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PREFACE

The Verilog language provides a means to model a digital system at many levels of
abstraction from a logic gate, to a complex digital system, to a mainframe computer.
The purpose of this book is to present the Verilog language together with a wide
variety of examples so that the reader can gain a firm foundation in the design of dig-
ital systems using Verilog HDL.  The different modeling constructs supported by
Verilog are described in detail.

Numerous examples are designed in each chapter. The examples include logical
operations, counters of different moduli, half adders, full adders, a carry lookahead
adder, array multipliers, the Booth multiply algorithm, different types of Moore and
Mealy machines, including sequence detectors, arithmetic and logic units (ALUs).
Also included are synchronous sequential machines and asynchronous sequential
machines, including pulse-mode asynchronous sequential machines.

Emphasis is placed on the detailed design of various Verilog projects.  The
projects include the design module, the test bench module, and the outputs obtained
from the simulator that illustrate the complete functional operation of the design.
Where applicable, a detailed review of the theory of the topic is presented together
with the logic design principles.  This includes state diagrams, Karnaugh maps,
equations, and the logic diagram.

The book is intended to be tutorial, and as such, is comprehensive and self-con-
tained.  All designs are carried through to completion — nothing is left unfinished or
partially designed.  Each chapter includes numerous problems of varying complexity
to be designed by the reader.

Chapter 1 presents an overview of the Verilog HDL language and discusses the
different design methodologies used in designing a project.  The chapter is intended
to introduce the reader to the basic concepts of Verilog modeling techniques, includ-
ing dataflow modeling, behavioral modeling, and structural modeling.  Examples are
presented to illustrate the different modeling techniques.  There are also sections that
incorporate more than one modeling construct in a mixed-design model.  The con-
cept of ports and modules is introduced in conjunction with the use of test benches
for module design verification.

The chapter introduces gate-level modeling using built-in primitive gates.  Ver-
ilog has a profuse set of built-in primitive gates that are used to model nets, including
and, nand, or, nor, xor, xnor, and not, among others.  This chapter presents a
design methodology that is characterized by a low level of abstraction, in which the
logic hardware is described in terms of gates.  This is similar to designing logic by
drawing logic gate symbols.
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The chapter also describes different techniques used to design logic circuits using
dataflow modeling.  These techniques include the continuous assignment statement,
reduction operators, the conditional operator, relational operators, logical operators,
bitwise operators, and shift operators.

This chapter also presents behavioral modeling, which describes the behavior of a
digital system and is not concerned with the direct implementation of logic gates, but
more on the architecture of the system.  This is an algorithmic approach to hardware
implementation and represents a higher level of abstraction than previous modeling
methods.

Also included in this chapter is structural modeling, which consists of instantiat-
ing one or more of the following design objects into the module:

• Built-in primitives
• User-defined primitives (UDPs)
• Design modules

Instantiation means to use one or more lower-level modules — including logic prim-
itives — that are interconnected in the construction of a higher-level structural mod-
ule.

Chapter 2 presents combinational logic design using Verilog HDL.  Verilog is
used to design multiplexers, comparators, programmable logic devices, and a variety
of logic equations in this chapter.  A combinational logic circuit is one in which the
outputs are a function of the present inputs only.  This chapter also includes number
systems and Boolean algebra.  The number systems are binary, octal, decimal, and
hexadecimal.  Boolean algebra is a systematic treatment of the logic operations
AND, OR, NOT, exclusive-OR, and exclusive-NOR.  The axioms and theorems of
Boolean algebra are also presented.  The programmable logic devices include pro-
grammable read-only memories, programmable array logic devices, and programma-
ble logic array devices.

Chapter 3 presents the design of sequential logic using Verilog HDL.  The
examples include both Moore and Mealy sequential machines.  Moore machines are
synchronous sequential machines in which the output function produces an output
vector which is determined by the present state only, and is not a function of the
present inputs.  This is in contrast to Mealy synchronous sequential machines in
which the output function produces an output vector which is determined by both the
present input vector and the present state of the machine.

This chapter describes three types of sequential machines: synchronous sequen-
tial machines which use a system clock and generally require a state diagram or a
state table for its precise description; asynchronous sequential machines in which
there is no system clock — state changes occur on the application of input signals
only; and pulse-mode asynchronous sequential machines in which state changes
occur on the application of input pulses which trigger the storage elements, rather
than on a system clock signal.

Chapter 4 presents arithmetic operations for the three primary number represen-
tations: fixed-point, binary-coded decimal (BCD), and floating-point.  For fixed-
point, the radix point is placed to the immediate right of the number for integers or to
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the immediate left of the number for fractions.  For binary-coded decimal, each deci-
mal digit can be encoded into a corresponding binary number; however, only ten
decimal digits are valid.  For floating-point, the numbers consist of the following
three fields: a sign bit, an exponent e, and a fraction f, as shown below for radix r.
Addition, subtraction, multiplication, and division will be applied to all three number
representations.

For fixed-point addition,the two operands are the augend and the addend.  The
addend is added to the augend to produce the sum.  Addition of two binary operands
treats both signed and unsigned operands the same — there is no distinction between
the two types of numbers during the add operation.  If the numbers are signed, then
the sign bit can be extended to the left indefinitely without changing the value of the
number.

For fixed-point subtraction, the two operands are the minuend and the subtra-
hend.  The subtrahend is subtracted from the minuend to produce the difference.
Subtraction can be performed in all three number representations: sign magnitude,
diminished-radix complement, and radix complement; however, radix complement
is the easiest and most widely used method for subtraction in any radix.

For fixed-point multiplication, the two operands are the multiplicand and the
multiplier.  The n-bit multiplicand is multiplied by the n-bit multiplier to generate the
2n-bit product.  In all methods of multiplication the product is usually 2n bits in
length.  The operands can be either unsigned or signed numbers in 2s complement
representation.

For fixed-point division, the two operands are the dividend and the divisor.  The
2n-bit dividend is divided by the n-bit divisor to produce an n-bit quotient and an n-
bit remainder, as shown below.

2n-bit dividend = (n-bit divisor  n-bit quotient) + n-bit remainder

For binary-coded decimal addition, and other BCD calculations, the highest-val-
ued decimal digit is 9, which requires four bits in the binary representation (1001).
Therefore, each operand is represented by a 4-bit BCD code.  Since four binary bits
have sixteen combinations (0000 – 1111) and the range for a single decimal digit is 0
– 9, six of the sixteen combinations (1010 – 1111) are invalid for BCD.  These
invalid BCD digits must be converted to valid digits by adding six to the digit.  This
is the concept for addition with sum correction.  The adder must include correction
logic for intermediate sums that are greater than or equal to 1010 in radix 2.

For binary-coded decimal subtraction, the BCD code is not self-complementing
as is the radix 2 fixed-point number representation; that is, the r – 1 complement can-
not be acquired by inverting each bit of the 4-bit BCD digit.  Therefore, a 9s comple-
menter must be designed that provides the same function as the diminished-radix
complement for the fixed-point number representation.  Thus, subtraction in BCD is
essentially the same as in fixed-point binary.

A = f  r e
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For binary-coded decimal multiplication, the algorithms for BCD multiplication
are more complex than those for fixed-point multiplication.  This is because decimal
digits consist of four binary bits and have values in the range of 0 to 9, whereas
fixed-point digits have values of 0 or 1.  One method that is commonly used is to per-
form the multiplication in the fixed-point number representation; then convert the
product to the BCD number representation.  This is accomplished by utilizing a
binary-to-decimal converter, which is used to convert a fixed-point multiplication
product to the decimal number representation.

For binary-coded decimal division, the division process is first reviewed by
using examples of the restoring division method.  Then a mixed-design (behavioral/
dataflow) module is presented.  The dividend is an 8-bit vector, a[7:0]; the divisor is
a 4-bit vector, b[3:0]; and the result is an 8-bit quotient/remainder vector, rslt[7:0].

For floating-point addition, the material presented is based on the Institute of
Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point
Arithmetic IEEE Std 754-1985 (Reaffirmed 1990).  Floating-point numbers consist
of the following three fields: a sign bit s, an exponent e, and a fraction f.  Unbiased
and biased exponents are explained.  Numerical examples are given that clarify the
technique for adding floating-point numbers.  The floating-point addition algorithm
is given in a step-by-step procedure. A floating-point adder is implemented using
behavioral modeling.

For floating-point subtraction, several numerical examples are presented that
graphically portray the steps required for true addition and true subtraction for float-
ing-point operands.  True addition produces a result that is the sum of the two oper-
ands disregarding the signs; true subtraction produces a result that is the difference of
the two operands disregarding the signs.  A behavioral module is presented that illus-
trates subtraction operations which yield results that are either true addition or true
subtraction.

For floating-point multiplication, numerical examples are presented that illustrate
the operation of floating-point multiplication.  In floating-point multiplication, the
fractions are multiplied and the exponents are added.  The fractions are multiplied by
any of the methods previously used in fixed-point multiplication.  The operands are
two normalized floating-point operands.  Fraction multiplication and exponent addi-
tion are two independent operations and can be done in parallel.  Floating-point mul-
tiplication is defined as follows:

A  B = (fA  fB)  r
(eA + eB)

For floating-point division, the operation is accomplished by dividing the frac-
tions and subtracting the exponents.  The fractions are divided by any of the methods
presented in the section on fixed-point division and overflow is checked in the same
manner.  Fraction division and exponent subtraction are two independent operations
and can be done in parallel.  Floating-point division is defined as follows:

A / B = (fA / fB)  r(eA – eB)
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Appendix A presents a brief discussion on event handling using the event queue.
Operations that occur in a Verilog module are typically handled by an event queue.

Appendix B presents a procedure to implement a Verilog project.
Appendix C contains the solutions to selected problems in each chapter.

The material presented in this book represents more than two decades of com-
puter equipment design by the author.  The book is not intended as a text on logic
design, although this subject is reviewed where applicable.  It is assumed that the
reader has an adequate background in combinational and sequential logic design.
The book presents the Verilog HDL with numerous design examples to help the
reader thoroughly understand this popular HDL.

This book is designed for practicing electrical engineers, computer engineers,
and computer scientists; for graduate students in electrical engineering, computer
engineering, and computer science; and for senior-level undergraduate students.

A special thanks to David Dutton, CEO of Silvaco Incorporated, for allowing
use of the SILOS Simulation Environment software for the examples in this book.
SILOS is an intuitive, easy-to-use, yet powerful Verilog HDL simulator for logic
verification.

I would like to express my appreciation and thanks to the following people who
gave generously of their time and expertise to review the manuscript and submit
comments: Professor Daniel W. Lewis, Department of Computer Engineering, Santa
Clara University who supported me in all my endeavors; Geri Lamble; and Steve
Midford.  Thanks also to Nora Konopka and the staff at Taylor & Francis for their
support.

Joseph Cavanagh
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1

1
Introduction to Logic Design 
Using Verilog HDL

This chapter provides an introduction to the design methodologies and modeling con-
structs of the Verilog hardware description language (HDL).  Modules, ports, and test
benches will be presented.  This chapter introduces Verilog in conjunction with com-
binational logic and sequential logic.  The Verilog simulator used in this book is easy
to learn and use, yet powerful enough for any application.  It is a logic simulator —
called SILOS — developed by Silvaco Incorporated for use in the design and verifi-
cation of digital systems.  The SILOS simulation environment is a method to quickly
prototype and debug any application-specific integrated circuit (ASIC), field-pro-
grammable gate array (FPGA), or complex programmable logic device (CPLD) de-
sign.

Language elements will be described, which consist of comments, logic gates,
logic macro functions, parameters, procedural control statements which modify the
flow of control in a program, and data types.  Also presented will be expressions con-
sisting of operands and operators.  Built-in primitives are discussed which are used to
describe  a net.  In addition to built-in primitives, user-defined primitives (UDPs) are
presented which are  at a higher-level logic function than built-in primitives.

This chapter also presents dataflow modeling which is at a higher level of abstrac-
tion than built-in primitives or user-defined primitives.  Dataflow modeling corre-
sponds one-to-one with conventional logic design at the gate level.  Also introduced is
behavioral modeling which describes the behavior of the system and is not concerned
with the direct implementation of the logic gates but more on the architecture of the
machine.  Structural modeling is presented which instantiates one or more lower-level
modules into the design.  The objects that are instantiated are called instances.  A

1.1 Language Elements
1.2 Expressions
1.3 Modules and Ports
1.4 Built-in Primitives
1.5 User-Defined Primitives
1.6 Dataflow Modeling
1.7 Behavioral Modeling
1.8 Structural Modeling
1.9 Tasks and Functions
1.10 Problems
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module can be a logic gate, an adder, a multiplexer, a counter, or some other logical
function.  Structural modeling is described by the interconnection of these lower-level
logic primitives of modules.

Tasks and functions are also included in this chapter.  These constructs allow a be-
havioral module to be partitioned into smaller segments.  Tasks and functions permit
modules to execute common code segments that are written once then called when re-
quired, thus reducing the amount of code needed.

1.1 Logic Elements
Logic elements are the constituent parts of the Verilog language.  They consist of com-
ments, logic gates, parameters, procedural control statements which modify the flow
of control in a behavior, and data types.

1.1.1  Comments

Comments can be inserted into a Verilog module to explain the function of a particular
block of code or a line of code.  There are two types of comments: single line and mul-
tiple lines.  A single-line comment is indicated by a double forward slash (//) and may
be placed on a separate line or at the end of a line of code, as shown below.

A single-line comment usually explains the function of the following block of
code.  A comment on a line of code explains the function of that particular line of code.
All characters that follow the forward slashes are ignored by the compiler.

A multiple-line comment begins with a forward slash followed by an asterisk (/*)
and ends with an asterisk followed by a forward slash (*/), as shown below.  Multiple-
line comments cannot be nested.  All characters within a multiple-line comment are ig-
nored by the compiler.

1.1.2  Logic Gates

Figure 1.1 shows the logic gate distinctive-shape symbols.  The polarity symbol “ “
indicates an active-low assertion on either an input or an output of a logic symbol. 

//This is a single-line comment on a dedicated line
assign z1 = x1 | x2 //This is a comment on a line of code

/*This is a multiple-line comment.
More comments go here.
More comments. */
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Figure 1.1 Logic gate symbols for logic design: (a) AND gate, (b) OR gate, (c)
NOT function (inverter), (d) NAND gate, (e) NAND gate for the OR function, (f)
NOR gate, (g) NOR gate for the AND function.

The AND gate can also be used for the OR function, as shown below.

Distinctive shape

(a) AND

(b) OR

(c) NOT (inverter)

(d) NAND

(e) NAND

(f) NOR

(g) NOR

AND gate for the AND function AND gate for the OR function
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The OR gate can also be used for the AND function, as shown below.

An exclusive-OR gate is shown below.  The output of an exclusive-OR gate is a
logical 1 whenever the two inputs are different.

An exclusive-NOR gate is shown below.  An exclusive-NOR gate is also called an
equality function because the output is a logical 1 whenever the two inputs are equal.

Truth tables for the logic elements are shown in Table 1.1, Table 1.2, Table 1.3,
Table 1.4, Table 1.5, and Table 1.6.

OR gate for the OR function OR gate for the AND function

Exclusive-OR gate

Exclusive-NOR gate

Table 1.1  Truth Table
for the AND Gate

x1 x2 z1

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.2  Truth Table 
for the NAND Gate

x1 x2 z1

0 0 1
0 1 1
1 0 1
1 1 0

Table 1.3  Truth Table
for the OR Gate

x1 x2 z1

0 0 0
0 1 1
1 0 1
1 1 1

Table 1.4  Truth Table
for the NOR Gate

x1 x2 z1

0 0 1
0 1 0
1 0 0
1 1 0
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Fan-In Logic gates for the AND and OR functions can be extended to accommodate
more than two variables; that is, more than two inputs.  The number of inputs available
at a logic gate is called the fan-in.

Fan-Out The fan-out of a logic gate is the maximum number of inputs that the gate
can drive and still maintain acceptable voltage and current levels.  That is, the fan-out
defines the maximum load that the gate can handle.

1.1.3  Logic Macro Functions

Logic macro functions are those circuits that consist of several logic primitives to form
larger more complex functions.  Combinational logic macros include circuits such as
multiplexers, decoders, encoders, comparators, adders, subtractors, array multipliers,
array dividers, and error detection and correction circuits.  Sequential logic macros
include circuits such as: SR latches; D and JK flip-flops; counters of various moduli,
including count-up and count-down counters; registers, including shift registers; and
sequential multipliers and dividers.  This section will present the functional operation
of multiplexers, decoders, encoders, priority encoders, and comparators.

Multiplexers A multiplexer is a logic macro device that allows digital information
from two or more data inputs to be directed to a single output.  Data input selection is
controlled by a set of select inputs that determine which data input is gated to the out-
put.  The select inputs are labeled s0, s1, s2,     , si,    , sn–1, where s0 is the low-order
select input with a binary weight of 20 and sn–1 is the high-order select input with a
binary weight of 2n–1.  The data inputs are labeled d0, d1, d2,    , dj,    , dn–1.  Thus,
if a multiplexer has n select inputs, then the number of data inputs will be 2n and will
be labeled d0 through dn–1.  For example, if n = 2, then the multiplexer has two select
inputs s0 and s1 and four data inputs d0, d1, d2, and d3.

The logic diagram for a 4:1 multiplexer is shown in Figure 1.2.  There can also be
an enable input which gates the selected data input to the output.  Each of the four data
inputs x0, x1 , x2, and x3 is connected to a separate 3-input AND gate.  The select inputs

Table 1.5  Truth Table for
the Exclusive-OR Function

x1 x2 z1

0 0 0
0 1 1
1 0 1
1 1 0

Table 1.6  Truth Table for
the Exclusive-NOR Function

x1 x2 z1

0 0 1
0 1 0
1 0 0
1 1 1
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s0  and s1  are decoded to select a particular AND gate.  The output of each AND gate
is applied to a 4-input OR gate that provides the single output z1.  Input lines that are
not selected cannot be transferred to the output and are treated as “don’t cares.”

Figure 1.2 Logic diagram for a 4:1 multiplexer.

Figure 1.3 shows a typical multiplexer drawn in the ANSI/IEEE Std. 91-1984 for-
mat.  Consider the 4:1 multiplexer in Figure 1.3.  If s1 s0 = 00, then data input d0 is se-
lected and its value is propagated to the multiplexer output z1.  Similarly, if s1 s0 = 01,
then data input d1 is selected and its value is directed to the multiplexer output.

The equation that represents output z1 in the 4:1 multiplexer  is shown in Equation
1.1.  Output z1 assumes the value of d0 if s1 s0 = 00, as indicated by the term s1 's0 'd0 .
Likewise, z1 assumes the value of d1  when s1s0 = 01, as indicated by the term s1 's0d1 .

There is a one-to-one correspondence between the data input numbers di of a mul-
tiplexer and the minterm locations in a Karnaugh map.  Equation 1.2 is plotted on the
Karnaugh map shown in Figure 1.3(a) using x3as a map-entered variable.  Minterm
location 0 corresponds to data input d0 of the multiplexer; minterm location 1 corre-
sponds to data input d1; minterm location 2 corresponds to data input d2; and minterm
location 3 corresponds to data input d3.  The Karnaugh map and the multiplexer imple-
ment Equation 1.2, where x2  is the low-order variable in the Karnaugh map.  Figure
1.3(b) shows the implementation using a 4:1 multiplexer.

+s0

+s1

+d0

+d1

+d2

+d3

s1's0'd0

s1's0d1

s1s0'd2

s1s0d3

+z1

z1 = s1 's0 'd0 + s1 's0 d1  + s1 s0 'd2  + s1 s0 d3 (1.1)
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Figure 1.3 Multiplexer using a map-entered variable: (a) Karnaugh map and (b)
a 4:1 multiplexer.

Linear-select multiplexers The multiplexer examples described thus far have
been classified as linear-select multiplexers, because all of the variables of the Kar-
naugh map coordinates have been utilized as the select inputs for the multiplexer.
Since there is a one-to-one correspondence between the minterms of a Karnaugh map
and the data inputs of a multiplexer, designing the input logic is relatively
straightforward.  Simply assign the values of the minterms in the Karnaugh map to the
corresponding multiplexer data inputs with the same subscript.

Nonlinear-select multiplexers Although the logic functions correctly accord-
ing to the equation using a linear-select multiplexer, the design may demonstrate an in-
efficient use of the 2p:1 multiplexers.  Smaller multiplexers with fewer data inputs
could be effectively utilized with a corresponding reduction in machine cost.

For example, the Karnaugh map shown in Figure 1.4 can be implemented with a
4:1 nonlinear-select multiplexer for the function z1 instead of an 8:1 linear-select mul-
tiplexer.  Variables x2  and x3 will connect to select inputs s1 and s0, respectively.
When select inputs s1s0  = x2x3  = 00, data input d0 is selected; therefore, d0  = 0.  When
select inputs  s1s0  = x2x3  = 01, data input d1 is selected and d1 contains the comple-
ment of x1; therefore, d1  = x1' .  When select inputs  s1s0  = x2x3  = 10, data input d2  is
selected; therefore, d2 = 1.  When  s1s0  = x2x3  = 11, data input d3 is selected and con-
tains the same value as x1 ; therefore, d3 = x1.  The logic diagram is shown in Figure 1.5

The multiplexer of Figure 1.5 can be checked to verify that it operates according to
the Karnaugh map of Figure 1.4; that is, for every value of x1x2x3 , output z1 should
generate the same value as in the corresponding minterm location.

z1 = x1x2(x3' ) + x1x2' (x3) + x1' x2 (1.2)

    x1

    x2
 0

 0

 1

 1      x3       x3'

 0            1

    2            3

MUX
s0

d0
d1

s1

d3

d2

+z1

0        1
+x2
+x1

–Logic 0
+Logic 1

z1 +x3
–x3

(a) (b)(b)
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Figure 1.4 Karnaugh map for an example which will be implemented by a 4:1
nonlinear-select multiplexer.

Figure 1.5 A 4:1 nonlinear-select multiplexer to implement the Karnaugh map
of Figure 1.4.

Decoders A decoder is a combinational logic macro that is characterized by the
following property: For every valid combination of inputs, a unique output is gener-
ated.  In general, a decoder has n binary inputs and m mutually exclusive outputs,
where 2n  m.  An n:m  (n-to-m) decoder is shown in Figure 1.6, where the label DX
specifies a demultiplexer.  Each output represents a minterm that corresponds to the
binary representation of the input vector.  Thus,  zi = mi, where mi is the ith minterm of
the n input variables.

For example, if n = 3 and x1x2x3  = 101, then output z5 is asserted.  A decoder with
n inputs, therefore, has a maximum of 2n outputs.  Because the outputs are mutually
exclusive, only one output is active for each different combination of the inputs.  The
decoder outputs may be asserted high or low.  Decoders have many applications in
digital engineering, ranging from instruction decoding to memory addressing to code
conversion.

Figure 1.7 illustrates the logic symbol for a 2:4 decoder, where x1  and x2 are the
binary input variables and z0, z1, z2 , and z3  are the output variables.  Input x2  is the
low-order variable.  Since there are two inputs, each output corresponds to a different
minterm of two variables.

  0 0      0 1     1 1      10
x2x3

    x1

 0       0         1        0         1

 1       0         0        1         1

 0            1           3            2

 4            5           7           6

z1

d0  = 0
d1  = x1 '
d2  = 1
d3 = x1

 d0
= 0

d1
= x1'

d3
= x1

d2
= 1

MUX
s0

d0
d1

s1

d3

d2

+x3
+x2

–Logic 0
–x1
+Logic 1
+x1

+z1
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Figure 1.6 An n:m decoder.

Figure 1.7 Logic symbol for a 2:4 decoder.

A 3:8 decoder is shown in Figure 1.8 which decodes a binary number into the cor-
responding octal number.  The three inputs are x1 , x2 , and x3  with binary weights of
22, 21, and 20, respectively.  The decoder generates an output that corresponds to the
decimal value of the binary inputs.  For example, if x1x2x3 = 110, then output z6 is as-
serted high.  A decoder may also have an enable function which allows the selected
output to be asserted.

Figure 1.8 A binary-to-octal decoder.

   DX
+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+z1
+z2
+z3
  .
  .
  .
+zm–1
+zm

DX
1        0
2        1
          2
          3

+x2
+x1

+z0
+z1
+z2
+z3

BIN/OCT

0
1
2
3
4
5
6
7

1
2
4

&
EN

+x3
+x2
+x1

+z0
+z1
+z2
+z3
+z4
+z5
+z6
+z7
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The internal logic for the binary-to-octal decoder of Figure 1.8 is shown in Figure
1.9.  The Enable gate allows for additional logic functions to control the assertion of
the active-high outputs.

Figure 1.9 Internal logic for the binary-to-octal decoder of Figure 1.8.

Encoders An encoder is a macro logic circuit with n mutually exclusive inputs and
m binary outputs, where n  2m.  The inputs are mutually exclusive to prevent errors
from appearing on the outputs.  The outputs generate a binary code that corresponds to
the active input value.  The function of an encoder can be considered to be the inverse
of a decoder; that is, the mutually exclusive inputs are encoded into a corresponding
binary number.

A general block diagram for an n:m encoder is shown in Figure 1.10.  An encoder
is also referred to as a code converter.  In the label of Figure 1.10, X corresponds to the

+x3

+x2

+x1

+z0

+z1

+z2

+z3

+z4

+z5

+z6

+z7

Enable

x1'x2'x3'

x1'x2'x3

x1'x2x3'

x1'x2x3

x1x2'x3'

x1x2'x3

x1x2x3'

x1x2x3



1.1     Logic Elements     11

input code and Y corresponds to the output code.  The general qualifying label X/Y is
replaced by the input and output codes, respectively, such as, OCT/BIN for an octal-
to-binary code converter.  Only one input xi is asserted at a time.  The decimal value of
xi is encoded as a binary number which is specified by the m outputs.

Figure 1.10 An n:m encoder or code converter.

An 8:3 octal-to-binary encoder is shown in Figure 1.11.  Although there are 28

possible input combinations of eight variables, only eight combinations are valid.  The
eight inputs each generate a unique octal code word in binary.  If the outputs are to be
enabled, then the gating can occur at the output gates.

Figure 1.11 An octal-to-binary encoder.

The low-order output z3  is asserted when one of the following inputs are active: x1 , x3 ,
x5 , or x7.  Output z2 is asserted when one of the following inputs are active: x2 , x3 , x6,

   X/Y
+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+z1
+z2
+z3
  .
  .
  .
+zm–1
+zm

   

+x0
+x1
+x2
  +x3

+z3
+z2
+z1

0
1
2
3
4
5
6
7

+x4
+x5
+x6
+x7

1
2
4

OCT/BIN
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or x7.  Output z1 is asserted when one of the following inputs are active: x4 , x5, x6, or
x7.  The encoder can be implemented with OR gates whose inputs are established from
Equation 1.3 and Figure 1.12.

Figure 1.12 Logic diagram for an 8:3 encoder.

Priority encoder It was stated previously that encoder inputs are mutually exclu-
sive.  There may be situations, however, where more than one input can be active at a
time.  Then a priority must be established to select and encode a particular input.  This
is referred to as a priority encoder.

Usually the input with the highest valued subscript is selected as highest priority
for encoding.  Thus, if xi and xj are active simultaneously and i < j, then xj has priority
over xi.  The truth table for an octal-to-binary priority encoder is shown in Table 1.7.
The outputs z1z2z3  generate a binary number that is equivalent to the highest priority
input.  If x3  = 1, the state of x0, x1, and x2 is irrelevant (“don’t care”) and the output is
the binary number 011.

Comparators A comparator is a logic macro circuit that compares the magnitude
of two n-bit binary numbers X1 and X2.  Therefore, there are 2n inputs and three out-
puts that indicate the relative magnitude of the two numbers.  The outputs are mutually
exclusive, specifying X1 < X2, X1 = X2, or X1 > X2 .  Figure 1.13 shows a general block
diagram of a comparator.

If two or more comparators are connected in cascade, then three additional inputs
are required for each comparator.  These additional inputs indicate the relative mag-
nitude of the previous lower-order comparator inputs and specify X1 < X2 , X1 = X2, or
X1 > X2  for the previous stage.  Cascading comparators usually apply only to com-
mercially available comparator integrated circuits.

z3 = x1  + x3  + x5 + x7

z2 = x2  + x3  + x6 + x7

z1 = x4  + x5 + x6 + x7 (1.3)

+x0
+x1

+x2+x3

+x4
+x5

+x6+x7

+z3 (1)

+z2 (2)

+z1 (4)
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Figure 1.13 General block diagram of a comparator.

Designing the hardware for a comparator is relatively straightforward — it con-
sists of AND gates, OR gates, and exclusive-NOR circuits as shown in Equation 1.4.
An alternative approach which may be used to minimize the amount of hardware is to
eliminate the equation for X1 = X2  and replace it with Equation 1.5.  That is, if X1 is
neither less nor greater than X2 , then X1 must equal X2 .

Table 1.7  Octal-to-Binary Priority Encoder

Inputs Outputs

x0 x1 x2 x3 x4 x5 x6 x7 z1 z2 z3

1 0 0 0 0 0 0 0 0 0 0
– 1 0 0 0 0 0 0 0 0 1
– – 1 0 0 0 0 0 0 1 0
– – – 1 0 0 0 0 0 1 1
– – – – 1 0 0 0 1 0 0
– – – – – 1 0 0 1 0 1
– – – – – – 1 0 1 1 0
– – – – – – – 1 1 1 1

   COMP
+x11

  .
  .

  . +z1
+z2
+z3

+x12

+x1n

+x21
+x22   .

  .
  .+x2n

X1<X2
X1=X2
X1>X2

(X1 < X2) = x11'x21 + (x11  x21)' x12'x22 + (x11  x21)' (x12  x22)'x13' x23

(X1 = X2) = (x11  x21)' (x12  x22 )'(x13  x23)'

(X1 > X2) = x11 x21' + (x11  x21)' x12x22' + (x11 x21)' (x12 x22)'x13 x23' (1.4)
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(X1 = X2) if (X1 < X2) ' AND (X1 > X2) '   (1.5)

1.1.4  Procedural Flow Control

Procedural flow control statements modify the flow in a behavior by selecting branch
options, repeating certain activities, selecting a parallel activity, or terminating an ac-
tivity.  The activity can occur in sequential blocks or in parallel blocks.

begin . . . end The begin . . . end keywords are used to group multiple statements
into sequential blocks.  The statements in a sequential block execute in sequence; that
is, a statement does not execute until the preceding statement has executed, except for
nonblocking statements.  If there is only one procedural statement in the block, then
the begin . . . end keywords may be omitted.

disable The disable statement terminates a named block of procedural statements
or a task and transfers control to the statement immediately following the block or
task.  The disable statement can also be used to exit a loop.

for The keyword for is used to specify a loop.  The for loop repeats the execution of
a procedural statement or a block of procedural statements a specified number of
times.  The for loop is used when there is a specified beginning and end to the loop.
The format and function of a for loop is similar to the for loop used in the C program-
ming language.  The parentheses following the keyword for contain three expressions
separated by semicolons, as shown below.

for (register initialization; test condition; update register control variable)
procedural statement or block of procedural statements

forever The forever loop statement executes the procedural statements continu-
ously.  The loop is primarily used for timing control constructs, such as clock pulse
generation.  The forever procedural statement must be contained within an initial or
an always block.  In order to exit the loop, the disable statement may be used to pre-
maturely terminate the procedural statements.  An always statement executes at the
beginning of simulation; the forever statement executes only when it is encountered in
a procedural block.

if . . . else These keywords are used as conditional statements to alter the flow of
activity through a behavioral module.  They permit a choice of alternative paths based
upon a Boolean value obtained from a condition.  The syntax is shown below.

if (condition)
{procedural statement 1}

else
{procedural statement 2}
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If the result of the condition is true, then procedural statement 1 is executed; oth-
erwise, procedural statement 2 is executed.  The procedural statement following the if
and else statements can be a single procedural statement or a block of procedural state-
ments.  Two uses for the if . . . else statement are to model a multiplexer or decode an
instruction register operation code to select alternative paths depending on the instruc-
tion.  The if statement can be nested to provide several alternative paths to execute pro-
cedural statements as shown in the syntax below for nested if statements.

if (condition 1)
{procedural statement 1}

else if (condition 2)
{procedural statement 2}

else if (condition 3)
{procedural statement 3}

else
{procedural statement 4)

repeat The repeat keyword is used to execute a loop a fixed number of times as
specified by a constant contained within parentheses following the repeat keyword.
The loop can be a single statement or a block of statements contained within begin . . .
end keywords.  The syntax is shown below.

repeat (expression)
statement or block of statements

When the activity flow reaches the repeat construct, the expression in parentheses
is evaluated to determine the number of times that the loop is to be executed.  The ex-
pression can be a constant, a variable, or a signal value.  If the expression evaluates to
x or z, then the value is treated as 0 and the loop is not executed.

while The while statement executes a statement or a block of statements while an
expression is true.  The syntax is shown below.

while  (expression) statement

The expression is evaluated and a Boolean value, either true (a logical 1) or false
(a logical 0) is returned.  If the expression is true, then the procedural statement or
block of statements is executed.  The while loop executes until the expression be-
comes false, at which time the loop is exited and the next sequential statement is ex-
ecuted.  If the expression is false when the loop is entered, then the procedural
statement is not executed.  If the value returned is x or z, then the value is treated as
false.  An example of the while statement is shown below where the initial count = 0.

while (count < 16)
begin

count = count + 1;
end
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1.1.5  Net Data Types

Verilog defines two data types: nets and registers.  These predefined data types are
used to connect logical elements and to provide storage.  A net is a physical wire or
group of wires connecting hardware elements in a module or between modules.

An example of net data types is shown in Figure 1.14, where five internal nets are
defined: net1, net2, net3, net4, and net5.  The value of net1 is determined by the inputs
to the and1 gate represented by the term x1x2' , where x2  is active low; the value of
net2 is determined by the inputs to the and2 gate represented by the term x1' x2, where
x1  is active low; the value of net3 is determined by the input to the inverter represented
by the term x3 ', where x3 is active low.  The equations for outputs z1 and z2  are listed
in Equation 1.6.

Figure 1.14 A logic diagram showing single-wire nets and one multiple-wire net.

1.1.6  Register Data Types

A register data type represents a variable that can retain a value.  Verilog registers are
similar in function to hardware registers, but are conceptually different.  Hardware
registers are synthesized with storage elements such as D flip-flops, JK flip-flops, and
SR latches.  Verilog registers are an abstract representation of hardware registers and
are declared as reg.

The default size of a register is 1-bit; however, a larger width can be specified in
the declaration.  The general syntax to declare a width of more than 1-bit is as follows:

reg [most significant bit:least significant bit] register_name.

To declare a one-byte register called data_register is reg [7:0] data_register.

+x1
–x2

–x1
+x2

net1

net2

net4 +z1

–x3
net3 net5 +z2

and1

and2

or1

or2

z1 = x1x2'  + x1' x2

z2 = x1' x2  + x3 (1.6)
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Memories Memories can be represented in Verilog by an array of registers and are
declared using a reg data type as follows:

A 32-word register with one byte per word would be declared as follows:

reg [7:0] memory_name [0:31];

An array can have only two dimensions.  Memories must be declared as reg data
types, not as wire data types.  A register can be assigned a value using one statement,
as shown below.  Register buff_reg is assigned the 16-bit hexadecimal value of 7ab5,
which equates to the binary value of 0111  1010  1011  01012.

Values can also be stored in memories by assigning a value to each word individ-
ually, as shown below for an instruction cache of eight registers with eight bits per reg-
ister.

reg [7:0] instr_cache [0:7];

1.2  Expressions
Expressions consist of operands and operators, which are the basis of Verilog HDL.
The result of a right-hand side expression can be assigned to a left-hand side net vari-
able or register variable using the keyword assign. The value of an expression is de-
termined from the combined operations on the operands.  An expression can consist of
a single operand or two or more operands in conjunction with one or more operators.
The result of an expression is represented by one or more bits.  Examples of expres-
sions are as follows, where the symbol & indicates an AND operation and the symbol
| indicates an OR operation:

reg [15:0] buff_reg;
buff_reg = 16'h7ab5;

instr_cache [0] = 8'h08;
instr_cache [1] = 8'h09;
instr_cache [2] = 8'h0a;
instr_cache [3] = 8'h0b;
instr_cache [4] = 8'h0c;
instr_cache [5] = 8'h0d;
instr_cache [6] = 8'h0e;
instr_cache [7] = 8'h0f;

reg [msb:lsb] memory_name [first address:last address];

Number of bits per register Number of registers
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assign  z1 = x1  & x2  & x3;
assign  z1 = x1  | x2 | x3;
assign cout = (a & cin) | (b & cin) | (a & b);

1.2.1  Operands

Operands can be any of the data types listed in Table 1.8.

Constant Constants can be signed or unsigned.  A decimal integer is treated as a
signed number.  An integer that is specified by a base is interpreted as an unsigned
number.  Examples of both types are shown in Table 1.9.

Table 1.9  Signed and Unsigned Constants

Table 1.8  Operands

Operands Comments
Constant Signed or unsigned
Parameter Similar to a constant
Net Scalar or vector
Register Scalar or vector
Bit-select One bit from a vector
Part-
select

Contiguous bits of a 
vector

Memory 
element

One word of a mem-
ory

Constant Comments
127 Signed decimal:  Value = 8-bit binary vector: 0111_1111
–1 Signed decimal:  Value = 8-bit binary vector: 1111_1111
–128 Signed decimal:  Value = 8-bit binary vector: 1000_0000
4'b1110 Binary base:  Value = unsigned decimal 14
8'b0011_1010 Binary base:  Value = unsigned decimal 58
16'h1A3C Hexadecimal base:  Value = unsigned decimal 6716
16'hBCDE Hexadecimal base:  Value = unsigned decimal 48,350
9'o536 Octal base:  Value = unsigned decimal 350
–22 Signed decimal:  Value = 8-bit binary vector: 1110_1010
–9'o352 Octal base:  Value = 8-bit binary vector: 1110_1010

= unsigned decimal 234
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The last two entries in Table 1.9 both evaluate to the same bit configuration, but
represent different decimal values.  The number –2210 is a signed decimal value; the
number –9'o352 is treated as an unsigned number with a decimal value of 23410.

Parameter A parameter is similar to a constant and is declared by the keyword pa-
rameter.  Parameter statements assign values to constants; the values cannot be
changed during simulation.  Examples of parameters are shown in Table 1.10.

Parameters are useful in defining the width of a bus.  For example, the adder
shown in Figure 1.15 contains two 8-bit vector inputs a and b and one scalar input cin.
There is also one 9-bit vector output sum comprised of an 8-bit result and a scalar
carry-out.  The Verilog line of code shown below defines a bus width of eight bits.
Wherever width appears in the code, it is replaced by the value eight.

parameter width = 8;

Figure 1.15 Eight-bit adder to illustrate the use of a parameter statement.

1.2.2  Operators

Verilog HDL contains a profuse set of operators that perform various operations on
different types of data to yield results on nets and registers.  Some operators are similar
to those used in the C programming language.  Table 1.11 lists the categories of op-
erators in order of precedence, from highest to lowest.

Table 1.10  Examples of Parameters

Examples Comments
parameter width = 8 Defines a bus width of 8 bits
parameter width = 16, depth = 512 Defines a memory with two bytes per word

and 512 words
parameter out_port = 8 Defines an output port with an address of 8

8-bit adder

a

b

cin

a [7:0]

b [7:0]

cin

sum [9:0]sum
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Arithmetic Arithmetic operations are performed on one (unary) operand or two
(binary) operands in the following radices: binary, octal, decimal, or hexadecimal.
The result of an arithmetic operation is interpreted as an unsigned value or as a signed
value in 2s complement representation on both scalar and vector nets and registers.
The operands shown in Table 1.12 are used for the operations of addition, subtraction,
multiplication, and division.

Table 1.11   Verilog HDL Operators and Symbols

Operator type Operator Symbol Operation Number of Operands
Arithmetic + Add Two or one

- Subtract Two or one
* Multiply Two
/ Divide Two

% Modulus Two
Logical && Logical AND Two

| | Logical OR Two
! Logical negation One

Relational > Greater than Two
< Less than Two

>= Greater than or equal Two
<= Less than or equal Two

Equality = = Logical equality Two
! = Logical inequality Two

= = = Case equality Two
! = = Case inequality Two

Bitwise & AND Two
| OR Two
~ Negation One
^ Exclusive-OR Two

 ^ ~ or ~ ^ Exclusive-NOR Two
Reduction & AND One

~ & NAND One
| OR One

~ | NOR One
^ Exclusive-OR One

~ ^ or ^ ~ Exclusive-NOR One
Shift << Left shift One

>> Right shift One
Conditional ? : Conditional Three
Concatenation { } Concatenation Two or more
Replication {{  }} Replication Two or more
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The unary + and – operators change the sign of the operand and have higher pre-
cedence than the binary + and – operators.  Examples of unary operators are shown be-
low.

+45(Positive 4510)
–72(Negative 7210)

Unary operators treat net and register operands as unsigned values, and treat real and
integer operands as signed values.

The binary add operator performs unsigned and signed addition on two operands.
Register and net operands are treated as unsigned operands; thus, a value of

1111_1111_1111_11112

stored in a register has a value of 65,53510 unsigned, not –110 signed.  Real and integer
operands are treated as signed operands; thus, a value of

1111_1110_1010_01112

stored in an integer register has a value of –34510 signed, not 65,19110 unsigned.  The
width of the result of an arithmetic operation is determined by the width of the largest
operand.

Logical There are three logical operators: the binary logical AND operator (&&),
the binary logical OR operator ( | | ), and the unary logical negation operator (!).  Log-
ical operators evaluate to a logical 1 (true), a logical 0 (false), or an x (ambiguous).  If
a logical operation returns a nonzero value, then it is treated as a logical 1 (true); if a bit
in an operand is x or z, then it is ambiguous and is normally treated as a false condition.

Let a and b be two 4-bit operands, where a = 0110 and b = 1100.  Let z1, z2 , and
z3  be the outputs of the logical operations shown below.

z1 = a && b
z2  = a | | b
z3  = ! a

Therefore, the operation z1 = a && b yields a value of z1 = 1 because both a and
b are nonzero.  If a vector operand is nonzero, then it treated as a 1 (true).  Output z2  is
also equal to 1 for the expression z2 = a | | b.  Output z3  is equal to 0 because a is true.

Table 1.12   Operands Used for Arithmetic Operations

Addition Subtraction Multiplication Division
Augend Minuend Multiplicand Dividend

+) Addend –) Subtrahend ) Multiplier ÷) Divisor
Sum Difference Product Quotient, Remainder
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  Now let a = 0101 and b = 0000.  Thus, z1 = a && b = 1 && 0 = 0 because a is true
and b is false.  Output z2 , however, is equal to 1 because z2  = a | | b = 1 | | 0 = 1.  In a
similar manner, z3 = !a = !1 = 0, because a is true.

As a final example, let a = 0000 and b = 0000; that is, both variables are false.
Therefore, z1 = a && b = 0 && 0 = 0; z2 = a | | b = 0 | | 0 = 0; z3  = !a = !0 = 1.  If a bit
in either operand is x, then the result of a logical operation is x.  Also, !x is x.

Relational Relational operators compare operands and return a Boolean result, ei-
ther 1 (true) or 0 (false) indicating the relationship between the two operands.  There
are four relational operators as follows: greater than (>), less than (<), greater than or
equal (> = ), and less than or equal (<=).  These operators function the same as iden-
tical operators in the C programming language.

If the relationship is true, then the result is 1; if the relationship is false, then the re-
sult is 0.  Net or register operands are treated as unsigned values; real or integer oper-
ands are treated as signed values.  An x or z in any operand returns a result of x.  When
the operands are of unequal size, the smaller operand is zero-extended to the left.  Ex-
amples are shown below of relational operators, where the identifier gt means greater
than, lt means less than, gte means greater than or equal, and lte means less than or
equal when comparing operand a to operand b.

a = 0110,  b = 1100, gt = 0,  lt = 1,  gte = 0,  lte = 1
a = 0101,  b = 0000, gt = 1,  lt = 0,  gte = 1,  lte = 0
a = 1000,  b = 1001, gt = 0,  lt = 1,  gte = 0,  lte = 1
a = 0000,  b = 0000, gt = 0,  lt = 0,  gte = 1,  lte = 1
a = 1111,  b = 1111, gt = 0,  lt = 0,  gte = 1,  lte = 1

Equality There are four equality operators: logical equality (= =), logical inequality
(! =), case equality (= = =), and case inequality (! = =).

Logical equality is used in expressions to determine if two values are identical.
The result of the comparison is 1 if the two operands are equal, and 0 if they are not
equal.   The logical inequality operator is used to determine if two operands are un-
equal.  A 1 is returned if the operands are unequal; otherwise a 0 is returned.  If the re-
sult of the comparison is ambiguous for logical equality or logical inequality, then a
value of x is returned.  An x or z in either operand will return a value of x.  If the op-
erands are nets or registers, they are treated as unsigned values; real or integer oper-
ands are treated as signed values, but are compared as though they were unsigned
operands.

The case equality operator compares both operands on a bit-by-bit basis, includ-
ing x and z.  The result is 1 if both operands are identical in the same bit positions, in-
cluding those bit positions containing an x or a z.  The case inequality operator is used
to determine if two operands are unequal by comparing them on a bit-by-bit basis, in-
cluding those bit positions that contain x or z.

Examples of the equality operators are shown below, where the 4-bit variables are
x1 , x2 , x3 , x4 , and x5 .  The outputs are z1 (logical equality), z2  (logical inequality), z3
(case equality), and z4 (case inequality).
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x1  = 1000,  x2  = 1101,  x3  = 01xz,  x4  = 01xz,  x5  = x1xx
z1 = 0,  z2 = 1,  z3  = 1,  z4 = 1

x1  = 1011,  x2  = 1011,  x3  = x1xz,  x4  = x1xz,  x5  = 11xx
z1 = 1,  z2 = 1,  z3  = 1,  z4 = 1

x1  = 1100,  x2  = 0101,  x3  = x01z,  x4  = 11xz,  x5  = 11xx
z1 = 0,  z2 = 1,  z3  = 0,  z4 = 1

Referring to the above outputs for the first set of inputs, the logical equality (z1) of
x1  and x2  is false because the operands are unequal.  The logical inequality (z2) of x2
and x3 is true.  The case equality (z3) of inputs x3  and x4  is 1 because both operands are
identical in all bit positions, including the x and z bits.  The case inequality (z4) of in-
puts x4  and x5  is also 1 because the operands differ in the high-order and low-order bit
positions.

Bitwise The bitwise operators are: AND (&), OR ( | ), negation (~), exclusive-OR
(^), and exclusive-NOR ( ^ ~ or ~ ^).  The bitwise operators perform logical operations
on the operands on a bit-by-bit basis and produce a vector result.  Except for negation,
each bit in one operand is associated with the corresponding bit in the other operand.
If one operand is shorter, then it is zero-extended to the left to match the length of the
longer operand.

The bitwise AND operator performs the AND function on two operands on a bit-
by-bit basis as shown in the following example:

The bitwise OR operator performs the OR function on the two operands on a bit-
by-bit basis as shown in the following example:

The bitwise negation operator performs the negation function on one operand on
a bit-by-bit basis.  Each bit in the operand is inverted as shown in the following ex-
ample:

1 0 1 1 0 1 1 0
&) 1 1 0 1 0 1 0 1

1 0 0 1 0 1 0 0

1 0 1 1 0 1 1 0
| ) 1 1 0 1 0 1 0 1

1 1 1 1 0 1 1 1

~ ) 1 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0
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The bitwise exclusive-OR operator performs the exclusive-OR function on two
operands on a bit-by-bit basis as shown in the following example:

The bitwise exclusive-NOR operator performs the exclusive-NOR function on two
operands on a bit-by-bit basis as shown in the following example:

Bitwise operators perform operations on  operands on a bit-by-bit basis and pro-
duce a vector result.  This is in contrast to logical operators, which perform operations
on operands in such a way that the truth or falsity of the result is determined by the
truth or falsity of the operands.

The logical AND operator returns a value of 1 (true) only if both operands are non-
zero (true); otherwise, it returns a value of 0 (false).  If the result is ambiguous, it re-
turns a value of x.  The logical OR operator returns a value of 1 (true) if either or both
operands are true; otherwise, it returns a value of 0.  The logical negation operator re-
turns a value of 1 (true) if the operand has a value of zero and a value of 0 (false) if the
operand is nonzero.  Examples of the five bitwise operators are shown below.  The log-
ical negation operator performs the operation on operand a.

1 0 1 1 0 1 1 0
^ ) 1 1 0 1 0 1 0 1

0 1 1 0 0 0 1 1

1 0 1 1 0 1 1 0
^ ~ ) 1 1 0 1 0 1 0 1

1 0 0 1 1 1 0 0

 a = 11000011,
 b = 10011001,

and_rslt = 10000001,
or_rslt = 11011011,
neg_rslt = 00111100,
xor_rslt = 01011010,
xnor_rslt = 10100101

____________________________
 a = 10010011,
 b = 11011001,

and_rslt = 10010001,
or_rslt = 11011011,
neg_rslt = 01101100,
xor_rslt = 01001010,
xnor_rslt =10110101

_______________________________

 a = 01001111,
 b = 11011001,

and_rslt = 01001001,
or_rslt = 11011111,
neg_rslt = 10110000,
xor_rslt = 10010110,
xnor_rslt = 01101001

____________________________
 a = 11001111,
 b = 11011001,

and_rslt = 11001001,
or_rslt = 11011111,
neg_rslt = 00110000,
xor_rslt = 00010110,
xnor_rslt = 11101001

____________________________
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Reduction The reduction operators are: AND (&), NAND (~&), OR ( | ), NOR
(~ | ), exclusive-OR ( ^ ), and exclusive-NOR ( ^ ~ or ~ ^ ).  Reduction operators are
unary operators; that is, they operate on a single vector and produce a single-bit result.
If any bit of the operand is x or z, the result is x.  Reduction operators perform their re-
spective operations on a bit-by-bit basis.

For the reduction AND operator, if any bit in the operand is 0, then the result is 0;
otherwise, the result is 1.  For example, let x1  be the vector shown below.

The reduction AND (& x1) operation is equivalent to the following operation:

1 & 1 & 1 & 0 & 1 & 0 & 1 & 1

which returns a result of 1'b0.

For the reduction NAND operator, if any bit in the operand is 0, then the result is
1; otherwise, the result is 0.  For a vector x1 , the reduction NAND (~& x1) is the
inverse of the reduction AND operator.

For the reduction OR operator, if any bit in the operand is 1, then the result is 1;
otherwise, the result is 0.  For example, let x1  be the vector shown below.

The reduction OR ( | x1) operation is equivalent to the following operation:

1 | 1 | 1 | 0 | 1 | 0 | 1 | 1

which returns a result of 1'b1.

For the reduction NOR operator, if any bit in the operand is 1, then the result is 0;
otherwise, the result is 1.  For a vector x1, the reduction NOR (~ | x1) is the inverse of
the reduction OR operator.

For the exclusive-OR operator, if there are an even number of 1s in the operand,
then the result is 0; otherwise, the result is 1.   For example, let x1 be the vector shown
below.

The reduction exclusive-OR (^ x1) operation is equivalent to the following operation:

1 ^ 1 ^ 1 ^ 0 ^ 1 ^ 0 ^ 1 ^ 1

1 1 1 0 1 0 1 1

1 1 1 0 1 0 1 1

1 1 1 0 1 0 1 1
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which returns a result of 1'b0.  The reduction exclusive-OR operator can be used as an
even parity generator.

For the exclusive-NOR operator, if there are an odd number of 1s in the operand,
then the result is 0; otherwise, the result is 1.  For a vector x1, the reduction exclusive-
NOR ( ^ ~ x1) is the inverse of the reduction exclusive-OR operator.  The reduction
exclusive-NOR operator can be used as an odd parity generator.

Shift The shift operators shift a single vector operand left or right a specified num-
ber of bit positions.  These are logical shift operations, not algebraic; that is, as bits are
shifted left or right, zeroes fill in the vacated bit positions.  The bits shifted out of the
operand are lost; they do not rotate to the high-order or low-order bit positions of the
shifted operand.  If the shift amount evaluates to x or z, then the result of the operation
is x.  There are two shift operators, as shown below.  The value in parentheses is the
number of bits that the operand is shifted.

<< (Left-shift amount)
>> (Right-shift amount)

When an operand is shifted left, this is equivalent to a multiply-by-two operation
for each bit position shifted.  When an operand is shifted right, this is equivalent to a
divide-by-two operation for each bit position shifted.  The shift operators are useful to
model the sequential add-shift multiplication algorithm and the sequential shift-sub-
tract division algorithm.  Examples of shift left and shift right operations are shown be-
low for 8-bit operands.  Operand a_reg is shifted left three bits with the low-order bits
filled with zeroes.  Operand b_reg is shifted right two bits with the high-order bits
filled with zeroes.

Conditional The conditional operator (? :) has three operands, as shown in the
syntax below.  The conditional_expression is evaluated.  If the result is true (1), then
the true_expression is evaluated; if the result is false (0), then the false_expression is
evaluated.

conditional_expression ? true_expression : false_expression;

 a_reg = 00000010,   b_reg = 00001000, //shift a_reg left 3
 rslt_a = 00010000,   rslt_b = 00000010 //shift b_reg right 2

 a_reg = 00000110,   b_reg = 00011000, //shift a_reg left 3
 rslt_a = 00110000,   rslt_b = 00000110 //shift b_reg right 2

 a_reg = 00001111,   b_reg = 00111000, //shift a_reg left 3
 rslt_a = 01111000,   rslt_b = 00001110 //shift b_reg right 2

 a_reg = 11100000,   b_reg = 00000011, //shift a_reg left 3
 rslt_a = 00000000,   rslt_b = 00000000 //shift b_reg right 2
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  The conditional operator can be used when one of two expressions is to be se-
lected.  For example, in the statement below, if x1  is greater than or equal to x2, then
z1 is assigned the value of x3 ; if x1  is less than x2 , then z1 is assigned the value of x4 .

z1 = (x1 > = x2) ? x3 : x4;

If the operands have different lengths, then the shorter operand is zero-extended
on the left.  Since the conditional operator selects one of two values, depending on the
result of the conditional_expression evaluation, the operator can be used in place of
the if . . . else construct.  The conditional operator is ideally suited to model a 2:1 mul-
tiplexer.  Conditional operators can be nested; that is, each true_expression and
false_expression can be a conditional operation.  This is useful for modeling a 4:1 mul-
tiplexer.

conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
     : (cond_expr2 ? true_expr2 : false_expr2);

Concatenation The concatenation operator ( {  } ) forms a single operand from
two or more operands by joining the different operands in sequence separated by com-
mas.  The operands to be appended are contained within braces.  The size of the op-
erands must be known before concatenation takes place.

The  examples below show the concatenation of scalars and vectors of different
sizes.  Outputs z1, z2 , z3 , and z4  are ten bits in length.

Replication Replication is a means of performing repetitive concatenation.  Rep-
lication specifies the number of times to duplicate the expressions within the inner-
most braces.  The syntax is shown below together with  examples of replication.

{number_ of_ repetitions {expression_1, expression_2, . . . , expression_n}};

 z1, z2 , z3 , and z4  are 10 bits in length.

 a = 11, b = 001, c = 1100, d = 1

 z1 = 0000_11_1100 //z1 = {a, c}
 z2 = 00000_001_11 //z2 = {b, a}
 z3 = 0_1100_001_11 //z3 = {c, b, a}
 z4 = 11_001_1100_1 //z4 = {a, b, c, d}

a = 11, b = 010, c = 0011,

z1 = 11_0011_11_0011,  //z1 = {2{a, c}}
z2  = 010_0011_0111_010_0011_0111 //z2  = {2{b, c, 4'b0111}}
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1.3 Modules and Ports
A module is the basic unit of design in Verilog.  It describes the functional operation of
some logical entity and can be a stand-alone module or a collection of modules that are
instantiated into a structural module.  Instantiation means to use one or more lower-
level modules in the construction of a higher-level structural module.  A module can
be a logic gate, an adder, a multiplexer, a counter, or some other logical function.

A module consists of declarative text which specifies the function of the module
using Verilog constructs; that is, a Verilog module is a software representation of the
physical hardware structure and behavior.  The declaration of a module is indicated by
the keyword module and is always terminated by the keyword endmodule.

Verilog has predefined logical elements called primitives.  These built-in primi-
tives are structural elements that can be instantiated into a larger design to form a more
complex structure.  Examples are: and, or, xor, and not.  Built-in primitives are dis-
cussed in more detail in Section 1.4.

Modules contain ports which allow communication with the external environment
or other modules.  For example, the logic diagram for the full adder of Figure 1.16 has
input ports a, b, and cin and output ports sum and cout.  The general structure and syn-
tax of a module is shown in Figure 1.17.  An AND gate can be defined as shown in the
module of Figure 1.18, where the input ports are x1  and x2  and the output port is z1.

Figure 1.16 Logic diagram for a full adder.

Figure 1.17 General structure of a Verilog module.

+a
+b +sum

+cout

+cin

Half adder Half adder

module <module name> (port list);
declarations

reg, wire, parameter,
input, output, . . .
. . .

<module internals>
statements
initial, always, module instantiation, . . .
. . .

endmodule
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Figure 1.18 Verilog module for an AND gate with two inputs.

A Verilog module defines the information that describes the relationship between
the inputs and outputs of a logic circuit.  A structural module will have one or more in-
stantiations of other modules or logic primitives.  In Figure 1.18, the first line is a com-
ment, indicated by (//).  In the second line, and2 is the module name; this is followed
by left and right parentheses containing the module ports, which is followed by a
semicolon.  The inputs and outputs are defined by the keywords input and output.
The ports are declared as wire in this dataflow module.  Dataflow modeling is covered
in detail in Section 1.6.  The keyword assign describes the behavior of the circuit.  Out-
put z1 is assigned the value of x1  ANDed (&) with x2.

1.3.1  Designing a Test Bench for Simulation

This section describes the techniques for writing test benches in Verilog HDL.  When
a Verilog module is finished, it must be tested to ensure that it operates according to
the machine specifications.  The functionality of the module can be tested by applying
stimulus to the inputs and checking the outputs.  The test bench will display the inputs
and outputs in a radix (binary, octal, hexadecimal, or decimal).

The test bench contains an instantiation of the unit under test and Verilog code to
generate input stimulus and to monitor and display the response to the stimulus.  Fig-
ure 1.19 shows a simple test bench to test the 2-input AND gate of Figure 1.18.  Line
1 is a comment indicating that the module is a test bench for a 2-input AND gate.  Line
2 contains the keyword module followed by the module name, which includes tb in-
dicating a test bench module.  The name of the module and the name of the module un-
der test are the same for ease of cross-referencing.

Line 4 specifies that the inputs are reg type variables; that is, they contain their
values until they are assigned new values.  Outputs are assigned as type wire in test
benches.  Output nets are driven by the output ports of the module under test.  Line 8
contains an initial statement, which executes only once.

//dataflow and gate with two inputs
module and2 (x1, x2, z1);

input x1, x2;
output z1;

wire x1, x2;
wire z1;

assign z1 = x1 & x2;

endmodule
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Verilog provides a means to monitor a signal when its value changes.  This is ac-
complished by the $monitor task.  The $monitor continuously monitors the values of
the variables indicated in the parameter list that is enclosed in parentheses.  It will dis-
play the value of the variables whenever a variable changes state.  The quoted string
within the task is printed and specifies that the variables are to be shown in binary
(%b).  The $monitor is invoked only once.  Line 12 is a second initial statement that
allows the procedural code between the begin . . . end block statements to be executed
only once.

Figure 1.19 Test bench for the 2-input AND gate of Figure 1.18.

 1 //and2 test bench
module and2_tb;

reg x1, x2;
 5 wire z1;

//display variables
initial
$monitor ("x1 = %b, x2 = %b, z1 = %b", x1, x2, z1);

11 //apply input vectors
initial
begin

#0 x1 = 1'b0;
x2 = 1'b0;

16
#10 x1 = 1'b0;

x2 = 1'b1;

20 #10 x1 = 1'b1;
x2 = 1'b0;

#10 x1 = 1'b1;
x2 = 1'b1;

26 #10 $stop;
end

//instantiate the module into the test bench
30 and2 inst1 (

.x1(x1),

.x2(x2),

.z1(z1)
);

endmodule
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Lines 14 and 15 specify that at time 0 (#0), inputs x1  and x2  are assigned values of
0, where 1 is the width of the value (one bit), ' is a separator, b indicates binary, and 0
is the value.  Line 17 specifies that 10 time units later, the inputs change to: x1  = 0 and
x2  = 1.  This process continues until all possible values of two variables have been ap-
plied to the inputs.  Simulation stops at 10 time units after the last input vector has been
applied ($stop).  The total time for simulation is 40 time units   —   the sum of all the
time units.  The time units can be specified for any duration.

Line 30 begins the instantiation of the module into the test bench.  The name of the
instantiation must be the same as the module under test, in this case, and2.  This is fol-
lowed by an instance name (inst1) followed by a left parenthesis.  The . x1  variable in
line 31 refers to a port in the module that corresponds to a port (x1) in the test bench.
All the ports in the module under test must be listed.  The keyword endmodule is the
last line in the test bench.

The binary outputs for this test bench are shown in Figure 1.20.  The output can be
presented in binary (b or B), in octal (o or O), in hexadecimal (h or H), or in decimal (d
or D).  

The Verilog syntax will be covered in greater detail in subsequent sections.  It is
important at this point to concentrate on how the module under test is simulated and in-
stantiated into the test bench.

Figure 1.20 Binary outputs for the test bench of Figure 1.19 for a 2-input AND
gate.

Several different methods to generate test benches will be shown in subsequent
sections.  Each design in the book will be tested for correct operation by means of a test
bench.  Test benches provide clock pulses that are used to control the operation of a
synchronous sequential machine.  An initial statement is an ideal method to generate
a waveform at discrete intervals of time for a clock pulse.  The Verilog code in Figure
1.21 illustrates the necessary statements to generate clock pulses that  have a duty cy-
cle of 20%.

1.4 Built-In Primitives
Logic primitives such as and, nand, or, nor, and not gates, as well as xor (exclusive-
OR), and xnor (exclusive_NOR) functions are part of the Verilog language and are
classified as multiple-input gates.  These are built-in primitives that can be instantiated
into a module.  

x1 = 0, x2 = 0, z1 = 0
x1 = 0, x2 = 1, z1 = 0
x1 = 1, x2 = 0, z1 = 0
x1 = 1, x2 = 1, z1 = 1
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Figure 1.21 Verilog code to generate clock pulses with a 20% duty cycle.

These are built-in primitive gates used to describe a net and have one or more sca-
lar inputs, but only one scalar output.  The output signal is listed first, followed by the
inputs in any order.  The outputs are declared as wire; the inputs can be declared as ei-
ther wire or reg.  The gates represent a combinational logic function and can be in-
stantiated into a module, as follows, where the instance name is optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

Two or more instances of the same type of gate can be specified in the same construct,
as follows:

gate_type  inst1 (output_1, input_11, input_12, . . . , input_1n),
        inst2 (output_2, input_21, input_22, . . . , input_2n),

.

.

.
     instm (output_m, input_m1, input_m2, . . . , input_mn);

and This is a multiple-input built-in primitive gate that performs the AND function
for a multiple-input AND gate.  If any input is an x, then this represents an unknown
logic value.  If and entry is a z, then this represents a high impedance state, which in-
dicates that the driver of a net is disabled or not connected.  AND gates can be repre-
sented by two symbols as shown below for the AND function and the OR function.

//generate clock pulses of 20% duty cycle
module clk_gen (clk);
output clk;
reg clk;

initial
begin

#0 clk = 0;
#5 clk = 1;
#5 clk = 0;
#20 clk = 1;
#5 clk = 0;
#20 clk = 1;
#5 clk = 0;
#10 $stop;

end
endmodule
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buf A buf gate is a noninverting primitive with one scalar input and one or more
scalar outputs.  The output terminals are listed first when instantiated; the input is list-
ed last, as shown below.  The instance name is optional.

buf   inst1 (output, input); //one output
buf   inst2 (output_1, output_2, . . . , output_n, input); //multiple outputs

nand This is a multiple-input built-in primitive gate that operates as an AND func-
tion with a negative output.  NAND gates can be represented by two symbols as
shown below for the AND function and the OR function.

DeMorgan’s theorems are associated with NAND and NOR gates and convert the
complement of a sum term or a product term into a corresponding product or sum term,
respectively.  For every x1 , x2   B,

(a) (x1 •  x2)' = x1 ' + x2 ' Nand gate
(b) (x1 + x2)' = x1 ' • x2 ' NOR gate

DeMorgan’s laws can be generalized for any number of variables.

nor This is a multiple-input built-in primitive gate that operates as an OR function
with a negative output.  NOR gates can be represented by two symbols as shown below
for the OR function and the AND function.

not A not gate is an inverting built-in primitive with one scalar input and one or
more scalar outputs.  The output terminals are listed first when instantiated; the input
is listed last, as shown below.  The instance name is optional.

AND gate for the AND function AND gate for the OR function

NAND gate for the AND function NAND gate for the OR function

NOR gate for the OR function NOR gate for the AND function
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not   inst1 (output, input); //one output
not   inst2 (output_1, output_2, . . . , output_n, input); //multiple outputs

The NOT function can be represented by two symbols as shown below depending
on the assertion levels required.  The function of the inverters is identical; the low as-
sertion is placed at the input or output for readability with associated logic.

or This is a multiple-input built-in primitive gate that operates as an OR function.
OR gates can be represented by two symbols as shown below for the OR function and
the AND function.

xnor This is a built-in primitive gate that functions as an exclusive-OR gate with a
negative output.  Exclusive-NOR gates can be represented by the symbol shown be-
low.  An exclusive-NOR gate is also called an equality function because the output is
a logical 1 whenever the two inputs are equal.

The equation for the exclusive-NOR gate shown above is

z1 = (x1x2) + (x1' x2' )

xor This is a built-in primitive gate that functions as an exclusive-OR circuit.
Exclusive-OR gates can be represented by the symbol shown below.  The output of an
exclusive-OR gate is a logical 1 whenever the two inputs are different.

NOT (inverter) function NOT (inverter) function
with low assertion output with low assertion input

OR gate for the OR function OR gate for the AND function

Exclusive-NOR gate
+x1
+x2

+z1

Exclusive-OR gate
+x1
+x2

+z1
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The equation for the exclusive-OR gate shown above is

z1 = (x1x2' ) + (x1' x2)

1.4.1  Built-In Primitive Design Examples

The best way to learn design methodologies using built-in primitives is by examples.
Therefore, examples will be presented ranging from very simple to moderately com-
plex.  When necessary, the theory for the examples will be presented prior to the Ver-
ilog design.  All examples are carried through to completion at the gate level.  Nothing
is left unfinished or partially designed.

Example 1.1 The Karnaugh map of Figure 1.22 will be implemented using only
NOR gates in a product-of-sums format.  Equation 1.7 shown the product-of-sums
expression obtained from the Karnaugh map.  The logic diagram is shown in Figure
1.23 which indicates the instantiation names and net names.

Figure 1.22 Karnaugh map for Example 1.1.

Figure 1.23 Logic diagram for Example 1.1.
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z1

z1 = (x1  + x2 + x4) (x2  + x3'  + x4) (x2'  + x3'  + x4' ) (1.7)

+x1+x2+x4

–x3

–x2–x4

+z1

inst1

inst2

inst3

inst4

net1

net2

net3
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The design module is shown in Figure 1.24 using NOR gate built-in primitives.
The test bench is shown in Figure 1.25 using a different approach to generate all 16
combinations of the four inputs.  Several new modeling constructs are shown in the
test bench.  Since there are four inputs to the circuit, all 16 combinations of four vari-
ables must be applied to the circuit.  This is accomplished by a for loop statement,
which is similar in construction to a for loop in the C programming language.

Figure 1.24 Module for the product-of-sums logic diagram of Figure 1.23.

Figure 1.25 Test bench for the design module of Figure 1.24.

//logic diagram using built-in primitives
module log_eqn_pos5 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//instantiate the nor built-in primitives
nor inst1 (net1, x1, x2, x4);
nor inst2 (net2, x2, x4, ~x3);
nor inst3 (net3, ~x3, ~x2, ~x4);
nor inst4 (z1, net1, net2, net3);

endmodule

//test bench for log_eqn_pos5
module log_eqn_pos5_tb;

reg x1, x2, x3, x4;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect; //invect[4] terminates the loop
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect[4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end
//continued on next page
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Figure 1.25       (Continued)

Referring to the test bench of Figure 1.25, following the keyword begin is the
name of the block: apply_stimulus.  In this block, a 5-bit reg variable is declared called
invect.  This guarantees that all combinations of the four inputs will be tested by the for
loop, which applies input vectors of x1x2x3x4  = 0000, 0001, 0010, 0011 . . . 1111 to
the circuit.  The for loop stops when the pattern 10000 is detected by the test segment
(invect < 16).  If only a 4-bit vector were applied, then the expression (invect < 16)
would always be true and the loop would never terminate.  The increment segment of
the for loop does not support an increment designated as invect++; therefore, the long
notation must be used: invect = invect + 1.

The target of the first assignment within the for loop ({x1 , x2 , x3 , x4} = invect
[4:0] ) represents a concatenated target.  The concatenation of inputs x1 , x2, x3 , and x4
is performed by positioning them within braces: {x1, x2, x3 , x4}.  A vector of five bits
([4:0]) is then assigned to the inputs.  This will apply inputs of 0000, 0001, 0010, 0011,
. . . 1111 and stop when the vector is 10000.

The initial statement also contains a system task ($display) which prints the ar-
gument values   —   within the quotation marks   —   in binary.  The concatenated vari-
ables x1, x2 , x3 , and x4  are listed first; therefore, their values are obtained from the first
argument to the right of the quotation marks: {x1 , x2, x3 , x4}.  The value for the sec-
ond variable z1 is obtained from the second argument to the right of the quotation
marks.  The variables to the right of the quotation marks are listed in the same order as
the variables within the quotation marks.

The delay time (#10) in the system task specifies that the task is to be executed af-
ter 10 time units; that is, the delay between the application of a vector and the response
of the module.  This delay represents the propagation delay of the logic.  The simula-
tion results are shown in binary format in Figure 1.26. 

Figure 1.26 Outputs generated by the test bench of Figure 1.25.

//instantiate the module into the test bench
log_eqn_pos5 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 0
x1x2x3x4 = 0011, z1 = 1 //continued on next page
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Figure 1.26       (Continued)

Example 1.2 Equation 1.8 will be minimized as a sum-of-products form and then
implemented using built-in primitives of AND and OR with x4  and x5 as map-entered
variables.  Variables may be entered in a Karnaugh map as map-entered variables, to-
gether with 1s and 0s.  A map of this type is more compact than a standard Karnaugh
map, but contains the same information.  A map containing map-entered variables is
particularly useful in analyzing and synthesizing synchronous sequential machines.
When variables are entered in a Karnaugh map, two or more squares can be combined
only if the squares are adjacent and contain the same variable(s).

The Karnaugh map is shown in Figure 1.27 in which the following minterm loca-
tions combine:

Minterm location 0 = x4x5'  + x4x5  = x4
Minterm location 2 = 1 + x4
Combine minterm locations 0 and 2 to yield the sum term x1' x3' x4

Combine minterm locations 2 and 3 to yield x1' x2

Minterm location 4 = x4x5  + x4'  + x5'  = 1
Minterm location 5 = 1
Combine minterm locations 4 and 5 to yield x1x2'

x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 1
x1x2x3x4 = 0110, z1 = 1
x1x2x3x4 = 0111, z1 = 0
x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 1
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 1
x1x2x3x4 = 1100, z1 = 1
x1x2x3x4 = 1101, z1 = 1
x1x2x3x4 = 1110, z1 = 1
x1x2x3x4 = 1111, z1 = 0

z1 = x1' x2' x3' x4x5'  + x1' x2  + x1' x2' x3' x4x5  + x1x2' x3' x4x5

+ x1x2' x3  + x1x2' x3' x4'  + x1x2' x3' x5' (1.8)
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Figure 1.27 Karnaugh map for Example 1.2.

The minimized sum-of-products equation from the Karnaugh map is shown in
Equation 1.9.  The logic diagram is shown in Figure 1.28.  The design module is shown
in Figure 1.29 and the test bench is shown in Figure 1.30.  Figure 1.31 lists the outputs
obtained from the test bench.

Figure 1.28 Logic diagram for Equation 1.9.

Figure 1.29 Design module to implement Equation 1.9 using built-in primitives.

x1
x2x3

   0 0                       0 1                        1 1                        1 0

0

1

 0                                   1                                 3                                  2

  4                                  5                                  7                                  6

 x4 x5' + x4 x5                  0                          1                           1

x4x5 + x4' + x5'               1                           0                           0

z1

z1 = x1' x3' x4  + x1' x2  + x1x2' (1.9)

–x1–x3+x4

+x2

+x1
–x2

+z1

inst1

inst2

inst3

inst4

net1

net2

net3

//logic equation using map-entered variables
module mev (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

and inst1 (net1, ~x1, ~x3, x4);
and inst2 (net2, ~x1, x2);
and inst3 (net3, x1, ~x2);
or inst4 (z1, net1, net2, net3);
endmodule
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Figure 1.30 Test bench for the design module of Figure 1.29.

Figure 1.31 Outputs for the test bench of Figure 1.30.

//test bench for logic equation using map-entered variables
module mev_tb;

reg x1, x2, x3, x4;
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
mev inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 0
x1x2x3x4 = 0011, z1 = 0
x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 1
x1x2x3x4 = 0110, z1 = 1
x1x2x3x4 = 0111, z1 = 1
x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 1
x1x2x3x4 = 1010, z1 = 1
x1x2x3x4 = 1011, z1 = 1
x1x2x3x4 = 1100, z1 = 0
x1x2x3x4 = 1101, z1 = 0
x1x2x3x4 = 1110, z1 = 0
x1x2x3x4 = 1111, z1 = 0
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Example 1.3 A 4:1 multiplexer will be designed using built-in logic primitives.
The 4:1 multiplexer of Figure 1.32 will be designed using built-in primitives of AND,
OR, and NOT.  The design is simpler and takes less code if a continuous assignment
statement is used, but this section presents gate-level modeling only — continuous
assignment statements are used in dataflow modeling.

The multiplexer has four data inputs: d3, d2 , d1 , and d0 , which are specified as a
4-bit vector d[3:0], two select inputs: s1 and s0, specified as a 2-bit vector s[1:0], one
scalar input Enable, and one scalar output z1, as shown in the logic diagram of Figure
1.32..  Also, the system function $time will be used in the test bench to return the cur-
rent simulation time measured in nanoseconds (ns).  The design module is shown in
Figure 1.33, the test bench in Figure 1.34, and the outputs in Figure 1.35.

Figure 1.32 Logic diagram of a 4:1 multiplexer to be designed using built-in prim-
itives.

Figure 1.33 Module for a 4:1 multiplexer with Enable using built-in primitives.

+d0

+d1

+d2

+d3

+s0

+s1

+Enable

d0s1's0'

d1s1's0

d2s1s0'

d3s1s0

+z1

net3

net4

net5

net6

net1

net2

inst1

inst2

inst4

inst5

inst6

inst3

inst7

//a 4:1 multiplexer using built-in primitives
module mux_4to1 (d, s, enbl, z1);

input [3:0] d;
input [1:0] s;
input enbl;
output z1;

//continued on next page
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Figure 1.33       (Continued)

Figure 1.34 Test bench for the 4:1 multiplexer of Figure 1.33.

not inst1 (net1, s[0]),
inst2 (net2, s[1]);

and inst3 (net3, d[0], net1, net2, enbl),
inst4 (net4, d[1], s[0], net2, enbl),
inst5 (net5, d[2], net1, s[1], enbl),
inst6 (net6, d[3], s[0], s[1], enbl);

or inst7 (z1, net3, net4, net5, net6);

endmodule

//test bench for 4:1 multiplexer
module mux_4to1_tb;

reg [3:0] d;
reg [1:0] s;
reg enbl;
wire z1;

initial
$monitor ($time,"ns, select:s=%b, inputs:d=%b, output:z1=%b",

s, d, z1);
initial
begin

#0 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b0;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[0]=0; z1=0

#10 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[0]=1; z1=1

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[1]=1; z1=1

#10 s[0]=1'b0;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[2]=0; z1=0

//continued on next page
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Figure 1.34       (Continued)

Figure 1.35 Outputs for the 4:1 multiplexer test bench of Figure 1.34.

Example 1.4 This example illustrates the design of a majority circuit using built-in
primitives.  The output of a majority circuit is a logic 1 if the majority of the inputs is
a logic 1; otherwise, the output is a logic 0.  Therefore, a majority circuit must have an
odd number of inputs in order to have a majority of the inputs at the same logic level.

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b0;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[1]=1; z1=0

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[3]=1; z1=1

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;
enbl=1'b1; //d[3]=0; z1=0

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;
enbl=1'b0; //d[3]=0; z1=0

#10 $stop;
end

//instantiate the module into the test bench
mux_4to1 inst1 (

.d(d),

.s(s),

.z1(z1),

.enbl(enbl)
);

endmodule

0  ns, select:s=00, inputs:d=1010, output:z1=0
10 ns, select:s=00, inputs:d=1011, output:z1=1
20 ns, select:s=01, inputs:d=1011, output:z1=1
30 ns, select:s=10, inputs:d=1011, output:z1=0
40 ns, select:s=01, inputs:d=1001, output:z1=0
50 ns, select:s=11, inputs:d=1011, output:z1=1
60 ns, select:s=11, inputs:d=0011, output:z1=0
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A 5-input majority circuit will be designed using the Karnaugh map of Figure 1.36,
where a 1 entry indicates that the majority of the inputs is a logic 1.

Figure 1.36 Karnaugh map for the majority circuit of Example 1.4.

Equation 1.10 represents the logic for output z1 in a sum-of-products form.  The
design module is shown in Figure 1.37, which is designed directly from Equation 1.10
without the use of a logic diagram.  The test bench is shown in Figure 1.38, and the out-
puts are shown in Figure 1.39.

Figure 1.37 Design module for the majority circuit of Figure 1.36.
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x5 = 1

z1

z1 = x3x4x5 + x2x3x5  + x1x3x5  + x2x4x5  + x1x4x5

+ x1x2x5  + x1x2x4  + x2x3x4  + x1x3x4 (1.10)

//5-input majority circuit
module majority (x1, x2, x3, x4, x5, z1);
input x1, x2, x3, x4, x5;
output z1;

and inst1  (net1, x3, x4, x5),
inst2  (net2, x2, x3, x5),
inst3  (net3, x1, x3, x5),
inst4  (net4, x2, x4, x5), //continued on next page
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Figure 1.37       (Continued)

Figure 1.38 Test bench for the majority circuit module of Figure 1.37.

inst5  (net5, x1, x4, x5),
inst6  (net6, x1, x2, x5),
inst7  (net7, x1, x2, x4),
inst8  (net8, x2, x3, x4),
inst9  (net9, x1, x3, x4);

or inst10 (z1, net1, net2, net3, net4, net5,
net6, net7, net8, net9);

endmodule

//test bench for 5-input majority circuit
module majority_tb;
reg x1, x2, x3, x4, x5;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [6:0] invect;
for (invect=0; invect<32; invect=invect+1)

begin
{x1, x2, x3, x4, x5} = invect [6:0];
#10 $display ("x1x2x3x4x5 = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
majority inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.x5(x5),

.z1(z1)
);

endmodule
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Figure 1.39 Outputs for the majority circuit of Figure 1.37.

Example 1.5 A code converter will be designed to convert a 4-bit binary number to
the corresponding Gray code number.  The inputs of the binary number x1x2x3x4  are
available in both high and low assertion, where x4  is the  low-order bit.  The outputs for
the Gray code z1z2z3z4 are asserted high, where z4  is the low-order bit.  The binary-to-
Gray code conversion table is shown in Table 1.13.

Table 1.13  Binary-to-Gray Code Conversion

Binary Code Gray Code

x1 x2 x3 x4 z1 z2 z3 z4

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
                            //continued on next page

x1x2x3x4x5 = 00000, z1 = 0
x1x2x3x4x5 = 00001, z1 = 0
x1x2x3x4x5 = 00010, z1 = 0
x1x2x3x4x5 = 00011, z1 = 0
x1x2x3x4x5 = 00100, z1 = 0
x1x2x3x4x5 = 00101, z1 = 0
x1x2x3x4x5 = 00110, z1 = 0
x1x2x3x4x5 = 00111, z1 = 1
x1x2x3x4x5 = 01000, z1 = 0
x1x2x3x4x5 = 01001, z1 = 0
x1x2x3x4x5 = 01010, z1 = 0
x1x2x3x4x5 = 01011, z1 = 1
x1x2x3x4x5 = 01100, z1 = 0
x1x2x3x4x5 = 01101, z1 = 1
x1x2x3x4x5 = 01110, z1 = 1
x1x2x3x4x5 = 01111, z1 = 1

x1x2x3x4x5 = 10000, z1 = 0
x1x2x3x4x5 = 10001, z1 = 0
x1x2x3x4x5 = 10010, z1 = 0
x1x2x3x4x5 = 10011, z1 = 1
x1x2x3x4x5 = 10100, z1 = 0
x1x2x3x4x5 = 10101, z1 = 1
x1x2x3x4x5 = 10110, z1 = 1
x1x2x3x4x5 = 10111, z1 = 1
x1x2x3x4x5 = 11000, z1 = 0
x1x2x3x4x5 = 11001, z1 = 1
x1x2x3x4x5 = 11010, z1 = 1
x1x2x3x4x5 = 11011, z1 = 1
x1x2x3x4x5 = 11100, z1 = 1
x1x2x3x4x5 = 11101, z1 = 1
x1x2x3x4x5 = 11110, z1 = 1
x1x2x3x4x5 = 11111, z1 = 1
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There are four Karnaugh maps shown in Figure 1.40, one map for each of the Gray
code outputs.  The equations obtained from the Karnaugh maps are shown  in Equation
1.11.  The logic diagram is shown in Figure 1.41.  The design module is shown in Fig-
ure 1.42, the test bench module is shown in Figure 1.43, and the outputs are shown in
Figure 1.44.

Figure 1.40 Karnaugh maps for the binary-to-Gray code converter.
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Figure 1.41 Logic diagram for the binary-to-Gray code converter.

Figure 1.42 Design module for the binary-to-Gray code converter.

Figure 1.43 Test bench for the binary-to-Gray code converter.

z1 = x1

z2 =  x1' x2  + x1x2'  = x1  x2

z3 = x2x3'  + x2' x3  = x2   x3

z4 = x3' x4  + x3x4'  = x3   x4 (1.11)

+x1

+x2

+x3

+x4

+z1

+z2

+z3

+z4

inst1

inst2

inst3

inst4

//binary-to-gray code converter
module bin_to_gray (x1, x2, x3, x4, z1, z2, z3, z4);

input x1, x2, x3, x4;
output z1, z2, z3, z4;

buf inst1 (z1, x1);
xor inst2 (z2, x1, x2);
xor inst3 (z3, x2, x3);
xor inst4 (z4, x3, x4);
endmodule

//test bench for binary-to-gray code converter
module bin_to_gray_tb;

reg x1, x2, x3, x4;
wire z1, z2, z3, z4;

//continued on next page
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Figure 1.43       (Continued)

Figure 1.44 Outputs for the binary-to-Gray code converter.

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1x2x3x4}=%b, {z1z2z3z4}=%b",

{x1, x2, x3, x4}, {z1, z2, z3, z4});
end

end

//instantiate the module into the test bench
bin_to_gray inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1),

.z2(z2),

.z3(z3),

.z4(z4)
);

endmodule

{x1x2x3x4}=0000, {z1z2z3z4}=0000
{x1x2x3x4}=0001, {z1z2z3z4}=0001
{x1x2x3x4}=0010, {z1z2z3z4}=0011
{x1x2x3x4}=0011, {z1z2z3z4}=0010
{x1x2x3x4}=0100, {z1z2z3z4}=0110
{x1x2x3x4}=0101, {z1z2z3z4}=0111
{x1x2x3x4}=0110, {z1z2z3z4}=0101
{x1x2x3x4}=0111, {z1z2z3z4}=0100
{x1x2x3x4}=1000, {z1z2z3z4}=1100
{x1x2x3x4}=1001, {z1z2z3z4}=1101
{x1x2x3x4}=1010, {z1z2z3z4}=1111
{x1x2x3x4}=1011, {z1z2z3z4}=1110
{x1x2x3x4}=1100, {z1z2z3z4}=1010
{x1x2x3x4}=1101, {z1z2z3z4}=1011
{x1x2x3x4}=1110, {z1z2z3z4}=1001
{x1x2x3x4}=1111, {z1z2z3z4}=1000
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Example 1.6 A full adder is a combinational circuit that adds two operand bits: a
and b plus a carry-in bit cin.  The carry-in bit represents the carry-out of the previous
lower-order stage.  A full adder produces two outputs: a sum bit sum and carry-out bit
cout.  This example will use built-in primitives to design a full adder consisting of two
half adders plus additional logic as shown in Figure 1.45.

The design module is shown in Figure 1.46, test bench module is shown in Figure
1.47 and the outputs are shown in Figure 1.48.

Figure 1.45 Full adder to be designed with built-in primitives.

Figure 1.46 Module for a full adder using built-in primitives.

Figure 1.47 Test bench for the full adder of Figure 1.46.

+a
+b +sum

+cout

+cin

Half adder Half adder

inst2

inst1 inst3

inst4

inst5

net1

net2 net4

//full adder using built-in primitives
module full_adder_bip (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

xor inst1 (net1, a, b);
and inst2 (net2, a, b);
xor inst3 (sum, net1, cin);
and inst4 (net4, net1, cin);
or inst5 (cout, net4, net2);
endmodule

//test bench for full adder using built-in primitives
module full_adder_bip_tb;

reg a, b, cin;
wire sum, cout; //continued on next page
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Figure 1.47       (Continued)

Figure 1.48 Outputs for the full adder of Figure 1.46.

1.5 User-Defined Primitives
Verilog also provides the ability to design primitives according to user specifications.
These are called user-defined primitives (UDPs) and are usually at a higher-level logic
function than built-in primitives.  They are independent primitives and do not instan-
tiate other primitives or modules.  UDPs are instantiated into a module the same way
as built-in primitives; that is, the syntax for a UDP instantiation is the same as that for
a built-in primitive instantiation.  A UDP is defined outside the module into which it is

//apply input vectors
initial
begin: apply_stimulus

reg[3:0] invect; //invect[3] terminates the for loop
for (invect = 0; invect < 8; invect = invect + 1)

begin
{a, b, cin} = invect [3:0];
#10 $display ("abcin = %b, cout = %b, sum = %b",

{a, b, cin}, cout, sum);
end

end

//instantiate the module into the test bench
full_adder_bip inst1 (

.a(a),

.b(b),

.cin(cin),

.sum(sum),

.cout(cout)
);

endmodule

abcin = 000, cout = 0, sum = 0
abcin = 001, cout = 0, sum = 1
abcin = 010, cout = 0, sum = 1
abcin = 011, cout = 1, sum = 0
abcin = 100, cout = 0, sum = 1
abcin = 101, cout = 1, sum = 0
abcin = 110, cout = 1, sum = 0
abcin = 111, cout = 1, sum = 1
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instantiated.  There are two types of UDPs: combinational and sequential.  Sequential
primitives include level-sensitive and edge-sensitive circuits.

1.5.1  Defining a User-Defined Primitive

The syntax for a UDP is similar to that for declaring a module.  The definition begins
with the keyword primitive and ends with the keyword endprimitive.  The UDP con-
tains a name and a list of ports, which are declared as input or output.  For a sequential
UDP, the output port is declared as reg.  UDPs can have one or more scalar inputs, but
only one scalar output.  The output port is listed first in the terminal list followed by the
input ports, in the same way that the  terminal list appears in built-in primitives.  UDPs
do not support inout ports.

The UDP table is an essential part of the internal structure and defines the func-
tionality of the circuit.  It is a lookup table similar in concept to a truth table.  The table
begins with the keyword table and ends with the keyword endtable.  The contents of
the table define the value of the output with respect to the inputs.  The syntax for a
UDP is shown below.

primitive udp_name (output, input_1, input_2, . . . , input_n);
output output;
input input_1, input_2, . . . , input_n;
reg sequential_output; //for sequential UDPs

initial //for sequential UDPs

table
state table entries

endtable
endprimitive

1.5.2  Combinational User-Defined Primitives

To illustrate the method for defining and using combinational UDPs, examples will be
presented ranging from simple designs to more complex designs.  UDPs are not com-
piled separately.  They are saved in the same project as the module with a .v extension;
for example, udp_and.v.

Example 1.7 A 2-input OR gate udp_or2 will be designed using a UDP.  The mod-
ule is shown in Figure 1.49.  The inputs in the state table must be in the same order as
in the input list.  The table heading is a comment for readability.  The inputs and output
are separated by a colon and the table entry is terminated by a semicolon.  All
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combinations of the inputs must be entered in the table in order to obtain a correct out-
put; otherwise, the output will be designated as x (unknown).  To completely specify
all combinations of the inputs, a value of x should be included in the input values
where appropriate.

Figure 1.49 A user-defined primitive for a 2-input OR gate.

Example 1.8 This example will use a combination of built-in primitives and UDPs
to design a full adder from two half adders.  The truth tables for a half adder and full
adder are shown in Table 1.14 and Table 1.15, respectively.  A half adder is a combi-
national circuit that performs the addition of two operand bits and produces two out-
puts: a sum bit and a carry-out bit.  The half adder does not accommodate a carry-in bit.
A full adder is a combinational circuit that performs the addition of two operand bits
plus a carry-in bit.  The carry-in represents the carry-out of the previous lower-order
stage.  The full adder produces two outputs: a sum bit and a carry-out bit.

The sum and carry-out equations for the half adder are shown in Equation 1.12.
The sum and carry-out equations for the full adder are shown in Equation 1.13.  The
logic diagram for a full adder obtained from two half adders using Equation 1.13 is
shown in Figure 1.50.

//used-defined primitive for a 2-input OR gate

primitive udp_or2 (z1, x1, x2);//list output first

//input/output declarations
input x1, x2;
output z1; //must be output (not reg)

//...for combinational logic

//state table definition
table
//inputs are in same order as input list
// x1 x2 : z1; comment is for readability

0 0 : 0;
0 1 : 1;
1 0 : 1;
1 1 : 1;
x 1 : 1;
1 x : 1;

endtable

endprimitive
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Figure 1.50 Full adder designed from two half adders.

Table 1.14  Truth Table for a
Half Adder

a b sum carry-out
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 1.15  Truth Table for a
Full Adder

a b cin sum carry-out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

sum =
=

a'b + ab'
a  b

carry-out = ab (1.12)

sum = a'b'cin + a'bcin' + ab'cin' + abcin

= a  b  cin

carry-out = a'bcin + ab'cin + abcin' + abcin

= cin(a  b) + ab

= ab + acin + bcin          (see Figure 1.51) (1.13)

+a
+b +sum

+carry-out
+cin

a  b a  b  cin

ab (a  b) cin cin (a  b) + ab

net1

net2 net3

udp_xor2 udp_xor2

inst2 inst3
inst1

half adder
half adder
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The equation for carry-out can also be obtained by plotting Table 1.15 on a Kar-
naugh map, as shown in Figure 1.51.  The equation is then easily obtained in a sum-of-
products notation as: ab + acin + bcin. 

Figure 1.51 Karnaugh map for the carry-out of a full adder.

The full adder will be designed by means of a UDP for the exclusive-OR gates and
built-in primitives for the AND gates and OR gate, all of which will be instantiated
into the project full_adder_udp.  The module for the udp_xor2 is shown in Figure 1.52.
The full_adder_udp module is shown in Figure 1.53, the test bench is shown in Figure
1.54, and the outputs are shown in Figure 1.55.

Figure 1.52 Module for the udp_xor2 to be instantiated into the full adder module
full_adder_udp.

  0 0      0 1     1 1      10
b cin

    a

 0       0         0        1         0

 1       0         1        1         1

 0            1           3            2

 4            5           7           6

carry-out = ab + acin + bcin

//UDP for a 2-input exclusive-OR
primitive udp_xor2 (z1, x1, x2);

input x1, x2;
output z1;

//define state table
table
//inputs are in the same order as the input list
// x1 x2 : z1;     comment is for readability

0 0 : 0;
0 1 : 1;
1 0 : 1;
1 1 : 0;

endtable

endprimitive
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Figure 1.53 Module for a full adder using a UDP and built-in primitives.

Figure 1.54 Test bench for the full adder of Figure 1.53.

//full adder using a UDP and built-in primitives
module full_adder_udp (a, b, cin, sum, cout);

input a, b, cin;
output sum, cout;

wire net1, net2, net3; //define internal nets

//instantiate the udps and built-in primitive
udp_xor2 (net1, a, b);
and inst1 (net2, a, b);

udp_xor2 (sum, net1, cin);
and inst2 (net3, net1, cin);

or inst3 (cout, net3, net2);
endmodule

//test bench for full adder
module full_adder_udp_tb;

reg a, b, cin;
wire sum, cout;

initial //apply input vectors
begin: apply_stimulus

reg [3:0] invect;
for (invect=0; invect<8; invect=invect+1)

begin
{a, b, cin} = invect [3:0];
#10 $display ("a b cin = %b, sum cout = %b",

{a, b, cin}, {sum, cout});
end

end

//instantiate the module into the test bench
full_adder_udp inst1 (

.a(a),

.b(b),

.cin(cin),

.sum(sum),

.cout(cout)
);

endmodule
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Figure 1.55 Outputs for the full adder of Figure 1.53.

Example 1.9 This example will design a 4:1 multiplexer as a UDP.  The multiplex-
er will then be checked for correct functional operation by means of a test bench which
will generate the outputs.  A block diagram of the multiplexer is shown in Figure 1.56
together with a table defining the output as a function of the two select inputs s1  and s0
and the four data inputs d0 , d1, d2, and d3.  The equation for the output can be written
directly from the table as shown in Equation 1.14.  An Enable input may also be as-
sociated with a multiplexer to enable the output.

Figure 1.56 A 4:1 multiplexer to be designed as a UDP.

The 4:1 multiplexer UDP is shown in Figure 1.57.  Note the entries in the table that
contain the symbol (?), which indicates a “don’t care” condition.  Referring to the first
line in the table, if s1s0  = 00, then it does not matter what the values are for inputs
d1d2d3 because only input d0  is selected.

The test bench for the 4:1 multiplexer is shown in Figure 1.58.  The input lines are
set to known values such that d0d1d2d3 = 1010.  The input values are then displayed
using the $display system task.  The backslash (\) character is used to escape certain
special characters such as \n, which is a newline character.

a b cin = 000, sum cout = 00
a b cin = 001, sum cout = 10
a b cin = 010, sum cout = 10
a b cin = 011, sum cout = 01
a b cin = 100, sum cout = 10
a b cin = 101, sum cout = 01
a b cin = 110, sum cout = 01
a b cin = 111, sum cout = 11

s1 s0 Out

0 0 d0
0 1 d1
1 0 d2
1 1 d3

MUX
s0

d0
d1

s1

d3

d2

s0

d0
d1

s1

d3

d2

Out

Out = s1 ' s0 ' d0  + s1 ' s0d1  + s1 s0 ' d2 + s1s0d3 (1.14)
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Figure 1.57 A UDP for a 4:1 multiplexer.

Figure 1.58 Test bench for the UDP 4:1 multiplexer.

//4:1 multiplexer as a UDP
primitive udp_mux4 (out, s1, s0, d0, d1, d2, d3);

input s1, s0, d0, d1, d2, d3;
output out;

table //define state table
//inputs are in the same order as the input list
// s1 s0 d0 d1 d2 d3 : out     comment is for readability

0 0 1 ? ? ? : 1;   //? is "don't care"
0 0 0 ? ? ? : 0;

0 1 ? 1 ? ? : 1;
0 1 ? 0 ? ? : 0;

1 0 ? ? 1 ? : 1;
1 0 ? ? 0 ? : 0;

1 1 ? ? ? 1 : 1;
1 1 ? ? ? 0 : 0;

? ? 0 0 0 0 : 0;
? ? 1 1 1 1 : 1;

endtable
endprimitive

//test bench for the 4:1 multiplexer udp
module udp_mux4_tb;

reg s1, s0, d0, d1, d2, d3;
wire out;

initial
begin
//set the input lines to known values

d0 = 1; d1 = 0; d2 = 1; d3 = 0;

//display the input values
#10 $display ("d0=%b, d1=%b, d2=%b, d3=%b \n",

d0, d1, d2, d3); // \n is new line
//continued on next page
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Figure 1.58       (Continued)

Beginning at 10 time units, the select lines are rotated through all four combina-
tions of the two variables, which in turn transmit the input values to the output.  For ex-
ample, if s1s0  = 11, then the value of input line d3 is transmitted to the output.  When
instantiating a UDP module into a test bench — when there is no design module — the
ports must be instantiated by position.  The outputs are shown in Figure 1.59.

Figure 1.59 Outputs for the UDP 4:1 multiplexer.

//select d0 = 1
s1 = 0; s0 = 0;
#10 $display ("s1=%b, s0=%b, output=%b \n",

s1, s0, out);

//select d1 = 0
s1 = 0; s0 = 1;
#10 $display ("s1=%b, s0=%b, output=%b \n",

s1, s0, out);

//select d2 = 1
s1 = 1; s0 = 0;
#10 $display ("s1=%b, s0=%b, output=%b \n",

s1, s0, out);

//select d3 = 0
s1 = 1; s0 = 1;
#10 $display ("s1=%b, s0=%b, output=%b \n",

s1, s0, out);
#10 $stop;

end

//instantiate the module into the test bench.
//if instantiating only the primitive of USB with no module,
//then instantiation must be done using positional notation

udp_mux4 inst1 (out, s1, s0, d0, d1, d2, d3);
endmodule

d0=1, d1=0, d2=1, d3=0 

s1=0, s0=0, output=1 
s1=0, s0=1, output=0 
s1=1, s0=0, output=1 
s1=1, s0=1, output=0 
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Example 1.10 Variables may also be entered in a Karnaugh map as map-entered
variables, together with 1s and 0s.  A map of this type is more compact than a standard
Karnaugh map, but contains the same information.  A map containing map-entered
variables is particularly useful in analyzing and designing synchronous sequential ma-
chines.  When variables are entered in a Karnaugh map, two or more squares can be
combined only if the squares are adjacent and contain the same variable(s).

The Karnaugh map of Figure 1.60 will be implemented using a 4:1 multiplexer
and any additional logic.  First, the equations for the multiplexer data inputs, d0, d1 ,
d2 , and d3 will be obtained using E as a map-entered variable, where the multiplexer
select inputs are s1s0= x1x2 .  Then the circuit will be designed using UDPs for the
multiplexer and associated logic gates.

Figure 1.60 Karnaugh map for Example 1.10 using E as a map-entered variable.

To obtain the equation for data input d0 , where s1s0  = x1x2 = 00, minterm loca-
tions 0 and 2 are adjacent and contain the same variable E; therefore, the term is x4' E.
Data input d1 , where s1s0  = x1x2  = 01, contains 1s in minterm locations 4 and 5; there-
fore, d1  = x3' .  To obtain the equation for d3, where s1s0  = x1x2  = 11, minterm loca-
tions 13 and 15 combine to yield x4.  Minterm location 15 is equivalent to 1 + E ' ;
therefore, minterm locations 14 and 15 combine to yield the product term x3E '.  The
equation for d3 is x4 + x3E '.  Data input d2  is obtained in a similar manner.

The logic diagram is shown in Figure 1.61 using a 4:1 multiplexer (udp_mux4), a
2-input AND gate (udp_and2), a 2-input exclusive-OR function (udp_xor2) previous-
ly designed, and a 2-input OR gate (udp_or2) previously designed.

The module for the logic diagram is shown in Figure 1.62 and the test bench is
shown in Figure 1.63.  The Karnaugh map of Figure 1.60 is expanded to the 5-variable
map of Figure 1.64 to better visualize the minterm entries when comparing them with
the outputs of Figure 1.65.

 0 0      0 1     1 1     1 0

0 0      E         0        0         E

0 1      1         1        0         0

1 1      0         1        1         E '
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x1x2

x3x4

z1

 

d0 = 

d1 = 

d3 = 

d2 = 

x4 ' E

x3 '

x4  + x3E '

x3 ' x4  + x3x4 '

 0           1           3           2

 4           5           7           6

8           9          11         10

12         13          15         14
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Figure 1.61 Logic diagram for the Karnaugh map of Figure 1.60.

Figure 1.62 Module for the logic diagram of Figure 1.61.

Figure 1.63 Test bench for Figure 1.62 for the logic diagram of Figure 1.61.
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inst2

inst3 inst4

inst5

//logic circuit using a multiplexer udp
//together with other logic gate udps
module mux4_mev (x1, x2, x3, x4, E, z1);

input x1, x2, x3, x4, E;
output z1;

//instantiate the udps
udp_and2 inst1 (net1, ~x4, E);
udp_xor2 inst2 (net2, x3, x4);
udp_and2 inst3 (net3, x3, ~E);
udp_or2  inst4 (net4, x4, net3);

//the mux inputs are: s1, s0, d0, d1, d2, d3
udp_mux4 inst5 (z1, x1, x2, net1, ~x3, net2, net4);

endmodule

//test bench for mux4_mev

module mux4_mev_tb;

reg x1, x2, x3, x4, E;
wire z1;

//continued on next page
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Figure 1.63       (Continued)

Figure 1.64 Five-variable Karnaugh map equivalent to the 4-variable map of Fig-
ure 1.60.

//apply input vectors
initial
begin: apply_stimulus

reg [5:0] invect;
for (invect=0; invect<32; invect=invect+1)

begin
{x1, x2, x3, x4, E} = invect [5:0];
#10 $display ("x1x2x3x4E = %b, z1 = %b",

{x1, x2, x3, x4, E}, z1);
end

end

//instantiate the module into the test bench
mux4_mev inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.E(E),

.z1(z1)
);

endmodule
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Figure 1.65 Outputs obtained from the test bench of Figure 1.63 for the module of
Figure 1.62.

1.5.3  Sequential User-Defined Primitives

Verilog provides a means to model sequential UDPs in much the same way as built-in
primitives are modeled.  Sequential UDPs can be used to model both level-sensitive
and edge-sensitive sequential circuits.  Level-sensitive behavior is controlled by the
value of an input signal; edge-sensitive behavior is controlled by the edge of an input
signal.  The inputs are implied to be of type wire.  Sequential devices have an internal

x1x2x3x4E = 00000, z1 = 0
x1x2x3x4E = 00001, z1 = 1
x1x2x3x4E = 00010, z1 = 0
x1x2x3x4E = 00011, z1 = 0
x1x2x3x4E = 00100, z1 = 0
x1x2x3x4E = 00101, z1 = 1
x1x2x3x4E = 00110, z1 = 0
x1x2x3x4E = 00111, z1 = 0

x1x2x3x4E = 01000, z1 = 1
x1x2x3x4E = 01001, z1 = 1
x1x2x3x4E = 01010, z1 = 1
x1x2x3x4E = 01011, z1 = 1
x1x2x3x4E = 01100, z1 = 0
x1x2x3x4E = 01101, z1 = 0
x1x2x3x4E = 01110, z1 = 0
x1x2x3x4E = 01111, z1 = 0

x1x2x3x4E = 10000, z1 = 0
x1x2x3x4E = 10001, z1 = 0
x1x2x3x4E = 10010, z1 = 1
x1x2x3x4E = 10011, z1 = 1
x1x2x3x4E = 10100, z1 = 1
x1x2x3x4E = 10101, z1 = 1
x1x2x3x4E = 10110, z1 = 0
x1x2x3x4E = 10111, z1 = 0

x1x2x3x4E = 11000, z1 = 0
x1x2x3x4E = 11001, z1 = 0
x1x2x3x4E = 11010, z1 = 1
x1x2x3x4E = 11011, z1 = 1
x1x2x3x4E = 11100, z1 = 1
x1x2x3x4E = 11101, z1 = 0
x1x2x3x4E = 11110, z1 = 1
x1x2x3x4E = 11111, z1 = 1
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state that is a 1-bit register and must be modeled as a type reg variable, which is the
output of the device and specifies the present state.  One initial statement can be used
to initialize the output of a sequential UDP.       

