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Preface

The role of arithmetic in datapath design in VLSI design has been increasing
in importance over the last several years due to the demand for processors
that are smaller, faster, and dissipate less power. Unfortunately, this means
that many of these datapaths will be complex both algorithmically and circuit-
wise. As the complexity of the chips increases, less importance will be placed
on understanding how a particular arithmetic datapath design is implemented
and more importance will be given to when a product will be placed on the
market. This is because many tools that are available today, are automated to
help the digital system designer maximize their efficiently. Unfortunately, this
may lead to problems when implementing particular datapaths.

The design of high-performance architectures is becoming more compli-
cated because the level of integration that is capable for many of these chips
is in the billions. Many engineers rely heavily on software tools to optimize
their work, therefore, as designs are getting more complex less understanding
is going into a particular implementation because it can be generated automati-
cally. Although software tools are a highly valuable asset to designer, the value
of these tools does not diminish the importance of understanding datapath ele-
ments. Therefore, a digital system designer should be aware of how algorithms
can be implemented for datapath elements. Unfortunately, due to the complex-
ity of some of these algorithms, it is sometimes difficult to understand how a
particular algorithm is implemented without seeing the actual code.

The goal of this text is to present basic implementations for arithmetic data-
path designs and the methodology utilized to create them. There are no control
modules, however, with proper testbench design it should be easy to verify
any of the modules created in this text. As stated in the text, this text is not
a book on the actual theory. Theory is presented to illustrate what choices
are made and why, however, a good arithmetic textbook is probably required
to accompany this text. Utilizing the Verilog code can be paramount along
with a textbook on arithmetic and architecture to make ardent strides towards
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understanding many of the implementations that exist for arithmetic datapath
design.

Wherever possible, structural models are implemented to illustrate the de-
sign principles. The importance for each design is on the algorithm and not
the circuit implementation. Both algorithmic and circuit trade-offs should be
adhered to when a design is under consideration. The idea in this text is imple-
ment each design at the RTL level so that it may be possibly implemented in
many different ways (i.e. standard-cell or custom-cell).

This text has been used partially as lecture notes for a graduate courses in
Advanced VLSI system design and High Speed Computer Arithmetic at the
Illinois Institute of Technology. Each implementation has been tested with
several thousand vectors, however, there may be a possibility that a module
might have a small error due to the volume of modules listed in this treatise.
Therefore, comments, suggestions, or corrections are highly encouraged.

I am grateful to many of my colleagues who have supported me in this
endeavor, asked questions, and encouraged me to continue this effort. In par-
ticular, I thank Milos Ercegovac and Mike Schulte for support, advice, and in-
terest. There are many influential works in the area of computer arithmetic that
have spanned many years. The interested reader should consult frequent con-
ference on arithmetic such as the IEEE Symposium on Computer Arithmetic,
International Conference on Application-Specific Systems, Architectures, and
Processors (ASAP), Proceedings of the Asilomar Conference on Signals, Sys-
tems, and Computers, and the IEEE International Conference on Computer
Design (ICCD) among others.

I would also like to thank my students who helped with debugging at times
as well general support: Snehal Ajmera, Jeff Blank, Ivan Castellanos, Jun
Chen, Vibhuti Dave, Johannes Grad, Nathan Jachimiec, Fernando Martinez-
Vallina, and Bhushan Shinkre. In addition, a special thank you goes to Karen
Brenner at Synopsys, Inc. for supporting the book as well.

I am also very thankful to the staff at Kluwer Academic Publishers who
have been tremendously helpful during the process of producing this book.
I am especially thankful to Alex Greene and Melissa Sullivan for patience,
understanding, and overall confidence in this book. I thank them for their
support of me and my endeavors.
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the book.
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Chapter 1

MOTIVATION

Verilog HDL is a Hardware Description Language (HDL) utilized for the
modeling and simulation of digital systems. It is designed to be simple, intu-
itive, and effective at multiple levels of abstraction in a standard textual format
for a variety of different tools [IEE95]. The Verilog HDL was introduced by
Phil Moorby in 1984 at the Gateway Design Automation conference. Verilog
HDL became an IEEE standard in 1995 as IEEE standard 1364-1995 [IEE95].
After the standardization process was complete and firmly established into the
design community, it was enhanced and modified in the subsequent IEEE stan-
dard 1364-2001 [IEE01]. Consequently, Verilog HDL provides a fundamental
and rigorous mathematical formalistic approach to model digital systems.

The framework and methodology for modeling and simulation is the overall
goal of the Verilog HDL language. The main purpose of this language is to
describe two important aspects of its objective:

Levels of System Specification- Describes how the digital system behaves
and the provides the mechanism that makes it work.

System Specification Formalism- Designers can utilize abstractions to
represent their Very Large Scale Integration (VLSI) or digital systems.

1.1 Why Use Verilog HDL?
Digital systems are highly complex. At the most detailed level, VLSI de-

signs may contain billions of elements. The Verilog language provides digital
designers with a means of describing a digital system at a wide range of levels
of abstraction. In addition, it provides access to computer-aided design tools
to aid in the design process at these levels.

The goal in the book is to create computer arithmetic datapath design and to
use Verilog to precisely describe the functionality of the digital system. Verilog
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provides an excellent procedure for modeling circuits aimed at VLSI imple-
mentations using place and route programs. However, it also allows engineers
to optimize the logical circuits and VLSI layouts to maximize speed and mini-
mize area of the VLSI chip. Therefore, knowing Verilog makes design of VLSI
and digital systems more efficient and is a useful tool for all engineers.

Because the Verilog language is easy to use and there are many Verilog
compilers publicly as well as commercially available, it is an excellent choice
for many VLSI designers. The main goal for this text is to utilize the Verilog
HDL as a vehicle towards the understanding of the algorithms in this book.
Although there are many algorithms available for the computation of arithmetic
in digital systems, a wide variety of designs are attempted to give a broad
comprehensive of many of main ideas in computer arithmetic datapath design.
Several major areas of digital arithmetic, such as the residue number system,
modular arithmetic, square-root and inverse square root, low-power arithmetic,
are not implemented in this text. On the other hand, these algorithms are just as
important in the area of digital arithmetic. The hope is to eventually have these
implementations in future editions of this text where this text focuses on the
basic implementations of addition, subtraction, multiplication, and division.

1.2 What this book is not : Main Objective
This book attempts to put together implementations and theory utilizing Ver-

ilog at the RTL or structural level. Although the book attempts to always rely
on the use of theory and its practical implementation, its main goal isnot
meant to be a book on computer arithmetic theory. On the other hand, this
book attempts to serve as a companion to other text books that have done a
fantastic job at describing the theory behind the fascinating area of computer
arithmetic [EL03], [Kor93], [Mul97]. Moreover, the compendium of articles
in [Swa90a], [Swa90b] assembles some of the seminal papers in this area. This
reference is particularly illuminating since many of the articles give insight into
current and future enhancements as well as being edited for content.

There are a large number of tools that exist in the Electronic Design Au-
tomation (EDA) field that attempt to automate many of the designs presented
in this book. However, it would be inconceivable for an EDA vendor to be
able to generate a tool that can generate every possible arrangement and/or en-
hancement for digital computer arithmetic. Consequently, this book attempts
to illustrate the basic concepts through Verilog implementations. With this
knowledge, engineers can potentially exploit these EDA tools at their fullest
extent and, perhaps, even augment output that these tools generate. More im-
portantly, it would not be advantageous nor wise for a VLSI engineer to rely
on an EDA tool to generate an algorithm without its understanding.

In addition to being able to understand the implementations described in this
text, this book also illustrates arithmetic datapath design at the structural level.
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AlgorithmCircuit

Figure 1.1. Objective for VLSI Engineer.

This allows the designs to be easily visible and allow the reader to relate how
the theory associates with the implementation. Moreover, the designs in this
book also illustrate Verilog models that are easily importable into schematic-
entry VLSI tools. Since VLSI design is about trade-offs between algorithm
and circuit implementations as illustrated in Figure 1.1, it is extremely impor-
tant for a VLSI designer to know what the basic implementation ideas are so
that he/she can make an informed decision about a given design objective. In
Figure1.1, the design goal is to form an implementation that makes the best
compromise between algorithmic complexity and circuit constraint for a given
cost (i.e. the intersection of the two constraints). Therefore, the ideas pre-
sented in this book allow the designer to understand the basic implementation
in terms of simple gate structures. With this knowledge, the engineer can then
apply specific circuit considerations to allow their design to meet a given per-
formance. Without this knowledge, an engineer might lose sight of what an
engineer can and can not do with a given implementation.

1.3 Datapath Design
The designs in the book are mainly aimed at design validation. That is, does

the design execute the right algorithm and is the functionality of the design
function or all potential scenarios or corners. Consequently, when writing a
functional model, many designers separate the code into control and datapath
pieces. Datapath operate on multi-bit data flow and have regular communica-
tion, however, the wiring in control is often more random. Therefore, different
wiring indicates that different tools are typically used to support the different
parts. This book only concentrates on the datapath design since its more reg-
ular, more involved, and takes more time to design, whereas, control logic is
usually straight forward and less involved. In order to differentiate control
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wires from datapath wires, control wires will be labeled inbold and drawn
using dash-dotted as opposed to solid lines.

Another important point to the algorithms presented in this book is that
it attempts to characterize the algorithmic aspects of each implementation.
As explained previously, an implementation has to take into consideration a
circuit-level consideration as well as its algorithmic approach. For example,
a ripple-carry adder was originally implemented in VLSI as opposed to carry-
lookahead carry propagate adder because the circuit-implementations lent it-
self to an efficient utilization of area versus delay considerations. However,
with the introduction of parallel-prefix carry-propagate adders, the ability to
implement adders that had bit interconnections that consumed less wire length
became possible. Therefore, its important for a designer to be aware of how a
given implementation performs algorithmically so that certain circuit benefits
can benefit the implementation.

To help in characterizing the designs in this book, each implementation will
be evaluated for area and delay. To make sure that each implementation is com-
pared without any bias, a given design will utilizeAND, OR, andNOT gates
only unless otherwise stated. This way, each algorithmic implementations can
be compared without confusing an implementation with a circuit benefit. Once
the algorithmic advantages and disadvantages are known, a VLSI designer can
make astute judgments about how a circuit implementation will benefit a given
algorithm. Utilizing additional gates structures, such as exclusive-or gates,
would be considered a circuit-level enhancement. Power, an important part
of any design today, is not considered in this treatise. Moreover, the designs
in this book that require timing control will employ simpleD flip flop-based
registers although a majority of designs today employ latches to make use of
timing enhancements such as multi-phase clocking and/or time borrowing.
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For some designs, area will be calculated based on number of gates com-
prised of basicAND, OR, or NOT gate. Delay is somewhat more compli-
cated and will be characterized in∆ delays using the values shown in Table 1.1.
Although one could argue that the numbers in Table 1.1 are not practical, they
give each implementation a cost that can allow a good algorithmic comparison.
Conceivably, all implementations could even be compared using the same de-
lay value. Altering these delays numbers so that they are more practical starts
addressing circuit-level constraints.

Gate Delay (∆)

NOT 1
AND 2
OR 2

Table 1.1. Area and Gate Baseline Units.





Chapter 2

VERILOG AT THE RTL LEVEL

This chapter gives a quick introduction to the Verilog language utilized
throughout this book. The ideas presented in this text are designed to get the
reader acquainted with the coding style and methodology utilized. There are
many enhancements to Verilog that provide high-level constructs that make
coding easier for the designer. However, the ideas presented in this book are
meant to present computer arithmetic datapath design with easy to follow de-
signs. Moreover, the designs presented here in hopes that the designs could be
either synthesized or built using custom-level VLSI design [GS03]. For more
information regarding Verilog, there are a variety of books, videos, and even
training programs that present Verilog more in depth as well as in the IEEE
1364-2001 standard [IEE01].

2.1 Abstraction
There are many different aspects to creating a design for VLSI architectures.

Breaking a design into as much hierarchy as possible is the best way to organize
the design process. However, as an engineer sits down to design a specific
data path, it becomes apparent that there may be various levels of detail that
can be utilized for a given design. Consequently, a designer may decide to
design a carry-progagate adder using the “+” operator or using a custom-built
28 transistor adder cell. This level of thought is called an abstraction.

An abstraction is defined as something left out of a description or definition.
For example, one could say “an animal that meows” or a “cat”. Both could be
abstractions for the same thing. However, one says more about the noun than
the other. If a VLSI or HDL designer is going to be relatively sane by the time
his/her next project comes around, this idea of abstraction should be utilized.
That is, in order to be able to handle the large complexity of the design, the
designer must make full use of hierarchy for a given design. In other words, it
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should be broken into three steps as shown below. Hierarchy also exemplifies
design reuse where a block may be designed and verified and then utilized
many different places.

Constrain the design space to simplify the design process

Utilize hierarchy to distinguish functional blocks

Strike a balance between algorithmic complexity and performance.

This idea is typically illustrated by the use of the Gajski-Kuhn (GK) Y-
chart [GK83] as shown in Figure 2.1. In this figure, the lines on the Y-chart
represent three distinct and separate design domains – the behavior, structural,
and physical. This illustration is useful for visualizing the process that a VLSI
designer goes through in creating his/her design. Within each of these domains,
several segmentations can be created thus causing different levels of design ab-
straction within a domain. If the design is created at a high level of abstraction
it is placed further away from the center of the chart. The center of the chart
represents the final design objective. Therefore, the dotted line represents the
design process where an engineer arbitrarily goes from the Behavior, Struc-
tural, to the Physical domains until he/she reaches the design objective. Its
important to understand that the point at which an engineer starts and ends in
the GK chart is chosen by the designer. How he/she achieves their objective is
purely a offspring of their creativity, artistic expression, and talent as an engi-
neer. Two engineers may arrive at the same point, however, their journey may
be distinct and different. In reality, this is what drives the engineering commu-
nity. It is our expressionism as a designer in terms of placing his/her creativity
into a design. Every designer is different giving a meaning and purpose for
each design.

For the “process” to start, a designer picks a location where he/she will start
his her design cycle. Many designers are tempted to pick a level further away
from the center of the chart such as a behavior level. Although some designers
try to explain the reasoning behind this decision being that it saves them time
trying to represent their design within a given time construct, this tendency
may lead to designs that are less suitable for synthesis. On the other hand,
current and future synthesis packages are becoming more adept towards using
higher level abstractions, since CAD tools are utilizing better code density and
data structure use. Therefore, these new trends in better synthesis packages are
giving designers more freedom within their design.

This idea of invoking better synthesis packages is especially true today
where feature sizes are becoming smaller and the idea of a System on a Chip
(SoC) is in the foremost thought of corporations trying to make a profit. How-
ever, the true reasoning behind this is that Verilog, which is a programming
language, is built with many software enhancements. These enhancements al-
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Boolean Equations

Modular Description

Algorithm
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Interconnect
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Figure 2.1. GK Y-Chart.

low the designer more freedom in their language use. However, it is important
to realize that Verilog is really meant for digital system design and is not really
a true programming language – it is a modeling language! Consequently, when
a designer attempts to create a design in Verilog, the programmer can code the
design structurally or at the RTL level where an engineer specifies each adder’s
organization for a parallel multiplier. Conversely, an engineer may attempt to
describe a system based on a high level of abstraction or at the behavioral level.

As explained previously, the process of going from one domain to another
is termed thedesign process. Behavioral descriptions are transformed to
structural descriptions and eventual to physical descriptions working their way
closer and closer towards the center of the GK chart. After arriving at the
physical domain, an engineer may decide to go back to the behavioral domain
to target another block. However, it is important to additionally realize that a
design may be composed of several abstractions. That is, the multiplier men-
tioned previously may have some structural definitions, some behavioral defi-
nitions, and even some physical definitions. The design process has an analogy
as awork factor. The further away from the desired ending point, the harder
the engineer or synthesis program has to work.

In this book, a pure structural form is adopted. This is done for several rea-
sons. The main reason is to construct an easy to understand design for a given
algorithm. If the VLSI engineer is to understand how to make compromises
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between what is done algorithmically and what can be achieved with a given
circuit, it is extremely important that the algorithm be understood for its imple-
mentation. The best way to accomplish this is by using a structural model for
an implementation. However, a behavior implementation definitely can have
its advantages and the author does not convey that there is no use for a behavior
description.

Therefore, the structural models adopted here will accomplish two things.
First, it will enable the clear understanding of what is being achieved with
a given design. Second, it will allow an engineer an easy way to convert a
given Verilog design into schematic-entry for possible custom-level integra-
tion. Consequently, an engineer can start concentrating on how that circuit can
be implemented for the given implementation.

Overall, if an engineer is to be successful it important that he/she understand
the algorithm being implemented. If this requires writing a high-level program
to understand how error is affected then an engineer must go out of their way to
create a bridge between the understanding and the implementation. Therefore,
the author believes the best way to understand what is going on is to attempt a
solid structural model of the implementation. Therefore, this book attempts to
design each block at the structural level so its easily synthesizable or imported
into a schematic for a custom-level design flow.

Moreover, there are various different design methodologies that can be im-
plemented to create the designs in this book as well as other designs elsewhere.
Subsequently, using a structural model is not the only solution, however, it defi-
nitely is an easy way to understand how a given algorithm can be implemented.
The IEEE has attempted to make this more succinct clear in a recent addendum
to the standardization so that is better suited towards synthesis [IEE02].

2.2 Naming Methodology
The use of naming conventions and comments are vital to good code struc-

ture. Every time a design is started, it is a good idea to keep note of certain
features such as comments, radix or base conversion for a number, number
of gates, and type of gate with the structure of the design. In this book, the
copious use of naming conventions and enumeration is utilized. The naming
methodologies listed below are recommended by the author for good program
flow, however, they are not required. Verilog is also case-sensitive, therefore,
it matters whether you refer toCoutor cout. It is also a good idea when coding
a designs, to use single line comments to comment code. Two types of com-
ments are supported, single line comments starting with // and multiple line
comments delimited by /* ... */.

One of the advantages to the Verilog language is that you can specify dif-
ferent radices easily within a given design. Numbers within Verilog can be in
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binary (b or B ), decimal (d or D ), hexadecimal (h or H ) or octal (o or O
). Numbers are specified by

<size>’<radix><number>

The size specifies the exact number of bits used by the number. For example, a
4-bit binary number will have4 as the size specification and a4 digit hexadeci-
mal will have16 as the size specification since each hexadecimal digit requires
4 bits. Underscores can also be put anywhere in a number, except the begin-
ning, to improve readability. Several conversions are shown in Figure 2.2.

8’b11100011 // 8 bit number in radix 2 (binary)
8’hF2 // 8 bit number in radix 16 (hexadecimal)
8’b0001_1010 // use of underscore to improve readability

Figure 2.2. Binary or Hexadecimal Numbers.

2.2.1 Gate Instances
Verilog comes with a complete set of gates that are useful in constructing

your design. Table 2.1 shows some of the various representations of elements
that are comprised into the basic Verilog language. Verilog also adds other
complex elements for tri-stating, transistors, and pass gates. Since there are
a variety of gates that can be implemented, the designs in this book use only
basic digital gates. This simplifies the understanding of the design as well as
giving the design more of a structural implementation.

All uses of a device are differentiated by instantiating the device. The instan-
tiated value is used by either the simulator or synthesis program to reference
each element, therefore, providing a good naming structure for your instance is
critical to debugging. Therefore, if a user decides to incorporate two elements
of a NAND device, it must be differentiated by the instance or instantiation as
seen below:

nand nand1 (out1, in1, in2);
nand nand2 (out2, in2, in3, in4);

As seen in this example, a gate may also be abstracted for different inputs. For
example, the second instantiation is a3-input NAND gate as opposed to the
first instantiation which is a2-input NAND gate.

In this book, code is usually instantiated asgateX wheregate is a identifier
that the user creates identifying the gate. For example,nand in the example
above is a NAND gate. The valueX is the specific number of the gate. For
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Gate Format Description

and and (output, inputs) n-inputand gate
nand nand (output, inputs) n-inputnand gate
or or (output, inputs) n-inputor gate
nor nor (output, inputs) n-inputnor gate
xor xor (output, inputs) n-inputxor gate
xnor xnor (output, inputs) n-inputxnor gate
buf buf (output, inputs) n-input buffer gate
not not (output, input) n-input inverter gate

Table 2.1. Gate Instances in Verilog.

example,nand2 is the second NAND gate. This way, its easy to quantify how
many gates are utilized for each implementation.

2.2.2 Nets
A net represents a connection between two points. Usually, a net is defined

as a connection between an input and an output. For example, ifZ is connected
to A by an inverter, then it is declared as follows:

not i1(Z, A);

In this example,Z is the output of the gate, whereas,A is the input. Anything
given toA will be inverted and outputted toZ.

However, there are times when gates may be utilized within a larger de-
sign. For example, the summation of three inputs,A, B, andCin, sometimes
use two exclusive-or gates as opposed to a three input exclusive-or gate. This
presents a problems since the output of the first gate has no explicit way of
defining an intermediate node. Fortunately, Verilog solves this with thewire
token. A wire acts as an intermediate node for some logic design between
the input and output of a block as shown in Figure 2.3. In this example, the
variable tempsignal is utilized to connect thexor2 instantiation to thexor3
instantiation.

2.2.3 Registers
All variables within Verilog have a predefined type to distinguish their data

type. In Verilog, there are two types of data types, nets and registers. Net
variables, as explained previously, act like a wire in a physical circuit and es-
tablish connectivity between elements. On the other hand, registers act like a



Verilog at the RTL level 13

input A, B, Cin;
output Sum1, Sum2;
wire temp_signal;

xor xor1 (Sum1, A, B, Cin);
xor xor2 (temp_signal, A, B);
xor xor3 (Sum2, temp_signal, Cin);

Figure 2.3. Wire Nets.

variable in a high-level language. It stores information while the program is
being executed.

The register data type, orreg, definition enables values to be stored. Areg
output can never be the output of a predefined primitive gate as in Table 2.1.
Moreover, it can not be aninput or inout port of a module. It is important
to remember that this idea of storage is different than how a program stores
a value into memory. Register values are assigned by procedural statements
within an always or initial block. Each register value holds its value until
an assignment statement changes it. Therefore, this means that thereg value
may change at a specific time even without the user noticing it which can give
digital system engineers some difficulty.

The use of the register data type is extremely useful for the design of storage
elements such as registers and latches. Although there are several different
variants on how to create a storage element, it is sometimes hard to write a
good piece of HDL code for such a device. This is due to the fact that storage
elements such as memory and flip-flops are essential feedback elements. This
feedback element usually is complicated with a specific circuit that stores a
value and another specific circuit that enables reading or writing.

In an attempt to alleviate some of the differences for synthesis, the IEEE has
attempted to define this more efficiently in the new 2002 standard [IEE02].
Although the IEEE has made ardent strides towards addressing these issues, it
may be awhile before synthesis programs adhere to this standard. Therefore,
its always a good idea to consult manuals or white papers for your synthesis
program to obtain a good model for such a device. In this book, a simple
D-type flip-flop is utilized as shown in Figure 2.4.

2.2.4 Connection Rules
There are several different types of ports utilized within a design. The ports

of a Verilog file define its interface to the surrounding environment. A port’s
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module dff (reg_out, reg_in, clk);

input clk; // clock
input reg_in; // input

output reg_out; // output

reg reg_out;

always @(posedge clk)
begin
reg_out <= reg_in;

end

endmodule

Figure 2.4. D Flip Flop.

mode can be unidirectional (input, output) or bidirectional (inout). Bidirec-
tional ports must always be of anet type and can not be of typereg.

2.2.5 Vectors
Another important element within Verilog is the creation of vectors. A vec-

tor in Verilog is denoted by square brackets that encloses a contiguous range
of bits. Both the register and net data types can be any number of bits wide
if declared as vectors. The Verilog language specifies that for the purpose of
calculating the decimal equivalent value of a vector, the leftmost index in the
bit range is the most significant bit, whereas, the rightmost bit is the least sig-
nificant bit [IEE95]. An expression can be also indexed in part or in its entirety.
For example, an8-bit word cout can be referenced as cout[7:0].

2.2.6 Memory
Another useful element in this book is the idea of memory. Memory is

invariably defined as behavior-level HDL code. This is because memory, ei-
ther dynamic or static, is composed of many parts including analog devices
such as sense amplifiers. Therefore, most VLSI designers code memory at
the behavior-level leaving the implementation up to custom-level designs or
specialized memory compilers. Since many of the designs in this book utilize
memory, memory will be defined at the behavior-level as well.
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Memories are simply an array of registers. The example that is utilized
in this book is for read-only memory or ROM as shown in Figure 2.5. In this
example, the code basically reads in a file called plain text filerom.data which
contains the values stored in memory. This is a simple model where the size of
the memory is2address × data.

input [4:0] address; // address

output [7:0] data // data

reg [7:0] memory[0:31];

initial
begin
$readmemb(‘‘./rom.data’’, memory);

end

assign data = memory[address];

Figure 2.5. Memories.

2.2.7 Nested Modules
Complex digital systems are designed by systematically partitioning designs

into simpler hierarchical functional units. With this use of hierarchy, a design
can be managed and executed efficiently. In the Verilog language, each digital
system is described by a set of modules. Each of these modules has an interface
to other modules to describe how they are connected. The top level design is
instantiated into an architecture where each module is invoked hierarchically.
Because each module is separated hierarchically, it allows reuse and makes
the design simpler to design. This divide and conquer strategy with the use of
abstraction makes the design of millions and even billions of devices possible.

Modules can represent pieces of hardware ranging from simple gates to
complete systems. Modules can either be specified behaviorally or structurally
(or a combination of the two). The keywordsmodule andendmodule enclose
the Verilog description of the device. The text between these two keywords
can be in any order, however, its probably best to make suredeclarations are
before instances to improve readability. The structure of a module is as
follows:
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module <module name> (<port list>);
<declarations>
<instances>

endmodule

The<module name> is an identifier that uniquely names the module. The
<port list> is a list of input, inout and output ports which are used to connect to
other modules. The <declarations> section specifies data objects as registers,
inputs, outputs, and wires. The instances are the individual instantiations of
primitive gates such as the gates in Table 2.1. In addition, instances may be
modules that can be nested within other modules. When a module is referenced
by another module, a hierarchical description of the design is invoked.

When calling a module the width of each port must be the same. How-
ever, output ports may remain unconnected. This is sometimes useful if some
outputs were designated for debugging purposes or if some outputs of a more
general module were not required in a particular context. However input ports
cannot be omitted for obvious reasons. On the other hand, bothinput and
output names must be declared in theport list.

An important tip to remember regarding instances and port lists is to
always define the ports with output first followed by inputs. Since a mod-
ule port list can be declared with either inputs or outputs first, this can lead
to potential design bugs which are difficult to ascertain. The author has seen
countless designs plagued by errors because the design may be semantically
correct, however, the port lists were declared and instantiated differently. A
compiler may not alert you to this problem when its compiled. Therefore,
in order to maintain conformity, its advisable to keep outputs first followed
by inputs. This methodology is recommended because the primitive gates in
Table 2.1 can only be defined output first. This establishes a common method-
ology and may potentially reduce debugging time from hours to days.

The semantics of the module construct in Verilog are different from subrou-
tines, procedures and functions in other languages. A module is never called!
A module is instantiated at the start of the program and stays around for the life
of the program. A Verilog module instantiation is used to model a hardware
circuit where we assume no one changes the wiring. Each time a module is
instantiated, the instantiation is given a name. For example, Figure 2.6 shows
a shows a structural implementation of a NAND gate.

2.3 Force Feeding Verilog : the Test Bench
Verilog has been designed to be intuitive and simple to learn. This is why

a programmer may see many similarities between Verilog and other popular
high-level languages like Pascal and C. Verilog can closely model real circuits
using built-in primitives and user-defined primitives. It can also incorporate
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module nand(out, in1, in2);

input in1, in2;

output out;

nand nand1(out, in1, in2);

endmodule

Figure 2.6. Structural Model of a 2-input Nand Gate.

timing information into its simulation for accurate timing and skew budget
checking.

Before a design can be synthesized, it must be verified. Verification is an
extremely important aspect of design especially due to high visibility cases
such as the Intel Pentium Bug that occurred during the latter half of the 20th
century [CT95]. Therefore, there should be an easy way to test a digital sys-
tem easily in Verilog. Unfortunately, testing is not for the faint hearted. It
involves designing good test cases usually using theories related to Boolean
simplification and Design for Testability (DFT).

Fortunately, Verilog has an excellent way to facilitate testing. Although
many Verilog compilers come with mechanisms to test Verilog code interac-
tively bit by bit, an engineer should use a simple procedure for completing
digital system designs. This involves the following:

1 Identify the algorithm to be utilized.

2 Perform an adequate error analysis to confirm that a particular precision
will be maintained.

3 Generate input and expected output test vectors into a “golden” file that
give the design a good bit coverage.

4 Utilize an automated testing procedure to compare modeled output versus
this “golden” file.

The device that enables the testing to occur automatically is called a test-
bench [Ber03]. This is illustrated graphically in Figure 2.7.

Although we can represent a function many different ways, either behav-
iorally or structurally or combinations of both, Verilog code is worthless unless
we can test it appropriately. In Verilog, although manual stimulation of an in-
put is possible, the recommended method of testing is through a test bench. A
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Verilog DUT Verilog Testbench

comparison
for golden file or
possible circuit analysis

Figure 2.7. Test Methodology.

test bench is another Verilog module that acts as the stimulus and port watcher
for your top-level or part of the Verilog file you wish to simulate. The top-most
hierarchy is most-often utilized for testing, since a majority of programs can
see below the top level, whereas, if you test at a lower level, the possibility of
testing higher-level modules is more difficult.

2.3.1 Test Benches
As stated previously, testing is most often done using test benches or stim-

ulus files. A stimulus file is a file which contains all the vectors you want to
test is used in this lab to create the vectors you wish to test. It sort of acts like
a tester for your Verilog files by stimulating all the inputs of yourtop-level
Verilog file and viewing its outputs.

A test bench is made similar to how the book creates flip flops. A sequential
statement is used to indicate the order in which values are to be placed at a
specific port. For example, in Figure 2.8 a stimulus file is seen for an instance
calledmux21. Its important to notice that the stimulus file now becomes the
top-most hierarchy and instantiates the lower-level device to be tested. In this
case, the module is instantiated asdut1. Sometimes the Verilog file to be tested
is called the Device Under Test (DUT).

Stimulus files are quite easy to create. The stimulus file in Figure 2.8 ac-
tually shows two forms of output that will be explained later, however, the
important part to remember about stimulus files is that they are synchronized
by aclock. Theclockacts the part of the circuit which synchronizes the inputs.
Consequently, all inputs are placed using a data typereg. Since an output does
not have to be synchronized to an input, it just has to be observed. Therefore,
all outputs will be of typewire. This allows the outputs to appear as soon as
the signals are validated. In Figure 2.8 the signalClk acts as the clock to syn-
chronize the output. However, its important to realize that the clock does not
have to be utilized within the DUT. It is purely for synchronizing the output to
the input.
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Since most stimulus files are complicated, it is easiest to copy the input/output
ports from your top-most hierarchy and place them in your stimulus file. After-
wards, just rename all input ports of typeregand all output ports of typewire.
It is also important to remember to always keep theClk initialized as a typereg
so it can be synchronized. That is, always use the same test bench, however,
modify the instantiation and definitions to make the appropriate stimulus files

Examining the stimulus file in Figure 2.8 indicates there are three key areas
which might need to be modified. The first key area is any area marked with an
initial tag. An initial statement indicates parts where the code is setup when the
program is first executed and then it is never visited again. In the first initial
statement in Figure 2.8 it can be seen that the clock period is set at10 ticks
where a50 % duty ratio is utilized.

