
Contents

Introduction 0... cee eee

The Tool Flow... 0.0... 0... nee

In and Out... cee eee eee eens

Clocks and Registers 0.0.0.0. e eee eeee 17

State Machines 0... . cc cece eee eee eens 29

Modular Design 0.00.0 cee eee, 37

Memories 0.0. ccc ccc eee ene ens 47

Managing Clocks 0.00... cee ee eee 59

I/O Flavors....... 0... eee eee eee 69

A Taste of Simulation..............0. 0c ee 75

The Rest for Reference..............-00000- 89

Index 2... ceceeee eens 111

Introduction

This is the book I wish I’d had seventeen years ago when I

tackled my first verilog design. The idea for this reference is to

have you looking at workable examples by the shortest path

possible. Like any descriptive language, whether verilog, VHDL,or

C++, there are layers of features and capabilities that will ultimately

be broughtto bearif you use it long enough, but most of which can
represent just a confusing distraction if introduced early on. This

bookinitially strips away all but the very bare essentials to show you
those fundamental aspects of the language that are universally
required in almost any design. Later, it builds, feature-by-feature,

more sophisticated capabilities.
The material is intended for students and engineers, both

hardware and software, who already have a working knowledge of
digital design and operation. It is not an mstructional text on how

to design logic. Additionally, it is intended to provide a very quick
entry into verilog basics; it is not a comprehensive verilog reference.
But I’m sure you didn’t expect that for less than $20.

The contexts of the examples assume FPGAs(versus ASICsor,
Godforbid, discrete logic). This is by far the most ubiquitous use

of HDL (Hardware Description Language) today. And in anycase,

if you’re just learning HDL,it is highly unlikely that you’ve been

hired to do ASIC development.

All examples used in this book are available as text files at:
http://www.teadler.com

A note about punctuation: commas and periods are generally

placed before closing parenthesis. For example, the following

words might describe my approach to writing this book:
“fastidious,” “thorough,” and “clarity.” However, I have taken the

liberty to break this rule throughout the following text in order to

avoid confusion about the exact spelling of signal names. So, for

example, in this context I might write that “in_1”, “out_1”, and

“enable_b” compriseall the signals of block “mux_2”.

The Tool Flow

This subject could be a whole book onto itself, but we will limit

it here to just what’s needed to see how verilog code 1s used.

Verilog, like VHDL,is a hardware description language (HDL), and

as such, completely describes how the logic design works. Along

with a device-specific file defining implementation details such as
device package type, I/O pin assignments, etc., the verilog code ts

all that’s needed to create an operating FPGA. The “operating

FPGA”is embodied in a binary object file that is loaded into the
device after power-up. The tools described here are used to get

from the verilog source codeto this loadable binary objectfile.

Step 1: coding
This is simply the process of laying the ideas in your head down

into verilog code, which 1s just a text file. If you’ve done software

coding, you are completely familiar with this step. Any text editor
will work, but professional text editors will help by color-coding

syntax categories of verilog (assuming your version supports
verilog);

Step 2: simulation

Although not strictly necessary to achieve a_ successfully

compiled load file, stmulation should be considered a practical

requirement. Foregoing this step would be like spending months
designing, building, and packing a parachute, and then jumping out

of a plane without ever testing it. There is a finite possibility your
design will work as intended—decreasing rapidly with complexity—

but more than likely you will see the ground rushing up at you as

you engage power and your FPGA does absolutely nothing.

Step 3: synthesis
The first two steps were your creative contribution. Step 3

begins the automated processof translating your text into operating
logic. The synthesis step can be thought of as a bridge between

your human text description and a gate-level representation. Gate-

4

The Tool Flow

level here doesn’t necessarily mean just AND and OR gates, but
includesbasic functional blocks as muxesandflip-flops. It is at this
step that we find out if our code can bepractically translated into

logic that can be implemented in an FPGA. The output from the

synthesis step looks very muchlike a netlist. Expensive stand-alone

synthesis tools are often used for large or complex designs, but

most FPGA vendor software includes synthesis that is quite

adequate for many applications.

Step 4: compile
Whereas the synthesis of step 3 still comprises somewhat

abstract logic constructs, the final compile step maps the synthesis
netlist-like logic description into the specific logic and routing

resources of the FPGA device. This step is always performed by

the vendor software. We can define pins assignments, or let the

tool automatically assign them (almost never done on all but the

most difficult designs). It is in this compile step that we find out if
the design that was synthesizable can actually be implemented into

out chosen device. The output of the compile step is the binary
load file that 1s used to configure the FPGA.

In and Out

First a word about coding style 1s necessary. What you find in

this book are the author’s methods developed over many years of

practice. The goal should always be to produce readable code that

is easy to understand. Different people have different preferences,

though, and you will find as many individual styles as there are
people coding. About the only absolutely wrongstyle is nostyle,

1.e., where all the text is smashed to the left margin with no

indenting or consistent parenthetical blocking. You should note

that there are many shortcuts that could be taken with the code

used throughout this book, but you'll never be wrong by including

optional parenthesis or block flags, but you could very well cause

your code to synthesize in an unintended manner if you make

careless eliminations.

The synthesis tool expects certain standardfile structures. We'll

start with almost the simplest design possible in order to introduce

the minimum requirements: two combinatorial operations on three

inputs. Here’s how it looks as logic block flow. Note that this box
represents the entire FPGA.

nO l) out un

—__ >
9 —~ out_2

in3 > qZ2

simple_in_n_out

Simple In and Out

The verilog code can be seen on the next page. The text file

implements one “module,” which for this simple design is the entire

design. The word “module”is a required keyword, and is followed

6

In and Out

by the name of the module. For our purposes, a module is always

synonymous with a file, so the module nameis the sameasthefile

name. Note, though, that the module name has nofile extension
Ce 9d(which for verilog is always “v’’, e.g., “sumple_in_n_out.v’’).

SLLTLITATATAATTTATATATATAT
//
// Header information -- details about the context,

// constraints, etc..

FITTLLTLTILLALLT TATTATATTT

noduleCgimple_in_n_out>~—~___— module file name

Inputs ‘

inl,
in 2,

commentflags in3, > port list
// Outputs
out1,

out2

i

// Port definitions

input in1;

input in2;

input in 3; .
— I/O declarations

output out1;

output out2;

[| -----nn------ Design implementation --------

assign out1 =

assign out2 = inl |in2 | in_3;

endmodule

Simple In and Out

A port list follows the name of the module, and definesall the

sionals in and out of the module, separated by commas. I/O

declarations then follow, defining the direction of each signal listed

in the port list (as we'll see later, new verilog versions allow the
direction declarations to reside directly in the port list).