Level-sensitive user-defined primitives The state — and thus the output —
of a level-sensitive device is a function of the input levels only, not on a low-to-high or
a high-to-low transition.  A latch is an example of a level-sensitive UDP.

Example 1.11 The logic diagram of a latch is shown in Figure 1.66.  The UDP mod-
ule is shown in Figure 1.67, the test bench module is shown in Figure 1.68, and the out-
puts are shown in Figure 1.69.

Figure 1.66 Logic diagram for a gated latch to be modeled as a sequential level-
sensitive UDP.

Figure 1.67 Design module for a level-sensitive gated latch UDP.

+data
+clk

–rst_n

+q

//a gated latch as a level-sensitive udp
primitive udp_latch_level (q, data, clk, rst_n);
input data, clk, rst_n;
output q;
reg q; //q is internal storage

initial
q = 0; //initialize output q to 0

//define state table
table
//inputs are in the same order as the input list
// data clk rst_n : q : q+; q+ is next state

? ? 0 : ? : 0; //latch is reset
0 0 1 : ? : -; //- means no change
0 1 1 : ? : 0; //data=0; clk=1; q+=0
1 0 1 : ? : -;
1 1 1 : ? : 1; //data=1; clk=1; q+=1
? 0 1 : ? : -;

endtable
endprimitive



1.5     User-Defined Primitives     65

Figure 1.68 Test bench for the level-sensitive gated latch of Figure 1.67.

Figure 1.69 Outputs for the level-sensitive gated latch of Figure 1.67.

Edge-sensitive user-defined primitives Edge-sensitive UDPs can model
behavior that is triggered by either a positive edge or a negative edge.  The table entries
in edge-sensitive circuits are similar to those in level-sensitive circuits.  The difference
is that a rising or falling edge must be specified on the clock input (or any other input
that triggers the circuit).

Most counters count in either a count-up or count-down sequence.  Still other
counters can be designed for a unique application in which the counting sequence is
neither entirely up nor entirely down.  These have a nonsequential counting sequence
that is prescribed by external requirements.  Such a counter has a counting sequence as
follows: y1y2y3y4 = 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000, and is

//test bench for level-sensitive latch
module udp_latch_level_tb;

reg data, clk, rst_n;
wire q;

//display variables
initial
$monitor ("rst_n=%b, data=%b, clk=%b, q=%b",

rst_n, data, clk, q);

//apply input vectors
initial
begin

#0     rst_n=1'b0;  data=1'b0;  clk=1'b0;
#10    rst_n=1'b1;  data=1'b1;  clk=1'b1;
#10    rst_n=1'b1;  data=1'b1;  clk=1'b0;
#10    rst_n=1'b1;  data=1'b0;  clk=1'b1;
#10    rst_n=1'b1;  data=1'b1;  clk=1'b1;

end

//instantiation must be done by position, not by name
udp_latch_level inst1 (q, data, clk, rst_n);
endmodule

rst_n=0, data=0, clk=0, q=0
rst_n=1, data=1, clk=1, q=1
rst_n=1, data=1, clk=0, q=1
rst_n=1, data=0, clk=1, q=0
rst_n=1, data=1, clk=1, q=1
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classified as a Johnson counter.  The counter is reset initially to y1y2y3y4 = 0000.  The
unspecified states can be regarded as “don’t care” states in order to minimize the 
next-state logic.  The inverted output of the last flip-flop is fed back to the D input of
the first flip-flop.

The logic diagram for a 4-bit Johnson counter is shown in Figure 1.70 using pos-
itive-edge-triggered D flip-flops.  The D flip-flop will be designed as a user-defined
primitive, then instantiated four times into the design module of the Johnson counter.
The D flip-flop is shown in Figure 1.71 as a UDP.

Figure 1.70 Logic diagram for a 4-bit Johnson counter.

Figure 1.71 A user-defined primitive for a D flip-flop.

y1

D

>

y2

D

>

y3

D

>

+clock

–y4 +y1

+y2

inst1

inst2

inst3
+y3

y4

D
inst4 –y4

+y4

>

//a positive-edge-sensitive D flip-flop
primitive udp_dff_edge1 (q, d, clk, rst_n);

input d, clk, rst_n;
output q;

reg q; //q is internal storage

//initialize q to 0
initial

q = 0; //continued on next page
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Figure 1.71       (Continued)

The design module for the Johnson counter is shown in Figure 1.72 which instan-
tiates the user-defined primitive udp_dff_edge1 four times to implement the Johnson
counter.  The test bench is shown in Figure 1.73.  The outputs are shown in Figure
1.74.

Figure 1.72 A Johnson counter designed using a UDP for a D flip-flop.

//define state table
table
//inputs are in the same order as the input list
// d clk rst_n : q : q+; q+ is the next state

0 (01) 1 : ? : 0; //(01) is rising edge
1 (01) 1 : ? : 1; //rst_n = 1 means no rst
1 (0x) 1 : 1 : 1; //(0x) is no change
0 (0x) 1 : 0 : 0;
? (?0) 1 : ? : -; //ignore negative edge

//reset case when rst_n is 0 and clk has any transition
? (??) 0 : ? : 0; //rst_n = 0 means reset

//reset case when rst_n is 0.  d & clk can be anything, q+=0
? ? 0 : ? : 0;

//reset case when 0 --> 1 transition on rst_n.  Hold q+ state
? ? (01) : ? : -;

//non-reset case when d has any trans, but clk has no trans
(??) ? 1 : ? : -; //clk = ?, means no edge

endtable
endprimitive

//udp for a 4-bit johnson counter
module ctr_johnson4 (rst_n, clk, y1, y2, y3, y4);
input rst_n, clk;
output y1, y2, y3, y4;

//instantiate D flip-flop for y1
udp_dff_edge1 inst1 (y1, ~y4, clk, rst_n);

//instantiate D flip-flop for y2
udp_dff_edge1 inst2 (y2, y1, clk, rst_n);

//instantiate D flip-flop for y3
udp_dff_edge1 inst3 (y3, y2, clk, rst_n);

//instantiate D flip-flop for y4
udp_dff_edge1 inst4 (y4, y3, clk, rst_n);
endmodule
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Figure 1.73 Test bench for the 4-bit UDP Johnson counter.

Figure 1.74 Outputs for the 4-bit UDP Johnson counter.

//test bench for the 4-bit johnson counter
module ctr_johnson4_tb;

reg clk, rst_n; //inputs are reg for tb
wire y1, y2, y3, y4; //outputs are wire for tb

initial
$monitor ("count = %b", {y1, y2, y3, y4});

initial //define clk
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define reset
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;
#200 $stop;

end

ctr_johnson4 inst1 ( //instantiate the module
.rst_n(rst_n),
.clk(clk),
.y1(y1),
.y2(y2),
.y3(y3),
.y4(y4)
);

endmodule

count = 0000
count = 1000
count = 1100
count = 1110
count = 1111
count = 0111
count = 0011
count = 0001
count = 0000
count = 1000
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1.6  Dataflow Modeling
Gate-level modeling using built-in primitives is an intuitive approach to digital design
because it corresponds one-to-one with traditional digital logic design at the gate level.
Dataflow modeling, however, is at a higher level of abstraction than gate-level mod-
eling.  Design automation tools are used to create gate-level logic from dataflow mod-
eling by a process called logic synthesis.  Register transfer level (RTL) is a
combination of dataflow modeling and behavioral modeling and characterizes the
flow of data through logic circuits.  The following sections describe different tech-
niques used to design logic circuits using dataflow modeling.  These techniques
include the continuous assignment statement, reduction operators, the conditional
operator, relational operators, logical operators, bitwise operators, and shift operators.

1.6.1  Continuous Assignment

The continuous assignment statement models dataflow behavior and is used to design
combinational logic without using gates and interconnecting nets.  Continuous assign-
ment statements provide a Boolean correspondence between the right-hand side
expression and the left-hand side target.  The continuous assignment statement uses
the keyword assign and has the following syntax with optional drive strength and
delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

  The continuous assignment statement assigns a value to a net (wire) that has been
previously declared — it cannot be used to assign a value to a register.  Therefore, the
left-hand target must be a scalar or vector net or a concatenation of scalar and vector
nets.  The operands on the right-hand side can be registers, nets, or function calls.  The
registers and nets can be declared as either scalars or vectors.  The following are exam-
ples of continuous assignment statements for scalar nets:

assign z1 = x1  & x2 & x3 ;
assign z1 = x1  ^ x2 ;
assign z1 = (x1  & x2) | x3;

where the symbol “&” is the AND operation, the symbol “^” is the exclusive-OR
operation, and the symbol “ | ”  is the OR operation.

The following are examples of continuous assignment statements for vector and
scalar nets, where sum is a 9-bit vector to accommodate the sum and carry-out, a and
b are 8-bit vectors, and cin is a scalar:

assign sum = a + b + cin
assign sum = a ^ b ^ cin

where the symbol “+” is the add operation.
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Example 1.12 Figure 1.75 is an example of a continuous assignment statement uti-
lized in the design of an exclusive-NOR circuit where x1  and x2  are the inputs and z1
is the output.  Figure 1.76 shows the test bench and Figure 1.77 shows the outputs.
Recall that an exclusive-NOR circuit is defined as:

Figure 1.75 Continuous assignment statement used to design an exclusive-NOR
circuit.

Figure 1.76 Test bench for the exclusive-NOR circuit.

x1  x2 z1

0   0 1
0   1 0
1   0 0
1   1 1

//dataflow 2-input exclusive-nor
module xnor2_df (x1, x2, z1);

input x1, x2; //list all inputs and outputs
output z1;

wire x1, x2; //all signals are wire
wire z1;

assign z1 = ~(x1 ^ x2); //continuous assign used for
endmodule //...dataflow modeling

//dataflow xnor2_df test bench
module xnor2_tb;

reg x1, x2; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

initial //apply input vectors and display variables
begin: apply_stimulus

reg [2:0] invect;
for (invect = 0; invect < 4; invect = invect + 1)

begin
{x1, x2} = invect [2:0];
#10 $display ("x1 x2 = %b, z1 = %b", {x1, x2}, z1);

end
end
//instantiate the module into the test bench as a  single line
xnor2_df inst1 (x1, x2, z2);
endmodule
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Figure 1.77 Outputs for the exclusive-NOR circuit.

1.6.2  Reduction Operators

The reduction operators are: AND (&), NAND (~&), OR ( | ), NOR (~ | ), exclusive-
OR ( ^ ), and exclusive-NOR ( ^ ~ or ~ ^ ).  Reduction operators are unary operators;
that is, they operate on a single vector and produce a single-bit result.  Reduction op-
erators perform their respective operations on a bit-by-bit basis from right to left.  If
any bit in the operand is an x or a z, then the result of the operation is an x.  The re-
duction operators are defined as follows:
 

Example 1.13 This example illustrates the continuous assignment statement to dem-
onstrate the reduction operators.  Figure 1.78 contains the design module to illustrate
the operation of the six reduction operators using a 4-bit operand a[3:0].  If no delays
are specified for the continuous assignment statement, then only one assign keyword
is required.  Only the final statement is terminated by a semicolon; all other statements
are terminated by a comma.  The test bench and outputs are shown in Figure 1.79 and
Figure 1.80, respectively.

Reduction Operator Description
& (Reduction AND) If any bit is a 0, then the result is 0, other-

wise the result is 1.
~& (Reduction NAND) This is the complement of the reduction 

AND operation.
| (Reduction OR) If any bit is a 1, then the result is 1, other-

wise the result is 0.
~ | (Reduction NOR) This is the complement of the reduction OR 

operation.
^ (Reduction exclusive-OR) If there are an even number of 1s in the 

operand, then the result is 0, otherwise the 
result is 1.

~ ^ (Reduction exclusive-NOR) This is the complement of the reduction 
exclusive-OR operation.

x1 x2 = 00, z1 = 1
x1 x2 = 01, z1 = 0
x1 x2 = 10, z1 = 0
x1 x2 = 11, z1 = 1
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Figure 1.78 Design module for reduction operators.

Figure 1.79 Test bench module for reduction operators.

//module to illustrate the use of reduction operators
module reduction3 (a, red_and, red_nand, red_or, red_nor,

red_xor, red_xnor);

//list inputs and outputs
input [3:0] a;
output red_and, red_nand, red_or, red_nor, red_xor, red_xnor;

//define signals
wire [3:0] a;
wire red_and, red_nand, red_or, red_nor, red_xor, red_xnor;

assign red_and   = &a, //reduction AND
red_nand  = ~&a, //reduction NAND
red_or    = |a, //reduction OR
red_nor   = ~|a, //reduction NOR
red_xor   = ^a, //reduction exclusive-OR
red_xnor  = ^~a; //reduction exclusive-NOR

endmodule

//test bench for reduction2 module
module reduction3_tb;

reg [3:0] a;  //inputs are reg for test bench; outputs are wire
wire red_and, red_nand, red_or, red_nor, red_xor, red_xnor;

initial
$monitor ("a=%b, red_and=%b, red_nand=%b, red_or=%b,

red_nor=%b, red_xor=%b, red_xnor=%b",
a, red_and, red_nand, red_or, red_nor, red_xor,

red_xnor);

//apply input vectors
initial
begin

#0 a = 4'b0001;
#10 a = 4'b0010;
#10 a = 4'b0011;
#10 a = 4'b0100;
#10 a = 4'b0101;
#10 a = 4'b0110; //continued on next page
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Figure 1.79       (Continued)

Figure 1.80 Outputs for reduction operators.

#10 a = 4'b0111;
#10 a = 4'b1000;
#10 a = 4'b1001;
#10 a = 4'b1010;
#10 a = 4'b1011;
#10 a = 4'b1100;
#10 a = 4'b1101;
#10 a = 4'b1110;
#10 a = 4'b1111;

#10 $stop;
end

//instantiate the module into the test bench as a single line
reduction3 inst1 (a, red_and, red_nand, red_or, red_nor,

red_xor, red_xnor);
endmodule

a=0001,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=0010,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=0011,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=0100,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=0101,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=0110,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

//continued on next  page



74          Chapter  1     Introduction to Logic Design Using Verilog HDL

Figure 1.80       (Continued)

1.6.3  Conditional Operator

The conditional operator (? :) has three operands, as shown in the syntax below.  The
conditional_expression is evaluated.  If the result is true (1), then the true_expression
is evaluated; if the result is false (0), then the false_expression is evaluated.

conditional_expression ? true_expression : false_expression;

a=0111,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=1000,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=1001,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=1010,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=1011,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=1100,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=0, red_xnor=1

a=1101,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=1110,
red_and=0, red_nand=1, red_or=1,
red_nor=0, red_xor=1, red_xnor=0

a=1111,
red_and=1, red_nand=0, red_or=1,
red_nor=0, red_xor=0, red_xnor=1
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  The conditional operator can be used when one of two expressions is to be se-
lected.  For example, in Equation 1.15 shown below, if x1  is greater than or equal to x2 ,
then z1 is assigned the value of x3 ; if x1  is less than x2 , then z1 is assigned the value of
x4 .

z1 = (x1  > = x2) ? x3 : x4 ;     (1.15)

Conditional operators can be nested; that is, each true_expression and
false_expression can be a conditional operation, as shown below.  This is useful for
modeling a 4:1 multiplexer.

conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
     : (cond_expr2 ? true_expr2 : false_expr2);

Example 1.14 Equation 1.15 will be implemented using the conditional operator.  If
x1  is greater than or equal to x2 , then output z1 will be assigned the value of x3 , oth-
erwise z1 will be assigned the value of x4.  The design module is shown in Figure 1.81.
The test bench module is shown in Figure 1.82 and the outputs are shown in Figure
1.83.

Figure 1.81 Design module for the conditional operator of Equation 1.15.

Figure 1.82 Test bench module for Figure 1.81.

//conditional operator for the following equation:
//z1 = (x1 >= x2) ? x3 : x4;

module conditional_op (x1, x2, x3, x4, z1);

//define inputs and outputs
input x1, x2, x3, x4;
output z1;

assign z1 = (x1 >= x2) ? x3 : x4;

endmodule

//test bench for conditional_op

module conditional_op_tb;
//inputs are reg for test bench; outputs are wire
reg x1, x2, x3, x4;
wire z1; //continued on next page
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Figure 1.82       (Continued)

Figure 1.83 Outputs for the conditional operator of Figure 1.81.

//display variables
initial
$monitor ("x1 = %b, x2 = %b, x3 = %b, x4 = %b, z1 = %b",

x1, x2, x3, x4, z1);

//apply input vectors
initial
begin

#0 x1=1'b0; x2=1'b0; x3=1'b0; x4=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b0; x4=1'b1;
#10 x1=1'b0; x2=1'b0; x3=1'b1; x4=1'b0;
#10 x1=1'b0; x2=1'b0; x3=1'b1; x4=1'b1;
#10 x1=1'b0; x2=1'b1; x3=1'b0; x4=1'b0;
#10 x1=1'b0; x2=1'b1; x3=1'b0; x4=1'b1;
#10 x1=1'b0; x2=1'b1; x3=1'b1; x4=1'b0;
#10 x1=1'b0; x2=1'b1; x3=1'b1; x4=1'b1;

#10 x1=1'b1; x2=1'b0; x3=1'b0; x4=1'b0;
#10 x1=1'b1; x2=1'b0; x3=1'b0; x4=1'b1;
#10 x1=1'b1; x2=1'b0; x3=1'b1; x4=1'b0;
#10 x1=1'b1; x2=1'b0; x3=1'b1; x4=1'b1;
#10 x1=1'b1; x2=1'b1; x3=1'b0; x4=1'b0;
#10 x1=1'b1; x2=1'b1; x3=1'b0; x4=1'b1;
#10 x1=1'b1; x2=1'b1; x3=1'b1; x4=1'b0;
#10 x1=1'b1; x2=1'b1; x3=1'b1; x4=1'b1;

#10 $stop;
end

//instantiate the module into the test bench
conditional_op inst1 (x1, x2, x3, x4, z1);

endmodule

x1 = 0, x2 = 0, x3 = 0, x4 = 0, z1 = 0
x1 = 0, x2 = 0, x3 = 0, x4 = 1, z1 = 0
x1 = 0, x2 = 0, x3 = 1, x4 = 0, z1 = 1
x1 = 0, x2 = 0, x3 = 1, x4 = 1, z1 = 1
x1 = 0, x2 = 1, x3 = 0, x4 = 0, z1 = 0
x1 = 0, x2 = 1, x3 = 0, x4 = 1, z1 = 1
x1 = 0, x2 = 1, x3 = 1, x4 = 0, z1 = 0
x1 = 0, x2 = 1, x3 = 1, x4 = 1, z1 = 1 //continued next pg
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Figure 1.83       (Continued)

1.6.4  Relational Operators

Relational operators compare operands and return a Boolean result, either 1 (true) or 0
(false) indicating the relationship between the two operands.  There are four relational
operators: greater than (>), less than (<), greater than or equal (> = ), and less than or
equal (<=).  These operators function the same as identical operators in the C program-
ming language.

If the relationship is true, then the result is 1; if the relationship is false, then the re-
sult is 0.  Net or register operands are treated as unsigned values; real or integer oper-
ands are treated as signed values.  An x or z in any operand returns a result of x.  When
the operands are of unequal size, the smaller operand is zero-extended to the left. 

Example 1.15 Figure 1.84 shows examples of relational operators using dataflow
modeling, where the identifier gt means greater than, lt means less than, gte means
greater than or equal, and lte means less than or equal.  The test bench, which applies
several different values to the two operands, is shown in Figure 1.85.  The outputs are
shown in Figure 1.86. 

Figure 1.84 Design  module for relational operators.

x1 = 1, x2 = 0, x3 = 0, x4 = 0, z1 = 0
x1 = 1, x2 = 0, x3 = 0, x4 = 1, z1 = 0
x1 = 1, x2 = 0, x3 = 1, x4 = 0, z1 = 1
x1 = 1, x2 = 0, x3 = 1, x4 = 1, z1 = 1
x1 = 1, x2 = 1, x3 = 0, x4 = 0, z1 = 0
x1 = 1, x2 = 1, x3 = 0, x4 = 1, z1 = 0
x1 = 1, x2 = 1, x3 = 1, x4 = 0, z1 = 1
x1 = 1, x2 = 1, x3 = 1, x4 = 1, z1 = 1

//example of relational operands
module relational_opnds (x1, x2, gt, lt, gte, lte);

//define inputs and outputs
input [1:4] x1, x2;
output gt, lt, gte, lte;

//define outputs
assign gt = x1 > x2,

lt = x1 < x2,
gte = x1 >= x2,
lte = x1 <= x2;

endmodule
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Figure 1.85 Test bench module for relational operators.

//test bench for relational_opnds
module relational_opnds_tb;

reg [1:4] x1, x2; //inputs are reg for test bench
wire gt, lt, gte, lte; //outputs are wire for test bench

initial //display variables
$monitor ("x1 = %b, x2 = %b, gt = %b, lt = %b,

gte = %b, lte = %b",
x1, x2, gt, lt, gte, lte);

//apply input vectors
initial
begin

#0 x1 = 4'b0000;
x2 = 4'b0000;

#10 x1 = 4'b0001;
x2 = 4'b0010;

#10 x1 = 4'b0011;
x2 = 4'b0010;

#10 x1 = 4'b0101;
x2 = 4'b0101;

#10 x1 = 4'b1000;
x2 = 4'b0110;

#10 x1 = 4'b1100;
x2 = 4'b1110;

#10 x1 = 4'b0111;
x2 = 4'b0111;

#10 x1 = 4'b0100;
x2 = 4'b0010;

#10 x1 = 4'b0010;
x2 = 4'b0011;

#10 $stop;
end

//instantiate the module into the test bench as a single line
relational_opnds inst1 (x1, x2, gt, lt, gte, lte);

endmodule
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Figure 1.86 Outputs for relational operators.

1.6.5  Logical Operators

There are three logical operators: the binary logical AND operator (&&), the binary
logical OR operator ( | | ), and the unary logical negation operator (!).  Logical opera-
tors evaluate to a logical 1 (true), a logical 0 (false), or an x (ambiguous).  If a logical
operation returns a nonzero value, then it is treated as a logical 1 (true); if a bit in an op-
erand is x or z, then it is ambiguous and is normally treated as a false condition.  For
vector operands, a nonzero vector is treated as a 1.

Example 1.16 Figure 1.87 shows examples of the logical operators using dataflow
modeling.  Figure 1.88 and Figure 1.89 show the test bench and outputs, respectively.

Figure 1.87 Design module for examples of logical operators.

x1 = 0000, x2 = 0000, gt = 0, lt = 0, gte = 1, lte = 1
x1 = 0001, x2 = 0010, gt = 0, lt = 1, gte = 0, lte = 1
x1 = 0011, x2 = 0010, gt = 1, lt = 0, gte = 1, lte = 0
x1 = 0101, x2 = 0101, gt = 0, lt = 0, gte = 1, lte = 1
x1 = 1000, x2 = 0110, gt = 1, lt = 0, gte = 1, lte = 0
x1 = 1100, x2 = 1110, gt = 0, lt = 1, gte = 0, lte = 1
x1 = 0111, x2 = 0111, gt = 0, lt = 0, gte = 1, lte = 1
x1 = 0100, x2 = 0010, gt = 1, lt = 0, gte = 1, lte = 0
x1 = 0010, x2 = 0011, gt = 0, lt = 1, gte = 0, lte = 1

//dataflow for logical operators
module logical_operators (x1, x2, x3, z1, z2, z3, z4);

//define inputs and outputs
input [1:4] x1, x2, x3;
output z1, z2, z3, z4;

//perform the logical operations
assign z1 = (x1 && x2) && x3,

z2 = (x1 || x2) && x3,
z3 = (x1 && x3) || x2,
z4 = !(x1 || x3);

endmodule
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Figure 1.88 Test bench module for examples of logical operators.

Figure 1.89 Outputs for examples of logical operators.

//test bench for logical operators
module logical_operators_tb;

reg [1:4] x1, x2, x3; //inputs are reg for test bench
wire z1, z2, z3, z4; //outputs are wire for test bench

initial //display variables
$monitor ("x1=%b, x2=%b, x3=%b, z1=%b, z2=%b, z3=%b, z4=%b",

x1, x2, x3, z1, z2, z3, z4);

initial //apply input vectors
begin

#0 x1 = 4'b0001; x2 = 4'b0001; x3 = 4'b0001;
#10 x1 = 4'b0011; x2 = 4'b0011; x3 = 4'b0011;
#10 x1 = 4'b1111; x2 = 4'b0000; x3 = 4'b1000;
#10 x1 = 4'b0000; x2 = 4'b1000; x3 = 4'b0000;

#10 x1 = 4'b0100; x2 = 4'b0110; x3 = 4'b0111;
#10 x1 = 4'b0111; x2 = 4'b0000; x3 = 4'b1000;
#10 x1 = 4'b0000; x2 = 4'b0000; x3 = 4'b0000;
#10 x1 = 4'b1111; x2 = 4'b1111; x3 = 4'b1111;

#10 x1 = 4'b0110; x2 = 4'b0110; x3 = 4'b0111;
#10 x1 = 4'b1011; x2 = 4'b0000; x3 = 4'b1011;
#10 x1 = 4'b0000; x2 = 4'b0000; x3 = 4'b0000;
#10 x1 = 4'b1110; x2 = 4'b1011; x3 = 4'b1101;

#10 $stop;
end

//instantiate the module into the test bench
logical_operators inst1 (x1, x2, x3, z1, z2, z3, z4);

endmodule

z1 = (x1 && x2) && x3, z2 = (x1 || x2) && x3,
z3 = (x1 && x3) || x2, z4 = !(x1 || x3);

x1=0001, x2=0001, x3=0001, z1=1, z2=1, z3=1, z4=0
x1=0011, x2=0011, x3=0011, z1=1, z2=1, z3=1, z4=0
x1=1111, x2=0000, x3=1000, z1=0, z2=1, z3=1, z4=0
x1=0000, x2=1000, x3=0000, z1=0, z2=0, z3=1, z4=1

//continued on next page
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Figure 1.89       (Continued)

1.6.6  Bitwise Operators

The bitwise operators are: AND (&), OR ( | ), negation (~), exclusive-OR (^), and ex-
clusive-NOR ( ^ ~ or ~ ^).  The bitwise operators perform logical operations on the op-
erands on a bit-by-bit basis and produce a vector result.  Except for negation, each bit
in one operand is associated with the corresponding bit in the other operand.  If one op-
erand is shorter, then it is zero-extended to the left to match the length of the longer op-
erand.

The bitwise AND operator performs the AND function on two operands on a bit-
by-bit basis.  An example of the bitwise AND operator is shown below.

The bitwise OR operator performs the OR function on the two operands on a bit-
by-bit basis.  An example of the bitwise OR operator is shown below.

The bitwise negation operator performs the negation function on one operand on
a bit-by-bit basis.  Each bit in the operand is inverted.  An example of the bitwise ne-
gation operator is shown below.

1 1 0 0 0 1 0 1
&) 1 1 0 1 1 1 0 0

1 1 0 0 0 1 0 0

0 1 0 1 0 0 0 1
| ) 0 1 0 0 0 1 0 1

0 1 0 1 0 1 0 1

z1 = (x1 && x2) && x3, z2 = (x1 || x2) && x3,
z3 = (x1 && x3) || x2, z4 = !(x1 || x3);

x1=0100, x2=0110, x3=0111, z1=1, z2=1, z3=1, z4=0
x1=0111, x2=0000, x3=1000, z1=0, z2=1, z3=1, z4=0
x1=0000, x2=0000, x3=0000, z1=0, z2=0, z3=0, z4=1
x1=1111, x2=1111, x3=1111, z1=1, z2=1, z3=1, z4=0

x1=0110, x2=0110, x3=0111, z1=1, z2=1, z3=1, z4=0
x1=1011, x2=0000, x3=1011, z1=0, z2=1, z3=1, z4=0
x1=0000, x2=0000, x3=0000, z1=0, z2=0, z3=0, z4=1
x1=1110, x2=1011, x3=1101, z1=1, z2=1, z3=1, z4=0
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The bitwise exclusive-OR operator performs the exclusive-OR function on two
operands on a bit-by-bit basis.  An example of the bitwise exclusive-OR operator is
shown below.

The bitwise exclusive-NOR operator performs the exclusive-NOR function on two
operands on a bit-by-bit basis.  An example of the bitwise exclusive-NOR operator is
shown below.

Bitwise operators perform operations on  operands on a bit-by-bit basis and pro-
duce a vector result.  This is in contrast to logical operators, which perform operations
on operands in such a way that the truth or falsity of the result is determined by the
truth or falsity of the operands.  That is, the logical AND operator returns a value of 1
(true) only if both operands are nonzero (true); otherwise, it returns a value of 0 (false).
If the result is ambiguous, it returns a value of x.

Example 1.17 Figure 1.90 shows a coding example to illustrate the use of the five
bitwise operators.  The test bench and outputs are in Figure 1.91 and Figure 1.92, re-
spectively.

Figure 1.90 Design module for the bitwise operators.

~ ) 1 1 1 0 0 0 1 0
0 0 0 1 1 1 0 1

1 0 0 1 1 0 1 0
^ ) 1 1 0 1 0 1 0 0

0 1 0 0 1 1 1 0

0 1 0 1 0 1 0 0
^ ~ ) 0 1 1 0 0 1 0 1

1 1 0 0 1 1 1 0

//dataflow bitwise operators
module bitwise4 (a, b, c, z1, z2, z3, z4);

input [3:0] a, b, c; //define inputs and outputs
output [3:0] z1, z2, z3, z4;

assign z1 = (a & b) | c,
z2 = (a ^ b) & c,
z3 = (a | c) ^ b,
z4 = (a ^~ c);

endmodule
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Figure 1.91 Test bench module for bitwise operators.

Figure 1.92 Outputs for bitwise operators.

//test bench for bitwise operators
module bitwise4_tb;

reg [3:0] a, b, c; //inputs are reg for test bench
wire [3:0] z1, z2, z3, z4; //outputs are wire for test bench

initial //display variables
$monitor ("a=%b, b=%b, c=%b, z1=%b, z2=%b, z3=%b, z4=%b",

a, b, c, z1, z2, z3, z4);

initial //apply input vectors
begin

#0 a = 4'b0001; b = 4'b0001; c = 4'b0001;
#10 a = 4'b0011; b = 4'b0011; c = 4'b0011;
#10 a = 4'b1111; b = 4'b0000; c = 4'b1000;
#10 a = 4'b0000; b = 4'b1000; c = 4'b0000;

#10 a = 4'b0100; b = 4'b0110; c = 4'b0111;
#10 a = 4'b0111; b = 4'b0000; c = 4'b1000;
#10 a = 4'b0000; b = 4'b0000; c = 4'b0000;
#10 a = 4'b1111; b = 4'b1111; c = 4'b1111;

#10 a = 4'b0000; b = 4'b0001; c = 4'b0010;
#10 a = 4'b0011; b = 4'b0100; c = 4'b0101;
#10 a = 4'b0110; b = 4'b0111; c = 4'b1000;
#10 a = 4'b1001; b = 4'b1010; c = 4'b1011;

#10 a = 4'b1100; b = 4'b1101; c = 4'b1110;
#10 $stop;

end

//instantiate the module into the test bench
bitwise4 inst1 (a, b, c, z1, z2, z3, z4);
endmodule

z1 = (a & b) | c, z2 = (a ^ b) & c,
z3 = (a | c) ^ b, z4 = (a ^~ c);

a=0001, b=0001, c=0001, z1=0001, z2=0000, z3=0000, z4=1111
a=0011, b=0011, c=0011, z1=0011, z2=0000, z3=0000, z4=1111
a=1111, b=0000, c=1000, z1=1000, z2=1000, z3=1111, z4=1000
a=0000, b=1000, c=0000, z1=0000, z2=0000, z3=1000, z4=1111

//continued on next page
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Figure 1.92       (Continued)

1.6.7  Shift Operators

The shift operators shift a single vector operand left or right a specified number of bit
positions.  These are logical shift operations, not algebraic; that is, as bits are shifted
left or right, zeroes fill in the vacated bit positions.  The bits shifted out of the operand
are lost; they do not rotate to the high-order or low-order bit positions of the shifted op-
erand.  If the shift amount evaluates to x or z, then the result of the operation is x.  Al-
gebraic shifters are presented in behavioral modeling, which is described in Section
1.7.  There are two logical shift operators, as shown below.  The value in parentheses
is the number of bits that the operand is shifted.

<< (Left-shift amount)
>> (Right-shift amount)

When an operand is shifted left, this is equivalent to a multiply-by-two operation
for each bit position shifted.  When an operand is shifted right, this is equivalent to a
divide-by-two operation for each bit position shifted.  The shift operators are useful to
model the sequential add-shift multiplication algorithm and the sequential shift-sub-
tract division algorithm.

Example 1.18 Figure 1.93 shows examples of the shift-left and shift-right operators
using dataflow modeling.  The test bench is shown in Figure 1.94 and the outputs are
shown in Figure 1.95.

z1 = (a & b) | c, z2 = (a ^ b) & c,
z3 = (a | c) ^ b, z4 = (a ^~ c);

a=0100, b=0110, c=0111, z1=0111, z2=0010, z3=0001, z4=1100
a=0111, b=0000, c=1000, z1=1000, z2=0000, z3=1111, z4=0000
a=0000, b=0000, c=0000, z1=0000, z2=0000, z3=0000, z4=1111
a=1111, b=1111, c=1111, z1=1111, z2=0000, z3=0000, z4=1111

a=0000, b=0001, c=0010, z1=0010, z2=0000, z3=0011, z4=1101
a=0011, b=0100, c=0101, z1=0101, z2=0101, z3=0011, z4=1001
a=0110, b=0111, c=1000, z1=1110, z2=0000, z3=1001, z4=0001
a=1001, b=1010, c=1011, z1=1011, z2=0011, z3=0001, z4=1101

a=1100, b=1101, c=1110, z1=1110, z2=0000, z3=0011, z4=1101
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Figure 1.93 Design module for examples of the shift-left and shift-right operators

Figure 1.94 Test bench module for the logical shift operators.

//dataflow for shift left and shift right
module shift3 (a1, a2, a3, b1, b2, b3, a1_rslt, a2_rslt,

a3_rslt, b1_rslt, b2_rslt, b3_rslt);

//define inputs and outputs
input [7:0] a1, a2, a3, b1, b2, b3;
output [7:0] a1_rslt, a2_rslt, a3_rslt,

b1_rslt, b2_rslt, b3_rslt;

//define outputs
assign a1_rslt = a1 << 2, //multiply by 4

a2_rslt = a2 << 3, //multiply by 8
a3_rslt = a3 << 4, //multiply by 16

b1_rslt = b1 >> 1, //divide by 2
b2_rslt = b2 >> 2, //divide by 4
b3_rslt = b3 >> 3; //divide by 8

endmodule

//test bench for shift operators
module shift3_tb;

//inputs are reg for test bench
reg [7:0] a1, a2, a3, b1, b2, b3;

//outputs are wire for test bench
wire [7:0] a1_rslt, a2_rslt, a3_rslt,

b1_rslt, b2_rslt, b3_rslt;

initial //display variables
$monitor ("a1=%b, a2=%b, a3=%b, b1=%b, b2=%b, b3=%b,

a1_rslt=%b, a2_rslt=%b, a3_rslt=%b, b1_rslt=%b,
b2_rslt=%b, b3_rslt=%b",

a1, a2, a3, b1, b2, b3, a1_rslt, a2_rslt,
a3_rslt, b1_rslt, b2_rslt, b3_rslt);

//apply input vectors
initial
begin

#0 a1 = 8'b0000_0011; //multiply by 4
a2 = 8'b0000_1000; //multiply by 8
a3 = 8'b0000_0011; //multiply by 16

//continued on next page
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Figure 1.94       (Continued)

Figure 1.95 Outputs for the logical shift operators.

b1 = 8'b0011_0000; //divide by 2
b2 = 8'b0001_0000; //divide by 4
b3 = 8'b0011_0000; //divide by 8

#10 a1 = 8'b0000_0010; //multiply by 4
a2 = 8'b0000_0111; //multiply by 8
a3 = 8'b0000_0010; //multiply by 16

b1 = 8'b0100_0000; //divide by 2
b2 = 8'b0010_0000; //divide by 4
b3 = 8'b0000_1000; //divide by 8

#10 $stop;
end

//instantiate the module into the test bench
shift3 inst1 (a1, a2, a3, b1, b2, b3, a1_rslt, a2_rslt,

a3_rslt, b1_rslt, b2_rslt, b3_rslt);

endmodule

a1 = multiply by 4; a2= multiply by 8; a3 = multiply by 16
a1=00000011, a2=00001000, a3=00000011,
a1_rslt=00001100, a2_rslt=01000000, a3_rslt=00110000,

b1 = divide by 2; b2 = divide by 4; b3 = divide by 8
b1=00110000, b2=00010000, b3=00110000,
b1_rslt=00011000, b2_rslt=00000100, b3_rslt=00000110

------------------------------------------------------------

a1 = multiply by 4; a2= multiply by 8; a3 = multiply by 16
a1=00000010, a2=00000111, a3=00000010,
a1_rslt=00001000, a2_rslt=00111000, a3_rslt=00100000,

b1 = divide by 2; b2 = divide by 4; b3 = divide by 8
b1=01000000, b2=00100000, b3=00001000,
b1_rslt=00100000, b2_rslt=00001000, b3_rslt=00000001
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1.7 Behavioral Modeling
This section describes the behavior of a digital system and is not concerned with the
direct implementation of logic gates, but more on the architecture of the system.  This
is an algorithmic approach to hardware implementation and represents a higher level
of abstraction than previous modeling methods.  A Verilog module may contain a mix-
ture of built-in primitives, UDPs, dataflow constructs, and behavioral constructs.  The
constructs in behavioral modeling closely resemble those used in the C programming
language.

Describing a module in behavioral modeling is an abstraction of the functional
operation of the design.  It does not describe the implementation of the design at the
gate level.  The outputs of the module are characterized by their relationship to the in-
puts.  The behavior of the design is described using procedural constructs.  These con-
structs are the initial statement and the always statement.

A procedure is series of operations taken to design a module.  A Verilog module
that is designed using behavioral modeling contains no internal structural details, it
simply defines the behavior of the hardware in an abstract, algorithmic description.
Verilog contains two structured procedure statements or behaviors: initial and al-
ways.  A behavior may consist of a single statement or a block of statements delimited
by the keywords begin . . . end.  A module may contain multiple initial and always
statements.  These statements are the basic statements used in behavioral modeling
and execute concurrently starting at time zero in which the order of execution is not
important.  All other behavioral statements are contained inside these structured pro-
cedure statements.

1.7.1  Initial Statement

All statements within an initial statement comprise an initial block.  An initial state-
ment executes only once beginning at time zero, then suspends execution.  An initial
statement provides a method to initialize and monitor variables before the variables
are used in a module; it is  also used to generate waveforms.  For a given time unit, all
statements within the initial block execute sequentially.

Execution or assignment is controlled by the time symbol #.  Examples of the time
symbol are shown below.  At time zero (#0), variable x1  is set to a one-bit (1') binary
(b) value of 0.  Ten time units later x1  and x2  are set to a value of 1.  Ten time units later
x1  is set to a value of 0 and ten time units later (at 30 time units) x2  is set to a value of 0.

#0 x1 = 1’b0;
#10 x1 = 1’b1; x2 = 1’b1;
#10 x1 = 1’b0;
#10 x2 = 1’b0;

The syntax for an initial statement is as follows:
initial [optional timing control] procedural statement or

block of procedural statements
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1.7.2  Always Statement

The always statement executes the behavioral statements within the always block re-
peatedly in a looping manner and begins execution at time zero.  Execution of the
statements continues indefinitely until the simulation is terminated.  The syntax for the
always statement is shown below.

always [optional timing control] procedural statement or
   block of procedural statements

An always statement is often used with an event control list — or sensitivity list —
to execute a sequential block.  When a change occurs to a variable in the sensitivity
list, the statement or block of statements in the always block is executed.  The key-
word or is used to indicate multiple events.  When one or more inputs change state, the
statement in the always block is executed.  The begin . . . end keywords are necessary
only when there is more than one behavioral statement.  Target variables used in an al-
ways statement are declared as type reg.

Example 1.19 Figure 1.96 shows a 3-input OR gate, which will be designed using
behavioral modeling.  The behavioral module is shown in Figure 1.97 using an always
statement.  The expression within the parentheses is called an event control or sensi-
tivity list.  Whenever a variable in the event control list changes value, the statements
in the begin . . .  end block will be executed; that is, if either x1 or x2  or x3  changes val-
ue, the following statement will be executed: z1 = x1 | x2  | x3 ; where the symbol ( | )
signifies the logical OR operation.

If only a single statement appears after the always statement, then the keywords
begin and end are not required.  The always statement has a sequential block (begin
. . . end) associated with an event control.  The statements within a begin . . . end block
execute sequentially and execution suspends when the last statement has been execut-
ed.  When the sequential block completes execution, the always statement checks for
another change of variables in the event control list.

Figure 1.96 Three-input OR gate to be implemented using behavioral modeling.

Figure 1.97 Design module for the three-input OR gate.

+x1+x2+x3
+z1

//behavioral 3-input or gate
module or3a (x1, x2, x3, z1);

input x1, x2, x3; //define inputs and output
output z1; //continued on next page
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Figure 1.97       (Continued)

The test bench for the OR gate module is shown in Figure 1.98 using the initial
statement.  The inputs for a test bench are of type reg because they retain their value
until changed, and the outputs are of type wire.  All eight combinations of the inputs
are tested.  The inputs are applied in sequence, x1x2x3  = 000 through 111.  The binary
outputs of the simulator are shown in Figure 1.99 listing the output value for z1 for all
combinations of inputs.

Figure 1.98 Test bench module for the three-input OR gate.

//define signals
wire x1, x2, x3; //alternatively do not declare wires

//because inputs are wire by default

reg z1; //outputs are reg for behavioral
//z1 is used in the always statement
//and must be declared as type reg

always @ (x1 or x2 or x3) //sensitivity list is x1, x2, x3
begin

z1 = x1 | x2 | x3;
end

endmodule

//test bench for three-input or gate
module or3a_tb;

//inputs are reg for test bench
reg x1, x2, x3;

//outputs are wire for test bench
wire z1;

//display variables
initial
$monitor ("x1 = %b, x2 = %b, x3 = %b, z1 = %b",

x1, x2, x3, z1);

initial //apply input vectors
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1; //next page
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Figure 1.98       (Continued)

Figure 1.99 Outputs for the three-input OR gate.

1.7.3  Intrastatement Delay

An intrastatement delay is a delay on the right-hand side of the statement and indicates
that the right-hand side is to be evaluated, wait the specified number of time units, and
then assign the value to the left-hand side.  This can be used to simulate logic gate de-
lays.  Equation 1.16 is an example of an intrastatement delay.

The statement evaluates the logical function x1  AND x2 , waits five time units,
then assigns the result to z1.  If no delay is specified in a procedural assignment, then
zero delay is the default delay and the assignment occurs instantaneously.

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
or3a inst1 (x1, x2, x3, z1);

endmodule

x1 = 0, x2 = 0, x3 = 0, z1 = 0
x1 = 0, x2 = 0, x3 = 1, z1 = 1
x1 = 0, x2 = 1, x3 = 0, z1 = 1
x1 = 0, x2 = 1, x3 = 1, z1 = 1
x1 = 1, x2 = 0, x3 = 0, z1 = 1
x1 = 1, x2 = 0, x3 = 1, z1 = 1
x1 = 1, x2 = 1, x3 = 0, z1 = 1
x1 = 1, x2 = 1, x3 = 1, z1 = 1

z1 = #5  x1  &  x2 (1.16)
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1.7.4  Interstatement Delay

An interstatement delay is the delay by which a statement’s execution is delayed; that
is, it is the delay between statements.  The code segment of Equation 1.17 is an exam-
ple of an interstatement delay.

When the first statement has completed execution, a delay of five time units will
be taken before the second statement is executed.  If no delays are specified in a pro-
cedural assignment, then there is zero delay in the assignment.

1.7.5  Blocking Assignments

A blocking procedural assignment completes execution before the next statement ex-
ecutes.  The assignment operator (=) is used for blocking assignments.  The right-hand
expression is evaluated, then the assignment is placed in an internal temporary register
called the event queue and scheduled for assignment.  If no time units are specified,
then the scheduling takes place immediately.  The event queue is covered in Appendix
A.

In the code segment below, an interstatement delay of two time units is specified
for the assignment to z2 .  The evaluation of z2 is delayed by the timing control; that is,
the expression for z2  will not be evaluated until the expression for z1 has been execut-
ed, plus two time units.  The execution of any following statements is blocked until the
assignment occurs.

initial
begin

z1 = x1  & x2;
#2 z2  = x2  | x3 ;

end

1.7.6  Nonblocking Assignments

The assignment symbol (< =) is used to represent a nonblocking procedural assign-
ment.  Nonblocking assignments allow the scheduling of assignments without block-
ing execution of the following statements in a sequential procedural block.  A
nonblocking assignment is used to synchronize assignment statements so that they ap-
pear to execute at the same time.  In the code segment shown below using blocking as-
signments, the result is indeterminate because both always blocks execute

z1 = x1  | x2

#5 z2  =  x1  & x2 (1.17)
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concurrently resulting in a race condition.  Depending on the simulator implementa-
tion, either x1  = x2  would be executed before x2 = x3  or vice versa.

always @ (posedge clk) 
x1  = x2 ;

always @ (posedge clk) 
x2  = x3 ;

The race condition is solved by using nonblocking assignments as shown below.

always @ (posedge clk) 
x1  <= x2 ;

always @ (posedge clk) 
x2  <= x3 ;

The Verilog simulator schedules a nonblocking assignment statement to execute,
then proceeds to the next statement in the block without waiting for the previous non-
blocking statement to complete execution.  That is, the right-hand expression is eval-
uated and the value is stored in the event queue and is scheduled to be assigned to the
left-hand target.  The assignment is made at the end of the current time step if there are
no intrastatement delays specified.

Nonblocking assignments are typically used to model several concurrent assign-
ments that are caused by a common event such as @ posedge clk.  The order of the as-
signments is irrelevant because the right-hand side evaluations are stored in the event
queue before any assignments are made.

1.7.7  Conditional Statements

Conditional statements alter the flow within a behavior based upon certain conditions.
The choice among alternative statements depends on the Boolean value of an expres-
sion.  The alternative statements can be a single statement or a block of statements de-
limited by the keywords begin . . . end.  The keywords if and else are used in
conditional statements.  There are three categories of the conditional statement as
shown below.  A true value is 1 or any nonzero value; a false value is 0, x, or z.  If the
evaluation is false, then the next expression in the activity flow is evaluated.

//no else statement
if (expression) statement1; //if expression is true, then statement1 is executed.

//one else statement //choice of two statements.  Only one is executed.
if (expression) statement1; //if expression is true, then statement1 is executed.
else statement2; //if expression is false, then statement2  is executed.
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//nested if-else if //choice of multiple statements.  One is executed.
if (expression1) statement1; //if expression1 is true, then statement1 is executed.
else if (expression2) statement2; //if expression2 is true, then statement2 is executed.
else if (expression3) statement3; //if expression3 is true, then statement3 is executed.
else default statement;

Examples of the three categories are shown below.

//no else statement
if (x1  &  x2) z1 = 1;

//one else statement
if (rst_n = = 0)

ctr = 3'b000;
else ctr = next_count;

//nested if-else if
if (opcode = = 00)

z1 = x1  + x2 ;
else if (opcode = = 01)

z1 = x1  – x2 ;
else if (opcode = = 10)

z1 = x1  * x2 ;
else 

z1 = x1  / x2;

Example 1.20 This example uses scalar variables x1x2x3  to illustrates the use of
conditional statements to implement the expression: z1 = (x1  && x2) | | (x1  && x3) | |
(x2 && x3)), where the symbol | | represents the logical OR operation and the symbol
&& represents the logical AND operation.  Recall that the logical OR and logical
AND operators are binary operations that evaluate to a logical 1 (true), a logical 0
(false), or an x (ambiguous).  If a logical operation returns a nonzero value, then it is
treated as a logical 1 (true); if a bit in an operand is x or z, then it is ambiguous and is
normally treated as a false condition.

The design module and test bench module are shown in Figure 1.100 and Figure
1.101, respectively.  The outputs are illustrated in Figure 1.102 which display the cor-
rect value for output z1 for all combinations of the input values.

Figure 1.100 Design module to illustrate the conditional statement if . . . else.

//behavioral conditional if ... else if
module cond_if_else (x1, x2, x3, z1);

input x1, x2, x3; //define inputs and output
output z1; //continued on next page
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Figure 1.100       (Continued)

Figure 1.101 Test bench module for the conditional statement if . . . else.

//define signals
reg z1; //outputs are declared as reg for behavioral

//z1 is used as target in always statement

always @ (x1 or x2 or x3) //sensitivity list
begin

if ((x1 && x2) || (x1 && x3) || (x2 && x3))
z1= 1;

else
z1 = 0;

end
endmodule

//test bench for cond_if_else module

module cond_if_else_tb;

reg x1, x2, x3; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

initial //display variables
$monitor ("x1 = %b, x2 = %b, x3 = %b, z1 = %b",

x1, x2, x3, z1);

initial //apply input vectors
begin

#0 x1 = 1'b0; x2 = 1'b0;x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0;x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1;x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;x3 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0;x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1;x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
cond_if_else inst1 (x1, x2, x3, z1);

endmodule
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Figure 1.102 Outputs for the conditional statement if . . . else.

1.7.8  Case Statement

The case statement is an alternative to the if . . . else if construct and may simplify the
readability of the Verilog code.  The case statement is a multiple-way conditional
branch.  It executes one of several different procedural statements depending on the
comparison of an expression with a case item.  The expression and the case item are
compared bit-by-bit and must match exactly.  The statement that is associated with a
case item may be a single procedural statement or a block of statements delimited by
the keywords begin . . . end.  The  case statement has the following syntax:

case (expression)
case_item1 : procedural_statement1;
case_item2 : procedural_statement2;
case_item3 : procedural_statement3;

.

.
case_itemn : procedural_statementn;
default : default_statement;

endcase

The case expression may be an expression or a constant.  The case items are eval-
uated in the order in which they are listed.  If a match occurs between the case expres-
sion and the case item, then the corresponding procedural statement, or block of
statements, is executed.  If no match occurs, then the optional default statement is ex-
ecuted.

Example 1.21 An 8-bit Johnson counter will be designed that counts in the follow-
ing sequence: 00000000, 10000000, 11000000, 11100000, 11110000, 11111000,
11111100, 11111110, 11111111, 01111111, 00111111, 00011111, 00001111,
00000111, 00000011, 00000001, 00000000, . . .  The case statement will be used to
determine the next count from any current count.  For example, if the current count is
00000000, then the expression count is compared with the case item 00000000

x1 = 0, x2 = 0, x3 = 0, z1 = 0
x1 = 0, x2 = 0, x3 = 1, z1 = 0
x1 = 0, x2 = 1, x3 = 0, z1 = 0
x1 = 0, x2 = 1, x3 = 1, z1 = 1
x1 = 1, x2 = 0, x3 = 0, z1 = 0
x1 = 1, x2 = 0, x3 = 1, z1 = 1
x1 = 1, x2 = 1, x3 = 0, z1 = 1
x1 = 1, x2 = 1, x3 = 1, z1 = 1
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yielding a next count of 10000000.  The flow then exits the case statement and con-
tinues with the next statement in the module.

The design module is shown in Figure 1.103 using behavioral modeling.  The ex-
pression count in the always statement for the case statement represents the event con-
trol or sensitivity list.  Whenever a change occurs to count, the code in the begin . . .
end block executes.  Each count is then compared to the value of the expression count.
The test bench is shown in Figure 1.104.  The outputs are shown in Figure 1.105.

Figure 1.103 Design module for the 8-bit Johnson counter.

//8-bit johnson counter
module johnson_ctr (clk, rst_n, count);

//define inputs and outputs
input clk, rst_n;
output [7:0] count;

//define signals
wire clk, rst_n; //inputs are wire
reg [7:0] count; //outputs are reg used in always
reg [7:0] next_count; //define internal reg used in always

//set next count ------------------------------
always @ (posedge clk or negedge rst_n)
begin

if (rst_n == 1'b0)
count <= 8'b0000_0000;

else
count <= next_count;

end

//determine next count ------------------------
always @ (count)
begin

case (count) //case item is 8'b00000000
8'b00000000 : next_count = 8'b10000000;
8'b10000000 : next_count = 8'b11000000;
8'b11000000 : next_count = 8'b11100000;
8'b11100000 : next_count = 8'b11110000;
8'b11110000 : next_count = 8'b11111000;
8'b11111000 : next_count = 8'b11111100;
8'b11111100 : next_count = 8'b11111110;
8'b11111110 : next_count = 8'b11111111;
8'b11111111 : next_count = 8'b01111111;
8'b01111111 : next_count = 8'b00111111;
8'b00111111 : next_count = 8'b00011111;
8'b00011111 : next_count = 8'b00001111;

//continued on next page
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Figure 1.103       (Continued)

Figure 1.104 Test bench module for the 8-bit Johnson counter.

8'b00001111 : next_count = 8'b00000111;
8'b00000111 : next_count = 8'b00000011;
8'b00000011 : next_count = 8'b00000001;
8'b00000001 : next_count = 8'b00000000;
default     : next_count = 8'b00000000;

endcase
end

endmodule

//test bench for Johnson counter

module johnson_ctr_tb;

reg clk, rst_n; //inputs are reg for test bench
wire [7:0] count; //outputs are wire for test bench

//display variables
initial
$monitor ("count = %b", count);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;
#320 $stop; //establish length of simulation

end

//define clk
initial
begin

clk = 1'b0;
forever

#10clk = ~clk;
end

//instantiate the module into the test bench
johnson_ctr inst1 (clk, rst_n, count);

endmodule
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Figure 1.105 Outputs for the 8-bit Johnson counter.

1.7.9  Loop Statements

There are four types of loop statements in Verilog: for, while, repeat, and forever.
Loop statements must be placed within an initial or an always block and may contain
delay controls.  The loop constructs allow for repeated execution of procedural state-
ments within an initial or an always block.

For loop The for loop contains three parts:

1. An initial condition to assign a value to a register control variable.  This is ex-
ecuted once at the beginning of the loop to initialize a register variable that
controls the loop.

2. A test condition to determine when the loop terminates.  This is an expression
that is executed before the procedural statements of the loop to determine if
the loop should execute.  The loop is repeated as long as the expression is true.
If the expression is false, the loop terminates and the activity flow proceeds to
the next statement in the module.

3. An assignment to modify the control variable, usually an increment or a dec-
rement.  This assignment is executed after each execution of the loop and be-
fore the next test to terminate the loop.

The syntax of a for loop is shown below.  The body of the loop can be a single pro-
cedural statement or a block of procedural statements.

count = 00000000
count = 10000000
count = 11000000
count = 11100000
count = 11110000
count = 11111000
count = 11111100
count = 11111110
count = 11111111
count = 01111111
count = 00111111
count = 00011111
count = 00001111
count = 00000111
count = 00000011
count = 00000001
count = 00000000
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for (initial control variable assignment; test expression; control variable assignment)
procedural statement or block of procedural statements

The for loop is generally used when there is a known beginning and an end to a
loop.  The for loop is similar in function to the for loop in the C programming lan-
guage and is used in a test bench.  Example 1.20 will be used in the following example
to illustrate the use of the for loop.

Example 1.22 This example uses scalar variables x1x2x3  to illustrates the use of
conditional statements to implement the expression: z1 = (x1  && x2) | | (x1  && x3) | |
(x2 && x3)), where the symbol | | represents the logical OR operation and the symbol
&& represents the logical AND operation.  The design module is shown in Figure
1.106.  The test bench module is shown in Figure 1.107 and the outputs are shown in
Figure 1.108.

Since there are three inputs to the sum-of-products expression, all eight combina-
tions of three variables must be applied to the circuit.  This is accomplished by a for
loop statement.

Following the keyword begin is the name of the block: apply_stimulus.  In this
block, a 4-bit reg variable is declared called invect.  This guarantees that all eight com-
binations of the four inputs will be tested by the for loop, which applies input vectors
of x1x2x3  = 000 through 111 to the circuit.  The for loop stops when the pattern 1000
is detected by the test segment (invect < 8).  If only a 3-bit vector were applied, then the
expression (invect < 8) would always be true and the loop would never terminate.  The
increment segment of the for loop does not support an increment designated as in-
vect++; therefore, the long notation must be used: invect = invect + 1.

Figure 1.106 Design module for the for loop statement.

//behavioral conditional if ... else if
module cond_if_else2 (x1, x2, x3, z1);

input x1, x2, x3; //define inputs and output
output z1;

//define signals
reg z1; //outputs are declared as reg for behavioral

//z1 is used as target in always statement

always @ (x1 or x2 or x3) //sensitivity list
begin

if ((x1 && x2) || (x1 && x3) || (x2 && x3))
z1= 1;

else
z1 = 0;

end

endmodule
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Figure 1.107 Test bench module for the for loop statement.

Figure 1.108 Outputs for the for loop statement.

While loop The while loop executes a procedural statement or a block of proce-
dural statements as long as a Boolean expression returns a value of true.  When the pro-
cedural statements are executed, the Boolean expression is reevaluated.  The loop is
executed until the expression returns a value of false.  If the evaluation of the expres-
sion is false, then the while loop is terminated and control is passed to the next state-
ment in the module.  If the expression is false before the loop is initially entered, then
the while loop is never executed.

//test bench for cond_if_else2

module cond_if_else2_tb;

reg x1, x2, x3; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b, z1 = %b", 

{x1, x2, x3}, z1);
end

end

//instantiate the module into the test bench
cond_if_else2 inst1 (x1, x2, x3, z1);

endmodule

x1 x2 x3 = 000, z1 = 0
x1 x2 x3 = 001, z1 = 0
x1 x2 x3 = 010, z1 = 0
x1 x2 x3 = 011, z1 = 1
x1 x2 x3 = 100, z1 = 0
x1 x2 x3 = 101, z1 = 1
x1 x2 x3 = 110, z1 = 1
x1 x2 x3 = 111, z1 = 1
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The Boolean expression may contain any of the following types: arithmetic, log-
ical, relational, equality, bitwise, reduction, shift, concatenation, replication, or con-
ditional.  If the while loop contains multiple procedural statements, then they are
contained within the begin . . . end keywords.  The syntax for a while statement is as
follows:

while (expression)
procedural statement or block of procedural statements

Example 1.23 This example demonstrates the use of the while construct to count the
number of 1s in a 16-bit register reg_a.  The design module is shown in Figure 1.109.
The variable count is declared as type integer and is used to obtain the cumulative
count of the number of 1s.  The first begin keyword must have a name associated with
the keyword because this declaration is allowed only with named blocks.

The register is initialized to contain twelve 1s (16’h75fd).  Alternatively, the reg-
ister can be loaded from any other register.  If reg_a contains a 1 bit in any bit position,
then the while loop is executed.  If reg_a contains all zeroes, then the while loop is ter-
minated.

The low-order bit position (reg_a[0]) is tested for a 1 bit.  If a value of 1 (true) is
returned, count is incremented by one and the register is shifted right one bit position.
There is only one procedural statement following the if statement; therefore, if a value
of 0 (false) is returned, then count is not incremented and the register is shifted right
one bit position.

The $display system task then displays the number of 1s that were contained in
the register reg_a as shown in Figure 1.109.  Notice that the count changes value only
when there is a 1 bit in the low-order bit position of reg_a.  If reg_a[0] = 0, then the
count is not incremented, but the total count is still displayed.

Figure 1.109 Design module to illustrate the use of the while loop.

//example of a while loop
//count the number of 1s in a 16-bit register
module while_loop3;

integer count;

initial
begin: number_of_1s

reg [16:0] x;

count = 0;

x = 16'h75fd; //set x to a known hex value (twelve 1s)

//continued on next page
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Figure 1.109       (Continued)

Repeat loop The repeat loop executes a procedural statement or a block of pro-
cedural statements a specified number of times.  The repeat construct can contain a
constant, an expression,  a variable, or a signed value.  The syntax for the repeat loop
is as follows:

repeat (loop count expression)
procedural statement or block of procedural statements

If the loop count is x (unknown value) or z (high impedance), then the loop count
is treated as zero.  The value of the loop count expression is evaluated once at the be-
ginning of the loop.

Example 1.24 An example of the repeat loop is shown Figure 1.110, in which two
8-bit registers are added to yield a sum of eight bits.  Register reg_a is initialized to a
value of twenty-four; reg_b is initialized to a value of two.  The add operation is
repeated eight times and register b is incremented by one after each add operation.  The
outputs are shown in Figure 1.111.

Figure 1.110 Design module for the repeat loop.

while (x) //execute while loop if x contains 1s
begin

if (x[0]) //check low-order bit position
count = count + 1; //if true, add one to count

x = x >> 1; //shift right x one bit position
end

//shows final count
$display ("final count = %d", count);

end

endmodule

----------------------------------------------
                
final count = 12

//example of the repeat keyword
module add_regs_repeat;

reg [7:0] reg_a, reg_b, sum;
//continued on next page
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Figure 1.110       (Continued)

Figure 1.111 Outputs for the repeat loop.

Forever loop The forever loop executes the procedural statement continuously
until the system tasks $finish or $stop are encountered.  It can also be terminated by
the disable statement.  The disable statement is a procedural statement; therefore, it
must be used within an initial or an always block.  It is used to prematurely terminate
a block of procedural statements or a system task.  When a disable statement is exe-
cuted, control is transferred to the statement immediately following the procedural
block or task.

The forever loop is similar to a while loop in which the expression always eval-
uates to true (1).  A timing control must be used with the forever loop; otherwise, the
simulator would execute the procedural statement continuously without advancing the
simulation time.  The syntax of the forever loop is as follows:

forever
procedural statement

initial
begin

reg_a = 8'b0001_1000;
reg_b = 8'b0000_0010;

repeat (8)
begin

sum = reg_a + reg_b;
$display ("reg_a=%b, reg_b=%b, sum=%b",

reg_a, reg_b, sum);
reg_b = reg_b + 1;

end
end

endmodule

reg_a=00011000, reg_b=00000010, sum=00011010
reg_a=00011000, reg_b=00000011, sum=00011011
reg_a=00011000, reg_b=00000100, sum=00011100
reg_a=00011000, reg_b=00000101, sum=00011101
reg_a=00011000, reg_b=00000110, sum=00011110
reg_a=00011000, reg_b=00000111, sum=00011111
reg_a=00011000, reg_b=00001000, sum=00100000
reg_a=00011000, reg_b=00001001, sum=00100001
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The forever statement is typically used for clock generation as shown in Figure
1.112 together with the system task $finish.  The variable clk will toggle every 10 time
units for a period of 20 time units.  The length of simulation is 100 time units.

Figure 1.112 Clock generation using the forever statement.

1.7.10  Logical, Algebraic, and Rotate Shift Operations

Shift registers that perform the operations of shift left logical (SLL), shift left algebraic
(SLA), shift right logical (SRL), shift right algebraic (SRA), rotate left (ROL), and
rotate right (ROR) will be presented in this section.

Shift left logical (SLL) The logical shift operations are much simpler to imple-
ment than the arithmetic (algebraic) shift operations.  For SLL, the high-order bit of
the unsigned operand is shifted out of the left end of the shifter for each shift cycle.
Zeroes are entered from the right and fill the vacated low-order bit positions.

Shift left algebraic (SLA) SLA operates on signed operands in 2s complement
representation for radix 2.  The numeric part of the operand is shifted left the number
of bit positions specified in the shift count field.  The sign remains unchanged and does
not participate in the shift operation.  All remaining bits participate in the left shift.
Bits are shifted out of the high-order numeric position.  Zeroes are entered from the
right and fill the vacated low-order bit positions.

Shift right logical (SRL) For SRL, the low-order bit of the unsigned operand is
shifted out of the right end of the shifter for each shift cycle.  Zeroes are entered from
the left and fill the vacated high-order bit positions.

Shift right algebraic (SRA) The numeric part of the signed operand is shifted
right the number of bits specified by the shift count.  The sign of the operand remains
unchanged.  All numeric bits participate in the right shift.  The sign bit propagates right
to fill in the vacated high-order numeric bit positions.

//define clock
initial
begin

clk = 1'b0;
forever

#10  clk = ~clk;
end

//define length of simulation
initial

#100  $finish;
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Rotate left (ROL) Rotate operations execute on unsigned operands.  The ROL
operation shifts the operand left one bit position and the high-order bit is then rotated
into the low-order bit position.

Rotate right (ROR) The ROR operation shifts the operand right one bit position
and the low-order bit is then rotated into the high-order bit position.

Example 1.25 Figure 1.113 shows the design module to illustrate utilizing the six
shift and rotate operations described above.  Behavioral modeling is used in conjunc-
tion with the case statement.  Figure 1.114 shows the test bench module and Figure
1.115 shows the outputs.

Figure 1.113 Design module for SLL, SLA, SRL, SRA, ROL, and ROR.

//behavioral shift rotate
module shift_rotate (a, opcode, result);

//list inputs and outputs
input [7:0] a;
input [2:0] opcode;

output [7:0] result;

//specify wire for input and reg for output
wire [7:0] a;
wire [2:0] opcode;
reg [7:0] result;

//define the opcodes
parameter sra_op = 3'b000,

srl_op = 3'b001,
sla_op = 3'b010,
sll_op = 3'b011,
ror_op = 3'b100,
rol_op = 3'b101;

//execute the operations
always @ (a or opcode)
begin

case (opcode)
sra_op : result = {a[7], a[7], a[6], a[5],

 a[4], a[3], a[2], a[1]};
srl_op : result = a >> 1;
sla_op : result = {a[7], a[5], a[4], a[3],

 a[2], a[1], a[0], 1'b0};

//continued on next page
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Figure 1.113       (Continued)

Figure 1.114 Test bench module for SLL, SLA, SRL, SRA, ROL, and ROR.

sll_op : result = a << 1;
ror_op : result = {a[0], a[7], a[6], a[5],

 a[4], a[3], a[2], a[1]};
rol_op : result = {a[6], a[5], a[4], a[3],

 a[2], a[1], a[0], a[7]};
default : result = 0;

endcase

end

endmodule

//test bench for shift rotate module
module shift_rotate_tb;

reg [7:0] a; //inputs are reg for test bench
reg [2:0] opcode;
wire [7:0] result; //outputs are wire for test bench

initial //display variables
$monitor ("a=%b, opcode=%b, rslt=%b",

a, opcode, result);

//apply input vectors
initial
begin
//sra op

#10 a = 8'b1000_1110; opcode = 3'b000;
//result = 11000111

#10 a = 8'b0110_1111; opcode = 3'b000;
//result = 00110111

#10 a = 8'b1111_1110; opcode = 3'b000;
//result = 11111111

//srl op
#10 a = 8'b1111_0011; opcode = 3'b001;

//result = 01111001
#10 a = 8'b0111_1011; opcode = 3'b001;

//result = 00111101
#10 a = 8'b1000_1110; opcode = 3'b001;

//result = 01000111
//continued on next  page



1.7     Behavioral Modeling     107

Figure 1.114       (Continued)

//sla op
#10 a = 8'b1000_1111; opcode = 3'b010;

//result = 10011110
#10 a = 8'b1110_1111; opcode = 3'b010;

//result = 11011110
#10 a = 8'b1111_0000; opcode = 3'b010;

//result = 11100000

//sll op
#10 a = 8'b0111_0111; opcode = 3'b011;

//result = 11101110
#10 a = 8'b0110_0011; opcode = 3'b011;

//result = 11000110
#10 a = 8'b1111_1111; opcode = 3'b011;

//result = 11111110

//ror op
#10 a = 8'b0101_0101; opcode = 3'b100;

//result = 10101010
#10 a = 8'b0101_1101; opcode = 3'b100;

//result = 10101110
#10 a = 8'b1111_1110; opcode = 3'b100;

//result = 01111111

//rol op
#10 a = 8'b0101_0101; opcode = 3'b101;

//result = 10101010
#10 a = 8'b0101_0111; opcode = 3'b101;

//result = 10101110
#10 a = 8'b0000_0001; opcode = 3'b101;

//result = 00000010

#10 $stop;

end

//instantiate the module into the test bench
shift_rotate inst1 (

.a(a),

.opcode(opcode),

.result(result)
);

endmodule
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Figure 1.115 Outputs for SLL, SLA, SRL, SRA, ROL, and ROR.

1.8 Structural Modeling
Structural modeling consists of instantiating one or more of the following design ob-
jects:

• Built-in primitives
• User-defined primitives (UDPs)
• Design modules

Instantiation means to use one or more lower-level modules — including logic prim-
itives — that are interconnected in the construction of a higher-level structural mod-
ule.  A module can be a logic gate, an adder, a multiplexer, a counter, or some other
logical function.  The objects that are instantiated are called instances.  Structural
modeling is described by the interconnection of these lower-level logic primitives or
modules.  The interconnections are made by wires that connect primitive terminals or
module ports.

a=10001110, opcode=000, rslt=11000111 //sra
a=01101111, opcode=000, rslt=00110111
a=11111110, opcode=000, rslt=11111111

a=11110011, opcode=001, rslt=01111001 //srl
a=01111011, opcode=001, rslt=00111101
a=10001110, opcode=001, rslt=01000111

a=10001111, opcode=010, rslt=10011110 //sla
a=11101111, opcode=010, rslt=11011110
a=11110000, opcode=010, rslt=11100000

a=01110111, opcode=011, rslt=11101110 //sll
a=01100011, opcode=011, rslt=11000110
a=11111111, opcode=011, rslt=11111110

a=01010101, opcode=100, rslt=10101010 //ror
a=01011101, opcode=100, rslt=10101110
a=11111110, opcode=100, rslt=01111111

a=01010101, opcode=101, rslt=10101010 //rol
a=01010111, opcode=101, rslt=10101110
a=00000001, opcode=101, rslt=00000010
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1.8.1  Module Instantiation

Design modules are instantiated into test bench modules.  The ports of the design mod-
ule are instantiated by name and connected to the corresponding net names of the test
bench.  Each named instantiation can be of the following form:

.design_module_port_name (test_bench_module_net_name) 

An example is shown below from Figure 1.114 of the previous section for each indi-
vidual port:

shift_rotate inst1 (
.a(a),
.opcode(opcode),
.result(result)
);

The instantiation can also be of the following form, which instantiates all the ports in
a single line, as shown below.

shift_rotate inst1 (a, opcode, result);

Design module ports can be instantiated by name explicitly or by position.  Mod-
ules cannot be nested, but they can be instantiated into other modules.  Structural mod-
eling is analogous to placing the instances on a logic diagram and then connecting
them by wires.  When instantiating built-in primitives, an instance name is optional;
however, when instantiating a module, an instance name must be used.  Instances that
are instantiated into a structural module are connected by nets of type wire.

A structural module may contain behavioral statements (always), continuous as-
signment statements (assign), built-in primitives (and, or, nand, nor, etc.), UDPs
(mux4, half_adder, adder4, etc.), design modules, or any combination of these ob-
jects.  Design modules can be instantiated into a higher-level structural module in or-
der to achieve a hierarchical design.

Each module in Verilog is either a top-level (higher-level) module or an instanti-
ated module.  There is only one top-level module and it is not instantiated anywhere
else in the design project.  Instantiated primitives or modules, however, can be instan-
tiated many times into a top-level module and each instance of a module is unique.

1.8.2  Ports

Ports provide a means for the module to communicate with its external environment.
Ports, also referred to as terminals, can be declared as input, output, or inout.  A port
is a net by default; however, it can be declared explicitly as a net.  A module contains
an optional list of ports, as shown below for a full adder.
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module full_adder (a, b, cin, sum, cout);

Ports a, b, and cin are input ports; ports sum and cout are output ports.  The test bench
for the full adder contains no ports as shown below because it does not communicate
with the external environment.

module full_adder_tb;

Input ports Input ports allow signals to enter the module from external sources.
The width of the input port is declared within the module.  The size of the input port
can be declared as either a scalar such as a, b, cin or as a vector such as [3:0] a, b,
where a and b are the augend and addend inputs, respectively, of a 4-bit adder.  The
format of the declarations shown below is the same for both behavioral and structural
modeling.  The input ports are declared as type reg for test benches with a specified
width, either scalar or vector.

input [3:0] a, b; //declared as 4-bit vectors
input cin; //declared as a scalar

reg [3:0] a, b; //inputs are reg for test benches
reg cin;

Output ports Output ports are those that allow signals to exit the module to exter-
nal destinations.  The width of the output port is declared within the module.  The out-
put ports are declared as type wire for test benches with a specified width, either scalar
or vector.  The format for output ports is shown below.

output [3:0] sum; //declared as 4-bit vectors
output cout; //declared as a scalar

wire [3:0] sum; //outputs are wire for test benches
wire cout;

Inout ports An inout port is bidirectional — it transfers signals to and from the
module depending on the value of a direction control signal.  Ports of type inout are
declared internally as type wire; externally, they connect to nets of type wire.  Since
port declarations are implicitly declared as type wire, it is not necessary to explicitly
declare a port as wire.  However, an output can also be redeclared as a reg type vari-
able if it is used within an always statement or an initial statement.

Port connection rules A port is an entry into a module from an external source.
It connects the external unit to the internal logic of the module.  When a module is
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instantiated within another module, certain rules apply.  An error message is indicated
if the port connection rules are not followed.

Input ports must always be of type wire (net) internally except for test benches;
externally, input ports can be reg or wire.  Output ports can be of type reg or wire in-
ternally; externally, output ports must always be connected to a wire.  The input port
names can be different, but the net (wire) names connecting the input ports must be the
same.  When making intermodule port connections, it is permissible to connect ports
of different widths.  Port width matching occurs by right justification or truncation.

1.8.3  Design Examples

Examples will be presented in this section that illustrate the structural modeling tech-
nique for combinational logic.  These examples include logic equations, a binary-to
excess-3 code converter, an adder, and a comparator.  Each example will be complete-
ly designed in detail and will include appropriate theory where applicable.

Example 1.26 A combinational logic circuit will be designed using structural mod-
eling that will implement the following equation:

z1 = x1' x2x3'  + x1' x3x4'  + x1x2' x3' x4 + x1x2' x3x4'  + x1' x2' x3' x4'  (1.18)

The equation will first be minimized.  This can be achieved either by utilizing
Boolean algebra or by a Karnaugh map.  A Karnaugh map will be used in this example
and is shown in Figure 1.116.

Figure 1.116 Karnaugh map for Equation 1.18.

Equation 1.18 is minimized as shown below in Equation 1.19.

z1 = x1' x4'  + x1' x2x3'  + x2' x3x4'  + x1x2' x3' x4  (1.19)

 0 0      0 1     1 1     1 0

0 0      1        0         0         1

0 1      1        1         0         1

1 1      0        0         0         0

1 0      0        1         0         1

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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The logic diagram is shown in Figure 1.117 showing the instantiated logic gates
and the net names.  The Verilog design module for Equation 1.19 will use the follow-
ing modules that were designed using dataflow modeling: one two-input AND gate
shown in Figure 1.118; two three-input AND gates of the type shown in Figure 1.119;
one four-input AND gate shown in Figure 1.120; and one four-input OR gate shown in
Figure 1.121

Figure 1.117 Logic diagram for Equation 1.19.

Figure 1.118 Two-input AND gate designed using dataflow modeling.

–x1
–x4

–x3
+x2

–x2+x3

+x1
+x4

+z1

inst2

inst1

inst3

inst4

inst5

net1

net2

net3

net4

and2_df

and3_df

and3_df

and4_df

or4_df

//dataflow 2-input and gate

module and2_df (x1, x2, z1);

//list inputs and output
input x1, x2;
output z1;

//define signals as wire for dataflow
wire x1, x2;
wire z1;

//continuous assign for dataflow
assign z1 = x1 & x2;

endmodule
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Figure 1.119 Three-input AND gate designed using dataflow modeling.

Figure 1.120 Four-input AND gate designed using dataflow modeling.

//and3 dataflow

module and3_df (x1, x2, x3, z1);

//list inputs and output
input x1, x2, x3;
output z1;

//define signals as wire for dataflow
wire x1, x2, x3;
wire z1;

//continuous assign for dataflow
assign z1 = x1 & x2 & x3;

endmodule

//dataflow 4-input and gate

module and4_df (x1, x2, x3, x4, z1);

//list all inputs and outputs
input x1, x2, x3, x4;
output z1;

//define signals as wire (optional
wire x1, x2, x3, x4;
wire z1;

//continuous assign used for dataflow
assign z1 = (x1 & x2 & x3 & x4);

endmodule
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Figure 1.121 Four-input OR gate designed using dataflow modeling.

Equation 1.19 will now be designed using structural modeling by instantiating the
logic gates that were designed using dataflow modeling.  The design module is shown
in Figure 1.122.  The test bench module is shown in Figure 1.123 and the outputs are
shown in Figure 1.124.  The 1s in the outputs are in the same location as the 1s in the
minterm locations of the Karnaugh map of Figure 1.16.

Figure 1.122 Design module for Equation 1.19.

//dataflow or4

module or4_df (x1, x2, x3, x4, z1);

//list all inputs and outputs
input x1, x2, x3, x4;
output z1;

//define signals as wire (optional
wire x1, x2, x3, x4;
wire z1;

//continuous assign used for dataflow
assign z1 = x1 | x2 | x3 | x4;

endmodule

//structural for the following logic equation
//z1 = x1’x4’ + x1’x2x3’ + x2’x3x4’ + x1x2’x3’x4

module logic_equation (x1, x2, x3, x4, z1);

//list inputs and outputs
input x1, x2, x3, x4;
output z1;

//define internal nets
wire net, net2, net3, net4;

//instantiate the logic gates
and2_df inst1 (

.x1(~x1),

.x2(~x4),

.z1(net1)
);

//continued on next page
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Figure 1.122       (Continued)

Figure 1.123 Test bench module for Equation 1.19.

and3_df inst2 (
.x1(~x1),
.x2(x2),
.x3(~x3),
.z1(net2)
);

and3_df inst3 (
.x1(~x2),

.x2(x3),

.x3(~x4),

.z1(net3)
);

and4_df inst4 (
.x1(x1),
.x2(~x2),
.x3(~x3),
.x4(x4),
.z1(net4)
);

or4_df inst5 (
.x1(net1),
.x2(net2),
.x3(net3),
.x4(net4),
.z1(z1)
);

endmodule

//test bench for logic equation

module logic_equation_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//continued on next page
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Figure 1.123       (Continued)

Figure 1.124 Outputs for Equation 1.19.

Example 1.27 An equation will be obtained for a logic circuit that will generate a
logic 1 on output z1 if a 4-bit unsigned binary number N = x1x2x3x4 satisfies the fol-
lowing criteria, where x4  is the low-order bit:

3 < N  7 or 12  N < 15

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
logic_equation inst1 (x1, x2, x3, x4, z1);

endmodule

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 1
x1 x2 x3 x4 = 0011, z1 = 0
x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 1
x1 x2 x3 x4 = 0111, z1 = 0
x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 0
x1 x2 x3 x4 = 1100, z1 = 0
x1 x2 x3 x4 = 1101, z1 = 0
x1 x2 x3 x4 = 1110, z1 = 0
x1 x2 x3 x4 = 1111, z1 = 0
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Built-in primitive gates will be used for the design module.  Then the test bench
will be generated and the outputs displayed.  The equation will be obtained using the
Karnaugh map shown in Figure 1.125, which was created from the number range for
the variable N.  The equation for z1 is shown in Equation 1.20.

Figure 1.125 Karnaugh map for Example 1.27.

z1 = x1' x2  + x2x3'  + x2x4'
    = x2(x1'  + x3'  + x4' )  (1.20)

The logic diagram is shown in Figure 1.126 showing the instantiation names and
the net names.  The design module is shown in Figure 1.127.  The test bench module
is shown in Figure 1.128 and the outputs are shown in Figure 1.129.

Figure 1.126 Logic diagram for Example 1.27 using Equation 1.20.

Figure 1.127 Design module for Example 1.27.

 0 0      0 1     1 1     1 0

0 0      0        0         0         0

0 1      1        1         1         1
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 0            1           3            2

 4            5           7           6
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–x1

–x3

–x4

+z1

–x1

+x2

inst1 inst2net1

//structural for a number in the following range
//x2(x1' + x3' + x4')
module number_range (x1, x2, x3, x4, z1);

input x1, x2, x3, x4; //list inputs and output
output z1;

or inst1 (net1, ~x1, ~x3, ~x4);
and inst2 (z1, x2, net1);
endmodule 
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Figure 1.128 Test bench module for Example 1.27.

Figure 1.129 Outputs for Example 1.27.

//test bench for number_range

module number_range_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
number_range inst1 (x1, x2, x3, x4, z1);

endmodule

x1 x2 x3 x4 = 0000, z1 = 0
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0
x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 1
x1 x2 x3 x4 = 0111, z1 = 1
x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 0
x1 x2 x3 x4 = 1010, z1 = 0
x1 x2 x3 x4 = 1011, z1 = 0
x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 0



1.8     Structural Modeling     119

Example 1.28 This example converts a 4-bit binary number to a 4-bit excess-3 num-
ber.  The binary and excess-3 codes are shown in Table 1.16, where the binary bit x4
and the excess-3 bit z4  are the low-order bits of their respective codes.  When the num-
ber three is added to the binary number 1101 (1310),  the result exceeds four bits 1 0000
(1610), where the high-order bit represents a carry out.  The same is true for the binary
numbers 1110 and 1111, which yield 1 0001 (1710) and 1 0010 (1810), respectively.

The Karnaugh maps that indicate the conversion from binary to excess-3 are
shown in Figure 1.130, as obtained from Table 1.16.  The equations are shown in
Equation 1.22.

Figure 1.130 Karnaugh maps for Example 1.28.    (Continued on next page)

Table 1.16  Binary-to-Excess-3 Code Conversion

Binary Code Excess-3 Code

x1 x2 x3 x4 z1 z2 z3 z4

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0
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z2
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Figure 1.130       (Continued)

The design module to convert from the binary code to the excess-3 code using
dataflow modeling is shown in Figure 1.131.  The test bench is shown in Figure 1.132
and the outputs are shown in Figure 1.133.

Figure 1.131 Design module for the binary-to-excess-3 code converter.

  net1          net2         net3        net4
z1 = x1' x2x3  + x1' x2x4  + x1x3' x4'  + x1x2'

  net6         net7     net8
z2  = x2x3' x4'  + x2' x3  + x2' x4

                            net10
z3  = x3' x4'  + x3x4  = (x3  Ý x4)'

z4  = x4' (1.22)
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//structural binary-to-excess-3

module binary_to_excess3 (x1, x2, x3, x4, z1, z2, z3, z4);

//list inputs and outputs
input x1, x2, x3, x4;
output z1, z2, z3, z4;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9,

net10; //continued on next page



1.8     Structural Modeling     121

Figure 1.131       (Continued)

Figure 1.132 Test bench module for the binary-to-excess-3 code converter.

//-----------------------------------------------------
//instantiate the logic for output z1
and3_df inst1 (~x1, x2, x3, net1);

and3_df inst2 (~x1, x2, x4, net2);

and3_df inst3 (x1, ~x3, ~x4, net3);

and2_df inst4 (x1, ~x2, net4);

or4_df inst5 (net1, net2, net3, net4, z1);

//-----------------------------------------------------
//instantiate the logic for output z2
and3_df inst6 (x2, ~x3, ~x4, net6);

and2_df inst7 (~x2, x3, net7);

and2_df inst8 (~x2, x4, net8);

or3_df inst9 (net6, net7, net8, z2);

//-----------------------------------------------------
//instantiate the logic for output z3
xnor2_df inst10 (x3, x4, z3);

//-----------------------------------------------------
//instantiate the logic for output z4
assign z4 = ~x4;

endmodule

//test bench for binary-to-excess3

module binary_to_excess3_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1, z2, z3, z4;

//continued on next page
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Figure 1.132       (Continued)

Figure 1.133 Outputs for the binary-to-excess-3 code converter.

Example 1.29 This example designs an adder that adds two 4-bit operands using
four full adders.  A full adder is a combinational circuit that  adds two operand bits plus
a carry-in bit.  The carry-in bit represents the carry-out of the previous lower-order
stage.  A full adder produces two outputs: sum and carry-out.

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 z2 z3 z4 = %b",

{x1, x2, x3, x4}, {z1, z2, z3, z4});
end

end

//instantiate the module into the test bench
binary_to_excess3 inst1 (x1, x2, x3, x4, z1, z2, z3, z4);

endmodule

x1 x2 x3 x4 = 0000, z1 z2 z3 z4 = 0011
x1 x2 x3 x4 = 0001, z1 z2 z3 z4 = 0100
x1 x2 x3 x4 = 0010, z1 z2 z3 z4 = 0101
x1 x2 x3 x4 = 0011, z1 z2 z3 z4 = 0110
x1 x2 x3 x4 = 0100, z1 z2 z3 z4 = 0111
x1 x2 x3 x4 = 0101, z1 z2 z3 z4 = 1000
x1 x2 x3 x4 = 0110, z1 z2 z3 z4 = 1001
x1 x2 x3 x4 = 0111, z1 z2 z3 z4 = 1010
x1 x2 x3 x4 = 1000, z1 z2 z3 z4 = 1011
x1 x2 x3 x4 = 1001, z1 z2 z3 z4 = 1100
x1 x2 x3 x4 = 1010, z1 z2 z3 z4 = 1101
x1 x2 x3 x4 = 1011, z1 z2 z3 z4 = 1110
x1 x2 x3 x4 = 1100, z1 z2 z3 z4 = 1111
x1 x2 x3 x4 = 1101, z1 z2 z3 z4 = 0000
x1 x2 x3 x4 = 1110, z1 z2 z3 z4 = 0001
x1 x2 x3 x4 = 1111, z1 z2 z3 z4 = 0010



1.8     Structural Modeling     123

The truth table for a full adder is shown in Table 1.17.  Operand ai represents the
augend and operand bi represents the addend.  The corresponding equations for the
sum and carry-out are listed in Equation 1.23 as obtained directly from the truth table.
A block diagram for a full adder for any stage is shown in Figure 1.134, where the
inputs are the augend ai, the addend bi, and the carry-in from the previous lower-order
stage cini–1.  The outputs are the sum, sumi, and the carry-out, couti.

Figure 1.134 Block diagram for a full adder.

Table 1.17  Truth Table for a Full Adder

ai bi cini–1 couti sumi

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

sumi = ai'bi'cini–1 + ai'bicini–1' + aibi'cini–1' + aibicini–1
= ai  bi  cini–1

couti = ai'bicini–1 + aibi'cini–1 + aibi cini–1' + aibicini–1

= aibi + (ai  bi)cini–1 (1.23)

    ai            bi         cini–1

couti                     sumi

FAi
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The design module for the full adder is shown in Figure 1.135 using dataflow
modeling.  This module is then instantiated four times into the structural design mod-
ule of Figure 1.136.  The test bench module is shown in Figure 1.137 and the outputs
are shown in Figure 1.138.

Figure 1.135 Dataflow design module for a full adder.

Figure 1.136 Structural design module for the 4-bit adder.

//dataflow full adder
module full_adder (a, b, cin, sum, cout);

//list all inputs and outputs
input a, b, cin;
output sum, cout;

//define wires
wire a, b, cin;
wire sum, cout;

//continuous assign
assign sum = (a ^ b) ^ cin;
assign cout = cin & (a ^ b) | (a & b);

endmodule

//structural 4_bit ripple-carry counter
module adder4_struc (a, b, cin, sum, cout);

//define inputs and outputs
input [3:0] a, b;
input cin;
output [3:0] sum;
output cout;

//define internal nets for carries
wire [3:0] c;

assign cout = c[3];

full_adder inst0 (a[0], b[0], cin, sum[0], c[0]);
full_adder inst1 (a[1], b[1], c[0], sum[1], c[1]);
full_adder inst2 (a[2], b[2], c[1], sum[2], c[2]);
full_adder inst3 (a[3], b[3], c[2], sum[3], c[3]);

endmodule
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Figure 1.137 Test bench module for the structural 4-bit adder.

//test bench for 4-bit ripple-carry adder
module adder4_struc_tb;

//define inputs and outputs
//inputs are reg for test bench
reg [3:0] a, b;
reg cin;

//outputs are wire for test bench
wire [3:0] sum;
wire cout;

initial
$monitor ("a=%b, b=%b, cin=%b, cout=%b, sum=%b",

a, b, cin, cout, sum);

initial
begin

#0 a = 4'b0001; b = 4'b0001; cin = 1'b0;
#10a = 4'b0010; b = 4'b0001; cin = 1'b1;
#10a = 4'b0100; b = 4'b0010; cin = 1'b0;
#10a = 4'b0000; b = 4'b0111; cin = 1'b1;

#10a = 4'b1000; b = 4'b0001; cin = 1'b1;
#10a = 4'b0100; b = 4'b1000; cin = 1'b0;
#10a = 4'b0111; b = 4'b0110; cin = 1'b1;
#10a = 4'b1000; b = 4'b1000; cin = 1'b0;

#10a = 4'b0010; b = 4'b1111; cin = 1'b1;
#10a = 4'b1111; b = 4'b0101; cin = 1'b0;
#10a = 4'b1110; b = 4'b0111; cin = 1'b1;
#10a = 4'b1100; b = 4'b1100; cin = 1'b0;

#10a = 4'b1100; b = 4'b1101; cin = 1'b1;
#10a = 4'b1110; b = 4'b1110; cin = 1'b0;
#10a = 4'b1110; b = 4'b1111; cin = 1'b1;
#10a = 4'b1111; b = 4'b1111; cin = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
adder4_struc inst1 (a, b, cin, sum, cout);

endmodule
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Figure 1.138 Outputs for the structural 4-bit adder.

Example 1.30 This example designs a 3-bit comparator using structural modeling
for the following operands:

A = a2a1a0
B = b2b1b0

where a0 and b0 are the low-order bits of A and B, respectively.    The following out-
puts will be used: 

a_lt_b indicating A < B
a_eq_b indicating A = B
a_gt_b indicating A > B

The equations for the comparator are shown below.

(A < B) = a2 ' b2 + (a2   b2) ' a1 ' b1 + (a2   b2) ' (a1   b1) ' a0 ' b0
(A = B) = (a2   b2) ' (a1   b1) ' (a0   b0) '
(A > B) =  a2 b2' + (a2   b2) ' a1 b1' + (a2   b2) ' (a1   b1) ' a0  b0 '

Referring to the equation for (A < B), the term a[2] ' b[2] indicates that if the high-
order bits of a and b are 0 and 1, respectively, then a must be less than b.  If the high-
order bits of a and b are equal, then the relative magnitude of a and b depends upon the
next lower-order bits a[1] and b[1].  This is indicated by the second term of the equa-
tion for (A < B).

a=0001, b=0001, cin=0, cout=0, sum=0010
a=0010, b=0001, cin=1, cout=0, sum=0100
a=0100, b=0010, cin=0, cout=0, sum=0110
a=0000, b=0111, cin=1, cout=0, sum=1000

a=1000, b=0001, cin=1, cout=0, sum=1010
a=0100, b=1000, cin=0, cout=0, sum=1100
a=0111, b=0110, cin=1, cout=0, sum=1110
a=1000, b=1000, cin=0, cout=1, sum=0000

a=0010, b=1111, cin=1, cout=1, sum=0010
a=1111, b=0101, cin=0, cout=1, sum=0100
a=1110, b=0111, cin=1, cout=1, sum=0110
a=1100, b=1100, cin=0, cout=1, sum=1000

a=1100, b=1101, cin=1, cout=1, sum=1010
a=1110, b=1110, cin=0, cout=1, sum=1100
a=1110, b=1111, cin=1, cout=1, sum=1110
a=1111, b=1111, cin=1, cout=1, sum=1111
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The structural module instantiates the following dataflow modules: and2_df,
xnor2_df, and3_df, and4_df, and or3_df.  The structural design module is shown in
Figure 1.139, test bench module is shown in Figure 1.140, and the outputs are shown
in Figure 1.141.  The test bench applies 12 sets of inputs to demonstrate the relative
magnitude of the two operands.

Figure 1.139 Structural design module for the 3-bit comparator.

//structural 3-bit comparator
module comp3_bit_struc (a, b, a_lt_b, a_eq_b, a_gt_b);

//define inputs and outputs
input [2:0] a, b;
output a_lt_b, a_eq_b, a_gt_b;

//define internal nets
wire net1, net2, net3, net4, net5, net7, net9, net10, net11;

//--------------------------------------------------
//instantiate the logic for a_lt_b
and2_df inst1 (~a[2], b[2], net1);

xnor2_df inst2 (a[2], b[2], net2);

xnor2_df inst3 (a[1], b[1], net3);

and3_df inst4 (net2, ~a[1], b[1], net4);

and4_df inst5 (net2, net3, ~a[0], b[0], net5);

or3_df inst6 (net1, net4, net5, a_lt_b);

//--------------------------------------------------
//instantiate the logic for a_eq_b
xnor2_df inst7 (a[0], b[0], net7);

and3_df inst8 (net2, net3, net7, a_eq_b);

//--------------------------------------------------
//instantiate the logic for a_gt_b
and2_df inst9 (a[2], ~b[2], net9);

and3_df inst10 (net2, a[1], ~b[1], net10);

and4_df inst11 (net2, net3, a[0], ~b[0], net11);

or3_df inst12 (net9, net10, net11, a_gt_b);

endmodule
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Figure 1.140 Test bench module for the 3-bit comparator.

//test bench for structural 3-bit comparator
module comp3_bit_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [2:0] a, b;
wire a_lt_b, a_eq_b, a_gt_b;

//display inputs and outputs
initial
$monitor ("a=%b, b=%b, a_lt_b=%b, a_eq_b=%b, a_gt_b=%b",

a, b, a_lt_b, a_eq_b, a_gt_b);

//apply input vectors
initial
begin

//a_lt_b
#0 a=3'b001; b=3'b010;
#10 a=3'b010; b=3'b100;
#10 a=3'b110; b=3'b111;
#10 a=3'b100; b=3'b110;

//a_eq_b
#10 a=3'b000; b=3'b000;
#10 a=3'b010; b=3'b010;
#10 a=3'b111; b=3'b111;
#10 a=3'b011; b=3'b011;

//a_gt_b
#10 a=3'b001; b=3'b000;
#10 a=3'b011; b=3'b010;
#10 a=3'b101; b=3'b011;
#10 a=3'b111; b=3'b110;

#10 $stop;
end

//instantiate the module into the test bench
comp3_bit_struc inst1 (a, b, a_lt_b, a_eq_b, a_gt_b);

endmodule
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Figure 1.141 Outputs for the 3-bit comparator.

1.9  Tasks and Functions
Verilog provides tasks and functions that are similar to procedures or subroutines
found in other programming languages.  These constructs allow a behavioral module
to be partitioned into smaller segments.  Tasks and functions permit modules to exe-
cute common code segments that are written once then called when required, thus
reducing the amount of code needed.  They enhance the readability and maintainabil-
ity of the Verilog modules.

Tasks and functions are defined within a module and are local to the module.
They can be invoked only from a behavioral construct within the module.  That is, they
are called from an always block, an initial block, or from other tasks or functions.  A
function can invoke another function, but not a task.  A function must have at least one
input argument, but does not have output or inout arguments.  The task and function
arguments can be considered as the ports of the constructs; however, these ports do
connect to the external environment.

A task cannot be invoked from a continuous assignment statement and does not re-
turn values to an expression, but places the values on the output or inout ports.  Tasks
can contain delays, timing, or event control statements and can execute in nonzero
simulation time when event control is applied.  A task can invoke other tasks and func-
tions and can have arguments of type input, output, or inout.

1.9.1  Task Declaration

A task is delimited by the keywords task and endtask.  The syntax for a task decla-
ration is as follows:

a=001, b=010, a_lt_b=1, a_eq_b=0, a_gt_b=0
a=010, b=100, a_lt_b=1, a_eq_b=0, a_gt_b=0
a=110, b=111, a_lt_b=1, a_eq_b=0, a_gt_b=0
a=100, b=110, a_lt_b=1, a_eq_b=0, a_gt_b=0

a=000, b=000, a_lt_b=0, a_eq_b=1, a_gt_b=0
a=010, b=010, a_lt_b=0, a_eq_b=1, a_gt_b=0
a=111, b=111, a_lt_b=0, a_eq_b=1, a_gt_b=0
a=011, b=011, a_lt_b=0, a_eq_b=1, a_gt_b=0

a=001, b=000, a_lt_b=0, a_eq_b=0, a_gt_b=1
a=011, b=010, a_lt_b=0, a_eq_b=0, a_gt_b=1
a=101, b=011, a_lt_b=0, a_eq_b=0, a_gt_b=1
a=111, b=110, a_lt_b=0, a_eq_b=0, a_gt_b=1
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task task_name
input arguments
output arguments
inout  arguments
task declarations
local variable declarations
begin

statements
end

endtask

Arguments (or parameters) that are of type input or inout are processed by the
task statements; arguments that are of type output or inout, resulting from the task
construct, are passed back to the task invocation statement — the statement that called
the task.  The keywords input, output, and inout are not ports of the module, they are
ports used to pass values between the task invocation statement and the task construct.
Additional local variables can be declared within a task, if necessary.  Since tasks can-
not be synthesized, they are used only in test benches.  When a task completes execu-
tion, control is passed to the next statement in the module.

1.9.2  Task Invocation

A task can be invoked (or called) from a procedural statement; therefore, it must ap-
pear within an always or an initial block.  A task can call itself or be invoked by tasks
that it has called.  The syntax for a task invocation is as follows, where the expressions
are parameters passed to the task:

task_name (expression 1, expression 2, . . . , expression n);

Values for arguments of type output and inout are passed back to the variables in
the task invocation statement upon completion of the task.  The list of arguments in the
task invocation must match the order of input, output, and inout variables in the task
declaration.  The output and inout arguments must be of type reg because a task in-
vocation is a procedural statement.

Example 1.31 A task module will be generated that performs both arithmetic and
logical operations.  There are three inputs: a[7:0], b[7:0], and c[7:0], where a[0],
b[0], and c[0] are the low-order bits of a, b, and c, respectively.  There are four out-
puts: z1, z2 , z3, and z4 that perform the operations shown below.

z1 = (b + c) | (a)
z2  = (a & c) + (b)
z3  = (~a + c) & (b)
z4  = (b | c) & (a)
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Figure 1.42 is a block diagram of the module in which the task is embedded.  No-
tice that there are no ports in the module to the external environment.  The only ports
are in the task which passes variables to the task declaration as input ports, as shown
below and ports the pass the results back to the task invocation as output ports, as
shown below.

input [7:0] a, b, c;
output [7:0] z1, z2, z3, z4;

Figure 1.142 Block diagram of the task module of Example 1.31.

The task module is shown in Figure 1.143 in which no ports are listed in the mod-
ule definition.  The first set of variables passed to the task declaration  called calc by
the task invocation are shown below as variables a, b, and c.  The variables z1, z2 , z3 ,
and z4  are the results that are passed back to the task invocation.

a = 8'b1111_1111; b = 8'b0011_1111; c = 8'b0001_1101;

calc (a, b, c, z1, z2, z3, z4);

The outputs are shown in Figure 1.144.  The module declares 8-bit register vectors
[7:0] a, [7:0] b, and [7:0] c.  These are redeclared in the  task.  Output z1 adds oper-
ands b and c and then performs a bitwise logical OR operation on the sum with oper-
and a.

module 

a[7:0]

b[7:0]

c[7:0]

a[7:0]

b[7:0]

c[7:0]

z1[7:0]

z2[7:0]

z3[7:0]

z4[7:0]

z1[7:0]

z2[7:0]

z3[7:0]

z4[7:0]

task_log_arith
task calc

Input ports Output ports
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Figure 1.143 Task design module for Example 1.31.

//module to illustrate a task
module task_log_arith;

//define input and output ports
reg [7:0] a, b, c; //input ports
reg [7:0] z1, z2, z3, z4; //output ports

initial
begin

a = 8'b1111_1111; b = 8'b0011_1111;
c = 8'b0001_1101;

calc (a, b, c, z1, z2, z3, z4);

a = 8'b1111_1010; b = 8'b0011_1100;
c = 8'b1000_1001;

calc (a, b, c, z1, z2, z3, z4);

a = 8'b0011_1110; b = 8'b0101_1101;
c = 8'b1110_0001;

calc (a, b, c, z1, z2, z3, z4);

a = 8'b0100_1011; b = 8'b1001_1101;
c = 8'b1111_0011;

calc (a, b, c, z1, z2, z3, z4);

end

task calc;
input [7:0] a, b, c;
output [7:0] z1, z2, z3, z4;

begin
z1 = (b + c) | (a);
z2 = (a & c) + (b);
z3 = (~a + c) & (b);
z4 = (b | c) & (a);

$display ("a = %b, b = %b, c = %b,
z1 = %b, z2 = %b, z3 = %b, z4 = %b",

a, b, c, z1, z2, z3, z4);

end
endtask

endmodule
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Figure 1.144 Outputs for the task module of Figure 1.143.

Example 1.32 A module will be designed that contains a task to count the number of
1s in an 8-bit register reg_a.  The task returns the number of 1s to a 4-bit register count.
The task module is shown in Figure 1.145 in which no ports are listed in the module
definition.  The first variable passed to the task declaration  called ctr by the task in-
vocation is reg_a = 8’b0000_0000.  The variable count is the result that is
passed back to the task invocation.  The outputs are shown in Figure 1.146.

Figure 1.145 Task design module to count the number of 1s in a register.

a = 11111111, b = 00111111, c = 00011101,
z1 = 11111111, z2 = 01011100, z3 = 00011101, z4 = 00111111

a = 11111010, b = 00111100, c = 10001001,
z1 = 11111111, z2 = 11000100, z3 = 00001100, z4 = 10111000

a = 00111110, b = 01011101, c = 11100001,
z1 = 00111110, z2 = 01111101, z3 = 00000000, z4 = 00111100

a = 01001011, b = 10011101, c = 11110011,
z1 = 11011011, z2 = 11100000, z3 = 10000101, z4 = 01001011

//module to illustrate a task to count the number of 1s
module task_count1s_2;

//define task ports
reg [7:0] reg_a; //input ports
reg [3:0] count; //output ports

initial
begin

reg_a = 8'b0000_0000; //no 1s
ctr (reg_a, count); //invoke the task

reg_a = 8'b1110_1010; //five 1s
ctr (reg_a, count); //invoke the task

reg_a = 8'b0111_0001; //four 1s
ctr (reg_a, count); //invoke the task

reg_a = 8'b1001_1111; //six 1s
ctr (reg_a, count); //invoke the task

//continued on next page
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Figure 1.145       (Continued)

Figure 1.146 Outputs for the task module that counts the number of 1s.

1.9.3  Function Declaration

Functions are similar to tasks, except that functions return only a single value to the
expression from which they are called.  Like tasks, functions provide the ability to exe-
cute common procedures from within a module.  A function can be invoked from a
continuous assignment statement or from within a procedural statement and is repre-
sented by an operand in an expression.

reg_a = 8'b1011_1111; //seven 1s
ctr (reg_a, count); //invoke the task

reg_a = 8'b1111_1111; //eight 1s
ctr (reg_a, count); //invoke the task

end

task ctr;
input [7:0] reg_a;
output [3:0] count;

begin
count = 0;
while (reg_a)

begin
count = count + reg_a[0];
reg_a = reg_a >> 1;

end

$display ("count = %d", count);
end
endtask

endmodule

count = 0
count = 5
count = 4
count = 6
count = 7
count = 8
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Functions cannot contain delays, timing, or event control statements and execute
in zero simulation time.  Although functions can invoke other functions, they are not
recursive.  Functions cannot invoke a task.  Functions must have at least one input
argument, but cannot have output or inout arguments.