In the second initial statement in Figure 2.8, the observed output from the
Verilog DUT is recorded in a file called test.out. This is useful to compare
the output versus the “golden” file. If the two are equal, then a designer can
be satisfied that his or her design works. Careful attention to when the data
is written to the output file might also be necessary to make sure the output is
in the same format as the “golden” file. In Figure 2.8, the test bench outputs
values to its corresponding output file every5 cycles.

The third area that is crucial to its operation is the thirdinitial statement.
In this statement, the inputs are asserted. Fortunately, in Verilog, you can
assert the inputs in different bases which is one of the powerful elements of
the language. In other words, you can give an input a value in any form, octal,
hexadecimal, binary, or decimal.

2.4 Other Odds and Ends within Verilog
As stated previously, Verilog comes with many enhancements and language

structures to allow a VLSI designer freedom to design. The following are lists
of some of the enhancements utilized in this text that may be useful to the
reader. For more information regarding some of the other tokens, the reader is
advised to consult a comprehensive textbook or even the IEEE standard.

2.4.1 Concatenation
The concatenation operator joins sized nets, registers, bits, and vectors. It

is prefaced and appended by the curly braces to signify everything within it
shall be concatenated. Verilog will evaluate expressions from left to right.
Therefore, the concatenation operator forms a single word from two or more
operands from left to right. For example, if the operandA is the bit pattern
1111 andCin is the bit pattern1101, then{A,B} would produce the bit pat-
tern1111 1101. The concatenation operator is particularly useful when form-
ing busses.
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module stimulus;

reg Clk; // Simulate based on clock
reg A, B, S; // Define inputs as reg
wire Z; // Define outputs as wires
integer handle3; // System values for file output
integer desc3;

mux21 dut1 (Z, A, B, S); // Instantiate your DUT

initial
begin

Clk = 1’b1;
forever #5 Clk = ~Clk; // Clock period definition

end

initial
begin

handle3 = $fopen("test.out"); // Open output file
#100 $finish; // Finish time

end

always
begin

desc3 = handle3; // Pointer to output file
#5 \$fdisplay(desc3, "%b %b %b %b", A, B, S, Z);

end

initial
begin
#10 S = 1’b0;
#0 A = 1’b0;
#0 B = 1’b0;

end

endmodule // stimulus

Figure 2.8. Verilog Test Bench for an Instantiated Device calledmux21
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2.4.2 Replication
Replication can be used as a subset of concatenation to repeat a declaration

as many times as specified. It also uses the curly braces and is similar to con-
catenation except that it takes a certain sequence, which can be a concatenated
element, and repeats it a specified number of times. For example, ifB is the
bit pattern01, then{4{B}} would produce four instances or bit patterns ofB.
In other words, the bit pattern,01 01 01 01 would be created.

2.4.3 Writing to Standard Output
For certain routine operations Verilog provides system tasks or calls in the

form $keyword. The most useful of these is $display. This can be used for
displaying strings, expression or values of variables. Since system calls do not
produce any logic they are ignored by most synthesis programs. However, a
VLSI designer should be aware that these calls may interfere with synthesis.

$display("Important Text");
$display($time);
$display(" The sum is %b", sum);

The formatting syntax for $display is similar to that ofprintf in the high-
level programming language, C. For $display, some of the useful formatting
and escape sequences are shown in Table 2.2 and Table 2.3, respectively.

Format Display

%d or %D Decimal
%b or %B Binary
%h or %H Hexadecimal
%o or %O Octal
%m or %M Hierarchical name
%t or %T Time format

Table 2.2. Output Format Specifications.

2.4.4 Stopping a Simulation
The $finish keyword exits the simulation and passes control to the operating

system. The keyword $stop also suspends the simulation and puts Verilog into
an interactive mode. The $finish keyword is utilized in the stimulus file to stop
the simulation.



22 DIGITAL COMPUTER ARITHMETIC DATAPATH DESIGN

Format Display

\n newline
\t tab
\\ print \
\" print "

%% print %

Table 2.3. Output Escape Sequences.

2.5 Timing: For Whom the Bell Tolls
For any given model and simulation, there is an attempt to describing a sys-

tem. The best way to do this is through the use of ordered levels or hierarchies.
These hierarchies are different than the hierarchy available through a given in-
stantiation. This specification allows a model to bedynamically defined and
also identifies useful ways in which such a system can be defined.

These divisions or specification hierarchies were developed into separate
knowledge levels which most languages try to adhere to[ZPK00]. With these
ordering levels, a language can develop differences between simulation dy-
namics. This type of formalism for discrete event systems is typically called a
Discrete Event System Specification (DEVS) [ZPK00]. This specification rec-
ognizes that the simulation deals with the way the Verilog language behaves
over time.

Verilog is a DEVS-style simulator. That is, events are scheduled for dis-
crete times and placed on an ordered-by-time wait queue. The earliest events
are at the front of the wait queue and the later events occur later. The simula-
tor removes all the events for the current simulation time and processes them
according to the hierarchy level. During the processing, more events may be
created and placed in the proper place in the queue for later processing. When
all the events of the current time have been processed, the simulator advances
time and processes the next events at the front of the queue.

This section discusses two types of explicit timing control Verilog can achieve
over when statements are to occur. The first type is delay-based timing in which
an expression specifies time between events. The second type is event-based
that allows expression to execute based on a specific event such as a clock
edge.

2.5.1 Delay-based Timing
This method introduces a delay between when a statement is encountered

and when it is executed. It is extremely useful when simulating devices with
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varying degrees of propagation delay such as in a test bench. This form of
timing is simple, however, it is quite often confusing. For example, a simple
example is shown in Figure 2.9. When using delay-based timing each state-
ment is addressed based on a continuous time basis. That is, for the value of
#15 b = 1’b1 it can be seen that time it is executed at time25 andnot 15.

initial begin
b = 0; // executed at simulation time 0
#10 b = 1’b0; // executed at simulation time 10
#15 b = 1’b1; // executed at simulation time 25
b = 0; // executed at simulation time 25

end

Figure 2.9. Delay-based Timing.

The delay value can also be specified by a constant. A common example
is the creation of a clock signal shown previously in the stimulus file. In this
example, the first statement initializes the clock, and then the second statement
creates the delay of5 ∆ cycles for each value of the clock which goes on
indefinitely. A∆ cycle is a common time advance function found within HDL
simulators.

initial begin
Clk = 1’b1;
forever #5 Clk = ~Clk;

end

2.5.2 Event-Based Timing
A change in the value of a signal or variable during simulation is referred to

as an event. Event-based timing control allows conditional execution based
on the another event. Verilog waits on a predefined signal or a user defined
variable to change before it executes a specific block.

A sensitivity list is crucial to the design of sequential logic. It places the
focus for the language on a particular construct to determine if it changes ei-
ther by delay, event, or level. However, most of the time the sensitivity list is
used conjunctively with an event-based change such as a clock transition. For
example, in the D-type flip flop example shown in Figure 2.4. In this example,
a user can useposedge, negedge, or a specific state. However, this must be
followed by a1-bit expression, typically a clock.
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2.6 Synopsys DesignWare Intellectual Property (IP)
Synopsys attempted to make datapath simpler for the Verilog user by intro-

ducing DesignWare Block IP. This library, formerly called Foundation Library,
creates a collection of reusable intellectual property blocks that are tightly cou-
pled with the Synopsys synthesis environment. That is, you can create efficient
datapath designs that optimally synthesize when using the Synopsys environ-
ment.

The library contains high-performance implementations of intellectual prop-
erty (IP) for many arithmetic logic functions. The idea of a DesignWare IP at-
tempts to create a nice degree of design automation so that the designer utilizes
information hiding where the inner details of the code are hidden, however, the
synthesis tools perform various high-level optimizations. Although many of
these libraries are encouraged and advisable, it isnot advisable to implement
an arithmetic datapath design without knowing the difference between specific
implementations.

DesignWare IP consists of verified, synthesis-enhanced design descriptions.
Each of these descriptions represents intellectual property that a designer would
like to reuse in their design. In addition, DesignWare allows you to model,
compile, and use many different licensing directions within a given file en-
abling the possibility of creating many different design implementations for a
given function. An example of a16-bit parallel-prefix carry-propagate adder
that utilizes a Brent-Kung [BK82b] structure is shown in Figure 2.10. It should
be noted that the DesignWare implementation is implemented at a high-level
of abstraction. Consequently, a large portion of the information about the ac-
tual implementation is somewhat hidden from the user.

This book provides a nice framework for designing arithmetic datapath de-
sign using the Verilog Hardware Descriptive Language. Although Design-
Ware could probably replace many of the algorithms in this book. The author
strongly advises against using DesignWare blindly. Without knowing what an
algorithm and its implementations effects are can be disastrous. On the other
hand, the knowledge obtained through implementing the designs in this book
complements the use of DesignWare and can lead to efficient designs.

2.7 Verilog 2001
There have been many numerous advancements to the Verilog language in-

cluding an update to the IEEE standardization [IEE01]. These advances, spec-
ified in the Verilog 2001 standard, have mainly been to promote the wide
user-base as well as provide competition with other hardware descriptive lan-
guages. Some of the major enhancements with Verilog 2001 that may be help-
ful to readers of this book are the following listed below [Sut01]. There are33
major enhancements and many of these enhancement could possibly improve
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module add (A, B, C);

parameter width = 16;

input [width-1:0] A;
input [width-1:0] B;
output [width-1:0] C;
reg [width-1:0] C;

always @(A or B)
begin : b0

/* synopsys resource r0 :
ops = "a1",
map_to_module = "DW01_add",
implementation = "bk";
*/
C = A + B;
// synopsys label a1

end

endmodule // add

Figure 2.10. DesignWare Example.

the code in this text. The code in this text is coded to be as compatible with the
1995 standard as well as the 2001 standard.

the use of a $random statement to implement random generation of inputs.
This can be extremely useful in a test bench.

The wire data type is the default data type as in the original standard. How-
ever, with the new standard the default data type can be changed or re-
moved. However, in this text the following convention will be utilized.In
this book, we will make the code easier to view by not showing wires.
Some compilers will complain about this and produce an error. There-
fore, for most code, it is always good to declare a wire when the bit size
is greater than1. Therefore, if there is a variable in a Verilog example
shown in this text and it is not declared, it is a wire

Verilog now has the ability to handle generic generation with the addition
of a for keyword. This option is designed to allow the ability to generate
multiple instances of a design.
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2.8 Summary
The details of the Verilog hardware descriptive language are presented in

this chapter that utilized throughout this book. As explained previously, it is
not meant to be a comprehensive listing of the language. On the other hand,
it provides a brief introduction on how to detail a digital system within the
Verilog HDL at the RTL level. There are many details within the language that
may be useful for use in this book, however, they were left off to make details
easier to understand. The reader is encouraged to read the IEEE standard as
well as consult other texts regarding the language.



Chapter 3

ADDITION

VLSI adders are critically important in digital designs since they are utilized
in ALUs, memory addressing, cryptography, and floating-point units. Since
adders are often responsible for setting the minimum clock cycle time in a
processor, they can be critical to any improvements seen at the VLSI level.

A computer arithmetic system is a system that performs an operation on
numbers. Most computer arithmetic systems represent numbers using strings
of binary digits. For example, ann-bit unsigned binary integer can be con-
verted as follows:

A =
n−1∑
i=0

ai · 2n

In fixed point number systems, the position of the binary or radix point
is constant. The two most common fixed point representations are integer
and fractional. Integer representations are commonly used on general pur-
pose computers, whereas, digital signal processors (DSPs) typically use both
integer and fractional representations [EB99]. The most common fixed-point
representation is two’s complement fractional representation which is utilized
throughout this book. In this representation, the most significant bit is referred
to as thesignbit. If the sign bit is one, the number is negative, otherwise, it is
positive. An,n-bit fractional numbers has the following form wherean−1 is
the sign bit:

A = an−1.an−2 . . . a1a0

The value of ann-bit two’s complement binary fraction is the following:

A = −an−1 +
n−2∑
i=0

ai · 2i−n+1
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3.1 Half Adders
The most fundamental building block in arithmetic systems is the half adder

(HA). A HA takes two bitsak andbk and produces a sum bitsk and a carry
bit ck+1. The logic equations for a HA are:

sk = ak · bk + ak · bk

= ak ⊕ bk

ck+1 = ak · bk

Using the methodology explained previously in Table1.1, only AND, OR,
andNOT gates are used. This implementation is shown in Figure 3.1. It is
important in addressing the relevant benefits for this implementation that both
its area and delay affects. Consequently, this HA requires4 logic gates where
each logic element is considered to consume “1” gate element. In addition, this
HA has the following critical paths. A critical path is any path between any of
its input and outputs where� represents a single gate delay. Its important to
note all the critical paths so that a designer can ascertain the worst-case path
for an implementation.

ak, bk → sk = 5 �
ak, bk → ck+1 = 2�

a
b

k

k

ck+1

s
k

Figure 3.1. Half Adder (HA) Implementation.

Utilizing the equations formalized above, the Verilog code for the HA is
shown in Figure 3.2. As explained previously, variables that are not present
in the declaration section are defaulted towire according to the Verilog 2001
standard. It is also worth noting that the instantiation naming convention that
is utilized in Figure 3.2 enables a user to easily count the number of gates. That
is, 2 AND gates,1 OR gate, and1 inverter.

3.2 Full Adders
A second building block in arithmetic systems is the full adder (FA). A FA

takes three bitsak, bk, andck and produces two outputs a sum bitsk and a
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module ha (Cout, Sum, A, B);

input A, B;

output Cout, Sum;

and a1 (Cout, A, B);
not i1 (Cbar, Cout);
or o1 (p, A, B);
and a2 (Sum, Cbar, p);

endmodule // ha

Figure 3.2. HA Verilog Code.

carry bit ck+1. Sometimes, because a FA counts the number of ones that
are available at its input it sometimes is called a(3, 2) counter. The logic
equations for a FA are:

sk = ak · bk · ck + ak · bk · ck + ak · bk · ck + ak · bk · ck

= ak ⊕ bk ⊕ ck

ck+1 = ak · bk · ck + ak · bk · ck + ak · bk · ck + ak · bk · ck

= ak · bk + ak · ck + bk · ck

In this chapter we are considering the implementation of carry-propagate
adders (CPA). A CPA produces the result in conventional fixed-radix number
system. Another type of adder called a redundant adder is the result is utilized
in a redundant number system. This type of adder is discussed later in this text.
However, the goal for the adders discussed is to reduce the delay in obtaining
carries within a CPA. This idea of studying the carries within a CPA is critical
to limiting the delay in the carry generation [Win65], [Win68].

Therefore, an alternate expression for the FA is to utilize the equations based
on the relationship between carry-in and carry-out. Consequently, a full adder
generates a carry if bothak andbk are one. This is called agenerate and is
expressed as follows:

gk = ak · bk

On the other hand, a full adder propagates a carry if eitherak or bk is one.
This is called apropagate and is expressed as follows:

pk = ak + bk
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Therefore, the carry-out equation for the FA can be expressed in terms of the
carry-in for a given column.

ck+1 = gk + pk · ck

A FA can be constructed from two HAs and one OR gate, as shown in
Figure 3.3. The dotted lines in Figure 3.3 denote the half adder abstraction.
This FA requires9 logic gates and has the following critical paths:

ak, bk → sk = 10 �
ak, bk → ck+1 = 9 �

ck → sk = 5 �
ck → ck+1 = 4�

a
b

k

k

ks

ck+1

ck

Figure 3.3. Full Adder (FA) Implementation.

Utilizing the equations formalized above, the Verilog code for the FA is
shown in Figure 3.4. As expected, the use of hierarchy is utilized and shown
by calling the half adder Verilog code shown in Figure 3.2. The use of hier-
archy enables the half adder code to be designed once and utilized as needed
establishing a strategy of reuse.

3.3 Ripple Carry Adders
Ripple carry adders (RCA) provide one of the simplest types of carry-propagate

adder designs. Ann-bit RCA is formed by concatenatingn FAs. The carry
out from thekth FA is used as the carry in of the(k + 1)th FA, as shown in
Figure 3.5. The main advantage to this implementation is that it is efficient
and easy to construct. Unfortunately, since the connections for the carry-out
depend on one another, certain circuit implementations consume a significant
amount of delay. On the other hand, because the implementation is simple,
certain circuit implementations may be efficiently implemented as a RCA.
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module fa (Cout, Sum, A, B, Cin);

input A, B, Cin;

output Sum, Cout;

ha ha1 (g1, temp1, A, B);
ha ha2 (g2, Sum, temp1, Cin);
or o1 (Cout, g1, g2);

endmodule // fa

Figure 3.4. FA Verilog Code.
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Figure 3.5. Generalized Ripple-Carry Adder (RCA) Implementation.

Since ann-bit RCA requiresn FAs and each FA has9 gates, the total num-
ber of gates for then-bit RCA is9 · n. The worst case delays for a ripple carry
adder utilizing the critical paths for full adder is generalized according to the
number of gates as:

a0, b0 → sn−1 = (9 + (n − 2) · 4 + 5) �
a0, b0 → sn−1 = (4 · n + 6) �

a0, b0 → cn = (4 · n + 5) �
Utilizing the methodology formalized above, the Verilog code for the4-bit
RCA is shown in Figure 3.4.

3.4 Ripple Carry Adder/Subtractor
Subtraction is just as important as addition to any digital system design.

To perform subtraction, it is necessary to take the one’s complement each of
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module rca4 (Sum, Cout, A, B, Cin);

input [3:0] A, B;
input Cin;

output [3:0] Sum;
output Cout;

fa fa1 (c0, Sum[0], c0, A[0], B[0], Cin);
fa fa2 (c1, Sum[1], c1, A[1], B[1], c0);
fa fa3 (c2, Sum[2], c2, A[2], B[2], c1);
fa fa4 (c3, Sum[3], c3, A[3], B[3], c2);

endmodule // rca4

Figure 3.6. 4-bit Ripple-Carry Adder (RCA) Verilog Code.

the bits ofB and add a one to the least significant bit. In other words, to
perform subtraction, addition will be utilized to add the negative version ofB
(i.e. A + (−B)). The best logic to perform this function is the exclusive or
(xor) gate. Table 3.1 shows the truth table for an xor gate where there is one
input calledSubtraction. From this table, if Subtraction is1, then it take the
one’s complement ofA, whereas, if Subtraction is0 it just propagates the value
of A.

A Subtract Output

0 0 A = 0

0 1 A = 1
1 0 A = 1

1 1 A = 0

Table 3.1. Exclusive Or Table for Subtraction.

This circuit can then be added to the RCA implementation by placing the
XOR gate between the input toB and the full adder. However, in order to
support two’s complement subtraction, the select signal in Table 3.1 is also
input into theC0 port. Therefore, a row ofn XOR gates is inserted to form
a ripple-carry adder/subtractor (RCAS), as shown in Figure 3.7. Utilizing the
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methodology formalized above, the Verilog code for the4-bit RCAS is shown
in Figure 3.8. In this Figure, the port Subtract is inserted removingCin from
Figure 3.6.

Sub
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c FA

s

sc
c1 FA

s0

2FA cn−1
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n

b a b 01 1 an−1 n−1ab 0

Figure 3.7. Generalized Ripple-Carry Adder/Subtractor (RCAS) Implementation.

module rca4s (Sum, Cout, A, B, Subtract);

input [3:0] A, B;
input Subtract;

output [3:0] Sum;
output Cout;

xor x1 (w0, B[0], Subtract);
fa fa1 (c0, Sum[0], A[0], w0, Subtract);
xor x2 (w1, B[1], Subtract);
fa fa2 (c1, Sum[1], A[1], w1, c0);
xor x3 (w2, B[2], Subtract);
fa fa3 (c2, Sum[2], A[2], w2, c1);
xor x4 (w3, B[3], Subtract);
fa fa4 (c3, Sum[3], A[3], w3, c2);

endmodule // rca4s

Figure 3.8. 4-bit Ripple-Carry Adder/Subtractor (RCAS) Verilog Code.
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3.4.1 Carry Lookahead Adders
The basic idea of the RCA is to let each adder compute a carry and forward

it to a subsequent adder. A method to improve the algorithm is to have the
carries precomputed ahead of time. This results in an implementation called a
carry-lookahead adder (CLA). This implementation has a logarithmic ordered
delay at the expense of more gates. To invoke this algorithm the recursive
equation for carry-out relating to carry-in is recursively utilized to form all
necessary carries.

For example, suppose a carry enters positionk+3 from carryk+2. Utilizing
the carry out equation and solving recursively forms the following equation
assuming a carry is propagated from positionk:

ck+3 = gk+2 + pk+2 · ck+2

= gk+2 + pk+2 · (gk+1 + pk+1 · gk + pk+1 · pk · ck)
= gk+2 + pk+2 · gk+1 + pk+2 · pk+1 · gk + pk+2 · pk+1 · pk · ck

Since the FA implementation discussed earlier does not need to generate the
carry for each FA, it can be eliminated. This new implementation shown in
Figure 3.9 is called the reduced full adder (RFA). In addition, the FA imple-
mentation already has the required logic to produce the generate and propagate.
Therefore, the9-gate FA is reduce to8-gates consisting of two half-adders with
additional outputs for both generate and propagate. In addition, the generate
and propagate signals are both ready after2�. Since the Verilog code is similar
to the FA Verilog code, it is not shown.

k

ck

a
b

k

k

k

s

g

kp

Figure 3.9. Reduced Full Adder (RFA) Implementation.

The logic used to produce the carries is typically referred to as a carry looka-
head generator (CLG). A 4-bit CLG uses9 gates and the worst-case delay is
4�. However, some of these gates have higher fan-in requirements. The Ver-
ilog code for the9-gate CLG is shown in Figure 3.10. Notice that the Verilog
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code could probably be implemented more efficiently if it utilizes a similar
approach to the RCA. For example, the code forc2 could be implemented as
follows calling each carry equation recursively:

and a2(s2, p[1], cout[1]);
or o2(cout[2], g[1], s2);

The Verilog code for the9-gate CLG is shown in Figure 3.10. In addition, also
note that the use of vectors is utilized to declare the carry-outs ascout[3:0]
as well as the input propagates and generates (i.e.g[3:0] andp[3:0] , respec-
tively). This is done for easy debugging, however, single bit declarations are
possible.

module clg4 (cout, g, p, cin);

input [3:0] g, p;
input cin;

output [3:0] cout;

and a1 (s1, p[0], cin);
or o1 (cout[1], g[0], s1);
and a2 (s2, p[1], g[0]);
and a3 (s3, p[1], p[0], cin);
or o2 (cout[2], g[1], s2, s3);
and a4 (s4, p[2], g[1]);
and a5 (s5, p[2], p[1], g[0]);
and a6 (s6, p[2], p[1], p[0], cin);
or o3 (cout[3], g[2], s4, s5, s6);

endmodule // clg4

Figure 3.10. Carry Lookahead Generator (CLG) Verilog Code.

Since a4-bit CLA uses4 RFAs, and a4-bit CLG (9 gates), it has a total
of 4 · 8 + 9 = 41 gates. The worst case delay for a4-bit CLA shown below
following the dotted arrow is highlighted in Figure 3.12:

ak, bk → s3 = 2 + 4 + 5 = 11 �
ak, bk → c4 = 2 + 4 + 4 = 10 �
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module cla4 (Sum, A, B, Cin);

input [3:0] A, B;
input Cin;

output [3:0] Sum;

rfa r01 (gtemp1[0], ptemp1[0], Sum[0], A[0], B[0],
Cin);

rfa r02 (gtemp1[1], ptemp1[1], Sum[1],A[1], B[1],
ctemp1[1]);

rfa r03 (gtemp1[2], ptemp1[2], Sum[2],A[2], B[2],
ctemp1[2]);

rfa r04 (gtemp1[3], ptemp1[3], Sum[3],A[3], B[3],
ctemp1[3]);

clg4 clg1 (ctemp1[3:0], gtemp1[3:0], ptemp1[3:0], Cin);

endmodule // cla4

Figure 3.11. 4-bit Carry-Lookahead Adder (CLA) with a CLG Verilog Code.
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Figure 3.12. 4-bit Carry-Lookahead Adder (CLAA) Implementation that uses a Carry-
Lookahead Generator (CLG).

3.4.1.1 Block Carry Lookahead Generators

By examining the equations that result from the recursive equations, each
subsequent carry generator increases the fan-in of the logic gates. In VLSI, the
increase in fan-in produces gates that require greater amount of driving effort
compared to lower fan-in gates [SSH99]. Therefore, carry-lookahead adders
beyond4 bits are not common utilizing CLG logic. To alleviate this problem,
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the CLG equations are rewritten in terms of blocks (i.e.r). In other words,
hierarchy is utilized within the equation to create lookahead logic between
each section. For example, the generate and propagate signals are rewritten
over4-blocks as follows:

gk+3:k = gk+3 + pk+3 · gk+2 + pk+3 · pk+2 · gk+1 +
pk+3 · pk+2 · pk+1 · gk

pk+3:k = pk+3 · pk+2 · pk+1 · pk

A 4-bit block carry lookahead generator (BCLG) has14 gates, and a worst-
case delay of4�. In summary, the4-bit block generate and propagate signals
can be expressed as

ck+4 = gk+3:k + pk+3:k · ck

Therefore, a4-bit CLA with block carry lookahead generator requires4 · 8 +
14 = 46 gates.

Utilizing the BCLG logic, a16-bit CLA can be constructed with16 RFAs
(8 gates each) and5 BLCG blocks (14 gates each). There is one additional
BCLG block to generate the carry-ins forc4, c8, andc12. The block diagram is
shown in Figure 3.15 . The worst-case critical path is highlighted by the dotted
line. There are two important points to pay attention to regarding the CLA
logic that utilize BCLG logic. First, the blocks are designed to be equal in
this implementation, however, an adder with different block sizes is possible
and probably advisable to mitigate wire delay. Second, the delay is shown
here froma0, b0 to s7, however, the paths are equal fors11, s15. Therefore,
depending on the parasitics associated with this design, the worst-case path
could be through eithers7, s11, or s15. In summary, the16-bit CLA requires
a total of16 · 8 + 5 · 14 = 198 gates. And, the worst-case delay through the
16-bit CLA is the following:

a0, b0 → p0, g0 = 2 �
p0, g0 → g3:0 = 4 �

g3:0 → c4 = 4 �
c4 → c7 = 4 �
c7 → s7 = 5 �

a0, b0 → c7 = 19 �

The Verilog code for the16-bit CLA that utilizes BCLG logic is shown in
Figure 3.14.
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module bclg4 (cout, gout, pout, g, p, cin);

input [3:0] g, p;
input cin;

output [3:0] cout;
output gout, pout;

and a1 (s1, p[0], cin);
or o1 (cout[1], g[0], s1);
and a2 (s2, p[1], g[0]);
and a3 (s3, p[1], p[0], cin);
or o2 (cout[2], g[1], s2, s3);
and a4 (s4, p[2], g[1]);
and a5 (s5, p[2], p[1], g[0]);
and a6 (s6, p[2], p[1], p[0], cin);
or o3 (cout[3], g[2], s4, s5, s6);
and a7 (t1, p[3], g[2]);
and a8 (t2, p[3], p[2], g[1]);
and a9 (t3, p[3], p[2], p[1], g[0]);
or o4 (gout, g[3], t1, t2, t3);
and a10 (pout, p[0], p[1], p[2], p[3]);

endmodule // bclg4

Figure 3.13. Block Carry-Lookahead Generator (BCLG) Verilog Code.

An n-bit CLA with a maximum fan-in ofr, requires

logr(n)∑
l=1

n

rl

carry lookahead blocks andn RFAs. Anr-bit carry lookahead block requires
(3+r)·r

2 gates and each RFA requires 8 gates. Thus, the total number of gates
for ann-bit CLA is

8 · n +
(3 + r) · r

2
·

logr(n)∑
l=1

n

rl

In general, ann-bit CLA with a maximum fan-in ofr, requires�logr(n)� CLA
logic levels. Anr-bit CLA has2 + 4 + 5 = 11 gate delays from the(p, g)
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generation, the BCLG logic, and finally forck+r → sk+r. From each BCLG,
there are8 additional gate delays per level after the first (i.e.4 gate delays from
the CLG generation and4 gate delays from the BCLG generation to the next
level). Thus, the delay for ann-bit CLAs is

11 + 8 · (�logr(n)� − 1) = 3 + 8 · �logr(n)�

module cla16 (Sum, G, P, A, B, Cin);

input [15:0] A, B;
input Cin;

output [15:0] Sum;
output G, P;

rfa r01 (gtemp1[0], ptemp1[0], Sum[0], A[0], B[0], Cin);
rfa r02 (gtemp1[1], ptemp1[1], Sum[1], A[1], B[1], ctemp1[1]);
rfa r03 (gtemp1[2], ptemp1[2], Sum[2], A[2], B[2], ctemp1[2]);
rfa r04 (gtemp1[3], ptemp1[3], Sum[3], A[3], B[3], ctemp1[3]);
bclg4 b1 (ctemp1[3:0], gouta[0], pouta[0], gtemp1[3:0],

ptemp1[3:0], Cin);
rfa r05 (gtemp1[4], ptemp1[4], Sum[4], A[4], B[4], ctemp2[1]);
rfa r06 (gtemp1[5], ptemp1[5], Sum[5], A[5], B[5], ctemp1[5]);
rfa r07 (gtemp1[6], ptemp1[6], Sum[6], A[6], B[6], ctemp1[6]);
rfa r08 (gtemp1[7], ptemp1[7], Sum[7], A[7], B[7], ctemp1[7]);
bclg4 b2 (ctemp1[7:4], gouta[1], pouta[1], gtemp1[7:4],

ptemp1[7:4], ctemp2[1]);
rfa r09 (gtemp1[8], ptemp1[8], Sum[8], A[8], B[8], ctemp2[2]);
rfa r10 (gtemp1[9], ptemp1[9], Sum[9], A[9], B[9], ctemp1[9]);
rfa r11 (gtemp1[10], ptemp1[10], Sum[10], A[10], B[10], ctemp1[10]);
rfa r12 (gtemp1[11], ptemp1[11], Sum[11], A[11], B[11], ctemp1[11]);
bclg4 b3 (ctemp1[11:8], gouta[2], pouta[2], gtemp1[11:8],

ptemp1[11:8], ctemp2[2]);
rfa r13 (gtemp1[12], ptemp1[12], Sum[12], A[12], B[12], ctemp2[3]);
rfa r14 (gtemp1[13], ptemp1[13], Sum[13], A[13], B[13], ctemp1[13]);
rfa r15 (gtemp1[14], ptemp1[14], Sum[14], A[14], B[14], ctemp1[14]);
rfa r16 (gtemp1[15], ptemp1[15], Sum[15], A[15], B[15], temp1[15]);
bclg4 b4 (ctemp1[15:12], gouta[3], pouta[3], gtemp1[15:12],

ptemp1[15:12], ctemp2[3]);
bclg4 b5 (ctemp2, G, P, gouta, pouta, Cin);

endmodule // cla16

Figure 3.14. 16-bit CLA Verilog Code.
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Figure 3.15. 16-bit Carry Lookahead Adder.

