct input declaration for the memory. In this case we will use a bus setting for the memory,
therefore the MAR becomes a simple register which sets its output to the value of the required
address from the IR or PC when its control signal mar_load is high. The Memory Address
Register (MAR) in a simple microprocessor needs enough bits for the address. For example, if
the address requires 8 bits then the The size of the register needs to be 8 bits wide.

The Memory Address Register (MAR) therefore has clock and reset signals, and also the same
interface to the internal processor bus (mar_bus) defined as a standard logic of direction inout,
however only the first 8 bits are used.

The code for the Memory Address Register (MAR) is therefore given in the listing below

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

‘define ADDR 8
‘define 0P 8

module mar (clk,nrst,mar_load,mar_bus,address);

input clk;
input nrst;
input mar_load;

input [‘OP+*ADDR—-1:0] mar_bus;
output [“ADDR—1:0] address;

wire [‘OP+°ADDR—1:0] mar_bus;
reg [“ADDR—1:0] address;

always @(posedge clk) begin
if(nrst==0) begin
address <= 0;
end
else begin

21 if(mar_load==1) begin

22 address <= mar_bus[‘ADDR-1:07;
23 end

24 end

25 end

26

27 endmodule

We can test this by loading in a sample instruction, and then setting it valid so that it is seen on

the bus. The test bench to achieve this is shown below:

‘define 0P 8
‘define ADDR 8

// declare the counter signals
reg clk;
reg nrst;

9 reg mar_load;

10

11 reg [‘OP+‘ADDR—1:0] data;

12 wire [‘ADDR-1:0] address;

1
2
3
4
5 module mar_th();
6
7
8

13

14 // Set up the initial variables and reset

15 initial begin

16 $display (”time\t clk reset inc Toad valid data”);
17 $monitor (”%g\t %b %b %b %b %b”,

18 $time, clk, nrst, mar_load, data, address);

19 clk = 1; // initialize the clock to 1

20 nrst = 1; // set the reset to 1 (not reset)

21 mar_load = 0;

22 data = 16°b0000000000001111;

23 #5 nrst = 0; // reset = 0 : resets the counter

24 #10 nrst = 1; // reset back to 1 : counter can start
25 #10 mar_load = 1;

26 #10 mar_load = 0;

27 #10 data = 16°bzzzzzzzzzzzz77727;

28 #200 $finish; // Finish the simulation

29 end

30

31 // Clock generator
32 always begin

33 #5 clk = ~clk; // Clock every 5 time slots
34 end

35

36 //assign data = datareg;

37

38 // Connect DUT to test bench

39 mar DUT (clk,nrst,mar_load,data,address);
40

41 endmodule

The resulting waveform shows the behavior as predicted (Figure 8.8):

Figure 8.8
Basic processor memory address register (MAR) simulation.

8.4.5 The Arithmetic and Logic Unit

The Arithmetic and Logic Unit (ALU) has the same clock and reset signals as the PC, and also
the same interface to the bus (alu_bus) defined as a type inout. The ALU also has three further
control signals, which can be decoded to map to the 8 individual functions required of the
ALU. The ALU also contains the Accumulator (ACC) which is an input of the size defined for
the system bus width. There is also a single bit output alu_zero which goes high when all the
bits in the accumulator are zero.

The function of the ALU is to decode the alu_op in binary form and then carry out the relevant
function on the data on the bus, and the current data in the accumulator. If the alu_valid is low,
the the bus value should be set to Z for all bits. If the reset signal (nest) is low, then the register
value internally should be set to all 0. On the rising edge of the clock, the value on the bus
shall be sent to the internal register and the command shall be decoded. The resulting Verilog
model is given as follows:

1 ‘define OP 8

2 ‘define ADDR 8

3

4 module alu (clk, nrst, alu_op, alu_zero, alu_valid, alu_bus);
5

6 // Interface Definitions

7 input clk; // Clock Input

8 input nrst ; // reset (active Low)

9 output alu_zero; // ALU is zero

10 input alu_valid; // ALU output is valid
11

12 inout [*OP+*ADDR—1:0] alu_bus; // ALU bus
13 input [‘OP-1:0] alu_op; // ALU OP code
14

15 // Register Definitions

16 reg alu_zero; // ALU is zero

17

18 reg [‘OP+°“ADDR-1:0] acc; // Accumulator

19 reg [“OP+°ADDR—1:0] alu_reg; // Accumulator Reg

20

21 assign alu_bus = alu_valid ? alu_reg : ’bz;
22

23 always @(posedge clk) begin

24

25 if(nrst==0) begin

26 acc <= 0;

27 end

28 else begin

29 case (alu_op)

30 8°h00: acc <= alu_bus;

31 8’h01: acc <= acc + alu_bus;
32 8°h02: acc <= ~alu_bus;

33 87h03: acc <= acc | alu_bus;
34 8°h04: acc <= acc & alu_bus;
35 8’h05: acc <= acc "~ alu_bus;
36 8°h06: acc <= acc + 1;

37 8’h07: alu_reg <= acc;

38 default: acc = 0;

39 endcase

40 if (acc==0) begin

41 alu_zero <=1;

42 end

43 else begin

44 alu_zero <= 0;

45 end

46 end

47 end

48

49 endmodule
We can test this by loading in a sample instruction, and then setting it valid so that it is then
seen on the bus. The test bench to achieve this is shown here, and in this case after initializing
the accumulator to all zeros, the hex value 0012 is loaded, with the binary equivalent 0000
0000 0001 0010, which is seen in Figure 8.9.

1 ‘define 0P 8

2 ‘define ADDR 8

3

4

5 module alu_tb();

6 // declare the counter signals
7 reg clk;

8 reg nrst;

9 reg alu_valid;

10 wire alu_zero;

11

12 wire [‘OP+“ADDR—1:0] alu_bus;
13 reg [‘OP—1:0] opcode;

Figure 8.9
Basic processor ALU simulation.

14 reg [‘OP+‘ADDR—1:0] alu_reg;

15

16

17 assign alu_bus = alu_reg;

18

19 // Set up the initial variables and reset

20 initial begin

21 $display (”time\t clk reset inc load valid data”);

22 $monitor (”%g\t %b %b %b %b %b”,

23 $time, clk, nrst, alu_zero, alu_valid, opcode, alu_bus);
24 clk = 1; // initialize the clock to 1

25 nrst = 1; // set the reset to 1 (not reset)

26 alu_valid = 0;

27 opcode = 8’h00;

28 alu_reg = "bz;

29 #5 nrst = 0; // reset = 0 : resets the counter

30 #10 nrst = 1; // reset back to 1 : counter can start
31 alu_valid = 1;

32 #10 alu_valid = 0; // reset back to 1 : counter can start
33 #10 alu_reg = 16°h0012;

34 #200 $finish; // Finish the simulation

35 end

36

37 // Clock generator
38 always begin

39 #5 clk = ~clk; // Clock every 5 time slots

40 end

41

42 //assign data = datareg;

43

44 // Connect DUT to test bench

45 alu DUT (clk,nrst,opcode,alu_zero,alu_valid,alu_bus);
46

47 endmodule

The resulting waveform shows the behavior as predicted:

8.4.6 The Memory

The processor requires a RAM memory, with an address register (MAR) and a data register
(MDR). There therefore needs to be a load signal for each of these registers: mdr_load and
mar_load. As it is a memory, there also needs to be an enable signal (m_en), and also a signal
to denote Read or Write modes (m_rw). Finally, the connection to the system bus is a standard
inout vector as has been defined for the other registers in the microprocessor.

As there is a full description of a sample memory in Chapter 11, Memory, the code is not
repeated at this point.

8.4.7 Microcontroller Controller

The operation of the processor is controlled in detail by the sequencer, or controller block. The
function of this part of the processor is to take the current program counter address, look up
the relevant instruction from memory, move the data around as required, setting up all the
relevant control signals at the right time, with the right values. As a result, the controller must
have the clock and reset signals (as for the other blocks in the design), a connection to the
global bus, and finally all the relevant control signals must be output.

Using this entity, the control signals for each separate block are then defined, and these can be
used to carry out the functionality requested by the program. The architecture for the
controller is then defined as a basic state machine to drive the correct signals. The basic state
machine for the processor is defined in Figure 8.4 shown previously in this chapter.

The outline Verilog Controller is shown below; however, there are so many states it has been
cut down to illustrate the architecture of the model.

‘define 0P 8
‘define ADDR 8

1

2

3

4 module controller (

5 clk, nrst,

6 ir_load, ir_valid, ir_address,
7 pc_inc,pc_load, pc_valid,

8

mdr_load,
9 mar_load, mar_valid,
10 m_en, m_rw,
11 alu_op,
12 alu_valid
13)3
14
15 // Interface Definitions
16 input clk; // Clock Input
17 input nrst ; // reset (active Low)
18

19 output ir_load;
20 output ir_valid;

21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

inp

out
out
out

ut [“ADDR-1:0] ir_address;

put pc_inc;
put pc_load;
put pc_valid

output alu_valid; // ALU output is valid

output mdr_load;
output mar_load;
output mar_valid;
output m_en;

out

out

/7

reg
reg

reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

reg

put m_rw;
put [*0P-1:0] alu_op; // ALU OP code
Register Definitions

ir_load;
ir_valid;

pc_inc;
pc_load;
pc_valid

alu_valid; // ALU output is valid
mdr_load;

mar_load;

mar_valid;

m_en;

m_rw;

[‘OP=1:0] alu_op; // ALU OP code

[3:0] state; // state variable

always @(posedge clk) begin

if(nrst==0) begin

acc <= 0;

end
else begin

case (state)
8°h00: begin
mar_load <= 1;
pc_load <= 1;
pc_inc <= 1;
end

// Complete State Definitions Here

// Catch All state to avoid unknown conditions
default: state <= 0;

76 endcase

77 if (acc==0) begin
78 alu_zero <=1;
79 end

80 else begin

81 alu_zero <= 0;
82 end

83 end

84 end

85

86 always @(posedge clk or posedge rst)
87 begin

88 if (rst == 0)

89 state = s0;

90 else

91 case (state)

92 s0:

93 state = sl;
94 sl:

95 if (choice)
96 state = s3;
97 else

98 state = s2;
99 Ss2:

100 state = s0;
101 s3:

102 state = s0;
103 endcase

104 end

105

106 endmodule

8.4.8 Summary of a Simple Verilog Microprocessor

Now that the important elements of the processor have been defined, it is a simple matter to
instantiate them in a complete Verilog model and create a microprocessor using these building
blocks. It is also a simple matter to modify the functionality of the processor by changing the
address/data bus widths or extend the instruction set.

8.5 Soft Core Processors on an FPGA

While the previous example of a simple microprocessor is useful as a design exercise and
helpful to gain understanding about how microprocessors operate, in practice most FPGA
vendors provide standard processor cores as part of an embedded development kit that
includes compilers and other libraries. For example, this could be the MicroBlaze™ core from
Xilinx or the Nios™ core supplied by Altera. In all these cases the basic idea is the same: that
a standard configurable core can be instantiated in the design and code compiled using a
standard compiler and downloaded to the processor core in question.

Each soft core is different and rather than describe the details of a particular case, in this
section the general principles will be covered and the reader is encouraged to experiment with
the offerings from the FPGA vendors to see which suits their application the best.

In any soft core development system there are several key functions that are required to make
the process easy to implement. The first is the system building function. This enables a core to
be designed into a hardware system that includes memory modules, control functions, DMA
functions, data interfaces, and interrupts. The second is the choice of processor types to
implement. A basic Nios II or similar embedded core will typically have a performance in the
region of 100-200MIPS, and the processor design tools will allow the size of the core to be
traded off with the hardware resources available and the performance required.

8.6 Summary

The topic of embedded processors on FPGAs would be suitable for a complete book in itself.
In this chapter the basic techniques have been described for implementing a simple processor
directly on the FPGA and the approach for implementing soft cores on FPGAs have been
introduced.

Designer’s Toolbox

This part of the book is intended to provide the designer with some useful building blocks that
could be used in a typical FPGA-based system. These are not production quality code by any
means, but rather a short cut to aid understanding and help designers make good choices in
their own integration of functions into a design.

The chapters in this part include useful techniques such as serial communications, secure
communications, memory, handling peripherals and digital filters. It is a snapshot, and by its
nature a subset of what is possible. However, hopefully it will be of assistance to designers in
their selection of functionality to include in their own designs.

Digital Filters

9.1 Introduction

An important part of digital or computing systems that interface to the “real/world” of sensors
and analog interfaces is the ability to process sampled data in the digital domain. This is often
called Sampled Data Systems (SDS) or defined as operating in the Z-domain. Most engineers
are familiar with the operation of filters in the Laplace or S-domain where a continuous
function defines the characteristics of the filter and this is the digital domain equivalent to that.

For example, consider a simple RC circuit in the analog domain, which is designed to be a low
pass filter, as shown in Figure 9.1.

This has a low pass filter behavior and can be represented mathematically using the
continuous Laplace (or S-domain) notation:

L(s) 9.1)

~ 1+ sRC

This function is a low pass filter because the Laplace operator s is equivalent to jo, where

w = 2xf (with f being the frequency). If f is zero (the d.c. condition), then the gain will be 1,
but if the value of sRC is equal to 1, then the gain will be 0.5. This in dB is —3 dB and is the
classical low pass filter cut-off frequency.

In the digital domain, the s operation is replaced by Z. Z~! is equivalent in a practical sense to
a delay operator, and similar functions to the Laplace filter equations can be constructed for
the digital, or Z domain, equivalent.

There are a number of design techniques, many beyond the scope of this book (if the reader
requires a more detailed introduction to the realm of digital filters, Cunningham’s Digital
Filtering: An Introduction is a useful starting point); however, it is useful to introduce some of
the basic techniques used in practice and illustrate them with examples.

The remainder of this chapter will cover the introduction to the basic techniques and then
demonstrate how these can be implemented using VHDL and Verilog on FPGAs.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00009-X

Output

Figure 9.1
RC filter in the analog domain.

9.2 Converting S Domain to Z Domain

The method of converting an S domain equation for a filter to its equivalent Z domain
expression uses the bilinear transform. This is a standard method for expressing the S-domain
equation in the Z-domain. The basic approach is to replace each instance of s with its
equivalent Z domain notation and then rearrange into the most convenient form. The
transform is called bilinear as both the numerator and denominator of the expression are linear
in terms of z.

z—1

s =
z+1

9.2)

If we take a simple example of a basic second order filter we can show how this is translated
into the equivalent Z domain form:
1

H$) = ———
() s24+2s+1

9.3)

In order to get the function H(s) in its Z-domain equivalent, replace each occurrence of s with
the expression for s in terms of z shown in Equation (9.2), giving:

1
H(z) = 9.4)
T G raEh 1
(z+ 1)?
H(z) = 5
&= T T e Der D+ et 12 ©-5)
Z24+2z7+1
HE =5y 9.6)

Now, the term H(z) is really the output Y (z) over the input X(z) and we can use this to express
the Z domain equation in terms of the input and output:

Z+2+1 Y@
3241 X@2

9.7

This can then be turned into a sequence expression using delays (z is one delay, z> is two
delays and so on) with the following result:

322Y(2) + Y(2) = 2°X(2) + 22X(2) + X(2) (9.8)
3yn+2)+yn)=x(n+1)+2x(n+ 1) + x(n) 9.9)

This is useful because we are now expressing the Z domain equation in terms of delay terms,
and the final step is to express the value of y(n) (the current output) in terms of past elements
by reducing the delays accordingly (by 2 in this case):

3y(n) +y(n —2) =x(n) +2x(n — 1) + x(n — 2) (9.10)
y(n) +1/3y(n —2) =1/3x(n) +2/3x(n — 1) + 1/3x(n — 2) (9.11)
y(n) =1/3x(n) +2/3x(n— 1) + 1/3x(n — 1) — 1/3y(n — 2) (9.12)

The final design note at this point is to make sure that the design frequency is correct, for
example the low pass cut-off frequency. The frequencies are different between the S and Z
domain models, even after the bilinear transformation, and in fact the desired digital domain
frequency must be translated into the equivalent s domain frequency using a technique called
prewarping. This simple step translates the frequency from one domain to the other using the
following expression:

QT
we = tan (>) (9.13)

where Q. is the digital domain frequency, 7 is the sampling period of the Z domain system
and w, is the resulting frequency for the analog domain calculations.

Once we have obtained our Z domain expressions, how do we turn this into practical designs?
The next section will explain how this can be achieved in VHDL.

9.3 Implementing Z Domain Functions in VHDL

9.3.1 Introduction

Z domain functions are essentially digital in the time domain as they are discrete and sampled.
The functions are also discrete in the amplitude axis, as the variables or signals are defined
using a fixed number of bits in a real hardware system; whether this is integer, signed, fixed
point, or floating point, there is always a finite resolution to the signals. For the remainder of

this chapter, signed arithmetic is assumed for simplicity and ease of understanding. This also
essentially defines the number of bits to be used in the system. If we have 8 bits, the resolution
is 1 bit and the range is —128 to +127.

9.3.2 Gain Block

The first main Z domain block is a simple gain block. This requires a single signed input, a
single signed output and a parameter for the gain. This could be an integer or also a signed
value. The VHDL model for a simple Z domain gain block is given as:

00NN N RWN =

N T N T N S i S Y SE O Sy
N = OO0 WD —= OO

library ieee;
use ieee.numeric_std.all;

entity zgain is
generic (n : integer := 8;
gain : signed
)
port (
zin : in signed (n—1 downto 0);
zout : out signed (n—1 downto 0)
)
end entity zgain;

architecture zdomain of zgain is
begin
pl : process(zin)
variable product : signed (2xn—1 downto 0);
begin
product := zin % gain;
zout <= product (n—1 downto 0);
end process pl;
end architecture zdomain;

We can test this with a simple testbench that ramps up the input and we can observe the output
being changed in turn:

0NN N R W=

—_— e
B W= O 0

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb is
end entity tb;

architecture testbench of tb is

signal clk : std_logic := ’0’;
signal dir : std_logic := '0";
signal zin : signed (7 downto 0):=X"00";
signal zout : signed (7 downto 0):=X"00";

15 component zgain

16 generic (

17 n : integer := 8;

18 gain :signed := X702~

19)3

20 port (

21 signal zin : in signed(n—1 downto 0);
22 signal zout : out signed(n—1 downto 0)
23)3

24 end component;

25 for all : zgain use entity work.zgain;
26

27

28 begin

29 clk <= not clk after 1 us;

30

31 DUT : zgain generic map (8, X”02”) port map (zin, zout);
32

33 pl : process (clk)

34 begin

35 zin <= zin + 1;

36 end process pl;

37 end architecture testbench;

Clearly, this model has no error checking or range checking and the obvious problem with this
type of approach is that of overflow. For example, if we multiply the input (64) by a gain of 2,
we will get 128, but that is the sign bit, and so the result will show —128! This is an obvious
problem with this simplistic model and care must be taken to ensure that adequate checking
takes place in the model.

9.3.3 Sum and Difference

Using this same basic approach, we can create sum and difference models which
are also essential building blocks for a Z domain system. The sum model VHDL is
shown here:

1 library ieee;

2 use ieee.numeric_std.all;

3

4 entity zsum is

5 generic (n : integer := 8

6)3

7 port (

8 zinl : in signed (n—1 downto 0)
9 zin2 : in signed (n—1 downto 0);
10 zout : out signed (n—1 downto 0)
11)

12 end entity zsum;

13

14 architecture zdomain of zsum is

15 begin

16 pl : process(zin)

17 variable zsum : signed (2xn—1 downto 0);
18 begin

19 zsum := zinl + zin2;

20 zout <= zsum (n—1 downto 0);

21 end process pl;

22 end architecture zdomain;

Despite the potential for problems with overflow, both of the models shown have the internal
variable that is twice the number of bits required, and so this can take care of any possible
overflow internal to the model, and in fact checking could take place prior to the final
assignment of the output to ensure the data is correct. The difference model is almost identical
to the sum model except that the difference of zinl and zin2 is computed.

9.3.4 Division Model

A useful model for scaling numbers simply in the Z domain is the division by 2 model. This
model simply shifts the current value in the input to the right by one bit, hence giving a
division by 2. The model could easily be extended to shift right by any number of bits, but this
simple version is very useful by itself. The VHDL for the model relies on the logical shift
right operator (SRL) which not only shifts the bits right (losing the least significant bit) but
adds a zero at the most significant bit. The resulting VHDL is shown for this specific
function:

1 zout <= zin srl 1;

The unit shift can be replaced by any integer number to give a shift of a specific number of
bits. For example, to shift right by 3 bits (effectively a divide by 8) would have the
following VHDL.:

1 zout <= zin srl 3;

The complete division by 2 model is given here:

1 library ieee;

2 use ieee.numeric_std.all;

3

4 entity zdive is

5 generic (n : integer := 8

6)

7 port (

8 zin : in signed (n—1 downto 0)
9 zout : out signed (n—1 downto 0)
10)

11 end entity zdiv2;

12

13 architecture zdomain of zdiv2 is

14 begin

15 zout <= zin srl 1;
16 end architecture zdomain;

In order to test the model a simple test circuit that ramps up the input is used and this is given
as follows:

1 library ieee;

2 use ieee.numeric_std.all;

3

4 entity zdiv2 is

5 generic (n : integer := 8

6)3

7 port (

8 zin : in signed (n—1 downto 0)
9 zout : out signed (n—1 downto 0)
10)3

11 end entity zdiv2;

12

13 architecture zdomain of zdiv2 is

14 begin

15 zout <= zin srl 1;

16 end architecture zdomain;

The behavior of the model is useful to review. If the input is X03 (Decimal 3), binary
00000011 and the number is right shifted by one, then the resulting binary number will be
00000001 (XO01 or decimal 1); in other words this operation always rounds down. This has
obvious implications for potential loss of accuracy and the operation is skewed downward,
which has, again, implications for how numbers will be treated using this operator in a more
complex circuit.

9.3.5 Unit Delay Model

The final basic model is the unit delay model (zdelay). This has a clock input (clk) using a
std_logic signal to make it simple to interface to standard digital controls. The output is
simply a one clock cycle delayed version of the input.

Notice that the output zout is initialized to all zeros for the initial state; otherwise don’t care
conditions can result that propagate across the complete model.

library ieee;
use ieee.std_logic_1164.al11;
use ieee.numeric_std.all;

entity zdelay is
generic (n : integer :=8);
port (
clk : in std_logic;
zin : in signed (n—1 downto 0);
zout : out signed (n—1 downto 0) := (others => 0)
)

— O 0 00NN AW~

[—

12 end entity zdelay;

13

14 architecture zdomain of zdelay is
15 signal lastzin : signed (n—1 downto 0) := (others => '07);
16 begin

17 pl : process(clk)

18 begin

19 if rising_edge(clk) then

20 zout <= Tastzin;

21 lastzin <= zin;

22 end if;

23 end process pl;

24 end architecture zdomain;

9.4 Basic Low Pass Filter Model

We can put these elements together in simple models that implement basic filter blocks in any
configuration we require, as always taking care to ensure that overflow errors are checked for
in practice.

To demonstrate this, we can implement a simple low pass filter using the basic block diagram
shown in Figure 9.2.

We can create a simple test circuit that uses the individual models we have already shown for
the sum and delay blocks and apply a step change and observe the response of the filter to this
stimulus. Clearly, in this case, with unity gain the filter exhibits positive feedback and so to
ensure the correct behavior we use the divide by 2 model zdiv2 in both the inputs to the sum
block to ensure gain of 0.5 on both. These are not shown in the figure. The resulting VHDL
model is shown in the following code (note the use of the zdiv2 model):

library ieee;
use ieee.std_logic_1164.al11;
use jeee.numeric_std.all;

NN NS

Delay -

Figure 9.2
Simple Z domain low pass filter.

entity tb is
end entity tb;

architecture testbench of tb is

signal clk : std_logic := ’0’;

signal x : signed (7 downto 0):=X"00";
signal y : signed (7 downto 0):=X"00";
signal yl : signed (7 downto 0):=X"00";
signal yd : signed (7 downto 0):=X"00";
signal yd2 : signed (7 downto 0):=X"00";
signal x2 : signed (7 downto 0):=X"00";

component zsum

generic (
n : integer := 8

)

port (
signal zinl : in signed(n—1 downto 0);
signal zin2 : in signed(n—1 downto 0);
signal zout : out signed(n—1 downto 0)

)

end component;

for all : zsum use entity work.zsum;

component zdiff

generic (
n : integer := 8

)3

port (
signal zinl : in signed(n—1 downto 0);
signal zin2 : in signed(n—-1 downto 0);
signal zout : out signed(n—1 downto 0)

)

end component;

for all : zdiff use entity work.zdiff;

component zdiv?2
generic (

n : integer := 8
)
port (
signal zin : in signed(n—1 downto 0);
signal zout : out signed(n—1 downto 0)
)
end component;
for all : zdiv2 use entity work.zdiv2;

component zdelay
generic (
n : integer := 8
)
port (
signal clk : in std_logic;
signal zin : in signed(n—1 downto 0);

60 signal zout : out signed(n—1 downto 0)

61)

62 end component;

63 for all : zdelay use entity work.zdelay;

64

65 begin

66 clk <= not clk after 1 us;

67

68 GAINL : zdiv2 generic map (8) port map (x, x2);

69 GAINZ2 : zdiv2 generic map (8) port map (yd, yd2);

70 SUMI : zsum generic map (8) port map (x2, yd2, y);
71 D1 : zdelay generic map (8) port map (clk, y, yd);
72

73 x <= X”00”, X”0F” after 10 us;

74 end architecture testbench;

The test circuit applies a step change of X00 to XOF after 10 us, and this results in the filter
response. We can show this graphically in Figure 9.3 with the output in both hexadecimal and
analog form for illustration.

It is interesting to note the effect of using the zdiv2 function on the results. With the input of
OF (binary 00001111) we lose the LSB when we divide by 2, giving the resulting input to the
sum block of 00000111 (7) which added together with the division of the output gives a total
of 14 as the maximum possible output from the filter. In fact, the filter gives an output of X0D
or binary 00001101, which is two down from the theoretical maximum of XOF and this
highlights the practical difficulties when using a coarse approximation technique for
numerical work rather than a fixed or floating point method. On the other hand, it is clearly a
simple and effective method of implementing a basic filter in VHDL.

Later in this book, the use of fixed and floating point numbers are discussed, as is the use of
multiplication for more exact calculations and for practical filter design; where higher

e | || LI L LI LI |

X xo0” | —

Y X X"00” X X"00” X X"07” X X"0A’ X X"0C” X X"0D”

Y ,—I

Figure 9.3
Basic low pass filter simulation waveforms.

accuracy is required, then it is likely that both these methods would be used. There may be
situations, however, where it is simply not possible to use these advanced techniques,
particularly a problem when space is at a premium on the FPGA and, in these cases, the
simple approach described in this chapter will be required.

There are numerous texts on more advanced topics in digital filter design, and these are
beyond the scope of this book, but it is useful to introduce some key concepts at this stage of
the two main types of digital filter in common usage today. These are the recursive (or Infinite
Impulse Response, IIR) filters and nonrecursive (or Finite Impulse Response, FIR) filters.

9.5 Implementing Z Domain Functions in Verilog

9.5.1 Gain Block

The first main Z domain block is a simple gain block. This requires a single signed input, a
single signed output and a parameter for the gain. This could be an integer or also a signed
value. The Verilog model for a simple Z domain gain block is given as follows:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

module zgain (
din, // Digital Input
dout // Digital OQutput
)

parameter n = 8; // Width of Digital Input and Output
parameter gain = 1; // Gain Parameter

input [n—=1:0] din;
output [2%n—1:0] dout;

wire signed [n—1:0] din;
reg signed [2xn—1:0] dout;

always @ (din)
begin

dout <= din * gain;
end

endmodule

Clearly, as with the VHDL model, this model has no error checking or range checking and the
obvious problem with this type of approach is that of overflow. For example, in an 8-bit
model, if we multiply the input (64) by a gain of 2, we will get 128, but that is the sign bit, and
so the result will show —127! This is an obvious problem with this simplistic model and care
must be taken to ensure that adequate checking takes place in the model.

We can test the model by using a simple test bench that has a lookup table to generate a sine
wave which will go from —127 to 4127, and the gain can be varied using the parameter of the
gain block. The number of bits in the gain block defaults to the parameter n value (default is 8)

and the output is 2 x n. This makes the assumption that the gain will be no larger than the input
value maximum, and this should obviously be checked thoroughly in a practical model to
avoid the possibility of overflow errors occurring. The test bench Verilog is shown here:

0NN N R W=

Db BB DSBS DS D DR ER B WL LWL WWLWL L LWWERDNDNDNENDNDNLDNDRNDNDN = = = e e e
— O VO IO AW, OOVWOIAAWUNPAWNR—=OWOVWOIANANUNPRWND=,OWOVWOIANUNDRWND—=ONO

module zsine_th();

// declare the counter signals
reg clk;

reg signed [7:0] zvalue;

reg rst;

wire signed [15:0] gvalue;
// Set up the initial variables and reset
initial begin

$display ("time\t clk zvalue");

$monitor ("%g\t %b %d",

$time, clk, zvalue);

clk = 1; // initialize the clock to 1

rst = 1; // set the reset to 1 (not reset)

#5 rst = 0; // reset = 0 : resets the counter

#10 rst = 1; // reset back to 1 : counter can start
#5 zvalue = 0;

#5 zvalue = 22;
#5 zvalue = 44;
#5 zvalue = 64;
#5 zvalue = 82;
#5 zvalue = 98;
#5 zvalue = 111;
#5 zvalue = 120;
#5 zvalue = 126;
#5 zvalue = 127;
#5 zvalue = 126;
#5 zvalue = 120;
#5 zvalue = 111;
#5 zvalue = 98;
#5 zvalue = 82;
#5 zvalue = 64;
#5 zvalue = 44;
#5 zvalue = 22;
#5 zvalue = 0;

#5 zvalue = —22;
#5 zvalue = —44;
#5 zvalue = —64;
#5 zvalue = —82;
#5 zvalue = —98;
#5 zvalue = —111;
#5 zvalue = —120;
#5 zvalue = —126;
#5 zvalue = —127;
#5 zvalue = —126;
#5 zvalue = —120;
#5 zvalue = =111;
#5 zvalue = —98;
#5 zvalue = —82;
#5 zvalue = —64;
#5 zvalue = —44;

52
53
54
55
56
57
58
59
60
61
62
63
64

#5 zvalue = —=22;

#5 zvalue = 0;

#1000 $finish; // Finish the simulation
end

// Clock generator
always begin
#5 clk = ~clk; // Clock every 5 time slots
end
zgain #(8,2) al(zvalue, gvalue);

endmodule

When the model was simulated with a gain of 2, n = 8, the output values can be seen in
Figure 9.4 to exactly double the input values, and as the gain block sensitivity is on the input,
the change is immediate (unlike a synchronous model which would only change on the clock
edge). The waveforms are shown in Figure 9.4.

When the gain is reversed to —2, the output has the same amplitude as before, but now the
output is inverted, and this can easily be seen to be correct in the waveform diagram in
Figure 9.5.

9.5.2 Sum and Difference

Using this same basic approach, we can create sum and difference models which are also
essential building blocks for a Z domain system. The sum model Verilog is shown here:

NN R W~

module zsum (
dinl, // Digital Input 1
din2, // Digital Input 2
dout // Digital OQutput
)s

parameter n = 8; // Width of Digital Input and Output

Figure 9.4
Z gain simulation test with gain = 2.

Figure 9.5
Z gain simulation test with gain = —2.

8

9 input [n—1:0] dinl;

10 input [n—1:0] din2;

11 output [2+%n—1:0] dout;

12

13 wire signed [n—1:0] dinl;
14 wire signed [n—1:0] din2;
15 reg signed [2xn—1:0] dout;

16

17 always @ (dinl or din2)
18 begin

19 dout <= dinl + din2;
20 end

21

22 endmodule

Despite the potential for problems with overflow, both of the models shown have the internal
variable that is twice the number of bits required, and so this can take care of any possible
overflow internal to the model, and in fact checking could take place prior to the final
assignment of the output to ensure the data is correct. The difference model is almost identical
to the sum model except that the difference of dinl and din2 is computed.

1 module zdiff (

2 dinl, // Digital Input 1
3 din2, // Digital Input 2
4 dout // Digital Output

5)

6

7 parameter n = 8; // Width of Digital Input and Output
8

9 input [n—-1:0] dinl;

10 input [n—1:0] dinZ;

11 output [2%n—1:0] dout;

12

13 wire signed [n—1:0] dinl;
14 wire signed [n—1:0] din2;
15 reg signed [2%n—1:0] dout;

16
17
18
19
20
21
22

always @ (dinl or din2)
begin

dout <= dinl — din2;
end

endmodule

9.5.3 Unit Delay Model

The final basic model is the unit delay model (zdelay). This has a clock input (clk) and a reset
(rst) signal to make it simple to interface to standard digital controls. The output is simply a
one clock cycle delayed version of the input.

Notice that the output dout is initialized to all zeros for the initial state, otherwise don’t care
conditions can result that propagate across the complete model.

28
29
30
31

module zdelay (
clk, // clock input
rst, // reset input
din, // Digital Input
dout // Digital Output
)

parameter n = 8; // Width of Digital Input and Output
input clk;

input rst;

input [n-1:0] din;

output [n-1:0] dout;

reg [n—1:0] dout;

reg [n—1:0] dstored;

always @ (posedge clk)

begin
if (rst == 0) begin
dout <= 0;
dstored <= 0;
end

else begin
dout <= dstored;
dstored <= din;
end
end

endmodule

The model was tested using a basic test bench as shown below to illustrate how the simple
delay operates:

1
2

module zdelay_tb();
// declare the counter signals

3 reg clk;

4 reg signed [7:0] zvalue;

5 reg rst;

6

7 wire signed [7:0] gvalue;

8 // Set up the initial variables and reset

9 initial begin

10 $display ("time\t clk zvalue");

11 $monitor ("%g\t %b %d",

12 $time, clk, zvalue);

13 clk = 1; // initialize the clock to 1

14 rst = 1; // set the reset to 1 (not reset)
15 #5 rst = 0; // reset = 0 : resets the counter
16 #10 rst = 1; // reset back to 1 : counter can start
17 #10 zvalue = 23;

18 #10 zvalue = 54;

19 #10 zvalue = 12;

20 #1000 $finish; // Finish the simulation

21 end

22

23 // Clock generator
24 always begin

25 $\mbox{\#1}$5 clk = ~clk; // Clock every 5 time slots
26 end

27

28 zdelay $\mbox{\#}$(8) al(clk, rst, zvalue, gvalue);

29

30 endmodule

The resulting behavior can clearly be seen in Figure 9.6.

Later in this book, the use of fixed and floating point numbers are discussed, as is the use of
multiplication for more exact calculations and for practical filter design, where higher
accuracy is required, it is likely that both these methods would be used. There may be
situations, however, where it is simply not possible to use these advanced techniques,

Figure 9.6
Z delay simulation.

particularly a problem when space is at a premium on the FPGA; in these cases, the simple
approach described in this chapter will be required.

There are numerous texts on more advanced topics in digital filter design, and these are
beyond the scope of this book, but it is useful to introduce some key concepts at this stage of
the two main types of digital filter in common usage today. These are the recursive (or Infinite
Impulse Response, IIR) filters and nonrecursive (or Finite Impulse Response, FIR) filters.

9.6 Finite Impulse Response Filters

Finite impulse response (FIR) filters are characterized by the fact that they use only delayed
versions of the input signal to filter the input to the output. For example, if we take the
expression for a general FIR filter below, we can see that the output is a function of a series of
delayed, scaled versions of the input:

y=>_ Axlil (9.14)

where A; is the scale factor for the ith delayed version of the input. We can represent this
graphically in the diagram shown in Figure 9.7. We can implement this model using the basic
building blocks described in this chapter of gain, division, sums and delays to develop block
based models for such filters. As noted in the previous section, it is important to ensure that
for higher accuracy filters, fixed or floating point arithmetic is required and also the use of
multipliers for added accuracy is preferable in most cases to that of simple gain and division
blocks as described previously in this chapter.

9.7 Infinite Impulse Response Filters

Infinite impulse response (IIR) filters are characterized by the fact that they use delayed

versions of the input signal and fed-back and delayed versions of the output signal to filter the
input to the output. For example, if we take the expression for a general IIR filter below, we can
see that the output is a function of a series of delayed, scaled versions of the input and output.

- Z Aili] 9.15)

Biyli]

where A; is the scale factor for the ith delayed version of the input and B; is the scale factor for
the ith delayed version of the output. This is obviously very similar to the FIR example
previously given and can be built up using the same basic elements. If we consider the simple
example earlier in this chapter, it can be seen that this is in fact a simple first order

Delay

Delay

Delay

Figure 9.7
FIR filter schematic.

(single delay) IIR filter, with no delayed versions of the input and a single delayed version of
the output.

9.8 Summary

This chapter has introduced the concepts of implementing basic digital filters and Z-domain
functions in VHDL and Verilog and has given examples of both the building blocks and
constructed filters for implementation on an FPGA platform. The general concepts of FIR and
IIR filters have been introduced so that the reader can implement the topology and type of
filter appropriate for their own application. A detailed treatise on filters is beyond the scope of
this book and the reader is referred to one of the many digital filter design texts available for a
more in-depth analysis of the topic.

Secure Systems

10.1 Introduction to Block Ciphers

The data encryption standard (DES) is a symmetric block cipher. A stream cipher operates on
a digital data stream one or more bits at a time. A block cipher operates on complete blocks of
data at any one time and produces a ciphertext block of equal size. DES is a block cipher that
operates on data blocks of 64 bits in size. DES uses a 64-bit key 8 x 8 including 1 bit for
parity, so the actual key is 56 bits. DES, in common with other block ciphers, is based around
a structure called a Feistel Lattice so it is useful to describe how this works.

10.2 Feistel Lattice Structures

A block cipher operates on a plaintext block of n bits to produce a block of ciphertext of n
bits. For the algorithm to be reversible (i.e., for decryption to be possible) there must be a
unique mapping between the two sets of blocks. This can also be called a non singular
transformation. For example, consider the following transformations as shown in Figure 10.1.

Obviously, this is essentially a substitution cipher, which may be susceptible to the standard
statistical analysis techniques used for simple cryptanalysis of text (such as frequency
analysis). As the block size increases, then this becomes increasingly less feasible. An obvious
practical difficulty with this approach is the number of transformations required as n increases.
This mapping is essentially the key and the number of bits will determine the key size.
Therefore, for an n-bit general substitution block cipher, the key size is calculated as follows:

key = n x 2" (10.1)
For a specific case where n = 64, the key size becomes 64 x 264 = 10?!.

In order to get around this complexity problem, Feistel proposed an approach called a product
cipher whereby the combination of several simple steps leads to a much more
cryptographically secure solution than any of the component ciphers used. His approach relies
on the alternation of two types of function:

e Diffusion
¢ Confusion

http://dx.doi.org/10.1016/B978-0-08-097129-2.00010-6

Reversible Irreversible

Plaintext Ciphertext Plaintext Ciphertext

00 1" 00 1
01 10 01 10
10 00 10
1" 10 1

Figure 10.1

Reversible and irreversible transformations.

These two concepts are grounded in an approach developed by Shannon used in most standard
block ciphers in common use today. Shannon’s goal was to define cryptographic functions that
would not be susceptible to statistical analysis. He therefore proposed two methods for
reducing the ability of statistical cryptanalysis to find the original message, classified as
diffusion and confusion.

In diffusion, the statistical structure of the plaintext is dissipated throughout the long-term
statistics of the ciphertext. This is achieved by making each bit of the plaintext affect the value
of many bits of the ciphertext. An example of this would be to add letters to a ciphertext such
that the frequency of each letter is the same, regardless of the message. In binary block ciphers
the technique uses multiple permutations and functions such that each bit of the ciphertext is
affected by multiple bits in the plaintext.

Each block of plaintext is transformed into a block of ciphertext, and this depends on the key.
Confusion aims to make the relationship between the ciphertext and the key as complex as
possible to reduce the possibility of ascertaining the key. This requires a complex substitution
algorithm, as a linear substitution would not protect the key.

Both diffusion and confusion are the cornerstones of successful block cipher design.

The result of these requirements is the Feistel Lattice (shown in Figure 10.2). This is the basic
architecture that is used in block ciphers such as DES.

The inputs to the algorithm are the plaintext (of length 2w bits) and a key K. The plaintext is
split into two halves L and R, and the data is then passed through n rounds of processing and
then recombined to produce the ciphertext. Each round has an input L;_; and R;_; derived
from the previous round and a subkey K;, derived from the overall key K. Each round has the
same structure. The left half of the data has a substitution performed. This requires a round
function F to be performed on the right half of the data and then XORed with the left half.
Finally a permutation is performed that requires the interchange of the two halves of the data.

The implementation of a Feistel network has the following key parameters:

* Block size A larger block size generally means greater security, but reduced speed. 64-bit
block sizes are very heavily used as being a reasonable trade-off—although AES now
uses 128 bits.

Plaintext — 2w bits

w bits w bits
] K4
Round 1
Rounds 1-n
¥
¥ Kn

Ciphertext — 2w bits

Figure 10.2
Feistel lattice structure.

* Key Size The same trade-off applies as for block size. Generally 64 bits is not now
considered adequate and 128 bits is preferred.

* Number of rounds Each round adds additional security. A single round is inadequate, but
16 is considered standard.

* Subkey generation The more complex this algorithm is, the more secure the overall
system will be.

* Round function Greater complexity again means greater resistance to cryptanalysis.

10.3 The Data Encryption Standard (DES)

10.3.1 Introduction

The Data Encryption Standard (DES) was adopted by the National Institute of Standards and
Technology (NIST) in 1977 as the Federal Information Processing Standards 46 (FIPS

PUB 46). As mentioned previously, the algorithm operates on plaintext blocks of 64 bits and
the key size is 56 bits. By 1999, NIST had decreed that DES was no longer secure and should
only be used for legacy systems and that triple DES should be used instead. As will be
described later, DES has since been superceded by the Advanced Encryption Standards
(AES). The coarse structure (overall architecture) of DES is shown in Figure 10.3.

The center section (where the main repetition occurs) is called the fine structure and is where
the details of the encryption take place. This fine structure is detailed in Figure 10.4.

P (64 bits)

64 bits
“ Initial permutation

/1’ 32 bits 32 bits ’1/
é Lo (32) R, (32)
2 f
5 S 48
g 32 bits S
@ N

32 bits {~
L, (32) R, (32)

Final permutation
64 bits

C (64 bits) |

Figure 10.3

DES coarse structure.

Expansion/permutation
E Table

48 bits

48 bits

Substitution/choice
S Table

32 bits
Permutation

(9]
T 32 bits
D xor

32 bits 4~

L,(32)

R:(32)

Figure 10.4
DES fine structure.

The fine structure of DES consists of several important functional blocks:

* Initial permutation Fixed, known mapping 64-64 bits.

* Key transformations Circular L shift of keys by A(i) bits in round (A(i) is known and fixed).

* Compression Permutation Fixed known subset of 56-bit input mapped onto 48-bit output.

* Expansion permutation 32-bit data shuffled and mapped (both operations fixed and
known) onto 48 bits by duplicating 16 input bits. This makes diffusion quicker.

Another significant section of the algorithm is the substitution or S-box. The nonlinear aspect
of the cipher is vital in cryptography. In DES the eight S boxes each contain four different
(fixed and known) 4:4 input maps. These are selected by the extra bits created in the expansion
box. The S boxes are structured as shown in Figure 10.5.

The final part of the DES structure is the key generation architecture for the individual round
keys and this is given in Figure 10.6.

48 bits

l |

S box 1 S box 8

Hil s llll|

Figure 10.5
DES S-box architecture.

28 bits 28 bits
Ciq Di
Left shift Left shift
Ki Permutation/contraction
\ (permuted choice 2)
48
Ci DI
Figure 10.6

DES round key generation.

The remaining functional block is the initial and final permutation. The initial permutation
(P-Box) is a 32:32 fixed, known bit permutation. The final permutation is the inverse of the
initial permutation. The initial permutation is defined using the following table:

58 |50 (42 |34 |26 |18 |10
60 | 52 |44 |36 |28 |20 |12
62 |54 |46 |38 |30 |22 |14
64 | 56 |48 |40 |32 |24 |16
57 |49 (41 |33 |25 |17 |9

59 |51 (43 |35 |27 |19 |11
61 |53 [45 |37 (29 |21 |13
63 | 55 |47 |39 [31 |23 |15

N| | W] =0~

10.3.2 DES VHDL Implementation

DES can be implemented in VHDL using a structural or a functional approach. As has been
discussed previously, there are advantages to both methods; however, the DES algorithm is
tied implicitly to the structure, so a structural approach will give an efficient implementation.

Implementing the initial permutation in VHDL requires a 64-bit input vector and a 64-bit
output vector. We can create this in VHDL with an entity that defines an input and output
std_logic vector as follows. The architecture is simply the assignment of bits from input to
output according to the initial permutation table previously defined.

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity des_ip is port

5 (

6 d : in std_logic_vector(l to 64);

7 y : out std_logic_vector(l to 64)

8)3

9 end des_ip;

10

11 architecture behavior of des_ip is

12 begin

13 y(1)<=d(58); y(2)<=d(50); y(3)<=d(42); y(4)<=d(34);
14 y(5)<=d(26); y(6)<=d(18); y(7)<=d(10); y(8)<=d(2);
15 y(9)<=d(60); y(10)<=d(52); y(11)<=d(44); y(12)<=d(36);
16 y(13)<=d(28); y(14)<=d(20); y(15)<=d(12); y(16)<=d(4);
17 y(17)<=d(62); y(18)<=d(54); y(19)<=d(46); y(20)<=d(38);
18 y(21)<=d(30); y(22)<=d(22); y(23)<=d(14); y(24)<=d(6);
19 y(25)<=d(64); y(26)<=d(56); y(27)<=d(48); y(28)<=d(40);
20 y(29)<=d(32); y(30)<=d(24); y(31)<=d(16); y(32)<=d(8);
21 y(33)<=d(57); y(34)<=d(49); y(35)<=d(41); y(36)<=d(33);

22 y(37)<=d(25); y(38)<=d(17); y(39)<=d(9); y(40)<=d(1);
23 y(41)<=d(59); y(42)<=d(51); y(43)<=d(43); y(44)<=d(35);
24 y(45)<=d(27); y(46)<=d(19); y(47)<=d(11); y(48)<=d(3);
25 y(49)<=d(61); y(50)<=d(53); y(51)<=d(45); y(52)<=d(37);
26 y(53)<=d(29); y(54)<=d(21); y(55)<=d(13); y(56)<=d(5);
27 y(57)<=d(63); y(58)<=d(55); y(59)<=d(47); y(60)<=d(39);
28 y(61)<=d(31); y(62)<=d(23); y(63)<=d(15); y(64)<=d(7);
29 end behavior;

As this function is purely combinatorial we don’t need to have a register (i.e., clocked input)
on this model, although we could implement that if required using a simple process.

As shown in the previous description of the expansion function, we need to take a word
consisting of 32 bits and expand it to 48 bits. This requires a translation table as shown below.
Notice that there are duplicates in the cell which means that you only need 32 input bits to
obtain 48 output bits.

32 |1 2 |3 4 |5

12 (13 |14 {15 |16 |17
16 |17 |18 |19 | 20 | 21
20 |21 |22 |23 |24 |25
24 |25 |26 |27 |28 |29
28 (29 {30 |31 |32 |1

We can use a VHDL model similar to the initial permutation function, except that in this case
there are 32 input bits and 48 output bits. Notice that some of the input bits are repeated,
giving a straightforward expansion function.