The syntax for a function declaration is shown below.  If the optional range or type
is omitted, the value returned to the function invocation is a scalar of type reg.  Func-
tions are delimited by the keywords function and endfunction and are used to imple-
ment combinational logic; therefore, functions cannot contain event controls or timing
controls.

function [range or type] function name
input declaration
other declarations
begin

statement
end

endfunction

1.9.4  Function Invocation

A function is invoked from an expression.  The function is invoked by specifying the
function name together with the input parameters.  The syntax is shown below.

function_name (expression 1, expression 2, . . . , expression n);

All local registers that are declared within a function are static; that is, they retain their
values between invocations of the function.  When the  function execution is finished,
the return value is positioned at the location where the function was invoked.  The
function module, like tasks, has no ports to communicate with the external environ-
ment.  The only ports are input ports that receive parameters from the function invo-
cation.

Example 1.33 This example calculates the parity of a 16-bit register and returns one
bit indicating whether there is an even number of 1s or an odd number of 1s.  If the par-
ity is even, then parity bit = 1 is printed; if parity is odd, then parity bit = 0 is printed.
That is, a 1 is appended to the register contents if there are an even number of 1s in the
register so that all 17 bits contain an odd number of 1s, otherwise a 0 bit is appended.
The function module, like tasks, has no ports listed in the module definition to com-
municate with the external environment.  The only ports are input ports that receive
parameters from the function invocation.

Figure 1.147 shows the block diagram of the module fctn_parity with the function
calc_parity embedded in the module.  The design module is shown in Figure 1.148.
The variable contents is declared as a 16-bit register; the variable parity is a scalar reg-
ister.  The statement parity = calc_parity (16'b1111_0000_1111_0000) invokes the
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function calc_parity and passes the register contents to the function input port [15:0]
address.  Then the function uses the reduction exclusive-OR operator to determine the
parity of the register contents.  The parity of the contents is returned to the left-hand
side of the parity statement, then the parity bit is displayed.  The outputs of the module
are shown in Figure 1.149.

Figure 1.147 Block diagram for the function of Example 1.33.

Figure 1.148 Function design module to determine the parity of a register.

module fctn_parity
function calc_parity

address[15:0] address paritycalc_parity

//module to illustrate a function
module fctn_parity;

reg [15:0] contents;
reg parity;

initial
begin

parity = calc_parity (16'b1111_0000_1111_0000);
if (parity ==1)

$display ("parity bit = 0");
else

$display ("parity bit = 1");

parity = calc_parity (16'b1111_0000_1111_0001);
if (parity ==1)

$display ("parity bit = 0");
else

$display ("parity bit = 1");

//continued on next page
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Figure 1.148       (Continued)

Figure 1.149 Outputs for the function to determine the parity of a register.

Example 1.34 This example repeats the conversion from the binary code to the
excess-3 code of Example 1.28, but uses a function to perform the conversion.  The
binary and excess-3 codes are reproduced in Table  1.18 for convenience.  The excess-
3 code is a nonweighted code and is obtained by adding three to the 8421 binary code.
For example, in Table 1.18 the binary code of 1100 equals 1100 + 0011 = 1111 in the
excess-3 code.  The binary code of 1101 equals 1101 + 0011 = 1  0000, which yields
a 4-bit excess-3 code of 0000.

parity = calc_parity (16'b1111_1111_1111_0000);
if (parity ==1)

$display ("parity bit = 0");
else

$display ("parity bit = 1");

parity = calc_parity (16'b1111_1111_1111_1110);
if (parity ==1)

$display ("parity bit = 0");
else

$display ("parity bit = 1");
end

function calc_parity;
input [15:0] address;
begin

calc_parity = ^address;
end

endfunction

endmodule

parity bit = 1
parity bit = 0
parity bit = 1
parity bit = 0
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The excess-3 code is also a self-complementing code in which the 1s complement
of a code word is identical to the 9s complement of the corresponding 8421 BCD code
word in excess-3 notation, as shown below for the decimal number 4.  The function
design module is shown in Figure 1.150 and the outputs are shown in Figure 1.151.

Table 1.18  Binary-to-Excess-3 Code Conversion

Binary Code Excess-3 Code

x1 x2 x3 x4 z1 z2 z3 z4

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 0

Excess-3 BCD code 8421 BCD code
4 4
 

0111 0100
                         1s complement                            9s complement

1000 0101
                          excess-3

1000
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Figure 1.150 Function design module for the conversion from the binary code to
the excess-3 code.

//module to implement a function to convert
//from binary code to excess-3 code
module fctn_excess3a;

reg [7:0] a;
reg [7:0] rslt;

initial
begin

rslt = excess3 (8'b0000_0011);
$display ("binary = 0000_0011, excess3 = %b", rslt);

rslt = excess3 (8'b0011_0000);
$display ("binary = 0011_0000, excess3 = %b", rslt);

rslt = excess3 (8'b0000_1111);
$display ("binary = 0000_1111, excess3 = %b", rslt);

rslt = excess3 (8'b1111_1111);
$display ("binary = 1111_1111, excess3 = %b", rslt);

rslt = excess3 (8'b0000_0001);
$display ("binary = 0000_0001, excess3 = %b", rslt);

rslt = excess3 (8'b0000_0010);
$display ("binary = 0000_0010, excess3 = %b", rslt);

rslt = excess3 (8'b0000_0011);
$display ("binary = 0000_0011, excess3 = %b", rslt);

rslt = excess3 (8'b0000_0100);
$display ("binary = 0000_0100, excess3 = %b", rslt);

end

function [7:0] excess3;
input [7:0] a;
reg [7:0] rslt;
begin

rslt = a + 8'b0000_0011;
excess3 = rslt;

end
endfunction

endmodule
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Figure 1.151 Outputs for the conversion from the binary code to the excess-3 code.

1.10  Problems

1.1 Given the equation shown below, obtain the minimized equation for z1 in a
product-of-sums notation and implement the equation using NAND gate
built-in primitives.  Obtain the design module, the test bench module, and the
outputs.  Output z1 is asserted high.

z1(x1 , x2 , x3 , x4) = m (1, 4, 7, 9, 11, 13) + d (5, 14, 15)

1.2 Obtain the design module using built-in primitives for the equations shown
below.  Obtain the test bench and outputs.

z1 = (x1   x2)x3' z2  = (x1   x2)'  x3

1.3 Use AND gate and OR gate built-in primitives to implement a circuit in a
sum-of-products form that will generate an output z1 if an input is greater than
or equal to 2 and less than 5; and also greater than or equal to 12 and less than
15.  Then obtain the design module, test bench module, and outputs.

1.4 Obtain the equation for a logic circuit that will generate a logic 1 on output z1
if a 4-bit unsigned binary number N = x1x2x3x4  satisfies the following crite-
ria, where x4  is the low-order bit

2 < N  6 or 11  N < 14

Use NOR user-defined primitives.  Obtain the design module, the test bench
module, and outputs.

binary = 0000_0011, excess3 = 00000110
binary = 0011_0000, excess3 = 00110011
binary = 0000_1111, excess3 = 00010010
binary = 1111_1111, excess3 = 00000010

binary = 0000_0001, excess3 = 00000100
binary = 0000_0010, excess3 = 00000101
binary = 0000_0011, excess3 = 00000110
binary = 0000_0100, excess3 = 00000111
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1.5 Obtain the minimal Boolean expression for a logic circuit that generates an
output z1 whenever a 4-bit unsigned binary number N meets the following re-
quirements:

N is an odd number or N is evenly divisible by four.

The format for N is: N = x1  x2  x3  x4 , where x4  is the low-order bit.  Then ob-
tain the design module using user-defined primitives, the test bench module,
and the outputs.

1.6 Design a modulo-8 counter using the D flip-flop that was designed in the
edge-sensitive user-defined primitives section of this chapter.  Use additional
logic gate UDPs as necessary.  Obtain the design module, the test bench mod-
ule, and the outputs.

1.7 Design a comparator using the continuous assignment statement that com-
pares two 2-bit binary operands x1x2  and x3x4  and generates a high output for
z1 whenever x1x2   x3x4 .  Design the comparator as a product of sums using
NOR logic.  Obtain the design module, the test bench module, and outputs.

1.8 Use the continuous assignment statement to execute the six reduction opera-
tors.  Use all combinations of a 4-bit operand a[3:0] for all reduction opera-
tors.  Obtain the design module, the test bench module, and outputs.

1.9 Implement the following equation using the conditional operator:

z1 = (x1  < x2) ? x3  : x4

If x1  is less than x2 , then output z1 will be assigned the value of x3 , otherwise
z1 will be assigned the value of x4 .  Obtain the design module, the test bench
module, and outputs.

1.10 Design a 4:1 multiplexer using the conditional operator.  The multiplexer in-
puts are defined as vectors.  The select inputs are: select[1:0], the data inputs
are: in [3:0], and the output is out.  Obtain the design module, the test bench
module, and outputs.

1.11 Use dataflow modeling to illustrate the four relational operators: greater than
(>), less than (<), greater than or equal (>=), and less than or equal (<=).  Ob-
tain the design module, the test bench module, and outputs.

1.12 Use dataflow modeling to illustrate the three logical operators: the binary log-
ical AND operator (&&), the binary logical OR ( | | ), and the unary logical ne-
gation operator ( ! ).  Obtain the design module, the test bench module, and
outputs.
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1.13 Design a five-function logic unit to show the operation of the five bit-wise op-
erators: AND (&), OR ( | ), negation (~), exclusive-OR (^), and exclusive-
NOR (^ ~ or ~ ^).  There will be three 4-bit operands: a, b, and c and one result
reg variable.  Generate the test bench and obtain the outputs for the following
operations:

AND operation = (a & c) & b
OR operation = (a | b) | c
negation operation = ~((a & b) | c)
exclusive-OR operation = (b ^ a) ^ c
exclusive-NOR operation = (a ^ ~ b) ^ ~ c

1.14 Design a binary-to-excess-3 code converter using user-defined primitives of
the following types: udp_and2, udp_and3, udp_or3, and udp_or4.  The binary
code is labelled a, b, c, d, and the excess-3 code is labelled w, x, y, z, where d
and z are the low-order bits of their respective codes.  Binary codes above
1100 produce an excess-3 code of 0000.  Obtain the design module, the test
bench module, and outputs.

1.15 Perform left and right shift operations on the following two unsigned 8-bit op-
erands:  a_reg [7:0] and b_reg [7:0].  Execute a shift left of four bits on a_reg
[7:0] and a shift right of three bits on b_reg [7:0].  Obtain the design module,
the test bench module, and outputs.

1.16 Use the conditional statements to design a circuit for the following expres-
sion: z1 = (x1  & x4) + (x2  & x3) + (x2  ~ ^ x4).  Obtain the design module, the
test bench module, and outputs.

1.17 Design a modulo-10 counter using conditional statements.  The counter
counts in the following sequence: 0000 . . . 1001, 0000.  There are two inputs:
clk and rst_n, and one output count.  The reset is active low.  Obtain the design
module, the test bench module, and outputs.

1.18 Design a module to execute the four logical operations of AND, OR, Exclu-
sive-OR, and Exclusive-NOR using the case statement.  Obtain the test bench
providing four 4-bit vectors for each logical operation and obtain the outputs.

1.19 Design a module to execute the four shift operations of shift left logical (SLL),
shift left algebraic (SLA), shift right logical (SRL), and shift right algebraic
(SRA) using the case statement.  The operands to be shifted are 8-bit oper-
ands.  Obtain the test bench providing four shift amounts for each shift oper-
ation and obtain the outputs.

1.20 Use the repeat loop to increment an integer count by three.  The process is re-
peated 20 times.  The integer count is initialized to zero.  Display the output
count.
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1.21 Design a module using the case statement to rotate an 8-bit operand left and
right.  Then obtain the test bench module and the outputs.

1.22 Given the Karnaugh map shown below, design a structural module to imple-
ment the sum-of-products expression for output z1.  Instantiate AND gates
and OR gates that were designed using dataflow modeling.  Obtain the test
bench module and the outputs.

1.23 Use structural modeling to design a logic circuit to generate an output z1
whenever a 4-bit variable — x1 , x2 , x3 , x4 — has three or more 1s.  Implement
the module using AND gates and OR gates that were designed using dataflow
modeling.  Obtain the test bench and the outputs.

1.24 Design  a structural module that will generate an output z1 if a 4-bit binary
number x[3:0] has a value that is less than or equal to four or greater than ten.
Implement the module using AND gates and OR gates that were designed us-
ing dataflow modeling.  Obtain the test bench and the outputs.

1.25 Given the Karnaugh map shown below, design two structural modules to ob-
tain the equation for z1, first as a sum-of-products then as a product-of-sums.
Use logic gates that were designed using dataflow modeling.  Obtain the test
benches and the outputs.

 0 0      0 1     1 1     1 0

0 0      0        0         0         0

0 1      1        0         0         1

1 1      0        0         1         0

1 0      1        1         0         0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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 0 0      0 1     1 1     1 0

0 0      1        0         0         1

0 1     0        1         0         0

1 1      0        1         1        1

1 0      0        0         0        0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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2
Combinational Logic Design 
Using Verilog HDL

This chapter provides techniques for designing combinational logic, including logic
equations, multiplexers, decoders, encoders, comparators, programmable logic
devices, and additional logic devices.  Different design methodologies and modeling
constructs of the Verilog hardware description language (HDL) will be utilized.  Also
included in this chapter are the following topics, which should be familiar to the reader
and are briefly reviewed: number systems, number representations, Boolean algebra,
and minimization techniques.

Combinational logic refers to logic circuits whose present output values depend
only upon the present input values.  A combinational circuit is a special case of a se-
quential circuit in which there is no storage capability.  The word combinational is
used interchangeably with combinatorial.

A combinational logic circuit is comprised of combinational logic elements (or
logic primitives), which have one or more inputs and at least one output.  The input and
output variables are characterized by discrete states such that, at any instant of time,
the state of each output is completely determined by the states of the present inputs.  A
combinational circuit refers to a logic circuit which performs the same fixed mapping
of inputs into outputs, regardless of the past input history and may be considered as a
one-state sequential machine.

All designs will be completely designed and carried through to completion —
nothing is left unfinished or partially designed.  The Verilog  HDL design examples in-
clude the design module, the test bench module, and the outputs obtained from the test
bench.

2.1 Number Systems
2.2 Boolean Algebra
2.3 Logic Equations
2.4 Multiplexers
2.5 Comparators
2.6 Programmable Logic Devices
2.7 Additional Design Examples
2.8 Problems
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2.1 Number Systems
Numerical data, or operands, are expressed in various positional number systems for
each radix.  This section will discuss binary, octal, decimal, and hexadecimal posi-
tional number systems.  A positional number system is characterized by a radix (or
base) r, which is an integer greater than or equal to 2, and by a set of r digits, which are
numbered from 0 to r – 1.  For example, for radix 8, the digits range from 0 to 7.

In a positional number system, a number is encoded as a vector of n digits in which
each digit is weighted according to its position in the vector.  An n-bit integer A is rep-
resented in a positional number system as follows:

where 0  ai  r – 1.  The high-order and low-order digits are an–1  and a0, respectively.

2.1.1   Binary Number System

The radix is 2 in the binary number system; therefore, only two digits are used: 0 and
1.  The low-value digit is 0 and the high-value digit is (r – 1) = 1.  The binary number
system is the most conventional and easily implemented system for internal use in a
digital computer; therefore, most digital computers use the binary number system.
There is a disadvantage when converting to and from the externally used decimal sys-
tem; however, this is compensated for by the ease of implementation and the speed of
execution in binary of the four basic operations: addition, subtraction, multiplication,
and division.  The radix point is implied within the internal structure of the computer;
that is, there is no specific storage element assigned to contain the radix point.

The weight assigned to each position of a binary number is as follows:

2n–12n–2   23 22 21 20• 2–12–22–3    2–m

where the integer and fraction are separated by the radix point (binary point).  The dec-
imal value of the binary number 1101.1012 is obtained as shown below, where r = 2
and ai  {0,1} for –m  i  n – 1.  Therefore, 

23 22 21 20 • 2–1 2–2 2–3

1 1 0 1 . 1 0 12 = (1  23) + (1  22) + (0  21) + (1  20) +
   (1  2–1) + (0  2–2) + (1  2–3)

= 13.62510

A = (an–1an–2an–3   a1a0) (2.1)
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2.1.2  Octal Number System

The radix is 8 in the octal number system; therefore, eight digits are used, 0 through 7.
The low-value digit is 0 and the high-value digit is (r – 1) = 7.  The weight assigned to
each position of an octal number is as follows:

8n–18n–2   83 82 81 80• 8–18–28–3    8–m

where the integer and fraction are separated by the radix point (octal point).  The dec-
imal value of the octal number 217.68 is obtained as shown below, where r = 8 and
ai  {0,1,2,3,4,5,6,7} for –m  i  n – 1.  Therefore, 

82 81 80 • 8–1

2 1 7 . 68 = (2  82) + (1  81) + (7  80) + (6  8–1)
= 143.7510

When a count of 1 is added to 78, the sum is zero and a carry of 1 is added to the next
higher-order column on the left.

2.1.3   Decimal Number System

The radix is 10 in the decimal number system; therefore, ten digits are used, 0 through
9.  The low-value digit is 0 and the high-value digit is (r – 1) = 9.  The weight assigned
to each position of a decimal number is as follows:

10n–110n–2   103 102 101 100• 10–110–210–3    10–m

where the integer and fraction are separated by the radix point (decimal point).  The
value of 753710 is immediately apparent; however, the value is also obtained as shown
below, where r = 10 and ai  {0,1,2,3,4,5,6,7,8,9} for –m  i  n – 1.  That is, 

103 102 101 100

 6  3  5  710 = (6  103) + (3  102) + (5  101) + (7  100)

When a count of 1 is added to decimal 9, the sum is zero and a carry of 1 is added to the
next higher-order column on the left.

Binary-coded decimal Each decimal digit can be encoded into a corresponding
binary number.  The highest-valued decimal digit is 9, which requires four bits in the
binary representation.  Therefore, four binary digits are required to represent each dec-
imal digit.  This is shown below, which lists four decimal digits and indicates the cor-
responding binary-coded decimal (BCD) digits.

Decimal BCD
6, 9, 12, 124 0110, 1001, 0001 0010, 0001 0010 0100
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2.1.4   Hexadecimal Number System

The radix is 16 in the hexadecimal number system; therefore, 16 digits are used, 0
through 9 and A through F, where A, B, C, D, E, and F correspond to decimal 10, 11,
12, 13, 14, and 15, respectively.  The low-value digit is 0 and the high-value digit is
(r – 1) = 15 (F).  The weight assigned to each position of a hexadecimal number is as
follows:

16n–116n–2   163 162 161 160• 16–116–216–3    16–m

where the integer and fraction are separated by the radix point (hexadecimal point).
The decimal value of the hexadecimal number 6A8C.D41616 is obtained as shown be-
low, where r = 16 and ai  {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} for –m  i  n – 1.
Therefore, 

163 162 161 160 • 16–116–216–316–4

6 A 8 C . D  4  1  6 = (6  163) + (10  162) + (8  161)
+ (12  160) + (13  16–1) + (4  16–2)
+ (1  16–3) + (6  16–4) 

   = 27,276.8284610

When a count of 1 is added to hexadecimal F, the sum is zero and a carry of 1 is added
to the next higher-order column on the left.

2.2 Boolean Algebra
In 1854, George Boole introduced a systematic treatment of the logic operations AND,
OR, and NOT, which is now called Boolean algebra.  This section describes the axi-
oms and theorems that characterize “Boolean algebra”.  The symbols (or operators)
used for the algebra and the corresponding function definitions are listed in Table 2.1.
The table also includes the exclusive-OR function, which is characterized by the three
operations of AND, OR, and NOT.

Table 2.1  Boolean Operators for Variables x1  and x2

Operator Function Definition
• AND x1  • x2   (Also x1x2)

+ OR x1  + x2
' NOT (negation) x1 '
 Exclusive-OR (x1x2 ') + (x1 ' x2)
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The AND operator, which corresponds to the Boolean product, is also indicated
by the symbol “” (x1   x2) or by no symbol if the operation is unambiguous.  Thus,
x1x2, x1  • x2 , and x1   x2  are all read as “x1  AND x2 .”  The OR operator, which cor-
responds to the Boolean sum, is also specified by the symbol “ .”  Thus, x1 + x2 and
x1   x2  are both read as “x1 OR x2 .”  The symbol for the complement (or negation) op-
eration is usually specified by the prime “ ' ” symbol immediately following the vari-
able (x1 '), by a bar over the variable (x1), or by the symbol “” ( x1).

Boolean algebra is a deductive mathematical system which can be defined by a set
of variables, a set of operators, and a set of axioms (or postulates).  An axiom is a state-
ment that is universally accepted as true; that is, the statement needs no proof, because
its truth is obvious.  The axioms of Boolean algebra form the basis from which the the-
orems and other properties can be derived.

Most axioms and theorems are characterized by two laws.  Each law is the dual of
the other.  The principle of duality specifies that the dual of an algebraic expression
can be obtained by interchanging the binary operators • and + and by interchanging the
identity elements 0 and 1.

Boolean algebra is an algebraic structure consisting of a set of elements B with two
binary operators • and + and a unary operator ', such that the following axioms are true,
where the notation x1  X is read as “x1 is an element of the set X”:

2.2.1   Axioms

This section presents the seven axioms of Boolean algebra.

Axiom 1: Boolean set definition The set B contains at least two elements x1
and x2 , where x1   x2 .

Axiom 2: Closure laws For every x1 , x2   B, 

(a) x1  + x2   B
(b) x1  •  x2   B

Axiom 3: Identity laws There exist two unique identity elements 0 and 1, where 0
is an identity element with respect to the Boolean sum and 1 is an identity element with
respect to the Boolean product.  Thus, for every x1  B, 

(a) x1  + 0 = 0 + x1  = x1
(b) x1  • 1 = 1 •  x1  = x1

Axiom 4: Commutative laws The commutative laws specify that the order in
which the variables appear in a Boolean expression is irrelevant — the result is the
same.  Thus, for every x1 , x2   B,

(a) x1  + x2  = x2  + x1
(b) x1  •  x2  = x2 • x1
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Axiom 5: Associative laws The associative laws state that three or more vari-
ables can be combined in an expression using Boolean multiplication or addition and
that the order of the variables can be altered without changing the result.  Thus, for ev-
ery x1 , x2 , x3   B, 

(a) (x1 + x2) + x3 = x1  + (x2  + x3)
(b) (x1  •  x2) •  x3  = x1  • (x2 •  x3)

Axiom 6: Distributive laws The distributive laws for Boolean algebra are simi-
lar, in many respects, to those for college algebra.  The interpretation, however, is dif-
ferent and is a function of the Boolean product and the Boolean sum.  This is a very
useful axiom in minimizing Boolean functions.  For every x1 , x2 , x3   B,

(a) The operator + is distributive over the operator • such that,
 x1  + (x2  • x3) = (x1  + x2) • (x1 + x3)

(b) The operator • is distributive over the operator + such that, 
 x1  • (x2  + x3) = (x1  • x2) + (x1 • x3)

Axiom 7: Complementation laws For every x1   B, there exists an element x1 '
(called the complement of x1), where x1 '  B, such that, 

(a) x1  + x1 ' = 1
(b) x1  •  x1 ' = 0 

2.2.2   Theorems

This section presents the seven theorems of Boolean algebra, which are derived from
the axioms and are listed in pairs, where each relation in the pair is the dual of the
other.

Theorem 1: 0 and 1 associated with a variable Every variable in Boolean
algebra can be characterized by the identity elements 0 and 1.  Thus, for every x1   B,

(a) x1  + 1 = 1
(b) x1  •  0 = 0

Theorem 2: 0 and 1 complement The 2-valued Boolean algebra has two dis-
tinct identity elements 0 and 1, where 0  1.  The operations using 0 and 1 are as fol-
lows:

0 + 0 = 0 0 + 1 = 1
1 •  1 = 1 1 •  0 = 0
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A corollary to Theorem 2 specifies that element 1 satisfies the requirements of the
complement of element 0, and vice versa.  Thus, each identity element is the comple-
ment of the other.

(a) 0' = 1
(b) 1' = 0

Theorem 3: Idempotent laws Idempotency relates to a nonzero mathematical
quantity which, when applied to itself for a binary operation, remains unchanged.
Thus, if x1  = 0, then x1  + x1  = 0 + 0 = 0 and if x1  = 1, then  x1  + x1  = 1 + 1 = 1.  There-
fore, one of the elements is redundant and can be discarded.  The dual is true for the op-
erator •.  The idempotent laws eliminate redundant variables in a Boolean expression
and can be extended to any number of identical variables.  This law is also referred to
as the law of tautology, which precludes the needless repetition of the variable.  For ev-
ery x1   B,

(a) x1  + x1  = x1
(b) x1  •  x1  = x1

Theorem 4: Involution law The involution law states that the complement of a
complemented variable is equal to the variable.  There is no dual for the involution
law.  The law is also called the “law of double complementation”.  Thus, for every x1
 B,

x1 ' ' = x1

Theorem 5: Absorption law 1 This version of the absorption law states that
some 2-variable Boolean expressions can be reduced to a single variable without al-
tering the result.  Thus, for every x1 , x2   B,

(a) x1  + (x1  • x2) = x1
(b) x1  • (x1 + x2) = x1

Theorem 6: Absorption law 2 This version of the absorption law is used to
eliminate redundant variables from certain Boolean expressions.  Absorption law 2
eliminates a variable or its complement and is a very useful law for minimizing Bool-
ean expressions.

(a) x1  + (x1 ' • x2) = x1  + x2
(b) x1  • (x1 ' + x2) = x1  • x2

Theorem 7: DeMorgan’s laws DeMorgan’s laws are also useful in minimizing
Boolean functions.  DeMorgan’s laws convert the complement of a sum term or a
product term into a corresponding product or sum term, respectively.  For every x1 , x2
 B,
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(a) (x1 + x2)' = x1 ' • x2 '
(b) (x1 •  x2)' = x1 ' + x2 '

Parts (a) and (b) of DeMorgan’s laws represent expressions for NOR and NAND
gates, respectively.  DeMorgan’s laws can be generalized for any number of variables,
such that,

(a) (x1 + x2  +  …  + xn)' = x1 ' •  x2 ' •  …  • xn'
(b) (x1 •  x2  •  …  •  xn)' = x1 ' + x2 ' +  …  + xn'

When applying DeMorgan’s laws to an expression, the operator • takes precedence
over the operator +.  For example, use DeMorgan’s law to complement the Boolean
expression x1 + x2x3. 

Note that: (x1  + x2x3)'  x1 ' • x2 ' + x3 '.

2.2.3   Other Terms for Boolean Algebra

This section defines the following Boolean terms: minterm, maxterm, product term,
sum term, sum of minterms, sum of products, product of maxterms, and product of
sums.

Minterm A minterm is the Boolean product of n variables and contains all n vari-
ables of the function exactly once, either true or complemented.  For example, for the
function z1(x1 , x2, x3), x1x2 ' x3  is a minterm.

Maxterm A maxterm is a Boolean sum of n variables and contains all n variables of
the function exactly once, either true or complemented.  For example, for the function
z1(x1 , x2, x3), (x1  + x2 ' + x3) is a maxterm.

Product term A product term is the Boolean product of variables containing a sub-
set of the possible variables or their complements.  For example, for the function
z1(x1 , x2, x3), x1 ' x3  is a product term, because it does not contain all the variables.

Sum term A sum term is the Boolean sum of variables containing a subset of the
possible variables or their complements.  For example, for the function z1(x1 , x2 , x3),
(x1 ' +  x3) is a sum term, because it does not contain all the variables.

(x1  + x2x3)' = [x1  + (x2x3)]'

= x1 ' (x2 ' + x3 ')
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Sum of minterms A sum of minterms is an expression in which each term con-
tains all the variables, either true or complemented.  For example, 

is a Boolean expression in a sum-of-minterms form.  This particular form is also re-
ferred to as a minterm expansion, a standard sum of products, a canonical sum of prod-
ucts, or a disjunctive normal form.  Since each term is a minterm, the expression for z1
can be written in a more compact sum-of-minterms form as z1(x1 , x2 , x3) = m(3,4,7),
where each term is converted to its minterm value.  For example, the first term in the
expression is x1 ' x2x3, which corresponds to binary 011, representing minterm 3.

Sum of products A sum of products is an expression in which at least one term
does not contain all the variables; that is, at least one term is a proper subset of the pos-
sible variables or their complements.  For example, 

is a sum of products for the function z1, because the second term does not contain the
variable x1 .

Product of maxterms A product of maxterms is an expression in which each
term contains all the variables, either true or complemented.  For example,

is a Boolean expression in a product-of-maxterms form.  This particular form is also
referred to as a maxterm expansion, a standard product of sums, a canonical product
of sums, or a conjunctive normal form.  Since each term is a maxterm, the expression
for z1 can be written in a more compact product-of-maxterms form as z1(x1 , x2, x3) =
M(0,3,4), where each term is converted to its maxterm value.

Product of sums A product of sums is an expression in which at least one term
does not contain all the variables; that is, at least one term is a proper subset of the pos-
sible variables or their complements.  For example,

is a product of sums for the function z1, because the second term does not contain the
variable x1 .

z1(x1 , x2 , x3) = x1 ' x2x3  + x1 x2 ' x3 ' + x1 x2x3

z1(x1 , x2 , x3) = x1 ' x2x3  + x2 ' x3 ' + x1 x2x3

z1(x1 , x2, x3) = (x1  + x2  + x3) (x1 + x2 '  + x3 ')  (x1 '  + x2  + x3)

z1(x1 , x2, x3) = (x1 '  + x2  + x3) (x2 '  + x3 ') (x1  + x2  + x3)
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2.3 Logic Equations
This section synthesizes a variety of logic equations using Verilog HDL.  The equa-
tions can be in a sum-of-products or a product-of-sums and range from simple to com-
plex.

Example 2.1 Equation 2.2 will be minimized as a sum-of-products as shown in
Equation 2.3, then implemented using built-in primitives for the design module.  The
design module is shown in Figure 2.1, the test bench is shown in Figure 2.2, and the
outputs are shown in Figure 2.3.

Figure 2.1  Design module for the sum-of-products equation for Example 2.1.

z1 = x1x3' x4  + [(x1  + x2)' + x3]' + (x2   x4' )' (2.2)

z1 = x1x3' x4  + [(x1  + x2)' + x3]' + (x2   x4' )'

= x1x3' x4  + (x1' x2'  + x3)' + x2' x4'  + x2x4

= x1x3' x4  + (x1  + x2)x3'  + x2' x4'  + x2x4

= x1x3' x4  + x1x3'  + x2x3'  + x2' x4'  + x2x4 (2.3)

//sop equation using built-in-primitives

module sop_eqtn_bip  (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//design the equation
and inst1 (net1, x1, ~x3, x4),

inst2 (net2, x1, ~x3),
inst3 (net3, x2, ~x3),
inst4 (net4, ~x2, ~x4),
inst5 (net5, x2, x4);

or inst6 (z1, net1, net2, net3, net4, net5);

endmodule
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Figure 2.2 Test bench module for Figure 2.1.

Figure 2.3 Outputs for the sum-of-products module of Figure 2.1.

//test bench for sop equation using built-in-primitives
module sop_eqtn_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sop_eqtn_bip inst1 (x1, x2, x3, x4, z1);
endmodule

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 1
x1 x2 x3 x4 = 0011, z1 = 0

x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 1

x1 x2 x3 x4 = 1000, z1 = 1
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 0

x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 0
x1 x2 x3 x4 = 1111, z1 = 1
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Example 2.2 This example repeats Example 2.1 using built-in-primitives, but con-
verts Equation 2.3 to a product-of-sums expression.  Equation 2.3 is plotted on the
Karnaugh map of Figure 2.4 and the product-of-sums equation is shown in Equation
2.4.  The design module is shown in Figure 2.5, the test bench module is shown in Fig-
ure 2.6, and the outputs are shown in Figure 2.7.

Figure 2.4 Karnaugh map for Example 2.2.

Figure 2.5 Design module for Example 2.2 using product-of-sums built-in-prim-
itives.

 0 0      0 1     1 1     1 0

0 0      1        0         0         1

0 1     1        1         1         0

1 1      1        1         1        0

1 0      1        1         0        1

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

z1 = (x1  + x2  + x4' ) (x2'  + x3'  + x4) (x2 + x3'  + x4' ) (2.4)

//product-of-sums equation using bip

module pos_eqtn_bip (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//design the equation
or inst1 (net1, x1, x2, ~x4),

inst2 (net2, ~x2, ~x3, x4),
inst3 (net3, x2, ~x3, ~x4);

and inst4 (z1, net1, net2, net3);

endmodule



2.3     Logic Equations     157

Figure 2.6 Test bench module for Example 2.2.

Figure 2.7 Outputs for the product-of-sums equation of Example 2.2.

//test bench for pos equation using built-in-primitives
module pos_eqtn_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
pos_eqtn_bip inst1 (x1, x2, x3, x4, z1);
endmodule

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 1
x1 x2 x3 x4 = 0011, z1 = 0

x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 1

x1 x2 x3 x4 = 1000, z1 = 1
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 0

x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 0
x1 x2 x3 x4 = 1111, z1 = 1
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Example 2.3 The minimized expression for z1 will be obtained in both a sum-of-
products and a product-of-sums format using the Karnaugh map shown below.  The
design modules will use logic gates that were designed using dataflow modeling.  The
sum-of-product design is shown below.  The design module is shown in Figure 2.8, the
test bench module is shown in Figure 2.9, and the outputs are shown in Figure 2.10.

z1 = x2x3x5'  + x1' x2x3  + x1x2x4  + x2' x3' x4' x5'  + x2' x3x4' x5

z1 = (x2  + x4' ) (x3  + x4  + x5' ) (x1  + x2'  + x3) (x2'  + x3  + x4) (x2  + x3'  + x5)
 (x1'  + x2'  + x3'  + x4 + x5' )

Figure 2.8 Design module for Example 2.3 for the sum-of-products form.

 0 0      0 1     1 1     1 0

0 0      1         0        0         0

0 1      0         0        1         1

1 1      0         1        1         1

1 0      1         0        0         0

x1x2

x3x4

 0            2           6            4

 8         10         14         12

 

 24         26         30         28

 16         18          22         20

x5 = 0

 0 0      0 1     1 1     1 0

0 0      0         0        0         1

0 1      0         0        1         1

1 1      0         1        1         0

1 0      0         0        0         1

x1x2

x3x4

  1           3           7            5

  9          11         15         13

 

  25         27          31        29

 17         19         23         21

x5 = 1

z1

//sum-of-products for 5 variables using dataflow modeling
module sop_5var_df (x1, x2, x3, x4, x5, z1);

input x1, x2, x3, x4, x5; //define inputs and output
output z1;

wire net1, net2, net3, net4, net5; //define internal nets

//instantiate the logic for output z1
and3_df inst1 (x2, x3, ~x5, net1);
and3_df inst2 (~x1, x2, x3, net2);
and3_df inst3 (x1, x2, x4, net3);
and4_df inst4 (~x2, ~x3, ~x4, ~x5, net4);
and4_df inst5 (~x2, x3, ~x4, x5, net5);
or5_df inst6 (net1, net2, net3, net4, net5, z1);

endmodule
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Figure 2.9 Test bench module for Example 2.3 for the sum-of-products.

Figure 2.10 Outputs for Example 2.3 for the sum-of-products.

//test bench for sop_5var_df

module sop_5var_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4, x5;
wire z1;

//apply input variables and display variables
initial
begin: apply_stimulus

reg [5:0] invect;
for (invect = 0; invect < 32; invect = invect + 1)

begin
{x1, x2, x3, x4, x5} = invect [5:0];
#10 $display ("{x1 x2 x3 x4 x5} = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
sop_5var_df inst1 (x1, x2, x3, x4, x5, z1);

endmodule

{x1 x2 x3 x4 x5} = 00000, z1 = 1
{x1 x2 x3 x4 x5} = 00001, z1 = 0
{x1 x2 x3 x4 x5} = 00010, z1 = 0
{x1 x2 x3 x4 x5} = 00011, z1 = 0
{x1 x2 x3 x4 x5} = 00100, z1 = 0
{x1 x2 x3 x4 x5} = 00101, z1 = 1
{x1 x2 x3 x4 x5} = 00110, z1 = 0
{x1 x2 x3 x4 x5} = 00111, z1 = 0

{x1 x2 x3 x4 x5} = 01000, z1 = 0
{x1 x2 x3 x4 x5} = 01001, z1 = 0
{x1 x2 x3 x4 x5} = 01010, z1 = 0
{x1 x2 x3 x4 x5} = 01011, z1 = 0
{x1 x2 x3 x4 x5} = 01100, z1 = 1
{x1 x2 x3 x4 x5} = 01101, z1 = 1
{x1 x2 x3 x4 x5} = 01110, z1 = 1
{x1 x2 x3 x4 x5} = 01111, z1 = 1 //continued on next page
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Figure 2.10       (Continued)

The product-of-sums design is shown below using the continuous assignment state-
ment assign.  The Karnaugh maps and the product-of-sums equation are reproduced
below for convenience.  The design module is shown Figure 2.11, the test bench mod-
ule is shown in Figure 2.12, and the outputs are shown in Figure 2.13.

z1 = (x2  + x4' ) (x3  + x4  + x5' ) (x1  + x2'  + x3) (x2'  + x3  + x4) (x2  + x3'  + x5)
 (x1'  + x2'  + x3'  + x4 + x5' )

{x1 x2 x3 x4 x5} = 10000, z1 = 1
{x1 x2 x3 x4 x5} = 10001, z1 = 0
{x1 x2 x3 x4 x5} = 10010, z1 = 0
{x1 x2 x3 x4 x5} = 10011, z1 = 0
{x1 x2 x3 x4 x5} = 10100, z1 = 0
{x1 x2 x3 x4 x5} = 10101, z1 = 1
{x1 x2 x3 x4 x5} = 10110, z1 = 0
{x1 x2 x3 x4 x5} = 10111, z1 = 0

{x1 x2 x3 x4 x5} = 11000, z1 = 0
{x1 x2 x3 x4 x5} = 11001, z1 = 0
{x1 x2 x3 x4 x5} = 11010, z1 = 1
{x1 x2 x3 x4 x5} = 11011, z1 = 1
{x1 x2 x3 x4 x5} = 11100, z1 = 1
{x1 x2 x3 x4 x5} = 11101, z1 = 0
{x1 x2 x3 x4 x5} = 11110, z1 = 1
{x1 x2 x3 x4 x5} = 11111, z1 = 1

 0 0      0 1     1 1     1 0

0 0      1         0        0         0

0 1      0         0        1         1

1 1      0         1        1         1
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x3x4

 0            2           6            4
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 16         18          22         20
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z1
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Figure 2.11 Design module for the product-of-sums equation of Example 2.3.

Figure 2.12 Test bench module for the product-of-sums equation of Example 2.3.

//dataflow for product-of-sums equation

module pos_5var_df (x1, x2, x3, x4, x5, z1);

//define inputs and output
input x1, x2, x3, x4, x5;
output z1;

assign z1 = (x2|~x4) & (x3|x4|~x5) & (x1|~x2|x3) & (~x2|x3|x4)
& (x2|~x3|x5) & (~x1|~x2|~x3|x4|~x5);

endmodule

//test bench for product-of-sums equation

module pos_5var_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4, x5;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [5:0] invect;
for (invect = 0; invect < 32; invect = invect + 1)

begin
{x1, x2, x3, x4, x5} = invect [5:0];
#10 $display ("{x1 x2 x3 x4 x5} = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
pos_5var_df inst1 (x1, x2, x3, x4, x5, z1);

endmodule
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Figure 2.13 Outputs for the product-of-sums equation of Example 2.3.

Example 2.4 The function for z1 shown below will be plotted on a Karnaugh map
using x4  as a map-entered variable.  Then the minimized expression for z1 will be
obtained in a sum-of-products notation.  The behavioral module, designed using the

{x1 x2 x3 x4 x5} = 00000, z1 = 1
{x1 x2 x3 x4 x5} = 00001, z1 = 0
{x1 x2 x3 x4 x5} = 00010, z1 = 0
{x1 x2 x3 x4 x5} = 00011, z1 = 0

{x1 x2 x3 x4 x5} = 00100, z1 = 0
{x1 x2 x3 x4 x5} = 00101, z1 = 1
{x1 x2 x3 x4 x5} = 00110, z1 = 0
{x1 x2 x3 x4 x5} = 00111, z1 = 0

{x1 x2 x3 x4 x5} = 01000, z1 = 0
{x1 x2 x3 x4 x5} = 01001, z1 = 0
{x1 x2 x3 x4 x5} = 01010, z1 = 0
{x1 x2 x3 x4 x5} = 01011, z1 = 0

{x1 x2 x3 x4 x5} = 01100, z1 = 1
{x1 x2 x3 x4 x5} = 01101, z1 = 1
{x1 x2 x3 x4 x5} = 01110, z1 = 1
{x1 x2 x3 x4 x5} = 01111, z1 = 1

{x1 x2 x3 x4 x5} = 10000, z1 = 1
{x1 x2 x3 x4 x5} = 10001, z1 = 0
{x1 x2 x3 x4 x5} = 10010, z1 = 0
{x1 x2 x3 x4 x5} = 10011, z1 = 0

{x1 x2 x3 x4 x5} = 10100, z1 = 0
{x1 x2 x3 x4 x5} = 10101, z1 = 1
{x1 x2 x3 x4 x5} = 10110, z1 = 0
{x1 x2 x3 x4 x5} = 10111, z1 = 0

{x1 x2 x3 x4 x5} = 11000, z1 = 0
{x1 x2 x3 x4 x5} = 11001, z1 = 0
{x1 x2 x3 x4 x5} = 11010, z1 = 1
{x1 x2 x3 x4 x5} = 11011, z1 = 1

{x1 x2 x3 x4 x5} = 11100, z1 = 1
{x1 x2 x3 x4 x5} = 11101, z1 = 0
{x1 x2 x3 x4 x5} = 11110, z1 = 1
{x1 x2 x3 x4 x5} = 11111, z1 = 1
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always statement, is shown in Figure 2.14.  The test bench module is shown in Figure
2.15, and the outputs are shown in Figure 2.16.

z1 = x1' x3' x4  + x2x3' x4  + x1x2' x3

Figure 2.14 Design module for Example 2.4 using a map-entered variable.

z1(x1 , x2 ,x3 , x4)  = x1' x2' x3' x4  + x1' x2x3 ' x4  + x1x2x3 ' x4 
+ x1x2 ' x3x4  + x1x2 ' x3x4 '

z1(x1 , x2 ,x3 , x4)  = x1' x2' x3' (x4) + x1' x2x3 ' (x4) + x1x2x3 ' (x4) 
+ x1x2 ' x3(x4) + x1x2 ' x3(x4 ')

x1
x2x3

   0 0                       0 1                        1 1                        1 0

0

1

 0                                   1                                 3                                  2

  4                                  5                                  7                                  6

    x4                         0                           0                          x4

 0                     x4 + x4'                      0                          x4

z1

//behavioral using map-entered variable

module sop_mev_bh (x1, x2, x3, x4, z1);

//define input and output
input x1, x2, x3, x4;
output z1;

//variables are declared as reg in always
reg z1;

//design the logic for output z1
always @ (x1 or x2 or x3 or x4)

z1 = ~x1 & ~x3 & x4 | x2 & ~x3 & x4 | x1 & ~x2 & x3;

endmodule
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Figure 2.15 Test bench module for Example 2.4 using a map-entered variable.

Figure 2.16 Outputs for Example 2.4 using a map-entered variable.

//test bench for sop_mev_bh module

module sop_mev_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sop_mev_bh inst1 (x1, x2, x3, x4, z1);

endmodule

x1 x2 x3 x4 = 0000, z1 = 0
x1 x2 x3 x4 = 0001, z1 = 1
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0
x1 x2 x3 x4 = 0100, z1 = 0
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 0
x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 0
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 1
x1 x2 x3 x4 = 1100, z1 = 0
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 0
x1 x2 x3 x4 = 1111, z1 = 0
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2.4 Multiplexers
A multiplexer is a logic macro device that allows digital information from two or more
data inputs to be directed to a single output.  Data input selection is controlled by a set
of select inputs that determine which data input is gated to the output.  The select in-
puts are labeled s0, s1, s2, . . . , si, . . . , sn – 1, where s0 is the low-order select input with
a binary weight of 20 and sn – 1 is the high-order select input with a binary weight of
2n–1.  The data inputs are labeled d0, d1, d2, . . . , dj, . . . , d2

n
 – 1.  Thus, if a multiplexer

has n select inputs, then the number of data inputs will be 2n and will be labeled d0
through d2

n
 – 1.  For example, if n = 2, then the multiplexer has two select inputs s0 and

s1 and four data inputs d0, d1, d2, and d3.

Example 2.5 This example designs a 4:1 multiplexer using logic gates that were
designed using dataflow modeling.  A multiplexer is a logic macro device that allows
digital information from two or more data inputs to be directed to a single output.  Data
input selection is controlled by a set of select inputs that determine which data input is
gated to the output.  The logic diagram is shown in Figure 2.17.  The design module is
shown in Figure 2.18, the test bench module is shown in Figure 2.19 and the outputs
are shown in Figure 2.20.

Figure 2.17 Logic diagram for a 4:1 multiplexer.
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Figure 2.18 Design module for the 4:1 multiplexer.

Figure 2.19 Test bench module for the 4:1 multiplexer.

//structural for a 4:1 multiplexer
//using dataflow logic gates

module mux_4to1_struct (s0, s1, d0, d1, d2, d3, z1);

//define inputs and outputs
input s0, s1, d0, d1, d2, d3;
output z1;

//define internal nets
wire net1, net2, net3, net4;

//instantiate the logic gates
and3_df inst1 (d0, ~s0, ~s1, net1);
and3_df inst2 (d1, s0, ~s1, net2);
and3_df inst3 (d2, ~s0, s1, net3);
and3_df inst4 (d3, s0, s1, net4);

or4_df inst5 (net1, net2, net3, net4, z1);

endmodule

//test bench for 4:1 multiplexer
//using dataflow logic gates

module mux_4to1_struct_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg s0, s1, d0, d1, d2, d3;;
wire z1;

//display variables
initial
$monitor ("s0 = %b, s1 = %b,

d0 = %b, d1 = %b, d2 = %b, d3 = %b, z1 = %b",
s0, s1, d0, d1, d2, d3, z1);

//continued on next page
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Figure 2.19       (Continued)

//apply input vectors
initial
begin

#0 s0 = 1'b0; s1 = 1'b0;
d0 = 1'b1; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

#10 s0 = 1'b0; s1 = 1'b0;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

//----------------------------------------------------------
#10 s0 = 1'b1; s1 = 1'b0;

d0 = 1'b0; d1 = 1'b1; d2 = 1'b0; d3 = 1'b0;
#10 s0 = 1'b1; s1 = 1'b0;

d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;
//----------------------------------------------------------

#10 s0 = 1'b0; s1 = 1'b1;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b1; d3 = 1'b0;

#10 s0 = 1'b0; s1 = 1'b1;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

//----------------------------------------------------------
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b1;
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;
//----------------------------------------------------------

#10 s0 = 1'b1; s1 = 1'b0;
d0 = 1'b0; d1 = 1'b1; d2 = 1'b0; d3 = 1'b0;

#10 s0 = 1'b1; s1 = 1'b0;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

//----------------------------------------------------------
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b1;
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b1;
//----------------------------------------------------------

#10 s0 = 1'b1; s1 = 1'b1;
d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b0;

#10 s0 = 1'b1; s1 = 1'b1;
d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b0;

//----------------------------------------------------------
#10 $stop;

end

//instantiate the module into the test bench
mux_4to1_struct inst1 (s0, s1, d0, d1, d2, d3, z1);

endmodule



168          Chapter  2     Combinational Logic Design Using Verilog HDL

Figure 2.20 Outputs for the 4:1 multiplexer.

Example 2.6 This example repeats Example 2.5, but uses the conditional operator
to design the 4:1 multiplexer.  Recall that the conditional operator has three operands
as shown below and can also be nested, also shown below.

conditional_expression ? true_expression : false_expression;

conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
     : (cond_expr2 ? true_expr2 : false_expr2);

The design module is shown in Figure 2.21 and the test bench module is shown in
Figure 2.22.  The outputs are shown in Figure 2.23.

Figure 2.21 Design module for a 4:1 multiplexer using the conditional operator.

s0 = 0, s1 = 0, d0 = 1, d1 = 0, d2 = 0, d3 = 0, z1 = 1
s0 = 0, s1 = 0, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 0, d0 = 0, d1 = 1, d2 = 0, d3 = 0, z1 = 1
s0 = 1, s1 = 0, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 0, s1 = 1, d0 = 0, d1 = 0, d2 = 1, d3 = 0, z1 = 1
s0 = 0, s1 = 1, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 1, d0 = 0, d1 = 0, d2 = 0, d3 = 1, z1 = 1
s0 = 1, s1 = 1, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 0, d0 = 0, d1 = 1, d2 = 0, d3 = 0, z1 = 1
s0 = 1, s1 = 0, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 1, d0 = 1, d1 = 1, d2 = 1, d3 = 1, z1 = 1
s0 = 1, s1 = 1, d0 = 1, d1 = 1, d2 = 1, d3 = 0, z1 = 0

//dataflow for 4:1 mux using the conditional operator

module mux_4to1_cond2 (s0, s1, d0, d1, d2, d3, z1);

//define inputs and output
input s0, s1, d0, d1, d2, d3;
output z1;

//use the nested conditional operator
assign z1 = s1 ? (s0 ? d3 : d2) : (s0 ? d1 : d0);

endmodule
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Figure 2.22 Test bench module for the 4:1 multiplexer using the conditional oper-
ator.

//test bench for 4:1 multiplexer
//using the conditional operator

module mux_4to1_cond2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg s0, s1, d0, d1, d2, d3;
wire z1;

//display variables
initial
$monitor ("s0 = %b, s1 = %b,

d0 = %b, d1 = %b, d2 = %b, d3 = %b, z1 = %b",
s0, s1, d0, d1, d2, d3, z1);

//apply input vectors
initial
begin

#0 s0 = 1'b0; s1 = 1'b0;
d0 = 1'b1; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

#10 s0 = 1'b0; s1 = 1'b0;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

//----------------------------------------------------------
#10 s0 = 1'b1; s1 = 1'b0;

d0 = 1'b0; d1 = 1'b1; d2 = 1'b0; d3 = 1'b0;
#10 s0 = 1'b1; s1 = 1'b0;

d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;
//----------------------------------------------------------

#10 s0 = 1'b0; s1 = 1'b1;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b1; d3 = 1'b0;

#10 s0 = 1'b0; s1 = 1'b1;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

//----------------------------------------------------------
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b1;
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;
//----------------------------------------------------------

#10 s0 = 1'b1; s1 = 1'b0;
d0 = 1'b0; d1 = 1'b1; d2 = 1'b0; d3 = 1'b0;

#10 s0 = 1'b1; s1 = 1'b0;
d0 = 1'b0; d1 = 1'b0; d2 = 1'b0; d3 = 1'b0;

//----------------------------------------------------------
//continued on next page
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Figure 2.22       (Continued)

Figure 2.23 Outputs for the 4:1 multiplexer using the conditional operator.

#10 s0 = 1'b1; s1 = 1'b1;
d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b1;

#10 s0 = 1'b1; s1 = 1'b1;
d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b1;

//----------------------------------------------------------
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b0;
#10 s0 = 1'b1; s1 = 1'b1;

d0 = 1'b1; d1 = 1'b1; d2 = 1'b1; d3 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
 mux_4to1_cond2 inst1 (s0, s1, d0, d1, d2, d3, z1);

endmodule

s0 = 0, s1 = 0, d0 = 1, d1 = 0, d2 = 0, d3 = 0, z1 = 1
s0 = 0, s1 = 0, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 0, d0 = 0, d1 = 1, d2 = 0, d3 = 0, z1 = 1
s0 = 1, s1 = 0, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 0, s1 = 1, d0 = 0, d1 = 0, d2 = 1, d3 = 0, z1 = 1
s0 = 0, s1 = 1, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 1, d0 = 0, d1 = 0, d2 = 0, d3 = 1, z1 = 1
s0 = 1, s1 = 1, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 0, d0 = 0, d1 = 1, d2 = 0, d3 = 0, z1 = 1
s0 = 1, s1 = 0, d0 = 0, d1 = 0, d2 = 0, d3 = 0, z1 = 0

s0 = 1, s1 = 1, d0 = 1, d1 = 1, d2 = 1, d3 = 1, z1 = 1
s0 = 1, s1 = 1, d0 = 1, d1 = 1, d2 = 1, d3 = 0, z1 = 0
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Example 2.7 This example uses the continuous assignment statement to design an
8:1 multiplexer.  Recall that the continuous assignment statement is used to describe
combinational logic where the output of the circuit is evaluated whenever an input
changes; that is, the value of the right-hand side expression is continuously assigned to
the left-hand side net.  The syntax for the continuous assignment is shown below and
establishes a relationship between a right-hand side expression and a left-hand side
net.
 

assign  [delay] lhs_net = rhs_expression

The design module is shown in Figure 2.24.  The test bench module is shown in
Figure 2.25 and the outputs are shown in Figure 2.26.

Figure 2.24 Design module for an 8:1 multiplexer using the continuous assign-
ment statement.

//dataflow for 8:1 multiplexer using
//the continuous assignment statement

module mux_8t01_assign (sel, data, z1);

//define inputs and outputs
input [2:0] sel;
input [7:0] data;
output z1;

//design the 8:1 multiplexer
assign   z1 = (~sel[2] & ~sel[1] & ~sel[0] & data[0]) |

(~sel[2] & ~sel[1] &  sel[0] & data[1]) |
(~sel[2] &  sel[1] & ~sel[0] & data[2]) |
(~sel[2] &  sel[1] &  sel[0] & data[3]) |
( sel[2] & ~sel[1] & ~sel[0] & data[4]) |
( sel[2] & ~sel[1] &  sel[0] & data[5]) |
( sel[2] &  sel[1] & ~sel[0] & data[6]) |
( sel[2] &  sel[1] &  sel[0] & data[7]);

endmodule



172          Chapter  2     Combinational Logic Design Using Verilog HDL

Figure 2.25 Test bench module for the 8:1 multiplexer using the continuous
assignment statement.

//test bench for 8:1 multiplexer
//using the continuous assignment

module mux_8to1_assign_tb;

//inputs are reg for test bench
//outputs wire reg for test bench
reg [2:0] sel;
reg [7:0] data;
wire z1;

//display variables
initial
$monitor ("sel = %b, data = %b, z1 = %b", sel, data, z1);

//apply input vectors
initial
begin

#0 sel = 3'b000; data = 8'b0000_0001;
#10 sel = 3'b001; data = 8'b0000_0010;
#10 sel = 3'b010; data = 8'b0000_0100;
#10 sel = 3'b011; data = 8'b0000_1000;
#10 sel = 3'b100; data = 8'b0001_0000;
#10 sel = 3'b101; data = 8'b0010_0000;
#10 sel = 3'b110; data = 8'b0100_0000;
#10 sel = 3'b111; data = 8'b1000_0000;

//---------------------------------------------------
#10 sel = 3'b000; data = 8'b1111_1110;
#10 sel = 3'b001; data = 8'b1111_1101;
#10 sel = 3'b010; data = 8'b1111_1011;
#10 sel = 3'b011; data = 8'b1111_0111;
#10 sel = 3'b100; data = 8'b1110_1111;
#10 sel = 3'b101; data = 8'b1101_1111;
#10 sel = 3'b110; data = 8'b1011_1111;
#10 sel = 3'b111; data = 8'b0111_1111;

//---------------------------------------------------

#10 $stop;

end

//instantiate the module into the test bench
mux_8t01_assign inst1 (sel, data, z1);

endmodule

//test bench for 8:1 multiplexer
//using the continuous assignment statement

module mux_8to1_assign_tb;

//inputs are reg for test bench
//outputs wire reg for test bench
reg [2:0] sel;
reg [7:0] data;
wire z1;

//display variables
initial
$monitor ("sel = %b, data = %b, z1 = %b", sel, data, z1);

//apply input vectors
initial
begin

#0 sel = 3'b000; data = 8'b0000_0001;
#10 sel = 3'b001; data = 8'b0000_0010;
#10 sel = 3'b010; data = 8'b0000_0100;
#10 sel = 3'b011; data = 8'b0000_1000;
#10 sel = 3'b100; data = 8'b0001_0000;
#10 sel = 3'b101; data = 8'b0010_0000;
#10 sel = 3'b110; data = 8'b0100_0000;
#10 sel = 3'b111; data = 8'b1000_0000;

//---------------------------------------------------
#10 sel = 3'b000; data = 8'b1111_1110;
#10 sel = 3'b001; data = 8'b1111_1101;
#10 sel = 3'b010; data = 8'b1111_1011;
#10 sel = 3'b011; data = 8'b1111_0111;
#10 sel = 3'b100; data = 8'b1110_1111;
#10 sel = 3'b101; data = 8'b1101_1111;
#10 sel = 3'b110; data = 8'b1011_1111;
#10 sel = 3'b111; data = 8'b0111_1111;

//---------------------------------------------------

#10 $stop;

end

//instantiate the module into the test bench
mux_8t01_assign inst1 (sel, data, z1);

endmodule
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Figure 2.26 Outputs for the 8:1 multiplexer using the continuous assignment
statement.

Example 2.8 This example repeats Example 2.7 in designing an 8:1 multiplexer,
but uses the case statement in the design module, which is shown in Figure 2.27.  The
test bench module is shown in Figure 2.28 and the outputs are shown in Figure 2.29.

Figure 2.27 Design module for an 8:1 multiplexer using the case statement.

sel = 000, data = 00000001, z1 = 1
sel = 001, data = 00000010, z1 = 1
sel = 010, data = 00000100, z1 = 1
sel = 011, data = 00001000, z1 = 1
sel = 100, data = 00010000, z1 = 1
sel = 101, data = 00100000, z1 = 1
sel = 110, data = 01000000, z1 = 1
sel = 111, data = 10000000, z1 = 1

//----------------------------------------------------------
sel = 000, data = 11111110, z1 = 0
sel = 001, data = 11111101, z1 = 0
sel = 010, data = 11111011, z1 = 0
sel = 011, data = 11110111, z1 = 0
sel = 100, data = 11101111, z1 = 0
sel = 101, data = 11011111, z1 = 0
sel = 110, data = 10111111, z1 = 0
sel = 111, data = 01111111, z1 = 0

//8:1 multiplexed using the case statement

module mux_8to1_case4 (sel, data, z1);

//define inputs and outputs
input [2:0] sel;
input [7:0] data;
output z1;

//variables in always are declared as reg
reg z1;

//continued on next page
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Figure 2.27       (Continued)

Figure 2.28 Test bench module for an 8:1 multiplexer using the case statement.

always @ (sel or data)
begin
case (sel)

(0) : z1 = data [0];
(1) : z1 = data [1];
(2) : z1 = data [2];
(3) : z1 = data [3];
(4) : z1 = data [4];
(5) : z1 = data [5];
(6) : z1 = data [6];
(7) : z1 = data [7];
default : z1 = 1'b0;

endcase
end

endmodule

//test bench for 8:1 multiplexer using the case statement
module mux_8to1_case4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [2:0] sel;
reg [7:0] data;
wire z1;

//display variables
initial
$monitor ("sel = %b, data = %b, z1 = %b", sel, data, z1);

//apply input vectors
initial
begin

#0 sel = 3'b000; data = 8'b0000_0001;
#10 sel = 3'b001; data = 8'b0000_0010;
#10 sel = 3'b010; data = 8'b0000_0100;
#10 sel = 3'b011; data = 8'b0000_1000;
#10 sel = 3'b100; data = 8'b0001_0000;
#10 sel = 3'b101; data = 8'b0010_0000;
#10 sel = 3'b110; data = 8'b0100_0000;
#10 sel = 3'b111; data = 8'b1000_0000;

//continued on next page
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Figure 2.28       (Continued)

Figure 2.29 Outputs for an 8:1 multiplexer using the case statement.

//---------------------------------------------------
#10 sel = 3'b000; data = 8'b1111_1110;
#10 sel = 3'b001; data = 8'b1111_1101;
#10 sel = 3'b010; data = 8'b1111_1011;
#10 sel = 3'b011; data = 8'b1111_0111;
#10 sel = 3'b100; data = 8'b1110_1111;
#10 sel = 3'b101; data = 8'b1101_1111;
#10 sel = 3'b110; data = 8'b1011_1111;
#10 sel = 3'b111; data = 8'b0111_1111;

//---------------------------------------------------

#10 $stop;

end

//instantiate the module into the test bench
mux_8to1_case4 inst1 (sel, data, z1);

endmodule

sel = 000, data = 00000001, z1 = 1
sel = 001, data = 00000010, z1 = 1
sel = 010, data = 00000100, z1 = 1
sel = 011, data = 00001000, z1 = 1
sel = 100, data = 00010000, z1 = 1
sel = 101, data = 00100000, z1 = 1
sel = 110, data = 01000000, z1 = 1
sel = 111, data = 10000000, z1 = 1

//---------------------------------------------------------
sel = 000, data = 11111110, z1 = 0
sel = 001, data = 11111101, z1 = 0
sel = 010, data = 11111011, z1 = 0
sel = 011, data = 11110111, z1 = 0
sel = 100, data = 11101111, z1 = 0
sel = 101, data = 11011111, z1 = 0
sel = 110, data = 10111111, z1 = 0
sel = 111, data = 01111111, z1 = 0
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2.5 Comparators
A comparator is a logic macro circuit that compares the magnitude of two n-bit binary
operands.  This section designs various comparators to perform a variety of compare
operations on different operands.  

Example 2.9 This example designs a comparator to determine if a 4-bit vector
a[3:0] is equal to a 4-bit vector b[3:0].  The design module using logic gates that were
designed using dataflow modeling is shown in Figure 2.30.  The test bench module
and the outputs are shown in Figure 2.31 and Figure 2.32, respectively.  The statement
for equality is shown below from Chapter 1 for 4-bit vectors.

(A = B) = (a3  b3 )' (a2  b2)' (a1  b1)' (a0  b0)'

Figure 2.30 Design module for the compare for equality example.

Figure 2.31 Test bench module for the compare for equality example.

//structural test for equality of 4-bit vectors
module comparator_equal (a, b, equal);

//define inputs and outputs
input [3:0] a, b;
output equal;

//define internal nets
wire net1, net2, net3, net4, net5;

//instantiate the logic to test for equality
xnor2_df  inst1 (a[3], b[3], net1);
xnor2_df  inst2 (a[2], b[2], net2);
xnor2_df  inst3 (a[1], b[1], net3);
xnor2_df  inst4 (a[0], b[0], net4);
and4_df   inst5 (net1, net2, net3, net4, equal);
endmodule

//test bench for equality test of 4-bit vectors
module comparator_equal_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
wire equal;

//display inputs and outputs
initial
$monitor ("a = %b, b = %b, equal = %b", a, b, equal);

//continued on next page
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Figure 2.31       (Continued)

Figure 2.32 Outputs for the compare for equality example.

//apply input vectors
initial
begin

#0 a = 4'b0000; b = 4'b0000;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b1011; b = 4'b1011;
#10 a = 4'b0111; b = 4'b0011;

#10 a = 4'b0110; b = 4'b0110;
#10 a = 4'b1011; b = 4'b0010;
#10 a = 4'b1111; b = 4'b1111;
#10 a = 4'b0110; b = 4'b0011;

#10 a = 4'b0111; b = 4'b0111;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1110;
#10 a = 4'b0110; b = 4'b0111;

#10 a = 4'b1100; b = 4'b1100;
#10 a = 4'b1011; b = 4'b1110;
#10 a = 4'b1111; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 $stop;
end

//instantiate the module into the test bench
comparator_equal inst1 (a, b, equal);

endmodule

a = 0000, b = 0000, equal = 1
a = 0011, b = 0010, equal = 0
a = 1011, b = 1011, equal = 1
a = 0111, b = 0011, equal = 0

a = 0110, b = 0110, equal = 1
a = 1011, b = 0010, equal = 0
a = 1111, b = 1111, equal = 1
a = 0110, b = 0011, equal = 0

//continued on next page
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Figure 2.32       Continued)

Example 2.10 This example repeats Example 2.9, but uses built-in primitives in the
design.  The statement for equality for 4-bit vectors is reproduced below for conve-
nience.

(A = B) = (a3  b3 )' (a2  b2)' (a1  b1)' (a0  b0)'

The design module is shown in Figure 2.33. The test bench module and the outputs
are shown in Figure 2.34 and Figure 2.35, respectively.

Figure 2.33 Design module using built-in primitives to compare for the equality
of two vectors.

a = 0111, b = 0111, equal = 1
a = 1011, b = 1010, equal = 0
a = 1110, b = 1110, equal = 1
a = 0110, b = 0111, equal = 0

a = 1100, b = 1100, equal = 1
a = 1011, b = 1110, equal = 0
a = 1111, b = 1111, equal = 1
a = 1110, b = 0111, equal = 0

//gate-level module to test for equality of 4-bit vectors
//using built-in primitives

module comparator_equal_bip (a, b, equal);

//define inputs and outputs
input [3:0] a, b;
output equal;

//design the 4-bit comparator
xnor inst1 (net1, a[3], b[3]);
xnor inst2 (net2, a[2], b[2]);
xnor inst3 (net3, a[1], b[1]);
xnor inst4 (net4, a[0], b[0]);

and inst5 (equal, net1, net2, net3, net4);

endmodule



2.5     Comparators     179

Figure 2.34 Test bench module to compare for the equality of two vectors.

//test bench for equality test of 4-bit vectors

module comparator_equal_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
wire equal;

//display inputs and outputs
initial
$monitor ("a = %b, b = %b, equal = %b", a, b, equal);

//apply input vectors
initial
begin

#0 a = 4'b0000; b = 4'b0000;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b1011; b = 4'b1011;
#10 a = 4'b0111; b = 4'b0011;

#10 a = 4'b0110; b = 4'b0110;
#10 a = 4'b1011; b = 4'b0010;
#10 a = 4'b1111; b = 4'b1111;
#10 a = 4'b0110; b = 4'b0011;

#10 a = 4'b0111; b = 4'b0111;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1110;
#10 a = 4'b0110; b = 4'b0111;

#10 a = 4'b1100; b = 4'b1100;
#10 a = 4'b1011; b = 4'b1110;
#10 a = 4'b1111; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 $stop;
end

//instantiate the module into the test bench
comparator_equal_bip inst1 (a, b, equal);

endmodule
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Figure 2.35 Outputs to compare for the equality of two vectors.

Example 2.11 This example designs a comparator to detect when a 4-bit vector
a[3:0] is less than a 4-bit vector b[3:0] using the continuous assignment statement.
Recall that the continuous assignment statement models dataflow behavior and is used
to design combinational logic without using gates and interconnecting nets.  Contin-
uous assignment statements provide a Boolean correspondence between the right-
hand side expression and the left-hand side target.  The continuous assignment state-
ment uses the keyword assign and has the following syntax with optional drive
strength and delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The equation for determining if one vector is less than another vector is shown
below for 4-bit vectors.

    (A < B) = a3 ' b3 + 
(a3   b3) ' a2 ' b2 + 
(a3   b3) ' (a2   b2) ' a1 ' b1 +
(a3   b3) ' (a2   b2) ' (a1  b1)' a0' b0

The design module is shown in Figure 2.36.  The test bench module is shown in
Figure 2.37, which takes the design through a sequence of input vectors for operands
a[3:0] and b[3:0].  The outputs are shown in Figure 2.38.

a = 0000, b = 0000, equal = 1
a = 0011, b = 0010, equal = 0
a = 1011, b = 1011, equal = 1
a = 0111, b = 0011, equal = 0

a = 0110, b = 0110, equal = 1
a = 1011, b = 0010, equal = 0
a = 1111, b = 1111, equal = 1
a = 0110, b = 0011, equal = 0

a = 0111, b = 0111, equal = 1
a = 1011, b = 1010, equal = 0
a = 1110, b = 1110, equal = 1
a = 0110, b = 0111, equal = 0

a = 1100, b = 1100, equal = 1
a = 1011, b = 1110, equal = 0
a = 1111, b = 1111, equal = 1
a = 1110, b = 0111, equal = 0
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Figure 2.36 Design module to detect if a[3:0] is less than b[3:0].

Figure 2.37 Test bench module to detect if a[3:0] is less than b[3:0].

//dataflow using assign to detect if a < b

module a_lt_b_assign (a, b, a_lt_b);

//list inputs and output
input [3:0] a, b;
output a_lt_b;

//design the 4-bit comparator
assign net1 = (~a[3] & b[3]);

assign net2 = (a[3] ^~ b[3]) & (~a[2] & b[2]);

assign net3 = (a[3] ̂ ~ b[3]) & (a[2] ̂ ~ b[2]) & (~a[1] & b[1]);

assign net4 = (a[3] ^~ b[3]) & (a[2] ^~ b[2]) & (a[1] ^~ b[1])
& (~a[0] & b[0]);

assign a_lt_b = net1 | net2 | net3 | net4;

endmodule

//test bench for equality test of 4-bit vectors
module a_lt_b_assign_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
wire a_lt_b;

//display inputs and outputs
initial
$monitor ("a = %b, b = %b, a_lt_b = %b", a, b, a_lt_b);

//apply input vectors
initial
begin

#0 a = 4'b0000; b = 4'b0001;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b0011; b = 4'b1011;
#10 a = 4'b0111; b = 4'b0011;

//continued on next page
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Figure 2.37       (Continued)

Figure 2.38 Outputs to detect if a[3:0] is less than b[3:0].

#10 a = 4'b0110; b = 4'b0111;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b0110; b = 4'b0011;

#10 a = 4'b0110; b = 4'b0111;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 a = 4'b1000; b = 4'b1100;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 $stop;
end

//instantiate the module into the test bench
a_lt_b_assign inst1 (a, b, a_lt_b);

endmodule

a = 0000, b = 0001, a_lt_b = 1
a = 0011, b = 0010, a_lt_b = 0
a = 0011, b = 1011, a_lt_b = 1
a = 0111, b = 0011, a_lt_b = 0

a = 0110, b = 0111, a_lt_b = 1
a = 0011, b = 0010, a_lt_b = 0
a = 1110, b = 1111, a_lt_b = 1
a = 0110, b = 0011, a_lt_b = 0

a = 0110, b = 0111, a_lt_b = 1
a = 1011, b = 1010, a_lt_b = 0
a = 1110, b = 1111, a_lt_b = 1
a = 1110, b = 0111, a_lt_b = 0

a = 1000, b = 1100, a_lt_b = 1
a = 1011, b = 1010, a_lt_b = 0
a = 1110, b = 1111, a_lt_b = 1
a = 1110, b = 0111, a_lt_b = 0
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Example 2.12 This example designs a comparator to determine if a 4-bit vector
a[3:0] is greater than a 4-bit vector b[3:0] using the behavioral conditional statements
if-else if.  These statements are summarized below as reproduced from Chapter 1.

//nested if-else if //choice of multiple statements.  One is executed.
if (expression1) statement1; //if expression1 is true, then statement1 is executed.
else if (expression2) statement2; //if expression2 is true, then statement2 is executed.
else if (expression3) statement3; //if expression3 is true, then statement3 is executed.
else default statement;

The equation for determining if one vector is greater than another vector is shown
below for 4-bit vectors.

    (A > B) = a3  b3' + 
(a3   b3) ' a2  b2' + 
(a3   b3) ' (a2   b2) ' a1 b1' +
(a3   b3) ' (a2   b2) ' (a1  b1)' a0 b0'

The behavioral design module is shown in Figure 2.39.  The test bench module
and the outputs are shown in Figures 2.40 and 2.41, respectively.

Figure 2.39 Design module to determine if a[3:0] is greater than b[3:0]. 

//behavioral if-else if for comparator to detect if A > B
module a_gt_b_cond (a, b, a_gt_b);

input [3:0] a, b; //define inputs and outputs
output a_gt_b;
reg a_gt_b;

always @ (a or b) //design the 4-bit comparator
begin

if (a[3] & ~b[3])
a_gt_b = 1'b1;

else if ((a[3] ^~ b[3]) & (a[2] & ~b[2]))
a_gt_b = 1'b1;

else if ((a[3] ^~ b[3]) & (a[2] ^~ b[2]) & (a[1] & ~b[1]))
a_gt_b = 1'b1;

else if ((a[3] ^~ b[3]) & (a[2] ^~ b[2]) & (a[1] ^~ b[1]) &
(a[0] & ~b[0]))
a_gt_b = 1'b1;

else a_gt_b = 1'b0;
end
endmodule
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Figure 2.40 Test bench module to determine if a[3:0] is greater than b[3:0]. 

//test bench to detect if A > B

module a_gt_b_cond_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
wire a_gt_b;

//display inputs and outputs
initial
$monitor ("a = %b, b = %b, a_gt_b = %b", a, b, a_gt_b);

//apply input vectors
initial
begin

#0 a = 4'b0000; b = 4'b0001;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b0011; b = 4'b1011;
#10 a = 4'b0111; b = 4'b0011;

#10 a = 4'b0110; b = 4'b0111;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b0110; b = 4'b0011;

#10 a = 4'b0110; b = 4'b0111;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 a = 4'b1000; b = 4'b1100;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 $stop;
end

//instantiate the module into the test bench
a_gt_b_cond inst1 (a, b, a_gt_b);

endmodule
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Figure 2.41 Outputs to determine if a[3:0] is greater than b[3:0]. 

2.6 Programmable Logic Devices
Combinational logic can also be implemented using programmable logic devices
(PLDs).  PLDs implement 2-level switching functions by means of an AND array and
an OR array.  There are three main types of PLDs: programmable read-only memories
(PROMs), programmable array logic (PAL) devices, and programmable logic array
(PLA) devices.

2.6.1   Programmable Read-Only Memories

A PROM is a storage device in which the information is permanently stored; that is,
the data remains valid even after power is turned off.  PROMs are used for application
programs, tables, code conversion, control store for microprogram sequencers, and
other functions in which the stored data is not changed.  The organization of a PROM
is essentially the same as that for other PLDs: an input vector (an address) connects to
an AND array which in turn connects to an OR array which generates the output vector
(or word) for the PROM.

In general, a PROM contains n inputs and m outputs.  Because the inputs function
as an address, there are 2n unique addresses to select one of 2n words.  The AND array
decodes the address to select a specific word in memory.  Thus, the interconnections in

a = 0000, b = 0001, a_gt_b = 0
a = 0011, b = 0010, a_gt_b = 1
a = 0011, b = 1011, a_gt_b = 0
a = 0111, b = 0011, a_gt_b = 1

a = 0110, b = 0111, a_gt_b = 0
a = 0011, b = 0010, a_gt_b = 1
a = 1110, b = 1111, a_gt_b = 0
a = 0110, b = 0011, a_gt_b = 1

a = 0110, b = 0111, a_gt_b = 0
a = 1011, b = 1010, a_gt_b = 1
a = 1110, b = 1111, a_gt_b = 0
a = 1110, b = 0111, a_gt_b = 1

a = 1000, b = 1100, a_gt_b = 0
a = 1011, b = 1010, a_gt_b = 1
a = 1110, b = 1111, a_gt_b = 0
a = 1110, b = 0111, a_gt_b = 1
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the AND array are fixed and cannot be programmed, as indicated by the “hardwired”
connection symbol “ ”.  All unused inputs in the AND array correspond to an open
or floating input.  Thus, all unused AND gate inputs must generate a logic 1 so that the
output of the AND gate will be a function of the “hard-wired” connections only.

The OR array, however, is programmable.  The interconnections in the OR array
are programmed to indicate the bit configuration of each word in memory.  Each in-
terconnection functions  as a fuse; thus, the fuse can be left intact (indicating a logic 1)
or opened (indicating a logic 0).  The symbol “” indicates an intact fuse at the inter-
section of the AND gate product term and the OR gate input and provides a logic 1 to
the specified OR gate input.  The absence of an  indicates an open fuse, which pro-
vides a logic 0 to the OR gate input.

Example 2.13 Consider the table shown in Table 2.2 in the application of a PROM
design.  The PROM illustrated in Figure 2.42 contains four words with three bits per
word as shown in Table 2.2.  When the PROM address is x1x2  = 00, the output word
is z1z2z3  = 110.

Figure 2.42 PROM organization for two address inputs x1 x2 and three outputs
z1z2z3.

Table 2.2  PROM Table
for Example 2.13

Address
x1x2

Outputs
z1z2z3

0 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 0 0

x1

x2













x1 x1' x2 x2'

z1 z2 z3

x1 x1' x2 x2'

x2x1
0   0
0   1

1   1

1  0
Address

Programmable OR array

Fixed AND array

Product
terms

0

1

2

3

net1
net2
net3
net4

net5 

net6

net7

net8



2.6     Programmable Logic Devices     187

The structural design module using built-in primitives is shown in Figure 2.43 il-
lustrating the design for the input logic, the AND array, and the OR array.  The test
bench module is shown in Figure 2.44 and the outputs are shown in Figure 2.45.

Figure 2.43 Structural design module for the PROM of Figure 2.42.

Figure 2.44 Test bench module for the PROM of Figure 2.42.

//structural prom to generate four equations
//z1 = x1' x2' + x1 x2'
//z2 = x1' x2' + x1' x2
//z3 = x1' x2 + x1 x2'
module prom3 (x1, x2, z1, z2, z3);

input x1, x2; //define inputs and outputs
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//define the input logic
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

//define the logic for the and array
and (net5, net2, net4),

(net6, net2, net3),
(net7, net1, net4),
(net8, net1, net3);

//define the logic for the or array
or (z1, net5, net7),

(z2, net5, net6),
(z3, net6, net7);

endmodule

//test bench for the structural prom3 module
module prom3_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2;
wire z1, z2, z3; //continued on next page
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Figure 2.44       (Continued)

Figure 2.45 Outputs for the PROM of Figure 2.42.

Example 2.14 PROMs can be used to implement sequential logic also.  However,
this chapter concentrates on combinational logic.  The truth table to implement a sum-
of-minterms combinational circuit is shown in Table 2.3.  The equations that represent
the sum of minterms are shown in Equation 2.5.  The PROM organization is shown in
Figure 2.46.

Table 2.3  Truth Table for
the PROM of Example 2.14

Address Inputs
x1  x2

Outputs
z1 z2 z3  z4

0   0 1  1  0  0
0   1 0  1  1  0
1   0 0  0  1  1
1   1 1  0  0  1

//display variables
initial
$monitor ("x1 x2 = %b, z1 z2 z3 = %b",

{x1, x2}, {z1, z2, z3});

//apply input vectors
initial
begin

#0 x1 = 1'b0;x2 = 1'b0;
#10 x1 = 1'b0;x2 = 1'b1;
#10 x1 = 1'b1;x2 = 1'b0;
#10 x1 = 1'b1;x2 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
prom3 inst1 (x1, x2, z1, z2, z3);
endmodule

x1 x2 = 00, z1 z2 z3 = 110
x1 x2 = 01, z1 z2 z3 = 011
x1 x2 = 10, z1 z2 z3 = 101
x1 x2 = 11, z1 z2 z3 = 000
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Figure 2.46 PROM organization and programming for Example 2.14.

The structural design module using built-in primitives is shown in Figure 2.47 il-
lustrating the design for the input logic, the AND array, and the OR array.  The test
bench module is shown in Figure 2.48 and the outputs are shown in Figure 2.49.

Figure 2.47 Structural design module for the PROM of Figure 2.46.

z1 = x1' x2'  + x1x2

z2 = x1' x2'  + x1' x2

z3 = x1' x2  + x1x2'

z4 = x1x2'  + x1x2
(2.5)
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//structural prom to generate four equations

module prom4 (x1, x2, z1, z2, z3, z4);

//define inputs and outputs
input x1, x2;
output z1, z2, z3, z4; //continued on next page
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Figure 2.47       (Continued)

 

Figure 2.48 Test bench module for the PROM of Figure 2.46.

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//define the input logic
assign net1 = x1,

net2 = ~x1,
net3 = x2,
net4 = ~x2;

//define the logic for the and array
and (net5, net2, net4);
and (net6, net2, net3);
and (net7, net1, net3);
and (net8, net1, net4);

//define the logic for the or array
or  (z1, net5, net7);
or  (z2, net5, net6);
or  (z3, net6, net8);
or  (z4, net7, net8);

endmodule

//test bench for the structural prom module
module prom4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2;
wire z1, z2, z3, z4;

initial //display variables
$monitor ("x1 x2 = %b, z1 z2 z3 z4 = %b", {x1, x2},

{z1, z2, z3, z4});

initial //apply input vectors
begin

#0 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1;
#10 $stop;

end //continued on next page
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Figure 2.48       (Continued)

Figure 2.49 Outputs for the PROM of Figure 2.46.

2.6.2  Programmable Array Logic

A PAL device confirms to the general structure of a PLD.  The number of AND gates
and OR gates is variable, depending on the part number of the commercially available
PAL.  In many cases, the outputs are also fed back through separate buffers (drivers) to
the programmable AND array.

Example 2.15 This example designs a structural module using a programmable
array logic (PAL) device to implement a 3-bit binary-to-Gray code converter.  The
conversion table is shown in Table 2.4 and the corresponding Karnaugh maps are
shown in Figure 2.50.  The PAL device is shown in Figure 2.51.

Table 2.4  Binary-to-Gray Code
Conversion

Binary Gray

b1 b2 b3 g1 g2 g3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

//instantiate the module into the test bench
prom4 inst1 (x1, x2, z1, z2, z3, z4);

endmodule

x1 x2 = 00, z1 z2 z3 z4 = 1100
x1 x2 = 01, z1 z2 z3 z4 = 0110
x1 x2 = 10, z1 z2 z3 z4 = 0011
x1 x2 = 11, z1 z2 z3 z4 = 1001
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Figure 2.50 Karnaugh maps for the binary-to-Gray code conversion.

Figure 2.51 PAL device for the binary-to-Gray code conversion.
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The design module is shown in Figure 2.52.  The test bench module and outputs
are shown in Figures 2.53 and 2.54, respectively.

Figure 2.52 Structural design module for the binary-to-Gray code converter.

//structural pal for binary-to-Gray code converter

module pal7 (b1, b2, b3, g1, g2, g3);

//define inputs and outputs
input b1, b2, b3;
output g1, g2, g3;

//define internal nets
wire net1, net2, net3, net4, net5, net6,

net7, net8, net9, net10;

//define the input logic
buf(net1, b1);
not(net2, b1);

buf(net3, b2);
not(net4, b2);

buf(net5, b3);
not(net6, b3);

//design the logic for the and array
and (net7, net1, net4),

(net8, net2, net3),
(net9, net3, net6),
(net10, net4, net5);

//define the logic for the or array
or (g1, net1),

(g2, net7, net8),
(g3, net9, net10);

endmodule
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Figure 2.53 Test bench module for the binary-to-Gray code converter.

Figure 2.54 Outputs for the binary-to-Gray code converter.

//test bench for pal binary-to-Gray code converter

module pal7_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg b1, b2, b3;
wire g1, g2, g3;

initial //display variables
$monitor ("b1 b2 b3 = %b, g1 g2 g3 = %b",

{b1, b2, b3}, {g1, g2, g3});

initial //apply input vectors
begin

#0 b1 = 1'b0; b2 = 1'b0; b3 = 1'b0;
#10 b1 = 1'b0; b2 = 1'b0; b3 = 1'b1;
#10 b1 = 1'b0; b2 = 1'b1; b3 = 1'b0;
#10 b1 = 1'b0; b2 = 1'b1; b3 = 1'b1;

#10 b1 = 1'b1; b2 = 1'b0; b3 = 1'b0;
#10 b1 = 1'b1; b2 = 1'b0; b3 = 1'b1;
#10 b1 = 1'b1; b2 = 1'b1; b3 = 1'b0;
#10 b1 = 1'b1; b2 = 1'b1; b3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
pal7 inst1 (b1, b2, b3, g1, g2, g3);

endmodule

b1 b2 b3 = 000, g1 g2 g3 = 000
b1 b2 b3 = 001, g1 g2 g3 = 001
b1 b2 b3 = 010, g1 g2 g3 = 011
b1 b2 b3 = 011, g1 g2 g3 = 010

b1 b2 b3 = 100, g1 g2 g3 = 110
b1 b2 b3 = 101, g1 g2 g3 = 111
b1 b2 b3 = 110, g1 g2 g3 = 101
b1 b2 b3 = 111, g1 g2 g3 = 100
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Example 2.16 This example designs a full adder using a PAL device.  A parallel
adder that adds two n-bit operands requires n full adders.  A full adder for stagei is a
combinational circuit that has three inputs: an augend ai, an addend bi, and a carry-in
cini.  There are two outputs: a sum  labelled sumi and a carry-out couti.  The truth table
for the sum and carry-out functions is shown in Table 2.5 for adding three bits: a, b,
and cin and producing two outputs: sum and cout.

Each stage of the addition algorithm must  be able to accommodate the carry-in
bit ci –1 from the immediately preceding lower-order stage.  The carry-out of the ith
stage is ci.  The sum and carry equations for the full adder are shown in Equation 2.6.
The resulting equation for ci can also be written as ci = ai bi + (ai  bi) ci – 1, although
this requires more gate delays.

The logic diagram for the full adder using a PAL device is shown in Figure 2.55.  
The structural design module is shown in Figure 2.56.  The test bench module and the
outputs are shown in Figures 2.57 and 2.58, respectively.

Table 2.5  Truth Table for
Binary Addition

a b cin sum cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

si = ai' bi' ci – 1 + ai' bi ci – 1' + ai bi' ci – 1' + ai bi ci – 1

= ci – 1' (ai  bi) + ci – 1 (ai  bi)'

= ai  bi  ci – 1

ci = ai' bi ci – 1 + ai bi ' ci – 1 + ai bi ci – 1' + ai bi ci – 1

= ai' bi ci – 1 + ai bi' ci – 1 + ai bi (2.6)
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Figure 2.55 Logic diagram for a full adder using a PAL device.

Figure 2.56 Structural design module using a PAL device for a full adder.
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//structural pal full adder

module pal_full_adder (a, b, cin, sum, cout);

//define inputs and outputs
input a, b, cin;
output sum, cout;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11, net12, net13;

//continued on next page
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Figure 2.56       (Continued)

Figure 2.57 Test bench module for a full adder using a PAL device.

//define the input logic
assign net1 = a,

net2 = ~a,

net3 = b,
net4 = ~b,

net5 = cin,
net6 = ~cin;

//define the logic for the and array
and (net7, net2, net4, net5),

(net8, net2, net3, net6),
(net9, net1, net4, net6),
(net10, net1, net3, net5),
(net11, net2, net3, net5),
(net12, net1, net4, net5),
(net13, net1, net3, net6);

//define the logic for the or array
or (sum, net7, net8, net9, net10),

(cout, net10, net11, net12, net13);

endmodule

//test bench for the full adder

module pal_full_adder_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg a, b, cin;
wire sum, cout;

//display variables
initial
$monitor ("a b cin = %b, sum cout = %b",

{a, b, cin}, {sum, cout});
//continued on next page
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Figure 2.57       (Continued)

Figure 2.58 Outputs for the full adder using a PAL device.

Example 2.17 Outputs z1, z2, and z3  shown in the Karnaugh maps of Figure 2.59,
will be implemented using a PAL device.  The Boolean equations for the three outputs

//apply input vectors
initial
begin

#0 a = 1'b0; b = 1'b0; cin = 1'b0;
#10 a = 1'b0; b = 1'b0; cin = 1'b1;
#10 a = 1'b0; b = 1'b1; cin = 1'b0;
#10 a = 1'b0; b = 1'b1; cin = 1'b1;

#10 a = 1'b1; b = 1'b0; cin = 1'b0;
#10 a = 1'b1; b = 1'b0; cin = 1'b1;
#10 a = 1'b1; b = 1'b1; cin = 1'b0;
#10 a = 1'b1; b = 1'b1; cin = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
pal_full_adder inst1 (a, b, cin, sum, cout);

endmodule

a b cin = 000, sum cout = 00
a b cin = 001, sum cout = 10
a b cin = 010, sum cout = 10
a b cin = 011, sum cout = 01

a b cin = 100, sum cout = 10
a b cin = 101, sum cout = 01
a b cin = 110, sum cout = 01
a b cin = 111, sum cout = 11
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obtained from the Karnaugh maps are shown in Equation 2.7.  Figure 2.60 illustrates
a PAL device consisting of three inputs and three outputs that implements the Boolean
equations.  The design module is shown in Figure 2.61.  The test bench module is
shown in Figure 2.62 and the outputs are shown in Figure 2.63.

Figure 2.59 Karnaugh maps for Example 2.17.

z1 = x1' x2' x3  + x2x3'

z2  = x1' x2'  + x1x2  + x2' x3 (2.7)

z3  = x1' x2' x3  + x2x3'  + x1x2  + x1x3'
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Figure 2.60 PAL device to implement Equation 2.7.

Figure 2.61 Design module for the PAL device to implement Equation 2.7.
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//structural pal for sop

module pal_sop (x1, x2, x3, z1, z2, z3);

//define inputs and outputs
input x1, x2, x3;
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11, net12;

//define the input logic
buf (net1, x1);
not (net2, x1);

//continued on next page
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Figure 2.61       (Continued)

Figure 2.62 Test bench module for the PAL device to implement Equation 2.7.

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

//design the logic for the and array
and (net7, net2, net4, net5),

(net8, net3, net6),
(net9, net3, net4),
(net10, net1, net3),
(net11, net4, net5),
(net12, net1, net6);

//define the logic for the or array
or (z1, net7, net8),

(z2, net9, net10, net11),
(z3, net7, net8, net10, net12);

endmodule

//test bench for sop pal
module pal_sop_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3;
wire z1, z2, z3;

//display variables
initial
$monitor ("x1 x2 x3 = %b, z1 z2 z3 = %b",

{x1, x2, x3}, {z1, z2, z3});

//apply input vectors
initial
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;

//continued on next page
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Figure 2.62       (Continued)

Figure 2.63 Outputs for the PAL device to implement Equation 2.7.

2.6.3  Programmable Logic Array

Both the AND array and the OR array are programmable for a PLA.  Since both arrays
are programmable, the PLA has more programming capability and thus, more flexi-
bility than the PROM or PAL.  The output function in a PLA is limited only by the
number of AND gates in the AND array, since all AND gates can be programmed to
connect to all OR gates.  This is in contrast to the output function in a PAL, which is
restricted not only by the number of AND gates in the AND array, but also by the fixed
connections from the AND array outputs to the OR array.

Example 2.18 This example implements the four outputs z1, z2 , z3 , and z4  in Equa-
tion 2.8 using a PLA design.  There are also three inputs, x1, x2 , and x3.  The PLA
design is shown in Figure 2.64.  The structural design module is shown in Figure 2.65.
The test bench module and outputs are shown in Figures 2.66 and 2.67, respectively.

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
pal_sop inst1 (x1, x2, x3, z1, z2, z3);

endmodule

x1 x2 x3 = 001, z1 z2 z3 = 111
x1 x2 x3 = 010, z1 z2 z3 = 101
x1 x2 x3 = 011, z1 z2 z3 = 000

x1 x2 x3 = 100, z1 z2 z3 = 001
x1 x2 x3 = 101, z1 z2 z3 = 010
x1 x2 x3 = 110, z1 z2 z3 = 111
x1 x2 x3 = 111, z1 z2 z3 = 011
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Figure 2.64 Logic diagram for a PLA device to implement Equation 2.8.

z1 = x1x2 ' + x1' x2

z2  = x1x3  + x1' x3'

z3  = x1x2 ' + x1' x2' x3' + x1x3'

z4  = x1x2x3  + x1' x3

(2.8)
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Figure 2.65 Structural design module for Equation 2.8.

//structural pla to implement four equations
//z1 = x1x2' + x1'x2
//z2 = x1x3 + x1'x3'
//z3 = x1x2' + x1'x2'x3' + x1x3'
//z4 = x1x2x3 + x1'x3

module pla_4eqtns (x1, x2, x3, z1, z2, z3, z4);

//define inputs and outputs
input x1, x2, x3;
output z1, z2, z3, z4;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8,

net9, net10, net11, net12, net13, net14;

//design the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

//design the logic for the and array and the or array for z1
and (net7, net1, net4),

(net8, net2, net3);
or (z1, net7, net8);

//design the logic for the and array and the or array for z2
and (net9, net1, net5),

(net10, net2, net6);
or (z2, net9, net10);

//design the logic for the and array and the or array for z3
and (net12, net2, net4, net6),

(net14, net1, net6);
or (z3, net7, net12, net14);

//design the logic for the and array and the or array for z4
and (net11, net1, net3, net5),

(net13, net2, net5);
or (z4, net11, net13);

endmodule
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Figure 2.66 Test bench module for the PLA device to implement Equation 2.8.

//test bench to implement four equations

module pla_4eqtns_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3;
wire z1, z2, z3, z4;

initial //display variables
$monitor ("x1 x2 x3 = %b, z1 z2 z3 z4 = %b", {x1, x2, x3},

{z1, z2, z3, z4});

initial //apply input vectors
begin

#0 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;

#10 $stop;

end

//instantiate the module into the test bench
pla_4eqtns inst1 (x1, x2, x3, z1, z2, z3, z4);

endmodule
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Figure 2.67 Outputs for the PLA device to implement Equation 2.8.

Example 2.19 A 5-input majority circuit will be designed using a PLA.  The output
of a majority circuit is a logic 1 if the majority of the inputs is a logic 1; otherwise, the
output is a logic 0.  Therefore, a majority circuit must have an odd number of inputs in
order to have a majority of the inputs be at the same logic level.

A 5-input majority circuit will be designed using the Karnaugh map of Figure
2.68, where a 1 entry indicates that the majority of the inputs is a logic 1.  The resulting
equation is shown in Equation 2.9 representing the logic for output z1 in a sum-of-
products form.  The logic diagram for the PLA device is shown in Figure 2.69.  The
structural design module using a PLA is shown in Figure 2.70.  The test bench module
is shown in Figure 2.71 and the outputs are shown in Figure 2.72.

Figure 2.68 Karnaugh map for the majority circuit of Example 2.19.

x1 x2 x3 = 000, z1 z2 z3 z4 = 0110
x1 x2 x3 = 001, z1 z2 z3 z4 = 0001
x1 x2 x3 = 010, z1 z2 z3 z4 = 1100
x1 x2 x3 = 011, z1 z2 z3 z4 = 1001

x1 x2 x3 = 100, z1 z2 z3 z4 = 1010
x1 x2 x3 = 101, z1 z2 z3 z4 = 1110
x1 x2 x3 = 110, z1 z2 z3 z4 = 0010
x1 x2 x3 = 111, z1 z2 z3 z4 = 0101

 0 0      0 1     1 1     1 0

0 0      0         0        0         0

0 1      0         0        1         0

1 1      0         1        1         1

1 0      0         0        1         0

x1x2

x3x4

 0            2           6            4

 8         10         14         12

 

 24         26         30         28

 16         18          22         20

x5 = 0

 0 0      0 1     1 1     1 0

0 0      0         0        1         0

0 1      0         1        1         1

1 1      1         1        1         1

1 0      0         1        1         1

x1x2

x3x4

  1           3           7            5

  9          11         15         13

 

  25         27          31        29

 17         19         23         21

x5 = 1

z1

z1 = x3x4x5 + x2x3x5  + x1x3x5  + x2x4x5  + x1x4x5

+ x1x2x5  + x1x2x4  + x2x3x4  + x1x3x4 (2.9)

z1 = x3x4x5 + x2x3x5  + x1x3x5  + x2x4x5  + x1x4x5

+ x1x2x5  + x1x2x4  + x2x3x4  + x1x3x4
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Figure 2.69 Logic diagram for the majority circuit of Example 2.19.

Figure 2.70 Structural design module for the majority circuit of Example 2.19.
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//structural for a 5-input majority circuit
module pla_majority (x1, x2, x3, x4, x5, z1);
//define inputs and output
input x1, x2, x3, x4, x5;
output z1; //continued on next page
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Figure 2.70       (Continued)

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8,

net9, net10, net11, net12, net13, net14,
net15, net16, net17, net18, net19, net20;

//design the input drivers
buf (net1, x1);
not (net2, x1);

buf (net3, x2);
not (net4, x2);

buf (net5, x3);
not (net6, x3);

buf (net7, x4);
not (net8, x4);

buf (net9, x5);
not (net10, x5);

//define the logic for the and array
and (net11, net5, net7, net9),

(net12, net3, net5, net9),
(net13, net1, net3, net5),
(net14, net3, net7, net9),
(net15, net1, net7, net9),
(net16, net1, net3, net9),
(net17, net1, net3, net7),
(net18, net3, net5, net7),
(net19, net1, net5, net7),
(net20, net1, net5, net9);

//design the logic for output z1
or (z1, net11, net12, net13, net14, net15,

net16, net17, net18, net19, net20);

endmodule
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Figure 2.71 Test bench module for the majority circuit of Example 2.19.

Figure 2.72 Outputs for the majority circuit of Example 2.19.

//test bench for 5-input majority circuit
module pla_majority_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4, x5;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [6:0] invect;
for (invect = 0; invect < 32; invect = invect + 1)

begin
{x1, x2, x3, x4, x5} = invect [6:0];
#10 $display ("x1 x2 x3 x4 x5 = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
pla_majority inst1 (x1, x2, x3, x4, x5, z1);

endmodule

x1 x2 x3 x4 x5 = 00000, z1 = 0
x1 x2 x3 x4 x5 = 00001, z1 = 0
x1 x2 x3 x4 x5 = 00010, z1 = 0
x1 x2 x3 x4 x5 = 00011, z1 = 0
x1 x2 x3 x4 x5 = 00100, z1 = 0
x1 x2 x3 x4 x5 = 00101, z1 = 0
x1 x2 x3 x4 x5 = 00110, z1 = 0
x1 x2 x3 x4 x5 = 00111, z1 = 1

x1 x2 x3 x4 x5 = 01000, z1 = 0
x1 x2 x3 x4 x5 = 01001, z1 = 0
x1 x2 x3 x4 x5 = 01010, z1 = 0
x1 x2 x3 x4 x5 = 01011, z1 = 1
x1 x2 x3 x4 x5 = 01100, z1 = 0
x1 x2 x3 x4 x5 = 01101, z1 = 1
x1 x2 x3 x4 x5 = 01110, z1 = 1
x1 x2 x3 x4 x5 = 01111, z1 = 1 //continued on next page
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Figure 2.72       (Continued)

Example 2.20 This example designs a structural module to convert the Gray code to
the corresponding binary code using a PLA device.  The Gray and binary codes are
shown in Table 2.6.  The Karnaugh maps used to obtain the equations for the code con-
verter are shown in Figure 2.73.  The equations for the binary vectors are shown in
Equation 2.10.  The Gray-to-binary logic diagram using a PLA device is shown in Fig-
ure 2.74.

The structural design module using a PLA device is shown in Figure 2.75.  The
test bench module is shown in Figure 2.76 and the outputs are shown in Figure 2.77.

Table 2.6  Gray-to-Binary Code Conversion

Gray Binary

g1 g2 g3 b1 b2 b3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 1 0 1 0
0 1 0 0 1 1
1 1 0 1 0 0
1 1 1 1 0 1
1 0 1 1 1 0
1 0 0 1 1 1

x1 x2 x3 x4 x5 = 10000, z1 = 0
x1 x2 x3 x4 x5 = 10001, z1 = 0
x1 x2 x3 x4 x5 = 10010, z1 = 0
x1 x2 x3 x4 x5 = 10011, z1 = 1
x1 x2 x3 x4 x5 = 10100, z1 = 0
x1 x2 x3 x4 x5 = 10101, z1 = 1
x1 x2 x3 x4 x5 = 10110, z1 = 1
x1 x2 x3 x4 x5 = 10111, z1 = 1

x1 x2 x3 x4 x5 = 11000, z1 = 0
x1 x2 x3 x4 x5 = 11001, z1 = 1
x1 x2 x3 x4 x5 = 11010, z1 = 1
x1 x2 x3 x4 x5 = 11011, z1 = 1
x1 x2 x3 x4 x5 = 11100, z1 = 1
x1 x2 x3 x4 x5 = 11101, z1 = 1
x1 x2 x3 x4 x5 = 11110, z1 = 1
x1 x2 x3 x4 x5 = 11111, z1 = 1
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Figure 2.73 Karnaugh maps for the Gray-to-binary code converter.

b1 = g1

b2 = g1' g2 + g1 g2'

b3 = g1' g2' g3 + g1' g2 g3' + g1 g2' g3' + g1 g2 g3
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 0            1           3            2

 4            5           7           6
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(2.10)
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Figure 2.74 PLA device for the Gray-to-binary code converter.

Figure 2.75 Structural design module for the Gray-to-binary code converter.
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//structural for gray-to-binary converter
module pla_gray_to_bin (g1, g2, g3, b1, b2, b3);

//define inputs and outputs
input g1, g2, g3;
output b1, b2, b3;

//define internal nets
wire net1, net2, net3, net4, net5, net6,

net7, net8, net9, net10, net11, net12;
//continued on next page
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Figure 2.75       (Continued)

Figure 2.76 Test bench module for the Gray-to-binary code converter.

//define the input drivers
buf (net1, g1);
not (net2, g1);

buf (net3, g2);
not (net4, g2);

buf (net5, g3);
not (net6, g3);

//design the logic for the and array
and (net7, net2, net3),

(net8, net1, net4),
(net9, net2, net4, net5),
(net10, net2, net3, net6),
(net11, net1, net4, net6),
(net12, net1, net3, net5);

//design the logic for the outputs b1, b2, and b3
or (b1, net1),

(b2, net7, net8),
(b3, net9, net10, net11, net12);

endmodule

//test bench for the gray-to-binary converter
module pla_gray_to_bin_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg g1, g2, g3;
wire b1, b2, b3;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{g1, g2, g3} = invect [4:0];
#10 $display ("g1 g2 g3 = %b, b1 b2 b3 = %b",

{g1, g2, g3}, {b1, b2, b3});
end

end //continued on next page
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Figure 2.76       (Continued)

Figure 2.77 Outputs for the Gray-to-binary code converter.

2.7 Additional Design Examples
This section will present several combinational logic design examples utilizing the
modeling methods presented in Chapter 1 plus additional techniques.  Examples using
multiplexers to obtain a minimized design module will also be presented.  An iterative
network will be introduced.  An iterative network is an organization of identical cells
which are interconnected in an ordered manner with the signals propagating in one
direction only.  An iterative machine (or network) can consist of combinational logic
arranged in a linear array.  The Boolean functions obtained in the examples can be
minimized and represented in both a sum-of-products form and a product-of-sums
form.

Example 2.21 This example uses the Karnaugh map shown in Figure 2.78 to obtain
the minimized equation for z1 in both a sum-of-products form and a product-of-sums
form.  The sum-of-products expression will be designed using dataflow modeling with
the continuous assignment statement utilizing the keyword assign.  The product-of-
sums expression will be designed using built-in-primitives in Example 2.22.

The dataflow design module is shown in Figure 2.79.  The test bench module is
shown in Figure 2.80 and the outputs are shown in Figure 2.81.

//instantiate the module into the test bench
pla_gray_to_bin inst1 (g1, g2, g3, b1, b2, b3);

endmodule

g1 g2 g3 = 000, b1 b2 b3 = 000
g1 g2 g3 = 001, b1 b2 b3 = 001
g1 g2 g3 = 010, b1 b2 b3 = 011
g1 g2 g3 = 011, b1 b2 b3 = 010

g1 g2 g3 = 100, b1 b2 b3 = 111
g1 g2 g3 = 101, b1 b2 b3 = 110
g1 g2 g3 = 110, b1 b2 b3 = 100
g1 g2 g3 = 111, b1 b2 b3 = 101
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Figure 2.78 Karnaugh map for Example 2.21.