Following the declarations, the design proper begins. In this

simplest case, the design consists of simple combinatorial

Verilog by Example

assionments. Note that “assign” is a keyword, and indicates a

combinatorial operation (also called a continuous assignment). An
ANDoperation is indicated with “&,” while “|” indicates an OR.

The keyword “endmodule” marks the end of the verilog module

(and also thetext file here).

The synthesis software ignores everything after a comment

flaa—two forward slashes—to the end ofthe line.

The simple In and Out design just described defines outputs

that are direct logical operations of inputs only. Virtually all

practical designs, though, will have internal signals. We now

introduce the simplest of these, the “wire,” which 1s hardly nothing

more than an intermediate stage of combinatorial processing. It is

not misleading to think of it as an actual wire connecting internal

gates. Note that a “wire” in verilog is technically a type of “net”

entity, but in digital design it is common torefer to “wires,” along

with I/O and outputs of registers, collectively as simplyall signals.

In the following example, note that the wire signal—here called
“intermediate_sig”—-must be declared as such before it is used.

Although verilog allows signal declarations to be done anywhere in

the design (before their use), it is standard practice to group them
all at the beginning, usually just after the port I/O declarations.

Note that verilog is case sensitive. Some designers use this for

effect, delineating similar signals by using the same name but

different cases (e.g., the first letter, or the whole name). This 1s a

very good technique if you want to confuse somebody trying to
understand your code. If your goal is the opposite, I suggest

avoiding this, and using a consistent case throughout.

nis

intermediatesi out_1
in_2 ; pD* >

out 2
in_3 ~ »

intermed_wire

Intermediate “Wire” Signal

In and Out

SILTATLITLTATATATTATATAAT

//
// Header information

// Intermediate Wire Signals

//
SIILILASTILTTATTAAAIAATAATTATAAATAT

module intermedwire

(
// Inputs

inl,

in2,

in3,

// Outputs

out1,

out2

);

// Port definitions

“

input in_1;

input in2;

input in_3;

> declarations
output outi;

output out2;

(wire intermediate_sig;) J

[f[o ------HHH Design implementation --------

(assign intermediatesig = inl & in_2;)

intermediatesig)& in_3;

ntermedi _Sigy| in_3;

assign out_1

assign out2

endmodule

Intermediate “Wire” Signal

Verilog by Example

Logic designs often (usually) include multi-bit buses. These are

represented in verilog as vector signals, and the width 1s defined in

the declaration (single-bit signals are called scalars). The following

example performs a combinatorial operation on two 4-bit input

buses (AKA vectors) and a single-bit (AKA scalar) control signal.

! :0in_1[3:0] ; 1h »10

in_2[0

NX int]

in_2[1

Kin12] out[3-0]5

in_22

\ in13]

to
in_2[3:0]

in_3 >

bus_sigs

BusSignals

Essentially, when “in_3” is low, then “in_1” is selected, and

when “in_3” is high, “in_2” is selected. This is of course a two-

input bus multiplexer.

Comparing the block flow diagram with the code on the

following page, we can see that verilog vector representation of

buses provides for compact representation (the logic for a whole
bus is contained in one line). We also see, however, a mysterious

intermediate “in_3bus” signal. This is due to the manner of

logical operation of the “&” and “|” operators (AND and OR).

These perform bitwise operations, and expect the two values to be
of equal bus size. Thus, the first assign statement extends the

single-bit “in_3” to a 4-bit “in_3_bus”, wherebyall the bits of the

In and Out

new bus have the same value as the original “in_3”. This is done

using a replication operator, where the value of the signal inside the
inner pair of braces is repeated the numberof times as indicated by

the numberbetweenthe pairs of braces.

Note that “~” is a bitwise negation operator, 1e., it inverts each

bit of the vector signal (bus “in_3_bus”’).

SILLILLITATTAITTTATTATATTT
//
// Header information

// Bus Signals

//
SILILITITTT TATA TTTATATTA

module bussigs

(
// Inputs

inl,

in2,

in3,

// Outputs

out1

);

// Port definitions

input [3:0] in 1;

input [3:0] in 2;

input in 3;

This is replicated this many times.
output [3:0] out1;

wire [3:0] in3

[foarte r rrrnnn Design implemfientation --------

assign in3bus = {4{in_3}};

assign out_1 = (~in_3bus & in.1) | (in_3_bus & in2);

endmodule

BusSignals

Verilog by Example

The next block logic diagram shows the logic gates of the

previous diagram collected together into a standard mux symbol.

Note that we have not changed the function, just the

representation.

standard mux

Standard Mux

The verilog code on the opposite page, although also

functionally equivalent to the previous code, now reflects a different
and more compact way of representing the multiplexer function.

We here introduce verilog’s combinatorial conditional construct,
eliminating the “in_3_bus” intermediate signal of the previous

example in the process. The assign statement reads as such: “when
in_3_bus (the select control) 1s high, select in_2, else select in_1.”

This works very much like a limited version of the familiar
IF/THENstatement of other languages.

Note that although a single instance of this conditional selection
statement is used here, these can be concatenated. Here’s an

example:
assign finalvalue = select1 ? input1

select2 ? input2

select3 ? input3
defaultval;

Here, if “select_1” is high, “input_1” 1s selected, else if

“select_2” is high, “input_2” is selected, else if “select_3” is high,

“input_3” 1s selected, else “default_val” is selected. Note that a

final default value must be included, otherwise the synthesis

software will implement a (presumably unintended) latch.

In and Out

SILILILIILITILIAAA
//
// Header information

// Standard Mux

//
SLLTLITIATTATATATATA

module standardmux

(
// Inputs

inl,

in2,

in_3,

// Outputs
out1,

);

// Port definitions

input [3:0] in 1;

input [3:0] in2;
input in 3;

output [3:0] out_1;

[former errrrrr Design implementation --------

assign out1 = in3 ? in2: inl;

endmodule

Standard Mux

Verilog by Example

Finally, before we move beyond strictly combinatorial

operation, we'll explore a few more details associated with buses.