3.5 Carry Skip Adders
The carry skip adder (CSKA) is attempt to obtain some of the improvements

that were obtained with the CLA. On the other hand, it tries to limit the number
of gates it has at the expense of some delay. In the CSKA, the operands are
divided into blocks ofr bit blocks. Within each block, a ripple carry adder
or smaller CPA is utilized to produce the sum bits and a carry out bit for the
block. Again, the CSKA utilizes the carry-out equation expressed in terms of
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the carry-in for a given column.

ck+1 = gk + pk · ck

From this equation, it can be seen that setting the carry-in signal of a block to
zero causes the carry out to serve as a block generate signal. Therefore, anr bit
AND gate is also used to form the block propagate signal. The block generate
and block propagate signals produce the input carry to the next block. The
block diagram for a16-bit CSKA with 4-bit blocks is shown in Figure 3.15.
Once again, the worst-case critical path is highlighted by the dotted line.

In other words, each block tries to detect if a carry is going to bypass the
entire smaller CPA block. For example, to obtain the carry into bit position8,
the following equation is utilized:

c8 = g7:4 + p7:4 · c4

where

p7:4 = p7 · p6 · p5 · p4

Notice thatc4 can be combined with the group propagate equation with a5-
inputAND gate. This adder requires16 · 9 = 144 gates to implement the FAs
and2 · 2 = 4 gates to implement the carry logic, for a total of148 gates. The
delay for this adder is4·4+5 = 21� to go through the first RCA and2·4 = 8�
to go through the next two carry-skip blocks, and4 + 4 + 4 + 5 = 17 � to
go through the last RCA block, for a total delay of46 �. The last RCA block
takes17 gate delays instead of4 · 4 + 6 = 22 gate delays. This is because
the RCA logic has already computed through the firstHA block in Figure 3.3
(i.e. it only has to travel fromck → sk). Consequently, the secondHA block
is waiting for the carry-in. The Verilog code for the16-bit CSKA is shown in
Figure 3.16. The carry skip logic is shown within thecska16 module, however,
this could easily be incorporated into therca4p module or a separate module.
In addition, the modulerca4p code is not shown since it is exactly the same
as therca4 module in Figure 3.6 except that each full adder has a respective
propagate output signal. However, as its apparent from Figure 3.9, this signal
is already produced. Therefore, it just needs to be declared as anoutput.

In general, ann-bit CSKA usesn FAs, each of which requires9 gates. It
also uses�n/r� − 2 sets of carry skip logic, each of which requires2 gates.
Thus, the total number of gates used by ann-bit CSKA is:

9 · n + 2 ·
(
�n

r
� − 2

)
The worst-case delay of ann-bit CSKA uses(4 · r + 5)� for the first block
before the carry out is ready. The next(�n/r� − 2) blocks have a delay of2�
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module cska16 (Sum, Cout, A, B, Cin);

input [15:0] A, B;
input Cin;

output [15:0] Sum;
output Cout;

rca4 cpa1 (Sum[3:0], c4, A[3:0], B[3:0], Cin);
rca4p cpa2 (Sum[7:4], w1, p1, A[7:4], B[7:4], c4);
rca4p cpa3 (Sum[11:8], w3, p2, A[11:8], B[11:8], c7);
rca4 cpa4 (Sum[15:12], Cout, A[15:12], B[15:12], c12);
and a1 (w2, p1[0], p1[1], p1[2], p1[3], c4);
or o1 (c7, w1, w2);
and a2 (w4, p2[0], p2[1], p2[2], p2[3], c7);
or o2 (c12, w3, w4);

endmodule // cska16

Figure 3.16. 16-bit CSKA Verilog Code.

for the carry to skip. The last block has a delay of4 · r + 1 from the carry in to
the most significant sum bit. Thus, the total delay forsn−1 is:

4 · r + 5 + 2 · (�n

r
� − 2) + 4 · r + 1 = 8 · r + 6 + 2 · �n

r
�

3.5.1 Optimizing the Block Size to Reduce Delay
The optimum block size is determined by taking the derivative of the delay

with respect tor, setting it to zero, and solving forr.

8 − 2n
r2

= 0

r =
√

n/4

Plugging this into the delay equation gives

8 ·
√

n/4 + 6 + 2 · n√
n/4

= 4
√

4 · n + 6

For example, ifn = 16, then the delay is minimized by selectingr = 2,
which gives a worst case delay of4

√
4 · 16 + 6 = 38�. The delay of the
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carry skip adder can be reduced even further by varying the block size. A
good strategy is to use smaller blocks on the two ends and larger blocks in
the middle. The design of a16-bit CSKA with block size of(1, 2, 3, 4, 3, 2, 1)
requires154 gates and has a worst case delay of34�. Speed can also be
improved by using faster block CPA adders as previously suggested, such as a
CLA. In addition, multiple levels of skip logic have also been introduced which
also can limit the delay at the expense of more gates. Dynamic programming
can also be utilized optimize the block size for single and multiple-levels of
skip logic [CSTO92]

s sa b a b

c16

a 3:03:03:07:4 7:411:8s b11:8bs

RCA Cin RCA Cin RCA in RCA Cin

skipskip

15:12 15:12 15:12 11:8 7:4
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a

Figure 3.17. 16-bit Carry Skip Adder (r = 4).

3.6 Carry Select Adders
Another popular adder is the carry-select adder (CSEA). The CSEA divides

the operands to be added intor bit blocks similar to the CSKA. For each block,
except the first, twor-bit ripple carry adders operate in parallel to form2 sets
of sum bits and carry out signals. As in the CSKA, each ripple-carry adder can
be replaced by a faster CPA.

Each RCA has two sets ofhard-coded carry-in signals. One RCA has a
carry in of 0, whereas, the other has a carry in of1. Following the same
methodology as the CSKA, the carry in of0 provides a block generate sig-
nal, and carry in of1 provides a block propagate signal. These two signals
are used to generate a carry out signal for the subsequent block. The carry out
from the previous block controls a multiplexor that selects the appropriate set
of sum bits.

A 2-1 multiplexor, with inputsa andb, select bits, and outputz, can be
implemented as

z = a · s + b · s
The2-1 multiplexor implementation is shown in Figure 3.18 with the worst-
case delay highlighted by the dotted line. Anr-bit multiplexor can be built
using 2-1 multiplexors. Anr-bit multiplexor requires4 · r gates and has a
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worst-case delay of is5�. The inversion ofs can be accomplished with one
gate instead of an inverter for each multiplexor, however, this may cause sizing
problems due to drive strength requirements, therefore, for simplicity each2-1
multiplexor has its own inverter. A2-bit multiplexor implementation is shown
in Figure 3.19. Utilizing the equations formalized above, the Verilog code
for the2-1 multiplexor and the2-bit multiplexor is shown in Figure 3.20 and
Figure 3.21, respectively.

s
a

b
z

Figure 3.18. 2-1 Multiplexor.

A[0] B[0] A[1] B[1]

Sel

Z[1]Z[0]

2−1 MUX 2−1 MUX

Figure 3.19. A 2-bit Multiplexor.

A 16-bit CSEA adder with4-bit blocks is shown in Figure 3.22. Similar to
the CSKA, the carry into bit position8 is obtained by the following equation:

c8 = g7:4 + p7:4 · c4

whereg7:4, andp7:4 come from the ripple carry adders. The delay for this
adder is4 · 4 + 5 = 21� to go through the first ripple carry adder,2 · 4 = 8�
to go through the next two blocks, and5� to go through the multiplexor. The
total delay is21 + 8 + 5 = 34�. The adder requires4 · 9 + 12 · 9 · 2 = 252
gates for full adders,12 · 4 = 48 gates for the multiplexors, and2 × 3 = 6
gates for the carry logic. The total gate count is252 + 48 + 6 = 306 gates.

An n-bit CSEA withr bit blocks uses2 · n− r FAs, each of which requires
9 gates. It uses�n/r� − 1 sets of carry logic blocks, each of which requires
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module mux21 (Z, A, B, S);

input A, B, S;

output Z;

not i1 (Sbar, S);
and a1 (w1, A, Sbar);
and a2 (w2, B, S);
or o1 (Z, w1, w2);

endmodule // mux21

Figure 3.20. 2-1 Multiplexor Verilog Code.

module mux21x2 (Z, A, B, S);

input [1:0] A, B;
input S;

output [1:0] Z;

mux21 mux1 (Z[0], A[0], B[0], S);
mux21 mux2 (Z[1], A[1], B[1], S);

endmodule // mux21x2

Figure 3.21. 2-bit Multiplexor Verilog Code.

2 gates for the group propagate and generate logic. The multiplexor logic
requires4 · (n − r) gates. Thus, the total number of gates used by ann-bit
CSEA is:

9 · (2 · n − r) + 2 ·
(
�n

r
� − 1

)
+ 4 · (n − r) = 22 · n − 13 · r + 2 · �n

r
� − 2

Similarly, the worst-case delay can be computed as before. For the first RCA,
there is a delay of(4·r+5)�. The next(�n/r�−2) blocks have a delay of4�
for the carry logic and the last RCA block has a delay of5 for the multiplexor
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Figure 3.22. 16-bit Carry Select Adder (r = 4).

selection logic. Thus, the total delay forsn−1 is:

4 · r + 5 + 4 · (�n

r
� − 2) + 5 = 4 · r + 4 · �n

r
� + 2

3.6.1 Optimizing the Block Size to Reduce Delay
The same analysis can be performed to find the optimum block size for a

CSEA. The optimum block size is determined by taking the derivative of the
delay with respect tor, setting it to zero, and solving forr as done previously.

4 − 4 · n
r2

= 0

r =
√

n

Plugging this into the delay equation gives

4
√

n + 4 · n√
n

+ 2 = 8
√

n + 2

For example, ifn = 16, then the delay is minimized by selectingr = 4, which
gives a worst case delay of8

√
16+2 = 34� which is actually the same as the

implementation above.
Similar to the CSKA, the delay of the CSEA can be reduced even further

by varying the block size. The same strategy, by increasing the block size
toward the middle of the implementation, as the CSKA is a good methodol-
ogy for reducing the delay. For example, a16-bit CSEA with block size of
(2, 2, 3, 4, 5) requires 322 gates and has a worst case delay of30�. Speed can
also be improved by using faster block CPA as previously suggested, such as a
CLA.

CSEA logic typically consumes a significant amount of logic. However, as
mentioned previously, this type of circuit can be effective when the carry-in
arrives later than the input operands. For example, in floating-point units the
exponent adder typically has to wait until the carry-in is available later due to
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module csea16 (Sum, Cout, A, B, Cin);

input [15:0] A, B;
input Cin;

output [15:0] Sum;
output Cout;

rca4 rca1 (Sum[3:0], c4, A[3:0], B[3:0], Cin);
rca4 rca2 (Sum0_0, g4, A[7:4], B[7:4], 1’b0);
rca4 rca3 (Sum0_1, p4, A[7:4], B[7:4], 1’b1);
rca4 rca4 (Sum1_0, g8, A[11:8], B[11:8], 1’b0);
rca4 rca5 (Sum1_1, p8, A[11:8], B[11:8], 1’b1);
rca4 rca6 (Sum2_0, g12, A[15:12], B[15:12], 1’b0);
rca4 rca7 (Sum2_1, p12, A[15:12], B[15:12], 1’b1);
mux21x4 mux1 (Sum[7:4], Sum0_0, Sum0_1, c4);
and a1 (w1, c4, p4);
or o1 (c8, w1, g4);
mux21x4 mux2 (Sum[11:8], Sum1_0, Sum1_1, c8);
and a2 (w2, c8, p8);
or o2 (c12, w2, g8);
mux21x4 mux3 (Sum[15:12], Sum2_0, Sum2_1, c12);
and a3 (w3, c12, p12);
or o3 (Cout, w3, g12);

endmodule // csea16

Figure 3.23. 16-bit CSEA Verilog Code.

post-normalization. Since the multiplexor only has to be traversed when the
carry-in arrives, the CSEA is an efficient adder for these scenarios.

3.7 Prefix Addition
One method of improving carry-propagate adders for computing in logarith-

mic time is to express it as a prefix computation [BK82a], [HC87], [KS73], [LF80].
Using prefix computations are particularly attractive because it leads to an ef-
ficient implementation. In addition, the intermediate structures allow trade-
offs between the amount of internal wiring and the fanout of intermediate
nodes thereby resulting in a more attractive combination of speed, area and
power [Kno01].
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Binary carry-propagate adders can be efficiently expressed as a prefix com-
putation [LA94]. That is, through the basic operation ofci+1 = (ai ·bi)+(ai +
bi) · ci. Parallel prefix logic combinesn inputs:

xn−1, xn−2, . . . , x0

using an arbitrary associative operator◦ to n outputs so that the outputyi de-
pends only on inputsxj≤i:

y0 = x0

y1 = x1 ◦ y0 = x1 ◦ y0

...

yn−1 = xn−1 ◦ yn−1 = xn−1 ◦ xn−2 ◦ . . . ◦ x0

The key to fast addition is the fast calculation of the carriesci [Win65].
Using the recursive equations utilized previously:

ci+1 = gi + pi · ci

with thegenerate or g signal being equal to

gi =
{

ai · bi, if 1 ≤ i < n
a0 · b0 + a0 · cin + b0 · cin, if i = 0

and thepropagate or p signal being equal to

pi = ai + bi

Some adders utilize propagate aspi = a ⊕ b to exploit specific circuit struc-
tures [GSss], [GSH03]. Substituting recursively can be generalized by rewrit-
ing the equations for the carry into positionk + r.

ck+r = (
k+r−1∑

i=k

gi

k+r−1∏
j=i+1

pj) + ck

k+r−1∏
j=k

pj

The final sum can be computed from the carry bits as:

si = pi ⊕ ci

Defining the operation◦ on an ordered bit pair(g, p)

(gi, pi) ◦ (gj , pj) = (gi + pi · gj , pi · pj)

Using the notation of◦, the recurrence relationship can be rewritten as:

(ci+1, p0 . . . pi) = (gi, pi) ◦ . . . ◦ (g0, p0)
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Therefore, the carriesci can be calculated using a prefix algorithm (i.e. based
on a subscript), however, it is important to point that this new operator◦
is associative and not commutative [BK82a]. Prefix addition is carried out
in three consecutive steps called the preprocessing stage, parallel-prefix carry
computation, and the postprocessing stage. This is shown in Figure 3.24.

Pre−Processing

n−2

an−2
b1

a1
b0

a0

Post−Processing

Parallel−Prefix Computation

gn−1
p

n−1

gn−2
p

n−2

g1
p

1

g0
p

0

bn−1

an−1

sn−1 sn−2 s1 s0

cin

cout cn−1 c1c2

b

Figure 3.24. Three Stages of a Parallel-Prefix Addition

The parallel-prefix calculation is equivalent to evaluating the new prefix re-
currence relations for each bit position,i, for 0 ≤ i < n. However, since the
◦ operator is not commutative the order of the operands must not be changed.
This makes sense since you can not compute a summand for the upper bits be-
fore you can compute the lower bits. However, due to the associativity of the◦
operator, its evaluation does not have be done serially, but can be carried out in
any order as shown in the Equation below where each curly brace represents a
computation:
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(gn, pn) ◦ ((gn−1, pn−1) ◦ ((gn−2, pn−2) ◦ gn−3, pn−3))︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
((gn, pn) ◦ (gn−1, pn−1))︸ ︷︷ ︸ ◦ ((gn−2, pn−2) ◦ gn−3, pn−3)︸ ︷︷ ︸︸ ︷︷ ︸

In particular, the◦ operations can be evaluated according to a binary tree
structure [Zim97]. Computations on different branches of the tree are done in
parallel while the height of the tree is determined by the maximum number
of evaluations in series (i.e. the depth of the tree). Overall, this reduces to a
complexity ofO(log2(n)).

For the computation of alln carries,ci, n binary evaluation trees are re-
quired having an overall area complexity ofO(n2) [Zim97]. Sharing subtrees,
the circuit complexity can be significantly reduced toO(n · log2(n)). By vary-
ing the combinations of subtrees, different parallel-prefix algorithms are com-
puted [BK82a], [HC87],[KS73], [LF80]. Mathematically, this can be viewed
as adirected acyclic graphor DAG [LA94], [Zim97]. For eachDAG, the graph
nodes represent the logic cells performing the◦ operator and the edges repre-
sent the signal connections.

Previous research in this area has been effective at providing closed-forms
of the prefix computations [BSL01], [Zim97] To algorithmically capture the
equations, vectors are utilized with the following relationship:

vi,j = (gi,j , pi,j)

Each vector pair denotes the generate, propagate signal pair from the cell(i, j)
to the subsequent cell(i, j + 1). Each bit pair is computed as long as the row
number is between1 ≤ j ≤ h whereh is the height of the graph.

Based on this new vector notation,vi,j, two operators are created. The black
cell performs the basic◦ operator as:

vm,j+1 = vm,j ◦ vn,j 	 (m > n)

whereas, the white cells simply copy the input to their output. Both cells are
shown in Figure 3.25. A cell can have more than one output depending on its
drive strength, although, fanouts of1 or 2 are most common. In other words,
the CLA equations are utilized with low block sizes to order the interconnect
efficiently. The Verilog code for the white and black cells are shown in Fig-
ure 3.26 and 3.27, respectively.

Based on the two new cells, parallel-prefix addition can be computed using
simple graphical representations. Various algorithms properties are also visible
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a

a b a

ab

Figure 3.25. Two Main Cells in Parallel-Prefix Implementations

module white (gout, pout, gin, pin);

input gin;
input pin;

output gout;
output pout;

buf b1 (gout, gin);
buf b2 (pout, pin);

endmodule // white

Figure 3.26. White Processor Verilog Code.

in each graphs and various rules can be developed based on the associativity
of the◦ operator [BSL01], [Zim97]. One of the more popular parallel-prefix
algorithms, called the Brent-Kung [BK82b] structure, is shown in Figure 3.28.

The Verilog implementation for Figure 3.28 is fairly intuitive because it fol-
lows regular patterns. On the other hand, if non-regular partitions are utilized
for the parallel-prefix computation, hybrid schemes can be formulated [Kno99].
Variations on the fanout can also be utilized. In addition, since the◦ group-
ings can make the interconnect less congested it improves the throughput for
sub-micron processes [Kno99], [Kno01]. The Verilog implementation for the
Brent-Kung adder is shown in Figure 3.29. Only black processors are shown to
save space but they could be easily added. The use of the white processor, al-
though not needed for a prefix implementation, can allow drive strengths to be
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module black (gout, pout, gin1, pin1, gin2, pin2);

input gin1, pin1, gin2, pin2;

output gout, pout;

and xo1 (pout, pin1, pin2);
and an1 (o1, pin1, gin2);
or or1 (gout, o1, gin1);

endmodule // black

Figure 3.27. Black Processor Verilog Code.
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Figure 3.28. Brent/Kung’s Prefix Algorithm

managed more efficiently. The preprocess and postprocess are also not shown
to save space.

3.8 Summary
Several adder implementations are discussed in this chapter including ripple-

carry addition, carry-lookahead, carry-skip, carry-select, and prefix addition.
There are many implementations that utilize hybrid variants of the adders pre-
sented in this chapter [GSss], [LS92], [WJM+97]. Figure 3.30 and Figure 3.31
show comparisons of the area and delay for the adders discussed in this chap-
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module bk16 (Sum, Cout, A, B);

input [15:0] A, B;

output [15:0] Sum;
output Cout;

preprocess pre1 (G, P, A, B);
black b1 (g0[0], p0[0], G[1], P[1], G[0], P[0]);
black b2 (g0[1], p0[1], G[3], P[3], G[2], P[2]);
black b3 (g0[2], p0[2], G[5], P[5], G[4], P[4]);
black b4 (g0[3], p0[3], G[7], P[7], G[6], P[6]);
black b5 (g0[4], p0[4], G[9], P[9], G[8], P[8]);
black b6 (g0[5], p0[5], G[11], P[11], G[10], P[10]);
black b7 (g0[6], p0[6], G[13], P[13], G[12], P[12]);
black b8 (g0[7], p0[7], G[15], P[15], G[14], P[14]);
black b9 (g1[0], p1[0], g0[1], p0[1], g0[0], p0[0]);
black b10 (g1[1], p1[1], g0[3], p0[3], g0[2], p0[2]);
black b11 (g1[2], p1[2], g0[5], p0[5], g0[4], p0[4]);
black b12 (g1[3], p1[3], g0[7], p0[7], g0[6], p0[6]);
black b13 (g2[0], p2[0], g1[1], p1[1], g1[0], p1[0]);
black b14 (g2[1], p2[1], g1[3], p1[3], g1[2], p1[2]);
black b15 (g3[0], p3[0], g1[2], p1[2], g2[0], p2[0]);
black b16 (g3[1], p3[1], g2[1], p2[1], g2[0], p2[0]);
black b17 (g4[0], p4[0], g0[2], p0[2], g1[0], p1[0]);
black b18 (g4[1], p4[1], g0[4], p0[4], g2[0], p2[0]);
black b19 (g4[2], p4[2], g0[6], p0[6], g3[0], p3[0]);
black b20 (g5[0], p5[0], G[2], P[2], g0[0], p0[0]);
black b21 (g5[1], p5[1], G[4], P[4], g1[0], p1[0]);
black b22 (g5[2], p5[2], G[6], P[6], g4[0], p4[0]);
black b23 (g5[3], p5[3], G[8], P[8], g2[0], p2[0]);
black b24 (g5[4], p5[4], G[10], P[10], g4[1], p4[1]);
black b25 (g5[5], p5[5], G[12], P[12], g3[0], p3[0]);
black b26 (g5[6], p5[6], G[14], P[14], g4[2], p4[2]);
postprocess post2 (Sum, Cout, A, B,

{g3[1], g5[6], g4[2], g5[5], g3[0], g5[4], g4[1], g5[3],
g2[0], g5[2], g4[0], g5[1], g1[0], g5[0], g0[0], G[0]});

endmodule // bk16

Figure 3.29. 16-bit Brent-Kung Prefix Adder Verilog Code.

ter. As expected, the CLA adder is the fastest algorithmically, however, it
consumes the most area. The plots utilizer = 4 block sizes. Improvements to
CSKA and CSEA designs could be improved by optimizing the block size as
discussed in Sections 3.5.1 and 3.6.1. As stated previously, its important to re-
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member that the analysis presented here is algorithmic and does not take into
consideration any circuit implementations. Circuit and algorithmic concerns
must be addressed together.
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Figure 3.30. Area Plots for Adder Designs.

0 10 20 30 40 50 60
0

50

100

150

200

250

Delay Analysis for Several Adder Algorithms

Size

D
el

ay
 (

D
el

ta
)

RCA 
CLA 
CSKA
CSEA

Figure 3.31. Delay Plots for Adder Designs.



Chapter 4

MULTIPLICATION

In this chapter, multiplication datapath designs are explored. As opposed
to previous chapters where a design consists of basic gates, the designs in this
chapter and subsequent to this chapter utilize designs that are more complex.
Consequently, many of the designs that are visited in this chapter and beyond
start utilizing more and more of the previous designs made throughout the
book. This is a direct use of hierarchy and reuse and is extremely helpful in
the design of datapath elements.

Multiplication involves the use of addition in some way to produce a product
p from a multiplicandx and multipliery such that:

p = x · y (4.1)

High speed multipliers are typically classified into two categories. The first,
known as parallel multiplication, involves the use of hardware to multiply a
m-bit number by an-bit number to completely produce an + m product. Par-
allel multipliers can also be pipelined to reduce the cycle time and increase the
throughput by introducing storage elements within the multiplier. On the other
hand, serial or sequential multipliers compute the product sequentially usually
utilizing storage elements so that hardware of the multiplier is reused during an
iteration. The implementations presented in this chapter are primarily parallel
multipliers since they usually provide the most benefit to a computer architec-
ture at the expense of area. However, many of the designs presented here can
be utilized in a sequential fashion as well.

Multiplication usually involve three separate steps as listed below. Although
there are implementations that can theoretically be reduced to the generation
of the shifted multiples of the multiplicand and multi-operand addition (i.e.
the addition of more than two operands), most multipliers utilize the steps
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below. Although there are various different perspectives on the implementation
of multiplication, its basic entity usually is the adder.

1 Partial Product (PP) Generation - utilizes a collection of gates to generate
the partial product bits (i.e.ai · bi).

2 Partial Product (PP) Reduction - utilizes adders (counters) to reduce the
partial products to sum and carry vectors.

3 Final Carry-Propagate Addition (CPA) - adds the sum and carry vectors to
produce the product.

4.1 Unsigned Binary Multiplication
The multiplication of ann-bit by m-bit unsigned binary integersa andb

creates the productp. This multiplication results inm partial products, each
of which is n bits. A partial product involves the formation of an individual
computation of each bit orai · bj. Then partial products are added together to
produce an + m-bit product as shown below. This operation on each partial
product forms a nice parallelogram typically called a partial product matrix.
For example, in Figure 4.1 a4-bit by 4-bit multiplication matrix is shown.
In lieu of each value in the matrix, a dot is sometimes shown for each partial
product, multiplicand, multiplier, and product. This type of diagram is
typically called a dot diagram and allows arithmetic designers a better idea of
which partial products to add to form the product.

P = A · B
= (

n−1∑
i=0

ai · 2i) · (
m−1∑
j=0

bj · 2j)

=
n−1∑
i=0

m−1∑
j=0

ai · bj · 2i+j

The overall goal of most high-speed multipliers is to reduce the number of
partial products. Consequently, this leads to a reduced amount of hardware
necessary to compute the product. Therefore, many designs that are visited in
this chapter involve trying to minimize the complexity in one of the three steps
listed above.

4.2 Carry-Save Concept
In multiplication, adders are utilized to reduce the execution time. However,

from the topics in the previous chapter, the major source of delay in adders is
consumed from the carries [Win65]. Therefore, many designers have concen-
trated on reducing the total time that is involved in summing carries. Since
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Figure 4.1. 4-bit by 4-bit Multiplication Matrix.

multiplication is concerned with not just two operands, but many of them it is
imperative to organize the hardware to mitigate the carry path or chain. There-
fore, many implementations consider adders according to two principles:

Carry-Save Addition (CSA) - idea of utilizing addition without carries con-
nected in series but just to count.

Carry-Propagate Addition (CPA) - idea of utilizing addition with the carries
connected in series to produce a result in either conventional or redundant
notation.

Each adder is the same as the full adder discussed in Chapter 3, however, the
view in which each connection is made from adder to adder is where the main
difference lies. Because each adder is really trying to compute both carry and
save information, sometimes VLSI designers refer to it as a carry-save adder
or CSA. As mentioned previously, because each adder attempts to count the
number of inputs that are1, it is sometimes also called a counter. A(c, d) is an
adder wherec refers to the column height andd is the number of bits to display
at its output. For example, a(3, 2) counter counts the3 inputs all with the same
weight and displays two outputs. A(3, 2) counter is shown in Figure 4.2.

Therefore, ann-bit CSA can take threen-bit operands and generate ann-bit
partial sum andn-bit carry. Large operand sizes would require more CSAs to
produce a result. However, a CPA would be required to produce the correct
result. For example, in Table 4.1 an example is shown that adds togetherA +
B + D + E with the values10 + 6 + 11 + 12. The implementation utilizing
the carry-save concept for this example is shown in Figure 4.4. As seen in
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A B D

SC

CSA

Figure 4.2. A Carry-Save Adder or(3, 2) counter.

Table 4.1, the partial sum is31 and the carry is8 that produces the correct result
of 39. This process of performing addition on a given array that produces an
output array with a smaller number of bits is calledreduction. The Verilog
code for this implementation is shown in Figure 4.3.

Column Value Column Value
Row Radix2 Radix10

A 1 0 1 0 10
B 0 1 1 0 6
D 1 0 1 1 11

+ E 1 1 0 0 12

S 1 1 1 1 1 31
C 0 1 0 0 0 8

Table 4.1. Carry-Save Concept Example.

The CSA utilizes many topologies of adder so that the carry-out from one
adder isnot connected to the carry-in of the next adder. Eventually, a CPA
could be utilized to form the true result. This organization of utilizingm-word
by n-bit multi-operand adders together to addm-operands or words each of
which isn-bits long is called a multi-operand adder (MOA). Am-word byn-
bit multi-operand adder can be implemented using(m − 2) n-bit CSA’s and1
CPA. Unfortunately, because the number of bits added together increases the
result, the partial sum and carry must grow as well. Therefore, the result will
containn+ �log2(m)� bits. In our example above, this means a4+ log2(4) =
6-bit result is produced.

Higher order counters can be created by putting together various sized coun-
ters. A higher order counter(p, q) takesp input bits and producesq output bits.
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module moa4x4 (S, C, A, B, C, D, Cin);

input [3:0] A, B, D, E;
input Cin;
output [4:0] S, C;

fa csa1 (c_0_0, s_0_0, A[0], B[0], D[0]);
fa csa2 (c_0_1, s_0_1, A[1], B[1], D[1]);
fa csa3 (c_0_2, s_0_2, A[2], B[2], D[2]);
fa csa4 (S[4], s_0_3, A[3], B[3], D[3]);

fa csa5 (C[0], S[0], E[0], s_0_0, Cin);
fa csa6 (C[1], S[1], E[0], s_0_1, c_0_0);
fa csa7 (C[2], S[2], E[0], s_0_2, c_0_1);
fa csa8 (C[3], S[3], E[0], s_0_3, c_0,2);

endmodule // moa4x4

Figure 4.3. 4-operand4-bit Multi-Operand Adder Verilog Code.

A 1 B 1 D 1A 2 B 2 D 2A 3 B 3 D 3 A 0

E 0E 1E 2E 3

C 0 S 0C 1 S 1C 2 S 2

D 0 C in

C 3S 4

B 0

S 3

CSA CSA CSA CSA

CSACSACSACSA

Figure 4.4. A 4 operand4-bit Multi-Operand Adder.

Sinceq bits can represent a number between0 and2q − 1, the following re-
striction is requiredp ≤ 2q − 1. In general a(2q − 1, q) higher order counter
requires(2q − 1 − q) (3, 2) counters. The increase in complexity that occurs
in higher-order counters and multi-operand adders can make an implementa-
tion complex as seen by the Verilog code in Figure 4.3. Consequently, some
designers use programs that generate RTL code automatically. Another use-
ful technique is to utilize careful naming methodologies for each temporary
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variable and declaration. For example, in Figure 4.3, the temporary variables
utilize s 0 2 to represent the sum from the first carry-save adder in the second
column.

4.3 Carry-Save Array Multipliers (CSAM)
The simplest of all multipliers is the carry-save array multiplier (CSAM).

The basic idea behind the CSAM is that it is basically doing paper and pen-
cil style multiplication. In other words, each partial product is being added. A
4-bit by 4-bit unsigned CSAM is shown in Figure 4.6. Each column of the mul-
tiplication matrix corresponds to a diagonal in the CSAM. The reason CSAM’s
are usually done in a square is because it allows metal tracks or interconnect to
have less congestion. This has a tendency to have less capacitance as well as
making it easier for engineers to organize the design.

The CSAM performs PP generation utilizing AND gates and uses an array
of CSA’s to perform reduction. The AND gates form the partial-products and
the CSA’s sum these partial products together or reduce them. Since most of
the reduction computes the lower half of the product, the final CPA only needs
to add the upper half of the product. Array multipliers are typically easy to
build both using Verilog code as well in custom layout, therefore, there are
many implementations that employ both.