Sum-of-products form
z1 = x1' x4'  + x1' x2x3'  + x3x4'  + x2' x3

Product-of-sums form
z1 = (x1'  + x3) (x2'  + x3'  + x4' ) (x2  + x3  + x4' )

Figure 2.79 Dataflow design module for Example 2.21.
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z1

//dataflow for sum-of-products expression
//z1 = x1'x4' + x1'x2x3' + x3x4' + x2'x3 

module sop_pos_df_bip (x1, x2, x3, x4, z1);

//define inputs and outputs
input x1, x2, x3, x4;
output z1;

//design logic using the continuous assignment statement
assign z1 = (~x1 & ~x4) | (~x1 & x2 & ~x3) | (x3 & ~x4)

| (~x2 & x3);

endmodule
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Figure 2.80 Test bench module for Example 2.21.

Figure 2.81 Outputs for Example 2.21.

//test bench for sum-of-products equation
module sop_pos_df_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sop_pos_df_bip inst1 (x1, x2, x3, x4, z1);

endmodule

{x1 x2 x3 x4} = 0000, z1 = 1
{x1 x2 x3 x4} = 0001, z1 = 0
{x1 x2 x3 x4} = 0010, z1 = 1
{x1 x2 x3 x4} = 0011, z1 = 1

{x1 x2 x3 x4} = 0100, z1 = 1
{x1 x2 x3 x4} = 0101, z1 = 1
{x1 x2 x3 x4} = 0110, z1 = 1
{x1 x2 x3 x4} = 0111, z1 = 0

{x1 x2 x3 x4} = 1000, z1 = 0
{x1 x2 x3 x4} = 1001, z1 = 0
{x1 x2 x3 x4} = 1010, z1 = 1
{x1 x2 x3 x4} = 1011, z1 = 1

{x1 x2 x3 x4} = 1100, z1 = 0
{x1 x2 x3 x4} = 1101, z1 = 0
{x1 x2 x3 x4} = 1110, z1 = 1
{x1 x2 x3 x4} = 1111, z1 = 0
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Example 2.22 This example repeats Example 2.21, but uses built-in primitives for
the product-of-sums equation of Example 2.21.  The Karnaugh map and the product-
of-sums equation are reproduced in Figure 2.82 and Equation 2.11 for convenience.
The design module is shown in Figure 2.83.  The test bench module is shown in Figure
2.84 and the outputs are shown in Figure 2.85.

Figure 2.82 Karnaugh map for Example 2.22.

z1 = (x1'  + x3) (x2'  + x3'  + x4' ) (x2  + x3  + x4' ) (2.11)

Figure 2.83 Design module for Example 2.22.
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//built-in primitives for pos equation
//z1 = (x1' + x3) ( x2' + x3' + x4') (x2 + x3 + x4')
//    net1           net2             net3

module sop_pos_bip (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//design the logic using built-in primitives
or inst1 (net1, ~x1, x3),

inst2 (net2, ~x2, ~x3, ~x4),
inst3 (net3, x2, x3, ~x4);

and inst4 (z1, net1, net2, net3);

endmodule
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Figure 2.84 Test bench module for Example 2.22.

Figure 2.85 Outputs for Example 2.22.

//test bench for pos equation
module sop_pos_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
sop_pos_bip inst1 (x1, x2, x3, x4, z1);

endmodule

{x1 x2 x3 x4} = 0000, z1 = 1
{x1 x2 x3 x4} = 0001, z1 = 0
{x1 x2 x3 x4} = 0010, z1 = 1
{x1 x2 x3 x4} = 0011, z1 = 1

{x1 x2 x3 x4} = 0100, z1 = 1
{x1 x2 x3 x4} = 0101, z1 = 1
{x1 x2 x3 x4} = 0110, z1 = 1
{x1 x2 x3 x4} = 0111, z1 = 0

{x1 x2 x3 x4} = 1000, z1 = 0
{x1 x2 x3 x4} = 1001, z1 = 0
{x1 x2 x3 x4} = 1010, z1 = 1
{x1 x2 x3 x4} = 1011, z1 = 1

{x1 x2 x3 x4} = 1100, z1 = 0
{x1 x2 x3 x4} = 1101, z1 = 0
{x1 x2 x3 x4} = 1110, z1 = 1
{x1 x2 x3 x4} = 1111, z1 = 0



2.7     Additional Design Examples     219

Example 2.23 This example designs a comparator to compare two 4-bit operands
a[3:0] and b[3:0] to determine if A < B or if A = B.  The conditional statements if, else
if, and else will be used in the design.  The equations used for the comparison are
shown in Equation 2.12.

      (A < B) = a3 ' b3 + (a3   b3) ' a2 ' b2 + (a3   b3) ' (a2   b2) ' a1 ' b1 
            + (a3   b3) ' (a2   b2) ' (a1  b1)' a0' b0

(A = B) = (a3  b3 )' (a2  b2)' (a1  b1)' (a0  b0)'  (2.12)

The behavioral design module is shown in Figure 2.86.  The test bench module is
shown in Figure 2.87 and the outputs are shown in Figure 2.88.

Figure 2.86 Behavioral design module for the comparison of two operands.

//behavioral conditional statements to compare
//two operands for less than and equal

module a_lt_eq_b_cond (a, b, a_lt_b, a_eq_b);

//define inputs and outputs
input [3:0] a, b;
output a_lt_b, a_eq_b;

//variables used in always are declared as reg
reg a_lt_b, a_eq_b;

//design the 4-bit comparator for less than
always @ (a or b)
begin

if (~a[3] & b[3])
a_lt_b = 1'b1;

else if ((a[3] ^~ b[3]) & (~a[2] & b[2]))
a_lt_b = 1'b1;

else if ((a[3] ^~ b[3]) & (a[2] ^~ b[2]) & (~a[1] & b[1]))
a_lt_b = 1'b1;

else if ((a[3] ^~ b[3]) & (a[2] ^~ b[2]) & (a[1] ^~ b[1])
& (~a[0] & b[0]))

a_lt_b = 1'b1;

else a_lt_b = 1'b0;
end //continued on next page
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Figure 2.86       (Continued)

Figure 2.87 Test bench module for the comparison of two operands.

//----------------------------------------------------
//design the 4-bit comparator for equal
always @ (a or b)
begin

if ((a[3] ^~ b[3]) & (a[2] ^~ b[2]) & (a[1] ^~ b[1])
& (a[0] ^~ b[0]))

a_eq_b = 1'b1;

else a_eq_b = 1'b0;
end

endmodule

//test bench to detect if A <= B

module a_lt_eq_b_cond_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
wire a_lt_b, a_eq_b;

//display inputs and outputs
initial
$monitor ("a = %b, b = %b, a_lt_b = %b, a_eq_b = %b",

a, b, a_lt_b, a_eq_b);

//apply input vectors
initial
begin

#0 a = 4'b0000; b = 4'b0001;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b0011; b = 4'b1011;
#10 a = 4'b0111; b = 4'b0011;

#10 a = 4'b0101; b = 4'b0101;

#10 a = 4'b0110; b = 4'b0111;
#10 a = 4'b0011; b = 4'b0010;
#10 a = 4'b1110; b = 4'b1111; //continued on
#10 a = 4'b0110; b = 4'b0011;  //next page
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Figure 2.87       (Continued)

Figure 2.88 Outputs for the comparison of two operands.

#10 a = 4'b1100; b = 4'b1100;

#10 a = 4'b0110; b = 4'b0111;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 a = 4'b0111; b = 4'b0111;

#10 a = 4'b1000; b = 4'b1100;
#10 a = 4'b1011; b = 4'b1010;
#10 a = 4'b1110; b = 4'b1111;
#10 a = 4'b1110; b = 4'b0111;

#10 a = 4'b0000; b = 4'b0000;

#10 $stop;
end

//instantiate the module into the test bench
a_lt_eq_b_cond inst1 (a, b, a_lt_b, a_eq_b);

endmodule

a = 0000, b = 0001, a_lt_b = 1, a_eq_b = 0
a = 0011, b = 0010, a_lt_b = 0, a_eq_b = 0
a = 0011, b = 1011, a_lt_b = 1, a_eq_b = 0
a = 0111, b = 0011, a_lt_b = 0, a_eq_b = 0
a = 0101, b = 0101, a_lt_b = 0, a_eq_b = 1

a = 0110, b = 0111, a_lt_b = 1, a_eq_b = 0
a = 0011, b = 0010, a_lt_b = 0, a_eq_b = 0
a = 1110, b = 1111, a_lt_b = 1, a_eq_b = 0
a = 0110, b = 0011, a_lt_b = 0, a_eq_b = 0
a = 1100, b = 1100, a_lt_b = 0, a_eq_b = 1

//continued on next page
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Figure 2.88       (Continued)

Example 2.24 A logic circuit will be designed that generates an output z1 if a 4-bit
number a[3:0] satisfies the following requirements: a[3:0] is greater than 11 or less
than 4.  The design module will use the continuous assignment statement assign.  The
Karnaugh map is shown in Figure 2.89 and the equation is shown in Equation 2.13.
The dataflow design module is shown in Figure 2.90.  The test bench module is shown
in Figure 2.91 and the outputs are shown in Figure 2.92.

Figure 2.89 Karnaugh map for Example 2.24

z1 = a3' a2' + a3 a2  (2.13)

a = 0110, b = 0111, a_lt_b = 1, a_eq_b = 0
a = 1011, b = 1010, a_lt_b = 0, a_eq_b = 0
a = 1110, b = 1111, a_lt_b = 1, a_eq_b = 0
a = 1110, b = 0111, a_lt_b = 0, a_eq_b = 0
a = 0111, b = 0111, a_lt_b = 0, a_eq_b = 1

a = 1000, b = 1100, a_lt_b = 1, a_eq_b = 0
a = 1011, b = 1010, a_lt_b = 0, a_eq_b = 0
a = 1110, b = 1111, a_lt_b = 1, a_eq_b = 0
a = 1110, b = 0111, a_lt_b = 0, a_eq_b = 0
a = 0000, b = 0000, a_lt_b = 0, a_eq_b = 1
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Figure 2.90 Dataflow design module to determine if a number is greater than 11 or
less than 4.

Figure 2.91 Test bench module  to determine if a number is greater than 11 or less
than 4.

//dataflow to detect number in the range >11 and <4

module number_range3 (a, z1);

//define inputs and output
input [3:0] a;
output z1;

//design the dataflow logic using assign
assign z1 = a[3] ^~ a[2];

endmodule

//test bench for number range

module number_range3_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
a = invect [4:0];
#10 $display ("a = %b, z1 = %b", a, z1);

end
end

//instantiate the module into the test bench
number_range3 inst1 (a, z1);

endmodule
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Figure 2.92 Outputs for the dataflow module to determine if a number is greater
than 11 or less than 4.

Example 2.25 This example is similar to Example 2.24, but uses the behavioral if,
else if, else conditional statements.  A logic circuit will be designed that generates an
output z1 if a 4-bit number a[3:0] satisfies the following requirements:

z1 = a2' a0' + a2 a0

The Karnaugh map is shown in Figure 2.93.  The dataflow design module is shown in
Figure 2.94.  The test bench module is shown in Figure 2.95 and the outputs are shown
in Figure 2.96.

Figure 2.93 Karnaugh map for Example 2.25.

a = 0000, z1 = 1
a = 0001, z1 = 1
a = 0010, z1 = 1
a = 0011, z1 = 1

a = 0100, z1 = 0
a = 0101, z1 = 0
a = 0110, z1 = 0
a = 0111, z1 = 0

a = 1000, z1 = 0
a = 1001, z1 = 0
a = 1010, z1 = 0
a = 1011, z1 = 0

a = 1100, z1 = 1
a = 1101, z1 = 1
a = 1110, z1 = 1
a = 1111, z1 = 1

 0 0      0 1     1 1     1 0

0 0      1        0         0         1

0 1     0        1         1         0

1 1      0        1         1        0

1 0      1        0         0        1

a3a2

a1a0
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z1
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Figure 2.94 Behavioral design module for Example 2.25 using if, else if, else.

Figure 2.95 Test bench for Example 2.25 using if, else if, else.

//behavioral for the following equation
//z1 = a2' a0' + a2 a0
module number_range4 (a, z1);

input [3:0] a; //define inputs and output
output z1;

//variables used in always are declared as reg
reg z1;

always @ (a)
begin

if (~a[2] & ~a[0])
z1 = 1'b1;

else if (a[2] & a[0])
z1 = 1'b1;

else z1 = 1'b0;
end

endmodule

//test bench for number_range4
module number_range4_tb;

reg [3:0] a; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
a = invect [4:0];
#10 $display ("a = %b, z1 = %b", a, z1);

end
end

//instantiate the module into the test bench
number_range4 inst1 (a, z1);

endmodule
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Figure 2.96 Outputs for Example 2.25 using if, else if, else.

Example 2.26 This example will use the product-of-sums form to design a combi-
national logic circuit.  A product-of-sums is an expression in which at least one term
does not contain all the variables; that is, at least one term is a proper subset of the vari-
ables or their complements. 

The minimal product-of-sums expression can be obtained by combining the 0s in
the Karnaugh map to form sum terms in the same manner as the 1s were combined to
form product terms.  However, since 0s are being combined, each sum term must equal
0.  The equation for Example 2.26 is shown in Equation 2.14.

z1(x1 , x2 , x3 , x4) = (0, 2, 5, 7, 8. 9, 10, 13, 14)  (2.14)

z1 = (x1  + x2  + x4) (x1  + x2'  + x4' ) (x2'  + x3 + x4' ) (x1'  + x3'  + x4) (x1'  + x2  + x3)

The Karnaugh map for the product-of-sums form of Equation 2.14 is shown in
Figure 2.97.  The logic diagram is shown in Figure 2.98 using AND gates and OR
gates.  The structural design module is shown in Figure 2.99 using logic gates that
were designed using dataflow modeling, such as or3_df and and5_df.  The test bench
module and the outputs are shown in Figures 2.100 and 2.101, respectively.

a = 0000, z1 = 1
a = 0001, z1 = 0
a = 0010, z1 = 1
a = 0011, z1 = 0

a = 0100, z1 = 0
a = 0101, z1 = 1
a = 0110, z1 = 0
a = 0111, z1 = 1

a = 1000, z1 = 1
a = 1001, z1 = 0
a = 1010, z1 = 1
a = 1011, z1 = 0

a = 1100, z1 = 0
a = 1101, z1 = 1
a = 1110, z1 = 0
a = 1111, z1 = 1
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Figure 2.97 Karnaugh map for Example 2.26.

Figure 2.98 Logic diagram for Example 2.26.

Figure 2.99 Structural design module for Example 2.26.
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inst1

inst2
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//structural product-of-sums form for equation
//z1 = (x1 + x2 + x4)(x1 + x2' + x4')(x2' + x3 + x4')
//(x1' + x3' + x4)(x1' + x2 + x3)
module prod_of_sums (x1, x2, x3, x4, z1);

//define the inputs and output
input x1, x2, x3, x4;
output z1; //continued on next page
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Figure 2.99       (Continued)

Figure 2.100 Test bench module for Example 2.26.

//define internal nets
wire net1, net2, net3, net4, net5;

//instantiate the logic gates
or3_df inst1 (x1, x2, x4, net1);
or3_df inst2 (x1, ~x2, ~x4, net2);
or3_df inst3 (~x1, x3, ~x4, net3);
or3_df inst4 (~x1, ~x3, x4, net4);
or3_df inst5 (~x1, x2, x3, net5);

and5_df inst6 (net1, net2, net3, net4, net5, z1);

endmodule

//test bench for product-of-sums

module prod_of_sums_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

//apply input vectors
initial
begin: apply_stimulus
reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
prod_of_sums inst1 (x1, x2, x3, x4, z1);

endmodule
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Figure 2.101 Outputs for Example 2.26. 

Example 2.27  This example will use the conjunctive normal form to design the
combinational logic circuit of Example 2.26.  A conjunctive normal form, also called
a “product of maxterms”, is an expression in which each term contains all the vari-
ables, either true or complemented.  The minimal conjunctive normal form can be
obtained by combining the individual 0s in the Karnaugh map to form sum terms.  The
Karnaugh map is reproduced in Figure 2.102 for convenience.  The equation is shown
in Equation 2.15.

Figure 2.102 Karnaugh map for Example 2.27.

{x1 x2 x3 x4} = 0000, z1 = 0
{x1 x2 x3 x4} = 0001, z1 = 1
{x1 x2 x3 x4} = 0010, z1 = 0
{x1 x2 x3 x4} = 0011, z1 = 1

{x1 x2 x3 x4} = 0100, z1 = 1
{x1 x2 x3 x4} = 0101, z1 = 0
{x1 x2 x3 x4} = 0110, z1 = 1
{x1 x2 x3 x4} = 0111, z1 = 0

{x1 x2 x3 x4} = 1000, z1 = 0
{x1 x2 x3 x4} = 1001, z1 = 0
{x1 x2 x3 x4} = 1010, z1 = 0
{x1 x2 x3 x4} = 1011, z1 = 1

{x1 x2 x3 x4} = 1100, z1 = 1
{x1 x2 x3 x4} = 1101, z1 = 0
{x1 x2 x3 x4} = 1110, z1 = 0
{x1 x2 x3 x4} = 1111, z1 = 1

 0 0      0 1     1 1     1 0

0 0      0        1         1         0

0 1     1        0         0         1

1 1      1        0         1        0

1 0      0        0         1        0

x1x2

x3x4
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   8            9          11         10

z1
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z1(x1 , x2 , x3 , x4) = (0, 2, 5, 7, 8, 9, 10, 13, 14)  (2.15)

z1 = (x1  + x2  + x3  + x4) (x1 + x2 + x3 ' + x4) (x1  + x2 ' + x3  + x4' )

 (x1  + x2'  + x3'  + x4' ) (x1'  + x2 + x3  + x4) (x1'  + x2  + x3  + x4 ') 

 (x1'  + x2  + x3 ' + x4) (x1'  + x2'  + x3 + x4' ) (x1'  + x2'  + x3'  + x4)

The logic diagram is shown in Figure 2.103 using AND gates and OR gates.  The
structural design module is shown in Figure 2.104 using logic gates that were designed
using dataflow modeling.  The test bench module and the outputs are shown in Figures
2.105 and 2.106, respectively.

Figure 2.103 Logic diagram for Example 2.27.
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Figure 2.104 Design module using built-in primitives for the conjunctive normal
form of Example 2.27.

Figure 2.105 Test bench for the conjunctive normal form of Example 2.27.

//built-in primitives for conjunctive normal form
module conjunctive_normal (x1, x2, x3, x4, z1);

input x1, x2, x3, x4; //define inputs and output
output z1;

//design the logic using built-in primitives
or inst1 (net1, x1, x2, x3, x4),

inst2 (net2, x1, x2, ~x3, x4),
inst3 (net3, x1, ~x2, x3, ~x4),
inst4 (net4, x1, ~x2, ~x3, ~x4),
inst5 (net5, ~x1, x2, x3, x4),
inst6 (net6, ~x1, x2, x3, ~x4),
inst7 (net7, ~x1, x2, ~x3, x4),
inst8 (net8, ~x1, ~x2, x3, ~x4),
inst9 (net9, ~x1, ~x2, ~x3, x4);

and inst10 (z1, net1, net2, net3, net4, net5,
net6, net7, net8, net9);

endmodule

//test bench for conjunctive normal equation
module conjunctive_normal_tb;

reg x1, x2, x3, x4; //inputs are reg, outputs are wire
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
conjunctive_normal inst1 (x1, x2, x3, x4, z1);

endmodule



232          Chapter  2     Combinational Logic Design Using Verilog HDL

Figure 2.106 Outputs for the conjunctive normal form of Example 2.27.

Example 2.28 This example uses a 4:1 multiplexer to indicate how a design module
can be minimized by using a multiplexer.  First a 4:1 multiplexer will be designed
using the continuous assignment assign statement, then instantiated into the design
module for this example.  The design module for the multiplexer is shown in Figure
2.107.

Figure 2.107 A 4:1 multiplexer designed using the assign statement.

{x1 x2 x3 x4} = 0000, z1 = 0
{x1 x2 x3 x4} = 0001, z1 = 1
{x1 x2 x3 x4} = 0010, z1 = 0
{x1 x2 x3 x4} = 0011, z1 = 1

{x1 x2 x3 x4} = 0100, z1 = 1
{x1 x2 x3 x4} = 0101, z1 = 0
{x1 x2 x3 x4} = 0110, z1 = 1
{x1 x2 x3 x4} = 0111, z1 = 0

{x1 x2 x3 x4} = 1000, z1 = 0
{x1 x2 x3 x4} = 1001, z1 = 0
{x1 x2 x3 x4} = 1010, z1 = 0
{x1 x2 x3 x4} = 1011, z1 = 1

{x1 x2 x3 x4} = 1100, z1 = 1
{x1 x2 x3 x4} = 1101, z1 = 0
{x1 x2 x3 x4} = 1110, z1 = 0
{x1 x2 x3 x4} = 1111, z1 = 1

//dataflow 4:1 mux

module mux4a_df (s, d, z1);

//define inputs and output
input [1:0] s;
input [3:0] d;
output z1;

assign z1 = (~s[1] & ~s[0] & d[0]) |
(~s[1] &  s[0] & d[1]) |
( s[1] & ~s[0] & d[2]) |
( s[1] &  s[0] & d[3]);

endmodule
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The equation for this example is shown in Equation 2.16 and plotted on the Kar-
naugh map of Figure 2.108.  The equation for output z1 is shown in Equation 2.17.

Figure 2.108 Karnaugh map that is generated from Equation 2.16.

The structural design module is shown in Figure 2.109 using a single 4:1 multi-
plexer that was designed using dataflow modeling and instantiated into the module.
The test bench module is shown in Figure 2.110 and the outputs are shown in Figure
2.111.

Figure 2.109 Structural design module for Example 2.28.

z1(x1 , x2 , x3 , x4) = m (0, 4, 9, 10, 13, 14) (2.16)

 0 0      0 1     1 1     1 0

0 0      1         0        0         0

0 1      1         0        0         0

1 1      0         1        0         1

1 0      0         1        0         1

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

z1(x1 , x2 , x3 , x4) = x1' x3' x4'  + x1x3' x4  + x1x3x4' (2.17)

//structural design module
module func_decomp5 (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//instantiate the 4:1 multiplexer
mux4a_df inst1 ({x1, x3}, ({~x4, x4, 1'b0, ~x4}), z1);

endmodule
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Figure 2.110 Test bench module for Example 2.28.

Figure 2.111 Outputs for Example 2.28.

//test bench for design module
module func_decomp5_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
func_decomp5 inst1 (x1, x2, x3, x4, z1);

endmodule

x1 x2 x3 x4 = 0000, z1 = 1
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0

x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 0
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 0

x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 1
x1 x2 x3 x4 = 1011, z1 = 0

x1 x2 x3 x4 = 1100, z1 = 0
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 0
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Example 2.29 This example illustrates the design of an iterative network to design a
single-bit detection circuit.  In this example, a typical cell will be designed, then in-
stantiated three times into a higher-level module to detect a single bit in a 3-bit input
vector x[1:3].  Figure 2.112 shows the internal logic of a typical cell, which will be in-
stantiated three times into the higher-level circuit of Figure 2.113.  This network will
then be designed by module instantiation using of the typical single-bit cell.

Figure 2.112 Internal logic for a typical cell in the single-bit detection circuit.

Figure 2.113 Block diagram for the circuit to detect a single bit in a 3-bit input vec-
tor x[1:3].
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The dataflow design module for a typical cell using built-in primitives is shown in
Figure 2.114.  The test bench is shown in Figure 2.115 and the outputs are shown in
Figure 2.116.  The design module for the iterative network is shown in Figure 2.117.
The test bench module and the outputs are shown in Figures 2.118 and 2.119, respec-
tively.

Figure 2.114 Dataflow design module for the single-bit detection cell.

Figure 2.115 Test bench module for the single-bit detection cell.

//typical cell for single-bit detection
module sngl_bit_cell (x1_in, y1_in, y0_in, y1_out, y0_out);

input x1_in, y1_in, y0_in;
output y1_out, y0_out;

not inst1(net1, x1_in);
and inst2 (net2, net1, y1_in);
and inst3 (net3, x1_in, y0_in);
and inst4 (y0_out, net1, y0_in);
or inst5 (y1_out, net2, net3);

endmodule

//test bench for single-bit cell
module sngl_bit_cell_tb;

reg x1_in, y1_in, y0_in;
wire y1_out, y0_out;

initial //apply input vectors
begin: apply_stimulus

reg [3:0] invect;
for  (invect=0; invect<8; invect=invect+1)

begin
{x1_in, y1_in, y0_in} = invect [3:0];
#10  $display ("x1_in y1_in y0_in = %b,

y1_out y0_out = %b",
{x1_in, y1_in, y0_in}, {y1_out, y0_out});

end
end

//instantiate the module into the test bench
sngl_bit_cell inst1 (x1_in, y1_in, y0_in, y1_out, y0_out);

endmodule
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Figure 2.116 Outputs for the single-bit detection cell.

Figure 2.117 Design module for the single-bit iterative detection network.

Figure 2.118 Test bench module for the single-bit iterative detection network.

x1, y1_in, y0_in = 000, net1_1, net1_0 = 00
x1, y1_in, y0_in = 001, net1_1, net1_0 = 01
x1, y1_in, y0_in = 010, net1_1, net1_0 = 10
x1, y1_in, y0_in = 011, net1_1, net1_0 = 11

x1, y1_in, y0_in = 100, net1_1, net1_0 = 00
x1, y1_in, y0_in = 101, net1_1, net1_0 = 10
x1, y1_in, y0_in = 110, net1_1, net1_0 = 00
x1, y1_in, y0_in = 111, net1_1, net1_0 = 10

//single-bit detection network designed by instantiation

module sngl_bit_detect3 (x1, x2, x3, z1);

input x1, x2, x3; //define inputs and output
output z1;

//instantiate the single-bit cell module
//cell 1
sngl_bit_cell inst1 (x1, 1'b0, 1'b1, net1_1, net1_0);

//cell 2
sngl_bit_cell inst2 (x2, net1_1, net1_0, net2_1, net2_0);

//cell 3
sngl_bit_cell inst3 (x3, net2_1, net2_0, z1, 1'b0);

endmodule

//test bench for the single-bit detection
//using a typical cell instantiation

module sngl_bit_detect3_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3;
wire z1;

//continued on next page
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Figure 2.118       (Continued)

Figure 2.119 Outputs for the single-bit iterative detection network.

2.8 Problems

2.1 Use dataflow modeling to implement the function shown below in a sum-of-
products form and also in a product-of-sums form.  Obtain the design module,
the test bench module, and the outputs.  Compare the outputs for both forms.

z1(x1, x2, x3, x4) = m (0, 1, 6, 7, 11, 12, 13, 15)

//apply input vectors
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{x1, x2, x3} = invect [3:0];
#10 $display ("x1 x2 x3 = %b, z1 = %b",

{x1, x2, x3}, z1);
end

end

//instantiate the module into the test bench
sngl_bit_detect3 inst1 (x1, x2, x3, z1);
 
endmodule

x1 x2 x3 = 000, z1 = 0
x1 x2 x3 = 001, z1 = 1
x1 x2 x3 = 010, z1 = 1

x1 x2 x3 = 011, z1 = 0
x1 x2 x3 = 100, z1 = 1
x1 x2 x3 = 101, z1 = 0
x1 x2 x3 = 110, z1 = 0
x1 x2 x3 = 111, z1 = 0
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2.2 A Karnaugh map is shown below using x5  as a map-entered variable.  Obtain
the input equations for a nonlinear-select multiplexer using x1x2  = s1s0.  A
nonlinear-select multiplexer is a smaller multiplexer with fewer data inputs
and can be effectively utilized with a corresponding reduction in machine
cost.

Use dataflow modeling with the assign statement and behavioral model-
ing with the case statement to implement the design module.  Provide several
combinations of the five variables x1x2x3x4x5  in the test bench.  Obtain the
outputs and verify that they conform to the minterm entries of the Karnaugh
map.

2.3 Design a structural module that will generate a high output z1 if a 4-bit binary
number x1x2x3x4  has a value less than or equal to 4 or greater than 11.
Generate a Karnaugh map and obtain the equation for z1 in a sum-of-prod-
ucts form and for z2 in a product-of-sums form.  Instantiate dataflow mod-
ules for the logic gates into the structural module.  Obtain the design module,
the test bench module for all combinations of the inputs, and the outputs.

2.4 Obtain the Karnaugh map that represents the equation shown below.  Then
obtain the design module using built-in primitives, the test bench module, and
the outputs for the equation shown below.  In the same design module obtain
the Verilog code for an equivalent equation using only exclusive-OR gates
with logic gates that were designed using dataflow modeling.  

z1 = x1' x2' x3' x4  + x1' x2' x3x4'  + x1' x2x3' x4'
+ x1' x2x3x4  + x1x2x3' x4  + x1x2x3x4'  
+ x1x2' x3' x4'  + x1x2' x3x4

 0 0      0 1     1 1     1 0

0 0      0        x5        0        x5

0 1      0         0        1         1

1 1      0         1        1        x5'

1 0      1         1        0         0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1
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2.5 Design an octal-to-binary code converter using logic gates that were designed
using dataflow modeling.  The octal-to-binary conversion table is shown be-
low.  Obtain the conversion equations, then design the dataflow module, the
test bench module, and obtain the outputs. 

2.6 Repeat Problem 2.5 using behavioral modeling with the case statement.  Ob-
tain the design module, the test bench module, and the outputs.

2.7 Design a 5-input majority circuit using the dataflow continuous assign state-
ment.  Obtain the Karnaugh map and the equations for the sum-of-products
and for the product-of-sums expressions.  Obtain the design module for both
the sum-of-products expression and the product-of-sums expression.  Obtain
the test bench module and the outputs.  

2.8 Given the Karnaugh map shown below, obtain the equation for output z1 in  a
sum-of-products form and for output z2 in product-of-sums form.  Then ob-
tain the design module using logic gates that were designed using dataflow
modeling.  Obtain the test bench module for all combinations of the five in-
puts.  Obtain the output values for z1 and z2 .

Octal Inputs Binary Outputs

o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] b[2] b[1] b[0]
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

 0 0      0 1     1 1     1 0

0 0      0         1        1         0

0 1      1         1        1         1

1 1      0         1        0         0

1 0      0         1        1         1

x1x2

x3x4

 0            2           6            4

 8         10         14         12

 

 24         26         30         28

 16         18          22         20

x5 = 0

 0 0      0 1     1 1     1 0

0 0      0         1        1         0

0 1      1         1        1         1

1 1      1         1        0         0

1 0      1         1        1         0

x1x2

x3x4

  1           3           7            5

  9          11         15         13

 

  25         27          31        29

 17         19         23         21

x5 = 1

z1(z2)
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2.9 Design a dataflow module for a full adder using logic gates that were designed
using dataflow modeling.  Recall that a full adder is a combinational circuit
that adds two operand bits: the augend a and the addend b plus a carry-in bit
cin.  The carry-in bit represents the carry-out of the previous lower-order
stage.  A full adder produces two outputs: a sum bit sum and carry-out bit cout.
The truth table for a full adder is shown below.  Obtain the test bench module
and the outputs.

2.10 Design a 4-bit comparator for two 4-bit unsigned binary operands: A [3:0] and
B [3:0] using behavioral modeling.  There are three outputs: 

 A < B,  A = B,  A > B

Obtain the test bench module and the outputs for 30 input vectors.

2.11 This problem and the next two problems all design a binary-to-Gray code con-
verter using different design techniques: this problem uses dataflow modeling
with the continuous assign statement; Problem 2.12 uses behavioral modeling
with the always statement; Problem 2.13 uses behavioral modeling with the
case statement.  The binary-to-Gray code conversion table is shown below.
Obtain the test bench module and the outputs.

Binary Code Gray Code

b3 b2 b1 b0 g3 g2 g1 g0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
            //continued on next page

a b cin cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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2.12 Repeat Problem 2.11 for the binary-to-Gray code converter using behavioral
modeling with the always statement.  Obtain the test bench module and the
outputs.

2.13 Repeat Problem 2.11 for the binary-to-Gray code converter using behavioral
modeling with the case statement.  Obtain the test bench module and the out-
puts.

2.14 Use structural modeling to design a 4:1 multiplexer using logic gates that were
designed using dataflow modeling.  Obtain the test bench module and the out-
puts for 16 combinations of the inputs.

2.15 Design a behavioral module using the case statement to design an 8:1 multi-
plexer.  Obtain the test bench module and the outputs for 20 combinations of
the inputs.

2.16 Design a behavioral module that adds 5 to a variable count to obtain a maxi-
mum value of 100 and displays the outputs.

2.17 Plot the following equation on a Karnaugh map, then change the equation to
an exclusive-NOR format.  Obtain the design module using built-in primitive
logic gates.  Then obtain the test bench module and the outputs for all combi-
nations of the four variables.

z1 = x1' x2' x3' x4'  + x1' x2x3' x4 + x1x2x3x4  + x1x2' x3x4'

2.18 Obtain a minimized equation for z1 in a sum-of-products representation and
for z2  in a product-of-sums representation for the Karnaugh map shown

0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

Binary Code Gray Code

b3 b2 b1 b0 g3 g2 g1 g0
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below, where the outputs are 12  z1(z2) < 3.  Then obtain the design module
using built-in primitives, the test bench module, and the outputs.

 0 0      0 1     1 1     1 0

0 0      1        1         0         1

0 1     0        0         0         0

1 1      1        1         1        1

1 0      0        0         0        0

x1x2

x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10
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3
Sequential Logic Design Using 
Verilog HDL

3.1 Introduction
This chapter provides techniques for designing sequential logic using Verilog HDL.
Sequential logic circuits consist of combinational logic and storage elements, such as
SR latches, D flip-flops, and JK flip-flops.  They are specified as sequential because
the operations of the circuit are executed in sequence.  Since these circuits (or sequen-
tial machines) contain a finite number of internal states, they are also referred to as fi-
nite state machines.  A state is a set of values that is specified at different locations in
the state machine.

3.1.1  Definition of a Sequential Machine

A synchronous sequential machine is a machine whose present outputs are a function
of the present state only or the present state and present inputs.  A requirement of a
synchronous sequential machine is that state changes occur only when the machine is
clocked, either on the positive or negative transition of the clock.  Thus, input changes
do not affect the present state of the machine until the occurrence of the next active
clock transition.

The logic that generates the inputs to the storage elements is called the “ next-
state function”, because the next state of the machine is usually determined by the in-
puts.  The outputs generated by the storage elements are called the “ output function”.

3.1 Introduction
3.2 Synchronous Sequential

Machines
3.3 Asynchronous Sequential

Machines
3.4 Pulse-Mode Asynchronous

Sequential Machines
3.5 Problems
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In some cases, the output logic may require one or more storage elements, depending
on the assertion and deassertion of the output signals.

Some synchronous sequential machines are described by a state diagram.  A state
diagram presents a graphical representation in which the state transitions are more eas-
ily followed.  The state diagrams are similar to flowchart diagrams in which the tran-
sition sequences and thus, the operational characteristics of the machine, are clearly
delineated.  Two symbols are used: a state symbol and an output symbol.

The state symbol is designated by a circle as shown in Figure 3.1.  These nodes (or
vertices) correspond to the state of the machine; the state name, such as state a, is
placed inside the circle.  The connecting directed lines between states correspond to
the allowable state transitions.  There are one or more entry paths and one or more exit
paths as indicated by the arrows, unless the vertex is a terminal state, in which case
there is no exit.  The symbols y1y2y3 represent the names of the storage elements of
the machine for that state, which indicate that the storage elements are specified as y1
is set (1), y2  is reset (0), and y3 is set (1).  If input x1  is 0, then the machine proceeds
to a particular state.  If input x1  is 1, then the machine proceeds to a different state.

Figure 3.1 The state symbol for a state diagram indicating state a.

The output symbol is represented by a rectangle and is placed immediately fol-
lowing the state symbol, as shown in Figure 3.2 (a) or placed immediately after an in-
put variable that causes the output to become active as shown in 3.2 (b).  Figure 3.2 (a)
specifies a Moore machine in which output z1 is a function of the present state only.
Figure 3.2 (b) indicates a Mealy machine in which output z1 is a function of both the
present state and the present input x1 .  Moore and Mealy machines will be presented in
Sections 3.2.3 and 3.2.4, respectively.

Figure 3.2 State diagram output symbol indicating output z1.

a

y1y2y3
1 0  1

x1'

x1

a
z1

a

z1

y1y2
0  1

y1y2
0  1

x1'

x1

(a) (b)
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3.2 Synchronous Sequential Machines
Techniques for synthesizing (designing) synchronous sequential machines are intro-
duced.  A detailed procedure is presented to synthesize a synchronous sequential ma-
chine from a given set of machine specifications.  From this a logic diagram or a list of
Boolean functions is obtained from which the sequential machine can be designed.

A synchronous sequential machine requires a state diagram or state table for its
precise description.  The state diagram depicts the sequence of events that must occur
in order for the machine to perform the functions which are defined in the machine
specifications.

A proper choice of state code assignments may reduce the number of gates in the
 next-state function logic.  Since there are p storage elements, the binary values of
these p-tuples can usually be chosen such that the combinational input logic is mini-
mized.  A judicious choice of state codes permits more entries in the Karnaugh map to
be combined.  This results in input equations with fewer terms and fewer variables per
term.

3.2.1  Synthesis Procedure

This section develops a detailed method for designing synchronous sequential ma-
chines using various types of storage elements.  The hierarchical design algorithm is
shown below.

1. Develop a state diagram from the problem definition, which may be either a
word description and/or a timing diagram.

2. Check for equivalent states and then eliminate redundant states.  Equivalent
states are presented in Section 3.2.2.

3. Assign state codes for the storage elements in the form of a binary p-tuple, as
shown in Section 3.1.1.  For example,  y1y2y3 = 101

4. Determine equivalent states, as described in Section 3.2.2.

5. Select the type of storage element to be used (SR latch, D flip-flop, JK flip-flop)
then generate the input maps for the  next-state function and derive the input
equations.

6. Generate the output maps for the  output function and derive the output equa-
tions.

7. Design the logic diagram using the input equations, the storage elements, and the
output equations.  Then the Verilog design module and test bench can be gener-
ated from which the outputs can be obtained.
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3.2.2  Equivalent States

At each node in the state diagram, two events occur: the outputs (if applicable) for the
present state are generated as a function of the present state only (Moore machine) or
the present state and inputs (Mealy machine); the next state is determined as a function
of the present state only or the present state and inputs.

Two states Yi and Yj of a machine are equivalent if, for every input sequence, the
output sequence when started in state Yi is identical to the output sequence when start-
ed in state Yj or if both states Yi and Yj have the same or equivalent next state.  When
equivalent states have been found, all but one are redundant and should be eliminated
before implementing the state diagram with hardware.  Two states can be equivalent if
they satisfy the following equivalence relation properties:

Reflexive  For every state Yi in the machine, Yi  Yi; that is, Yi is related to itself.

Symmetric   For every pair of states Yi and Yj in the machine, if Yi  Yj, then Yj  Yi;
that is, the order of the relation is not important.

Transitive  For any three states Yi, Yj, and Yk in the machine, if Yi  Yj and Yj  Yk,
then Yi  Yk; that is, Yi  Yj  Yk.

3.2.3  Moore Machines

Moore machines are synchronous sequential machines in which the output function 
produces an output vector Zr which is determined by the present state only, and is not
a function of the present inputs.  The general configuration of a Moore machine is
shown in Figure 3.3.  The next-state function  is an (n + p)-input, p-output switching
function.  The output function  is a p-input, m-output switching function.

If a Moore machine has no data input, then it is referred to as an autonomous ma-
chine.  Autonomous circuits are independent of the inputs.  The clock signal is not con-
sidered as a data input.  An autonomous Moore machine is an important class of
synchronous sequential machines, the most common application being a counter.  A
Moore machine may be synchronous or asynchronous; however, this section pertains
to synchronous organizations only.

A Moore machine is a 5-tuple and can be defined as shown in Equation 3.1,

M = (X, Y, Z, , )                                                       (3.1)
where

X is a nonempty finite set of inputs 
Y is a nonempty finite set of states 
Z is a nonempty finite set of outputs
(X, Y) : X  Y  Y
(Y) : Y  Z
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The symbols  (X, Y) : X  Y  Y specify  is a function of X and Y, and the symbol
  specifies that X is the Cartesian product of X and Y.  The Cartesian product of two
sets is defined as follows:  For any two sets S and T, the Cartesian product of S and T
is written as S  T and is the set of all ordered pairs of S and T, where the first member
of the ordered pair is an element of S and the second member is an element of T.  Thus,
the general classification of a synchronous sequential machine M can be defined as the
5-tuple shown in Equation 3.1.

Figure 3.3 Moore synchronous sequential machine in which the outputs are a
function of the present state only.

Examples will now be presented to illustrate the design of Moore synchronous sequen-
tial machines using Verilog HDL.

Example 3.1 A state diagram for a Moore machine is shown in Figure 3.4, which
generates an output z1 whenever a serial, 3-bit binary word on an input line x1  is
greater than or equal to six.  The first bit received in each word is the high-order bit.
There is no bit space between words.  Figure 3.5 shows the design module using
behavioral modeling.  The design module uses A[2:0] to replace input line x1 .  Output
z1 is asserted whenever the input vector is A[2:0] = 110 or 111.  The test bench module
and the outputs are shown in Figures 3.6 and 3.7, respectively.

When a state has two possible next states, then the two next states should be adja-
cent (differ by only one variable); that is, if an input causes a state transition from state
Yi to either Yj or Yk, then Yj and Yk should be assigned adjacent state codes.

Input
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When two states have the same next state, the two states should be adjacent; that
is, if Yi and Yj both have Yk as a next state, then Yi and Yj should be assigned adjacent
state codes.

A third rule is useful in minimizing the  output logic.  States which have the same
output should have adjacent state code assignments; that is, if states Yi and Yj both have
z1 as an output, then Yi and Yj should be adjacent.  This allows for a larger grouping of
1s in the output map.

Figure 3.4 State diagram for the Moore synchronous sequential machine of
Example 3.1.  Unused states are: 100, 101, and 111.
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Figure 3.5 Behavioral design module for the Moore synchronous sequential
machine of Example 3.1.

Figure 3.6 Test bench module for the Moore synchronous sequential machine of
Example 3.1.

//behavioral to determine if a[2:0] >= 6
module a_gt_eq_six (a2, a1, a0, a_gt_eq_six);

input a2, a1, a0; //define inputs and output
output a_gt_eq_six;

//variables are reg in always
reg a_gt_eq_six;

//determine if a2, a1, a0 >= six
always @ (a2 or a1 or a0)
begin

if (a2 & a1)
a_gt_eq_six = 1'b1;

else
a_gt_eq_six = 1'b0;

end
endmodule

//test bench to determine if a[2:0] >= 6
module a_gt_eq_six_tb;

reg a2, a1, a0; //inputs are reg for test bench
wire a_gt_eq_six; //outputs are wire for test bench

initial //apply input vectors
begin: apply_stimulus
reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{a2, a1, a0} = invect [3:0];
#10 $display ("a2. a1. a0 = %b, a_gt_eq_six = %b",

{a2, a1, a0}, a_gt_eq_six);
end

end

//instantiate the module into the test bench
a_gt_eq_six inst1 (a2, a1, a0, a_gt_eq_six);
endmodule
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Figure 3.7 Outputs for the Moore synchronous sequential machine of Example
3.1.

Example 3.2 This example uses the state diagram of Example 3.1 for a Moore
machine to assert output z1 in state y1y2y3 = 110.  This design uses Karnaugh maps,
built-in primitives, and D flip-flops that were designed using behavioral modeling.
The state diagram is reproduced in Figure 3.8 for convenience.  The Karnaugh maps
are shown in Figure 3.9 and the corresponding equations are shown in Equation 3.3.

Figure 3.8 State diagram for the Moore synchronous sequential machine of
Example 3.2.  Unused states are: y1y2y3 = 100, 101, and 111.

a2. a1. a0 = 000, a_gt_eq_six = 0
a2. a1. a0 = 001, a_gt_eq_six = 0
a2. a1. a0 = 010, a_gt_eq_six = 0
a2. a1. a0 = 011, a_gt_eq_six = 0

a2. a1. a0 = 100, a_gt_eq_six = 0
a2. a1. a0 = 101, a_gt_eq_six = 0
a2. a1. a0 = 110, a_gt_eq_six = 1
a2. a1. a0 = 111, a_gt_eq_six = 1

a
0 0 0

b
0 0 1

y1y2y3

c
0 1 1

d
0 1 0

e
1 1 0

z1

x1'

x1' x1

x1
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Figure 3.9 Karnaugh maps for Example 3.2.

The logic diagram is shown in Figure 3.10.  The D flip-flop that was designed
using behavioral modeling is shown in Figure 3.11.  The D flip-flop will be instanti-
ated three times into the structural design module, each as a single-line instantiation.
The sequence for each instantiation will be in the following order: rst_n, clk, d, q,
which represent the reset input, the clock input, the D input to the flip-flop, and the
positive output from the flip-flop.

The structural design module for Example 3.2 to assert output z1 in state y1y2y3 =
110 is shown in Figure 3.12 using built-in primitives and D flip-flops.  The test bench
module is shown in Figure 3.13 using the positive-edge of the clock to cause state
changes to occur.  The outputs are shown in Figure 3.14.
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Figure 3.10 Logic diagram for Example 3.2.

Figure 3.11 Behavioral design module for a positive-edge D flip-flop.
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//behavioral D flip-flop
module d_ff_bh (rst_n, clk, d, q);

input rst_n, clk, d;
output q;

wire rst_n, clk, d;
reg q;

always @ (rst_n or posedge clk)
begin

if (rst_n == 0)
 q <= 1'b0;

else q <= d;
end

endmodule
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Figure 3.12 Structural design module for Example 3.2 to assert z1 in state 110.

//structural for moore ssm to assert z1 in state y1y2y3 = 110

module assert_z1_state_110 (rst_n, clk, x1, y, z1);

//define inputs and output
input rst_n, clk, x1;
output [1:3] y;
output z1;

//define internal nets
wire net1, net3, net4, net6;

//-----------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, x1, y[2], y[3]);

//instantiate the D flip-flop for y[1]
d_ff_bh inst2 (rst_n, clk, net1, y[1]);

//-----------------------------------------
//instantiate the logic for flip-flop y[2]
and inst3 (net3, x1, ~y[2]);
or inst4 (net4, y[3], net3);

//instantiate the D flip-flop for y[2]
d_ff_bh inst5 (rst_n, clk, net4, y[2]);

//-----------------------------------------
//instantiate the logic for flip-flop y[3]
and inst6 (net6, ~y[2], ~y[3]);

//instantiate the D flip-flop for y[3]
d_ff_bh inst7 (rst_n, clk, net6, y[3]);

//-----------------------------------------
//instantiate the logic for output z1
and inst8 (z1, y[1], y[2], ~y[3]);

endmodule
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Figure 3.13 Test bench module for Example 3.2.

//test bench for moore ssm to assert z1 in state y1y2y3 = 110
module assert_z1_state_110_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1;
wire [1:3] y;
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;

x1 = 1'b1; @ (posedge clk) //go to state_b (001)
x1 = 1'b1; @ (posedge clk) //go to state_d (010)
x1 = 1'b1; @ (posedge clk) //go to state_a (000)
x1 = 1'b1; @ (posedge clk) //go to state_c (011)
x1 = 1'b0; @ (posedge clk) //go to state_e (110);

//assert z1

x1 = 1'b1; @ (posedge clk) //go to state_c (011)
x1 = 1'b0; @ (posedge clk) //go to state_d (010)
x1 = 1'b1; @ (posedge clk) //go to state_a (000)

#10 $stop;
end

//instantiate the module into the test bench
assert_z1_state_110 inst1 (rst_n, clk, x1, y, z1);

endmodule
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Figure 3.14 Outputs for Example 3.2.

Example 3.3 This example uses the state diagram of Example 3.1 to design a
Moore machine to assert output z1 in state y1y2y3 = 110.  This design uses behavioral
modeling with the case statement for comparison.  The state diagram is reproduced in
Figure 3.15 for convenience.  The behavioral model is shown in Figure 3.16.  The test
bench and outputs are shown in Figures 3.17 and 3.18, respectively.

Figure 3.15 State diagram for Example 3.3.

x1 = 0, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 000, z1 = 0

x1 = 1, state = 011, z1 = 0
x1 = 0, state = 110, z1 = 1
x1 = 1, state = 000, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0
x1 = 1, state = 000, z1 = 0
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Figure 3.16 Behavioral design module for Example 3.3.

//behavioral case to assert z1 in state y1y2y3 = 110
module a_gt_eq_6_case (rst_n, clk, y, x1, z1);

input rst_n, clk, x1; //define inputs and output
output [2:0] y;
output z1;

reg [2:0] y, next_state;
wire z1;

//assign state codes
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b010,
state_e = 3'b110;

assign z1 = (y[2] & y[1]); //define output

always @ (posedge clk) //set next state
begin

if (~rst_n)
y <= state_a;

else
y <= next_state;

end

always @ (y or x1) //determine next state
begin

case (y)
state_a:

if (x1 == 0) next_state = state_b;
else next_state = state_c;

state_b: next_state = state_d;

state_c:
if (x1 == 0) next_state = state_d;
else next_state = state_e;

state_d: next_state = state_a;

state_e: next_state = state_a;

default: next_state = state_a;
endcase

end

endmodule
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Figure 3.17 Test bench module for Example 3.3.

//test bench to assert z1 in state y1y2y3 = 110
module a_gt_eq_6_case_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [2:0] y; //outputs are wire for test bench
wire z1;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#10 rst_n = 1'b1;

x1 = 1'b0;@ (posedge clk)
x1 = 1'b1;@ (posedge clk)
x1 = 1'b0;@ (posedge clk)

x1 = 1'b1;@ (posedge clk)
x1 = 1'b0;@ (posedge clk)
x1 = 1'b1;@ (posedge clk)

x1 = 1'b1;@ (posedge clk)
x1 = 1'b1;@ (posedge clk)
x1 = 1'b1;@ (posedge clk)

x1 = 1'b0;@ (posedge clk)

#10 $stop;

end

//instantiate the module into the test bench
a_gt_eq_6_case inst1 (rst_n, clk, y, x1, z1);

endmodule
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Figure 3.18 Outputs for Example 3.3.

Example 3.4 The state diagram shown below in Figure 3.19 represents a Moore
synchronous sequential machine with three inputs and four outputs.  The machine will
be designed using behavioral modeling with the case statement.  The design module is
shown in Figure 3.20.  The test bench module and the outputs are shown in Figure 3.21
and Figure 3.22, respectively.

Figure 3.19 State diagram for Example 3.4.

Figure 3.20 Behavioral design module for Example 3.4.

x1 = 1, state = 000, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 1, state = 010, z1 = 0

x1 = 0, state = 000, z1 = 0
x1 = 1, state = 001, z1 = 0
x1 = 1, state = 010, z1 = 0

x1 = 1, state = 000, z1 = 0
x1 = 1, state = 011, z1 = 0
x1 = 0, state = 110, z1 = 1

x1 = 0, state = 000, z1 = 0
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//behavioral moore ssm with four outputs
module moore_4_outputs_case (clk, x1, x2, x3, y,

z1, z2, z3, z4);

input clk, x1, x2, x3; //define inputs and outputs
output [2:0] y;
output z1, z2, z3, z4;

//continued on next page
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Figure 3.20       (Continued)

reg [2:0] y, next_state; //variables are reg in always

//assign state codes
parameter state_a = 3'b101, //parameter defines a constant

state_b = 3'b110,
state_c = 3'b011,
state_d = 3'b000,
state_e = 3'b001;

assign z1 = (y[2] & y[1] & ~y[0]), //define outputs
z2 = (~y[2] & y[1] & y[0]),
z3 = (~y[2] & ~y[1] & ~y[0]),
z4 = (~y[2] & ~y[1] & y[0]);

//set next state
always @ (posedge clk)

y <= next_state;

//determine next state
always @ (y or x1 or x2 or x3)
begin
case (y)

state_a:
if (x1==0 & x3==0)

next_state = state_b;
else if (x1==0 & x3==1)

next_state = state_c;
else if (x1==1 & x2==0 & x3==0)

next_state = state_d;
else if (x1==1 & x2==1 & x3==1)

next_state = state_e;
else if (x1==1 & x2==0 & x3==1)

next_state = state_a;
else if (x1==1 & x2==1 & x3==0)

next_state = state_a;
else next_state = state_a;

state_b: next_state = state_a;
state_c: next_state = state_a;
state_d: next_state = state_a;
state_e: next_state = state_a;
default next_state = state_a;

endcase
end

endmodule
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Figure 3.21 Test bench module for Example 3.4.

//test bench for moore ssm with four outputs
module moore_4_outputs_case_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg clk, x1, x2, x3;
wire [2:0] y;
wire z1, z2, z3, z4;

//display variables
initial
$monitor ("x1 x2 x3 = %b, state = %b, z1 z2 z3 z4 = %b",

{x1, x2, x3}, y, {z1, z2, z3, z4});

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//apply input vectors
initial
begin

x1 = 1'b0;x2 = 1'b0;x3 = 1'b0;
@ (posedge clk) //go to state_b (110)
@ (posedge clk) //go to state_a (101)

x1 = 1'b0;x2 = 1'b1;x3 = 1'b1;
@ (posedge clk) //go to state_c (011)
@ (posedge clk) //go to state_a (101)

x1 = 1'b1;x2 = 1'b0;x3 = 1'b0;
@ (posedge clk) //go to state_d (000)
@ (posedge clk) //go to state_a (101)

x1 = 1'b1;x2 = 1'b1;x3 = 1'b1;
@ (posedge clk) //go to state_e (001)
@ (posedge clk) //go to state_a (101)

x1 = 1'b1;x2 = 1'b0;x3 = 1'b1;
@ (posedge clk) //go to state_a (101)

//continued on next page
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Figure 3.21       (Continued)

Figure 3.22 Outputs for Example 3.4.

Example 3.5 A state diagram is shown in Figure 3.23 for a Moore synchronous
sequential machine that has three parallel inputs x1 , x2 , and x3  and three outputs z1, z2 ,
and z3.  The inputs represent a 3-bit word.  There is one bit space between words.  Out-
put z1 is asserted if the 3-bit word contains a single 1 bit; output z2  is asserted if the 3-
bit word contains two 1 bits; output z3  is asserted if the 3-bit word contains three 1 bits.

The structural design module will be implemented using D flip-flops and built-in
primitives.  The Karnaugh maps for the three flip-flops are shown in Figure 3.24 and
the corresponding equations are shown in Equation 3.4.  The logic diagram is shown in
Figure 3.25.

The structural design module is shown in Figure 3.26.  The test bench module is
shown in Figure 3.27 and the outputs are shown in Figure 3.28.

x1 = 1'b1;x2 = 1'b1;x3 = 1'b0;
@ (posedge clk) //go to state_a (101)

#10 $stop;
end

//instantiate the module into the test bench
moore_4_outputs_case inst1 (clk, x1, x2, x3, y,

z1, z2, z3, z4);

endmodule

x1 x2 x3 = 000, state = 101, z1 z2 z3 z4 = 0000
x1 x2 x3 = 011, state = 110, z1 z2 z3 z4 = 1000

x1 x2 x3 = 011, state = 101, z1 z2 z3 z4 = 0000
x1 x2 x3 = 100, state = 011, z1 z2 z3 z4 = 0100

x1 x2 x3 = 100, state = 101, z1 z2 z3 z4 = 0000
x1 x2 x3 = 111, state = 000, z1 z2 z3 z4 = 0010

x1 x2 x3 = 111, state = 101, z1 z2 z3 z4 = 0000
x1 x2 x3 = 101, state = 001, z1 z2 z3 z4 = 0001

x1 x2 x3 = 110, state = 101, z1 z2 z3 z4 = 0000
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Figure 3.23 State diagram for the Moore machine of Example 3.5.  Unused states
are: y1y2y3 = 011, 101, 110, and 111.

See Equation 3.4 for the meaning of entries (a), (b), and (c).

Figure 3.24 Karnaugh maps for the Moore machine of Example 3.5.

(a) Dy1 = x1x2x3

(b) Dy2 = x1' x2x3  + x1x2' x3  + x1x2x3'

(c) Dy3 = x1' x2' x3  + x1' x2x3'  + x1x2' x3'    (3.4)
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Figure 3.25 Logic diagram for the Moore machine of Example 3.5.

Figure 3.26 Structural design module for the Moore machine of Example 3.5.
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//structural for moore with three outputs using D flip-flops

module moore_3_outputs (rst_n, clk, x1, x2, x3, y,
z1, z2, z3);

//define inputs and outputs
input rst_n, clk, x1, x2, x3;
output [1:3] y;
output z1, z2, z3;

//define internal nets
wire net1, net3, net4, net5, net6, net8, net9, net10, net11;

//continued on next page
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Figure 3.26       (Continued)

Figure 3.27 Test bench module for Example 3.5.

//-------------------------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, x1, x2, x3);

//instantiate the D flip-flop for y[1]
d_ff_bh inst2 (rst_n, clk, net1, y[1]);

//-------------------------------------------------------
//instantiate the logic for flip-flop y[2]
and inst3 (net3, ~x1, x2, x3),

inst4 (net4, x1, ~x2, x3),
inst5 (net5, x1, x2, ~x3);

or inst6 (net6, net3, net4, net5);

//instantiate the D flip-flop for y[2]
d_ff_bh inst7 (rst_n, clk, net6, y[2]);

//-------------------------------------------------------
//instantiate the logic for flip-flop y[3]
and inst8 (net8, ~x1, ~x2, x3),

inst9 (net9, ~x1, x2, ~x3),
inst10 (net10, x1, ~x2, ~x3);

or inst11 (net11, net8, net9, net10);

//instantiate the D flip-flop for y[3]
d_ff_bh inst12 (rst_n, clk, net11, y[3]);

//------------------------------------------------------
assign z1 = y[3],

z2 = y[2],
z3 = y[1];

endmodule

//test bench for moore with three outputs using D flip-flops
module moore_3_outputs_tb;

reg rst_n, clk, x1, x2, x3; //inputs are reg
wire  [1:3] y; //outputs are wire
wire z1, z2, z3;



3.2     Synchronous Sequential Machines     267

Figure 3.27       (Continued)

initial //display variables
$monitor ("x1 x2 x3 = %b, z1 z2 z3 + %b", {x1, x2, x3},

{z1, z2, z3});

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define input sequence
begin

#0 rst_n = 1'b0;
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#5 rst_n = 1'b1;
//--------------------------------------------

x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
@ (posedge clk)

x1 = 1'b0; x2 = 1'b0; x3 = 1'b1;
@ (posedge clk)

x1 = 1'b0; x2 = 1'b1; x3 = 1'b0;
@ (posedge clk)

x1 = 1'b0; x2 = 1'b1; x3 = 1'b1;
@ (posedge clk)

x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;
@ (posedge clk)

x1 = 1'b1; x2 = 1'b0; x3 = 1'b1;
@ (posedge clk)

x1 = 1'b1; x2 = 1'b1; x3 = 1'b0;
@ (posedge clk)

x1 = 1'b1; x2 = 1'b1; x3 = 1'b1;
@ (posedge clk)
#10 $stop;

end

//instantiate the module into the test bench
moore_3_outputs inst1 (rst_n, clk, x1, x2, x3, y,

z1, z2, z3);

endmodule
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Figure 3.28 Outputs for Example 3.5.

Example 3.6 This example designs the Moore synchronous sequential machine
shown in Figure 3.29 using structural modeling.  The design will use D flip-flops that
were designed using behavioral modeling and logic gates that were designed using
dataflow modeling.

Figure 3.29 State diagram for Example 3.6.

x1 x2 x3 = 000, clock = 0, z1 z2 z3 + 000
x1 x2 x3 = 001, clock = 1, z1 z2 z3 + 000
x1 x2 x3 = 001, clock = 0, z1 z2 z3 + 000
x1 x2 x3 = 010, clock = 1, z1 z2 z3 + 100
x1 x2 x3 = 010, clock = 0, z1 z2 z3 + 100

x1 x2 x3 = 011, clock = 1, z1 z2 z3 + 100
x1 x2 x3 = 011, clock = 0, z1 z2 z3 + 100
x1 x2 x3 = 100, clock = 1, z1 z2 z3 + 010
x1 x2 x3 = 100, clock = 0, z1 z2 z3 + 010
x1 x2 x3 = 101, clock = 1, z1 z2 z3 + 100

x1 x2 x3 = 101, clock = 0, z1 z2 z3 + 100
x1 x2 x3 = 110, clock = 1, z1 z2 z3 + 010
x1 x2 x3 = 110, clock = 0, z1 z2 z3 + 010
x1 x2 x3 = 111, clock = 1, z1 z2 z3 + 010
x1 x2 x3 = 111, clock = 0, z1 z2 z3 + 010

x1 x2 x3 = 111, clock = 1, z1 z2 z3 + 001
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The Karnaugh maps obtained from the state diagram are shown in Figure 3.30.
The equations for the D flip-flops are shown below the corresponding Karnaugh maps.
The equations are reproduced in Figure 3.31 together with the instantiation names and
the net names for the structural design module.  The structural design module is shown
in Figure 3.32.  The test bench module and the outputs are shown in Figures 3.33 and
3.34, respectively.

Dy1 = y1 ' y2 ' y3 ' x1'  + y1y2 ' y3x2'  + y1y2 ' y3x3

Dy2 = y1 ' y2 ' y3x2  + y1y2 ' y3x2'

Dy3 = y1 ' y2 ' y3 '  + y1y2 ' y3x2' x3'

Figure 3.30 Karnaugh maps for Example 3.6.
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Figure 3.31 Equations with instantiation and net names for Example 3.6.

Figure 3.32 Structural design module for Example 3.6.

inst1    inst2      inst3
Dy1 = y1 ' y2 ' y3 ' x1'  + y1y2 ' y3x2'  + y1y2 ' y3x3

net1     net2 net3
inst4, net4 

      inst6 inst7
Dy2 = y1 ' y2 ' y3x2  + y1y2 ' y3x2'

net6 net7
inst8, net8

  inst 10       inst11
Dy3 = y1 ' y2 ' y3 '  + y1y2 ' y3x2' x3'

  net10 net11
inst12, net12

//structural for moore synchronous sequential machine
module moore_ssm31 (rst_n, clk, x1, x2, x3, y, z1, z2, z3);

//define inputs and outputs
input rst_n, clk, x1, x2, x3;
output [1:3] y;
output z1, z2, z3;

//define internal nets
wire net1, net2, net3, net4, net6, net7, net8,

net10, net11, net12;

//--------------------------------------------------
//instantiate the logic for flip-flop y[1]
and4_df inst1 (~y[1], ~y[2], ~y[3], ~x1, net1),

inst2 (y[1], ~y[2], y[3], ~x2, net2),
inst3 (y[1], ~y[2], y[3], x3, net3);

or3_df inst4 (net1, net2, net3, net4);

//instantiate the D flip-flop for y[1]
d_ff_bh inst5 (rst_n, clk, net4, y[1]);
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Figure 3.32       (Continued)

Figure 3.33 Test bench module for Example 3.6.

//--------------------------------------------------
//instantiate the logic for flip-flop y[2]
and4_df inst6 (~y[1], ~y[2], y[3], x2, net6),

inst7 (y[1], ~y[2], y[3], ~x2, net7);

or2_df inst8 (net6, net7, net8);

//instantiate the D flip-flop for y[2]
d_ff_bh inst9 (rst_n, clk, net8, y[2]);

//--------------------------------------------------
//instantiate the logic for flip-flop y[3]
and3_df inst10 (~y[1], ~y[2], ~y[3], net10);
and5_df inst11 (y[1], ~y[2], y[3], ~x2, ~x3, net11);

or2_df inst12 (net10, net11, net12);

//instantiate the D flip-flop for y[3]
d_ff_bh inst13 (rst_n, clk, net12, y[3]);

//--------------------------------------------------
assign z1 = ~y[1] & y[2] & ~y[3],

z2 = y[1] & ~y[2] & ~y[3],
z3 = y[1] & y[2] & y[3];

endmodule

//test bench for the moore synchronous sequential machine
module moore_ssm31_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1, x2, x3;
wire [1:3] y;
wire z1, z2, z3;

//display variables
initial
$monitor ("x1 x2 x3 = %b, state = %b, z1 z2 z3 = %b",

{x1, x2, x3}, y, {z1, z2, z3});

//continued on next page
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Figure 3.33       (Continued)

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define input sequence
begin

#0 rst_n = 1'b0;
x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;

#5 rst_n = 1'b1;
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

//---------------------------------------------------
x2 = 1'b1;
@ (posedge clk)

x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
@ (posedge clk)

//---------------------------------------------------
x1 = 1'b0;
@ (posedge clk)

x2 = 1'b1;x3 = 1'b1;
@ (posedge clk)

//---------------------------------------------------
x1 = 1'b0;
@ (posedge clk)

x2 = 1'b0;
@ (posedge clk)

x2 = 1'b0;x3 = 1'b0;
@ (posedge clk)

x2 = 1'b0;x3 = 1'b0;
@ (posedge clk)

#10 $stop;
end

//instantiate the module into the test bench
moore_ssm31 inst1 (rst_n, clk, x1, x2, x3, y, z1, z2, z3);

endmodule
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Figure 3.34 Outputs for Example 3.6.

3.2.4  Mealy Machines

Mealy machines are synchronous sequential machines in which the output function 
produces an output vector Zr(t) which is determined by both the present input vector
Xi(t) and the present state of the machine Yj(t).  The general configuration of a Mealy
machine is shown in Figure 3.35.  A Mealy machine may be synchronous or asynchro-
nous; however, this section pertains to synchronous organizations only.

Figure 3.35 Mealy machine in which the outputs are a function of both the present
state and the present inputs.

A Mealy machine is a 5-tuple and can be defined as shown in Equation 3.5,

M = (X, Y, Z, , )                                                       (3.5)

x1 x2 x3 = 100, state = 000, z1 z2 z3 = 000
x1 x2 x3 = 010, state = 001, z1 z2 z3 = 000
x1 x2 x3 = 000, state = 010, z1 z2 z3 = 100
x1 x2 x3 = 000, state = 000, z1 z2 z3 = 000

x1 x2 x3 = 011, state = 101, z1 z2 z3 = 000
x1 x2 x3 = 011, state = 100, z1 z2 z3 = 010
x1 x2 x3 = 001, state = 000, z1 z2 z3 = 000

x1 x2 x3 = 000, state = 101, z1 z2 z3 = 000
x1 x2 x3 = 000, state = 111, z1 z2 z3 = 001
x1 x2 x3 = 000, state = 000, z1 z2 z3 = 000
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where

X is a nonempty finite set of inputs 
Y is a nonempty finite set of states 
Z is a nonempty finite set of outputs
(X, Y) : X  Y  Y
(X, Y) : Y  Z

The Mealy class of synchronous sequential machines is the result of a paper by G.
H. Mealy in 1955 on the synthesis of sequential circuits.  The definitions for Mealy
and Moore machines are the same, except that the outputs of a Mealy machine are a
function of both the present inputs and the present state, whereas the outputs of a
Moore machine are a function of the present state only.  This is the underlying differ-
ence between Moore and Mealy machines.  A Moore machine, therefore, can be con-
sidered as a special case of a Mealy machine.

Example 3.7 The state diagram for a Mealy synchronous sequential machine is
shown in Figure 3.36 and will be implemented with JK flip-flops in a structural design
module.  There are three inputs x1 , x2 , and x3  and one output z1.  There are two state
flip-flops y1  and y2  that are reset to state a (y1y2  = 11) and one unused state y1y2  = 00.

The functional characteristic table for a JK flip-flop is shown in Table 3.1 and the
excitation table is shown in Table 3.2.

Figure 3.36 State diagram for the Mealy machine of Example 3.7.  Unused state is
y1y2 = 00.

The next-state table is shown in Table 3.3 and is obtained directly from the state
diagram.  For example, consider state a (y1y2 = 11).  Input x3  does not contribute to a
state transition to state b (y1y2  = 10) or to state c (y1y2  = 01); therefore, input x3  is

a

y1y2
1 1

b
1 0

c
0 1

z1

x1'

x3

x3'

x1 x2 x1 x2'
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entered as a “don’t care” value in the next-state table.  If x1  = 0 in state a (y1y2 = 11),
then the machine proceeds to state c (y1y2 = 01); therefore, the next-state table con-
tains a next state of y1y2  = 01 whenever x1  = 0.

If x1x2  = 10 in state a, then the machine remains in state a.  If x1x2  = 11 in state a,
then the machine proceeds to state b (y1y2  = 10), where output z1 is asserted if x3  = 1,
then sequences to state a; otherwise, the machine proceeds to state a without asserting
output z1.

Table 3.1  JK Functional
Characteristic Table

J K Function
0 0 No change
0 1 Reset
1 0 Set
1 1 Toggle

Table 3.2  Excitation Table for a JK Flip-Flop

Present State
Yj(t)

Next State
Yk(t+1)

Data Inputs
J K

0 0 0 – A dash (–) indicates a “don’t care” condition
0 1 1 –
1 0 – 1
1 1 – 0

Table 3.3  Next-State Table for the Mealy Machine of Example 3.7

Present State
y1  y2

Inputs
x1  x2   x3

Next State
y1   y2

Flip-Flop Inputs
Jy1 Ky1     Jy2 Ky2

Output
z1

      0     0  –    –    –     –    –    –      –          –      – –

      0     1  –    –    –     1    1    1      –          –      0 0

      1     0  –    –    0     1    1    –      0          1      – 0
 –    –    1     1    1    –      0          1      – 1

      1     1  0    0    –     0    1    –      1          –      0 0
 0    1    –     0    1    –      1          –      0 0
 1    0    –     1    1    –      0          –      0 0
 1    1    –     1    0    –      0          –      1 0
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The Karnaugh maps for the JK flip-flops are shown in Figure 3.37 and the equa-
tions are shown in Equation 3.6.  The Karnaugh map for output z1 is shown in Figure
3.38 and the equation for z1 is shown in Equation 3.7.  The logic diagram is shown in
Figure 3.39 using AND gates and positive edge-triggered JK flip-flops. The design
module for a JK flip-flop is shown in Figure 3.40.  The structural design module is
shown in Figure 3.41 using instantiated logic gates that were designed using dataflow
modeling and JK flip-flops that were designed using behavioral modeling.  The test
bench module and the outputs are shown in Figures 3.42 and 3.43, respectively.

Figure 3.37 Karnaugh maps for the Mealy synchronous sequential machine of
Example 3.7.

Figure 3.38 Karnaugh map for output z1.
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Figure 3.39 Logic diagram for the Mealy machine of Example 3.7.

Figure 3.40 Behavioral design module for a JK flip-flop.
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module jk_ff_bh (rst_n, clk, j, k,  q);

input rst_n, clk, j, k;
output q;

wire rst_n, clk, j, k;
reg q;

always @ (posedge clk or negedge rst_n)
begin

if (~rst_n) begin q <= 1'b0;
end

else if (j==1'b0 && k==1'b0)
begin q <= q; end

else if (j==1'b0 && k==1'b1)
begin q <= 1'b0; end

else if (j==1'b1 && k==1'b0)
begin q <= 1'b1; end

else if (j==1'b1 && k==1'b1)
begin q <= ~q; end

end

endmodule
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Figure 3.41 Structural design module for the Mealy machine of Example 3.7.

Figure 3.42 Test bench module for the Mealy machine of  Example 3.7.

//structural mealy ssm
module mealy_ssm_10a (rst_n, clk, x1, x2, x3, y, z1);

input rst_n, clk, x1, x2, x3; //define inputs and output
output [1:2] y;
output z1;

wire net1, net3; //define internal nets

//---------------------------------------------------
//instantiate the logic for flip-flop y[1]
and2_df inst1 (y[2], ~x1, net1);

//instantiate the JK flip-flop for y[1]
jk_ff_bh inst2 (rst_n, clk, 1'b1, net1, y[1]);

//---------------------------------------------------
//instantiate the logic for flip-flop y[2]
and3_df inst3 (y[1], x1, x2, net3);

jk_ff_bh inst4 (rst_n, clk, 1'b1, net3, y[2]);

//---------------------------------------------------
//instantiate the logic for the output z1
and2_df inst5 (~y[2], x3, z1);
endmodule

//test bench for mealy synchronous sequential machine
module mealy_ssm_10a_tb;

reg rst_n, clk, x1, x2, x3; //inputs are reg
wire [1:2] y; //outputs are wire
wire z1;

initial //display variables
begin
$monitor ("x1 x2 x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, y, z1);
end

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end //continued on next page
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Figure 3.42       (Continued)

Figure 3.43 Outputs for the Mealy machine of Example 3.7.

//define input sequence
initial
begin

#0 rst_n = 1'b0; #5 rst_n = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

//------------------------------------
x1 = 1'b0;
@ (posedge clk)
@ (posedge clk)

x1 = 1'b1; x2 = 1'b0;
@ (posedge clk)

x1 = 1'b1; x2 = 1'b1;
@ (posedge clk)

x3 = 1'b0;
@ (posedge clk)

x1 = 1'b1; x2 = 1'b1;
@ (posedge clk)

x3 = 1'b1;
@ (posedge clk)

#10 $stop;
end
//------------------------------------
//instantiate the module into the test bench
mealy_ssm_10a inst1 (rst_n, clk, x1, x2, x3, y, z1);

endmodule

x1 x2 x3 = xxx, state = 00, z1 = x
x1 x2 x3 = xxx, state = 11, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0

x1 x2 x3 = 100, state = 11, z1 = 0
x1 x2 x3 = 110, state = 11, z1 = 0
x1 x2 x3 = 110, state = 10, z1 = 0
x1 x2 x3 = 110, state = 11, z1 = 0

x1 x2 x3 = 111, state = 10, z1 = 1
x1 x2 x3 = 111, state = 11, z1 = 0
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Example 3.8 A Mealy synchronous sequential machine will be designed using
structural modeling with built-in primitives and D flip-flops that were designed using
behavioral modeling.  There is one output z1 that is asserted whenever a serial input
data line x1  contains a 3-bit word with an odd number of 1s.  There is no space between
words.

The state diagram is shown in Figure 3.44 with three unused states: y1y2y3 = 101,
110, and 111, which will be assigned values of zero.  If two or more flip-flops change
value for a state transition sequence, then the machine may momentarily pass through
either an unused state or a state in which there is no output — in both cases, there will
be no glitch on output z1.

Figure 3.44 State diagram for the Mealy machine of Example 3.8.

The Karnaugh maps for the D flip-flops y1y2y3 are shown in Figure 3.45.  The
equations for the flip-flops are shown in Equation 3.8.  The Karnaugh map for output
z1 is shown in Figure 3.46 and the equation for z1 is shown in Equation 3.9.

Figure 3.45 Karnaugh maps for the D flip-flops for Example 3.8.
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Continued on next page
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Figure 3.45       (Continued)

Figure 3.46 Karnaugh map for output z1.
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                                    (3.8)
Dy3 = y1 ' y2 ' x1'  + y1 ' y2y3 ' x1
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The structural design module is shown in Figure 3.47 using built-in primitives and
D flip-flops that were designed using behavioral modeling.  Refer to page 254 of this
chapter for the behavioral design module for the D flip-flop.  When using built-in
primitives, the output signal is listed first, followed by the inputs in any order.  The
instance name is optional.  The test bench module is shown in Figure 3.48 and the out-
puts are shown in Figure 3.49.

Figure 3.47 Structural design module for the Mealy machine of Example 3.8.

//structural for mealy using built-in primitives
module mealy_struc_bip (rst_n, clk, x1, y, z1);

input rst_n, clk, x1; //define inputs and output
output [1:3] y;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11, net12;

//-------------------------------------------------------
//instantiate the logic for flip-flop y[1]
and (net1, ~y[1], ~y[2], y[3], x1),

(net2, ~y[1], y[2], ~y[3], ~x1);

or (net3, net1, net2);

//instantiate the D flip-flop for y[1]
d_ff_bh inst1 (rst_n, clk, net3, y[1]);

//-------------------------------------------------------
//instantiate the logic for flip-flop y[2]
and (net4, ~y[1], ~y[2], y[3], ~x1),

(net5, ~y[1], y[2], ~y[3], x1);

or (net6, net4, net5);

//instantiate the D flip-flop for y[2]
d_ff_bh inst2 (rst_n, clk, net6, y[2]);

//-------------------------------------------------------
//instantiate the logic for flip-flop y[3]
and (net7, ~y[1], ~y[2], ~x1),

(net8, ~y[1], y[2], ~y[3], x1);

or (net9, net7, net8);

//instantiate the D flip-flop for y[3]
d_ff_bh inst3 (rst_n, clk, net9, y[3]);

//continued on next page
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Figure 3.47       (Continued)

Figure 3.48 Test bench module for the Mealy machine of Example 3.8.

//instantiate the logic for output z1
and (net10, y[1], ~x1),

(net11, y[2], y[3], x1);

or (z1, net10, net11);

endmodule

//test bench for structural mealy using built-in primitives

module mealy_struc_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1;
wire [1:3] y;
wire z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; x1 = 1'b0;

#5 rst_n = 1'b1;
//------------------------------------------

x1 = 1'b0; @ (posedge clk)

x1 = 1'b1; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)
//continued on next page
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Figure 3.48       (Continued)

Figure 3.49 Outputs for the Mealy machine of Example 3.8.

x1 = 1'b1; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)

x1 = 1'b1; @ (posedge clk)

x1 = 1'b1; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)

#10 $stop;
end

//instantiate the module into the test bench
mealy_struc_bip inst1 (rst_n, clk, x1, y, z1);

endmodule

x1 = 0, state = 000, z1 = 0
x1 = 0, state = 001, z1 = 0
x1 = 1, state = 011, z1 = 1
x1 = 0, state = 000, z1 = 0

x1 = 1, state = 001, z1 = 0
x1 = 0, state = 100, z1 = 1
x1 = 0, state = 000, z1 = 0

x1 = 1, state = 001, z1 = 0
x1 = 1, state = 100, z1 = 0
x1 = 0, state = 000, z1 = 0

x1 = 0, state = 001, z1 = 0
x1 = 0, state = 011, z1 = 0
x1 = 0, state = 000, z1 = 0
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Example 3.9 A Mealy synchronous sequential machine that generates an output z1
whenever the sequence 1001 is detected on a serial data input line x1 .  Overlapping
sequences are valid, as shown below, which will assert z1 three times.

. . . 01101001000110010010 . . . 

The state diagram is shown in Figure 3.50.  This example will use logic gates that
were designed using dataflow modeling and D flip-flops that were designed using
behavioral modeling.

Figure 3.50 State diagram for the Mealy synchronous sequential machine of
Example 3.9.
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The Karnaugh maps for flip-flops y1  and y2  are shown in Figure 3.51.  The equa-
tions for the flip-flops are shown in Equation 3.10.  The equation for output z1 is
shown in Equation 3.11.  The structural design module using dataflow logic gates and
behavioral D flip-flops is shown in Figure 3.52.  The test bench module and the out-
puts are shown in Figures 3.53 and 3.54, respectively.

Figure 3.51 Karnaugh maps for Example 3.9.

    net1
Dy1 = y2x1'

net3
Dy2 = x1  + y1 ' y2  (3.10)

 
net4

z1 = y1y2 ' x1  (3.11)

Figure 3.52 Structural design module for the Mealy machine of Example 3.9.

   0        1     1 1      10
y2

    y1

 0       0       x1'

 1       0       x1'

 0            1           3            2

 2            3           7           6

   0        1     1 1      10
y2

    y1

 0       x1       1

 1       x1       x1

 0            1           3            2

 2            3           7           6

Dy1 Dy2

//structural for mealy to detect the sequence 1001

module mealy_1001_sequence (rst_n, clk, x1, y, z1);

//define inputs and output
input rst_n, clk, x1;
output [1:2] y;
output z1;

//define internal nets
wire net1, net2, net3;

//continued on next page



3.2     Synchronous Sequential Machines     287

Figure 3.52       (Continued)

Figure 3.53 Test bench module for Example 3.9.

//--------------------------------------------
//instantiate the logic for flip-flop y[1]
and2_df inst1 (y[2], ~x1, net1);

//instantiate the D flip-flop for y[1]
d_ff_bh inst2 (rst_n, clk, net1, y[1]);

//--------------------------------------------
//instantiate the logic for flip-flop y[2]
and2_df inst3 (~y[1], y[2], net3);
or2_df inst4 (x1, net3, net4);

//instantiate the D flip-flop for y[2]
d_ff_bh inst5 (rst_n, clk, net4, y[2]);

//--------------------------------------------
//instantiate the logic for output z1
and3_df inst6 (y[1], ~y[2], x1, z1);

endmodule

//test bench for mealy_1001_sequence
module mealy_1001_sequence_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1;

//display variables
initial
begin

$monitor ("x1 = %b, state = %b, z1 = %b", x1, y, z1);
end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//continued on next page
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Figure 3.53       (Continued)

//define input sequence
initial
begin

#0 rst_n = 1'b0;x1 = 1'b0;
#5 rst_n = 1'b1;x1 = 1'b0;

//-------------------------------------------------
x1 = 1'b1; @ (posedge clk)
x1 = 1'b0; @ (posedge clk)
x1 = 1'b0; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b0; @ (posedge clk)
x1 = 1'b0; @ (posedge clk)

x1 = 1'b1; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b0; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b0; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)
x1 = 1'b1; @ (posedge clk)

x1 = 1'b0; @ (posedge clk)

#10 $stop;

end

//instantiate the module into the test bench
mealy_1001_sequence inst1 (rst_n, clk, x1, y, z1);

endmodule
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Figure 3.54 Outputs for Example 3.9.

Example 3.10 A state diagram for a Mealy synchronous sequential machine is
shown in Figure 3.55 which has three parallel inputs x1x2x3  and two outputs z1z2 .
Output z1 is asserted if the input sequence is x1x2x3  = 000, 111, 000.  Output z2  is
asserted if the input sequence is x1x2x3  = 111, 000, 111.

There are two unused states: y1y2y3 = 110 and 111.  The state codes are assigned
such that any transition through an unused state will not cause an output to be asserted
if the input sequence from state e to state a is any input value that is not x1x2x3  = 000
or 111.

The behavioral design module is shown in Figure 3.56 using the case statement
with the if, else if, else conditional statements.  The test bench module is shown in Fig-
ure 3.57 and the outputs are shown in Figure 3.58.

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 00, z1 = 0

x1 = 0, state = 01, z1 = 0
x1 = 0, state = 11, z1 = 0

x1 = 1, state = 10, z1 = 1
x1 = 0, state = 01, z1 = 0

x1 = 1, state = 11, z1 = 0
x1 = 0, state = 01, z1 = 0

x1 = 0, state = 11, z1 = 0
x1 = 1, state = 10, z1 = 1

x1 = 1, state = 01, z1 = 0
x1 = 0, state = 01, z1 = 0

x1 = 0, state = 11, z1 = 0
x1 = 1, state = 10, z1 = 1

x1 = 1, state = 01, z1 = 0
x1 = 0, state = 01, z1 = 0

x1 = 0, state = 11, z1 = 0
x1 = 1, state = 10, z1 = 1

x1 = 1, state = 01, z1 = 0
x1 = 0, state = 01, z1 = 0

x1 = 0, state = 11, z1 = 0
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Figure 3.55 State diagram for the Mealy machine of Example 3.10.  Unused states
are: y1y2y3 = 110 and 111.

Figure 3.56 Behavioral design module for the Mealy synchronous sequential
machine of Example 3.10.
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//behavioral mealy three parallel inputs
module mealy_111_000_bh_case (rst_n, clk, x1, x2, x3,

y, z1, z2);
//define inputs and outputs
input rst_n, clk, x1, x2, x3;
output [1:3] y;
output z1, z2;

//variables in always are reg
reg [1:3] y, next_state;

//assign state codes
parameter state_a = 3'b000,

state_b = 3'b001,
state_c = 3'b011,
state_d = 3'b101,
state_e = 3'b100,
state_f = 3'b010;

//continued on next page
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Figure 3.56       (Continued)

//set next state
always @ (posedge clk)
begin

if (~rst_n)
y = state_a;

else
y = next_state;

end

//define outputs
assign z1 = (y[1] & ~y[2] & y[3] & ~x1 & ~x2 & ~x3),

z2 = (~y[1] & y[2] & ~y[3] & x1 & x2 & x3);

//determine next state
always @ (y or x1 or x2 or x3)
begin

case (y)

//--------------------------------------------
state_a:

if ((x1==0 & x3==1) | (x1==1 & x2==0)
| (x2==1 & x3==0)) 

next_state = state_a;

else if (x1==0 & x2==0 & x3==0)
next_state = state_b;

else if (x1==1 & x2==1 & x3==1)
next_state = state_c;

//--------------------------------------------
state_b:

if (x1==1 & x2==1 & x3==1)
next_state = state_d;

else if (x1==0 | x2==0 | x3==0)
next_state = state_e;

//--------------------------------------------
state_c:

if (x1==1 | x2==1 | x3==1)
next_state = state_e;

else if (x1==0 & x2==0 & x3==0)
next_state = state_f;

//--------------------------------------------
//continued on next page
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Figure 3.56       (Continued)

Figure 3.57 Test bench module for the Mealy machine of Example 3.10.

state_d:
if (x1==0 & x2==0 & x3==0)

next_state = state_a;//assert z1

else if (x1==1 | x2==1 | x3==1)
next_state = state_a;

//--------------------------------------------
state_e: next_state = state_a;

//--------------------------------------------
state_f:

if (x1==0 | x2==0 | x3==0)
next_state = state_a;

else if (x1==1 & x2==1 & x3==1)
next_state = state_a;//assert z2

//--------------------------------------------
default next_state = state_a;

endcase
end

endmodule

//test bench for mealy three parallel inputs
module mealy_111_000_bh_case_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1, x2, x3;
wire [1:3] y;
wire z1, z2;

initial //display variables
$monitor ("x1 x2 x3 = %b, state = %b, z1 = %b, z2 = %b",

{x1, x2, x3}, y, z1, z2);

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end //continued on next page
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Figure 3.57       (Continued)

//define input sequence
initial
begin

#0 rst_n = 1'b0; #5 rst_n = 1'b1;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

//-------------------------------------------
x1=1'b0; x3=1'b1;
@ (posedge clk) //go to state_a (000)

x1=1'b1; x2=1'b0;
@ (posedge clk) //go to state_a (000)

x2=1'b1; x3=1'b0;
@ (posedge clk) //go to state_a (000)

x1=1'b0; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_b (001)

//-------------------------------------------
x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_d (101)

//-------------------------------------------
x1=1'b0; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_a (000), assert z1

//-------------------------------------------
x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_c (011)

x1=1'b0; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_f (010)

x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_a (000), assert z2

//-------------------------------------------
x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_c (011)

x1=1'b1; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_e (100)
@ (posedge clk)

//-------------------------------------------
#20 $stop;

end

//instantiate the module into the test bench
mealy_111_000_bh_case inst1 (rst_n, clk, x1, x2, x3,

 y, z1, z2);
endmodule
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Figure 3.58 Outputs for the Mealy machine of Example 3.10.

Example 3.11 This example repeats Example 3.10 for a Mealy machine, but uses a
structural design module with built-in primitives and D flip-flops.  The state diagram
for the Mealy machine is reproduced in Figure 3.59 for convenience.

Figure 3.59 State diagram for Mealy machine of Example 3.11.

x1 x2 x3 = xxx, state = xxx, z1 = x, z2 = x
x1 x2 x3 = 001, state = xxx, z1 = 0, z2 = 0
x1 x2 x3 = 101, state = 000, z1 = 0, z2 = 0
x1 x2 x3 = 110, state = 000, z1 = 0, z2 = 0

x1 x2 x3 = 000, state = 000, z1 = 0, z2 = 0
x1 x2 x3 = 111, state = 001, z1 = 0, z2 = 0
x1 x2 x3 = 000, state = 101, z1 = 1, z2 = 0
x1 x2 x3 = 111, state = 000, z1 = 0, z2 = 0

x1 x2 x3 = 000, state = 011, z1 = 0, z2 = 0
x1 x2 x3 = 111, state = 010, z1 = 0, z2 = 1
x1 x2 x3 = 111, state = 000, z1 = 0, z2 = 0

x1 x2 x3 = 100, state = 011, z1 = 0, z2 = 0
x1 x2 x3 = 100, state = 100, z1 = 0, z2 = 0
x1 x2 x3 = 100, state = 000, z1 = 0, z2 = 0
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The equations for flip-flops y1y2y3  can be obtained directly from the state dia-
gram.  The equations represent the transition paths where the next state for a particular
flip-flop is a logic 1.  For example, flip-flop y1  assumes a value of 1 for the following
input vectors: from state b (y1y2y3 = 001) to state d (y1y2y3 = 101), where the inputs
are x1x2x3 ; from state b (y1y2y3 = 001) to state e (y1y2y3 = 100), where the inputs are
x1'  + x2'  + x3' ; and from state c (y1y2y3 = 011) to state e (y1y2y3 = 100), where the
inputs are x1 + x2  + x3 .  Therefore, the equations for the D input of flip-flop y1  are
shown in Equation 3.12 using built-in primitives.

The structural design module using built-in primitives and D flip-flops that were
designed using behavioral modeling is shown in Figure 3.60.  The test bench module
and the outputs are shown in Figures 3.61 and 3.62, respectively.

Figure 3.60 Structural design module for the Mealy machine of Example 3.11.

and net1: y1 ' y2 ' y3x1x2x3
or net2: x1' x2' x3'

and net3: y1 ' y2 ' y3net2
or net4: x1x2x3

and net5: y1 ' y2y3net4
Dy1 = or net6: net1 net3 net5                                  (3.12)

//structural for mealy_111_000 with three parallel inputs
module mealy_111_000_struc (rst_n, clk, x1, x2, x3,

y, z1, z2);
input rst_n, clk, x1, x2, x3; //define inputs and outputs
output [1:3] y;
output z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9,

net10, net11, net12, net13;

//----------------------------------------------------------
//instantiate the logic for flip-flop y[1]
and inst1 (net1, ~y[1], ~y[2], y[3], x1, x2, x3);
or inst2 (net2, ~x1, ~x2, ~x3);
and inst3 (net3, ~y[1], ~y[2], y[3], net2);
or inst4 (net4, x1, x2, x3);
and inst5 (net5, ~y[1], y[2], y[3], net4);
or inst6 (net6, net1, net3, net5);

//instantiate the D flip-flop for y[1]
d_ff_bh inst7 (rst_n, clk, net6, y[1]);

//continued on next page
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Figure 3.60       (Continued)

Figure 3.61 Test bench module for the Mealy machine of Example 3.11.

//---------------------------------------------------------
//instantiate the logic for flip-flop y[2]
and inst8 (net7, ~y[1], ~y[2], ~y[3], x1, x2, x3),

inst9 (net8, ~y[1], y[2], y[3], ~x1, ~x2, ~x3);
or inst10 (net9, net7, net8);

//instantiate the D flip-flop for y[2]
d_ff_bh inst11 (rst_n, clk, net9, y[2]);

//---------------------------------------------------------
//instantiate the logic for flip-flop y[3]
and inst12 (net10, ~y[1], ~y[2], ~y[3], ~x1, ~x2, ~x3),

inst13 (net11, ~y[1], ~y[2], ~y[3], x1, x2, x3),
inst14 (net12, ~y[1], ~y[2], y[3], x1, x2, x3);

or inst15 (net13, net10, net11, net12);

//instantiate the D flip-flop for y[3]
d_ff_bh inst16 (rst_n, clk, net13, y[3]);

//---------------------------------------------------------
//define outputs z1 and z2
assign z1 = (y[1] & ~y[2] & y[3] & ~x1 & ~x2 & ~x3),

z2 = (~y[1] & y[2] & ~y[3] & x1 & x2 & x3);

endmodule

//test bench for mealy_111_000 with three parallel inputs

module mealy_111_000_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1, x2, x3;
wire [1:3] y;
wire z1, z2;

//display variables
initial
$monitor ("x1 x2 x3 = %b, state = %b, z1 = %b, z2 = %b",

{x1, x2, x3}, y, z1, z2);

//continued on next page
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Figure 3.61       (Continued)

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0; x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
#5 rst_n = 1'b1;

//-------------------------------------------
x1=1'b0; x3=1'b1;
@ (posedge clk) //go to state_a (000)

x1=1'b1; x2=1'b0;
@ (posedge clk) //go to state_a (000)

x2=1'b1; x3=1'b0;
@ (posedge clk) //go to state_a (000)

x1=1'b0; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_b (001)

//-------------------------------------------
x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_d (101)

//-------------------------------------------
x1=1'b0; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_a (000), assert z1

//-------------------------------------------
x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_c (011)

x1=1'b0; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_f (010)

x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_a (000), assert z2

//continued on next page
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Figure 3.61       (Continued)

Figure 3.62 Outputs for the Mealy machine of Example 3.11.

//-------------------------------------------
x1=1'b1; x2=1'b1; x3=1'b1;
@ (posedge clk) //go to state_c (011)

x1=1'b1; x2=1'b0; x3=1'b0;
@ (posedge clk) //go to state_e (100)

@ (posedge clk)

//-------------------------------------------
#20 $stop;

end

//instantiate the module into the test bench
mealy_111_000_struc inst1 (rst_n, clk, x1, x2, x3, y,

z1, z2);

endmodule

x1 x2 x3 = 000, state = 000, z1 = 0, z2 = 0
x1 x2 x3 = 001, state = 001, z1 = 0, z2 = 0
x1 x2 x3 = 101, state = 100, z1 = 0, z2 = 0
x1 x2 x3 = 110, state = 000, z1 = 0, z2 = 0

x1 x2 x3 = 000, state = 000, z1 = 0, z2 = 0
x1 x2 x3 = 111, state = 001, z1 = 0, z2 = 0
x1 x2 x3 = 000, state = 101, z1 = 1, z2 = 0
x1 x2 x3 = 111, state = 000, z1 = 0, z2 = 0

x1 x2 x3 = 000, state = 011, z1 = 0, z2 = 0
x1 x2 x3 = 111, state = 010, z1 = 0, z2 = 1
x1 x2 x3 = 111, state = 000, z1 = 0, z2 = 0
x1 x2 x3 = 100, state = 011, z1 = 0, z2 = 0

x1 x2 x3 = 100, state = 100, z1 = 0, z2 = 0
x1 x2 x3 = 100, state = 000, z1 = 0, z2 = 0
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3.2.5   Synchronous Registers

Synchronous registers are designed using storage elements, such as D flip-flops, JK
flip-flops, and SR latches.  Each cell of a register stores one bit of binary information.
There are many different types of synchronous registers, including parallel-in, paral-
lel-out; parallel-in, serial-out; serial-in, parallel-out; and serial-in, serial-out registers.
The next state of a register is usually a direct correspondence to the input vector,
whose binary variables connect to the flip-flop data inputs, either directly or through 
next-state logic.

The state of the register is unchanged until the next active clock transition.  Some
registers may modify the data, such as shifting left or shifting right, where a left shift
of one bit corresponds to a multiply-by-two operation and a right shift of one bit cor-
responds to a divide-by-two operation.

Parallel-in, parallel-out registers The most widely used register is the paral-
lel-in, parallel-out (PIPO) register used for temporary storage of binary data.  A typ-
ical application for a PIPO register is for the temporary storage of data, such as an
index to be utilized in determining a memory location, a memory address register to
address memory, and as a memory data register to contain information that is sent to or
received from memory.

A typical PIPO register is shown in Figure 3.63 using D flip-flops.  The clock sig-
nal loads the register with the x1  . . . xn data inputs on active high transitions.  The clock
signal is obtained from external logic which allows a single clock pulse to be gener-
ated only when the register is to be loaded from a new set of inputs.

Figure 3.63 Logic diagram for a parallel-in, parallel-out register.
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The synthesis procedure is not required for this basic type of register using D flip-
flops.  An alternative approach is to use JK flip-flops as the storage elements.  In this
approach, the register is clocked continuously by the system clock, which is a free-run-
ning astable multivibrator.  The register is loaded, however, only when a load signal is
active.  When the load input is inactive, the data inputs of each flip-flop are JK = 00,
which causes no change to the state of the machine.  Thus, the register remains in its
present state until the load input changes to an active level.  The new input vector Xi
then replaces the previous state of the register.

Parallel-in, serial-out registers A parallel-in, serial-out (PISO) register ac-
cepts binary input data in parallel and generates binary output data in serial form.  The
binary data can be shifted either left or right under control of a shift direction signal
and a clock pulse, which is applied to all flip-flops simultaneously.  The register shifts
left or right 1 bit position at each active clock transition.  Bits shifted out of one end of
the register are lost unless the register is cyclic, in which case, the bits are shifted (or
rotated) into the other end.  The bits that are shifted in are all 0s.  The logic diagram for
a PISO register is shown in Figure 3.64.

Figure 3.64 Logic design of a parallel-in, serial-out register using D flip-flops.
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In Figure 3.64, when the Load signal is active high the input  data is loaded into the
shift register.  When the Load signal is low (–Shift), the register is shifted right one bit
position at each active clock pulse.  The structural design module is shown in Figure
3.65 using built-in primitives and D flip-flops that were designed using behavioral
modeling.  The test bench module and the outputs are shown in Figures 3.66 and 3.67,
respectively.

Figure 3.65 Structural design module for the parallel-in, serial-out register.

//structural for a 4-bit parallel-in, serial-out register

module piso4_struc2 (rst_n, clk, load, x1, x2, x3, x4,
y, z1);

//define inputs and output
input rst_n, clk, load, x1, x2, x3, x4;
output [1:4] y;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8,

net9, net10, net11, net12, net13;

not (net1, load);

//----------------------------------------------------------
//instantiate the logic for flip-flop y[1]
and (net2, load, x1),

(net3, net1, 1'b0);

or (net4, net2, net3);

//instantiate the D flip-flop for y[1]
d_ff_bh inst1 (rst_n, clk, net4, y[1]);

//----------------------------------------------------------
//instantiate the logic for flip-flop y[2]
and (net5, load, x2),

(net6, net1, y[1]);

or (net7, net5, net6);

//instantiate the D flip-flop for y[2]
d_ff_bh inst2 (rst_n, clk, net7, y[2]);

//continued on next page



302          Chapter  3     Sequential Logic Design Using Verilog HDL

Figure 3.65       (Continued)

Figure 3.66 Test bench module for the parallel-in, serial-out register.

//----------------------------------------------------------
//instantiate the logic for flip-flop y[3]
and (net8, load, x3),

(net9, net1, y[2]);

or (net10, net8, net9);

//instantiate the D flip-flop for y[3]
d_ff_bh inst3 (rst_n, clk, net10, y[3]);

//----------------------------------------------------------
//instantiate the logic for flip-flop y[4]
and (net11, load, x4),

(net12, net1, y[3]);

or (net13, net11, net12);

//instantiate the D flip-flop for y[4]
d_ff_bh inst4 (rst_n, clk, net13, y[4]);

//----------------------------------------------------------
//define output z1
assign z1 = y[4];

endmodule

//test bench for 4-bit parallel-in, serial-out register

module piso4_struc2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, load, x1, x2, x3, x4;
wire [1:4] y;
wire z1;

//display variables
initial
$monitor ("x1 x2 x3 x4 = %b, state = %b, z1 = %b",

{x1, x2, x3, x4}, y, z1);

//continued on next page
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Figure 3.66       (Continued)

Figure 3.67 Outputs for the parallel-in, serial-out register. 

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define input sequence
initial
begin

#0 rst_n = 1'b0;
load = 1'b0;
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; x4 = 1'b0;

#5 rst_n = 1'b1;

//---------------------------------------------------------
#10 x1 = 1'b1; x2 = 1'b1; x3 = 1'b1; x4 = 1'b1;

#10 load = 1'b1;

#10 load = 1'b0;

#100 $stop;
end

//instantiate the module into the test best
piso4_struc2 inst1 (rst_n, clk, load, x1, x2, x3, x4,

y, z1);

endmodule

x1 x2 x3 x4 = 0000, state = 0000, z1 = 0
x1 x2 x3 x4 = 1111, state = 0000, z1 = 0
x1 x2 x3 x4 = 1111, state = 1111, z1 = 1
x1 x2 x3 x4 = 1111, state = 0111, z1 = 1
x1 x2 x3 x4 = 1111, state = 0011, z1 = 1
x1 x2 x3 x4 = 1111, state = 0001, z1 = 1
x1 x2 x3 x4 = 1111, state = 0000, z1 = 0
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Serial-in, parallel-out registers A serial-in, parallel-out (SIPO) register is a
synchronous iterative network containing p identical cells.  Data enters the register
from the left and shifts serially to the right through all p stages, one bit position per
clock pulse.  After p shifts, the register is fully loaded and the bits are transferred in
parallel to the destination.

One application of a serial-in, parallel-out register is to deserialize binary data
from a single-track peripheral subsystem.  The resulting word of parallel bits is placed
on the system data bus of the input/output processor and then sent to the central pro-
cessing unit for processing.

The data input of each flip-flop is connected directly to the output of the preceding
flip-flop with the exception of flip-flop y1 , which receives the external serial binary
data.  Figure 3.68 shows the implementation of a SIPO register using D flip-flops.
Each stage of the machine stores the state of the storage element to its immediate left.
Data bits at the serial input are changed at the negative clock transition to allow bit x1
to be stable at the D inputs of flip-flop y1  before the next active clock transition.

One useful application of a SIPO register is to generate a series of nonoverlapping
pulses for system timing.  This is accomplished by inserting a NOR gate drawn as the
AND function to provide the input to the left storage element.  The inputs to the NOR
gate are the negative outputs of flip-flops y1 , y2 , and y3.

Figure 3.68 Logic diagram for a serial-in, parallel-out register.
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The structural design module is shown in Figure 3.69 using D flip-flops that were
designed using behavioral modeling.  The test bench module is shown in Figure 3.70.
The symbols #7, #20, etc. represent the time that input x1  changes value.  The sum of
all the times indicates the time at that point.  For example, the time represented by the
fifth time symbol is the sum of the first five time symbols (#0 – #20); that is 50 time
units.  Input x1  is assigned a value of 1’b0 at that time.  The time units assure that input
x1  will be stabilized before the positive edge of the clock occurs.  The test bench takes
the machine through an input sequence to generate the output sequence shown below.
The outputs are shown in Figure 3.70.

z1z2z3z4  = 0000 – 1111

Figure 3.69 Structural design module for the serial-in, parallel-out register.

//structural for serial-in, parallel-out register

module sipo5_struc (rst_n, clk, x1, y, z1, z2, z3, z4);

//define inputs and outputs
input rst_n, clk, x1;
output [1:4] y;
output z1, z2, z3, z4;

//instantiate flip-flop y[1]
d_ff_bh inst1 (rst_n, clk, x1, y[1]);

//instantiate flip-flop y[2]
d_ff_bh inst2 (rst_n, clk, y[1], y[2]);

//instantiate flip-flop y[3]
d_ff_bh inst3 (rst_n, clk, y[2], y[3]);

//instantiate flip-flop y[4]
d_ff_bh inst4 (rst_n, clk, y[3], y[4]);

//define outputs z1, z2, z3, and z4
assign z1 = y[1],

z2 = y[2],
z3 = y[3],
z4 = y[4];

endmodule
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Figure 3.70 Test bench module for the serial-in, parallel-out register.

//test bench for serial-in, parallel-out register
module sipo5_struc_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:4] y; //outputs are wire for test bench
wire z1, z2, z3, z4;

initial //display variables
$monitor ("x1 = %b, state = %b, z1 z2 z3 z4 = %b",

x1, y, {z1, z2, z3, z4});

initial //define clock
begin

clk = 1'b0;
forever

#10clk = ~clk;
end

initial //define input sequence
begin

#0 rst_n = 1'b0; x1 = 1'b0;
#3 rst_n = 1'b1;

//----------------------------------------------
#7 x1 = 1'b1;
@ (posedge clk)

#20 x1 = 1'b0;
@ (posedge clk)

#20 x1 = 1'b0;
@ (posedge clk)

#30 x1 = 1'b0;
@ (posedge clk)

#40 x1 = 1'b1;
@ (posedge clk)

#10 x1 = 1'b1;
@ (posedge clk)

#10 x1 = 1'b1;
@ (posedge clk)
#30 $stop;

end

//instantiate the module into the test bench
sipo5_struc inst1 (rst_n, clk, x1, y, z1, z2, z3, z4);
endmodule
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Figure 3.71 Outputs for the serial-in, parallel-out register.