Where in the previous examples we selected entire buses for the

output, here we break the buses out and then recombine them after

some processing. Note that both input buses are four bits, but the

output busts six bits.

in_1[3:0] >|

NX.in_1[0] out_1[0]

NX. in4[1] out_1[1] \

NX. in1[2]

N\

ae

\it8)aD’

in.2[2] out_1[4] /

4 in_2[3] out_1[5] 7
Y/

 out_1 [5:01

 in_2[3:0]
 bus_breakout

Bus Breakout

All of the combinatorial and bus reconstruction shown in the

module above 1s implemented in one assignment in the code on the
opposite page. Here we introduce bus concatenation, which 1s

defined by a single set of braces. I have arranged the concatenation

elements vertically on separate lines for clarity, but they could all be

included on the same(albeit somewhat long) line, still separated by

commas. Note that the MS elementis alwaysfirst (1.e., next to the

left-most brace), while the LS element is always last (next to the
right-most brace. Notice also that the first and last elements here

comprise two bits, and that the two middle elements (each onebit)
are the result of combinatorial operations.

In and Out

TILITLTILITLLTITLTTTTTTTTAT
//
// Header information

// Bus Breakout

//
SILITITILTTLTATTATTLE

module busbreakout

(
// Inputs

in_l,

in2,

// Outputs

out_1

);

// Port definitions

input [3:0] in1;

input [3:0] in2;

output [5:0] out1;

[[o --rrenner Design implementation --------

assign out_1 = { in_2[3:2],

(in1[3] & in_2[1]),
(in_1[2] & in_2[0]), »concatenation
in_1[1:0]

endmodule

Bus Breakout

Verilog by Example

Clocks and Registers

In the introduction, I indicated that this book assumesthat you

have a working familiarity with digital design. The rubber 1s about

to meetthe road.

Clocked state logic comprises the vast majority of the workings

of modern FPGAs, and it 1s here that the true complexity and

sophistication of any hardware descriptive language unfolds. The

fundamental principles of clocked operation in verilog, though,are

straightforward, and easy to grasp if we take them step at a time.

Until now, our code has consisted of continuous assignments,

1.e., direct combinatorial logic. These “assign” statements are

continuous in the sense that the output signal (the one being
assigned) is continuously responsive to any and all inputs. Any

input that changes (and is not gated off by the mtervening logic)

will immediately affect the output (Qgnoring physical delays).

Contrary to this, registers hold or store information, and therefore

require a different coding mechanism called a structured procedural
statement. The most commonstructured procedural statement,

and the one used almost exclusively for register implementations,1s

the “always block.” ‘There are a variety of flavors of this, but for

implementation (1e., synthesis) of clocked registers, we use

exclusively the sequential, non-blocking version. That probably

doesn’t mean muchto you, and that’s okay for now. It is helpful to

know that there are other forms in case you may happen across
them, but for the time being, an always-block is synonymous with a
register.

We'll begin by implementing the simplest form of a D-flop.
Since this represents the basis for the various forms of registers we

will continue to encounter, it is labeled as a “Reg.” As shown in the

timing diagram, output “out_1” follows “input in_1” at the clocked

edges.

Verilog by Example

| st 1 s2 | s38 | s4 | sd |

clk | [| [7] |

int / ey

out_1 / YY

in_1 _» Reg out_1 >

clk >

simple_dflop
Simple D-flop

For the sake of brevity we’ve modified the file format a bit in

the code on the opposite page (you'll get used to this as you look

across different people’s code).

We've added a new declaration for a “reg.” This is necessary

since we will be implementing output signal “out_1” as a register

type. This is in contrast to the “wire” declaration. We have not

previously needed to declare outputs explicitly as wires since in

verilog outputs default to wire types (it wouldn’t have been wrong
to declare all the previous outputs as wires, just not necessary).

The section of code shown asthe always-block implements the
D-flop register. The information inside the parenthesis next to the

“@” symbolis called the sensitivity list, and defines which signals
can contribute to changes inside the block. Specifically, no activity

inside the block can occur unless something in the sensitivity list
changes. In the case of our simplest of D-flop registers, the
sensitivity list contains just the clock signal. Further, “posedge”

defines the flop as rising-edge triggered (“negedge” would be
falline-edge triggered).

The operation is easy to see: at every rising clock edge (and

only at a rising clock edge), the value of “in_1” 1s assigned to
“out_1”. You may wonder why we use the two-part “<=” symbol

instead of a simple “=” for the assignment like we did with the

combinatorial assignments, and the answer is that this defines it as a

Clocks and Registers

non-blocking assignment. This allows individual elements of more

complex always-block structures to operate independently, but the

important point is that all synthesized registers use this non-

blocking assignment, so get usedto it.

The “begin” and “end” lines define the body of the always-

block. In this case where there is only one assignment line, the

begin/end pair is actually optional, but I recommend always using

them for consistency.

TILITTTLTTALTTTATLATTATATAATT
// Simple D-flop

SILILIIIITTTTTTALLILIATTATTTTAT

module simpledflop (clk,

inl,

out1

);

input clk;

input in1;

output out1;

reg out1;

[[oo wnnnnn Design implementation --------

always @(posedge clk)

begin | always block
out1 <= in1;

end

endmodule

Simple D-flop

Verilog by Example

Next we add an asynchronousreset to our simple D-flop. The

timing diagram shows the operation where “reset” forces “out_1”
low immediately during state s3, and “out_1” then remains low

until clocked again back high at state s5.

Our convention will be that asynchronous controls (resets and

presets) will enter the register box at the top or bottom, whileall

synchronouscontrols will connect to the front.

| s1 | s2 | s3 | s4 | s5 | s6 | s7

ckLI

int _ KL

out_1 / \ \

reset |

in 1 out 1
- > Reg —P

clk

reset >

dflop_n_reset
D-flop with reset

In the code on the opposite page you can see that the always-

block has now grown to accommodatethe reset. Since the reset is
asynchronous and results in activity tmmediately, it must be

included in the sensitivity list. Tagging it as “posedge”’ meansthatit

will be high-active—the flop resets as soon as the reset goes high,

but after the reset is lifted, the flop doesn’t change until the next

clock edge, thus only the rising edge of the reset requires immediate
attention.

The body of the always-block has now become more
complicated as we introduce if/else conditional statements to
accommodate the reset. Any time “reset” his high, “out_1” 1s

forced to zero. Since this happens as soon as reset goes active
(reset 1s part of the sensitivity list), and at every rising clock edge,

you can see that this effects an asynchronousclear. When reset1s

Clocks and Registers

not high, then the “else” original in-to-out register assignment1s

selected (occurring only at rising clock edges).
Note that the reset zero assignment is made with “ 1’b0 ”.