Tibrary ieee;
use ieee.std_logic_1164.al11;

entity des_e is port
(
d : in std_logic_vector(l to 32);
y : out std_logic_vector(l to 48)
)
end des_e;

O 00 1N LN W=

The architecture is simply the assignment of bits from input to output according to the initial
permutation table previously defined.

architecture behavior of des_e is

begin
y(1)<=d(32); y(2)<=d(1); y(3)<=d(2); y(4)<=d(3);
y(5)<=d(4); y(6)<=d(5); y(7)<=d(4); y(8)<=d(5);

BRSOV SR

5 y(9)<=d(6); y(10)<=d(7); y(11)<=d(8); y(12)<=d(9);
6 y(13)<=d(8); y(14)<=d(9); y(15)<=d(10); y(16)<=d(11);
7 y(17)<=d(12); y(18)<=d(13); y(19)<=d(12); y(20)<=d(13);
8 y(21)<=d(14); y(22)<=d(15); y(23)<=d(16); y(24)<=d(17);
9 y(25)<=d(16); y(26)<=d(17); y(27)<=d(18); y(28)<=d(19);
10 y(29)<=d(20); y(30)<=d(21); y(31)<=d(20); y(32)<=d(21);
11 y(33)<=d(22); y(34)<=d(23); y(35)<=d(24); y(36)<=d(25);
12 y(37)<=d(24); y(38)<=d(25); y(39)<=d(26); y(40)<=d(27);
13 y(41)<=d(28); y(42)<=d(29); y(43)<=d(28); y(44)<=d(29);
14 y(45)<=d(30); y(46)<=d(31); y(47)<=d(32); y(48)<=d(1);
15 end behavior;

The final permutation block is the permutation marked (P) on the fine structure after the key
function. This is a straightforward bit substitution function with 32 bits input and 32 bits
output. The bit translation table is shown in the following table:

16 |7 20 | 21
29 (12 (28 |17
1 15 123 |26
5 18 |31 |10
2 8 24 | 14
32127 |3 9

19 |13 |30 |6

22 |11 | 4 25

This is implemented in VHDL using exactly the same approach as the previous expansion and
permutation functions as follows:

library ieee;
use ieee.std_logic_1164.al11;

entity des_p is port
(
d : in std_logic_vector(l to 32);
y : out std_logic_vector(l to 32)
)
end des_p;

O 00 AN LN W=

The architecture is simply the assignment of bits from input to output according to the initial
permutation table previously defined.

1 architecture behavior of des_p is

2 begin

3 y(1)<=d(16); y(2)<=d(7); y(3)<=d(20); y(4)<=d(21);
4 y(5)<=d(29); y(6)<=d(12); y(7)<=d(28); y(8)<=d(17);
5 y(9)<=d(1); y(10)<=d(15); y(11)<=d(23); y(12)<=d(26);
6 y(13)<=d(5); y(14)<=d(18); y(15)<=d(31); y(16)<=d(10);
7 y(17)<=d(2); y(18)<=d(8); y(19)<=d(24); y(20)<=d(14);

8 y(21)<=d(32); y(22)<=d(27); y(23)<=d(3); y(24)<=d(9);

9 y(25)<=d(19); y(26)<=d(13); y(27)<=d(30); y(28)<=d(6);
10 y(29)<=d(22); y(30)<=d(11); y(31)<=d(4); y(32)<=d(25);
11 end behavior;

The nonlinear part of the DES algorithm is the S box. This is a set of 6->4 bit transformations
that reduce the 48 bits of the expanded word in the DES f function to the 32 bits for the next
round. The required row and column are obtained from the data passed into the S box. The
data into the S box is a 6-bit binary word. The row is obtained from 2.b1 + b6 and the column
is obtained from b2b3b4b5. For example, S(011011) would give a row of 01 (1) and a column
of 1101 (13). For S8 this would result in a value returning of 1110 (14).

The basic S-box entity can therefore be constructed using the following VHDL.:

Tibrary ieee;

use ieee.std_logic_1164.al11;

entity des_sbox is

port (
d : in std_logic_vector (1 to 6);
y : out std_logic_vector (1 to 4)
)

end entity des_sbox;

0NN AW —

One approach is to define the row and column from the input D word and then calculate the
output Y word from that using a lookup table approach or minimize the logic as a truth table.
The basic architecture could then look something like this:

architecture behavior of sbox is
signal r : std_logic_vector (1 to 2);
signal ¢ : std_logic_vector (3 to 6);
begin
r<=d (1 to?2);
c<=d (3 tob);
—— the Took up table or logic goes here
end;

00NN N R W

Another approach is to define a simple lookup table with the input d as the unique address and
the output y stored in the memorys; this is exactly the same as a ROM, so the input is defined
as an unsigned integer to look up the required value. In this case the memory is defined in
exactly the same way as the ROM separately in this book.

The S-box substitutions are given in the table following and the VHDL can either use the
lookup table approach to store the address of each substitution, or logic can be used to decode
the correct output.

In order to use this table, the appropriate S box is selected and then the 2 bits of the row select
the appropriate row and the same for the column. For example, for S box S1, if the row is 3

Row Column Number
[O] [(11 [121 [31 [141 [151 [161 [(71] (81 [191 [(701 [(111 [(121 [(73] | (141 [[15]

S1

[0] 14 |4 13 |1 2 15 (11 |8 3 10 | 6 12 5 9 0 7

[1] 0 15 |7 4 14 | 2 13 |1 10 | 6 12 11 9 5 3 8

(2] 4 1 14 | 8 13 |6 2 11 (15 |12 |9 7 3 10 5 0

[3] 15 112 | 8 2 4 9 1 7 5 11 |3 14 10 0 6 13
S2

(0] 15 |1 8 14 | 6 11 |3 4 9 7 2 13 12 0 5 10

[1] 3 13 |4 7 15 |2 8 14 (12 |0 1 10 6 9 11 5

(2] 0 14 |7 11 {10 |4 13 |1 5 8 12 6 9 3 2 15

[3] 13 |8 10 |1 3 15 | 4 2 11 |6 7 12 0 5 14 9
S3

[0] 10 |0 9 14 |6 3 15 |5 1 13 |12 7 11 4 2 8

[1] 13 |7 0 9 3 4 6 10 |2 8 5 14 12 11 15 1

[2] 13 |6 4 9 8 15 |3 0 11 2 12 5 10 14 7

[3] 1 10 (13 |0 6 9 8 7 4 15 |14 3 11 5 2 12
S4

[0] [7 [13[14[3 o [6 |9 [10[1 [2 [8 [5 [11 [12 [4 [15

[1] 13 | 8 11 |5 6 1510 3 4 7 2 12 1 10 14 9

(2] 10 | 6 9 0 12 (11 |7 13 (15 |1 3 14 5 2 8 4

[3] 3 15|10 6 10 |1 13 | 8 9 4 5 11 12 7 2 14
S5

(0] 2 12 | 4 1 7 10 |11 |6 8 5 3 15 13 0 14 9

[1] 14 (11 |2 12 | 4 7 13 |1 0 15 10 9 8

(2] 4 2 1 11 110 [13 |7 8 15 |19 12 5 6 3 0 14

[3] 11 |8 12 |7 1 14 |2 13 |6 15 |0 9 10 4 5 3
S6

[0] 12 |1 10 (15 |9 2 6 8 0 13 |3 4 14 7 5 11

[1] 10 (15 |4 2 7 12 |9 5 6 1 13 14 0 11 3 8

[2] 9 14 |15 |5 2 8 12 |3 7 4 10 1 1 11

[3] 4 3 2 12 |9 5 15 (10 |11 |14 |1 7 6 0 8 13
S7

(0] 4 11 |2 14 (15 |0 8 13 |3 12 |9 7 5 10 6 1

[1] 13 |0 11 |7 4 9 1 10 |14 |3 5 12 2 15 8 6

(2] 1 4 11 (13 112 |3 7 14 (10 |15 |6 8 0 5 9 2

[3] 6 11 113 | 8 1 4 10 | 7 9 5 0 15 14 2 3 12
S8

[0] 13 |2 8 4 6 15 111 |1 10 | 9 3 14 5 0 12 7

[1] 1 15 [13 |8 10 |3 7 4 12 |5 6 11 0 14 9 2

(2] 7 11 |4 1 9 12 114 | 2 0 6 10 13 15 3 5 8

[3] 2 1 14 |7 4 10 | 8 13 (15 |12 |9 0 3 5 6 11

(11) and the Column is 10 (1010) then the output can be read off as 3 (0011). This can be
coded in VHDL using nested case statements as follows:

1 case row is

2 when 0 =>

3 case column is

4 when 0 => y <= 14;

5 when 1 => y <= 4;

6 —— and so on

7 end case;

8 when 1 =>

9 case column is

10 —— and the Tookup goes here
11 End case

12 —— and so on for all the rows
13 end case;

Obviously this is quite cumbersome, but also very easy to code automatically using a simple
code generator and offers the possibility of the synthesis tool carrying out logic optimization
and providing a much more efficient implementation than a memory block.

10.3.3 DES Verilog Implementation

DES can also be implemented in Verilog using a structural or a functional approach. As has
been discussed previously, there are advantages to both methods; however, the DES algorithm
is tied implicitly to the structure, so a structural approach will give an efficient implementation.

Implementing the initial permutation in Verilog requires a 64-bit input vector and a 64-bit
output vector. In Verilog this is very easy to create by simply specifying the size of the input
and output accordingly. In this combinatorial example (the same as the VHDL example
previously in this chapter), we have not used an enable signal, but this would be easy to add,
and then of course we can implement the output with a high impedance (z) state for unknown
input values.

module desip (y,d);
// Define the 10
input [64:1] d;
output [64:1] y;

// Define the output as a register
reg [64:1] y;

// Assign the permutations on any change in d
always @ d
begin

— O 0 0N R W=

—_—

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

As this function is purely combinatorial we don’t need to have a register (i.e., clocked input)
on this model, although we could implement that if required using a simple addition of a
clock.

As shown in the previous description of the expansion function, we need to take a word
consisting of 32 bits and expand it to 48 bits. This requires a translation table as shown below.
Notice that there are duplicates in the cell, which means that you only need 32 input bits to

y[1]<=d[58];
y[51<=d[26];
y[91<=d[607];

y[131<=d[28];
y[171<=d[62];
y[211<=d[301];
y[25]1<=d[64];
y[291<=d[321];
y[331<=d[571];
y[371<=d[25];
y[411<=d[59];
y[451<=d[27];
y[491<=d[61];
y[531<=d[29];
y[571<=d[63];
y[611<=d[31];

end
endmodule

obtain 48 output bits.

We can use a Verilog model similar to the initial permutation function, except that in this case
there are 32 input bits and 48 output bits. Notice that some of the input bits are repeated,

y[2]<=d[507];
y[61<=d[187];

y[101<=d[52];
y[141<=d[20];
y[181<=d[54];
y[221<=d[22];
y[261<=d[56];
y[30]1<=d[24];
y[341<=d[49];
y[381<=d[17];
yl[42]1<=d[51];
y[461<=d[19];
y[501<=d[53];
y[541<=d[21];
y[58]<=d[55];
y[621<=d[23];

y[31<=d[42];
y[71<=d[101];

y[111<=d[447;
y[15]<=d[12];
y[191<=d[46];
y[23]<=d[147];
y[271<=d[48];
y[311<=d[16];
y[35]<=d[41];

y[391<=d[9];

y[431<=d[43];
y[471<=d[11];
y[511<=d[45];
y[551<=d[13];
y[591<=d[471];
y[631<=d[15];

y[41<=d[34];
y[81<=d[2];
y[121<=d[36];
y[16]1<=d[4];
y[201<=d[38];
y[241<=d[6];
y[281<=d[40];
y[321<=d[8];
y[361<=d[33];
y[401<=d[1];
y[441<=d[35];
y[481<=d[3];
y[521<=d[37];
y[56]1<=d[5];
y[601<=d[39];
yl[641<=d[7];

32

10 [11 |12

13

12

13

14

15

16

17

16

17

18

19

20

21

20

21

22

23

24

25

24

25

26

27

28

29

28

29

30

31

32

giving a straightforward expansion function.

EENEOSIN S

module dese (y,d);
// Define the I0
input [32:17 d;
output [48:1] y;

// Define the output as a register

reg [48:1] y;

// Assign the permutations on any change in d

always @ d

begin
y[11<=d[327;
y[51<=d[4];
y[91<=d[6];
y[131<=d[8];
y[171<=d[12];
y[211<=d[147];
y[25]<=d[16];
y[29]1<=d[20];
y[331<=d[22];
y[371<=d[247;
y[41]<=d[28];
y[45]<=d[30];

end

endmodule

y[21<=d[1];
y[6]<=d[5];
y[101<=d[77];
y[141<=d[9];
y[181<=d[13];
y[221<=d[15];
y[261<=d[171];
y[301<=d[21];
y[341<=d[23];
y[381<=d[25];
y[421<=d[29];
y[461<=d[31];

y[31<=d[2];
y[71<=d[4];
y[1131<=d[87;
y[151<=d[10];
y[191<=d[12];
y[23]1<=d[16];
y[271<=d[18];
y[311<=d[20];
y[35]<=d[24];
y[39]1<=d[26];
y[431<=d[28];
y[471<=d[32];

y[41<=d[3];
y[81<=d[5];
y[121<=d[9];
y[161<=d[11];
y[201<=d[13];
y[241<=d[17];
y[281<=d[19];
y[32]<=d[21];
y[361<=d[25];
y[40]<=d[27];
y[441<=d[29];
y[48]1<=d[1];

The final permutation block is the permutation marked (P) on the fine structure after the key
function. This is a straightforward bit substitution function with 32 bits input and 32 bits
output. The bit translation is shown in the following table:

16 |7

20

21

29 (12

28

17

1 15

23

26

5 18

31

10

2 8

24

14

32 |27

3

9

19 [13

30

6

22 |1

4

25

This is implemented in Verilog using exactly the same approach as the previous expansion and
permutation functions as follows, with the behavior simply the assignment of bits from input
to output according to the initial permutation table previously defined.

O 00 3N N kAW~

module desp (y,d);
// Define the I0
input [32:1] d;
output [32:171 y;

// Define the output as a register
reg [32:1] y;

// Assign the permutations on any change in d

10 always @ d

11 begin

12 yl[11<=d[16]; y[2]1<=d[7]; y[31<=d[20]; y[41<=d[21];

13 yI[51<=d[29]; yl[61<=d[12]; y[71<=d[28]; y[81<=d[171];

14 y[91<=d[1]; y[101<=d[15]; y[111<=d[23]; y[121<=d[26];
15 y[131<=d[5]; y[141<=d[18]; y[151<=d[31]; y[161<=d[10];
16 y[171<=d[2]; y[181<=d[8]; y[191<=d[24]; y[20]<=d[147;
17 y[211<=d[32]; y[221<=d[27]; y[231<=d[3]; y[241<=d[9];

18 y[251<=d[19]; y[26]1<=d[13]; y[27]1<=d[30]; y[281<=d[6];

19 y[291<=d[22]; y[301<=d[11]; y[311<=d[4]; y[32]1<=d[25];
20 end

21 endmodule

The nonlinear part of the DES algorithm is the S box. This is a set of 6->4 bit transformations
that reduce the 48 bits of the expanded word in the DES f function to the 32 bits for the next
round. The required row and column are obtained from the data passed into the S box. The
data into the S box is a 6-bit binary word. The row is obtained from 2.b1 + b6 and the column
is obtained from b2b3b4b5. For example, S(011011) would give a row of 01 (1) and a column
of 1101 (13). For S8 this would result in a value returning of 1110 (14).

The basic S-box model can therefore be constructed using the following Verilog, with one
approach to define the row and column from the input d word and then calculate the output Y
word from that using a lookup table approach or minimize the logic as a truth table. The basic
architecture could then look something like this:

1 module sbox (y,d);

2 // Define the I0

3 input [6:1] d;

4 output [4:1]1 y;

5

6 // Define the output as a register
7 reg [4:1] y;

8

9 // Assign the permutations on any change in d
10 reg [2:1] r;

11 reg [4:1] c;

12

13 always @ d

14 begin

15 r <=d[2:17;

16 c <= d[6:3];

17

18 // The remainder of the SBOX logic goes here
19

20 end

21 endmodule

Another approach is to define a simple lookup table with the input d as the unique address
and the output y stored in the memory; this is exactly the same as a ROM, so the input is
defined as an unsigned integer to look up the required value. In this case the memory

is defined in exactly the same way as the ROM is defined separately in this book.

In order to use the table, the appropriate S box is selected and then the 2 bits of the row select
the appropriate row and the same for the column. For example, for Sbox S1, if the row is

3 (11) and the Column is 10 (1010) then the output can be read off as 3 (0011). This can be
coded in VHDL using nested case statements as follows:

1 case (row)

2 0: case (column)
3 0: y=14;

4 1: y=4;

5 // and so on
6 endcase

7 1: case (column)
8 0: y=0;

9 1: y=15;

10 // and so on
11 endcase

12 // and so on for all the rows
13 endcase

Obviously this is quite cumbersome, but also very easy to code automatically using a simple
code generator and offers the possibility of the synthesis tool carrying out logic optimization
and providing a much more efficient implementation than a memory block.

10.3.4 Validation of DES

In order to validate the implementation of DES, a set of test vectors can be used
(i.e., plaintext/ciphertext pairs to ensure that the correct processing is taking place). A suitable
set of test vectors is given as:

Plaintext Ciphertext
4E6F772069732074 | 3FA40E8A984D4815

68652074696D6520 | 6A271787AB8883F9
666F7220616C6C20 | 893D51EC4B563B53

In this case the key to be used is 0123456789 ABCDEF.

Each of the groups of hexadecimal characters is represented by 7-bit ASCII and adding an
extra bit.

10.4 Advanced Encryption Standard

In 1997, the U.S. National Institute of Standards and Technology (NIST) published a request
for information regarding the creation of a new Advanced Encryption Standard (AES) for
nonclassified government documents. The call also stipulated that the AES would specify an
unclassified, publicly disclosed encryption algorithm(s), available royalty-free, worldwide.

In addition, the algorithm(s) must implement symmetric key cryptography as a block cipher
and (at a minimum) support block sizes of 128 bits and key sizes of 128, 192, and 256 bits.

After an open competition, the Rijndael algorithm was chosen as the winner and implemented
as the AES standard. Rijndael allows key and block sizes to be 128, 192, or 256 bits. AES
allows the same key sizes, but operates using a block size of 128 bits. The algorithm operates
in a similar way to DES, with 10 rounds of confusion and diffusion operators (shuffling and
mixing) blocks at a time. Each round has a separate key, generated from the overall key. The
round structure is shown in Figure 10.7.

The overall AES structure is given in Figure 10.8.

| Byte substitution ‘

1

| Shift row ‘

|

Mix column

1

| Add round key ‘

Figure 10.7
AES round structure.

Key (round 0) Add round key

]

Key (rounds 1-9) 4—| Add round key

| Byte substitution |

| Byte substitution |
i
| Shift'row | Repeat for
| Mix column | rounds 1.....9
|

]

| Shift row |
i

| Addroundkey |

Key (rounds 10)

Figure 10.8
AES structure.

Each block consists of 128 bits, and these are divided into 16 8-bit bytes. Each of the
operations acts upon these 8-bit bytes in a 4 x 4 matrix:

ap,o 4o, 4o2 4o3
ao 41 d4di2 43
ao az1 azz azj
aso 4zl dz2 4ss

Note that each element (a;;) is an 8-bit byte, viewed as elements of GF(2%). The arithmetic
operators take advantage of the Galois Field (GF) rules defined in the Rijndael algorithm; an
example is that of addition that is implemented by XOR.

Multiplication is more complicated, but each byte has the multiplicative inverse such that
b.b’ = 00000001 (apart from 00000000, whose multiplicative inverse is 00000000). The

model of the finite field GF(23) depends on the choice of an irreducible polynomial of degree
8, which for Rijndael is:
XBrxt+xi+1 (10.2)

Each of the round operations requires a specific mathematical exploration. Taking each in turn
we can establish the requirements for each one.

Taking the original matrix:

apn 4o, 4o2 4o3
ao a1 a2 a3
ao dz1 dz2 43
aso 4sz) a4z d4sj

each element can be replaced byte-by-byte to generate a new matrix:

boo Doy bop boj
bip b1y bip b3
bro b2y brp bo3
bso b3y b3p b33

Byte substitution requires that for each input data block a(3, 3), we look up a table of
substitutions and replace the bytes to produce a new matrix b(3, 3). The way it works is that
for each input byte abcdefgh, we look up row abcd and column efgh and use the byte at that

location in the output.

The complete byte substitution table is defined as shown in Figure 10.9.

For example: If the input data byte was 7A, then this in binary terms is:

0111 1010

So the row required is 7 (0111) and the column required is A (1010). From this we can read
off the resulting number from the table:

218=1101 1010=DA

This is illustrated in the byte substitution table in Figure 10.9.

We can see that this is a bit shuffling operation that is simply moving bytes around in a
publicly defined manner that does not have anything to do with a key.

Also note that the individual bits within the byte are not changed as such. This is a bytewise
operation. The Shift Row function is essentially a set of cyclic shifts to the left with offsets of
0, 1, 2, 3, respectively.

€00 €01 €02 €03 boo bo1 Dbop boj
cro ci1 c12 c3 | | bt bz bz bip
0 c1 2 3 | | baa b2z bag bai
€30 €31 €32 €33 b3z bso b31 b3

0 1 2 3 4 5 6 2 8 9 A B € D E F
099 124 119 123 242 107 111 197 048 001|103| 043 254 215 171 118
202 130 201 125 250 089 071 240 173 212|162| 175 156 164 114 192
183 253 147 038 054 063 247 204 052 165|229| 241 113 216 049 021
004 199 035 195 024 150 005 154 007 018|128| 226 235 039 178 117
009 131 044 026 027 110 090 160 082 059|214| 179 041 227 047 132
083 209 000 237 032 252 177 091 106 203|190/ 057 074 076 088 207
208 239 170 251 067 077 051 133 069 249|002 127 080 060 159 168
081 163 064 143 146 157 056 245 188 182<2l8>033 016 255 243 210
205 012 019 236 095 151 068 023 196 167|126 061 100 093 025 115
096 129 079 220 034 042 144 136 070 238|184| 020 222 094 011 219
224 050 058 010 073 006 036 092 194 211|172 098 145 149 228 121
231 200 055 109 141 213 078 169 108 086|244 234 101 122 174 008
186 120 037 046 028 166 180 198 232 221|116/ 031 075 189 139 138
112 062 181 102 072 003 246 014 097 053|087 185 134 193 029 158
225 248 152 017 105 217 142 148 155 030|135 233 206 085 040 223
140 161 137 013 191 230 066 104 065 153|045/ 015 176 084 187 022

mMEBOOQWEP OR[N &S WN = O

Figure 10.9
AES byte substitution table.

The Mix Columns function is a series of specific multiplications:

d(),() d(),l d(),z d(),3 02 03 01 01 0,0 €01 €02 €03
dip diq dip di3 _ 01 02 03 01 . €10 €11 €12 €13
dro dry drp dy3 01 01 02 03 €0 €1 2 3
dzo diy dzp dij 03 01 01 02 €30 €31 €32 €33

where 01 =00000001, 02 =00000010, 03 =00000011.
All multiplications are GF(23) and this transformation is invertible.

The final operation in each round is to add the key using the following function:

€0 €01 €02 €03 doo doy dop doj koo ko1 ko2 ko3
eto e11 e12 ez | | dio diy dip dis ® kio kin kip ki3
0 e e e3 | | do doy dop do3 koo koy kop ko3
e30 el €32 e33 dzo dsy dip dij k3o ki1 k3p k33

The round keys are generated using the following method. The original key of 128 bits is
represented as a 4 x 4 matrix of bytes (of 8 bits). This can be thought of as four columns
W), W(l), W(2), W(3). Adjoin 40 columns W(4), ..., W(43). The round key for round i
consists of i columns. If i is a multiple of 4:

Wi =Wi—-4)eTW3i-1)) (10.3)

where T is a transformation of a, b, ¢, d in column W (i — 1) using the following procedure:

* Shift cyclically to get b, c, d, a.

* Replace each byte with S-box entry using ByteSub, to gete, f, g, h.
* Compute round constant (i) = 00000010(i — 4)/4 in GF(2®).

s TWGE-1)=(e®r@).f,gh

e Ifiisnotamultiple of4, Wi) = W(Gi—-4)p W(i—1)

10.4.1 Implementing AES in VHDL

We have two options for implementing block cipher operations in VHDL. We can use the
structural approach (shown in the DES example previously in this chapter), or sometimes it
makes sense to define a library of functions and use those to make much simpler models.

In the example of AES, we can define a top level entity and architecture that has the bare
minimum of structure and is completely defined using functions. This can be especially useful
when working with behavioral synthesis software as this allows complete flexibility for
architectural optimization.

1 library ieee;

2 use ieee.std_logic_1164.alTl;

3 entity AES is

4 port(

5 plaintext : in std_logic_vector(127 downto 0);
6 keytext : in std_logic_vector(127 downto 0);

7 encrypt : in std_logic;

8 go : in std_logic;

9 ciphertext : out std_logic_vector(127 downto 0);
10 done : out std_logic := ’0’

11)3

12 end;

13

14 use work.aes_functions.all;

15 architecture behavior of AES is

16 begin

17 process

18 begin

19 wait until go = "1’

20 done <= ’0";

21 ciphertext <= aes_core(plaintext, keytext, encrypt);
22 done <= ’1";

23 end process;

24 end;

In this example, we have the plaintext and keytext inputs defined as 128-bit-wide vectors and
the ciphertext output is also defined as 128 bits wide. The go flag initiates the encryption and
the done flag shows when this has been completed.

Notice that we have a work library defined called aes_functions which encapsulates all the
relevant functions for the AES algorithm. The set of functions is defined in a package
(aes_functions) and the VHDL is given:

1 Tibrary ieee;

2 use jeee.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4 package aes_functions is

5

6 constant nr : integer := 10;

7 constant nb : integer := 4;

8 constant nk : integer := 4;

9

10 subtype vecl408 is std_logic_vector(1407 downto 0);
11 subtype vecl?28 is std_logic_vector(127 downto 0);
12 subtype vec64 is std_logic_vector(63 downto 0);

13 subtype vec32 is std_logic_vector(31 downto 0);

14 subtype vecl6 is std_logic_vector(15 downto 0);

15 subtype vec8 is std_logic_vector(7 downto 0);

16

17 subtype int9 is integer range 0 to 9;

18

19 function input_output (input : vecl28) return vecl?28;
20 function sbox (pt : vec8) return vec8;

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74

function

subbytes (plaintext :

vecl28)

vecs8;

function shiftrows (plaintext :

function ffmul(pt : vec8; mul : vec8)

function mixcl(10 : vec8; 11 vec8; 12 :
function mixcolumns(pt : vecl28) return vecl28;
function rcon (input : int9) return vec8;
function aes_keyexpansion(key :

function aes_core (signal plaintext :

signal encrypt :

end;

Tibrary ieee;

use jeee.std_logic_1164.al11;
use ieee.numeric_std.all;
package body aes_functions is

function subbytes (plaintext :

—— moods inline
return vecl28 is

variable ciphertext :

begin
ciphertext :=

vecl28;

shbox(plaintext(127

return ciphertext;

end;

function shiftro
—— moods inline
return vecl?28 is

variable ciphertext :

begin
——1ine 0 (the
ciphertext

:= plaintext(31

vecl28)

downto

sbox(plaintext(119 downto
sbox(plaintext(111 downto
sbox(plaintext(103 downto
sbox(plaintext(95 downto
sbox(plaintext(87 downto
sbox(plaintext(79 downto
sbox(plaintext(71 downto
sbox(plaintext(63 downto
sbox(plaintext(55 downto
sbox(plaintext(47 downto
sbox(plaintext(39 downto
sbox(plaintext(31 downto
sbox(plaintext(23 downto
sbox(plaintext(1l5 downto
sbox(plaintext(7 downto
ws (plaintext : vecl28)

vecl?8;

first): no shift
plaintext(55
plaintext(79
plaintext(103

downto 24) &
downto 48) &
downto 72) &
downto 96) &

120)) &
112)) &
104)) &

96))
88))
80))
72))
64))
56))
48))
40))
32))
24))
16))
8)) &

R0 R0 20 20 20 20 R0 20 0 o RO

return vecl?28;
vecl?28) return vecl?8;
return vec8;
13

vec8) return vec8;

vecl28) return vecl408;
vecl?28; signal keytext :
std_logic) return vecl?28;

vecl?8;

75 plaintext(127 downto 120) &

76 plaintext(23 downto 16) &
77 plaintext(47 downto 40) &
78 plaintext(71 downto 64) &
79 plaintext(95 downto 88) &
80 plaintext(119 downto 112) &
81 plaintext(15 downto 8) &
82 plaintext(39 downto 32) &
83 plaintext(63 downto 56) &
84 plaintext(87 downto 80) &
85 plaintext(11l downto 104) &
86 plaintext(7 downto 0);
87 return ciphertext;

88 end;

89

2 ---——
91

92 @ -—
93 function tablelog (input : vec8)

94 —— moods inline

95 return vec8 is

96 variable output : vec8;

97 type table256 is array(0 to 255) of vec8;
98 constant pt_256 : table256 := (

99 —— moods rom

100 x"00", x"00", x"19", x"O1", x"32",

101 x"02", x"la", x"c6", x"4b",

102 x"c7", x"1b", x"68", x"33",

103 x"ee", x"df", x"03", x"64",

104

105 x"04", x"e0", x"Oe", x"34",

106 x"8d", x"81", x"ef", x"4c",

107 x"71", x"08", x"c8", x"f8",

108 x"69", x"lc", x"cl", x"7d",

109

110 x"c2", x"1d", x"bs5", x"f9",

111 x"b9", x"27", x"6a", x"4d",

112 x"ed", x"a6", x"72", x"9a",

113 x"c9", x"09", x"78", x"65",

114

115 x"2f", x"8a", x"05", x"21",

116 x"0f", x"el", x"24", x"12",

117 x"fo", x"82", x"45", x"35",

118 x"93", x"da", x"8e", x"96",

119

120 x"8f", x"db", x"bd", x"36",

121 x"d0", x"ce", x"94", x"13",

122 x"bc", x"d2", x"f1", x"40",

123 x"46", x"83", x"38", x"66",

124 x"dd", x"fd", x"30", x"bf",

125 x"06", x"8b", x"62", x"b3",

126 x"25", x"e2", x"98", x"22",

127 x"88", x"91", x"10", x"7e",

128

129 x"6e", x"48", x"c3", x"a3",

130 x"b6", x"le", x"42", x"3a",
131 x"6b", x"28", x"b4", x"fa",
132 x"85", x"3d", x"ba", x"2b",
133

134 x"79", x"0a", x"15", x"9b",
135 x"9f", x"b5e", x"ca", x"4e",
136 x"d4", x"ac", x"eb", x"f3",
137 x"73", x"a7", x"b57", x"af",
138

139 x"58", x"a8", x"50", x"f4",
140 x"ea", x"d6", x"74", x"4f",
141 x"ae", x"e9", x"db", x"e7",
142 x"e6", x"ad", x"e8", x"2c",
143

144 x"d7", x"75", x"7a", x"eb",
145 x"16", x"0b", x"fb5", x"59",
146 x"ch", x"5f", x"b0", x"9c",
147 x"ag9", x"51", x"aO", x"7f",
148

149 x"0c", x"fée", x"6f", x"17",
150 x"cd", x"49", x"ec", x"d8",
151 x"43", x"1f", x"2d", x"a4",
152 x"76", x"7b", x"b7", x"cc",
153

154 x"bb", x"3e", x"ba", x"fb",
155 x"60", x"bl", x"86", x"3b",
156 x"52", x"al", x"6c", x"aa",
157 x"55", x"29", x"9d", x"97",
158

159 x"b2", x"87", x"90", x"61",
160 x"be", x"dc", x"fc", x"bc",
161 x"95", x"cf", x"cd", x"37",
162 x"3f", x"5b", x"dl1", x"b3",
163

164 x"39", x"84", x"3c", x"41",
165 x"a2", x"6d", x"47", x"14",
166 x"2a", x"9e", x"bd", x"b6",
167 x"f2", x"d3", x"ab", x"44",
168

169 x"11", x"92", x"d9", x"23",
170 x"20", x"2e", x"89", x"b4",
171 x"7c¢", x"b8", x"26", x"77",
172 x"99", x"e3", x"ab", x"67",
173

174 x"4a", x"ed", x"de", x"cbh",
175 x"31", x"fe", x"18", x"0d",
176 x"63", x"8c", x"80", x"cO0",
177 x"f7", x"70", x"07");

178 begin

179 output := pt_256(to_integer(unsigned(input)));
180 return output;

181 end;

182

¥k —-—
184 function tableexp (input : vec8)

185 —— moods inline

186 return vec8 is

187 variable output : vec8;

188 type table256 is array(0 to 255) of vec8;
189 constant pt_256 : table256 := (
190 —— moods rom

191 x"01", x"03", x"05", x"Of",
192 x"11", x"33", x"b5", x"ff",
193 x"la", x"2e", x"72", x"96",
194 x"al", x"fg8", x"13", x"35",
195

196 x"5f", x"el", x"38", x"48",
197 x"d8", x"73", x"95", x"a4",
198 x"f7", x"02", x"06", x"Oa",
199 x"le", x"22", x"66", x"aa",
200

201 x"eb", x"34", x"bc", x"e4",
202 x"37", x"59", x"eb", x"26",
203 x"6a", x"be", x"d9", x"70",
204 x"90", x"ab", x"e6", x"31",
205

206 x"53", x"f5", x"04", x"Oc",
207 x"14", x"3c", x"44", x"cc",
208 x"4f", x"d1", x"68", x"b8",
209 x"d3", x"6e", x"b2", x"cd",
210

211 x"4c", x"d4", x"67", x"a9",
212 x"e0", x"3b", x"4d", x"d7",
213 x"62", x"a6", x"fl", x"08",
214 x"18", x"28", x"78", x"88",
215

216 x"83", x"9e", x"b9", x"d0O",
217 x"6b", x"bd", x"dc", x"7f",
218 x"81", x"98", x"b3", x"ce",
219 x"49", x"db", x"76", x"9a",
220

221 x"b5", x"c4", x"57", x"f9",
222 x"10", x"30", x"50", x"f0o",
223 x"0b", x"1d", x"27", x"69",
224 x"bb", x"d6", x"61", x"a3",
225

226 x"fe", x"19", x"2b", x"7d",
227 x"87", x"92", x"ad", x"ec",
228 x"2f", x"71", x"93", x"ae",
229 x"e9", x"20", x"60", x"aO",
230

231 x"fb", x"16", x"3a", x"4e",
232 x"d2", x"6d", x"b7", x"c2",
233 x"5d", x"e7", x"32", x"b6",
234 x"fa", x"15", x"3f", x"41",
235

236 x"c3", x"be", x"e2", x"3d",
237 x"47", x"c9", x"40", x"cO",
238 x"5b", x"ed", x"2c", x"74",
239 x"9c", x"bf", x"da", x"75",

240

241 x"9f", x"ba", x"d5", x"64",

242 x"ac", x"ef", x"2a", x"7e",

243 x"82", x"9d", x"bc", x"df",

244 x"7a", x"8e", x"89", x"80",

245

246 x"9b", x"b6", x"cl", x"58",

247 x"e8", x"23", x"65", x"af",

248 x"ea", x"25", x"6f", x"bl",

249 x"c8", x"43", x"cb", x"b4",

250

251 x"fec", x"1f", x"21", x"63",

252 x"a5", x"f4", x"07", x"09",

253 x"1b", x"2d", x"77", x"99",

254 x"b0", x"cb", x"46", x"ca",

255

256 x"45", x"cf", x"4a", x"de",

257 x"79", x"8b", x"86", x"91",

258 x"a8", x"e3", x"3e", x"42",

259 x"c6", x"51", x"f3", x"0Oe",

260

261 x"12", x"36", x"ba", x"ee",

262 x"29", x"7b", x"8d", x"8c",

263 x"8f", x"8a", x"85", x"94",

264 x"a7", x"f2", x"0d", x"17",

265

266 x"39", x"4b", x"dd", x"7c",

267 x"84", x"97", x"a2", x"fd",

268 x"lc", x"24", x"6c", x"b4",

269 x"c7", x"b2", x"f6", x"01");

270 begin

271 output := pt_256(to_integer(unsigned(input)));
272 return output;

273 end;

274

21 @ -——
276 function ffmul(pt : vec8; mul : vec8)

2717 —— moods inline

278 return vec8 is

279 ——variable res : vec8;

280 variable tablogpt : vec8;

281 variable tablogmul : vec8;

282 variable tablogpt8 : unsigned(8 downto 0);
283 variable tablogmul8 : unsigned(8 downto 0);
284 variable carrie : std_logic_vector(8 downto 0);
285 variable power : vec8;

286 variable result: vec8;

287 begin

288 tablogpt := tablelog(pt);

289 tablogmul := tablelog(mul);

290

291 tablogpt8 := unsigned("0" & tablogpt);
292 tablogmul8 := unsigned("0" & tablogmul);
293

294 carrie := std_logic_vector(tablogmul8 + tablogpt8);

295
296
297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323
324
325
326
327

328

329

330

331
332

333

334

335

336
337

if pt = x"00" or mul = x"00" then

result := x"00";
elsif carrie(8) = "1’ or carrie(7 downto 0) = x"ff" then —— mod 255
power := std_logic_vector(unsigned(carrie(7 downto 0)) + 1); —— power =
power — 255
result := tableexp(power);
else
power := carrie(7 downto 0);
result := tableexp(power);
end if;
return result;

end;

function mixcl(10 : vec8; 11 : vec8; 12 : vec8; 13 : vec8)
—— moods inline

return vec8 is
variable ct : vec8;

begin

ct := ffmul (10, x"02") xor ffmul(11, x"01") xor ffmul(l12, x"01") xor ffmul
(13, x"03");

return ct;
end;

function mixcolumns(pt : vecl28)
—— moods inline

return vecl28 is
variable ct : vecl?8;

begin

ct := mixcl(pt(1l27 downto 120), pt(119 downto 112), pt(l1ll downto 104), pt

(103 downto 96)) &

mixcl(pt(119 downto 112), pt(1ll downto 104), pt(103 downto 96), pt
(127 downto 120)) &

mixcl(pt(11ll downto 104), pt(103 downto 96), pt(l27 downto 120), pt
(119 downto 112)) &

mixcl(pt(103 downto 96), pt(127 downto 120), pt(119 downto 112), pt
(111 downto 104)) &

mixcl(pt(95 downto 88), pt(87 downto 80), pt(79 downto 72), pt(7/1
downto 64)) &

mixcl(pt(87 downto 80), pt(79 downto 72), pt(71 downto 64), pt(95
downto 88)) &

mixcl(pt(79 downto 72), pt(71 downto 64), pt(95 downto 88), pt(87
downto 80)) &

mixcl(pt(71 downto 64), pt(95 downto 88), pt(87 downto 80), pt(79
downto 72)) &

mixcl(pt(63 downto 56), pt(55 downto 48), pt(47 downto 40), pt(39
downto 32)) &

338

339

340

341
342

343

344

345

346
347
348
349

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

mixcl(pt(b55 downto 48), pt(47 downto 40), pt(39 downto 32), pt(63
downto 56)) &

mixcl(pt(47 downto 40), pt(39 downto 32), pt(63 downto 56), pt(5b
downto 48)) &

mixcl(pt(39 downto 32), pt(63 downto 56), pt(55 downto 48), pt(47
downto 40)) &

mixcl(pt(31 downto 24), pt(23 downto 16), pt(15 downto 8), pt(7 downto
mixc]?ég(§3 downto 16), pt(1l5 downto 8), pt(7 downto 0), pt(31 downto
mixcf?ﬁg(fS downto 8), pt(7 downto 0), pt(31 downto 24), pt(23 downto
mixc%Z%é(? downto 0), pt(31 downto 24), pt(23 downto 16), pt(1l5 downto

return ct;
end;

function input_output (input : vecl28)

—— moods inline
return vecl?8 is

variable output : vecl?8;

function flip(input:vec32) return vec3?2 is

—— moods inline

begin

return input(7 downto 0) & input(l5 downto 8)
& input(23 downto 16) & input(31 downto 24);

end;
begin

return flip(input(127 downto 96)) & flip(input(95 downto 64))

& flip(input(63 downto 32)) & flip(input(31 downto 0));

end;

function aes_keyexpansion(key : vecl28)
—— moods inline
return vecl408 is
variable iok : vecl?28;
variable er0,erl,er2,er3,erd,er5,er6,er7,er8,er9:vecl28;
——variable zero: vecl?8;
——variable expandedkeys: vecl408;

function exp_round(input : vecl28; round: int9) return vecl?28 is
—— moods inline
variable rl,r2,r3,r4,r5: vec32;
begin
rl := sbox(input(7 downto 0)) &
sbox(input(31 downto 24)) &
sbox(input(23 downto 16)) &
(sbox(input(1l5 downto 8)) xor rcon(round));

r2 := input(l27 downto 96) xor rl;
r3 := input(95 downto 64) xor r2;

386 r4 := input(63 downto 32) xor r3;

387 r5 := input(31 downto 0) xor ri4;

388 return r2 & r3 & r4 & rb5;

389 end;

390

391 begin

392 —— first round

393 iok := input_output(key);

394 —— other rounds

395 er9 := exp_round(iok,9);

396 er8 := exp_round(er9,8);

397 er7 := exp_round(er8,7);

398 er6 := exp_round(er7,6);

399 er5 := exp_round(er6,5);

400 erd := exp_round(er5,4);

401 er3 := exp_round(er4,3);

402 er?2 := exp_round(er3,2);

403 erl := exp_round(er2,1);

404 er0 := exp_round(erl,0);

405

406 return (iok & er9 & er8 & er7 & er6 & er5 & erd & er3 & er2 & erl & er0);

407 end;

408

4@ @ -

410

411 function aes_core (signal plaintext : vecl28; signal keytext : vecl?8;
signal encrypt : std_logic)

412 —— moods inline

413 return vecl?28 is

414 variable rk0 : vecl?28;

415 variable ciphertext, expkey : vecl28;

416 variable ctl, ct2,ct3,ct4,cth,ct6,ct/7,ct8: vecl28;

417 variable expandedkeys : vecl408;

418 begin

419 —— expanded key schedule

420 expandedkeys := aes_keyexpansion(keytext);

421

422 —— round 0

423 ctl := input_output(plaintext) xor expandedkeys(1407 downto 1280);

424

425 —— round 1 to nr—1

426 ——for 7 in 1 to nr—1 Toop

427 for i in 1 to 9 loop

428 ct2 := subbytes(ctl);

429 ct3 := shiftrows(ct2);

430 ctd := mixcolumns(ct3);

431 case(i) is

432 when 1 => expkey := expandedkeys(1279 downto 1152);

433 when 2 => expkey := expandedkeys(1151 downto 1024);

434 when 3 => expkey := expandedkeys(1023 downto 896);

435 when 4 => expkey := expandedkeys(895 downto 768);

436 when 5 => expkey := expandedkeys(767 downto 640);

437 when 6 => expkey := expandedkeys(639 downto 512);

438 when 7 => expkey := expandedkeys(511 downto 384);

439 when 8 => expkey := expandedkeys(383 downto 256);

440 when 9 => expkey := expandedkeys(255 downto 128);

441 when others => null;

442 end case;

443 ctl := ct4 xor expkey;

444 end loop;

445

446 —— final round nr=10

447 ctb := subbytes(ctl);

448 ct6 := shiftrows(ctbh);

449 ct7 := ctb xor expandedkeys(1407—128xnr downto 1280—128xnr);
450

451 ciphertext := input_output(ct7);

452

453 return ciphertext;

454 end;

455

456

457

458 @& -
459 function rcon (input : int9)

460 —— moods inline

461 return vec8 is

462 type rcont_t is array(0 to 9) of vec8;

463 constant table_rcon: rcont_t := (

464 —— moods rom

465 x"36", x"1b", x"80", x"40", x"20", x"10", x"08", x"04", x"02", x"01");
466 begin

467 return table_rcon(input);

468 end;

469

470 @ @ ————————
471 function sbox (pt : vec8)

472 —— moods inline

473 return vec8 is

474 variable ct : vec8;

475 type table256 is array(0 to 255) of vec8;

476 constant pt_256 : table256 := (

477 —— moods rom

478 x"63", x"7c¢", x"77", x"7b", x"f2", x"6b", x"6f", x"cbh",
479 x"30", x"01", x"67", x"2b", x"fe", x"d7", x"ab", x"76",
480 x"ca", x"82", x"c9", x"7d", x"fa", x"59", x"47", x"f0o",
481 x"ad", x"d4", x"a2", x"af", x"9c", x"a4", x"72", x"c0",
482 x"b7", x"fd", x"93", x"26", x"36", x"3f", x"f7", x"cc",
483 x"34", x"ab5", x"eb", x"f1", x"71", x"d8", x"31", x"15",
484 x"04", x"c7", x"23", x"c3", x"18", x"96", x"05", x"9a",
485 x"Q7", x"12", x"80", x"e2", x"eb", x"27", x"b2", x"75",
486 x"09", x"83", x"2c", x"la", x"1b", x"6e", x"ba", x"a0",
487 x"52", x"3b", x"d6", x"b3", x"29", x"e3", x"2f", x"84",
488 x"53", x"d1", x"00", x"ed", x"20", x"fc", x"bl", x"5b",
489 x"6a", x"cb", x"be", x"39", x"4a", x"4c", x"58", x"cf",
490 x"do", x"ef", x"aa", x"fb", x"43", x"4d", x"33", x"85",
491 x"45", x"f9", x"02", x"7f", x"50", x"3c", x"9f", x"a8",
492 x"51", x"a3", x"40", x"8f", x"92", x"9d", x"38", x"f5",
493 x"bc", x"b6", x"da", x"21", x"10", x"ff", x"f3", x"d2",

494 x"cd", x"0c", x"13", x"ec", x"5f", x"97", x"44", x"17",

495 X"CA" . x"a7". x"7e". x"3d". x"64", x"5d", x"19", x"73",

496 x"60", x"81", x"4f", x"dc", x"22", x"2a", x"90", x"88",
497 x"46", x"ee", x"b8", x"14", x"de", x"be", x"0b", x"db",
498 x"e0", x"32", x"3a", x"0a", x"49", x"06", x"24", x"5¢",
499 x"c2", x"d3", x"ac", x"62", x"91", x"95", x"ed4", x"79",
500 x"e7", x"c8", x"37", x"6d", x"8d", x"db", x"4e", x"a9",
501 x"6c", x"be", x"f4", x"ea", x"65", x"7a", x"ae", x"08",
502 x"ba", x"78", x"25", x"2e", x"1lc", x"a6", x"b4", x"c6",
503 x"e8", x"dd", x"74", x"1f", x"4b", x"bd", x"8b", x"8a",
504 x"70", x"3e", x"b5", x"66", x"48", x"03", x"f6", x"0e",
505 x"61", x"35", x"57", x"b9", x"86", x"cl", x"1d", x"9e",
506 x"el", x"f8", x"98", x"11", x"69", x"d9", x"8e", x"94",
507 x"9b", x"le", x"87", x"e9", x"ce", x"b5", x"28", x"df",
508 x"8c", x"al", x"89", x"0d", x"bf", x"e6", x"42", x"68",
509 x"41", x"99", x"2d", x"Of", x"b0O", x"54", x"bb", x"16");
510 begin

511 ct := pt_256(to_integer(unsigned(pt)));

512 return ct;

513 end;

514

55 @—\—--- - - =
516 end;

After the functions and top level entity have been defined, we can implement a test bench that
applies a set of test data to the inputs and verifies that the correct output has been obtained.
Notice that we use the assertion technique to identify correct operation.