Serial-in, serial-out registers The synthesis of a serial-in, serial-out (SISO)
register is similar to that of a SIPO register, with the exception that only one output is
required.  The rightmost flip-flop provides the single output for the register, as shown
in Figure 3.72 using D flip-flops.

Figure 3.72 Logic diagram for a serial-in, serial-out register.
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One  application of a SISO register is to deserialize data from a disk drive.  A serial
bit stream is read from a disk drive and converted into parallel bits by means of a SIPO
register.  When 8 bits have been shifted into the register, the bytes are shifted in par-
allel into a matrix of SISO registers, where each bit is shifted into a particular column.
The SISO register, in this application, performs the function of a first-in, first-out
(FIFO) queue and acts as a buffer between the disk drive and the system input/output
(I/O) data bus.

The same implementation of a SISO register matrix can be used as an instruction
queue in a CPU instruction pipeline.  The CPU prefetches instructions from memory
during unused memory cycles and stores the instructions in the FIFO queue.  Thus, an
instruction stream can be placed in the instruction queue to wait for decoding and ex-
ecution by the processor.  Instruction queueing provides an effective method to in-
crease system throughput.

The structural design module is shown in Figure 3.73 using D flip-flops that were
designed using behavioral modeling.  The test bench module is shown in Figure 3.74.
The system function $time is used in the test bench to return the current simulation
time in nanoseconds.  The time is specified whenever a variable changes value.  The
outputs are shown in Figure 3.75.

Figure 3.73 Structural design module for the serial-in, serial-out register.

//structural 4-bit serial-in, serial-out register
module siso4_struc (rst_n, clk, x1, y, z1);

//define inputs and output
input rst_n, clk, x1;
output [1:4] y;
output z1;

//instantiate flip-flop y[1]
d_ff_bh inst1 (rst_n, clk, x1, y[1]);

//instantiate flip-flop y[2]
d_ff_bh inst2 (rst_n, clk, y[1], y[2]);

//instantiate flip-flop y[3]
d_ff_bh inst3 (rst_n, clk, y[2], y[3]);

//instantiate flip-flop y[4]
d_ff_bh inst4 (rst_n, clk, y[3], y[4]);

//define output z1
assign z1 = y[4];

endmodule
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Figure 3.74 Test bench module for the serial-in, serial-out register.

//test bench for 4-bit serial-in, serial-out register
module siso4_struc_tb;

reg rst_n, clk, x1; //inputs are reg for test bench
wire [1:4] y; //outputs are wire for test bench
wire z1;

initial //display variables
$monitor ($time, "ns, x1 = %b, clk = %b, state = %b,

z1 = %b", x1, clk, y, z1);

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define input sequence
begin

#0 rst_n = 1'b0;x1 = 1'b0;
#5 rst_n = 1'b1;

//--------------------------------------------
#3 x1 = 1'b1;
#17 x1 = 1'b1;

#20 x1 = 1'b0;
#20 x1 = 1'b0;
#20 x1 = 1'b0;

#20 x1 = 1'b1;
#20 x1 = 1'b1;
#20 x1 = 1'b1;

#20 x1 = 1'b0;
#20 x1 = 1'b0;
#20 x1 = 1'b0;

#20 x1 = 1'b1;
#20 x1 = 1'b1;
#20 x1 = 1'b1;
#40 $stop;

end

//instantiate the module into the test bench
siso4_struc inst1 (rst_n, clk, x1, y, z1);
endmodule
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Figure 3.75 Outputs for the serial-in, serial-out register.

0ns,   x1 = 0, clk = 0, state = 0000, z1 = 0
8ns,   x1 = 1, clk = 0, state = 0000, z1 = 0
10ns,  x1 = 1, clk = 1, state = 1000, z1 = 0
20ns,  x1 = 1, clk = 0, state = 1000, z1 = 0
30ns,  x1 = 1, clk = 1, state = 1100, z1 = 0
40ns,  x1 = 1, clk = 0, state = 1100, z1 = 0
45ns,  x1 = 0, clk = 0, state = 1100, z1 = 0
50ns,  x1 = 0, clk = 1, state = 0110, z1 = 0
60ns,  x1 = 0, clk = 0, state = 0110, z1 = 0

70ns,  x1 = 0, clk = 1, state = 0011, z1 = 1
80ns,  x1 = 0, clk = 0, state = 0011, z1 = 1
90ns,  x1 = 0, clk = 1, state = 0001, z1 = 1
100ns, x1 = 0, clk = 0, state = 0001, z1 = 1
105ns, x1 = 1, clk = 0, state = 0001, z1 = 1

110ns, x1 = 1, clk = 1, state = 1000, z1 = 0
120ns, x1 = 1, clk = 0, state = 1000, z1 = 0
130ns, x1 = 1, clk = 1, state = 1100, z1 = 0
140ns, x1 = 1, clk = 0, state = 1100, z1 = 0
150ns, x1 = 1, clk = 1, state = 1110, z1 = 0
160ns, x1 = 1, clk = 0, state = 1110, z1 = 0
165ns, x1 = 0, clk = 0, state = 1110, z1 = 0

170ns, x1 = 0, clk = 1, state = 0111, z1 = 1
180ns, x1 = 0, clk = 0, state = 0111, z1 = 1
190ns, x1 = 0, clk = 1, state = 0011, z1 = 1
200ns, x1 = 0, clk = 0, state = 0011, z1 = 1
210ns, x1 = 0, clk = 1, state = 0001, z1 = 1
220ns, x1 = 0, clk = 0, state = 0001, z1 = 1
225ns, x1 = 1, clk = 0, state = 0001, z1 = 1
230ns, x1 = 1, clk = 1, state = 1000, z1 = 0

240ns, x1 = 1, clk = 0, state = 1000, z1 = 0
250ns, x1 = 1, clk = 1, state = 1100, z1 = 0
260ns, x1 = 1, clk = 0, state = 1100, z1 = 0
270ns, x1 = 1, clk = 1, state = 1110, z1 = 0
280ns, x1 = 1, clk = 0, state = 1110, z1 = 0

290ns, x1 = 1, clk = 1, state = 1111, z1 = 1
300ns, x1 = 1, clk = 0, state = 1111, z1 = 1
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3.2.6   Synchronous Counters

Counters are fundamental hardware devices used in the design of digital systems and
have a finite number of states.  The  output logic is usually a function of the present
state only; that is, (Yj(t)).  The state of the counter is interpreted as an integer with re-
spect to a modulus.  The symbol % represents the modulus (remainder/residue) oper-
ator.  A number A modulo n is defined as the remainder after dividing A by n.  Some
counters contain a set of binary input variables from which the counter achieves an ini-
tial state.

A clock input signal causes the counter flip-flops to change state only at selected
discrete intervals of time.  Using the clock pulses to initiate state changes, the machine
usually counts in either an ascending or descending sequence of states.  In most cases
counters reset to an initial state of y1y2  ... yp = 00 ... 0.  In general, a p-stage counter
counts modulo 2p.

This section discusses only synchronous counters; asynchronous counters are in-
herently slow, because of the ripple effect caused by the output of stage yi functioning
as the clock input for stage yi+1.

Modulo-10 counter Modulo-10 counters are extensively used in digital comput-
ers when counting is required in radix 10.  A modulo-10, or binary-coded decimal
(BCD) decade counter, generates ten states in the following sequence: 0000, 0001,
0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 0000, ... .  Thus, each decade re-
quires four flip-flops.

The synthesis of a modulo-10 counter is relatively straightforward.  The counter is
initially reset to y[3:0] = 0000, then increments by one at each active clock transition
until a state code of y[3:0] = 1001 is reached.   At the next active clock transition, the
counter sequences to state y[3:0] = 0000.

The modulo-10 counter in this section will be designed using behavioral model-
ing; therefore, there is no need for a state diagram — since the counting sequence is
already known — or for a logic diagram.  The behavioral design module is shown in
Figure 3.76.  The test  bench module and the outputs are shown in Figures 3.77 and
3.78, respectively.

Figure 3.76 Behavioral design module for a modulo-10 counter.

//behavioral modulo-10 counter
module ctr_mod_10_bh (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [3:0] y;

reg [3:0] y; //variables are declared as reg in always
//continued on next page
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Figure 3.76       (Continued)

Figure 3.77 Test bench module for the modulo-10 counter.

//define counting sequence
always @ (posedge clk or negedge rst_n)
begin

if (rst_n == 0)
y = 4'b0000;

else
y = (y + 1) % 10; //% is the modulus (remainder/

//residue) operator
end

endmodule

//test bench for modulo-10 counter
module ctr_mod_10_bh_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [3:0] y; //outputs are wire for test bench

initial //display outputs
$monitor ("count = %b", y);

initial //define reset
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

initial //define clock
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

initial //define length of simulation
begin

#200 $finish;
end

//instantiate the module into the test bench
ctr_mod_10_bh inst1 (rst_n, clk, y);

endmodule
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Figure 3.78 Outputs for the modulo-10 counter.

Modulo-16 counter A modulo-16 counter will now be designed using D flip-
flops and built-in primitives.  The counting sequence is: y3y2y1y0  = 0000, 0001, 0010,
0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 0000.
Using the counting sequence shown above, the Karnaugh maps are illustrated in Fig-
ure 3.79.  The equations for the D flip-flops are shown in Equation 3.13.  The logic di-
agram, obtained from the D flip-flop input equations, is shown in Figure 3.80. 

Figure 3.79 Karnaugh maps for the modulo-16 synchronous counter.
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Figure 3.79       (Continued)

Recall that the built-in primitives are multiple-input gates used to describe a net
and have one or more scalar inputs, but only one scalar output.  The output signal is
listed first, followed by the inputs in any order.  The outputs are declared as wire; the
inputs can be declared as either wire or reg.  The gates represent combinational logic
functions and can be instantiated into a module, as follows, where the instance name is
optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

Two or more instances of the same type of gate can be specified in the same con-
struct.  Note that only the last instantiation has a semicolon terminating the line.  All
previous lines are terminated by a comma.

 0 0      0 1     1 1     1 0

0 0      0         1        0         1

0 1      0         1        0         1

1 1      0         1        0         1
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Dy2 = y2y1 ' + y2y0 ' + y2 ' y1y0

Dy1 = y1 ' y0  + y1y0 '

Dy0 = y0 ' (3.13)
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Figure 3.80 Logic diagram for the modulo-16 synchronous counter.

The structural design module is shown in Figure 3.81 using built-in primitives and
D flip-flops that  were designed using behavioral modeling.  The test bench module is
shown in Figure 3.82 and the outputs are shown in Figure 3.83.

Figure 3.81 Structural design module for a modulo-16 counter.
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//structural for a modulo-16 counter
module ctr_mod16_struc (rst_n, clk, y);

//define inputs and outputs
input rst_n, clk;
output [3:0] y; //continued on next page
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Figure 3.81       (Continued)

//define internal nets
wire net1, net2, net3, net4, net5, net6,

net7, net8, net9, net10;

//-----------------------------------------
//instantiate the logic for flip-flop y[3]
and (net1, y[3], ~y[2]),

(net2, y[3], ~y[1]),
(net3, y[3], ~y[0]),
(net4, ~y[3], y[2], y[1], y[0]);

or (net5, net1, net2, net3, net4);

//instantiate the D flip-flop for y[3]
d_ff_bh inst1 (rst_n, clk, net5, y[3]);

//-----------------------------------------
//instantiate the logic for flip-flop y[2]
and (net6, y[2], ~y[1]),

(net7, y[2], ~y[0]),
(net8, ~y[2], y[1], y[0]);

or (net9, net6, net7, net8);

//instantiate the D flip-flop for y[2]
d_ff_bh inst2 (rst_n, clk, net9, y[2]);

//-----------------------------------------
//instantiate the logic for flip-flop y[1]
xor (net10, y[1], y[0]);

//instantiate the D flip-flop for y[1]
d_ff_bh inst3 (rst_n, clk, net10, y[1]);

//-----------------------------------------
//instantiate the D flip-flop for y[0]
d_ff_bh inst4 (rst_n, clk, ~y[0], y[0]);

endmodule
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Figure 3.82 Test bench module for the modulo-16 counter.

Figure 3.83 Outputs for the modulo-16 counter.

//test bench for the modulo-16 counter
module ctr_mod16_struc_tb;

reg rst_n, clk; //inputs are reg for test bench
wire [3:0] y; //outputs are wire for test bench

initial //display outputs
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end

//define length of simulation
initial

#300 $stop;

//instantiate the module into the test bench
ctr_mod16_struc inst (rst_n, clk, y);

endmodule

count = 0000
count = 0001
count = 0010
count = 0011
count = 0100
count = 0101
count = 0110
count = 0111
count = 1000

count = 1001
count = 1010
count = 1011
count = 1100
count = 1101
count = 1110
count = 1111
count = 0000
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Modulo-8 counter A modulo-8 counter will now be designed using built-in prim-
itives and D flip-flops that were designed using behavioral modeling.  The counting
sequence is: y2y1y0  = 000, 001, 010, 011, 100, 101, 110, 111, 000.  Using this count-
ing sequence, the Karnaugh maps are illustrated in Figure 3.84.  The equations for the
D flip-flops are shown in Equation 3.14.  The logic diagram, obtained from the D flip-
flop input equations, is shown in Figure 3.85. 

Figure 3.84 Karnaugh maps for the modulo-8 counter.
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Figure 3.85 Logic diagram for the modulo-8 counter.

The structural design module is shown in Figure 3.86 using built-in primitives and
D flip-flops that were designed using behavioral modeling.  The test bench module is
shown in Figure 3.87 and the outputs are shown in Figure 3.88.

Figure 3.86 Structural design module for the modulo-8 counter.
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//structural using bip and D flip-flops
module ctr_mod8 (rst_n, clk, y);

input rst_n, clk; //define inputs and outputs
output [2:0] y;

wire net1, net2, net3, net4, net5; //define internal nets

//----------------------------------------------
//instantiate the logic for flip-flop y[2]
and (net1, y[2], ~y[1]),

(net2, y[2], ~y[0]),
(net3, ~y[2], y[1], y[0]);

or (net4, net1, net2, net3);
//continued on next page
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Figure 3.86       (Continued)

Figure 3.87 Test bench module for the modulo-8 counter.

//instantiate the D flip-flop for y[2]
d_ff_bh inst1 (rst_n, clk, net4, y[2]);

//----------------------------------------------
//instantiate the logic for flip-flop y[1]
xor (net5, y[0], y[1]);

//instantiate the D flip-flop for y[1]
d_ff_bh inst2 (rst_n, clk, net5, y[1]);

//----------------------------------------------
//instantiate the logic for flip-flop y[0]
d_ff_bh inst3 (rst_n, clk, ~y[0], y[0]);

endmodule

//test bench for the modulo-8 counter
module ctr_mod8_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk;
wire [2:0] y;

//display outputs
initial
$monitor ("count = %b", y);

//define reset
initial
begin

#0 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//define clock
initial
begin

clk = 1'b0;
forever

#10 clk = ~clk;
end //continued on next page
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Figure 3.87       (Continued)

Figure 3.88 Outputs for the modulo-8 counter.

3.3 Asynchronous Sequential Machines
For an asynchronous sequential machine there is no machine clock — state changes
occur on the application of input signals only.  The synthesis of asynchronous sequen-
tial machines is one of the most interesting and certainly the most challenging con-
cepts of sequential machine design.  In many situations, a synchronous clock is not
available.  For example, the interface between an input/output processor (IOP) — or
channel — and an input/output (I/O) subsystem control unit is an example of an asyn-
chronous condition.

The control unit requests a word of data during a write operation by asserting an
identifying epithet called a “tag-in signal”.  The channel then places the word on the
data bus and asserts an acknowledging tag-out signal.  The device control unit accepts
the data then de-asserts the in tag, allowing the channel to de-assert the corresponding
out tag, completing the data transfer sequence for one word.

An analogous situation occurs for a read operation in which the tag-in signal now
indicates that a word is available on the data bus for the channel.  The channel accepts
the word and responds with the tag-out signal.

The data transfer sequence for the write and read operations was initiated, execut-
ed, and completed without utilizing a synchronizing clock signal.  This technique

//define length of simulation
initial

#150 $stop;

//instantiate the module into the test bench
ctr_mod8 inst (rst_n, clk, y);

endmodule

count = 000
count = 001
count = 010
count = 011
count = 100
count = 101
count = 110
count = 111
count = 000
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permits not only a higher data transfer rate between the channel and an I/O device, but
also allows the channel to communicate with I/O devices having a wide range of data
transfer rates.  The interface control logic in the device control unit is usually imple-
mented as an asynchronous sequential machine.

Asynchronous sequential machines are implemented with Set/Reset (SR) latches
as the storage elements.  Thus, at least one feedback path is required in the synthesis of
asynchronous machines.  Asynchronous machines can be implemented in either a
sum-of-products form or in a product-of-sums form.

Techniques will be presented in this chapter to synthesize asynchronous sequen-
tial machines irrespective of the varying delays of circuit components.  Since there is
no system clock, in order to prevent possible race conditions and associated timing
problems when two or more inputs change value simultaneously, it will be assumed
that only one input variable will change state at a time.  This is referred to as a funda-
mental-mode model, further defined with the following characteristics:

1. Only one input will change at a time.
2. No other input will change until the machine has sequenced to a stable state.

A general block diagram for an asynchronous sequential machine is shown in
Figure 3.89.  The input alphabet X consists of binary input variables x1 , x2,    , xn that
can change value at any time and are represented as voltage levels rather than pulses.
The state alphabet Y is characterized by p storage elements, where Y1e , Y2e ,    , Ype
are the excitation variables and y1f, y2f ,    , ypf are the feedback or secondary vari-
ables.  The output alphabet Z is represented by z1, z2 ,    , zm.

Both the  next-state logic and the  output logic are composed of combinational
logic circuits.  The delay element in Figure 3.89 represents the total delay of the ma-
chine from the time an input changes until the machine has stabilized in the next state,
and is represented as a time delay of t.  The time correlation between the excitation
variables Yie and the feedback variables yif is specified by Equation 3.15.

Figure 3.89 General block diagram of an asynchronous sequential machine.

yif (t + t) = Yie (t)                                                     (3.15)

X   n p m
Z Y 

 yif (t + t)  Yie (t)t delay
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3.3.1   Synthesis Procedure

The machine operation for asynchronous sequential machines is specified by a timing
diagram and/or verbal statements.  The design procedure is summarized below.

1. State diagram The machine specifications are converted into a state dia-
gram.  A timing diagram and/or a verbal statement of the machine specifica-
tions is converted into a precise delineation which specifies the machine’s
operation for all applicable input sequences.  This step is not a necessary re-
quirement and is usually omitted; however, the state diagram characterizes the
machine’s operation in a graphical representation and adds completeness to
the design procedure.

2. Primitive flow table The machine specifications are converted to a state
transition table called a “primitive flow table”.  This is the least methodical
step in the synthesis procedure and the most important.  The primitive flow ta-
ble depicts the state transition sequences and output assertions for all valid in-
put vectors.  The flow table must correctly represent the machine’s operation
for all applicable input sequences, even those that are not initially apparent
from the machine specifications.

3. Equivalent states The primitive flow table may have an inordinate number
of rows.  The number of rows can be reduced by finding equivalent states and
then eliminating redundant states.  If the machine’s operation is indistinguish-
able whether commencing in state Yi or state Yj, then one of the states is re-
dundant and can be eliminated.  The flow table thus obtained is a reduced
primitive flow table.  In order for two stable states to be equivalent, all three of
the following conditions must be satisfied:

1. The same input vector.
2. The same output value.
3. The same, or equivalent, next state for all valid input sequences.

4. Merger diagram The merger diagram graphically portrays the result of the
merging process in which an attempt is made to combine two or more rows of
the reduced primitive flow table into a single row.  The result of the merging
technique is analogous to that of finding equivalent states; that is, the merging
process can also reduce the number of rows in the table and, hence, reduce the
number of feedback variables that are required.  Fewer feedback variables
will result in a machine with less logic and, therefore, less cost.  Two rows can
merge into a single row if the entries in the same column of each row satisfy
one of the following three merging rules:

1. Identical state entries, either stable or unstable.
2. A state entry and a “don’t care.”
3. Two “don’t care” entries.
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5. Merged flow table The merged flow table is constructed from the merger di-
agram.  The table represents the culmination of the merging process in which
two or more rows of a primitive flow table are replaced by a single equivalent
row which contains one stable state for each merged row.

6. Excitation maps and equations An excitation map is generated for each ex-
citation variable.  Then the transient states are encoded, where applicable, to
avoid critical race conditions.  Appropriate assignment of the excitation vari-
ables for the transient states can minimize the  next-state logic for the exci-
tation variables.  The operational speed of the machine can also be established
at this step by reducing the number of transient states through which the ma-
chine must sequence during a cycle.  Then the excitation equations are derived
from the excitation maps.  All static-1 and static-0 hazards are eliminated
from the network for a sum-of-products or product-of-sums implementation,
respectively.  Hazards are defined below.

7. Output maps and equations An output map is generated for each machine
output.  Output values are assigned for all nonstable states so that no transient
signals will appear on the outputs.  In this step, the speed of circuit operation
can also be established.  Then the output equations are derived from the output
maps, assuring that all outputs will be free of static-1 and static-0 hazards.

8. Logic diagram The logic diagram is implemented from the excitation and
output equations using an appropriate logic family.

3.3.2   Hazards

A hazard can occur when an input variable changes value.  Varying propagation de-
lays caused by logic gates, wires, and different path lengths can produce erroneous
transient signals on the outputs.  These spurious signals are referred to as hazards.  If
the hazard occurs in the feedback path, then an incorrect state transition sequence may
result.

When a hazard occurs in the  next-state logic, the machine may sequence to an in-
valid next state.  If the hazard occurs in the  output logic, then a glitch may appear on
the output signal.  An output glitch can cause significant problems.  These transitory
signals generate a condition which is not specified in the expression for the machine,
because Boolean algebra does not take into account the propagation delay of switching
circuits.  Hazards will be examined and methods presented for detecting and correct-
ing these transient phenomena so that correct operation of an asynchronous sequential
machine can be assured.

Figure 3.90 illustrates an example of a combinational circuit with an inherent haz-
ard.  The Karnaugh map which represents the circuit is shown in Figure 3.91 and the
equation for output z1 is shown in Equation 3.16.  Assume that x2  changes from 1 to 0.
The deassertion of x2  is immediate.  The new value of x2 propagates to the output
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along three paths — through AND gate 2 and OR gate 4; also through the inverter and
AND gate 3 and OR gate 4.  Depending on the circuit delays, a glitch could occur on
output z1.

Figure 3.90 Logic circuit which contains a potential static hazard.

Figure 3.91 Karnaugh map corresponding to the circuit of Figure 3.90.

The effects of the hazard can be eliminated by adding a third term to the equation
for z1, as shown in Equation 3.17.  The output can be made independent of the value of
x2  by including the redundant prime implicant x1x3 , which covers both the initial and
terminal state of the transition.  A prime implicant is a unique grouping of 1s (an impli-
cant) that does not imply any other grouping of 1s (other implicants).  The redundant
prime implicant will maintain the output at a constant high level during the transition.  

The term x1x3  is called a hazard cover, since it covers the detrimental effects of
the hazard.  The effects of a static hazard can be negated by combining adjacent groups
of 1s in a Karnaugh map as shown in Figure 3.92.  A hazard cover can be applied to a
sum-of-products expression or to a product-of-sums expression.
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Figure 3.92 Negating the effects of a static hazard by combining adjacent groups
of 1s.

3.3.3   Oscillations

An oscillation occurs in an asynchronous sequential machine when a single input
change results in an input vector in which there is no stable state.  Consider the exci-
tation Karnaugh map of Figure 3.93 for Y1e.  There are two input variables x1  and x2
and one feedback variable y1f.  If the machine is in stable state  and x1  changes from
0 to 1, then the machine sequences to transient state c.  Then, after a delay of t, the
feedback variable becomes equal to the excitation variable and the machine proceeds
to transient state g.  In state g, however, the excitation variable Y1e = 0, designating
state g as an unstable (or transient) state, because y1f  Y1e.  After a further delay of t,
the feedback variable becomes equal to the excitation variable and the machine se-
quences to state c.  Since the input vector x1x2 = 11 provides no stable state, the ma-
chine will oscillate between transient states c and g.

Figure 3.93 Excitation Karnaugh map for an asynchronous sequential machine
containing an oscillation.

The excitation Karnaugh map of Figure 3.94 contains multiple oscillations,
because columns x1x2  = 01 contain no stable states.  There are two input variables x1
and x2 and two feedback variables y1f  and y2f .  The complete set of oscillations is sum-
marized by the expressions shown in Figure 3.95.
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Figure 3.94 Excitation Karnaugh map for an asynchronous sequential machine
which produces multiple oscillations.

Figure 3.95 The complete set of oscillations exhibited by the asynchronous
sequential machine represented by the excitation Karnaugh map of Figure 3.94.

An asynchronous sequential machine which has an oscillating characteristic can
be used as an astable multivibrator to provide a clock signal to a synchronous sequen-
tial machine.  An appropriate delay of t must be inserted into the network to provide
the correct clock frequency.  In the synthesis of most asynchronous sequential ma-
chines, however, the oscillation phenomenon must be avoided.  The machine specifi-
cations can be modified slightly such that every input vector will provide at least one
stable state.  This modification should not drastically alter the general functional op-
eration of the machine.
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3.3.4   Races

In both asynchronous sequential machines and synchronous sequential machines, if a
change of state occurs between two states with nonadjacent state codes, then the ma-
chine may sequence through a transient state before entering the destination stable
state.  If the sequential machine is a Moore machine, in which the outputs are deter-
mined by the present state only, then a transitory erroneous signal may be generated on
the output.  This glitch results from two or more variables changing state in a single
state transition sequence in which the variables change values at different times.
There are two types of races: noncritical and critical.

Noncritical races Consider the excitation Karnaugh map of Figure 3.96.  There
are three paths that exist for noncritical races for the state transition sequence

 , depending on the time at which the variables change value.  Figure 3.97
illustrates the three possible paths for the sequence   . 

Figure 3.96 Excitation map for an asynchronous sequential machine illustrating
noncritical races when input x1  changes from 0 to 1 in stable state .

Figure 3.97 The complete set of races exhibited by the asynchronous sequential
machine represented by the excitation Karnaugh map of Figure 3.96.
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Critical races Consider the excitation Karnaugh map of Figure 3.98.  If the ma-
chine is presently in state  and input x1  changes from 0 to 1, then three possible
paths exist depending on the relative propagation delays of the storage elements and
associated circuitry.  The intended path is from state  to state .  Due to differing
delay characteristics, however, the machine may terminate the sequence in either state

 or state .  Figure 3.99 illustrates the three possible state transition sequences.

Figure 3.98 Excitation Karnaugh map for an asynchronous sequential machine
illustrating a critical race condition when input x1  changes from 0 to 1 in stable state

.

Figure 3.99 The complete set of races exhibited by the asynchronous sequential
machine represented by the excitation Karnaugh map of Figure 3.98.

Races can be avoided when it is possible to direct the machine through interme-
diate unstable states before reaching the destination stable state.  This can be achieved
by utilizing some of the unspecified entries in the excitation map.  Also, it may be pos-
sible to add rows to the excitation map without increasing the number of excitation and
feedback variables.

j

j c

c o

y1f y2f

x1x2
 0 0         0 1         1 1         1 0

0 0

0 1

1 1

1 0

a                b                c               d

e                f                 g               h

i                j                k               l

m               n                o               p

10         11          10          01

11         11          00          11

10         11          00          01

00         11          11          11

Y1e Y2

01

11

10

00

10

j

 k  o
 g  c
 c 

j
j
j



330          Chapter  3     Sequential Logic Design Using Verilog HDL

3.3.5   Design Examples of Asynchronous Sequential 
Machines

Various types of asynchronous sequential machines of varying complexity will be
designed in this section for Mealy and Moore machines.  Different modeling tech-
niques will be incorporated, including built-in primitives, dataflow modeling, behav-
ioral modeling, and structural modeling.

Example 3.12   A Mealy asynchronous sequential machine will be designed that has
two inputs x1 and x2  and one output z1.  An operational characteristic specifies that in-
put x1  must envelop all occurrences of the x2  pulse.  Thus, the allowable input vectors
are x1x2 = 00, 10, or 11; the input combination of x1x2 = 01 will never occur.  Output
z1 is to be asserted coincident with the assertion of every second x2  pulse and is to re-
main asserted until the deassertion of x2 .  A representative timing diagram is shown in
Figure 3.100.  Although the timing diagram illustrates a valid input sequence to gen-
erate an output, other variations are possible and must be considered to adequately rep-
resent the operation of the machine for all valid input sequences.

Figure 3.100 Timing diagram for the asynchronous sequential machine of Exam-
ple 3.12.

A primitive flow table is developed next by beginning at the leftmost section of the
timing diagram where x1x2z1 = 000 and proceeding left to right assigning a unique
stable state name to each different combination of the input vector and the associated
output z1.  The primitive flow table is shown in Figure 3.101, which provides a tabular
representation of the machine’s operation.

The next step is to identify all equivalent stable states and then to eliminate redun-
dant states.  In order for two stable states to be equivalent, they must have the same in-
put vector, the same output value, and the same, or equivalent, next state for all valid
input sequences.  The only possible equivalences exist between stable state pairs
{ , }, { , }, { , }, and { , }.

+x1

+x2

+z1

a b c d fe ac
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Figure 3.101 Primitive flow table for the asynchronous sequential machine of
Example 3.12.

States  and  are not equivalent, because they have different outputs.  Stable
states   and  are not equivalent, because state  is the precursor of the first x2
pulse, while stable state  immediately precedes the second x2  pulse.

Next, states  and  are tested for equivalence.  Both have the same input vec-
tor (x1x2 = 10) and both have the same output value (z1 = 0).  However, when the in-
put vector changes from x1x2 = 10 to 11, the next state from state  is state ;
whereas, the next state from state  is state .  Since states  and  have already
been shown to be nonequivalent, therefore, states  and  are not equivalent.  The
same reasoning applies to stable state pair  and , which are also not equivalent.

Stable state pair  and , however, satisfy all equivalence requirements: Both
are entered from the same input vector (x1x2  = 10); both have identical output values
(z1 = 0); and both proceed to the same next stable state  or  for an applied input
vector of x1x2 = 11 or 00, respectively.  Therefore, stable states  and  are equiv-
alent.  State  is redundant and can be eliminated from the primitive flow table.  Ev-
ery occurrence of state f is replaced by equivalent state b.  The reduced primitive flow
table is shown in Figure 3.102.

The number of rows in a reduced primitive flow table can usually be decreased by
merging two or more rows into a single row.  Recall the three requirements for merg-
ing two rows into a single merged row:  Each column in the two rows under consid-
eration must contain identical state names, either stable or unstable, or a state name
and an unspecified entry, or two unspecified entries.

In the reduced primitive flow table of Figure 3.102, rows  and  can merge,
because there is no conflict in any column of the two rows.  This merging capability is
indicated by a line connecting vertices  and  in the merger diagram of
Figure 3.103.  The only other row with which row  can merge is row  — all other
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rows have a conflict in at least one column.  Rows , , and  cannot merge with
any succeeding row due to conflicting state names in certain columns.  The merger di-
agram of Figure 3.103 yields the following two partitions of maximal compatible sets:

1. { , }, { }, { }, { }

2. { , }, { }, { }, { }

Figure 3.102 Reduced primitive flow table obtained from the primitive flow table
of Figure 3.101.

Figure 3.103 Merger diagram for the reduced primitive flow table of Figure 3.102.

All partitions should be analyzed by means of a merged flow table to determine
the fewest number of logic gates.  The first partition produces the merged flow table
shown in Figure 3.104(a).  Each row of the merged flow table is generated by trans-
ferring the individual rows from the reduced primitive flow table to the merged flow
table in accordance with the partition assignments.
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Figure 3.104 Merged flow tables obtained from the two partitions derived from the
merger diagram of Figure 3.103: (a) partition 1: { , }, { }, { }, { } and (b)
partition 2: { , }, { }, { }, { }.

After enumerating the rows of the merged flow table, all state transition sequences
can be identified with reference to individual rows.  The state transitions are illustrated
in graphical form by means of a transition diagram.  The transition diagram for the
merged flow table of Figure 3.104(a) is shown in Figure 3.105(a).  Row 1 proceeds to
row 2 by the sequence  c  , as illustrated by the directed line from row 1 to
row 2 in Figure 3.105(a).

Notice that row 3 can proceed to two different rows by the following sequences:
 a  , which represents a transition from row 3 to row 1, and  e  ,

which represents a transition from row 3 to row 4.  Thus, in state , a change of input
vector from x1x2 = 10 to 00 or 11 results in a transition from row 3 to row 1 or row 4,
respectively.

Figure 3.105 Transition diagram for the merged flow tables of Figure 3.104: (a)
transition diagram for Figure 3.104(a) and (b) transition diagram for Figure 3.104(b).
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The transition diagram of Figure 3.105(a) contains a triangular polygon specified
by rows 1, 2, and 3 or by rows 1, 3, and 4.  Since three rows cannot all be adjacent, row
3 can proceed to row 1 through row 4, eliminating the need for a line from row 3 to row
1.  Providing an additional intermediate state to the cycle from state  to state 
does not alter the operational characteristics of the machine, but does generate a slight-
ly slower transition.

The transition diagram for the merged flow table of Figure 3.104(b) is depicted in
Figure 3.105(b).  Since the transition diagram contains no polygons with an odd num-
ber of sides, the state transitions do not have to be altered.  All transitions proceed
through only one transient state.  The merged flow table of Figure 3.104(b) and the
transition diagram of Figure 3.105(b) will be used to generate the excitation and out-
put equations.

The combined excitation map for excitation variables Y1e and Y2e is shown in
Figure 3.106.  The stable states are assigned excitation values that are the same as the
feedback values of the corresponding rows.  It is important to not inadvertently assign
excitation values to the “don’t care” states that would generate a stable state.  The indi-
vidual excitation maps are shown in Figure 3.107 and the resulting hazard-free exci-
tation equations in Equation 3.18 in a sum-of-products form.  The rightmost term in
each equation is the hazard cover.  The excitation equations are shown in a product-of-
sums notation in Equation 3.19.

Figure 3.106 Combined excitation map for the merged flow table of  Figure
3.104(b).

The output map is constructed from the merged flow table of Figure 3.104(b) and
the reduced primitive flow table of Figure 3.102.  The merged flow table indicates the
location of the stable states and the reduced primitive flow table specifies the output
values of the stable states.  The output map is shown in Figure 3.108.  The equation for
output z1 is shown in Equation 3.20 as a sum of products and as a product of sums.  It
is interesting to note that both forms of the equation require not only the same number
of logic gates, but also the same number of identical feedback and input variables. 
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Figure 3.107 Individual excitation maps for Y1e  and Y2e obtained from the com-
bined excitation map of Figure 3.106.

Figure 3.108 Output map for Example 3.12.
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The logic diagram is shown in Figure 3.109 in a product-of-sums form.  This form
requires not only the fewest number of gates, but also the fewest number of inputs per
gate.  The structural design module using built-in primitives for a product-of-sums
form is shown in Figure 3.110.  The test bench module and the outputs are shown in
Figures 3.111 and 3.112, respectively.

Figure 3.109 Logic diagram for Example 3.12 in a product-of-sums form.

Figure 3.110 Structural design module for Example 3.12.

 Y 
+x1
+y2f
–x2
+y1f
+x2

–y1f

–y2f

+Y1e (+y1f )

–Y1e (–y1f )

+Y2e (+y2f )

–Y2e (–y2f )

+z1

net1

net2

net3

//structural using built-in primitives for asm

module asm24_pos_bip (x1, x2, y1e, y2e, z1);

//define inputs and output
input x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3;

//---------------------------------------
//define the logic for y1e
or (net1, y2e, ~x2),

(net2, y1e, x2);

and (y1e, x1, net1, net2);

//continued on next page
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Figure 3.110       (Continued)

Figure 3.111 Test bench for Example 3.12.

//---------------------------------------
//define the logic for y2e
or (net3, ~y1e, x2);

and (y2e, net1, x1, net3);

//---------------------------------------
//define the logic for output z1
and (z1, ~y2e, x2);

endmodule

//test bench for the asm that uses built-in primitives
module asn24_pos_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b", {x1, x2},

{y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 x1 = 1'b0;
x2 = 1'b0;

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)
#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)

//continued on next page
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Figure 3.111       (Continued)

Figure 3.112 Outputs for Example 3.12.

#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 x1=1'b1; x2=1'b0; //go to state_b (001)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e (110)

//assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b1; x2=1'b1; //go to state_c (011)
#10 x1=1'b1; x2=1'b0; //go to state_d (010)
#10 x1=1'b1; x2=1'b1; //go to state_e (110)

//assert z1

#10 x1=1'b1; x2=1'b0; //go to state_f (111)
#10 x1=1'b0; x2=1'b0; //go to state_a (000)

#10 $stop;
end

//instantiate the module into the test bench as a single line
asm24_pos_bip inst1 (x1, x2, y1e, y2e, z1);

endmodule

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 11, state = 11, z1 = 0
x1 x2 = 10, state = 10, z1 = 0
x1 x2 = 00, state = 00, z1 = 0

x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 11, state = 11, z1 = 0
x1 x2 = 10, state = 10, z1 = 0
x1 x2 = 00, state = 00, z1 = 0

x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 11, state = 11, z1 = 0
x1 x2 = 10, state = 10, z1 = 0
x1 x2 = 11, state = 00, z1 = 1

//continued on next page
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Figure 3.112       (Continued)

Example 3.13 Given the reduced primitive flow table shown below in Figure 3.113,
a Mealy asynchronous sequential machine will be designed using logic gates that were
designed using dataflow modeling.  There are no equivalent states because of different
outputs.  There will be no output glitches.  The excitation and output equations will be
in a sum-of-products notation.

Figure 3.113 Reduced primitive flow table for Example 3.13.

The merged flow table is shown in Figure 3.114 and the transition diagram is
shown in Figure 3.115.  The combined excitation map is shown in Figure 3.116 and the
individual excitation maps are shown in Figure 3.117.  The excitation equations are
shown in Equation 3.21 in a sum-of-products form.  The output map for output z1 is
shown in Figure 3.118 and the equation for z1 is shown in Equation 3.22.

x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 11, state = 11, z1 = 0
x1 x2 = 10, state = 10, z1 = 0
x1 x2 = 11, state = 00, z1 = 1
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
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Figure 3.114 Merged flow table for Example 3.13.

Figure 3.115 Transition diagram for Example 3.13.

Figure 3.116 Combined excitation map for Example 3.13.
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Figure 3.117 Individual excitation maps for Example 3.13.

Figure 3.118 Output map for Example 3.13.

z1 = y1f x1'  + y1f ' y2f x2  + y2f x1' x2 (Hazard cover)                   (3.22)
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The structural design module is shown in Figure 3.119 using logic gates that were
designed using dataflow modeling.  The equations of Equation 3.21 were used to
implement the design module.  The test bench module is shown in Figure 3.120 and
the outputs are shown in Figure 3.121.  Use the reduced primitive flow table or the
merged flow table to verify the correct operation of the machine.

Figure 3.119 Structural design module for the asynchronous sequential machine of
Example 3.13.

//structural for sum-of-products asm
module asm_struc_df2 (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and output
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6,

net7, net8, net9, net10;

//-------------------------------------------
//instantiate the logic for y1e
and3_df inst1 (y1e, ~x1, rst_n, net1);

and4_df inst2 (y1e, y2e, x2, rst_n, net2),
inst3 (y2e, ~x1, x2, rst_n, net3);

or3_df inst4 (net1, net2, net3, y1e);

//-------------------------------------------
//instantiate the logic for y2e
and3_df inst5 (x1, ~x2, rst_n, net5),

inst6 (y1e, ~x1, rst_n, net6);

and4_df inst7 (~y1e, y2e, x2, rst_n, net7),
inst8 (~y1e, y2e, x1, rst_n, net8),
inst9 (y2e, ~x1, x2, rst_n, net9);

or5_df inst10(net5, net6, net7, net8, net9, y2e);

//-------------------------------------------
//instantiate the logic for output z1
and2_df inst11 (y1e, ~x1, net11);
and3_df inst12 (~y1e, y2e, x2, net12),

inst13 (y2e, ~x1, x2, net13);

or3_df inst14 (net11, net12, net13, z1);

endmodule
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Figure 3.120 Test bench module for the asynchronous sequential machine of
Example 3.13.

//test bench for sum-of-products asm
module asm_struc_df2_tb;

reg rst_n, x1, x2; //inputs are reg for test bench
wire y1e, y2e, z1; //outputs are wire for test bench

initial //display variables
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0   x1 = 1'b0; x2 = 1'b0; //state_a
rst_n = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b1; x2 = 1'b1; //state_e, assert z1

#10 x1 = 1'b0; x2 = 1'b1; //state_f, assert z1
#10 x1 = 1'b0; x2 = 1'b0; //state_g, assert z1

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0; //state_a

#10 x1 = 1'b0; x2 = 1'b1; //state_b
#10 x1 = 1'b1; x2 = 1'b1; //state_c

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b1; x2 = 1'b1; //state_e, assert z1

#10 x1 = 1'b0; x2 = 1'b1; //state_f, assert z1
#10 x1 = 1'b1; x2 = 1'b1; //state_c

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0; //state_a

#10 $stop;
end

//instantiate the module into the test bench
asm_struc_df2 inst1 (rst_n, x1, x2, y1e, y2e, z1);

endmodule
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Figure 3.121 Outputs for the asynchronous sequential machine of Example 3.13.

Example 3.14 A Moore asynchronous sequential machine will be synthesized, using
the continuous assignment statement assign that has one input x1  and one output z1
that operates according to the timing diagram shown in Figure 3.122.  The assertion of
input x1  toggles output z1.  The machine will have no static hazards.

Figure 3.122 Timing diagram for the asynchronous sequential machine of Exam-
ple 3.14.

The primitive flow table is shown in Figure 3.123.  The table has no equivalent
states, because no states can merge.  The combined excitation map is shown in Figure
3.124 and the individual excitation maps are shown in Figure 3.125.  The equations for
Y1e and Y2e are shown in Equation 3.23 in a sum-of-products form.

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 11, state = 01, z1 = 1
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 11, z1 = 1

x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 01, state = 00, z1 = 0
x1 x2 = 11, state = 00, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 11, state = 01, z1 = 1
x1 x2 = 01, state = 11, z1 = 1

x1 x2 = 11, state = 00, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 00, z1 = 0

+x1 

+z1 

aa b dc
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Figure 3.123 Primitive flow table for Example 3.14.

Figure 3.124 Combined excitation map for Example 3.14.

Figure 3.125 Individual excitation maps for Example 3.14.
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Y1e = y1f x1  + y2f x1'  + y1f y2f      (Hazard cover)
    net1     net2 net3

 (3.23)
Y2e = y1f ' x1  + y2f x1'  + y1f ' y2f     (Hazard cover)

    net4       net5        net6

The output map for z1 is shown below and the output equation is shown in Equa-
tion 3.24.  The dataflow design module is shown in Figure 3.126 using the continuous
assignment statement assign.  The test bench module is shown in Figure 3.127 and the
outputs are shown in Figure 3.128.

z1 = y2f  (3.24)

Figure 3.126 Dataflow design module for Example 3.14.
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//dataflow for asm using the continuous assignment

module asm_toggle2 (rst_n, x1, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6;

//continued on next page
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Figure 3.126       (Continued)

Figure 3.127 Test bench module for Example 3.14.

//---------------------------------------
//define the logic for y1e
assign net1 = y1e & x1 & rst_n,

net2 = y2e & ~x1 & rst_n,
net3 = y1e & y2e & rst_n, //hazard cover
y1e = net1 | net2 | net3;

//---------------------------------------
//define the logic for y2e
assign net4 = ~y1e & x1 & rst_n,

net5 = y2e & ~x1 & rst_n,
net6 = ~y1e & y2e & rst_n, //hazard cover
y2e = net4 | net5 | net6;

assign z1 = net4 | net5 | net6;

endmodule

//test bench for asm using the assign statement
module asm_toggle2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1 = %b, state = %b, z1 = %b",

x1, {y1e, y2e}, z1);

//apply input signals
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; //state_a
#10 x1 = 1'b1; //state_b, assert z1

//continued on next page
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Figure 3.127       (Continued)

Figure 3.128 Outputs for Example 3.14.

Example 3.15 An asynchronous sequential machine will be designed with Moore
and Mealy type outputs using built-in primitives.  The machine has two inputs x1  and
x2  and two outputs z1 and z2 .  The two inputs may overlap, but will not change state
simultaneously.  Only the following sequences are valid:

x1x2 = 00  10  11  01  00
x1x2 = 00  01  11  10  00
x1x2 = 00  10  00
x1x2 = 00  01  00

#10 x1 = 1'b0; //state_c, assert z1
#10 x1 = 1'b1; //state_d, deassert z1

#10 x1 = 1'b0; //state_a
#10 x1 = 1'b1; //state_b, assert z1

#10 x1 = 1'b0; //state_c, assert z1
#10 x1 = 1'b1; //state_d, deassert z1

#10 $stop;

end

//instantiate the module into the test bench
asm_toggle2 inst1 (rst_n, x1, y1e, y2e, z1);

endmodule

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 1
x1 = 0, state = 11, z1 = 1
x1 = 1, state = 10, z1 = 0

x1 = 0, state = 00, z1 = 0
x1 = 1, state = 01, z1 = 1
x1 = 0, state = 11, z1 = 1
x1 = 1, state = 10, z1 = 0
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Output z1 is asserted whenever x1  is active and x2  is asserted or when x2  is active
and x1  is asserted.  Output z1 will be de-asserted when either x1  or x2  is de-asserted.
Output z2  is asserted coincident with the assertion of z1 and remains active until the
de-assertion of the last active input of an overlapping sequence.  A representative tim-
ing diagram is shown below in Figure 3.129 and the primitive flow table is shown in
Figure 3.130 as obtained from the timing diagram.

Figure 3.129 Timing diagram for the asynchronous sequential machine of Exam-
ple 3.15.

Figure 3.130 Primitive flow table for Example 3.15.
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The merger diagram is shown in Figure 3.131.  Recall the merging process, which
states that two rows can merge into a single row if the entries in the same column of
each row satisfy one of the following three merging rules:

1. Identical state entries, either stable or unstable.
2. A state entry and a “don’t care.”
3. Two “don’t care” entries.

Thus the merger diagram of Figure 3.131 yields the following partitions of max-
imal compatible sets:

{ }, { , , }, { , , }

Figure 3.131 Merger diagram for Example 3.15.

The merged flow table illustrating the maximal compatible sets is shown in Figure
3.132.  After enumerating the rows of the merged flow table, all state transition
sequences can be identified with reference to individual rows.  The state transitions are
illustrated in graphical form by means of a transition diagram.

Figure 3.132 Merged flow table for Example 3.15.
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The transition diagram for the merged flow table of Figure 3.132 is shown in
Figure 3.133.  Row 1 proceeds to row 2 by the sequence  b  , as illustrated
by the directed line from row 1 to row 2 in Figure 3.133.  Similarly, row 1 proceeds to
row 3 by the sequence  e  .  Also, row 3 proceeds to row 1 by the sequence

 a  .  The combined excitation map is shown in Figure 3.134 and the indi-
vidual excitation maps are shown in Figure 3.135.

Figure 3.133 Transition diagram for Figure 3.132 of Example 3.15.

Figure 3.134 Combined excitation map for Example 3.15.

Figure 3.135 Individual excitation maps for Example 3.15.
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The excitation equations are shown in Equation 3.25.  The output maps for z1 and
z2  are shown in Figure 3.136 and the output equations are shown in Equation 3.26 in
a sum-of-products form.

Y1e = y1f x1  + y2f ' x2 Y2e = y2f x2  + y1f ' x1  (3.25)

Figure 3.136 Output maps for Example 3.15.

z1 = x1x2    z2  = y2f x2  + y1f x1      (3.26)

The dataflow design module for the asynchronous sequential machine is shown in
Figure 3.137 using the continuous assignment statement assign.  The continuous
assignment statement models dataflow behavior and provides a Boolean correspon-
dence between the right-hand side expression and the left-hand side target.

The continuous assignment statement assigns a value to a net (wire) that has been
previously declared.  The operands on the right-hand side can be registers, nets, or
function calls.  The registers and nets can be declared as either scalars or vectors.  The
test bench module and the outputs are shown in Figures 3.138 and 3.139, respectively.

Figure 3.137 Dataflow design module for Example 3.15.
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//dataflow for asm using the continuous assignment statement
module asm_assign (rst_n, x1, x2, y1e, y2e, z1, z2);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1, z2;

//define internal nets
wire net1, net2, net3, net4;

//continued on next page
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Figure 3.137       (Continued)

Figure 3.138 Test bench module for Example 3.15.

//----------------------------------------
//design the logic for y1e
assign net1 = y1e & x1 & rst_n,

net2 = ~y2e & x2 & rst_n,
y1e = net1 | net2;

//----------------------------------------
//design the logic for y2e
assign net3 = y2e & x2 & rst_n,

net4 = ~y1e & x1 & rst_n,
y2e = net3 | net4;

//----------------------------------------
//design the logic for outputs z1 and z2
assign z1 = x1 & x2,

z2 = (y2e & x2) | (y1e & x1);

endmodule

//test bench for the asm using the assign statement

module asm_assign_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1, z2;

//display variables
initial
$monitor ("x1x2 = %b, state = %b, z1z2 = %b",

{x1, x2}, {y1e, y2e}, {z1, z2});

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0;
x2 = 1'b0;

#5 rst_n = 1'b1;
//continued on next page
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Figure 3.138       (Continued)

Figure 3.139 Outputs for Example 3.15.

3.4  Pulse-Mode Asynchronous Sequential 
Machines

In pulse-mode asynchronous sequential machines, state changes occur on the applica-
tion of input pulses which trigger the storage elements, rather than on a clock signal.
The duration of the pulse is less than the propagation delay of the storage elements and
associated logic gates.  Thus, an input pulse will initiate a state change, but the com-
pletion of the change will not take place until after the corresponding input has been
de-asserted.  Multiple inputs cannot be active simultaneously.

#10 x1 = 1'b0; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b0;
#10 x1 = 1'b1; x2 = 1'b1; //z1 = 1, z2 = 1
#10 x1 = 1'b0; x2 = 1'b1; //z1 = 0, z2 = 1
#10 x1 = 1'b0; x2 = 1'b0; //z1 = 0, z2 = 0
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //z1 = 0, z2 = 0
#10 x1 = 1'b1; x2 = 1'b1; //z1 = 1, z2 = 1
#10 x1 = 1'b1; x2 = 1'b0; //z1 = 0, z2 = 1
#10 x1 = 1'b0; x2 = 1'b0; //z1 = 0, z2 = 0
#10 $stop;

end

//instantiate the module into the test bench
asm_assign inst1 (rst_n, x1, x2, y1e, y2e, z1, z2);
endmodule

x1x2 = 00, state = 00, z1z2 = 00
x1x2 = 10, state = 01, z1z2 = 00
x1x2 = 11, state = 01, z1z2 = 11
x1x2 = 01, state = 01, z1z2 = 01
x1x2 = 00, state = 00, z1z2 = 00

x1x2 = 01, state = 10, z1z2 = 00
x1x2 = 11, state = 10, z1z2 = 11
x1x2 = 10, state = 10, z1z2 = 01
x1x2 = 00, state = 00, z1z2 = 00
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Unlike a system clock, which has a specified frequency, the input pulses can occur
randomly and more than one input pulse can generate an output.  If the input pulse is
of insufficient duration, then the storage elements may not be triggered and the ma-
chine will not sequence to the next state.  If the pulse duration is too long, then the
pulse will still be active when the machine changes from the present state Y j(t) to the
next state Yk(t+1).  The storage elements may then be triggered again and sequence the
machine to an incorrect next state.  If the time between consecutive pulses is too short,
then the machine will be triggered while in an unstable condition, resulting in unpre-
dictable behavior.

The pulse width restrictions that are dominant in pulse-mode sequential machines
can be eliminated by including D flip-flops in the feedback path from the SR latches to
the  next-state logic.  Providing edge-triggered D flip-flops as a constituent part of the
implementation negates the requirement of precisely controlled input pulse durations.
This is by far the most reliable means of synthesizing pulse-mode machines.  The SR
latches — in conjunction with the D flip-flops — form a master-slave configuration.

Figure 3.140 illustrates a block diagram for a pulse-mode asynchronous sequen-
tial machine using SR latches and D flip-flops.  The machine is similar in structure to
a Moore machine if (Y) or to a Mealy machine if (X,Y).

Figure 3.140 General block diagram for pulse-mode sequential machine.

In order for the operation of the machine to be deterministic, some restrictions ap-
ply to the input pulses:

1. Input pulses must be of sufficient duration to trigger the storage elements.

2. The time duration of the pulses must be shorter than the minimal propagation
delay through the combinational input logic and the storage elements, so that
the pulses are de-asserted before the storage elements can again change state.

3. The time duration between successive input pulses must be sufficient to allow
the machine to stabilize before application of the next pulse.

4. Only one input pulse can be active at a time.
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3.4.1   Synthesis Procedure

Reliability of pulse-mode machines can be increased by inserting delay circuits of
an appropriate duration in the output networks of the storage elements.  The aggregate
delay of the storage elements and the delay circuit must be of sufficient duration so
that the input pulse will be de-asserted before the storage element output signals arrive
at the  next-state logic.

Three techniques are commonly used to insert delays in the storage element out-
puts: An even number of inverters are connected in series with each latch output; a lin-
ear delay circuit is connected in series with each latch output; or an edge-triggered D
flip-flop is connected in series with each latch output.

As stated previously, the flip-flops are set to the state of the latches, but are trig-
gered on the trailing edge of the input pulses.  Thus, the flip-flop outputs — and there-
fore the next state of the machine as represented by the SR latch outputs — are
received at the  next-state logic only when the active input pulse has been de-asserted.
The SR latches and the D flip-flops constitute a master-slave relationship and will be
the primary means to implement pulse-mode asynchronous sequential machines in
this section.  T flip-flops will also be utilized in the examples to illustrate an alternative
method to implement pulse-mode asynchronous sequential machines.

The synthesis procedure will be illustrated in detail in the examples presented in
the following sections.  The first method will implement pulse-mode machines using
SR latches with D flip-flops in a master-slave configuration.  Then T flip-flops will be
utilized in the synthesis examples.  The T flip-flops will incorporate a delay circuit to
delay the output of the flip-flops from being fed back to the  input logic before the
input signals become de-asserted.  Both Moore and Mealy machines will be synthe-
sized in the examples.

3.4.2   SR Latches with D Flip-Flops  as Storage          
Elements

This section will present the synthesis of pulse-mode asynchronous sequential
machines including Moore and Mealy machines.  All designs will include the follow-
ing items where applicable: timing diagrams, state diagrams, Karnaugh maps for the
input equations, Karnaugh maps for the output equations, and logic diagrams.

Example 3.16 A Mealy pulse-mode sequential machine will be designed which has
two inputs x1  and x2  and one output z1.  Output z1 is asserted coincident with every
second x2  pulse, if and only if  the pair of x2  pulses is immediately preceded by an x1
pulse.

Structural modeling will be used in the implementation of the Mealy machine
using built-in primitives.  The storage elements will consist of SR latches and D flip-
flops in a master-slave configuration.  The D flip-flops were designed using behav-
ioral modeling.  A representative timing diagram is shown in Figure 3.141 and the cor-
responding state diagram is shown in Figure 3.142.  
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Figure 3.141 Representative timing diagram for the Mealy pulse-mode asynchro-
nous sequential machine of Example 3.16.

Figure 3.142 State diagram for the Mealy pulse-mode asynchronous sequential
machine of Example 3.16.

The Karnaugh maps for the latches of the Mealy machine are shown in Figure
3.143.  An entry of R specifies a reset condition; an entry of r indicates that the
machine is to remain in a reset state; an entry of S indicates a set condition; and an
entry of s indicates that the machine is to remain in a set state.  The corresponding
equations are shown in Equations 3.27 and 3.28.
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Figure 3.143 Input maps for the Mealy pulse-mode asynchronous sequential
machine of Example 3.16.

The equation for output z1 is shown in Equation 3.29.  Since only latch y1  and
input x2  are required to activate output z1, the equation for z1 will include only those
two variables.  The logic diagram is shown in Figure 3.144 which contains D flip-flops
that were previously designed using behavioral modeling.
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Figure 3.144 Logic diagram for the Mealy pulse-mode asynchronous sequential
machine of Example 3.16.

The structural design module using built-in primitives and instantiated D flip-
flops that were designed using behavioral modeling is shown in Figure 3.145.  The test
bench module is shown in Figure 3.146 and the outputs are shown in Figure 3.147.
The outputs directly correspond to the timing diagram of Figure 3.141.

Figure 3.145 Structural design module for the Mealy machine of Example 3.16.
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//structural for asm using built-in primitives

module pm_asm_bip (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//continued on next page
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Figure 3.145       (Continued)

Figure 3.146 Test bench module for the Mealy machine of Example 3.16.

//design the clock for the D flip-flops
nor (net1, x1, x2);

//------------------------------------
//define the logic for latch Ly1
nand (net2, y2e, x2);
and (net3, y1e, x2);
nor (net4, x1, net3);
nand (net5, net2, net6),

(net6, net5, net4, rst_n);

//instantiate the D flip-flop for y1e
d_ff_bh inst1 (rst_n, net1, net5, y1e);  //reset, clk, D, Q)

//------------------------------------
//define the logic for latch Ly2
nand (net7, ~x1, net8),

(net8, net7, ~x2, rst_n);

//instantiate the D flip-flop for y2e
d_ff_bh inst2 (rst_n, net1, net7, y2e);  //reset, clk, D, Q)

//------------------------------------
//define the logic for output z1
and (z1, y1e, x2);

endmodule

//test bench for the asm using built-in primitives

module pm_asm_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, y2e, z1;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);
//continued on next page
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Figure 3.146       (Continued)

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b0; x2 = 1'b1; //go to state_a (00)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 x1 = 1'b1; x2 = 1'b0; //go to state_b (01)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_b (01)

#10 x1 = 1'b1; x2 = 1'b0; //remain in state_b (01)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_b (01)

#10 x1 = 1'b0; x2 = 1'b1; //go to state_c (10)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_c (10)

#10 x1 = 1'b0; x2 = 1'b1; //assert z1; go to state_a
//(00)

#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 x1 = 1'b1; x2 = 1'b0; //go to state_b (01)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_b (01)

#10 x1 = 1'b0; x2 = 1'b1; //go to state_c (10)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_c (10)

#10 x1 = 1'b0; x2 = 1' b1; //assert z1; go to state_a
//(00)

#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 x1 = 1'b0; x2 = 1'b1; //remain in state_a (00)
#10 x1 = 1'b0; x2 = 1'b0; //remain in state_a (00)

#10 $stop;
end

//instantiate the module into the test bench
pm_asm_bip inst1 (rst_n, x1, x2, y1e, y2e, z1);

endmodule
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Figure 3.147 Outputs for the Mealy machine of Example 3.16.

Example 3.17 The state diagram for a Moore pulse-mode asynchronous sequential
machine is shown in Figure 3.148.  The input maps are shown in Figure 3.149.  The
input and output equations are shown in Equation 3.30.  The logic diagram is shown in
Figure 3.150.

Figure 3.148 State diagram for the Moore machine of Example 3.17.
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x1 x2 = 00, state = 00, z1 = 0
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Figure 3.149 Input Karnaugh maps for Example 3.17.

SLy1  = y2x1 RLy1  = y2 ' x2
SLy2  = x1 RLy2  = x2
z1 = y1  (3.30)

Figure 3.150 Logic diagram for the Moore machine of Example 3.17.
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The structural design module using built-in primitives is shown in Figure 3.151.
The test bench and outputs are shown in Figures 3.152 and 3.153, respectively.

Figure 3.151 Structural design module for the Moore machine of Example 3.17. 

//structural for Moore pulse-mode asm using bip

module pm_asm_moore10 (rst_n, x1, x2, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;

//define the clock for the D flip-flops
nor (net1, x1, x2);

//--------------------------------------
//assign the logic for latch Ly1
nand (net2, x1, y2e),

(net3, x2, ~y2e),
(net4, net2, net5),
(net5, net4, net3, rst_n);

//instantiate the D flip-flop for y1e
d_ff_bh inst1 (rst_n, net1, net4, y1e);

//reset, clock, D, Q

//--------------------------------------
//assign the logic for latch Ly2
nand (net6, ~x1, net7),

(net7, net6, ~x2, rst_n);

//instantiate the D flip-flop for y2e
d_ff_bh inst2 (rst_n, net1, net6, y2e);

//reset, clock, D, Q

assign z1 = y1e;

endmodule
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Figure 3.152 Test bench module for the Moore machine of Example 3.17. 

//test bench for pm_asm_moore10
module pm_asm_moore10_tb;

reg rst_n, x1, x2; //inputs are reg for test bench
wire y1e, y2e, z1; //outputs are wire for test bench

initial //display variables
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1e, y2e}, z1);

//apply input vectors
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_c; assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_d; assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_c; assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_d; assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
pm_asm_moore10 inst1 (rst_n, x1, x2, y1e, y2e, z1);

endmodule
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Figure 3.153 Outputs for the Moore machine of Example 3.17. 

Example 3.18 The state diagram for a Moore pulse-mode machine is shown in Fig-
ure 3.154.  The input maps for x1 , x2, and x3  are shown in Figure 3.155.  The input and
output equations are shown in Equation 3.31.

Figure 3.154 State diagram for the Moore machine of Example 3.18.

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0

x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 10, state = 10, z1 = 1

x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 01, state = 10, z1 = 1

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 01, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
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Figure 3.155 Karnaugh maps for the inputs of the Moore machine of Example 3.18.

SLy1  = y1 ' y2x2 RLy1  = x1  + y1x2

SLy2  = y1 ' x1 RLy2  = y1x2  + x3
 (3.31)

z1 = y1y2 '

The logic diagram, obtained from the input and output equations, is shown in Fig-
ure 3.156 using latches, D flip-flops, and logic gates consisting of NOR gates, AND
gates, and NAND gates.  In the design module, the logic gates will be designed using
the continuous assignment statement.

Recall that the continuous assignment statement assign is used to describe com-
binational logic where the output of the circuit is evaluated whenever an input
changes; that is, the value of the right-hand side expression is continuously assigned to
the left-hand side net.  Continuous assignments can be used only for nets, not for reg-
ister variables.  A continuous assignment statement establishes a relationship between
a right-hand side expression and a left-hand side net.  A continuous assignment occurs
outside of an initial or an always statement.  The syntax for a continuous assignment
statement is

assign <Optional delay> Left-hand side net = Right-hand side expression;

The left-hand side is declared as type wire not reg.  When a variable on the right-
hand side changes value, the right-hand side expression is evaluated and the value is
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assigned to the left-hand side net after the specified delay.  The continuous assignment
is used to place a value on a net.  The D flip-flops will be designed using behavioral
modeling and instantiated into the design module.

Figure 3.156 Logic diagram for the Moore machine of Example 3.18.

The dataflow design module is shown in Figure 3.157.  The test bench module and
outputs are shown in Figure 3.158 and Figure 3.159, respectively.

Figure 3.157 Dataflow design module for Example 3.18.
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//dataflow for pulse-mode asm using assign

module pm_asm_moore11 (rst_n, x1, x2, x3, y1e, y2e, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1e, y2e, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7,

net8, net9, net10, net11; //continue on next page
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Figure 3.157       (Continued)

Figure 3.158 Test bench module for Example 3.18.

//-------------------------------------------
//define the clock for the D flip-flops
assign net1 = ~(x1 | x2 | x3);

//-------------------------------------------
//design the logic for latch Ly1
assign net2 = ~(~y1e & y2e & x2),

net3 = (y1e & x2),
net4 = ~(x1 | net3),
net5 = (~net2 | ~net6),
net6 = ~(net5 & net4 & rst_n);

//instantiate the D flip-flop for y1e
d_ff_bh inst1 (rst_n, net1, net5, y1e);  //reset, clk, D, Q

//-------------------------------------------
//design the logic for latch Ly2
assign net7 = ~(x1 & ~y1e),

net8 = (x2 & y1e & rst_n),
net9 = ~(x3 | net8),
net10 = (~net7 | ~net11),
net11 = ~(net10 & net9 & rst_n);

//instantiate the D flip-flop for y2e
d_ff_bh inst2 (rst_n, net1, net10, y2e);  //reset, clk, D, Q

//design the logic for output z1
assign z1 = (y1e & ~y2e);

endmodule

//test bench for the moore pulse-mode asm
module pm_asm_moore11_tb;

reg rst_n, x1, x2, x3; //inputs are reg for test bench
wire y1e, y2e, z1; //outputs are wire for test bench

//display variables
initial
$monitor ("x1 x2 x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1e, y2e}, z1);
//continued on next page
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Figure 3.158       (Continued)

//apply input vectors
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#5 rst_n = 1'b1;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_d;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; //assert z1

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

//----------------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_d;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; //assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_d;
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0; //assert z1

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

//continued on next page
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Figure 3.158       (Continued)

Figure 3.159 Outputs for the Moore pulse-mode asynchronous sequential machine
of Example 3.18.

#10 $stop;
end

//instantiate the module into the test bench
pm_asm_moore11 inst1 (rst_n, x1, x2, x3, y1e, y2e, z1);

endmodule

x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 100, state = 00, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 010, state = 01, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0
x1 x2 x3 = 001, state = 11, z1 = 0
x1 x2 x3 = 000, state = 10, z1 = 1
x1 x2 x3 = 100, state = 10, z1 = 1
x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 010, state = 00, z1 = 0

x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 100, state = 00, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 100, state = 01, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 010, state = 01, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0
x1 x2 x3 = 001, state = 11, z1 = 0
x1 x2 x3 = 000, state = 10, z1 = 1
x1 x2 x3 = 001, state = 10, z1 = 1
x1 x2 x3 = 000, state = 10, z1 = 1
x1 x2 x3 = 010, state = 10, z1 = 1
x1 x2 x3 = 000, state = 00, z1 = 0

x1 x2 x3 = 001, state = 00, z1 = 0
x1 x2 x3 = 000, state = 00, z1 = 0
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3.4.3   T Flip-Flops as Storage Elements

A toggle (T) flip-flop — shown in Figure 3.160 — is a positive-edge-triggered storage
device that will now be designed for use in the Verilog design examples in this section.
A T flip-flop has two inputs: T and reset; and two outputs +y1  and –y1.  If the flip-flop
is reset, then an active pulse on the T input will toggle the flip-flop to the set state; if the
flip-flop is set, then a pulse on the T input will toggle the flip-flop to the reset state.

The T flip-flop utilized in these examples incorporates a D flip-flop, an exclusive-
OR circuit, and a delay circuit as a buf built-in primitive, as shown in Figure 3.160.
The T input connects to the clock input of the D flip-flop through a delay circuit, which
allows the clock input to be delayed until the signal on the D input has stabilized.
When T has a value of 0, the next state is the same as the present state; when T has a
value of 1, the next state is the complement of the present state.

Figure 3.160 A T flip-flop.

The design module for the T flip-flop is shown in Figure 3.161.  The test bench
module is shown in Figure 3.162 and the outputs are shown in Figure 3.163.

Figure 3.161 Design module for a T flip-flop.
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//T flip-flop design using a D flip-flop and an xor
module t_ff_da (rst_n, t, y1);

input rst_n, t; //define inputs and output
output y1;

wire net1, net2; //net2 is the T input delayed

//define the logic for the T flip-flop
xor (net1, t, y1); //flip-flop D input
buf (net2, t); //flip-flop clk input delayed

//continued on next page



3.4     Pulse-Mode Asynchronous Sequential Machines     373

Figure 3.161       (Continued)

Figure 3.162 Test bench module for the T flip-flop.

//instantiate the D flip-flop
d_ff_bh inst1 (rst_n, net2, net1, y1); //reset, clk, D, Q

endmodule

//test bench for the T-flip-flop
module t_ff_da_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, t;
wire y1;

//display variables
initial
$monitor ($time, "ns, t = %b, y1 = %b", t, y1);

//define input sequence
initial
begin

#0 rst_n = 1'b0;
t = 1'b0;

#5 rst_n = 1'b1;

//------------------------------
#20 t = 1'b1;
#10 t = 1'b0;
#30 t = 1'b1;
#10 t = 1'b0;
#20 t = 1'b1;
#10 t = 1'b0;
#10 t = 1'b1;

#10 $stop;

end

//instantiate the module into the test bench as a single line
t_ff_da inst1 (rst_n, t, y1);

endmodule
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Figure 3.163 Outputs for the T flip-flop.

Example 3.19 The state diagram for a Mealy pulse-mode asynchronous sequential
machine is shown in Figure 3.164.  The machine will be designed using built-in prim-
itives and instantiated T flip-flops.

Figure 3.164 State diagram for the Mealy pulse-mode asynchronous sequential
machine of Example 3.19.
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The Karnaugh maps for the storage elements are shown in Figure 3.165 and the
equations for y1, y2 , and z1 are shown in Equation 3.32.  The design module using
built-in primitives and instantiated T flip-flops is shown in Figure 3.166.  The test
bench module and the outputs are shown in Figures 3.167 and 3.168, respectively.

Figure 3.165 Karnaugh maps for T flip-flops y1  and y2  for Example 3.19.
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Figure 3.166 Design module for Example 3.19 using built-in primitives and instan-
tiated T flip-flops.

//mealy pulse-mode asm using bip and T flip-flops

module pm_asm_mealy_tff (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;
wire nety1, nety2;

//----------------------------------------------------------
//design the logic for flip-flop y1
and (net1, ~y1, y2, x1),

(net2, y1, x2);

or (net3, net1, net2);

//instantiate the T flip-flop
t_ff_da inst1 (rst_n, net3, nety1); //reset, T, Q

buf #12 (y1, nety1); //nety1 is the output of the
//T flip-flop.  y1 is the output
//delayed by 12 time units

//----------------------------------------------------------
//design the logic for flip-flop y2
and (net4, ~y1, ~y2, x1),

(net5, y1, y2, x1),
(net6, y2, x2);

or (net7, net4, net5, net6);

//instantiate the T flip-flop
t_ff_da inst2 (rst_n, net7, nety2); //reset, T, Q

buf #12 (y2, nety2); //nety2 is the output of the
//T flip-flop.  y2 is the output
//delayed by 12 time units

//----------------------------------------------------------
//design the logic for output z1
assign z1 = y1 & y2 & x2;

endmodule
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Figure 3.167 Test bench module for Example 3.19.

//test bench for the mealy pulse-mode asm

module pm_asm_mealy_tff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------
#10 x1 = 1'b1; x2 =1'b0; //state_b
#10 x1 = 1'b0; x2 =1'b0;

#10 x1 = 1'b1; x2 =1'b0; //state_c
#10 x1 = 1'b0; x2 =1'b0;

#10 x1 = 1'b0; x2 =1'b1; //state_a
#10 x1 = 1'b0; x2 =1'b0; //assert z1

#10 x1 = 1'b0; x2 =1'b0; //state_a
#10 x1 = 1'b0; x2 =1'b0;

//----------------------------------------------------
#10 x1 = 1'b1; x2 =1'b0; //state_b
#10 x1 = 1'b0; x2 =1'b0;

#10 x1 = 1'b1; x2 =1'b0; //state_c
#10 x1 = 1'b0; x2 =1'b0;

#10 x1 = 1'b1; x2 =1'b0; //state_d
#10 x1 = 1'b0; x2 =1'b0;

#10 x1 = 1'b1; x2 =1'b0; //state_d
#10 x1 = 1'b0; x2 =1'b0; //continued on next page
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Figure 3.167       (Continued)

Figure 3.168 Outputs for Example 3.19.

#10 x1 = 1'b0; x2 =1'b1; //state_a
#10 x1 = 1'b0; x2 =1'b0;

#12 $stop;

end

//instantiate the module into the test bench
pm_asm_mealy_tff inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0

x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 10, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 10, state = 10, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 01, state = 10, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
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Example 3.20 The state diagram for a Mealy pulse-mode asynchronous sequential
machine is shown in Figure 3.169.  The machine will be designed using built-in prim-
itive logic gates and instantiated T flip-flops.  The Karnaugh maps for the T  flip-flops
are shown in Figure 3.170.

Figure 3.169 State diagram for the Mealy machine of Example 3.20.

Figure 3.170 Karnaugh maps for the T flip-flops of the Mealy machine.
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The equations for the T flip-flops and output z1 are shown in Equation 3.33.  The
structural design module using built-in primitives and instantiated T flip-flops is
shown in Figure 3.171.  The test bench module and the outputs are shown in Figures
3.172 and 3.173, respectively.

Figure 3.171 Structural design module for the Mealy machine of Example 3.20.

   net1          net2
Ty1  = y1 ' y2 x1  + y1y2 ' x2

           net3

 net4      net5       net6 (3.33)
Ty2  = y2 ' x1  + y1x1  + y1 ' y2 x2

        net7

z1 = y1y2 ' x2

//mealy pulse-mode asm using bip and T flip-flops

module pm_asm_mealy3_tff (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;
wire nety1, nety2;

//----------------------------------------------------------
//design the logic for flip-flop y1
and (net1, ~y1, y2, x1),

(net2, y1, ~y2, x2);

or (net3, net1, net2);

//instantiate the T flip-flop for y1
t_ff_da inst1 (rst_n, net3, nety1); //reset, T, Q

buf #12 (y1, nety1); //nety1 is the output of the
//T flip-flop.  y1 is the output
//delayed by 12 time units

//continued on next page
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Figure 3.171       (Continued)

Figure 3.172 Test bench module for the Mealy machine of Example 3.20.

//design the logic for flip-flop y2
and (net4, ~y2, x1),

(net5, y1, x1),
(net6, ~y1, y2, x2);

or (net7, net4, net5, net6);

//instantiate the T flip-flop for y2
t_ff_da inst2 (rst_n, net7, nety2); //reset, T, Q

buf #12 (y2, nety2); //nety2 is the output of the
//T flip-flop.  y2 is the output
//delayed by 12 time units

//----------------------------------------------------------
//design the logic for output z1
assign z1 = y1 & ~y2 & x2;

endmodule

//test bench for the mealy pulse-mode asm
module pm_asm_mealy3_tff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 'b0;

#5 rst_n = 1'b1;
//continued on next page
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Figure 3.172       (Continued)

//------------------------------------------------------
#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //assert z1, state_a
#10 x1 = 1'b0; x2 = 1'b0;

//------------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //assert z1, state_a
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;

end

//instantiate the module into the test bench
pm_asm_mealy3_tff inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule
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Figure 3.173 Outputs for the Mealy machine of Example 3.20.

Example 3.21 The state diagram for a Moore pulse-mode asynchronous sequential
machine is shown in Figure 3.174.  The Karnaugh maps for T flip-flops y1 and y2  are
shown in Figure 3.175.  The equations for the T flip-flops and output z1 are shown in
Equation 3.34.  The logic diagram for the Moore machine is shown in Figure 3.176.

The structural design module using instantiated logic gates that were designed
using dataflow modeling and instantiated T flip-flops is shown in Figure 3.177.  The
test bench module and the outputs are shown in Figures 3.178 and 3.179, respectively.

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 10, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 01, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 01, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0

x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 01, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 01, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 10, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 01, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
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Figure 3.174 State diagram for the Moore machine of Example 3.21.

Figure 3.175 Karnaugh maps for the T flip-flops of Example 3.21.
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Figure 3.176 Logic diagram for the Moore machine of Example 3.21.

Figure 3.177 Structural design module for the Moore machine of Example 3.21.

   net1          net2
Ty1  = y1 ' y2 x1 + y1y2 ' x2

           net3

 net4      net5 (3.34)
Ty2  = y2 ' x1 + y2 x2

       net7

z1 = y1

T

R

T
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–y1
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–y1

–y2

+y2

//structural for moore pulse-mode asm
module pm_asm_moore_tff (rst_n, x1, x2, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6;
wire nety1, nety2;

//continued on next page
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Figure 3.177       (Continued)

Figure 3.178 Test bench module for the Moore machine of Example 3.21.

//----------------------------------------------------------
//design the logic for T flip-flop y1
and3_df inst1 (~y1, y2, x1, net1),

inst2 (y1, ~y2, x2, net2);

or2_df inst3 (net1, net2, net3);

//instantiate the T flip-flop for y1
t_ff_da inst4 (rst_n, net3, nety1); //reset, T, Q

buf #12 (y1, nety1); //nety1 is the output of the
//T flip-flop.  y1 is the output
//delayed by 12 time units

//----------------------------------------------------------
//design the logic for T flip-flop y2
and2_df inst5 (~y2, x1, net4),

inst6 (y2, x2, net5);

or2_df inst7 (net4, net5, net6);

//instantiate the T flip-flop for y2
t_ff_da inst8 (rst_n, net6, nety2); //reset, T, Q

buf #12 (y2, nety2); //nety2 is the output of the
//T flip-flop.  y2 is the output
//delayed by 12 time units

//----------------------------------------------------------
//design the logic for output z1
assign z1 = y1;

endmodule

//test bench for the moore pulse-mode asm
module pm_asm_moore_tff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1, y2, z1;

//continued on next page
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Figure 3.178       (Continued)

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------------
#10 x1 = 1'b1; x2= 'b0; //state_b
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b1; x2= 'b0; //state_c, assert z1
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b0; x2= 'b1; //state_d, assert z1
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b0; x2= 'b1; //state_a
#10 x1 = 1'b0; x2= 'b0;

//----------------------------------------------------------
#10 x1 = 1'b0; x2= 'b1; //state_a
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b1; x2= 'b0; //state_b
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b0; x2= 'b1; //state_a
#10 x1 = 1'b0; x2= 'b0;

//----------------------------------------------------------
#10 x1 = 1'b1; x2= 'b0; //state_b
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b1; x2= 'b0; //state_c, assert z1
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b1; x2= 'b0; //state_c, assert z1
#10 x1 = 1'b0; x2= 'b0;

//continued on next page
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Figure 3.178       (Continued)

Figure 3.179 Outputs for the Moore machine of Example 3.21.

#10 x1 = 1'b0; x2= 'b1; //state_d, assert z1
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b1; x2= 'b0; //state_c, assert z1
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b0; x2= 'b1; //state_d, assert z1
#10 x1 = 1'b0; x2= 'b0;

#10 x1 = 1'b0; x2= 'b1; //state_a
#10 x1 = 1'b0; x2= 'b0;

#10 $stop;
end

//instantiate the module into the test bench
pm_asm_moore_tff inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 01, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 1

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 01, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 01, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0 //continued on next page
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Figure 3.179       (Continued)

Example 3.22 The state diagram for a Moore pulse-mode asynchronous sequential
machine is shown in Figure 3.180.  The machine will be designed using built-in prim-
itives and instantiated T flip-flops.

Figure 3.180 State diagram for the Moore machine of Example 3.22.

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 10, state = 11, z1 = 1
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 10, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 01, state = 11, z1 = 1
x1 x2 = 00, state = 11, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 01, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 1
x1 x2 = 00, state = 00, z1 = 0

d
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1 0
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y1y2
0 0
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0 1
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The Karnaugh maps for the T flip-flops are shown in Figure 3.181.  The equations
for the T flip-flops and output z1 are shown in Equation 3.35.  The logic diagram for
the Moore machine is shown in Figure 3.182 with the net names.  The design module
for the Moore machine using built-in primitives and T flip-flops is shown in Figure
3.183.  The test bench module and the outputs are shown in Figures 3.184 and 3.185,
respectively.

Figure 3.181 Karnaugh maps for the T flip-flops for Example 3.22.
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Figure 3.182 Logic diagram for the Moore machine of Example 3.22.

Figure 3.183 Design module using built-in primitives and T flip-flops.

y1

T

y2

T

+y1
+x1

+x2
+y2

–y1

 Y 

+y1

+z1

+y2

+x3

–y2

–y2

–y1

net1

net2

net3

net4

net5

net6

net7

net8

nety1

nety2

//moore pulse-mode asm using bip and T flip-flops

module pm_asm_moore2_tff (rst_n, x1, x2, x3, y1, y2, z1);

//define inputs and outputs
input rst_n, x1, x2, x3;
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;
wire nety1, nety2;

//---------------------------------------------------------
//design the logic for flip-flop y1
and (net1, y1, x1),

(net2, y1, x2),
(net3, y2, x2);

or (net4, net1, net2, net3);

//instantiate the T flip-flop
t_ff_da inst1 (rst_n, net4, nety1); //reset, T, Q

buf #12 (y1, nety1); //nety1 is the output of the
//T flip-flop.  y1 is the output
//delayed by 12 time units

//continued on next page
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Figure 3.183       (Continued)

Figure 3.184 Test bench module for the Moore machine of Example 3.22.

//---------------------------------------------------------
//design the logic for flip-flop y2
and (net5, ~y1, ~y2, x1),

(net6, y1, y2, x2),
(net7, y2, x3);

or (net8, net5, net6, net7);

//instantiate the T flip-flop
t_ff_da inst2 (rst_n, net8, nety2); //reset, T, Q

buf #12 (y2, nety2); //nety2 is the output of the
//T flip-flop.  y2 is the output
//delayed by 12 time units

//---------------------------------------------------------
//design the logic for output z1
assign z1 = y1 & ~y2;

endmodule

//test bench for moore pulse-mode asm

module pm_asm_moore2_tff_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2, x3;
wire y1, y2, z1;

//display variables
initial
$monitor ("x1 x2 x3 = %b, state = %b, z1 = %b",

{x1, x2, x3}, {y1, y2}, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#5 rst_n = 1'b1;
//continued on next page
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Figure 3.184       (Continued)

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_d,
//assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

//---------------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; x3 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_d,
//assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b1; //state_d,
//assert z1

#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; x3 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

#12 $stop;
end

//instantiate the module into the test bench
pm_asm_moore2_tff inst1 (rst_n, x1, x2, x3, y1, y2, z1);

endmodule
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Figure 3.185 Outputs for the Moore machine of Example 3.22.

x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 100, state = 00, z1 = 0
x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 010, state = 01, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0
x1 x2 x3 = 001, state = 11, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0
x1 x2 x3 = 000, state = 10, z1 = 1
x1 x2 x3 = 100, state = 10, z1 = 1
x1 x2 x3 = 000, state = 10, z1 = 1

x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 010, state = 00, z1 = 0
x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 001, state = 00, z1 = 0
x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 100, state = 00, z1 = 0
x1 x2 x3 = 000, state = 00, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 100, state = 01, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 010, state = 01, z1 = 0
x1 x2 x3 = 000, state = 01, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0
x1 x2 x3 = 001, state = 11, z1 = 0
x1 x2 x3 = 000, state = 11, z1 = 0

x1 x2 x3 = 000, state = 10, z1 = 1
x1 x2 x3 = 001, state = 10, z1 = 1
x1 x2 x3 = 000, state = 10, z1 = 1
x1 x2 x3 = 100, state = 10, z1 = 1
x1 x2 x3 = 000, state = 10, z1 = 1

x1 x2 x3 = 000, state = 00, z1 = 0
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3.5 Problems

3.1 Design an 8-bit Johnson counter using the case statement.  A Johnson counter
generates a counting sequence in which any two contiguous numbers differ by
only one variable, as shown below for a 3-bit Johnson counter.  Obtain the be-
havioral design module, the test bench module, and the outputs.

000, 001, 011, 111, 011, 001, 000

3.2 Design a counter that counts in the sequence shown below using instantiated
logic gates designed using dataflow modeling and instantiated D flip-flops
designed using behavioral modeling.  Obtain the structural design module, the
test bench module, and the outputs.

000, 111, 001, 110, 010, 101, 011, 100, 000

3.3 Design a Mealy synchronous sequential machine that will generate an output
z1 whenever the sequence 1001 is detected on a serial input line x1 .  Overlap-
ping sequences are valid.  For example, the following sequence will assert
output z1 three times:  . . . 01101001000110010010 . . .  .  Use built-in prim-
itives for the logic gates and instantiated D flip-flops for the storage devices.
Obtain the structural design module, the test bench module, and the outputs.

3.4 The state diagram for a Moore synchronous sequential machine is shown be-
low with three inputs, x1 , x2 , and x3 .  There are two outputs, z1 and z2 .  Obtain
the structural design module using built-in primitives and instantiated D flip-
flops that were designed using behavioral modeling.  Obtain the test bench
module and the outputs.  Use the $random system task for the test bench
module to generate a random value for certain inputs when their value can be
considered a “don’t care” — either 0 or 1.  Use clk ' to gate the outputs to avoid
possible glitches.
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3.5 Given the state diagram shown below for a Moore synchronous sequential
machine, design the machine using behavioral modeling with the case state-
ment.  Obtain the design module, the test bench module, and the outputs.  In
the design module, the values of the input variables x1 , x2, and x3  can be de-
clared as either (x1==1) or as (x1) for example, where  (x1) implies a value of
1.  The input variables can also be declared as (x1==0) or as (~x1), where
(~x1) implies a value of 0.

a

y1y2y3
0 0  0

d
0 1 1

b
0 0 1

c
0 1 0

f
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1 1  0
e
z1

1 1  1
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x1'

x2'

x3'
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y1y2y3
0 0  0

f
1 1 0

b
0 0 1

c
1 0 1

d
z1

0 1  0
e
z2

1 0  0
g
z3

1 1  1

x1 x1'

x2 x2' x2 x3 x2 x3' x2'x3 x2'x3'
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3.6 Given the state diagram shown below for a synchronous sequential machine
containing Moore and Mealy outputs, synthesize the machine using linear-se-
lect multiplexers and D flip-flops that were designed using behavioral mod-
eling.  Obtain the structural design module, the test bench module, and the
outputs.

A linear-select multiplexer is one where the flip-flop outputs connect to
the multiplexer select inputs in a one-to-one mapping as shown below.  The
combinational logic which connects to the input of the multiplexer array is
either very elementary or nonexistent.

b
z1

0 1

d
1 1

c
1 0

z2

a

y1y2
0 0

x1' x1

x2'

x2

Y 

Combinational
logic
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inputs

Data
inputs

(X, Y)
Yk(t+1)

Yj(t) (X, Y)

X
n

p Zm
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3.7 Given the state diagram for a Mealy synchronous sequential machine shown
below, design the machine using the dataflow continuous assign statement as-
sign.  Obtain the dataflow design module, the test bench module, and the out-
puts.

3.8 The timing diagram for an asynchronous sequential machine is shown below.
Obtain the primitive flow table, the merger diagram, the merged flow table,
the excitation map, and the output map.  Design the structural design module
using built-in primitives and the test bench module.  Obtain the outputs.

a

y1y2y3
0 0  0

z2

d
0 1 1

e
1 0 0

f
1 1 0

b
0 0 1

c
0 1 0

z1

x1

x1 x1'

x1 x1'

x1' x1

x1'

x1'

x1

a b c d fa b c b b

+x1

+x2

+z1
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3.9 Synthesize an asynchronous sequential machine using built-in primitives
which has two inputs x1  and x2  and one output z1.  Output z1 will be asserted
coincident with the assertion of the first x2  pulse and will remain active for the
duration of the first x2  pulse.  The output will be asserted only if the assertion
of x1 precedes the assertion of x2.  Input x1 will not become de-asserted while
x2  is asserted.  The timing diagram is shown below.  Obtain the structural de-
sign module, the test bench module, and the outputs.

3.10 The timing diagram for a Mealy asynchronous sequential machine is shown
below.  Design the machine using instantiated logic gates that were designed
using dataflow modeling.  Obtain the structural design module, the test bench
module, and the outputs.

+x1

+x2

+z1

a b c d e gd d a f b c d

a b c d fa b c b b

+x1

+x2

+z1
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3.11 The timing diagram for a Mealy asynchronous sequential machine is shown
below with  one input x1  and two outputs z1 and z2 .  Output z1 toggles on the
rising edge of input x1 .  Output z2  toggles on the falling edge of x1 .  Use struc-
tural modeling with built-in primitives to obtain the design module.  Obtain
the test bench module and the outputs.

3.12 The waveforms for a Mealy asynchronous sequential machine are shown be-
low with two inputs x1  and x2  and one output z1.  Design the machine using
dataflow modeling with the assign statement.  Obtain the design module, the
test bench module, and the outputs.

3.13 Given the state diagram shown below for a Moore–Mealy asynchronous se-
quential machine, design the machine using behavioral modeling with the
case statement.  Then, obtain the test bench and the outputs.

+x1

+z1

+z2

a b c d a

+x1

+x2

+z1

a b c eb da b a
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3.14 The state diagram for a Mealy pulse-mode asynchronous sequential machine
is shown below.   Design the machine using built-in primitives and instanti-
ated D flip-flops.  Obtain the structural design module, the test bench module,
and the outputs.
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3.15 The state diagram for a Mealy pulse-mode asynchronous sequential machine
is shown below.  Synthesize the machine using logic gates that were designed
using dataflow modeling and D flip-flops that were designed using behavioral
modeling.  Obtain the structural design module, the test bench module, and
the outputs.

3.16 The state diagram for a Moore pulse-mode asynchronous sequential machine
is shown below.   Design the machine using built-in primitives and instanti-
ated D flip-flops.  Obtain the structural design module, the test bench module,
and the outputs.
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y1y2
0 0

b
0 1

c
1 0

z1

x1

x2
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3.17 Repeat Problem 3.16 for a Moore pulse-mode asynchronous sequential ma-
chine using the continuous assignment statement assign and instantiated D
flip-flops.  Obtain the dataflow design module, the test bench module, and the
outputs.

3.18 A toggle (T) flip-flop will be used in this problem and the next three problems.
A T flip-flop has two inputs: T and reset; and two outputs +y1  and –y1.  If the
flip-flop is reset, then an active pulse on the T input will toggle the flip-flop to
the set state; if the flip-flop is set, then a pulse on the T input will toggle the
flip-flop to the reset state.  Refer to page 372 of Chapter 3 for a description of
a T flip-flop.

Design a Moore pulse-mode asynchronous sequential machine according
to the state diagram shown below.  Obtain the dataflow design module using
the continuous assign statement, the test bench module, and the outputs.
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1 0
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3.19 Given the state diagram shown below for a Moore pulse-mode asynchronous
sequential machine, design the machine using structural modeling with built-
in primitives and instantiated T flip-flops.
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3.20 Given the state diagram for a Mealy pulse-mode asynchronous sequential ma-
chine shown below, design a dataflow module using the continuous assign-
ment statement assign.  Obtain the test bench module and the outputs.
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3.21 The state diagram shown below is for a Mealy pulse-mode asynchronous se-
quential machine.  Design the structural module for the machine using built-in
primitives and instantiated T flip-flops.  Obtain the test bench module and the
outputs.

a
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1 1
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4
Computer Arithmetic Design 
Using Verilog HDL

4.1 Introduction
This chapter provides techniques for designing different types of adders, subtractors,
multipliers, and dividers using Verilog HDL.  The number representations that will be
used are fixed-point, binary-coded decimal (BCD), and floating-point.  For fixed-
point addition, the radix point is placed to the immediate right of the number for inte-
gers or to the immediate left of the number for fractions.  For floating-point addition,
the numbers consist of the following three fields: a sign bit s; an exponent e; and a frac-
tion f.  These parts represent a number that is obtained by multiplying the fraction f by
the radix r, raised to the power of the exponent e, as shown in Equation 4.1 for the
number A, where f and e are signed fixed-point numbers, and r is the radix (or base).

4.2 Fixed-Point Addition
Before the actual design process is presented, the addition operation will be illustrated.
There  are two operands that are added in an addition operation: the augend and the ad-
dend.  The addend is added to the augend to produce a sum.  If there is a carry-in, then

A = f  r e (4.1)

4.1 Introduction
4.2 Fixed-Point Addition
4.3 Fixed-Point Subtraction
4.4 Fixed-Point Multiplication
4.5 Fixed-Point Division
4.6 Arithmetic and Logic Unit
4.7 Decimal Addition
4.8 Decimal Subtraction

4.9 Decimal Multiplication
4.10 Decimal Division
4.11 Floating-Point Addition
4.12 Floating-Point Subtraction
4.13 Floating-Point

Multiplication
4.14 Floating-Point Division
4.15 Problems
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the carry-in is added to the augend and addend to yield a sum and carry-out.  The truth
table for binary addition is shown in Table 4.1.  When adding 1 + 1 = 2, the number 2
in binary is 102.  When adding 1 + 1 + 1 = 3, the number 3 in binary is 112.

The radix complement of binary numbers (2s complement) is obtained by com-
plementing each bit of the corresponding positive binary number and adding 1 to the
low-order bit position.  For example, let A = 0001 11002 = +2810 and A' = 1110 0011
= 1110 0100 = –28.  To obtain the value of a negative number count the weight of the
0s and add 1.  Examples of addition operations are shown in Table 4.2, which add two
8-bit positive and negative operands.  

4.2.1  Full Adder

A full adder can be designed from two half adders.  A half adder adds two operand bits
a and b, and produces two outputs sum and carry-out.  The truth table for a half adder
is shown in Table 4.3 and the equations for a half adder are shown in Equation 4.2.

Table 4.1  Truth Table for a Full Adder
for Binary Addition

Augend
(a)

Addend
(b)

Carry-in
(cin)

Carry-out
(cout)

Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 4.2   Examples of Addition for Two Eight-Bit Signed Operands

27 26 25 24 23 22 21 20 Value

Augend = 0 0 0 1 1 0 1 0 +26
+ Addend = 0 0 1 1 1 1 0 1 +61

Sum = 0 1 0 1 0 1 1 1 +87

Augend = 1 1 0 0 1 0 0 0 –56
+ Addend = 1 1 0 1 0 0 0 1 –47

Sum = 1 0 0 1 1 0 0 1 –103
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From Table 4.1, the equations for the sum and carry-out of a full adder are shown in
Equation 4.3.  The logic diagram for a full adder is shown in Figure 4.1.

sum = a' b + ab' = a  b cout = ab     (4.2)

Figure 4.1 Logic diagram for a full adder using two half adders.

 

The structural design module is shown in Figure 4.2 using built-in primitives.  The
test bench module and the outputs are shown in Figures 4.3 and 4.4, respectively.

Table 4.3   Truth Table for a Half Adder

Augend
(a)

Addend
(b)

Carry-out
(cout)

Sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

sum = a'b'cin + a'bcin' + ab'cin' + abcin
= a  b  cin

cout = a'bcin + ab'cin + ab cin' + abcin
= ab + (a  b )cin (4.3)

+a
+b +sum

+cout

+cin

Half adder Half adder

a  b  cin

ab + (a  b)cin

net1

net2 net3



410          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Figure 4.2 Structural design module for the full adder.

Figure 4.3 Test bench module for the full adder.

//full adder using built-in primitives
module full_adder_bip (a, b, cin, sum, cout);

//define inputs and outputs
input a, b, cin;
output sum, cout;

//design the full adder
//design the sum
xor inst1 (net1, a, b);
and inst2 (net2, a, b);
xor inst3 (sum, net1, cin);

//define the carry-out
and inst4 (net3, net1, cin);
or inst5 (cout, net3, net2);

endmodule

//test bench for full adder using built-in primitives
module full_adder_bip_tb;

reg a, b, cin; //inputs are reg for test bench
wire sum, cout; //outputs are wire for test bench

//apply input vectors
initial
begin: apply_stimulus

reg[3:0] invect; //invect[3] terminates the for loop
for (invect = 0; invect < 8; invect = invect + 1)

begin
{a, b, cin} = invect [3:0];
#10 $display ("abcin = %b, cout = %b, sum = %b",

{a, b, cin}, cout, sum);
end

end

//instantiate the module into the test bench
full_adder_bip inst1 (a, b, cin, sum, cout);

endmodule
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Figure 4.4 Outputs for the full adder.

4.2.2  Three-Bit Adder

A 3-bit adder will be designed using the continuous assignment statement assign.
Recall that the continuous assignment statement has the following syntax with
optional drive strength and delay:

assign [drive_strength] [delay] left-hand side target = right-hand side expression

The design also uses the concatenation operator { }, which forms a single operand
from two or more operands by joining the different operands in sequence separated by
commas.  The operands to be appended are contained within braces.  The size of the
operands must be known before concatenation takes place.  The design module uti-
lizes the concatenation operator as follows:

assign {cout, sum} = a + b + cin;

The dataflow design module is shown in Figure 4.5.  The test bench module and
the outputs are shown in Figures 4.6 and 4.7, respectively.  Since operands a and b are
both 3-bit operands and cin is a 1-bit operand, the cout and sum variables will contain
128 values.

Figure 4.5 Dataflow design module for the 3-bit adder.

abcin = 000, cout = 0, sum = 0
abcin = 001, cout = 0, sum = 1
abcin = 010, cout = 0, sum = 1
abcin = 011, cout = 1, sum = 0
abcin = 100, cout = 0, sum = 1
abcin = 101, cout = 1, sum = 0
abcin = 110, cout = 1, sum = 0
abcin = 111, cout = 1, sum = 1

//dataflow for a 3-bit adder
module adder3_df (a, b, cin, sum, cout);

input [2:0] a, b; //define inputs and outputs
input cin;
output [2:0] sum;
output cout;

assign {cout, sum} = a + b + cin;
endmodule
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Figure 4.6 Test bench module for the 3-bit adder.

Figure 4.7 Outputs for the 3-bit adder.

//test bench for 3-bit dataflow adder
module adder3_df_tb;

reg [2:0] a, b; //inputs are reg for test bench
reg cin;
wire [2:0] sum; //outputs are wire for test bench
wire cout;

//apply stimulus
initial
begin : apply_stimulus

reg [7:0] invect;
for (invect = 0; invect < 128; invect = invect + 1)

begin
{a, b, cin} = invect [7:0];
#10 $display ("a=%b, b=%b, cin=%b,

cout=%b, sum=%b", a, b, cin, cout, sum);
end

end

//instantiate the module into the test bench
adder3_df inst1 (a, b, cin, sum, cout);
endmodule

a=000, b=000, cin=0, cout=0, sum=000
a=000, b=000, cin=1, cout=0, sum=001
a=000, b=001, cin=0, cout=0, sum=001
a=000, b=001, cin=1, cout=0, sum=010
a=000, b=010, cin=0, cout=0, sum=010

a=000, b=010, cin=1, cout=0, sum=011
a=000, b=011, cin=0, cout=0, sum=011
a=000, b=011, cin=1, cout=0, sum=100
a=000, b=100, cin=0, cout=0, sum=100
a=000, b=100, cin=1, cout=0, sum=101

a=000, b=101, cin=0, cout=0, sum=101
a=000, b=101, cin=1, cout=0, sum=110
a=000, b=110, cin=0, cout=0, sum=110
a=000, b=110, cin=1, cout=0, sum=111
a=000, b=111, cin=0, cout=0, sum=111

//continued on next page
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Figure 4.7       (Continued)

a=000, b=111, cin=1, cout=1, sum=000
a=001, b=000, cin=0, cout=0, sum=001
a=001, b=000, cin=1, cout=0, sum=010
a=001, b=001, cin=0, cout=0, sum=010
a=001, b=001, cin=1, cout=0, sum=011

a=001, b=010, cin=0, cout=0, sum=011
a=001, b=010, cin=1, cout=0, sum=100
a=001, b=011, cin=0, cout=0, sum=100
a=001, b=011, cin=1, cout=0, sum=101
a=001, b=100, cin=0, cout=0, sum=101

a=001, b=100, cin=1, cout=0, sum=110
a=001, b=101, cin=0, cout=0, sum=110
a=001, b=101, cin=1, cout=0, sum=111
a=001, b=110, cin=0, cout=0, sum=111
a=001, b=110, cin=1, cout=1, sum=000

a=001, b=111, cin=0, cout=1, sum=000
a=001, b=111, cin=1, cout=1, sum=001
a=010, b=000, cin=0, cout=0, sum=010
a=010, b=000, cin=1, cout=0, sum=011
a=010, b=001, cin=0, cout=0, sum=011

a=010, b=001, cin=1, cout=0, sum=100
a=010, b=010, cin=0, cout=0, sum=100
a=010, b=010, cin=1, cout=0, sum=101
a=010, b=011, cin=0, cout=0, sum=101
a=010, b=011, cin=1, cout=0, sum=110

a=010, b=100, cin=0, cout=0, sum=110
a=010, b=100, cin=1, cout=0, sum=111
a=010, b=101, cin=0, cout=0, sum=111
a=010, b=101, cin=1, cout=1, sum=000
a=010, b=110, cin=0, cout=1, sum=000

a=010, b=110, cin=1, cout=1, sum=001
a=010, b=111, cin=0, cout=1, sum=001
a=010, b=111, cin=1, cout=1, sum=010
a=011, b=000, cin=0, cout=0, sum=011
a=011, b=000, cin=1, cout=0, sum=100

a=011, b=001, cin=0, cout=0, sum=100
a=011, b=001, cin=1, cout=0, sum=101
a=011, b=010, cin=0, cout=0, sum=101
a=011, b=010, cin=1, cout=0, sum=110
a=011, b=011, cin=0, cout=0, sum=110  //continued next page
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Figure 4.7       (Continued)

a=011, b=011, cin=1, cout=0, sum=111
a=011, b=100, cin=0, cout=0, sum=111
a=011, b=100, cin=1, cout=1, sum=000
a=011, b=101, cin=0, cout=1, sum=000
a=011, b=101, cin=1, cout=1, sum=001

a=011, b=110, cin=0, cout=1, sum=001
a=011, b=110, cin=1, cout=1, sum=010
a=011, b=111, cin=0, cout=1, sum=010
a=011, b=111, cin=1, cout=1, sum=011
a=100, b=000, cin=0, cout=0, sum=100

a=100, b=000, cin=1, cout=0, sum=101
a=100, b=001, cin=0, cout=0, sum=101
a=100, b=001, cin=1, cout=0, sum=110
a=100, b=010, cin=0, cout=0, sum=110
a=100, b=010, cin=1, cout=0, sum=111

a=100, b=011, cin=0, cout=0, sum=111
a=100, b=011, cin=1, cout=1, sum=000
a=100, b=100, cin=0, cout=1, sum=000
a=100, b=100, cin=1, cout=1, sum=001
a=100, b=101, cin=0, cout=1, sum=001

a=100, b=101, cin=1, cout=1, sum=010
a=100, b=110, cin=0, cout=1, sum=010
a=100, b=110, cin=1, cout=1, sum=011
a=100, b=111, cin=0, cout=1, sum=011
a=100, b=111, cin=1, cout=1, sum=100

a=101, b=000, cin=0, cout=0, sum=101
a=101, b=000, cin=1, cout=0, sum=110
a=101, b=001, cin=0, cout=0, sum=110
a=101, b=001, cin=1, cout=0, sum=111
a=101, b=010, cin=0, cout=0, sum=111

a=101, b=010, cin=1, cout=1, sum=000
a=101, b=011, cin=0, cout=1, sum=000
a=101, b=011, cin=1, cout=1, sum=001
a=101, b=100, cin=0, cout=1, sum=001
a=101, b=100, cin=1, cout=1, sum=010

a=101, b=101, cin=0, cout=1, sum=010
a=101, b=101, cin=1, cout=1, sum=011
a=101, b=110, cin=0, cout=1, sum=011
a=101, b=110, cin=1, cout=1, sum=100
a=101, b=111, cin=0, cout=1, sum=100  //continued next page
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Figure 4.7       (Continued)

4.2.3  Four-Bit Ripple-Carry Adder

A ripple-carry adder is not considered a high-speed adder, but requires less logic than
a high-speed adder using the carry lookahead technique.  The carry lookahead method

a=101, b=111, cin=1, cout=1, sum=101
a=110, b=000, cin=0, cout=0, sum=110
a=110, b=000, cin=1, cout=0, sum=111
a=110, b=001, cin=0, cout=0, sum=111
a=110, b=001, cin=1, cout=1, sum=000

a=110, b=010, cin=0, cout=1, sum=000
a=110, b=010, cin=1, cout=1, sum=001
a=110, b=011, cin=0, cout=1, sum=001
a=110, b=011, cin=1, cout=1, sum=010
a=110, b=100, cin=0, cout=1, sum=010

a=110, b=100, cin=1, cout=1, sum=011
a=110, b=101, cin=0, cout=1, sum=011
a=110, b=101, cin=1, cout=1, sum=100
a=110, b=110, cin=0, cout=1, sum=100
a=110, b=110, cin=1, cout=1, sum=101

a=110, b=111, cin=0, cout=1, sum=101
a=110, b=111, cin=1, cout=1, sum=110
a=111, b=000, cin=0, cout=0, sum=111
a=111, b=000, cin=1, cout=1, sum=000
a=111, b=001, cin=0, cout=1, sum=000

a=111, b=001, cin=1, cout=1, sum=001
a=111, b=010, cin=0, cout=1, sum=001
a=111, b=010, cin=1, cout=1, sum=010
a=111, b=011, cin=0, cout=1, sum=010
a=111, b=011, cin=1, cout=1, sum=011

a=111, b=100, cin=0, cout=1, sum=011
a=111, b=100, cin=1, cout=1, sum=100
a=111, b=101, cin=0, cout=1, sum=100
a=111, b=101, cin=1, cout=1, sum=101
a=111, b=110, cin=0, cout=1, sum=101

a=111, b=110, cin=1, cout=1, sum=110
a=111, b=111, cin=0, cout=1, sum=110
a=111, b=111, cin=1, cout=1, sum=111 



416          Chapter  4     Computer Arithmetic Design Using Verilog HDL

expresses the carry-out of any stage as a function of ai and bi and the carry-in cin to the
low-order stage.   An n-stage ripple adder requires n full adders.  The full adder of Sec-
tion 4.2.1 will be used in this design.  It will be instantiated four times into the struc-
tural design module.  The logic diagram for a 4-bit ripple-carry adder is shown in
Figure 4.8 in which the carries propagate (or ripple) through the adder.