Verilog uses a specific format for static values. The first field

defines the numberofbits (1e., the width of the vector), the next

field, separated by the apostrophe, defines the radix, and the last

field defines the actual value. Since in this case we have a simple

one-bit zero, the first field is “‘1”, and we let the value be defined as

binary.

SISIIILLITITATITTIATATTT
// D-flop with reset

LILLTTLLLIAATTLLITATTAATTTTATTTATTATTTT

module dflop_nreset (clk,

reset,

inl,

out1

);

input clk;

input reset;

input in1;

output out1;

reg out1;

[/ -------- Design implementation --------

always @(posedge clk or posedge reset)

begin

if (reset)

out_1 <= 1'bO;

else

out1 <= in 1;

end

endmodule

D-flop with reset

Verilog by Example

Pressing on, we now add more functionality to our nascent

register. Here we introduce two synchronous controls: an enable,

and a low-active synchronous clear. We forgo a timing diagram

since the operation1s self-evident.

Note that the asynchronous reset remains. Besides benefiting

from simple consistency, this demonstrates an important point

about FPGA design in general: we invariably choose one reset

method(synchronousor asynchronous), which is then used globally

on all the registers. At a minimum, global resets are necessary for

simulation, but additionally may be a practical necessity for proper

testing in-circuit. In our case, we will always be using a global
asynchronous reset. We should also note that on very large and/or
fast designs, the global reset may be segmented into functional

domains, but the premise that every flop shares a (sem1)common
reset remains.

in1 > Rog out_1

clean
clk >

reset >

dflop_en_clr
D-flop with enable and clear

The always-block in the code on the opposite page expands

with the additional synchronous control functions. The
asynchronousresetstill takes priority (it comes first), but now a low

“clear” signal will also force the output to zero as well. However,

since this clear signal 1s not included in the sensitivity list, the
change occurs at the next rising clock edge (thus, rendering it
synchronous).

Notice that the “else if’ conditional expression uses a logical
equality test, whereas the “if” reset line did not. This is because the

conditional expression is evaluated as either Boolean true or false.

When “reset” is a one, its Boolean equivalent is by definition true.

Clocks and Registers

The conditional expression can be as complicated as you like,

spanning many lines of code, as long as the synthesis tool is able to
determine a final Booleanresult.

The final conditional statement implements the clock enable,

and here again, since “enable” is high-active, no logic equality test 1s

necessary. Notice that there 1s no final “else” statement. If there

were, the latching operation of the clock enable would be defeated.

As with most other languages, the order of the conditional
statements determines the priority.

LILIATTITTIATTATTTATAAST
// D-flop with enable and clear

module dflop_enclr (clk,

reset,

inl,

enable,

clear,

out1

);

input clk;

input reset;

input in1;

input enable;

input clear;

output out1;

reg out1;

/[{[----- Design implementation -------

always @(posedge clk or posedge reset)

begin

if (reset)

out_1 <= 1'b0O;

else if (clear == 1'bO)

out1 <= 1'b0;

else if (enable)

out 1 <= in 1;

end 7 7

endmodule

D-flop with enable and clear

Verilog by Example

We now introduce a few commonstate-type operations to show

how incteasingly sophisticated register-based functions are

implemented in always-blocks. A four-bit counter is enabled by a

“start” event, and stopped by a “stop” event. The SR flop allows

the start and stop events to be short, e.g. one-clock pulses, rather

than a continuously enabling flag. Additionally, for further

illustration, we delay the start signal two clocks and send it out.

You'll notice that we have not shown the asynchronousreset.

This is done for clarity; from this point forward it is assumed. It 1s

implementedin the code, and always will be (in this book).

start , cnt_en

stop ;

count[3:0] >

clk > modulo 14

stop stop_d2
——$<__$__ >

 clks_n_regs_4

SR flop and counter

The code includes two register declarations for internal signals
(cnt_en and stop_d1), and two register declarations for the two

external signals (count[3:0] and stop_d2). We now have multiple
always-blocks. Note that always-blocks operate concurrently,

meaning they run simultaneously, independent of each other, just

like two registers in a design.
Each always-block 1s associated with a coherent register

function: one for the SR flop, one for the counter, and one for the

two delays. The SR flop always-block needs no explanation beyond
noting that there is no “else” statement, resulting in a latch function

(which is indeed what we desire). The counter always-block also
has no “else” statement, but since it is an enabled counter,it is also

Clocks and Registers

in a sense a latch. Notice that since the counter is modulo 14, the

first “else if’ statement clears it when the count is 13. A couple of

things to note here: “ 4’d13 ” indicates a decimal thirteen, and we’re

now using a double “&&” in the conditional expression. This 1s

because “8&&” is a Boolean AND (versus the bitwise “&’’), which 1s

required for the conditional decision. In the samesense, “| |” 1s a

Boolean OR (versusthe bitwise “|”’). Note that we use “ 4’h0 ” for

clearing the counter. This indicates a hex zero. It could just as well

have been 4b0000, or 4’d0. Similarly, the 4’d13 modulo rollover

could have beenthe slightly less readable #hD, or even 4’b1101.

SLILIITIAITTTATTTA ITSTTTTTTT
// SR flop and counter

SITLTLITATATTTTATATTA

module srflopn_cntr (clk,

reset,

start,

stop,

count

);

input clk;

input reset;

input start;

input stop;

output [3:0] count;

reg cnt_en;

reg [3:0] count;

reg stopdl;

reg stop_d2;

[{[------ Design implementation -----

// SR flop

always @(posedge clk or posedge reset)
begin

1£ (reset)

cnt_en <= 1'b0;

else if (start)

cnt en <= 1'bl;

else if (stop)
cnt_en <= 1'b0;

end

Verilog by Example

// Counter
always @(posedge clk or posedge reset)

begin

if (reset)

count <= 4'h0O;

else if (cnt_en

&& count == 4'd13

)
count <= 4'h0;

else if (cnt_en)

count <= count + 1;

end

// delay

always @(posedge clk or posedge reset)
begin

if (reset)

begin

stop_dl <= 1'b0;

stopd2 <= 1'b0;
end

else

begin

stopdl <= stop;

stop_d2 <= stop_dl;

end

end

endmodule

SR flop and counter

The last always-block implements the two sequential delays.
The points to note here are that multiple register signals can be

groupedinto the same always-block (when it makes sense), and that
additional begin/end block boundaries are needed around each pair

of signal assignments. Without these, the synthesis software might

interpret, for example, that “stop_d2 <= stop_1” 1s not associated

with the “else,” but stands alone.