For the CSAM implementation, each adder is modified so that it can perform
partial product generation and an addition. A modified half adder (MHA) con-
sists of an AND gate that creates a partial product bit and a half adder (HA).
The MHA adds this partial product bit from the AND gate with a partial prod-
uct bit from the previous row. A modified full adder (MFA) consists of an
AND gate that creates a partial product bit, and a full adder (FA) that adds this
partial product bit with sum and carry bits from the previous row. Figure 4.5
illustrates the block diagram of the MFA.

An n-bit by m-bit CSAM hasn ·m AND gates,m HAs, and((n−1) · (m−
1))−1 = n·m−n−m FAs. The final row of(n−1) adders is a RCA CPA. The
worst case delay shown by the dotted line in Figure 4.6 is equal to one AND
gate, two HAs, and(m+n−4) FAs. In addition, due to the delay encountered
by each adder in the array, the worst-case delay can sometimes occur down the
an column instead of across the diagonal. To decrease the worst case delay, the
(n − 1)-bit RCA on the bottom of the array can be replaced by a faster adder,
but this increases the gate count and reduces the regularity of the design. Array
multipliers typically have a complexity ofO(n2) for area andO(n) for delay.

The Verilog code for a4-bit by 4-bit CSAM is shown in Figure 4.8. The
hierarchy for the partial product generation is performed by thePP module
which is shown in Figure 4.7. The MHA and MFA modules are not utilized to
illustrate the hardware inside the array multiplier, however, using this nomen-
clature would establish a better coding structure.
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cout

FA

sum

Figure 4.5. A Modified Full Adder (MFA).

4.4 Tree Multipliers
To reduce the delay of array multipliers, tree multipliers, which haveO(log(n)

delay, are often employed. Tree multipliers use the idea of reduction to reduce
the partial products down until they are reduced enough for use with a high-
speed CPA. In other words, as opposed to array multipliers, tree multipliers
vary in the way that each CSA performs partial product reduction. The main
objective is to reduce the partial products utilizing the carry-save concept. Each
partial product is reorganized so that it can get achieve an efficient reduction
array. This is possible for multiplication because each partial product in the
multiplication matrix is commutative and associative with respect to addition.
That is, if there are four partial products in a particular column,M, N, O, and
P, it does not matter what order the hardware adds the partial products in (.e.g
M + N + O + P = P + O + N + M ).

4.4.1 Wallace Tree Multipliers
Wallace multipliers grew from an experiment into how to organize tree

multipliers with the correct amount of reduction[Wal64]. Wallace multipli-
ers group rows into sets of three. Within each three row set, FAs reduce
columns with three bits and HAs reduce columns with two bits. When used
in multiplier trees, full adders and half adders are often referred to as(3, 2)
and(2, 2) counters, respectively. Rows that are not part of a three row set are
transferred to the next reduction stage for subsequent reduction. The height of
the matrix in thejth reduction stage is wherewj is defined by the following
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Figure 4.6. 4-bit by 4-bit Unsigned CSAM.

recursive equations [BSS01]:

w0 = n

wj+1 = 2 · 
wj

3
� + (wj mod3)

To use these equations, the user first picks the bit size that they would like
to design. Then, utilizing the equations above, the intermediate matrix heights
are determined. For example, using Wallace’s equation above, a4-bit by 4
Wallace tree multiplier has intermediate heights of3, and2. Each intermediate
height is the result of one level of carry-save addition (i.e.4 → 3 → 2).

The best way to visualize Wallace trees is to draw a dot diagram of the mul-
tiplication matrix. In order to draw the dot diagram, reorganize the multipli-
cation matrix so that bits that have no space above a particular partial product
column. In other words, the multiplication matrix goes from a parallelogram
into a inverted triangle. For example, in Figure 4.9, a4-bit by 4-bit dot diagram
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module PP (P3, P2, P1, P0, X, Y);

input [3:0] Y;
input [3:0] X;

output [3:0] P3, P2, P1, P0;

// Partial Product Generation
and pp1(P0[3], X[3], Y[0]);
and pp2(P0[2], X[2], Y[0]);
and pp3(P0[1], X[1], Y[0]);
and pp4(P0[0], X[0], Y[0]);
and pp5(P1[3], X[3], Y[1]);
and pp6(P1[2], X[2], Y[1]);
and pp7(P1[1], X[1], Y[1]);
and pp8(P1[0], X[0], Y[1]);
and pp9(P2[3], X[3], Y[2]);
and pp10(P2[2], X[2], Y[2]);
and pp11(P2[1], X[1], Y[2]);
and pp12(P2[0], X[0], Y[2]);
and pp13(P2[3], X[3], Y[3]);
and pp14(P3[2], X[2], Y[3]);
and pp15(P3[1], X[1], Y[3]);
and pp16(P3[0], X[0], Y[3]);

endmodule // PP

Figure 4.7. 4-bit by 4-bit Partial Product Generation Verilog Code.

is shown. Utilizing the properties that addition is commutative and associative,
the columns towards the left hand side of the multiplication matrix are reorga-
nized upwards as shown in Figure 4.10 by the arrows.

Wallace’s reduction scheme begins by grouping the rows into sets of threes.
A useful technique is to draw horizontal lines in groups of threes so that its
easy to visualize the reduction. In Figure 4.11 a4-bit by 4-bit Wallace tree

multiplication is shown. This multiplier takes2 reduction stages with matrix
heights of3 and2. The outputs of each(3, 2) counters are represented as two
dots connected by a diagonal line. On the other hand, the outputs of each(2, 2)
counter are represented as two dots connected by a crossed diagonal line. An
oval is utilized to show the transition from reduction stages. In summary,
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module array4 (Z, X, Y);

input [3:0] X, Y;

output [7:0] Z;

// Partial Product Generation
PP pp1 (P3, P2, P1, P0, X, Y);

// Partial Product Reduction
ha HA1 (carry1[2],sum1[2],P1[2],P0[3]);
ha HA2 (carry1[1],sum1[1],P1[1],P0[2]);
ha HA3 (carry1[0],sum1[0],P1[0],P0[1]);
fa FA1 (carry2[2],sum2[2],P2[2],P1[3],carry1[2]);
fa FA2 (carry2[1],sum2[1],P2[1],sum1[2],carry1[1]);
fa FA3 (carry2[0],sum2[0],P2[0],sum1[1],carry1[0]);
fa FA4 (carry3[2],sum3[2],P3[2],P2[3],carry2[2]);
fa FA5 (carry3[1],sum3[1],P3[1],sum2[2],carry2[1]);
fa FA6 (carry3[0],sum3[0],P3[0],sum2[1],carry2[0]);

// Generate lower product bits YBITS
buf b1(Z[0], P0[0]);
buf b2(Z[1], sum1[0]);
buf b3(Z[2] = sum2[0]);
buf b4(Z[3] = sum3[0]);

// Final Carry Propagate Addition (CPA)
ha CPA1 (carry4[0],Z[4],carry3[0],sum3[1]);
fa CPA2 (carry4[1],Z[5],carry3[1],carry4[0],sum3[2]);
fa CPA3 (Z[7],Z[6],carry3[2],carry4[1],P3[3]);

endmodule // array4

Figure 4.8. 4-bit by 4-bit Unsigned CSAM Verilog Code.

Dots represent partial product bits

A uncrossed diagonal line represents the outputs of a FA

A crossed diagonal line represents the outputs of a HA
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123456 0

Figure 4.9. Original4-bit by 4-bit Multiplication Matrix.

013 2456

Figure 4.10. Reorganized4-bit by 4-bit Multiplication Matrix.

This multiplier requires16 AND gates,6 HAs,4 FAs and a5-bit carry prop-
agate adder. The total delay for the generation of the final product is the sum
of one AND gate delay, one(3, 2) counter delay for each of the two reduction
stages, and the delay through the final carry-propagate adder. The Verilog code
for the4-bit by 4-bit Wallace tree multiplier is shown in Figure 4.12. The Ver-
ilog code utilizes an8-bit RCA for simplicity although it could be implemented
as a shorter size. In addition, as explained previously, the art of reduction can
be very difficult to implement. Therefore, a good naming methodology is uti-
lized,NX Y Z, whereX is the reduction stage,Y is the row number for the
result, andZ is the column number. For this reason, many tree multipliers are
not often implemented in custom layout.

4.4.2 Dadda Tree Multipliers
Dadda multipliers are another form of Wallace multiplier, however, Dadda

proposed a sequence of matrix heights that are predetermined to give the mini-
mum number of reduction stages [Dad65]. The reduction process for a Dadda
multiplier is formulated using the following recursive algorithm [BSS01], [Swa80].
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Figure 4.11. 4-bit by 4-bit Unsigned Wallace Tree Dot Diagram.

1 Letd1 = 2 anddj+1 = 
1.5 · dj�, wheredj is the matrix height for thejth

stage from the end. Then, proceed to find the smallestj such that at least
one column of the original partial product matrix has more thandj bits.

2 In thejth stage from the end, employ(3, 2) and(2, 2) counters to obtain a
reduced matrix with no more thandj bits in any column.

3 Let j = j − 1 and repeat step2 until a matrix with only two rows is gener-
ated.

This method of reduction, because it attempts to compress each column, is
called a column compression technique. Another advantage to utilizing Dadda
multipliers is that it utilizes the minimum number of(3, 2) counters [HW70].
Therefore, the number of intermediate stages is set in terms of a lower bound
as:

2 → 3 → 4 → 6 → 9 → . . .
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module wallace4 (Z, A, B);

input [3:0] B;
input [3:0] A;

output [7:0] Z;

// Partial Product Generation
PP pp1 ({N0_3_6, N0_3_5, N0_3_4, N0_3_3},
{N0_2_5, N0_2_4, N0_2_3, N0_2_2),
{N0_1_4, N0_1_3, N0_1,2, N0_1_1},
{N0_0_3, N0_0_2, N0_0_1, N0_0_0}, A, B);

// Partial Product Reduction
ha HA1(N2_1_2, N2_0_1, N0_0_1, N0_1_1);
fa FA1(N2_1_3, N2_0_2, N0_0_2, N0_1_2, N0_2_2);
fa FA2(N2_1_4, N2_0_3, N0_0_3, N0_1_3, N0_2_3);
fa FA3(N2_1_5, N2_0_4, N0_1_4, N0_2_4, N0_3_4);
ha HA2(N2_1_6, N2_0_5, N0_2_5, N0_3_5);

ha HA3(N3_1_3, N3_0_2, N2_0_2, N2_1_2);
fa FA4(N3_1_4, N3_0_3, N2_0_3, N2_1_3, N0_3_3);
ha HA4(N3_1_5, N3_0_4, N2_0_4, N2_1_4);
ha HA5(N3_1_6, N3_0_5, N2_0_5, N2_1_5);
ha HA6(N3_1_7, N3_0_6, N0_3_6, N2_1_6);

// Final CPA
rca8 cpa1(carry, Cout,

{N3_1_7, N3_0_6, N3_0_5, N3_0_4,
N3_0_3, N3_0_2, N2_0_1, N0_0_0},

{1’b0, N3_1_6, N3_1_5, N3_1_4,
N3_1_3, 1’b0, 1’b0, 1’b0}, 1’b0);

endmodule // wallace4

Figure 4.12. 4-bit by 4-bit Unsigned Wallace Verilog Code.

In order to visualize the reductions, it is useful, as before, to draw a dotted line
between each defined intermediate stage. Anything that falls below this line
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for a given intermediate stage, must be reduced to the given intermediate stage
size or less.

The dot diagram for a4 by 4 Dadda multiplier is shown in Figure 4.13. The
Dadda tree multiplier uses16 AND gates,3 HAs, 3 FAs, and a6-bit carry-
propagate adder. The total delay for the generation of the final product is the
sum of the one AND gate delay, one(3, 2) counter delay for each of the two
reduction stages, and the delay through the final6-bit carry-propagate adder.
The Verilog code for the4-bit by 4-bit Wallace tree multiplier is shown in
Figure 4.14. Again, the Verilog code utilizes an8-bit RCA for simplicity.

Figure 4.13. 4-bit by 4-bit Unsigned Dadda Tree Dot Diagram.

4.4.3 Reduced Area (RA) Multipliers
A recent improvement on the Wallace and Dadda reduction techniques is

illustrated in a technique called Reduced Area (RA) multipliers [BSS95]. The
reduction scheme of RA multipliers differ from Wallace and Dadda’s methods
in that the maximum number of(3, 2) counters are utilized as early as pos-
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module dadda4 (Z, A, B);

input [3:0] B;
input [3:0] A;

output [7:0] Z;

// Partial Product Generation
PP pp1 ({N0_3_6, N0_3_5, N0_3_4, N0_3_3},
{N0_2_5, N0_2_4, N0_2_3, N0_2_2),
{N0_1_4, N0_1_3, N0_1,2, N0_1_1},
{N0_0_3, N0_0_2, N0_0_1, N0_0_0}, A, B);

// Partial Product Reduction
ha HA1(N2_1_4, N2_0_3, N0_0_3, N0_1_3);
ha HA2(N2_1_5, N2_0_4, N0_1_4, N0_2_4);

ha HA3(N3_1_3, N3_0_2, N0_0_2, N0_1_2);
fa FA1(N3_1_4, N3_0_3, N0_2_3, N0_3_3, N2_0_3);
fa FA2(N3_1_5, N3_0_4, N0_3_4, N2_0_4, N2_1_4);
fa FA3(N3_1_6, N3_0_5, N0_2_5, N0_3_5, N2_1_5);

// Final CPA
rca7 cpa1(carry, Cout,
{N0_3_6, N3_0_5, N3_0_4, N3_0_3,

N3_0_2, N0_0_1, N0_0_0},
{N3_1_6, N3_1_5, N3_1_4, N3_1_3,

N0_2_2, N0_1,1, 1’b0}, 1’b0);

endmodule // dadda4

Figure 4.14. 4-bit by 4-bit Unsigned Dadda Tree Verilog Code.

sible, and(2, 2) counters are carefully placed to reduce the word size of the
carry-propagate adder. The basic idea is to utilize agreedier form of Dadda’s
reduction scheme. In addition, since RA multipliers have fewer total dots in
the reduction, they are well suited for pipelined multipliers. This is because
employing(3, 2) multipliers earlier than Dadda multipliers minimizes passing
data between successive stages in the reduction.

The RA multiplier performs the reduction as follows [BSS95]
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1 For each stage, the number of FAs used in columni is #FAs = 
bi/3�,
wherebi is the number of bits in columni.

2 HAs are only used

(a) when required to reduce the number of bits in a column to the number
of bits specified by the Dadda sequence.

(b) to reduce the rightmost column containing exactly two bits.

Figure 4.15 shows the dot diagram for an4-bit by 4-bit RA tree multiplier.
This multiplier requires16 AND gates,3 HAs, 5 FAs, and an4-bit carry-
propagate adder. The total delay for the generation of the final product is the
sum of the one AND gate delay, one(3, 2) counter delay for each of the two
reduction stages, and the delay through the final4-bit carry-propagate adder.
The Verilog code for the4-bit by 4-bit Reduced Area tree multiplier is shown
in Figure 4.16. Again, the Verilog code utilizes an8-bit RCA for simplicity
although it could be implemented more efficiently.

Figure 4.15. 4-bit by 4-bit Unsigned Reduced Area (RA) Diagram.
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module ra4 (Z, A, B);

input [3:0] B;
input [3:0] A;

output [7:0] Z;

// Partial Product Generation
PP pp1 ({N0_3_6, N0_3_5, N0_3_4, N0_3_3},
{N0_2_5, N0_2_4, N0_2_3, N0_2_2),
{N0_1_4, N0_1_3, N0_1,2, N0_1_1},
{N0_0_3, N0_0_2, N0_0_1, N0_0_0}, A, B);

// Partial Product Reduction
ha HA1(N2_1_2, N2_0_1, N0_0_1, N0_1_1);
fa FA1(N2_1_3, N2_0_2, N0_0_2, N0_1_2, N0_2_2);
fa FA2(N2_1_4, N2_0_3, N0_0_3, N0_1_3, N0_2_3);
fa FA3(N2_1_5, N2_0_4, N0_1_4, N0_2_4, N0_3_4);

ha HA2(N3_1_3, N3_0_2, N2_0_2, N2_1_2);
fa FA4(N3_1_4, N3_0_3, N0_3_3, N2_0_3, N2_1_3);
ha HA3(N3_1_5, N3_0_4, N2_0_4, N2_1_4);
fa FA5(N3_1_6, N3_0_5, N0_2_5, N0_3_5, N2_1_5);

// Final Carry Propagate Adder
rca7 cpa1(Z, Cout,
{N0_3_6, N3_0_5, N3_0_4, N3_0_3,

N3_0_2, N2_0_1, N0_0_0},
{N3_1_6, N3_1_5, N3_1_4, N3_1_3,

1’b0, 1’b0, 1’b0}, 1’b0);

endmodule // ra4

Figure 4.16. 4-bit by 4-bit Unsigned Reduced Area (RA) Verilog Code.

4.5 Truncated Multiplication
High-speed parallel multipliers are the fundamental building blocks in digi-

tal signal processing systems [MT90]. In many cases, parallel multipliers con-
tribute significantly to the overall power dissipation of these systems [Par01].
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Consequently, reducing the power dissipation of parallel multipliers is impor-
tant in the design of digital signal processing systems.

In many computer systems, then+m-bit products produced by the parallel
multipliers are rounded tor bits to avoid growth in word size. As presented
in [Lim92], truncated multiplication provides an efficient method for reduc-
ing the hardware requirements of rounded parallel multipliers. With truncated
multiplication, only ther + k most significant columns of the multiplication
matrix are used to compute the product. The error produced by omitting the
m + n − r − k least significant columns and rounding the final result tor
bits is estimated, and this estimate is added along with ther + k most signif-
icant columns to produce the rounded product. Although this leads to addi-
tional error in the rounded product, various techniques have been developed to
help limit this error [KS98], [SS93], [SD03]. This is illustrated in Figure 4.17
where a4 by 4 truncated multiplication matrix is shown producing a4 bit final
product. The finalr bits are output based on adding extrak columns and a
compensation method by using a constant, variably adjusting the final result
with extra bits from the partial product matrix, or combinations of both these
methods.

m

r k
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Figure 4.17. 4-bit by 4-bit Truncated Multiplication Matrix.

One method to compensate for truncation are Constant Correction Trun-
cated (CCT) Multipliers [SS93]. In this method, a constant is added to columns
n + m − r − 1 to n + m − r − k of the multiplication matrix. The constant
helps compensate for the error introduced by omitting then + m− r − k least
significant columns (called reduction error), and the error due to rounding the
product tor bits (called rounding error). The expected value of the sum of
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these errorEtotal is computed by assuming that each bit inA, B andP has an
equal probability of being one or zero. Consequently, the expected value of the
total error is the sum of expected reduction error and the expected rounding
error as

Etotal = Ereduction + Erounding

Etotal =
1
4

S−1∑
q=0

(q + 1) · 2−m−n+q +
1
2
·

S−1∑
z=S−k

2−m−n+z

whereS = m + n− r. The constantCtotal is obtained by rounding−Etotal to
r + k fractional bits, such that

Ctotal = −round(2r+kEtotal)
2r+k

whereround(x) indicates thatx is rounded to the nearest integer.
To compute the maximum absolute error, it has been shown that the maxi-

mum absolute error occurs either when all of the partial product bits in columns
0 to n + m − r − k − 1 and all the product bits in columnsn + m − r − k to
n + m− r− k are ones or when they are all zeroes [SS93]. If they are all ones
or all zeros, the maximum absolute error is just the constantCtotal. Therefore,
the maximum absolute error is

Emax = max(Ctotal,
−S−k−1∑

q=0

(q + 1) · 2−m−n+q + 2−r · (1 − 2k))

Although the value ofk can be chosen to limit the maximum absolute error
to a specific precision, this equation assumes the maximum absolute error is
limited to one unit in the last place (i.e.,2−r).

Figure 4.18 shows the block diagram of ann = 4 by m = 4 carry-save
array CCT multiplier withr = 4 andk = 2. The rounding correction constant
for the CCT array multiplier isCround = 0.0283203125. A specialized half
adder (SHA) is employed within Figure 4.18 to enable the correction constant
to be added into the partial product matrix. A SHA is equivalent to a MFA
that has an input set to one. The reduced half adder (RHA) and reduced full
adder (RFA) are similar to an adder in that it produces only a carry without a
sum since the sum is not needed. The Verilog implementation of the carry-save
CCT multiplier is shown in Figure 4.19. Instead of calling a module for the
partial product generation, each partial product generation logic is shown so
that it is easy to see which partial products are not needed.

Another method to compensate for the truncation is using the Variable Cor-
rection Truncated (VCT) Multiplier [KS98]. Figure 4.20 shows the block dia-
gram of an4 by 4 carry-save array multiplier that uses the VCT Multiplication
method withr = 4 andk = 1 . With this type of multiplier, the values of
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Figure 4.18. Block diagram of Carry-Save Array CCT multiplier withn = m = r = 4, and
k = 2.

the partial product bits in columnm + n − r − k − 1 are used to estimate the
error due to leaving off them + n − r − k least significant columns. This is
accomplished by adding the partial products bits in columnm + n− r− k− 1
to columnm + n − r − k. To compensate for the rounding error, a constant is
added to columnsm+n− r−2 to m+n− r−k of the multiplication matrix.
The value for this constant is

Ctotal = 2−S−1(1 − 2−k+1) (4.2)

which corresponds to the expected value of the rounding error truncated to
r + k bits. For the implementation in Figure 4.20, the constant isCtotal =
24+4−4 · (1−1) = 0.0, therefore, there is no need to add a SHA in Figure 4.20.
The Verilog implementation of the carry-save VCT multiplier is shown in Fig-
ure 4.21

When truncation occurs, the diagonals that produce thet = m + n − r −
k least significant product bits are eliminated. To compensate for this, the
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// Correction constant value: 0.0283203125 (000010)
module array4c (Z, X, Y);

input [3:0] Y;
input [3:0] X;

output [3:0] Z;

// Partial Product Generation
and pp1(P0[3], X[3], Y[0]);
and pp2(P0[2], X[2], Y[0]);
and pp3(sum1[3], X[3], Y[1]);
and pp4(P1[2], X[2], Y[1]);
and pp5(P1[1], X[1], Y[1]);
and pp6(sum2[3], X[3], Y[2]);
and pp7(P2[2], X[2], Y[2]);
and pp8(P2[1], X[1], Y[2]);
and pp9(P2[0], X[0], Y[2]);
and pp10(sum3[3], X[3], Y[3]);
and pp11(P3[2], X[2], Y[3]);
and pp12(P3[1], X[1], Y[3]);
and pp13(P3[0], X[0], Y[3]);

// Partial Product Reduction
specialized_half_adder SHA1(carry1[2],sum1[2],P1[2],

P0[3]);
ha HA1(carry1[1],sum1[1],P1[1],P0[2]);
fa FA1(carry2[2],sum2[2],P2[2],sum1[3],carry1[2]);
fa FA2(carry2[1],sum2[1],P2[1],sum1[2],carry1[1]);
assign carry2[0] = P2[0] & sum1[1];
fa FA3(carry3[2],sum3[2],P3[2],sum2[3],carry2[2]);
fa FA4(carry3[1],sum3[1],P3[1],sum2[2],carry2[1]);
reduced_full_adder RFA1(carry3[0],P3[0],sum2[1],

carry2[0]);

// Final Carry Propagate Addition
ha CPA1(carry4[0],Z[0],carry3[0],sum3[1]);
fa CPA2(carry4[1],Z[1],carry3[1],carry4[0],sum3[2]);
fa CPA3(Z[3],Z[2],carry3[2],carry4[1],sum3[3]);

endmodule // array4c

Figure 4.19. Carry-Save Array CCT multiplier withn = m = r = 4, andk = 2 Verilog
Code.
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Figure 4.20. Block Diagram of carry-save array VCT multiplier withn = m = r = 4, and
k = 1.

AND gates that generate the partial products for columnt − 1 are used as
inputs to the modified adders in columnt. As explained previously, since thek
remaining modified full adders on the right-hand-side of the array do not need
to produce product bits, they are replaced by modified reduced half and full
adders (RFAs), which produce a carry, but do not produce.

Another method for truncation, called a Hybrid Correction Truncated (HCT)
Multiplier [SD03], uses both constant and variable correction techniques to
reduce the overall error. In order to implement a HCT multiplier, a new pa-
rameter is introduced,p, that represents the percentage of variable correction
to use for the correction. This percentage is utilized to chose the number of
partial products from columnm+n− r− k− 1 to be used to add into column
m + n− r− k. The calculation of the number of variable correction bits is the
following utilizing the number of bits used in the variable correction method,
Nvariable

Nvariablehybrid
= floor(Nvariable × p) (4.3)
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// Correction constant value: 0.0
module array4v (Z, X, Y);

input [3:0] Y;
input [3:0] X;

output [3:0] Z;

// Partial Product Generation
and pp1(P0[3], X[3], Y[0]);
and pp2(sum1[3], X[3], Y[1]);
and pp3(P1[2], X[2], Y[1]);
and pp4(carry1[1], X[1], Y[1]);
and pp5(sum2[3], X[3], Y[2]);
and pp6(P2[2], X[2], Y[2]);
and pp7(P2[1], X[1], Y[2]);
and pp8(carry2[0], X[0], Y[2]);
and pp9(sum3[3], X[3], Y[3]);
and pp10(P3[2], X[2], Y[3]);
and pp11(P3[1], X[1], Y[3]);
and pp12(P3[0], X[0], Y[3]);

// Partial Product Reduction
ha HA1(carry1[2],sum1[2],P1[2],P0[3]);
fa FA1(carry2[2],sum2[2],P2[2],sum1[3],carry1[2]);
fa FA2(carry2[1],sum2[1],P2[1],sum1[2],carry1[1]);
fa FA3(carry3[2],sum3[2],P3[2],sum2[3],carry2[2]);
fa FA4(carry3[1],sum3[1],P3[1],sum2[2],carry2[1]);
reduced_full_adder RFA1(carry3[0],P3[0],sum2[1],

carry2[0]);

// Final Carry Propagate Addition
ha CPA1(carry4[0],Z[0],carry3[0],sum3[1]);
fa CPA2(carry4[1],Z[1],carry3[1],carry4[0],sum3[2]);
fa CPA3(Z[3],Z[2],carry3[2],carry4[1],sum3[3]);

endmodule // array4v

Figure 4.21. Carry-Save Array VCT multiplier withn = m = r = 4, andk = 1 Verilog
Code.
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Similar to both the CCT and the VCT multipliers, a HCT multiplier uses
a correction constant to compensate for the rounding error. However, since
the correction constant will be based on a smaller number bits than a VCT
multiplier, the correction constant is modified as follows

CV CT ′ = 2−r−k−2 · Nvariablehybrid
(4.4)

This produces a new correction constant based on the difference between the
new variable correction constant and the constant correction constant:

Cround =
round((CCCT − CV CT ′ ) · 2r+k)

2r+k
(4.5)

Figure 4.22 shows an a4 by 4 carry-save array multiplier that uses the HCT
Multiplication method withr = 4, k = 1, andp = 0.4. The rounding cor-
rection constant for the HCT array multiplier isCround = 0.0244140625,
which is implemented in the block diagram by changing one of the MHAs
in the second row to a SHA. Since the HCT multiplier is being compen-
sated by utilizing constant correctionand variable correction, the constant is
CV CT ≤ CHCT ≤ CCCT . The Verilog implementation of the carry-save
HCT multiplier is shown in Figure 4.23 For all the multipliers presented here,
a similar modification can be performed for tree multipliers, such as Dadda
multipliers. Truncated multipliers can also be combined with non-truncated
parallel multipliers [WSS01].

4.6 Two’s Complement Multiplication
Most computing systems involve the use of signed and unsigned binary

numbers. Therefore, multiplication requires some mechanism to compute two’s
complement multiplication. The most common implementation for two’s com-
plement multipliers is to use the basic mathematical equation for integer or
fractional multiplication and use algebra to formalize a structure. The most
popular of these implementation are called Baugh-Wooley [BW73] or
Pezaris [Pez71] multipliers named after each individual who presented them.
Therefore, in this section we formalize two’s complement multiplication the
same way.

Although previously we have introduced fractional binary numbers, the for-
mation of the new multiplication matrix is easiest seen utilizing two’s com-
plement binary integers. Conversion to ann-bit binary fraction from an-bit
binary integer is easily accomplished by dividing by2n−1. For two’s comple-
ment binary integers, a number can be represented as:

A = −an−1 · 2n−1 +
n−2∑
i=0

ai · 2i
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Figure 4.22. Block diagram of Carry-Save Array HCT multiplier withn = m = r = 4,
k = 1, andp = 0.4.

Consequently, the multiplication of twon-bit two’s complement binary in-
tegersA andB creates the productP with the value as follows

P = A · B

=

[
−an−1 · 2n−1 +

n−2∑
i=0

ai · 2i

]
·
−bn−1 · 2n−1 +

n−2∑
j=0

bj · 2j


= an−1 · bn−1 · 22·n−2 +

n−2∑
i=0

n−2∑
j=0

ai · bj · 2i+j

−
n−2∑
i=0

ai · bn−1 · 2i+n−1 −
n−2∑
j=0

an−1 · bj · 2j+n−1

From this algebraic manipulation it is apparent that two of the distributed
terms of the multiplication are negative. One of the ways to implement this
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// Correction constant value: 0.0244140625 (00001)
module array4h (Z, X, Y);

input [3:0] Y;
input [3:0] X;

output [3:0] Z;

// Partial Product Generation
and pp1(P0[3], X[3], Y[0]);
and pp2(sum1[3], X[3], Y[1]);
and pp3(P1[2], X[2], Y[1]);
and pp4(carry1[1], X[1], Y[1]);
and pp5(sum2[3], X[3], Y[2]);
and pp6(P2[2], X[2], Y[2]);
and pp7(P2[1], X[1], Y[2]);
and pp8(sum3[3], X[3], Y[3]);
and pp9(P3[2], X[2], Y[3]);
and pp10(P3[1], X[1], Y[3]);
and pp11(P3[0], X[0], Y[3]);

// Partial Product Reduction
specialized_half_adder SHA1(carry1[2],sum1[2],P1[2],

P0[3]);
fa FA1(carry2[2],sum2[2],P2[2],sum1[3],carry1[2]);
fa FA2(carry2[1],sum2[1],P2[1],sum1[2],carry1[1]);
fa FA3(carry3[2],sum3[2],P3[2],sum2[3],carry2[2]);
fa FA4(carry3[1],sum3[1],P3[1],sum2[2],carry2[1]);
assign carry3[0] = P3[0] & sum2[1];

// Final Carry Propagate Addition
ha CPA1(carry4[0],Z[0],carry3[0],sum3[1]);
fa CPA2(carry4[1],Z[1],carry3[1],carry4[0],sum3[2]);
fa CPA3(Z[3],Z[2],carry3[2],carry4[1],sum3[3]);

endmodule // array4h

Figure 4.23. Carry-Save Array HCT multiplier withn = m = r = 4, k = 1, andp = 0.4
Verilog Code.
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in digital arithmetic is to convert the negative value into a two’s complement
number. This is commonly done by taking the one’s complement of the number
and adding1 to the unit in the least significant position (ulp). This is referred
to as adding anulp as opposed to a1 because it guarantees the conversion
regardless of the location of the radix point. Therefore, the equations above can
be manipulated one more time as shown below. The constants occur because
the one’s complement operation for the two terms in column22·n−2 (since its
originally a0 and gets complemented to a1) and the ulp in column2n−1.