Figure 4.8 Logic diagram for a 4-bit ripple-carry adder.

The structural design module is shown in Figure 4.9.  The inputs are two 4-bit vec-
tors, a[3:0] and b[3:0], where a[0] and b[0] are the low-order bits of the augend A and
the addend B, respectively.  There is also a scalar input cin.  The outputs are a 4-bit
vector sum[3:0] and a scalar output cout.  The ripple-carries are internal nets repre-
sented by a 4-bit vector c[3:0], which connects the carries between the adder stages.
The test bench module and outputs are shown in Figures 4.10 and 4.11, respectively.

Figure 4.9 Structural design module for the 4-bit ripple-carry adder.

a3   b3  cin

cout3     sum3

FA3

a2   b2  cin

cout2     sum2

FA2

a1   b1  cin

cout1     sum1

FA1

a0  b0   cin

cout0     sum0

FA0

cout                sum[3]                         sum[2]                        sum[1]                        sum[0]

c[2]                              c[1]                             c[0]c[3]

a[3] b[3]                    a[2]  b[2]                    a[1]  b[1]                    a[0]  b[0]

inst0inst1inst2inst3

cin

//structural for four-bit ripple-carry adder
module adder4_ripple_carry (a, b, cin, sum, cout);

input [3:0] a, b; //define inputs and outputs
input cin;
output [3:0] sum;
output cout;

//define internal nets
wire [3:0] c;

//define output
assign cout = c[3]; //continued on next page
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Figure 4.9       (Continued)

Figure 4.10 Test bench module for the 4-bit ripple-carry adder.

//design the ripple-carry adder
//instantiating the full adders 
full_adder_bip inst0 (a[0], b[0], cin, sum[0], c[0]);

full_adder_bip inst1 (a[1], b[1], c[0], sum[1], c[1]);

full_adder_bip inst2 (a[2], b[2], c[1], sum[2], c[2]);

full_adder_bip inst3 (a[3], b[3], c[2], sum[3], c[3]);

endmodule

//test bench for the four-bit ripple-carry adder

module adder4_ripple_carry_tb;

reg [3:0] a, b; //inputs are reg for test bench
reg cin;

wire [3:0] sum; //outputs are wire for test bench
wire cout;

//display variables
initial
$monitor ("a = %b, b = %b, cin = %b, cout = %b, sum = %b",

a, b, cin, cout, sum);

initial //apply input vectors
begin

#0 a = 4'b0000; b = 4'b0001; cin = 1'b0;
#10 a = 4'b0010; b = 4'b0001; cin = 1'b1;
#10 a = 4'b0011; b = 4'b0101; cin = 1'b1;
#10 a = 4'b1010; b = 4'b1001; cin = 1'b0;
#10 a = 4'b0111; b = 4'b0111; cin = 1'b1;

#10 a = 4'b1010; b = 4'b0111; cin = 1'b0;
#10 a = 4'b1110; b = 4'b0111; cin = 1'b0;
#10 a = 4'b1100; b = 4'b1100; cin = 1'b1;
#10 a = 4'b1111; b = 4'b0110; cin = 1'b1;
#10 a = 4'b1011; b = 4'b1000; cin = 1'b0;

//continued on next page
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Figure 4.10       (Continued)

Figure 4.11 Outputs for the 4-bit ripple-carry adder.

4.2.4  Carry Lookahead Adder

This section designs a 4-bit carry lookahead adder using built-in primitives and the as-
sign statement.  The speed of an add operation can be increased by expressing the car-
ry-out of any stage of the adder as a function of the two operand bits a and b of that
stage and the carry-in to the low-order stage of the adder.  Two auxiliary functions can
be defined as follows:

#10 a = 4'b1111; b = 4'b0000; cin = 1'b1;
#10 a = 4'b1101; b = 4'b1100; cin = 1'b0;
#10 a = 4'b1000; b = 4'b0111; cin = 1'b1;
#10 a = 4'b0001; b = 4'b1110; cin = 1'b0;
#10 a = 4'b1111; b = 4'b1111; cin = 1'b1;

#10 $stop;
end

//instaniate the module into the test bench
adder4_ripple_carry inst1 (a, b, cin, sum, cout);

endmodule

a = 0000, b = 0001, cin = 0, cout = 0, sum = 0001
a = 0010, b = 0001, cin = 1, cout = 0, sum = 0100
a = 0011, b = 0101, cin = 1, cout = 0, sum = 1001
a = 1010, b = 1001, cin = 0, cout = 1, sum = 0011
a = 0111, b = 0111, cin = 1, cout = 0, sum = 1111

a = 1010, b = 0111, cin = 0, cout = 1, sum = 0001
a = 1110, b = 0111, cin = 0, cout = 1, sum = 0101
a = 1100, b = 1100, cin = 1, cout = 1, sum = 1001
a = 1111, b = 0110, cin = 1, cout = 1, sum = 0110
a = 1011, b = 1000, cin = 0, cout = 1, sum = 0011

a = 1111, b = 0000, cin = 1, cout = 1, sum = 0000
a = 1101, b = 1100, cin = 0, cout = 1, sum = 1001
a = 1000, b = 0111, cin = 1, cout = 1, sum = 0000
a = 0001, b = 1110, cin = 0, cout = 0, sum = 1111
a = 1111, b = 1111, cin = 1, cout = 1, sum = 1111
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Generate Gi = ai bi
Propagate Pi = ai  bi

The carry generate function Gi specifies where a carry is generated at the ith stage.
The carry propagate function Pi is true when the ith stage will pass (or propagate) the
incoming carry ci – 1 to the next higher stage i+1.  The carry-out ci of any stagei can be
defined as shown in Equation 4.4.

Equation 4.4 indicates that the generate Gi and propagate Pi functions for any car-
ry ci can be obtained when the operand inputs are applied to the adder.  The equation
can be applied recursively to obtain the set of carry equations shown in Equation 4.5 in
terms of the variables Gi, Pi, and c – 1.  Equation 4.5 is for a 4-bit adder (3:0), where
c – 1 is the carry-in to the low-stage of the adder.

The 4-bit carry lookahead adder will be designed using Equation 4.5 using built-
in primitives and the assign statement.  The block diagram of the adder is shown in
Figure 4.12, where the augend is a[3:0], the addend is b[3:0], and the sum is s[3:0].
There are also four internal carries: c3, c2, c1, and c0.  The structural design module is
shown in Figure 4.13.  The test bench module and the outputs are shown in Figures
4.14 and 4.15, respectively.

ci = ai' bi ci – 1 + ai bi' ci – 1 + ai bi

= ai bi  + (ai   bi) ci – 1

= Gi + Pi ci – 1 (4.4)

c0 = G0 + P0 c – 1

c1 = G1 + P1 c0

= G1 + P1 (G0 + P0 c – 1)

= G1 + P1G0 + P1P0 c – 1 

c2 = G2 + P2 c1

= G2 + P2 (G1 + P1G0 + P1P0 c – 1)

= G2 + P2G1 + P2P1G0 + P2P1P0 c – 1

c3 = G3 + P3 c2 

= G3 + P3(G2 + P2G1 + P2P1G0 + P2P1P0 c – 1)

= G3 + P3 G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0 c – 1 (4.5)
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Figure 4.12 Block diagram of a 4-bit adder to be implemented as a carry look-
ahead adder using built-in primitives.

Figure 4.13 Structural design module for the 4-bit carry lookahead adder.

a[3]

b[3]

3

s[3]

c3

a[2]

b[2]

2

s[2]

c2

a[1]

b[1]

1

s[1]

c1

a[0]

b[0]

0

s[0]

c0

//structural for four-bit carry lookahead adder using
//built-in primitives and conditional assignment

module adder_4_cla (a, b, cin, sum, cout);

input [3:0] a, b; //define inputs and outputs
input cin;
output [3:0] sum;
output cout;

//design the logic for the generate functions
and (g0, a[0], b[0]),

(g1, a[1], b[1]),
(g2, a[2], b[2]),
(g3, a[3], b[3]);

//design the logic for the propagate functions
xor (p0, a[0], b[0]),

(p1, a[1], b[1]),
(p2, a[2], b[2]),
(p3, a[3], b[3]);

//design the logic for the sum equations
xor (sum[0], p0, cin),

(sum[1], p1, c0),
(sum[2], p2, c1),
(sum[3], p3, c2); //continued on next page
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Figure 4.13       (Continued)

Figure 4.14 Test bench module for the 4-bit carry lookahead adder.

//design the logic for the carry equations
//using the continuous assign statement
assign c0 = g0 | (p0 & cin),

c1 = g1 | (p1 & g0) | (p1 & p0 & cin),

c2 = g2 | (p2 & g1) | (p2 & p1 & g0)
  | (p2 & p1 & p0 & cin),

c3 = g3 | (p3 & g2) | (p3 & p2 & g1)
  | (p3 & p2 & p1 & g0)
  |(p3 & p2 & p1 & p0 & cin);

 
//design the logic for cout using assign
assign cout = c3;

endmodule

//test bench for the four-bit carry lookahead adder
module adder_4_cla_tb;

reg [3:0] a, b; //inputs are reg for test bench
reg cin;
wire [3:0] sum; //outputs are wire for test bench
wire cout;

//display variables
initial
$monitor ("a = %b, b = %b, cin = %b, cout = %b, sum = %b",

a, b, cin, cout, sum);

//define input sequence
initial
begin

#0 a = 4'b0000; b = 4'b0000; cin = 1'b0;
//cout = 0, sum = 0000

#10 a = 4'b0001; b = 4'b0010; cin = 1'b0;
//cout = 0, sum = 0011

#10 a = 4'b0010; b = 4'b0110; cin = 1'b0;
//cout = 0, sum = 1000

#10 a = 4'b0111; b = 4'b0111; cin = 1'b0;
//cout = 0, sum = 1110

//continued on next page
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Figure 4.14       (Continued)

Figure 4.15 Outputs for the 4-bit carry lookahead adder.

#10 a = 4'b1001; b = 4'b0110; cin = 1'b0;
//cout = 0, sum = 1111

#10 a = 4'b1100; b = 4'b1100; cin = 1'b0;
//cout = 1, sum = 1000

#10 a = 4'b1111; b = 4'b1110; cin = 1'b0;
//cout = 1, sum = 1101

#10 a = 4'b1110; b = 4'b1110; cin = 1'b1;
//cout = 1, sum = 1101

#10 a = 4'b1111; b = 4'b1111; cin = 1'b1;
//cout = 1, sum = 1111

#10 a = 4'b1010; b = 4'b1010; cin = 1'b1;
//cout = 1, sum = 0101

#10 a = 4'b1000; b = 4'b1000; cin = 1'b0;
//cout = 1, sum = 0000

#10 a = 4'b1101; b = 4'b1000; cin = 1'b1;
//cout = 1, sum = 0110

#10 a = 4'b1000; b = 4'b1111; cin = 1'b0;
//cout = 1, sum = 0111

#10 a = 4'b0011; b = 4'b1010; cin = 1'b1;
//cout = 0, sum = 1110

#10 a = 4'b0100; b = 4'b0100; cin = 1'b0;
//cout = 0, sum = 1000

#10 a = 4'b1110; b = 4'b0000; cin = 1'b1;
//cout = 0, sum = 1111

#10 $stop;
end

//instantiate the module into the test bench
adder_4_cla inst1 (a, b, cin, sum, cout);

endmodule

a = 0000, b = 0000, cin = 0, cout = 0, sum = 0000
a = 0001, b = 0010, cin = 0, cout = 0, sum = 0011
a = 0010, b = 0110, cin = 0, cout = 0, sum = 1000
a = 0111, b = 0111, cin = 0, cout = 0, sum = 1110

a = 1001, b = 0110, cin = 0, cout = 0, sum = 1111
a = 1100, b = 1100, cin = 0, cout = 1, sum = 1000
a = 1111, b = 1110, cin = 0, cout = 1, sum = 1101
a = 1110, b = 1110, cin = 1, cout = 1, sum = 1101  //next pg
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Figure 4.15       (Continued)

4.3  Fixed-Point Subtraction
Fixed-point subtraction is performed by subtracting the subtrahend from the minuend
according to the rules shown in Table 4.4.  An example is shown in Figure 4.16 using
eight bits in which the subtrahend 0010 0101 (+37) is subtracted from the minuend
0011 0110 (+54), resulting in a difference of 0001 0001 (+17).

Figure 4.16 Example of subtraction using eight bits.

Computers use an adder to perform the subtract operation by adding the radix
complement of the subtrahend to the minuend.  The rs complement is obtained from
the r – 1 complement by adding 1.  For radix 2, the 2s complement is obtained by add-
ing 1 to the 1s complement.  The 1s complement is obtained by inverting all bits in the
subtrahend.  Thus, let A and B be two n-bit operands, where A is the minuend and B is
the subtrahend as follows:

Table 4.4  Truth Table for Subtraction

0 – 0 = 0
0 – 1 = 1 with a borrow from the next higher-order minuend 
1 – 0 = 1
1 – 1 = 0

27 26 25 24 23 22 21 20

A (Minuend) = +54 0 0 1 1 0 1 1 0
–) B (Subtrahend) = +37 0 0 1 0 0 1 0 1

D (Difference) = +17 0 0 0 1 0 0 0 1

a = 1111, b = 1111, cin = 1, cout = 1, sum = 1111
a = 1010, b = 1010, cin = 1, cout = 1, sum = 0101
a = 1000, b = 1000, cin = 0, cout = 1, sum = 0000
a = 1101, b = 1000, cin = 1, cout = 1, sum = 0110

a = 1000, b = 1111, cin = 0, cout = 1, sum = 0111
a = 0011, b = 1010, cin = 1, cout = 0, sum = 1110
a = 0100, b = 0100, cin = 0, cout = 0, sum = 1000
a = 1110, b = 0000, cin = 1, cout = 0, sum = 1111
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Therefore, A – B = A + (B ' + 1), where B ' is the 1s complement of B and (B ' + 1)
is the 2s complement of B.  Examples of subtraction are shown below for both positive
and negative 8-bit operands using the 2s complement method.

A = 0 0 0 0 1 1 1 1 +15
–) B = 0 1 1 0 0 0 0 0 +96



0 0 0 0 1 1 1 1 +15
+) 1 0 1 0 0 0 0 0 –96

1 0 1 0 1 1 1 1 –81

A = 1 0 1 1 0 0 0 1 –79
–) B = 1 1 1 0 0 1 0 0 –28



1 0 1 1 0 0 0 1 –79
+) 0 0 0 1 1 1 0 0 +28

1 1 0 0 1 1 0 1 –51

A = 1 0 0 0 0 1 1 1 –121
–) B = 1 1 1 0 0 1 1 0 –26



1 0 0 0 0 1 1 1 –121
+) 0 0 0 1 1 0 1 0 +26

1 0 1 0 0 0 0 1 –95

A = an–1 an–2 . . . a1 a0

B = bn–1 bn–2 . . . b1 b0
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4.3.1  Four-Bit Ripple Subtractor

A 4-bit subtractor will be designed using built-in primitives and instantiated full
adders.  A full adder design is shown on page 410 of this chapter using built-in prim-
itives.  Since four bits are used in this design, examples of 4-bit subtract operations are
shown below.

The logic diagram for the 4-bit subtractor is shown in Figure 4.17 using four full
adders (FA) and four inverters.  The design module is shown in Figure 4.18 using
built-in primitives and instantiated full adders that were designed using built-in prim-
itives.  The test bench module and the outputs are shown in Figures 4.19 and 4.20,
respectively.

A = 0 0 0 1 0 0 1 1 +19
–) B = 0 1 0 1 1 1 0 0 +92



0 0 0 1 0 0 1 1 +19
+) 1 0 1 0 0 1 0 0 –92

1 0 1 1 0 1 1 1 –73

A = 0 1 1 1 (+7)
–) B = 0 1 0 0 (+4)

(+3)

A = 0 1 1 1
+) (B ' + 1) = 1 1 0 0
             1 0 0 1 1

A = 0 1 1 0 (+6)
–) B = 1 1 0 0 (–4)

(+10)

A = 0 1 1 0
+) (B ' + 1) = 0 1 0 0
             0 1 0 1 0

+ 10 in 2s complement for five bitsResult is overflow for four bits

A = 1 0 0 0 (–8)
–) B = 0 0 1 0 (+2)

(–10)

A = 1 0 0 0
+) (B ' + 1) = 1 1 1 0
             1 0 1 1 0

– 10 in 2s complement for five bitsResult is overflow for four bits
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Figure 4.17 Logic diagram for a 4-bit subtractor.

Figure 4.18 Structural design module for a 4-bit subtractor.
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FA3
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a     b    cin
FA1
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a     b    cin
FA0
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b[1]
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b[2]

a[3]

b[3]

cout[3] rslt[3] rslt[2] rslt[1] rslt[0]

cout[2] cout[1] cout[0]

inst0inst1inst2inst3

net0net1net2net3

cin (sub)

//structural for a 4-bit subtractor
//using bip and instantiated full adders

module sub_4bit_bip (a, b, cin, rslt, cout);

//define inputs and outputs
input [3:0] a, b;
input cin;
output [3:0] rslt, cout;

//define internal nets
wire net0, net1, net2, net3;

//design the logic for stage 0
not (net0, b[0]);
full_adder_bip inst0 (a[0], net0, cin, rslt[0], cout[0]);

//design the logic for stage 1
not (net1, b[1]);
full_adder_bip inst1 (a[1], net1, cout[0],

rslt[1], cout[1]);
//continued on next page
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Figure 4.18       (Continued)

Figure 4.19 Test bench module for the 4-bit subtractor.

//design the logic for stage 2
not (net2, b[2]);
full_adder_bip inst2 (a[2], net2, cout[1], rslt[2], 
cout[2]);

//design the logic for stage 3
not (net3, b[3]);
full_adder_bip inst3 (a[3], net3, cout[2], rslt[3], 
cout[3]);

endmodule

//test bench for 4-bit subtractor

module sub_4bit_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg cin;
wire [3:0] rslt, cout;

//display variables
initial
$monitor ("a = %b, b = %b, cin = %b, rslt = %b, cout = %b",

a, b, cin, rslt, cout);

//apply input vectors
initial
begin

#0 a = 4'b0110; b = 4'b0010; cin = 1'b1;
#10 a = 4'b1100; b = 4'b0110; cin = 1'b1;
#10 a = 4'b1110; b = 4'b1010; cin = 1'b1;
#10 a = 4'b1110; b = 4'b0011; cin = 1'b1;

#10 a = 4'b1111; b = 4'b0010; cin = 1'b1;
#10 a = 4'b1110; b = 4'b0110; cin = 1'b1;
#10 a = 4'b1110; b = 4'b1111; cin = 1'b1;
#10 a = 4'b1111; b = 4'b0011; cin = 1'b1;

//continued on next page
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Figure 4.19       (Continued)

Figure 4.20 Outputs for the 4-bit subtractor.

4.3.2  Eight-Bit Subtractor

This example designs an 8-bit subtractor using behavioral modeling.  Designing a
module in behavioral modeling is an abstraction of the functional operation of the
design.  It does not implement the design at the gate level.  Behavioral modeling is an
algorithmic approach to hardware implementation and represents a higher level of
abstraction than other modeling methods.

The behavioral design module is shown in Figure 4.21.  The test bench module
and the outputs are shown in Figures 4.22 and 4.23, respectively.

#10 a = 4'b0001; b = 4'b0010; cin = 1'b1;
#10 a = 4'b0001; b = 4'b0001; cin = 1'b1;
#10 a = 4'b1000; b = 4'b0111; cin = 1'b1;
#10 a = 4'b1001; b = 4'b0011; cin = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
sub_4bit_bip inst1 (a, b, cin, rslt, cout);

endmodule

a = 0110, b = 0010, cin = 1, rslt = 0100, cout = 1111
a = 1100, b = 0110, cin = 1, rslt = 0110, cout = 1001
a = 1110, b = 1010, cin = 1, rslt = 0100, cout = 1111
a = 1110, b = 0011, cin = 1, rslt = 1011, cout = 1100

a = 1111, b = 0010, cin = 1, rslt = 1101, cout = 1111
a = 1110, b = 0110, cin = 1, rslt = 1000, cout = 1111
a = 1110, b = 1111, cin = 1, rslt = 1111, cout = 0000
a = 1111, b = 0011, cin = 1, rslt = 1100, cout = 1111

a = 0001, b = 0010, cin = 1, rslt = 1111, cout = 0001
a = 0001, b = 0001, cin = 1, rslt = 0000, cout = 1111
a = 1000, b = 0111, cin = 1, rslt = 0001, cout = 1000
a = 1001, b = 0011, cin = 1, rslt = 0110, cout = 1001
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Figure 4.21 Behavioral design module for the 8-bit subtractor.

Figure 4.22 Test bench module for the 8-bit subtractor.

//behavioral 8-bit subtractor
module sub_8bit_bh (a, b, rslt);

//define inputs and outputs
input [7:0] a, b;
output [7:0] rslt;

//variables used in always are declared as reg
reg [7:0] rslt;

//neg_b is used in the subtract operation
reg [7:0] neg_b = ~b + 1;

always @ (a or b)
begin

rslt = a + neg_b;
end

endmodule

//test bench for the 8-bit subtractor
module sub_8bit_bh_tb;

reg [7:0] a, b; //inputs are reg for test bench
wire [7:0] rslt; //outputs are wire for test bench

initial //display variables
$monitor ("a = %b, b = %b, rslt = %b", a, b, rslt);

//apply input vectors
initial
begin

#0 a = 8'b0000_0011; b = 8'b0000_0001; //3-1 = 2
#10 a = 8'b0000_0100; b = 8'b0000_0011; //4-3 = 1
#10 a = 8'b0000_0110; b = 8'b0000_0011; //6-3 = 3
#10 a = 8'b0000_1110; b = 8'b0000_0111; //14-7 = 7

#10 a = 8'b0000_1100; b = 8'b0000_0101; //12-5 = 7
#10 a = 8'b0100_1100; b = 8'b0001_0101; //76-21 = 55
#10 a = 8'b0011_0001; b = 8'b0001_1000; //49-24 = 25
#10 a = 8'b0111_0001; b = 8'b0011_1001; //113-57 = 56

//continued on next page
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Figure 4.22       (Continued)

Figure 4.23 Outputs for the 8-bit subtractor.

4.3.3  Four-Bit Dataflow Adder/Subtractor

This section presents the dataflow design module of a 4-bit fixed-point ripple adder/
subtractor using the continuous assignment statement assign and instantiated full
adders.  It is desirable to have the adder unit perform both addition and subtraction
since there is no advantage to having a separate adder and subtractor.  A ripple-carry

#10 a = 8'b1000_0001; b = 8'b1000_0001; //-127+127=0
#10 a = 8'b0110_0001; b = 8'b0010_0001; //97-33 = 64
#10 a = 8'b1100_0110; b = 8'b1000_0101; //-58+123=65
#10 a = 8'b0101_0101; b = 8'b0000_1111; //85-15 = 70

#10 a = 8'b1111_1000; b = 8'b0000_0010; //-8-2 = -10

#10 $stop;
end

//instantiate the module into the test bench
sub_8bit_bh inst1 (a, b, rslt);

endmodule

a = 00000011, b = 00000001, rslt = 00000010
a = 00000100, b = 00000011, rslt = 00000001
a = 00000110, b = 00000011, rslt = 00000011
a = 00001110, b = 00000111, rslt = 00000111

a = 00001100, b = 00000101, rslt = 00000111
a = 01001100, b = 00010101, rslt = 00110111
a = 00110001, b = 00011000, rslt = 00011001
a = 01110001, b = 00111001, rslt = 00111000

a = 10000001, b = 10000001, rslt = 00000000
a = 01100001, b = 00100001, rslt = 01000000
a = 11000110, b = 10000101, rslt = 01000001
a = 01010101, b = 00001111, rslt = 01000110

a = 11111000, b = 00000010, rslt = 11110110
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adder will be modified so that it can also perform subtraction while still maintaining
the ability to add.  The operands are signed numbers in 2s complement representation.
In order to form the 2s complement from the 1s complement, the carry-in to the low-
order stage of the adder will be a 1 if subtraction is to be performed.  The logic diagram
is shown in Figure 4.24.

Overflow is detected if the carries out of bit 2 and bit 3 are different.  If the oper-
ation is addition, then overflow can be further defined as shown in Equation 4.6.  If the
operation is subtraction, then overflow can be further defined as shown in Equation
4.7, where the variable neg_b[7] is the sign bit of the 2s complement of operand B.

Figure 4.24 Logic diagram for a 4-bit ripple adder/subtractor.  If the mode control
input m = 0, then the operation is addition; if the mode control input m = 1, then the
operation is subtraction.

The full adder that will be instantiated into the module for the adder/subtractor is
shown in Figure 4.25.  The dataflow design module for the 4-bit adder/subtractor is
shown in Figure 4.26.  The test bench module is shown in Figure 4.27, which displays
the outputs in decimal notation.  The outputs are shown in Figure 4.28.

Overflow = a[7] b[7] rslt[7] ' + a[7] ' b[7] ' rslt[7] (4.6)

Overflow = a[7] neg_b[7] rslt[7] ' + a[7] ' neg_b[7] ' rslt[7] (4.7)
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Figure 4.25 Full adder design module to be instantiated into the 4-bit adder/sub-
tractor.

Figure 4.26 Dataflow design module for the 4-bit adder/subtractor.

//dataflow full adder
module full_adder (a, b, cin, sum, cout);

//list all inputs and outputs
input a, b, cin;
output sum, cout;

//continuous assign
assign sum = (a ^ b) ^ cin;
assign cout = cin & (a ^ b) | (a & b);

endmodule

//structural module for an adder/subtractor
module add_sub_4bits_assign (a, b, m, rslt, cout, ovfl);

//define inputs and outputs
input [3:0] a, b;
input m; m = 0 is add; m = 1 is sub
output [3:0] rslt, cout;
output ovfl;

wire net0, net1, net2, net3; //define internal nets

//define overflow
assign ovfl = (cout[3] ^ cout[2]);

//------------------------------------------------
//instantiate the xor and the full adder for FA0
assign net0 = (b[0] ^ m);

full_adder inst0 (a[0], net0, m, rslt[0], cout[0]);
//a, b, cin, sum, cout

//------------------------------------------------
//instantiate the xor and the full adder for FA1
assign net1 = (b[1] ^ m);

full_adder inst1 (a[1], net1, cout[0], rslt[1], cout[1]);
//a, b, cin, sum, cout

//continued on next page
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Figure 4.26       (Continued)

Figure 4.27 Test bench module for the 4-bit adder/subtractor.

//------------------------------------------------
//instantiate the xor and the full adder for FA2
assign net2 = (b[2] ^ m);

full_adder inst2 (a[2], net2, cout[1], rslt[2], cout[2]);
//a, b, cin, sum, cout

//------------------------------------------------
//instantiate the xor and the full adder for FA3
assign net3 = (b[3] ^ m);

full_adder inst3 (a[3], net3, cout[2], rslt[3], cout[3]);
//a, b, cin, sum, cout

endmodule

////test bench for structural adder-subtractor
module add_sub_4bits_assign_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg m; m = 0 is add; m = 1 is sub
wire [3:0] rslt, cout;
wire  ovfl;

//display variables
initial
$monitor ("a = %d, b = %d, m = %d, rslt = %d,

cout[3] = %b, cout[2] = %b, ovfl = %b",
a, b, m, rslt, cout[3], cout[2], ovfl);

//apply input vectors
initial
begin
//addition; m = 0

#0 a = 4'b0000; b = 4'b0001; m = 1'b0;
#10 a = 4'b0010; b = 4'b0101; m = 1'b0;
#10 a = 4'b0110; b = 4'b0001; m = 1'b0;
#10 a = 4'b0101; b = 4'b0001; m = 1'b0;

//continued on next page



434          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Figure 4.27       (Continued)

Figure 4.28 Outputs  for the 4-bit adder/subtractor.

//subtraction m = 1
#10 a = 4'b0111; b = 4'b0101; m = 1'b1;
#10 a = 4'b0101; b = 4'b0100; m = 1'b1;
#10 a = 4'b0110; b = 4'b0011; m = 1'b1;
#10 a = 4'b0110; b = 4'b0010; m = 1'b1;

//overflow
#10 a = 4'b0111; b = 4'b0101; m = 1'b0; //add
#10 a = 4'b1000; b = 4'b1011; m = 1'b0; //add
#10 a = 4'b0110; b = 4'b1100; m = 1'b1; //sub
#10 a = 4'b1000; b = 4'b0010; m = 1'b1; //sub

#10 $stop;
end

//instantiate the module into the test bench
add_sub_4bits_assign inst1 (a, b, m, rslt, cout, ovfl);

endmodule

Addition
a = 0, b = 1, m = 0, rslt = 1, cout[3] = 0, cout[2] = 0, ovfl = 0
a = 2, b = 5, m = 0, rslt = 7, cout[3] = 0, cout[2] = 0, ovfl = 0
a = 6, b = 1, m = 0, rslt = 7, cout[3] = 0, cout[2] = 0, ovfl = 0
a = 5, b = 1, m = 0, rslt = 6, cout[3] = 0, cout[2] = 0, ovfl = 0

Subtraction
a = 7, b = 5, m = 1, rslt = 2, cout[3] = 1, cout[2] = 1, ovfl = 0
a = 5, b = 4, m = 1, rslt = 1, cout[3] = 1, cout[2] = 1, ovfl = 0
a = 6, b = 3, m = 1, rslt = 3, cout[3] = 1, cout[2] = 1, ovfl = 0
a = 6, b = 2, m = 1, rslt = 4, cout[3] = 1, cout[2] = 1, ovfl = 0

Overflow for addition
a = 7, b = 5, m = 0, rslt = 12, cout[3] = 0, cout[2] = 1, ovfl = 1
a = 8, b = 11, m = 0, rslt = 3, cout[3] = 1, cout[2] = 0, ovfl = 1

Overflow for subtraction
a = 6, b = 12, m = 1, rslt = 10, cout[3] = 0, cout[2] = 1,

ovfl = 1
a = 8, b = 2, m = 1, rslt = 6, cout[3] = 1, cout[2] = 0, ovfl = 1
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Examine the rslt outputs for the addition overflow of Figure 4.28, where a = 7 and
b = 5, with a result = 12.  Also, where a = 8 and b = 11, where the result = 3.  Overflow
occurs as shown below for both operations.  Also, examine the rslt outputs for the
subtraction overflow of Figure 4.28, where a = 6 and b = 12, with a result = 10.  Also,
where a = 8 and b = 2, where the result = 6.  Overflow occurs as shown below for both
operations.  The maximum value for four signed bits is +7 or –8.  Notice that the results
agree with Equations 4.6 and 4.7.

4.3.4   Eight-Bit Behavioral Adder/Subtractor

This section presents an 8-bit adder/subtractor that is synthesized using behavioral
modeling.  It is similar to the previous 4-bit adder/subtractor, but does not instantiate
a full adder in the implementation.  Overflow is defined as in the previous section and
the equations are replicated below in Equations 4.8 and 4.9, for convenience.

0111 1000
+) 0101 +) 1011

1100 (–4) 0011 (+3)

0110 0110
–) 1100  +) 0100

1010 (–6)

1000 1000
–) 0010  +) 1110

0110 (+6)

Overflow = a[7] b[7] rslt[7] ' + a[7] ' b[7] ' rslt[7] (4.8)

Overflow = a[7] neg_b[7] rslt[7] ' + a[7] ' neg_b[7] ' rslt[7] (4.9)
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A logic diagram is not required for behavioral modeling because this method of
implementation describes the behavior of a digital system and is not concerned with
the direct implementation of logic gates, but more with the architecture of the system.
This is an algorithmic approach to hardware implementation and represents a higher
level of abstraction.

Since behavioral modeling uses the always procedural construct statement, the
variables used in the always statement are declared as type reg.  The behavioral mod-
ule is shown in Figure 4.29, which specifies an internal register neg_b[7:0] = b ' + 1
indicating the 2s complement of the subtrahend, to be used in the overflow equation.
The test bench module is shown in Figure 4.30 and the outputs are shown in Figure
4.31.

Figure 4.29 Behavioral design module for the 8-bit adder/subtractor.

//behavioral 8-bit adder/subtractor
module add_subtract_bh (a, b, mode, rslt, ovfl);

input [7:0] a, b; //define inputs and outputs
input  mode;
output [7:0] rslt;
output ovfl;

//variables rslt and ovfl are left-hand side targets
//in the always block and are declared as type reg
reg [7:0] rslt;
reg ovfl;

wire [7:0] a, b; //since inputs default to wire
wire mode; //the type wire is not required

//neg_b = ~b + 1 specifies an internal register
reg [7:0] neg_b = ~b + 1;

always @ (a or b or mode)
begin

if (mode == 0) //add
begin

rslt = a + b;
ovfl =(a[7] & b[7] & ~rslt[7]) |

(~a[7] & ~b[7] & rslt[7]);
end

else //subtract
begin

rslt = a + neg_b;
ovfl =(a[7] & neg_b[7] & ~rslt[7]) |

(~a[7] & ~neg_b[7] & rslt[7]);
end

end

endmodule
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Figure 4.30 Test bench module for the 8-bit adder/subtractor.

//test bench for the 8-bit adder/subtractor
module add_subtract_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a, b;
reg mode;
wire [7:0] rslt;
wire ovfl;

initial //display variables
$monitor ("a=%b, b=%b, mode=%b, result=%b, ovfl=%b",

a, b, mode, rslt, ovfl);

initial //apply input vectors
begin

#0 a = 8'b0000_0000;   b = 8'b0000_0001; mode = 1'b0;
#10 a = 8'b0000_0000;   b = 8'b0000_0001; mode = 1'b1;

#10 a = 8'b0000_0001;   b = 8'b1111_1001; mode = 1'b0;
#10 a = 8'b0000_0001;   b = 8'b1111_1001; mode = 1'b1;

#10 a = 8'b0000_0001;   b = 8'b1000_0001; mode = 1'b0;
#10 a = 8'b0000_0001;   b = 8'b1000_0001; mode = 1'b1;

//ovfl = 1

#10 a = 8'b1111_0000;   b = 8'b0000_0001; mode = 1'b0;
#10 a = 8'b1111_0000;   b = 8'b0000_0001; mode = 1'b1;

#10 a = 8'b0110_1101;   b = 8'b0100_0101; mode = 1'b0;
//ovfl = 1

#10 a = 8'b0010_1101;   b = 8'b0000_0101; mode = 1'b1;

#10 a = 8'b0000_0110;   b = 8'b0000_0001; mode = 1'b0;
#10 a = 8'b0000_0110;   b = 8'b0000_0001; mode = 1'b1;

#10 a = 8'b0001_0101;   b = 8'b0011_0001; mode = 1'b0;
#10 a = 8'b0001_0101;   b = 8'b0011_0001; mode = 1'b1;

#10 a = 8'b1000_0000;   b = 8'b1001_1100; mode = 1'b0;
//ovfl = 1

#10 a = 8'b1000_0000;   b = 8'b1001_1100; mode = 1'b1;

#10 a = 8'b1000_0101;   b = 8'b0010_0001; mode = 1'b0;
#10 a = 8'b1000_0101;   b = 8'b0010_0001; mode = 1'b1;

//ovfl = 1
//continued on next page



438          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Figure 4.30       (Continued)

Figure 4.31 Outputs for the 8-bit adder/subtractor.

#10 a = 8'b1111_1111;   b = 8'b1111_1111; mode = 1'b0;
#10 a = 8'b1111_1111;   b = 8'b1111_1111; mode = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
add_subtract_bh inst1 (a, b, mode, rslt, ovfl);

endmodule

a=00000000, b=00000001, mode=0, result=00000001, ovfl=0
a=00000000, b=00000001, mode=1, result=11111111, ovfl=0
a=00000001, b=11111001, mode=0, result=11111010, ovfl=0
a=00000001, b=11111001, mode=1, result=00001000, ovfl=0
a=00000001, b=10000001, mode=0, result=10000010, ovfl=0
a=00000001, b=10000001, mode=1, result=10000000, ovfl=1

a=11110000, b=00000001, mode=0, result=11110001, ovfl=0
a=11110000, b=00000001, mode=1, result=11101111, ovfl=0
a=01101101, b=01000101, mode=0, result=10110010, ovfl=1

a=00101101, b=00000101, mode=1, result=00101000, ovfl=0
a=00000110, b=00000001, mode=0, result=00000111, ovfl=0
a=00000110, b=00000001, mode=1, result=00000101, ovfl=0
a=00010101, b=00110001, mode=0, result=01000110, ovfl=0
a=00010101, b=00110001, mode=1, result=11100100, ovfl=0
a=10000000, b=10011100, mode=0, result=00011100, ovfl=1

a=10000000, b=10011100, mode=1, result=11100100, ovfl=0
a=10000101, b=00100001, mode=0, result=10100110, ovfl=0
a=10000101, b=00100001, mode=1, result=01100100, ovfl=1

a=11111111, b=11111111, mode=0, result=11111110, ovfl=0
a=11111111, b=11111111, mode=1, result=00000000, ovfl=0



4.4     Fixed-Point Multiplication     439

The operands and results for the addition operations of Figure 4.31 that result in an
overflow are shown below together with the calculations. 

a=01101101, b=01000101, mode=0, result=10110010, ovfl=1
 

a=10000000, b=10011100, mode=0, result=00011100, ovfl=1

The operands and results for the subtraction operations of Figure 4.31 that result in
an overflow are shown below together with the calculations. 

a=00000001, b=10000001, mode=1, result=10000000, ovfl=1

a=10000101, b=00100001, mode=1, result=01100100, ovfl=1

4.4  Fixed-Point Multiplication
This section presents the multiplication of two fixed-point binary operands in the 2s
complement number representation.  An n-bit multiplicand is multiplied by an n-bit
multiplier to produce a 2n-bit product.  The multiplication algorithm consists of mul-
tiplying the multiplicand by the low-order multiplier bit to obtain a partial product.  If
the multiplier bit is a 1, then the multiplicand becomes the partial product; if the mul-
tiplier bit is a 0, then zeroes become the partial product.  The partial product is then
shifted left one bit position.

0110 1101 1000 0000
+) 0100 0101 +) 1001 1100

1011 0010 0001 1100

0000 0001 0000 0001
–) 1000 0001  +) 0111 1111

1000 0000

1000 0101 1000 0101
–) 0010 0001  +) 1101 1111

0110 0100
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The multiplicand is then multiplied by the next higher-order multiplier bit to
obtain a second partial product.  The process repeats for all remaining multiplier bits,
at which time the partial products are added to obtain the product.  If both operands
have the same sign, then the sign of the product is positive.  If the signs of the operands
are different, then the sign of the product is negative.  Four examples are shown below
containing four variations of the operands:

positive multiplicand and positive multiplier
negative multiplicand and positive multiplier
positive multiplicand and negative multiplier
negative multiplicand and negative multiplier

For a positive multiplicand and a negative multiplier, either 2s complement both
operands or 2s complement the multiplier, perform the multiplication, then 2s com-
plementing the result.  For  the problem below, the multiplicand is +5 and the multi-
plier is –6, which will be 2s complemented to a value of +6.

Multiplicand A 0 1 1 1 +7
Multiplier B ) 0 1 1 1 +7

0 0 0 0 0 1 1 1
Partial 0 0 0 0 1 1 1
products 0 0 0 1 1 1

0 0 0 0 0
Product P 0 0 1 1 0 0 0 1 +49

Multiplicand A 1 0 1 0 –6
Multiplier B ) 0 1 1 1 +7

1 1 1 1 1 0 1 0
Partial 1 1 1 1 0 1 0
products 1 1 1 0 1 0

0 0 0 0 0
Product P 1 1 0 1 0 1 1 0 –42

Multiplicand A 0 1 0 1 +5
Multiplier B ) 0 1 1 0 (–6) +6

0 0 0 0 0 0 0 0
Partial 0 0 0 0 1 0 1
products 0 0 0 1 0 1

0 0 0 0 0
0 0 0 1 1 1 1 0

Product P 1 1 1 0 0 0 1 0 –30
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For a negative multiplicand and a negative multiplier, 2s complement both oper-
ands, then perform the multiplication to yield the correct product.  For  the problem
below, the multiplicand is –5 and the multiplier is –5.  Both operands will be 2s com-
plemented before the multiply operation to obtain the correct product.

Examples will now be presented using Verilog HDL to design various multipliers
using different design methodologies.  The multiplicand and multiplier are both n-bit
operands and produce a 2n-bit result.

4.4.1  Behavioral Four-Bit Multiplier

This section designs a 4-bit multiplier using behavioral modeling.  The multiplicand is
a[3:0], the multiplier is b[3:0], and the product is prod[7:0].  A scalar start signal is
used to initiate the multiply operation.  A count-down sequence counter count is ini-
tialized to a value of 4 (0100) before the operation begins, because there are four bits
in both operands.  When the counter reaches a value of 0000, the multiply operation is
finished and the 8-bit product is in register prod[7:0].  A comparison is made initially
to make certain that both operands are nonzero — if either operand has a value of zero,

Multiplicand A 1 0 1 1 –5
Multiplier B ) 1 0 1 1 –5

1 1 1 1 1 0 1 1
Partial 1 1 1 1 0 1 1
products 1 1 1 0 1 1

1 1 0 1 1
Product P 1 0 1 1 0 1 0 1 –75

Multiplicand A 0 1 0 1 +5
Multiplier B ) 0 1 0 1 +5

0 0 0 0 0 1 0 1
Partial 0 0 0 0 0 0 0
products 0 0 0 1 0 1

0 0 0 0 0
Product P 0 0 0 1 1 0 0 1 +25
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then the operation is terminated.  The behavioral design module is shown in Figure
4.32.  The test bench module and the outputs are shown in Figures 4.33 and 4.34,
respectively.

Figure 4.32 Behavioral design module for a 4-bit multiplier.

//behavioral add-shift multiply

module mul_add_shift3 (a, b, prod, start);

//define inputs and outputs
input [3:0] a, b;
input start;
output [7:0] prod;

//variables are declared as reg in always
reg [7:0] prod;
reg [3:0] b_reg;
reg [3:0] count;

always @ (posedge start)
begin

b_reg = b;
prod = 0;
count = 4'b0100;

if ((a!=0) && (b!=0))

while (count)
begin

prod = {(({4{b_reg[0]}} & a) + prod[7:4]),
prod[3:1]};

b_reg = b_reg >> 1;
count = count - 1;

end

end

endmodule
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Figure 4.33 Test bench for the 4-bit multiplier.

//test bench for add-shift multiplier

module mul_add_shift3_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg start;
wire [7:0] prod;

//display variables
initial
$monitor ("a = %b, b = %b, prod = %b", a, b, prod);

//apply input vectors
initial
begin

#0 start = 1'b0; a = 4'b0110; b = 4'b0110;

#10 start = 1'b1; #10 start = 1'b0;

#10 a = 4'b0010; b = 4'b0110;
#10 start = 1'b1; #10 start = 1'b0;

#10 a = 4'b0111; b = 4'b0101;
#10 start = 1'b1; #10 start = 1'b0;

#10 a = 4'b0111; b = 4'b0111;
#10 start = 1'b1; #10 start = 1'b0;

#10 a = 4'b0101; b = 4'b0101;
#10 start = 1'b1; #10 start = 1'b0;

#10 a = 4'b0111; b = 4'b0011;
#10 start = 1'b1; #10 start = 1'b0;

#10 a = 4'b0100; b = 4'b0110;
#10 start = 1'b1; #10 start = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
mul_add_shift3 inst1 (a, b, prod, start);

endmodule
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Figure 4.34 Outputs for the 4-bit multiplier.

4.4.2  Three-Bit Array Multiplier

This section presents the Verilog design of a high-speed 3-bit array multiplier.  Array
multipliers are designed using a planar array of full adders.  An example of a general
array multiply algorithm is shown in Figure 4.35 for two 3-bit operands.

The multiplicand is A[2:0] and the multiplier is B[2:0], where a[0] and b[0] are
the low-order bits of A and B, respectively.  The two operands generate a product of
P[5:0].  Each bit in the multiplicand is multiplied by the low-order bit b0 of the mul-
tiplier.  This is equivalent to the AND function and generates the first of three partial
products.  Each bit in the multiplicand is then multiplied by bit b1 of the multiplier.
The resulting partial product is shifted one bit position to the left.  The process is re-
peated for bit b2 of the multiplier.  The partial products are then added together to form
the product.  A carry-out of any column is added to the next higher-order column.

Figure 4.35 General array multiply algorithm for two 3-bit operands.

The logic diagram for the 3-bit array multiplier is shown in Figure 4.36 utilizing
full adders as the array elements and showing the generated partial products that

Multiplicand A a2 a1 a0
Multiplier B  ) b2 b1 b0
Partial product 1 a2b0 a1b0 a0b0
Partial product 2 a2b1 a1b1 a0b1
Partial product 3 a2b2 a1b2 a0b2
Product P   25   24   23   22   21   20

a = 0110, b = 0110, prod = 0010_0100
a = 0010, b = 0110, prod = 0010_0100
a = 0010, b = 0110, prod = 0000_1100
a = 0111, b = 0101, prod = 0000_1100
a = 0111, b = 0101, prod = 0010_0011
a = 0111, b = 0111, prod = 0010_0011
a = 0111, b = 0111, prod = 0011_0001
a = 0101, b = 0101, prod = 0011_0001
a = 0101, b = 0101, prod = 0001_1001
a = 0111, b = 0011, prod = 0001_1001
a = 0111, b = 0011, prod = 0001_0101
a = 0100, b = 0110, prod = 0001_0101
a = 0100, b = 0110, prod = 0001_1000
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correspond to those shown in Figure 4.35.  The third row of full adders adds the sum
and carry-out of the previous columns.

Figure 4.36 Logic diagram for the 3-bit array multiplier.

The structural design module is shown in Figure 4.37 using built-in primitives and
instantiated full adders that were designed using dataflow modeling.  The dataflow de-
sign module for the full adder is shown on page 432, Figure 4.25.  The test bench mod-
ule is shown in Figure 4.38 using all combinations of the three multiplicand bits and
the three multiplier bits.  The input vectors are treated as unsigned binary numbers.
The outputs are shown in Figure 4.39 in decimal notation.

Figure 4.37 Structural design module for the 3-bit array multiplier.
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//structural for 3-bit array multiplier using bip

module array_mul3_bip (a, b, prod);

//define inputs and output
input [2:0] a, b;
output [5:0] prod; //continued on next page
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Figure 4.37       (Continued)

Figure 4.38 Test bench for the 3-bit array multiplier.

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8, net9,

net10, net11, net12, net13, net14, net15;

//instantiate the logic for prod[0]
and (prod[0], a[0], b[0]);

//instantiate the logic for prod[1]
and (net1, a[1], b[0]);
and (net2, a[0], b[1]);
full_adder inst1 (net1, net2, 1'b0, prod[1], net3);
//a, b, cin, sum, cout

//instantiate the logic for prod[2]
and (net4, a[2], b[0]);
and (net5, a[1], b[1]);
full_adder inst2 (net4, net5, 1'b0, net6, net7);
and (net8, a[0], b[2]);
full_adder inst3 (net6, net8, net3, prod[2], net9);

//instantiate the logic for prod[3]
and (net10, a[2], b[1]);
and (net11, a[1], b[2]);
full_adder inst4 (net10, net11, net7, net12, net13);
full_adder inst5 (net12, 1'b0, net9, prod[3], net14);

//instantiate the logic for prod[4] and prod [5]
and (net15, a[2], b[2]);
full_adder inst6 (net15, net14, net13, prod[4], prod[5]);

endmodule

//test bench for structural 3-bit array multiplier using bip

module array_mu3_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [2:0] a, b;
wire [5:0] prod;

//continued on next page
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Figure 4.38       (Continued)

Figure 4.39 Outputs for the 3-bit array multiplier.

//apply stimulus and display variables
initial
begin: apply_stimulus

reg [6:0] invect;
for (invect = 0; invect < 64; invect = invect + 1)
begin

{a, b} = invect [6:0];
#10 $display ("a = %d, b = %d, prod = %d", a, b, 

prod);
end

end

//instantiate the module into the test bench
array_mul3_bip inst1 (a, b, prod);

endmodule

a = 0, b = 0, prod = 0
a = 0, b = 1, prod = 0
a = 0, b = 2, prod = 0
a = 0, b = 3, prod = 0
a = 0, b = 4, prod = 0

a = 0, b = 5, prod = 0
a = 0, b = 6, prod = 0
a = 0, b = 7, prod = 0
a = 1, b = 0, prod = 0
a = 1, b = 1, prod = 1

a = 1, b = 2, prod = 2
a = 1, b = 3, prod = 3
a = 1, b = 4, prod = 4
a = 1, b = 5, prod = 5
a = 1, b = 6, prod = 6

a = 1, b = 7, prod = 7
a = 2, b = 0, prod = 0
a = 2, b = 1, prod = 2
a = 2, b = 2, prod = 4
a = 2, b = 3, prod = 6

a = 2, b = 4, prod = 8
a = 2, b = 5, prod = 10
a = 2, b = 6, prod = 12
a = 2, b = 7, prod = 14
a = 3, b = 0, prod = 0

a = 3, b = 1, prod = 3
a = 3, b = 2, prod = 6
a = 3, b = 3, prod = 9
a = 3, b = 4, prod = 12
a = 3, b = 5, prod = 15

a = 3, b = 6, prod = 18
a = 3, b = 7, prod = 21
a = 4, b = 0, prod = 0
a = 4, b = 1, prod = 4
a = 4, b = 2, prod = 8

a = 4, b = 3, prod = 12
a = 4, b = 4, prod = 16
a = 4, b = 5, prod = 20
a = 4, b = 6, prod = 24
a = 4, b = 7, prod = 28

//continued on next page
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Figure 4.39       (Continued)

4.4.3  Four-Bit Dataflow Multiplication Using                 
the Multiply Operator

This multiplication example is relatively simple compared to other design methodol-
ogies.  It uses the Verilog operator for multiplication (*).  Some of the operators are
shown in Table 4.5.  The dataflow design module is shown in Figure 4.40 using the
assign statement.  The test bench module and the outputs are shown in Figures 4.41
and 4.42, respectively.

Table 4.5   Verilog HDL Operators

Operator Type Operator Symbol Operation
Arithmetic + Add

– Subtract
* Multiply
/ Divide

Logical & AND
| OR
^ Exclusive-OR

~^ or ^~ Exclusive-NOR

a = 5, b = 0, prod = 0
a = 5, b = 1, prod = 5
a = 5, b = 2, prod = 10
a = 5, b = 3, prod = 15
a = 5, b = 4, prod = 20

a = 5, b = 5, prod = 25
a = 5, b = 6, prod = 30
a = 5, b = 7, prod = 35
a = 6, b = 0, prod = 0
a = 6, b = 1, prod = 6

a = 6, b = 2, prod = 12
a = 6, b = 3, prod = 18
a = 6, b = 4, prod = 24
a = 6, b = 5, prod = 30
a = 6, b = 6, prod = 36

a = 6, b = 7, prod = 42
a = 7, b = 0, prod = 0
a = 7, b = 1, prod = 7
a = 7, b = 2, prod = 14
a = 7, b = 3, prod = 21

a = 7, b = 4, prod = 28
a = 7, b = 5, prod = 35
a = 7, b = 6, prod = 42
a = 7, b = 7, prod = 49
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Figure 4.40 Dataflow design module for the 4-bit multiplier.

Figure 4.41 Test bench module for the 4-bit multiplier.

//dataflow for 4-bit multiplier
module mul_4bits_assign (mpcnd, mplyr, prod);

//define inputs and outputs
input [3:0] mpcnd, mplyr;
output [7:0] prod;

//calculate the product
assign prod = mpcnd * mplyr;

endmodule

//test bench for the 4-bit multiplier
module mul_4bits_assign_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] mpcnd, mplyr;
wire [7:0] prod;

initial //display variables
$monitor ("mpcnd = %b, mplyr = %b, product = %d",

mpcnd, mplyr, prod);

initial //apply input vectors
begin

#0 mpcnd = 4'b0001; mplyr = 4'b0010; //prod = 2
#10 mpcnd = 4'b0101; mplyr = 4'b0010; //prod = 10
#10 mpcnd = 4'b0111; mplyr = 4'b0011; //prod = 21
#10 mpcnd = 4'b0110; mplyr = 4'b0110; //prod = 36

#10 mpcnd = 4'b1000; mplyr = 4'b0010; //prod = 16
#10 mpcnd = 4'b1010; mplyr = 4'b0010; //prod = 20
#10 mpcnd = 4'b1111; mplyr = 4'b0011; //prod = 30
#10 mpcnd = 4'b1100; mplyr = 4'b0110; //prod = 72

#10 $stop;
end

//instantiate the module into the test bench
mul_4bits_assign inst1 (mpcnd, mplyr, prod);

endmodule
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Figure 4.42 Outputs for the 4-bit multiplier.

4.5  Fixed-Point Division
Division is usually slower than multiplication and occurs less frequently.  The equa-
tion that represents the concept of division is shown below and includes the 2n-bit div-
idend, the n-bit divisor, the n-bit quotient, and the n-bit remainder.

2n-bit dividend = (n-bit divisor  n-bit quotient) + n-bit remainder

In general, the following equations also apply:

Dividend / Divisor = Quotient
Dividend = Divisor x Quotient + Remainder

The remainder has the same sign as the dividend.  In contrast to multiplication,
division is not commutative; that is, A/B  B/A, except when A = B, where A and B are
the dividend and divisor, respectively.  The process of division is one of successive
subtract, shift, and compare operations.  An example is shown in Figure 4.43 using
restoring division, where the dividend = 24 and the divisor = 7, yielding a quotient of
3 and a remainder of 3.

Restoring division examines the state of the carry-out when the dividend is sub-
tracted from the partial remainder.  This determines the relative magnitudes of the
divisor and partial remainder.  If the carry-out = 0, then the partial remainder is
restored to its previous value by adding the divisor to the partial remainder.  If the
carry-out = 1,  then there is no restore operation.  The partial remainder (high-order
half of the dividend) and the low-order half of the dividend are then shifted left one bit
position and the process repeats for each bit in the divisor.

The combined behavioral and dataflow design module is shown in Figure 4.44 and
uses the if and else conditional statements together with the continuous assignment
statement assign.  The inputs are an 8-bit dividend, a[7:0]; a 4-bit divisor, b[3:0]; and

mpcnd = 1,  mplyr = 2, product = 2
mpcnd = 5,  mplyr = 2, product = 10
mpcnd = 7,  mplyr = 3, product = 21
mpcnd = 6,  mplyr = 6, product = 36

mpcnd = 8,  mplyr = 2, product = 16
mpcnd = 10, mplyr = 2, product = 20
mpcnd = 15, mplyr = 3, product = 45
mpcnd = 12, mplyr = 6, product = 72
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a scalar signal, start, which initiates the divide operation.  The output is an 8-bit reg-
ister rslt[7:0] containing the quotient and remainder.  Shifting is accomplished by the
left-shift operator (<<) as follows: rslt = rslt << 1.  The test bench module is shown in
Figure 4.45 illustrating a variety of dividends and divisors.  The outputs are shown in
Figure 4.46.

Figure 4.43 Example of fixed-point restoring division.

Subtracting the divisor from the partial remainder is realized by the following
statement, which adds the negation of the divisor to the partial product and concate-
nates the sum with the low-order four bits from the previous partial remainder:

rslt = {(rslt[7:4] + b_neg), rslt[3:0]};

Then the sign bit (rslt[7]) of the sum is tested for a value of 1 or 0.  If the sign is 1
(negative), then this indicates that the divisor was greater than the high-order half of

0 0 0 1 1 Quotient (+3)
Divisor (+7) 0 1 1 1 0 0 0 1 1 0 0 0 Dividend (+24)
Subtract 1 0 0 1

1 0 1 0

Restore 0 0 0 1 1
Shift-subtract 1 0 0 1

1 1 0 0

Restore 0 0 0 1 1 0
Shift-subtract 1 0 0 1

1 1 1 1

Restore 0 0 0 1 1 0 0
Shift-subtract 1 0 0 1

0 1 0 1

No restore 0 0 0 0 1 0 1 0
Shift-subtract 1 0 0 1

0 0 1 1

No restore 0 0 0 0 0 0 1 1 Remainder (+3)

0

0

0

1

1
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the previous partial remainder.  Thus, a 0 is placed in the low-order quotient bit.  This
sequence is executed by the following statements, after which the sequence counter is
then decremented by 1:

if (rslt[7] == 1)
begin

rst = {(rslt[7:4] + b), rslt[3:1], 1'b0};

If the sign bit (rslt[7]) is 0 (positive), then this indicates that the divisor was less
than the high-order half of the previous partial remainder.  Therefore, no restoration of
the partial remainder is required and a 1 is placed in the low-order quotient bit, as
shown in the following statement, after which the sequence counter is then decre-
mented by 1:

rslt = {rslt[7:1], 1'b1};

Figure 4.44 Combined behavioral and dataflow design module for restoring divi-
sion.

//mixed-design for restoring division

module div_restoring (a, b, start, rslt);

//define inputs and outputs
input [7:0] a;
input [3:0] b;
input start;
output [7:0] rslt;

//define internal net
wire [3:0] b_bar;

//define internal registers
//variables used in always are declared as reg
reg [3:0] b_neg;
reg [7:0] rslt;
reg [3:0] count;

assign b_bar = ~b;

always @ (b_bar)
b_neg = b_bar + 1;

//continued on next page
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Figure 4.44       (Continued)

Figure 4.45 Test bench module for restoring division.

//execute the behavioral statements within the always block
always @ (posedge start)
begin

rslt = a;
count = 4'b0100;

if ((a!=0) && (b!=0))
while (count)

begin
rslt = rslt << 1;
rslt = {(rslt[7:4] + b_neg), rslt[3:0]};

if (rslt[7] == 1)
begin

rslt = {(rslt[7:4] + b), rslt[3:1], 1'b0};
count = count - 1;

end

else
begin

rslt = {rslt[7:1], 1'b1};
count = count - 1;

end
end

end

endmodule

//test bench for restoring division
module div_restoring_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a;
reg [3:0] b;
reg start;
wire [7:0] rslt;

//display variables
initial
$monitor ("a = %d, b = %d, quot = %d, rem = %d",

a, b, rslt[3:0], rslt[7:4]);
//continued on next page
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Figure 4.45       (Continued)

initial //apply input vectors
begin

#0 start = 1'b0;
a = 8'b0000_1101; b = 4'b0101;

#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0011_1100; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0101_0010; b = 4'b0110;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0011_1000; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0110_0100; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0110_1110; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0010_0101; b = 4'b0011;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0100_1000; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0101_0100; b = 4'b0110;
#10 start = 1'b1;
#10 start = 1'b0;

#10 a = 8'b0010_1110; b = 4'b0101;
#10 start = 1'b1;
#10 start = 1'b0;
#10 $stop;

end

div_restoring inst1 (a, b, start, rslt);//instantiate module
endmodule
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Figure 4.46 Outputs for restoring division.

4.6  Arithmetic and Logic Unit
Arithmetic and logic units (ALUs) perform the arithmetic operations of addition, sub-
traction, multiplication, and division in fixed-point, decimal, and floating-point num-
ber representations.  They also perform the logical operations of AND, OR,
complementation (negation), exclusive-OR, and exclusive-NOR.  An ALU is the cen-
tral part of the computer and, together with the control unit, form the processor.

Most computer operations are executed by the ALU.  For example, operands
located in memory can be transferred to the ALU, where an operation is performed on
the operands, then the result is stored in memory.  The ALU performs calculations in
different number representations, performs logical operations, and performs compar-
isons.  The ALU also performs shift operations such as shift right algebraic, shift right
logical, shift left algebraic, and shift left logical.  The algebraic shift operations refer to

a = 13, b = 5, quot = 2, rem = 3
a = 60, b = 7, quot = 2, rem = 3

a = 60, b = 7, quot = 8, rem = 4
a = 82, b = 6, quot = 8, rem = 4

a = 82, b = 6, quot = 13, rem = 4
a = 56, b = 7, quot = 13, rem = 4

a = 56, b = 7, quot = 8, rem = 0
a = 100, b = 7, quot = 8, rem = 0

a = 100, b = 7, quot = 14, rem = 2
a = 110, b = 7, quot = 14, rem = 2

a = 110, b = 7, quot = 15, rem = 5
a = 37, b = 3, quot = 15, rem = 5

a = 37, b = 3, quot = 12, rem = 1
a = 72, b = 7, quot = 12, rem = 1

a = 72, b = 7, quot = 10, rem = 2
a = 84, b = 6, quot = 10, rem = 2

a = 84, b = 6, quot = 14, rem = 0
a = 46, b = 5, quot = 14, rem = 0

a = 46, b = 5, quot = 9, rem = 1
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signed operands in 2s complement representation; the logical shift operations refer to
unsigned operands.  ALUs also perform operations on packed and unpacked decimal
operands.

 This section will present the design of a fixed-point eight-function ALU using
behavioral modeling with the parameter keyword and the case statement.  The
parameter keyword will assign values to the operation codes for the following oper-
ations: addition, subtraction, multiplication, AND, OR, NOT, exclusive-OR, and
exclusive-NOR.

The case statement executes one of several different procedural statements de-
pending on the comparison of an expression with a case item (see the format shown
below).  The expression and the case item are compared bit-by-bit and must match ex-
actly.  The statement that is associated with a case item may be a single procedural
statement or a block of statements delimited by the keywords begin . . . end.  The  case
statement has the following syntax:

case (expression)
case_item1 : procedural_statement1;
case_item2 : procedural_statement2;
case_item3 : procedural_statement3;

.

.
case_itemn : procedural_statementn;
default : default_statement;

endcase

The behavioral design module is shown in Figure 4.47 which designs the follow-
ing arithmetic operations: addition, subtraction, and multiplication.  The module also
designs the following logical operations: AND, OR, NOT, exclusive-OR, and exclu-
sive-NOR.  The test bench module is shown in Figure 4.48 and the outputs are shown
in Figure 4.49.

Figure 4.47 Behavioral design module for the eight-function ALU.

//behavioral 8-function arithmetic and logic unit
module alu_8_bh (a, b, opcode, rslt);

//define inputs and output
input [3:0] a, b;
input [2:0] opcode;
output [7:0] rslt;

//the rslt is left-hand side target in always
//and is declared as type reg
reg [7:0] rslt; //continued on next page
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Figure 4.47       (Continued)

Figure 4.48 Test bench module for the eight-function ALU.

//define operation codes
//parameter defines a constant
parameter add_op = 3'b000,

sub_op = 3'b001,
mul_op = 3'b010,
and_op = 3'b011,
or_op  = 3'b100,
not_op = 3'b101, //negation
xor_op = 3'b110,
xnor_op = 3'b111;

//perform the operations
always @ (a or b or opcode)
begin

case (opcode)
add_op: rslt = a + b;
sub_op: rslt = a - b;
mul_op: rslt = a * b;
and_op: rslt = a & b; //also ab
or_op:  rslt = a | b;
not_op: rslt = ~a; //also ~b
xor_op: rslt = a ^ b;
xnor_op: rslt = ~(a ^ b);

endcase
end

endmodule

//test bench for 8-function arithmetic and logic unit
module alu_8_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg [2:0] opcode;
wire [7:0] rslt;

initial //display variables
$monitor ("a = %b, b = %b, opcode = %b, result = %b",

a, b, opcode, rslt);
//continued on next page
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Figure 4.48       (Continued)

initial //apply input vectors
begin
//add operation   1 + 2 and 6 + 6

#0 a = 4'b0001;   b = 4'b0010;   opcode = 3'b000;
#10 a = 4'b0110;   b = 4'b0110;   opcode = 3'b000;

//subtract operation   12 – 3 and 13 – 10
#10 a = 4'b1100;   b = 4'b0011;   opcode = 3'b001;
#10 a = 4'b1101;   b = 4'b1010;   opcode = 3'b001;

//multiply operation   12 x 7 and 15 x 3
#10 a = 4'b1100;   b = 4'b0111;   opcode = 3'b010;
#10 a = 4'b1111;   b = 4'b0011;   opcode = 3'b010;

//AND operation
#10 a = 4'b1100;   b = 4'b0111;   opcode = 3'b011;
#10 a = 4'b1101;   b = 4'b1011;   opcode = 3'b011;

//OR operation
#10 a = 4'b0101;   b = 4'b1011;   opcode = 3'b100;
#10 a = 4'b1001;   b = 4'b1010;   opcode = 3'b100;

//NOT operation
#10 a = 4'b1001;  opcode = 3'b101;
#10 a = 4'b0011;  opcode = 3'b101;

//exclusive-OR operation
#10 a = 4'b0111;   b = 4'b1011;   opcode = 3'b110;
#10 a = 4'b1010;   b = 4'b0101;   opcode = 3'b110;

//exclusive-NOR operation
#10 a = 4'b0110;   b = 4'b0110;  opcode = 3'b111;
#10 a = 4'b0011;   b = 4'b1110;  opcode = 3'b111;

#20 $stop;
end

//instantiate the module into the test bench
alu_8_bh inst1 (a, b, opcode, rslt);

endmodule
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Figure 4.49 Outputs for the eight-function ALU.

4.7  Decimal Addition
A single element in a decimal arithmetic processor has nine inputs and five outputs as
shown in Figure 4.50.  Each operand (operand A and operand B) is represented by a 4-
bit binary-coded decimal (BCD) digit.  A carry-in (cin) bit is also provided from the
previous lower-order addition element.  The outputs are a 4-bit BCD digit called the
result (result) and a carry-out (cout).

The most common code for BCD arithmetic is the 8421 code, an example of
which is shown below in Figure 4.51.  If the sum exceeds nine, then an adjustment is
required by adding six (0110) to the result, also shown in Figure 4.51.

add
a = 0001, b = 0010, opcode = 000, result = 00000011
a = 0110, b = 0110, opcode = 000, result = 00001100

subtract
a = 1100, b = 0011, opcode = 001, result = 00001001
a = 1101, b = 1010, opcode = 001, result = 00000011

multiply 
a = 1100, b = 0111, opcode = 010, result = 01010100
a = 1111, b = 0011, opcode = 010, result = 00101101

AND
a = 1100, b = 0111, opcode = 011, result = 00000100
a = 1101, b = 1011, opcode = 011, result = 00001001

OR
a = 0101, b = 1011, opcode = 100, result = 00001111
a = 1001, b = 1010, opcode = 100, result = 00001011

NOT
a = 1001, b = 1010, opcode = 101, result = 11110110
a = 0011, b = 1010, opcode = 101, result = 11111100

XOR
a = 0111, b = 1011, opcode = 110, result = 00001100
a = 1010, b = 0101, opcode = 110, result = 00001111

XNOR
a = 0110, b = 0110, opcode = 111, result = 11111111
a = 0011, b = 1110, opcode = 111, result = 11110010
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Figure 4.50 A single-digit binary-coded decimal (BCD) element.

(a)

(b)

Figure 4.51 Example of BCD addition; (a) no adjustment required and (b) adjust-
ment required.

Table 4.6 shows the results that require no adjustment and the results that require
adjustment.  Whenever the unadjusted BCD sum produces a carry-out, the sum must
be corrected by adding six.  An adjustment is required whenever bit positions 8 and 4
are both 1s or whenever bit positions 8 and 2 are both 1s.  Equation 4.10 illustrates this
requirement when a carry is generated.

Carry = cout8 + bit8 bit4 + bit8 bit2  (4.10)

8421 8421
26 0010 0110

+) 33 +) 0011 0011
59 0101 1001

1110
Adjustment +) 0110

1 0100

   Operand A                  Operand B

cincout

result

Decimal arithmetic element
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Table 4.6    BCD Addition Results for No Adjustment/Adjustment

The three examples shown below illustrate both valid and invalid BCD digits with
the appropriate sum correction to yield valid BCD results.

Example 4.1 The numbers 5810 and 7310 will be added in BCD to yield a result of
13110 as shown below.  Both intermediate sums (1011 and 1101) are invalid for BCD;
therefore, 0110 must be added to the intermediate sums.  Any carry that results from
adding six to the intermediate sum is ignored because it provides no new information.
The result of the BCD add operation is 0001 0011 0001.  The carry produced from the
low-order decade is also referred to as the auxiliary carry.

BCD Result
8421

Decimal
Value Carry

Valid BCD
Result

0000 0 No adjustment required 0000
0001 1 0001
0010 2 0010
0011 3 0011
0100 4 0100
0101 5 0101
0110 6 0110
1110 7 0111
1000 8 1000
1001 9 1001
1010 10 Adjustment required 1 0001 0000
1011 11 1 0001 0001
1100 12 1 0001 0010
1101 13 1 0001 0011
1110 14 1 0001 0100
1111 15 1 0001 0101

1 0000 16 1 0001 0110
1 0001 17 1 0001 0111
1 0010 18 1 0001 1000
1 0011 19 1 0001 1001

58 0101 1000
+) 73 0111 0011

131 1 1011
1 1101 0110

0110 0001
0011

0001 0011 0001
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Example 4.2 Another example of BCD addition is shown below, in which the in-
termediate sums are valid BCD numbers, but there is a carry-out of the high-order de-
cade.  Whenever the unadjusted sum produces a carry-out, the intermediate sum must
be corrected by adding six.

Example 4.3 This example illustrates all three conditions listed in Equation 4.10.
The numbers 968 and 762 will be added using BCD arithmetic.  The intermediate
sums are: 0001 for the hundreds decade, 1101 for the tens decade, and 1010 for the
units decade.

4.7.1  Decimal Addition with Sum Correction

A single stage of a decimal adder is shown in Figure 4.52.  The carry-out of the
decade corresponds to Equation 4.10, which is reproduced below for convenience.
The carry-out of adder1 — in conjunction with the logic indicated by Equation 4.10 —
specifies the carry-out of the decade and is connected to inputs b4 and b2 of adder2
with b8 b1 = 00.  This corrects an invalid decimal digit.  The carry-out of adder2 can be
ignored, because it provides no new information.

Carry = cout8 + bit8 bit4 + bit8 bit2  

86 1000 0110
+) 93 1001 0011

179 0 1001
1 0001

0110
0111

0001 0111 1001

968 1001 0110 1000
+) 762 0111 0110 0010

1730 1 1010
1 1101 0110

1 0001 0110 0000
0110 0011
0111

0001 0111 0011 0000
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This decimal adder stage can be used in conjunction with other identical stages to
design an n-digit parallel decimal adder.  The carry-out of stagei connects to the carry-
in of stagei + 1; therefore, this is a ripple adder for decimal operands.  The Verilog
behavioral design module of a typical 4-bit adder is shown in Figure 4.53.

Figure 4.52 Typical stage of an n-digit decimal adder.

Figure 4.53 Four-bit adder to be used in decimal addition.

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]
b[2]
b[3]

bcd[0]1

2

4

8

cout

cin
adder1

1

2

4

8
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A

B

adder2

0

0

bcd[1]

bcd[2]

bcd[3]

0cin

cout

1
2
4
8

1
2
4
8

A

B

1
2
4
8

1
2
4
8

//behavioral model for a 4-bit adder
module adder4 (a, b, cin, sum, cout);

input [3:0] a, b; //define inputs and outputs
input cin;
output [3:0] sum;
output cout;

reg [3:0] sum; //variables in always are register
reg cout;

always @ (a or b or cin) //perform the add operation
begin

sum  = a + b + cin;
cout = (a[3] & b[3]) |

((a[3] | b[3]) & (a[2] & b[2])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] & b[1])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] | b[1]) & 

(a[0] & b[0])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] | b[1]) &

(a[0] | b[0]) & cin);
end
endmodule
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The design module for one stage of a decimal adder is shown in Figure 4.54 using
built-in primitives and the instantiated 4-bit adder of Figure 4.53. The test bench mod-
ule and the outputs are shown in Figures 4.55 and 4.56, respectively.

Figure 4.54 Mixed-design module for one stage of a decimal adder.

//mixed-design bcd adder

module add_bcd (a, b, cin, bcd, cout, invalid_inputs);

//define inputs and outputs
input [3:0] a, b;
input cin;
output [3:0] bcd;
output cout, invalid_inputs;

reg invalid_inputs; //reg if used in always statement

//define internal nets
wire [3:0] sum;
wire cout3, net3, net4;

//check for invalid inputs
always @ (a or b)
begin

if ((a > 4'b1001) || (b > 4'b1001))
invalid_inputs = 1'b1;

else
invalid_inputs = 1'b0;

end

//instantiate the logic for adder_1
adder4 inst1 (a[3:0], b[3:0], cin, sum[3:0], cout3);

//instantiate the logic for adder_2
adder4 inst2 (sum[3:0], {1'b0, cout, cout, 1'b0},

1'b0, bcd[3:0]);

//instantiate the logic for intermediate sum adjustment
and (net3, sum[3], sum[1]);

and (net4, sum[3], sum[2]);

or (cout, cout3, net3, net4);

endmodule
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Figure 4.55 Test bench module for one stage of the decimal adder.

//test bench for mixed-design add_bcd
module add_bcd_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg cin;
wire [3:0] bcd;
wire cout;
wire invalid_inputs;

//display variables
initial
$monitor ("a=%b, b=%b, cin=%b, cout=%b,

bcd=%b, invalid_inputs=%b",
a, b, cin, cout, bcd, invalid_inputs);

//apply input vectors
initial
begin

#0 a = 4'b0011; b = 4'b0011; cin = 1'b0;
#10 a = 4'b0101; b = 4'b0110; cin = 1'b0;
#10 a = 4'b0101; b = 4'b0100; cin = 1'b0;
#10 a = 4'b0111; b = 4'b1000; cin = 1'b0;
#10 a = 4'b0111; b = 4'b0111; cin = 1'b0;
#10 a = 4'b1000; b = 4'b1001; cin = 1'b0;
#10 a = 4'b1001; b = 4'b1001; cin = 1'b0;
#10 a = 4'b0101; b = 4'b0110; cin = 1'b1;
#10 a = 4'b0111; b = 4'b1000; cin = 1'b1;
#10 a = 4'b1001; b = 4'b1001; cin = 1'b1;
#10 a = 4'b1000; b = 4'b1000; cin = 1'b0;
#10 a = 4'b1000; b = 4'b1000; cin = 1'b1;
#10 a = 4'b1001; b = 4'b0111; cin = 1'b0;
#10 a = 4'b0111; b = 4'b0010; cin = 1'b1;
#10 a = 4'b0011; b = 4'b1000; cin = 1'b0;

//three invalid inputs
#10 a = 4'b1010; b = 4'b0001; cin = 1'b0;
#10 a = 4'b0011; b = 4'b1100; cin = 1'b0;
#10 a = 4'b1011; b = 4'b1110; cin = 1'b1;
#10 $stop;

end

//instantiate the module into the test bench
add_bcd inst1 (a, b, cin, bcd, cout, invalid_inputs);

endmodule
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Figure 4.56 Outputs for the BCD adder.

4.7.2  Decimal Addition Using Multiplexers for            
Sum Correction

An alternative approach to determine whether to add six to correct an invalid decimal
number is to use a multiplexer.  The two operands are added in adder1 as before; how-
ever, a value of six is always added to this intermediate sum in adder2, as shown in
Figure 4.57.  The sums from adder1 and adder2 are then applied to four 2:1 multi-
plexers.  Selection of the adder1 sum or the adder2 sum is determined by ORing the
carry-out of both adders — cout1 and cout2 — to generate a select input – cout –  to the
multiplexers, as shown below.

The decimal adder module instantiates a dataflow design module for the 2:1 mul-
tiplexer shown in Figure 4.58 and a behavioral design module for the 4-bit adder
shown in Figure 4.59, which is reproduced from Figure 4.53 for convenience.

{ Select adder1 sum if cout is 0 
Multiplexer select input =

Select adder2 sum if cout is 1

a=0101, b=0110, cin=0, cout=1, bcd=0001, invalid_inputs=0
a=0101, b=0100, cin=0, cout=0, bcd=1001, invalid_inputs=0
a=0111, b=1000, cin=0, cout=1, bcd=0101, invalid_inputs=0

a=0111, b=0111, cin=0, cout=1, bcd=0100, invalid_inputs=0
a=1000, b=1001, cin=0, cout=1, bcd=0111, invalid_inputs=0
a=1001, b=1001, cin=0, cout=1, bcd=1000, invalid_inputs=0

a=0101, b=0110, cin=1, cout=1, bcd=0010, invalid_inputs=0
a=0111, b=1000, cin=1, cout=1, bcd=0110, invalid_inputs=0
a=1001, b=1001, cin=1, cout=1, bcd=1001, invalid_inputs=0

a=1000, b=1000, cin=0, cout=1, bcd=0110, invalid_inputs=0
a=1000, b=1000, cin=1, cout=1, bcd=0111, invalid_inputs=0
a=1001, b=0111, cin=0, cout=1, bcd=0110, invalid_inputs=0

a=0111, b=0010, cin=1, cout=1, bcd=0000, invalid_inputs=0
a=0011, b=1000, cin=0, cout=1, bcd=0001, invalid_inputs=0

a=1010, b=0001, cin=0, cout=1, bcd=0001, invalid_inputs=1
a=0011, b=1100, cin=0, cout=1, bcd=0101, invalid_inputs=1
a=1011, b=1110, cin=1, cout=1, bcd=0000, invalid_inputs=1
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Figure 4.57 Examples using a decimal adder with multiplexers.

A = 0 0 1 1
B = +) 0 1 1 0

cout1 = 0 1 0 0 1    adder_1     Intermediate sum
+) 0 1 1 0

cout2 = 0 1 1 1 1    adder_2

s0 = 0             adder_1 sum = 0   1001cout

A = 1 0 0 0
B = +) 1 0 0 1

cout1 = 1 0 0 0 1    adder_1     Intermediate sum
+) 0 1 1 0

cout2 = 0 0 1 1 1    adder_2

s0 = 1             adder_2 sum = 1   0111cout

A = 0 1 1 1
B = +) 1 0 0 0

cout3 = 0 1 1 1 1    adder_1     Intermediate sum
+) 0 1 1 0

cout8 = 1 0 1 0 1    adder_2

s0 = 1             adder_2 sum = 1   0101cout
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Figure 4.58 Two-to-one multiplexer used in the BCD adder.

Figure 4.59 Four-bit adder to be used in decimal addition using multiplexers.

The logic diagram is shown in Figure 4.60, which shows the instantiation names
and net names that will be used in the mixed design module.  The mixed-design mod-
ule is shown in Figure 4.61.  The test bench module and the outputs are shown in Fig-
ures 4.62 and 4.63, respectively.

//dataflow 2:1 multiplexer
module mux2_df (sel, data, z1);

//define inputs and output
input sel;
input [1:0] data;
output z1;

assign z1 = (~sel & data[0]) | (sel & data[1]);

endmodule

//behavioral model for a 4-bit adder
module adder4 (a, b, cin, sum, cout);

input [3:0] a, b; //define inputs and outputs
input cin;
output [3:0] sum;
output cout;

reg [3:0] sum; //variables used in always are register
reg cout;

always @ (a or b or cin) //perform the add operation
begin

sum  = a + b + cin;
cout = (a[3] & b[3]) |

((a[3] | b[3]) & (a[2] & b[2])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] & b[1])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] | b[1]) & 

(a[0] & b[0])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] | b[1]) &

(a[0] | b[0]) & cin);
end
endmodule
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Figure 4.60 Decimal addition using multiplexers to obtain a valid decimal digit.

Figure 4.61 Mixed-design module for the BCD adder using multiplexers.
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adder2[3]
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s0
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s0
d0
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inst7

//mixed-design bcd adder using multiplexers
module add_bcd_mux_bip (a, b, cin, bcd, cout,

invalid_inputs);

input [3:0] a, b; //define inputs and outputs
input cin;
output [3:0] bcd;
output cout, invalid_inputs; //continued on next page



470          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Figure 4.61       (Continued)

Figure 4.62 Test bench module for the BCD adder using multiplexers. 

//reg if used in always statement
reg invalid_inputs;

wire [3:0] adder1, adder2; //define internal nets
wire cout1, cout2;

always @ (a or b) //check for invalid inputs
begin

if ((a > 4'b1001) || (b > 4'b1001))
invalid_inputs = 1'b1;

else
invalid_inputs = 1'b0;

end

//instantiate the adder for adder1
adder4 inst1 (a[3:0], b[3:0], cin, adder1, cout1);

//instantiate the adder for adder2
adder4 inst2 (adder1, {1'b0, 1'b1, 1'b1, 1'b0},

1'b0, adder2, cout2);

//instantiate the multiplexer select logic
or (cout, cout2, cout1);

//instantiate the 2:1 multiplexers
mux2_df inst3 (cout, {adder2[0], adder1[0]}, bcd[0]);

mux2_df inst4 (cout, {adder2[1], adder1[1]}, bcd[1]); 

mux2_df inst5 (cout, {adder2[2], adder1[2]}, bcd[2]);

mux2_df inst7 (cout, {adder2[3], adder1[3]}, bcd[3]);

endmodule

//test bench mixed-design bcd adder using multiplexers
module add_bcd_mux_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg cin;
wire [3:0] bcd;
wire cout, invalid_inputs; //continued on next page
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Figure 4.62       (Continued)

//display variables
initial
$monitor ("a=%b, b=%b, cin=%b, cout=%b, bcd=%b, 

invalid_inputs=%b",
a, b, cin, cout, bcd, invalid_inputs);

//apply input vectors
initial
begin

#0 a = 4'b0011; b = 4'b0011; cin = 1'b0;
#10 a = 4'b0101; b = 4'b0110; cin = 1'b0;
#10 a = 4'b0111; b = 4'b1000; cin = 1'b0;
#10 a = 4'b0111; b = 4'b0111; cin = 1'b0;

#10 a = 4'b1000; b = 4'b1000; cin = 1'b0;
#10 a = 4'b1000; b = 4'b1001; cin = 1'b0;
#10 a = 4'b1001; b = 4'b1001; cin = 1'b0;
#10 a = 4'b0101; b = 4'b0110; cin = 1'b1;

#10 a = 4'b0110; b = 4'b0111; cin = 1'b0;
#10 a = 4'b0111; b = 4'b1000; cin = 1'b1;
#10 a = 4'b1001; b = 4'b1001; cin = 1'b1;
#10 a = 4'b1001; b = 4'b1000; cin = 1'b0;

#10 a = 4'b0111; b = 4'b1011; cin = 1'b0;
//invalid inputs

#10 a = 4'b1111; b = 4'b1000; cin = 1'b0;
//invalid inputs

#10 a = 4'b1101; b = 4'b1010; cin = 1'b1;
//invalid inputs

#10 $stop;

end

//instantiate the module into the test bench
add_bcd_mux_bip inst1 (a, b, cin, bcd, cout, invalid_inputs);

endmodule
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Figure 4.63 Outputs for the BCD adder using multiplexers.

4.8 Decimal Subtraction
Subtraction of BCD numbers is performed by adding the radix (r) complement + 1 of
the subtrahend to the minuend.  This concept is shown in Equation 4.11, where oper-
and A is the minuend, operand B is the subtrahend, and (B ' + 1) is the 10s complement
(9s complement + 1) for BCD.

A – B = A + (B ' + 1)  (4.11)

Examples are shown below that exemplify the principles of decimal subtraction.
The result of each example is true subtraction.

True addition is where the result is the sum of the two numbers, regardless of the
sign and corresponds to one of the following conditions:

True subtraction is where the result is the difference of the two numbers, regard-
less of the sign and corresponds to one of the following conditions:

(+A) + (+B)
(–A) + (–B)
(+A) – (–B)
(–A) – (+B)

a=0011, b=0011, cin=0, cout=0, bcd=0110, invalid_inputs=0
a=0101, b=0110, cin=0, cout=1, bcd=0001, invalid_inputs=0
a=0111, b=1000, cin=0, cout=1, bcd=0101, invalid_inputs=0
a=0111, b=0111, cin=0, cout=1, bcd=0100, invalid_inputs=0

a=1000, b=1000, cin=0, cout=1, bcd=0110, invalid_inputs=0
a=1000, b=1001, cin=0, cout=1, bcd=0111, invalid_inputs=0
a=1001, b=1001, cin=0, cout=1, bcd=1000, invalid_inputs=0
a=0101, b=0110, cin=1, cout=1, bcd=0010, invalid_inputs=0

a=0110, b=0111, cin=0, cout=1, bcd=0011, invalid_inputs=0
a=0111, b=1000, cin=1, cout=1, bcd=0110, invalid_inputs=0
a=1001, b=1001, cin=1, cout=1, bcd=1001, invalid_inputs=0
a=1001, b=1000, cin=0, cout=1, bcd=0111, invalid_inputs=0

a=0111, b=1011, cin=0, cout=1, bcd=1000, invalid_inputs=1
a=1111, b=1000, cin=0, cout=1, bcd=1101, invalid_inputs=1
a=1101, b=1010, cin=1, cout=1, bcd=1110, invalid_inputs=1



4.8     Decimal Subtraction     473

Example 4.4 The subtrahend +5710 will be subtracted from the minuend +8410.
This yields a difference of +2710.  The 10s complement of the subtrahend is obtained
as follows using radix 10 numbers: 9 – 5 = 4; 9 – 7 = 2 + 1 = 3, where 4 and 2 are the
9s complement of 5 and 7, respectively.  A carry-out of the high-order decade indi-
cates that the result is a positive number in BCD.

Example 4.5 The subtrahend +9810 will be subtracted from the minuend +7310.
This yields a difference of –2510.  The 10s complement of the subtrahend is obtained
as follows using radix 10 numbers: 9 – 9 = 0; 9 – 8 = 1 + 1 = 2, where 0 and 1 are the
9s complement of 9 and 8, respectively.  A carry-out of 0 from the high-order decade
indicates that the result is a negative BCD number in 10s complement.  To obtain the
result in radix 10, form the 10s complement of 7510, which will yield 2510.

(+A) – (+B)
(–A) – (–B)
(+A) + (–B)
(–A) + (+B)

+84 1000 0100
–) +57 +) 0100 0011 10s complement

+27 0 0111
1 1100

0110
0010

+ 0010 0111

+73 0111 0011
–) +98 +) 0000 0010 10s complement

–25 0  0111 0101

Negative number in
10s complement – 0111 0101

Negative number in
sign magnitude – 0010 0101



474          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Example 4.6 The following decimal numbers will be added using BCD arithmetic:
+54 and –23, as shown below.  This can be considered as true subtraction, because the
result is the difference of the two numbers, ignoring the signs.  A carry of 1 from the
high-order decade indicates a positive number.

Example 4.7 The following decimal numbers will be subtracted using BCD arith-
metic: +617 and +842, resulting in a difference of –225, as shown below.  A carry of
0 from the high-order decade indicates a negative number in 10s complement notation.

+54 0101 0100
+) –23 +) 0111 0111 10s complement

+31 1 1011
1 1101 0110
 0110 0001

0011

+ 0011 0001

+617 0110 0001 0111
–) +842 +) 0001 0101 1000 10s complement

–225 1 1111
0 0111 0110

0 0111 0101

Negative number in
10s complement – 0111 0111 0101

Negative number in
sign magnitude – 0010 0010 0101
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4.8.1  Decimal Subtraction Using Full Adders and Built-
In Primitives for Four Bits

A 4-bit binary subtraction unit – including BCD – will be designed using instantiated
full adders that were designed using built-in primitives.  The Verilog design module
for the full adder is reproduced in Figure 4.64 for convenience.  The logic diagram for
the 4-bit subtraction unit is shown in Figure 4.65.

Figure 4.64 Full adder to be used in the design of a 4-bit subtractor.

Figure 4.65 Logic diagram for the 4-bit subtraction unit.

//full adder using built-in primitives
module full_adder_bip (a, b, cin, sum, cout);

//define inputs and outputs
input a, b, cin;
output sum, cout;

//design the full adder
//and design the sum
xor inst1 (net1, a, b);
and inst2 (net2, a, b);
xor inst3 (sum, net1, cin);

//design the carry-out
and inst4 (net3, net1, cin);
or inst5 (cout, net3, net2);

endmodule

a     b    cin
inst0

cout        sum

a     b    cin
inst1

cout        sum

a     b    cin
inst2

cout        sum

a     b    cin
inst3

cout        sum

a[3]  b[3] a[2]  b[2] a[1]  b[1] a[0]  b[0] cin=1

net3 net2 net1 net0

rslt[3]rslt[3] rslt[2] rslt[1] rslt[0]cout[3] cout[2] cout[1] cout[0]
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The Verilog design module for the 4-bit subtraction unit is shown in Figure 4.66
using built-in primitives and instantiated full adders that were designed using built-in
primitives.  The test bench module is shown in Figure 4.67 and the outputs are shown
in Figure 4.68.

Figure 4.66 Design module for the 4-bit subtractor.

//structural for a 4-bit subtractor
//using bip and instantiated full adders

module sub_4bit_bip (a, b, cin, rslt, cout);

//define inputs and outputs
input [3:0] a, b;
input cin;
output [3:0] rslt, cout;

//define internal nets
wire net0, net1, net2, net3;

//design the logic for stage 0
not (net0, b[0]);
full_adder_bip inst0 (a[0], net0, cin, rslt[0], cout[0]);

//design the logic for stage 1
not (net1, b[1]);
full_adder_bip inst1 (a[1], net1, cout[0], rslt[1],

cout[1]);

//design the logic for stage 2
not (net2, b[2]);
full_adder_bip inst2 (a[2], net2, cout[1], rslt[2],

cout[2]);

//design the logic for stage 3
not (net3, b[3]);
full_adder_bip inst3 (a[3], net3, cout[2], rslt[3],

cout[3]);

endmodule
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Figure 4.67 Test bench module for the 4-bit subtractor.

//test bench for 4-bit subtractor

module sub_4bit_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg cin;
wire [3:0] rslt, cout;

//display variables
initial
$monitor ("a = %b, b = %b, cin = %b, rslt = %b, cout = %b",

a, b, cin, rslt, cout);

//apply input vectors
initial
begin

#0 a = 4'b0110; b = 4'b0010; cin = 1'b1;
#10 a = 4'b1100; b = 4'b0110; cin = 1'b1;
#10 a = 4'b1110; b = 4'b1010; cin = 1'b1;
#10 a = 4'b1110; b = 4'b0011; cin = 1'b1;

#10 a = 4'b1111; b = 4'b0010; cin = 1'b1;
#10 a = 4'b1110; b = 4'b0110; cin = 1'b1;
#10 a = 4'b1110; b = 4'b1111; cin = 1'b1;
#10 a = 4'b1111; b = 4'b0011; cin = 1'b1;

#10 a = 4'b0001; b = 4'b0010; cin = 1'b1;
#10 a = 4'b0001; b = 4'b0001; cin = 1'b1;
#10 a = 4'b1000; b = 4'b0111; cin = 1'b1;
#10 a = 4'b1001; b = 4'b0011; cin = 1'b1;

#10 $stop;

end

//instantiate the module into the test bench
sub_4bit_bip inst1 (a, b, cin, rslt, cout);

endmodule
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Figure 4.68 Outputs for the 4-bit subtractor.

Notice the seventh entry in the outputs: 1110 – 1111 (14 – 15).  The result is 11112
(–110).  This result is obtained as shown below, which is the BCD equivalent of the
binary number.

4.8.2   Decimal/Binary Subtraction Using Full Adders 
and Built-In Primitives for Eight Bits

The design in the previous section will be expanded to design a subtraction unit for
eight bits using built-in primitives and instantiated full adders that were designed
using built-in primitives.  Some subtract operations demonstrate decimal subtraction.
The logic diagram is shown in Figure 4.69.

a = 0110, b = 0010, cin = 1, rslt = 0100, cout = 1111
a = 1100, b = 0110, cin = 1, rslt = 0110, cout = 1001
a = 1110, b = 1010, cin = 1, rslt = 0100, cout = 1111
a = 1110, b = 0011, cin = 1, rslt = 1011, cout = 1100

a = 1111, b = 0010, cin = 1, rslt = 1101, cout = 1111
a = 1110, b = 0110, cin = 1, rslt = 1000, cout = 1111
a = 1110, b = 1111, cin = 1, rslt = 1111, cout = 0000
a = 1111, b = 0011, cin = 1, rslt = 1100, cout = 1111

a = 0001, b = 0010, cin = 1, rslt = 1111, cout = 0001
a = 0001, b = 0001, cin = 1, rslt = 0000, cout = 1111
a = 1000, b = 0111, cin = 1, rslt = 0001, cout = 1000
a = 1001, b = 0011, cin = 1, rslt = 0110, cout = 1001

+14 0001 0100
–) +15 +) 1000 0101 10s complement

–1 0  1001 1001

Negative number in
10s complement – 1001 1001

Negative number in
sign magnitude – 0000 0001
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Figure 4.69 Logic diagram for the 8-bit binary subtraction unit.

The design module is shown in Figure 4.70 using built-in primitives and instanti-
ated full adders that were designed using built-in primitives.  The test bench module
and the outputs are shown in Figures 4.71 and 4.72, respectively.

Figure 4.70 Design module for the 8-bit subtraction unit.

a     b    cin
inst0

cout        sum

a     b    cin
inst1

cout        sum

a     b    cin
inst2

cout        sum

a     b    cin
inst3

cout        sum

a[3]  b[3] a[2]  b[2] a[1]  b[1] a[0]  b[0] cin=1

net3 net2 net1 net0

rslt[3]rslt[3] rslt[2] rslt[1] rslt[0]cout[3] cout[2] cout[1] cout[0]

a     b    cin
inst4

cout        sum

a     b    cin
inst5

cout        sum

a     b    cin
inst6

cout        sum

a     b    cin
inst7

cout        sum

a[7]  b[7] a[6]  b[6] a[5]  b[5] a[4]  b[4] cout[3]

net7 net6 net5 net4

rslt[7]rslt[ rslt[6] rslt[5] rslt[4]cout[7] cout[6] cout[5] cout[4]

//structural for an 8-bit subtractor
//using bip and instantiated full adders
module sub_8bit_bip (a, b, cin, rslt, cout);

//define inputs and outputs
input [7:0] a, b;
input cin;
output [7:0] rslt, cout;

//define internal nets
wire net0, net1, net2, net3, net4, net5, net6, net7;

//continued on next page
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Figure 4.70       (Continued)

//----------------------------------------------------------
//full_adder_bip: a, b, cin, rslt, cout
//----------------------------------------------------------

//design the logic for stage 0
not (net0, b[0]);
full_adder_bip inst0 (a[0], net0, cin, rslt[0], cout[0]);

//design the logic for stage 1
not (net1, b[1]);
full_adder_bip inst1 (a[1], net1, cout[0], rslt[1],

cout[1]);

//design the logic for stage 2
not (net2, b[2]);
full_adder_bip inst2 (a[2], net2, cout[1], rslt[2],

cout[2]);

//design the logic for stage 3
not (net3, b[3]);
full_adder_bip inst3 (a[3], net3, cout[2], rslt[3],

cout[3]);

//----------------------------------------------------------
//full_adder_bip: a, b, cin, rslt, cout
//----------------------------------------------------------

//design the logic for stage 4
not (net4, b[4]);
full_adder_bip inst4 (a[4], net4, cout[3], rslt[4],

cout[4]);

//design the logic for stage 5
not (net5, b[5]);
full_adder_bip inst5 (a[5], net5, cout[4], rslt[5],

cout[5]);

//design the logic for stage 6
not (net6, b[6]);
full_adder_bip inst6 (a[6], net6, cout[5], rslt[6],

cout[6]);

//design the logic for stage 7
not (net7, b[7]);
full_adder_bip inst7 (a[7], net7, cout[6], rslt[7],

cout[7]);

endmodule
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Figure 4.71 Test bench module for the 8-bit subtraction unit.

//test bench for 8-bit subtractor

module sub_8bit_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a, b;
reg cin;
wire [7:0] rslt, cout;

//display variables
initial
$monitor ("a = %b, b = %b, cin = %b, rslt = %b, cout = %b",

a, b, cin, rslt, cout);

//apply input vectors
initial
begin

#0 cin = 1'b1;
#0 a = 8'b0001_1001; b = 8'b0000_0011; //25-03=22
#10 a = 8'b0010_1100; b = 8'b0000_0110; //44-06=38
#10 a = 8'b0000_1110; b = 8'b0000_1010; //14-10=04
#10 a = 8'b0000_1110; b = 8'b0000_0011; //14-03=11

#10 a = 8'b0100_0000; b = 8'b0010_0010; //64-18=46
#10 a = 8'b0000_1110; b = 8'b0000_0110; //14-06=08
#10 a = 8'b1001_1110; b = 8'b0000_1000; //158-08=150
#10 a = 8'b1000_1111; b = 8'b1000_1100; //143-140=03

#10 a = 8'b0011_1001; b = 8'b0000_1000; //57-08=49
#10 a = 8'b0000_0001; b = 8'b0000_0001; //01-01=00
#10 a = 8'b0110_1000; b = 8'b0011_0111; //104-55=49
#10 a = 8'b0000_1001; b = 8'b0000_0011; //09-03=06

#10 $stop;
end

//instantiate the module into the test bench
sub_8bit_bip inst1 (a, b, cin, rslt, cout);

endmodule
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Figure 4.72 Outputs for the 8-bit subtraction unit.

4.8.3  Eight-Bit Decimal Subtraction Unit with Built-In 
Primitives and Full Adders Designed Using 
Behavioral Modeling

Before presenting the organization for a decimal subtraction unit, a 9s complementer
will be designed which will be used in the subtractor module together with a carry-in
(cin = 1) to form the 10s complement of the subtrahend.  The 9s complementer is
required because BCD is  not a self-complementing code; that is, it cannot form the di-
minished-radix complement (r – 1 complement) by inverting the four bits of each de-
cade.  The truth table for the 9s complementer is shown in Table 4.6.

Table 4.6   Nines Complementer

Subtrahend 9s Complement
b[3] b[2] b[1] b[0] f[3] f[2] f[1] f[0]

0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 0 0 1 1
0 1 1 1 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0

a = 00011001, b = 00000011, cin = 1, rslt = 00010110
a = 00101100, b = 00000110, cin = 1, rslt = 00100110
a = 00001110, b = 00001010, cin = 1, rslt = 00000100
a = 00001110, b = 00000011, cin = 1, rslt = 00001011

a = 01000000, b = 00100010, cin = 1, rslt = 00011110
a = 00001110, b = 00000110, cin = 1, rslt = 00001000
a = 10011110, b = 00001000, cin = 1, rslt = 10010110
a = 10001111, b = 10001100, cin = 1, rslt = 00000011

a = 00111001, b = 00001000, cin = 1, rslt = 00110001
a = 00000001, b = 00000001, cin = 1, rslt = 00000000
a = 01101000, b = 00110111, cin = 1, rslt = 00110001
a = 00001001, b = 00000011, cin = 1, rslt = 00000110
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The equations for the 9s complementer are shown in Equation 4.12.  The logic dia-
gram for the 9s complementer is shown in Figure 4.73.  The structural design module
for the 9s complementer using built-in primitives is shown in Figure 4.74.  The test
bench module and the outputs are shown in Figures 4.75 and 4.76, respectively.

Figure 4.73 Logic diagram for the 9s complementer.

Figure 4.74 Design module for the 9s complementer.

f[0] = b[0] '

f[1] = b[1]

f[2] = (b[2]  b[1])

f[3] = b[3] 'b[2] 'b[1] ' (4.12)

+b[0]

+b[1]

+b[2]

–b[1]
–b[2]
–b[3]

+f[0]

+f[1]

+f[2]

+f[3]

//9s complementer using built-in primitives

module nines_comp_sub_bip (b, f);

//define inputs and outputs
input [3:0] b;
output [3:0] f;

//design the logic for the 9s complementer
not (f[0], b[0]);
assign f[1] = b[1];
xor (f[2], b[1], b[2]);
and (f[3], ~b[1], ~b[2], ~b[3]);

endmodule
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Figure 4.75 Test bench module for the 9s complementer.

Figure 4.76 Outputs for the 9s complementer.

//test bench for the 9s complementer
module nines_comp_sub_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] b;
wire [3:0] f;

//display variables
initial
$monitor ("b = %b, f = %b", b, f);

//apply input vectors
initial
begin

#0 b = 4'b0000;
#10 b = 4'b0001;
#10 b = 4'b0010;
#10 b = 4'b0011;
#10 b = 4'b0100;
#10 b = 4'b0101;
#10 b = 4'b0110;
#10 b = 4'b0111;
#10 b = 4'b1000;
#10 b = 4'b1001;
#10 $stop;

end

//instantiate the module into the test bench
nines_comp_sub_bip inst1 (b, f);

endmodule

b = 0000, f = 1001
b = 0001, f = 1000
b = 0010, f = 0111
b = 0011, f = 0110
b = 0100, f = 0101
b = 0101, f = 0100
b = 0110, f = 0011
b = 0111, f = 0010
b = 1000, f = 0001
b = 1001, f = 0000
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The logic diagram for the BCD subtractor is shown in Figure 4.77.  The  minuend
a[3:0] connects to the A inputs of a fixed-point adder for the units decade; the subtra-
hend b[3:0] connects to the inputs of a 9s complementer whose outputs f [3:0] connect
to the B inputs of the adder, which has outputs sum[3:0] and cout3.  The aux_cy output
adds six to the B inputs of the succeeding adder to yield the outputs bcd[3:0].

In a similar manner, the minuend a[7:4] connects to the A inputs of the adder for
the tens decade; the subtrahend b[7:4] connects to a 9s complementer whose outputs
f [7:4] connect to the B inputs of the adder, which generates sum[7:4] and cout7.  The
cout output adds six to the B inputs of the succeeding adder to yield the outputs
bcd[7:4].

Figure 4.77 Logic diagram for the two-stage BCD subtractor.
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The behavioral design module for the 4-bit fixed-point adder is shown in Figure
4.78.  The test bench module and the outputs are shown in Figures 4.79 and 4.80,
respectively.

The structural design module for the 8-bit subtractor is shown in Figure 4.81.
There are two input operands, the minuend a[7:0] and the subtrahend b[7:0], and one
input mode control (cin = 1) to specify a subtract operation.  There are two outputs:
bcd[7:0], which represents a valid BCD number, and a carry-out, cout.  The test bench
is shown in Figure 4.82 and contains operands for subtraction, including numbers that
result in negative differences in BCD.  The outputs are shown in Figure 4.83.