Finally, we should note that the three always-blocks could be

collected together into one. This is shown on the next page.

Clocks and Registers

always @(posedge clk or posedge reset)

begin

if (reset)

begin

cnt_en <= 1'b0;

count <= 4'hO;

stopdl <= 1'b0;

stop_d2 <= 1'b0;

end

else

begin

if (start)

cnt_en <= 1l'bl;

else if (stop)

ent_en <= 1'b0;

if (cnt_en

&& count == 4'dl13

)
count <= 4'h0;

else if (cnt_en)

count <= count + 1;

stop_dl <= stop;

stop_d2 <= stopdl;

end

end

SR flop and counter, one always-block

This of course results in more compact code, but the benefit

comes with a danger. Extreme care must be taken to make sure

there is no ambiguity about what goes with what. If there’s any
doubt, begin/end block groupings are always available for

clarifications.

Verilog by Example

State Machines

Everybody loves state machines, particularly people trying

to understand your design. But the clarity is only as effective as

how well the coding language communicates the state machine’s

structure. As we'll see, if coded with proper care to outline the

operation, verilog provides a very good vehicle.

We'll use a fairly simple machine to demonstrate how they can

be coded in verilog. After receiving a “go” event, the state machine

transitions from the “idle” state to “active,” where it waits while an

auxiliary counter steps through a hundred clocks. Once this

defined active duration is complete, the state machine returns to

“idle,” but passes through onelast “finish” state on the way. This

“finish” state produces a one-clock pulse on the “done” output

signal. An external “kill” signal can terminate the wait active
duration, forcing the state machine back to idle. For the sake of

stability, though, the state machine waits in an “abort” state until

the kill signal goes back inactive.

Note that this design assumes that the inputs are synchronized

to the clock that drives the FPGA. Otherwise, the inputs would

need to be clocked through an input register (1.e., synchronized)
before presentation to the state machine to prevent spurious

operation. In fact, if the extra state latency is not an issue, inputs

are often re-clocked as standard procedure.

The “done” register is included to avoid combinatorial decode
glitches. Gray or one-hot state coding could be used instead, but
including an output register provides a more universal application.

You may recognize that the entire operation of this sample
design could be implemented with just the counter alone (enabling

and clearing it directly with the external signals), but the state
machine presents a clear communication of the intent of the circuit,

and also provides an easy avenue for later changes or expansion.

Verilog by Example

kill

“finish’ Ldone_».

clk —)

clk

duration_cnt == 100
“active” count/[6:0]

“finish” or “abort”

clk +) state_machine

State Machine

eee
// State Machine

module statemachine1 (clk,

reset,

gor
kill,

done

)?

input clk;

input reset;

input go;

input kill;

output done;

reg [6:0] count;

reg done;

reg [1:0] statereg;

// state machine parameters

parameter idle = 2'b00;

parameter active = 2'bOl1;

parameter finish 2'b10;

parameter abort = 2'bll;

State Machines

[/[------ Design implementation -----

// State Machine
always @(posedge clk or posedge reset)

begin

if (reset)

statereg <= idle;
else

case (statereg)

idle

if (go) statereg

active

if (kill) statereg
else if

(count == 7'd100) state_reg

finish statereg

abort
if (!kill) statereg

default statereg

endcase

end

// Counter
always @(posedge clk or posedge reset)

begin

if (reset)

count <= 7'h00;
else if (statereg == finish

|| statereg == abort

)
count <= 7'h00;

else if (statereg == active)

count <= count + 1;

end

// done register
always @(posedge clk or posedge reset)

begin

if (reset)

done <= 1'b0O;

else if (statereg == finish)

done <= 1'bl;

else

done <= 1'b0O;

end

endmodule

State Machine

active;

abort;

finish;

idle;

idle;

idle;

Verilog by Example

State machines have limited effectiveness 1f we are not able

to use human-friendly labels, and verilog provides two mechanisms

for this. We will be using parameters to bridge alphanumeric state

labels with numeric-coded states. As we'll see later, parameters are

also often used in verilog designs to carry configuration information

down into hierarchical sub-modules, but the advantage they offer

for state machine labeling is the fact that they operate locally,te.,

unless specifically communicated into the module, the parameter’s

value is not affected by other parameter assignments in other

modules. So, in general, the same parameter name can be used in
different modules, and they will operate independently of each

other.

This is not the case for the other possible mechanism for state

machine labels: define statements. Unlike parameters, defines are

global, meaning that a define assignment in another module could

override one in yours. This, of course, could be disastrous if the

override is done unintentionally just because the same name

happened to be chosen for two unrelated defines.
In the code above, you can see that using parameter

assignments we’ve associated the four states of our design with four
distinct numerical (binary) values. We use two bits because that1s

all we need to define our four states. It would not be wrong to

choose a wider bit field, and would provide the modest advantage

that the machine would be easier to expand later. An important
point is that the parameter assignments are for convenience of
labeling only; the actual machine is implemented using a register
vector—the two-bit “state_reg’’ in our case.

The first always-block implements the state machine using a
case statement. Case statements are familiar 1f you have experience

with almost any type of programming, but in a nutshell, the case
statement selects and executes the statement group (identified with
a following colon) that matches the value inside the parenthesis

(“state_reg”’ in this example). Since the case statement is contained
inside a clocked always-block, an assessment and one selected

group is executed each clock.

We'll follow through some of the operation for demonstration.

We start with the state machine in the idle state, where “state_reg”

State Machines

contains “idle” (2’b00). Each clock, the case selection executes the

idle group, where if “go” is not high (not active) then nothing 1s

done, so that for the next clock “state_reg” still contains “idle.”

Eventually “go” transitions high, and “state_reg’” is assigned

“active”. This corresponds to the first transition of the state

machine. For the next clock, the case statement selects for

execution the “active” group, where “state_reg” remains unchanged

until either “kill” goes high, or the counter reaches its terminal value

(decimal 100), when the state machine then transitions to “abort” or

“finish” respectively.

We'll not detail the entire machine operation, as you’ve surely
gotten the gist by now. Note, however, that “!’ is used to indicate

“not kill.’ This is the same as “ kill == 1’bO ”. Like the double

“&&” and “||”, “! 1s a logical operator, and is normally used in
conditional expressions. The “~” symbol (a bitwise negation) 1s

usually used in combinatorial assignments. Since the results are
often the same, designers sometimes use them indiscriminately.