1 library ieee;

2 use ieee.std_logic_1164.alTl;

3 entity testAES is

4 end;

5

6

7 library ieee;

8 use ieee.std_logic_1164.al11;

9 use work.aes_functions.all;

10 architecture behavior of testAES is

11

12 component aes

13 port(

14 plaintext : in std_logic_vector(127 downto 0);
15 keytext : in std_logic_vector(127 downto 0);
16 encrypt : in std_logic;

17 go : in std_logic;

18 ciphertext : out std_logic_vector(127 downto 0);
19 done : out std_logic

20)

21 end component;

22

23 for all : aes use entity work.aes;

24

25 signal plaintext : std_logic_vector(127 downto 0);
26 signal keytext : std_logic_vector(127 downto 0);
27 signal encrypt : std_logic;

28 signal go : std_logic := '0";

29 signal ciphertext : std_logic_vector(127 downto 0);

30 signal done : std_logic;

31 signal ok : std_logic := '0’;

32 begin

33 plaintext <= X”00000000000000000000000000000000”, X”3243
f6a8885a308d313198a2e0370734” after 50 ns ;

34 keytext <= X”00000000000000000000000000000000”, X2
b7e151628aed2ababf7158809cf4f3c” after 100 ns;

35 process (ciphertext)

36 variable ct : std_logic_vector(127 downto 0) := X”3925841

d02dc09fbdc118597196a0b32”;

37 begin

38 assert ct = ciphertext

39 report “Test vectors do not match”

40 severity note;

41 assert not (ct = ciphertext)

42 report “Test vectors Matched”

43 severity note;

44 end process;

45

46

47 process

48 begin

49 go <= not go after 20 ns;

50 end process;

51

52 DUT : aes port map (plaintext, keytext, encrypt, go, ciphertext, done);

53 end;

10.5 Summary

This chapter shows how standard block ciphers can be implemented in VHDL and Verilog
using DES as an example. AES has been developed further using VHDL, but can use the same
principles in Verilog. Both of these algorithms are in common usage today and in operational
hardware. There are numerous other methods, as security requires a constant evolution of
encryption techniques and no doubt more robust and secure methods will emerge that require
implementation in VHDL and/or Verilog in the future.

Memory

11.1 Introduction

There are very often two ways to use memory on modern FPGAs. Either there are memory
blocks on board the FPGA (or on the development board) or you wish to make your own
memory blocks for storage using the flip flops on the FPGA logic. Either way, it is important
to realize that there are significant differences between dedicated high density Dynamic RAM
(DRAM) and Synchronous Dynamic Random Access Memory (SDRAM) and flip-flop based
Static RAM (SRAM).

If we consider SDRAM, the key aspects of this type of memory to consider are:

This type of DRAM relies on transistor capacitance on gates to store data.

DRAM is much more compact than SRAM (Static RAM).

DRAM cannot be synthesized; you need a separate DRAM chip.

SDRAM requires a synchronization clock that is consistent with the rest of the hardware
system (it is designed to operate with microprocessors).

5. DRAM data must be refreshed as it is stored charge and decays after a certain time.

6. DRAM is slower than SRAM.

Sl N

Static RAM can be considered in a similar way to a ROM chip and it also has (differing) key
aspects of behavior to consider:

Memory cells are based on standard latches.

SRAM is fast.

SRAM is less compact than DRAM (or SDRAM).

SRAM can be synthesized on an FPGA so is ideal for small, fast registers or memory
blocks.

Sl N

Static RAM is essentially asynchronous, but can be modified to behave synchronously
(as SDRAM is the synchronous equivalent of DRAM), and this is often called
Synchronous RAM.

Flash memory is useful to consider at this point, even though its operation is fundamentally
different from the memory types considered thus far, simply because it is easy to use and is
commonly available on many FPGA development boards. Flash memory is essentially a form

http://dx.doi.org/10.1016/B978-0-08-097129-2.00011-8

of EEPROM (electrically programmable ROM) that can be used as a form of persistent RAM.
Why persistent? In flash memory, the device memory is retained even when the power is
removed, so it is often used as a form of ROM, which makes it an interesting memory to use
on FPGA systems as it could be used to store the FPGA program, but also used as a RAM
storage (dynamically) for current data.

11.2 Modeling Memory in HDLs

Great care must be exercised when modeling memory in HDLs. As some memory cannot be
synthesized, if a model is used, it must reflect the correct physical behavior of the real device
if it is off chip. This particularly applies to access times and timing violation conditions. If the
timing is violated, then the data may be at best suspect and at worst totally useless. The
designer can find themselves in the invidious position of having a simulation model that works
perfectly, and real hardware that is completely nonfunctional. In this chapter, no physical
delays have been implemented in the models, and these must be added if the models are to be
used in a realistic system.

11.3 Read Only Memory

Read only memory (ROM) is essentially a set of predefined data values in a storage register.
The memory has two definitions: first, the number of storage areas and second, the number of
bits. For example, if the memory has 16 storage areas and 8 bits each, the memory is defined
as a 16 x 8 ROM. The basic ROM has one input, the definition of the address to be accessed,
and one output, which is a logic vector which is where the data will be put. Consider as an
example the entity for a simple behavioral ROM model in VHDL.:

1 entity ROM16x8 is

2 port (

3 address : in integer range 0 TO 15;

4 dout : out std_logic_vector (7 downto 0)
5)

6 end entity ROM16x8;}

As can be seen, the address has been defined as an integer, but the range has been restricted to
the range of the ROM. The architecture of the ROM is defined as a fixed array of elements that
can be accessed directly. Therefore, an example ROM with a set of example data elements
could be defined as follows:

architecture example of roml6x8 is
type romdata is array (0 to 15)
of std_Tlogic_vector(7 downto 0);
constant romvals : romdata := (
”00000000”,

[T R N

6 7010100117,

7 7011100107,

8 7011011007,

9 011101017,

10 ”110101117,

11 110111117,

12 001111107,

13 ”111011007,

14 ”100001107,

15 7111110017,

16 7001110017,

17 010101017,

18 7111101117,

19 101111117,

20 ”111011017);

21 begin

22 data <= romvals(address);
23 end architecture example;

If we wish to use this in an example, we first need to declare the ROM in a VHDL testbench
and then specify the address using an integer signal. A sample testbench is given here:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity ROM16x8_TB is

5 end entity ROM16x8_TB;

6

7 architecture TB of ROM16x8_TB is

8 signal address : integer := 0;

9 signal data : std_logic_vector (7 downto 0);
10 begin

11 ROM16x8: entity work.ROM16x8(example)
12 port map (address, data);

13 end architecture TB;

Notice that the IEEE library, std_logic_1164, is required for the std_logic_vector type and the
value of the data will depend on the address chosen.

We can implement a very similar type of fixed ROM using a case statement in Verilog and the
listing for the equivalent 16 x 8 ROM is provided as follows:

1 module romléx8 (

2 address , // Address input
3 data , // Data output
4)s

5 input [3:0] address;

6 output [7:0] data;

7

8

reg [7:0] data

9

10 always @ (address)
11 begin

12 case (address)

13 0 : data = 8'b00000000;

14 1 : data = 8’b01010011;
15 2 : data = 8’b01110010;
16 3 : data = 8’b01101100;
17 4 : data = 8°b01110101;
18 5 : data = 8’b11010111;
19 6 : data = 8’b11011111;
20 7 : data = 8’b00111110;
21 8 : data = 8°b11101100;
22 9 : data = 8’b10000110;
23 10 : data = 8’b11111001;
24 11 : data = 8°b00111001;
25 12 : data = 8°b01010101;
26 13 : data = 8’b11110111;
27 14 : data = 8°b10111111;
28 15 : data = 8°b11101101;
29 endcase

30 end

31

32 endmodule

11.4 Random Access Memory

A dynamic random access memory (RAM) block has a two-dimensional structure of memory
that is divided into a grid structure that can be accessed by a row address and column address
(obviously this is one way of carrying this out, but it is often the approach required for
dynamic RAM). Note that this is asynchronous and therefore has no clock. The implication of
being asynchronous is that great care must be taken with the timing of the memory access to
ensure data integrity throughout the transfer process.

The VHDL model has a single address input and two control signals row and col used to load
the row and column address, respectively. There is also a rw signal that is defined as being
write when high and read when low. Finally, the data is put onto the data signal, which is
defined as an inout (bidirectional) signal. The resulting model is given in the VHDL
following. In this example, the number of rows is 28 and the number of columns also 23. This
gives a total data storage with 16 bits of 1 MBit.

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 entity dramlmb is

6 port (

7 address : in integer range 0 to 2xx8-1; —— Row Address
8 row : in std_logic; —— Row Select

9 col : in std_logic; —— Column Select

10 rw : std_logic; —— Read/Write

11 data : inout std_logic_vector (15 downto 0) —— Data
12)

13 end entity dramlmb;

—
=~

15 architecture behav of dramlmb is

16 begin

17 process (row, col, rw) is

18 type dram is array (0 to 2%x16 — 1) of std_logic_vector(1l5 downto 0);
19 variable radd: INTEGER range 0 to 2#x8 — 1;

20 variable madd: INTEGER range 0 to 2#x16 — 1;

21 variable memory: dram;

22 begin

23 data <= (others => ’7°);

24 if falling_edge(row) then

25 radd := address;

26 elsif falling_edge(col) then

27 madd :=radd#2%x8 +address;

28 if row = "0’ and rw = 0" then

29 memory(madd) := data;

30 end if;

31 elsif col = 0" and row = "0’ and rw = 1’ then
32 data <= memory(madd);

33 end if;

34 end process;

35 end architecture behav;

Using this model a simple testbench can be used to read in a data value to an address, then
another value to another address and then the original value read back. The test bench to
achieve this is given in the VHDL.

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity testram is

5 end entity testram;

6

7 architecture test of testram is

8 signal address : integer range 0 to 2xx8—1 := 0;

9 signal rw : std_logic;

10 signal ¢ : std_logic;

11 signal r : std_logic;

12 signal data : std_logic_vector (15 downto 0);

13 begin

14

15 dram: entity work.dramlmb(behav)

16 port map (address, r, c, rw, data);

17 address <= 23 after 0 ns, 47 after 30 ns, 23 after 90 ns;
18 rw <= 0’ after 0 ns, "1’ after 90 ns;

19 c <= *1’ after 0 ns, ’0° after 20 ns,

20 17 after 50 ns, ’0° after 70 ns,

21 *1’ after 90 ns, ’0° after 100 ns;
22 r <= "1’ after 0 ns, ’0° after 10 ns,
23 *1’ after 40 ns, ’0° after 60 ns,

24 "1’ after 80 ns, ’0° after 100 ns;
25 data <= X"1234" after 0 ns, X"5678" after 40 ns;
26

27 end architecture test;

The results of testing this model can be seen in the waveform plot in Figure 11.1, which shows
the correct behavior of the address, data, and control lines.

The Verilog model has a single address input and two control signals row and col used to load
the row and column address, respectively. There is also a rw signal that is defined as being
write when high and read when low. Finally, the data is put onto the datain signal, which is
defined as an input signal and read back from the dataout signal which is defined as a register.
The resulting model is given in the Verilog following. In this example, the number of rows is
28 and the number of columns also 28. This gives a total data storage with 16 bits of 1 MBit.

1 module dramlmb (address, row, col, rw, datain, dataout);

2

3 input [7:0] address; // Address

4 input row; // Row Selector

5 input col; // Column Selector

6 input rw; // Read/Write

7 input [15:0] datain ; // Data In

8 output [15:0] dataout ; // Data Out

9

10 wire [15:0] datain;

11 reg [15:0] dataout ; // Data defined as a register

12

13 reg [7:0] radd; // Row Address

14 reg [15:0] madd; // Overall memory Address

15

16 // define the memory array

17 reg [15:0] memory [0:255]1; // the memory array is 16 bits wide (data) and
2#x8 —1 deep (address)

18

19 always @ (negedge row)

20 begin

Figure 11.1
Basic VHDL RAM simulation.

22

27
28
29
30
31
32
33
34

radd = address;
end

always @ (negedge col)
begin
madd = raddx2%x8 + address;
if(!rw) begin
memory[madd] <= datain;

end
else begin
dataout <= memory[madd];
end
end
endmodule

Using this model, a simple testbench can be used to read in a data value to an address, then
another value to another address and then the original value read back. The test bench to
achieve this is given in the Verilog following. Note as stated earlier that this is an
asynchronous model, which means that the rw signal must be defined prior to the col control
signal going low (and it is very important to not make this coincident with the rw signal,
otherwise a race condition would arise).

0NN RWN—

[S RV I S I ST S IS I N SR SR S IS v et e s e e
N — OOV IR WNROWVWIOWUN R WN—~O O

module dramlmb_tb();

// declare the counter signals
reg row;

reg col;

reg rw;

reg [7:0] address;

wire [15:0] dataout;

reg [15:0] datain;

// Set up the initial variables and reset
initial begin
$display ("time\t row col rw address data data_set");
$monitor ("%g\t %b %b %b %d %d %d",
$time, row, col, rw, address, datain, dataout);
row = 1; // initialize the row to 1
col =1; // set the col to 1
rw = 1; /] set the rw to 1

#1 address = 0; // set the row to 1
#1 datain = 23;

#1 row = 0; // set the row to 0

#1 row = 1; // set the row to I

#1 address = 1; // set the row to 1
#1l rw =0; // set the rw to 0

#1 col = 0; // set the col to 0

#1 col = 1; // set the col to I

#l rw=1; // set the rw to 1

// This should have written the data of 23 into location 0:1

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#1 address = 0;
#1 datain = 47;
#1 row = 0;
#1 row = 1;
#1 address = 2;
#l rw = 0;

#1 col = 0;
#1 col = 1;
#l rw = 1;

// set
// set

// set

set
set
the
the
set

the
the
row
row
the

row to 1
data to 47
to 0

to 1

row to 2

// set the rw to 0
// set the col to 0
// set the col to 1

the rw to 1

// This should have written the data of 47 into location 0:2

#1 address = 0; set the
#1 row = 0; // set the row
#1 row = 1; // set the row
#1 address = 1; set the
#1 col = 0; // set the col
#1 col = 1; // set the col
#100 $finish; /] Finish

end

dramlmb RAM (address,

endmodule

row,

row to 1
to 0
to 1
row to 1
to 0
to 1

the simulation

col, rw, datain,

dataout);

The results of testing this model can be seen in the waveform plot in Figure 11.2 which shows
the correct behavior of the address, data, and control lines.

This model is different from the VHDL in an important aspect: that the memory has a separate
data input and output port (defined as an input and output, respectively). This is not what was
defined in the VHDL model, which used a single inout port for the data. Therefore, how can

Figure 11.2

Basic Verilog RAM simulation.

this be done using Verilog? We have two basic types in verilog, wire for direct connections
and reg for registers. If we use an inout type for the port, then a register cannot be used, but
also a wire does not hold the value, so how can we reconcile this in a RAM model? The
answer is to declare an internal register to hold the output value of the data port, and then,
depending on the value of the rw command signal, define the data port as having the value
defined by the output register (in this model dataout) or making it a high impedance state
(tri-state). This port can then be driven externally, as is shown in the test bench.

1 module dramlmbio (address, row, col, rw, data);

2 input [7:0] address; // Address

3 input row; // Row Selector

4 input col; // Column Selector

5 input rw; // Read/Write

6 inout [15:0] data ; // Data In

7

8 wire [15:0] data;

9 reg [15:0] dataout ; // Data defined as a register

10

11 reg [7:0] radd; // Row Address

12 reg [15:0] madd; // Overall memory Address

13

14 // define the memory array

15 reg [15:0] memory [0:2551; // the memory array is 16 bits wide (data) and
2xx8 —1 deep (address)

16 assign data = (rw) ? dataout : 16°hz;

17 always @ (negedge row)

18 begin

19 radd = address;

20 end

21

22 always @ (negedge col)

23 begin

24 madd = radd*2%+x8 + address;

25 if(!lrw) begin

26 memory[madd] <= data;

27 end

28 else begin

29 dataout <= memory[madd];

30 end

31 end

32 endmodule

Using this model a simple testbench can be used to read in a data value to an address, then
another value to another address, and then the original value read back. The test bench to
achieve this is given in the Verilog following. Note as stated earlier that this is an asynchronous
model, which means that the rw signal must be defined prior to the col control signal going
low (and it is very important to not make this coincident with the rw signal, otherwise a race
condition would arise). In the test bench, it can be seen that the same tri-state technique is
required as in the RAM model itself, allowing the single port to be used as an input to read the
data into the memory or as a register to write the requested data value back out to the data bus.

0NN R W=

L b BB DSBS DS DS DSBS B WW W W LW W W L LW WER DN DNDNDNDNDNDDN = = e e e e e =
N HE LWL, OVWOEIAANNPHELWNN R, OOVWXXTIDNNE RN, OOXTITNANE WD~ OOVOOIANNR WD~ OO

module dramlmbio_tb();

// declare the counter signals
reg row;

reg col;

reg rw;

reg [7:0] address;

wire [15:0] data;

reg [15:0] datain;
assign data = (!lrw) ? datain : 16°hz;

// Set up the initial variables and reset
initial begin
$display ("time\t row col rw address data data_set");
$monitor ("%g\t %b %b %b %d %d %d",
$time, row, col, rw, address, datain, data);
col =1; // set the col to 1
rw = 1; // set the rw to 1
#1 address = 0; // set the row to 1
#1 datain = 23;
#1 row = 0; // set the row to 0
#1 row = 1; // set the row to 1
#1 address = 1; // set the row to 1
#1l rw = 0; // set the rw to 0
#1 col = 0; // set the col to 0
#1 col = 1; // set the col to 1
#lorw = 1; // set the rw to 1

// This should have written the data of 23 into location 0:1

#1 address = 0; // set the row to I
#1 datain = 47; // set the data to 47
#1 row = 0; // set the row to 0

#1 row = 1; // set the row to 1

#1 address = 2; // set the row to 2
#l rw = 0; // set the rw to 0

#1 col = 0; // set the col to 0

#1 col =1; // set the col to 1

#l rw = 1; // set the rw to 1

// This should have written the data of 47 into location 0:2

#1 address = 0; // set the row to 1
#1 row = 0; // set the row to 0
#1 row = 1; // set the row to 1
#1 address = 1; // set the row to 1
#1 col = 0; // set the col to 0
#1 col =1; // set the col to 1

#100 $finish; // Finish the simulation
end

Figure 11.3
Basic RAM simulation with a common data port.

56

57 dramlmbio RAM (address, row, col, rw, data);
58

59 endmodule

The results of testing this model can be seen in the waveform plot in Figure 11.3 which shows
the correct behavior of the address, data, and control lines.

It is important to note that the RAM model in both VHDL and Verilog cases does not model
any of the actual delays that would appear in practice and if this is important to the
functionality of the design, then it MUST be added to the model. Also, note that this could be
obtained from a data sheet for DRAM (dynamic RAM); however, the delays would have an
uncertainty attached to them.

11.5 Synchronous RAM

In the preceding chapter, we observed how the memory is accessed asynchronously, whereas
synchronous RAM (SRAM) requires a clock. In most practical designs, the RAM will be
implemented off-chip as a separate memory device, but sometimes it is useful to define a
small block of RAM on the FPGA for fast access or local storage close to the hardware device
that requires frequent access to a relatively small memory block.

The usual design constraints apply to memory, more so than some other possible functions, as
the use of flip-flops to store data without using much of the other logic in a look-up table
(LUT) is area intensive. The trade-off, as ever with FPGA design, is whether the potential for
improved performance and speed using on-board RAM outweighs the increased area required
as a result.

From the design perspective, the synchronous RAM model is very similar to the previously
demonstrated basic asynchronous RAM model. The only difference is that, instead of the data
being available immediately on the address being applied (or after some short delay), the data
in a synchronous RAM is only accessed when the clock edge occurs (rising or falling edge
depending on the design required).

If we consider the VHDL for the SRAM, we can see that for a memory size of 2" and a data
bus of 2", the following model is required. The VHDL model has two parameters, m and n.

In the default case, the value of m as 16 provides 64k address words and the number of bits (n)
set to 16 gives a total of 1M bits in the RAM. Obviously this could be made any size, but this
shows the type of calculation required to obtain the specified memory blocks.

library ieee;

1

2 use ieee.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4

5 entity sram is

6 generic (

7 m : natural := 16;

8 n : natural := 16

9)

10 port (

11 clk : in std_logic;

12 addr : in std_logic_vector (m—1 downto 0);
13 wr : in std_logic;

14 d : in std_logic_vector (n—1 downto 0);

15 q : out std_logic_vector (n—1 downto 0)
16)

17 end entity sram;

18

19 architecture dualport of sram is

20 type sramdata is array (0 to 2sxxm—1) of std_logic_vector (n—1 downto 0);
21 signal memory : sramdata;

22 begin

23 process (clk) is

24 begin

25 if rising_edge(clk) then

26 if wr = ’0° then

27 memory(to_integer(unsigned(addr))) <= d;
28 else

29 q <= memory(to_integer(unsigned(addr)));
30 end if;

31 end if;

32 end process;

33 end architecture dualport;

Notice that there are two control signals, the clock, clk, and the write enable, wr. We could
make the memory synchronous write, synchronous read, or a more complex port structure, but
in this case, we will show the operation as being synchronous read and write, on the rising
edge of the clock. Also, the convention we will use is for the write enable state to be active
when wr is low.

There are several interesting aspects to this model that are worth considering. The first is the
access of the memory. If we define the address as a std_logic_vector type in VHDL, then we
can’t simply use this value to access a specific element of an array. This requires an integer
argument. We also cannot simply cast a std_logic_vector type directly to an integer. The first
thing we must do is convert the std_logic_vector type to an unsigned number. This is a
“halfway house” from std_logic_vector to integer, in that we can use the variable as a number,
but it is limited to the same bit resolution as the original std_logic_vector. In this case, clearly
this is not an issue as we do not want the address to be larger than the memory, otherwise
errors will result. The final step is to convert the unsigned type to an integer. This is
accomplished using the to_integer function and is the final step to convert the address into the
integer form required to access the individual element of the array. As a consequence of using
these numeric functions, we need to also include the IEEE standard numeric library in the
header of the model as shown:

1 Tibrary ieee;
2 use ieee.std_logic_1164.al11;
3 use ieee.numeric_std.all;

It is also worth noting that the read and write functions are mutually exclusive, in that you
cannot read from the memory and write to it at the same time. This ensures the integrity of the
data. Also note that the read and write functions are both clocked and so the memory is both
read and write synchronous.

We can test this model by using a test bench similar to that used for the previous RAM models
as given in the following listing:

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 entity testram is

6 end entity testram;

7

8 architecture test of testram is

9 signal address : std_logic_vector (7 downto 0);

10 signal clk : std_logic;

11 signal wr : std_logic;

12 signal d : std_logic_vector (15 downto 0);

13 signal q : std_logic_vector (15 downto 0);

14 constant period : time := 5 ns;

15 begin

16

17 sram: entity work.sram(dualport) generic map (8, 16) port map(clk, address,
wr, d, q) ;

18

19 address <= ”00000001” after 0 ns, ~00000010” after 30 ns, 700000001~ after 90
ns;

20 wr <= 0" after 0 ns, "1’ after 90 ns;
21 d <= X71234” after 0 ns, X”5678” after 40 ns;
22

23
24
25
26
27
28
29
30
31
32
33

Figure 11.4
Basic VHDL SRAM Simulation.

—— Clock process definitions(clock with 50% duty cycle is generated here.
clk_process :process

begin
clk <= 0"
wait for period/2;
clk <= 17

wait for period/2;
end process;

end architecture test;

The results of testing this model can be seen in the waveform diagram in Figure 11.4, which
shows the correct behavior of the address, data, and control lines.

Implementing the SRAM in Verilog is similar to the dual port RAM model earlier in this
chapter, with an address, data input, and output ports, but importantly this model is now
synchronous and so the management of the data to and from the memory is controlled by the

clock signal clk.
1 module sram_verilog (address, clk, rw, d, q);
2 parameter m = 8; // Address Bus Width
3 parameter n = 16; // Data Bus Width
4 input [m—1:0] address; // Address
5 input clk; // Clock
6 input rw; // Read/Write
7 input [n-1:0] d ; // Data In
8 output [n—-1:01 q ; // Data Out
9
10 wire [n—1:0] d;
11 reg [n—1:0] q ; // Data defined as a register

12

13

14 // define the memory array

15 reg [n—1:0] memory [0:2%xm—11; // the memory array is n bits wide (data) and
2xxm —1 deep (address)

16

17 always @ (posedge clk)

18 begin

19 if(!lrw) begin

20 memory[address] <= d;

21 end

22 else begin

23 q <= memoryladdress];

24 end

25 end

26 endmodule

The test bench of the model is almost identical to the previous memory test benches; however,
the clock is defined in the test bench, and as a result the variables can be seen to be changing
at a rate dependent on the clock (in this case the clock changes every 5 ‘ticks’ and the other
signals are therefore defined to change every 10 ‘ticks’).

1

2 module sram_verilog_tb();

3 // declare the counter signals

4 parameter m = 8;

5 parameter n = 16;

6 reg rw;

7 reg clk;

8 reg [m—=1:0] address;

9 wire [n—1:0] dataout;

10

11 reg [n—1:0] datain;

12

13 // Set up the initial variables and reset
14 initial begin

15 $display ("time\t rw address data data_set");
16 $monitor ("%g\t %b %d %d %d",

17 $time, rw, address, datain, dataout);
18 rw = 1; // set the rw to 1

19 clk = 0; // INit the clk to 0

20

21 #10 address = 0; // set the row to 1
22 #10 datain = 23;

23 #10 rw = 0; // set the rw to 0

24 #10 address = 1; // set the row to 1
25

26 #10 rw = 1; // set the rw to 1

27

28 // This should have written the data of 23 into location 0:1
29

30

31 #10 address = 0; // set the row to 1
32 #10 datain = 47; // set the data to 47
33 #10 address = 2; // set the row to 2
34 #10 rw = 0; // set the rw to 0

35 #10 rw = 1; // set the rw to 1

36

37 // This should have written the data of 47 into location 0:2
38

39 #10 address = 0; // set the row to 1

40 #10 address = 1; // set the row to 1

41

42

43 #100 $finish; // Finish the simulation

44 end

45

46 // Clock
47 always begin

48 #5 clk = ~clk; // Invert the clock every 5 time ticks
49 end

50

51 sram_verilog RAM (address, clk, rw, datain, dataout);
52

53 endmodule

The results of testing this model can be seen in the waveform diagram in Figure 11.5, which
shows the correct behavior of the address, data, and control lines.

11.6 Flash Memory

As has been discussed previously, flash memory is essentially a form of EEPROM
(Electrically Erasable and Programmable Read Only Memory). This is slightly different from
a standard RAM where the address is given to the memory and depending on the R/W signals,
the data is read or written, respectively. A typical set of interface pins for a flash memory
consists of the following elements:

Figure 11.5
Basic Verilog SRAM Simulation.

Pin Function Active State

CLE | Command Latch | H, activated on rising_edge(WE)
ALE Address Latch H, activated on rising_edge(WE)
CE Chip Enable L

RE Read Enable Falling_edge(RE)

WE Write Enable Rising_edge(WE)

Wp Write protect L
busy Ready/Busy L=busy, H=ready

In addition to these control signals there is of course an address bus and a data bus. To
implement this we can use a similar entity to that for a standard RAM block in VHDL.:

00NN N W=

11
12
13
14
15
16

18

entity flash is

generic (
a : natural := 10;
d : natural
)
port (
clk : in std_logic;
addr : in std_logic_vector(a—1 downto 0);
data : inout std_logic_vector (d—1 downto 0);
cle : in std_logic;
ale : in std_logic;
ce : in std_logic;
re : in std_logic;
we : in std_logic;
wp : in std_logic;
busy : out std_logic;

Il
00}

)
end entity flash;

In most cases we won’t need to model the flash memory itself, but rather we need to interface
to it, so the entity for a flash interface controller could be as follows:

entity flashif is

port (

clk : in std_logic;

read : in std_logic;
en : in std_logic;

cle : out std_Tlogic;
ale : out std_logic;
ce : out std_logic;
re : out std_logic;
we : out std_logic;
wp : out std_logic;
busy : in std_logic;

)
end entity flashif;

A typical architecture for this device could be as follows:

1 architecture basic of flashif is
2 begin

3 process (clk) is

4 if busy = 1 then

5 if rising_edge(clk) then
6 ce <= en;

7 ale <= 1

8 cle <= 1

9 if read = 0 then
10 we <= 1 ;

11 re <= 1

12 else

13 we <= 0

14 re <= 0

15 end if;

16 if prog = 0 then
17 wp <= 0 ;

18 else

19 wp <= 1

20 end if;

21 end if;

22 end if;

23 end process;

24 end architecture basic;

This is a basic outline for a flash controller and this will obviously change from device to
device.

11.7 Summary

This chapter has introduced the important memory types of ROM, asynchronous RAM,
FLASH memory, and synchronous RAM. It is important to remember that in most cases, large
memory blocks will be contained off chip and so it may be necessary to use these models
purely for simulation rather than synthesis, but that it is possible to use RAM sparingly on the
FPGA itself if absolutely required.

In this case, the trade-off of speed vs. area becomes particularly acute and as such great care
must be taken to not make naive decisions about putting large amounts of memory on the
FPGA, as this may take up far too much memory to be practical.

PS/2 Mouse Interface

12.1 Introduction

The PS/2 mouse is a standard interface to both computers and also many FPGA development
kits. The protocol is a serial one and in this chapter the basics of the protocol will be reviewed
as well as a simple VHDL interface code to enable the designer to use a mouse, primarily on a
standard FPGA development kit.

12.2 PS/2 Mouse Basics

The origins of the PS/2 mouse are back in the 1980s with the proliferation of the IBM
Personal Computer (PC). This had the generic name of a Personal System, hence PS and the
second version of this was therefore called the PS/2. The interface technology has remained
under that name ever since.

The PS/2 interface is essentially a custom serial interface with one device supported per
connector (unlike the modern USB, Universal Serial Bus, which can handle numerous devices
on a single port). The data rate is relatively slow (40 kbps) and the device is powered off a5V
dc supply.

Unlike the USB approach where devices are generally hot swappable, that is, they can be
plugged in or unplugged at will), the PS/2 device cannot be removed without a system crash
or freeze resulting.

The PS/2 mouse supports communication from the mouse to the host and vice versa, and the
supply is provided from the host to the mouse in the form of a 5V line.

12.3 PS/2 Mouse Commands

The PS/2 mouse has a limited set of commands that are essentially either button press
commands or mouse movement commands. The standard mouse has a left, middle, and right
button click command, and X and Y movement. The X and Y movements are tracked using
counters, where the value is relative to the previous value sent by the mouse, not the absolute
position itself.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00012-X

12.4 PS/2 Mouse Data Packets

The PS/2 mouse sends data in serial packets down a data line and this is synchronous with a
clock line also on the mouse interface. Each packet consists of three, 8-bit words where the
first word is a configuration word with a set of flags, the second word provides the mouse X
movement, and the third word provides the mouse Y movement. The description of the mouse

bits are given in the following table:

Bit Byte 1 Byte 2 Byte 3

7 Y overflow X Movement 7 Y movement 7
6 Xoverflow X Movement 6 Y movement 6
5 Y sign bit X Movement 5 Y movement 5
4 Xsign bit X Movement4 Y movement 4
3 Always 1 X' Movement 3 Y movement 3
2 Middle Btn X Movement 2 Y movement 2
1 Right Btn ~ X Movement 1 Y movement 1
0 Left Btn X Movement 0 Y movement 0

Each of the movement bytes are defined as 9-bit 2s-complement numbers, where the sign bit
is defined in byte 1. The range of movement that can be defined is —255 to +255 using this
approach.

12.5 PS/2 Operation Modes

The PS/2 mouse operates in four basic modes. On power up the mouse goes into a reset mode
and this can also be initiated by a reset command from the host, which is defined as OxFF.
After reset has been completed, the mouse automatically goes into a stream mode in which the
data is streamed back from the mouse to the host. These two modes are the most commonly
used modes of operation for most applications, but there are two other modes used, which are
remote and wrap. These are mostly useful in testing that the interface is operating correctly.

In the reset mode the mouse itself will reset and carry out some basic self checks. The default
settings are then defined for the mouse to operate with, which are a sample period of 10 ms, a
basic resolution of 4 counts per mm, a 1 to 1 scaling and the data reporting option is disabled.

The mouse sends a device ID of 0x00 to the host to let it know that it is not a keyboard or
more complex mouse, just a basic PS/2 mouse.

Once the mouse is running it goes into stream mode and the mouse will send packets to the
host at the defined sample rate of activity, such as mouse movement or button presses. The
mouse ONLY sends data when activity is present, otherwise it will do nothing.

If the mouse is asked by the host to go into remote mode, then the mouse only sends data
when requested by the host, and finally in wrap mode, the mouse sends back every command
to the host (apart from the reset and reset wrap commands).

12.6 PS/2 Mouse with Wheel

A mouse that has a wheel is defined as a separate type of device and so it has a different
device id 0x03. In this case, after reset, the mouse sends the ID and in the case of a wheel
mouse, the data packet is now 4 bytes long and there is an extra byte to provide the wheel
movement. This byte only uses the least significant bits in a 2s-complement form and
therefore has a range of —8 to +7.

12.7 Basic PS/2 Mouse Handler VHDL

The simplest form of the VHDL handler could use the mouse clock signal as the system clock
and then monitor the data coming from the mouse. This is shown here:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity psmouse is

5 port (

6 clock : in std_logic;

7 data : in std_logic

8)3

9 end entity psmouse;

10

11 architecture basic of psmouse is

12 signal d : std_logic_vector (23 downto 0);
13 signal bytel : std_logic_vector (7 downto 0);
14 signal byte? : std_logic_vector (7 downto 0);
15 signal byte3 : std_logic_vector (7 downto 0);
16 signal index : integer :$=$ 23;

17 begin

18 process(clock) is

19 begin

20 if falling_edge(clock) then

21 d(index) <= data;

22 if index>0 then

23 index <= index-—1;

24 else

25 bytel <= d(23 downto 16);

26 byte2 <= d(15 downto 8);

27 byte3 <= d(7 downto 0);

28 index<=23;

29 end if;

30 end if;

31 end process;

(953
(3]

end architecture basic;

This VHDL is very simple: on each falling edge of the clock the current value of the data is
read into the next element of the data array (d) and when the complete 24-bits packet has been
read in (and index has counted down to zero) then the three bytes are transcribed from the
packet.

12.8 Modified PS/2 Mouse Handler VHDL

The trouble with the previous mouse handler is that, although syntactically correct, there
could be noise on the mouse clock and data signals leading to an incorrect clocking of the data
and so another approach would be to have a much higher frequency signal clock and to
monitor the PS/2 clock as if it were a signal. An extra check would be to filter the PS/2 clock
so that only if there were a certain number of values the same would the clock be considered
to have changed.

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity psmouse 1is

5 port (

6 clk : in std_logic;

7 ps2_clock : in std_logic;

8 data : in std_logic

9)s

10 end entity psmouse;

11

12 architecture basic of psmouse is

13 signal clk_internal : std_logic := 0 ;

14 signal d : std_logic_vector (23 downto 0);
15 signal bytel : std_logic_vector (7 downto 0);
16 signal byte?2 : std_logic_vector (7 downto 0);
17 signal byte3 : std_logic_vector (7 downto 0);
18 signal index : integer := 23;

19 begin

20 process(clock) is

21 high : integer := 0;

22 low : integer := 0;

23 begin

24 if rising_edge(clock) then

25 if (ps2_clock =1) then

26 if high=8 then

27 clk_internal <=1 ;

28 high <= 0;

29 Tow <=0

30 else

31 high <= high +1;

32 end if;

33 else

34 if Tow=8 then

35 clk_internal <= 0 ;

36 low <= 0;

37 high <= 0;

38 else

39 Tow <= low +1;

40 end if;

41 end if;

42 end if;

43 end process;

44 process(clk_internal) is

45 begin

46 if falling_edge(clk_internal) then
47 d(index) <= data;

48 if index>0 then

49 index <= index—1;

50 else

51 bytel <= d(23 downto 16);
52 byte2 <= d(15 downto 8);
53 byte3 <= d(7 downto 0);
54 index<=23;

55 end if;

56 end if;

57 end process;

58 end architecture basic;

In this case the modified mouse handler waits for eight consecutive highs or lows on the clock
signal at the higher internal clock rate of the FPGA and then it will set the internal clock high

or low, respectively. Then the same mouse handler routine takes over to manage the data input,
this time using the internally generated clock.

12.9 Basic PS/2 Mouse Handler in Verilog

The simplest form of the Verilog handler could use the keyboard clock signal as the system
clock and then monitor the data coming from the keyboard. This is shown here:

1 module psmouse (

2 clk, // clock input
3 data // data input
4)3

5

6 input clk;

7 input data;

8

9 wire clk;

10 wire data;

11

12 reg [4:0] index = 5°b10111;
13 reg [23:0] d;

14 reg [7:0] bytel;

15 reg [7:0] byte2;

16 reg [7:0] byte3;

17

18 always @ (negedge clk)
19 begin : count

20 d[index] <= data;

21 if (index > 0) begin

22 index <= index — 1;

23 end

24 else begin

25 index <= 23;

26 bytel <= d[23:16];
27 byte2 <= d[15:87;
28 byte3 <= d[7:0]

29 end

30 end

31

32 endmodule
This Verilog is very simple: on each falling edge of the clock the current value of the data is
read into the next element of the data array (d) and when the complete 24-bits packet has been
read in (and index has counted down to zero) then the three bytes are transcribed from the
packet.

A modified handler could also be implemented in Verilog, either using the same approach as
described for the VHDL model, but also the approach could be taken to simply divide down
the clock from a higher frequency reference.

12.10 Summary

This chapter has shown how to handle a basic PS/2 signal for a mouse and then store the data
in three bytes for further processing. Two methods are shown for collecting the data, one using
the PS/2 clock and the other using a sampled version with a much faster internal clock.

PS/2 Keyboard Interface

13.1 Introduction

The PS/2 keyboard is a standard interface to both computers and also many FPGA
development kits. The protocol is a serial one. In this chapter the basics of the protocol will be
reviewed and also a simple VHDL interface code to enable the designer to use a PS/2
keyboard, primarily on a standard FPGA development kit.

13.2 PS/2 Keyboard Basics

The origins of the PS/2 keyboard are back in the 1980s with the proliferation of the IBM
Personal Computer (PC). This had the generic name of Personal System; hence, PS and the
second version of this was therefore called the PS/2. The interface technology has remained
under that name ever since. The keyboard interface evolved from the XT (83 key, Spin DIN),
through the AT (84-101 key, 5Spin DIN) and eventually settled on the PS/2 (84-101 key, 6pin
miniDIN).

The PS/2 interface is essentially a custom serial interface with one device supported per
connector (unlike the modern USB, Universal Serial Bus, which can handle numerous devices
on a single port). The data rate is relatively slow (40 kbps) and the device is powered off a 5V
dc supply.

Unlike the USB approach where devices are generally “hot swappable,” that is, they can be
plugged in or unplugged at will, the PS/2 device cannot be removed without a system crash or
freeze resulting.

The PS/2 keyboard supports communication from the keyboard to the host and vice versa, and
the supply is provided from the host to the keyboard in the form of a 5V line.

Unlike the mouse, the keyboard has an on-board processor that checks the matrix of keys for
any key presses and sends the appropriate code down the PS/2 data line.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00013-1

13.3 PS/2 Keyboard Commands

The keyboard processor has two commands that are sent to the host system when a key is
pressed: the make and the break command. Each key has a separate code that is sent in each
case. The code that is actually sent to the host has no relationship to the ASCII code of the
character sent. It is up to the host code to decode the key command sent. For example, the
character 5 has the make code 0x2E and the break code 0xF0,0x2E. Most standard characters
have a one-byte make code and a two-byte break code, and extended characters often have
two-byte make codes and three-byte break codes.

If a key is pressed, then the make code is sent periodically until another key is pressed. The
rate of this is called the typematic rate and is defined as default at approximately 10 characters
per second.

13.4 PS/2 Keyboard Data Packets

The PS/2 keyboard sends data in serial packets down a data line and this is synchronous with a
clock line also on the mouse interface. Each packet consists of up to three, 8-bit bytes and this
can be decoded by a look-up table (LUT) for the keyboard scan codes.

13.5 PS/2 Keyboard Operation Modes

13.5.1 Basic PS/2 Keyboard Handler in VHDL

The simplest form of the VHDL handler could use the keyboard clock signal as the
system clock and then monitor the data coming from the keyboard. This is
shown here:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity pskeyboard is

5 port (

6 clock : in std_logic;

7 data : in std_logic

8)

9 end entity pskeyboard;

10

11 architecture basic of pskeyboard is

12 signal d : std_logic_vector (23 downto 0);

13 signal bytel : std_logic_vector (7 downto 0);
14 signal byte2 : std_logic_vector (7 downto 0);
15 signal byte3 : std_logic_vector (7 downto 0);
16 signal index : integer := 23;

17 begin

18 process(clock) is

19 begin

20 if falling_edge(clock) then
21 d(index) <= data;

22 if index>0 then

23 index <= index—1;

24 else

25 bytel <= d(23 downto 16);
26 byte2 <= d(15 downto 8);
27 byte3 <= d(7 downto 0);
28 index<=23;

29 end if;

30 end if;

31 end process;

32 end architecture basic;

This VHDL is very simple. On each falling edge of the clock the current value of the data is
read into the next element of the data array (d) and when the complete 24-bits packet has been
read in (and index has counted down to zero) then the three bytes are transcribed from the
packet.

13.5.2 Modified PS/2 Keyboard Handler in VHDL

The trouble with the previous keyboard handler is that, although syntactically correct, there
could be noise on the keyboard clock and data signals leading to an incorrect clocking of the
data and so another approach would be to have a much higher frequency signal clock and to
monitor the PS/2 clock as if it were a signal. An extra check would be to filter the PS/2 clock
so that only if there were a certain number of the same values would the clock be considered
to have changed.

1 library ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity pskeyboard is

5 port (

6 clk : in std_logic;

7 ps2_clock : in std_logic;

8 data : in std_logic

9)

10 end entity pskeyboard;

11

12 architecture basic of pskeyboard is

13 signal clk_internal : std_logic := 0 ;

14 signal d : std_logic_vector (23 downto 0);

15 signal bytel : std_logic_vector (7 downto 0);
16 signal byte?2 : std_logic_vector (7 downto 0);
17 signal byte3 : std_logic_vector (7 downto 0);

18 signal index : integer := 23;

19 begin

20 process(clock) is

21 high : integer := 0;

22 low : integer := 0;

23 begin

24 if rising_edge(clock) then
25 if (ps2_clock =1) then
26 if high=8 then

27 clk_internal <=1 ;
28 high <= 0;

29 Tow <=0

30 else

31 high <= high +1;

32 end if;

33 else

34 if Tow=8 then

35 clk_internal <= 0 ;
36 lTow <= 0;

37 high <= 0;

38 else

39 Tow <= low +1;

40 end if;

41 end if;

42 end if;

43 end process;

44 process(clk_internal) 1is

45 begin

46 if falling_edge(clk_internal) then
47 d(index) <= data;

48 if index>0 then

49 index <= index-1;

50 else

51 bytel <= d(23 downto 16);
52 byte2 <= d(15 downto 8);
53 byte3 <= d(7 downto 0);
54 index<=23;

55 end if;

56 end if;

57 end process;

58 end architecture basic;

In this case the modified keyboard handler waits for eight consecutive highs or lows on the
clock signal at the higher internal clock rate of the FPGA and then it will set the internal clock
high or low, respectively. Then the same keyboard handler routine takes over to manage the
data input, this time using the internally generated clock.

13.5.3 Basic PS/2 Keyboard Handler in Verilog

The simplest form of the Verilog handler could use the keyboard clock signal as the system
clock and then monitor the data coming from the keyboard; this is shown here:

1 module pskeyboard (

2 clk, // clock input
3 data // data input
4)

5

6 input clk;

7 input data;

8

9 wire clk;

10 wire data;

12 reg [4:0] index = 5’b10111;
13 reg [23:0] d;

14 reg [7:0] bytel;

15 reg [7:0] byte2;

16 reg [7:0] byte3;

17

18 always @ (negedge clk)
19 begin : count

20 dlindex] <= data;

21 if (index > 0) begin
22 index <= index — 1;
23 end

24 else begin

25 index <= 23;

26 bytel <= d[23:16];
27 byte2 <= d[15:87;
28 byte3 <= d[7:0]

29 end

30 end

31

32 endmodule

This Verilog is very simple: On each falling edge of the clock the current value of the data is
read into the next element of the data array (d) and when the complete 24-bits packet has been
read in (and index has counted down to zero) then the three bytes are transcribed from the
packet.

A modified handler could also be implemented in Verilog, either using the same approach as
described for the VHDL model, but also the approach could be taken to simply divide down
the clock from a higher frequency reference.

13.6 Summary

This chapter has shown how to handle a basic PS/2 signal for a keyboard and then store the
data in three bytes for further processing. Two methods are shown for collecting the data, one
using the PS/2 clock and the other using a sampled version with a much faster internal clock.

A Simple VGA Interface

14.1 Introduction

The VGA interface is common to most modern computer displays and is based on a pixel
map, color planes, and horizontal and vertical sync signals. A VGA monitor has three color
signals (Red, Green, and Blue) that set one of these colors on or off on the screen. The
intensity of each of those colors sets the final color seen on the display. For example, if the
Red was fully on, but the Blue and Green off, then the color would be seen as a strong red.
Each analog intensity is defined by a 2-bit digital word for each color (e.g., red0 and red1) that
are connected to a simple digital-to-analog converter to obtain the correct output signal.

The resolution of the screen can vary from 480 x 320 up to much larger screens, but a standard
default size is 640 x 480 pixels. This is 480 lines of 640 pixels in each line, so the aspect ratio
is 640/480, leading to the classic landscape layout of a conventional monitor screen.

The VGA image is controlled by two signals—horizontal sync and vertical sync. The
horizontal sync marks the start and finish of a line of pixels with a negative pulse in each case.
The actual image data is sent in a 25.17 us window in a 31.77 us space between the sync
pulses. (The time that image data is not sent is where the image is defined as a blank space and
the image is dark.) The vertical sync is similar to the horizontal sync except that in this case
the negative pulse marks the start and finish of each frame as a whole and the time for the
frame (image as a whole) takes place in a 15.25 ms window in the space between pulses,
which is 16.784 ms.

There are some constraints about the spacing of the data between pulses which will be
considered later in this chapter, but it is clear that the key to a correct VGA output is the
accurate definition of timing and data by the VHDL.

14.2 Basic Pixel Timing

If there is a space of 25.17 s to handle all of the required pixels, then some basic calculations
need to be carried out to make sure that the FPGA can display the correct data in the time
available. For example, if we have a 640 x 480 VGA system, then that means that 640 pixels
must be sent to the monitor in 25.17 ps. Doing the simple calculation shows that for each pixel

http://dx.doi.org/10.1016/B978-0-08-097129-2.00014-3

we need 25.17 us/640 =39.328 ns per pixel. If our clock frequency is 100 MHz on the FPGA,
then that gives a minimum clock period of 10 ns, so this can be achieved with a relatively
standard FPGA.

14.3 Image Handling

Clearly it is not sensible to use an integrated image system on the FPGA, but rather it makes
much more sense to store the image in memory (RAM) and retrieve it frame by frame.
Therefore, as well as the basic VGA interface, it makes a lot of sense for the images to be
moved around in memory and using the same basic RAM interface as defined previously is
sensible. Therefore, as well as the VGA interface pins, our VGA handler should include a
RAM interface.