P = an−1 · bn−1 · 22·n−2 +
n−2∑
i=0

n−2∑
j=0

ai · bj · 2i+j

+
n−2∑
i=0

ai · bn−1 · 2i+n−1 +
n−2∑
j=0

an−1 · bj · 2j+n−1

+(22·n−2 + 2−2·n−2) + (2n−1 + 2n−1)

P = an−1 · bn−1 · 22·n−2 +
n−2∑
i=0

n−2∑
j=0

ai · bj · 2i+j

+
n−2∑
i=0

ai · bn−1 · 2i+n−1 +
n−2∑
j=0

an−1 · bj · 2j+n−1

+22·n−1 + 2n

From the equations listed above, a designer can easily implement the de-
sign utilized previous implementations such as the carry-save array multiplier.
matrix, except2 · n − 2 partial products are inverted and ones are added in
columnsn and2 · n− 1. Figure 4.24 shows a4-bit by 4-bit two’s complement
carry-save array multiplier. The2 · n − 2 = 6 partial products are inverted by
changing2 ·n− 2 = 6 AND gates to NAND gates. Negating MFAs (NMFAs)
are similar to the MFA, except that the AND gate is replaced by a NAND gate.
A specialized half adder (SHA) adds the one in columnn with sum and carry
vectors from the previous row as in the truncated multiplier. It implements the
equations

si = ai ⊕ bi ⊕ 1 = ai ⊕ bi

ci+1 = (ai · bi) + (ai + bi) · 1 = ai + bi

The inverter that complements the2·n−1 column adds the1 in column2·n−1
since column2 · n − 1 only requires a half adder and since one of the input
operands is a1 (i.e. sum = a ⊕ 1 = a). The Verilog code for the4-bit by
4-bit two’s complement carry-save multiplier is shown in Figure 4.26. Since
the partial products require the use of6 NAND gates, Figure 4.25 is shown to
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illustrate the modified partial product generation. A similar modification can
be performed for tree multipliers such as Dadda multipliers.
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Figure 4.24. 4-bit by 4-bit Two’s Complement CSAM.

4.7 Signed-Digit Numbers
Another popular method to handle negative numbers is the use of the Signed-

Digit (SD) number system [Avi61]. Signed-Digit (SD) number systems allow
both positive and negative digits. The range of digits is

ai ∈ {α,α + 1, . . . 1, 0, 1, . . . , α − 1, α}

wherex = −x and�r−1
2 � ≤ α ≤ r− 1. Since a SD number system can repre-

sent more than one number, it is typically called a redundant number system.
For example, the value5 in radix 10 can be represented in radix2 or binary
as0101 or 0111. Utilizing redundancy within an arithmetic datapath can have
certain advantages since decoding values can be simplified which will be ex-
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module PPtc (P3, P2, P1, P0, X, Y);

input [3:0] Y;
input [3:0] X;

output [3:0] P3, P2, P1, P0;

// Partial Product Generation
nand pp1(P0[3], X[3], Y[0]);
and pp2(P0[2], X[2], Y[0]);
and pp3(P0[1], X[1], Y[0]);
and pp4(P0[0], X[0], Y[0]);
nand pp5(P1[3], X[3], Y[1]);
and pp6(P1[2], X[2], Y[1]);
and pp7(P1[1], X[1], Y[1]);
and pp8(P1[0], X[0], Y[1]);
nand pp9(P2[3], X[3], Y[2]);
and pp10(P2[2], X[2], Y[2]);
and pp11(P2[1], X[1], Y[2]);
and pp12(P2[0], X[0], Y[2]);
and pp13(P2[3], X[3], Y[3]);
nand pp14(P3[2], X[2], Y[3]);
nand pp15(P3[1], X[1], Y[3]);
nand pp16(P3[0], X[0], Y[3]);

endmodule // PP

Figure 4.25. 4-bit by 4-bit Partial Product Generation for Two’s Complement Verilog Code.

plored in later designs. A useful term that measures the amount of redundancy
is ρ = a

r−1 whereρ > 1/2.
To convert the value of an-bit, radix-r SD integer, the following equation

can be utilized:

A =
n−1∑
i=0

ai · ri

For example,A = 1101 in radix 2 has the value

A = −1 · 20 + 0 · 21 + −1 · 22 + 1 · 23 = 310



84 DIGITAL COMPUTER ARITHMETIC DATAPATH DESIGN

module array4tc (Z, X, Y);

input [3:0] X, Y;

output [7:0] Z;

// Partial Product Generation
PPtc pptc1 (P3, P2, P1, P0, X, Y);

// Partial Product Reduction
ha HA1 (carry1[2],sum1[2],P1[2],P0[3]);
ha HA2 (carry1[1],sum1[1],P1[1],P0[2]);
ha HA3 (carry1[0],sum1[0],P1[0],P0[1]);
fa FA1 (carry2[2],sum2[2],P2[2],P1[3],carry1[2]);
fa FA2 (carry2[1],sum2[1],P2[1],sum1[2],carry1[1]);
fa FA3 (carry2[0],sum2[0],P2[0],sum1[1],carry1[0]);
fa FA4 (carry3[2],sum3[2],P3[2],P2[3],carry2[2]);
fa FA5 (carry3[1],sum3[1],P3[1],sum2[2],carry2[1]);
fa FA6 (carry3[0],sum3[0],P3[0],sum2[1],carry2[0]);

// Generate lower product bits YBITS
buf b1(Z[0], P0[0]);
buf b2(Z[1], sum1[0]);
buf b3(Z[2] = sum2[0]);
buf b4(Z[3] = sum3[0]);

// Final Carry Propagate Addition (CPA)
ha CPA1 (carry4[0],Z[4],carry3[0],sum3[1]);
fa CPA2 (carry4[1],Z[5],carry3[1],carry4[0],sum3[2]);
fa CPA3 (cout,Z[6],carry3[2],carry4[1],P3[3]);
not i1 (Z[7], cout);

endmodule // array4tc

Figure 4.26. 4-bit by 4-bit Signed CSAM Verilog Code.

Consequently, a carry-propagate adder is required to convert a number in SD
number system to a conventional number system. Another convenient method
for converting a number in SD number to a conventional number is by subtract-
ing the negative weights from the digits with positive weights. Other methods
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have also been proposed for converting redundant number systems to conven-
tional binary number systems [SP92],[YLCL92]. For example, ifA = 32103
for radix 10, we obtain

3 0 1 0 0
0 2 0 0 3

2 8 0 9 7

Table 4.2. SD Conversion to a Conventional Binary Number System.

Another potential advantage for the SD number system is that it can be uti-
lized within adders so that addition is carry-free. Theoretically, a SD adder im-
plementation can be independent of the length of the operands. Unfortunately,
utilizing a SD number system might be costly since a larger number of bits
are required to represent each bit. Moreover, the SD adder has to be designed
in such a way a new carry will be not be generated, such that| sumi |≤ a,
imposing a larger constraint on the circuit implementation.

However, one of the biggest advantages for the SD number systems is that
they can represent numbers with the smallest number of non-zero digits. This
representation is sometimes known as a canonical SD (CSD) representation
or minimal SD representations. For example,00111111 is better utilized with
hardware as01000001. CSD representations never have two adjacent non-zero
digits thus simplifying the circuit implementation even further. Extended infor-
mation regarding SD notation and its implementation can be found in [EL03],
[Kor93].

As mentioned previously, tree multipliers have irregular structures. The ir-
regularity complicates the implementation. Therefore, most implementations
of tree multipliers typically resort to standard-cell design flows. Like the carry-
save adder, a SD adder can generate the sum of two operands in constant time
independent of the size of the operands. On the other hand, SD adder trees
typically resorts in a nice regular structure which makes it a great candidate
for custom layout implementations. Unfortunately, the major disadvantage of
the SD adder is that its design is more complex resorting in an implementation
that consumes more area.

Another structure, called a compressor, is potentially advantageous for con-
ventional implementations. A(p, q) compressor takesp inputs and produces
q outputs. In addition, it takesk carry-in bits and producesk carry-out bits.
The(4, 2) compressor, which is probably the most common type of compres-
sor, takes4 input bits and1 carry-in bit, and produces2 output bits and1
carry-out bit [Wei82]. The fundamental difference between compressors and
multi-operand adders is that the carry-out bit does not depend on the carry-in
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bit. Although compressor and SD trees can be beneficial for the implementa-
tions listed here, they are not explored since the basic idea of multipliers is the
general interest of this text.

4.8 Booth’s algorithm
Booth’s algorithms can also be used to convert from binary representations

to SD representations [Boo51]. However, the representations produced are not
guaranteed to be canonical. With the radix2 Booth algorithm, groups of
two binary digits,bi and bi−1 are used to determine the binary signed digit
di, according to the Table 4.3. Booth’s algorithm is based on the premise of
SD notation in that fewer partial products have to be generated for groups of
consecutive zeroes and ones in the multiplier. In addition, for multiplier bits
that have consecutive zeroes there is no need to generate any partial product
which improves overall performance for timing. In other words, only a shift is
required for every0 in the multiplier.

Booth’s algorithm utilizes the advantage of SD notation by incorporating
the conversion to conventional binary notation within the structure. In other
words, numbers like. . . 011 . . . 110 . . . can be changed to. . . 100 . . . 010 . . ..
Therefore, instead of generating allm partial products, only two partial prod-
ucts need to be generated. To invoke this in hardware, the first partial product is
added, whereas, the second is subtracted. This is typically calledrecoding in
SD notation [Par90]. Although there are many different encodings for Booth,
the original Booth encoding is shown in Table 4.3. For this algorithm, the cur-
rent bitbi and the preceding bitbi−1 of the multiplier are examined to generate
theithe bit of the recoded multiplier. Fori = 0, the preceding bitx−1 is set to
0. In summary, the recoded bit can be computed as:

di = bi−1 − bi

bi bi−1 di Comment

0 0 0 String of zeros
0 1 1 End of a string of ones
1 0 1 Start of a string of ones
1 1 0 String of ones

Table 4.3. Radix-2 Booth Encoding.

Booth’s algorithm can also be modified to handle two’s complement num-
bers, however, special attention is required for the sign bit. Similar to other
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operations, the sign bit is examined to determine if an addition or subtraction
is required. However, since the sign bit only determines the sign, no shift op-
eration is required. In this examination, we will show two different implemen-
tations of Booth for unsigned and signed arithmetic. Many implementations
inadvertently assume that Booth always handles signed arithmetic, however,
this is not totally true. Therefore, specialized logic must be incorporated into
the implementation.

One approach for implementing Booth’s algorithm is to put the implemen-
tation into a carry-save array multiplier [MK71]. This multiplier basically in-
volvesn rows wheren is the size of the multiplier. Each row is capable of
adding or adding and shifting the output to the proper place in the multipli-
cation matrix so it can be reduced. The basic cell in this multiplier is the
controlled add, subtract, and shift (CAS) block. The same methodology is uti-
lized as the carry-save array multiplier where a single line without an arrow
indicates the variables pass through the CAS cell into the next device. The
equations to implement the CAS cell are the following:

sout = sin ⊕ (a · H) ⊕ (cin · H)
cout = (sin ⊕ D) · (a + cin) + (a · cin)

The values of H and D come from the CTRL block which implements the
recoding in Table 4.3. The two control signals basically indicate to the CAS
cell whether a shift and add or subtract are performed. ifH = 0, then a shift
is only required andsout = sin. On the other hand, ifH = 1, then a full adder
is required wherea is the multiplicand bit. However, for a proper use of the
SD notation, a1 indicates that a subtraction must occur. Therefore, ifD = 0,
a normal carry out signal is generated, whereas, ifD = 1 a borrow needs to be
generated for the proper sum to be computed.

4.8.1 Bitwise Operators
The equations above are typically simple operators to implement in Verilog

as RTL elements as shown in previous chapters. Sometimes a designer may not
want to spend time implementing logic gate per gate, but still wants a structural
implementation. One way to accomplish this is with bitwise operators. Bitwise
operators, shown in Table 4.4, operate on the bits of the operand or operands.
For example, the result ofA&B is the AND of each corresponding bit of A
with B. It is also important to point out that these operators match with BLIF
output [oCB92] produced by programs such as ESPRESSO and SIS [SSL+92].
This makes the operator and the use of theassign keyword simple for any
logic. However, it is should bestrongly pointed out that this may lead to a
behavioral level implementation. On the other hand, for two-level logic and
small multi-level logic implementations, this methodology for implementing
logic in Verilog is encouraged.
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Operator Operation

˜ Bitwise negation
& Bitwise AND
| Bitwise OR
ˆ Bitwise XOR

˜& Bitwise NAND
˜| Bitwise NOR

Table 4.4. Bitwise Operators.

Therefore, it is easy to implement the equations for the CTRL and CAS cells
with these new operators and theassignkeyword. The naming convention
for each Verilog module is still implemented as before. However, instead
of inserting instantiations for each gate, one line is required preceded with
an assignkeyword. For example, the CAS module can be implemented as
follows:

assign W = B ^ D;
assign sout = B ^ (a & H) ^ (cin & H);
assign cout = (W & (a | cin)) | (a & cin);
buf b1(U, a);
buf b2(Q, H);
buf b3(R, D);

The buf statements are inserted to allow the single lines without an arrow to
pass the variables to the next CAS cell.

assign H = x ^ x_1;
assign D = x & (~x_1);

The block diagram of the carry-save radix2 Booth multiplier is in Fig-
ure 4.27. The first row corresponds to the most significant bit of the multiplier.
The partial products generated in this row need to be shifted to the left before
its added or subtracted to a multiple of the multiplicand. Therefore, one block
is added to the end of the row and each subsequent row.

It is also interesting to note that the left most bit of the multiple of the mul-
tiplicand is replicated to handle the sign bit of the multiplicand. Although the
implementation listed here implements Booth’s algorithm, it does not take ad-
vantage of the strings of zeroes or ones. Therefore, rows can not be eliminated.
However, this design does incorporate the correction step above (i.e. the sub-
tractions in Section 4.6) into the array so that it can handle two’s complement
numbers. In the subsequent section, implementations for Booth will be shown
that are for both unsigned and signed numbers.
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The Verilog implementation is shown in Figure 4.28. Since each CAS cell
can be complicated by the multiple input and output requirements, a comment
is placed within the Verilog code to help the user implement the logic. This
comment is basically a replica of the module for the CAS cell. Having this
comment available helps the designer guide the inputs and outputs to their
proper port. A mistake in ordering the logic could potentially cause the Verilog
code to compile without any potential error message leading to many hours of
debugging. In addition, theassignstatement is also utilized to add a constant
GND.
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Figure 4.27. 4-bit by 4-bit Signed Booth’s Carry Save Array Multiplier (Adapted
from [Kor93]).

4.9 Radix-4 Modified Booth Multipliers
A disadvantage to Booth’s algorithm presented in the previous section is that

the algorithm can become inefficient when zeroes and ones are interspersed
randomly within a given input. This can be improved by examining three bits
of the multiplier at a time instead of two, [Bew94], [Mac61]. This obviously
reduces the number of partial products by half and is called radix4 Modified
Booth’s Algorithm. In this section, we examine a different implementation
of Booth multipliers. Instead of utilizing a controlled adder or subtractor, a
multiplexor is utilized to choose a0 or a multiple of the multiplicand. The
output of the multiplexor can then be fed into an adder tree. This is the most
common type of organization utilized today for Booth multipliers because it
facilitates the logic into a Booth decoder and a Booth selector.
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Radix4 Booth encoded digits have values fromdi ∈ {2, 1, 0, 1, 2}. Radix4
digits can also be obtained directly from two’s complement values, accord-
ing to Table 4.5. In this case, groups of three bits are examined, with one bit
overlap between groups. The general idea is to reduced the number of partial
products by grouping the bits of the multiplier into pairs and selecting the par-
tial products from the set{0,M, 2M} whereM is the multiplicand. Because
this implementation typically outputs2 bits for decoding the bits, it sometimes
is called aBooth2 multiplier. Each partial product is shifted two bit positions
with respect to the previous row. In general, there will be
n+2

2 � partial prod-
ucts wheren is the operand length [Bew94]. In summary, the recoded bit can
be computed as:

di = bi−1 + bi−2 − 2 · bi

bi bi−1 bi−2 di Comment

0 0 0 0M String of zeroes
0 0 1 1M End of string of ones
0 1 0 1M Single one
0 1 1 2M End of string of ones
1 0 0 2M Start of a string of ones
1 0 1 1M Beginning and end of string of ones
1 1 0 1M Beginning of string of ones
1 1 1 0M String of ones

Table 4.5. Radix-4 Booth Encoding.

One of the interesting components to Booth multipliers is that it employs
sign extension to make sure that the sign is propagated appropriately. Since
SD notation is utilized, the sign of the most significant bit must be sign ex-
tended to allow the proper result to occur. For Booth multipliers, because SD
notation is involved, sign extension is required for both unsigned and signed
logic. Figure 4.29 shows an implementation4-bit by 4-bit unsigned radix-4
modified Booth multiplier block diagram illustrating how sign extension is uti-
lized. The partial products are represented as dots as in tree multiplier. Each
partial product, except for the bottom one, is5 bits since numbers as large as
two times the multiplicand should be handled. The bottom row is only4 bits
since the multiplier is padded with2 zeroes to guarantee a positive result.

Each level in Figure 4.29 is given a letter(a) through(d) showing how sign
extension is implemented. In(a), the original multiplication matrix is shown
assuming that the partial products bits are negative causing ones to be sign
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extended. In(b), the ones are simplified assuming the most significant column
ones are added together. This is the finalized multiplication matrix. Assuming
a designer would like logic to implement the matrix assuming the multiplicand
could be positive or negative,(c) is shown whereS1 represents the sign bit for
row 1. This logic allows the sign extension to occur ifS1 = 1 for row 1 and
also forS2. Since this implementation is for unsigned numbers, row3 does not
require sign extension. Finally,(d) shows the final simplified multiplication
matrix similar to(b) for the 4-bit by 4-bit unsigned radix-4 modified Booth
multiplier.

The Verilog code for the Booth2 decoder is shown in Figure 4.30. The
valuesM1 andM2 are the two outputs for+M and−2M , respectively. The
Booth 2 selector, shown in Figure 4.31, selects the proper shifted value of
the Multiplicand. In addition, the exclusive-or gates allow a negative value of
the multiplicand to be generated. The multiplexor,mux21h, in the selector
employs aone-hottype of encoding. One hot encoding is typically utilized
to simplify the logic. The equations for a2-input one-hot multiplexor is as
follows:

Z = A · S1 + B · S2

This multiplexor has two inputsA andB which are chosen based on the two
select signalsS1 andS2 and outputted asZ. In one-hot encoding only one
of the selecting bits is on at one time. Therefore, havingS1 = S2 = 1 is
not a valid encoding. The finalized4-bit by 4-bit unsigned radix-4 modified
Booth multiplier is shown in Figure 4.32. In this code, multi-operand adders
are utilized. A final carry-propagate adder is utilized to complete the product.
The Verilog implementation of the one-hot multiplexor is not shown since it
could easily be implemented using bitwise operators.

4.9.1 Signed Radix-4 Modified Booth Multiplication
It is easy to modify the previous multiplication matrix to handle signed mul-

tiplication. Since the most significant product is necessary to guarantee a pos-
itive result, it is not needed for signed multiplication. The new multiplication
matrix is shown in Figure 4.33. There are two additional modifications that
are necessary. First, when±M is chosen from Table 4.5 (i.e. entries1, 2, 5,
or 6 from the partial product selection table), an empty bit is seen in the most
significant bit of the Booth selector. In the unsigned version, a0 is placed
in this slot for themux1 instantiation. However, for the signed version, sign
extension must occur as shown in Figure 4.34.

Second, the most significant modification to the unsigned matrix is that the
sign extension is not that straight forward. The leading ones for a particular
partial product are cleared when that partial product is positive. For signed
multiplication, this occurs when the multiplicand is positive and the multiplier
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select bits chooses a positive multiple. It also occurs when the multiplicand
is negative and the multiplier select bits choose a negative multiplier. This is
implemented as a simple exclusive NOR (XNOR) between the sign bit of the
multiplicand and the most significant bit of the partial product selection bit (i.e.
remember this is sign extended for signed arithmetic). This bit is calledE1 in
Figure 4.33. The complementE1 is required to automatically choose between
a signed and unsigned multiplicand. As in unsigned multiplication, each level
in also shown in Figure 4.33 showing how sign extension is implemented. The
reference letters(a) through(d) utilize the same description as in the unsigned
multiplication with the exceptions noted above.

The Verilog code for the Booth2 signed multiplication is shown in Fig-
ure 4.35. The decoder is not shown since it the same as shown in Figure 4.30.
Thexn instantiation in Figure 4.34 implements the XNOR and XOR forEX
andEX whereX denotes the row.

4.10 Fractional Multiplication
Many digital signal processors (DSPs) and embedded processors compute

utilizing fixed-point arithmetic [EB00]. Because of this, a correct examination
of the radix point is necessary when multiplication is involved. For example,
Figure 4.36 shows the unsigned multiplication matrix ofX = 10.01 = 2.25
by Y = 1.011 = 1.375 andP = 011.00011 = 3.09375. The multiplicand has
two integer bits and two fractional bits, whereas, the multiplier has one integer
bit and three fractional bits. Before any design is implemented, it is important
to determine the precision that a computation has either through error analysis
or by its range.

This becomes increasingly important when two’s complement multiplica-
tion is involved. In certain circumstances, several sign bits may be produced.
For example, suppose that two’s complement multiplication is performed in
the example above assuming that the range ofX is 1.75 ≥| X | and the
range ofY is 0.875 ≥| Y |. Since two’s complement numbers have non
symmetrical ranges, this example assumes that−2.0 and−1.0 for X andY
are not possible values, respectively. This means that the range of the prod-
uct is1.53125 ≥| P |. Since this only requires one integer bit, the other two
integer bits are sign bits. If the product was being sent to another logic block
the integer bit,P [5] andP [6] or P [7] could be utilized in this new logic block
sinceP [6] and P [7] are sign bits.

Therefore, when implementing logic with fractional and integer bits it is
important to be aware of the range of the product. The range of the operands
does not always set the range of the product. A specific algorithm, such as the
Newton-Raphson iteration seen in Chapter 7, can limit the range smaller than a
given precision. DSPs tend to exploit different fractional notation since many
applications require formats in different precisions [FG00], [Ses98]. Fixed-
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point DSPs adopt the notation that arithmetic is(S.F ) whereS represents the
number of integer bits andF is the number of fractional bits (e.g(1.15) no-
tation) [EB99]. In addition, specialized hardware may be available to handle
these formats within DSPs [FG00]. Most importantly, a designer should be
aware of what precision he/she is working with so that when computing a re-
sult, the proper bits can be passed into the subsequent hardware element.

4.11 Summary
Carry-save array and tree multipliers are the two types of multipliers pre-

sented in this chapter. Both implementations have their trade-offs in terms
of area and delay. Higher radix multipliers show an increase in performance
over traditional multipliers at the expense of complexity. Implementations that
utilize SD notation are also useful since they can perform carry-free addition.
One implementation enables the final-carry propagate adder to be removed and
are useful for recursive filters [EL90]. The techniques presented in this chapter
have also been utilized within cryptographic systems as well [Tak92]. A nice
review of multiplication methods can be found in [EL03].
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module booth4x4 (P, A, X);

input [3:0] A, X;

output [6:0] P;

assign GND = 1’b0;
// cas(cout, sout, U, R, Q, D, H, a, b, cin);
cas m01(t00, s00, u00, r00, q00, r01, q01, A[0], GND, GND);
cas m02(t01, s01, u01, r01, q01, r02, q02, A[1], GND, t00);
cas m03(t02, s02, u02, r02, q02, r03, q03, A[2], GND, t01);
cas m04(t03, s03, u03, r03, q03, r04, q04, A[3], GND, t02);
cas m05(t10, s10, u10, r10, q10, r11, q11, u00, GND, GND);
cas m06(t11, s11, u11, r11, q11, r12, q12, u01, s00, t10);
cas m07(t12, s12, u12, r12, q12, r13, q13, u02, s01, t11);
cas m08(t13, s13, u13, r13, q13, r14, q14, u03, s02, t12);
cas m09(t14, s14, u14, r14, q14, r15, q15, u03, s03, t13);
cas m10(t20, s20, u20, r20, q20, r21, q21, u10, GND, GND);
cas m11(t21, s21, u21, r21, q21, r22, q22, u11, s10, t20);
cas m12(t22, s22, u22, r22, q22, r23, q23, u12, s11, t21);
cas m13(t23, s23, u23, r23, q23, r24, q24, u13, s12, t22);
cas m14(t24, s24, u24, r24, q24, r25, q25, u14, s13, t23);
cas m15(t25, s25, u25, r25, q25, r26, q26, u14, s14, t24);
cas m16(t30, P[0], u30, r30, q30, r31, q31, u20, GND, GND);
cas m17(t31, P[1], u31, r31, q31, r32, q32, u21, s20, t30);
cas m18(t32, P[2], u32, r32, q32, r33, q33, u22, s21, t31);
cas m19(t33, P[3], u33, r33, q33, r34, q34, u23, s22, t32);
cas m20(t34, P[4], u34, r34, q34, r35, q35, u24, s23, t33);
cas m21(t35, P[5], u35, r35, q35, r36, q36, u25, s24, t34);
cas m22(t36, P[6], u36, r36, q36, r37, q37, u25, s25, t35);

// Booth decoding
ctrl c1(q37, r37, X[0], GND);
ctrl c2(q26, r26, X[1], X[0]);
ctrl c3(q15, r15, X[2], X[1]);
ctrl c4(q04, r04, X[3], X[2]);

endmodule // booth4x4

Figure 4.28. 4-bit by 4-bit Signed Booth Carry-Save Array Multiplier.
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module booth2decoder (M1, M2, Sbar, S, A2, A1, A0);

input A2, A1, A0;

output M1, M2, Sbar, S;

buf b1 (S, A2);
not i1 (Sbar, A2);
xor x1 (M1, A1, A0);
xor x2 (w2, A2, A1);
not i2 (s1, M1);
and a1 (M2, s1, w2);

endmodule // booth2decoder

Figure 4.30. Booth-2 Decoder for Unsigned Logic Verilog Code.

module booth2select (Z, B, M1, M2, S);

input [3:0] B;
input M1, M2, S;

output [4:0] Z;

mux21h mux1 (w[4], B[3], M2, 1’b0, M1);
mux21h mux2 (w[3], B[2], M2, B[3], M1);
mux21h mux3 (w[2], B[1], M2, B[2], M1);
mux21h mux4 (w[1], B[0], M2, B[1], M1);
mux21h mux5 (w[0], 1’b0, M2, B[0], M1);

xor x1 (Z[4], w[4], S);
xor x2 (Z[3], w[3], S);
xor x3 (Z[2], w[2], S);
xor x4 (Z[1], w[1], S);
xor x5 (Z[0], w[0], S);

endmodule // booth2select

Figure 4.31. Booth-2 Selector for Unsigned Logic Verilog Code.
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module booth4 (Z, A, B);

input [3:0] A, B;

output [7:0] Z;

booth2decoder bdec1 (R1_1, R1_2, S1bar, S1, B[1],
B[0], 1’b0);

booth2decoder bdec2 (R2_1, R2_2, S2bar, S2, B[3],
B[2], B[1]);

booth2decoder bdec3 (R3_1, R3_2, S3bar, S3, 1’b0,
1’b0, B[3]);

booth2select bsel1 (row1, A, R1_1, R1_2, S1);
booth2select bsel2 (row2, A, R2_1, R2_2, S2);
booth2select bsel3 (row3, A, R3_1, R3_2, S3);

ha ha1 (fc3, fs2, row2[0], S2);
ha ha2 (fc4, fs3, row2[1], row1[3]);
fa fa1 (fc5, fs4, row2[2], row1[4], row3[0]);
fa fa2 (fc6, fs5, row2[3], S1, row3[1]);
fa fa3 (fc7, fs6, row2[4], S1, row3[2]);
fa fa4 (fc8, fs7, S1bar, S2bar, row3[3]);

rca8 cpa1 (Z, Cout,
{fs7, fs6, fs5, fs4,

fs3, fs2, row1[1], row1[0]},
{fc7, fc6, fc5, fc4,

fc3, row1[2], 1’b0, S1},
1’b0);

endmodule // booth4

Figure 4.32. Unsigned Radix-4 Multiplier Verilog Code.
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module booth2select (Z, E, Ebar, B, M1, M2, S);

input [3:0] B;
input M1, M2, S;

output [4:0] Z;
output E, Ebar;

mux21h mux1 (w[4], B[3], M2, B[3], M1);
mux21h mux2 (w[3], B[2], M2, B[3], M1);
mux21h mux3 (w[2], B[1], M2, B[2], M1);
mux21h mux4 (w[1], B[0], M2, B[1], M1);
mux21h mux5 (w[0], 1’b0, M2, B[0], M1);

xor x1 (Z[4], a1, w[4], S);
xor x2 (Z[3], a2, w[3], S);
xor x3 (Z[2], a3, w[2], S);
xor x4 (Z[1], a4, w[1], S);
xor x5 (Z[0], a5, w[0], S);
xn x6 (Ebar, E, a6, S, B[3]);

endmodule // booth2select

Figure 4.34. Booth-2 Selector for Signed Numbers Verilog Code.
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module booth4 (Z, A, B);

input [3:0] A, B;
output [7:0] Z;

wire [4:0] row1, row2, row3;

booth2decoder bdec1 (R1_1, R1_2, S1bar, S1, B[1],
B[0], 1’b0);

booth2decoder bdec2 (R2_1, R2_2, S2bar, S2, B[3],
B[2], B[1]);

booth2select bsel1 (row1, E1, E1bar, A, R1_1,
R1_2, S1);

booth2select bsel2 (row2, E2, E2bar, A, R2_1,
R2_2, S2);

ha ha1 (fc3, fs2, row2[0], S2);
ha ha2 (fc4, fs3, row2[1], row1[3]);
ha ha3 (fc5, fs4, row2[2], row1[4]);
ha ha4 (fc6, fs5, row2[3], E1bar);
ha ha5 (fc7, fs6, row2[4], E1bar);
ha ha6 (fc8, fs7, E1, E2);

rca8 cpa1 (Z, Cout,
{fs7, fs6, fs5, fs4, fs3, fs2, row1[1], row1[0]},
{fc7, fc6, fc5, fc4, fc3, row1[2], 1’b0, S1},
1’b0);

endmodule // booth4

Figure 4.35. Signed Radix-4 Multiplier Verilog Code.
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Chapter 5

DIVISION USING RECURRENCE

This chapter discusses implementations for division. There are actually
many different variations on division including digit recurrence, multiplicative-
based, and approximation techniques. This chapter deals with the class of
division algorithms that are digit recurrence. Multiplicative-based division al-
gorithms are explored in Chapter 7. For digit recurrence methods, the quotient
is obtained one iteration at a time. In addition, the use of different radices

are utilized to increase the throughput of the device. Although digit recurrence
implementations are explored for division, the ideas presented in this chapter
can also be utilized for square root, reciprocal square root, and online algo-
rithms [EL94].

Similar to multiplication, the implementations presented here can be com-
puted serially or in parallel. Although division is one of the most interesting
algorithms that can be implemented in digital hardware, many designs have yet
to match the speed of addition and multiplication units [OF97]. This occurs be-
cause there are many variations on a particular implementation including radix,
circuit choices for quotient selection, and given internal precision for a design.
Therefore, this chapter attempts to present several designs, however, it is im-
portant to realize that there many variations on the division implementations
that make division quite exciting. With the designs in this chapter, a designer
can hopefully get exposed to some of the areas in digit recurrence division in
hopes of exploring more detailed designs.