We'll now review the coding structure. Normally the

assignment statement (e.g. “state_reg <= active’) follows the
conditional statement on the next line. Here, though, we haveit

following on the sameline. Verilog doesn’t care, and this allows for

a visually coherent form—the state machine operation is easily

understood based onthetransition decisions. We note that this is

only possible because this always-block contains nothing but the

state machine. If it didn’t (as we'll soon see), then we would have

to block multiple assignments with begin/end borders, ruining the

regular matrix structure.
Finally, be aware that many synthesis programs require the

default statement, even if the case statement already includes all

possible selection branch combinations (considered “‘full”’). The

label “default” is a keyword (it was not defined as a parameter).

The counter and output register of this module are similar to
those we’ve already looked at. Note that we decode state machine
states directly in these blocks using the “state_reg” register signal

and the state parameters. Also note that the “done” outputis set to
one based on a conditional“else if” test of the state machine. Most

newer synthesis tools allow a more direct form:

Verilog by Example

always @(posedge clk or posedge reset)

begin

if (reset)

done <= 1'bO;

else

done <= (statereg == finish);

end

Here the Boolean result of the state register comparison 1s

translated to a binary bit for assignment to “done.”

As we’ve noted, verilog code can be structured in a variety of

ways. Some designers might prefer the auxiliary counter and output

register to be collected into one always block along with the state

machine. This is how it might look:

LIIILTIITLTTAAT AIA TAAIAAIAAAAAA ATT

// State Machine

module statemachine2 (clk,

reset,

go,
kill,

done

i

input clk;

input reset;

input go;
input kill;

output done;

reg [6:0] count;

reg done;

reg [1:0] statereg;

// state machine parameters

parameter idle = 2'b00;

parameter active = 2'b01;

parameter finish = 2'b10;

parameter abort = 2'bll;

/{[------ Design implementation -----

// State Machine
always @(posedge clk or posedge reset)
begin

if (reset)

begin

statereg <= idle;

State Machines

count <= 7'hOO;

done <= 1'bO;

end

else

case (statereg)

idle

begin

count <= 7'h0OO;

done <= 1'b0O;

if (go)
statereg <= active;

end

active

begin

count <= count + 1;

done <= 1'b0O;
if (kill)

statereg <= abort;

else if (count == 7'd100)
statereg <= finish;

end

finish

begin

count = 7'h00;

done <= 1'bl;

statereg <= idle;
end

abort

begin

count <= 7'h0OO;

done <= 1'b0O;

if (!kill)

statereg <= idle;
end

default

begin

count <= 7'hOO;

done <= 1'bO;

statereg <= idle;
end

endcase

end

endmodule

State Machine, one always-block

Verilog by Example

Besides losing the visual advantage of correlating the state

machine decisions with corresponding actions, this type of code

structure is susceptible to mus-operation if care isn’t taken to

account for every register state in every case selection. Although

often resulting in code that is not as tight, when each function 1s

implemented with its own always-block, each operation 1s clear and

concise.

Modular Design

The design examples we’ve used so far have been very small for

obvious reasons. Designs of increasing complexity reach a point

where containing them in a single file becomes cumbersome. At

some point sheer size compels us to break up the design into

componentparts, possibly multiple layers of hierarchy.

There are other good reasons besidesjust size, though, to use a

modular approach:

oO reuse (components of a design can be used in multiple places

without repeatingall the code details);

O pre-existing designs (code developed elsewhere can be

incorporated as a “black box” without caring about constituent
detauls);

o clarity (the code can be segmentedinto functional pieces that

correspond to blocks described in high level descriptions);

o simulation (individual pieces of the design can be often times

be simulated more rigorously and completely than when embedded

in the larger operation);
o changes (by compartmentalizing the functioning, the

consequences of changes can be studied and simulated 1n isolation).
Now having effused about the benefits of modular design, we

immediately offer caution against overuse. Keep in mind that
anyone examining your code will need to navigate through as many

files as there are modules. No one will love you if you break out

every register, mux, and counter as its own instantiated module,

when the associated always-block would have taken no more room

than the instantiated module that’s replacing it.
With that admonishmentout of the way, we can proceed to

look at how modulesare instantiated within other modules.

For the first example, we will use the module design from the

previous section (State Machines) for our internal instantiated

module. Note that there were two coded versions of that, but since

37

Verilog by Example

they operate exactly the same, and have the same input/outputs, we

could useeither one.

>3 kill Itchd,

kill_clr P

go_1
a P| go done done_1_»>

— | kill

state_machine
go_delay1

go2
“alo go done done2_

met gg gy iii
state_machine
go_delay2

go3

Kill_3 a done S008=p>
——OO Kill

ad state_machine
clk go_delay3

modular_1

First Modular Example

Here, we’ve instantiated three copies of the state_machine

module in a new higher-level module (sometimes called a
“wrapper” when most of the code consists of instantiated sub-

modules) called “modular_1”. We’ve labeled the first instantiated

copy as “go_delay_1”, the secondas “‘go_delay_2’’, and the third as

“go_delay_3”. Additionally, we’ve also added an SR latch to detect

if any of the modules’ internal counts were “killed,” and have
provided a signal (kill_clr) to clear the latch.

Onthe next page is the codefile for “modular_1”.

TILITITITTATTTS TAT
// Modular Design #

(module modular1

);

input

input
input

input

input

input
input
input

input

output

output

output

output

reg

[{ ------ Desig

// first module
statemachine1

(
.reset

~clk

~go

~kill

.done

i

// second modul
statemachine1

(
.reset

Modular Designs

LILIITTTTTTTTTTTTTT TT TT
1

clk,

reset,

go_l,
kill1,

go_2,
kill2,

go_3,
kill3,

killclr,

donel,

done2,

done_3,

killltchd

clk;

reset;

gol;

kill1;

go2;

kill2;

go3;

kill3;

killclr;

done1;

done2;

done3;

killltchd;

killltchd;

n implementation -----

instantiation

godelay1

reset

clk

(
(
(
(
(

e instantiation

godelay2

reset),(

Verilog by Example

clk (clk y

-go (go2),
kill (kill2),
.done (done2)

+

// third module instantiation
statemachine1 godelay3

(
.reset (reset),

.clk (clk),

go (go3)y

~kill (kill 3),

.done (done 3)

);

// Kill Latch
always @(posedge clk or posedge reset)

begin

if (reset)

killltchd <= 1'b0;

else if (kill1

|| kill2

|| kill3

)

killltchd <= 1'bl;

else if (kill_clr)

killltchd <= 1'b0O;

end

endmodule

First Modular Example

The entire module design consists of three lower-level module

instantiations, followed by one always-block for the SR latch. Each

module instantiation includes:

o the name of the instantiated module (state_machine_1);

o followed bya label (e.g., “go_delay_1” or “go_delay_2”);

o and a port connection list, where the connections are made

between the instantiat-ing module and the instantiat-ed module.
A period precedes each port signal of the instantiat-ed module,

while the connecting signal of the instantiat-ing module follows

inside parenthesis. Note that each connection signal pair 1s

separated by a comma.