14.4 A VGA Interface in VHDL

14.4.1 VHDL Top Level Entity for VGA Handling

The first stage in defining the VHDL for the VGA driver is to create a VHDL entity that has
the global clock and reset, the VGA output pins, and a memory interface. The outline VHDL
entity is therefore given as follows:

library ieee;

1

2 use ieee.std_logic_1164.al11;

3 entity vga is

4 port (

5 clk : in std_logic;

6 nrst : in std_logic;

7 hsync : out std_logic;

8 vsync : out std_logic;

9 red : out std_logic_vector (1 downto 0);
10 green : out std_logic_vector (1 downto 0);
11 bTue : out std_logic_vector (1 downto 0);
12 address : out (std_logic_vector (15 downto 0);
13 data : in (std_logic_vector (7 downto 0);
14 ram_en : out std_logic;

15 ram_oe : out std_logic;

16 ram_wr : out std_logic

17)3

18 end entity vga;

19

20 architecture core of vga is

21

22 —— vga internal signals go here

23

24 begin

25

26 —— vga interface core goes here

27

[\
oo}

end architecture core;

The architecture contains a number of processes, with internal signals that manage the transfer
of pixel data from memory to the screen. As can be seen from the entity, the data comes back
from the memory in 8-bit blocks and we require 3 x 2 bits for each pixel and so when the data
is returned, each memory byte will contain the data for a single pixel. In this example, as we
are using a 640 x 480 pixel image, this will therefore require a memory that is 307,200 bytes
in size as a minimum. To put this in perspective, this means that using a raw memory approach
we can put three frames per megabyte. In practice, of course, we would use a form of image
compression (such as JPEG for photographic images), but this is beyond the scope of this
book.

We can therefore use a simple process to obtain the current pixel of data from memory as
follows:

1 mem_read : process (pclk, nrst) is

2 signal current_address : unsigned (16 downto 0);
3 begin

4 if nrst = 0 then

5 pixelcount <= 0;

6 current_address <= 0;

7 else

8 if rising_edge(pclk) then

9 current_address <= current_address + 1;

10 address <= std_logic_vector(current_address);
11 pixel_data <= data;

12 end if;

13 end if;

14 end process;

This process returns the current value of the pixel data into a signal called pixel_data, which is
declared at the architecture level:

1 signal pixel_data : std_logic_vector (7 downto 0);

This has the red, green, and blue data defined in the lowest 6 bits of the 8-bit data word with
the indexes, respectively, of 0-1, 2-3, and 4-5.

14.4.2 Horizontal Sync

The next key process is the timing of the horizontal and vertical sync pulses, and the blanking
intervals. The line timing for VGA is 31,770 ns per line with a window for displaying the data
of 25,170 ns. If the FPGA is running at 100 MHz (period of 10 ns) then this means that each
line requires 3177 clock cycles with 2517 for each line of pixel data, with 660 pulses in total
for blanking (330 at either side). This also means that for a 640 pixel wide line, 39.3 ns are
required for each pixel. We could round this up to 4 clock cycles per pixel. As you may have
noticed, for the pixel retrieval we have a new internal clock signal called pclk, and we can
create a process that generates the appropriate pixel clock (pclk) with this timing in place.

With this slightly elongated window, the blanking pulses must therefore reduce to 617 clock
cycles and this means 308 before and 309 after the display window.

The horizontal sync pulse, on the other hand, takes place between 26,110 ns and 29,880 ns of
the overall interval. This is 189 clock pulses less than the overall line time, and so the
horizontal sync pulse goes low after 94 clock cycles and then at the end must return high 95
clock cycles prior to the end of the line. The difference between the outside and inside timings
for the horizontal sync pulse is 377 clock cycles and so the sync pulse must return high

94 + 188 clock cycles and then return low 95 + 189 prior to the end of the window.

Thus, the horizontal sync has the following basic behavior:

Clock Cycle Value
0 1
94 0
282 1
2893 0
3082 1

and this can be implemented using a process with a simple counter:

1 hsync_counter : process (clk, nrst) is
2 hcount : unsigned (11 downto 0);

3 begin

4 if nrst = 0 then

5 hcount <= 0;

6 hsync <= 1;

7 else

8 if hcount > 2611 and hcount<2988 then
9 hsync <= 0;

10 else

11 hsync <= 1;

12 end if;

13 if hcount < 3177 then

14 hcount <= hcount + 1;

15 else

16 hcount <= 0;

17 end if;

18 end if;

19 end process;

14.4.3 Vertical Sync

The horizontal sync process manages the individual pixels in a line, and the vertical sync does
the same for the lines as a whole to create the image. The period of a frame (containing all the
lines) is defined as 16,784,000 ns. Within this timescale, the lines of the image are displayed
(within 15,250,000 ns), then the vertical blanking interval is defined (up to the whole frame

period of 16,784,000 ns) and finally the vertical sync pulse is defined as 1 until 15,700,000 ns
at which time it goes to zero, returning to 1 at 15,764,000 ns.

Clearly it would not be sensible to define a clock of 10 ns for these calculations, so the largest
common divisor is a clock of 2 s, so we can divide down the system clock by 2000 to get a
vertical sync clock of 2 s to simplify and make the design as compact as possible.

1 clk_div : process (clk, nrst) is
2 begin

3 if nrst = 0 then
4 count <= 0;

5 vclk <= 0;

6 else

7 if count = 1999 then

8 count <= 0;

9 vclk <= not vclk;

10 else

11 count <= count + 1;
12 end if;

13 end if;

14 end process;

where the vertical sync clock (vclk) is defined as a std_logic signal in the architecture. This
can then be used to control the vsync pulses in a second process that now waits for the vertical
sync derived clock:

1 vsync_timing : process (vclk) is
2 begin

3 if nrst = 0 then

4 vcount <= 0;

5 else

6 if vcount>15700 and vcount <15764 then
7 vsync <= 0;

8 else

9 vsync <= 1;

10 end if;

11 if vcount > 16784 then

12 vcount <= 0;

13 else

14 vcount <= vcount + 1;

15 end if;

16 end if;

17 end process;

Using this process, the vertical sync (frame synchronization) pulses are generated.

14.4.4 Horizontal and Vertical Blanking Pulses

In addition to the basic horizontal and vertical sync pulse counters, we have to define a
horizontal blanking pulse which sets the line data low after 25,170 ns (2517 clock cycles).
This can be implemented as a simple counter in exactly the same way as the horizontal sync

pulse and similarly for a vertical blanking pulse. The two processes to implement these are
given in the following VHDL.

1 hblank_counter : process (clk, nrst) is
2 hcount : unsigned (11 downto 0);
3 begin

4 if nrst = 0 then

5 hcount <= 0;

6 hblank <= 1;

7 else

8 if hcount > 2517 and hcount<3177 then
9 hblank <= 0;

10 else

11 hblank <= 1;

12 end if;

13 if hcount < 3177 then

14 hcount <= hcount + 1;

15 else

16 hcount <= 0;

17 end if;

18 end if;

19 end process;

20 vblank_timing : process (vclk) is
21 begin

22 if nrst = 0 then

23 vcount <= 0;

24 vblank<= 1 1

25 else

26 if vcount>15250 and vcount <16784 then
27 vblank <= 0;

28 else

29 vblank <= 1;

30 end if;

31 if vcount > 16784 then

32 vblank <= 0;

33 else

34 vcount <= vcount + 1;

35 end if;

36 end if;

37 end process;

14.4.5 Calculating the Correct Pixel Data

As we have seen previously, the data of each pixel is retrieved from a memory location and
this is obtained using the pixel clock (pclk). The pixel clock is simply a divided (by 4) version
of the system clock and at each rising edge of this pclk signal, the next pixel data is obtained
from the memory data stored in the signal called data and translated into the red, green, and
blue line signals. This is handled using the basic process given here:

1 pixel_handler : process (pclk) is
2 begin

3 red <= data(l downto 0);

4 green <= data(3 downto 2);

5 blue <= data(5 downto 4);

6 end process;
This is a basic handler process that picks out the correct pixel data, but it does not include the
video blanking signal and if this is included, then the simple VHDL changes slightly to this
form:

1 pixel_handler : process (pclk) is

2 blank : std_logic_vector (1 downto 0);
3 begin

4 blank(0) <= hblank or vblank;

5 bTank(1l) <= hblank or vblank;

6 red <= data(l downto 0) & blank;

7 green <= data(3 downto 2) & blank;

8 blue <= data(5 downto 4) & blank;

9 end process;

This is the final step and completes the basic VHDL VGA handler.

14.5 A VGA Interface in Verilog

14.5.1 Verilog Top Level Module for VGA Handling

The first stage in defining the Verilog for the VGA driver is to create a module that has the
global clock and reset, the VGA output pins, and a memory interface. The outline Verilog
module is therefore given as follows:

1 module vga (

2 clk, // clock input

3 nrst, // reset

4 hsync, // hsync

5 vsync, // vsync

6 red, // red output

7 green, // green output
8 blue, // blue output

9 address, // address output
10 data, // data

11 ram_en, // RAM enable

12 ram_oe, // RAM Output Enable
13 ram_wr // RAM write signal
14)3

The module contains a number of processes, with internal signals that manage the transfer of
pixel data from memory to the screen. As before, the data comes back from the memory in
8-bit blocks and we require 3 x 2 bits for each pixel and so when the data is returned, each
memory byte will contain the data for a single pixel. In this example, as we are using a

640 x 480 pixel image, this will therefore require a memory that is 307,200 bytes in size as a
minimum. To put this in perspective, this means that using a raw memory approach we can put
three frames per megabyte. In practice, of course, we would use a form of image compression
(such as JPEG for photographic images), but this is beyond the scope of this book.

We can therefore use a simple process to obtain the current pixel of data from memory as
follows:

1 always @ (posedge pclk)

2 begin

3 if (nrst = 0) begin

4 pixelcount <= 0;

5 current_address <= 0;

6 else

7 current_address <= current_address + 1;
8 address <= current_address;
9 pixel_data <= data;

10

11 end

12 end

This process returns the current value of the pixel data into a signal called pixel_data which is
declared at the module level:

1 reg [7:0] pixel_data;

This has the red, green, and blue data defined in the lowest 6 bits of the 8-bit data word with
the indexes, respectively, of 0-1, 2-3, and 4-5.

14.5.2 Horizontal Sync

The next key process is the timing of the horizontal and vertical sync pulses, and the blanking
intervals. The line timing for VGA is 31,770 ns per line with a window for displaying the data
of 25,170 ns. If the FPGA is running at 100 MHz (period of 10 ns) then this means that each
line requires 3177 clock cycles with 2517 for each line of pixel data, with 660 pulses in total
for blanking (330 at either side). This also means that for a 640 pixel wide line, 39.3 ns are
required for each pixel. We could round this up to 4 clock cycles per pixel. As you may have
noticed, for the pixel retrieval we have a new internal clock signal called pclk, and we can
create a process that generates the appropriate pixel clock (pclk) with this timing in place.

With this slightly elongated window, the blanking pulses must therefore reduce to 617 clock
cycles and this means 308 before and 309 after the display window.

The horizontal sync pulse, on the other hand, takes place between 26,110 ns and 29,880 ns of
the overall interval. This is 189 clock pulses less than the overall line time, and so the
horizontal sync pulse goes low after 94 clock cycles and then at the end must return high 95
clock cycles prior to the end of the line. The difference between the outside and inside timings
for the horizontal sync pulse is 377 clock cycles and so the sync pulse must return high

94 + 188 clock cycles and then return low 95 + 189 prior to the end of the window.

Thus, the horizontal sync has the same behavior as described previously in this chapter and
this can be implemented using a process with a simple counter:

1 always @ (posedge clk)

2 begin

3 if (nrst = 0) begin

4 hcount <= 0;

5 hsync <= 1;

6 end

7 else

8 if (hcount > 2611) and (hcount<2988) begin
9 hsync <= 0;

10 else

11 hsync <= 1;

12 end if

13 if (hcount < 3177) begin
14 hcount <= hcount + 1;
15 else

16 hcount <= 0;

17 end if

18 end if

19 end

14.5.3 Vertical Sync

The horizontal sync process manages the individual pixels in a line, and the vertical sync does
the same for the lines as a whole to create the image. The period of a frame (containing all the
lines) is defined as 16,784,000 ns. Within this timescale, the lines of the image are displayed
(within 15,250,000 ns), then the vertical blanking interval is defined (up to the whole frame
period of 16,784,000 ns) and finally the vertical sync pulse is defined as 1 until 15,700,000 ns
at which time it goes to zero, returning to 1 at 15,764,000 ns.

Clearly it would not be sensible to define a clock of 10 ns for these calculations, so the largest
common divisor is a clock of 2 s, so we can divide down the system clock by 2000 to get a
vertical sync clock of 2 s to simplify and make the design as compact as possible.

1 always @ (posedge clk) begin
2 if (nrst = 0) begin

3 count <= 0;

4 vclk <= 0;

5 else

6 if (count = 1999) begin
7 count <= 0;

8 vclk <= not vclk;

9 else

10 count <= count + 1;

11 end if

12 end if

13 end

where the vertical sync clock (vclk) is defined as a std_logic signal in the architecture. This
can then be used to control the vsync pulses in a second process that now waits for the vertical
sync derived clock:

0NN R W=

always @ (vclk) begin
if nrst = 0 begin
vcount <= 0;
else
if vcount>15700 and vcount <15764 begin
vsync <= 0;
else
vsync <= 1;
end if
if vcount > 16784 begin
vcount <= 0;
else
vcount <= vcount + 1;
end if
end if
end

Using this process, the vertical sync (frame synchronization) pulses are generated.

14.5.4 Horizontal and Vertical Blanking Pulses

In addition to the basic horizontal and vertical sync pulse counters, we have to define a
horizontal blanking pulse, which sets the line data low after 25,170 ns (2517 clock cycles).
This can be implemented as a simple counter in exactly the same way as the horizontal sync
pulse and similarly for a vertical blanking pulse. The two processes to implement these are
given in the following VHDL.

0NN B WN =

[I S I N R S I N I i e el
AN A W=, OOV INWUN A WD~ OO0

always @ (posedge clk) begin

if nrst = 0 begin
hcount <= 0;
hblank <= 1;
end
else
if hcount > 2517 and hcount<3177 begin
hblank <= 0;
else
hblank <= 1;
end if
if hcount < 3177 then
hcount <= hcount + 1;
else
hcount <= 0;
end if
end if
end

always @ (posedge vclk) begin

if nrst = 0 begin
vcount <= 0;
vblank<= 1 1

end

else

27 if vcount>15250 and vcount <16784 begin

28 vblank <= 0;

29 else

30 vblank <= 1;

31 end if

32 if vcount > 16784 begin
33 vblank <= 0;

34 else

35 vcount <= vcount + 1;
36 end if

37 end

38 end

14.5.5 Calculating the Correct Pixel Data

As we have seen previously, the data of each pixel is retrieved from a memory location and
this is obtained using the pixel clock (pclk). The pixel clock is simply a divided (by 4) version
of the system clock and at each rising edge of this pclk signal, the next pixel data is obtained
from the memory data stored in the signal called data and translated into the red, green and
blue line signals. This is handled using a similar process as was used for the VHDL.

This is the final step and completes the basic Verilog VGA handler.

14.6 Summary

This chapter has introduced the basics of developing a simple VGA handler in VHDL and
Verilog. While it is a simplistic view of the process, hopefully it has shown how a simple
VGA interface can be developed using not very complex VHDL or Verilog and a building
block approach. It is left to the reader to develop their own complete VGA routines for the
specific monitor that they have, using the techniques developed in this chapter as a basis.

Serial Communications

15.1 Introduction

There are a wide variety of serial communications protocols available, but all rely on some
form of coding scheme to efficiently and effectively transmit the serial data across the
transmission medium. In this chapter, not only will the common methods of transmitting data
be reviewed (RS232 and USB), but in addition some useful coding mechanisms will be
described (Manchester, Code Mark Inversion, Non-Return-to-Zero—NRZ,
Non-Return-to-Zero-Inverted—NRZI) as they often are used as part of a higher level
transmission protocol. For example, the NRZI coding technique is used in the USB protocol.

15.2 Manchester Encoding and Decoding

Manchester encoding is a simple coding scheme that translates a basic bit stream into a series
of transitions. It is extremely useful for ensuring that a specific bandwidth can be used for data
transmission, as no matter what the sequence of the data bits, the frequency of the transmitted
stream will be exactly twice the frequency of the original data. It also makes signal recovery
trivial, because there is no need to attempt to extract a clock as the data can be recovered
simply by looking for the edges in the data and extracting asynchronously. The basic approach
to Manchester encoding is shown in Figure 15.1.

Another advantage of the scheme is that the method is highly tolerant of errors in the data; if
an error occurs, then the subsequent data is not affected at all by an error in the transmitter, the
medium or the receiver, and after the immediate glitch, the data can continue to be transmitted
effectively without any need for error recovery. Of course, the original data can use some form
of data coding to add in error correction (such as parity checks or cyclic redundancy check,
CRO). If we wish to create a VHDL model for this type of coding scheme, it is actually
relatively simple. The first step is to identify that we have a single data input (D) and a clock
(CLK). Why synchronous? Using a synchronous clock we can define a sample on the rising
edge of the clock for the data input and use BOTH edges of the clock to define the transitions
on the output. The way we do this is simply to look for any event on the clk (clk’event) and
then check whether the clk is high or low to determine whether the clk edge is rising or
falling.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00015-5

Figure 15.1
Manchester encoding scheme.

Figure 15.2
Manchester encoding scheme with XOR.

This VHDL is simple but there is an even simpler way to encode the data and that is to simply
XOR the clock with the data. If we look at the same data sequence as shown in Figure 15.1,
we can see that if we add a clock, and observe the original data and the Manchester encoded
output, this is simply the data XORd with the clock, as in Figure 15.2.

So, using this simple mechanism, we can create a much simpler Manchester encoder that
XORs the clock and the data to obtain the resulting Manchester encoded data stream.

15.3 Implementing the Manchester Encoding Scheme using VHDL

The VHDL code for the synchronous Manchester encoder is shown here:

1 library ieee;

2 use ieee.std_logic_1664.all;

3

4 entity manchester_encoder is

5 port (

6 clk : in std_logic;

7 d : in std_logic;

8 q : out std_logic

9)3

10 end entity manchester_encoder;
11

12 architecture basic of manchester_encoder is
13 signal Tastd : std_logic := 0 ;
14 begin

15 pl: process (clk)

16 begin

17 if clk’event and clk="1" then
18 if (d =20) then

19 q<=1;:

20 lastd <= 0 ;

21 elsif (d =1) then

22 q <=0 ;

23 lTastd <=1

24 else

25 q <= X

26 Tastd <= x ;

27 end if;

28 else

29 if (lastd = 0) then

30 q <=0 ;

31 elsif (Tastd = 1) then
32 q<=1;

33 else

34 q <= x ;

35 end if

36 end if;

37 end process pl;

38 end architecture basic;

The XOR implementation of the Manchester encoder is much simpler and this listing is shown
as follows:

library ieee;
use ieee.std_logic_1664.al11;

entity manchester_encoder is
port (
clk : in std_logic;
d : in std_logic;
q : out std_logic
)
end entity manchester_encoder;

— O 0 00NN AW~

—_ =

12 architecture basic of manchester_encoder is

13 begin
14 q <= d xor clk;
15 end architecture basic;

Decoding the Manchester data stream is also a choice between asynchronous and synchronous
approaches. We can use a local clk and detect the values of the input to evaluate whether the
values on the rising and falling edges are O or 1, respectively, and ascertain the values of the
data as a result, but clearly this is dependent on the transmitter and receiver clocks being
synchronized to a reasonable degree. Such a simple decoder could look like this:

1 entity manchester_decoder is

2 port (

3 clk : in std_logic;

4 d : in std_Tlogic;

5 g : out std_logic

6)

7 end entity manchester_decoder;

8

9 architecture basic of manchester_decoder is
10 signal Tastd : std_logic := 0 ;

11 begin

12 pl : process (clk)

13 begin

14 if clk’event and clk="1" then

15 lastd <= d;

16 else

17 if (lastd = 0) and (d =1) then
18 q<=1;

19 elsif (lastd =1) and (d= 0) then
20 q<=0

21 else

22 q <= x

23 end if;

24 end if;

25 end process pl;

26 end architecture basic;

In this VHDL model, the clock is at the same rate as the transmitter clock, and the data should
be sent in packets to ensure that the data is not sent in blocks that are too large, such that the
clock can get out of sync, and also that the data can be checked for integrity to correct for
mistakes or the clock on the receiver being out of phase.

15.4 Implementing the Manchester Encoding Scheme using Verilog

The Verilog code for the synchronous Manchester encoder is shown here:

1 module manchester (

2 clk, // clock input
3 d, // data input

4 q // encoded output

)s

[c BN B NV |

input clk;
input d;
9
10 output q;
11 reg q;
12 reg lastd;
13
14 always_init begin
15 lastd <= 0;
16 end
17
18 always @ (clk)
19 begin
20 if clk="1" begin
21 if d=1 then
22 begin
23 q <= 1;
24 lastd <= 0;
25 end
26 else
27 begin
28 q <= 0;
29 lastd <= 1;
30 end
31 end
32 else
33 begin
34 if lTastd = 0 then
35 q <= 0;
36 else
37 q=1;
38 end
39 end
40 endmodule

The XOR implementation of the Manchester encoder is much simpler and this listing is shown
as follows:
1 module manchester_xor (

2 clk, // clock input
3 d, // data input

4 q // encoded output
5)s

6

7 input clk;

8 input d;

9

10 output q;

11 reg q;

12

13 g <= clk xor d;

14

15 endmodule

Decoding the Manchester data stream is also a choice between asynchronous and synchronous
approaches. We can use a local clk and detect the values of the input to evaluate whether the
values on the rising and falling edges are O or 1, respectively, and ascertain the values of the
data as a result, but clearly this is dependent on the transmitter and receiver clocks being
synchronized to a reasonable degree. Such a simple decoder could look like this:

1 entity manchester_decoder is

2 port (

3 clk : in std_logic;

4 d : in std_logic;

5 g : out std_logic

6)

7 end entity manchester_decoder;

8

9 architecture basic of manchester_decoder is
10 signal Tlastd : std_logic := 0 ;

11 begin

12 pl : process (clk)

13 begin

14 if clk’event and clk="1" then

15 lastd <= d;

16 else

17 if (lastd = 0) and (d =1) then
18 q<=1:

19 elsif (lastd =1) and (d= 0) then
20 q<=0

21 else

22 q <= x

23 end if;

24 end if;

25 end process pl;

26 end architecture basic;

In this Verilog model, the clock is at the same rate as the transmitter clock, and the data should
be sent in packets to ensure that the data is not sent in too large blocks such that the clock can
get out of sync, and also that the data can be checked for integrity to correct for mistakes or
the clock on the receiver being out of phase.

15.5 NRZ (Non-Return-to-Zero) Coding and Decoding

The NRZ encoding scheme is actually not a coding scheme at all. It simply states that a O is
transmitted as a 0 and a 1 is transmitted as a 1. It is only worth mentioning because a designer
may see the term NRZ and assume that a specific encoder or decoder was required, whereas in
fact this is not the case. It is also worth noting that there are some significant disadvantages in
using this simple approach. The first disadvantage, especially when compared to the
Manchester coding scheme, is that long sequences of Os or 1s give effectively DC values when
transmitted, which are susceptible to problems of noise and also make clock recovery very
difficult. The other issue is that of bandwidth. Again if we compare the coding scheme to that

of the Manchester example, it is obvious that the Manchester scheme requires quite a narrow
bandwidth (relatively) to transmit the data, whereas the NRZ scheme may require anything
from DC up to half the data rate (Nyquist frequency) and anything in between. This makes
line design and filter design very much more problematic.

15.6 NRZI (Non-Return-to-Zero-Inverted) Coding and Decoding

In the NRZI scheme, the potential problems of the NRZ scheme, particularly the long periods
of DC levels, are partially alleviated. In the NRZI, if the data is a 0, then the data does not
change, whereas if a 1 occurs on the data line, then the output changes. Therefore, the issue of
long sequences of 1s is addressed, but the potential for long sequences of Os remains.

15.6.1 NRZI Coding and Decoding in VHDL

It is a simple matter to create a basic model for a NRZI encoder using the following VHDL

model:
1 entity nrzi_encoder is
2 port (
3 clk : in std_logic;
4 d : in std_logic;
5 q : out std_logic
6)
7 end entity nrzi_encoder;
8
9 architecture basic of nrzi_encoder is
10 signal gint : std_logic := 0 ;
11 begin
12 pl : process (clk)
13 begin
14 if (d =1) then
15 if (gint = 0) then
16 qgint <=1 ;
17 else
18 qint <=0 ;
19 end if;
20 end if;
21 end process pl;
22 q <= qint;
23 end architecture basic;

Notice that this model is synchronous, but if we wished to make it asynchronous, the only
changes would be to remove the clk port and change the process sensitivity list from clk to d.
We can apply the same logic to the output, to obtain the decoded data stream, using the VHDL
as follows. Again we are using a synchronous approach:

1 entity nrzi_decoder is

2 port (

3 clk : in std_logic;

4 d : in std_Tlogic;

5 g : out std_logic

6)

7 end entity nrzi_decoder;

8

9 architecture basic of nrzi_decoder is
10 signal Tastd : std_logic := 0 ;
11 begin

12 pl : process (clk)

13 begin

14 if rising_edge(clk) then
15 if (d = lastd) then

16 qg<=0

17 else

18 q <=1

19 end if;

20 lastd <= d;

21 end if;

22 end process pl;

23 end architecture basic;

The NRZI decoder is extremely simple, in that the only thing we need to check is whether the
data stream has changed since the last clock edge. If the data has changed since the last clock,
then we know that the data is a 1, but if the data is unchanged, then we know that it is a 0.
Clearly we could use an asynchronous approach, but this would rely on the data checking
algorithm downstream being synchronized correctly.

15.6.2 NRZI Coding and Decoding in Verilog

It is a simple matter to create a basic model for a NRZI encoder using the following Verilog
model:

1 module nrzi_encoder (
2 clk, // Clock Input
3 d, // Data Input
4 q // Data Output
5)s

6

7 input clk;

8 input d;

9 output q;

10

11 reg q;

12

13 reg qint;

14

15 always_init

16 begin

17 gint <= 0;

18 end

19

20 always @ (clk)
21 begin

22 if d=1

23 if gint =0
24 gint <=1
25 else

26 gint <=0
27 end

28

29 end

30 qg <= qgint;

31 end

32 endmodule
Notice that this model is synchronous, but if we wished to make it asynchronous, the only
changes would be to remove the clk port and change the process sensitivity list from clk to d.
We can apply the same logic to the output, to obtain the decoded data stream, using the
Verilog that follows. Again we are using a synchronous approach:

1 module nrzi_encoder (
2 clk, // Clock Input
3 d, // Data Input
4 q // Data Output
5)

6

7 input clk;

8 input d;

9 output q;

10

11 reg q;

12

13 always @ (clk)

14 begin

15 if clk=1 begin

16 if d=lastd

17 q <= 0;

18 else

19 q <=1;

20 end

21 end

22 end

23 endmodule

The NRZI decoder is extremely simple, in that the only thing we need to check is whether the
data stream has changed since the last clock edge. If the data has changed since the last clock,
then we know that the data is a 1, but if the data is unchanged, then we know that it is a 0.
Clearly we could use an asynchronous approach, but this would rely on the data checking
algorithm downstream being synchronized correctly.

15.7 RS-232

15.7.1 Introduction

The basic approach of RS-232 serial transmission is that of a UART. UART stands for
Universal Asynchronous Receiver/Transmitter. It is the standard method of translating a serial
communication stream into the parallel form used by computers. RS-232 is a UART that has a
specific standard defined for start, stop, break, data, parity, and pin names.

15.7.2 RS-232 Baud Rate Generator

The RS-232 is an asynchronous transmission scheme and so the correct clock rate must be
defined prior to transmission to ensure that the data is transmitted and received correctly. The
RS-232 baud rate can range from 1200 baud up to 115200 baud. This is based on a standard
clock frequency of 14.7456 MHz, and this is then divided down by 8, 16, 28, 48, 96, 192, 384,
and 768 to get the correct baud rates. We therefore need to define a clock divider circuit that
can output the correct baud rate configured by a control word. We have obviously got 8
different ratios, and so we can use a 3-bit control word (baud[2:0]) plus a clock and reset to
create the correct frequencies, assuming that the basic clock frequency is 14.7456 MHz
(Figure 15.3).

The VHDL for this controller is given as follows and uses a single process to select the correct
baud rate and another to divide down the input clock accordingly:
library ieee;

use ieee.std_logic_1164.al11;
use ieee.std_logic_unsigned.all;

entity baudcontroller is
port(

AN AW =

—— CLK

— RST CLKOUT

2:0 Baud rate generator

+> BAUD
Figure 15.3

Baud rate generator.

7 clk : in std_logic;

8 rst : in std_logic;

9 baud : in std_logic_vector(0 to 2);

10 clkout : out std_logic;

11 end baudcontroller;

12

13 architecture simple of baudcontroller is

14 signal clkdiv : integer := 0;

15 signal count : integer := 0;

16 begin

17 div: process (rst, clk)

18 begin

19 if rst="0" then

20 clkdiv <= 0;

21 count <= 0;

22 elsif rising_edge(clk) then

23 case baud is

24 when "000" => clkdiv <= 7; —— 115200
25 when "001" => clkdiv <= 15; —— 57600
26 when "010" => clkdiv <= 23; —— 38400
27 when "011" => clkdiv <= 47; —— 19200
28 when "100" => clkdiv <= 95; —— 9600
29 when "101" => clkdiv <= 191; —— 4800
30 when "110" => clkdiv <= 383; —— 2400
31 when "111" => clkdiv <= 767; —— 1200
32 when others => clkdiv <= 7;

33 end case;

34 end if;

35 end process;

36

37 clockdivision: process (clk, rst)

38 begin

39 if rst="0" then

40 clkdiv <= 0;

41 count <= 0;

42 elsif rising_edge(clk) then

43 count <= count + 1;

44 if (count > clkdiv) then

45 clkout <= not clkout;

46 count <= 0;

47 end if;

48 end if;

49 end process;

50 end simple;

The Verilog equivalent for this baud rate controller is given as follows and uses separate code
to select the correct baud rate and another to divide down the input clock accordingly:

1 module baudcontroller (

2 clk, // clock

3 rst, // reset

4 clkout // baud rate output
5)

6

7 input clk;

8 input rst;

9

output clkout;

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

reg clkout;

parameter baudrate = 9600;

always_init
case baudrate
115200: clkdiv

57600:
38400:
19200:

9600:
4800:
2400:
1200:

clkdiv =
clkdiv =
clkdiv =
clkdiv =
clkdiv
clkdiv
clkdiv

when "000" =
when "001" =
when "010" =
when "011" =
when "100" =
when "101" =
when "110" =
when "111" =

when

=7;

15;

23;

47
95;
191;
383;
767;

> clkdiv
clkdiv
> clkdiv
> clkdiv
> clkdiv
clkdiv
clkdiv
clkdiv

always @(Charln)
case (CharlIn)

4
4
4
4
4

4

NG O N N N N N

4

"ho:
"hl:
"he:
"h3:
"h4:
h5:
'h6:
"h7:
'h8:
’h9:
"hA:
"hB:
"hC:
"hD:
"hE:
hF:

<

=7; —— 115200
= 15; —— 57600
= 23; —— 38400
= 47; —— 19200
= 95; —— 9600
= 191; —— 4800
= 383; —— 2400
= 767; —— 1200

others => clkdiv <= 7;

HexOut = 7’b1000000;
HexOut = 7’b1111001;
HexOut = 7’b0100100;
HexOut = 7°b0110000;
HexOut = 7’b0011001;
HexOut = 7°b0010010;
HexOut = 7’b0000010;
HexOut = 7°b1111000;
HexOut = 7’b0000000;
HexOut = 7°b0011000;
HexOut = 7’b0001000;
HexOut = 7°b0000011;
HexOut = 7’b1000110;
HexOut = 7°b0100001;
HexOut = 7°b0000110;
HexOut = 7°b0001110;

default: HexOut = 7’b0110110;
endcase

architecture simple of baudcontroller is
= 0;

signal

clkdiv :

signal count :

begin

integer

integer :

div: process (rst, clk)

begin

if rst="0" then
clkdiv <= 0;

0;

65 count <= 0;

66 elsif rising_edge(clk) then

67 case baud is

68 when "000" => clkdiv <= 7; —— 115200
69 when "001" => clkdiv <= 15; —— 57600
70 when "010" => clkdiv <= 23; —— 38400
71 when "011" => clkdiv <= 47; —— 19200
72 when "100" => clkdiv <= 95; —— 9600
73 when "101" => clkdiv <= 191; —— 4800
74 when "110" => clkdiv <= 383; —— 2400
75 when "111" => clkdiv <= 767; —— 1200
76 when others => clkdiv <= 7;

71 end case;

78 end if;

79 end process;

80

81 clockdivision: process (clk, rst)

82 begin

83 if rst="0" then

84 clkdiv <= 0;

85 count <= 0;

86 elsif rising_edge(clk) then

87 count <= count + 1;

88 if (count > clkdiv) then

89 clkout <= not clkout;

90 count <= 0;

91 end if;

92 end if;

93 end process;

94 end simple;
15.7.3 RS-232 Receiver

The RS-232 receiver must wait for data to arrive on the RX line and has a specification
defined as follows: <number of bits> <parity > <stop bits>. So, for example an 8-bit, No
parity, 1 stop bit specification would be given as 8N1. The RS-232 voltage levels are between
—12V and +12V, and so we will assume that an interface chip has translated these to standard
logic levels (0-5 V or 0-3.3 'V, for example). A sample bit stream would be of the format
shown in Figure 15.4.

The idle state for RS-232 is high, and in this figure, after the stop bit, the line is shown as
going low, when in fact that only happens when another data word is coming. If the data
transmission has finished, then the line will go high (idle) again. We can in fact model this as a
simple state machine as shown in Figure 15.5.

o

Sart| 9 | 1 | 23| 4|56 |7 |Sor

Figure 15.4
Example serial data bit stream.

Figure 15.5
Basic serial data receiver state machine.

We can implement this simple state machine in VHDL using the following model:

00NN N RWN—

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity serialrx is
port(
clk : in std_logic;
rst : in std_logic;
rx : in std_logic;
dout : out std_logic_vector (7 downto 0)
)
end serialrx;

architecture simple of serialrx is

type state is (idle, sO, sl, s2, s3, s4, sb5, s6, s/,

signal current_state, next_state : state;
signal databuffer : std_logic_vector(7 downto 0);
begin
receive: process (rst, clk)
begin
if rst="0" then
current_state <= idle;
for i in 7 downto 0 loop
dout(i) <= 0"
end loop;
elsif rising_edge(clk) then

case current_state is
when idle =>
if rx = ’0° then
next_state <= s0;
else
next_state <= idle;
end if;
when s0 =>
next_state <= sl;

stop);

37 databuffer(0) <= rx;
38 when sl =>

39 next_state <= s2;

40 databuffer(l) <= rx;
41 when s2 =>

42 next_state <= s3;

43 databuffer(2) <= rx;
44 when s3 =>

45 next_state <= s4;

46 databuffer(3) <= rx;
47 when s4 =>

48 next_state <= sb5;

49 databuffer(4) <= rx;
50 when sb =>

51 next_state <= s6;

52 databuffer(b) <= rx;
53 when s6 =>

54 next_state <= s7;

55 databuffer(6) <= rx;
56 when s7 =>

57 next_state <= stop;
58 databuffer(7) <= rx;

59 when stop =>

60 if rx = 0" then

61 next_state <= s0;
62 else

63 next_state <= idle;
64 end if;

65 dout <= databuffer;

66 end case;

67 current_state <= next_state;
68 end if;

69 end process;

70 end;

In turn, the same approach of a state machine can be used in Verilog, with the model as shown
below:

1 module serial_rx (

2 dout, // Output Value

3 clk, // Clock

4 rst, // Reset

5 rx // Input receiver value
6)3

7

8

9 output [3:0] dout;

10 input clk;

11 input rst;

12 input rx;

13

14 reg [3:0] dout;

15

16 reg [3:0] current_state, next_state; // state variable

[
2

18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

parameter idle=0,s0=1, sl

always @(state)
begin
case (state)
s0:
dout[0]
sl:
doutl1l] = rx;
S2:
doutl2] = rx;
s3:
dout[3] = rx;
s
doutl4] = rx;
sh:
dout[b5] = rx;
S6:
doutl[6] = rx;
s7:
doutl71 = rx;
endcase
end

rx;

always @(posedge clk)
begin
if (rst == 0)
state = idle;
else
case (state)
idle:
state = s0;
s0:
state = sl;
sl:
state = s2;
s2:
state = s3;
s3:
state = s4;
s4:
state = sb5;
sh:
state = s6;
s7:
state = stop;
stop:
state = idle;
default:
state=idle;
endcase
end

endmodule

2,

s2

3,

s3=4,s4=5,55=6,56=7,57=8,stop=9;

15.8 Universal Serial Bus

The Universal Serial Bus (USB) protocol has become pervasive and ubiquitous in the
computing and electronics industries in recent years. The protocol supports a variety of data
rates from low speed (10 kbits/s to 100 kbits/s) up to high speed devices (up to 400 Mbits/s).
While in principle it is possible to create FPGA interfaces directly to a USB bus, for anything
other than the lower data rates it requires accurate voltage matching and impedance matching
of the serial bus. For example, the low data rates require 2.8 V (1) and 0.3 V (0), differentially,
whereas the high speed bus requires 400 mV signals, and in both cases termination resistors
are required.

In practice, therefore, it is common when working with FPGAs to use a simple interface chip
that handles all the analog interface issues and can then be connected directly to the FPGA
with a simple UART style interface. An example device is the Silicon Labs CP2101, that takes
the basic USB Connector pins (Differential Data and Power & Ground) and then sets up the
basic serial data transmission pins. The block diagram of this device is given in Figure 15.6.

The pins on this device are relatively self explanatory and are summarized in the following
table.

nRST The Reset pin for the Device Active Low
Suspend This pin shows when the USB device is in SUSPEND mode Active High
nSuspend The Active Low (i.e., inverse) of the SUSPEND pin

RI Ring Indicator

DCD Data Carrier Detection shows that data is on the USB line Active Low

DTR Data Transmit Detection this is active low when the line is ready for data transmission

TXD Asynchronous Data transmission line

RXD Asynchronous Data received line

RTS Clear to Receive Active Low

CTS Clear to Send Active Low

The basic operation of the serial port starts from the use of the TXD and RXD (data) lines. If
the configuration is as a NULL modem with no handshaking, it is possible to simply use the
transmit (TXD) and receive (RXD) lines alone.

If you wish to check that the line is clear for sending data, then the RTS signal can be set
(Request to Send), in this case active low, and if the line is ready, then the CTS line will go
low and the data can be sent. This basic scheme is defined in such a way that, once the receiver
signal goes low, the transmitter can send at any rate, the assumption being that the receiver can
handle whatever rate is provided. The protocol can be made more capable by using the DTR
line, and this notifies the other end of the link that the device is ready for receiving data
communications. The Data Carrier Detection (DCD) line is not used directly in the link, but
indicates that there is a valid communications link between the devices. We can develop a

nRST
SUSPEND
nSUSPEND
VBUS ————— R

D+ e .
USB DCD

transceiver —— DTR
GND —— chip L DSR

TXD
RXD
RTS
CTs

Figure 15.6
USB transceiver chip CP2101.

VHDL model for such a communications link with as much complexity as we need to
communicate with the hardware in the system under consideration, starting with a simple
template:

Entity serial_handler is
Port(
Clk : in std_logic;
Nrst : in std_logic;
Data_in : in std_logic;
Data_out : out std_logic;
TXD : out std_logic;
RXD : in std_logic
)s
End entity serial_handler;

OO 0NN REWN—

—_

In this initial model, we have a simple clock and reset, with two data connections for the
synchronous side, and the TXD and RXD asynchronous data communications lines. We can
put together a simple architecture that simply samples the data lines and transfers them into an
intermediate variable for use on the synchronous side of the model:

architecture basic of serial_handler is
begin
pl : process (clk)
begin
if rising_edge(clk) then
rxd_int <= rxd;
end if;
end process pl;
end architecture basic;

Nl N e Y R O R

We can extend this model to handle the transmit side also, using a similar approach:

1 Architecture mod of serial_handler is
2 Begin

3 P1 : process (clk)
4 Begin

5 If rising_edge(clk) then
6 Data_out <= rxd;
7 Txd <= data_in;
8 End if;

9 End process pl;

0 End architecture mod;

—_

This entity is the equivalent to a NULL modem architecture. If we wish to add the DTR
notification that the device is ready for receiving data, we can add this to the entity list of ports
and then gate the receive data if statement using the DTR signal:

1 entity serial_handler is

2 port(

3 clk : in std_logic;

4 nrst : in std_logic;

5 data_in : in std_logic;
6 data_out : out std_logic;
7 dtr : 1in std_logic;

8 txd : out std_logic;

9 rxd : in std_logic

10)

11 end entity serial_handler;
12 architecture serial_dtr of serial_handler is
13 begin

14 pl : process (clk)

15 begin

16 if rising_edge(clk) then
17 if dtr = 0 then

18 data_out <= rxd;

19 end if;

20 txd <= data_in;

21 end if;

22 end process pl;

23 end architecture basic;

Using this type of approach we can extend the serial handler to incorporate as much or as little
of the modem communications link protocol as we require.

In a similar manner we can generate a similar Verilog serial handler module and then add in
the same basic behavior of the handler as required.

1 module serial_handler (

2 clk, // clock

3 nrst, // reset

4 datain, // data in

5 dataout, // data out

6 txd, // Tx out

7 rxd //Received data in
8)

As before, we have a simple clock and reset, with two data connections for the synchronous
side, and the TXD and RXD asynchronous data communications lines. We can put together a
simple module process that samples the data lines and transfers them into an intermediate
variable for use on the synchronous side of the model:

1 always @ (posedge clk)
2 begin

3 rxd_int <= rxd;

4 end

15.9 Summary

In this chapter, we have introduced a variety of serial communications coding and decoding
schemes, and also reviewed the practical methods of interfacing using RS-232 and a USB
device. Clearly, there are many more variations on this theme, and in fact a complete USB
handler description would be worthy of a book in itself.

Optimizing Designs

In this part of the book we will introduce a number of "advanced" topics. In the other parts of
the book, the emphasis is on the “what” but in this part it is more about the “how.” How can
we make designs synthesize? How can our designs be made smaller or faster? How can we
interface to mixed signal systems in practice? How can we develop verifiable designs? All of
these design challenges will be addressed in this part of the book.

Design Optimization

16.1 Introduction

The area of design optimization is where the performance of a design can be made drastically
better than an initial naive implementation. Before discussing details of how to make the
designs optimal for the individual goals of speed, area and power (the “big three” for design
optimization generally in digital design and particularly for FPGAs), it is useful to discuss
some principles of what happens when we synthesize a function into hardware.

There are two main areas for optimization of the design when working with FPGAs. The first
is in the optimization of the RTL code, which is leading to an optimal description of the
design hardware in terms of logic expressions. The second key area is in the basic logic
minimization prior to the mapping of low level functions to the individual technology gates.

16.2 Techniques for Logic Optimization

There are two approaches to minimizing the logic in a design, one that maintains the hierarchy
and the other that flattens it. Often a synthesis tool will allow the user to choose which option
is required. Clearly the advantage of flattening a design is that the logic can be considered as a
whole, whereas if the logic hierarchy is maintained, then there may be structural aspects of the
design that will be of benefit to the behavior of the circuit as a whole.

The basic approach of the logic minimization is to reduce the logic equation set to a two level
form (otherwise known as sum-of-products). The most common approach for simple designs
is to use a Karnaugh map to show the input and output variables graphically and then produce
an output expression that can provide the same outputs but using a smaller amount of logic
than the original Boolean expressions.

For example, consider the basic 4 input Karnaugh map shown in Figure 16.1.

When a logic expression is described using a logic equation, we can select all valid outputs by
circling all the required output 1s and this defines the basic logic behavior. The basic
technique is to make the circles as large as possible to encompass as many output 1s with as
few input variables as possible. For example, if a basic logic equation was defined as

http://dx.doi.org/10.1016/B978-0-08-097129-2.00016-7

AB

00 01 11 10
CD
00 | Zo| 24| Zs | Z12
o1 | 21| Zs | Zo | Z13
1 | Z2 | Zs | Z1o | Z1a
10 | Z3 | Z7 | Z41 | Zis
Figure 16.1

Basic 4 input Karnaugh map.

AB
00 01 11 10
CD
w | 0]0]1]o0
o1 O] 1] 1]o0
11 0 1 0 0
10 0 0 0 0
Figure 16.2

Specific Karnaugh map example.

Z = ABCD + BCD + ABCD (16.1)

then the resulting Karnaugh map would be as shown in Figures 16.2 and 16.3.

Currently, with this basic implementation this would require three, 3 input AND gates, a 3
input OR gate and several inverters. We can see from the Karnaugh map, however, that if we
define only two of those logic functions, then there is redundancy in the original definition,
and we can reduce this to the same output for two logic combinations of the input.

We could therefore define this model using the simplified expression given in Equation (16.2).

Z=AB.C+A.B.D (16.2)

This has clearly reduced the size of the logic by one 3 input AND gate and the OR gate has

reduced to a 2 input gate.

AB
00 01 /'Lj\ 10 Logic expressions

cD
0o | 0o » 0
01 | O /1\ 1)~ — mplied function

11 0 1 0 0

10 0 0 0 0

Figure 16.3
Karnaugh Map functions.

Figure 16.4
Naive dataflow diagram for addition.

16.3 Improving Performance

Consider a simple example of an addition X = A 4+ B + C + D, where all the variables are
digital words. We could implement this using adders, taking two numbers at a time and then
adding the answer to the next input. This would give the data flow diagram shown

in Figure 16.4.

This implementation requires three adders and takes three cycles to get the answer. If we were
more systematic with the same resources, we could reduce this to two cycles by adopting a
different structure, as shown in Figure 16.5.

Figure 16.5
Reduced cycle implementation.

This is a classic case of an expression tree being reduced so that the control path can take fewer
cycles, but achieving the same data path result. We could also the envisage the case where we
only use a single addition block, but use registers to store the intermediate sums and then
pipeline the sums until we complete the expression. This would potentially take the longest,
but would result in the smallest area requirement as there would only be the need for a single
addition block (of course, this would be a trade-off with an increased number of registers).

16.4 Critical Path Analysis

Another approach to logic optimization is to analyze the critical path through a design from a
timing perspective. This is often carried out automatically by the synthesis software; for
example, the Synopsys® Design Compiler software automatically generates a synthesized
schematic that highlights the critical path through the design for timing and as such designers
can concentrate their efforts on that area of the design to improve the overall throughput in
that case (see Figure 16.6).

[
A — z
| e I L >
[: L
— N
=P, —
F
L >—)
D
C—

Figure 16.6
Reduced cycle implementation.

16.5 Summary

This chapter has discussed some techniques for improving the performance of designs using
FPGAs and how they work. Much of the actual optimization is taken care of in the synthesis
software; however, it is useful to understand the processes involved so if a specific target is
required for optimization, this can be achieved in a reasonable time in a controlled manner.

Behavioral Modeling in using HDLs

17.1 Introduction

There is a real need to abstract to a higher level in many designs to make the overall system
level design easier. There is less need to worry about details of implementation at the system
level if the design can be expressed behaviorally, especially if the synthesis method can handle
any clock, partitioning, or implementation issues automatically.

Furthermore, by using system level, or behavioral, analysis, decisions can be made early in the
design process so that potentially costly mistakes can be avoided. Preliminary area and power
estimates can be made and key performance specifications and architectural decisions can be
made using this approach, without requiring to have detailed designs for every block.

17.2 How to Go from RTL to Behavioral HDL Descriptions

The abstraction from an RTL (Register Transfer Level) hardware description language (HDL)
to behavioral is straightforward in one sense, in that the resulting HDL (whether Verilog or
VHDL) is actually simpler. There is no need to ensure that correct clocking takes place, or that
separate processes are implemented for different areas of the architecture, or even separate
components instantiated.

It is useful to consider an example to illustrate this point by looking at the difference between
the RTL and behavioral HDL in an example such as a cross product multiplier. In this case we
will demonstrate the RTL method and then show how to abstract to a behavioral model. First,
consider the specification for the model in Figure 17.1, which has the data path model as
shown in Figure 17.2.

17.3 Implementing the Behavioral Model using VHDL

The first task is to define the types for the VHDL for the entity of the model and this is shown
in the following code. Notice that we have defined a new type, sig8, that is a signed type and a
vector based on this for the cross product multiplications.