As in multiplication, this chapter presents implementations of given algo-
rithms for digit recurrence. There are many design variations on circuit im-
plementations especially for quotient selection. Therefore, designs are pre-
sented in this chapter are presented in normalized fractional arithmetic (i.e.
1/2 ≤ d ≤ 1). Variations on these designs can also be adapted for integer
and floating-point arithmetic as well. Most of the designs, as well as square
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root, are discussed in [EL94] which is an excellent reference for many of these
designs.

5.1 Digit Recurrence
Digit recurrence algorithms consist ofn iterations where each iteration pro-

duces one digit of the quotient. However, digit recurrence algorithms do have
preprocessing and postprocessing steps that are important to making sure that
the dividend, divisor, quotient, and remainder are presented correctly.

Division starts by taking two components, the dividend,x, and the divisor,
d, and computing the quotient,q, and its remainder,r. The main equation for
division is recursive as follows:

x = q · d + r 	 r < d (5.1)

The quotient digit is one of the most interesting elements to the division pro-
cess. In particular, quotient digits are most often implemented as a redundant
digit set. The reason for this is that it simplifies the quotient digit selection.
Unfortunately, as the radix increases, the complexity of the quotient selection
also increases. Therefore, as designers one of the challenges for division is to
make conscientious decisions on an algorithmic implementation and its circuit
implications. This trade off is probably magnified for division because of the
variations in which division can be implemented.

Digit recurrence implementations of division work iteratively utilizing the
following equation wherewi is the partial remainder for iterationi, d is the
divisor, r is the radix, andqi is the quotient digit for iterationi:

wi+1 = r · wi − qi+1 · d
The dividend is inserted into the recurrence relationship by settingw0 = x.
The quotient selection function is chosen based on comparisons between the
divisor and shifted partial remainder:

qi+1 = QST (r · wi, d)

where QST is the Quotient Selection Table . The QST can be implemented
differently including ROM tables, PLAs, and combinational logic [SL95]. In
order to save space and make the implementation straight forward, the designs
presented in this chapter utilizes combinational elements. In addition, there are
also methods for exploiting symmetry within the QST to reduce the hardware
requirements [OF98].

As stated previously, the most challenging steps in the division procedure is
the comparison between the divisor and the remainder to determine the quo-
tient bit. If this is done by subtractingd from wi, one has to be careful if the
result is negative. If so, a correction operation occurs restoring the remainder to
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the previous iteration. This method is called restoring division. Non-restoring
division is an alternative for sequential division by having specific logic for
not correcting the quotient. This is achieved by allowing a correction factor
within the algorithm. Unfortunately, because non-restoring division requires
a correction factor, there may be some post-processing that is required if the
final remainder is negative. Consequently, it is necessary to have a correction
step that adjusts the quotient as follows wherem is the final iteration of the
recurrence relation andr−n is an ulp:

q =
{

qm if wi ≥ 0
qm − r−n if wi < 0 (5.2)

Therefore, the process of division by recurrence can improve upon general
division algorithms by taking advantage of the following elements [EL03]

1 Radix decreases the number of iterations assumingr = 2k by 
log2(2k)�
2 Redundancy within the quotient digit set reduces and simplifies the QST

3 Partial remainder can be implemented using redundant notation which sim-
plifies the computation of the partial remainder using a carry-free adder

The designs presented in this chapter were chosen in hopes of illustrating each
of these benefits and illustrating the trade-offs for these choices. Since the
designs in this exploration iteratively decide the quotient, efficient control logic
is required to help the datapath perform correctly. Since control logic is usually
completed last in the design phase as described in Chapter 1, having a table of
control lines and times needed to implement this logic makes the task simple
and efficient.

5.2 Quotient Digit Selection
The algorithm for division is challenging because the implementations for

the quotient digit selection vary from design to design. The basic idea of the
QST is to choose the value of the quotient digit,qi+1, based on a comparison
between the shifted partial remainder and the divisor. A symmetric SD digit
set is utilized where the range of digits is

qi ∈ {α,α + 1, . . . 1, 0, 1, . . . , α − 1, α}
with the measure of redundancy,ρ and radixr, defined as follows:

ρ =
α

r − 1
	 1

2
< ρ ≤ 1

Although choosing the right function for a QST is complex, it can easily be
formulated into two conditions calledcontainmentandcontinuity. The con-
tainment condition determines the selection interval for each quotient digit,
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qi+1[EL94]. On the other hand, continuity condition details the range which
the quotient digit is selected [EL94].

5.2.1 Containment Condition
Since the equation for the recurrence involves subtractions and shifts, it is

important that the quotient digit selection becomes difficult. For example, if
a user decided to divide400 ÷ 5 in radix 10 and inadvertently choosesq1 to
be2. This will violate the bounds available for the next quotient digit making
the computation cumbersome. In other words, a quotient digit will need to be
computed for the partial remainder of300.

The containment condition sets up the selection intervals necessary for com-
puting the subsequent quotient digit. For a given quotient digit,qi+1 can be
chosen to bek. Therefore, an interval of allowable partial remainders. These
regions are defined by the interval[Lk, Uk] such thatL is the lower value andU
is the upper value of the partial remainder,r ·wi, so that the subsequent shifted
partial remainder is bounded. In other words, the interval is chosen based on
the range of redundancy:

Uk = (k + ρ) · d
Lk = (k − ρ) · d

Sometimes, this can visualized by examining a graph of the subsequent par-
tial remainder,wi+1, versus the shifted partial remainder,r · wi. This visual-
ization is represented in Robertson’s diagram as shown in Figure 5.1 [Rob58].
Robertson’s diagram plots the recurrence relationship for a given quotient digit,
qi+1, assuming the user is varying the shifted partial remainder and plotting
or computing the subsequent partial remainder. The axis of Robertson’s dia-
gram is bounded byaxis([−rρ · d ; rρ · d ; −ρ · d ; ρ · d].’) where theaxis
function defines the range of the function such that the argument is defined as
([xmin ; xmax ; ymin ; ymax]). Interestingly, the redundancy introduced by
using a SD digit set imposes an overlap between quotient digits. For example,
in Figure 5.1 there is an overlap betweenqi+1 = k − 1 andqi+1 = k. This
overlap will be useful in defining the continuity equation.

5.2.2 Continuity Condition
Since the containment condition defines the range of the subsequent par-

tial remainder, choosing the correct quotient digit from this region. This is
the job of the continuity condition. To satisfy the containment condition, the
minimum value of thex axis of the Robertson’s diagram is chosen such that
qi+1 = k is our quotient digit [EL94]. This can be defined as the follow-
ing inequality wheresk is our minimum value that a user chooses before an
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Figure 5.1. Robertson Diagram for(a) qi+1 = k − 1 and(b) qi+1 = k.

implementation is devised

Lk ≤ sk ≤ Uk

Unfortunately, because the overlap that occurred in the containment condi-
tion, a quotient digit may be chosen from either minimum value. For example,
in Figure 5.1, an overlap exists betweenLk andUk−1 such thatsk can either be
k − 1 or k. Since the containment equations are defined, it is easy to measure
this overlap as

Uk−1 − Lk = (k − 1 + ρ · d) − (k − ρ · d) = (2 · ρ − 1) · d
The simplest selection function is to makesk constant and do a comparison
on the constant. Thus, many implementations for QSTs resort to ROM tables
or PLA elements. The constants should satisfy the following equation [EL94]:

max(Lk) ≤ mk ≤ min(Uk−1) + ulp

It should be obvious that a given digit set does not have to an overlap. How-
ever, an overlap means that a given implementation may be different for each
designer since an overlap region can be large. On the other hand, the main rea-
son for having a redundant quotient digit set is to provide a overlap to simplify
the QST. Some have suggested plotting the shifted partial remainder,r · wi

versus the divisor to visualize the overlap regions easier. This kind of plot is
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called aP -D plot [Atk68]. Regions where there are overlaps are sometimes
also calledPD regions [Atk68].

As stated previously, the digit set, the size of the overlap, and the compari-
son can make choosing the QST challenging. However, making choices for an
implementation based on the containment and continuity equations make the
implementation easy and straight forward. Therefore, although many visual-
izations are useful, its best to work straight from the equations when computing
the correct quotient digit. Of course, enough can not be said about testing of
these regions through a good testbench [CT95].

5.3 On-the-Fly-Conversion
The use of the redundant quotient representation complicates the use of SRT

division. In most fixed radix systems that most digital devices employ, the
digit set is restricted to0, . . . , r − 1. One of the benefits of using the SD num-
ber system is that is simplifies the QST [Atk68]. Although the SD numbering
system is useful, it unfortunately is somewhat cumbersome to convert from
SD notation back to a conventional binary representation. To convert from SD
notation to conventional binary representation involves the use of a CPA.

Fortunately, division utilizing recurrence equations computes the quotient
with the Most Significant Digit First (MSDF). Arithmetic performed in this
manner is sometimes referred to as online arithmetic [EL92a], [EL94]. Since
the quotient is computed as a fraction the quotient is computed as

qi =
i∑

m=1

qm · r−m

Therefore, using the correction factor and plugging it into the equation above
results in the following form [EL92b]:

qi+1 =

{
qi + qi+1 · r−(i+1) qi+1 ≥ 0
qi − r−j + (r− | qi+1 |) · r−(i+1) qi+1 < 0

The latter equation is formed since the quotient for that iteration is negative.
Therefore, a subtraction is required for the conversion. If we substitute a vari-
able for the correction factor,qmi, the equation above is presented more effi-
ciently as:

qi+1 =

{
qi + qi+1 · r−(i+1) qi+1 ≥ 0
qmi + (r− | qi+1 |) · r−(i+1) qi+1 < 0

With simple manipulation, we can also convert the equation above into an
equation forqmi such thatqmi = qi−r−n. In other words, if the final remain-
der is negative, subtraction of an ulp from the quotient is performed to adjust
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the correction factor. Therefore,qmi is computed as follows:

qmi+1 =

{
qi + (qi+1 − 1) · r−(i+1) qi+1 > 0
qmi + ((r − 1)− | qi+1 |) · r−(i+1) qi+1 ≤ 0

Fortunately, there is an easy algorithm to convert back to conventional rep-
resentation from SD notation for on-line algorithms. It is called on-the-fly con-
version [EL92b]. The basic idea behind on-the-fly conversion is to produce the
conversion as the digits of the quotient are produced by performing a concate-
nation instead of any carries or borrows within a carry-propagate adder. One
element keeps track of the normalquotient, whereas, another element keeps
track of thequotient − ulp. This technique is very similar to the carry-select
logic in the carry-select adder from Chapter 3.

Since on-the-fly conversion involves concatenations, the MSDF enables the
appropriate quotient digit to be converted by simple combinational logic and
shifting as opposed to utilizing a CPA. The algorithm can be summarized as
follows in terms of concatenations.

qi+1 =
{ {qi, qi+1} if qi+1 ≥ 0

{qmi, (r− | qi+1 |} if qi+1 < 0

and

qmi+1 =
{ {qi, qi+1 − 1} if qi+1 > 0

{qmi, ((r − 1)− | qi+1 |} if qi+1 ≤ 0

In order to implement on-the-fly conversion, it requires two registers to con-
tain qi andqmi. These registers are shifted one digit left with insertion into
the least-significant digit, depending on the value ofqi+1 In other words, de-
pending on the what the subsequent quotient digit, the register either chooses
q or qm and concatenates the current converted quotient digit into the least-
significant digit. Figure 5.2 shows the basic structure for radix2 on the fly
conversion for8 bits (i.e.n = 8). Two multiplexors are utilized to select either
q or qm and combinatorial logic is used to selectqin andqmin. In order to
handle shifting after every cycle, the output of the multiplexors are shifted by
one (multiplied by2) and eitherqin or qmin are inserted into the least signif-
icant bit during each load. The final multiplexor choose the correct quotient
once the final remainder is known. If the sign of the final remainder is1, it will
chooseqm since this register contains the proper corrected quotient. Finally,
q∗ andqm∗ are shown in Figure 5.2 to designateqi+1 andqmi+1, respectively.

For radix2 on-the-fly conversion, the registers are updated according to the
values in Table 5.2. The values in this table are computed utilizing the equa-
tions above forqmi and qi and r = 2. For this example, the quotient digit
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Figure 5.2. Radix2 On-the-Fly-Conversion Hardware assumingn = 8.

utilized is {1, 0, 1}. The values ofCshiftq andCshiftqm are used to control
the multiplexors. The value ofqin and qmin is the concatenation element
input into the register. The quotient is utilized as input to computeCshiftq,
Cshiftqm, qin, andqmin. In order to simplify the logic, the quotient utilizes
one-hot logic encoding as shown in Table 5.1 since this form of encoding in-
troducesdon′t cares. This form of encoding for digit recurrence division is
popular and similar to the designs found in Chapter 4. Therefore, the equations

quotient q+ q−

1 0 1
0 0 0
1 1 0

Table 5.1. Quotient Bit Encoding.

for computingCshiftq, Cshiftqm, qin, andqmin for radix 2 and the encoding
shown in Table 5.1 are straight forward and can be computed using simple
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Boolean two-level simplification as shown below.

Cshiftq = qi+1[0]
Cshiftqm = qi+1[1]

qin = qi+1[0] + qi+1[1]
qmin = qi+1[0] + qi+1[1]

For example, suppose conversion is required for the following SD num-
ber1101100 to a conventional representation using on-the-fly conversion. Ta-
ble 5.3 shows how on-the-fly-conversion works is updated according to Ta-
ble 5.2. At stepi = 0, the values for both registers are reset which can
be accomplished by using a flip-flop that has reset capabilities. In addition,
since division is an online algorithm, on-the-fly conversion works from the
most-significant bit to the least-significant bit. The last value in the regis-
ter is the final converted value assuming a fractional number forqi andqmi

which is0.78125 and0.7734375, respectively. It should be obvious that both
of these elements are oneulp from each other (i.e. anulp in this case is2−7 or
0.0078125) and0.78125 is the conventional representation of1101100.

The Verilog code for the radix2 on-the-fly conversion is shown in Fig-
ure 5.3. The instantiation forlscontrol implements the Boolean logic for the
computingCshiftq, Cshiftqm, qin, andqmin although this instantiation could
probably be avoided by utilizing bitwise operators. The variablesQstar and
QMstar are utilized to make the subsequent iteration of the conversion easy
to debug. Since the register inside the conversion logic may potentially clash
in terms of timing with other parts of the datapath, careful timing is involved.
For flip-flop based registered, multi-phase clocking is usually best to handle
the conversion and quotient selection. On the other hand, retiming of the re-
currence by using advanced timing methodologies can lead to lower a power
dissipation [NL99].

qi+1 qin Cshiftq qi+1 qmin Cshiftqm qmi+1

1 1 1 {qi, 1} 0 0 {qi, 0}
0 0 1 {qi, 0} 1 1 {qmi, 1}
1 1 0 {qmi, 1} 0 1 {qmi, 0}

Table 5.2. Radix-2 on-the-fly-conversion.
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i qi q qm

0 0 0
1 1 0.1 0.0
2 1 0.11 0.10
3 0 0.110 0.101
4 1 0.1101 0.1100
5 1 0.11001 0.11000
6 0 0.110010 0.110001
7 0 0.1100100 0.1100011

Table 5.3. Example On-The-Fly Conversion.

module conversion (Q, quot, SignRemainder, Clk, Load, Reset);

input [1:0] quot;
input SignRemainder, Clk, Load, Reset;

output [7:0] Q;

ls_control ls1(Qin, QMin, CshiftQ, CshiftQM, quot);
mux21x8 m1(M1Q, Qstar, QMstar, CshiftQM);
register8 r1(R1Q, {M1Q[6:0], QMin}, Clk, Load, Reset);
mux21x8 m2(M2Q, QMstar, Qstar, CshiftQ);
register8 r2(R2Q, {M2Q[6:0], Qin}, Clk, Load, Reset);
mux21x8 m3(Q, R2Q, R1Q, SignRemainder);
assign Qstar = R2Q;
assign QMstar = R1Q;

endmodule // conversion

Figure 5.3. Radix2 On-the-Fly Conversion Verilog Code.

5.4 Radix2 Division
The radix-2 or binary division algorithm is quite easy to implement. The

main elements that are needed are an adder to add or subtract the partial re-
mainder, multiplexors, registers, and some additional combinatorial devices.
Figure 5.4 shows the basic block diagram for the design. The algorithm pre-
sented here is an extension of non-restoring division with a quotient digit set
of {1, 0, 1}. It utilizes an adder to add the partial remainder in Non-redundant
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Figure 5.4. Radix2 Division.

form. This type of algorithm is sometimes called SRT division [Rob58], [Toc58].
The implementation stems from the basic recurrence relationship

wi+1 = 2 · wi − qi+1 · d

SRT division was named after Sweeney, Robertson, and Tocher, each of
whom developed the idea independently from each other [Rob58], [Toc58].
The main goal is to speed up division by allowing a0 as a quotient digit. This
eliminates the need for a subtraction or addition when the value0 is selected.

To start implementing the QST, the containment condition must first be com-
puted. Using the equations for containment andρ = 1, the following condition
exists

L1 = 0 U1 = 2 · d
L0 = −d U0 = d
L−1 = −2 · d U−1 = 0

Using these elements within the continuity condition presents the following
inequalities

0 ≤ s1 ≤ d

−d ≤ s0 ≤ 0

One possible implementation is to choose constants,mk, from the region de-
fined bysk. One set of constants that satisfy this requirement, assuming the
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given normalized input range ism1 = 1/2 andm−1 = −1/2, is given be-
low. Choosing1/2 as our selection constant also simplifies the implementation
since1/2 is easy to detect.

0 ≤ m1 ≤ 1
2

−1
2 ≤ m0 ≤ 0

In summary, for radix2 division, the rule for selecting the quotient digit
would be as follows based on the choice of our selection constants:

qi =


1 if 2 · wi ≥ 1/2
0 if −1/2 ≤ 2 · wi < 1/2
1 if 2 · wi < −1/2

For radix2 division, the selection table involves inspecting the shifted partial
remainder and the divisor. However, since the inequalities for selection of the
quotient digit requires only an examination of1/2 or −1/2. In other words,
only the most significant fractional bit requires examination. To examine−1/2
a sign bit is required making only two bits necessary for examination instead
of a full-length comparison. However, since the maximum range isρ ∗ r · d or
2 · d, an integer bit is required to make sure the partial remainder fall in range.
Therefore,3 bits of2 · ri must be examined every iteration.

Table 5.4 tabulates the bits to compare for the proper quotient digit. As
in the example in on-the-fly conversion, one-hot encoding is utilized for the
quotient digit. The bitq+ signifies a positive bit or1, whereas,q− is a negative
bit or 1. Using simple Boolean simplificaiton, the quotient digit selection is as
follows:

assign q[1] = (!Sign&Int) | (!Sign&f0);
assign q[0] = (Sign&!Int) | (Sign&!f0);

whereSign is the sign bit,Int is the integer bit, andf0 is the first fractional
bit. For an8-bit operand,Sign, Int, andf0 ared[7], d[6], andd[5], respec-
tively. Bitwise operators are utilized to build the Verilog code.

As stated previously, the block diagram is shown in Figure 5.4. A CPA is
utilized to add or subtract the shifted partial remainder for the computation of
the subsequent partial remainder. The worst-case delay is illustrated by the
dotted line. Since a CPA consume a large amount of delay especially for larger
operand sizes, carry-free addition schemes are often opted for. However, uti-
lized carry-free adders introduces error into the partial remainder computation,
thereby, increasing the complexity of the QST. The control signalstate0 is
utilized to initialize the registers in the first iteration. In order to get the first
iteration bounded appropriately, the dividend also needs to be scaled by1/2.
This can be performed without a correction, because it means that the quotient
will be still be correct yet shifted.
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sign int f0 Result Quotient q+ q−

0 0 0 < 1/2 0 0 0
0 0 1 ≥ 1/2 1 1 0
0 1 0 ≥ 1/2 1 1 0
0 1 1 ≥ 1/2 1 1 0
1 0 0 < −1/2 -1 0 1
1 0 1 < −1/2 -1 0 1
1 1 0 < −1/2 -1 0 1
1 1 1 ≥ −1/2 0 0 0

Table 5.4. Quotient Digit Selection.

The Verilog code is shown in Figure 5.5. It is assumed that the input
operands are not negative. Division by recurrence can be extended to include
negative operands in two’s complement by examining the quotient and the di-
visor. Although the input is8 bits, internally the recurrence computes with10
bits (i.e. one additional integer bit and a sign bit). Utilizing internal precision
that is larger than the input or output operands is typical in many arithmetic
datapaths. The on-the-fly conversion and other ancillary logic such as zero de-
tection are not shown, yet can be added easily. Zero detection is needed for
appropriate rounding [IEE85]. Since the logic needs selection logic ford, d
and0, a 3-1 multiplexor is required. This multiplexor can be extended from
the version in Chapter 3 as shown in Figure 5.6. Other multiplexors, such as
4-1 can be built this way as well. The10 bit register, shown by the filled rectan-
gle, is10 instantiations of thedff module found in Chapter 2 and implemented
similar to the2-bit multiplexor found in Chapter 3. Ifqi+1 = q[1] = 1, the
recurrence relation indicates a subtraction is necessary (wi+1 = 2 · wi − d,
therefore, the3-1 multiplexor selects the one’s complement ofd. In order to
complete the subtraction, the partial remainder must be in two’s complement
form. Therefore,cin is asserted appropriately into the CPA for this particular
quotient digit. Moreover, the variablezero is utilized to decode the0 quotient
digit set, because the one-hot encoding.

5.5 Radix4 Division with α = 2 and Non-redundant
Residual

Radix4 is another possible implementation [Rob58], [BH01]. Sincer = 4,
the value ofα can be2 or 3. Choosinga = 2 makes the generation ofqi · d
easier. Several efficient implementations have been proposed forα = 3 as
well [SP94]. Therefore, the quotient digit utilized will be{2, 1, 0, 1, 2}. To
implement this datapath, it is necessary to first formulate the containment and
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module divide2 (w, q, D, X, state0, Clk);

input [7:0] D, X;
input Clk, state0;

output [9:0] w;
output [1:0] q;

inv10 i1 (OnesCompD, {2’b00,D});
mux31x10 m3 (Mux3Out, 10’b0000000000, {2’b00, D},

OnesCompD, q);
mux21x10 m2 (Mux2Out, {Sum[8:0], 1’b0}, {2’b00, X},

state0);
reg10 r1 (w, Mux2Out, Clk);
// q = {+1, -1} else q = 0
qst qd1 (q, w[9], w[8], w[7]);
rca10 d1 (Sum, w, Mux3Out, q[1]);

endmodule // divide2

Figure 5.5. Radix2 Division Verilog Code.

continuity equations based onρ = 2/(4 − 1) = 2/3. Sinceρ = 2/3, the
containment condition results in the following selection intervals:

Lk =
(
K − 2

3

)
· d Uk =

(
k + 2

3

)
· d

For this implementation, we can no longer implement the QST based only
on the shifted partial remainder. The QST will be based on theδ most-significant
bits ofd, however, since the implementations presented here are for normalize
fractions1/2 ≤ d ≤ 1, only δ − 1 bits are required since the most significant
fractional bit is a1. Therefore, the quotient digit selection can be chosen based
on [EL94]:

mk(i) ≥ Ak(i) · 2−c

wherec represents the total fractional bits necessary to support the continuity
equation withmk. Ak(i) is an integer that selects the proper boundary for
the quotient digit selection from the given bounds on the partial remainder.
However, since the QST is based on the size of the radix and selection ofα,
the quotient digit selection is no longer a single constant for a given shifted
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module mux31 (Z, A, B, C, S);

input [1:0] S;
input A, B, C;

output Z;

not not1 (s0bar, s[0]);
not not2 (s1bar, s[1]);
nand na1 (w1, s0bar, s1bar, A);
nand na2 (w2, B, s[0], s1bar);
nand na3 (w3, C, s0bar, s[1]);
nand na4 (Z, w1, w2, w3);

endmodule // mux31

Figure 5.6. 3-1 Multiplexor Verilog Code.

partial remainder and divisor. It usually resembles a function that resembles a
staircase. The value ofδ can be found from the following equation [EL94]:

2−δ =
2 · ρ − 1

2 · ρ · (r − 2)

and, the value ofc can be obtained from the following inequality

Lk(di+1) ≤ mk(i) < Uk−1(di) for k > 0
Lk(di) ≤ mk(i) < Uk−1(di+1) for k ≤ 0

As a datapath design, the overall idea is to minimize bothc andδ so that the
implementation of the QST is small since the QST can limit the implementa-
tion cost [OF98]. Visually, the QST now looks like Figure 5.7. The value of
log2(r) comes from the fact that the bounds of Robertson’s diagram isr · ρ · d.

For the radix4 implementation, the bound onδ is

δ ≥ 3 → 2−δ ≥ 1
8

However, as in radix2 a careful choice ofmk is required. For example, having
mk = 1/3 is not a prudent choice because it would require a full precision
comparison. For example, for radix4 andδ = 3 and inspection of the divisor
range ofd = [4/8, 5/8), L2(5/8) = 4/3 · 5/8 = 20/24 and U1(4/8) =
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Figure 5.7. QST Block Diagram.

5/3 · 4/8 = 20/24 which illustrates a potential problem with the comparison.
Unfortunately,20/24 requires a full comparison ford = 3 bits. Moreover,
the continuity relation indicates that20/24 < 20/24 which is not possible.
Therefore,δ = 4 is chosen to guarantee that all quotient digits can be selected
appropriately.

5.5.1 Redundant Adder
This particular implementation is different than the radix2 divider in that a

carry-save adder is utilized to speed up the partial remainder computation. The
use of a carry-save adder as opposed to a CPA introduce error into the compu-
tation, therefore, the containment and continuity equations must be modified.
In this implementation a carry-save adder will be utilized to keep the residual
in Non-redundant form, however, a SD adder could also be used.

The introduction of the carry save adder and the use of two’s complement
numbers produces error as opposed to a CPA. The error due to truncation,
fortunately, is always positive with carry-save adders, however, there will be
small amount of error introduced wheret is the number of fractional bits:

0 ≤ ε ≤ 2−t+1 − ulp

Therefore, the containment condition gets modified to:

L̂k = Lk

Ûk = Uk − 2−t+1 + ulp
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Since the continuity condition relates the largest value for which it is still pos-
sible to chooseqi+1 = k − 1, the upper and lower bound are modified for the
carry save adder to:

Ûk−1 = Uk−1 − 2−t

L̂k = Lk

Subsequently, the continuity condition produces new intervals for the selection
of the quotient digits truncated tot bits:

L̂k(di+1) ≤ mk(i) < Ûk−1(di) for k > 0
L̂k(di) ≤ mk(i) < Ûk−1(di+1) for k ≤ 0

These new inequalities also produce new constraints on the divisor as well [EL94].
Therefore, the corresponding expression fort andδ is

2 · ρ − 1
2

− (a − ρ) · 2−δ ≥ 2−t

Moreover, the range of the estimate is also modified since the new boundary
on the Robertson’s diagram shrinks. The new range is

−r · ρ − 2−t ≤ r · ŷ ≤ r · ρ − ulp

5.6 Radix4 Division with α = 2 and Carry-Save Adder
Using the new formulations for radix4 division with α = 2 and ρ =

2/3 adjusts the requirements for the number of bits forc and δ. Using the
relationship forδ andt produces

1
6
− 4

3
· 2δ ≥ 2−t

Using t = 4 and δ = 4 satisfies this inequality. The new containment and
continuity equations produce a nice implementation forc = 4 as shown in
Table 5.5 [EL94]. Therefore, the total number of bits that are examined for
the shifted partial remainder is4 + 2 + 1 = 7 and the total number of bits for
the divisor is4. However, since the divisor is normalized, the leading most-
significant bit does not need to be stored.

The implementation of the QST using Table 5.5 is done similar to the radix2
implementation using combinational logic. However, in order to save space,
the implementation uses a technique for reducing the logic of the QST. Since
a carry-save adder introduces

0 ≤ ε ≤ 2−t+1 − ulp



120 DIGITAL COMPUTER ARITHMETIC DATAPATH DESIGN

[di, di+1) [8,9) [9,10) [10,11) [11,12)

L̂2(di+1), Û1(di) 12, 12 14, 14 15, 15 16, 17
m2(i) 12 14 15 16

L̂1(di+1), Û0(di) 3, 4 4, 5 4, 5 4, 6
m1(i) 4 4 4 4

L̂0(di+1), Û1(di) −5, −4 −6, −5 −6, −6 −7, −5
m0(i) −4 −6 −6 −6

L̂1(di+1), Û2(di) −13, −13 −15, −15 −16, −16 −18, −17
m−1(i) −13 −15 −16 −18

[di, di+1) [12,13) [13,14) [14,15) [15,16)

L̂2(di+1), Û1(di) 18, 19 19, 20 20, 22 22, 24
m2(i) 18 20 20 24

L̂1(di+1), Û0(di) 5, 7 5, 7 5, 8 6, 9
m1(i) 6 6 8 8

L̂0(di+1), Û1(di) −8, −6 −8, −6 −9, −6 −10, −7
m0(i) −8 −8 −8 −8

L̂1(di+1), Û2(di) −20, −19 −21, −20 −23, −21 −25, −23
m−1(i) −20 −20 −23 −21

Table 5.5. Selection Intervals and Constants for Quotient Digit Selection shown asdreal =
dshown/16 (Values adapted from [EL94]).

of error and a carry-save output are input into the QST, we can mitigate this
error by putting a small CPA to add the sum and carry parts as shown in Fig-
ure 5.8. This subsequently reduces the number of product terms from5, 672
to 45 making the implementation simple at the expense of adding additional
logic. Similar to the radix2 implementation, one-hot encoding is utilized as
shown in Table 5.6. The Verilog code for the new complete QST is not shown
but is easily created by inputting Table 5.5 into a Boolean minimizer, such as
Espresso, and utilizing bitwise operators [SSL+92]. For example, the follow-
ing code is the quotient bit obtained from Espresso forq2+ in Table 5.6.

assign q[3] = (!s[6]&s[5]) | (!d[2]&!s[6]&s[4]) |
(!s[6]&s[4]&s[3]) |
(!d[1]&!s[6]&s[4]&s[2]) |
(!d[0]&!s[6]&s[4]&s[2]) |
(!d[1]&!d[0]&!s[6]&s[4]&s[1]) |
(!d[2]&!d[1]&!d[0]&!s[6]&s[3]&s[2]) |
(!d[2]&!d[1]&!s[6]&s[3]&s[2]&s[1]) |
(!d[2]&!d[0]&!s[6]&s[3]&s[2]&s[1]&s[0]);
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quotient q2+ q+ q− q2−

2 0 0 0 1
1 0 0 1 0
0 0 0 0 0
1 0 1 0 0
2 1 0 0 0

Table 5.6. Quotient Bit Encoding.

The block diagram of the implementation is shown in Figure 5.9. The dot-
ted line indicates the worst-case delay. Two registers are now required to save
the partial remainder in carry-save form. In addition, two2-1 multiplexors are
now required to initialize the carry-save registers. A4-1 multiplexor choose
the proper shifted divisor. Since the ulp can no longer be asserted into the
carry-save adder (CSA) unless additional logic is utilized, the ulp is concate-
nated on the end of the carry-portion of the shifted partial remainder. Since the
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implementation now implements the following equation with

wi+1 = 4 · wi − qi+1 · d
both the partial remainder carry and save portions must be shifted by two every
iteration. Consequently, only four cycles are necessary to complete the recur-
rence without rounding. The dividend, similar to the radix2 implementation,
requires to be shifted by4.