Figure 4.78 Behavioral design module for 4-bit adder.

//behavioral model for a 4-bit adder

module adder4 (a, b, cin, sum, cout);

//define inputs and outputs
input [3:0] a, b;
input cin;
output [3:0] sum;
output cout;

//variables are reg in always
reg [3:0] sum;
reg cout;

//perform the sum and carry-out operations
always @ (a or b or cin)
begin
sum  = a + b + cin;
cout = (a[3] & b[3]) |

((a[3] | b[3]) & (a[2] & b[2])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] & b[1])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] | b[1])

& (a[0] & b[0])) |
((a[3] | b[3]) & (a[2] | b[2]) & (a[1] | b[1])

& (a[0] | b[0]) & cin);

end

endmodule
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Figure 4.79 Test bench module for 4-bit adder.

//test bench for the 4-bit adder

module adder4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg cin;
wire [3:0] sum;
wire cout;

//display variables
initial
$monitor ("a=%b, b=%b, cin=%b, cout=%b, sum=%b",

a, b, cin, cout, sum);

//apply input vectors
initial
begin

#0 a=4'b0000; b=4'b0000; cin=1'b0;
#10 a=4'b0001; b=4'b0001; cin=1'b0;
#10 a=4'b0001; b=4'b0011; cin=1'b0;
#10 a=4'b0101; b=4'b0001; cin=1'b0;
#10 a=4'b0111; b=4'b0001; cin=1'b0;

#10 a=4'b0101; b=4'b0101; cin=1'b0;
#10 a=4'b1001; b=4'b0101; cin=1'b1;
#10 a=4'b1000; b=4'b1000; cin=1'b1;
#10 a=4'b1011; b=4'b1110; cin=1'b1;
#10 a=4'b1111; b=4'b1111; cin=1'b1;

#10 $stop;

end

//instantiate the module into the test bench
adder4 inst1 adder4 (a, b, cin, sum, cout);

endmodule
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Figure 4.80 Outputs for 4-bit adder.

Figure 4.81 Structural design module for the 8-bit decimal subtractor.

a=0000, b=0000, cin=0, cout=0, sum=0000
a=0001, b=0001, cin=0, cout=0, sum=0010
a=0001, b=0011, cin=0, cout=0, sum=0100
a=0101, b=0001, cin=0, cout=0, sum=0110
a=0111, b=0001, cin=0, cout=0, sum=1000

a=0101, b=0101, cin=0, cout=0, sum=1010
a=1001, b=0101, cin=1, cout=0, sum=1111
a=1000, b=1000, cin=1, cout=1, sum=0001
a=1011, b=1110, cin=1, cout=1, sum=1010
a=1111, b=1111, cin=1, cout=1, sum=1111

//structural bcd subtractor
module sub_8bit_struc (a, b, bcd, cout);

input [7:0] a, b; //define inputs and outputs
output [7:0] bcd;
output cout;

wire [7:0] f; //define internal nets
wire [7:0] sum;
wire cout3, net1, net2, aux_cy;
wire cout7, net3, net4;

//----------------------------------------------------------
//instantiate the logic for the units stage [3:0]
//instantiate the 9s complementer
nines_comp_sub_bip inst1 (b[3:0], f[3:0]);

//instantiate the adder for the intermediate sum for units
adder4 inst2 (a[3:0], f[3:0], 1'b1, sum[3:0], cout3);

//instantiate the logic gates
and (net1, sum[3], sum[1]);
and (net2, sum[3], sum[2]);
or (aux_cy, cout3, net1, net2);

//instantiate the adder for the bcd sum [3:0]
adder4 inst3 (sum[3:0], {1'b0, aux_cy, aux_cy, 1'b0},

1'b0, bcd[3:0], 1'b0);

//continued on next page
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Figure 4.81       (Continued)

Figure 4.82 Test bench module for the 8-bit decimal subtractor.

//----------------------------------------------------------
//instantiate the logic for the tens stage [7:4]
//instantiate the 9s complementer
nines_comp_sub_bip inst4 (b[7:4], f[7:4]);

//instantiate the adder for the intermediate sum for tens
adder4 inst5 (a[7:4], f[7:4], aux_cy, sum[7:4], cout7);

//instantiate the logic gates
and (net3, sum[7], sum[5]);
and (net4, sum[7], sum[6]);
or (cout, cout7, net3, net4);

//instantiate the adder for the bcd sum [7:4]
adder4 inst6 (sum[7:4], {1'b0, cout, cout, 1'b0},

1'b0, bcd[7:4], 1'b0);

//----------------------------------------------------------
endmodule

//test bench for the decimal eight-bit subtractor
module sub_8bit_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a, b;
wire [7:0] bcd;
wire cout;

initial //display variables
$monitor ("a = %b, b = %b, bcd_tens = %b, bcd_units = %b", 

a, b, bcd[7:4], bcd[3:0]);

//apply input vectors
initial
begin

#0 a = 8'b0001_1001; b = 8'b0000_0011;  //19-03=16
#10 a = 8'b0111_0110; b = 8'b0100_0010;  //76-42=34
#10 a = 8'b1001_1001; b = 8'b0110_0110;  //99-66=33
#10 a = 8'b1000_0101; b = 8'b0001_0100;  //85-14=71

//continued on next page
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Figure 4.82       (Continued)

Figure 4.83 Outputs for the 8-bit decimal subtractor.

Observe the last two entries in the outputs of Figure 4.83.  The operations are as
follows: 33 – 66 = –33 and 11 – 99 = –88.  The two subtractions are obtained as fol-
lows: 

#10 a = 8'b0101_0101; b = 8'b0100_0100;  //55-44=11
#10 a = 8'b0011_0011; b = 8'b0010_0111;  //33-27=06
#10 a = 8'b0011_0011; b = 8'b0110_0110;  //33-66=-33
#10 a = 8'b0001_0001; b = 8'b1001_1001;  //11-99=-18
#10 $stop;

end

//instantiate the module into the test bench
sub_8bit_struc inst1 (a, b, bcd, cout);

endmodule

a = 00011001, b = 00000011, bcd_tens = 0001, bcd_units = 0110
a = 01110110, b = 01000010, bcd_tens = 0011, bcd_units = 0100
a = 10011001, b = 01100110, bcd_tens = 0011, bcd_units = 0011
a = 10000101, b = 00010100, bcd_tens = 0111, bcd_units = 0001

a = 01010101, b = 01000100, bcd_tens = 0001, bcd_units = 0001
a = 00110011, b = 00100111, bcd_tens = 0000, bcd_units = 0110
a = 00110011, b = 01100110, bcd_tens = 0110, bcd_units = 0111
a = 00010001, b = 10011001, bcd_tens = 0001, bcd_units = 0010

+33 0011 0011
–) +66 +) 0011 0100 10s complement

–33 0  0110 0111

Negative number in
10s complement – 0110 0111

Negative number in
sign magnitude – 0011 0011
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4.9  Decimal Multiplication
There are three operands in multiplication: the multiplicand is multiplied by the mul-
tiplier to produce a product.  Decimal arithmetic operations can be performed in the
fixed-point number representation then converting the result to the binary-coded dec-
imal (BCD) number representation.  This method is used in this section for a decimal
multiplication operation using behavioral modeling.

Converting from binary to BCD is accomplished by multiplying the BCD number
by two repeatedly.  Multiplying by two is accomplished by a left shift of one bit posi-
tion followed by an adjustment, if necessary.  For example, a left shift of BCD 1001
(910) results in 1 0010 which is 18 in binary, but only 12 in BCD.  Adding six to the
low-order BCD digit results in 1 1000, which is the required value of 1810.

Instead of adding six after the shift, the same result can be achieved by adding
three before the shift since a left shift multiplies any number by two.  BCD digits in the
range 0–4 do not require an adjustment before being shifted left, because the shifted
number will be in the range 0–8, which can be contained in a 4-bit BCD digit.  How-
ever, if the number to be shifted is in the range 5–9, then an adjustment will be
required before the left shift, because the shifted number will be in the range 10–18,
which requires two BCD digits.  Therefore, three is added to the digit prior to the next
left shift of 1-bit position.

The multiplication of 9 x 9 is shown below, which yields a product of 81.  Table
4.7 shows the procedure for converting from binary 0101 00012 (8110) to BCD.  Since
there are 8 bits in the binary number, 8 left-shift operations are required, yielding the
resulting BCD number of 1000 0001BCD.  Concatenated registers A and B are shifted
left one bit position during each sequence.  During the final left shift operation, no
adjustment is performed.

+11 0001 0001
–) +99 +) 0000 0001 10s complement

–88 0  0001 0010

Negative number in
10s complement – 0001 0010

Negative number in
sign magnitude – 1000 1000
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The procedure shown in Table 4.7 will be used for BCD multiplication by per-
forming the multiply operation in the fixed-point number representation, and then
converting the product to BCD notation.  The design will be implemented using
behavioral modeling.  A 16-bit left-shift register — consisting of two 8-bit registers A,
a_reg, and B, b-reg, in concatenation — is used for the shifting sequence.

A shift counter is used to determine the number of shift sequences to be executed.
Since the final shift sequence is a left-shift operation only (no adjustment), the shift
counter is set to a value of the binary length minus one; then a final left shift operation
occurs.  A while loop determines the number of times that the procedural statements
within the loop are executed and is a function of the shift counter value.

The while loop executes a procedural statement or a block of procedural state-
ments as long as a Boolean expression returns a value of true ( 1).  When the proce-
dural statements are executed, the Boolean expression is reevaluated.  The loop is
executed until the expression returns a value of false, in this case a shift counter value

1 0 0 1 (9)
x) 1 0 0 1 (9)

1 0 0 1
0 0 0 0

0 0 0 0
1 0 0 1

0 1 0 1 0 0 0 1 (81)

Table 4.7   Example of Binary-to-Decimal Conversion

A Register
(BCD)

B Register 
(Binary)

15 ... 12 11 ... 8 7 ... 4 3 ... 0
0 0 0 0 0 0 0 0  0 1 0 1  0 0 0 1

Shift left 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0
Shift left 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
Shift left 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
Shift left 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
Add 3 0 0  1 1 

0 0 0 0 1 0 0 0
Shift left 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
Shift left 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
Shift left 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Shift left 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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of zero.  If the evaluation of the expression is false, then the while loop is terminated
and control is passed to the next statement in the module.  If the expression is false be-
fore the loop is initially entered, then the while loop is never executed.

The behavioral module is shown in Figure 4.84, where register A is reset to all
zeroes and register B contains the product of the multiplicand and the multiplier.  The
test bench is shown in Figure 4.85, in which several input vectors are applied to the
multiplicand and the multiplier, including binary and decimal values.  The outputs are
shown in Figure 4.86

Figure 4.84 Behavioral design module for the decimal multiplier.

//behavioral bcd multiplier
module mul_bcd_behav2 (a, b, bcd);

input [3:0] a; //define inputs and outputs
input [3:0] b;
output [7:0] bcd;

//variables are declared as reg in always
reg [7:0] a_reg, b_reg;
reg [15:0] shift_reg;
reg [3:0] shift_ctr;

always @ (a or b)
begin

shift_ctr = 4'b0111; //7 shift sequences
a_reg = 8'b0000_0000; //reset register a
b_reg = a * b; //register b contains product

shift_reg = {a_reg, b_reg}; //regs a, b are concatenated

while (shift_ctr)
begin

shift_reg = shift_reg << 1;
if (shift_reg[11:8] > 4'b0100)

shift_reg[11:8] = shift_reg[11:8] + 4'b0011;

if (shift_reg[15:12] > 4'b0100)
shift_reg[15:12] = shift_reg[15:12] + 4'b0011;

shift_ctr = shift_ctr - 1;
end

shift_reg = shift_reg << 1;
end

assign bcd = shift_reg[15:8];

endmodule
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Figure 4.85 Test bench module for the decimal multiplier.

//test bench for bcd multiplier

module mul_bcd_behav2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a;
reg [3:0] b;
wire [7:0] bcd;

//display variables
initial
$monitor ("a = %b, b = %b, bcd = %b", a, b, bcd); 

//apply input vectors
initial
begin

#0 a = 4'b0110; b = 4'b1001; //6 x 9 = 54

#10 a = 4'b0010; b = 4'b0110; //2 x 6 = 12

#10 a = 4'b0111; b = 4'b0111; //7 x 7 = 49

#10 a = 4'b1001; b = 4'b1000; //9 x 8 = 72

#10 a = 4'b0111; b = 4'b1001; //7 x 9 = 63

#10 a = 4'b0100; b = 4'b0100; //4 x 4 = 16

//---------------------------------------------------------
#10 a = 4'd9; b = 4'd9; //9 x 9 = 81

#10 a = 4'd7; b = 4'd6; //7 x 6 = 42

#10 a = 4'd8; b = 4'd8; //8 x 8 = 64

#10 a = 4'd5; b = 4'd7; //5 x 7 = 35

#10 $stop;

end

//instantiate the module into the test bench
mul_bcd_behav2 inst1 (a, b, bcd);

endmodule
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Figure 4.86 Outputs for the decimal multiplier.

4.10  Decimal Division
Unlike multiplication, division is not commutative; that is, A/B  B/A, except when A
= B, where A and B are the dividend and divisor, respectively.  In general, the operands
are as shown below, where A is the 2n-bit dividend and B is the n-bit divisor.  The quo-
tient is Q and the remainder is R, both of which are n bits.

A = a2n–1 a2n–2 . . . an an–1 . . . a1 a0
B = bn–1 bn–2 . . . b1 b0
Q = qn–1 qn–2 . . . q1 q0
R = rn–1 rn–2 . . . r1 r0

The sign of the quotient is determined by the following equation:

qn–1 = a2n–1  bn–1

The remainder has the same sign as the dividend.  The process of division is one of
shift, subtract, and compare operations.  A simple method to perform binary-coded
decimal (BCD) division is to implement the design using the fixed-point division algo-
rithm and then convert the resulting quotient and remainder to BCD.

A review of the algorithm for fixed-point division is appropriate at this time.  The
dividend is initially shifted left one bit position.  Then the divisor is subtracted from
the dividend.  Subtraction is accomplished by adding the 2s complement of the divi-
sor.  If the high-order bit of the subtract operation is 1, then a 0 is placed in the next
lower-order bit position of the quotient; if the high-order bit is 0, then a 1 is placed in

a = 0110, b = 1001, bcd = 0101_0100
a = 0010, b = 0110, bcd = 0001_0010
a = 0111, b = 0111, bcd = 0100_1001
a = 1001, b = 1000, bcd = 0111_0010
a = 0111, b = 1001, bcd = 0110_0011
a = 0100, b = 0100, bcd = 0001_0110

//----------------------------------------------------------
a = 1001, b = 1001, bcd = 1000_0001
a = 0111, b = 0110, bcd = 0100_0010
a = 1000, b = 1000, bcd = 0110_0100
a = 0101, b = 0111, bcd = 0011_0101



496          Chapter  4     Computer Arithmetic Design Using Verilog HDL

the next lower-order bit position of the quotient.  The concatenated partial remainder
and dividend are then shifted left one bit position.  Fixed-point binary restoring divi-
sion requires one subtraction for each quotient bit.  Figure 4.87 illustrates the proce-
dure using a dividend of 0011_1101 (6110) and a divisor of  0111 (710) to yield a
quotient of 810 and a remainder of 510.

Figure 4.87 Example of fixed-point restoring division.

Divisor B (+7) Dividend A (+61)
0 1 1 1 0 0 1 1 1 1 0 1

Shift left 1 0 1 1 1 1 0 1 —
Subtract B +) 1 0 0 1

0 0 0 0

 
No Restore 0 0 0 0 1 0 1 1

Shift left 1 0 0 0 1 0 1 1 —
Subtract B +) 1 0 0 1

1 0 1 0

Restore (Add B) +) 0 1 1 1
0 0 0 1 0 1 1 0

Shift left 1 0 0 1 0 1 1 0 —
Subtract B +) 1 0 0 1

1 0 1 1

Restore (Add B) +) 0 1 1 1
0 0 1 0 1 1 0 0

Shift left 1 0 1 0 1 1 0 0 —
Subtract B +) 1 0 0 1

1 1 1 0

Restore (Add B) +) 0 1 1 1
0 1 0 1 1 0 0 0

Remainder Quotient



4.10     Decimal Division     497

A second example is shown in Figure 4.88 which illustrates the procedure using a
dividend of 0011_0100 (5210) and a divisor of  0101 (510) to yield a quotient of 1010
and a remainder of 210.  Since there are four bits in the divisor, there are four cycles.
Like the previous example, the low-order quotient bit is left blank after each left shift
operation.  Then the divisor is subtracted from the high-order half of the dividend.
This sequence repeats for all four bits of the divisor.

Figure 4.88 Example of fixed-point division.

Divisor B (+5) Dividend A (+52)
0 1 0 1 0 0 1 1 0 1 0 0

Shift left 1 0 1 1 0 1 0 0 —
Subtract B +) 1 0 1 1

0 0 0 1

 
No Restore 0 0 0 1 1 0 0 1

Shift left 1 0 0 1 1 0 0 1 —
Subtract B +) 1 0 1 1

1 1 1 0

Restore (Add B) +) 0 1 0 1
0 0 1 1 0 0 1 0

Shift left 1 0 1 1 0 0 1 0 —
Subtract B +) 1 0 1 1

0 0 0 1

No Restore 0 0 0 1 0 1 0 1

Shift left 1 0 0 1 0 1 0 1 —
Subtract B +) 1 0 1 1

1 1 0 1

Restore (Add B) +) 0 1 0 1
0 0 1 0 1 0 1 0

Remainder Quotient
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The behavioral and dataflow module is shown in Figure 4.89.  The test bench
module is shown in Figure 4.90 and the outputs are shown in Figure 4.91.  The divi-
dend is an 8-bit vector, a[7:0]; the divisor is a 4-bit vector, b[3:0]; and the result is an
8-bit quotient/remainder vector, rslt[7:0], with a carry-out of the high-order quotient
bit, cout_quot.

The operation begins on the positive assertion of a start pulse and follows the
algorithm outlined in the previous discussion. The rslt[7:0] register is set to the value
of the dividend, a[7:0], and a sequence counter, count, is set to a value of four (0100),
which is the size of the divisor.  If the dividend and divisor are both nonzero, then the
process continues until the count-down counter, count, reaches a value of zero, con-
trolled by the while loop.

Figure 4.89 Design module for the decimal divisor.

//mixed-design for bcd restoring division

module div_bcd2 (a, b, start, rslt, cout_quot);

//define inputs and outputs
input [7:0] a;
input [3:0] b;
input start;
output [7:0] rslt;
output cout_quot;

//variables are declared as reg in always
wire [3:0] b_bar;

//define internal registers
reg [3:0] b_neg;
reg [7:0] rslt;
reg [3:0] count;
reg [3:0] quot;
reg cout_quot;

assign b_bar = ~b;
always @ (b_bar)

b_neg = b_bar + 1;

always @ (posedge start)
begin

rslt = a;
count = 4'b0100;

//continued on next page
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Figure 4.89       (Continued)

Figure 4.90 Test bench module for decimal division.

if ((a!=0) && (b!=0))
while (count)

begin
rslt = rslt << 1;
rslt = {(rslt[7:4] + b_neg), rslt[3:0]};

if (rslt[7] == 1) //restore
begin

rslt = {(rslt[7:4] + b), rslt[3:1],
1'b0};

count = count - 1;
end

else //no restore
begin

rslt = {rslt[7:1], 1'b1};
count = count - 1;

end
end

if (rslt[3:0] > 4'b1001) //convert to bcd
{cout_quot, rslt[3:0]} = rslt[3:0] + 4'b0110;

else
cout_quot = 1'b0;

end

endmodule

//test bench for bcd restoring division

module div_bcd2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a;
reg [3:0] b;
reg start;
wire [7:0] rslt;
wire cout_quot;

//continued on next page
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Figure 4.90       (Continued)

//display variables
initial
$monitor ("a = %b, b = %b, quot_tens = %b,

quot_units = %b, rem %b",
a, b, {{3{1'b0}}, cout_quot},

rslt[3:0], rslt[7:4]);

//apply input vectors
initial
begin

#0 start = 1'b0;

//60 / 7; quot = 8, rem = 4
a = 8'b0011_1100; b = 4'b0111;

#10 start = 1'b1;
#10 start = 1'b0;

//13 / 5; quot = 2, rem = 3
#10 a = 8'b0000_1101; b = 4'b0101;
#10 start = 1'b1;
#10 start = 1'b0;

//60 / 7; quot = 8, rem = 4
#10 a = 8'b0011_1100; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

//82 / 6; quot = 13, rem = 4
#10 a = 8'b0101_0010; b = 4'b0110;
#10 start = 1'b1;
#10 start = 1'b0;

//56 / 7; quot = 8, rem = 0
#10 a = 8'b0011_1000; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

//100 / 7; quot = 14, rem = 2
#10 a = 8'b0110_0100; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

//110 / 7; quot = 15, rem = 5
#10 a = 8'b0110_1110; b = 4'b0111;
#10 start = 1'b1;
#10 start = 1'b0;

//continued on next page
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Figure 4.90       (Continued)

Figure 4.91 Outputs for the decimal divisor.

//99 / 9; quot = 11, rem = 0
#10 a = 8'b0110_0011; b = 4'b1001;
#10 start = 1'b1;
#10 start = 1'b0;

//52 / 5; quot = 10, rem = 2
#10 a = 8'b0011_0100; b = 4'b0101;
#10 start = 1'b1;
#10 start = 1'b0;

//88 / 9; quot = 9, rem = 7
#10 a = 8'b0101_1000; b = 4'b1001;
#10 start = 1'b1;
#10 start = 1'b0;

//130 / 9; quot = 14, rem = 4
#10 a = 8'b1000_0010; b = 4'b1001;
#10 start = 1'b1;
#10 start = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
div_bcd2 inst1 (a, b, start, rslt, cout_quot);

endmodule

//start = 0
a = 00111100, b = 0111, quot_tens = 000x, quot_units = xxxx,

rem xxxx
//start = 1 ------------------------------------------------
a = 00111100, b = 0111, quot_tens = 0000, quot_units = 1000,

rem 0100
//start = 0
a = 00001101, b = 0101, quot_tens = 0000, quot_units = 1000,

rem 0100
//start = 1 ------------------------------------------------
a = 00001101, b = 0101, quot_tens = 0000, quot_units = 0010,

rem 0011
//start = 0
a = 0011110, b = 0111, quot_tens = 0000, quot_units = 0010,

rem 0011 //continued on next page
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Figure 4.91       (Continued)

//start = 1
//start = 0
//continues in the same sequence

a = 00111100, b = 0111, quot_tens = 0000, quot_units = 1000,
rem 0100

a = 01010010, b = 0110, quot_tens = 0000, quot_units = 1000,
rem 0100

a = 01010010, b = 0110, quot_tens = 0001, quot_units = 0011,
rem 0100

a = 00111000, b = 0111, quot_tens = 0001, quot_units = 0011,
rem 0100

a = 00111000, b = 0111, quot_tens = 0000, quot_units = 1000,
rem 0000

a = 01100100, b = 0111, quot_tens = 0000, quot_units = 1000,
rem 0000

a = 01100100, b = 0111, quot_tens = 0001, quot_units = 0100,
rem 0010

a = 01101110, b = 0111, quot_tens = 0001, quot_units = 0100,
rem 0010

a = 01101110, b = 0111, quot_tens = 0001, quot_units = 0101,
rem 0101

a = 01100011, b = 1001, quot_tens = 0001, quot_units = 0101,
rem 0101

a = 01100011, b = 1001, quot_tens = 0001, quot_units = 0001,
rem 0000

a = 00110100, b = 0101, quot_tens = 0001, quot_units = 0001,
rem 0000

a = 00110100, b = 0101, quot_tens = 0001, quot_units = 0000,
rem 0010

a = 01011000, b = 1001, quot_tens = 0001, quot_units = 0000,
rem 0010

a = 01011000, b = 1001, quot_tens = 0000, quot_units = 1001,
rem 0111

a = 10000010, b = 1001, quot_tens = 0000, quot_units = 1001,
rem 0111

a = 10000010, b = 1001, quot_tens = 0001, quot_units = 0100,
rem 0100
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4.11 Floating-Point Addition
Fixed-point notation assumes that the radix point is in a fixed location within the num-
ber, either at the right end of the number for integers or at the left end of the number for
fractions.  A floating-point number consists of three parts: a fraction f, an exponent e,
and a sign bit associated with the number.  The floating-point number A is obtained by
multiplying the fraction f by a radix r that is raised to the power of e, as shown below,

A = f  re

where the fraction and exponent are signed numbers in 2s complement notation.  The
fraction and exponent are also referred to as the mantissa (or significand) and charac-
teristic, respectively.

By adjusting the magnitude of the exponent e, the radix point can be made to float
around the fraction, thus, the notation A = f  re is referred to as floating-point nota-
tion.  Consider an example of a floating-point number in radix 10, as shown below.

A = 0.00025768  10+4

The number A can also be written as A = 2.5768  100 or as A = 25.768  10–5.
When the fraction is shifted k positions to the left, the exponent is decreased by k ;
when the fraction is shifted k positions to the right, the exponent is increased by k.  The
standard for representing floating-point numbers in a 32-bit single-precision format is
shown in Figure 4.92.  Double-precision floating-point numbers are represented in a
64-bit format: a 52-bit fraction, an 11-bit exponent, and a sign bit.

Figure 4.92 32-bit floating-point single-precision format.

Fractions in the IEEE format shown in Figure 4.92 are normalized; that is, the left-
most significant bit is a 1.  Figure 4.93 shows unnormalized and normalized numbers
in the 32-bit format.  Since there will always be a 1 to the immediate right of the radix
point, sometimes the 1 bit is not explicitly shown — it is an implied 1.

 31                         23   22                                                                                    0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)
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Figure 4.93 Unnormalized and normalized floating-point numbers.

As stated previously, the exponents are signed numbers in 2s complement.  How-
ever, when adding or subtracting floating-point numbers, the exponents are compared
and made equal, which results in a right shift of the fraction with the smaller exponent.
A  simple comparator can be used for the comparison if the exponents are unsigned.

As the exponents are being formed, a bias constant is added to the exponents such
that all exponents are positive internally.  Since the exponents are eight bits for the sin-
gle-precision format, the bias constant is +127.  Therefore, the biased exponent has a
range of 

0  ebiased  255

For example, if the exponents are represented by n bits, then the bias is 2n – 1 – 1.
For n = 4, the most positive number is 0111 (+7).  Therefore, all biased exponents are
of the form shown in Equation 4.13.  When adding two fractions, the exponents must
be made equal.  An example is shown below using radix 10 numbers.  If the exponents
are not equal, the result will be incorrect.

S Exponent Fraction
Unnormalized 0 0 0 0 0 0 1 1 1 0 0 1 1 1 x ... x

+ .0011x  x  27

S Exponent Fraction
Normalized 0 0 0 0 0 0 1 0 0 1 1 x ... x 0 0 0

+ 1.11x  x000  24

ebiased = eunbiased + 2n – 1 – 1 (4.13)

.154  102 = 15.4 0.154  102

+) .430  101 = 4.3 0.043  102

.573 19.7   0.197  102

Incorrect result Correct result
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For a floating-point addition operation, if the signs of the operands are the same
(Asign  Bsign = 0), then this is referred to as true addition and the fractions are added.
True addition corresponds to one of the following conditions:

Examples will now be presented that illustrate floating-point addition for both
positive and negative numbers and for conditions requiring no postnormalization and
postnormalization.  Postnormalization occurs when the resulting fraction overflows,
requiring a right shift of one bit position with a corresponding increment of the expo-
nent.  The bit causing the overflow is shifted right into the high-order fraction bit posi-
tion.

The examples for conditions requiring no postnormalization are shown in Figures
4.94 and 4.95.  The examples for conditions requiring postnormalization are shown in
Figures 4.96 and 4.97.

Figure 4.94 shows an example of floating-point addition when adding A = +14 and
B = +39 to yield a sum of +53, in which the 8-bit fractions are not properly aligned ini-
tially and there is no postnormalization required.

Figure 4.94 Example of floating-point addition in which the fractions are not
properly aligned initially and there is no postnormalization.

Figure 4.95 shows an example of floating-point addition when adding A = –18.50
and B = –37.75 to yield a sum of –56.25, in which the 8-bit fractions are not properly
aligned initially and there is no postnormalization required.

(+A) + (+B)
(–A) + (–B)
(+A) – (–B)
(–A) – (+B)

Before alignment
A = 0 . 1 1 1 0 0 0 0 0  24 +14

B = 0 . 1 0 0 1 1 1 0 0  26 +39

After alignment
A = 0 . 0 0 1 1 1 0 0 0  26 +14

B = 0 . 1 0 0 1 1 1 0 0  26 +39

A + B = 0 . 1 1 0 1 0 1 0 0  26 +53
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Figure 4.95 Example of floating-point addition in which the fractions are not
properly aligned initially and there is no postnormalization.

Figure 4.96 shows an example of floating-point addition when adding A = +14 and
B = +23 to yield a sum of +37, in which the 8-bit fractions are not properly aligned ini-
tially and postnormalization is required.

Figure 4.96 Example of floating-point addition in which the fractions are not
properly aligned initially and postnormalization is required.

Figure 4.97 shows an example of floating-point addition when adding A = –12 and
B = –29 to yield a sum of –41, in which the 8-bit fractions are not properly aligned ini-
tially and postnormalization is required.

Before alignment
A = 1 . 1 0 0 1 0 1 0 0  25 –18.50

B = 1 . 1 0 0 1 0 1 1 1  26 –37.75

After alignment
A = 1 . 0 1 0 0 1 0 1 0  26 –18.50

B = 1 . 1 0 0 1 0 1 1 1  26 –37.75

A + B = 1 . 1 1 1 0 0 0 0 1  26 –56.25

Before alignment
A = 0 . 1 1 1 0 0 0 0 0  24 +14

+)  B = 0 . 1 0 1 1 1 0 0 0  25 +23

After alignment
A = 0 . 0 1 1 1 0 0 0 0  25 +14

+)  B = 0 . 1 0 1 1 1 0 0 0  25 +23

     1 . 0 0 1 0 1 0 0 0  25 +37

0 . 1 0 0 1 0 1 0 0  26    Normalize  +37
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Figure 4.97 Example of floating-point addition in which the fractions are not
properly aligned initially and postnormalization is required.

The design of a floating-point adder using Verilog HDL will be implemented
using behavioral modeling for the single-precision format of 32 bits.  Figure 4.98 illus-
trates the behavioral design module.  There are two inputs: the augend flp_a[31:0] and
the addend flp_b[31:0].  There are three outputs: the sign of the floating-point number,
the exponent, and the sum.  The augend consists of a sign bit, sign_a; an 8-bit expo-
nent, exp_a[7:0]; and a 23-bit fraction, fract_a[22:0].  The addend consists of the sign
bit, sign_b; the 8-bit exponent, exp_b[7:0]; and the 23-bit fraction, fract_b[22:0].  

The exponents are biased by adding the bias constant of +127 (0111 1111) prior to
the addition operation.  Then the fractions are aligned by comparing the exponents.  A
counter, ctr_align[7:0], is set to the difference between the two exponents.  The frac-
tion with the smaller exponent is shifted right one bit position, the exponent is incre-
mented by one, and the alignment counter is decremented by one.  This process repeats
until the alignment counter decrements to a value of zero at which point the fractions
are aligned and the addition operation can then be performed.  If the exponents are
equal initially, then there is no alignment and the addition operation is performed
immediately.

If there is a fraction overflow, then the corresponding result is obtained by the fol-
lowing Verilog statement: {cout, sum} = fract_a + fract_b;, which allows for a carry-
out to be concatenated with the sum.  In that case, the carry-out and sum are shifted
right one bit position in concatenation to postnormalize the result as follows: {cout,
sum} = {cout, sum} >> 1; and the sign of the result is set equal to the sign of the
augend.

The test bench module is shown in Figure 4.99 illustrating four different augends
and addends.  The outputs are shown in Figure 4.100.

Before alignment
A = 1 . 1 1 0 0 0 0 0 0  24 –12

+)  B = 1 . 1 1 1 0 1 0 0 0  25 –29

After alignment
A = 1 . 0 1 1 0 0 0 0 0  25 –12

+)  B = 1 . 1 1 1 0 1 0 0 0  25 –29

     1 . 0 1 0 0 1 0 0 0  25 –41

1 . 1 0 1 0 0 1 0 0  26    Normalize  –41
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Figure 4.98 Behavioral design module for the floating-point adder.

//behavioral floating-point addition
module add_flp5 (flp_a, flp_b, sign, exponent, sum);

//define inputs and outputs
input [31:0] flp_a, flp_b;
output [22:0] sum;
output sign;
output [7:0] exponent;

//variables used in always block
//are declared as registers
reg sign_a, sign_b;
reg [7:0] exp_a, exp_b;
reg [7:0] exp_a_bias, exp_b_bias;
reg [22:0] fract_a, fract_b;
reg [7:0] ctr_align;
reg [22:0] sum;
reg sign;
reg [7:0] exponent;
reg cout;

//define operand signs, exponents, and fractions
always @ (flp_a or flp_b)
begin

sign_a = flp_a [31];
sign_b = flp_b [31];

exp_a = flp_a [30:23];
exp_b = flp_b [30:23];

fract_a = flp_a [22:0];
fract_b = flp_b [22:0];

//shift implied 1 into high-order fraction bit position
fract_a = fract_a >> 1;
fract_a[22] = 1'b1;

fract_b = fract_b >> 1;
fract_b[22] = 1'b1;

//bias exponents
exp_a_bias = exp_a + 8'b0111_1111;
exp_b_bias = exp_b + 8'b0111_1111;

//continued on next page



4.11     Floating-Point Addition     509

Figure 4.98       (Continued)

Figure 4.99 Test bench module for the floating-point adder.

//align fractions
if (exp_a_bias < exp_b_bias)

ctr_align = exp_b_bias - exp_a_bias;

while (ctr_align)
begin

fract_a = fract_a >> 1;
exp_a_bias = exp_a_bias + 1;
ctr_align = ctr_align - 1;

end

if (exp_b_bias < exp_a_bias)
ctr_align = exp_a_bias - exp_b_bias;

while (ctr_align)
begin

fract_b = fract_b >> 1;
exp_b_bias = exp_b_bias + 1;
ctr_align = ctr_align - 1;

end

//obtain result
{cout, sum} = fract_a + fract_b;

//normalize result
if (cout == 1)

{cout, sum} = {cout, sum} >> 1;

sign = sign_a;
exponent = exp_b_bias;

end

endmodule

//test bench for floating-point addition
module add_flp5_tb;

reg [31:0] flp_a, flp_b;   //inputs are reg for test bench
wire sign; //outputs are wire for test bench
wire [7:0] exponent;
wire [22:0] sum; //continued on next page
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Figure 4.99       (Continued)

//display variables
initial
$monitor ("sign = %b, exp_biased = %b, sum = %b",

sign, exponent, sum);

//apply input vectors
initial
begin

//+12 + +35 = +47
//          s ----e---- --------------f-------------

#0 flp_a = 32'b0_0000_0100_1000_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0110_0001_1000_0000_0000_0000_000;

//+26.5 + +4.375 = +30.875
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0101_1010_1000_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_0001_1000_0000_0000_0000_000;

//+11 + +34 = +45
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0100_0110_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0110_0001_0000_0000_0000_0000_000;

//+23.75 + +87.125 = +110.875
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0101_0111_1100_0000_0000_0000_000;
flp_b = 32'b0_0000_0111_0101_1100_1000_0000_0000_000;

#10 $stop;

end

//instantiate the module into the test bench
add_flp5 inst1 (flp_a, flp_b, sign, exponent, sum);

endmodule
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Figure 4.100 Outputs for the floating-point adder.

The biased exponent from output number one of Figure 4.100 is reproduced as
shown in Figure 4.101.  The unbiased exponent is obtained as follows: Subtract +127
from the biased exponent — which is the larger of the two original exponents — by
adding the 2s complement of +127 (–127) to obtain the unbiased exponent.

Figure 4.101 Obtain an unbiased exponent from output number one.

In a similar manner, the unbiased exponent from output number two of Figure
4.100 is obtained, as shown in Figure 4.102

Figure 4.102 Obtain an unbiased exponent from output number three.

sign = 0, exp_biased = 10000101,
sum = 1011_1100_0000_0000_0000_000

sign = 0, exp_biased = 10000100,
sum = 1111_0111_0000_0000_0000_000

sign = 0, exp_biased = 10000101,
sum = 10110100000000000000000

sign = 0, exp_biased = 10000110,
sum = 1101_1101_1100_0000_0000_000

1 0 0 0 0 1 0 1 Biased
–) 0 1 1 1 1 1 1 1

1 0 0 0 0 1 0 1
+) 1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0 Unbiased

1 0 0 0 0 1 0 0 Biased
–) 0 1 1 1 1 1 1 1

1 0 0 0 0 1 0 0
+) 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 Unbiased
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Output number two has a sum of +30.875, which results in the following binary
number:

sign = 0, exp_biased = 10000100,
sum = 1111_0111_0000_0000_0000_000

Since the unbiased exponent is five, the floating-point fraction has the following
value: 11110.1110_0000_0000_0000_00, which has a decimal value of 

24 + 23 + 22 + 21 + 20 . 2–1 + 2–2 + 2–3

 1     1     1      1      0  . 0.5 + 0.25 + 0.125 = 30.875

4.12  Floating-Point Subtraction
Floating-point subtraction is similar to floating-point addition because subtraction is
accomplished by adding the 2s complement of the subtrahend.  Therefore, fraction
overflow can also occur in subtraction.  If the signs of the operands are the same (Asign
 Bsign = 0) and the operation is subtraction, then this is referred to as true subtraction
and the fractions are subtracted.  If the signs of the operands are different (Asign 
Bsign = 1) and the operation is addition, then this is also specified as true subtraction.
True subtraction corresponds to one of the following conditions:

The minuend and subtrahend are both normalized fractions properly aligned with
biased exponents.  Subtraction can yield a result that is either true addition or true sub-
traction.  True addition produces a result that is the sum of the two operands disre-
garding the signs; true subtraction produces a result that is the difference of the two
operands disregarding the signs.  There are four cases that yield true addition, as
shown below and eight cases that yield true subtraction, as shown below.

True addition

(–Small number) – (+Large number)
(–Large number) – (+Small number)
(+Large number) – (–Small number)
(+Small number) – (–Large number)

(+A) – (+B)
(–A) – (–B)
(+A) + (–B)
(–A) + (+B)
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True subtraction

(+Large number) – (+Small number)
(+Small number) – (+Large number)
(–Small number) – (–Large number)
(–Large number) – (–Small number)

(+Small number) + (–Large number)
(–Small number) + (+Large number)
(+Large number) + (–Small number)
(–Large number) + (+Small number)

Shown below are six examples that illustrate some of the variations of true addi-
tion and true subtraction.  For true addition these include the following:

(–Small number) – (+Large number)
(+Large number) – (–Small number)

For true subtraction these include the following:

(+Small number) – (+Large number),
(–Large number) – (–Small number),
(+Small number) + (–Large number)
(+Large number) + (–Small number)

Example 4.8 True addition will be performed by the following subtract operation:
(–Small number) – (+Large number) for the decimal numbers (–24) – (+30) to yield a
result of –54.

Before alignment
A = 1 . 1 1 0 0 0 0 0 0  25 –24

B = 0 . 1 1 1 1 0 0 0 0  25 +30

After alignment (already aligned)
A = 1 . 1 1 0 0 0 0 0 0  25 –24

+)  B = 1 . 1 1 1 1 0 0 0 0  25 –30

                          1 . 1 0 1 1 0 0 0 0  25

Postnormalize 1 . 1 1 0 1 1 0 0 0  26 –54
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Example 4.9 True addition will be performed by the following subtract operation:
(+Large number) – (–Small number) for the decimal numbers (+38) – (–15) to yield a
result of +53.

Example 4.10 True subtraction will be performed by the following subtract opera-
tion:  (+Small number) – (+Large number) for the decimal numbers (+15) – (+38) to
yield a result of –23.

Before alignment
A = 0 . 1 0 0 1 1 0 0 0  26 +38

B = 1 . 1 1 1 1 0 0 0 0  24 –15

After alignment  A = 0 . 1 0 0 1 1 0 0 0  26 +38

B = 1 . 0 0 1 1 1 1 0 0  26 –15

Add fractions
A = 0 . 1 0 0 1 1 0 0 0  26 +38

+)  B = 1 . 0 0 1 1 1 1 0 0  26 –15

                          0 . 1 1 0 1 0 1 0 0 26 +53

                 
No postnormalize 0 . 1 1 0 1 0 1 0 0 26 +53

Before alignment
A = 0 . 1 1 1 1 0 0 0 0  24 +15

B = 0 . 1 0 0 1 1 0 0 0  26 +38

After alignment
A = 0 . 0 0 1 1 1 1 0 0  26

+) B ' + 1 = 0 . 0 1 1 0 1 0 0 0  26

Add fractions      A = 0 . 0 0 1 1 1 1 0 0  26 +15

+)  B = 0 . 0 1 1 0 1 0 0 0  26 +38

                          0 . 1 0 1 0 0 1 0 0 26

                 
2s complement 1 . 0 1 0 1 1 1 0 0 26

Postnormalize 1 . 1 0 1 1 1 0 0 0 25 –23
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Example 4.11 True subtraction will be performed by the following subtract opera-
tion:  (–Large number) – (–Small number) for the decimal numbers (–52) – (–39) to
yield a result of –13.

Example 4.12 True subtraction will be performed by the following subtract opera-
tion:  (+Small number) + (–Large number) for the decimal numbers (+30) + (–38) to
yield a result of –8.

Before alignment
A = 1 . 1 1 0 1 0 0 0 0  26 –52

B = 1 . 1 0 0 1 1 1 0 0  26 –39

After alignment (already aligned)
A = 1 . 1 1 0 1 0 0 0 0  26

+)  B ' + 1 = 1 . 0 1 1 0 0 1 0 0  26

                          1 . 0 0 1 1 0 1 0 0  26

1 . 0 0 1 1 0 1 0 0  26 –13

Postnormalize 1 . 1 1 0 1 0 0 0 0  24 –13

Before alignment
A = 0 . 1 1 1 1 0 0 0 0  25 +30

B = 1 . 1 0 0 1 1 0 0 0  26 –38

After alignment
A = 0 . 0 1 1 1 1 0 0 0  26 +30

B = 1 . 1 0 0 1 1 0 0 0  26 –38

Add fractions
A = 0 . 0 1 1 1 1 0 0 0  26

+)  B ' + 1 = 1 . 0 1 1 0 1 0 0 0  26

                          0 . 1 1 1 0 0 0 0 0 26

                 
2s complement 1 . 0 0 1 0 0 0 0 0 26 –8

Postnormalize 1 . 1 0 0 0 0 0 0 0 24 –8
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Example 4.13 True subtraction will be performed by the following subtract opera-
tion: (–Small number) + (+Large number) for the decimal numbers (–30) + (+52) to
yield a result of +22.

4.12.1  True Addition and True Subtraction

Using the techniques described in Example 4.8 through Example 4.13, a behavioral
design module will be designed that illustrates true addition and different methods of
true subtraction.  The rules shown below will help to explain the different techniques.

True addition

For true addition, the following rules apply, whether
 fract_a | < | fract_b | or | fract_a | > | fract_b |:

(1) Bias the exponents.
(2) Align the fractions
(4) Perform the addition.
(5) The sign of the result is the sign of the minuend.
(6) If carry-out =1, then {cout, rslt} >> 1.
(7) Increment the exponent by 1.

True subtraction

For true subtraction, the following rules apply, depending on whether

 fract_a | < | fract_b | or | fract_a | > | fract_b |

Before alignment
A = 1 . 0 1 1 1 1 0 0 0  26 –30

B = 0 . 1 1 0 1 0 0 0 0  26 +52

After alignment (already aligned)
A = 1 . 0 1 1 1 1 0 0 0  26

+)  B ' + 1 = 0 . 0 0 1 1 0 0 0 0  26

                         0 . 1 0 1 0 1 0 0 0  26

                 
2s complement 0 . 0 1 0 1 1 0 0 0 26 +22

Postnormalize 0 . 1 0 1 1 0 0 0 0 25 +22
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and also on the state of a mode control input, and on the signs of the operands.  If mode
= 0, then the operation is addition; if mode = 1, then the operation is subtraction.

• Bias the exponents.
• Align the fractions

• If | fract_a | <  | fract_b | and mode = 0 and sign of fract_a  sign of fract_b.
(1) 2s complement fract_b.
(2) Perform the addition.
(3) Sign of the result = Asign' .

• If | fract_a | <  | fract_b | and mode = 1 and sign of fract_a = sign of fract_b.
(1) 2s complement fract_b.
(2) Perform the addition.
(3) Sign of the result = Asign' .

• If | fract_a | >  | fract_b | and mode = 0 and sign of fract_a  sign of fract_b.
(1) 2s complement fract_b.
(2) Perform the addition.
(3) Sign of the result = Asign.
(4) Postnormalize, if necessary (shift left 1 and decrement the exponent).

• If | fract_a | >  | fract_b | and mode = 1 and sign of fract_a = sign of fract_b.
(1) 2s complement fract_b.
(2) Perform the addition.
(3) Sign of the result = Asign.
(4) Postnormalize, if necessary (shift left 1 and decrement the exponent).

Example 4.14 Figure 4.103 illustrates the behavioral design module that illustrates a
true addition segment, a true subtraction segment in which | fract_a | <  | fract_b | and
mode = 1, a true subtraction segment in which | fract_a | <  | fract_b | and mode = 0, a
true subtraction segment in which | fract_a | >  | fract_b | and mode = 0, and a true sub-
traction segment in which | fract_a | >  | fract_b | and mode = 1.

The test bench module is shown in Figure 4.104, which applies many floating-
point input vectors to the test bench module.  The outputs are shown in Figure 4.105
illustrating both the biased exponents, the unbiased exponents, and the result of the
operation.

Figure 4.103 Behavioral design module for true addition and true subtraction.

//behavioral floating-point addition and subtraction
module sub_flp5 (flp_a, flp_b, mode, sign,

exponent, exp_unbiased, rslt);

input [31:0] flp_a, flp_b; //define inputs and outputs
input mode; //continued on next page
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Figure 4.103       (Continued)

output sign;
output [7:0] exponent, exp_unbiased;
output [22:0] rslt;

//variables used in an always block
//are declared as registers
reg sign_a, sign_b;
reg [7:0] exp_a, exp_b;
reg [7:0] exp_a_bias, exp_b_bias;
reg [22:0] fract_a, fract_b;
reg [7:0] ctr_align;
reg [22:0] rslt;
reg sign;
reg [7:0] exponent, exp_unbiased;
reg cout;

//
============================================================
//define sign, exponent, and fraction
always @ (flp_a or flp_b)
begin

sign_a = flp_a[31];
sign_b = flp_b[31];

exp_a = flp_a[30:23];
exp_b = flp_b[30:23];

fract_a = flp_a[22:0];
fract_b = flp_b[22:0];

//bias exponents
exp_a_bias = exp_a + 8'b0111_1111;
exp_b_bias = exp_b + 8'b0111_1111;

//align fractions
if (exp_a_bias < exp_b_bias)

ctr_align = exp_b_bias - exp_a_bias;

while (ctr_align)
begin

fract_a = fract_a >> 1;
exp_a_bias = exp_a_bias + 1;
ctr_align = ctr_align - 1;

end

//continued on next page
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Figure 4.103       (Continued)

if (exp_b_bias < exp_a_bias)
ctr_align = exp_a_bias - exp_b_bias;

while (ctr_align)
begin

fract_b = fract_b >> 1;
exp_b_bias = exp_b_bias + 1;
ctr_align = ctr_align - 1;

end

//==========================================================
//true addition

if ((mode == 1) & (sign_a != sign_b))
begin

{cout, rslt} = fract_a + fract_b;
sign = sign_a;

//postnormalize
if (cout == 1)

begin
{cout, rslt} = {cout, rslt} >> 1;
exp_b_bias = exp_b_bias + 1;

end
end

//==========================================================
//true subtraction: fract_a < fract_b, mode = 1,

sign_a = sign_b
if ((fract_a < fract_b) & (mode == 1) & (sign_a == sign_b))

begin
fract_b = ~fract_b + 1;
{cout, rslt} = fract_a + fract_b;
sign = ~sign_a;

if (rslt[22] == 1)
rslt = ~rslt+ 1;

//postnormalize
while (rslt[22] == 0)

begin
rslt = rslt << 1;
exp_b_bias = exp_b_bias - 1;

end
end

//continued on next page
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Figure 4.103       (Continued)

//==========================================================
//true subtraction: fract_a < fract_b, mode = 0,

sign_a != sign_b
if ((fract_a < fract_b) & (mode == 0) & (sign_a != sign_b))

begin
fract_b = ~fract_b + 1;
{cout, rslt} = fract_a + fract_b;
sign = ~sign_a;

if (rslt[22] == 1)
rslt = ~rslt + 1;

//postnormalize
while (rslt[22] == 0)

begin
rslt = rslt << 1;
exp_b_bias = exp_b_bias - 1;

end
end

//==========================================================
//true subtraction: fract_a > fract_b, mode = 0,

sign_a != sign_b
if ((fract_a > fract_b) & (mode == 0) & (sign_a != sign_b))

begin
fract_b = ~fract_b + 1;
{cout, rslt} = fract_a + fract_b;
sign = sign_a;

//postnormalize
while (rslt[22] == 0)

begin
rslt = rslt << 1;
exp_b_bias = exp_b_bias - 1;

end
end

//==========================================================
//true subtraction: fract_a > fract_b, mode = 1,

sign_a = sign_b
if ((fract_a > fract_b) & (mode == 1) & (sign_a == sign_b))

begin
fract_b = ~fract_b + 1;
{cout, rslt} = fract_a + fract_b;
sign = sign_a;

//continued on next page
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Figure 4.103       (Continued)

Figure 4.104 Test bench module for true addition and true subtraction.

//postnormalize
while (rslt[22] == 0)

begin
rslt = rslt << 1;
exp_b_bias = exp_b_bias - 1;

end
end

//==========================================================
exponent = exp_b_bias;
exp_unbiased = exp_b_bias - 8'b0111_1111;
end

endmodule

//test bench for floating-point subtraction
module sub_flp5_tb;

//inputs are reg in test bench
//outputs are wire in test bench
reg [31:0] flp_a, flp_b;
reg mode;
wire sign;
wire [7:0] exponent, exp_unbiased;
wire [22:0] rslt;

//display variables
initial
$monitor ("sign = %b, exp_biased = %b, exp_unbiased = %b,

rslt = %b", sign, exponent, exp_unbiased, rslt);

//apply input vectors
initial
begin
//==========================================================
//true addition: mode = 1, sign_a != sign_b

//(-19) - (+25) = -44
//          s ----e---- --------------f-------------

#0 flp_a = 32'b1_0000_0101_1001_1000_0000_0000_0000_000;
flp_b = 32'b0_0000_0101_1100_1000_0000_0000_0000_000;
mode = 1'b1; //continued on next page
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Figure 4.104       (Continued)

//(-22) - (+28) = -50
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0101_1011_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0101_1110_0000_0000_0000_0000_000;

//(-16) - (+23) = -39
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0101_1000_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0101_1011_1000_0000_0000_0000_000;

//(+34) - (-11) = +45
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0110_1000_1000_0000_0000_0000_000;
flp_b = 32'b1_0000_0100_1011_0000_0000_0000_0000_000;

//(-127) - (+76) = -203
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0111_1111_1110_0000_0000_0000_000;
flp_b = 32'b0_0000_0111_1001_1000_0000_0000_0000_000;

//==========================================================
//true subtraction: fract_a < fract_b, mode = 1,

sign_a = sign_b
//(+11) - (+34) = -23
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0100_1011_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0110_1000_1000_0000_0000_0000_000;

//(-23) - (-36) = +13
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0101_1011_1000_0000_0000_0000_000;
flp_b = 32'b1_0000_0110_1001_0000_0000_0000_0000_000;

//(-7) - (-38) = +31
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0011_1110_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0110_1001_1000_0000_0000_0000_000;

//(+47) - (+72) = -25
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0110_1011_1100_0000_0000_0000_000;
flp_b = 32'b0_0000_0111_1001_0000_0000_0000_0000_000;

//==========================================================

//continued on next page
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Figure 4.104       (Continued)

//true subtraction: fract_a < fract_b, mode = 0,
sign_a != sign_b

//(-36) + (+30) = -6
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0110_1001_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0110_0111_1000_0000_0000_0000_000;
mode = 1'b0;

//(+22) + (-16) = +6
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0101_1011_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0101_1000_0000_0000_0000_0000_000;

//(+28) + (-35) = -7
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0101_1110_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0110_1000_1100_0000_0000_0000_000;

//(+36) + (-140) = -104
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0110_1001_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_1000_1000_1100_0000_0000_0000_000;

//==========================================================
//true subtraction: fract_a > fract_b, mode = 0,

sign_a != sign_b
//(+45) + (-13) = +32
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0110_1011_0100_0000_0000_0000_000;
flp_b = 32'b1_0000_0100_1101_0000_0000_0000_0000_000;

//(+72) + (-46) = +26
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1001_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0110_1011_1000_0000_0000_0000_000;

//(+172) + (-100) = +72
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_1000_1010_1100_0000_0000_0000_000;
flp_b = 32'b1_0000_0111_1100_1000_0000_0000_0000_000;

//(-172) + (+100) = -72
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_1000_1010_1100_0000_0000_0000_000;
flp_b = 32'b0_0000_0111_1100_1000_0000_0000_0000_000;

//continued on next page
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Figure 4.104       (Continued)

//(+85.75) + (-70.50) = +15.25
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1010_1011_1000_0000_0000_000;
flp_b = 32'b1_0000_0111_1000_1101_0000_0000_0000_000;

//(-96.50) + (+30.25) = -66.25
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0111_1100_0001_0000_0000_0000_000;
flp_b = 32'b0_0000_0101_1111_0010_0000_0000_0000_000;

//==========================================================
//true subtraction: fract_a > fract_b, mode = 1,

sign_a = sign_b
//(-45) - (-35) = -12
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0110_1011_1100_0000_0000_0000_000;
flp_b = 32'b1_0000_0110_1000_1100_0000_0000_0000_000;
mode = 1'b1;

//(-130) - (-25) = -105
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_1000_1000_0010_0000_0000_0000_000;
flp_b = 32'b1_0000_0101_1100_1000_0000_0000_0000_000;

//(+105) - (+5) = +100
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1101_0010_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_1010_0000_0000_0000_0000_000;

//(+36.5) - (+5.75) = +30.75
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0110_1001_0010_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_1011_1000_0000_0000_0000_000;

//(+5276) - (+4528) = +748
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_1101_1010_0100_1110_0000_0000_000;
flp_b = 32'b0_0000_1101_1000_1101_1000_0000_0000_000;

//(+963.50) - (+520.25) = +443.25
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_1010_1111_0000_1110_0000_0000_000;
flp_b = 32'b0_0000_1010_1000_0010_0001_0000_0000_000;

#10 $stop;
end

//continued on next page
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Figure 4.104       (Continued)

Figure 4.105 Outputs for true addition and true subtraction.

//instantiate the module into the test bench
sub_flp5 inst1 (flp_a, flp_b, mode, sign,

exponent, exp_unbiased, rslt);

endmodule

True Addition: mode = 1, sign_a != sign_b

sign = 1, exp_biased = 10000101, exp_unbiased = 00000110,
rslt = 10110000000000000000000 -44

sign = 1, exp_biased = 10000101, exp_unbiased = 00000110,
rslt = 11001000000000000000000 -50

sign = 1, exp_biased = 10000101, exp_unbiased = 00000110,
rslt = 10011100000000000000000 -39

sign = 0, exp_biased = 10000101, exp_unbiased = 00000110,
rslt = 10110100000000000000000 +45

sign = 1, exp_biased = 10000111, exp_unbiased = 00001000,
rslt = 11001011000000000000000 -203
-----------------------------------------------------------

True Subtraction: fract_a < fract_b, mode = 1,
sign_a = sign_b

sign = 1, exp_biased = 10000100, exp_unbiased = 00000101,
rslt = 10111000000000000000000 -23

sign = 0, exp_biased = 10000011, exp_unbiased = 00000100,
rslt = 11010000000000000000000 +13

sign = 0, exp_biased = 10000100, exp_unbiased = 00000101,
rslt = 11111000000000000000000 +31

sign = 1, exp_biased = 10000100, exp_unbiased = 00000101,
rslt = 11001000000000000000000 -25
-----------------------------------------------------------

//continued on next page



526          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Figure 4.105       (Continued)

True Subtraction: fract_a < fract_b, mode = 0,
sign_a != sign_b

sign = 1, exp_biased = 10000010, exp_unbiased = 00000011,
rslt = 11000000000000000000000 -6

sign = 0, exp_biased = 10000010, exp_unbiased = 00000011,
rslt = 11000000000000000000000 +6

sign = 1, exp_biased = 10000010, exp_unbiased = 00000011,
rslt = 11100000000000000000000 -7

sign = 1, exp_biased = 10000110, exp_unbiased = 00000111,
rslt = 11010000000000000000000 -104
-----------------------------------------------------------

True Subtraction: fract_a > fract_b, mode = 0,
sign_a != sign_b

sign = 0, exp_biased = 10000101, exp_unbiased = 00000110,
rslt = 10000000000000000000000 +32

sign = 0, exp_biased = 10000100, exp_unbiased = 00000101,
rslt = 11010000000000000000000 +26

sign = 0, exp_biased = 10000110, exp_unbiased = 00000111,
rslt = 10010000000000000000000 +72

sign = 1, exp_biased = 10000110, exp_unbiased = 00000111,
rslt = 10010000000000000000000 -72

sign = 0, exp_biased = 10000011, exp_unbiased = 00000100,
rslt = 11110100000000000000000 +15.25

sign = 1, exp_biased = 10000110, exp_unbiased = 00000111,
rslt = 10000100100000000000000 -66.25
-----------------------------------------------------------

//continued on next page
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Figure 4.105       (Continued)

4.13   Floating-Point Multiplication
In floating-point multiplication, the fractions are multiplied and the exponents are
added.  The fractions are multiplied by any of the methods previously used in fixed-
point multiplication.  The operands are two normalized floating-point operands.  Frac-
tion multiplication and exponent addition are two independent operations and can be
done in parallel.  Floating-point multiplication is defined as shown in Equation 4.14.

The sign of the product is determined by the signs of the operands as shown below.

Asign  Bsign

The single-precision format will be the primary format used in this chapter.  The
multiplication algorithm is partitioned into five parts:

A  B = ( fA  reA)  ( fB  reB)
= (fA  fB)  r

(eA + eB) (4.14)

True Subtraction: fract_a > fract_b, mode = 1,
sign_a = sign_b

sign = 1, exp_biased = 10000011, exp_unbiased = 00000100,
rslt = 11000000000000000000000 -12

sign = 1, exp_biased = 10000110, exp_unbiased = 00000111,
rslt = 11010010000000000000000 -105

sign = 0, exp_biased = 10000110, exp_unbiased = 00000111,
rslt = 11001000000000000000000 +100

sign = 0, exp_biased = 10000100, exp_unbiased = 00000101,
rslt = 11110110000000000000000 +30.75

sign = 0, exp_biased = 10001001, exp_unbiased = 00001010,
rslt = 10111011000000000000000 +748

sign = 0, exp_biased = 10001000, exp_unbiased = 00001001,
rslt = 11011101101000000000000 +443.25
-----------------------------------------------------------
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1. Check for zero operands.  If A = 0 or B = 0, then the product = 0.
2. Determine the sign of the product.
3. Add exponents and subtract the bias.
4. Multiply fractions.  Steps 3 and 4 can be done in parallel, but both must be 

completed before step 5.
5. Normalize the product.

The sequential add-shift multiplication technique will be used in the Verilog
design example.  Two examples are shown in Example 4.15 and Example 4.16 using
the paper-and-pencil method for 4-bit multiplicands and 4-bit multipliers in order to
review the multiplication technique.  A more detailed example of the add-shift method
is shown in Example 4.17 showing the actual add-shift technique as it relates to a Ver-
ilog design example.

Example 4.15 Let the multiplicand and multiplier be two positive 4-bit operands as
shown below, where a[3:0] = 0111 (+7) and b[3:0] = 0110 (+6) to produce a product
p[7:0] = 0010 1010 (+42).  A multiplier bit of 0 enters 0s in the partial product; a mul-
tiplier bit of 1 copies the multiplicand to the partial product.

Example 4.16 This example multiplies a negative multiplicand by a positive multi-
plier.  The multiplicand is a[3:0] = 1011 (–5); the multiplier is b[3:0] = 0011 (+3) to
produce a product of p[7:0] = 1111 0001 (–15).

Multiplicand A 0 1 1 1 +7
Multiplier B ) 0 1 1 0 +6

0 0 0 0 0 0 0 0
Partial 0 0 0 0 1 1 1
products 0 0 0 1 1 1

0 0 0 0 0
Product P 0 0 1 0 1 0 1 0 +42

Multiplicand A 1 0 1 1 –5
Multiplier B ) 0 0 1 1 +3

1 1 1 1 1 0 1 1
Partial 1 1 1 1 0 1 1
products 0 0 0 0 0 0

0 0 0 0 0
Product P 1 1 1 1 0 0 0 1 –15
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Example 4.17 Each step is an add-shift-right sequence.  A multiplicand fraction
fract_a = 0.1101 1000  25 (+27) is multiplied by a multiplier fract_b = 0.1100 1000
 25 (+25) with a partial product prod = 0000 0000 to produce a product of prod =
0.1010 1000 1100 0000 x 210 (+675)
 

fract_a 
(+27)

Count
prod

fract_b 
(+25)

1101 1000 prod 0000 0000 1100 1000

+) 0000 0000 Add-shift
0 0000 0000 1100 1000

7 0000 0000 0110 0100

+) 0000 0000 Add-shift
0 0000 0000 0110 0100

6 0000 0000 0011 0010

+) 0000 0000 Add-shift
0 0000 0000 0011 0010

5 0000 0000 0001 1001

+) 1101 1000 Add-shift
0 1101 1000 0001 1001

4 0110 1100 0000 1100

+) 0000 0000 Add-shift
0 0110 0110 0000 1100

3 0011 0110 0000 0110

+) 0000 0000 Add-shift
0 0011 0110 0000 0110

2 0001 1011 0000 0011

+) 1101 1000 Add-shift
0 1111 0011 0000 0011

1 0111 1001 1000 0001

+) 1101 1000 Add-shift
1 0101 0001 1000 0001

0 1010 1000 1100 0000  210    (+675)
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The Verilog behavioral design module for a version similar to Example 4.17 is
shown in Figure 4.106 using the multiplication algorithm previously shown.  A float-
ing-point format for the design is shown below for 14 bits.  Floating-point multiplica-
tion using the sequential add-shift method for two operands, flp_a[13:0] and
flp_b[13:0], will be used.  The test bench for several different input vectors, including
both positive and negative operands is shown in Figure 4.107.  The outputs are shown
in Figure 4.108.

The behavioral module employs two always statements — one to define the fields
of the single-precision format when the floating-point operands change value, and one
to perform the multiplication when a start signal is asserted.

Since the fractions contain 8 bits, a count-down counter is set to a value of 1000
(8) to accommodate the add-shift procedure.  The fractions are then checked to deter-
mine if either fraction is zero.  If both fractions are nonzero, then the multiplication
begins.

Figure 4.106 Behavioral design module for floating-point multiplication using the
sequential add-shift method.

 13  12                     8  7                                                                                         0

Sign bit:
0 = positive
1 = negative

5-bit signed
exponent
(characteristic)

8-bit fraction
(mantissa, significand)

//behavioral floating-point multiplication

module mul_flp4 (flp_a , flp_b, start, sign, exponent,
exp_unbiased, cout, prod);

//define inputs and outputs
input [13:0] flp_a, flp_b;
input start;
output sign;
output [4:0] exponent, exp_unbiased;
output cout;
output [15:0] prod;

//continued on next page
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Figure 4.106       (Continued)

//variables used in an always block are declared as registers
reg sign_a, sign_b;
reg [4:0] exp_a, exp_b;
reg [4:0] exp_a_bias, exp_b_bias;
reg [4:0] exp_sum;
reg [7:0] fract_a, fract_b;
reg [7:0] fract_b_reg;
reg sign;
reg [4:0] exponent, exp_unbiased;
reg cout;
reg [15:0] prod;
reg [3:0] count;

//define sign, exponent, and fraction
always @ (flp_a or flp_b)
begin

sign_a = flp_a[13];
sign_b = flp_b[13];

exp_a = flp_a[12:8];
exp_b = flp_b[12:8];

fract_a = flp_a[7:0];
fract_b = flp_b[7:0];

//bias exponents
exp_a_bias = exp_a + 5'b01111;
exp_b_bias = exp_b + 5'b01111;

//add exponents
exp_sum = exp_a_bias + exp_b_bias;

//remove one bias
exponent = exp_sum - 5'b01111;

exp_unbiased = exponent - 5'b01111;
end

//multiply fractions
always @ (posedge start)
begin

fract_b_reg = fract_b;
prod = 0;

//continued on next page
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Figure 4.106       (Continued)

Figure 4.107 Test bench module for floating-point multiplication using the sequen-
tial add-shift method.

count = 4'b1000;
if ((fract_a != 0) && (fract_b != 0))

while (count)
begin

{cout, prod[15:8]} = (({8{fract_b_reg[0]}}
& fract_a) + prod[15:8]);

prod = {cout, prod[15:8], prod[7:1]};
fract_b_reg = fract_b_reg >> 1;
count = count - 1;

end

//postnormalize result
while (prod[15] == 0)

begin
prod = prod << 1;
exp_unbiased = exp_unbiased - 1;

end

sign = sign_a ^ sign_b;

end

endmodule

//test bench for floating-point multiplication
module mul_flp4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [13:0] flp_a, flp_b;
reg start;
wire sign;
wire [4:0] exponent, exp_unbiased;
wire [4:0] exp_sum;
wire [15:0] prod;

//display variables
initial
$monitor ("sign = %b, exp_unbiased = %b, prod = %b",

   sign, exp_unbiased, prod); //continued on next page



4.13     Floating-Point Multiplication     533

Figure 4.107       (Continued)

//apply input vectors
initial
begin

#0 start = 1'b0;
//+5 x +3 = +15
// s   e       f
flp_a = 14'b0_00011_1010_0000;
flp_b = 14'b0_00010_1100_0000;

#10 start = 1'b1;
#10 start = 1'b0;

//+7 x -5 = -35
// s   e       f

#0 flp_a = 14'b0_00011_1110_0000;
flp_b = 14'b1_00011_1010_0000;

#10 start = 1'b1;
#10 start = 1'b0;

//+25 x +25 = +625
// s   e       f

#0 flp_a = 14'b0_00101_1100_1000;
flp_b = 14'b0_00101_1100_1000;

#10 start = 1'b1;
#10 start = 1'b0;

//-7 x -15 = +105
// s   e       f

#0 flp_a = 14'b1_00011_1110_0000;
flp_b = 14'b1_00100_1111_0000;

#10 start = 1'b1;
#10 start = 1'b0;

//-35 x +72 = -2520
// s   e       f

#0 flp_a = 14'b1_00110_1000_1100;
flp_b = 14'b0_00111_1001_0000;

#10 start = 1'b1;
#10 start = 1'b0;

//+80 x +37 = +2960
// s   e       f

#0 flp_a = 14'b0_00111_1010_0000;
flp_b = 14'b0_00110_1001_0100;

#10 start = 1'b1;
#10 start = 1'b0;

//continued on next page
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Figure 4.107       (Continued)

Figure 4.108 Outputs for floating-point multiplication using the sequential add-
shift method.

//+34 x -68 = -2312
// s   e       f

#0 flp_a = 14'b0_00110_1000_1000;
flp_b = 14'b1_00111_1000_1000;

#10 start = 1'b1;
#10 start = 1'b0;

//+27 x +25 = +675
// s   e       f

#0 flp_a = 14'b0_00101_1101_1000;
flp_b = 14'b1_00101_1100_1000;

#10 start = 1'b1;
#10 start = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
mul_flp4 inst1 (flp_a , flp_b, start, sign, exponent,

exp_unbiased, cout, prod);

endmodule

+5 x +3 = +15
sign = 0, exp_unbiased = 00100, prod = 1111000000000000

+7 x -5 = -35
sign = 1, exp_unbiased = 00110, prod = 1000110000000000

+25 x +25 = +625
sign = 0, exp_unbiased = 01010, prod = 1001110001000000

-7 x -15 = +105
sign = 0, exp_unbiased = 00111, prod = 1101001000000000

-35 x +72 = -2520
sign = 1, exp_unbiased = 01100, prod = 1001110110000000

+80 x +37 = +2960
sign = 0, exp_unbiased = 01100, prod = 1011100100000000

//continued on next page
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Figure 4.108       (Continued)

4.14   Floating-Point Division
The division of two floating-point numbers is accomplished by dividing the fractions
and subtracting the exponents.  The fractions are divided by any of the methods pre-
sented in the section on fixed-point division and overflow is checked in the same man-
ner.  Fraction division and exponent subtraction are two independent operations and
can be done in parallel.  Floating-point division is defined as shown in Equation 4.15.

Both operands are checked for a value of zero.  If the dividend is zero, then the
exponent, quotient, and remainder are set to zero.  If the divisor is zero, then the oper-
ation is terminated.  The sign of the quotient is determined by the signs of the operands
as follows: Asign  Bsign.  The division algorithm is defined as shown below.

1. Normalize the operands.
2. Check for zero operands.
3. Determine the sign of the quotient.
4. Align the dividend, if necessary.
5. Subtract the exponents.
6. Add the bias.
7. Divide the fractions.
8. Normalize the result, if necessary.

Restoring division will be used in the behavioral design of the floating-point divi-
sion example in this section.  As stated previously, restoring division examines the
state of the carry-out when the dividend is subtracted from the partial remainder.  This
determines the relative magnitudes of the divisor and partial remainder.  If the carry-
out = 0, then the partial remainder is restored to its previous value by adding the divi-
sor to the partial remainder.  If the carry-out = 1,  then there is no restore operation.
The partial remainder (high-order half of the dividend) and the low-order half of the

A / B = ( fA  reA) / ( fB  reB)
= (fA / fB)  r

(eA – eB) (4.15)

+34 x -68 = -2312
sign = 1, exp_unbiased = 01100, prod = 1001000010000000

+27 x +25 = +675
sign = 1, exp_unbiased = 01010, prod = 1010100011000000
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dividend are then shifted left one bit position and the process repeats for each bit in the
divisor.

Two examples will now be presented to illustrate the technique for floating-point
division using the shift-subtract/add restoring division method.

Example 4.18 A dividend fraction fract_a = 0.1001 1000  25 (+19) is divided by a
divisor fraction fract_b = 0.0101  24 (+5) to yield a quotient of 0011  24 (+3) and a
remainder of 0100  24 (+4).

fract_b (+5) fract_a (+19)    Dividend
0101 0001 0011

Shift left 1 0010 011–
Subtract B +) 1011

0 1101

Restore +) 0101
0010 0110

Shift left 1 0100 110–
Subtract B +) 1011

0 1111

Restore +) 0101
0100 1100

Shift left 1 1001 100–
Subtract B +) 1011

1 0100

No Restore 0100 1001

Shift left 1 1001 001–
Subtract B +) 1011

1 0100

No Restore 0100 0011
R Q

Divisor
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Example 4.19   A dividend fraction fract_a = 0.1000 0110  27 (+67) is divided by
a divisor fraction fract_b = 0.1000  24 (+8) to yield a quotient of 1000  24 (+8) and
a remainder of 0011  24 (+3).

fract_b (+8) fract_a (+67)    Dividend
1000 1000 0110
Align 0100 0011  2(7 + 1) = 28

Shift left 1 1000 011–
Subtract B +) 1000

1 0000

No Restore 0000 0111

Shift left 1 0000 111–
Subtract B +) 1000

0 1000

Restore +) 1000
0000 1110

Shift left 1 0001 110–
Subtract B +) 1000

0 1001

Restore +) 1000
0001 1100

Shift left 1 0011 100–
Subtract B +) 1000

0 1011

Restore +) 1000
0011 1000

R Q  2(7 – 4) + 1 = 24

Divisor
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The Verilog behavioral design module for a version similar to Examples 4.18 and
4.19 is shown in Figure 4.109 using the restoring division technique.  The module has
two operands, a 16-bit dividend a[15:0] and an 8-bit divisor b[7:0].  The test bench for
several different input vectors is shown in Figure 4.110.  The outputs are shown in Fig-
ure 4.111.

Figure 4.109 Mixed design module for floating-point restoring division.

//behavioral design for restoring division

module div_restoring_vers6 (a, b, start, rslt);

//define inputs and outputs
input [15:0] a;
input [7:0] b;
input start;
output [15:0] rslt;

//variables in always are declared as variables
wire [7:0] b_bar;

//define internal registers
reg [7:0] b_neg;
reg [15:0] rslt;
reg [3:0] count;

assign b_bar = ~b;
always @ (b_bar)

b_neg = b_bar + 1;

//execute the division
always @ (posedge start)
begin

rslt = a;
count = 5'b1000;

if ((a!=0) && (b!=0))
while (count)

begin
rslt = rslt << 1;
rslt = {(rslt[15:8] + b_neg), rslt[7:0]};

if (rslt[15] == 1)
begin

rslt = {(rslt[15:8] + b),
rslt[7:1], 1'b0};

count = count - 1;
end

//continued on next page
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Figure 4.109       (Continued)

Figure 4.110 Test bench module for floating-point restoring division.

else
begin

rslt = {rslt[15:1], 1'b1};
count = count - 1;
end

end
end
endmodule

//test bench for restoring division
module div_restoring_vers6_tb;

reg [15:0] a; //inputs are reg for test bench
reg [7:0] b;
reg start;
wire [15:0] rslt; //outputs are wire for test bench

initial //display variables
$monitor ("a = %b, b = %b, quot = %b, rem = %b",

a, b, rslt[7:0], rslt[15:8]);

initial //apply input vectors
begin

#0 //(19) / (5) = q3, r4
start = 1'b0;
a = 16'b0000_0000_0001_0011; b = 8'b0000_0101;

#10 start = 1'b1;
#10 start = 1'b0;

#10 //(37) / (10) = q3, r7
a = 16'b0000_0000_0010_0101; b = 8'b0000_1010;

#10 start = 1'b1;
#10 start = 1'b0;

//(60) / (7) = q8, r4
#10 a = 16'b0000_0000_0011_1100; b = 8'b000_0111;
#10 start = 1'b1;
#10 start = 1'b0;

//continued on next page



540          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Figure 4.110       (Continued)

//(4,044) / (127) = q31, r107
#10 a =16'b0000_1111_1100_1100; b = 8'b0111_1111;
#10 start = 1'b1;
#10 start = 1'b0;

//(2046) / (126) = q16, r30
#10 a = 16'b0000_0111_1111_1110; b = 8'b0111_1110;
#10 start = 1'b1;
#10 start = 1'b0;

//(90) / (15) = q6, r0
#10 a = 16'b0000_0000_0101_1010; b = 8'b000_1111;
#10 start = 1'b1;
#10 start = 1'b0;

//(260) / (120) = q2, r20
#10 a = 16'b0000_0001_0000_0100; b = 8'b111_1000;
#10 start = 1'b1;
#10 start = 1'b0;

//(204) / (120) = q1, r84
#10 a = 16'b0000_0000_1100_1100; b = 8'b111_1000;
#10 start = 1'b1;
#10 start = 1'b0;

//(127) / (127) = q1, r0
#10 a = 16'b0000_0000_0111_1111; b = 8'b111_1111;
#10 start = 1'b1;
#10 start = 1'b0;

//(508) / (127) = q4, r0
#10 a = 16'b0000_0001_1111_1100; b = 8'b111_1111;
#10 start = 1'b1;
#10 start = 1'b0;

//(0) / (127) = q0, r0
#10 a = 16'b0000_0000_0000_0000; b = 8'b111_1111;
#10 start = 1'b1;
#10 start = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
div_restoring_vers6 inst1 (a, b, start, rslt);

endmodule
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Figure 4.111 Outputs for floating-point restoring division.

19 / 5 = q3, r4
a = 0000_0000_0001_0011, b = 0000_0101,

quot = 0000_0011, rem = 0000_0100

37 / 10 = q3, r7
a = 0000_0000_0010_0101, b = 0000_1010,

quot = 0000_0011, rem = 0000_0111

60 / 7 = q8, r4
a = 0000_0000_0011_1100, b = 0000_0111,

quot = 0000_1000, rem = 0000_0100

4,044 / 127 = q31, r107
a = 0000_1111_1100_1100, b = 0111_1111,

quot = 0001_1111, rem = 0110_1011

2046 / 126 = q16, r30
a = 0000_0111_1111_1110, b = 0111_1110,

quot = 0001_0000, rem = 0001_1110

90 / 15 = q6, r0
a = 0000_0000_0101_1010, b = 0000_1111,

quot = 0000_0110, rem = 0000_0000

260 / 120 = q2, r20
a = 0000_0001_0000_0100, b = 0111_1000,

quot = 0000_0010, rem = 0001_0100

204 / 120 = q1, r84
a = 0000_0000_1100_1100, b = 0111_1000,

quot = 0000_0001, rem = 0101_0100

127 / 127 = q1, r0
a = 0000_0000_0111_1111, b = 0111_1111,

quot = 0000_0001, rem = 0000_0000

508 / 127 = q4, r0
a = 0000_0001_1111_1100, b = 0111_1111,

quot = 0000_0100, rem = 0000_0000

0 / 127 = q0, r0
a = 0000_0000_0000_0000, b = 0111_1111,

quot = 0000_0000, rem = 0000_0000
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4.15  Problems

Fixed-Point Addition

4.1 Use structural modeling with built-in primitives to design a single-bit full
adder using fixed-point addition.  Recall that a full adder has three scalar in-
puts: augend a, addend b, and a carry-in cin from the previous lower-order
stage.  There are two scalar outputs: sum and carry-out cout.   The truth table
for a full adder is shown below.  Note that the sum is 1 for an odd number of
1s; the carry-out cout is a 1 for two or more 1s.  

      Truth Table for a Full Adder

4.2 A considerable increase in speed can be realized by using a carry lookahead
adder rather than using a ripple adder.  The increase in speed is achieved by
expressing the carry-out couti of any stage i as a function of the two operand
bits, ai and bi, and the carry-in cin–1 to the low-order stage0 of the adder,
where the adder is an n-bit adder n–1 n–2 . . . n1 n0. 

The equation for the carry-out of any stagei of a carry lookahead adder is
couti = aibi + (ai  bi)cini – 1.  The carries entering all the bit positions of the
adder can be generated simultaneously by a carry lookahead generator.  This
results in a constant addition time that is independent of the length of the
adder.  A carry will be generated for ai bi.  A carry will be propagated for ai 
bi.  Therefore, the equation for the carry-out of any stagei can be defined as
couti = Gi + Pi cini – 1.  Design a 4-bit carry lookahead adder using built-in
primitives and the continuous assignment statement assign.  Obtain the test
bench that adds several combinations of the augend and addend and obtain the
outputs.

Carry-In Sum Carry-Out

a b cin sum cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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4.3 Use dataflow modeling with the continuous assignment statement assign to
design a single-bit full adder.  Obtain the design module, the test bench mod-
ule for all combinations of the inputs, and the outputs.

4.4 Use the full adder designed in Problem 4.3 to design a 4-bit ripple adder using
structural modeling.  Obtain the structural design module, the test bench mod-
ule for several input vectors, and the outputs.

4.5 As a final problem in fixed-point addition, design a 4-bit dataflow adder that
would be used in an arithmetic and logic unit (ALU) that has three inputs: an
augend, an  addend, and a carry-in.  There is only one output: sum.  There is
no carry-out from the 4-bit adder.  This is a simple adder that uses the Verilog
HDL add operator + for the add operation.  Obtain the dataflow design mod-
ule, the test bench module that applies several input vectors, and the outputs.

Fixed-Point Subtraction

4.6 Design a 4-bit subtractor using structural modeling with dataflow full adders
that were implemented with the continuous assignment statement assign.
Also use built-in primitives in the design of the subtractor.  The minuend is a
(3:0), the subtrahend is b (3:0), and the result (difference) is rslt (3:0).

Subtraction is performed by adding the 2s complement of the subtrahend
to the minuend, where the 2s complement is the 1s complement (negation)
plus one.  Obtain the test bench module for several input vectors of the min-
uend and subtrahend and include inputs that produce negative results.  Also
obtain the outputs.

4.7 Design a 4-bit ripple-carry fixed-point adder/subtractor using built-in primi-
tives and instantiated full adders that were designed using behavioral model-
ing.  There are three inputs: a[3:0], b[3:0], and a mode control m, which is
used to determine whether the operation is addition or subtraction.  If m = 0,
then the operation is addition; if m = 1, then the operation is subtraction.
There are two outputs: rslt[3:0] and cout[3:0].  

Obtain the logic diagram, the design module using structural modeling,
the test bench module with combinations of the inputs for both addition and
subtraction including overflow, and the outputs.

4.8 Design a 4-bit behavioral adder/subtractor unit with the following three in-
puts: augend/minuend a[3:0], addend/subtrahend b[3:0], and a mode control
input to determine the operation to be performed, where addition is defined as
mode = 0 and subtraction is defined as mode = 1.  There are two outputs: the
result of the operation, rslt[3:0], and an overflow indication, ovfl.  The
operands are signed numbers in 2s complement representation.  Obtain the be-
havioral design module, the test bench module, and the outputs.



544          Chapter  4     Computer Arithmetic Design Using Verilog HDL

Fixed-Point Multiplication

4.9 Design a 3-bit array multiplier using structural modeling.  Instantiate full
adders that were designed using dataflow modeling with the continuous as-
signment statement assign and 2-input AND gates that were also designed us-
ing dataflow modeling.  An example of a general array multiply algorithm is
shown below for two 3-bit operands.

Obtain the structural design module, the test bench module, and the out-
puts.  Obtain all combinations of the multiplicand and the multiplier to yield
the 64 combinations of the product.  Display the values of the variables in dec-
imal notation.

4.10 Design an add-shift multiplier for two 4-bit operands using behavioral mod-
eling.  The multiplicand and multiplier are both unsigned binary operands.
Use a scalar start signal to initiate the multiply operation for each pair of op-
erands.  Obtain the behavioral design module, the test bench module, and the
outputs in decimal notation.

Fixed-Point Division

4.11 The sequential shift add/subtract restoring division technique will be utilized
in this problem. Obtain the mixed-design (behavioral/dataflow) module for
16-bit dividends and 8-bit divisors.  Obtain the test bench module using sev-
eral different values of the dividend and divisor.  Use a scalar start signal in
the test bench to initiate the divide operation for each pair of operands.  Obtain
the outputs in both binary (%b) and decimal (%d) notation.

4.12 This problem implements nonrestoring division for 16-bit dividends and 8-bit
divisors.  The results are also 16 bits; that is 8-bit quotients and 8-bit remain-
ders.  Nonrestoring division allows both a positive partial remainder and a
negative partial remainder to be utilized in the division process.  The final par-
tial remainder may require restoration if the sign is 1 (negative).  This is re-
quired in order to have a final positive remainder.

a2 a1 a0
 ) b2 b1 b0

Partial product 1 a2b0 a1b0 a0b0
Partial product 2 a2b1 a1b1 a0b1
Partial product 3 a2b2 a1b2 a0b2

  25   24   23   22   21   20
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Obtain the behavioral design module, the test bench module, and the out-
puts in both binary notation (%b) and decimal notation (%d) for all operands:
dividend a, divisor b, quotient q, and remainder r.

Arithmetic and Logic Unit

4.13 Arithmetic and logic units perform the arithmetic operations of addition, sub-
traction, multiplication, and division.  They also perform the logical opera-
tions of AND, NAND, OR, NOR, exclusive-OR, and exclusive-NOR.  This
problem is to design a behavioral module to implement the four operations of
add, subtract, multiply, and divide.  The operands are eight bits, the operation
code is three bits, and the result of the operation is eight bits.  The two 8-bit in-
puts are operands a[7:0] and b[7:0].  The 3-bit operation code is opcode[2:0]
and the 8-bit result is rslt[7:0].

Obtain the behavioral design module using the case statement for the four
arithmetic operations, the test bench module displaying all variables in deci-
mal (%d) notation, and the outputs.

4.14 This problem implements the behavioral design of the logical functions of
AND, NAND, OR, NOR, XOR, and XNOR.  The operands are four bits, the
operation code is three bits, and the result of the operation is four bits.  The
two 4-bit inputs are operands a[3:0] and b[3:0].  The 3-bit operation code is
opcode[2:0] and the 4-bit result is rslt[3:0].

Obtain the behavioral design module using the case statement for the six
logical operations, the test bench module displaying all variables in binary
(%b) notation, and the outputs.

Decimal Addition

4.15 Design a single-digit binary-coded decimal (BCD) adder using behavioral
modeling.  The design uses two 4-bit adders.  Obtain the test bench module for
several input variables and the outputs.  Assume that all input vectors are valid
BCD digits.

4.16 This problem repeats Problem 4.15, but implements the BCD adder design us-
ing the equations that represent the outputs of Adder_1, cout, and Adder_2.
The equation for the carry-out (cout) of the BCD adder is

cout = cout8 + bit8 bit4 + bit8 bit2  

Obtain the behavioral design module, the test bench module displaying
the variables in decimal notation, and the outputs.
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4.17 Instantiate the design of Problem 4.16 to implement the design of a 2-digit
BCD adder.  In order to use the same single-digit BCD adder two times — not
modified  — in this problem, do not let the sum of the two low-order digits ex-
ceed nine.  Obtain the behavioral design module, the test bench module with
the variables displayed in decimal notation, and the outputs.

4.18 Use structural modeling with built-in primitives to design the two digit BCD
adder of Problem 4.17.  Obtain the structural design module and the test bench
module with several input combinations of two operands.  Enter augends and
addends that produce sums in the units, tens, and hundreds representations.
Display all of the outputs in decimal notation.

Decimal Subtraction

4.19 Design a structural module that performs both BCD addition and subtraction
in which the result of an operation does not exceed a value of 99.  Since the de-
vice performs both addition and subtraction, the nines complementer requires
an additional input to specify the mode (m) of the operation — either addition
(m = 0) or subtraction (m = 1).  The equations for the nines complementer are
shown below.

Obtain the logic diagram using nines complementers, 4-bit adders,
required logic gates, and 2-to-1 multiplexers.  Then obtain the structural
design module using the 4-bit adders, 2-to-1 multiplexers to generate the BCD
result, and built-in primitives.  Obtain the test bench module using operands
for both addition and subtraction.  Obtain the outputs.

4.20 This is a relatively simpler problem than Problem 4.19 for BCD subtraction.
Design a behavioral module for BCD subtraction using the always statement.
Obtain the design module, the test bench module, and the outputs in decimal
notation.

f[0] = b[0]  m

f[1] = b[1]

f[2] = b[2]m ' + (b[2]  b[1])m

f[3] = b[3]m ' + b[3] 'b[2] 'b[1] 'm
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Decimal Multiplication

4.21 Using the method shown in Section 4.9, design a behavioral module to mul-
tiply an 8-bit multiplicand by a 4-bit multiplier to produce a 12-bit binary-cod-
ed decimal product.  Recall that decimal multiplication can be performed first
in fixed-point multiplication then converting the product to binary-coded dec-
imal.  Obtain the behavioral design module, the test bench module for several
different operands, and the outputs.

Decimal Division

4.22 Design a binary-coded decimal (BCD) divisor module using behavioral mod-
eling.  Use the restoring division technique described in Section 4.5.  Obtain
the fixed-point quotient and remainder, then convert the quotient and remain-
der to BCD.  The dividend is an 8-bit input, the divisor is a 4-bit input, and the
quotient and remainder are 4-bit outputs.  Obtain the behavioral design mod-
ule, the test bench module applying several inputs, and the outputs displayed
in decimal notation.

Floating-Point Addition

4.23 Design a behavioral module for a floating-point adder that adds two 32-bit
fractions in the single-precision floating-point format that results in true ad-
dition; that is, (+A) + (+B).  The fractions are defined as: flp_a[31:0] and
flp_b[31:0].  The exponents are eight bits defined as: exp_a[7:0] and
exp_b[7:0].  Obtain the behavioral design module, the test bench module, and
the outputs.

Floating-Point Subtraction

4.24 Design a behavioral module that performs true subtraction on two 32-bit op-
erands.  True subtraction can be defined as follows: (+A) – (+B) or (–A) – (–B),
which has the following attributes: fract_a > fract_b and sign_a = sign_b.
The exponents are eight bits. Obtain the behavioral design module, the test
bench module, and the outputs.

4.25 Design a behavioral module that is similar to Problem 4.24 that performs true
subtraction on two 32-bit operands.  In this version, true subtraction is defined
as follows: (+A) + (–B) or (–A) + (+B), which has the following attributes:
fract_a > fract_b and sign_a  sign_b.  The exponents are eight bits. Obtain
the behavioral design module, the test bench module, and the outputs.
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Floating-Point Multiplication

4.26 Design a behavioral module to perform multiplication on two 32-bit floating-
point operands: multiplicand flp_a[31:0] and multiplier flp_b[31:0].  Use the
sequential add-shift technique and a start signal to perform the multiplication.
Obtain the behavioral module using the always statement, the test bench mod-
ule for ten multiply operations, and the outputs.

4.27 Design a behavioral module for a 32-bit single-precision floating-point mul-
tiplication operation for these two operands: multiplicand flp_a[31:0] and
multiplier flp_b[31:0].  The single-precision format is shown below.  Use the
multiply arithmetic operator (*) to perform the multiply operation.  Obtain the
behavioral module, the test bench module, and the outputs showing the prod-
uct as a 23-bit result.

Floating-Point Division

4.28 Using the floating-point formats shown below, design a behavioral module to
divide a 14-bit dividend by a 10-bit divisor.  Also shown are the operands for
the first set of input vectors: 82/9.  Obtain the test bench and the outputs.  

 31                         23   22                                                                                    0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)

 13  12                     8     7                                                                                0

Sign bit:
0 = positive
1 = negative

5-bit signed
exponent
(characteristic)

8-bit fraction
(mantissa, significand)

 0    0    0    1    1    1     1          0          1         0          0          1         0          082
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  9    8                     4  3                                        0

Sign bit:
0 = positive
1 = negative

5-bit signed
exponent
(characteristic)

4-bit fraction
(mantissa, significand)

 0   0    0    1    0    0   1            0            0            19
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Appendix A

Event Queue
Event management in Verilog hardware description language (HDL) is controlled by
an event queue.  Verilog modules generate events in the test bench, which provide
stimulus to the module under test.  These events can then produce new events by the
modules under test.  Since the Verilog HDL Language Reference Manual (LRM) does
not specify a method of handling events, the simulator must provide a way to arrange
and schedule these events in order to accurately model delays and obtain the correct
order of execution.  The manner of implementing the event queue is vendor-depen-
dent.

Time in the event queue advances when every event that is scheduled in that time
step is executed.  Simulation is finished when all event queues are empty.  An event at
time t may schedule another event at time t or at time t + n.

A.1 Event Handling for Dataflow             
Assignments

Dataflow constructs consist of continuous assignments using the assign statement.
The assignment occurs whenever simulation causes a change to the right-hand side ex-
pression.  Unlike procedural assignments, continuous assignments are order indepen-
dent  —  they can be placed anywhere in the module.

Consider the logic diagram shown in Figure A.1 which is represented by the two
dataflow modules of Figures A.2 and A.3.  The test bench for both modules is shown
in Figure A.4.  The only difference between the two dataflow modules is the reversal
of the two assign statements.  The order in which the two statements execute is not de-
fined by the Verilog HDL LRM; therefore, the order of execution is indeterminate.

Figure A.1     Logic diagram to demonstrate event handling.

+a
+b

+c +out

net1
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Figure A.2     Dataflow module 1. Figure A.3     Dataflow module 2.

Figure A.4     Test bench for Figures A.2 and A.3.

Assume that the simulator executes the assignment order shown in Figure A.2
first.  When the simulator reaches time unit #10 in the test bench, it will evaluate the
right-hand side of test_b = 1'b1; and place its value in the event queue for an imme-
diate scheduled assignment.  Since this is a blocking statement, the next statement will
not execute until the assignment has been made.  Figure A.5 represents the event
queue after the evaluation.  The input signal b will assume the value of test_b through
instantiation.

module dataflow (a, b, c, out);

input a, b, c;
output out;

wire a, b, c;
wire out;

//define internal net
wire net1;

assign net1 = a & b;
assign out = net1 & c;

endmodule

module dataflow (a, b, c, out);

input a, b, c;
output out;

wire a, b, c;
wire out;

//define internal net
wire net1;

assign out = net1 & c;
assign net1 = a & b;

endmodule

module dataflow_tb;

reg test_a, test_b, test_c;
wire test_out;

initial
begin

test_a = 1'b1;
test_b = 1'b0;
test_c = 1'b0;

#10 test_b = 1'b1;
test_c = 1'b1;

#10 $stop;

end
//instantiate the module
dataflow inst1 

.a(test_a),

.b(test_b),

.c(test_c),

.out(test_out)
);

endmodule
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Figure A.5     Event queue after execution of test_b = 1'b1;.

After the assignment has been made, the simulator will execute the test_c = 1'b1;
statement by evaluating the right-hand side, and then placing its value in the event
queue for immediate assignment.  The new event queue is shown in Figure A.6.  The
entry that is not shaded represents an executed assignment.

Figure A.6     Event queue after execution of test_c = 1'b1;.

When the two assignments have been made, time unit #10 will have ended in the
test bench, which is the top-level module in the hierarchy.  The simulator will then en-
ter the instantiated dataflow module during this same time unit and determine that
events have occurred on input signals b and c and execute the two continuous assign-
ments.  At this point, inputs a, b, and c will be at a logic 1 level.  However, net1 will
still contain a logic 0 level as a result of the first three assignments that executed at
time #0 in the test bench.  Thus, the statement assign out = net1 & c; will evaluate to
a logic 0, which will be placed in the event queue and immediately assigned to out, as
shown in Figure A.7.

Event queue
Scheduled

event 5
Scheduled

event 4
Scheduled

event 3
Scheduled

event 2
Scheduled

event 1
Time
unit

test_b  1'b1
b  1'b1

t = #10

Order of execution

Event queue

Scheduled
event 5

Scheduled
event 4

Scheduled
event 3

Scheduled
event 2

Scheduled
event 1

Time
unit

test_c  1'b1
c  1'b1

test_b  1'b1
b  1'b1

t = #10

Order of execution
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Figure A.7     Event queue after execution of assign out = net1 & c;.

The simulator will then execute the assign net1 = a & b; statement in which the
right-hand side evaluates to a logic 1 level.  This will be placed on the queue and im-
mediately assigned to net1 as shown in Figure A.8.

Figure A.8     Event queue after execution of assign net1 = a & b;.

When the assignment has been made to net1, the simulator will recognize this as
an event on net1, which will cause all statements that use net1 to be reevaluated.  The
only statement to be reevaluated is assign out = net1 & c;.  Since both net1 and c equal
a logic 1 level, the right-hand side will evaluate to a logic 1, resulting in the event
queue shown in Figure A.9.

Event queue
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event 5

Scheduled
event 4

Scheduled
event 3

Scheduled
event 2

Scheduled
event 1

Time
unit

out  1'b0
test_out  1'b0

test_c  1'b1
c  1'b1

test_b  1'b1
b  1'b1

t = #10

Order of execution

Event queue
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event 5

Scheduled
event 4

Scheduled
event 3

Scheduled
event 2

Scheduled
event 1

Time
unit

net1  1'b1 out  1'b0
test_out  1'b0

test_c  1'b1
c  1'b1

test_b  1'b1
b  1'b1

t = #10

Order of execution
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Figure A.9    Event queue after execution of assign out = net1 & c;.

The test bench signal test_out must now be updated because it is connected to out
through instantiation.  Because the signal out is not associated with any other state-
ments within the module, the output from the module will now reflect the correct out-
put.  Since all statements within the dataflow module have been processed, the
simulator will exit the module and return to the test bench.  All events have now been
processed; therefore, time unit #10 is complete and the simulator will advance the sim-
ulation time.

Since the order of executing the assign statements is irrelevant, processing of the
dataflow events will now begin with the assign net1 = a & b; statement to show that
the result is the same.  The event queue is shown in Figure A.10.

Figure A.10     Event queue beginning with the statement assign net1 = a & b;.

Once the assignment to net1 has been made, the simulator recognizes this as a new
event on net1.  The existing event on input c requires the evaluation of statement
assign out = net1 & c;.  The right-hand side of the statement will evaluate to a logic 1,
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net1  1'b1 out  1'b0
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b  1'b1
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c  1'b1
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Order of execution
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and will be placed on the event queue for immediate assignment, as shown in Figure
A.11.

Figure A.11     Event queue after execution of assign out = net1 & c;.

A.2 Event Handling for Blocking       
Assignments

The blocking assignment operator is the equal (=) symbol.  A blocking assignment
evaluates the right-hand side arguments and completes the assignment to the left-hand
side before executing the next statement; that is, the assignment blocks other assign-
ments until the current assignment has been executed.

Example A.1 Consider the code segment shown in Figure A.12 using blocking as-
signments in conjunction with the event queue of Figure A.13.  There are no inter-
statement delays and no intrastatement delays associated with this code segment.  In
the first blocking assignment, the right-hand side is evaluated and the assignment is
scheduled in the event queue.  Program flow is blocked until the assignment is exe-
cuted.  This is true for all blocking assignment statements in this code segment.  The
assignments all occur in the same simulation time step t.

Figure A.12     Code segment with blocking assignments.
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event 5

Scheduled
event 4

Scheduled
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Scheduled
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Scheduled
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Time
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out  1'b1
test_out  1'b1

net1  1'b1 test_c  1'b1
c  1'b1

test_b  1'b1
b  1'b1

t = #10

Order of execution

always @ (x2 or x3 or x5 or x7)
begin

x1 = x2 | x3;
x4 = x5;
x6 = x7;

end
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Figure A.13 Event queue for Figure A.12.

Example A.2 The code segment shown in Figure A.14 contains an interstatement
delay.  Both the evaluation and the assignment are delayed by two time units.  When
the delay has taken place, the right-hand side is evaluated and the assignment is sched-
uled in the event queue as shown in Figure A.15.  The program flow is blocked until
the assignment is executed.

Figure A.14     Blocking statement with interstatement delay.

Figure A.15 Event queue for Figure A.14.

Example A.3 The code segment of Figure A.16 shows three statements with inter-
statement delays of t + 2 time units.  The first statement does not execute until simu-
lation time t + 2 as shown in Figure A.17.  The right-hand side (x2 | x3) is evaluated at
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always @ (x2)
begin

#2 x1 = x2;
end
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x1  x2 (t + 2) t + 2

Order of execution



558          Appendix A     Event Queue       

the current simulation time which is t + 2 time units, and then assigned to the left-hand
side.  At t + 2, x1  receives the output of x2  | x3 .

Figure A.16    Code segment for delayed blocking assignment with interstatement de-
lays.

Figure A.17     Event queue for Figure A.16.

Example A.4     The code segment in Figure A.18 shows three statements using block-
ing assignments with intrastatement delays.  Evaluation of x3  = #2 x4 and x5  = #2 x6
is blocked until x2  has been assigned to x1 , which occurs at t + 2 time units.  When the
second statement is reached, it is scheduled in the event queue at time t + 2, but the as-
signment to x3  will not occur until t + 4 time units.  The evaluation in the third state-
ment is blocked until the assignment is made to x3 .  Figure A.19 shows the event
queue.

Figure A.18     Code segment using blocking assignments with interstatement delays.

always @ (x2 or x3 or x5 or x7)
begin

#2 x1 = x2 | x3;
#2 x4 = x5;
#2 x6 = x7;

end

Event queue
Scheduled

event 5
Scheduled

event 4
Scheduled

event 3
Scheduled

event 2
Scheduled

event 1
Time
unit

t
x1  x2 | x3 (t + 2) t + 2

x4  x5 (t + 4) t + 4
x6  x7 (t + 6) t + 6

Order of execution

always @ (x2 or x4 or x6)
begin

x1 = #2 x2; //first statement
x3 = #2 x4; //second statement
x5 = #2 x6; //third statement

end
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Figure A.19     Event queue for the code segment of Figure A.18.

A.3 Event Handling for Nonblocking 
Assignments

Whereas blocking assignments block the sequential execution of an always block un-
til the simulator performs the assignment, nonblocking statements evaluate each state-
ment in succession and place the result in the event queue.  Assignment occurs when
all of the always blocks in the module have been processed for the current time unit.
The assignment may cause new events that require further processing by the simulator
for the current time unit.

Example A.5     For nonblocking statements, the right-hand side is evaluated and the
assignment is scheduled at the end of the queue.  The program flow continues and the
assignment occurs at the end of the time step.  This is shown in the code segment of
Figure A.20 and the event queue of Figure A.21.

Figure A.20     Code segment for a nonblocking assignment.
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always @ (posedge clk)
begin

x1 <= x2;
end
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Figure A.21     Event queue for Figure A.20.

Example A.6     The code segment of Figure A.22 shows a nonblocking statement with
an interstatement delay.  The evaluation is delayed by the timing control, and then the
right-hand side expression is evaluated and assignment is scheduled at the end of the
queue.  Program flow continues and assignment is made at the end of the current time
step as shown in the event  queue of Figure A.23.

Figure A.22     Nonblocking assignment with interstatement delay.

Figure A.23     Event queue for Figure A.22.

Example A.7     The code segment of Figure A.24 shows a nonblocking statement with
an intrastatement delay.  The right-hand side expression is evaluated and assignment is
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delayed by the timing control and is scheduled at the end of the queue.  Program flow
continues and assignment is made at the end of the current time step as shown in the
event  queue of Figure A.25.

Figure A.24     Nonblocking assignment with intrastatement delay.

Figure A.25     Event queue for Figure A.24.

Example A.8     The code segment of Figure A.26 shows nonblocking statements with
intrastatement delays.  The right-hand side expressions are evaluated and assignment
is delayed by the timing control and is scheduled at the end of the queue.  Program
flow continues and assignment is made at the end of the current time step as shown in
the event  queue of Figure A.27.

Figure A.26     Nonblocking assignments with intrastatement delays.

always @ (posedge clk)
begin

x1 <= #2 x2;
end
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Order of execution

always @ (posedge clk)
begin

x1 <= #2 x2;
x3 <= #2 x4;
x5 <= #2 x6;

end
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Figure A.27     Event queue for Figure A.26.

Example A.9     Figure A.28 shows a code segment using nonblocking assignment
with an intrastatement delay.  The right-hand expression is evaluated at the current
time.  The assignment is scheduled, but delayed by the timing control #2.  This method
allows for propagation delay through a logic element; for example, a D flip-flop.  The
event queue is shown in Figure A.29.

Figure A.28     Code segment using intrastatement delay with blocking assignment.

Figure A.29     Event queue for the code segment of Figure A.28.
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A.4   Event Handling for Mixed Blocking 
and Nonblocking Assignments

All nonblocking assignments are placed at the end of the queue while all blocking as-
signments are placed at the beginning of the queue in their respective order of evalu-
ation.  Thus, for any given simulation time t, all blocking statements are evaluated and
assigned first, then all nonblocking statements are evaluated.

This is the reason why combinational logic requires the use of blocking assign-
ments while sequential logic, such as flip-flops, requires the use of nonblocking as-
signments.  In this way, Verilog events can model real hardware in which
combinational logic at the input to a flip-flop can stabilize before the clock sets the
flip-flop to the state of the input logic.  Therefore, blocking assignments are placed at
the top of the queue to allow the input data to be stable, whereas nonblocking assign-
ments are placed at the bottom of the queue to be executed after the input data has sta-
bilized.