1 library ieee;
2 use ieee.std_logic_1164.al1T1;

http://dx.doi.org/10.1016/B978-0-08-097129-2.00017-9

a (signed 7:0)
Result (signed 15:0)

b (signed 7:0)

Figure 17.1
Cross product multiplier specification.

07_84\{ a_reg
a EEE g 0 sum
— 16 16
0784 ' b_reg 16
b E 8 Result
7:

Figure 17.2
Cross product multiplier data path model.

use ieee.numeric_std.all;
package cross_product_types is
subtype sig8 is signed (7 downto 0);
type sig8_vector is array
(natural range<>) of sig8;
end package;

[N e SRV IR G}

The entity can now be put together and is shown as follows. Notice that for RTL we require
both a clock and a reset.

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4 use work.cross_product_types.all;

5

6 entity cross_product is

7 port(

8 a,b : in sig8_vector(0 to 7);
9 clk, reset : in bit;

10 result : out signed(15 downto 0)
11)3

12 end entity cross_product;

The basic architecture can be set up with the basic internal signals defined, and the processes
will be explained separately.

1 architecture rtl of cross_product is
2 signal I : unsigned (2 downto 0);
3 signal ai, bi : sig8;

4 signal product, add_in, sum, accumulator : signed (15 downto 0);
5 begin

6 control: process (clk)

7 begin

8 if clkevent and clk = 1 then

9 if reset = 1 then

10 i <= (others => 0);

11 else

12 i=1i+ 1;

13 end if;

14 end if;

15 end process;

16 a_mux: ai <= a(i);

17 b_mux <= bi <= b(i);
18 multiply: product <=ai % bi;

19 z_mux: add_in <= X 000 when i = 0 else accumulator;
20

21 accumulate: process (clk)

22 begin

23 if clkevent and clk = 1 then
24 accumulator <= sum;

25 end if;

26 end process;

27

28 output : result <= accumulator;
29 end;

Notice that there are two processes, one for the accumulation and the other to handle the
multiplication. One important aspect is that it is not immediately obvious what is going on.
Even in this simple model it is difficult to extract the key behavior of the state machine. In a
complex controller it verges on the impossible unless the structure is well known and
understood, which is an important lesson when using any kind of synthesis tool using VHDL
or Verilog at any level.

Now reconsider using behavioral VHDL instead. The model uses the same packages and
libraries as the RTL model; however, notice that there is no need for an explicit clock
or reset.

library ieee;

use ieee.std_logic_l1164.all;

use ieee.numeric_std.all;

use work.cross_product_types.all;

entity cross_product is
port(
a,b : in sig8_vector(0 to 7);
result : out signed(15 downto 0)
)
end entity cross_product;

— O 0 0NN R W=

[S—

In this model, the architecture becomes much simpler and can be modeled in a much more
direct way than the RTL approach.

1 architecture behav of cross_product is
2 begin

3

4 process

5 variable sum : signed(15 downto 0);
6 begin

7 sum := to_signed(0,16);

8 for i in 0 to 7 loop

9 sum := sum + a(i) % b(i);

10 end loop;

11 result <= sum;

12 wait for 100 ns;

13 end process;

14

15 end architecture;

Notice that it is much easier to observe the functionality of the model and also the behavior
can be debugged more simply than in the RTL model. The design is obvious, the code is
readable and the function is easily ascertained. Note that there is no explicit controller; the
synthesis mechanism will define the appropriate mechanism. Also notice that the model is
defined with a single process. The synthesis mechanism will partition the design depending on
the optimization constraints specified.

Note the wait statement. This introduces an implicit clock delay into the system. Obviously
this will depend on the clock mechanism used in reality. There is also an implied reset. If an
explicit clock is required then use a wait until rising_edge(clk) or similar approach, while
retaining the behavioral nature of the model.

17.4 Implementing the Behavioral Model using Verilog

As before, the model (in this case a Verilog module) can now be put together and is shown
here. Notice that for RTL we require both a clock and a reset.

1 module cross_product (

2 clk, // clock

3 rst, // reset

4 a, // number a

5 b, // number b,

6 result // result of the product
7)3

8

9 input clk;

10 input rst;

11

12 input signed [7:0] a;
13 input signed [7:0] b;
14

15 output reg [15:0] result;

16

17 reg [2:0] i;

18

19 always @ (posedge clk)
20 begin

21 if (rst =1) then
22 i = 3b’000;

23 else

24 i=1i+1;

25 end if

26 accumulator <= sum;
27

28 if (i=0) then

29 addin <= 0;

30 else

31 addin <= accumulator;
32 end if

33 end

34

35 ai <= al[il;
36 bi <= b[i];
37 multiply <= ai % bi;

38 result <= accumulator;
39
40 endmodule

Again, even with Verilog which generally has a little simpler syntax than VHDL, in this simple
model it is difficult to extract the key behavior of the state machine. In a complex controller it
verges on the impossible unless the structure is well known and understood, which is an
important lesson when using any kind of synthesis tool using VHDL or Verilog at any level.

Now reconsider using behavioral code instead. The model uses the same packages and
libraries as the RTL model; however, notice that there is no need for an explicit clock or reset.

1 module cross_product (

2 a, // number a

3 b, // number b,

4 result // result of the product
5)

6

7 input clk;

8 input rst;

10 input signed [7:0] a;
11 input signed [7:0] b;

12

13 output reg [15:0] result;
14

15 reg [2:0] 1;

16

17 always @ (a or b)

18 begin

19 for (i = 0; i < 8; i =1 +1) begin

20 begin

21 ai <= alil;

22 bi <= b[i];

23 accumulator <= accumulator + ai x bi;
24 end

25 end

26

27 result <= accumulator;

28

29 endmodule

Notice that it is much easier to observe the functionality of the model and also the behavior
can be debugged more simply than in the RTL model. The design is obvious, the code is
readable and the function is easily ascertained. Note that there is no explicit controller, as the
synthesis mechanism will define the appropriate mechanism. Also notice that the model is
defined with a single module. The synthesis mechanism will partition the design depending on
the optimization constraints specified. This is easily parameterized, modified and clear.

17.5 Summary

Behavioral modeling is a useful technique for both initial design ideas and also as the starting
point for an RTL design. It is important to remember, however, that quite a lot of behavioral
HDL cannot be synthesized and is therefore purely for conceptual design or use in test
benches. In order to make this a practically useful design tool, the designer can take advantage
of the ability of VHDL to have numerous architectures, or Verilog to have numerous
submodules, and, by using the same test bench, validate the RTL against the behavioral model
to ensure correctness.

In summary, we can use behavioral modeling early with high impact to:

* Carry out fast functional simulation;

* Make performance criteria/ Design trade-offs;
* Investigate nonlinear effects;

* Look at implementation issues;

* Carry out topology evaluation.

Mixed Signal Modeling

18.1 Introduction

With the increasingly high level of system integration it is becoming necessary to model not
only electronic behavior of systems, but also interfaces to “real world” applications and the
detailed physical behavior of elements of the system in question. The emergence of standard
languages such as VHDL-AMS, Verilog-AMS, and Verilog-A has made it possible to now
describe a variety of physical systems using a single design approach and simulate a complete
system. Application areas where this is becoming increasingly important include mixed-signal
electronics, electromagnetic interfaces, integrated thermal modeling, electromechanical and
mechanical systems (including MEMS), fluidics (including hydraulics and microfluidics),
power electronics with digital control, and sensors of various kinds. This is becoming
increasingly relevant for systems using digital electronics such as microprocessors and even
more so with FPGAs, as they offer the ability to manage multiple interfaces in parallel.

In this chapter, we will show how the behavioral modeling of multiple energy domains is
achieved using mixed-signal modeling languages such as VHDL-AMS or Verilog-AMS,
demonstrating with the use of examples how the interactions between domains takes place,
and providing an insight into design techniques for a variety of these disciplines. The basic
framework is described, showing how standard packages can define a coherent basis for a
wide range of models, and specific examples are used to illustrate the practical details of such
an approach. Examples such as integrated simulation of power electronics systems including
electrical, magnetic and thermal effects, mixed-domain electronics, and mechanical systems
are presented to demonstrate the key concepts involved in multiple energy domain behavioral
modeling.

18.2 Basic Modeling Approach for VHDL-AMS

The basic approach for modeling devices in VHDL-AMS is to define a model entity and
architecture(s). The model entity defines the interface of the model to the system and includes
connection points and parameters. A number of architectures can be associated with an entity
to describe the model behavior, such as a behavioral or physical level description. A complete
model consists of a single entity combined with a single architecture. The domain or

http://dx.doi.org/10.1016/B978-0-08-097129-2.00018-0

technology type of the model is defined by the type of terminal used in the entity declaration of
the ports. The IEEE Std 1076.1.1 defines standard types for multiple energy domains including
electrical, thermal, magnetic, mechanical, and radiant systems. Within the architecture of the
model, each energy domain type has a defined set of through and across variables (in the
electrical domain these are voltage and current, respectively) that can be used to define the
relationship between the model interface pins and the internal behavior of the model.

In the “conventional” electronics arena, the nature of the VHDL-AMS language is designed to
support “mixed-signal” systems (containing digital elements, analog elements and the
boundary between them) with a focus on IC design. Where the strengths of the VHDL-AMS
language have really become apparent, however, is in the multi-disciplinary areas of
mechatronic and microelectromechanical systems (MEMS). In this chapter, I have highlighted
several interesting examples that illustrate the strengths of this modeling approach, with
emphasis on multiple-domain simulations.

18.3 Introduction to VHDL-AMS

VHDL-AMS is a set of analog extensions to standard digital VHDL to allow mixed signal
modeling of systems. The VHDL-AMS language was approved as IEEE standard 1076.1 in
1999; however, it is important to note that IEEE 1076.1-1999 encompasses the complete
digital VHDL 1076 standard and is not a subset.

The standard does not specify any libraries for analog disciplines, for example, electrical,
mechanical, etc. This is a separate exercise and is covered by a subset working group IEEE
1076.1.1, which was released as IEEE Standard 1076.1.1 in 2004.

In order to put the extensions into context it is useful to show the scope of VHDL and then
VHDL-AMS alongside it and this is shown in Figure 18.1:

Level Content
System Transfer Fn. 4
System Specification
(%)
Chip Algorithms r =
2| 3
. Truth tables a
Register State tables = E
Logic Boolgan
equations
. Differential
Circuit equations v
Figure 18.1

Scope of VHDL-AMS.

The key extension of VHDL-AMS over VHDL is the ability to look upward to transfer
functions (behavioral and in the Laplace domain) and downward to differential equations at
the circuit level. This gives the possibility for the designer to think about design from a
systems perspective (in terms of high level transfer function models) and also a “real world”
systems view (linking to different domains).

The specific extensions of VHDL for VHDL-AMS can be summarized as follows:

* A new type of port called TERMINALS—basically analog pins.

* A new type of TYPE called a NATURE, which defines the relationship between analog
pins and variables.

* A new type of variable called a QUANTITY, which is an analog variable.

* A new type of variable assignment that is used to define analog equations that are solved
simultaneously.

» Differential equation operators for derivative "DOT) and integration CINTEG) with
respect to time.

* IF statements for equations (IF USE).

* Break statement to initialize the nonlinear solver.

* STEP LIMIT Control for limiting the analog time step in the solver.

18.4 VHDL-AMS Analog Pins: TERMINALS

In order to define analog pins in VHDL-AMS we need to use the TERMINAL keyword in a
standard entity PORT declaration. For example, if we have a two pins device that has two
analog pins (of type electrical, more on this later), then the entity would have the basic form as
shown here:

1 Tibrary ieee;

2 use ieee.electrical_systems.all;
3 entity model is

4 generic();

5 port(

6 terminal p : electrical;

7 terminal m : electrical

8)

9 end entity;

Notice that as the VHDL-AMS extensions are defined as an IEEE standard, then the use of a
standard library such as electrical pins requires the use of the:

1 electrical_systems.all;
packages from the IEEE library.

Notice that the pins do not have a direction assigned as analog pins are part of a conserved
energy system and are therefore solved simultaneously.

18.5 Mixed Domain Modeling

In order to use standard models, there has to be a framework for terminals and variables,
which is where the standard packages are used. There is a complete IEEE Std (1076.1.1) that
defines the standard packages in their entirety; however, it is useful to look at a simplified
package (electrical systems in this case) to see how the package is put together.

For example electrical systems models need to be able to handle several key aspects:

» electrical connection points;
* electrical through variables, that is, current;
* electrical across variables, that is, voltages.

The electrical systems package needs to encompass these elements.

First the basic subtypes need to be defined. In all the analog systems and types, the basic
underlying VHDL type is always real and so the voltage and current must be defined as
subtypes of real.

1 subtype voltage is real;

2 subtype current is real;
Notice that there is no automatic unit assignment for either, but this is handled separately by
the unit and symbol attributes in IEEE Std 1076.1.1. For example, for voltage the unit is
defined as Volt and the symbol is defined as V.

The remainder of the basic electrical type definition then links these subtypes to the through
and across variable of the type, respectively:

1 package electrical_system is

2 subtype voltage is real;

3 subtype current is real;

4 nature electrical 1is

5 voltage across

6 current through

7 ground reference;

8 end package electrical_system;

18.6 VHDL-AMS Analog Variables: Quantities

Quantities are purely analog variables and can be defined in one of three ways. Free quantities
are simply analog variables that do not have a relationship with a conserved energy system.
Branch quantities have a direct relationship between one or more analog terminals, and finally
source quantities are used to define special source functions (such as AC sources or Noise
sources).

For example, to define a simple analog variable called x, which is a voltage but not related
directly to an electrical connection (terminal), then the following VHDL could be used.

1 quantity x : voltage;

On the other hand, a branch between two electrical pins has a through variable (current) and
an across variable (voltage) and this requires a branch quantity so that the complete
description can be solved simultaneously. For example, the complete quantity declaration for
the voltage (v) and current (i) of a component between two pins (p and m) could be defined as:

1 quantity v across i through p to m;

18.7 Simultaneous Equations in VHDL-AMS

In VHDL-AMS the equations are analog and solved simultaneously, which is in contrast to
signals that are solved concurrently using logic techniques and variables that are evaluated
sequentially. For example, if we have two equations that we wish to solve simultaneously:

y =x (18.1)
x=2z (18.2)
then these must be declared as equations using the == operator in VHDL-AMS, to ensure that
they are computed simultaneously and not sequentially.
For example, in VHDL-AMS to solve the first equation, we need to use the == operator:
1 y == x#x2;

where both y and x have to be defined as real numbers (quantities or other VHDL variable
types).

18.8 A VHDL-AMS Example: A DC Voltage Source

In order to illustrate some of these basic concepts, consider a simple example of a dc voltage
source. This has two electrical pins p and m, and a single parameter dc_value that is used to
define the output voltage of the source. The model symbol is shown in Figure 18.2.

v dc_value = 1.0

m

Figure 18.2
Basic VHDL-AMS voltage source.

This can be modeled in VHDL-AMS in two parts, the entity and architecture. First consider
the entity. This has two electrical pins, so we need to use the ieee.electrical_systems.all
package and therefore the ports are to be declared as terminals. Also the generic must be
defined as a real number with the default value also defined as a real number (e.g., 1.0).

terminal p : electrical;

terminal m : electrical
)

end entity;

1 library ieee;

2 use ieee.electrical_systems.all;
3 entity v_dc is

4 generic(

5 dc_value : real :=1.0);

6 port(

7

8

9

0

—_

The architecture must define the quantities for voltage and current through the source and then
link those to the terminal pin names. Also, the output equation of the source must be modeled
as an analog equation in VHDL-AMS using the == operator to implement the function

v =dc_value.

1 architecture simple of v_dc is

2 quantity v across i through p to m;
3 begin

4 v == dc_value;

5

end architecture simple;

18.9 A VHDL-AMS Example: Resistor

In the case of the resistor, the basic entity is very similar to the voltage source with two
electrical pins p and m with a single generic, this time for the nominal resistance rnom
Figure 18.3.

This can be modeled in VHDL-AMS in two parts, the entity and architecture. First consider
the entity. This has two electrical pins, so we need to use the ieee.electrical_systems.all;
package and therefore the ports are to be declared as TERMINALS. Also, the generic rnom
must be defined as a real number, with the default value also defined as a real number (e.g.,
1000.0).

p
|
v rnom = 1000.0
m
Figure 18.3

Basic VHDL-AMS resistor.

library ieee;
use ieee.electrical_systems.all;
entity resistor is
generic(
rnom : real := 1000.0);
port(

terminal p : electrical;

terminal m : electrical
)3

end entity;

O O 0NN RW N~

—

The architecture must define the quantities for voltage and current through the resistor and
then link those to the terminal pin names. Also, the output equation of the resistor must be
modeled as an analog equation in VHDL-AMS using the == operator to implement the
function v =i * rnom.

library ieee;
use ieee.electrical_systems.all;
entity resistor is
generic(
rnom : real := 1000.0);
port(

terminal p : electrical;

terminal m : electrical
)

end entity;

OO XN AW

—

18.10 Differential Equations in VHDL-AMS

VHDL-AMS also allows the modeling of linear differential equations using the two
differential operators:

* ’dot (Differentiate the variable with respect to time);
* ’integ (Integrate the variable with respect to time).

We can illustrate this by taking two examples, a capacitor and an inductor. First consider the
basic equation of a capacitor:

| = C— 18.3
i ” (18.3)

Using a similar model structure as the resistor, we can define a model entity and architecture,
but what about the equation? In VHDL-AMS, the ’dot operator is used on the voltage to
represent the differentiation as follows:

1 i == cxv’'dot;

Therefore, a complete capacitor model in VHDL-AMS could be implemented as follows:

1 library ieee;

2 use ieee.electrical_systems.all;

3 entity capacitor is

4 generic(

5 cap : real := 1.0e-9);

6 port(

7 terminal p : electrical;

8 terminal m : electrical

9)s

10 end entity;

11

12 architecture simple of capacitor is
13 quantity v across i through p to m;
14 begin

15 i == cap % v’'dot;

16 end architecture simple;

What about an inductor? The basic equation for an inductor is given as:

i= 1/L/ vdt (18.4)
which could also be written as:
di
=L— 18.5
YT (18.3)

Obviously, the most direct way to implement this equation would be to use the ’integ operator;
however, care should be taken with the integration operator as some simulators do not handle
the integration function in the same manner (in fact, some simulators do not support it at all
well). Obviously the initial condition must be considered and in addition different
implementations can occur across simulators. One standard approach is to use what is called
implicit integration, whereby, using the differential equation, the integral function can be
inferred. However, the resulting implementation in its simplest form could be as follows:

1 library ieee;

2 use ieee.electrical_systems.all;

3 entity inductor is

4 generic(

5 ind : real := 1.0e-9);

6 port(

7 terminal p : electrical;

8 terminal m : electrical

9)

10 end entity;

11

12 architecture simple of inductor is
13 quantity v across i through p to m;
14 begin

15 i == (1.0/ind) % v’integ;

16 end architecture simple;

18.11 Mixed-Signal Modeling with VHDL-AMS

Most design engineers are familiar with the concepts of digital or analog modeling; however, a
true understanding of true mixed-signal modeling is often lacking. In order to explain the term
mixed-signal modeling it is necessary to review what we mean by analog and digital modeling
first. First, consider digital modeling techniques.

Digital systems can be modeled using digital gates or events. This is a fast way of simulating
digital systems structurally and is based on VHDL or Verilog gate level models. Digital
simulation with digital computers relies on an event-based approach, so rather than solve
differential equations, events are scheduled at certain points in time, with discrete changes in
level. The resolution of multiple events and connections is achieved using logical methods.
The digital models are usually gates, or logic based, and the resulting simulation waveforms
are of fixed, predefined levels (such as 0 or 1). Also, instantaneous changes can take place,
that is, the state can change from O to 1 with zero risetime.

In the analog world, in contrast, the lowest level of detail in practical electrical system
design is the use of analog equation models in an analog simulator; the benchmark of this
approach is historically the SPICE simulator. In many cases the circuit is extracted in the
form of a netlist. The netlist is a list of the components in the design, their connection points
and any parameters (such as length, width, or scaling) that customize the individual devices.

Each device is modeled using nonlinear differential equations that must be solved using a
Newton-Raphson type approach. This approach can be very accurate, but is also fraught with
problems such as:

* Convergence: If the model does not converge, then the simulation will not give any
meaningful result or fail altogether.

* Oscillation: If there are discontinuities, the solution may be impossible to find.

* Time: The simulations can take hours to complete, days for large designs with detailed
device models.

In the analog domain the Newton-Raphson approach is generally used to find a solution that
relies on calculating the derivatives as well as the function value to obtain the next solution.
The basic Newton-Raphson method for nonlinear equations is defined as:

. f)
S (xn)

F(x;) and F’(x,) must be explicitly known and coded into the simulator (for SPICE) and this
gives an approximate solution to the exact problem. For VHDL-AMS simulators the
derivatives must be estimated using a Secant method (or similar).

xI’H—] = Xn (18.6)

F(x)
¢ (x0,F(x0),F'(x0))

I

Load line A

I
I

e (x4, F(x1).F (x1))

Figure 18.4
Newton-Raphson method.

So given these diametrically opposed methods, how can we put them together? What about
mixed signal systems? In these cases, there is a mixture of continuous analog variables and
digital events. The models need to be able to represent the boundaries and transitions between
these different domains effectively and efficiently. The basic mechanism for checking if an
analog variable crosses a threshold is to use the above operator in VHDL-AMS.

For example, to check if a voltage vin is above 1.0V, the following VHDL-AMS could be
used:

1 if (vin’above(1.0)) then
2 flag <= true;
3 end if;

This can be extended to use parameters in the model, say a threshold voltage parameter vth
defined previously as a generic or constant.

1 if (vin’above(vth)) then
2 flag <= true;
3 end if;

Notice that the flag is a signal and is therefore able to be used in the sensitivity list to a process
enabling digital behavior to be triggered when the threshold is crossed. If the opposite
condition is required, that is, below the threshold, then the condition is simply inverted using
the not operator:

1 if (not vin’above(vth)) then
2 flag <= true;
3 end if;

The digital to analog interface is slightly more complex than the analog to digital interface,
inasmuch as the output variable needs to be controlled in the analog domain. When a digital
event changes (this can be easily monitored by a sensitivity list in a process), the analog
variable needs to have the correct value and the correct rate of change. To achieve this we use
the RAMP attribute in VHDL-AMS. Consider a simple example of a digital logic to analog
voltage interface.

e whendin="1" vout =5V
e whendin ="0" vout =0V

This can be implemented using VHDL-AMS as follows:

1 process (din) :

2 begin

3 if (din = "1") then
4 vdin = 5.0;

5 else

6 vdin = 0.0;

7 end if;

8 end process;

9 vout == vdin;

Clearly there will be problems with this simplistic interface as the transition of vout will be
instantaneous, causing potential convergence problems. The technique to solve this problem is
to introduce a ramp on the definition of the value of vout with a transition time to change
continuously from one value to another:

1 vout == dvin’ramp(tt)
where tt (the transition time) is defined as a real number, for example, tt : real := 1.0e—9.
An alternative to the specific transition time definition is to limit the slew rate using the SLEW
operator. The technique to solve this problem is to introduce a slew rate definition on the

definition of the value of vout with a transition time to change continuously from one value to
another:

1 vout == dvin’slew(max_slew_rate)

where max_slew_rate is defined as a real number, for example, max_slew_rate : real := 1.0e6.

18.12 A Basic Switch Model

Consider a simple digitally controlled switch that has the following characteristics:

1. Digital control input (d)

2. Two electrical terminals (p and m)
3. On resistance (Ron)

4. Off resistance (Roff)

5. Turn on time (Ton)

6. Turn off time (Toff)

Using this simple outline a basic switch model can be created in VHDL-AMS. The entity is
given here:
1 use ieee.electrical_system.all;

2 use ieee.std_logic_1164.al11;
3 entity switch is

4 generic (ron : real := 0.1; —— on resistance
5 roff : real := 1.0e6; —— off resistance

6 ton : real := 1.0e—6; —— turn on time

7 toff : real := 1.0e-6); —— turn off time
8 port (

9 d : in std_logic;

10 terminal p,m : electrical);

11 end entity switch;

The basic structure of the architecture requires that the voltage and current across the
terminals of the switch be dependent on the effective resistance of the switch (reff):

1 architecture simple of switch is

2 quantity v across i through p to m;

3 quantity reff : real;

4 signal r_eff : real := roff;

5 begin

6 process (d)

7 begin

8 —— the body of the behavior goes here

9 end;

10

11 i=v / reff;
12 end;

The process waits for changes on the input digital signal (d) and schedules a signal r_eff to
take the value of the effective resistance (ron or roff) depending on the logic value of the input
signal. The VHDL for this functionality is shown here:

1 process (d)

2 begin

3 if (d=""1") then
4 r_eff <= ron;

5 else

6 r_eff <= roff;

7 end if;

8 end;

When the signal r_eff changes, then this must be linked to the analog quantity reff using the
ramp function. Previously we showed how the ramp could define a risetime, but in fact it can
also define a falltime. Implementing this in the switch model architecture, we get the
following VHDL-AMS:

1 reff == r_eff’ramp (ton, toff);
2 i ==v / reff;

The complete VHDL-AMS model for the switch architecture is given as:

1 architecture simple of switch is

2 quantity v across i through p to m;
3 quantity reff : real;

4 signal r_eff : real := roff;

5 begin

6 process (d)

7 begin

8

if (d=1) then

9 r_eff <= ron;

10 else

11 r_eff <= roff;

12 end if;

13 end process;

14

15 reff == r_efframp (ton, toff);
16 i==v / reff;

17 end;

18.13 Basic VHDL-AMS Comparator Model

Consider a simple comparator that has two electrical inputs (p and m), an electrical ground
(gnd) and a digital output (d). The comparator has a digital output of 1 when p is greater than
m and 0 otherwise (Figure 18.5).

The entity defines the terminals (p, m, gnd), digital output (d), input hysteresis (hys), and the
propagation delay (td).

1 use ieee.electrical_system.all;
2 use ieee.std_logic_l1164.all;

3 entity comparator is

4 generic (

5 td : time := 10 ns;

6 hys : real := 1.0e-6;

7)3

8 port (

9 d : out std_logic := '0’;

10 terminal p,m,gnd : electrical
11)3

12 end entity comparator;

The first step in the architecture is to define the input voltage and basic process structure:

—— The comparator digital handler goes here
wait on vin’above(vh), vin’above(vl);
end process;
end architecture simple;

1 architecture simple of comparator is

2 quantity vin across p to m;

3 begin

4 pl : process

5 constant vh : real := abs(hys)/2.0;
6 constant vl : real := —abs(hys)/2.0;
7 begin

8

9

0

1

—_—

gnd

Figure 18.5
Basic VHDL-AMS comparator.

The quantity vin is defined as the voltage across the input pins p and m.
1 quantity vin across p to m;

Notice that no current is defined (i.e., assumed to be zero) so there is no input current to the
comparator. Also notice that there is no input voltage offset defined; this could be added as a
refinement to the model later. The process defines the upper and lower thresholds (vh and vl)
based on the hysteresis:

1 constant vh : real := abs(hys)/2.0;
2 constant vl : real := —abs(hys)/2.0;

The process then defines a wait statement, checking vin for crossing either of those threshold
values:

1 wait on vin’above(vh), vin’above(vl);

The final part of the process is to add the digital output logic state dependent on the threshold
status of vin:

1 if vin’above(vh) then

2 d <= ’1’ after td;

3 elsif not vin’above(vl) then
4 d <= ’0’ after td;

5 end if;

The output state (d) is then scheduled after the delay time defined by td.

The completed architecture is shown as follows:

1 architecture simple of comparator is

2 quantity vin across p to m;

3 begin

4 pl : process

5 constant vh : real := ABS(hys)/2.0;
6 constant vl : real := —ABS(hys)/2.0;
7 begin

8 if vinabove(vh) then

9 d <= ’1’ after td;

10 elsif not vinabove(vl) then

11 d <= ’0" after td;

12 end if;

13 wait on vin’above(vh), vin’above(vl);
14 end process;

15 end architecture simple;

18.14 Multiple Domain Modeling

A final significant application area for VHDL-AMS has been the modeling of
electromechanical systems, particularly micromachines (or MEMS). Exactly the same
principles are used for these devices, with the mechanical domain models defined as required
for the mechanical equations. It is worth noting that the mechanical models are divided into

rotational (angular velocity and torque) and translational (force and distance) types. A typical
simple example of a mixed domain system is a motor, in this case a simple DC motor. Taking
the standard motor equations as shown here, it can be seen that the parameter ke links the rotor
speed to the electrical domain (back emf) and the parameter kt links the current to the torque.

This is implemented using the VHDL-AMS model shown as follows:

1 library ieee;

2 use ieee.electrical_systems.all;

3 use ieee.mechanical_systems.all;

4

5 entity dc_motor is

6 generic (kt : real;

7 j : real;

8 ro: real;

9 ke : real;

10 d : real;

11 1 : real);

12 port (terminal p, m : electrical;
13 terminal rotor : rotational_v);
14 end entity dc_motor;

15

16 architecture behav of dc_motor is

17 quantity w across t through rotor
18 to rotational_v_ref;

19 quantity v across i through p to m;
20 begin

21 v == 1%1’D0T + ixr + kexw;

22 t == ixkt — J*w’DOT — dxw;

23 end architecture behav;

18.15 Introduction to Verilog-AMS

The extensions to Verilog for analog and mixed signal functions are not defined by a single
IEEE standard as is the case with VHDL-AMS, and so there are a number of variants, derived
from Verilog, but somewhat dependent on the proprietary simulator used.

The basic concepts are essentially the same and so these can be considered as being largely
consistent, while detailed syntax may be slightly different depending on which simulator or
language “flavor” is used.

The Verilog extensions for analog and mixed signal systems have broadly the same scope as
those for VHDL with support for conserved equations and differential equations (sequential
and simultaneous). New types of connections are defined for conservative and analog
variables, and finally, the ability to convert from analog to digital (and vice versa) is
implemented with specific operators in Verilog-AMS.

18.16 Verilog-AMS: Analog ports

In Verilog, ports are defined by name, direction and then finally type, so for example, a digital
gate may have an input called d, which is an input and finally it is defined as a bit, or bus type.
Analog signals can be defined in a very similar manner; however, there are some important
distinctions to be observed depending on which type of analog variable is required. If a
conserved variable (for elements such as resistors, capacitors, and other typical circuit
components) is required, then the direction must be defined as inout. Input and output are used
for signal flow type models (such as simple control blocks) where the models are not to be
used in a conserved manner.

The type is then defined using standard libraries which define the through and across variables
(similar to the standard packages in VHDL-AMS). These are defined in a series of disciplines,
with natures (very similar terminology to VHDL-AMS), so for example in the electrical
domain, connection points (called “nodes” in Verilog-AMS) have a specific nature (voltage
across and current through) that define the discipline (electrical).

Using this approach, the connection points to a model can be defined using those natures
directly. For example, take a simple electrical two-port model, with two pins p and m, both of
type electrical, the basic module structure will be as follows:

module model(p, m);

inout p,m;

electrical p,m;

// Main Model Behavior goes here
endmodule;

[N O R

18.17 Mixed Domain Modeling in Verilog-AMS

In Verilog-AMS, there is a “Disciplines” package that defines all the standard technologies
and their basic natures. This is usually implemented in a single Verilog-AMS code
disciplines.vams which must be included in the header of models using Verilog-AMS and
these disciplines.

The implication is that these natures are all intrinsically real types, but the nature definition
will set up the name, units, tolerances, and related natures. For example, the nature for Voltage
could be defined as follows:

// Potential in volts
nature Voltage

units = "V";

access = V;

idt_nature = Flux;

‘ifdef VOLTAGE_ABSTOL
abstol = *VOLTAGE_ABSTOL;
‘else

0NN R W=

9 abstol = le—6;
10 ‘endif
11 endnature

With each nature defined, then a complete discipline can then be implemented with the
through and across variables defined.

discipline electrical
potential Voltage;
flow Current;
enddiscipline

BN O R

Note that in Verilog-AMS, the “across” variable is called “potential” and the “through”
variable is referred to as the “flow.”

18.18 Verilog-AMS Analog Variables

The way that Verilog-AMS manages its behavior in the analog domain is to define each
equation in terms of a “branch.” Real variables can be defined directly to be used as
intermediate variables; however, central to the concept is that of equations that define the
through and across equations between two nodes.

For example, if two nodes are defined as p and m, respectively, and are both of type electrical
(i.e., the same type) then they can be connected via a branch definition of the voltage (across)
and current (through) variables.

For the voltage part of the branch, this is obtained using the following technique:

1 // Voltage across pins p and m
2 Vip,m)

and similarly for the current:

1 // Current through pins p and m
2 I(p,m)

Using these basic definitions, equations can then be constructed in Verilog-AMS.

18.19 Verilog-AMS Analog Equations

Now that we have a set of analog connections (nodes) with a specific analog type (from
disciplines.vams) and also branch definitions for through and across variables, it is now a
simple matter to construct the equations to describe the behavior of the model.

For example, consider the equation for a simple resistor:

V=1ix%xr (18.7)

Now that we have the voltage V(p,m) and current I(p,m), if we assume that the resistance r has
been defined as a parameter of type real already, then the operator <+ can be used to create
the governing equation for the analog behavior:

1 V(p,m) <+ I(p,m)*r
In the Verilog modeling scheme, each section of the model is defined using some form of
block statement (such as the “always” statement in the digital world) and in the analog

equation section, the same approach is used with the “analog” block. Defining an analog block
enables the designer to collect all the analog behavior and separate it from digital expressions.

Using this approach, the core of our simple resistor model would then become something like
the following:

1 analog begin
2 V(p,m) <+ I(p,m)xr
3 end

18.20 A Verilog-AMS Example

18.20.1 DC Voltage Source

As we saw with the VHDL-AMS approach, we can create a simple voltage source that has
two pins p and m, with a dc value (dcv) using a simple Verilog-AMS model. In some ways the
Verilog-AMS model is simpler to implement than its VHDL-AMS equivalent, as there is no
separate entity and architecture, just a single module, and this is shown in the listing:

1 module vdc(p,m)

2 inout p; // Positive Terminal

3 inout m; // Negative Terminal

4

5 electrical p,m; // Define ports as electrical
6

7 parameter real dcv = 0.0; // define the DC voltage with a default value of 0.0
8

9 analog begin

10 V(p,m) <+ dcv;

11 end

12

13 endmodule

18.20.2 Resistor

In the case of the resistor, the basic model is very similar to the voltage source with two
electrical pins p and m with a single parameter, this time for the nominal resistance rnom.
1 module resistor(p,m)

2 inout p; // Positive Terminal
3 inout m; // Negative Terminal

electrical p,m; // Define ports as electrical

parameter real rnom = 1.0; // define the resistance with a default value of 1.0

[o I e R

9 analog begin

10 V(p,m) <+ I(p,m) % rnom;
11 end

12

13 endmodule

18.21 Differential Equations in Verilog-AMS

Verilog-AMS also allows the modeling of linear differential equations using the two
differential operators:

» ddt (Differentiate the variable with respect to time)
e idt (Integrate the variable with respect to time)

We can illustrate this by taking two examples, a capacitor and an inductor. First, consider the
basic equation of a capacitor:

i=C— (18.8)

Using a similar model structure as the resistor, we can define a model entity and architecture,
but what about the equation? In Verilog-AMS, the ddt function is used on the voltage to
represent the differentiation as follows:

1 I(p,m) <+ cxddt(V(p,m))

Therefore, a complete capacitor model in VHDL-AMS could be implemented as follows:

1 module c(p,m)

2 inout p; // Positive Terminal

3 inout m; // Negative Terminal

4

5 electrical p,m; // Define ports as electrical
6

7 // define the capacitance with a default value of 1.0e—6
8 parameter real cap = 1.0e—6;

9

10 analog begin

11 I(p,m) <+ capxddt(V(p,m));

12 end

13

14 endmodule

What about an inductor? The basic equation for an inductor is given as follows:

= 1/L/ vdt (18.9)
which could also be written as:
di
=L— 18.10
v o ()

Obviously, the most direct way to implement this equation would be to use the i d¢ operator;
however, care should be taken with the integration operator as some simulators do not

handle the integration function in the same manner (in fact, some simulators do not support it
at all well). Obviously the initial condition must be considered and in addition different
implementations can occur across simulators. One standard approach is to use what is called
implicit integration, whereby, using the differential equation, the integral function can be
inferred. However, the resulting implementation using the differential equation in its simplest
form could be as follows:

1 module 1(p,m)

2 inout p; // Positive Terminal

3 inout m; // Negative Terminal

4

5 electrical p,m; // Define ports as electrical
6

7 // define the inductance with a default value of 1.0e—6
8 parameter real ind = 1.0e—6;

9

10 analog begin

11 V(p,m) <+ indxddt(I(p,m));

12 end

13

14 endmodule

18.22 Mixed Signal Modeling with Verilog-AMS

As we discussed earlier, the issues of convergence, nonlinearity and also mixed-signal
boundaries are an important issue and are no less important in Verilog-AMS. As we saw with
VHDL-AMS, the first boundary to consider is from analog to digital, and in Verilog-AMS this
can be implemented using the cross function.

Using this approach, the crossing can be tested and then also whether it is rising or falling; in
this example it is looking for the voltage at node x crossing 2, and the 1 denotes a rising
crossing.

1 always begin
2 @(cross(V(x) — 2 ,1))

3 qg=1;
4 end

In this case, the transition is looking for a falling cross and in this case the logic signal q is set
to 0:

1 always begin

2 @(cross(V(x) — 2 ,-1))
3 qg=0;

4 end

In the opposite direction, the transition function is used to look for changes in logic values and
then to use that to set an analog variable, as in this example where the logic input (din) is
checked and, if high, sets the voltage on pin p to 3.3 or 0 V if low.

1 V(p) <+ transition((din == 1) ? 3.3 : 0.0);

Using these two operators, mixed-signal elements such as comparators, ADCs, or DACs can
be implemented.

18.23 Multiple Domain Modeling using Verilog-AMS

A final significant application area for Verilog-AMS has been the modeling of
electromechanical systems, particularly micromachines (or MEMS). Exactly the same
principles are used for these devices, with the mechanical domain models defined as required
for the mechanical equations. It is worth noting that the mechanical models are divided into
rotational (angular velocity and torque) and translational (force and distance) types. A typical
simple example of a mixed-domain system is a motor, in this case a simple DC motor. Taking
the standard motor equations as shown following, it can be seen that the parameter ke links the
rotor speed to the electrical domain (back emf) and the parameter kt links the current to the
torque.

This is implemented using the Verilog-AMS model shown here:

1 module motor(p, m, w);

2 inout p,m,w;

3 electrical p,m; // Electrical Connections

4 rotational_omega w; // Motor Rotational Shaft

5

6 parameter real r = 1.0e-3; // Winding Resistance

7 parameter real 1 = 10.0e-3; // Winding inductance
8 parameter real d = 0.0; // Motor Friction Loss

9 parameter real j = 10.0e—6; // Motor Shaft Inertia
10 parameter real ke = 1.0; // Motor Electrical Constant
11 parameter real kt = 1.0; // Motor Torque Constant
12

13 analog begin

14 // Electrical Equation

15 V(p,m) <+ kexOmega(w) + r«I(p,m) + 1xddt(I(p,m));

16 // mechanical Equation

17 Tau(w) <+ ktxI(p,m) — dxOmega(w) — jxddt(Omega(w));
18 end
19 endmodule

18.24 Summary

It has become crucial for effective design of integrated systems, whether on a macro- or
microscopic scale, to accurately predict the behavior of such systems prior to manufacture.
Whether it is ensuring that sensors or actuators operate correctly, or integrated components
such as magnetics also operate correctly, or analyzing the effect of parasitics and non-ideal
effects such as temperature, losses, and nonlinearities, the requirement for multiple-domain
modeling has never been greater.

Now languages such as VHDL-AMS and Verilog-AMS offer an effective and efficient route
for engineers to describe these systems and effects, with the added benefit of standardization
leading to interoperability and model exchange. The challenge for the EDA industry is to
provide adequate simulation and particularly modeling tools to support engineering design.

The opportunity for FPGA designers is to take advantage of this huge advance in modeling
technology and use it to make sure that digital controllers and designs can operate effectively
and robustly in real-world applications.

Design Optimization Example: DES

19.1 Introduction

Elsewhere in this book the basics of design optimization are discussed, but in general these are
at an RTL level. The use of behavioral modeling has also been described, but in general the
use of high-level behavioral synthesis is still rarely used in practice. In this chapter, the use of
behavioral synthesis is investigated as an alternative to create optimal designs rather than
using an RTL approach.

This chapter describes the experience of designing a Data Encryption Standard (DES) core in
Electronic Code Book (ECB) mode using a high-level behavioral synthesis system. The main
objective was to write a high-level language description that was both readable and
synthesizable. The secondary objective was to explore the area/delay design space of both
single and triple DES. The designs were simulated using both the pre-synthesis (behavioral)
and post-synthesis (RTL) VHDL, verifying that the outputs were not only the same, but were
the expected outputs defined in the test set.

In this chapter, the high-level code has been written in VHDL as the MOODS software only
supports VHDL input; therefore there is not a direct Verilog equivalent.

It should be pointed out that there are now more options for the designer than ever before for
high-level modeling, including C; however, behavioral VHDL or Verilog is still relatively
straightforward to design at the same time as RTL code, as the simulations are easy to manage
(and in fact often the same entity could be used, but with different architectures). System-C
has become useful for high-level modeling, particularly when coding is involved. However,
the ability for hardware designers to handle more architectural issues in addition to the
behavioral model still makes behavioral HDL modeling a useful tool.

19.2 The Data Encryption Standard

The Data Encryption Standard, usually referred to by the acronym DES, is a well-established
encryption algorithm which was first standardized by NIST in the 1980s. It is described in
detail earlier in this book, in Chapter 10, so only the basic information about the algorithm is
presented here.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00019-2

While DES has largely been superseded by the AES (Advanced Encryption Algorithm) it is
now common to find the algorithm being used in triplicate (an algorithm known as Triple-DES
or TDES for short). This algorithm uses the same DES core, but uses three passes with
different keys. DES was designed to be small and fast, and the algorithm is mainly based on
shuffling and substitution. There is very little computation involved, which makes it ideal for
hardware implementation.

19.3 MOODS

MOODS (Multiple Objective Optimization in Control and Datapath Synthesis) is a high-level
behavioral synthesis suite developed at the University of Southampton. It takes as input
high-level behavioral VHDL and transforms this into structural VHDL that is behaviorally
equivalent. MOODS uses optimization and design space exploration to obtain suitable RTL
designs to meet the designer’s constraints and requirements.

An optimizer is used to convert the behavioral VHDL into a form that can be described using a
simple dataflow graph (DFG) which allows the control flow to be optimized. This is effectively
a state machine that can be easily converted into RTL VHDL. The optimization of this with
respect to area can be achieved by sharing data units (such as registers) using multiplexing
and with respect to delay by combining data units to reduce the number of clock cycles required.

19.4 |Initial Design

19.4.1 Introduction

The overall structure of the DES algorithm is shown in Figure 19.1.

The core algorithm is repeated 16 times with a different subkey for each round. These subkeys
are 48 bits long and are generated from the original 56-bit key. The algorithm was converted
directly to VHDL using a functional decomposition style (i.e., functions were created to
represent each equivalent function in DES).

19.4.2 Overall Structure

The first stage in this design was to create an entity and an architecture with the required
inputs and outputs and a single process containing the overall algorithm. This resulted in the
VHDL outline here:

library ieee;
use ieee.std_logic_1164.al1;
entity DES is

port (

plaintext : in std_logic_vector(l to 64);
key : in std_logic_vector(l to 64);
encrypt : in std_logic;
go : in std_logic;
ciphertext : out std_logic_vector(l to 64);
done : out std_logic
)s
end;

architecture behavior of DES is
subtype vech6 is std_logic_vector(l to 56);

subtype vec64 is std_logic_vector(l to 64);

begin
process
begin
wait until go = 1;
done <= 0;

wait for 0 ns;
ciphertext <=
des_core(plaintext, key_reduce(key), encrypt);
done <= 1;
end process;
end;

This process is a direct implementation of the main DES routine. The only
implementation-specific feature is that the model waits for the signal go to be raised before

| P (64 bits) |

64 bits
“ Initial permutation

I
[32bits 32 bits
$| Lo (32) | Ry (32
£
©
3
2 8
3 32bn3‘/
Q.
4
(32 bits
| ue || Rre |
e
Final permutation
64 bits
| C (64 bits) |

Figure 19.1
Overall structure of the DES algorithm.

starting processing and it raises the signal done at the end of processing, implementing a basic
handshaking protocol.

This algorithm requires the two functions key_reduce and des_core. The former strips the
parity bits from the key and the latter then implements the whole DES algorithm. The
key_reduce function reduces the key from 64 to 56 bits and permutes the bits to form the
initial state of the subkey:

function key_reduce(key : in vec64) return vech6 is
——moods inline
begin

return

key(57) & key(49) & key(41) & key(33) &

key(28) & key(20) & key(1l2) & key(4);
end;

The compiler directive —moods inline causes the synthesizer to inline the function. This allows
the optimizer more scope for optimization of the circuit. The des_core function applies the
basic DES algorithm 16 times on a slice of the data using a different subkey on each

iteration:

function des_core
——moods inline
(plaintext : vecb64d;
key : vech6;
encrypt : std_logic)
return vec64

is
variable data : vec64;
variable working_key : vecb6 := key;
begin
data := initial_permutation(plaintext);

for round in 0 to 15 Toop
working_key :=
key_rotate(working_key,round,encrypt);
data := data(33 to 64) &
(f(data(33 to 64),key_compress(working_key))
xor
data(l to 32));
end loop;
return
final_permutation(data(33 to 64) & data(l to 32));
end;

The DES algorithm is made up of the key transformation functions key_rotate and
key_compress, and the data transformation functions initial_permutation, f and
final_permutation.

19.4.3 Data Transformations

The data transformations initial_permutation and final_permutation are simply hard-wired
bit-swapping routines implemented using concatenation.

function initial_permutation(data : vec64) return vec64 is
——moods inline
begin
return
data(58) & data(50) & data(42) & data(34) &

data(31) & data(23) & data(l5) & data(7);
end;

function final_permutation(data : in vec64) return vec64d is
——moods inline
begin
return
data(40) & data(8) & data(48) & data(l6) &

data(49) & data(l7) & data(57) & data(25);
end;

The f function is the main data transform, which is applied 16 times to the rightmost half, a
32-bit slice, of the data path. It takes as its second argument a 48-bit subkey generated by the
key_compress function.

function f(data : vec32; subkey : vec48) return vec3? is
——moods inline

begin
return permute(substitute(expand(data) xor
subkey));

end;

The function first takes the 32-bit slice of the datapath and expands it into 48 bits using the
expand function. The expand function is again just a rearrangement of bits; input bits are
replicated in a special pattern to expand the 32-bit input to the 48-bit output.

function expand(data : vec32) return vecd48 is
——moods inline
begin
return
data(32) & data(l) & data(2) &

data(31) & data(32) & data(l);
end;

This expanded word is then exclusive-ORed with the subkey and fed into a substitute block.
This substitutes a different 4-bit pattern for each 6-bit slice of the input pattern (remember that
the original input has been expanded from 32 bits to 48 bits, so there are eight substitutions in
all). The substitution also has the effect of reducing the output back to 32 bits again. The

substitute algorithm first splits the input 48 bits into eight 6-bit slices. Each slice is then used
to lookup a substitution pattern for that 6-bit input. This structure is known as the S-block. In
the initial implementation, a single ROM is used to store all the substitution patterns. The
substitution combines a block index with the input data to form an address, which is then used
to lookup the substitution value in the S-block ROM. This address calculation is encapsulated
in the smap function.

function smap(index : vec3; data : vec6) return vecd is
——moods inline
type S_block_type is
array(0 to 511) of natural range 0 to 15;
constant S_block : S_block_type :=
——moods ROM

)
begin
return
vec4(to_unsigned(S_block(to_integer(unsigned(
index & data(l) & data(6) & data(2 to 5)))), 4));
end;

The eight substitutions are carried out by the eight calls to smap in the substitute function.

function substitute(data : vec48) return vec32 is
——moods inline
begin
return
smap("000",data(l to 6)) &

smap("111",data(43 to 48));
end;

The final stage of the datapath transform is the permute function, which is another
bit-swapping routine:

function permute (data : in vec32) return vec3? is
——moods inline
begin
return
data(l6) & data(7) & data(20) & data(2l) &

data(22) & data(1l) & data(4) & data(25);
end;

These functions define the whole of the datapath part of the algorithm.