{3’b000, Dividend}

q
i+1

{sum[8:0], 2’b00}

{3’b000, Divisor}

QST

={q2+, q+, q−, q2−}q
i+1

state0

CSA

{carry[8:0], 2’b00}

11

8

8

30

ulp

4−1 2−1 2−1

1111 11

d 2d 2d

Figure 5.9. Radix4 Division.

The Verilog code for the radix4 divide unit is shown in Figure 5.10. Con-
catenation is utilized to get the divisor and dividend in the right format. As
can be seen by the radix4 implementation, the improvement in execution is
achieved at the expense of complexity. As the radix increases, more logic is
required to handle the complexity in decoding and encoding the QST. On the
other hand, if the QST can sustain a low amount of complexity, the radix4
implementation can be efficient.

5.7 Radix16 Division with Two Radix 4 Overlapped Stages
Unfortunately, as the radix increases, so does the complexity of the QST. As

the radix surpasses8, it becomes obvious that other methods are required to
obtain increased efficiency with a moderate amount of hardware complexity.
One such modification is the use of overlapping stages [PZ95], [Tay85]. In
this method, two stages are utilized to split the quotient digit into a high and
low part. In using two radix4 stages to create a radix16 implementation
qi = 4 · qH + qL with a digit set of{2, 1, 0, 1, 2}. Theoretically, this makes the
resulting digit set[−10, 10] or α = 10.
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module divide4 (quotient, Sum, Carry, X, D2, clk, state0);

input [7:0] X, D;
input clk, state0;

output [3:0] quotient;
output [10:0] Sum, Carry;

assign divi1 = {3’b000, D};
assign divi2 = {2’b00, D, 1’b0};
inv11 inv1 (divi1c, divi1);
inv11 inv2 (divi2c, divi2);
assign dive1 = {3’b000, X};

mux21x11 mux1 (SumN, {Sum[8:0], 2’b00}, dive1, state0);
mux21x11 mux2 (CarryN, {Carry[8:0], 2’b00},

11’b00000000000, state0);
reg11 reg1 (SumN2, SumN, clk);
reg11 reg2 (CarryN2, CarryN, clk);
rca8 cpa1 (qtotal, CarryN2[10:3], SumN2[10:3]);
// q = {+2, +1, -1, -2} else q = 0
qst pd1 (quotient, qtotal[7:1], divi1[6:4]);
or o1 (ulp, quotient[2], quotient[3]);
mux41hx11 mux3 (mdivi_temp, divi2c, divi1c, divi1,

divi2, quotient);
nor n1 (zero, quotient[3], quotient[2], quotient[1],

quotient[0]);
mux21x11 mux4 (mdivi, mdivi_temp, 11’b000000000, zero);
csa11 csa1 (Sum, Carry, mdivi, SumN2,

{CarryN2[10:1], ulp});

endmodule // divide4

Figure 5.10. Radix4 Verilog Code.

To reduce the delay, the second radix4 utilizes a quotient digit set that is
computed conditionally (i.e. they are formed from the truncated shifted partial
remainder). The quotient digit is determined each iteration first by selecting
qH and then using this value to chooseqL based on truncated shifted partial
remainders. In order to get the shifted partial remainders forqL, the lower9
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bits are utilized of the11 bit partial remainder as shown in Figure 5.11 (since
this would be the shifted partial remainder on the following iteration). The
block diagram of the new QST is shown in Figure 5.12. Notice that bothqi+1

andqi+2 are generated in one block.

i

X X X X X X X X X X

X X X X X X X X X X X sum
iX

7 bits

9 bits (shifted in next iteration)

carry

Figure 5.11. Choosing Correct Residuals.
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Figure 5.12. Quotient Digit Selection for Radix16 Division.

For an easy implementation, the same QST function is utilized as the radix4
implementation. However, careful attention must be given so that the con-
ditional computation should be correct, therefore, one extra bit is examined.
Therefore, a9 bit CSA is utilized to add the partial remainders in carry-save
format to the appropriate shifted divisor. The quotient bit is determined during
each iteration by selecting the quotient from a conditional residuals. Similar
to the radix4 implementation a CPA is utilized to reduce the size of the QST.
Consequently,8 most-significant bits of the carry-save output are input into a
CPA as shown in Figure 5.12. OnceqL is known, it is utilized to select the
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module qst2 (zero1, zero2, qj, qjn,
divi2, divi1, divi1c, divi2c, carry, sum);

input [10:0] carry, sum;
input [10:0] divi2, divi1, divi1c, divi2c;

output [3:0] qj;
output [3:0] qjn;
output zero1, zero2;

csa9 add1 (d2s, d2c, divi2[8:0], sum[8:0], carry[8:0]);
csa9 add2 (d1s, d1c, divi1[8:0], sum[8:0], carry[8:0]);
csa9 add3 (d1cs, d1cc, divi1c[8:0], sum[8:0], carry[8:0]);
csa9 add4 (d2cs, d2cc, divi2c[8:0], sum[8:0], carry[8:0]);
rca8 cpa1 (qtotal, sum[10:3], carry[10:3]);
rca8 cpa2 (qt2, d2s[8:1], d2c[8:1]);
rca8 cpa3 (qt1, d1s[8:1], d1c[8:1]);
rca8 cpa4 (qt0, sum[8:1], carry[8:1]);
rca8 cpa5 (qt1c, d1cs[8:1], d1cc[8:1]);
rca8 cpa6 (qt2c, d2cs[8:1], d2cc[8:1]);
qst pd1 (qj, qtotal[7:1], divi1[6:4]);
nor n1 (zero1, qj[3], qj[2], qj[1], qj[0]);
qst pd2 (q2, qt2[7:1], divi1[6:4]);
qst pd3 (q1, qt1[7:1], divi1[6:4]);
qst pd4 (q0, qt0[7:1], divi1[6:4]);
qst pd5 (q1c, qt1c[7:1], divi1[6:4]);
qst pd6 (q2c, qt2c[7:1], divi1[6:4]);
nor n2 (zero2, qjn[3], qjn[2], qjn[1], qjn[0]);
mux51hx4 mux1 (qjn, q2c, q1c, q1, q2, q0, {qj, zero1});

endmodule // qst2

Figure 5.13. Quotient Digit Selection for Radix16 Division Verilog Code.

correct version ofqH from all the possible combinations ofqH . The Verilog
code for the radix16 QST is shown in Figure 5.13. Bothzero1 andzero2 are
utilized to decode a0 for qi+1 andqi+2, respectively.

The implementation of radix16 using overlapping stages is quite efficient
without increasing the hardware too dramatically. The block diagram of the
radix 16 datapath is shown in Figure 5.14. For this implementation, only one
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set of registers to store the carry and sum parts for the second radix4 stage
are utilized. Therefore, each iteration retires4 bits of the quotient improving
the performance. The delay would theoretically correspond to two times the
delay of a radix4 implementation. The worst-case delay is illustrated by the
dotted line. The Verilog code is shown in Figure 5.15. As in previous im-
plementations, both on-the-fly conversion and zero detection are not shown.
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Figure 5.14. Radix16 Division.

5.8 Summary
Division by recurrence can be quite efficient provide the QST is chosen

wisely. There are several other variations on recurrence division including
scaling the operands, prediction, and very high radix division [EL94]. The
basic recurrence for square root is conceptually similar to divide as:

wi+1 = r · wi − 2 · Si · si+1 − s2
i+1 · r(−i+1)

As can be seen by this recurrence, it is somewhat more complex than divi-
sion. However, because of this similarity, square root can be implemented as a
combined divide and square root unit.
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module divide16 (qj, qjn, Sum1, Carry1, Sum2, Carry2,
op1, op2, clk, state0);

input [7:0] op1, op2;
input clk, state0;

output [3:0] qj, qjn;
output [10:0] Sum1, Carry1;
output [10:0] Sum2, Carry2;

assign divi1 = {3’b000, op2};
assign divi2 = {2’b00, op2, 1’b0};
inv11 inv1 (divi1c, divi1);
inv11 inv2 (divi2c, divi2);
assign dive1 = {3’b000, op1};
mux21x11 mux1 (SumN, {Sum2[8:0], 2’b00}, dive1, state0);
mux21x11 mux2 (CarryN, {Carry2[8:0], 2’b00},

11’b00000000000, state0);
reg11 reg1 (SumN2, SumN, clk);
reg11 reg2 (CarryN2, CarryN, clk);
// quotient = {+2, +1, -1, -2} else q = 0
qst2 pd1 (zero1, zero2, qj, qjn,
divi2, divi1, divi1c, divi2c, CarryN2, SumN2);

or o1 (ulp1, qj[2], qj[3]);
or o2 (ulp2, qjn[2], qjn[3]);
mux41hx11 mux3 (mdivi1_temp, divi2c, divi1c, divi1,

divi2, qj);
mux41hx11 mux4 (mdivi2_temp, divi2c, divi1c, divi1,

divi2, qjn);
mux21x11 mux5 (mdivi1, mdivi1_temp, 11’b00000000000,

zero1);
mux21x11 mux6 (mdivi2, mdivi2_temp, 11’b00000000000,

zero2);
csa11 csa1 (Sum1, Carry1, mdivi1, SumN2,

{CarryN2[10:1], ulp1});
csa11 csa2 (Sum2, Carry2, mdivi2,

{Sum1[8:0], 2’b00}, {Carry1[8:0], 1’b0, ulp2});

endmodule // divide16

Figure 5.15. Radix16 Division Verilog Code.





Chapter 6

ELEMENTARY FUNCTIONS

Elementary functions are one of the most challenging and interesting arith-
metic computations available today. Many of the advancements in this area
result from mathematical theory that has spanned many centuries of work. El-
ementary functions are typically the referred to as the most commonly uti-
lized mathematical functions such assin, cos, tan, exponentials, and loga-
rithms [Mul97].

Since elementary functions are implemented in digital arithmetic, they are
prone to error that is introduced due to rounding and truncation [Gol91]. There-
fore, it is important that when utilizing elementary functions that a proper error
analysis be done before the actual implementation. This will guarantee that
the result will guarantee the necessary accuracy required for the implementa-
tion. The reason this occurs is because elementary functions usually can not
be computed exactly with a finite number of arithmetic operations.

As opposed to most implementations in this book, elementary functions usu-
ally utilize lookup tables to either compute the evaluation or assist in the com-
putation. Consequently, many implementations can not be efficiently built in
Silicon without memory generation. Therefore, even though the implementa-
tions shown here utilize memory for table lookups, many of the implementa-
tions can not be synthesized or assembled easily. The reason for this is that
memory is composed of many different elements that are not straight forward
to place such as column/row decoders and sense amplifiers. For smaller size
tables, Silicon can be built with pull up and pull down elements, however, these
implementations are not efficient as properly organized memory elements. On
the other hand, custom-built devices can be built regardless of the implemen-
tation at the expense of design time.
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Most implementations are usually broken into three categories. This is be-
cause elementary functions can theoretically implemented for a limited range.
The steps involved in the processing are the following:

1 Preprocessing : Usually involves reducing the input operand. This trans-
formation depends on the function and the method that is used for approx-
imating the function.

2 Evaluation : Calculate the approximation.

3 Postprocessing : Usually involves reconstructing the approximation of the
function

Of course, many of these steps listed above can be combined or eliminated
if needed depending on the criteria for the implementation. Table 6.1 shows
the input and output ranges for various elementary functions. Well-known
techniques, such as those presented in [CW80] and [Wal71], can be used to
bring the input operands within the specified range.

f(x) Input Range Output Range

1/x [1, 2) (0.5, 1]√
x [1, 2) [1,

√
2)

sin(x) [0, 1) [0,1/
√

2)
cos(x) [0, 1) (1/

√
2, 1]

tan−1(x) [0, 1) [0,π/4)
log2(x) [1, 2) [0, 1)

2x [0, 1) [1, 2)

Table 6.1. Ranges for Various Functions.

Elementary functions cannot be computed exactly within a finite number of
operations [LMT98]. Elementary functions are usually evaluated as approx-
imations to a specific function. This problem is sometimes called the Table
Marker’s dilemma which states that rounding these functions correctly at a
reasonable cost is difficult. For a given rounding mode a function is said to be
correctly rounded, if for any input operand, the result would be obtained if the
evaluation of the function is first computed exactly with infinite precision and
then rounded.
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There are three classification of elementary functions. They are the follow-
ing:

1 Table Lookup

2 Shift and Add

3 Polynomial Approximations

Only the first two type of elementary functions are presented in this chapter.
A good reference for all types of elementary function generation can be found
in [Mul97]. Since polynomial approximations can be implemented similar to
table lookup or shift and add algorithms, they are not included to save space.

6.1 Generic Table Lookup
One of the fastest and simplest ways to implement elementary functions is

by use of a table lookup. In other words, an operand is input into a simple
memory element as an address withm bits and output withk bits. Therefore,
the total size of the memory element is2m × k bits. Inside this memory el-
ement is the evaluation of each input operand ora(X0). This is visualized
in Figure 6.1 wherem bits from ann bit register is utilized to initiate the
lookup. A table lookup does not have to utilize the entire operand for a lookup.
For example, in Figure 6.1n − m are not utilized. This is common in many
implementations where the table lookup may be utilized in some sort of post-
processing. When the initial table lookup is utilizing in subsequent hardware
to make the approximation more accurate, it is called a table-driven method.

a

X 0 X 1

m

table lookup

k

n−m

(X  )

m

0

Figure 6.1. Table Lookup.
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As stated earlier, many implementations of table lookup are done via mem-
ory compilers. Therefore, writing Verilog code is useful only for verification.
There are some synthesis packages that are able to generate ROM or RAM el-
ements, however, due to the variety of memory elements that are available, the
task is best left to a memory compiler. On the other hand, table lookups can
be implemented using ROMs, RAMs, PLA or combinational logic, but ROM
tables are most common.

For example, suppose a4-input operand is attempting to implement a ta-
ble lookup implementation for sine. Assuming that the output ism = 4,
each memory address will contain the sine of the input [IEE85]. Utilizing
the ROM code found in Chapter 2, the Verilog is shown in Figure 6.2 where
table.datstores the values inside the table. The values fortable.datare shown
in Figure 6.3. For example, ifx = 0.875 = 0.1110, the evaluation of this is
sin(0.875) = 0.75 = 0.1100 which is the15th entry in thetable.datfile since
0.875 = 0.1110 → 1110 = 15. Sincem = 4, there are16 possible values
inside the data file called table.dat. Careful attention should be made to make
sure that the data file has the correct number of data elements inside it. Most
Verilog compilers may not complain about the size and either chop off or zero
out memory elements if the size is not correct.

module tablelookup (data,address);

input [3:0] address;
output [3:0] data;

reg [3:0] memory[0:31];

initial
begin
$readmemb("./table.dat", memory);

end

assign data = memory[address];

endmodule // tablelookup

Figure 6.2. Table Lookup Verilog Code.
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0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1001
1010
1011
1100
1100
1101

Figure 6.3. Table Lookup Verilog Code.

6.2 Constant Approximations
Sometimes designers do not have the resources to implement memory ele-

ments for elementary functions. This is very common since memory elements
tend to consume a large amount of memory. One method that is useful both
in software and hardware are constant approximations. For constant approx-
imations, a constant provides an approximation to a function on an interval
[a, b]. For example, a reciprocal function (i.e.1/x) is shown in Figure 6.4.
The constant,a0 approximates the function over[a, b].

To minimize the maximum absolute error,a0 can be approximated as

a0 =
1
a + 1

b

2
=

a + b

2 · a · b
Since utilizing a constant for the approximation introduces an error, it is im-
portant to understand what this error is. The maximum absolute error is

ε =| 1
a
− a0 |=| 1

a
− a + b

2 · a · b |=| b − a

2 · a · b |

For example, to approximatef(X) = 1/X for X on the interval [1,2],a0 =
(1/2 + 1)/2 = 0.75 and ε = |(1 − 1/2)/2| = 0.25, which means the ap-
proximation is accurate to2 bits. In general,a0 may need to be rounded tok
fractional bits, which results in a maximum absolute error of2−k−1.
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f(X)

a

a0

b

f(a)

f(b)

X

Figure 6.4. Constant Approximation.

To implement this in Verilog is quite simple. The best way is to utilize the
assignkeyword and the actual bit value. For example, to implement the value
0.75 up to5 bits would be implemented as follows:

assign A = 5’b01100;

The radix point is imaginary and assumed to be at bit position4. Usually,
synthesis packages will have not have any problem implementing this code
because it usually can associate this value with either a pull-up or pull-down
logic [KA97]. If pull-up or pull-down logic is not available, the logic is con-
nected toV DD or GND, respectively.

6.3 Piecewise Constant Approximation
To improve the accuracy of the constant approximation, the interval[a, b]

can be sub-divided into sub-intervals. This is called a piecewise constant
approximation. Piecewise Constant Approximations break the input operand
into two parts: am-bit most-significant part,X0, and a(n − m)-bit least-
significant part,X1, as in Figure 6.1. The bits fromX0 are used to perform a
table lookup, which provides an initial approximationa0(X0). If m fractional
bits are utilized for the table lookup, and the output from the table isk bits,
there are2m sub-intervals where the size of each sub-interval is2−m (i.e. an
ulp). On the sub-interval,[a + i · 2−m, a + (i + 1) · 2−m], the coefficient is
selected as

a0(X0) =
f(a + i · 2−m) + f(a + (i + 1) · 2−m)

2
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using the formula from the previous section. The maximum error is

ε =| f(a + i · 2−m) − f(a + (i + 1) · 2−m)
2

|

Figure 6.5 shows a visual representation of piecewise constant approximation
utilizing 2 sub-intervals. For example, on the interval[0.5, 0.625], the constant
would be

a0(X0) =
0.5 + 0.625

2 · 0.5 · 0.625 = 1.8

−m
a + 2

b

f(a)

f(b)

f(X)

a

a

X

1

a0

Figure 6.5. Piecewise Constant Approximation.

The implementation for this method is similar to the constant approxima-
tion. The implementation can also be implemented using theassignkeyword
and a multiplexor. For example, the following statement implements a piece-
wise constant approximation based on one bit ofd:

mux21 mux_ia(ia_out, 8’b00110000, 8’b11010000, d);

Certain functions like the ones in Table 6.1 do not to be stored. Therefore, these
values can be removed from the table. For example, when approximating1/X
for X on [1, 2], the leading ones inX and1/X do not need to be stored in the
table.
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6.4 Linear Approximations
Another popular form of approximation is the linear approximations. Lin-

ear approximations are better than constant approximations, however, there
is more complexity in the implementation. Linear approximations provide an
approximation based on a first order approximation:

f(X) ≈ c1 · X + c0

The error is computed by the following equation:

ε = f(X) − (c1 · X + c1)

This is shown in Figure 6.6. The maximum absolute error is minimized by
making the absolute error at the endpoints equal to each other, and equal in
magnitude, but opposite in sign to the point on[a, b] where the error takes its
maximum value [Mul97]. In other words, you are equating both error equa-
tions for each endpoint orεa = εb.

a b

f(a)

f(b)

X

f(X)

Figure 6.6. Linear Approximation.
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For example, assume that the function we wish to approximate is the recip-
rocal,f(X) = 1/X. Then,

1
a
− c1 · a − c0 =

1
b
− c1 · b − c0

1
a
− 1

b
= c1 · (a − b)

b − a

a · b = c1 · (a − b)

c1 =
−1
a · b

To find the y-intercept its important to set the input to the maximum value (i.e.
since this minimizes the maximum error) which can be computed by taking the
derivative with respect to the input operand and setting it to0. For example,
with the reciprocal

ε =
1

Xmax
− (c1 · Xmax + c0)

∂ε

∂Xmax
=

−1
X2

max

− c1 = 0

Xmax =
−1√−c1

Xmax =
√

a · b
Lettingε(a) = ε(b) = −ε(

√
a · b) will enable solving for the y-intercept. From

this equation, eithera or b can be utilized to solve the equation. Therefore,

1
a
− −1

a · b · a − c0 = −
(

1√
a · b − −1

a · b ·
√

a · b − c0

)
1
a

+
1
b
− c0 = −

(
2√
a · b − c0

)
2 · c0 =

a + b

a · b +
2√
a · b

c0 =
a + b

2 · a · b +
1√
a · b

c0 =
a +

√
a · b + b

2 · a · b
For example, for reciprocal andX = [1, 2], c0 = 1.45710678118655 and
c1 = −0.5. With the use of the Maple numerical software package its easy to
check this with theminimaxfunction [CGaLL+91].
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with(numapprox);
minimax(1/x, x=1..2, 1);
1.457106781 - .5000000000 x

A plot of the linear approximation versus actual is shown in Figure 6.7.
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Figure 6.7. Plot of Linear Approximation.

6.4.1 Round to Nearest Even
Although error analysis is a valuable method of analyzing an algorithm’s

implementation, careful attention should be paid to the size of each bit pat-
tern. Most error analysis comes to the conclusion that for achieving a certain
size or accuracy requires precision that is greater or equal to the required pre-
cision. This necessitates some sort of method to round the answer to its de-
sired precision. For example, typical floating-point dividers typically compute
approximately58 bits of precision when they only need53 bits for the final
quotient.

One method to convert a result which is greater than the required precision is
by rounding. The most popular method of rounding is called round-to-nearest-
even (RNE) that is part of the IEEE-754 floating-point standard [IEE85], [Sch03].
To perform round-to-nearest even (RNE), it is important to know where the
radix point is located so that an ulp can be added and what the error analysis
is.

In Table 6.2 only two bits (i.e. theG andR bit) are utilized to perform RNE,
however, this can be augmented or decremented accordingly. Table 6.2 docu-
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Number Error
(XLGR) Rounded Value Rounded Value - Number Round

X0.00 X0. 0 0
X0.01 X0. -1/4 0
X0.10 X0. -1/2 0
X0.11 X0. + ulp +1/4 1
X1.00 X1. 0 0
X1.01 X1. -1/4 0
X1.10 X1. + ulp +1/2 1
X1.11 X1. + ulp +1/4 1

Total Error 0.0

Table 6.2. Round-to-Nearest-Even Scheme

ments when an ulp is to be added to the least significant bit (i.e. an ulp) where
L is the least significant bit before the rounding point,G is the guard digit
used for preventing catastrophic cancellation [Hig94], andR is the rounding
bit [Mat87]. For RNE, the main advantage is that it makes the total average
error0.00. The main difference between general rounding and RNE is the case
when the value to be rounded is exactly0.500000 . . .. For the case where the
value to be rounded is exactly0.5 (i.e. 0.5 = 0.10 from Table 6.2), rounding
occurs only if theL bit is 1. TheRoundcolumn in Table 6.2 indicates whether
rounding should occur. For this reason, the zero detect circuit is utilized with
division implementations in Chapter 5. Therefore, the logic for RNE by exam-
ining theL, G, andR bit is

assign ulp = (a[6]&a[5] | a[5]&a[4]);

The Verilog code for a simple RNE implementation is shown in Figure 6.8.
For this code, bit8 is L, bit 7 is G, and bit6 is R. Several recent designs have
been able to modify prefix addition to support rounding efficiently [Bur02].

Therefore, the implementation will involve a multiplier and storage of the
slope and y-intercept. The storage can easily done via anassignstatement and
utilizing a csam from Chapter 4, Figure 6.9 shows the Verilog implementation
for 8 bits. Round-to-nearest even rounding is utilized to round the product
within the multiplier to8 bits. The instantiated multiplier,csam8, is a two’s
complement multiplier since the constants utilize positive and negative values.
It is also extremely important to examine where the radix point is in fractional
arithmetic as discussed in Chapter 4. Therefore, careful attention is made to
make sure that the rounding point is observed within therne instantiation.
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module rne (z, a);

input [15:0] a;

output [7:0] z;

assign ulp = (a[8]&a[7] | a[7]&a[6]);
ha ha1 (z[0], w0, a[8], ulp);
ha ha2 (z[1], w1, a[9], w0);
ha ha3 (z[2], w2, a[10], w1);
ha ha4 (z[3], w3, a[11], w2);
ha ha5 (z[4], w4, a[12], w3);
ha ha6 (z[5], w5, a[13], w4);
ha ha7 (z[6], w6, a[14], w5);
ha ha8 (z[7], w7, a[15], w6);

endmodule // mha8

Figure 6.8. RNE Verilog Code.

module linearapprox (Z, X);

input [7:0] X;
output [7:0] Z;

assign C0 = 8’b01011101;
assign C1 = 8’b11100000;

csam8 mult1 (Zm, C1, X);
rne round1 (Zt, Zm);
rca8 cpa1 (Z, Zt, C0);

endmodule // linearapprox

Figure 6.9. Linear Approximation Verilog Code.
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The maximum absolute error is then computed as

ε =
1
a
− c1 · a − c0

=
1
a
− −1

a · b · a −
(

a + b

2 · a · b +
1√
a · b

)
=

1
a

+
b

−
a + b

2 · a · b − 1√
a · b

=
a + b

a · b − a + b

2 · a · b − 1√
a · b

=
2 · b + 2 · a − (a + b) − 2 · √a · b

2 · a · b
=

a + b − 2 · √a · b
2 · a · b

For the reciprocal function and an input range[1, 2], the maximum absolute
error is a little more than4 bits. This is better than a constant approximation,
however, it involves more complexity for the hardware. To improve the error
in the approximation a table lookup can be used to provide a piecewise linear
approximation.

6.5 Bipartite Table Methods
For applications that require low-precision elementary function approxima-

tions at high speeds, table lookups are often employed. However, as the re-
quired precision of the approximation increases, the size of the memory needed
to implement the table lookups becomes prohibitive. Recent research into
the design of bipartite tables has significantly reduced the amount of memory
needed for high-speed elementary function approximations [HT95], [SM95].
With bipartite tables, two table lookups are performed in parallel, and then
their outputs are added together [SS99], [SS98]. Extra delay is incurred due to
the addition, however, it is minimal compared to the advantage gained by the
reduction in memory.

To approximate a function using bipartite tables, the input operand is sepa-
rated into three parts. The three partitions are denoted asx0, x1, andx2 and
have lengths ofn0, n1, andn2, respectively. The value of the input operand is
x = x0 + x1 + x2 and it has a length ofn = n0 + n1 + n2. The function is
approximated as

f(x) ≈ a0(x0, x1) + a1(x0, x2)

Then0 + n1 most significant bits ofx are inputs to a table that provides the
coefficienta0(x0, x1), and then0 most significant andn2 least significant bits
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Figure 6.10. Bipartite Table Method Block diagram (Adapted from [SS98]).

of x are inputs to a table that provides the coefficienta1(x0, x2). The outputs
from the two tables are summed to produce an approximationf̃(x). as shown
in Figure 6.10

This technique is extended by partitioningx intom+1 parts,x0, x1, . . . , xm,
with lengths ofn0, n1, . . . , nm, respectively. This approximation takes the
form

f(x) ≈
m∑

i=1

ai−1(x0, xi)

The hardware implementation of this method hasm parallel table lookups
followed by anm-input multi-operand adder. Theith table takes as inputsx0

andxi. The sum of the outputs from the tables produces an approximation to
f(x). By dividing the input operand into a larger number of partitions, smaller
tables are needed.

6.5.1 SBTM and STAM
The approximations for the Symmetric Bipartite Table Method (SBTM) and

Symmetric Table Addition Method (STAM) are based on Taylor series expan-
sions centered about the pointx0 + x1 + δ2. The SBTM uses symmetry in the
entries of one of the tables to reduce the overall memory requirements. The
value

δ2 = 2−n0−n1−1 − 2−n0−n1−n2−1
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is exactly halfway between the minimum and maximum values forx2. Using
the first two terms of the Taylor series results in the following approximation

f(x) ≈ f(x0 + x1 + δ2)
+ f ′(x0 + x1 + δ2)(x2 − δ2)

As discussed in [SS99], the omission of the higher order terms in the Taylor
series leads to a small approximation error. The first coefficient is selected as
the first term in the Taylor series expansion.

a0(x0, x1) = f(x0 + x1 + δ2)

Having the second coefficient depend onx0, x1, andx2 would make the SBTM
impractical due to its memory size. Thus, the second coefficient is selected as

a1(x0, x2) = f ′(x0 + δ1 + δ2)(x2 − δ2)

This corresponds to the second term of the Taylor series withx1 replaced by
the constantδ1, where

δ1 = 2−n0−1 − 2−n0−n1−1

is exactly halfway between the minimum and maximum values forx1.
One benefit of this method is that the magnitude of the second coefficient

is substantially less than the first coefficient, which allows the width of the
second table to be reduced. Since| x2 − δ2 |< 2−n0−n1−1, the magnitude of
the second coefficient is bounded by

| a1(x0, x2) |<| f ′(ξ1) | 2−n0−n1−1

whereξi is the point at which| fi(x) | takes its maximum value. This results
in approximately

n0 + n1 + 1 + log2(| f(ξ0)/f ′(ξ1) |)
leading zeros (or leading ones ifa1(x0, x2) < 0). These leading zeros (or
ones) are not stored in memory, but are obtained by sign-extending the most
significant bit ofa1(x0, x2) before performing the carry propagate addition.

Similar to the SBTM, the coefficients for the STAM are generated so that
they have a large number of leading zeros. Although, the STAM requires
more tables than the SBTM, the size of each table and the total memory size
is reduced. The number of inputs to the adder, however, is increased. It is
assumed that0 ≤ x < 1, and thus

0 ≤ x0 ≤ 1 − 2−n0

0 ≤ xi ≤ 2−n0:i−1 − 2−n0:i (1 ≤ i ≤ m)
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wherenj:k =
∑k

i=j ni.
To reduce the approximation error and create symmetry in the table coeffi-

cients,δi is defined to be exactly halfway between the minimum and maximum
values ofxi, which gives

δi = 2−n0:i−1−1 − 2−n0:i−1 (1 ≤ i ≤ m)

It should be noted thatδ2 from the SBTM is equivalent toδ2:m from the STAM,
andx2 from the SBTM is equivalent tox2:m from the STAM (i.e.m = 2).

The two term Taylor series expansion off(x) aboutx0 + x1 + δ2:m is

f(x) ≈ f(x0 + x1 + δ2:m)
+ f ′(x0 + x1 + δ2:m)(x2:m − δ2:m)

Similar to SBTM,x1 is replaced byδ1 which gives

f(x) ≈ f(x0 + x1 + δ2:m)
+ f ′(x0 + δ1 + δ2:m)(x2:m − δ2:m)

The second term in this approximation is then distributed intom − 1 terms,
which gives

f(x) ≈ f(x0 + x1 + δ2:m)

+ f ′(x0 + δ1 + δ2:m) ·
m∑

i=2

(xi − δi)

Thus, the values for the coefficients are

a0(x0, x1) = f(x0 + x1 + δ2:m)
ai−1(x0, xi) = f ′(x0 + δ1 + δ2:m)(xi − δi)

where2 ≤ i ≤ m. It is equivalent for SBTM ifm = 2 and STAM if m > 2.
The number of leading zeros (or ones) inai−1(x0, xi) is determined by the
bound

| ai−1(x0, xi) |<| f ′(ξ1) | 2−n0:i−1

The table forai(x0, xi) has2n0+ni words. The method for selecting the co-
efficients causes tablesa1(x0, x2) througham−1(x0, xm) to be symmetric and
allows their sizes to be reduced to2n0+ni−1 words. The symmetry achieved in
the SBTM and the STAM is obtained because

2δi − xi is the one’s complement ofxi

ai−1(x0, 2δi − xi) is the one’s complement ofai−1(x0, xi)
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These properties are demonstrated in Table 6.3 which gives eight table en-
tries forf(x) = cos(x) whenm = 2, n0 = 2, n1 = 2, n2 = 3, g = 2, and
pf = 7. Each value forx2 in the first half of the table has a one’s complement
in the second half of the table, as shown by the bold-faced binary values. The
corresponding table entries fora1(x0, x2) also have one’s complements, shown
in bold. There is no need to store the bits ofa1(x0, x2) which are not bold-
faced, since these correspond to leading zeros (or ones) that can be obtained
by sign-extension.

x a1(x0, x2)

decimal binary decimal binary

0.500000 0.1000000 +0.0166016 0.0000010001
0.507812 0.1000001 +0.0107422 0.0000001011
0.515625 0.1000010 +0.0068359 0.0000000111
0.523438 0.1000011 +0.0029297 0.0000000011
0.531250 0.1000100 -0.0029297 1.1111111101
0.539062 0.1000101 -0.0068359 1.1111111001
0.546875 0.1000110 -0.0107422 1.1111110101
0.554688 0.1000111 -0.0166016 1.1111101111

Table 6.3. Table Entries fora1(x0, x2) (Adapted from [SS98]).