The logic diagram of Figure A.30 illustrates this concept for two multiplexers con-
nected to the D inputs of their respective flip-flops.  The multiplexers represent com-
binational logic; the D flip-flops represent sequential logic.  The behavioral module is
shown in Figure A.31 and the event queue is shown in Figure A.32.

Figure A.30     Combinational logic connected to sequential logic to illustrate the use
of blocking and nonblocking assignments.

Because multiplexers are combinational logic, the outputs mux_out0 and
mux_out1 are placed at the beginning of the queue, as shown in Figure A.32.  Nets
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mux_out0 and mux_out1 are in separate always blocks; therefore, the order in which
they are placed in the queue is arbitrary and can differ with each simulator.  The result,
however, is the same.  If mux_out0 and mux_out1 were placed in the same always
block, then the order in which they are placed in the queue must be the same order as
they appear in the always block.

Because dout0 and dout1 are sequential, they are placed at the end of the queue.
Since they appear in separate always blocks, the order of their placement in the queue
is irrelevant.  Once the values of mux_out0 and mux_out1 are assigned in the queue,
their values will then be used in the assignment of dout0 and dout1; that is, the state of
mux_out0 and mux_out1 will be set into the D flip-flops at the next positive clock tran-
sition and assigned to dout0 and dout1.

Figure A.31     Mixed blocking and nonblocking assignments that represent combi-
national and sequential logic.

//behavioral module with combinational and sequential logic
//to illustrate their placement in the event queue

module mux_plus_flop (clk, rst_n, 
din0, din1, sel0, dout0,
din2, din3, sel1, dout1);

input clk, rst_n;
input din0, din1, sel0;
input din2, din3, sel1;
output dout0, dout1;

reg mux_out0, mux_out1;
reg dout0, dout1;

//combinational logic for multiplexers
always @ (din0 or din1 or sel0)
begin

if (sel0)
mux_out0 = din1;

else
mux_out0 = din0;

end

always @ (din2 or din3 or sel1)
begin

if (sel1)
mux_out1 = din3;

else
mux_out1 = din2;

end
//continued on next page
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Figure A.31     (Continued)

Figure A.32     Event queue for Figure A.31.

//sequential logic for D flip-flops
always @ (posedge clk or negedge rst_n)
begin

if (~rst_n)
dout0 <= 1’b0;

else
dout0 <= mux_out0;

end

always @ (posedge clk or negedge rst_n)
begin

if (~rst_n)
dout1 <= 1’b0;

else
dout1 <= mux_out1;

end

endmodule
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Appendix B

Verilog Project Procedure

• Create a folder (Do only once)
Local disk (C:) > New Folder <Verilog> > Enter > Exit local disk C.

• Create a project (Do for each project)
Bring up Silos Simulation Environment.

File > Close Project.  Minimize Silos.
Local disk (C:) > Verilog > File > New Folder <new folder name> Enter.
Exit Local disk (C:).  Maximize Silos.
File > New Project.
Create New Project.  Save In: Verilog folder.

Click new folder name.  Open.
Create New Project.  Filename: Give project name — usually same name

as the folder name.  Save
Project Properties > Cancel.

• File > New
.
.     Design module code goes here
.

• File > Save As > File name: <filename.v> > Save

• Compile code
Edit > Project Properties > Add.  Select one or more files to add.

Click on the file > Open.
Project Properties.  The selected files are shown > OK.
Load/Reload Input Files.  This compiles the code.
Check screen output for errors.  “Simulation stopped at the end of time 0”

indicates no compilation errors.
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• Test bench
File > New

.

.     Test bench module code goes here

.

• File > Save As > File name: < filename.v> > Save.

• Compile test bench
Edit > Project Properties > Add.  Select one or more files to add.

Click on the file > Open
Project Properties.  The selected files are shown > OK.
Load/Reload Input Files.  This compiles the code.
Check screen output for errors.  “Simulation stopped at end of time 0”

indicates no compilation errors.

• Binary Output and Waveforms
For binary output: click on the GO icon.
For waveforms: click on the Analyzer icon.

Click on the Explorer icon.  The signals are listed in Silos Explorer.
Click on the desired signal names.
Right click.  Add Signals to Analyzer.
Waveforms are displayed.
Exit Silos Explorer.

• Change Time Scale
With the waveforms displayed, click on Analyzer > X-Axis > Timescale

Enter Time / div > OK

• Exit the project
Close the waveforms, module, and test bench.
File > Close Project.



Appendix C

Answers to Select Problems

Chapter 1     Introduction to Logic Design 
Using Verilog HDL

1.1 Given the equation shown below, obtain the minimized equation for z1 in a 
product-of-sums notation and implement the equation using NAND gate 
built-in primitives.  Obtain the design module, the test bench module, and the 
outputs.  Output z1 is asserted high.

z1(x1 , x2 , x3 , x4 ) = m (1, 4, 7, 9, 11, 13) + d (5, 14, 15)

 0 0      0 1      1 1        1 0

0 0      0         1        0          0

0 1      1         –        1          0

1 1      0         1        –          –

1 0      0         1        1          0

x1 x2

x3 x4

 0            1           3            2

 4            5           7              6

 

 12          13         15          14

   8            9          11         10

z1

Product of sums:   z1 = (x2  + x4 )(x1'   + x4 )(x1  + x2  + x3'  )(x3'   + x4 )

–x2–x4

+x1

–x1+x3

+z1

inst1

inst2

inst3

inst4

inst5 inst6

net1

net2

net3

net4

net5



//built-in primitives for logic equation as a pos
module log_eqn_pos_nand2 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

nand inst1 (net1, ~x2, ~x4),
inst2 (net2, x1, ~x4),
inst3 (net3, ~x1, ~x2, x3),
inst4 (net4, x3, ~x4),
inst5 (net5, net1, net2, net3, net4),
inst6 (z1, net5, net5);

endmodule

//test bench for logic equation as a pos 
module log_eqn_pos_nand2_tb;

reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
log_eqn_pos_nand2 inst1 (x1, x2, x3, x4, z1);

endmodule
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x1 x2 x3 x4 = 0000, z1 = 0
x1 x2 x3 x4 = 0001, z1 = 1
x1 x2 x3 x4 = 0010, z1 = 0
x1 x2 x3 x4 = 0011, z1 = 0
x1 x2 x3 x4 = 0100, z1 = 1
x1 x2 x3 x4 = 0101, z1 = 1
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 1
x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 1
x1 x2 x3 x4 = 1010, z1 = 0
x1 x2 x3 x4 = 1011, z1 = 1
x1 x2 x3 x4 = 1100, z1 = 0
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 0
x1 x2 x3 x4 = 1111, z1 = 1
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1.3 Use AND gate and OR gate built-in primitives to implement a circuit in a 
sum-of-products form that will generate an output z1 if an input is greater than 
or equal to 2 and less than 5; and also greater than or equal to 12 and less than 
15.  Then obtain the design module, test bench module, and outputs.

 0 0      0 1      1 1        1 0

0 0      0         0         1         1

0 1      1         0           0         0

1 1      1         1           0         1

1 0      0         0           0         0

x1 x2

x3 x4

 0            1           3            2

 4            5           7              6

 

 12          13         15          14

   8            9          11         10

z1

z1 = x2 x3'  x4'   + x1 x2 x3'   + x1 x2 x4'   + x1'  x2'  x3 



+x2–x3–x4

+x1

–x1–x2+x3

+z1

inst1

inst2

inst5

inst3

inst4

net1

net2

net3

net4

//built-in primitives to generate sop

module built_in_sop3 (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//design the logic
and inst1 (net1, x2, ~x3, ~x4),

inst2 (net2, x1, x2, ~x3),
inst3 (net3, x1, x2, ~x4),
inst4 (net4, ~x1, ~x2, x3);

or inst5 (z1, net1, net2, net3, net4);

endmodule
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//test bench for module
module built_in_sop3_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1; //outputs are wire for test bench

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4}= invect [4:0];
#10$display ("x1 x2 x3 x4 = %b, z1 = %b",

 {x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
built_in_sop3 inst1 (x1, x2, x3, x4, z1);

endmodule

x1 x2 x3 x4 = 0000, z1 = 0
x1 x2 x3 x4 = 0001, z1 = 0
x1 x2 x3 x4 = 0010, z1 = 1
x1 x2 x3 x4 = 0011, z1 = 1
x1 x2 x3 x4 = 0100, z1 = 1

x1 x2 x3 x4 = 0101, z1 = 0
x1 x2 x3 x4 = 0110, z1 = 0
x1 x2 x3 x4 = 0111, z1 = 0
x1 x2 x3 x4 = 1000, z1 = 0
x1 x2 x3 x4 = 1001, z1 = 0

x1 x2 x3 x4 = 1010, z1 = 0
x1 x2 x3 x4 = 1011, z1 = 0
x1 x2 x3 x4 = 1100, z1 = 1
x1 x2 x3 x4 = 1101, z1 = 1
x1 x2 x3 x4 = 1110, z1 = 1
x1 x2 x3 x4 = 1111, z1 = 0
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1.6 Design a modulo-8 counter using the D flip-flop that was designed in the 
edge-sensitive user-defined primitives section of this chapter.  Use additional 
logic gate UDPs as necessary.  Obtain the design module, the test bench mod-
ule, and the outputs.

y1 y2 y3 

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0

  0 0      0 1      1 1        10
y2 y3

    y1

 0       0         0        1         0

 1       1         1         0         1

 0            1           3            2

 4            5           7              6

  0 0      0 1      1 1        10
y2 y3

    y1

 0       0        1          0         1

 1        0         1         0         1

 0            1           3            2

 4            5           7              6

Dy1 Dy2Dy1

  0 0      0 1      1 1        10
y2 y3

    y1

 0       1         0         0         1

 1       1         0         0         1

 0            1           3            2

 4            5           7              6

Dy1Dy3

Dy1  = y1 '  y2 y3  + y1 y2 ' + y1 y3 '

Dy2  = y2 '  y3  + y2 y3 ' = y2   y3 

Dy3  = y3 '



//modulo-8 counter using udps

module ctr_mod8_udp1 (rst_n, clk, y1, y2, y3);

//define inputs and outputs
input clk, rst_n;
output y1, y2, y3;

//--------------------------------------------
//instantiate the udp for flip-flop y1
udp_and3 inst1  (net1, ~y1, y2, y3);
udp_and2 inst2  (net2, y1, ~y2);
udp_and2 inst3  (net3, y1, ~y3);
udp_or3  inst4  (net4, net1, net2, net3);

udp_dff_edge1 inst5 (y1, net4, clk, rst_n);

//--------------------------------------------
//instantiate the udp for flip-flop y2
udp_xor2 inst6  (net5, y2, y3);

udp_dff_edge1 inst7 (y2, net5, clk, rst_n);

//--------------------------------------------
//instantiate the udp for flip-flop y3
udp_dff_edge1 inst8 (y3, ~y3, clk, rst_n);

endmodule
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//test bench for the modulo-8 counter using udps

module ctr_mod8_udp1_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg clk, rst_n;
wire y1, y2, y3;

//display variables
initial
$monitor ("{y1 y2 y3} = %b", {y1, y2, y3});

//generate reset
initial
begin

#0 rst_n = 1'b1;
#2 rst_n = 1'b0;
#5 rst_n = 1'b1;

end

//generate clock
initial
begin

clk = 1'b0;
forever

#10clk = ~clk;
end

//determine length of simulation
initial
begin

repeat (9) @ (posedge clk);
$stop;

end

//instantiate the module into the test bench
ctr_mod8_udp1 inst1 (rst_n, clk, y1, y2, y3);

endmodule
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{y1 y2 y3} = 000
{y1 y2 y3} = 001
{y1 y2 y3} = 010
{y1 y2 y3} = 011
{y1 y2 y3} = 100
{y1 y2 y3} = 101
{y1 y2 y3} = 110
{y1 y2 y3} = 111
{y1 y2 y3} = 000
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1.14 Design a binary-to-excess-3 code converter using user-defined primitives of 
the following types: udp_and2, udp_and3, udp_or3, and udp_or4.  The binary 
code is labelled a, b, c, d, and the excess-3 code is labelled w, x, y, z, where d
and z are the low-order bits of their respective codes.  Binary codes above 
1100 produce an excess-3 code of 0000.  Obtain the design module, the test 
bench module, and outputs.

Binary code Excess-3 code

a b c d w x y z
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0



 net1    net2    net3   net4

w =  a'bd + a'bc + ab' + ac'd '

 net5    net6  net7

x =  bc'd ' + b'd + b'c

net8  net9  net10

y =  c'd ' + a'cd + b'cd 

net11 net12  net13

z =  c 'd  ' + a'd ' + b'd  '
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//binary-to-excess-3 using udps

module bin_to_ex3_udp (a, b, c, d, w, x, y, z);

//define inputs and outputs
input a, b, c, d;
output w, x, y, z;

//define internal nets
wire net1, net2, net3, net4,

net5, net6, net7,
net8, net9, net10,
net11, net12, net13;

//instantiate the udps for high-order excess_3 w
udp_and3 (net1, ~a, b, d);
udp_and3 (net2, ~a, b, c);
udp_and2 (net3, a, ~b);
udp_and3 (net4, a, ~c, ~d);
udp_or4 (w, net1, net2, net3, net4);

//instantiate the udps for excess_3 x
udp_and3 (net5, b, ~c, ~d);
udp_and2 (net6, ~b, d);
udp_and2 (net7, ~b, c);
udp_or3 (x, net5, net6, net7);

//instantiate the udps for excess_3 y
udp_and2 (net8, ~c, ~d);
udp_and3 (net9, ~a, c, d);
udp_and3 (net10, ~b, c, d);
udp_or3 (y, net8, net9, net10);

//instantiate the udps for excess_3 z
udp_and2 (net11, ~c, ~d);
udp_and2 (net12, ~a, ~d);
udp_and2 (net13, ~b, ~d);
udp_or3 (z, net11, net12, net13);

endmodule
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//test bench for binary-to-excess-3 udp module

module bin_to_ex3_udp_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg a, b, c, d;
wire w, x, y, z;

//apply stimulus and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{a, b, c, d} = invect [4:0];
#10 $display ("abcd = %b, wxyz = %b",

{a, b, c, d}, {w, x, y, z});
end

end

//instantiate the module into the test bench
bin_to_ex3_udp inst1 (a, b, c, d, w, x, y, z);

endmodule

abcd = 0000, wxyz = 0011
abcd = 0001, wxyz = 0100
abcd = 0010, wxyz = 0101
abcd = 0011, wxyz = 0110

abcd = 0100, wxyz = 0111
abcd = 0101, wxyz = 1000
abcd = 0110, wxyz = 1001
abcd = 0111, wxyz = 1010

abcd = 1000, wxyz = 1011
abcd = 1001, wxyz = 1100
abcd = 1010, wxyz = 1101
abcd = 1011, wxyz = 1110

abcd = 1100, wxyz = 1111
abcd = 1101, wxyz = 0000
abcd = 1110, wxyz = 0000
abcd = 1111, wxyz = 0000
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1.19 Design a module to execute the four shift operations of shift left logical (SLL), 
shift left algebraic (SLA), shift right logical (SRL), and shift right algebraic
(SRA) using the case statement.  The operands to be shifted are 8-bit oper-
ands.  Obtain the test bench providing four shift amounts for each shift oper-
ation and obtain the outputs.

//behavioral logical and algebraic shifter
module four_fctn_shift (a, shift_code, shift_amt,

shift_rslt);

//define inputs and outputs
input [7:0] a;
input [1:0] shift_code;
input [2:0] shift_amt;
output [7:0] shift_rslt;

//variables used in always are declared as registers
reg [7:0] reg_a;
reg [7:0] shift_rslt;
reg [15:0] sra_reg;

//define shift codes
//parameter is used to define constants
parameter sll = 2'b00,

sla = 2'b01,
srl = 2'b10,
sra = 2'b11;

//perform the shift operations
always @ (a or shift_code)
begin

case (shift_code)
sll:

begin
reg_a = a << shift_amt;
shift_rslt = reg_a;

end

sla:
begin

reg_a = a;
reg_a = reg_a << shift_amt;
reg_a[7] = a[7];
shift_rslt = reg_a;

end

//continued on next page



sra:
begin

sra_reg[15:8] = {8{a[7]}};
sra_reg[7:0] = a;
sra_reg = sra_reg >> shift_amt;
shift_rslt = sra_reg[7:0];

end

endcase
end

endmodule
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//test bench for four_fctn_shift module
module four_fctn_shift_tb;

reg [7:0] a; //inputs are reg for test bench
reg [1:0] shift_code;
reg [2:0] shift_amt;

wire [7:0] shift_rslt; //outputs are wire

//display variables
initial
$monitor ("a=%b, shift_code=%b, shift_amt=%b,

shift_rslt=%b",
a, shift_code, shift_amt, shift_rslt);

//apply input vectors
initial
begin
//----------------------------------------------------
//sll

#0 a = 8'b0001_1110;
shift_code = 2'b00; shift_amt = 3'b011;

#10 a = 8'b0111_1101;
shift_code = 2'b00; shift_amt = 3'b111;

#10 a = 8'b0110_0101;
shift_code = 2'b00; shift_amt = 3'b101;

#10 a = 8'b1111_1111;
shift_code = 2'b00; shift_amt = 3'b111;

//----------------------------------------------------
//sla

#10 a = 8'b0001_1110;
shift_code = 2'b01; shift_amt = 3'b011;

#10 a = 8'b0111_1101;
shift_code = 2'b01; shift_amt = 3'b111;

#10 a = 8'b0110_0101;
shift_code = 2'b01; shift_amt = 3'b101;

#10 a = 8'b1111_1111;
shift_code = 2'b01; shift_amt = 3'b111;

//----------------------------------------------------
//continued on next page
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//srl
#10 a = 8'b0001_1110;

shift_code = 2'b10; shift_amt = 3'b011;

#10 a = 8'b0111_1101;
shift_code = 2'b10; shift_amt = 3'b111;

#10 a = 8'b0110_0101;
shift_code = 2'b10; shift_amt = 3'b101;

#10 a = 8'b1111_1111;
shift_code = 2'b10; shift_amt = 3'b111;

//----------------------------------------------------
//sra

#10 a = 8'b0001_1110;
shift_code = 2'b11; shift_amt = 3'b011;

#10 a = 8'b0111_1101;
shift_code = 2'b11; shift_amt = 3'b111;

#10 a = 8'b0110_0101;
shift_code = 2'b11; shift_amt = 3'b101;

#10 a = 8'b1111_1111;
shift_code = 2'b11; shift_amt = 3'b111;

//----------------------------------------------------

#10 $stop;
end

//instantiate the module into the test bench
four_fctn_shift inst1 (a, shift_code, shift_amt,

shift_rslt);

endmodule
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sll = 00, sla = 01, srl = 10, sra = 11

------------------------------------------------------
shift left logical
a = 00011110, shift_code = 00,
shift_amt = 011, shift_rslt = 11110000

a = 01111101, shift_code = 00,
shift_amt = 111, shift_rslt = 10000000

a = 01100101, shift_code = 00,
shift_amt = 101, shift_rslt = 10100000

a = 11111111, shift_code = 00,
shift_amt = 111, shift_rslt = 10000000

------------------------------------------------------
shift left algebraic
a = 00011110, shift_code = 01,
shift_amt = 011, shift_rslt = 01110000

a = 01111101, shift_code = 01,
shift_amt = 111, shift_rslt = 00000000

a = 01100101, shift_code = 01,
shift_amt = 101, shift_rslt = 00100000

a = 11111111, shift_code = 01,
shift_amt = 111, shift_rslt = 10000000

------------------------------------------------------
//continued on next page
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sll = 00, sla = 01, srl = 10, sra = 11

------------------------------------------------------
shift right logical
a = 00011110, shift_code = 10,
shift_amt = 011, shift_rslt = 00000011

a = 01111101, shift_code = 10,
shift_amt = 111, shift_rslt = 00000000

a = 01100101, shift_code = 10,
shift_amt = 101, shift_rslt = 00000011

a = 11111111, shift_code = 10,
shift_amt = 111, shift_rslt = 00000001

------------------------------------------------------
shift right algebraic
a = 00011110, shift_code = 11,
shift_amt = 011, shift_rslt = 00000011

a = 01111101, shift_code = 11,
shift_amt = 111, shift_rslt = 00000000

a = 01100101, shift_code = 11,
shift_amt = 101, shift_rslt = 00000011

a = 11111111, shift_code = 11,
shift_amt = 111, shift_rslt = 11111111
------------------------------------------------------
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1.23 Use structural modeling to design a logic circuit to generate an output z1 
whenever a 4-bit variable — x1 , x2 , x3 , x4  — has three or more 1s.  Imple-
ment the module using AND gates and OR gates that were designed using 
dataflow modeling.  Obtain the test bench and the outputs.

 0 0      0 1      1 1        1 0

0 0      0         0         0         0

0 1      0         0         1         0

1 1      0         1         1         1

1 0      0         0         1         0

x1 x2

x3 x4

 0            1           3            2

 4            5           7              6

 

 12          13         15          14

   8            9          11         10

z1

z1 = x1  x2  x4  + x1  x2  x3  + x2 x3 x4  + x1 x3 x4 

//structural for the following expression
//z1 = x1 x2 x4 + x1 x2 x3 + x2 x3 x4 + x1 x3 x4 

module majority4 (x1, x2, x3, x4, z1);

//define inputs and output
input x1, x2, x3, x4;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5;

//instantiate the logic gates
and3_df inst1 (x1, x2, x4, net1);
and3_df inst2 (x1, x2, x3, net2);
and3_df inst3 (x2, x3, x4, net3);
and3_df inst4 (x1, x3, x4, net4);
or4_df inst5 (net1, net2, net3, net4, z1);

endmodule



//test bench for majority4
module majority4_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1;

//apply input vectors and display outputs
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1, x2, x3, x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
majority4 inst1 (x1, x2, x3, x4, z1);

endmodule

x1, x2, x3, x4 = 0000, z1 = 0
x1, x2, x3, x4 = 0001, z1 = 0
x1, x2, x3, x4 = 0010, z1 = 0
x1, x2, x3, x4 = 0011, z1 = 0

x1, x2, x3, x4 = 0100, z1 = 0
x1, x2, x3, x4 = 0101, z1 = 0
x1, x2, x3, x4 = 0110, z1 = 0
x1, x2, x3, x4 = 0111, z1 = 1

x1, x2, x3, x4 = 1000, z1 = 0
x1, x2, x3, x4 = 1001, z1 = 0
x1, x2, x3, x4 = 1010, z1 = 0
x1, x2, x3, x4 = 1011, z1 = 1

x1, x2, x3, x4 = 1100, z1 = 0
x1, x2, x3, x4 = 1101, z1 = 1
x1, x2, x3, x4 = 1110, z1 = 1
x1, x2, x3, x4 = 1111, z1 = 1
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Chapter 2     Combinational Logic Design 
Using Verilog HDL

2.3 Design a structural module that will generate a high output z1 if a 4-bit binary 
number x1 x2 x3 x4  has a value less than or equal to four or greater than eleven. 
Generate a Karnaugh map and obtain the equation for z1 in a sum-of-products 
form and for z2  in a product-of-sums form.  Instantiate dataflow modules for 
the logic gates into the structural module.  Obtain the design module, the test 
bench module for all combinations of the inputs, and the outputs.

 0 0      0 1      1 1        1 0

0 0      1          1        1         1

0 1       1          0         0         0

1 1      1          1        1         1

1 0      0          0         0          0

x1 x2

x3 x4

 0            1           3            2

 4            5           7              6

 

 12          13         15          14

   8            9          11         10

z1 (z2)

z1 = x1'  x2'   + x1 x2  + x2 x3'  x4'  
    = (x1   x2 )' + x2 x3'  x4'  

z2  = (x1  + x2'   + x4'  ) (x1  + x2'   + x3'  ) (x1'   + x2 )



//structural dataflow number <=4 or >11
module number_range5 (x1, x2, x3, x4, z1, z2);

input x1, x2, x3, x4; //define inputs and output
output z1, z2;

//define internal nets
wire  net1, net2, net3, net4, net5;

//design the logic for the sum-of-products z1
xnor2_df inst1 (x1, x2, net1);
and3_df inst2 (x2, ~x3, ~x4, net2);
or2_df inst3 (net1, net2, z1);

//design the logic for the product-of-sums z2
or3_df inst4 (x1, ~x2, ~x4, net3),

inst5 (x1, ~x2, ~x3, net4);
or2_df inst6 (~x1, x2, net5);
and3_df imst7 (net3, net4, net5, z2);
endmodule

//test bench for number <=4 or >11
module number_range5_tb;

reg x1, x2, x3, x4; //inputs are reg for test bench
wire z1, z2; //outputs are wire

//apply input vectors and display variables
initial
begin: apply_stimulus
reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1 x2 x3 x4) = %b, z1 =%b, z2 =%b",

{x1, x2, x3, x4}, z1, z2);
end

end

//instantiate the module into the test bench
number_range5 inst1 (x1, x2, x3, x4, z1, z2);

endmodule
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x1 x2 x3 x4) = 0000, z1 =1, z2 =1
x1 x2 x3 x4) = 0001, z1 =1, z2 =1
x1 x2 x3 x4) = 0010, z1 =1, z2 =1
x1 x2 x3 x4) = 0011, z1 =1, z2 =1

x1 x2 x3 x4) = 0100, z1 =1, z2 =1
x1 x2 x3 x4) = 0101, z1 =0, z2 =0
x1 x2 x3 x4) = 0110, z1 =0, z2 =0
x1 x2 x3 x4) = 0111, z1 =0, z2 =0

x1 x2 x3 x4) = 1000, z1 =0, z2 =0
x1 x2 x3 x4) = 1001, z1 =0, z2 =0
x1 x2 x3 x4) = 1010, z1 =0, z2 =0
x1 x2 x3 x4) = 1011, z1 =0, z2 =0

x1 x2 x3 x4) = 1100, z1 =1, z2 =1
x1 x2 x3 x4) = 1101, z1 =1, z2 =1
x1 x2 x3 x4) = 1110, z1 =1, z2 =1
x1 x2 x3 x4) = 1111, z1 =1, z2 =1
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2.9 Design a dataflow module for a full adder using logic gates that were designed 
using dataflow modeling.  Recall that a full adder is a combinational circuit 
that adds two operand bits: the augend a and the addend b plus a carry-in bit 
cin.  The carry-in bit represents the carry-out of the previous lower-order 
stage.  A full adder produces two outputs: a sum bit sum and carry-out bit cout. 
The truth table for a full adder is shown below.  Obtain the test bench module 
and the outputs.

a b cin cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

sum = a  b  cin

cout = cin (a  b) + ab



//dataflow for a full adder

module full_adder_df (a, b, cin, sum, cout);

//define inputs and outputs
input a, b, cin;
output sum, cout;

//define internal nets
wire net1, net2, net3;

//design the sum for the full adder
xor3_df inst1 (a, b, cin, sum);

//design the carry-out for the full adder
xor2_df inst2 (a, b, net1);
and2_df inst3 (cin, net1, net2);
and2_df inst4 (a, b, net3);
or2_df inst5 (net2, net3, cout);

endmodule

//test bench for full adder
module full_adder_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg a, b, cin;
wire sum, cout;

//apply input vectors and display outputs
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)

begin
{a, b, cin} = invect [3:0];
#10 $display ("a, b, cin) = %b,

sum = %b, cout = %b",
{a, b, cin}, sum, cout);

end
end

//instantiate the module into the test bench
full_adder_df inst1 (a, b, cin, sum, cout);

endmodule
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a, b, cin) = 000, sum = 0, cout = 0
a, b, cin) = 001, sum = 1, cout = 0
a, b, cin) = 010, sum = 1, cout = 0
a, b, cin) = 011, sum = 0, cout = 1

a, b, cin) = 100, sum = 1, cout = 0
a, b, cin) = 101, sum = 0, cout = 1
a, b, cin) = 110, sum = 0, cout = 1
a, b, cin) = 111, sum = 1, cout = 1
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2.14 Use structural modeling to design a 4:1 multiplexer using logic gates that were 
designed using dataflow modeling.  Obtain the test bench module and the out-
puts for 16 combinations of the inputs.

//structural for a 4to1 multiplexer
//using dataflow logic gates
module mux_4to1_df (sel, data, z1);

//define inputs and output
input [1:0] sel;
input [3:0] data;
output z1;

//define internal nets
wire net1, net2, net3, net4;

//design the 4to1 multiplexer
and3_df inst1 (data[0], ~sel[1], ~sel[0], net1),

inst2 (data[1], ~sel[1], sel[0], net2),
inst3 (data[2], sel[1], ~sel[0], net3),
inst4 (data[3], sel[1], sel[0], net4);

or4_df inst5 (net1, net2, net3, net4, z1);
 
endmodule



//test bench for the 4:1 multiplexer structural module

module mux_4to1_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [1:0] sel;
reg [3:0] data;
wire z1;

initial
$monitor ("sel = %b, data = %b, z1 = %b",

sel, data, z1);

//apply stimulus
initial
begin

#0 sel = 2'b00; data = 4'b0001; //z1 = 1
#10 sel = 2'b01; data = 4'b1001; //z1 = 0
#10 sel = 2'b10; data = 4'b1000; //z1 = 0
#10 sel = 2'b11; data = 4'b1001; //z1 = 1

#10 sel = 2'b00; data = 4'b0100; //z1 = 0
#10 sel = 2'b01; data = 4'b1000; //z1 = 0
#10 sel = 2'b10; data = 4'b1100; //z1 = 1
#10 sel = 2'b11; data = 4'b1101; //z1 = 1

#10 sel = 2'b00; data = 4'b0110; //z1 = 0
#10 sel = 2'b01; data = 4'b0000; //z1 = 0
#10 sel = 2'b10; data = 4'b1001; //z1 = 0
#10 sel = 2'b11; data = 4'b0100; //z1 = 0

#10 sel = 2'b00; data = 4'b0111; //z1 = 1
#10 sel = 2'b01; data = 4'b0010; //z1 = 1
#10 sel = 2'b10; data = 4'b1101; //z1 = 1
#10 sel = 2'b11; data = 4'b1100; //z1 = 1

#10 $stop;
end

//instantiate the module into the test bench
mux_4to1_df inst1 (sel, data, z1);

endmodule
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sel[1:0]  data[3:0]

-----------------------------
sel = 00, data = 0001, z1 = 1
sel = 01, data = 1001, z1 = 0
sel = 10, data = 1000, z1 = 0
sel = 11, data = 1001, z1 = 1

sel = 00, data = 0100, z1 = 0
sel = 01, data = 1000, z1 = 0
sel = 10, data = 1100, z1 = 1
sel = 11, data = 1101, z1 = 1

sel = 00, data = 0110, z1 = 0
sel = 01, data = 0000, z1 = 0
sel = 10, data = 1001, z1 = 0
sel = 11, data = 0100, z1 = 0

sel = 00, data = 0111, z1 = 1
sel = 01, data = 0010, z1 = 1
sel = 10, data = 1101, z1 = 1
sel = 11, data = 1100, z1 = 1
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2.18 Obtain a minimized equation for z1 in a sum-of-products representation and 
for z2  in a product-of-sums representation for the Karnaugh map shown be-
low, where the outputs are 12  z1(z2 ) < 3.  The obtain the design module us-
ing built-in primitives, the test bench module, and the outputs.

 0 0      0 1      1 1        1 0

0 0      1          1         0         1

0 1       0          0         0         0

1 1      1          1         1          1

1 0      0          0         0          0

x1 x2

x3 x4

 0            1           3            2

 4            5           7              6

 

 12          13         15          14

   8            9          11         10

z1 = x1 x2  + x1'  x2'  x3'   + x1'  x2'  x4'  

z2  = (x1  + x2'  ) (x1'   + x2 ) (x1  + x3'   + x4'  )



//built-in primitives for number 12 <= z1 < 3
module sop_pos_bip2 (x1, x2, x3, x4, z1, z2);

//define inputs and outputs
input x1, x2, x3, x4;
output z1, z2;

//design the logic using bips for z1 in a sum-of-products
and inst1 (net1, x1, x2),

inst2 (net2, ~x1, ~x2, ~x3),
inst3 (net3, ~x1, ~x2, ~x4);

or inst4 (z1, net1, net2, net3);

//design the logic using bips for z1 in a product-of-sums
or inst5 (net5, x1, ~x2),

inst6 (net6, ~x1, x2),
inst7 (net7, x1, ~x3, ~x4);

and inst8 (z2, net5, net6, net7);

endmodule

//test bench for number 12 <= z1 < 3
module sop_pos_bip2_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg x1, x2, x3, x4;
wire z1, z2;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1 x2 x3 x4} = %b,

z1 = %b, z2 = %b",
{x1, x2, x3, x4}, z1, z2);

end
end

//instantiate the module into the test bench
sop_pos_bip2 inst1 (x1, x2, x3, x4, z1, z2);

endmodule
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{x1 x2 x3 x4} = 0000, z1 = 1, z2 = 1
{x1 x2 x3 x4} = 0001, z1 = 1, z2 = 1
{x1 x2 x3 x4} = 0010, z1 = 1, z2 = 1
{x1 x2 x3 x4} = 0011, z1 = 0, z2 = 0

{x1 x2 x3 x4} = 0100, z1 = 0, z2 = 0
{x1 x2 x3 x4} = 0101, z1 = 0, z2 = 0
{x1 x2 x3 x4} = 0110, z1 = 0, z2 = 0
{x1 x2 x3 x4} = 0111, z1 = 0, z2 = 0

{x1 x2 x3 x4} = 1000, z1 = 0, z2 = 0
{x1 x2 x3 x4} = 1001, z1 = 0, z2 = 0
{x1 x2 x3 x4} = 1010, z1 = 0, z2 = 0
{x1 x2 x3 x4} = 1011, z1 = 0, z2 = 0

{x1 x2 x3 x4} = 1100, z1 = 1, z2 = 1
{x1 x2 x3 x4} = 1101, z1 = 1, z2 = 1
{x1 x2 x3 x4} = 1110, z1 = 1, z2 = 1
{x1 x2 x3 x4} = 1111, z1 = 1, z2 = 1
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Chapter 3     Sequential Logic Design Using     
Verilog HDL

3.4 The state diagram for a Moore synchronous sequential machine is shown be-
low with three inputs, x1 , x2 , and x3 .  There are two outputs, z1 and z2 .  Obtain 
the structural design module using built-in primitives and instantiated D flip-
flops that were designed using behavioral modeling.  Obtain the test bench 
module and the outputs.  Use the $random system task for the test bench 
module to generate a random value for certain inputs when their value can be 
considered a “don’t care ” — either 0 or 1.  Use clk ' to gate the outputs to avoid 
possible glitches.



a

y1 y2 y3
0   0   0

d
0   1   1

b
0   0   1

c
0   1   0

f
z2

1   1   0
e
z1

1   1   1

x1

x2

x3

x1'

x2'

x3'

  0 0      0 1      1 1        10
x2 x3

    x1

 0       0         x2'         0         1

 1         –         –         0         0

 0            1           3            2

 4            5           7              6

  0 0      0 1      1 1        10
x2 x3

    x1

 0      x1'        1         0         1

 1        –          –         0         0 

 0            1           3            2

 4            5           7              6

Dy1 Dy2

  0 0      0 1      1 1        10
x2 x3

    x1

 0        x1        1         0         x3

 1       –          –         0         0

 0            1           3            2

 4            5           7              6

Dy3
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    net1   net2
D y1 = y2 '  y3   x2'   + y1 'y2   y3 '

      net3

 net4   net5        net6
Dy2 = y2 '  x1'   + y2 '  y3  + y1 ' y2   y3 '

  net7

 net8      net9        net10
Dy3 = y2 '  x1   + y2 '  y3  + y1 '  y2   y3 '  x3 

   net11

//structural for moore ssm using bip

module moore_ssm_bip (rst_n, clk, x1, x2, x3,
y1, y2, y3, z1, z2);

//define inputs and outputs
input rst_n, clk, x1, x2, x3;
output y1, y2, y3, z1, z2;

//define internal nets
wire net1, net2, net3, net4, net5, net6,

net7, net8, net9, net10, net11;

//--------------------------------------------------
//instantiate the logic for D flip-flop y1
and (net1, ~y2, y3, ~x2),

(net2, ~y1, y2, ~y3);

or (net3, net1, net2);

//instantiate the D flip-flop for y1
d_ff_bh inst1 (rst_n, clk, net3, y1);

//reset, clock, D, Q

//continued on next page
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//--------------------------------------------------
//instantiate the logic for D flip-flop y2
and (net4, ~y2, ~x1),

(net5, ~y2, y3),
(net6, ~y1, y2, ~y3);

or (net7, net4, net5, net6);

//instantiate the D flip-flop for y2
d_ff_bh inst2 (rst_n, clk, net7, y2);

//reset, clock, D, Q

//--------------------------------------------------
//instantiate the logic for D flip-flop y3
and (net8, ~y2, x1),

(net9, ~y2, y3),
(net10, ~y1, y2, ~y3, x3);

or (net11, net8, net9, net10);

//instantiate the D flip-flop for y3
d_ff_bh inst3 (rst_n, clk, net11, y3);

//reset, clock, D, Q

//--------------------------------------------------
//instantiate the logic for outputs z1 and z2
and (z1, y1, y2, y3, ~clk),

(z2, y1, y2, ~y3, ~clk);

endmodule

//test bench for the moore ssm using bip
module moore_ssm_bip_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, clk, x1, x2, x3;
wire y1, y2, y3, z1, z2;

//display variables
initial
$monitor ("x1 x2 x3 = %b, state = %b, z1 z2 = %b",

{x1, x2, x3}, {y1, y2, y3}, {z1, z2});
//continued on next page
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//test bench for the moore ssm using bip
module moore_ssm_bip_tb;

reg rst_n, clk, x1, x2, x3; //inputs are reg
wire y1, y2, y3, z1, z2; //outputs are wire

initial //display variables
$monitor ("x1 x2 x3 = %b, state = %b, z1 z2 = %b",

{x1, x2, x3}, {y1, y2, y3}, {z1, z2});

//define clock
initial
begin

clk = 1'b0;
forever
#10 clk = ~clk;

end

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b1; x2 =1'b0; x3 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------
x1 = 1'b1; x2 = 1'b0; x3 = 1'b0;

@ (posedge clk)

x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;
@ (posedge clk) //go to state_e, assert z1

x1 = $random; x2 = $random;  x3 = $random;
@ (posedge clk) //go to state_a

//----------------------------------------------------
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

@ (posedge clk)

x1 = 1'b0; x2 = $random;  x3 = 1'b0;
@ (posedge clk) //go to state_f, assert z2

x1 = $random; x2 = $random;  x3 = $random;
@ (posedge clk) //go to state_a

//continued on next page
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//---------------------------------------------------
x1 = 1'b0; x2 = 1'b0; x3 = 1'b0;

@ (posedge clk)

x1 = 1'b0; x2 = $random;  x3 = 1'b1;
@ (posedge clk) //go to state_e, assert z1

x1 = $random; x2 = $random;  x3 = $random;
@ (posedge clk) //go to state_a

#10 $stop;

end

//instantiate the module into the test bench
moore_ssm_bip inst1 (rst_n, clk, x1, x2, x3,

y1, y2, y3, z1, z2);

endmodule

x1 x2 x3 = 100, state = 000, z1 z2 = 00
x1 x2 x3 = 100, state = 001, z1 z2 = 00
x1 x2 x3 = 000, state = 111, z1 z2 = 10
x1 x2 x3 = 011, state = 000, z1 z2 = 00

x1 x2 x3 = 000, state = 010, z1 z2 = 00
x1 x2 x3 = 010, state = 110, z1 z2 = 01
x1 x2 x3 = 000, state = 000, z1 z2 = 00

x1 x2 x3 = 001, state = 010, z1 z2 = 00
x1 x2 x3 = 011, state = 111, z1 z2 = 10
x1 x2 x3 = 110, state = 000, z1 z2 = 00
x1 x2 x3 = 110, state = 001, z1 z2 = 00
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3.10 The timing diagram for a Mealy asynchronous sequential machine is shown 
below.  Design the machine using instantiated logic gates that were designed 
using dataflow modeling.  Obtain the structural design module, the test bench 
module, and the outputs.



a b c d fa b c b b

+x1

+x2

+z1
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Primitive flow table

x1x2
   00       01       11        10         z1    

  d           –          b             0     

  c           –           f           –           1     

  –            d          –             b         1     

a           –          e          –          0     d

–         d           d           b             1     

b

c

a

e

–          d            g          b            0     f

Merger diagram

a b

c

de

f
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Merged flow table

x1x2
   00       01       11        10    

a   b         –          b     

 a         d          e         c     c

d ea

f fcb

d e

b

Excitation map

x1x2
   00       01       11        10    

 1                      1

y1f

0

1

0
 a          d          e

1
 c                     f         b

Y1e

0 0          1

0

net1       net2       net3
Y1e  = x1 x2'   + y1f   x1  + y1f   x2'  

Output map

x1x2
   00       01       11        10    

 1                      0

y1f

0

1

0
  a          d          e

1
 c                     f         b

z1

0 1          1

0

net1       net3       net4
z1 = x1 x2'   + y1f   x2'   + y1f   '  x1  



//structural for sop asynchronous sequential machine
module asm_sop_df (rst_n, x1, x2, y1e, z1);

//define inputs and outputs
input rst_n, x1, x2;
output y1e, z1;

//define internal nets
wire net1, net2, net3, net4;

//----------------------------------------------
//design the logic for excitation variable Y1e
and2_df inst1 (x1, ~x2, net1);
and3_df inst2 (x1, y1e, rst_n, net2),

inst3 (y1e, ~x2, rst_n, net3);

or3_df inst4 (net1, net2, net3, y1e);

//----------------------------------------------
//design the logic for output z1
and2_df inst5 (~y1e, x1, net4);

or3_df inst6 (net1, net3, net4, z1);

endmodule

//test bench for the sop asynchronous sequential 
machine

module asm_sop_df_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg rst_n, x1, x2;
wire y1e, z1;

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, y1e, z1);

//continued on next page
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//define input vectors
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------
#10 x1 = 1'b1; x2 = 1'b0; //go to state_b;

//assert z1
#10 x1 = 1'b0; x2 = 1'b0; //go to state_c;

//assert z1
#10 x1 = 1'b0; x2 = 1'b1; //go to state_d

#10 x1 = 1'b0; x2 = 1'b0; //go to state_a
#10 x1 = 1'b1; x2 = 1'b0; //go to state_b;

//assert z1
#20 x1 = 1'b0; x2 = 1'b0; //go to state_c;

//assert z1
#10 x1 = 1'b1; x2 = 1'b0; //go to state_b;

//assert z1
#10 x1 = 1'b1; x2 = 1'b1; //go to state_f
#10 x1 = 1'b1; x2 = 1'b0; //go to state_b;

//assert z1
#10 x1 = 1'b1; x2 = 1'b1; //go to state_f
#10 x1 = 1'b1; x2 = 1'b0; //go to state_b;

//assert z1
#10 x1 = 1'b0; x2 = 1'b0; //go to state_c;

//assert z1
#10 x1 = 1'b1; x2 = 1'b1; //go to state_f

#10 $stop;
end

//instantiate the module into the test bench
asm_sop_df inst1 (rst_n, x1, x2, y1e, z1);

endmodule
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x1 x2 = 00, state = 0, z1 = 0
x1 x2 = 10, state = 1, z1 = 1
x1 x2 = 00, state = 1, z1 = 1
x1 x2 = 01, state = 0, z1 = 0

x1 x2 = 00, state = 0, z1 = 0
x1 x2 = 10, state = 1, z1 = 1
x1 x2 = 00, state = 1, z1 = 1
x1 x2 = 10, state = 1, z1 = 1
x1 x2 = 11, state = 1, z1 = 0
x1 x2 = 10, state = 1, z1 = 1
x1 x2 = 11, state = 1, z1 = 0
x1 x2 = 10, state = 1, z1 = 1
x1 x2 = 00, state = 1, z1 = 1
x1 x2 = 11, state = 1, z1 = 0
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3.15 The state diagram for a Mealy pulse-mode asynchronous sequential machine 
is shown below.  Synthesize the machine using logic gates that were designed 
using dataflow modeling and D flip-flops that were designed using behavioral 
modeling.  Obtain the structural design module, the test bench module, and 
the outputs.

a

y1 y2 
0   0

b
0   1

c
1   0

z1

x1

x2

x2
x1

x1

x2



    y1

    y2
 0

 0        r        r

 1

 1        R        –

 0            1

    2            3

     y1

    y2
 0

 0        r        S

 1

 1        R        –

 0            1

    2            3

 

    y1

    y2
 0

 0        S        s

 1

 1        S        –

 0            1

    2            3

     y1

    y2
 0

 0        r        R

 1

 1        r        –

 0            1

    2            3

 

x1                                        x2
Inputs

Latches

y1

y2
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S  Ly1  = y2 x2 R  Ly1  = x1  + y1 x2 

S  Ly2  = x1 R  Ly2  = x2 

Output map

    y1

    y2
 0

 0        0        0

 1

 1       x2         –

 0            1

    2            3

 

z1

z1 = y1 y2 '  x2 
    = y1 x2  (Minimized)



y2

D

>
R

y1

D

>
R

+x1
+x2

+y2

+y1

–x1

–x2

–rst

+y1

–y1

+y2

–y2

+z1

net1

net2

net3

net4

net5

net6

net7

net8

inst1

inst2

inst3 inst4

inst5
inst7

inst6

inst8

inst9

inst10

inst11

//mealy pulse-mode asm using dataflow logic and D ff
module pm_asm_mealy2_dff (rst_n, x1, x2, y1, y2, z1);

input rst_n, x1, x2; //define inputs and outputs
output y1, y2, z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7, net8;

//define the clock for the D flip-flops
nor2_df inst1 (x1, x2, net1);

//----------------------------------------------------
//define the logic for latch Ly1 and D flip-flop y1
nand2_df inst2 (y2, x2, net2);
and2_df inst3 (x2, y1, net3);
nor2_df inst4 (x1, net3, net4);
nand2_df inst5 (net2, net6, net5);
nand3_df inst6 (net5, net4, rst_n, net6);

//instantiate the D flip-flop for y1
d_ff_bh inst7 (rst_n, net1, net5, y1);

 //rst, clk, D, Q
//continued on next page
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//----------------------------------------------------
//define the logic for latch Ly2 and D flip-flop y2
nand2_df inst8 (~x1, net8, net7);
nand3_df inst9 (net7, ~x2, rst_n, net8);

//instantiate the D flip-flop for y2
d_ff_bh inst10 (rst_n, net1, net7, y2);

//rst, clk, D, Q

//----------------------------------------------------
//define the logic for output z1
and2_df inst11 (y1, x2, z1);

endmodule

//test bench for the mealy pulse-mode asm
module pm_asm_mealy2_dff_tb;

reg rst_n, x1, x2; //inputs are reg for test bench
wire y1, y2, z1; //outputs are wire for test bench

//display variables
initial
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, {y1, y2}, z1);

//apply input sequence
initial
begin

#0 rst_n = 1'b0;
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------
#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_a, assert z1
#10 x1 = 1'b0; x2 = 1'b0;

//continued on next page
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//----------------------------------------------------
#10 x1 = 1'b0; x2 = 1'b1; //state_a
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_a, assert z1
#10 x1 = 1'b0; x2 = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
pm_asm_mealy2_dff inst1 (rst_n, x1, x2, y1, y2, z1);

endmodule

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 01, state = 01, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 01, state = 10, z1 = 1
x1 x2 = 00, state = 00, z1 = 0

x1 x2 = 01, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 01, state = 01, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 01, state = 10, z1 = 1
x1 x2 = 00, state = 00, z1 = 0
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3.21 The state diagram shown below is for a Mealy pulse-mode asynchronous se-
quential machine.  Design the structural module for the machine using built-in 
primitives and instantiated T flip-flops.  Obtain the test bench module and the 
outputs.
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c
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x1                                        x2
Inputs

Flip-flops

y1

y2

   net1         net2          net3
Ty1  = y1 '  y2 x1  + y1  y2 '  x1  + y1  y2 '  x2 

           net4

  net5          net6
Ty2  = y1 '  y2 '  x1  + y1  y2  x1 

            net7

z1 = y1 y2 '  x1 
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//structural mealy pulse-mode asm using bip and tff

module pm_asm_mealy_bip_tff (rst_n, x1, x2, y, z1);

//define inputs and outputs
input rst_n, x1, x2;
output [1:2] y;
output z1;

//define internal nets
wire net1, net2, net3, net4, net5, net6, net7;

//-------------------------------------------------
//design the logic for T flip-flop y[1]
and (net1, ~y[1], y[2], x1),

(net2, y[1], ~y[2], x1),
(net3, y[1], ~y[2], x2);

or (net4, net1, net2, net3);

//instantiate the T flip-flop
t_ff_da inst1 (rst_n, net4, nety1);//rst, T, Q

buf #12 (y[1], nety1);
//nety1 is the output of the T flip-flop.
//y[1] is the output delayed by 12 time units

//-------------------------------------------------
//design the logic for T flip-flop y[2]
and (net5, ~y[1], ~y[2], x1),

(net6, y[1], y[2], x1);

or (net7, net5, net6);

//instantiate the T flip-flop
t_ff_da inst2 (rst_n, net7, nety2);//rst, T, Q

buf #12 (y[2], nety2);
//nety2 is the output of the T flip-flop.
//y[2] is the output delayed by 12 time units

//-------------------------------------------------
//design the logic for output z1
assign z1 = y[1] & ~y[2] & x1;

endmodule
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//test bench mealy pulse-mode asm using bip and tff
module pm_asm_mealy_bip_tff_tb;

reg rst_n, x1, x2; //inputs are reg for test bench
wire [1:2] y; //outputs are wire for test bench
wire z1;

initial //display variables
$monitor ("x1 x2 = %b, state = %b, z1 = %b",

{x1, x2}, y, z1);

//define input sequence
initial
begin

#0 rst_n = 1'b0; //reset to state_a
x1 = 1'b0; x2 = 1'b0;

#5 rst_n = 1'b1;

//----------------------------------------------------
#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; //assert z1

//----------------------------------------------------
#10 x1 = 1'b1; x2 = 1'b0; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_b
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b1; x2 = 1'b0; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

#10 x1 = 1'b0; x2 = 1'b1; //state_c
#10 x1 = 1'b0; x2 = 1'b0;

//continued on next page
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#10 x1 = 1'b1; x2 = 1'b0; //state_d
#10 x1 = 1'b0; x2 = 1'b0; //assert z1

#10 x1 = 1'b1; x2 = 1'b0; //state_a
#10 x1 = 1'b0; x2 = 1'b0; //assert z1

//----------------------------------------------------
#12 $stop;

end

//instantiate the module into the test bench
pm_asm_mealy_bip_tff inst1 (rst_n, x1, x2, y, z1);

endmodule

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 10, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 10, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 0

x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 10, state = 00, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 01, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 10, state = 01, z1 = 0
x1 x2 = 00, state = 01, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 01, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 10, state = 11, z1 = 0
x1 x2 = 00, state = 11, z1 = 0
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 10, state = 10, z1 = 1
x1 x2 = 00, state = 10, z1 = 0
x1 x2 = 00, state = 00, z1 = 0
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Chapter 4     Computer Arithmetic Design 
Using     Verilog HDL

4.3 Use dataflow modeling with the continuous assignment statement assign to 
design a single-bit full adder.  Obtain the design module, the test bench mod-
ule for all combinations of the inputs, and the outputs.

//dataflow full adder
module full_adder (a, b, cin, sum, cout);

input a, b, cin; //list inputs and outputs
output sum, cout;

//define wires (wire are not required; optional)
wire a, b, cin;
wire sum, cout;

//continuous assignment
assign sum = (a ^ b) ^ cin;
assign cout = cin & (a ^ b) | (a & b);

endmodule

//test bench for full adder
module full_adder_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg a, b, cin;
wire sum, cout;

//apply input vectors and display variables
initial
begin: apply_stimulus

reg [3:0] invect;
for (invect = 0; invect < 8; invect = invect + 1)
begin
{a, b, cin} = invect [3:0];
#10 $display ("a b cin = %b, sum = %b, cout = %d",

{a, b, cin}, sum, cout);
end

end

//instantiate the module into the test bench
full_adder inst1 (a, b, cin, sum, cout);
endmodule



a b cin = 000, cout = 0, sum = 0
a b cin = 001, cout = 0, sum = 1

a b cin = 010, cout = 0, sum = 1
a b cin = 011, cout = 1, sum = 0

a b cin = 100, cout = 0, sum = 1
a b cin = 101, cout = 1, sum = 0

a b cin = 110, cout = 1, sum = 0
a b cin = 111, cout = 1, sum = 1
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4.7 Design a 4-bit ripple-carry fixed-point adder/subtractor using built-in primi-
tives and instantiated full adders that were designed using behavioral model-
ing.  There are three inputs: a[3:0], b[3:0], and a mode control m, which is 
used to determine whether the operation is addition or subtraction.  If m = 0, 
then the operation is addition; if m = 1, then the operation is subtraction. 
There are two outputs: rslt[3:0] and cout[3:0].  

For n-bit operands, the range for numbers in 2s complement representa-
tion is

– 2n – 1 to + 2n – 1 – 1

where n is the number of bits in the operands.  Thus, operands a and b have the 
following syntax:

an – 1 an – 2 . . .  a1 a0
bn – 1 bn – 2 . . . b1 b0

In the design module include a method to detect overflow, as follows:

Overflow = coutn – 1  coutn – 2

Obtain the logic diagram, the design module using structural modeling, 
the test bench module with combinations of the inputs for both addition and 
subtraction including overflow, and the outputs.



a
b
cin cout

sum
0

inst0
+a[0]

+b[0]

+rslt[0]

a
b
cin cout

sum
1

inst1
+a[1]

+b[1]

+rslt[1]

a
b
cin cout

sum
2

inst2
+a[2]

+b[2]

+rslt[2]

a
b
cin cout

sum
3

inst3
+a[3]

+b[3]

+rslt[3]

+mode

+cout

+cout[0]

+cout[1]

+cout[2]

+cout[3]

net0

net1

net2

net3

//behavioral full adder

module full_adder_bh (a, b, cin, sum, cout);

//define inputs and outputs
input a, b, cin;
output sum, cout;

//variables are reg in always
reg sum, cout;

always @ (a or b or cin)
begin

sum = a ^ b ^ cin;
cout = (a & b) | (a & cin) | (b & cin);

end

endmodule
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//structural for a 4-bit adder/subtractor
//using instantiated full adders and bips

module add_sub_4bit_struc (a, b, mode,
rslt, cout, ovfl);

//define inputs and outputs
input [3:0] a, b;
input mode;
output [3:0] rslt, cout;
output ovfl;

//define internal nets
wire net0, net1, net2, net3;

//check for overflow
xor (ovfl, cout[3], cout[2]);

//instantiate the logic for rslt[0]
xor (net0, mode, b[0]);
full_adder_bh inst0 (a[0], net0, mode,

rslt[0], cout[0]);

//instantiate the logic for rslt[1]
xor (net1, mode, b[1]);
full_adder_bh inst1 (a[1], net1, cout[0],

rslt[1], cout[1]);

//instantiate the logic for rslt[2]
xor (net2, mode, b[2]);
full_adder_bh inst2 (a[2], net2, cout[1],

rslt[2], cout[2]);

//instantiate the logic for rslt[3]
xor (net3, mode, b[3]);
full_adder_bh inst3 (a[3], net3, cout[2],

rslt[3], cout[3]);

endmodule
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//test bench for structural 4-bit adder/subtractor
module add_sub_4bit_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [3:0] a, b;
reg mode;
wire [3:0] rslt, cout;
wire ovfl;

initial //display variables
$monitor ("a=%b, b=%b, mode=%b, rslt=%b,

cout[3]=%b, cout[2]=%b, ovfl=%b",
a, b, mode, rslt, cout[3], cout[2], ovfl);

//apply input vectors
initial
begin
//addition -------------------------------------------

#0 a = 4'b0000; b = 4'b0001; mode = 1'b0;
#10 a = 4'b0010; b = 4'b0101; mode = 1'b0;
#10 a = 4'b0110; b = 4'b0001; mode = 1'b0;
#10 a = 4'b1000; b = 4'b0001; mode = 1'b0;

//subtraction ----------------------------------------
#10 a = 4'b1110; b = 4'b0100; mode = 1'b1;
#10 a = 4'b0110; b = 4'b0011; mode = 1'b1;
#10 a = 4'b0111; b = 4'b0010; mode = 1'b1;
#10 a = 4'b0111; b = 4'b0001; mode = 1'b1;

//overflow -------------------------------------------
//addition

#10 a = 4'b0111; b = 4'b0101; mode = 1'b0;
#10 a = 4'b1000; b = 4'b1011; mode = 1'b0;

//subtraction
#10 a = 4'b0110; b = 4'b1100; mode = 1'b1;
#10 a = 4'b1000; b = 4'b0010; mode = 1'b1;

#10 $stop;
end

//instantiate the module into the test bench
add_sub_4bit_struc inst1 (a, b, mode, rslt, cout,

ovfl);
endmodule
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Addition ---------------------------------------------

a=0000, b=0001, mode=0, rslt=0001,
cout[3]=0,cout[2]=0, ovfl=0

a=0010, b=0101, mode=0, rslt=0111, cout[3]=0,
cout[2]=0, ovfl=0

a=0110, b=0001, mode=0, rslt=0111, cout[3]=0,
cout[2]=0, ovfl=0

a=1000, b=0001, mode=0, rslt=1001, cout[3]=0,
cout[2]=0, ovfl=0

Subtraction ------------------------------------------

a=1110, b=0100, mode=1, rslt=1010, cout[3]=1,
cout[2]=1, ovfl=0

a=0110, b=0011, mode=1, rslt=0011, cout[3]=1,
cout[2]=1, ovfl=0

a=0111, b=0010, mode=1, rslt=0101, cout[3]=1,
cout[2]=1, ovfl=0

a=0111, b=0001, mode=1, rslt=0110, cout[3]=1,
cout[2]=1, ovfl=0

Overflow Addition ------------------------------------

a=0111, b=0101, mode=0, rslt=1100, cout[3]=0,
cout[2]=1, ovfl=1

a=1000, b=1011, mode=0, rslt=0011, cout[3]=1,
cout[2]=0, ovfl=1

Overflow Subtraction ---------------------------------

a=0110, b=1100, mode=1, rslt=1010, cout[3]=0,
cout[2]=1, ovfl=1

a=1000, b=0010, mode=1, rslt=0110, cout[3]=1,
cout[2]=0, ovfl=1
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4.13 Arithmetic and logic units perform the arithmetic operations of addition, sub-
traction, multiplication, and division.  They also perform the logical opera-
tions of AND, NAND, OR, NOR, exclusive-OR, and exclusive-NOR.  This 
problem is to design a behavioral module to implement the four operations of 
add, subtract, multiply, and divide.  The operands are eight bits, the operation 
code is three bits, and the result of the operation is eight bits.  The two 8-bit in-
puts are operands a[7:0] and b[7:0].  The 3-bit operation code is opcode[2:0]
and the 8-bit result is rslt[7:0].

Obtain the behavioral design module using the case statement for the four 
arithmetic operations, the test bench module displaying all variables in deci-
mal (%d) notation, and the outputs.



//behavioral 4-function arithmetic unit
//add, sub, div, mul

module add_sub_div_mul_bh (a, b, opcode, rslt);

//define inputs and outputs
input [7:0] a, b;
input [2:0] opcode;
output [7:0] rslt;

//variables are reg in always
reg [7:0] rslt;
reg [15:0] rslt_mul;

//define the opcodes
parameter add_op = 3'b000,

sub_op = 3'b001,
div_op = 3'b011,
mul_op = 3'b100;

//perform the arithmetic operations
always @ (a or b or opcode)
begin

case (opcode)
add_op : rslt = a + b;
sub_op : rslt = a - b;
div_op : rslt = a / b;
mul_op : rslt = a * b;

default : rslt = 0;
endcase

end

endmodule

//4fctn arithmetic unit test bench

module add_sub_div_mul_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a, b;
reg [2:0] opcode;
wire [7:0] rslt;

//continued on next page
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//display variables
initial
$monitor ("a = %d, b = %d, opcode = %d, rslt = %d",

a, b, opcode, rslt);

initial
begin
//add_op ---------------------------------------------

//a = 10, b = 20,  rslt - 30
#10 a = 8'b0000_1010; b = 8'b0001_0100;

opcode = 3'b000;

// a = 98, b = 28, rslt = 126
#10 a = 8'b0110_0010; b = 8'b0001_1100;

opcode = 3'b000;

// a = 67, b = 60, rslt = 127
#10 a = 8'b0100_0011; b = 8'b0011_1100;

opcode = 3'b000;

//a = 250, b = 5, rslt = 255
#10 a = 8'b1111_1010; b = 8'b0000_0101;

opcode = 3'b000;

//sub_op ---------------------------------------------
//a = 128, b = 99, rslt = 29

#10 a = 8'b1000_0000; b = 8'b0110_0011;
opcode = 3'b001;

//a = 255, b = 15, rslt = 240
#10 a = 8'b1111_1111; b = 8'b0000_1111;

opcode = 3'b001;

//a = 20, b = 16, rslt = 4
#10 a = 8'b0001_0100; b = 8'b0001_0000;

opcode = 3'b001;

//a = 255, b = 250, rslt = 5
#10 a = 8'b1111_1111; b = 8'b1111_1010;

opcode = 3'b001;

//continued on next page
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//div_op ---------------------------------------------
//a = 240, b = 15, rslt = 16

#10 a = 8'b1111_0000; b = 8'b0000_1111;
opcode = 3'b011;

//a = 16, b = 8, rslt = 2
#10 a = 8'b0001_0000; b = 8'b0000_1000;

opcode = 3'b011;

//mul_op ---------------------------------------------
//a= 4, b = 4, rslt = 16

#10 a = 8'b0000_0100; b = 8'b0000_0100;
opcode = 3'b100;

//a= 10, b = 20, rslt = 200
#10 a = 8'b0000_1010; b = 8'b0001_0100;

opcode = 3'b100;

#10 $stop;
end

//instantiate the module into the test bench
add_sub_div_mul_bh inst1 (a, b, opcode, rslt);

endmodule

Add
a = 10, b = 20,  opcode = 0, rslt = 30
a = 98, b = 28,  opcode = 0, rslt = 126
a = 67, b = 60,  opcode = 0, rslt = 127
a = 250, b = 5,   opcode = 0, rslt = 255

Subtract
a = 128, b = 99,  opcode = 1, rslt = 29
a = 255, b = 15,  opcode = 1, rslt = 240
a = 20,  b = 16,  opcode = 1, rslt = 4
a = 255, b = 250, opcode = 1, rslt = 5

Divide
a = 240, b = 15,  opcode = 3, rslt = 16
a = 16,  b = 8,   opcode = 3, rslt = 2

Multiply
a = 4,   b = 4,   opcode = 4, rslt = 16
a = 10,  b = 20,  opcode = 4, rslt = 200
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4.18 Use structural modeling with built-in primitives to design the two-digit BCD 
adder shown below.  Obtain the structural design module and the test bench 
module with several input combinations of the two operands.  Enter augends 
and addends that produce sums in the units, tens, and hundreds representa-
tions.  Display all of the outputs in decimal notation.

a[0]
a[1]
a[2]
a[3]

b[0]
b[1]
b[2]
b[3]

bcd[0]0

1

2

3

cout

cin

A

B

Adder_1

0

1

2

3

cout

cin

A

B

Adder_2

0

0

bcd[1]

bcd[2]

bcd[3]

0cin

inst2inst1

sum[0]

sum[1]

sum[2]

sum[3]

net1

net2

cout3

a[4]
a[5]
a[6]
a[7]

b[4]
b[5]
b[6]
b[7]

bcd[4]0

1

2

3

cout

cin

A

B

Adder_3

0

1

2

3

cout

cin

A

B

Adder_4

0

0

bcd[5]

bcd[6]

bcd[7]

0

cout

inst4inst3

sum[4]

sum[5]

sum[6]

sum[7]

net3

net4

cout7

cout4



//structural design for 2-digit BCD adder

module add_bcd_struc (a, b, cin, bcd, cout);

//define inputs and outputs
input [7:0] a, b;
input cin;
output [7:0] bcd;
output cout;

//define internal nets
wire [7:0] sum;

//--------------------------------------------------
//instantiate the logic for adder_1 and adder_2
adder4 inst1 (a[3:0], b[3:0], cin, sum[3:0], cout3);

and (net1, sum[3], sum[1]);
and (net2, sum[3], sum[2]);
or  (cout4, cout3, net1, net2);

adder4 inst2 (sum[3:0], {1'b0, cout4, cout4, 1'b0},
1'b0, bcd[3:0], 1'b0);

//--------------------------------------------------
//instantiate the logic for adder_3 and adder_4
adder4 inst3 (a[7:4], b[7:4], cout4, sum[7:4], cout7);

and (net3, sum[7], sum[5]);
and (net4, sum[7], sum[6]);
or  (cout, cout7, net3, net4);

adder4 inst4 (sum[7:4], {1'b0, cout, cout, 1'b0},
1'b0, bcd[7:4], 1'b0);

//--------------------------------------------------
endmodule
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//test bench for 2-digit BCD adder
module add_bcd_struc_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [7:0] a, b;
reg cin;
wire [7:0] bcd;
wire cout;

//display variables
initial
$monitor ("a_ten=%d, a_unit=%d, b_ten=%d, b_unit=%d,

cin=%d,
bcd_hund=%d, bcd_ten=%d, bcd_unit=%d",

a[7:4], a[3:0], b[7:4], b[3:0], cin,
{{3{1'b0}}, cout}, bcd[7:4], bcd[3:0]);

//apply input vectors
initial
begin

//03 + 06 = 9
#0 a = 8'b0000_0011; b = 8'b0000_0110;

cin = 1'b0;

//97 + 82 = 179
#10 a = 8'b1001_0111; b = 8'b1000_0010;

cin = 1'b0;

//58 + 24 = 82
#10 a = 8'b0101_1000; b = 8'b0010_0100;

cin = 1'b0;

//25 + 25 + 1 = 51
#10 a = 8'b0010_0101; b = 8'b0010_0101;

cin = 1'b1;

//97 + 99 + 1 = 197
#10 a = 8'b1001_0111; b = 8'b1001_1001;

cin = 1'b1;

//88 + 02 = 90
#10 a = 8'b1000_1000; b = 8'b0000_0010;

cin = 1'b0;
//continued on next page
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//99 + 99 = 198
#10 a = 8'b1001_1001; b = 8'b1001_1001;

cin = 1'b0;

//86 + 72 + 1 = 159
#10 a = 8'b1000_0110; b = 8'b0111_0010;

cin = 1'b1;

//1 + 1 = 2
#10 a = 8'b0000_0001; b = 8'b0000_0001;

cin = 1'b0;

//70 + 30 = 100
#10 a = 8'b0111_0000; b = 8'b0011_0000;

cin = 1'b0;

//33 = 66 + 1 = 100
#10 a = 8'b0011_0011; b = 8'b0110_0110;

cin = 1'b1;

//47 + 17 = 64
#10 a = 8'b0100_0111; b = 8'b0001_0111;

cin = 1'b0;

//0 + 0 + 1 = 1
#10 a = 8'b0000_0000; b = 8'b0000_0000;

cin = 1'b1;

//99 + 11 + 1 = 111
#10 a = 8'b1001_1001; b = 8'b0001_0001;

cin = 1'b1;

//0 + 0 + 0 = 0
#10 a = 8'b0000_0000; b = 8'b0000_0000;

cin = 1'b0;

#10 $stop;
end

//instantiate the module into the test bench
add_bcd_struc inst1 (a, b, cin, bcd, cout);

endmodule
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a_ten = 0, a_unit = 3, b_ten = 0, b_unit = 6, cin = 0,
bcd_hund = 0, bcd_ten = 0, bcd_unit = 9

a_ten = 9, a_unit = 7, b_ten = 8, b_unit = 2, cin = 0,
bcd_hund = 1, bcd_ten = 7, bcd_unit = 9

a_ten = 5, a_unit = 8, b_ten = 2, b_unit = 4, cin = 0,
bcd_hund = 0, bcd_ten = 8, bcd_unit = 2

a_ten = 2, a_unit = 5, b_ten = 2, b_unit = 5, cin = 1,
bcd_hund = 0, bcd_ten = 5, bcd_unit = 1

a_ten = 9, a_unit = 7, b_ten = 9, b_unit = 9, cin = 1,
bcd_hund = 1, bcd_ten = 9, bcd_unit = 7

a_ten = 8, a_unit = 8, b_ten = 0, b_unit = 2, cin = 0,
bcd_hund = 0, bcd_ten = 9, bcd_unit = 0

a_ten = 9, a_unit = 9, b_ten = 9, b_unit = 9, cin = 0,
bcd_hund = 1, bcd_ten = 9, bcd_unit = 8

a_ten = 8, a_unit = 6, b_ten = 7, b_unit = 2, cin = 1,
bcd_hund = 1, bcd_ten = 5, bcd_unit = 9

a_ten = 0, a_unit = 1, b_ten = 0, b_unit = 1, cin = 0,
bcd_hund = 0, bcd_ten = 0, bcd_unit = 2

a_ten = 7, a_unit = 0, b_ten = 3, b_unit = 0, cin = 0,
bcd_hund = 1, bcd_ten = 0, bcd_unit = 0

a_ten = 3, a_unit = 3, b_ten = 6, b_unit = 6, cin = 1,
bcd_hund = 1, bcd_ten = 0, bcd_unit = 0

a_ten = 4, a_unit = 7, b_ten = 1, b_unit = 7, cin = 0,
bcd_hund = 0, bcd_ten = 6, bcd_unit = 4

a_ten = 0, a_unit = 0, b_ten = 0, b_unit = 0, cin = 1,
bcd_hund = 0, bcd_ten = 0, bcd_unit = 1

a_ten = 9, a_unit = 9, b_ten = 1, b_unit = 1, cin = 1,
bcd_hund = 1, bcd_ten = 1, bcd_unit = 1

a_ten = 0, a_unit = 0, b_ten = 0, b_unit = 0, cin = 0,
bcd_hund = 0, bcd_ten = 0, bcd_unit = 0
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4.24 Design a behavioral module that performs true subtraction on two 32-bit op-
erands.  True subtraction can be defined as follows: (+A) – (+B) or (–A) – (–B), 
which has the following attributes: fract_a > fract_b and sign_a = sign_b.
The exponents are eight bits. Obtain the behavioral design module, the test 
bench module, and the outputs.

//behavioral floating-point subtraction
//true subtraction: fract_a > fract_b, sign_a = sign_b
module sub_flp_bh (flp_a, flp_b, sign,

exponent, exp_unbiased, rslt);

input [31:0] flp_a, flp_b; //define inputs and outputs
output sign;
output [7:0] exponent, exp_unbiased;
output [22:0] rslt;

//variables in always block are declared as registers
reg sign_a, sign_b;
reg [7:0] exp_a, exp_b;
reg [7:0] exp_a_bias, exp_b_bias;
reg [22:0] fract_a, fract_b;
reg [7:0] ctr_align;
reg [22:0] rslt;
reg sign;
reg [7:0] exponent, exp_unbiased;
reg cout;

//continued on next page



//define the sign, exponent, and fraction
always @ (flp_a or flp_b)
begin

sign_a = flp_a[31];
sign_b = flp_b[31];

exp_a = flp_a[30:23];
exp_b = flp_b[30:23];

fract_a = flp_a[22:0];
fract_b = flp_b[22:0];

//bias the exponents
exp_a_bias = exp_a + 8'b0111_1111;
exp_b_bias = exp_b + 8'b0111_1111;

//align the fractions
if (exp_a_bias < exp_b_bias)

ctr_align = exp_b_bias - exp_a_bias;

while (ctr_align)
begin

fract_a = fract_a >> 1;
exp_a_bias = exp_a_bias + 1;
ctr_align = ctr_align - 1;

end

if (exp_b_bias < exp_a_bias)
ctr_align = exp_a_bias - exp_b_bias;

while (ctr_align)
begin

fract_b = fract_b >> 1;
exp_b_bias = exp_b_bias + 1;
ctr_align = ctr_align - 1;

end

//----------------------------------------------------
//obtain the rslt

if (fract_a > fract_b)
begin

fract_b = ~fract_b + 1;
{cout, rslt} = fract_a + fract_b;
sign = sign_a;

end
//continued on next page
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//postnormalize
while (rslt[22] == 0)

begin
rslt = rslt << 1;
exp_b_bias = exp_b_bias - 1;

end

exponent = exp_b_bias;
exp_unbiased = exp_b_bias - 8'b0111_1111;

end

endmodule

//test bench for floating-point subtraction

module sub_flp_bh_tb;

//inputs are reg for test bench
//outputs are wire for test bench
reg [31:0] flp_a, flp_b;
wire sign;
wire [7:0] exponent, exp_unbiased;
wire [22:0] rslt;

//display variables
initial
$monitor ("sign = %b, exp_unbiased = %b, rslt = %b",

sign, exp_unbiased, rslt);

//apply input vectors
initial
begin

//(+32) - (+30) = +2
//          s ----e---- --------------f-------------

#0 flp_a = 32'b0_0000_1000_0010_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_1000_0001_1110_0000_0000_0000_000;

//(-130) - (-25) = -105
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_1000_1000_0010_0000_0000_0000_000;
flp_b = 32'b1_0000_0101_1100_1000_0000_0000_0000_000;

//continued on next page

Appendix C      Chapter 4 Computer Arithmetic Design Using Verilog HDL     633



//(+50) - (+40) = +10
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_1000_0011_0010_0000_0000_0000_000;
flp_b = 32'b0_0000_1000_0010_1000_0000_0000_0000_000;

//(+105) - (+5) = +100
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1101_0010_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_1010_0000_0000_0000_0000_000;

//(+72) - (+47) = +25
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1001_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0110_1011_1100_0000_0000_0000_000;

//(-127) - (-60) = -67
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0111_1111_1110_0000_0000_0000_000;
flp_b = 32'b1_0000_0110_1111_0000_0000_0000_0000_000;

//(+36.5) - (+5.75) = +30.75
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0110_1001_0010_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_1011_1000_0000_0000_0000_000;

//(-720.75) - (-700.25) = -20.50
//          s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_1010_1011_0100_0011_0000_0000_000;
flp_b = 32'b1_0000_1010_1010_1111_0001_0000_0000_000;

//(+963.50) - (+520.25) = +443.25
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_1010_1111_0000_1110_0000_0000_000;
flp_b = 32'b0_0000_1010_1000_0010_0001_0000_0000_000;

//(+5276) - (+4528) = +748
//          s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_1101_1010_0100_1110_0000_0000_000;
flp_b = 32'b0_0000_1101_1000_1101_1000_0000_0000_000;

#10 $stop;
end

//instantiate the module into the test bench
sub_flp_bh inst1 (flp_a, flp_b, sign,

exponent, exp_unbiased, rslt);
endmodule
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(+32) - (+30) = +2
sign = 0, exp_unbiased = 0000_0010,

rslt = 1000_0000_0000_0000_0000_000

(-130) - (-25) = -105
sign = 1, exp_unbiased = 0000_0111,

rslt = 1101_0010_0000_0000_0000_000

(+50) - (+40) = +10
sign = 0, exp_unbiased = 0000_0100,

rslt = 1010_0000_0000_0000_0000_000

(+105) - (+5) = +100
sign = 0, exp_unbiased = 0000_0111,

rslt = 1100_1000_0000_0000_0000_000

(+72) - (+47) = +25
sign = 0, exp_unbiased = 0000_0101,

rslt = 1100_1000_0000_0000_0000_000

(-127) - (-60) = -67
sign = 1, exp_unbiased = 0000_0111,

rslt = 1000_0110_0000_0000_0000_000

(+36.5) - (+5.75) = +30.75
sign = 0, exp_unbiased = 0000_0101,

rslt = 1111_0110_0000_0000_0000_000

(-720.75) - (-700.25) = -20.50
sign = 1, exp_unbiased = 0000_0101,

rslt = 1010_0100_0000_0000_0000_000

(+963.50) - (+520.25) = +443.25
sign = 0, exp_unbiased = 0000_1001,

rslt = 1101_1101_1010_0000_0000_000

(+5276) - (+4528) = +748
sign = 0, exp_unbiased = 0000_1010,

rslt = 1011_1011_0000_0000_0000_000
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4.27 Design a behavioral module for a 32-bit single-precision floating-point mul-
tiplication operation for two operands: multiplicand flp_a[31:0] and multipli-
er flp_b[31:0].  The single-precision format is shown below.  Use the multiply 
arithmetic operator (*) to perform the multiply operation.  Obtain the behav-
ioral module, the test bench module, and the outputs showing the product as a 
23-bit result.

  31                         23   22                                                                                    0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)



//behavioral floating-point multiplication

module mul_flp6 (flp_a, flp_b, sign,
exponent, exp_unbiased, exp_sum, prod);

//define inputs and outputs
input [31:0] flp_a, flp_b;
output sign;
output [7:0] exponent, exp_unbiased;
output [8:0] exp_sum;
output [22:0] prod;

//variables in always are declared as registers
reg sign_a, sign_b;
reg [7:0] exp_a, exp_b;
reg [7:0] exp_a_bias, exp_b_bias;
reg [8:0] exp_sum;
reg [22:0] fract_a, fract_b;
reg [45:0] prod_dbl;
reg [22:0] prod;
reg sign;
reg [7:0] exponent, exp_unbiased;
reg cout;
reg zero_opnd;

//define sign, exponent, and fraction
always @ (flp_a or flp_b)
begin

if ((flp_a != 0) && (flp_b != 0))
begin

zero_opnd = 1'b0;

sign_a = flp_a[31];
sign_b = flp_b[31];

exp_a = flp_a[30:23];
exp_b = flp_b[30:23];

fract_a = flp_a[22:0];
fract_b = flp_b[22:0];

//bias exponents
exp_a_bias = exp_a + 8'b0111_1111;
exp_b_bias = exp_b + 8'b0111_1111;

//continued on next page
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//add exponents
exp_sum = exp_a_bias + exp_b_bias;

//remove one bias
exponent = exp_sum - 8'b0111_1111;
exp_unbiased = exponent - 8'b0111_1111;

//multiply fractions
prod_dbl = fract_a * fract_b;
prod = prod_dbl[45:23];

//postnormalize product
while (prod[22] == 0)

begin
prod = prod << 1;
exp_unbiased = exp_unbiased - 1;

end

sign = sign_a ^ sign_b;

end

else
zero_opnd = 1'b1;

end
endmodule

//test bench for floating-point multiplication
module mul_flp6_tb;

//inputs are reg in test bench
//outputs are wire in test bench
reg [31:0] flp_a, flp_b;
wire exp_ovfl;
wire sign;
wire zero_opnd;
wire [7:0] exponent, exp_unbiased;
wire [8:0] exp_sum;
wire [22:0] prod;

//display variables
initial
$monitor ("sign=%b, exp_unbiased=%b, prod=%b",

sign, exp_unbiased, prod);
//continued on next page
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//apply input vectors
initial
begin

//+5 x +3 = +15
// s ----e---- --------------f-------------

#0 flp_a = 32'b0_0000_0011_1010_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0010_1100_0000_0000_0000_0000_000;

//+6 x +4 = +24
// s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0011_1100_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_1000_0000_0000_0000_0000_000;

//-5 x +5 = -25
// s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0011_1010_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_0011_1010_0000_0000_0000_0000_000;

//+7 x -5 = -35
// s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0011_1110_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0011_1010_0000_0000_0000_0000_000;

//+25 x +25 = +625
// s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0101_1100_1000_0000_0000_0000_000;
flp_b = 32'b0_0000_0101_1100_1000_0000_0000_0000_000;

//+76 x +55 = +4180
// s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1001_1000_0000_0000_0000_000;
flp_b = 32'b0_0000_0110_1101_1100_0000_0000_0000_000;

//-48 x -17 = +816
// s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0110_1100_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0101_1000_1000_0000_0000_0000_000;

//-20 x -20 = +400
// s ----e---- --------------f-------------

#10 flp_a = 32'b1_0000_0101_1010_0000_0000_0000_0000_000;
flp_b = 32'b1_0000_0101_1010_0000_0000_0000_0000_000;

//continued on next page
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//+64 x +128 = +8192
// s ----e---- --------------f-------------

#10 flp_a = 32'b0_0000_0111_1000_0000_0000_0000_0000_000;
flp_b = 32'b0_0000_1000_1000_0000_0000_0000_0000_000;

#10 $stop;

end

//instantiate the module into the test bench
mul_flp6 inst1 (flp_a, flp_b, sign, exponent,

exp_unbiased, exp_sum, prod);

endmodule

+5 x +3 = +15
sign = 0, exp_unbiased = 0000_0100,

prod = 1111_0000_0000_0000_0000_000

+6 x +4 = +24
sign = 0, exp_unbiased = 0000_0101,

prod = 1100_0000_0000_0000_0000_000

-5 x +5 = -25
sign = 1, exp_unbiased = 0000_0101,

prod = 1100_1000_0000_0000_0000_000

+7 x -5 = -35
sign = 1, exp_unbiased = 0000_0110,

prod = 1000_1100_0000_0000_0000_000

+25 x +25 = +625
sign = 0, exp_unbiased = 0000_1010,

prod = 1001_1100_0100_0000_0000_000

+76 x +55 = +4180
sign = 0, exp_unbiased = 0000_1101,

prod = 1000_0010_1010_0000_0000_000

-48 x -17 = +816
sign = 0, exp_unbiased = 0000_1010,

prod = 1100_1100_0000_0000_0000_000

//continued on next page
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-20 x -20 = +400
sign = 0, exp_unbiased = 0000_1001,

prod = 1100_1000_0000_0000_0000_000

+20 x -20 = -400
sign = 1, exp_unbiased = 0000_1001,

prod = 1100_1000_0000_0000_0000_000

+64 x +128 = +8192
sign = 0, exp_unbiased = 0000_1110,

prod = 1000_0000_0000_0000_0000_000
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INDEX
Symbols
# (time symbol), 87
$finish task, 103–104
$monitor task, 30
$stop, 103
$time function, 308
% symbol (modulus), 311

Numbers
2:4 decoder, 8–9
3:8 decoder, 9
4:1 multiplexer, 5–8, 41–43, 57–63, 

165–170, 232–234, See also
Multiplexers

8:1 multiplexer design, 7, 171–175
8:3 encoder, 11
8421 code, 138, 459
9s complement, 138, 472, 473, 482–489
10s complement, 472–474, 482
(note: numbers of bits are written out 

alphabetically)

A
Absorption law of Boolean algebra, 151
Addend, 407
Adders, four-bit ripple-carry, 

 415–418
Adders, full, See Full adders
Adders, three-bit, 411–415
Adders and addition, See Decimal 

addition; Fixed-point addition; 
Floating-point addition; Full 
 adders 

Addition, true, 472, 505, 512–516
Adjacent state code assignments, 249–250
always statement, 87, 88–90, 91–92, 

436, 530, 559–562
AND (&) bitwise operator, 23, 81
AND (&) reduction operator, 25, 71

AND arrays, programmable logic 
devices, 185–189, 202, See also 
Programmable logic devices

and built-in primitive, 28, 32
AND gate, 3, 32–33

programmable array logic, 191
structural modeling design exam-

ple, 112–118
symbol, 3f
truth table, 4t

AND logic operator (^), Boolean alge-
bra, 148–149

AND operation (&) expressions, 17–18
AND operator (&&), binary logical, 21, 79
Application-specific integrated circuit 

(ASIC) design, 1
Architectural modeling, See Behavioral 

modeling
Arithmetic and logic unit (ALU), 455–456

design example, 456–459
Arithmetic operators, 20–21
Array multiplier design, 444–448
assign keyword, 17–18, 29, 69–71, 

367–368
design examples

carry lookahead adder, 418–423
comparator, 180–182
fixed-point addition, 411–415, 

418–423
fixed-point division, 450–451
fixed-point multiplication, 

 448–450
four-bit dataflow adder/subtrac-

tor, 430–435
Moore asynchronous sequential 

machine, 344–348, 352
multiplexers, 171–173, 232–234
numerical inequality circuit, 

222–224
product-of-sums, 160–162
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product-of-sums and sums-of-
products, 214–216

three-bit adder, 411–415
event handling, 551–556

Assignment operator (=) and blocking 
assignments, 91

Associative laws of Boolean algebra, 150
Astable multivibrator, 300, 327
Asynchronous sequential machines

astable multivibrators, 327
design examples, 330–354

Mealy machines, 330–344
Moore machines, 344–354
using assign, 344–348, 352
using built-in primitives, 348–354
using logic gates, 339–344

oscillations, 326–327
races, 328–329

Asynchronous sequential machines 
(ASMs), 321–322

pulse-mode asynchronous 
machines, 354–394

synthesis (design) procedure, 
323–324

tag-in and tag-out signals, 321
See also Pulse-mode asynchro-

nous sequential machines
Augend, 407
Autonomous Moore machine, 248
Auxiliary carry, 461
Axioms of Boolean algebra, 149–150

B
Begin . . . end keywords, 14, 88, 92
Behavioral modeling, 1, 87

always statement, 88–90, 91–92, 
97, See also always statement

blocking and nonblocking assign-
ments, 91

case statement, 95–98, See also 
case statement

conditional statements, 92–95
design examples

adder/subtractor, 435–439
ALU, 456–459
decimal adder, 463
decimal multiplier, 491–495
decimal subtractor, 482–491
eight-bit fixed-point subtractor, 

428–430
event handling for mixed block-

ing/nonblocking assign-
ments, 563–565

floating-point addition, 507–512
floating-point division, 538–542
floating-point multiplication, 

530–535
floating-point subtraction, 

516–527
modulo-10 counter, 311–313
multiplexers, 563–565
multiplier, 441–444
true addition and subtraction, 

516–527
functions, 129, 134–140
initial statement, 87
interstatement delay, 91
intrastatement delay, 90
loop statements, 98–104
register transfer level (RTL), 69
shift and rotate operations,  

104–108
tasks, 129–134
See also specific statements

Bias constant, 504
Binary-coded decimal (BCD), 147

adder design, 459–472, See also 
Decimal addition

binary-to-decimal conversion, 
491–492

decimal, 495–502
modulo-10 counter, 311–313
multiplication, 491–495
subtractor design, 472–491

Binary numbers, radix complement, 408
Binary number system, 146
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Binary operators, 21
Binary subtraction design examples, 

475–482
Binary-to-decimal conversion, 

491–492
Binary-to-excess-3 code converter, 

119–123, 137–140
Binary-to-Gray code converter, 46–49, 

191–194
Binary-to-octal decoder, 10
Bitwise operators, 20t, 23–24

dataflow modeling, 81–84
Blocking assignments, 91

event handling, 556–559
event handling for mixed block-

ing/nonblocking, 563–565
Boolean algebra, 148–149

axioms, 149–150
other terms, 152–153
theorems, 150–152

Boolean set definition axiom, 149
buf gate, 33, 372
Built-in primitives, 28, 31–35, 263–268

design examples, 35–51
4:1 multiplexer, 41–43
asynchronous sequential machine 

design example, 348–354
code converter, 46–49
comparator, 178–180
decimal adder, 464–466
eight-bit decimal/binary sub-

tractor, 478–482
four-bit decimal subtractor, 

475–478
four-bit ripple subtractor,  

425–428
full adder, 50–51
majority circuit, 43–46
Mealy machines, 280–284
modulo-16 counter, 313–317
modulo-8 counter, 318–321
Moore machines, 252–257, 

263–268

product-of-sums, 35–38, 
217–218

sum-of-products, 38–40
instantiation in structural modeling, 

108
See also specific primitives

C
Carry-in, 407–408, 459
Carry lookahead adder, 415–416,  

418–423
Carry-out, 408

decimal addition with sum correc-
tion, 462

intermediate sums, 461
Cartesian product of sets, 249
Case equality operator (===), 22
Case inequality operator (!==), 22
case statement, 95–98, 456

design examples
eight-function ALU, 456–459
Mealy machine, 289–294
Moore machine, 257–263
multiplexer, 173–175

Characteristic, floating-point notation, 
503

Clock pulse generation, 31, 104
astable multivibrators, 300, 327

Closure laws of Boolean algebra, 149
Code converters, 10–12

design examples
programmable array logic,  

191–194
programmable logic array, 

 210–214
structural modeling, 119–122
using built-in primitives, 46–49
using functions, 137–140

Combinational logic design, 145
blocking assignments, 563, See 

also Blocking assignments
conjunctive normal form, 229–232
product-of-sums, 226–229
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product-of-sums and sums-of-
products, 214–216

three-bit adder, 411–415
event handling, 551–556

Assignment operator (=) and blocking 
assignments, 91

Associative laws of Boolean algebra, 150
Astable multivibrator, 300, 327
Asynchronous sequential machines

astable multivibrators, 327
design examples, 330–354

Mealy machines, 330–344
Moore machines, 344–354
using assign, 344–348, 352
using built-in primitives, 348–354
using logic gates, 339–344

oscillations, 326–327
races, 328–329

Asynchronous sequential machines 
(ASMs), 321–322

pulse-mode asynchronous 
machines, 354–394

synthesis (design) procedure, 
323–324

tag-in and tag-out signals, 321
See also Pulse-mode asynchro-

nous sequential machines
Augend, 407
Autonomous Moore machine, 248
Auxiliary carry, 461
Axioms of Boolean algebra, 149–150

B
Begin . . . end keywords, 14, 88, 92
Behavioral modeling, 1, 87

always statement, 88–90, 91–92, 
97, See also always statement

blocking and nonblocking assign-
ments, 91

case statement, 95–98, See also 
case statement

conditional statements, 92–95
design examples

adder/subtractor, 435–439
ALU, 456–459
decimal adder, 463
decimal multiplier, 491–495
decimal subtractor, 482–491
eight-bit fixed-point subtractor, 

428–430
event handling for mixed block-

ing/nonblocking assign-
ments, 563–565

floating-point addition, 507–512
floating-point division, 538–542
floating-point multiplication, 

530–535
floating-point subtraction, 

516–527
modulo-10 counter, 311–313
multiplexers, 563–565
multiplier, 441–444
true addition and subtraction, 

516–527
functions, 129, 134–140
initial statement, 87
interstatement delay, 91
intrastatement delay, 90
loop statements, 98–104
register transfer level (RTL), 69
shift and rotate operations,  

104–108
tasks, 129–134
See also specific statements

Bias constant, 504
Binary-coded decimal (BCD), 147

adder design, 459–472, See also 
Decimal addition

binary-to-decimal conversion, 
491–492

decimal, 495–502
modulo-10 counter, 311–313
multiplication, 491–495
subtractor design, 472–491

Binary numbers, radix complement, 408
Binary number system, 146
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Binary operators, 21
Binary subtraction design examples, 

475–482
Binary-to-decimal conversion, 

491–492
Binary-to-excess-3 code converter, 

119–123, 137–140
Binary-to-Gray code converter, 46–49, 

191–194
Binary-to-octal decoder, 10
Bitwise operators, 20t, 23–24

dataflow modeling, 81–84
Blocking assignments, 91

event handling, 556–559
event handling for mixed block-

ing/nonblocking, 563–565
Boolean algebra, 148–149

axioms, 149–150
other terms, 152–153
theorems, 150–152

Boolean set definition axiom, 149
buf gate, 33, 372
Built-in primitives, 28, 31–35, 263–268

design examples, 35–51
4:1 multiplexer, 41–43
asynchronous sequential machine 

design example, 348–354
code converter, 46–49
comparator, 178–180
decimal adder, 464–466
eight-bit decimal/binary sub-

tractor, 478–482
four-bit decimal subtractor, 

475–478
four-bit ripple subtractor,  

425–428
full adder, 50–51
majority circuit, 43–46
Mealy machines, 280–284
modulo-16 counter, 313–317
modulo-8 counter, 318–321
Moore machines, 252–257, 

263–268

product-of-sums, 35–38, 
217–218

sum-of-products, 38–40
instantiation in structural modeling, 

108
See also specific primitives

C
Carry-in, 407–408, 459
Carry lookahead adder, 415–416,  

418–423
Carry-out, 408

decimal addition with sum correc-
tion, 462

intermediate sums, 461
Cartesian product of sets, 249
Case equality operator (===), 22
Case inequality operator (!==), 22
case statement, 95–98, 456

design examples
eight-function ALU, 456–459
Mealy machine, 289–294
Moore machine, 257–263
multiplexer, 173–175

Characteristic, floating-point notation, 
503

Clock pulse generation, 31, 104
astable multivibrators, 300, 327

Closure laws of Boolean algebra, 149
Code converters, 10–12

design examples
programmable array logic,  

191–194
programmable logic array, 

 210–214
structural modeling, 119–122
using built-in primitives, 46–49
using functions, 137–140

Combinational logic design, 145
blocking assignments, 563, See 

also Blocking assignments
conjunctive normal form, 229–232
product-of-sums, 226–229
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Combinational logic macros, 5–13
decoders, 8–10
encoders, 10–12
multiplexers, 5–8
priority encoders, 12
See also Comparators; Decoders; 

Multiplexers
Combinational logic structural model-

ing design examples, 111–129, 
See also Structural modeling

Combinational user-defined primitives 
design examples, 52–63, See 
also User-defined primitives

Comments, 2
Commutative laws of Boolean algebra, 

149
Comparators, 12–14

design examples, 126–129, 176–185
4-bit vectors, 176–178
using assign, 180–182
using built-in primitives, 178–180
using conditional statements, 

183–185, 219–222
Complementation laws of Boolean alge-

bra, 150
Complement of a complemented vari-

able, 151
Complex programmable logic device 

(CPLD) design, 1
Concantenation operator ( { } ), 20t, 27
Conditional operators and statements, 

20t, 26–27, 74–77
in behavioral modeling, 92–95
design examples

comparators, 183–185, 219–222
fixed-point division, 450–451
Mealy machines, 289–294
multiplexer, 168–170
numerical equality circuit 

design, 224–226
Conjunctive normal form, 229–232, See 

also Product of maxterms
Constants, 18–19

Continuous assignment, 69–71, 171, 
180, 367–368

event handling, 551–556
See also assign keyword

Counters, 311–319
edge-sensitive user-defined primi-

tives, 65–68
Johnson, 66–68
See also Synchronous counters

CPU instruction queue, 308
Critical races, 329

D
Dataflow assignments, event handling, 

551–556
Dataflow modeling, 1, 69

adder/subtractor design example, 
430–435

bitwise operators, 81–84
conditional operators, 74–77
continuous assignment, 69–71
logical operators, 79–81
multiplier design example, 448–450
register transfer level (RTL), 69
relational operators, 77–79
shift operators, 84–86

Data types, 16–17
Decimal addition, 459–460

design examples, 461–463
mixed-design adder using 

built-in-primitives, 464–466
using multiplexers for sum 

correction, 466–472
with sum correction, 462–466
using multiplexers for sum correc-

tion, 466
Decimal arithmetic operations, 

 arithmetic and logic unit (ALU) 
function, 455

Decimal division, 495–502
Decimal multiplication, 491–495
Decimal number system, 147
Decimal subtraction, 472–474
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design examples
behavioral eight-bit subtractor 

using full adders and built- 
in-primitives, 482–491

eight-bit decimal/binary sub-
tractor using full adders and 
built-in-primitives, 478–482

four-bit subtractor using full 
adders and built-in primitives, 
475–478

Decoders, 8–10
Delay circuit synthesis for pulse-mode 

asynchronous sequential 
machines, 355, 372

Delay simulation
interstatement delay, 91
intrastatement delay, 90

delta (d) next-state function, 245, 247, 
248, 324

DeMorgan's theorems, 33, 151–152
Demultiplexer, 8
Deserializing data, 304, 308
D flip-flops, 16

design examples
event handling for mixed block-

ing/nonblocking assign-
ments, 563–565

Mealy machines, 280–289, 
294–298

modulo-16 counters, 313–317
modulo-8 counters, 318–321
Moore machines, 252–257, 

263–273
parallel-in, parallel-out (PIPO) 

registers, 299
pulse-mode asynchronous 

sequential machines, 355, 
356, 362–371

serial-in, parallel-out (SIPO) 
registers, 304–307

serial-in, serial-out (SISO)  
registers, 307–310

disable statement, 14, 103

Distributive laws of Boolean algebra, 
150

Division, See Decimal division; Fixed-
point division; Floating-point 
division

Division, restoring, 450, 538–542
 next-state function, 245, 247, 248, 324
Double-precision floating-point num-

bers, 503

E
Edge-sensitive user-defined primitives, 

65–68
Eight-bit behavioral adder/subtractor 

design, 435–439
Eight-bit decimal/binary subtractor, 

478–482
Eight-bit decimal subtractor, 482–491
Eight-bit subtractor, 428–430
else if keywords, 183, See also Condi-

tional operators and statements
else keyword, 14–15, 92, 183, 219
Encoders, 10–12
Encoders, priority, 12
endmodule keyword, 28, 31
endprimitive keyword, 52
endtable keyword, 52
endtask keyword, 129–130
Equality operators, 20t, 22–23
Equivalence relations (equivalent 

states), 247, 248, 323
Event control list, 88
Event handling and the event queue, 

551
blocking assignments, 91, 556–559
dataflow assignments, 551–556
mixed blocking and nonblocking 

assignments, 563–565
nonblocking assignments, 559–562

Exclusive-NOR (^~ or ~^) bitwise oper-
ator, 23, 24, 81

Exclusive-NOR (^~ or ~^) reduction 
operator, 26, 71
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priority encoders, 12
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Multiplexers
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Level-sensitive user-defined primitives, 

64–65
Linear-select multiplexers, 7
Logical equality operator (==), 22
Logical inequality operator (!=), 22
Logical operators, 20t, 21–22

arithmetic and logic unit (ALU), 455
behavioral eight-function ALU 

design example, 456–459
dataflow modeling, 79–81
See also specific types

Logic diagram, asynchronous sequential 
machine, 324

Logic elements, 2
comments, 2
design examples

product-of-sums, 156–157
product-of-sums using assign, 

160–162
sum-of-products and  

product-of-sums, 158–160
sum-of-products with 

 map-entered variable, 162–164
logic gates, 2–5

Logic element truth tables, 4–5
Logic equations, 154

design examples
structural modeling, 111–118
sum-of-products, 154–155

Logic gates, 2–5
fan-in and fan-out, 5
Mealy asynchronous sequential 

machine design example, 
339–344

symbols, 2–4
Logic macro functions, 5

combinational, 5–14, See also 
Combinational logic macros

sequential, 5, See also Sequential 
logic macros

See also Comparators; Multiplex-
ers; specific macros

Logic operators, Boolean algebra, 148–149
Logic synthesis, 69
Loop statements, 14–15

behavioral modeling, 98–104
See also specific statements or 

loops
 output function, 245, 248, 324, 355

M
Macro logic circuits, See Logic macro 

functions
Majority circuit design examples,  

43–46, 206–210
Mantissa, 503
Map-entered variables, 38, 60

sum-of-products design example, 
162–164

Maxterm, 152
Maxterm expansion, 153
Mealy machines, 273, 355

design examples, 274–298
asynchronous sequential 

machines, 330–344
pulse-mode asynchronous 

sequential machines,  
356–362, 374–383

using built-in primitives, 348–354
using built-in primitives and D 

flip flops, 280–284, 294–298
using case and conditional 

statements, 289–294
using D flip-flops, 285–289
using JK flip-flops, 274–279
using logic gates, 339–344
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ports, 28, 109–111
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Modulus symbol (%), 311
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decimal addition with sum 

 correction, 466–472
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N
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DeMorgan's theorems, 33–34, 156
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Normalized floating-point numbers, 
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NOT (inverter), 3f, 33–34
not built-in primitive, 28, 33–34
NOT logic operator ('), Boolean alge-
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Number systems, 146–148

O
Octal number system, 147
Octal-to-binary encoder, 11
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Octal-to-binary priority encoder, 13t
Operands, 21t, 491
Operator expressions, See Expressions; 

Operators; specific operators
Operators, 19–27

arithmetic, 20–21
bitwise, 23–24, 81–84
concantenation, 27
conditional, 26–27, 74–77
dataflow modeling, See Dataflow 

modeling
equality, 22–23
logical, 21–22, 79–81
reduction, 25–26, 71–74
relational, 22, 77–79
replication, 27
shift, 26, 84–86
table of, 20t

OR (|) bitwise operator, 23, 81
OR (|) reduction operator, 25, 71
OR arrays, programmable logic devices, 

185–189, 202, See also Pro-
grammable logic devices

or built-in primitive, 28, 34
Ordered pairs, 249
OR gate, 3, 4, 34

design example, 52–53
programmable array logic, 191
symbol, 3f
truth table, 4t

OR logic operator, Boolean algebra, 
148–149

OR operation (|) expressions, 17–18
OR operator (||), binary logical, 21, 

79
Oscillations, asynchronous sequential 

machine, 326–327
Output function (), 245

hazards in asynchronous sequen-
tial machines, 324

Moore machines, 248
pulse-mode asynchronous sequen-

tial machines, 355

output keyword, 29
Output maps and equations, asyn-

chronous sequential machines, 
324

output port, 109, 110, 129–131
Output symbol, 246

P
Parallel-in, parallel-out (PIPO) regis-

ters, 299–300
Parallel-in, serial-out (PISO) registers, 

300–303
Parameters, 19
parameter statement, 19, 456
Parity of register calculation, 135–137
PIPO registers, 299–300
PISO registers, 300–303
Ports, 28

structural modeling, 109–111
Positional number system, 146
Postnormalization, 505
Primitive flow table, 323, 330–331
primitive keyword, 52
Primitives, 28
Primitives, built-in, See Built-in 

primitives
Primitives, user-defined, See User-

defined primitives
Priority encoders, 12
Procedural flow control, 14–15, See also 

specific statements or keywords
Product, 491
Product of maxterms, 153, 229
Product-of-sums, 153

design examples
combinational logic circuit, 

226–229
Mealy asynchronous sequential 

machine, 336
using assign, 214–216
using built-in primitives, 35–38, 

217–218
using logic elements, 156–162
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Product term in Boolean algebra, 152
Programmable array logic (PAL), 191

code converter design example, 
191–194

full adder design example, 195–202
Programmable logic array (PLA) 

design, 202
design examples, 202–214

code converter, 210–214
five-input majority device,  

206–210
three-inputs and four-outputs, 

202–206
Programmable logic devices, 185

programmable array logic, 191–202
programmable logic array,  

202–214
programmable read-only memo-

ries (PROMs), 185–191
See also Programmable array 

logic; Programmable logic 
array; Programmable read-
only memories

Programmable read-only memories 
(PROMs), 185–186

design examples, 186–191
sequential logic design, 188

Project procedure, Verilog, 567–568
PROMs, See Programmable read-only 

memories
Pulse-mode asynchronous sequential 

machines, 354–355
design examples

Mealy machines, 356–362, 
374–383

Moore machines, 362–371, 
383–394

SR latches with D flip-flops, 
362–371

T flip-flops, 372–394
using continuous assignment 

(assign), 367–368
synthesis (design) procedure, 356

R
Races, 328–329
Radix complement of binary numbers, 

408
Reduction operators, 20t

dataflow modeling, 71–74
Reflexive equivalence, 248
reg data types, 16–17, 32
Register data types, 16–17, See also D 

flip-flops; JK flip-flops
Register parity calculation, 135–137
Registers, synchronous, See Synchro-

nous registers
Register transfer level (RTL), 69
Relational operators, 20t, 22

dataflow modeling, 77–79
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repeat loop, 102–103
Replication operator, 20t, 27
Restoring division, 450, 538–542
Right-rotate operation, 105
Right-shift operator, 26, 84–86, 104
Ripple adder for decimal operands, 463
Ripple-carry adder, 415–418
Ripple subtractor, 425–428
Rotate left (ROL), 105
Rotate right (ROR), 105

S
Sensitivity list, 88
Sequential add-shift multiplication algo-

rithm, 528–529
Sequential logic design, 245

asynchronous machines, 321–354
nonblocking assignments, 563, 

See also Nonblocking assign-
ments

pulse-mode asynchronous 
machines, 354–394

sequential machine terms and def-
initions, 245–246

synchronous machines, 246–321
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