19.4.4 Key Transformations

The encryption key also needs to be transformed a number of times—specifically, before each
data transformation, the key is rotated and then a smaller subkey is extracted by selecting 48
of the 56 bits of the key. The rotation is the most complicated part of the key transformation.
The 56-bit key is split into two halves and each half rotated by 0, 1, or 2 bits depending on
which round of the DES algorithm is being implemented. The direction of the rotation is to
the left during encryption and to the right during decryption. The algorithm is split into two
functions: do_rotate which, as the name suggests, does the rotation, and key_rotate which
calls do_rotate twice, once for each half of the key. The do_rotate function uses a ROM to
store the rotate distances for each round, numbered from O to 15:

function do_rotate
——moods inline
(key : in vec?8;
round : natural range 0 to 15;
encrypt : std_logic)

return vec?28 is
type distance_type is
array (natural range 0 to 15) of integer range 0 to 2;
constant encrypt_shift_distance : distance_type :=
——moods ROM
(1,1, 2,2,2,2,2,2,1,2,2,2,2,2,2,1);
constant decrypt_shift_distance : distance_type :=
——moods ROM
(0,1, 2,2,2,2,2,2,1,2,2,2,2,2,2,1);
variable result : vec?28;

begin
if encrypt = 1 then
result :=
vec28(unsigned(key) rol
encrypt_shift_distance(round));
else
result :=
vec28(unsigned(key) ror
decrypt_shift_distance(round));
end if;
return result;

end;

The key_rotate function simply calls the previous function twice:

function key_rotate
——moods inline
(key : in vech6;
round : natural range 0 to 15;
encrypt : std_logic)
return vechbé is
begin
return do_rotate(key(1l to 28),round,encrypt) &
do_rotate(key(29 to 56),round,encrypt);
end;

Finally, the key compression function key_compress selects 48 of the 56 bits to pass to the
S-block algorithm.
function key_compress(key : in vechb6) return vec48 is
——moods inline
begin
return
key(14) & key(17) & key(1l) & key(24) &

key(50) & key(36) & key(29) & key(32);
end;

19.5 Initial Synthesis

The design was synthesized by MOODS with delay prioritized first and area prioritized
second. The target technology was the Xilinx Virtex library. Figure 19.2 shows the control
state machine of the synthesized design. The whole state sequence represents the process,
which is a loop as shown by the state transition from the last state (c11) back to the

first (c1).

The first two states cl and c2 implement the input handshake on signal go to trigger the
process. The DES core is implemented by the remaining states, namely states ¢3 to c11, which

Figure 19.2
Control state machine for initial synthesis.

are in the main loop as shown by the state transition back from c11 to c3, so are executed

16 times. There are nine states in this inner loop, giving a total algorithm length of 146 cycles,
including the two states required for the input handshake and 144 for the DES core itself.
However, an inspection of the original structure shown in Figure 19.1 suggests that a
reasonable target for the inner loop is 2 cycles per round with an optimistic target of 1 cycle.
Clearly there is a problem with this design. The synthesis software predicts that this

design has the area and delay characteristics shown in Table 19.1 in the line

labeled (1).

19.6 Optimizing the Datapath

Examining the nine control states in the main loop and relating these to the mapping of the
control graph to the dataflow graph showed that the last 8 cycles were performing the S-block
and the first 2 cycles were mainly related to transforming the key. The second state is an
overlap state where both key and data transforms are taking place. The problem with the last 8
cycles was fairly self-evident since there are eight substitutions and there are eight control
states to perform them. Clearly there was something causing each substitution to be locked
into a separate control state and therefore preventing optimization with respect to latency. It
wasn’t difficult to see what each of these states contained: just register assignments,
concatenations and a ROM read operation. It is the last of these that is the problem; the ROM
implementation being targeted is a synchronous circuit, so the S-block ROM can only be
accessed once per clock cycle—in other words once per control state. It is this that is
preventing the datapath operations from being performed in parallel. Attacking this problem is
beyond the capabilities of behavioral synthesis because it requires knowledge of the dataflow
at a much higher level than can be automatically extracted. The solution therefore requires
modification of the original design.

There are two obvious solutions to this problem: either split the S-block into eight smaller
ROMs that can therefore be accessed in parallel or make the S-block a non-ROM so that the
array gets expanded into a decoder block once for each access, giving eight decoders. The
latter solution appears simplest, but it will result in eight 512-way decoders, which will be a
very large implementation. The solution of splitting the ROMs is more likely to yield a useful
solution. The substitute function was rewritten to have eight mini-ROMs:

function substitute(data : vec48) return vec3? is
——moods inline
type S_block_type is
array(0 to 63) of natural range 0 to 15;
constant S_blockO : S_block_type := (...);
——moods ROM

constant S_block7 : S_block_type := (...);

——moods ROM
begin

return std_logic_vector(to_unsigned(S_blockO(to_integer(
unsigned(data(l) & data(6) & data(2 to 5)))),4)) &

é£a_1091c_vector(to_unsigned(S_b]ock7(to_1nteger(

unsigned(data(43) & data(48) & data(44 to 47)))),4));

end;
This was resynthesized and resulted in the control graph shown in Figure 19.3. The inner loop
was found to have been reduced to two states, and examination of the last state confirmed that
all of the S-block substitutions were being carried out in the one state c4. The key
transformations were still split across the two inner states c3 and c4.

One interesting side-effect of this optimization is that it is also a smaller design. MOODS
predicts that this design has the area and delay characteristics shown in Table 19.1 in the line
labeled (2).

Figure 19.3
Control state machine for optimized S-blocks.

19.6.1 Optimizing the Key Transformations

Examination of the two control states in the main loop, which both contain key
transformations, showed that both of these states were performing ROM access and rotate
operations. Examination of the original key_rotate function showed that the shift distance
ROMs are accessed twice per call, so this turned out to be exactly the same problem as with
the S-block ROM. Since ROMs are synchronous, they can only be accessed once per cycle
and this forces at least two cycles to be used for the rotate. To solve this, the function can be
rewritten to only access the ROMs once per call:

if encrypt = 1 then

distance := encrypt_shift_distance(round);
result :=

vec28(unsigned(key(l to 28)) rol distance) &
vec28(unsigned(key(29 to 56)) rol distance);
else
distance := decrypt_shift_distance(round);
result :=
vec28(unsigned(key(l to 28)) ror distance) &
vec28(unsigned(key(29 to 56)) ror distance);
end if;

This was resynthesized and resulted in the control graph shown in Figure 19.4. The inner loop
was found to have been reduced to one state (c3) containing both the key and data

transformations, which are repeated 16 times. As before, states cl and c2 implement the input
handshake.

So, this optimization means that the target of 1 clock cycle per round of the core was achieved.
MOOQODS predicts that this design has the area and delay characteristics shown in Table 19.1 in
the line labeled (3).

(L)
eC>

Figure 19.4
Control state machine for optimized key rotate.

19.7 Final Optimization

It was recognized that the key_rotate function could be simplified by rethinking the rotate
algorithm such that a right rotate of 1 bit was replaced by a left rotate of 27 bits (for a 28-bit
word). This eliminates a conditional statement, which it was felt could be preventing some
optimizations from taking place. This means that there was no need to have a different
algorithm for encryption and decryption. This led to the following rework:

function key_rotate
——moods inline
(key : vecbhb;
round : natural range 0 to 15;
encrypt : std_logic)
return vecbhb6 is
type distance_type is
array (natural range 0 to 31) of integer range
0 to 31;
constant shift_distance : distance_type :=
——moods ROM

(0,1,2,2,2,2,°2,:72,
1, 2,2,2,2,2,2,1,
27, 27, 26, 26, 26, 26, 26, 26,
27, 26, 26, 26, 26, 26, 26, 27);
variable distance : natural range 0 to 31;
begin
distance := shift_distance(to_integer(unsigned(
encrypt & to_unsigned(round,4))));
return vec28(unsigned(key(l to 28)) ror distance) &
vec28(unsigned(key(29 to 56)) ror distance);
end;

The state machine for this design was basically the same as for the previous design as shown
in Figure 19.4. It was found that this version was slightly slower than the previous design but
significantly smaller. MOODS predicts that this design has the area and delay characteristics
shown in Table 19.1 in the line labeled (4).

19.8 Results

The results predicted by MOODS for all the variations of the design discussed so far are
summarized in the following table:

Table 19.1 Physical metrics for single DES designs

Design Area (Slices) Latency (Cycles) Clock (ns) Throughput (MB/s)
(1) Initial design 552 146 7.8 7.12
(2) Optimized S blocks 426 34 7.1 35.2
(3) Optimized key 489 18 7.1 62.6
(4) Optimized branch 307 18 8.4 52.9

It can be seen that design (3) is the fastest, but design (4) is the smallest. Figure 19.5 plots area
vs. throughput for these four designs. The X-axis represents the area of the design and the
Y-axis the throughput.

19.9 Triple DES

19.9.1 Introduction

Building on this, the DES core developed previously was used as the core for a Triple-DES
implementation. The idea of triple DES is that data is encrypted three times. The rationale for
choosing three iterations and the advantages and disadvantages of this are explained in [5]. A
common form of Triple DES is known as EDE2, which means data is encrypted, decrypted
and then encrypted again using two different keys. The first key is used for both encryptions
and the second key for the decryption. There are obviously a number of different trade-offs

60 - X (3)

50

40

30 A

Throughput (MB/s)
X
S

20

10
X (1)

T T T T T T
100 200 300 400 500 600
Area (Slices)

Figure 19.5
Area vs. throughput for all DES designs.

that can be made in this design. Each of these is examined in the following sections. In all
cases, the smallest implementation (design (4)) was used as the DES core.

19.9.2 Minimum Area lterative

To achieve a minimum area implementation, a single DES core is used for all three stages.
The data is passed through this core three times with the different permutations of keys and
encryption mode to achieve the EDE2 algorithm. Two different styles of VHDL were tried.
These differed in the method used to select the different inputs for each encryption step. The
first style used a case statement and the second style used indexed arrays. The case statement
style results in the following VHDL design:

library ieee;

use ieee.std_logic_1164.al11;

entity tdes_ede?_iterative is

port(

plaintext : in std_logic_vector(l to 64);
keyl : in std_logic_vector(l to 64);
key?2 : in std_logic_vector(l to 64);
encrypt : in std_logic;
go : in std_logic;
ciphertext : out std_logic_vector(l to 64);
done : out std_Tlogic);

end;

architecture behavior of tdes_ede?_iterative is

begin
process
variable data : vec64;
variable key : vech6;
variable mode : std_logic;

begin
wait until go = 1;
done <= 0;

wait for 0 ns;
data := plaintext;
for i in 0 to 2 loop

case 1 is
when 1 =>
key := key_reduce(key?2);
mode := not encrypt;

when others =>
key := key_reduce(keyl);

mode := encrypt;
end case;
data := des_core(data,key,mode);
end loop;
ciphertext <= data;
done <= 1;
end process;

end;

It can be seen that this uses a case statement to select the appropriate key and encryption mode
for each iteration. The characteristics of the case statement solution are shown in Table 19.2 in
the line labeled (5). The core DES algorithm accounts for 48 cycles (3 iterations of 16 rounds
with 1 cycle per round), leaving an additional overhead of 3 cycles. This additional 3 cycles is
due to the case statement selection of the key, which adds an extra cycle per iteration of the
core. The second style uses arrays to store the keys and modes and then indexes these arrays to
set the key and mode for each iteration. The process becomes:

process

type keys_type is array (0 to 2) of vech6;
variable keys : keys_type;
type modes_type is array (0 to 2) of std_logic;
variable modes : modes_type;

begin

modes := (encrypt, not encrypt, encrypt);
keys := (key_reduce(keyl),
key_reduce(key2),
key_reduce(keyl));
for i in 0 to 2 loop

data := des_core(data,keys(i),modes(i));
end loop;

It was found that the latency was the same as the case statement solution but the area was
approximately 25% larger. This overhead is mostly due to the use of the register arrays, which
add up to about 200 extra flip-flops. Clearly the case statement design is the most efficient of
the two and so this solution was kept and the array style solution discarded.

19.9.3 Minimum Latency Pipelined

To achieve minimum latency between samples, three DES cores are used to form a pipeline.
Data samples can then be fed into the pipeline every 18 cycles (the latency of the single core),
although the time taken for a result to be generated is 50 cycles because of the pipeline length.
The circuit is simply three copies of the single-DES process:

architecture behavior of tdes_ede?_pipe is

signal intermediatel, intermediate? : vec64;
begin

process

begin
wait until go = 1;
intermediatel <=
des_core(plaintext,key_reduce(keyl),encrypt);

end process;

process

begin
wait until go = 1;
intermediate? <=
des_core(intermediatel,key_reduce(key2),not
encrypt);

end process;

process

begin
wait until go = 1;
done <= 0;
wait for 0 ns;
ciphertext <=
des_core(intermediate?,key_reduce(keyl),
encrypt);
done <= 1;

end process;

end;

Note how the done output is driven only by one of the cores; aL.” this will give the right result
provided all three cores synthesize to the same delay, which in practice they will. This design
decision alleviates the need to have handshaking between the cores. MOODS predicts that this
design has the area and delay characteristics shown in Table 19.2 in the line labeled (6). The
state machine in Figure 19.6 shows the three independent processes. For example, the first

cl

o |l | |

O Q

Figure 19.6
Control state machine for pipelined triple-DES.

process is represented by states c2, c3, and c4. The first two states perform the handshaking on
go and c4 implements the DES core with its 16 iterations. State c7 is the second DES core and
c10 the third.

19.10 Comparing the Approaches

The physical metrics of the previous section are the predicted values given by MOODS. To get
a more accurate assessment of the design, RTL synthesis of the structural VHDL output of
MOODS is required. This was carried out using Mentor Graphics Leonardo Spectrum RTL
synthesis suite. These results can be finessed further by carrying out placement and routing
using the Xilinx Integrated Software Environment (ISE) Foundation suite. The results
predicted by all three tools (MOODS, Leonardo and Foundation) for the three approaches
(DES, Iterative TDES and Pipelined TDES) are shown in Table 19.2. In all cases, the design
was optimized during RTL synthesis using the vendors’ default optimization settings—a
combination of area and delay optimization—with maximum optimization effort. Placement

Table 19.2 Predicted Results for MOODS, Leonard and Foundation Tools.

Design Tool Area (slices) Latency (cycles) Clock (ns) Throughput (MB/s)

(4) MOODS 307 18 8.4 52.9

DES Leonardo 258 13.4 33.2
Foundation 274 18.4 24.2

(5) MOODS 500 53 8.4 18.0

Iterative Leonardo 381 13.7 11.0

TDES Foundation 422 17.8 8.5

(6) MOODS 920 18 8.4 52.9

Pipelined | Leonardo 774 13.7 324

TDES Foundation 826 18.4 24.2

and routing was performed with an unreachable clock period to force Foundation to produce
the fastest design.

This shows that MOODS tends to overestimate the area of the design and underestimate the
delay. Both of these are expected outcomes. The tendency to overestimate area is because it
isn’t possible to predict the effect of logic minimization when working at the behavioral level.
The tendency to underestimate delay is because it isn’t possible to predict routing delays.

19.11 Summary

This chapter has shown that it is possible to design complex algorithms such as DES using the
abstraction of high-level VHDL and get a synthesizable design. However, the synthesis
process is not and cannot ever be fully automated—human guidance is still necessary to
optimize the design’s structure to get the best from the synthesis tools. Nevertheless, the
modifications are high-level design decisions and the final design is still readable and abstract.
There has been no need to descend to low-level VHDL to implement DES. The
implementations of Triple-DES show how VHDL code can easily be reused when written at
this level of abstraction. It is quite an achievement to implement the DES and two
implementations of the Triple-DES algorithm in four working days, including testing, and this
demonstrates the kind of productivity that results from the application of behavioral synthesis
tools.

For more details of the analysis of these techniques, the reader is referred to the technical
papers [1-3].

References

[1] A.D. Brown, D. Milton, A. Rushton, P.R. Wilson, Behavioural synthesis utilising recursive definitions, IET
Comput. Digit. Tech. 6 (6) (2012) 362-369.

[2] M. Sacker, A.D. Brown, A.J. Rushton, PR. Wilson, A behavioral synthesis system for asynchronous circuits,
IEEE Trans. Very Large Scale Integr. Syst. 12 (9) (2004) 978-994.

[3] PR. Wilson, A.D. Brown, DES in 4 days using behavioural modeling and simulation, in: IEEE International
Behavioral Modeling and Simulation Conference, BMAS 2005, San Jose, USA, 2005.

Fundamental Techniques

This final part of the book provides an insight into the basic building blocks used in everyday
digital designs implemented on FPGAs. These include such low-level functions as latches,
registers, counters, logic functions, serialization and de-serialization, finite state machines,
decoders, multiplexers and digital arithmetic.

Latches, Flip-Flops, and Registers

20.1 Introduction

There are different types of storage elements that will occur from different HDL code, and it is
important to understand each of them, so that the correct one results when a design is
synthesized. Often bugs in hardware happen due to misunderstandings about what effect a
particular HDL construct (in VHDL or Verilog) will have on the resulting synthesized
hardware. In this chapter, we will introduce the three main types of storage elements that can
be synthesized from VHDL or Verilog to an FPGA platform: which are latches, flip-flops, and
registers.

20.2 Latches

A latch can be simply defined as a level-sensitive memory device. In other words, the output
depends purely on the value of the inputs. There are several different types of latch, the most
common being the D latch and the SR latch. First consider a simple D latch as shown in
Figure 20.1. In this type of latch, the output (Q) follows the input (D), but only when the
Enable (En) is high. The full definition is in fact a level-sensitive D latch, and the assumption
made in this book is that whenever we refer to a latch, it is always level sensitive. It is worth
noting that latches are not particularly useful in FPGA design as they are obviously
asynchronous and therefore can cause timing issues. In practice it is much better to use
synchronous D-types, as will be introduced later in this chapter; however, it is worth looking
at basic latches to see the differences.

The notation on the Enable signal (C1) and the Data input (1D) denotes that they are linked
together. Also notice that the output Q is purely dependent on the level of D and the Enable. In
other words, when the Enable is high, then Q=D. So, as previously stated, this is a
level-sensitive latch.

The VHDL that represents this kind of level-sensitive D latch is shown here:

library ieee;
use ieee.std_logic_1164.al11;
entity Tlatch is
port (
d : in std_logic;

http://dx.doi.org/10.1016/B978-0-08-097129-2.00020-9

D——1D —Q

Enable c1

Figure 20.1
Basic D latch symbol.

en : in std_logic;
g : out std_logic
)

end entity Tatch;

architecture beh of Tatch is
begin
process (d, en) is
begin

if (en = "1") then

q <= d;

end if;
end process;
end architecture beh;

We can implement a very similar model using Verilog with the code given following this
paragraph. In this case the Verilog uses the always statement to check for any changes on the
enable or the d inputs and if enable (en) is high, then the output will also change.
module dlatch (
d, // Data Input
en, // Enable Input

q // Latch Output
)

input d;
input en;

output q;
reg q;

always @ (en or d)
if (en) begin

q <= d;
end
endmodule

This is an example of an incomplete if statement, where the condition if (en = 1) is given, but
the else condition is not defined. Both d and en are in the sensitivity list and so this could be
combinatorial, but due to the incomplete definition of en, then an implied latch occurs, that is,
storage. This aspect of storage is important when we are developing models, particularly
behavioral as in this case (i.e., the structure is not explicitly defined), as we may end up with

s(0)
B g L

Figure 20.2
Synthesized latch.

latches in our design even though we think that we have created a model for a purely
combinatorial circuit.

Other instances when this may occur are the incomplete definition of case statements. For
example, consider this simple VHDL example:

case s is
when "00" => y <= a;
when "10" => y <= b;
when others => null;
end case;

In this statement, it is incomplete and so instead of a simple combinatorial circuit, a latch is
therefore implied. The resulting synthesized circuit is shown in Figure 20.2.

Similar outcomes would happen if a Verilog case statement was incomplete:

case s is
2°b00 : y=
2°b10" vy

end case;

a;
=h;

In both cases it is important to ensure that all the states are defined to avoid this happening,
and in Verilog this is done by using the default option in the case statement. Therefore, in our
simple example, to ensure that all the possible values of s are covered, the default line will
specify an output in those cases as shown here:
case s is
2’b00 : y=a
2’bl0" : y=
default : vy
end case;

b;
=0;

20.3 Flip-Flops

In contrast to the level-triggered latch, the flip-flop changes state when an edge occurs on an
enable or a clock signal. This is the cornerstone of synchronous design, with an important
building block being the D-type flip-flop, as shown in Figure 20.3. The output (Q) will take on

Clock C1

Figure 20.3
D type flip-flop.

the value of the input (D) on the rising edge of the clock signal. The triangle on the symbol
denotes a clock signal and, in the absence of a circle (notation for active low), the definition is
for a rising edge to activate the flip-flop.

The equivalent VHDL code is of the form shown as follows:

library ieee;
use ieee.std_logic_1164.all;
entity dff is
port (
d : in std_logic;
clk : in std_logic;
g : out std_logic
)
end entity dff;

architecture simple of dff is
begin
process (clk) is
begin

if rising_edge(clk) then

q <= d;

end if;
end process;
end architecture simple;

Notice that, in this case, d does not appear in the sensitivity list, as it is not required. The
flip-flop will only do something when a rising edge occurs on the clock signal (clk). There are
a number of different methods of describing this functionality, all of them equivalent. In this
case, we have explicitly defined the clk signal in the sensitivity list.

An alternative method in VHDL would be to have no sensitivity list, but to add a wait on
statement inside the process. The equivalent architecture would be as follows:

architecture wait_clk of dff is
begin
process is
begin

if rising_edge(clk) then

q <= d;

end if;

wait on clk;
end process;
end architecture simple;

This could also be defined using a slightly different implementation of the wait statement, to
wait for an event on clk and then check if it was high:

architecture wait_clk of dff is

begin

process 1is

begin
wait until clk’event and clk = "1’
q <= d;

end process;

end architecture simple;

We have also perhaps used a more complex definition of the rising_edge function than is
required (or may be available in all simulators or synthesis tools). The alternative simple
method is to use the clock in the sensitivity list and then check that the value of clock is 1 for
rising edge or O for falling edge. The equivalent VHDL for a rising edge D-type flip-flop is
given. Notice that we have used the implicit sensitivity list (using a wait on clk statement) as
opposed to the explicit sensitivity list, although we could use either interchangeably.

architecture rising_edge_clk of dff is
begin
process 1is
begin

if (clk = 1) then

q <= d;

end if;

wait on clk;
end process;
end architecture simple;

We can also implement this type of flip-flop using Verilog as shown here:

module dff (
d, // Data Input
clk, // Clock Input
q // Latch Output
)

input d;
input clk;
output q;
reg q;
always @ (posedge clk)
begin
q <= d;
end
endmodule

We can extend this basic model for a D-type to include an asynchronous set and reset
function. If they are asynchronous, this means that they could happen whether there is a clock

Reset —QR
D ——1D —Q

Clock

C1
Set —(JS

Figure 20.4
D-type flip-flop with asynchronous set and reset.

edge or not; therefore they need to be added to the sensitivity list of the model. The symbol for
such a flip-flop, assuming active low set and reset, would be as shown in Figure 20.4.

The VHDL is extended from the simple dff model previously given to include the
asynchronous set and reset as shown in the following:

library ieee;
use ieee.std_logic_1164.al1;
entity dff_sr is
port (
d : in std_logic;
clk : in std_logic;
nrst : std_logic;
nset : in std_logic;
g : out std_logic
)s
end entity dff_sr;

architecture simple of dff_sr is

begin
process (clk, nrst, nset) is
begin
if (nrst = ’0’) then
q <="0";
elsif (nset = 1) then
q<="1";
elsif rising_edge(clk) then
q <= d;
end if;

end process;
end architecture beh;

As for the basic D type flip-flops, we could use a variation of the check for the clock edge,
although due to the fact that we have three possible input state control variables (set, reset, and
clk), it is not enough now to check whether the clock is high (for a rising edge flip-flop). It is
necessary to check that the clock is high and that an event has occurred.

Notice that this model may cause interesting behavior when synthesized, as the reset will
always be checked before the set and so there is a specific functionality that allows the
concurrent setting of the set and reset variables, but the reset will take precedence.

We can also implement this behavior in a very similar fashion in Verilog as shown in the
following listing:

module dff_asr (

d // Data Input
s, // Set Input
r, // Reset Input
q // Latch Output

)s

input d;

input s;

input r;

output q;

reg q;

always @ (s or r or clk)
if (~r) begin

g <= 1b’0;

end elseif (s) begin
qg <= 1b"1;

else begin
q <= d;

end

endmodule

Finally, when considering the use of transitions between 0 and 1, there are issues with
synthesis and simulation when using the different approaches. For example, with the standard
logic package (std_logic variables), the transitions are strictly defined and so we may have the
case of high impedance or “don’t care” states occurring during a transition. This is where the
rising_edge function and its opposite, the falling_edge function, are useful as they simplify all
these options into a single function that handles all the possible transition states cleanly.

It is generally best, therefore, to use the rising_edge or falling_edge functions in VHDL (and
posed and negedge in Verilog) wherever possible to ensure consistent and interoperable
functionality of models.

It is also worth considering a synchronous set or reset function, so that the clock will be the
only edge that is considered. The only caveat with this type of approach is that the set and
reset signals should be checked immediately following the clock edge to make sure that
concurrent edges on the set or reset signals have not occurred.

20.4 Registers

Registers use a bank of flip-flops to load and store data in a bus. The difference between a
basic flip-flop and a register is that, while there is a data input, clock and usually a reset (or

clear), there is also a load signal that defines whether the data on the input is to be loaded onto
the register or not. The VHDL code for an example 8-bit register would be as follows:

lTibrary ieee;
use ieee.std_logic_1164.all;
entity register is
generic (
n : natural := 8
)
port (
d : in std_logic_vector(n—-1 downto 1);
clk : in std_logic;
nrst : in std_logic;
load : in std_logic;
g : out std_logic_vector(n—1 downto 1)
)
end entity register;

architecture beh of register is
begin
process (clk, nrst) is
begin
if (nrst = "0’) then
q <= (others => ’0");
elsif (rising_edge(Clock) and (load = 1)) then
q <= d;
end if;
end process;
end architecture beh;

This can also use a more indented form of if-then-else structure to separate the check on the
clk and the load values as shown here:

library ieee;
use ieee.std_logic_1164.al1;
entity register is
generic (
n : natural := 8
)
port (
d : in std_logic_vector(n—1 downto 1);
clk : in std_logic;
nrst : in std_logic;
load : in std_logic;
g : out std_logic_vector(n—1 downto 1)
)
end entity register;

architecture beh of register is
begin
process (clk, nrst) is
begin
if (nrst = "0°) then
q <= (others => "0");
elsif (rising_edge(Clock) then

if (load = ’17)) then
q <= d;
end if;
end if;
end process;
end architecture beh;

Notice that although there are four inputs (clk, nrst, load, and d), only clk and nrst are included
in the process sensitivity list. If load and d change, then the process will ignore these changes
until the clk rising edge or nrst goes low. If the load is not used, then the register will load the
data on every clock rising edge unless the reset is low. This can be useful in applications such
as pipelining, where efficiency is paramount. The VHDL for this slightly simpler register is
given here:
lTibrary ieee;
use ieee.std_logic_1164.al11;
entity reg_rst is
port (
d,
clk,
nrst : in std_Tlogic;
g : out std_logic
)
end entity reg_rst;

architecture beh of reg_rst is

begin
process (clk, nrst) is
begin
if (nrst = ’0’) then
q<="0";
elsif rising_edge(clk) then
q <= d;
end if;

end process;
end architecture beh;

In a similar manner we can write a register model with an input d, load, and nrst control
signals, with a clock input and the output q. In this case we use the posedge (positive edge) of
the clock and the nest variable as the sensitivity list to the always block.

module register (
d,
clk,
nrst,
load,

q
)

parameter n =8;
input [n—1:0] d;

input clk;
input nrst;

input load;

output g;
reg [n—1:01 q;

always @ (posedge clk or nrst)

if(nrst == 1b’0) then begin
q <= 0;
end
else
if (load == 1b’1) then begin
q <= d;
end
end

endmodule

20.5 Summary

In this chapter, the basic type of latch and register have been introduced and examples given.
This is a fundamental building block of synchronous digital systems and is the basis of RTL
(Register Transfer Logic) design with VHDL or Verilog.

ALU Functions

21.1 Introduction

A central part of microprocessors is the ALU (Arithmetic Logic Unit). This block in a
processor takes a number of inputs from registers and as its name suggests carries out either
logic functions (such as NOT, AND, OR, and XOR) on the inputs, or arithmetic functions
(addition or subtraction at a minimum), although it must be noted that these will be integer (or
fixed point, potentially) and not floating point. This chapter of the book will describe how
these types of low-level logic and arithmetic functions can be implemented in VHDL and
Verilog. In this chapter, in some cases we have used bit and in other std_logic, both of which
are valid. In practice, most designers will use the more complete definition in std_logic (and
the vector extension std_logic_vector); however, both may be used. In the case of std_logic,
the IEEE library must be included.

21.2 Logic Functions in VHDL

If we consider a simple inverter in VHDL, we can develop a single inverter which takes a
single input bit, inverts it and applies this to the output bit. This simple VHDL is shown as
follows:

lTibrary ieee;
use ieee.std_logic_1164.al11;
entity inverter is
port (
a : in std_Tlogic;
q : out std_logic
)
end entity inverter;
architecture simple of inverter is
begin
q <= not a;
end architecture simple;

Clearly the inputs and output are defined as single std_logic pins, with direction in and out,

respectively. The logic equation is also intuitive and straightforward to implement. We can
extend this to be applicable to n bit logic busses by changing the entity (the architecture

http://dx.doi.org/10.1016/B978-0-08-097129-2.00021-0

remains the same) and simply assigning the input and outputs the type std_logic_vector
instead of std_logic, as follows:

lTibrary ieee;
use ieee.std_logic_1164.all;
entity bus_inverter is
port (
a : in std_logic_vector(1l5 downto 0);
g : out std_logic_vector(1l5 downto 0)
)s
end entity bus_inverter;
architecture simple of bus_inverter is
begin
g <= not a;
end architecture simple;

As can be seen from the VHDL, we have defined a specific 16-bit bus in this example, and
while this is generally fine for processor design with a fixed architecture, sometimes it is
useful to have a more general case, with a configurable bus width. In this case we can modify
the entity again to make the bus width a parameter of the model, which highlights the power
of using generic parameters in VHDL.

library ieee;
use jeee.std_logic_1164.all;
entity n_inverter is
generic (
n : natural := 16
)
port (
a : in std_logic_vector((n—=1) downto 0);
g : out std_logic_vector((n—=1) downto Q)
)
end entity n_inverter;
architecture simple of n_inverter is
begin
q <= not a;
end architecture simple;

We can of course create separate models of this form to implement multiple logic functions,
but we can also create a compact multiple function logic block by using a set of configuration
pins to define which function is required. If we define a general logic block that has 2 n-bit

inputs (A and B), a control bus (S) and an n-bit output (Q), then by setting the 2-bit control
word (S) we can select an appropriate logic function according to the following table:

S Function

00 O <= NOTA
01 QO <= AANDB
10 QO <= AORB
11 | QO <= AXORB

Clearly we could define more functions, and this would require more bits for the select
function (S) which could also be defined using a generic, but this limited set of functions
demonstrates the principle involved. We can define a modified entity as shown:

library ieee;

use ieee.std_logic_1164.al1;
entity alu_logic is

generic (
n : natural := 16

)

port (
a : in std_logic_vector((n-1) downto 0);
b : in std_logic_vector((n-1) downto 0);
s : in std_Togic_vector(l downto 0);
g : out std_logic_vector((n—=1) downto 0)

)
end entity alu_logic;

Now, depending on the value of the input word (S), the appropriate logic function can be
selected. We can use the case statement introduced in Chapter 3, A VHDL Primer to define
each state of S and which function will be carried out in a very compact form of VHDL:

architecture basic of alu_logic is

begin
case s is
when “00” => q <= not a;
when “01” => g <= a and b;
when “10” => q <= a or b
when “11” => g <= a xor b;
end case;

end architecture basic;

Clearly this is an efficient and compact method of defining the combinatorial logic for each
state of the control word (S), but great care must be taken to assign values for every
combination to avoid inadvertent latches being introduced into the logic when synthesized. To
avoid this, a synchronous equivalent could also be implemented that only applied the logic
function on the clock edge specified.

In this example, all of the possible combinations are specified; however, in order to avoid
possible inadvertent latches being introduced, it would be good practice to use a “when
others” statement to cover all the unused cases.

21.2.1 1-bit Adder

The arithmetic heart of an ALU is the addition function (Adder). This starts from a simple
1-bit adder and is then extended to multiple bits, to whatever size addition function is required
in the ALU. The basic design of a 1-bit adder is to take two logic inputs (a and b) and produce
a sum and carry output according to the following truth table:

al >—1
sum
carry
b

Figure 21.1
1-bit adder.

sum carry

- O = OO

- = O OM

_ a a0
- O O

This can be implemented using simple logic with a 2 input AND gate for the carry, and a 2
input XOR gate for the sum function, as shown in Figure 21.1.

This function has a carry out (carry), but no carry in, so to extend this to multiple bit addition,
we need to implement a carry in function (cin) and a carry out (cout) as follows:

a | b | cin| sum | Cout
0|0 0 0 0
0|1 0 1 0
1 0 0 1 0
1 1 0 0 1
0|0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

With an equivalent logic function as shown in Figure 21.2:

This can be implemented using standard VHDL logic functions with bit inputs and outputs as
follows. First, define the entity with the input and output ports defined using bit types:
entity full_adder is
port (sum, co : out bit;
a, b, ci : in bit);
end entity full_adder;
Then the architecture can use the standard built-in logic functions in a dataflow type of model,
where logic equations are used to define the behavior, without any delays implemented in the

model.

Y m———
= sum

o
D>
S

ci

Figure 21.2
1-bit adder with carry-in and carry-out.

architecture dataflow of full_adder is
begin
sum <= a xor b xor ci;
co <= (a and b) or
(a and ci) or
(b and ci);
end architecture dataflow;

This model is now a simple building block that we can use to create multiple bit adders
structurally by linking a number of these models together.

21.3 Structural n-Bit Addition

Using the simple 1-bit full adder defined previously, it is a simple matter to create a multiple
bit full adder using this model as a building block. As an example, to create a 4-bit adder, with
a single bit carry in and single bit carry out, we can define a VHDL model as shown here:

entity four_bit_adder is
port (sum: out bit_vector (3 downto 0); co : out bit;
a, b : in bit_vector (3 downto 0); ci : in bit);
end entity four_bit_adder;

architecture simple of four_bit_adder is
signal carry : bit_vector (3 downto 1);

begin
fal0 : entity work.full_adder

port map (sum(0),carry(1),a(0),b(0),ci);
fal : entity work.full_adder

port map (sum(l),carry(2),a(1l),b(1l),carry(1));
fa2 : entity work.full_adder

port map (sum(2),carry(3),a(2),b(2),carry(2));
fa3 : entity work.full_adder

port map (sum(3),co,a(3),b(3),carry(3));

end architecture simple;

This can obviously be extended to multiple bits by repeating the component use in the
architecture for as many bits as are required.

21.4 Logic Functions in Verilog

If we consider a simple inverter in Verilog, this takes a single input bit, inverts it and applies
this to the output bit. This simple Verilog code is shown here:

module inverter (

q,
a
)3

input a;
output g;

assign q = ~ a;
endmodule

Clearly the inputs and output are defined as single std_logic pins, with direction in and out
respectively. The logic equation is also intuitive and straightforward to implement. We can
extend this to be applicable to n bit logic busses by changing the inputs and outputs (the
architecture remains the same) into bus types as follows:

module bus_inverter (

q,
a
)

input [15:0] a;
output [15:01 q;

assign q = ~ a;
endmodule

As can be seen from the Verilog, we have defined a specific 16-bit bus in this example, and
while this is generally fine for processor design with a fixed architecture, sometimes it is
useful to have a more general case, with a configurable bus width. In this case we can modify
the Verilog again to make the bus width a parameter of the model:

module n_inverter (
q,
a
)

param n = 16;
input [n—=1:0] a;
output [n-1:01 q;

assign g = ~ a;
endmodule

We can of course create separate models of this form to implement multiple logic functions,
but we can also create a compact multiple function logic block by using a set of configuration
pins to define which function is required, as we did in the case for the VHDL. Clearly we
could define more functions, and this would require more bits for the select function (S), but
this limited set of functions demonstrates the principle involved.

Now, depending on the value of the input word (S), the appropriate logic function can be
selected. We can use the case statement introduced in Chapter 3 of this book to define each
state of S and which function will be carried out in a very compact form. As in the VHDL
case, this is an efficient and compact method of defining the combinatorial logic for each state
of the control word (S), but great care must be taken to assign values for every combination to
avoid inadvertent latches being introduced into the logic when synthesized.

21.5 Configurable n-Bit Addition

While the structural approach is useful, it is clearly cumbersome and difficult to configure
easily. A more sensible approach is to add a generic (parameter) to the model to enable the
number of bits to be customized. For example, if we define an entity to add two logic vectors
(as opposed to bit vectors used previously), the entity will look something like

this:

library IEEE;
use IEEE.std_logic_1164.al11;

entity add_beh is

generic(top : natural := 15);
port (
a : in std_logic_vector (top downto 0);
b : in std_logic_vector (top downto 0);
cin : in std_logic;

sum : out std_logic_vector (top downto 0);
cout : out std_logic
)3
end entity add_beh;
As can be seen from this entity, we have a new parameter, top, which defines the size of the
input vectors (a and b) and the output sum (cout). We can then use the same original logic
equations that we defined for the initial 1-bit adder and use more behavioral VHDL to create a
much more readable model:
architecture behavior of add_beh is

begin
adder:

process(a,b,cin)
variable carry : std_logic;
variable tempsum : std_logic_vector(top downto 0);

begin
carry := cin;
for i in 0 to top loop
tempsum(i) := a(i) xor b(i) xor carry;
carry := (a(i) and b(i)) or (a(i) and carry) or (b(i) and carry);
end loop;

sum <= tempsum;

cout <= carry;

end process adder;
end architecture behavior;

This architecture shows how a single process (with sensitivity list a,b,cin) is used to
encapsulate the addition. The process is activated when a,b or cin changes. A for loop is used
to calculate a temporary sum (tempsum) that increments each time around the loop if required
and the final value is assigned to the output sum. Also, a stage by stage carry is calculated and
used each time around the loop. After the final loop, the value of carry is used to become the
final carry out.

21.6 Two’s Complement

An integral part of subtraction in logic systems is the use of two’s complement. This enables
us to execute a subtraction function using only an adder rather than requiring a separate
subtraction function. Two’s complement is an extension to the basic ones’ complement (or
basic inversion of bits) previously considered.

If we consider an unsigned number system based on 4 bits, then the range of the numbers is 0
to 15 (0000 to 1111). If we consider a signed system, however, the most significant bit (MSB)
is considered to be the sign (4 or —) of the number system and therefore the range of numbers
with 4 bits will instead be from —8 to +7. The method of conversion from positive to negative
number in binary logic is a simple two-stage process of first inverting all the bits and then
adding 1 to the result.

Consider an example. Take a number 00112. In signed number form, the MSB is 0, so the
number is positive and the lower three bits 011 can be directly translated into decimal 3. To get
the two’s complement (—3), we first invert all the bits to get 1100, and then add a single bit to
get the final two’s complement value 1101. To check that this is indeed the inverse in binary,
simple add the number 0011 to its two’s complement 1101 and the result should be 0000.

In a signed system the range of numbers is —(2Y — 1) to +(2V — 1 — 1) whereas in the
unsigned system the range is defined by 0 to (2 — 1). The signed system allows both
positive and negative numbers; however, the maximum magnitude is effectively half the
magnitude of the unsigned system.

This function can be implemented simply in VHDL using the following model:

lTibrary ieee;
use ieee.std_logic_1164.al11;
use ieee.numeric_std.all;

entity twoscomplement is
generic (
n : integer := 8
)3
port (
input : in std_logic_vector((n—1) downto 0);
output : out std_logic_vector((n-1) downto 0)
)3
end;

architecture simple of twoscomplement is
begin
process(input)
variable inv : unsigned((n—1) downto 0);

begin
inv := unsigned(NOT input);
inv = inv + 1;
output <= std_logic_vector(inv);
end process;
end;
As can be seen from the VHDL, we operate using logic functions first (NOT) and then convert
to unsigned to utilize the addition function (inv + 1), and finally convert the result back into a
std_logic_vector type. Also notice that the generic n allows this model to be configured for
any data size. In this example, the test bench is used to check that the function is operating
correctly by using two test circuits back to back, inverting and re-inverting the input word and
checking that the function returns the same value. While this does not guarantee correct
operation (the same bug could be present in both transforms!), it is a simple quick check that
is very useful and makes generation of test data and checks very easy, as the input and final

output signal check can be XORed to check for differences.

library ieee;
use ieee.std_logic_1164.al1;
use ieee.numeric_std.all;

entity twoscomplementtest is
end twoscomplementtest ;

architecture stimulus of twoscomplementtest is
signal rst : std_logic := ’0";
signal clk : std_logic:="0";
signal count : std_logic_vector (7 downto 0);
signal inverse : std_logic_vector (7 downto 0);

signal check : std_logic_vector (7 downto 0);
component twoscomplement
port(
input : in std_logic_vector(7 downto 0);
output : out std_logic_vector(7 downto 0)
)
end component;
for all : twoscomplement use entity work.twoscomplement ;
begin
CUT1: twoscomplement port map(input=>count,output=>inverse);
CUT2: twoscomplement port map(input=>inverse,output=>check);

—— clock and reset process
clk <= not clk after 1 us;
process
begin
rst<=’0’,’1" after 2.5 us;
wait;
end process;

—— generate data
process(clk, rst)
variable tempcount : unsigned(7 downto 0);
begin
if rst = 0’ then
tempcount := (others => '07);
elsif rising_edge(clk) then
tempcount := tempcount + 1;
end if;
count <= std_logic_vector(tempcount);
end process;
end;

21.7 Summary

This chapter has introduced the key elements required in an Arithmetic and Logic Unit of a
processor. Whether the designer needs to implement a complete ALU from scratch, or just to
understand the behavior of an existing architecture, these functions are very useful in
analyzing the behavior of ALUs and processors.

Finite State Machines in VHDL and Verilog

22.1 Introduction

Finite State Machines (FSMs) are at the heart of most digital design. The basic idea of an
FSM is to store a sequence of different unique states and transition between them depending
on the values of the inputs and the current state of the machine. The FSM can be of two types:
Moore (where the output of the state machine is purely dependent on the state variables) and
Mealy (where the output can depend on the current state variable values AND the input
values).! The general structure of an FSM is shown in Figure 22.1:

22.2 State Transition Diagrams

One method of describing Finite State Machines from a design point of view is using a state
transition diagram (bubble chart) which shows the states, outputs and transition conditions.”
A simple state transition diagram is shown in Figure 22.2.

Interpreting this state transition diagram, it is clear that there are four bubbles (states). The
transitions are controlled by two signals (rst and choice), both of which could be represented
by bit or std_logic types (or another similar logic type). There is an implicit clock signal,
which we shall call clk and the single output out!.

22.3 Implementing Finite State Machines in VHDL

This transition diagram can be implemented using a case statement in a process using the
following VHDL.:

library ieee;
use ieee.std_logic_1164.al11;

entity fsm is
port(

' Although in fact it is also possible to have a hybrid of the two approaches.
2 Another method is the algorithmic state machine approach, which shows actions and decisions separately, so is
closer in some regards to a flow chart.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00022-2

clk

Inputs

(Mealy only)

— Outputs

-]
Output
logic
Memory
next_state

Next

stage [

logic

Figure 22.1

Hardware state machine structure.

choice = ‘0’

Figure 22.2

State transition diagram.

clk, rst, choice : in std_logic;
count : out std_logic
)3
end entity fsm;
architecture simple of fsml is
type state_type is (s0, sl, s2, s3);
signal current, next_state : state_type;
begin
process (clk)
begin
if (clk =1) then
current <= next_state;
end if;
end process;

process (current)
begin
case current is
when s0 =>
out <= 0;
if (rst = 1) then
next <= sl;
else
next <= s0;
end if;
when sl=>
out <= 1;
if (choice = 1) then
next <= s3;
else
next <= s2;
end if;
when s2=>
out <= 2;
next <= s0;
when s3=>
out <= 3;
next <= s0;
end case;
end process;
end;

It must be noted that not all state machines will neatly have a number of states exactly falling

to a power of 2, and so unused states must also be managed using the “when-others” approach
described elsewhere in this book.

It is also the case that the two processes can be combined into a single process, which can
reduce the risk of glitches being introduced by the synthesis tools, especially from incorrect
assignments. It can also make debugging simpler.

22.4 Implementing Finite State Machines in Verilog

The transition diagram can also be implemented in Verilog, again using two case statements
(one for the state transitions and one for the outputs):

module fsm (
count, // Output Value
clk, // Clock
rst, // Reset
choice // Decision /Choice Value
)s

output [1:0] count;

input clk;

input rst;

input choice;

reg [1:0] count;

reg [1:0] state; // state variable
parameter s0=0, sl=1, s2=2, s3=3;

always @(state)

begin
case (state)
s0:
count = 2°b00;
sl:
count = 2°b01;
s2:
count = 2°b10;
s3:
count = 2°bll;
default:
count = 2°b00;
endcase
end

always @(posedge clk or posedge rst)
begin
if (rst == 0)
state = s0;
else
case (state)
s0:
state = sl;
sl:
if (choice)
state = s3;
else
state = s2;

s2:

state = s0;
s3:
state = s0;
endcase
end
endmodule

22.5 Testing the Finite State Machine Model

Whether the VHDL or Verilog is being used, a test bench is required to evaluate the behavior
and check that it is correct. In this example, Verilog has been used, but the principle is the
same for both HDLs. The idea is to reset the FSM, then clock through the sequence with
choice = 0 (which will go from state SO to S1 and then S2, returning to SO), and then the
choice is set to 1, and this time the sequence will go from state SO to S1 and then S3, returning
to SO. The output variable (counter_output) shows the state number as an output. The
simulation is shown in Figure 22.3.

22.6 Summary

Finite State Machines are a fundamental technique for designing control algorithms in digital
hardware. This chapter of this book is purely an introduction to the key concepts and if the
reader is not already fully familiar with the basic concepts of digital hardware design, you are
encouraged to obtain a standard text on digital design techniques to complement the practical
implementation methods described in this book.

Figure 22.3
FSM simulation results.

Fixed Point Arithmetic

23.1 Introduction

In digital systems and HDLs such as VHDL or Verilog we have access to a range of types
from bits and Booleans (which consist of two states 1 and 0, (or true and false, respectively)
which are effectively enumerated types, through integer numbers (including positive and
natural subtypes), and eventually we can use real numbers (floating point). Unfortunately, the
big drawback is not necessarily what we can use in a particular HDL, but rather what we can
synthesize in hardware. In most cases it is still not possible to directly synthesize real numbers
directly.