With the SBTM thea1(x0, x2) table is folded by examining the most sig-
nificant bit of x2. If this bit is a zero, then the remaining bits ofx2 remain
unchanged, and the value is read from thea1(x0, x2) table and added to the
a0(x0, x1) table. However, if this bit is a one, then the remaining bits ofx2

are complemented, and used to address thea1 table. The output is then com-
plemented and added toa0(x0, x1). This method is extended for the STAM by
examining the most significant bit ofxi (2 ≤ i ≤ m), as shown in Figure 6.11

If the most significant bit ofxi is a one, a row ofni − 1 XOR gates comple-
ments the remaining bits ofxi which addresses theai−1(x0, xi) table, and the
output of the table is complemented using a row ofpi exclusive-or gates. The
most significant bits and the least significant bit of the table do not need to be
stored, since these bits are known in advance.
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Figure 6.11. Generalized Table Addition Method Block Diagram (Adapted from [SS98]).

The coefficients and the final result are rounded using a method similar to
the one described in [SM93]. If the final result haspf fraction bits, and the
coefficients each have(pf + g + 1) fraction bits, rounding is performed as
follows:

If m is even,a0(x0, x1) is rounded to the nearest number with(pf + g)
fraction bits and the least significant bit is set to zero. Otherwise,a0(x0, x1)
is truncated to(pf +g) fraction bits and the least significant bit is set to one.

For i > 1, ai−1(x0, xi) is truncated to(pf + g) fraction bits and the least
significant bit is set to one.

f̃(x) is rounded to the nearest number withpf fraction bits.

This method guarantees that the maximum absolute error in rounding each
coefficient is bounded by2−pf−g−1, and that the least significant bit of their
sum is always a one.

By careful choosing the partitioning for SBTM and STAM, the implemen-
tation controls the errors and produces results that are faithfully rounded (i.e.
the computed result differs from the true result by less than one unit in the
last place (ulp) [SM93]). Faithful rounding is guaranteed if the following two
conditions are met

2n0 + n1 ≥ pf + log2(| f ′′(ξ2) |)
g ≥ 2 + log2(m − 1)
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For example, assume the goal is to approximate the sine function with the
SBTM to pf = 12 fraction bits on[0, 1). If x is partitioned withn0 = 4,
n1 = 4, andn2 = 4, then8 + 4 ≥ 12 + �log2(1/

√
2)� satisfies the first

inequality.
Figure 6.12 shows a implementation of SBTM for reciprocal. The input

operand is8 bits, however, the leading bit is always a1, therefore, only7 bits
are input into the table. Moreover, the leading one inside thea0(x0, x1) table
is also not stored. The partitioning utilized isn0 = 3, n1 = 2, n2 = 2, and
g = 2 which satisfies the error needed for a7 bits output. Thea0(x0, x1) data
file (32 x 8) is shown in Figure 6.13, whereas, thea1(x0, x2) data file (3 x
16) is shown in Figure 6.14. The total size is32 · 8 + 3 · 16 = 304 bits as
opposed to27 × 7 = 896 bits for a conventional table lookup (compression
= 2.95). The compression is the amount of memory required by a standard
table lookup divided by the amount of memory required by the method being
examined [SM93].

module sbtm (ia_out, ia_in);

input [6:0] ia_in;

output [7:0] ia_out;

romia0 r0(rom0out, ia_in[6:2]);
assign p0 = {1’b1, rom0out, 1’b0};
xor x0(x0out, ia_in[1], ia_in[0]);
romia1 r1(rom1out, {ia_in[6:4], x0out});
xor3 x3(x3out, rom1out, ia_in[1]);
assign p1 = {{6{ia_in[1]}}, x3out, 1’b1};
rca10 add10(sum, cout, p0, p1);
assign ia_out = {1’b0, sum[9:3]};

endmodule // sbtm

Figure 6.12. SBTM Reciprocal Verilog Code.

6.6 Shift and Add: CORDIC
Another recursive formula is utilized for elementary functions. The result-

ing implementation is called COrdinate Rotation DIgit Computer (CORDIC) [Vol59].
The CORDIC algorithm is based on the rotation of a vector in a plane. The ro-
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11111010
11101011
11011101
11001111
11000010
10110110
10101011
10100000
10010110
10001100
10000011
01111010
01110001
01101001
01100001
01011010
01010011
01001100
01000101
00111111
00111001
00110011
00101101
00101000
00100011
00011110
00011001
00010100
00001111
00001011
00000111
00000011

Figure 6.13. SBTM Reciprocal fora0(x0, x1) Data File.

tation is based on examining Cartesian coordinates on a unit circle as:

x = M · cos(α + β) = a · cosβ − b · sinβ

y = M · sin(α + β) = a · sinβ − b · cosβ
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101
001
100
001
011
001
010
000
010
000
010
000
001
000
001
000

Figure 6.14. SBTM Reciprocal fora1(x0, x2) Data File.

whereM is the modulus of the vector andα is the initial angle as shown
by Figure 6.15. The CORDIC algorithm performs computations on a vector
by performing small rotations in a recursive manner. Each rotation, called a
pseudo rotation, is performed until the final angle is achieved or a result is zero.
As shown by the equations listed above, the rotations require a multiplication.
The CORDIC algorithm transform the equations above through trigonometric
identities to only utilize addition, subtraction, and shifting.

The resulting iterations after a few transformations are

xi+1 = xi − σi · 2−i · yi

yi+1 = yi + σi · 2−i · xi

zi+1 = zi − σi · tan−1(2−i)

CORDIC also employs a scaling factor:

K =
∞∏
i=0

(1 + 2−2·j)1/2 ≈ 1.6468

The CORDIC algorithm utilizes two different modes calledrotation andvec-
toring. In rotation mode, an initial vector(a, b) is rotated by an angleβ. This
is one of the most popular modes sincex0 = 1/K andy0 = 0 produces the
sin β andcos β. On the other hand, in thevectoringmode, an initial vector
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Figure 6.15. Vector Rotation for CORDIC.

(a, b) is rotated until theb component is zero. The value ofσi+1 is chosen ac-
cording the mode the CORDIC algorithm is currently in as shown in Table 6.4.

σi+1 Mode

sign(Zi+1) Rotation
sign(Yi+1) Vectoring

Table 6.4. CORDIC Modes.

The block diagram of the CORDIC algorithm is shown in Figure 6.16. Two
shifters are utilizes to shift the inputs based on the value ofi. In addition, the
table stores the values oftan−1(2−i) which also varies according toi. In order
to implement CORDIC, three registers, indicated by the filled rectangles, are
required to containxi, yi, andzi. The CPA is a controlled add or subtract
similar to the RCAS in Chapter 3. Exclusive-or gates are inserted inside the
CPA to select whether the blocks add or subtract. The values ofσi+1 are
utilized to indicate to the CPA whether an addition or subtraction occurs based
on the equations above.

The Verilog code for a16-bit CORDIC code is shown in Figure 6.18. Fig-
ure 6.18 is written to compute the sine and cosine in rotation mode, however,
it can easily be modified to handle bothrotation and vectoringby adding a
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Figure 6.16. CORDIC Block Diagram.

2-1 multiplexor. The code has three main parts. One for the table that stores
the value oftan−1(2−i). The table stores16 values assuming16 possible it-
erations could occur, however, varying the size of the table will determine the
overall precision of the result [EL03], [Kor93]. The table values are based on
rounded computations utilizing round-to-nearest even as shown here:

2D00
1A91
0E09
0720
0394
01CA
00E5
0073
0039
001D
000E
0007
0004
0002
0001
0000

The second part of the CORDIC code implements the two modules that
shift and add is shown in Figure 6.19. The two constants,constXandconstY,
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store the initial values ofx0 andy0 respectively. Theinv16 modules invoke
the adder or subtractor based oninv input which corresponds toσi. This im-
plementation of CORDIC implements a logarithmic shifter. Most shifters are
either barrel or logarithmic shifters. Logarithmic shifters utilize powers of
two and are usually better for larger shifters [WE85]. On the other hand, for
smaller shifters, barrel shifters are better [WE85]. Logarithmic shifter work in
powers of two by shifting levels of logic based on a power of2. For example,
a 32-bit logarithmic shifter would require5 levels of logic, where each level
would shift by1, 2, 4, 8, 16. This can be illustrated graphically in Figure 6.17.
In Figure 6.21, the top-level module for the logarithmic shifter is shown and

S[2]

A[3] A[2] A[1] A[0]

Z[3] Z[2] Z[1] Z[0]

S[0]

S[1]

Figure 6.17. Logarithmic Shifter Block Diagram.

Figures 6.22, 6.23, 6.24, 6.25 detail the lower-level modules of the logarithmic
shifter.

The third part of the CORDIC code implements the module that adds or
subtracts the value oftan−1(2−i) as shown in Figure 6.20. All three modules
have16-bit registers to store the intermediate values every iteration. Although
the implementation seems elaborate, it is quite efficient by using only addition,
subtraction, or shifting as opposed to multiplication. Moreover, CORDIC can
be modified for other trigonometric identities [Wal71].

6.7 Summary
This chapter presented several implementations for elementary functions.

There are variety of algorithms available for implementations of elementary
functions. The key factor to remember when implementing elementary func-
tions is making sure the precision is accounted for by doing error analysis of
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module cordic (sin, cos, data, currentangle,
endangle, addr, load, clock);

input [15:0] endangle;
input clock;
input [3:0] addr;
input load;

output [15:0] sin, cos;
output [15:0] data, currentangle;

angle angle1 (currentangle, load, endangle,
clock, data);

sincos sincos1 (sin, cos, addr, load, clock,
currentangle[15]);

rom lrom1 (data, addr);

endmodule // cordic

Figure 6.18. Main CORDIC Verilog Code.

the algorithm before the implementation starts. Polynomial approximations
are not shown in this chapter, but can easily be implemented utilizing the tech-
niques presented in this chapter. A polynomial approximation of degreen
takes the form

f(X) ≈ Pn(X) =
n∑

i=0

ai · Xi
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module sincos (sin, cos, addr, load, clock, inv);

input [3:0] addr;
input inv, load, clock;

output [15:0] sin;
output [15:0] cos;

assign constX=16’b0010011011011101;
assign constY=16’b0000000000000000;

mux21 m1 (invc, inv, 1’b0, load);

mux21x16 m2 (outregX, cos, constX, load);
shall log1 (outshX, outregX, addr);
xor16 cmp1 (outshXb, outshX, invc);
rca16 cpa1 (inregX, coutX, outregX, outshYb, invc);
reg16 reg1 (cos, clock, inregX);

mux21x16 m3 (outregY, sin, constY, load);
shall log2 (outshY, outregY, addr);
inv16 cmp2 (outshYb, outshY, ~invc);
rca16 cpa2 (inregY, coutY, outregY, outshXb, ~invc);
reg16 reg2 (sin, clock, inregY);

endmodule // sincos

Figure 6.19. sincos CORDIC Verilog Code.
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module angle (outreg, load, endangle, clock, data);

input [15:0] endangle;
input load, clock;
input [15:0] data;

output [15:0] outreg;

mux21x16 mux1 (inreg, outreg, endangle, load);
xor16 cmp1 (subadd, data, ~inreg[15]);
rca16 cpa1 (currentangle, cout, subadd, inreg,

~inreg[15]);
reg16 reg1 (outreg, clock, currentangle);

endmodule // angle

Figure 6.20. angle CORDIC Verilog Code.

module shall (dataout, a, sh);

input [15:0] a;
input [3:0] sh;

output [15:0] dataout;

logshift1 lev1 (l1, a, sh[0]);
logshift2 lev2 (l2, l1, sh[1]);
logshift4 lev3 (l4, l2, sh[2]);
logshift8 lev4 (dataout, l4, sh[3]);

endmodule // shall

Figure 6.21. Logarithmic Shifter Verilog Code.
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module logshift1 (dataout, a, sh);

input [15:0] a;
input sh;

output [15:0] dataout;

mux21 m1 (dataout[0], a[0], a[1], sh);
mux21 m2 (dataout[1], a[1], a[2], sh);
mux21 m3 (dataout[2], a[2], a[3], sh);
mux21 m4 (dataout[3], a[3], a[4], sh);
mux21 m5 (dataout[4], a[4], a[5], sh);
mux21 m6 (dataout[5], a[5], a[6], sh);
mux21 m7 (dataout[6], a[6], a[7], sh);
mux21 m8 (dataout[7], a[7], a[8], sh);
mux21 m9 (dataout[8], a[8], a[9], sh);
mux21 m10 (dataout[9], a[9], a[10], sh);
mux21 m11 (dataout[10], a[10], a[11], sh);
mux21 m12 (dataout[11], a[11], a[12], sh);
mux21 m13 (dataout[12], a[12], a[13], sh);
mux21 m14 (dataout[13], a[13], a[14], sh);
mux21 m15 (dataout[14], a[14], a[15], sh);
mux21 m16 (dataout[15], a[15], a[15], sh);

endmodule // logshift1

Figure 6.22. logshift1 Shifter Verilog Code.
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module logshift2 (dataout, a, sh);

input [15:0] a;
input sh;

output [15:0] dataout;

mux21 m1 (dataout[0], a[0], a[2], sh);
mux21 m2 (dataout[1], a[1], a[3], sh);
mux21 m3 (dataout[2], a[2], a[4], sh);
mux21 m4 (dataout[3], a[3], a[5], sh);
mux21 m5 (dataout[4], a[4], a[6], sh);
mux21 m6 (dataout[5], a[5], a[7], sh);
mux21 m7 (dataout[6], a[6], a[8], sh);
mux21 m8 (dataout[7], a[7], a[9], sh);
mux21 m9 (dataout[8], a[8], a[10], sh);
mux21 m10 (dataout[9], a[9], a[11], sh);
mux21 m11 (dataout[10], a[10], a[12], sh);
mux21 m12 (dataout[11], a[11], a[13], sh);
mux21 m13 (dataout[12], a[12], a[14], sh);
mux21 m14 (dataout[13], a[13], a[15], sh);
mux21 m15 (dataout[14], a[14], a[15], sh);
mux21 m16 (dataout[15], a[15], a[15], sh);

endmodule

Figure 6.23. logshift2 Shifter Verilog Code.
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module logshift4 (dataout, a, sh);

input [15:0] a;
input sh;
output [15:0] dataout;

mux21 m1 (dataout[0], a[0], a[4], sh);
mux21 m2 (dataout[1], a[1], a[5], sh);
mux21 m3 (dataout[2], a[2], a[6], sh);
mux21 m4 (dataout[3], a[3], a[7], sh);
mux21 m5 (dataout[4], a[4], a[8], sh);
mux21 m6 (dataout[5], a[5], a[9], sh);
mux21 m7 (dataout[6], a[6], a[10], sh);
mux21 m8 (dataout[7], a[7], a[11], sh);
mux21 m9 (dataout[8], a[8], a[12], sh);
mux21 m10 (dataout[9], a[9], a[13], sh);
mux21 m11 (dataout[10], a[10], a[14], sh);
mux21 m12 (dataout[11], a[11], a[15], sh);
mux21 m13 (dataout[12], a[12], a[15], sh);
mux21 m14 (dataout[13], a[13], a[15], sh);
mux21 m15 (dataout[14], a[14], a[15], sh);
mux21 m16 (dataout[15], a[15], a[15], sh);

endmodule // logshift4

Figure 6.24. logshift4 Shifter Verilog Code.
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module logshift8 (dataout, a, sh);

input [15:0] a;
input sh;

output [15:0] dataout;

mux21 m1 (dataout[0], a[0], a[8], sh);
mux21 m2 (dataout[1], a[1], a[9], sh);
mux21 m3 (dataout[2], a[2], a[10], sh);
mux21 m4 (dataout[3], a[3], a[11], sh);
mux21 m5 (dataout[4], a[4], a[12], sh);
mux21 m6 (dataout[5], a[5], a[13], sh);
mux21 m7 (dataout[6], a[6], a[14], sh);
mux21 m8 (dataout[7], a[7], a[15], sh);
mux21 m9 (dataout[8], a[8], a[15], sh);
mux21 m10 (dataout[9], a[9], a[15], sh);
mux21 m11 (dataout[10], a[10], a[15], sh);
mux21 m12 (dataout[11], a[11], a[15], sh);
mux21 m13 (dataout[12], a[12], a[15], sh);
mux21 m14 (dataout[13], a[13], a[15], sh);
mux21 m15 (dataout[14], a[14], a[15], sh);
mux21 m16 (dataout[15], a[15], a[15], sh);

endmodule // logshift8

Figure 6.25. logshift8 Shifter Verilog Code.





Chapter 7

DIVISION USING MULTIPLICATIVE-BASED
METHODS

This chapter presents methods for computing division by iteratively improv-
ing an initial approximation. Since this method utilizes a multiplication to
compute divide it typically is called a multiplicative-divide method. Since
multipliers occupy more area than addition or subtraction, the advantage to
this method is that it provide quadratic convergence. Quadratic convergence
means that number of bits of accuracy of the approximation doubles after each
iteration. On the other hand, division utilizing recurrence methods only at-
tains a linear convergence. In addition, many multiplicative-methods can be
combined with multiplication function units making them attractive for many
general-purpose architectures.

In this chapter, two implementations are shown with constant approxima-
tions. Both methods could be improved by inserting bipartite or other approx-
imation methods to improve the initial estimate. Similar to division utilizing
recurrence methods, multiplicative-methods can be modified to handle square
root and inverse square root. Although these method obtain quadratic conver-
gence, each method is only as good as its initial approximation. Therefore,
obtaining an approximation that enables fast convergence to the operand size
is crucial to making multiplicative-divide methods more advantageous than re-
currence methods.

7.1 Newton-Raphson Method for Reciprocal
Approximation

Newton-Raphson iteration is used to improve the approximationXi ≈
1/D. Newton-Raphson iteration finds the zero of a functionf(X) by using



162 DIGITAL COMPUTER ARITHMETIC DATAPATH DESIGN

the following iterative equation [Fly70].

Xi+1 = Xi − f(Xi)
f ′(Xi)

whereXi is an initial approximation to the root of the function, andXi+1 is an
improvement to the initial approximation. To approximate1/D using Newton-
Raphson iteration, it is necessary to chose a function that is zero forX = 1/D
or

f(X) = D − 1/X
f ′(X) = 1/X2

Plugging these value into the Newton-Raphson iterative equation gives

Xi+1 = Xi − f(Xi)
f ′(Xi)

= Xi −
(

D − 1/Xi

1/X2
i

)
= Xi − D · X2

i + Xi

= 2 · Xi − D · X2
i

= Xi · (2 − D · Xi)

Each iteration requires one multiplication and one subtraction. Replacing
the subtraction by a complement operation results in a small amount of addition
error. An example of Newton-Raphson division is shown in Table 7.1, forX =
1.875, D = 1.625, X0 = 0.75 whereD is the divisor andX is the dividend
andX0 is the approximation. A graphical interpretation of this method for
reciprocal is shown in Figure 7.1 where the derivative is utilized to iteratively
find where the next value on the plot is found. Therefore, the final result is

i Xi D · Xi 2 − D · Xi

0 0.75 1.218750 0.78125
1 0.585938 0.952148 1.047852
2 0.613983 0.997726 1.002274
3 0.615372 0.999985 1.000015
4 0.615387

Table 7.1. Newton-Raphson Division

computed by multiplying0.615387 as shown in Table 7.1 by the value of the
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dividend. Since the algorithm computes the reciprocal, architectures can also
encode the instruction set architecture to support reciprocal instructions.

Q = X · X4 = 1.875 · 0.615387 = 1.153854
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Figure 7.1. Newton-Raphson Iteration.

The absolute error in the approximationXi ≈ 1/D is

εXi = Xi − 1/D

which gives

Xi = 1/D + εXi

ReplacingXi by 1/D+εXi in the Newton-Raphson division equation produces
the following:

xi+1 = Xi · (2 − D · Xi)
= (1/D + εXi) · (2 − D · (1/D + εXi))
= (1/D + εXi) · (1 − D · εXi)
= 1/D − D · ε2

Xi

Therefore, the absolute error decreases quadratically as

εxi+1 = −D · ε2
Xi
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If D is chosen such that1 ≤ D < 2, andXi is accurate top fractional bits
(i.e., | εXi |< 2−p then | εXi+1 |< 2−2·p. This means that each iteration
approximately doubles the number of accurate bits inXi as stated earlier. For
example, if the accuracy of an initial approximation is8 fractional bits, on the
subsequent iteration the result will be accuracy will be16 bits. However, this
assumes that the computation does not incur any error. For example, if a CSA
is utilized instead of a CPA this will introduce error into the computation.

Because either multiplication can be negative, two’s complement multipli-
cation is necessary in the multiply-add unit. Similar to the linear approxima-
tion in Chapter 6, careful attention to the radix point is necessary to make
sure proper value are propagated every iteration. The block diagram for the
Newton-Raphson Method is shown in Figure 7.2. In order to implement New-
ton Raphson requires two registers, indicated by the filled rectangles. The IA
module contains the initial approximation.

The multiplexors assure that data is loaded appropriately during the correct
cycle since there is only one multiplier utilized. In order to visualize the control
logic necessary for this datapath, the signals that need to be asserted are shown
in Table 7.2. The leftmost portion of Table 7.2 indicates the control before the
clock cycle is asserted, and the rightmost portion of Table 7.2 shows what is
written into registerA andB. The clocking is also shown in Table 7.2 which
could be implemented as a load signal. When a1 appear in thereg column, it
writes the appropriate value intoRA or RB . The logic could be simplified with
two multipliers. However, since multipliers consume a significant amount of
memory, having two multipliers is normally not an option.

Before After
mux reg

Cycle MCAN MPLIER A B D A B RA RB

1 X0 D 1 0 1 1 1 X0 · D 2 − X0 · D
2 X0 2 − X0 · D 1 1 1 1 0 X1 2 − X0 · D
3 X1 D 0 0 1 0 1 X1 2 − X1 · D
4 X1 2 − X1 · D 0 1 1 1 0 X2 2 − X1 · D
5 X2 D 0 0 1 0 1 X2 2 − X2 · D
6 X2 2 − X2 · D 0 1 1 1 0 X3 2 − X2 · D
7 X3 D 0 0 1 0 1 X3 2 − X3 · D
8 X3 2 − X3 · D 0 1 1 1 0 X4 2 − X3 · D
9 X4 X 0 0 0 1 0 X4 · X 2 − X3 · D

Table 7.2. Control Logic for Datapath

In Figure 7.3, the Verilog code for the implementation is shown. For this
implementation, a constant approximation is utilized, therefore, the initial ap-
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Figure 7.2. Newton-Raphson Division Block Diagram.

proximation orX0 (assuming1 ≤ d < 2) is equal to(1 + 1/2)/2 = 0.75.
The algorithm can handle two’s complement numbers if the hardware decodes
whether the divisor is negative. If the divisor is negative, the IA module should
produce−0.75 as its approximation. A2-1 multiplexor is utilized to choose
the correct divisor in Figure 7.3 by using the sign bit of the divisor as the
select signal for the multiplexor. The negative IA is chosen because the neg-
ative plot of−1/x should have a negative approximation to start the iterative
process. As mentioned previously, the instantiated multiplier in Figure 7.3
is a two’s complement multiplier to handle both negative and positive num-
bers. Thetwos complmodule performs two’s complementation because the
Newton-Raphson equation requires(2 − D · Xi). In order to guarantee the
correct result, the most significant bit ofD · Xi is not complemented. In other
words, simple two’s complementation is implemented where the one’s com-
plement ofD · Xi is taken and an ulp added. However, the most significant
bit of D · Xi is not complemented. This guarantees the correct result (.e.g
0.75 = 00.1100 → 01.0011 + ulp = 01.0100 = 1.25). Since this imple-
mentation involves a simple row of(m − 1) inverters wherem is the internal
precision within the unit and a CPA, the code is not shown. Similar to the re-
currence dividers, the internal precision within the unit is typically larger than
the input operand. Rounding logic (specifically RNE) is utilized to round the
logic appropriately. Although RNE is performed by a separated module, it
could easily be integrated within the multiplier [BK99].
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module nrdiv (q, d, x, sel_mux, sel_muxa, sel_muxb,
load_rega, load_regb, clk);

input [7:0] d, x;
input sel_muxa, sel_muxb, sel_mux;
input load_rega, load_regb;
input clk;

output [7:0] q;

mux21x8 mux_ia (ia_out, 8’b00110000, 8’b11010000, d[7]);
mux21x8 muxd (muxd_out, x, d, sel_muxd);
mux21x8 muxa (muxa_out, rega_out, ia_out, sel_muxa);
mux21x8 muxb (muxb_out, muxd_out, regb_out, sel_muxb);
csam8 csam0 (mul_out, muxa_out, muxb_out);
rne rne0 (rne_out, mul_out);
twos_compl tc0 (twoscmp_out, rne_out);
register8 regb (regb_out, twoscmp_out, load_regb);
register8 rega (rega_out, rne_out, load_rega);
assign q = rne_out;

endmodule // nrdiv

Figure 7.3. Newton-Raphson Division Using Initial Approximation Verilog Code.

Since the IA module utilizes an initial approximation using a constant ap-
proximation, the precision of this approximation is only accurate to2 bits.
Since each iteration approximately doubles the number of bits of accuracy,
only 2 to 3 iterations are necessary to guarantee a correct result (i.e.2 →
4 → 8 → 16. In general, the number of iterations,p, wheren is the desired
precision andm is the accuracy of the estimate is:

p = �log2
n

m
�

7.2 Multiplicative-Divide Using Convergence
The Division by convergence iteration is used to improve division by utiliz-

ing what is callediterative convergence [Gol64]. For this method, the goal is
to find a sequence,K1,K2, . . . such that the productri = D ·K1 ·K2 · . . . Ki

approaches1 asi goes to infinity. That is,

qi = X · K1 · K2 · . . . Ki → Q
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In other words, the iteration attempts to reduce the denominator to1 while
having the numerator approachX/D. To achieve this, the algorithm multiplies
the top and bottom of the fraction by a value until the numerator converges to
X/D.

As stated previously, the division by convergence division algorithm pro-
vides a high-speed method for performing division using multiplication and
subtraction. The algorithm computes the quotientQ = X/D using three
steps [EIM+00]:

1 Obtain an initial reciprocal approximation,K1 ≈ 1/D.

2 Perform an iterative improvement of the new numerator (k times),qi =
qi−1 · Ki, such thatq0 = X

3 Perform an iterative improvement of the denominator (k times), whereri =
ri−1 · Ki), such thatr0 = D AND Get ready for the next iteration, by
normalizing the denominator by performingKi+1 = (2 − ri)

The division by convergence algorithm is sometimes referred to Gold-
schmidt’s division [Gol64]. An example of Goldschmidt’s division is shown
in Table 7.3, forX = 1.875, D = 1.625, K1 = 0.75 whereD is the divi-
sor andX is the dividend andK1 is the approximation. As opposed to the
Newton-Raphson method, a final multiplication is not needed to complete the
operation. Therefore, the quotient isQ = 1.153839.

i qi ri Ki+1 = 2 − ri

0 1.406250 1.218750 0.781250
1 1.098633 0.952148 1.047852
2 1.151199 0.997711 1.002289
3 1.153839 1.000000 1.00000

Table 7.3. Goldschmidt’s Division

The block diagram of the division by convergence is shown in Figure 7.4.
Since division by convergence requires a multiplier, some designs incorporate
the multiplier within the unit. For example, multiplication is performed in Fig-
ure 7.4 whenmuxA = 1 andmuxB = 1. In Figure 7.5, the Verilog code for
the implementation is shown. Similar to the Newton-Raphson implementation,
the same constant approximation and the two’s complement are utilized. The
control logic, similar to the Newton-Raphson control, is shown in Table 7.4
Since the division by convergence does not need a final multiplication to pro-
duce the quotient as shown in Table 7.4, three registers are required to store the
intermediate values.
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Figure 7.4. Goldschmidt’s Division Block Diagram.

Before After
mux reg

Cycle MCAN MPLIER A B A B C RA RB RC

1 K1 X 2 1 0 1 0 0 K1 · X 0
2 K1 D 2 0 1 0 1 K2 K1 · X K1 · D
3 K2 Q1 0 2 0 1 0 K2 K2 · Q1 K1 · D
4 K2 R1 0 3 1 0 1 K3 K2 · Q1 K2 · R1

5 K3 Q2 0 2 0 1 0 K3 K3 · Q2 K2 · R1

6 K3 R2 0 3 1 0 1 K4 K3 · Q2 K3 · R2

7 K4 Q3 0 2 0 1 0 K4 K4 · Q3 K3 · R2

8 K4 R3 0 3 1 0 1 K5 K4 · Q3 K4 · R2

Table 7.4. Control Logic for Datapath

7.3 Summary
The methods presented here provide an alternative to methods such as digit

recurrence. The choice of implementation depends on many factors since many
of the iterative approximation methods utilized a significant amount of hard-
ware. Some implementations have suggested utilizing better approximations
as well as better hardware for multiplying and accumulating [SSW97]. Itera-
tive methods have also been successfully implemented within general-purpose
processors [OFW99]. On the other hand, because multiplicative-divide algo-
rithms converge quadratically IEEE rounding for the final quotient is more
involved [Sch95].
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module divconv (q, d, x, sel_muxa, sel_muxb,
load_rega, load_regb, load_regc);

input [7:0] d, x;
input [1:0] sel_muxa, sel_muxb;
input load_rega, load_regb, load_regc;

output [7:0] q;

mux21x8 mux_ia (ia_out, 8’b00110000, 8’b11010000, d[7]);
mux41x8 mux2 (muxb_out, d, x, regb_out, regc_out,

sel_muxb);
mux31x8 mux3 (muxa_out, rega_out, d, ia_out, sel_muxa);
csam8 csam0 (mul_out, muxa_out, muxb_out);
rne rne0 (rne_out, mul_out);
twos_compl tc0 (twoscmp_out, rne_out);
register8 regc (rega_out, twoscmp_out, load_rega);
register8 regb (regb_out, rne_out, load_regb);
register8 rega (regc_out, rne_out, load_regc);
assign q = rne_out;

endmodule // divconv

Figure 7.5. Division by Convergence Using Initial Approximation Verilog Code.
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