Modular Designs

Keep in mind that the instantiat-ing name of the instantiat-ed

module (state_machine_1) must match exactly that of the instantat-

ed module (and therefore the actual file name, minus the “.v”

extension). It often happens that multiple versions of a file may

have the same name, located in different folders. You will explicitly

tell the synthesis software where the one you want to use resides.

Next, we make a minor change to our example modular design.

Each module stage now ORsits “go” input with the previous

stage’s “done” output.

JS kill Itchd,
J

>kill_clr R

go_1
‘all 1 —P| go done done_1

—_+@ Be kil!

 state_machine
go_delay71

goz 0 done 2—tD> g done

kil | pe) kil
’ -—~ statemachine

go_delay2

gos » go done_out

kill_ 3 PI done ——
- e p> kill

state_machine

clk go_delay3 modular2

Second Modular Example

Verilog by Example

IIIIIITISTITTSTTST TT
// Modular Design #

(module modular2

input

input

input

input
input

input

input

input

input

output

output

reg

wire

wire

[[oo ------ Desig

// first module
statemachine1

(

.reset

~clk

-go

~kill

.done

)?

// second modul
statemachine1

(
.reset

~clk

go

LILTITTLTSTTTTTTATT ASST
2

clk,

reset,

gol,

kill1,

go_2,
kill2,

go_3,
kill3,
killclr,

doneout,

killltchd

clk;

reset;

go_l;
kill1;
go2;

kill2;
go_3;

kill3;
killclr;

doneout;
killltchd;

kill_ltchd;
done1;
done2;

n implementation -----

instantiation

godelay1

(reset),

(clk)y
(go_l dy
(kill1),
(done1)

e instantiation

godelay2

(reset)

(clk)

(done1 | go2),

t

t

Modular Designs

-kill (kill2),
.done (done2)

)+

// third module instantiation
statemachine1 godelay3

(
.reset (reset dy

.clk (clk ,

-go (done1

| done2

| go3

)y
~kill (kill3),

.done (doneout)

);

// Kill Latch
always @(posedge clk or posedge reset)

begin

if (reset)

killltchd <= 1'b0;
else if (kill1

|| kill2
|| kill3

)
killltchd <= 1'bl;

else if (killclr)

killltchd <= 1'b0;

end

endmodule

Second Modular Example

Notice that the “done_1” and “done_2” outputs of the first

example design now become wires. This is necessary since every

signal (1.e., net) must be declared. As we learned earlier, the original

“done_1” and “done_2” outputs were also wires by default. Once
we remove the output declarations, though, we must now explicitly

declare them as wires.

The second point to notice is that we’ve performed the inter-
stage ORing right inside the port connection list. Isn’t vertlog cool?

(As a minor point, you might look at how we’vestructured the
ORing differently for the second and third stages).

Verilog by Example

Instantiated modules are not limited to your own verilog code,

or even to code that was written by another designer of your

acquaintance. Instantiating sub-modules is the method we use to

incorporate a variety of functionality delivered as tested and

documented components. These include “IP cores”—code,

sometimes quite substantial and complex, provided (often sold) by

third-parties that implement a well-defined set of functions.

Common examples of cores are complete micro-processors. You

could, if you wanted, include a PowerPC™in your design. Other

examples of off-the-shelf cores are PCI interfaces, video

encoder/decoders, encryption blocks for data security (e.g., DES
and AES), and error detection/correction (e.g., Viterbi and Reed-

Solomon). There are probably as many IP cores as there are useful

sepmentable functions. Manyare available from the FPGA vendor

directly. Someare fixed, straight-forward functional blocks, such as

8b/10b encoder/decoders. Others are synthesized based on
designer-provided parameters during the design process by vendor-
specific software that comes integrated as part of the FPGA

vendor’s tool suite, or purchased separately. Examples of these

sorts of cores are FFT and FIR filter DSP blocks, Gigabit Ethernet
interfaces, and FIFOs.

Another important class of vendor-provided modules 1s

primitive cores. These are functionally simpler blocks that are

either built directly into the FPGA device fabric, or are synthesized

in a way that utilizes fabric specifics that would not otherwise be
visible to general third-party synthesis tools (thus the label
primitive). The key difference between primitive cores and the

afore-described off-the-shelf IP cores is that, whereas the latter

generally consist of verilog code that becomes a part of the overall

synthesized design, primitive cores are just place-markers in the
code that the vendor compiler (versus the synthesis stage)

recognizes and inserts the proper functionality at the device-specific
stage of the path towards a final binary build file. These place-
markers are called “black boxes,” and have the appearance in the

code of a normal instantiated module. However, no associated

verilog file exists to go along with them. In fact, most synthesis

software upon encountering an instantiated module for which it

cannot find an associated verilog file will automatically declare it as

Modular Designs

a black box entity. Designers, as a result, must routinely scan

synthesis results looking for instances of black box declarations in

case they are simply the result of lost or misplaced verilog files.

Primitive cores will be addressed again in the next section on

memories.

A final word about module instantiations, and we tread here

with trepidation. We have shown you how to make inter-module

port connections using a connection list, where each instantiat-ed

module’s I/O port is paired with an instantiat-ing module’s signal.

There is no ambiguity in this: each port is specifically identified
with its associated signal. However . . . verilog does allow another

short-cut method, called an “ordered lst.” Here, only the

instantiat-ing module’s signals are listed, and the instantiat-ed

module’s I/O ports are inferred based on their position. An

ordered list module instantiation from the previous code might look

like this:

// first module instantiation, using an ordered list
godelay1 state_machine1

(reset, clk, go_1, kill_1, done_l);

Now that we’ve revealed this, it’s like cracking the top of

Pandora’s Box. You can see the attractton—simple and short; but

also prone to mistakes. In fact, I go so far as to consider this
method a trap waiting to be sprung. The reason is that port

misconnections are not obvious, and if the mismatched port types
are the same, then the synthesis tool will not flag a problem.