Despite recent research efforts and standardization efforts, there is still a limited availability of
packages and libraries that support both fixed point and floating point arithmetic specifically
for FPGAs. If we consider most FPGA applications, there is a need for some DSP type
applications, and generally a form of fixed point arithmetic will be adequate in most of these
cases. While there are now some additional packages available as a result of the inclusion of
the numeric_std library into VHDL, it is nevertheless useful to understand how the number
systems work when translated into specific forms for use in digital systems.

So, what is fixed point arithmetic and how can we use it in FPGA design? In integer
arithmetic, whether unsigned, signed, or std_logic, the basis of the number is a bitwise
representation of an integer number, with no decimal point. For example, to represent the
number 23, using 8 bits, we simply set a bit for each binary element required to construct the
integer value of 23. This is shown in Figure 23.1.

If we require a negative number, then we use the signed approach, where the MSB is simply
the sign bit as shown in Figure 23.2. In fact, the two’s complement notation (discussed in
Chapter 22), can be obtained by inverting the bits and adding one to the LSB. We have in fact
discussed the difference between the unsigned and signed format elsewhere in this book;
however, in summary the signed numbers use a bit to denote the sign of the number (positive
or negative), at the expense of 1 bit of range (effectively halving the maximum magnitude, but
allowing positive or negative values). Unsigned numbers in contrast only represent the
magnitude.

http://dx.doi.org/10.1016/B978-0-08-097129-2.00023-4

With this basic idea of handling numbers, we can extend the notation to a fixed point scheme
by defining where the decimal point will go. For example, in the same number scheme shown
we have 8 bits. We can therefore define this in terms of 5 bits above the decimal point and 3
below it. This will give some limited fractional usage for the numbers. The way that this is
implemented is by using fractions of 1 for each negative bit to the right of the decimal point.
As an example, take the same number in terms of bits used in Figure 23.3 and use the new
fixed point numbering system for the bits. In this case, we get a value of —2.875.

The nice thing about this notation is that the bitwise functions defined for the integer-based
ALU developed previously can also be applied to this new fixed point notation with almost no
modification. The only difference is that we need to translate from the new fixed point type to
a std_logic_vector type in VHDL and also consider how to handle overflow conditions.

128 64 32 16 8 4 2 1

16+4+2+1=23

Figure 23.1
Basic binary notation.

-128 64 32 16 8 4 2 1

-128+64+32+8+1=-23

Figure 23.2
Negative number binary notation.

-16 8 4 2 1 I Va A

-16+8+4+1+0.125=-2.875

Figure 23.3
Fixed point notation.

For example, if two numbers are added together and the result is too large, how is this handled
by the fixed point algorithms? Do we simply flag an overflow and output the result? Or do we
set the maximum value and output this?

Similarly, for numbers which may be too small and for which we can potentially lose
precision, do we simply round up or flag another loss of precision condition? These are
questions that the designer needs to answer for their application, but for the rest of the chapter
a simple approach will be taken that illustrates how the basic functions operate, and the details
of handling these issues will be left to the reader, unless specifically identified and discussed.

In practice, it is useful for the designer to establish basic rules for whichever number scheme
is used, such as aligning decimal points for certain operations, such as addition, or using
automatic vector size increase for multiplication to ensure there are always an adequate
number of bits available to handle the maximum possible range of numbers.

In the next section, the construction of a basic numeric package is discussed; however, it
should be reiterated that the user can take advantage of the numeric_std package in VHDL.

23.2 Basic Fixed Point Types in VHDL

The first task in defining a custom fixed point library is to specify a new type for the numbers.
The closest similar types in standard VHDL that can be synthesized are unsigned and signed.
These are defined in terms of a specific number of bits. In most cases we are interested in
linking directly to std_logic systems, and so in this case we can effectively define a new type
based on an array of std_logic bits. For the remainder of this chapter we will discuss signed
arithmetic only, as this is the most potentially useful from a DSP and application point of
view.

The basic VHDL type that defines our base type is to be called fixsign and is defined as an
unrestricted array of std_logic:

1 type fixsign is array (integer range <>) of std_logic;
From this, we can define specific subtypes that have a defined range of fixed point. For
example, we can define a type (this is often called a fractional integer type) that has 8 bits
above the decimal point and 3 bits below (for example, 00000001.001) using the following
declaration:

1 Subtype fp8_3 is fixsign (8 downto —-3);
With this, we can declare signals of this new type and use them in fixed point VHDL models:

1 signal al : fp8_3;
2 al <= XO0CA;

Clearly this is useful but limited, as this type needs to be able to be converted from one type to
another easily and quickly. The simplest way to manage this process is to create a new

package that contains not only the type declarations, but also the functions that are associated
with this set of types. Therefore we can define a new package called fp_pkg that, as a
minimum, contains these type declarations:

package fp_pkg is
type fixsign is array (integer range <>) of std_logic;
subtype fp8_3 is fixsign (8 downto -3);

end package;

package body fp_pkg is
—— The contents of the package go here
end package body;

[N e R R N R

We can now use this package in a VHDL model by compiling the package into the current
work library and calling the package as we need it. We can also create a new library so that the
package could be used more generally.

1 Use work.fp_pkg.all;

This will provide access to all the fixed point functions and types required. In this library, we
have two types of functions. The first type is required for translating physical types (such as
std_logic_vector) to our new types and vice versa. These are important as they will be
synthesized and eventually end up on hardware. The second type are purely for debug
purposes and displaying values. For example, it is useful to be able to convert fixed point data
to real numbers and then use the real’image VHDL function to display the value. This could
be extremely useful for debugging where a behavioral model would be able to represent real
numbers, and so this could form a very helpful way to establish both the accuracy and validity
of the “digital” equivalent system. A useful set of functions to facilitate this is therefore
presented in this chapter. Again, these are exemplar functions, and readers are encouraged to
develop these basic functions and produce their own for their own applications.

23.3 Fixed Point Functions in VHDL

23.3.1 Fixed Point to STD_LOGIC_VECTOR Functions

The most important functions are the conversion between fixed point and std_logic_vector
variables. If we can translate from one to the other, then we can use our standard logic
functional blocks, where appropriate, on the fixed point data directly, rather than needing to
come up with brand-new blocks every time. The easiest function is the mapping from fixed
point to std_logic_vector and is simply a matter of starting from the LSB defined in the range
of the fixed point number and then setting each bit on the output std_logic_vector in turn to
the correct value. The VHDL for this is given as follows:

1 function fp2std_logic_vector (d:fixsign;top:integer;low:integer)

2 return std_logic_vector is
3 variable outval : std_logic_vector (top—Tlow downto O) := (others => ’0°);

4 begin

5 for i in 0 to top—low Toop
6 outval(i) := d(i+low);

7 end loop;

8 return outval;

9

end;

If we look at this function we can see that the arguments to the function are the fixed point
number, and then the two integer values that denote the number of bits above and below the
decimal point, respectively. For example, if our notation is 8.3, the function call in this case
would be:

1 q <= fp2std_logic_vector(d,8,-3);

Notice the negative number denoting the bits below the decimal point. If you would prefer
both numbers to be positive, they can simply be changed. One reason for using the negative
form is that the numbers match the basic type definition and therefore make checking easy.

Similarly, we can convert from std_logic_vector back to fixed point using a very similar
function in the opposite direction:

1 function std_logic_vector2fp

2 (d:std_logic_vector;top:integer;low:integer)

3 return fixsign is

4 variable outval : fixsign (top downto Tow) := (others => *0’);
5 begin

6 for i in 0 to top—1low loop

7 outval(i+low) := d(i);

8 end Toop;

9 return outval;

10 end;

with the similar usage:
1 q <= std_logic_vector(d,8,-3);

Using these functions, the conversion between the std_logic_vector and fixed point arithmetic
domains becomes straightforward. Also, these functions are easily synthesizable as they
simply map bits and do not carry out any sophisticated functions other than that.

23.3.2 Fixed Point to Real Conversion

An extremely useful function is the ability to convert from fixed point to real numbers.
Obviously this has no use for synthesis, but is ideal for adding checking and reports to test
benches. As a result we only define a single function fp2real which takes a fixed point number
and converts to a real number for display. Once we have the number, then the real’image
function can be used to display the value. The VHDL for the conversion function is given
here:

1 function fp2real (d:fixsign; top:integer; Tow:integer)
2 return real 1is

3 variable outreal : real := 0.0;

4 variable mult : real := 1.0;

5 variable max : real := 1.0;

6 variable debug : boolean := false;

7 begin

8 for i in 0 to top—1 Toop

9 if d(i) = "1’ then

10 outreal := outreal + mult;

11 if debug then

12 report " fp2real : " & integer’image(i);
13 end if;

14 end if;

15 mult := mult % 2.0;

16 end loop;

17 if debug then

18 REPORT " fp2real middle : " & real’image(outreal);
19 end if;

20 max := mult;

21 mult := 0.5;

22 for i in —1 downto Tow Tloop

23 if d(i) = "1’ then

24 outreal := outreal + mult;

25 if debug then

26 report " fp2real : " & integer’image(i);
27 end if;

28 end if;

29 mult := mult % 0.5;

30 end loop;

31 if debug then

32 REPORT " fp2real : " & real’image(outreal);
33 end if;

34

35 if d(top) = '1’ then

36 outreal := outreal — max;

37 end if;

38 if debug then

39 REPORT " fp2real FINAL VALUE : " & real’image(outreal);
40 end if;

41

42 return outreal;

43 end;

This function is a simple converter that handles the bits above and below the decimal point in
turn. Also notice the internal Boolean debug variable that allows checking of each individual
bit. This can be very useful when observing the passing of numbers across boundaries
ensuring correct translation; this defaults to false (off). If we need to report a fixed point value,
we can therefore use this function to report the values using simple VHDL such as this:

d : fp8_3;

dr : real;

dr <= fp2real(fp8_3,8,-3);
report "The value is : " & real’image(dr);

W =

23.4 Testing the VHDL Fixed Point Functions

As stated previously, we can use these functions to incorporate standard std_logic ALU
functions into the model. In this simple test case, we are using the standard n-bit adder created
in Chapter 21 on ALUs to add two fixed point numbers together. How does this work? What
we do is convert the two input fixed point numbers into std_logic_vectors, apply them to the
adder block, then convert the output back to a fixed point number. We can convert both inputs
and output into real numbers for observation on the screen. Note that although the
representation of numbers is different, the values are the same. Also, this is a low-level
approach that could be carried out using synthesis of the numeric_std equivalent types.

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4

5 use work.fp_pkg.all;

6

7 entity simplel is

8 end entity simplel;

9

10 architecture tb of simplel is

11 signal clk : std_logic := ’0’;

12 signal cin std_logic := ’0’

13 signal cout : std_logic;

14 signal testa : fp8_3 := "000000000000";

15 signal testal : fixsign (8 downto -3);

16 signal testa?2 : fixsign (8 downto -3);

17 signal testbl : fixsign (8 downto -3);

18 signal testsum : fixsign (8 downto =3);

19 signal as : signed (11 downto 0) := X"000";
20 signal alstd : std_logic_vector (11 downto 0) := X"800";
21 signal blstd : std_logic_vector (11 downto 0) := X"800";
22 signal sum : std_logic_vector (11 downto 0)
23 signal alout : real;

24 signal blout : real;

25 signal a2out : real;

26 signal sumout : real;

27 signal al integer := 0;

28 signal bs signed (11 downto 0) := X"8f0";

29

30 component add_beh

31 generic (

32 top integer :=7

33)

34 port (

35 signal a in std_logic_vector(top downto 0);
36 signal b : in std_logic_vector(top downto 0);
37 signal cin : in std_logic;

38 signal cout : out std_logic;

39 signal sum : out std_logic_vector(top downto 0)
40)3

41 end component;

42 for all : add_beh use entity work.add_beh;

43

44

45 begin

46 clk <= not clk after 1 us;

47

48 DUT :add_beh generic map (11) port map (alstd, blstd, cin, cout, sum);
49

50 pl : process (clk)

51 begin

52 as <= as + 1;

53 testal <= signed2fp(as,8,-3);

54 testbl <= signed2fp(bs,8,-3);

55 alout <= fp2real(testal,8,-3);

56 blout <= fpZ2real(testbl,8,-3);

57 alstd <= fp2std_logic_vector(testal,8,-3);
58

59 blstd <= fp2std_logic_vector(testhbl,8,-3);
60 testa?2 <= std_logic_vector2fp(alstd,8,-3);
61 testsum <= std_logic_vector2fp(sum,8,-3);
62 aZout <= fpZreal(testaz,8,-3);

63 sumout <= fp2real(testsum,8,-3);

64 report "alout : " & real’image(alout);

65 report "aZout : " & real’image(blout);

66 report "sumout : " & real’image(sumout);
67 end process pl;

68 end;

An important aspect to note in this model is the use of signals and a clock (clk). By making
this model synchronous, we have ensured correct, predictable behavior, but on each clock
cycle there are several delays built in. The final observed result on sumout (the real number
output for display) will appear 2 clock cycles after the data is input to the model.

In this case we are using signed numbers as the original input (as) as these can be incremented
easily and setting one number to a constant (bs). These inputs are converted to real numbers
(alout, blout) that are displayed to the screen to show the results.

23.5 Fixed Point Types in Verilog

Verilog has built-in types for signed and unsigned when we define registers (reg). The default
type for a reg is unsigned, and so, therefore, we can define a 16-bit unsigned integer using the
following syntax:

1 reg [15:0] unsigned_integer;
It can be a little unclear as to where the decimal point occurs, and one approach to make this

explicit in the declaration is to offset the array indices accordingly. For example, to use an
unsigned integer of the form 8:8, the declaration could be redefined as follows:

1 reg [7:—8] unsigned_integer;

Signed integers are defined in Verilog in exactly the same manner, except using the addition of
the keyword signed, so taking the previous example, the declaration would become:

1 reg signed [7:-8] signed_integer;

When using these numbers, no additional functions are required; however, care needs to be
taken when shifting to ensure that the correct notation is used (i.e., that it is consistent), and
the result is shifted by the appropriate number of bits to maintain the correct accuracy.

One of the nice aspects of Verilog is that it is not really necessary to define new types and
conversion routines as with VHDL, and it is possible to allow Verilog to handle the
conversions. For example, the low level definition of integers or fixed point data types as
registers means that the conversion between the two is implicit, as long as the number of bits
is consistent, making conversions very simple.

23.6 Floating Point Types in Verilog

As for VHDL, there are standard type definitions based on IEEE-754 or IEEE-854 for generic
floating point (real) types; however, while Verilog supports the use of real types, synthesis is
not possible directly. The user has two options in order to implement these types in Verilog: to
define specific composite types (similar to fixed point) and associated functions. However,
most of the FPGA vendors also offer “blocks” that can provide DSP functions based on
floating point types, effectively as IP blocks.

The floating point types can be defined as single or double precision, where the single
precision consists of a single sign bit, 8 bits for the exponent and the remaining 23 bits for the
mantissa. Double precision also has a single sign bit, 11 bits for the exponent and 52 for the
mantissa.

In addition to the basic number format, IEEE Std 754 also defines a number of rounding
methods, and it is important to ensure that not only should the number types be defined, but
also the rounding and arithmetic functions.

23.7 Summary

This chapter has introduced the concept of fixed point arithmetic in VHDL and provided a
basic package of functions and types to get started using VHDL. It must be stressed that this
package is purely for exemplar designs and the reader is encouraged to either use
commercially available libraries for optimum performance or to develop their own libraries.
The usage of fixed point functions in Verilog is also briefly introduced.

Floating point functionality has also been introduced; however, the overhead in the FPGA is
such that unless double precision is applied, the accuracy will be limited due to rounding

errors, and therefore fixed point is still usually quite acceptable for most practical applications.
In practice, as the size of FPGAs has increased to the extent that a microprocessor core can be
quite easily implemented on the FPGA, in most cases it is simply a case of writing the floating
point code in C and running a processor core directly on the FPGA with the high-level code
on the core.

Counters

24.1 Introduction

One of the most commonly used applications of flip-flops in practical systems is counters.
They are used in microprocessors to count the program instructions (program counter or PC),
for accessing sequential addresses in memory (such as ROM) or for checking progress of a
test. Counters can start at any value, although most often they start at zero and they can
increment or decrement. Counters may also change values by more than one at a time, or in
different sequences, such as grey code, binary, or binary coded decimal (BCD) counters.

24.2 Basic Binary Counter using VHDL

The simplest counter to implement in many cases is the basic binary counter. The basic
structure of a counter is a series of flip-flops (a register), that is controlled by a reset (to reset
the counter to zero literally) and a clock signal used to increment the counter. The final signal
is the counter output, the size of which is determined by the generic parameter n, which
defines the size of the counter. The symbol for the counter is given in Figure 24.1. Notice that
the reset is active low and the counter and reset inputs are given in a separate block of the
symbol as defined in the IEEE standard format.

From an FPGA implementation point of view, the value of generic n also defines the number
of D type flip-flops required (usually a single LUT) and hence the usage of the resources in the
FPGA. A simple implementation of such a counter is given here:

1 library ieee;

2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;

4

5 entity counter is

6 generic (

7 n : integer := 4

8)

9 port (

10 clk : in std_logic;
11 rst : in std_logic;
12 output : out std_logic_vector((n-1) downto 0)
13)

14 end;

http://dx.doi.org/10.1016/B978-0-08-097129-2.00024-6

rst ——Q
clk
3
2
Output
1
0
Figure 24.1
Simple binary counter.
15
16 architecture simple of counter is
17 begin
18 process(clk, rst)
19 variable count : unsigned((n—-1) downto 0);
20 begin
21 if rst = "0’ then
22 count := (others => "0°);
23 elsif rising_edge(clk) then
24 count := count + 1;
25 end if;
26 output <= std_logic_vector(count);
27 end process;
28 end;

The important aspect of this approach to the counter VHDL is that this is effectively a state
machine; however, we do not have to explicitly define the next state logic, as this will be taken
care of by the synthesis software. This counter can now be tested using a simple test bench
that resets the counter and then clocks the state machine until the counter flips round to the
next counter round. The test bench is given as follows:

1 library ieee;

2 use ieee.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4

5 entity CounterTest is

6 end CounterTest;

7

8 architecture stimulus of CounterTest is
9 signal rst : std_logic := ’0’;

10 signal clk : std_logic:="0";

11 signal count : std_logic_vector (3 downto 0);
12

13 component counter

14 port(

15 clk : in std_logic;

16 rst : in std_logic;

17 output : out std_logic_vector(3 downto 0)
18)

19 end component;

20 for all : counter use entity work.counter ;

21

22 begin

23 DUT: counter port map(clk=>clk,rst=>rst,output=>count);
24 clk <= not clk after 1 us;

25 process

26 begin

27 rst<="0",’1" after 2.5 us;

28 wait;

29 end process;

30 end;

Using this simple VHDL test bench, we reset the counter until 2.5 us and then the counter will
count on the rising edge of the clock after 2 us (i.e., the counter is running at 500 kHz).

If we dissect this model, there are several interesting features to notice. The first is that we
need to define an internal variable count rather than simply increment the output variable q.
The output variable q has been defined as a standard logic vector (std_logic_vector) and with
it being defined as an output we cannot use it as the input variable to an equation. Therefore
we need to define a local variable (in this case, count) to store the current value of the counter.

The initial decision to make is whether to use a variable or a signal. In this case, we need an
internal variable that we can effectively treat as a sequential signal, and also one that changes
instantaneously, which immediately requires the use of a variable. If we chose a signal, then
the changes would only take place when the cycle is resolved (i.e., the next time the process is
activated).

The second decision is what type of unit to use for the count variable. The output variable is a
std_logic_vector type, which has the advantage of being an array of std_logic signals, and so
we don’t need to specify the individual bits on a word; this is done automatically. The major
disadvantage, however, is that the std_logic_vector does not support simple arithmetic
operations, such as addition, directly. In this example, we want the counter to have a simple
definition in VHDL and so the best compromise type that has the bitwise definition and also
the arithmetic functionality would be the unsigned or signed type. In this case, we wish to
have a direct mapping between the std_logic_vector bits and the counter bits, so the unsigned
type is appropriate. Thus the declaration of the internal counter variable count is as follows:

1 variable count : unsigned((n—1) downto 0);
The final stage of the model is to assign the internal value of the count variable to the external

std_logic_vector q. Luckily, the translation from unsigned to std_logic_vector is fairly direct,
using the standard casting technique:

Figure 24.2
Simple binary counter simulation in VHDL.

1 q <= std_logic_vector(count);

As the basic types of both q and count are consistent, this can be done directly. The resulting
model simply counts up the binary values on the clock edge as specified, as is shown in
Figure 24.2.

24.3 Simple Binary Counter using Verilog

With the same basic specification as the VHDL counter, it is possible to implement a basic
counter in Verilog using the same architecture of the model.

1 module counter (

2 clk, // clock input
3 rst, // reset (active Tow)
4 counter_output // counter output

5)

6

7 input clk;

8 input rst;

9

10 output [3:0] counter_output;

11

12 wire clk;

13 wire rst;

14

15 reg [3:0] counter_output ;

16

17 always @ (posedge clk)

18 begin : count

19 if (rst == 1°b0) begin

20 counter_output <= #1 4°b0000;

21 end

22 else begin

23 counter_output <= #1 counter_output + 1;
24 end

25 end

26
27 endmodule

The model has the same connection points and operation, and will be treated in the same way
for synthesis by the design software. The test bench is slightly different from the VHDL one
in that it is much more explicit about the test function as well as the functionality of the test
bench. For example, if we look at the top of the test bench Verilog has the $display and
$monitor commands, which enable the time and variable values to be displayed in the monitor
of the simulation as well as looking at the waveforms.

1 $display ("time\t clk reset counter");
2 $monitor ("%g\t %Zb %b %b",
3 $time, clk, rst, counter_output);

Using this test bench and Verilog model the behavior of the simulation can also be verified as
shown in Figure 24.3.

24.4 Synthesized Simple Binary Counter

At this point it is useful to consider what happens when we synthesize this VHDL, so to test
this point the VHDL model of the simple binary counter was run through a typical RTL
synthesis software package (Leonardo Spectrum) with the resultant synthesized VHDL model
given here:

Figure 24.3
Simple binary counter simulation in Verilog.

1 entity counter is

2 port (

3 clk : IN std_logic ;

4 rst : IN std_Togic ;

5 output : OUT std_logic_vector (3 DOWNTO 0))

6 end counter ;

7

8 architecture simple of counter is

9 signal clk_int, rst_int, output_dup0_3, output_dup0_2, output_dup0_1,

10 output_dup0_0, output_nx4, output_nx7, output_nx10, NOT_rst,

11 output_NOT_a_0: std_logic ;

12

13 begin

14 output_obuf_0 : OBUF port map (O=>output(0), I=>output_dup0_0);

15 output_obuf_1 : OBUF port map (O=>output(l), I=>output_dup0_1);

16 output_obuf_2 : O0BUF port map (O=>output(2), I=>output_dup0_2);

17 output_obuf_3 : O0BUF port map (O=>output(3), I=>output_dup0_3);

18 rst_ibuf : IBUF port map (O=>rst_int, I=>rst);

19 output_3_EXMPLR_EXMPLR : FDC port map (Q=>output_dup0_3, D=>output_nx4,
20 C=>clk_int, CLR=>NOT_rst);

21 output_2_EXMPLR_EXMPLR : FDC port map (Q=>output_dup0_2, D=>output_nx7,
22 C=>clk_int, CLR=>NOT_rst);

23 output_1_EXMPLR_EXMPLR : FDC port map (Q=>output_dup0_1, D=>output_nx10,
24 C=>clk_int, CLR=>NOT_rst);

25 output_O_EXMPLR_EXMPLR : FDC port map (Q=>output_dup0_0, D=>

26 output_NOT_a_0, C=>clk_int, CLR=>NOT_rst);

27 clk_ibuf : BUFGP port map (0=>clk_int, I=>clk);

28 output_nx4 <= (not output_dup0_3 and output_dup0_2 and output_dup0_1 and
29 output_dup0_0) or (output_dup0_3 and not output_dup0_0) or (output_dup0_3
30 and not output_dup0_2) or (output_dup0_3 and not output_dup0_1)

31 output_nx7 <= (output_dup0_2 and not output_dup0_0) or (not output_dup0_2
32 and output_dup0_1 and output_dup0_0) or (output_dup0_2 and not

33 output_dup0_1) ;

34 output_nx10 <= (output_dup0_0 and not output_dup0_1) or (not

35 output_dup0_0 and output_dup0_1) ;

36 NOT_rst <= (not rst_int)

37 output_NOT_a_0 <= (not output_dup0_0) ;

38 end simple ;

The first obvious aspect of the model is that it is much longer than the simple RTL VHDL
created originally. The next stage logic is now in evidence; as this is synthesized, the physical
gates must be defined for the model. Finally the outputs are buffered, which leads to even
more gates in the final model. If the optimization report is observed, the overall statistics of
the resource usage of the FPGA can be examined (in this case, a Xilinx Virtex-II Pro device):

Cell Library References Total Area

BUFGP XCv2p 1 x 1 1 BUFGP

FDC xcvep 4 X 1 4 Dffs or Latches
IBUF Xcvep 1 x 1 1 IBUF

LUTL Xcvep 2 X 1 2 Function Generators
LUT?2 XCcv2p 1 x 1 1 Function Generators
LUT3 XCcvep 1 x 1 1 Function Generators

LUT4 Xcvep 1 x 1 1 Function Generators
0BUF Xcvep 4 X 1 4 OBUF

Number of ports

Number of nets : 17

Number of instances : 15

Number of references to this view : 0

Total accumulated area

Number of BUFGP :

Number of Dffs or Latches

Number of Function Generators

Number of IBUF

Number of OBUF

Number of gates

Number of accumulated instances : 1
Number of global buffers used: 1

hhkhkhkhkhkhkhkhhhkhhkhhhkhkhkhkrhhkhhkrhhkhhkhhhkhkkhkhkrhkhkhhkrrhkhkkxx

Device Utilization for 2VP2fg256

hhkhkhkhhkhhkhhhkhkhkhhhkhkhhkrhkhkhhkrhhkhhkrrhkhkhkhkrxhkhkhkhkrhhkhkxx

(€ S B e e & N

Resource Used Avail Utilization
10s 5 140 3.57%
Global Buffers 1 16 6.25%
Function Generators 5 2816 0.18%
CLB Slices 3 1408 0.21%
Dffs or Latches 4 3236 0.12%
BTock RAMs 0 12 0.00%
Block Multipliers 0 12 0.00%

In this simple example, it can be seen that the overall utilization of the FPGA is minimal, with
the relative resource allocation of IOs, buffers and functional blocks. This is an important
aspect of FPGA design in that, even though the overall device may be underutilized, a
particular resource (such as 10) might be used up. The output VHDL can then be used in a
physical place and route software tool (such as the Xilinx Design Navigator) to produce the
final bit file that will be downloaded to the device.

24.5 Shift Register

While a shift register is, strictly speaking, not a counter, it is useful to consider this in the
context of other counters as it can be converted into a counter with very small changes. We
will consider this element layer in this book, in more detail, but consider a simple case of a
shift register that takes a single bit and stores in the least significant bit of a register and shifts
each bit up one bit on the occurrence of a clock edge. If we consider an n-bit register and show
the status before and after a clock edge, then the functionality of the shift register becomes
clear, as shown in Figure 24.4.

A basic shift register can be implemented in VHDL as shown here:

din1 n—1 n-2 | n-3 [n-4 |- 3 2 1 0

~—
Next bit in Register contents
(a)
din2 dint | n-1 | n-2 | n-3 |- 4 3 2 1
%_/
Next bit in Register contents
(b)

Figure 24.4
Simple shift register functionality: (a) Before the clock edge; (b) After the clock edge.

1 Tibrary ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity shift_register is

5 generic (

6 n : integer := 4;

7 port (

8 clk : in std_logic;

9 rst : in std_logic;

10 din : in std_logic;

11 g : out std_logic_vector((n—-1) downto 0)
12)

13 end entity;

14

15 architecture simple of shift_register is

16 begin

17 process(clk, rst)

18 variable shift_reg : std_logic_vector((n-1) downto 0);
19 begin

20 if rst = "0’ then

21 shift_reg := (others => '0’);

22 elsif rising_edge(clk) then

23 shift_reg := shift_reg(n—2 downto 0) & din;
24 end if;

25 q <= shift_reg;

26 end process;

27 end architecture simple;

The interesting parts of this model are very similar to the simple binary counter, but subtly
different. As for the counter, we have defined an internal variable (shift_reg), but unlike the
counter we do not need to carry out arithmetic functions, so we do not need to define this as an
unsigned variable. Instead, we can define directly as a std_logic_vector, the same as the output q.

Notice that we have an asynchronous clock in this case. As we have discussed previously in
this book, there are techniques for completely synchronous sets or resets, and these can be
used if required.

The fundamental difference between the counter and the shift register is in how we move the
bits around. In the counter we use arithmetic to add one to the internal counter variable
(count). In this case, we just require shifting the register up by one bit, and to achieve this we
simply assign the lowest (n — 1) bits of the internal register variable (shift_reg) to the upper
(n — 1) bits and concatenate the input bit (din), effectively setting the lowest bit of the register
to the input signal (din). This can be accomplished using the VHDL following:

1 shift_reg := shift_reg(n—2 downto 0) & din;
The final stage of the model is similar to the basic counter in that we then assign the output
signal to the value of the internal variable (shift_reg) using a standard signal assignment. In

the shift register, we do not need to cast the type as both the internal and signal variable types
are std_logic_vector:

1 q <= shift_reg;

We can also implement the shift register in Verilog, with the listing as shown here:

1 module shift_register (

2 clk, // clock input

3 rst, // reset (active low)
4 din, // Digital Input

5 shiftreg // shift register

6)

7

8 input clk;

9 input rst;
10 input din;

12 output [7:0] shiftreg;

13

14 wire clk;

15 wire rst;

16 wire din;

17

18 reg [7:0] shiftreg ;

19

20 always @ (posedge clk)

21 begin : count

22 if (rst == 1°b0) begin

23 shiftreg <= #1 4°b00000000;
24 end

25 else begin

26 shiftreg <= #1 {din, shiftreg[7:11};
27 end

28 end

29

30 endmodule

In both cases (VHDL and Verilog) we can test the behavior of the shift register by applying a
data sequence and observing the shift register variable in the model, and in the case of the
Verilog we can also add a $monitor command to display the transitions as they happen in the
transcript of the simulator. The Verilog test bench code is given as:

1

2 module shift_register_tbh();

3 // declare the signals

4 reg clk;

5 reg rst;

6 reg din;

7 wire [7:0] shift_register_values;

8

9 // Set up the initial variables and reset

10 initial begin

11 $display ("time\t clk reset counter");

12 $monitor ("%g\t %b %b %b %h",

13 $time, clk, rst, din, shift_register_values);
14 clk = 1; // initialize the clock to 1

15 rst = 1; // set the reset to 1 (not reset)
16 din = 0; // Initialize the digital input
17 #5 rst = 0; // reset = 0 : resets the counter
18 #10 rst = 1; // reset back to 1 : counter can start
19 #4 din = 0; // test data sequence starting at cycle time 16
20 #10 din = 1; // din = 1 test data sequence

21 #10 din = 0; // din = 0 test data sequence

22 #10 din = 0; // din = 0 test data sequence

23 #10 din = 1; // din = 1 test data sequence

24 #10 din = 1; // din =1 test data sequence

25 #10 din = 0; // din = 0 test data sequence

26 #10 din = 1; // din =1 test data sequence

27 #10 din = 0; // din = 0 test data sequence

28 #10 din = 1; // din =1 test data sequence

29 #1000 $finish; // Finish the simulation

30 end

31

32 // Clock generator

33 always begin

34 #5 clk = ~clk; // Clock every 5 time slots

35 end

36

37 // Connect DUT to test bench

38 shift_register DUT (

39 clk,

40 rst,

41 din,

42 shift_register_values

43)

44

45 endmodule

The resulting simulation of the shift register can be seen in Figure 24.5.

Figure 24.5
Simple shift register simulation.

24.6 The Johnson Counter

The Johnson counter is a counter that is a simple extension of the shift register. The only
difference between the two is that the Johnson counter has its least significant bit inverted and
fed back into the most significant bit of the register. In contrast to the classical binary counter
with 2n states, the Johnson counter has 2" states. While this has some specific advantages, a
disadvantage is that the Johnson counter has what is called a parasitic counter in the design.
In other words, while the 2" counter is operating, there is another state machine that also
operates concurrently with the Johnson counter using the unused states of the binary counter.
A potential problem with this counter is that if, due to an error, noise or other glitch, the
counter enters a state NOT in the standard Johnson counting sequence, it cannot return to the
correct Johnson counter without a reset function. The normal Johnson counter sequence is
shown in the following table:

Count Q(3:0)
0 0000
1 1000
2 1100
3 1110
4 1111
5 0111
6 0011
7 0001

The VHDL implementation of a simple Johnson counter can then be made by modifying the
next stage logic of the internal shift_register function as shown in the following listing:

1 Tibrary ieee;

2 use ieee.std_logic_1164.al11;

3

4 entity johnson_counter is

5 generic (

6 n : integer := 4;

7 port (

8 clk : in std_logic;

9 rst : in std_logic;

10 din : in std_logic;

11 q : out std_logic_vector((n—1) downto Q)
12)

13 end entity;

14

15 architecture simple of Johnson_counter is

16 begin

17 process(clk, rst)

18 variable j_state : std_logic_vector((n—1) downto 0);
19 begin

20 if rst = 0’ then

21 j_state:= (others => '0’);

22 elsif rising_edge(clk) then

23 j_state:= not j_state(0) & j_state(n—1 downto 1);
24 end if;

25 qg <= j_state;

26 end process;

27 end architecture simple;

Notice that the concatenation is now putting the inverse (NOT) of the least significant bit of
the internal state variable (j_state(0)) onto the next state most significant bit, and then shifting
the current state down by one bit.

It is also worth noting that the counter does not have any checking for the case of an incorrect
state. It would be sensible in a practical design to perhaps include a check for an invalid state
and then reset the counter in the event of that occurrence. The worst-case scenario would be
that the counter would be incorrect for a further 7 clock cycles before correctly resuming the
Johnson counter sequence.

In a similar manner we can implement a Johnson counter in Verilog using the code given here:

1 module johnson_counter (

2 clk, // clock input

3 rst, // reset (active low)
4 johnsonreg // shift register

5)3

6

7 input clk;

8 input rst;

9

10 output [7:0] johnsonreg;

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 24.6
Johnson counter simulation.

wire clk;
wire rst;

reg [7:0] johnsonreg ;

always @ (posedge clk)
begin : count
if (rst == 1°b0) begin
johnsonreg <= #1 4’b00000000;
end
else begin
johnsonreg <= #1 {!johnsonreg[0], johnsonreg[7:11};
end
end

endmodule

and test it using the same basic counter test bench created for the simple counter, giving the
simulation results as shown in Figure 24.6. We can see that the counter variable “ripples”
through till it gets to all 1s and then carries back on until it is all Os.

24.7 BCD Counter

The BCD (Binary Coded Decimal) counter is simply a counter that resets when the decimal
value 10 is reached instead of the normal 15 for a 4-bit binary counter. This counter is often
used for decimal displays and other human interface hardware. The VHDL for a BCD counter
is very similar to that of a basic binary counter except that the maximum value is 10
(hexadecimal A) instead of 15 (hexadecimal F). The VHDL for a simple BCD counter is given

in the following listing. The only change is that the counter has an extra check to reset when
the value of the count variable is greater than 9 (the counter range is 0 to 9).

0NN N R W=

NI SN O RN O RN S RN NS IS N S R S R et el s e
0 AN WN = OOV WNREWN—O0

29
30

library ieee;
use ieee.std_logic_1164.al11;
use ieee.numeric_std.all;

entity counter is
generic (
n : integer := 4;
port (
clk : in std_logic;
rst : in std_logic;
output : out std_logic_vector((n—1) downto 0)
)
end;

architecture simple of counter is
begin
process(clk, rst)
variable count : unsigned((n-1) downto 0);
begin
if rst = 0’ then
count := (others => '0’);
elsif rising_edge(clk) then
count := count + 1;
if count > 9 then
count := 0;
else if
end if;
output <= std_logic_vector(count);
end process;
end;

In a similar manner we can implement a BCD counter in Verilog using the code given here:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

module bcd_counter (
clk, // clock input
rst, // reset (active Tow)
counter_output // counter output
)3

input clk;
input rst;

output [3:0] counter_output;

wire clk;
wire rst;

reg [3:0] counter_output

always @ (posedge clk)
begin : count
if (rst == 1°b0) begin
counter_output <= #1 4°b0000;

Figure 24.7
BCD counter simulation.

21 end

22 else begin

23 if(counter_output < 9) begin

24 counter_output <= #1 counter_output + 1;
25 end

26 else

27 counter_output <= #1 4°b0000;
28 end

29 end

30

31 endmodule

and test it using the same basic counter test bench created for the simple counter, giving the
simulation results as shown in Figure 24.7. In the results this time you can see the counter
variable in binary and also in unsigned decimal counting up to 1001 (binary) and 9 (decimal),
then returning back to 0, giving the decimal counter.

24.8 Summary

In this chapter, we have investigated some basic counters and shown how VHDL and Verilog
can be used to carry out arithmetic functions or logic functions to obtain the required counting
sequence. The possibilities of counters based on these basic types are numerous, possibly
infinite, and it is left to the readers to develop their own variations based on these standard

types.

A useful exercise would be to modify the basic binary counter by adding an up/down flag
so that, depending on this flag, the counter would increment or decrement respectively.

Other options would be to extend the shift register to shift left or right depending on a
directional flag.

Decoders and Multiplexers

25.1 Decoders

A decoder is a simple combinatorial block that converts one form of digital representation into
another. Usually, a decoder takes a smaller representation and converts it into a larger one (the
opposite of encoding). Typical examples are the decoding of an n-bit word into 2" individual
logic signals. For example a 3-8 decoder takes three logic signals in and decodes the value of
one of the eight output signals (2) to the selected value. The symbol for such a decoder is
given in Figure 25.1 with its functional behavior shown in the following table:

The VHDL for this decoder uses a simple VHDL construct similar to the if - else - end if
form, except using the when - else syntax. If a signal is assigned a value when a condition is
satisfied, then a single assignment can be made using the following basic pseudocode:

1 output <= value when condition;
This can be extended with else statements to cover a set of different conditions, thus:

1 output <= valuel when conditionl else

2 value2 when condition2 else

3 R

4 valuen when condition;

Finally, if there is a “catch all” condition, similar to the final else in an if - else - end if

conditional statement in VHDL, then the final assignment would be added as follows:

S2 S1 S0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO
oJ]oJoJ]o]oJ]oJ]oJ]o]o]ol]1
olo|l1]o]lo|lo]| o] ol o] 0
o|l1lo] o] oo | o] o] 0| o
ol 1] 1] 0] ool o] 1 ol o] o
1lololo | o] o] 1 olo | o] o
1o 10| 0] 1 olo] o] ol o
1110 0] 1 oo o] ololo
10111 olo|o|o|lol|o]o

http://dx.doi.org/10.1016/B978-0-08-097129-2.00025-8

select(2:0) —

a(7:0)

Figure 25.1
3-8 decoder

output <= valuel when conditionl else
value2 when condition2 else

valuen when conditionn else

1
2
3
4
5 valuedefault;

Using this approach, the 3-8 decoder can be simply implemented using the following VHDL.:

1 lTibrary ieee;

2 use jeee.std_logic_1164.al1T1;

3 use ieee.numeric_std.all;

4

5 entity decoder38 is

6 port (

7 s : in std_logic_vector (2 downto 0);
8 g : out std_logic_vector(7 downto 0)
9)

10 end;

11

12 architecture simple of decoder38 is
13 begin

14 g <= "00000001" when s = "000" else
15 "00000010" when s = "001" else

16 "00000100" when s = "010" else

17 "00001000" when s = "011" else

18 "00010000" when s = "100" else

19 "00100000" when s = "101" else

20 "01000000" when s = "110" else

21 "10000000" when s = "111" else

22 OO 5

23 end;

The test bench for this decoder could be a simple look-up table of values, but in fact we could
combine the clock and reset test bench from the counter example, and include a simple
counter in the test bench to generate the signals input to the decoder as follows:

lTibrary ieee;

1

2 use ieee.std_logic_1164.al11;
3 use ieee.numeric_std.all;
4

5 entity Decoder38Test is

6 end Decoder38Test;

7

8 architecture stimulus of Decoder38Test is
9 signal rst : std_logic := ’0";

10 signal clk : std_logic:="0";

11 signal s : std_logic_vector(2 downto 0);
12 signal q : std_logic_vector(7 downto 0);
13

14 component decoder38

15 port(

16 s : in std_logic_vector(2 downto 0);
17 q : out std_logic_vector(7 downto 0)
18)

19 end component;

20 for all : decoder38 use entity work.decoder38 ;
21

22 begin

23

24 CUT: decoder38 port map(s => s, q => q);
25 clk <= not clk after 1 us;

26 process

27 begin

28 rst<=’0",’1" after 2.5 us;

29 wait;

30 end process;

31

32 process(clk, rst)

33 variable count : unsigned(2 downto 0);
34 begin

35 if rst = 0’ then

36 count := (others => ’0’);

37 elsif rising_edge(clk) then

38 count := count + 1;

39 end if;

40 s <= std_logic_vector(count);

41 end process;

42

43 end;

In Verilog, we can use similar techniques to select individual lines from a binary choice,
except that we use a slightly different conditional assignment syntax using a case
statement:

case (s)
3°h0: g = 8°b00000001;

1
2
3 o
4 default: g = 8'b00000000;

5 endcase

The resulting Verilog code is given as follows:

1 module decoder38(s, q);
2 output reg [7:0] q;

3 input [2:0] s;
4
5

always @(CharlIn)

6 case (Charln)

7 3°h0: HexOut = 8’b00000001;
8 3’hl: HexOut = 8’b00000010;
9 3’h2: HexOut = 8°b00000100;
10 3’h3: HexOut = 8’b00001000;
11 3°h4: HexOut = 8°b00010000;
12 3’h5: HexOut = 8’b00100000;
13 3’h6: HexOut = 8’b01000000;
14 3’h7: HexOut = 8’b10000000;
15 default: HexOut = 8’b00000000;
16 endcase

17 endmodule

In Verilog we can use a simple counter in a test bench to select each possibility in turn and
then observe the output:

1 module decoder38_th (

2 clk,

3 gout

4)

5

6 input clk;

7 output [7:0] gqout;

8

9 reg [2:0] s = 3°h0;

10

11 always @ (posedge clk)

12 begin

13 // Increment the counter

14 s <=5+ 1;

15 end

16

17 // Decode the character into the LED segments
18 decoder38 decoder381(qout, s);
19

20 endmodule

25.2 Multiplexers

A multiplexer (MUX) is an extension of a simple decoder in that a series of inputs is decoded
to provide select enables for one of a number of inputs. In a similar way that n-bits can decode
2" signals, in a multiplexer, n bits of select line are required to multiplex 2" signals.
Multiplexers are essential in FPGA internal architectures to select between different
implementations of combinatorial logic blocks. For example, consider the simplest
multiplexer, a two input (A and B), single output (Q) multiplexer, with a single select line (S).
The IEEE symbol for such a MUX is given in Figure 25.2.

A similar approach to the decoder using the when - else structure can be used to create a
simple implementation of the multiplexer, as shown in the following VHDL.:

0
s O} G 1
] [
a 0
q
b 1

Figure 25.2
Input multiplexer with a single select line.

1 library ieee;

2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;

4

5 entity mux21 is

6 port (

7 s : in std_logic;

8 a : in std_logic;

9 b : in std_logic;

10 g : out std_logic

11)s

12 end;

13

14 architecture simple of mux21 is
15 begin

16 g <= a when s = ’0’ else

17 b when s = "1’ else

18 X7

19 end;

This is an extremely useful model and is extensively used in test structures where it is required
to choose between a functional and test input signal input to a flip-flop. The model can be
easily extended to accommodate multiple input signals. For example, consider a four input
multiplexer, with two select signals (inputs = 2select) and a single output. The VHDL model
has largely the same structure, but would look like this:

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mux41l is
port (

AN AW =

7 s : in std_Togic_vector (1 downto 0);
8 a : in std_logic;

9 b : in std_logic;

10 c : in std_logic;

11 d : in std_logic;

12 g : out std_logic

13)3

14 end;

15

16 architecture simple of mux4l is
17 begin

18 q <= a when s = "00" else

19 b when s = "01" else

20 c when s = "10" else

21 d when s = "11" else

22 X7

23 end;

Verilog can be used to implement a very similar model, using the select line (s) to define
which input (a or b) will be used to set the output (q). The resulting model is shown in the
following listing:

1 module mux21(s, a, b, q);
2 output q;

3 reg q;

4 input s;

5 input a;

6 input b;

7

8 always @(s or a or b)
9 begin

10 if (s ==0)

11 q = a;

12 else

13 q = b;

14 end if

15 end

16 endmodule

A more elegant way to accomplish the same function is to declare the input choice using an
array (d[2]) as shown in the listing following. This is also an extremely scalable way to
implement the function, as the size of the input could be defined by a parameter.

1 module mux21b(s, d, q);
2 output q;

3 reg q;

4 input [1:0] d;

5 input s;

6

7 always @(s or d)

8

9

q = d[s]
endmodule

25.3 Summary

This chapter has described the basic mechanism for decoding and multiplexing signals using
VHDL and Verilog. This is an extremely useful function as it is central to much of the data
and control signal management required in complex designs on FPGAs.

Multiplication

26.1 Introduction

A key function in any hardware design that requires signal processing is multiplication. In
order to implement such a function it is useful to introduce the basic methods for binary
multiplication from first principles so that the implemented approaches can be understood. In
this chapter, we will describe these methods and illustrate them with VHDL and Verilog.

26.2 Basic Binary Multiplication

The simplest approach to binary multiplication is essentially long multiplication applied to
binary numbers. Consider a basic example of a decimal long multiplication first to remind us
of the basic concept, take a multiplication of two numbers 23 and 17:

23
17
161
023
0391

This can be implemented using binary numbers in exactly the same way, except instead of
decimal numbers, the arithmetic is binary. Consider the multiplication of two unsigned binary
numbers for 6 (0110) and 4 (0100). Simply take each bit of the multiplier (4 in this case) and
if it is zero, add nothing, but if the bit is one, add the shifted multiplicand (6 in this case). This
is illustrated in the binary multiplication below:

0110
0100 4
0000
0000

0110

0000

0011000 24

o)}

http://dx.doi.org/10.1016/B978-0-08-097129-2.00026-X

A_lD No D
Y Select | Q

es iUt
— | outpu
Two’s P

complement

| Negative flag . |A*B|
v Asign Unsigned >

multiplier
5D @ No D
Y Select | Q

=3 output

— | outpu

Two’s D P
complement

| Negative flag
Y Bsign

Asign
(A*B)sign
Bsign

Figure 26.1
Basic signed multiplication.

The way we can often implement this in practice is to have a “partial product” and then add
the shifted multiplicand (or zeros) at each stage of the process until the multiplication is
complete. While this approach works for unsigned binary numbers, it does not work for two’s
complement numbers. In the case of two’s complement, using a similar approach requires the
addition of sign bits to the left of the shifted multiplicand at each stage and then a final step of
negating the multiplicand and adding the final shifted value to the partial product. A simpler
approach that lends itself well to hardware implementation is simply to test whether a number
(or both) are negative, invert to obtain the magnitude of each number if necessary, carry out an
unsigned multiplication, then, depending on how many of the arguments are negative, invert
the output (two’s complement). The method of checking for negative numbers is relatively
simple, as an XOR function on the MSB of the two input signed numbers will tag whether the
output needs to have a two’s complement taken. This is shown schematically in Figure 26.1.

26.3 VHDL Unsigned Multiplier

If we start with a simple unsigned multiplier, then this can be implemented very simply using
VHDL. The important aspect to consider with this multiplier is how many bits will be on the
inputs and how many on the output. If the number of bits are the same across all three, then we
need to consider the possibility of overflow and how this can be handled by the multiplier.

In this basic model, we will define the output number of bits as being the sum of the two input
word lengths, and deal with overflow externally to the multiplier.

If we use the basic accumulator and addition function of the simple binary addition method
described previously, we can implement a basic VHDL multiplier as shown below:

1 library ieee;

2 use IEEE.std_logic_1164.al11;

3

4 entity mult_beh is

5 generic(top : natural := 15);

6 port (

7 clk : in std_logic;

8 nrst : in std_logic;

9 a : in std_logic_vector (top downto 0);

10 b : in std_logic_vector (top downto 0);

11 product : out std_Togic_vector (2«top+l downto 0)
12)s

13 end entity mult_beh;

14

15 architecture behavior of mult_beh is

16 component add_beh

17 generic (

18 top : integer :=7

19)

20 port (

21 signal a : in std_Togic_vector(top downto 0);
22 signal b : in std_logic_vector(top downto 0);
23 signal cin : in std_logic;

24 signal cout : out std_logic;

25 signal sum : out std_logic_vector(top downto 0)
26)

27 end component;

28 for all : add_beh use entity work.add_beh;

29

30 signal cin : std_logic := ’0’;

31 signal cout : std_logic := ’0’;

32 signal acc : std_logic_vector(2«top+l downto 0);
33 signal sum : std_logic_vector(2«top+l downto 0);
34 signal mand : std_logic_vector(2«top+l downto 0);
35 signal index : integer := 0;

36 signal finished : std_logic := ’0;

37 begin

38

39 DUT :add_beh generic map (2«top+1) port map (acc,mand,cin,cout,sum);
40

41 pl : process (clk, nrst)

42 variable mandvar : std_logic_vector(2xtop+l downto 0);
43 begin

44 if (nrst = ’0’) then

45 acc <= (others => '0");

46 index <= 0;

47 finished <= ’0’;

48 else

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

This model is perhaps more complex than it really needs to be, but it does have some nice

if clk’event then
if clk = ’1° then
if index <= top then
index <= index + 1;
mandvar := (others => ’07);
if b(index) = "1’ then
for i in 0 to top loop
mandvar(i+tindex) := a(i);
end loop;
end if;
end if;
mand <= mandvar;
acc <= sum;
else
if index > top—1 then
finished <= "17;
end if;
end if;
end if;
end process pl;
p2 : process (finished)
begin
if rising_edge(finished) then
product <= sum;
end if;
end process p2;

end architecture behavior;

features from a learning point of view.

Firstly, rather than a “super efficient” shifting model which is difficult to read, the shift and
add function in process p/ is laid out in detail so each stage of the multiplication can be
followed through. Also, notice the use of the signal finished which is used to show when the
calculation is completed. This is useful when designing a controller to show that the

calculation has been completed.

26.4 Synthesis of the Multiplication Function

After completion, this model was run through a standard synthesis software tool, targeted at a

smallish size FPGA with the following results:

Number of ports : 66
Number of nets : 1704
Number of instances : 1639
Number of references to this view : 0
Total accumulated area
Number of BUFGP : 1
Number of Dffs or Latches : 164
Number of Function Generators : 1181

Number of IBUF : 33

Number of MUX CARRYs : 31

Number of MUXF5 : 221
Number of MUXF6 : 2
Number of OBUF : 32
Number of accumulated instances : 1701

Number of global buffers used: 1

hhkhkkhhkhhkhhhkhhkhhhkhkhhkrhkhkhhkrhhkhkhkhrrhkhkhkhkrxhkhkhhkrhhkhkxx

Device Utilization for 2VP2fg256

AKAKAKAKRAKR AR KK AARA AR XA XA KA XA XA XA R A XA h A XA XA XA x k%

Resource Used Avail Utilization
10s 65 140 46.43%
Global Buffers 1 16 6.25%
Function Generators 1181 2816 41.94%
CLB Stlices 591 1408 41.97%
Dffs or Latches 164 3236 5.07%
Block RAMs 0 12 0.00%
Block Multipliers 0 12 0.00%
Clock Frequency

clk : 30.0 MHz

finished : 30.0 MHz

What is clear from this report is the fact that a significant amount of resources was required to
implement this multiplier on a small device. In this case, the optimization was for area and not
speed, but in spite of that, the design usage was nearly 50% of the whole FPGA. Clearly,
arithmetic functions are not always easy on an FPGA, certainly not in area terms, with the
worst culprit being multipliers. However, we are going to investigate alternative techniques
and this is really just for a comparison of resources.

As a result, care must be taken in managing designs, taking advantage of pipelining and using
the available resources as effectively as possible. The downside is that the design becomes
more involved, with a controller generally required, but ultimately with the possibility of
higher performance than an equivalent DSP function. It is also the case that many modern
FPGAs now contain dedicated DSP functions (such as multiplication) which can be targeted
directly in synthesis, which means that the area issue will not occur.

26.5 Simple Multiplication using VHDL

As we have seen in the previous example, there is a method of implementing multiplication
operations using a “first principles” approach and it is incredibly hungry in terms of both
resources and time (taking n shifts to complete a multiplication would lead to a really slow
device).

There is, however, an alternative approach with many modern FPGAs that include multiplier
blocks as part of the design. These are custom multiplication blocks already in place on the
FPGA and this allows the specific multiply function to be implemented directly in

the VHDL.

We can therefore convert the std_logic_vector signals into signed signals and then apply the
product equation directly using the following VHDL (remember a and b are the two inputs,
both of type std_logic_vector, and product is the output, also of type std_logic_vector).

1 Product <= std_logic_vector(signed(a) * signed(b));

Clearly this is much more efficient VHDL than the previous model, but also remember that it
is necessary to declare the IEEE numeric standard library:

1 Use ieee.numeric_std.all;

This allows the use of the signed variable types. The complete model using this approach is
much more compact and is shown below:

1 Tibrary ieee;

2 use IEEE.std_logic_1164.al11;

3 use ieee.numeric_std.all;

4

5 entity mult_sign is

6 generic(top : natural := 15);

7 port (

8 clk : in std_logic;

9 nrst : in std_logic;

10 a : in std_Tlogic_vector (top downto 0);
11 b : in std_logic_vector (top downto 0);
12 product : out std_logic_vector (2xtop+l downto 0)
13)

14 end entity mult_sign;

15

16 architecture behavior of mult_sign is

17 begin

18 pl : process (a,b)

19 begin

20 product <= std_logic_vector(signed(a) % signed(b));
21 end process pl;

22 end architecture behavior;

The resulting synthesis output is much more compact. Clearly the number of 10 blocks (IOBs)
will remain the same, but the usage internally on the FPGA will be much reduced:

Number of ports : 66
Number of nets : 128
Number of instances : 65
Number of references to this view : 0

Total accumulated area
Number of Block Multipliers : 1

Number of gates
Number of accumulated instances : 65

Number of global buffers used: 0

hhkhkhkhkhkhhkhkhhkhkhkhhkhkhkhkhkrhhkhhkrhkhkhhkhhhhkkhkhkrhhkhkhkrhhkhkkxx

Device Utilization for 2VP2fg256

hhkhkkhhkhkhkhhhkhkhkhhhkhkhhkrhkhkhhkrhhkhhkrrhkhkhkhkrxhkhkhkhkrxhhkhkkxx

Resource Used Avail Utilization
10s 66 140 47 .14%
Global Buffers 0 16 0.00%
Function Generators 0 2816 0.00%
CLB Slices 0 1408 0.00%
Dffs or Latches 0 3236 0.00%
BTock RAMs 0 12 0.00%
Block Multipliers 1 12 8.33%

Clearly, for this device, there are 12 multipliers available, and we have used only one, so the
utilization of the remainder of the device is zero. This does lead to the ability to implement
certain lower order filters very effectively using devices such as these.

26.6 Simple Multiplication using Verilog

We can use the same simple approach in Verilog as we have just seen in VHDL, where the use
of the basic unsigned types and a multiplication can be defined in the code directly, and then
the synthesis software will take care of the translation into a physical multiplier.

In the multiplier model in Verilog, we can use a simple assignment as shown in the code
snippet following, where the always statement is used to check for changes in a or b before
assigning the output q to the product. This requires the definition of the output as a register
(but we could also use the approach of defining the output as a wire and using the assign
statement instead).

1 always @ (a or b)
2 begin

3 q <=a x b;

4 end

The complete multiplier model is given in the following listing:

module signmult (
q, // Multiplication Output
a, // Number a
b // Number b

)s

0NN AW~

input [3:0] a; // 4 bit input

9 input [3:0] b; // 4 bit input
10 output [7:01 g; // 8 bit output
11 reg [7:0] q;

13 always @ (a or b)

Figure 26.2
Unsigned multiplication of Verilog.

14 begin

15 g <=a % b;
16 end

17

18 endmodule

In order to test the model we can create a very simple test bench that defines the two variables
(a and b), and after initializing them to zero, sets them to 6 and 4, respectively. The resulting
simulation results are shown in Figure 26.2, which shows the output start at 0 (0 x 0), remain
at 0 (0 x 4) and then finally change to 24 (6 x 4).

1 module signmult_th();
2

3 reg [3:0] a,b;

4 wire [7:0] q;

5

6 signmult ml(q,a,b);

7

8 initial

9 begin

10

11 a = 4’b0000;

12 b = 4"b0000;

13 # 10 a = 4°b0110;
14 # 10 b = 4°b0100;
15

16 $display("a=%d b=%d gq=%d\n", a, b, q);
17 end

18

19 endmodule

26.7 Summary

This chapter has introduced some techniques for implementing multiplication in VHDL and
Verilog for FPGAs and has highlighted the clear difference between using a “first principles”
approach as opposed to utilizing the available resources on the FPGA, both in terms of area
usage and also in terms of model complexity.

There are, of course, other topologies of multiplier, including the Booth multiplier to name but
one, and these are commonly used in hardware. The reader is encouraged to investigate
different options for implementing hardware such as multipliers and how best to implement
the function for their own application.

Simple 7-Segment (LCD) Displays

27.1 Introduction

Simple 7-segment (LCD) displays are in many respects a simple form of decoder, where an
input code of 4 bits is used to specify one of 16 different hexadecimal outputs to be displayed
on an LCD module. The LCD module itself usually consists of 7 individual LEDs or lights
(hence the alternative name ‘““7-segment display”’), which are driven to deliver a particular
character as shown in Figure 27.1. Obviously the display can show any combination of the 7
individual bits, with 27 combinations; however, in practice they are mostly used to display
alphanumeric characters 0-9 and A-F.

In addition to the basic character display, there is also usually a decimal point light, and this
has its own control. Therefore, the LCD can be controlled using 8 individual bits; however, to
make the designer’s job easier, a decoder which uses the correct hexadecimal character as the
input (e.g., 0000 for the character 0) is implemented. This also has the benefit that, for
counters, the input character can be determined using arithmetic and then the decoder will
handle the translation to the individual segments to be shown. This is a typical design reuse
task, where once this has been done once, then the designer can reuse the code on any
application that uses this type of display.

Finally, depending on the type of module or drive circuit, the logic for the LCD segment being
on may be high or low. This will vary from device to device, and in the case of this chapter,
the particular development kit being used defined the logic levels as being Low for ON and
High for OFF. A typical LCD display has anode and cathode connections to each light
emitting diode (LED) in the display and depending on the type of device will have either
common cathodes or anodes. This information will be found on the device or development kit
data sheet. Using this approach, the coding for a hexadecimal character input to the LCD
output is defined in the following table:

27.2 VHDL LCD Module Decoder

The VHDL for a simple LCD decoder uses a simple VHDL construct setting the output
depending on a specific condition. If a signal is assigned a value when a condition is satisfied,
then a single assignment can be made using the following basic pseudocode:

http://dx.doi.org/10.1016/B978-0-08-097129-2.00027-1

Figure 27.1
7 segment LCD display.

H3 H2 H1 HO LCD6 LCD5 LCD4 LCD3 LCD2 LCD1 LCDO
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0 0 0 0
0 1 0 0 0 0 1 1 0 0 1
0 1 0 1 0 0 1 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 1
1 1 0 0 1 0 0 0 1 1 0
1 1 0 1 0 1 0 0 0 0 1
1 1 1 0 0 0 0 0 1 1 0
1 1 1 1 0 0 0 1 1 1 0
1 output <= value when condition;

This can be extended with else statements to cover a set of different conditions, thus:

1 output <= valuel when conditionl else
2 value2 when condition2 else
3

4 valuen when condition;

Finally, if there is a “catch all” default condition, then the final assignment would be added as
follows:

1
2
3
4
5

This could also be implemented as a dedicated VHDL function which returned the correct
combination of bits. Using this approach, the LCD decoder can be simply implemented using

the following VHDL.:
1 library ieee;
2 use ieee.std_logic_1164.al11;
3 use ieee.numeric_std.all;
4
5 entity hexdecoder is
6 port (
7 charin : in std_logic_vector (3 downto 0);
8 hexout : out std_logic_vector(6 downto 0)
9)
10 end;
11
12 architecture simple of hexdecoder is
13 begin
14 hexout <= "1000000" when charin = "0000" else
15 "1111001" when charin = "0001" else
16 "0100100" when charin = "0010" else
17 "0110000" when charin = "0011" else
18 "0011001" when charin = "0100" else
19 "0010010" when charin = "0101" else
20 "0000010" when charin = "0110" else
21 "1111000" when charin = "0111" else
22 "0000000" when charin = "1000" else
23 "0011000" when charin = "1001" else
24 "0001000" when charin = "1010" else
25 "0000011" when charin = "1011" else
26 "1000110" when charin = "1100" else
27 "0100001" when charin = "1101" else
28 "0000110" when charin = "1110" else
29 "0001110" when charin = "1111" else
30 "0110110";
31 end;

The test bench for this decoder could be a simple look-up table of values, but in fact we could
combine the clock and reset test bench from the counter example, and include a simple
counter in the test bench to generate the signals input to the decoder as follows:

NN RN e N R N O R

output <= valuel when conditionl else

value2 when condition2 else

valuen when conditionn else
valuedefault;

library ieee;
use ieee.std_logic_1164.al11;
use ieee.numeric_std.all;

entity testl is
port (
rst : in std_logic;
clk : in std_logic;
hexout : out std_logic_vector(6 downto 0)

10)s
11 end testl;

12

13 architecture stimulus of testl is

14 signal charin : std_logic_vector(3 downto 0);
15

16 component hexdecoder

17 port(

18 charin : in std_logic_vector(3 downto 0);
19 hexout : out std_logic_vector(6 downto 0)
20)3

21 end component;

22 for all : hexdecoder use entity work.hexdecoder ;
23

24 begin

25

26 CUT: hexdecoder port map(charin => charin, hexout => hexout);
27

28 process(clk, rst)

29 variable count : unsigned(26 downto 0);

30 variable charcount : unsigned(3 downto 0);
31 begin

32 if rst = 0’ then

33 count := (others => '0’);

34 charcount := (others => ’0°);

35 elsif rising_edge(clk) then

36 if count = 50000000 then

37 count := (others => "0°);

38 charcount := charcount + 1;

39 else

40 count := count + 1;

41 end if;

42 end if;

43 charin <= std_logic_vector(charcount);

44 end process;

45 end;

27.3 Verilog LCD Module Decoder

In Verilog the approach is very similar to the VHDL, except that we use a slightly different
conditional assignment syntax using a case statement:

case (CharlIn)
4°h0: HexOut = 7°b1000000;

1
2
3 e
4 default: HexOut = 7°b0110110;
5 endcase

The resulting Verilog code is given here:

1 module HexDecoder(HexQut, Charln);
2 output reg [6:0] HexOut;

3 input [3:0] Charln;
4
5

always @(Charln)

6 case (CharlIn)

7 4°h0: HexOut = 7°b1000000;
8 4°hl: HexOut = 7’b1111001;
9 4°h2: HexOut = 7°b0100100;
10 4°h3: HexOut = 7’b0110000;
11 4°h4: HexOut = 7°b0011001;
12 4°h5: HexOut = 7’b0010010;
13 4°h6: HexOut = 7’b0000010;
14 4°h7: HexOut = 7’b1111000;
15 4°h8: HexOut = 7’b0000000;
16 4°h9: HexOut = 7’b0011000;
17 4°hA: HexOut = 7°b0001000;
18 4°hB: HexOut = 7’b0000011;
19 4°hC: HexOut = 7’b1000110;
20 4°hD: HexOut = 7’b0100001;
21 4°hE: HexOut = 7°b0000110;
22 4°hF: HexOut = 7’b0001110;
23 default: HexOut = 7°b0110110;
24 endcase

25 endmodule

And, again this is tested using a simple counter to display each character in sequence. In this
example, the FPGA is running with a clock frequency of 50 MHz, so by setting a counter to
50 x 106 the increment will take place at roughly one-second intervals and display each
character in turn. The complete test bench is shown in this listing:

1 module testl (

2 clk,

3 hexO0,

4 dp

5)

6
7 // Configuration parameters

8 localparam HB_CNT_WIDTH = 26;

9 localparam HB_CNT_MSb = HB_CNT_WIDTH — 1;

10

11 input clk;

12 output [6:0] hex0;

13 output dp0;

14

15 reg [HB_CNT_MSb:0] hbled_r = {HB_CNT_WIDTH{1’b0}};
16 reg [3:0] CharIn = 4°h0;

17 reg dp0;

18

19 always @ (posedge clk)

20 begin

21 // Set the decimal point High which is OFF for this module
22 dp0 = 1’b1;

23

24

25

26 // When the counter reaches zero — increment the character shown
27 if (hbled_r == 50000000) begin

28 CharIn <= CharlIn + 4’°b0001;

29 hbled_r <= 0;

30
31
32
33
34
35
36
37
38
39

end else begin
// Increment the counter
hbled_r <= hbled_r + 1°bl;
end
end

// Decode the character into the LED segments
HexDecoder HexDecoderl(hex0, CharlIn);

endmodule

27.4 Summary

This short chapter has described the basic mechanism for driving simple 7-segment displays
using VHDL and Verilog. This is an extremely useful function when using development
boards, as it allows a visual representation of data to the user in real time, which can be very
helpful for debugging or providing information to the user while the FPGA is running, or
status codes to indicate states or particular behavior.

Bibliography

Introduction

It is normal in a book such as this to have a bibliography that simply lists a series of books.
However, in this book I have decided to not only list the book titles and details, but also give
my perspective on their applicability and context to help the reader in deciding which would
be a suitable book for them. Of course, this is limited to my own viewpoint and others may
well disagree with my short synopses of the books, but hopefully it will help the reader
understand where I found each book useful in this work. There is also a more typical
“academic style” bibliography including not only these texts, but any research material that I
have found useful in the writing of this book. There are numerous other texts available and
readers can find numerous examples online now, many in e-book form, making it easy to
obtain the information they require.

Useful Texts for VHDL

Digital Systems Design with VHDL

Digital system design with VHDL by Zwolinski [1], published by Pearson Education, is a
superb introduction to designing with VHDL. It is used in many universities worldwide for
teaching VHDL at an undergraduate level and has numerous basic examples to enable a
student to get started. I would also recommend this to an FPGA engineer getting started with
VHDL.

The Designer’s Guide to VHDL

The Designer’s Guide to VHDL by Ashenden [3] is perhaps the most comprehensive book on
VHDL from a variety of perspectives. It covers the syntax and language rigorously, has plenty
of examples, and is a great desktop reference book. For nonbeginners in VHDL, this is the
book I would recommend.

http://dx.doi.org/10.1016/B978-0-08-097129-2.10000-5

VHDL: Analysis and Modeling of Digital Systems

VHDL: Analysis and Modeling of Digital Systems (McGraw-Hill Series in Electrical and
Computer Engineering) by Navabi [2] is a detailed look at not only how VHDL can be used to
model digital systems, but many of the detailed issues regarding timing and analysis that are
often skipped over by other texts on VHDL. It is perhaps not a beginner’s book, but is
especially useful for those who require a deeper understanding of issues relating to timing.

VHDL for Logic Synthesis

VHDL for Logic Synthesis by Andrew Rushton, published by Wiley, Rushton [6] is a useful
background text for those who perhaps need to understand how VHDL can be used for
practical synthesis. The book discusses what is and what is not synthesizable and also explains
how some useful and somewhat arcane VHDL functions operate.

Useful Texts for Verilog

Digital Systems Design with SystemVerilog

Digital System Design with SystemVerilog by Zwolinski [4], published by Pearson Education,
is a superb introduction to designing with SystemVerilog. It is used in many universities
worldwide for teaching SystemVerilog at an undergraduate level and has numerous basic
examples to enable a student to get started. I would also recommend this to an FPGA engineer
getting started with SystemVerilog.

Verilog Designer’s Library

Verilog Designer’s Library by Zeidman [5] is a really useful textbook dedicated to Verilog
building blocks for use in real designs. It is mainly targeted at IC design, but of course the
main techniques will generally apply just as well to FPGA design.

Useful Texts for FPGAs

The Design Warriors Guide to FPGAs

The Design Warriors Guide to FPGAs by Clive “Max” Maxfield, published by Elsevier,
Maxfield [7] is an excellent introduction to the field of FPGAs. It introduces the main
concepts in designing with FPGAs as the platform and does not get into low-level details of
VHDL or Verilog, but does have a balance between high-level design issues and low-level

details. This is especially useful for the student who needs to know how FPGAs work and also
for engineers who need a “heads up” on how FPGAs can be used in practice.

General Digital Design Books
Digital Design

Digital Design by M. Morris Mano, published by Prentice Hall, Mano and Ciletti [8] is a good
background text for digital design and computer design. A particularly useful aspect for those
designing embedded processors is the section of the book that discusses the difference
between high-level languages, assembly language and machine code and then develops that
into a design methodology. For anyone starting out with processor design, this is a very useful
text. Mano also has a related book called Computer System Architecture that has more detail in
this area and is equally useful.

References

[1] M. Zwolinski, Digital Systems Design with VHDL, second ed., Pearson Education, England, 2003, ISBN
0-13-039985-X.

[2] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, McGraw-Hill, New York, NY, 1992, ISBN
978-0070464728.

[3] P. Ashenden, Designers Guide to VHDL, Morgan Kaufmann Publishers, San Francisco, CA, 1995, ISBN
1-55860-270-4.

[4] M. Zwolinski, Digital Systems Design with SystemVerilog, Pearson Education, England, 2009, ISBN
978-0137045792.

[5] B. Zeidman, Verilog Designer’s Library, Prentice Hall, Upper Saddle River, NJ, 1999, ISBN 0-13-081154-8.

[6] A. Rushton, VHDL for Logic Synthesis, Wiley, New York, NY, 2011, ISBN 978-0470688472.

[7] C. Maxfield, The Design Warrior’s Guide to FPGAs, Newnes, Burlington, MA, 2004, ISBN
978-0-7506-7604-5.

[8] M.M. Mano, M. Ciletti, Digital Design, Prentice Hall, Upper Saddle River, NJ, 2006, ISBN 978-0131989245.

[9] PJ.M. Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and Applications, Kluwer Academic
Publishers, Dordrecht, 1989.

Further Reading

A.D. Brown, D. Milton, A. Rushton, P.R. Wilson, Behavioural synthesis utilising recursive definitions, IET
Comput. Digit. Tech. 6 (6) (2012) 362-369.

M. Sacker, A.D. Brown, A.J. Rushton, P.R. Wilson, A behavioral synthesis system for asynchronous circuits, IEEE
Trans. Very Large Scale Integr. Syst. 12 (9) (2004) 978-994.

PR. Wilson, A.D. Brown, DES in 4 days using behavioural modeling and simulation, in: IEEE International
Behavioral Modeling and Simulation Conference, BMAS 2005, San Jose, USA, 2005.

http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0010
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0015
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0020
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0025
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0030
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0035
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0040
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0045
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0050
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0055
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0060
http://refhub.elsevier.com/B978-0-08-097129-2.10000-5/rf0065

Index

Note: Page numbers followed by f indicate figures and ¢ indicate tables.

A

Accumulators, 79-80

Advanced encryption standard

(AES)
byte substitution table, 150,
150
structure, 148, 148f
VHDL model, 151-163

AES. See Advanced encryption

standard (AES)

ALU. See Arithmetic logic unit

(ALU)
Architecture, 18, 18f
declaration section, 21
definition, 20-21
statement section, 21
Arithmetic logic unit (ALU)
configurable n-bit addition,
301-302

1-bit adder, 297-299, 298f,
299f

structural n-bit addition,
299-300

two’s complement, 302-304

Verilog, 105-107, 107f,
300-301

VHDL, 89-90, 295-299

B

Baud clock generator, 218-221,
218f

BCD counter. See Binary coded
decimal (BCD) counter

Behavioral hardware
description language
RTL, 237, 238f
Verilog module, 240-242
VHDL, 237-240
Bilinear transformation,
116-117
Binary coded decimal (BCD)
counter, 333-335, 335f
Binary counter
synthesis, 325-327
Verilog, 324-325, 325f
VHDL, 321-324, 322f, 324f
Binary multiplication, 345-346,
346f
Blanking pulse, 201-202,
206-207
Block ciphers. See Data
encryption standard
(DES)

C
Camera link interface
Bayer pattern, 67, 67f
clock pin, 74
data rate, 66-67
hardware interface, 66
memory requirements, 68-69
serial communication lines,
74
Circuit under test (CUT), 46
Comparator model, 255-256,
255f

Complex logic block (CLB),
8-12, 10f

Complex programmable logic
devices (CPLD), 8, 10f

D
Data encryption standard

(DES), 265-266

area vs. throughput, 276,
277f

bit permutation, 138

block cipher, 133

coarse structure, 135, 136f

control state machine,
272-273,272f

data transformation,
269-270

encryption key
transformations,
271-272

feistel lattice (see Feistel
lattice structures)

final optimization, 275-276

fine structure, 135, 136f, 137

key generation, 137, 137f

physical metrics, 276

S-box structure, 137, 137f

structure, 266-268, 267f

triple DES (see Triple data
encryption standard
(Triple DES))

validation, 147

Verilog model, 143-147

VHDL model, 138-143

Datapath optimization

control state machine, 274,
274f

data transformations,
274-275

ROM, 273-274

Data types

bits, 31

Boolean, 31
characters, 32
definition, 30
integer, 31

natural subtype, 31
positive subtype, 31
real numbers, 32
time value, 32
Verilog, 40

Decoder

definition, 337
3-8 decoder, 337, 338f
Verilog, 338-340
VHDL, 337-338,

338f

DES. See Data encryption

standard (DES)

Design optimization

critical path analysis, 234,
235f

Karnaugh map, 231-232,
232f,233f

performance improvement,
233-234, 234f

Digital filters

bilinear transformation,
116-117

FIR, 131, 132f

IIR, 131-132

low pass (see Low pass filter)

Z domain function, 117-122,
125-131

Division model, 120-121

E

Electrically erasable and

programmable read only
memory (EEPROM),
167-168, 182-184

Embedded processors

architecture, 77-78,
78f, 19f

assembly language, 84
fetch execute cycle,
80-81
instruction set, 79-80,
82-83, 84
microprocessor, 84-85, 85f
registers, 81
ROM, 84
soft core processors, 110-111
Verilog model, 95-110
VHDL model, 85-95

Entity, 20

constants, 20
definition, 18-19
generics, 19-20
ports, 19

Feistel lattice structures

architecture, 134, 135f

confusion, 134

diffusion, 134

non singular transformation,
133, 134f

parameters, 134-135

Field programmable gate arrays

(FPGAs)
adding stimuli, 46-48, 47f
assertions, 48
CLB, 8-12, 10f
design complexity, 54-55
design constraints, 12-13
design requirements, 4
design techniques, 12, 113
development boards,
13, 14f
development kits, 13
evolution, 7-8
floating point, 56
hardware functions, 5
high-speed video monitor
system, 65
initialization, 55
manufacture cost, 5
model exchange, reuse, and
synthesis (see Libraries)
multiple clocks, 54-55
operations, 56
optimization level, 4-5
physical design flow, 53

PLD, 8, 9f, 10f
processing power, 65
recursive cut, 53
RTL, 52-53
simulated annealing, 53
simulators, 43-44, 44f
synthesis, 51-52, 51f
test benches, 44, 45-46
timing analysis, 54
Verilog vs. VHDL, 3-4
Finite impulse response (FIR)
filters, 131, 132f
Finite state machines (FSMs)
controller, 60-63, 61f
design structure, 60, 61f
hardware structure, 305,
306f
state transition diagram, 305,
306f
testing, 309, 309f
Verilog, 308-309
VHDL, 305-307
FIR filters. See Finite impulse
response (FIR) filters
Fixed point arithmetic
binary notation, 311, 312f
fixed point notation, 312,
312f
negative number, 311, 312f
real numbers, 315-316
std_logic_vector function,
314-315
Verilog, 318-319
VHDL, 313-314, 317-318
Flash memory, 167-168,
182-184
Flip-flops
architecture, 288-289
D-type, 287-288, 288f,
289-290, 290f
Verilog, 289, 291
VHDL code, 288, 290
Floating point, 319
FSMs. See Finite state

machines (FSMs)
G
Gain block model, 118-119,
125-127

H
Hard disc drive (HDD), 74
Hardware description language
(HDL), 12, 57-58
High speed video application
issues, 65
key performance, 65
linking cameras (see Camera
link interface)
memory interface, 72-73
mouse and keyboard
interfaces, 72
PC interface, 74-75
system decomposition, 71-72
top level design, 66f, 69-71,
70f
VGA, 73
video monitor system, 65,
66f
Horizontal sync process,
199-200, 204-205

I

IEEE standard 1076.1, 244

Infinite impulse response (IIR)
filters, 131-132

Instruction register (IR), 87-88,
98-100, 1001

J
Johnson counter, 331-333, 333f

K
Karnaugh map, 231, 232f, 233f

L
Latches
definition, 285
D latch, 285-286, 286f
synthesized circuit, 287, 287f
Verilog, 286, 287
VHDL, 285-286
Libraries
data types and primitive
models, 48-49
library ieee, 49
std_logic data types, 50-51
std_logic_1164 package,
49-50
working groups, 49

Logic minimization, 231-232
Low pass filter
block diagram, 122, 122f
RC circuit, 115, 116f
simulation, 124, 124f
VHDL model, 122-124

M
Manchester coding
decoding, 212, 214
encoding, 209, 210f
error tolerance, 209
VS. non-return-to-zero,
214-215
Verilog model, 212-214
VHDL model, 210-212
Memory address register
(MAR), 90, 102-104,
105f
Memory data register (MDR),
80-81, 90, 100-102,
103/
Memory model
EEPROM, 167-168, 182-184
HDLs, 168
RAM (see Random access
memory (RAM))
ROM, 168-170
Mixed domain modeling, 246,
258-259
Mixed-signal modeling,
251-253, 252f, 262-263
Multiple domain modeling,
256-257, 263-264
Multiple objective optimization
in control and datapath
synthesis (MOODS),
266, 280-281
Multiplexer (MUX)
definition, 340-341
IEEE symbol, 340-341, 341f
Verilog, 341-342
VHDL, 340-342
Multiplication
binary, 345-346, 346f
synthesis, 348-349
Verilog, 351-352, 352f
VHDL, 349-351
MUX. See Multiplexer (MUX)

N
Newton-Raphson method, 251,
252, 252f
Non-return-to-zero (NRZ),
214-215
Non-return-to-zero-inverted
(NRZI)
long sequences, 215
Verilog model, 215-216
VHDL model, 215-216

|
Product cipher, 133-134
Program counter (PC), 86-87,
95-98, 98f
Programmable logic devices
(PLD), 8, 9f, 10f
PS/2 keyboard
commands, 192
data packets, 192
interface technology, 191
Verilog model, 194-195
VHDL model, 192-194
PS/2 mouse
commands, 185
data packets, 186
interface technology, 185
operation modes, 186-187
Verilog model, 189-190
VHDL model, 187-189
wheel, 187

R
Random access memory
(RAM)
simulation, 172f, 174f, 177f
static and dynamic, 167
synchronous (see
Synchronous random
access memory
(SRAM))
Verilog model, 172, 173-177
VHDL model, 170-171
Read only memory (ROM), 78,
84, 168-170
Registers, 291-294
Register transfer level (RTL),
52-53,237,238f
Rijndael algorithm, 148

RS-232 serial transmission

baud clock generator,
218-221, 218f

receiver state machine, 221,
222f

serial bit stream, 221, 221f

Verilog model, 218-221,
223-224

VHDL model, 218-221,
222-223

S
SDRAM. See Synchronous

dynamic random access

memory (SDRAM)
Serial communications

Manchester coding, 209-210

NRZ and NRZI, 214-215
RS-232 (see RS-232 serial
transmission)

universal serial bus, 225-228
7-segment (LCD) displays, 355,

356f
Verilog, 358-360
VHDL, 355-358
Shift register
functionality, 327, 328f
simulation, 330, 331f
Verilog, 330
VHDL, 327-328, 329
Small Computers System
Interface (SCSI), 74
SRAM. See Synchronous

random access memory

(SRAM)
std_logic_vector function,
314-315
Sum and difference model,
119-120, 127-129
Switch model, 253-255
Synchronous dynamic random
access memory
(SDRAM), 167
Synchronous random access
memory (SRAM), 167
simulation, 180f, 182f
Verilog model, 180-181
VHDL model, 178
Synthesis
assertions, 59

controller, 60-63, 61f

data path logic, 63-64, 63f

design flow, 51-52, 51f

design structure, 60, 61f

HDL development process,
57-58

issues, 52

FOR loop, 59

numeric types, 59

third-party VHDL cores, 59

trigger variables, 60

wait statements, 59

T
Triple data encryption standard
(Triple DES)
EDE2, 276-277
minimum area
implementation,
277-279
minimum latency pipelined,
279-280, 280f

U
Unit delay model, 121-122,
129-131
Universal serial bus (USB)
CP2101 transceiver, 226f
FPGA interface, 225
pin function, 225-226
Verilog model, 227-228
VHDL model, 225-226, 227
USB. See Universal serial bus
(USB)

v
Verilog-AMS
analog and mixed signal
functions, 257
analog equations, 259-260
analog ports, 258
analog variables, 259
DC voltage source, 260
differential equations,
261-262
mixed domain modeling,
258-259
mixed signal modeling,
262-263

multiple domain modeling,
263-264
resistor, 260-261

Verilog model, 108

ALU, 105-107, 107f,
300-301

assertions, 48

BCD counter, 334-335

behavioral HDL, 240-242

binary counter, 324-325,
325f

connections, 36-37

data types, 40

decision-making element,
40-41

decoder, 338-340

DES, 143-147

fixed point arithmetic,
318-319

flip-flops, 289, 291

FSMs, 308-309

instruction register, 98-100,
100f

Johnson counter, 332-333

latches, 286, 287

LCD module decoder,
358-360

loops, 41

Manchester coding, 212-214

memory address register,
102-104, 105f

memory data register,
100-102, 103f

modules, 35, 38-39

multiplication function,
351-352, 352f

MUX, 341-342

NRZI, 216-217

parameters, 39-40

program counter, 95-98, 98f

PS/2 keyboard, 194-195

PS/2 mouse, 189-190

RAM, 172, 173-177

RS-232, 218-221, 223-224

SDRAM, 180-181

sequencer/controller block,
108-110

shift register, 330

simulators, 43

test benches, 44

timing analysis, 54

USB, 227-228

variables, 40

VGA interface, 203-207
wires and registers, 37-38

Vertical sync process, 200-201,

205-206
VGA interface

blanking pulse, 201-202,
206-207

display interface, 73

higher level module,
198-199, 203-204

horizontal sync, 199-200,
204-205

image handling, 198

pixel data correction,
202-203, 207

pixel timing, 197-198

vertical sync, 200-201,
205-206

VHDL-AMS

analog pins, 245

analog variables, 246-247

comparator model, 255-256,
255f

DC voltage source, 247-248,

247f
definition, 244
differential equations,
249-250
extensions, 245

mixed domain modeling, 246

mixed-signal modeling,
251-253, 252f

model entity, 243-244

multiple domain modeling,
256-257

resistor, 248-249, 248f

scope, 244, 244f

simultaneous equations, 247

switch model, 253-255

VHDL model, 17

adding stimuli, 46-48, 47f

AES, 151-163

ALU, 89-90

arithmetic operators, 24

assertions, 48

BCD counter, 333-334

behavioral HDL, 237-240

binary counter, 321-324,
322f, 324f

Boolean operators, 23

case statement, 26

comparison operators, 24

components, 29

concatenation, 24

concurrent edges, 58

constants, 22

controller, 60-63, 61f

data types (see Data types)

debugging, 30

decoder, 337-338, 338f

DES, 138-143

EEPROM, 183, 184

exit command, 27

fixed point arithmetic,
313-316, 317-318

flip-flops, 288-289, 290

FSMs, 305-307

functions, 27-28

if-then-else statement, 25-26

initial conditions, 58

instruction register, 87-88

Johnson counter, 332

latches, 285-286

LCD module decoder,
355-358

logical shift functions, 24

logic functions, 295-299

for loop, 26-27

low pass filter, 122-124

Manchester coding, 210-212

memory block, 90-92

model behavior (see
Architecture)

model exchange, reuse, and
synthesis (see Libraries)

model interface (see Entity)

multiplication function,
349-351

MUX, 340-342

next command, 27

NRZI, 215-216

packages, 28-29

physical design flow, 53

procedures, 30

process, 21-22

processor_functions, 85-86

program counter, 86-87

PS/2 keyboard, 192-194

PS/2 mouse, 187-189

RAM, 170-171

RS-232, 218-221, 222-223

RTL, 52-53

SDRAM, 178

sequencer/controller block,
92-95, 93f

shift register, 327-328, 329

signals, 23

simulators, 43

software packages, 57-58

structural n-bit addition,
299-300

synthesis, 51-52, 326, 327

test benches, 45-46

trigger variables, 60

unsigned multiplier, 346-348

unsupported elements, 58

USB, 225-226, 227

variables, 23

vs. Verilog, 3-4

VGA interface, 198-203

while and loop loops, 27

	Preface
	--- Overview
	Introduction
	Overview
	Verilog vs. VHDL
	Why FPGAs?
	Summary

	FPGA Primer
	Introduction
	FPGA Evolution
	Programmable Logic Devices
	Field Programmable Gate Arrays
	FPGA Design Techniques
	Design Constraints using FPGAs
	Development Kits and Boards
	Summary

	VHDL Primer
	Introduction
	Entity: Model Interface
	The Entity Definition
	Ports
	Generics
	Constants
	Entity Examples

	Architecture: Model Behavior
	Basic Definition of An Architecture
	Architecture Declaration Section
	Architecture Statement Section

	Process: Basic Functional Unit in VHDL
	Basic Variable Types and Operators
	Constants
	Signals
	Variables
	Boolean Operators
	Arithmetic Operators
	Comparison Operators
	Logical Shifting Functions
	Concatenation

	Decisions and Loops
	If-Then-Else
	Case
	For
	While and Loop
	Exit
	Next

	Hierarchical Design
	Functions
	Packages
	Components
	Procedures

	Debugging Models
	Assertions

	Basic Data Types
	Basic Types
	Data Type: bit
	Data Type: Boolean
	Data Type: Integer
	Integer Subtypes: Natural
	Integer Subtypes: Positive
	Data Type: Character
	Data Type: Real
	Data Type: Time

	Summary

	Verilog Primer
	Introduction
	Modules
	Connections
	Wires and Registers
	Defining the Module Behavior
	Parameters
	Variables
	Data Types
	Decision Making
	Loops
	Summary

	Design Automation of FPGAs
	Introduction
	Simulation
	Simulators
	Test Benches
	Test Bench Goals
	Simple Test Bench: Instantiating Components
	Adding Stimuli
	Assertions

	Libraries
	Introduction
	Using Libraries
	Std_logic Libraries

	std_logic Type Definition
	Synthesis
	Design Flow for Synthesis
	Synthesis Issues

	RTL Design Flow
	Physical Design Flow
	Place and Route
	Recursive Cut
	Simulated Annealing

	Timing Analysis
	Design Pitfalls
	Initialization
	Floating Point Numbers and Operations

	Summary

	Synthesis
	Introduction
	HDL Supported in RTL Synthesis
	Initial conditions
	Concurrent edges

	Numeric Types
	Wait Statements
	Assertions
	Loops
	Some Interesting Cases Where Synthesis May Fail
	What Is Being Synthesized?
	Overall Design Structure
	Controller
	Data Path

	Summary

	--- Intro to FPGA Applications
	High Speed Video Application
	Introduction
	The Camera Link Interface
	Hardware Interface
	Data Rates
	The Bayer Pattern
	Memory Requirements

	Getting Started
	Specifying the Interfaces
	Defining the Top Level Design
	System Block Definitions and Interfaces
	Overall System Decomposition
	Mouse and Keyboard Interfaces
	Memory Interface
	The Display Interface: VGA

	The Camera Link Interface
	The PC Interface
	Summary

	Simple Embedded Processors
	Introduction
	A Simple Embedded Processor
	Embedded Processor Architecture
	Basic Instructions
	Fetch Execute Cycle
	Embedded Processor Register Allocation
	A Basic Instruction Set
	Structural or Behavioral?
	Machine Code Instruction Set
	Structural Elements of the Microprocessor

	A Simple Embedded Processor Implemented in VHDL
	Processor Functions Package
	The Program Counter
	The Instruction Register
	The Arithmetic and Logic Unit
	The Memory
	Microcontroller Controller
	Summary of a Simple Microprocessor Implemented in VHDL

	A Simple Embedded Processor Implemented in Verilog
	The Program Counter
	The Instruction Register
	Memory Data Register
	Memory Address Register
	The Arithmetic and Logic Unit
	The Memory
	Microcontroller Controller
	Summary of a Simple Verilog Microprocessor

	Soft Core Processors on an FPGA
	Summary

	--- Designer's Toolbox
	Digital Filters
	Introduction
	Converting S Domain to Z Domain
	Implementing Z Domain Functions in VHDL
	Introduction
	Gain Block
	Sum and Difference
	Division Model
	Unit Delay Model

	Basic Low Pass Filter Model
	Implementing Z Domain Functions in Verilog
	Gain Block
	Sum and Difference
	Unit Delay Model

	Finite Impulse Response Filters
	Infinite Impulse Response Filters
	Summary

	Secure Systems
	Introduction to Block Ciphers
	Feistel Lattice Structures
	The Data Encryption Standard (DES)
	Introduction
	DES VHDL Implementation
	DES Verilog Implementation
	Validation of DES

	Advanced Encryption Standard
	Implementing AES in VHDL

	Summary

	Memory
	Introduction
	Modeling Memory in HDLs
	Read Only Memory
	Random Access Memory
	Synchronous RAM
	Flash Memory
	Summary

	PS/2 Mouse Interface
	Introduction
	PS/2 Mouse Basics
	PS/2 Mouse Commands
	PS/2 Mouse Data Packets
	PS/2 Operation Modes
	PS/2 Mouse with Wheel
	Basic PS/2 Mouse Handler VHDL
	Modified PS/2 Mouse Handler VHDL
	Basic PS/2 Mouse Handler in Verilog
	Summary

	PS/2 Keyboard Interface
	Introduction
	PS/2 Keyboard Basics
	PS/2 Keyboard Commands
	PS/2 Keyboard Data Packets
	PS/2 Keyboard Operation Modes
	Basic PS/2 Keyboard Handler in VHDL
	Modified PS/2 Keyboard Handler in VHDL
	Basic PS/2 Keyboard Handler in Verilog

	Summary

	Simple VGA Interface
	Introduction
	Basic Pixel Timing
	Image Handling
	A VGA Interface in VHDL
	VHDL Top Level Entity for VGA Handling
	Horizontal Sync
	Vertical Sync
	Horizontal and Vertical Blanking Pulses
	Calculating the Correct Pixel Data

	A VGA Interface in Verilog
	Verilog Top Level Module for VGA Handling
	Horizontal Sync
	Vertical Sync
	Horizontal and Vertical Blanking Pulses
	Calculating the Correct Pixel Data

	Summary

	Serial Communications
	Introduction
	Manchester Encoding and Decoding
	Implementing the Manchester Encoding Scheme using VHDL
	Implementing the Manchester Encoding Scheme using Verilog
	NRZ (Non-Return-to-Zero) Coding and Decoding
	NRZI (Non-Return-to-Zero-Inverted) Coding and Decoding
	NRZI Coding and Decoding in VHDL
	NRZI Coding and Decoding in Verilog

	RS-232
	Introduction
	RS-232 Baud Rate Generator
	RS-232 Receiver

	Universal Serial Bus
	Summary

	--- Optimizing Designs
	Design Optimization
	Introduction
	Techniques for Logic Optimization
	Improving Performance
	Critical Path Analysis
	Summary

	Behavioral Modeling in using HDLs
	Introduction
	How to Go from RTL to Behavioral HDL Descriptions
	Implementing the Behavioral Model using VHDL
	Implementing the Behavioral Model using Verilog
	Summary

	Mixed Signal Modeling
	Introduction
	Basic Modeling Approach for VHDL-AMS
	Introduction to VHDL-AMS
	VHDL-AMS Analog Pins: TERMINALS
	Mixed Domain Modeling
	VHDL-AMS Analog Variables: Quantities
	Simultaneous Equations in VHDL-AMS
	A VHDL-AMS Example: A DC Voltage Source
	A VHDL-AMS Example: Resistor
	Differential Equations in VHDL-AMS
	Mixed-Signal Modeling with VHDL-AMS
	A Basic Switch Model
	Basic VHDL-AMS Comparator Model
	Multiple Domain Modeling
	Introduction to Verilog-AMS
	Verilog-AMS: Analog ports
	Mixed Domain Modeling in Verilog-AMS
	Verilog-AMS Analog Variables
	Verilog-AMS Analog Equations
	A Verilog-AMS Example
	DC Voltage Source
	Resistor

	Differential Equations in Verilog-AMS
	Mixed Signal Modeling with Verilog-AMS
	Multiple Domain Modeling using Verilog-AMS
	Summary

	Design Optimization Example - DES
	Introduction
	The Data Encryption Standard
	MOODS
	Initial Design
	Introduction
	Overall Structure
	Data Transformations
	Key Transformations

	Initial Synthesis
	Optimizing the Datapath
	Optimizing the Key Transformations

	Final Optimization
	Results
	Triple DES
	Introduction
	Minimum Area Iterative
	Minimum Latency Pipelined

	Comparing the Approaches
	Summary

	Fundamental Techniques
	Latches, Flip-Flops & Registers
	Introduction
	Latches
	Flip-Flops
	Registers
	Summary

	ALU Functions
	Introduction
	Logic Functions in VHDL
	1-bit Adder

	Structural n-Bit Addition
	Logic Functions in Verilog
	Configurable n-Bit Addition
	Two's Complement
	Summary

	FSMs in VHDL & Verilog
	Introduction
	State Transition Diagrams
	Implementing Finite State Machines in VHDL
	Implementing Finite State Machines in Verilog
	Testing the Finite State Machine Model
	Summary

	Fixed Point Arithmetic
	Introduction
	Basic Fixed Point Types in VHDL
	Fixed Point Functions in VHDL
	Fixed Point to STD_LOGIC_VECTOR Functions
	Fixed Point to Real Conversion

	Testing the VHDL Fixed Point Functions
	Fixed Point Types in Verilog
	Floating Point Types in Verilog
	Summary

	Counters
	Introduction
	Basic Binary Counter using VHDL
	Simple Binary Counter using Verilog
	Synthesized Simple Binary Counter
	Shift Register
	The Johnson Counter
	BCD Counter
	Summary

	Decoders & Multiplexers
	Decoders
	Multiplexers
	Summary

	Multiplication
	Introduction
	Basic Binary Multiplication
	VHDL Unsigned Multiplier
	Synthesis of the Multiplication Function
	Simple Multiplication using VHDL
	Simple Multiplication using Verilog
	Summary

	Simple 7-Segment (LCD) Displays
	Introduction
	VHDL LCD Module Decoder
	Verilog LCD Module Decoder
	Summary

	Biblio
	Index