Mismatches can happen if, for example, modifications are made to

the instantiat-ed module that cause the ordering of the port list to

change (remember that often the instantiat-ed module 1s not under
your control). Worse still, verilog allows you to leave unconnected

output ports of instantiat-ed modules out of the port list. This
means that if, for example, a new output signal is added to your

instantiat-ed module (this happens quite often), shifting down all
the original signals, and if the last signal is an output, it is now

unconnected (and signals above are misconnected), but no error
flag is raised by the tools.

I] urge you to resist.

Verilog by Example

Memories

Memories are an important componentin manyfields of digital

design, and they come in a variety of forms: DRAM, SDRAM,

DDR, QDR, SRAM, FIFO, LIFO, DP, etc.. Of these, the first

four are of course not (yet) available for FPGA implementation, but

almost any other form imaginable has probably been implemented.

Memory design in FPGAsis another topic that could be a whole

book unto itself, and here we will simply review the fundamentals

of designing memories using verilog.
Memories implemented in FPGAs (versus memorycontrollers,

which would also include the DRAMs,etc.) can be defined in three

general ways:
1) infer the memory directly via the verilog code;

2) build the memory using the vendor’s primitive RAM

structures;

3) design the memory using the FPGA vendor’s specialized
tools.

We'll discuss the last two first. The second option (primitive

RAMstructures) uses RAM resources that are built into the FPGA

device fabric, and thus are the most efficient means of building
memory functions (and if you don’t use them, then they represent

valuable substrate that goes unused). Each RAM block occupies a

fixed amount of FPGA die, and they usually have a limited degree

of flexibility as to their depth versus width (aspect ratio). These
RAM blocks are an example of primitive cores discussed in the
previous section, and as explained there, when using these in a

verilog design, they are instantiated as black box modules. In this

mode, it’s up to you the designer to build up in verilog any

associated control logic, such as circular addressing for FIFOs, logic

for the FIFO depth flags, etc.. Most built-in FPGA RAM blocks
can be configured to operate as dual-port memories, vastly
simplifying many designs.

Verilog by Example

The third option (vendor’s specialized tools) 1s by far the easiest

approach, particularly with application-specific FIFOs. This

method wasalso discussed in the previous section, and functional

blocks built around memories (FIFOs, ROMs, CAMs,etc.) are just

an example of the IP cores built using vendor-specific software.

The designer, via the GUIs of the vendor software, establishes the

parameters of the memory functional block. Parameters for FIFOs,

for example, might include depth, input width, output width,

various flag locations,etc..

The main downside to using vendor-supplied IP core

generators is that they depend on vendor-supplied software. This

limits the design’s portability, meaning that, should the design be

moved to another vendor’s device (e.g., migrate to an ASIC), all

those IP cores will need to be re-designed, either using the new

vendor’s IP generation tool, or built up anew in verilog. Either

way, this often translates to a major design and test effort. If, on

the other hand, you are confident you will never change FPGA

vendors, then this is not an issue.

However, even if you never change FPGA vendors, there still

may be issues related to the vendor’s IP generation tool evolution.
If you knew that you were going to create the design just once and

never revisit it again, there would be no problem. But in practice,

this almost never happens. Whether from requirement changes

introduced later, or subtle problems found down the road that

require modifications, inevitably the design sees changes. If the
changes manifest in one of the vendor-generated cores, then the IP
module will need to be re-generated, and this in turn may require

you to use a newer version of the vendor core generation tool.
Although rare, there sometimes are differences in how the new tool

creates the functions, particularly when the vendor replaces a whole

category subset of the tool with a completely “new and improved”

version. Also, again though rare, a vendor may completely
eliminate support for an esoteric, infrequently used type of core.

Lastly, we go back to the first method of defining memories:
inferring the memory directly via the verilog code. This is the

method used when the design is expected, or even suspected, to

migrate later to an ASIC, where RAM blocks and convenient GUI-

based vendor IP generators are but a rumor. Also, inferred

Memories

memories are often used for very small memories—specifically,

memories significantly smaller than the smallest primitive RAM

block (we may be saving those for places where they are really

needed).
First, we should explain why we say that the memory 1s

“inferred,” and not just umplemented in the code like a register or

mux. Synthesis tools—whether FPGA or ASIC—uinclude

specialized capabilities to recognize when a memory is being

implied (AKA inferred). The reason is that the tool can then take

advantage of those memory resoutcesat its disposal (specific to the

chosen device). In the case of FPGAs, this may ensure that the

synthesis tool uses RAM blocksif appropriate (and allowed by the

user). Even if primitive IP blocks are not used, the synthesis tool

may take special precautions (e.g., coordinated timing) when

constructing a memory from verilog code, but only if it recognizes

it as such.

Each synthesis tool may have its own particular requirements
associated with inferred memories, but one aspect that virtually all

have in commonis that they expect the memory to be implemented

as an array of registers. Verilog has a specific declaration and syntax

usage for register arrays. Here’s an example of a register artay

declaration:

reg [7:0] membuf[{0:127];

This declaration defines an array of 128 8-bit registers. Note

that the vector size ([7:0]) 1s located in the same place as the

familiar single-instance register (between “reg” and the register

name, “mem_buf’’). The array size declaration then follows the
register array name(in this case, [0:127]). You should note that

verilog allows virtually any combination of numbersin the array size

field. Thus, “[127:0]”, “[0:1]”, and “[1:10]” are all legal, the last
being an array of ten registers. That said, memory implemented via

verilog code 1s almost always declared as an array of either “[0:x]”’ or

“x:0], where “x” is the memory size minus one. The reason for

this is that the logic that generates the write and read addresses1s

generally zero-based,1.e., for a 16-word memoty, the address signals

will consist of 4-bit values (0 through 15, 1.e. 4’h0O through VhF).

Verilog by Example

The following is a stmple dual-port memory. Data flows in one
direction, entering from the left through a write port, and accessed

from the right via a separate read port.

dat_in{15:0] Ts Dout dat_out[15:0]
wr_adr[9.0] eeei oir beg1BOTS-OT a
wre! ae 1Kx16

——_—_ memory

simpledpmem
Simple Dual-port Memory

We will tmplement this as a fully synchronous memoty,
meaning that both the input and output data are clocked (versus,

for example, that the output data changes as soon as the read

address changes). This does not mean, however, that the write or

read addresses are registered (otherwise, the write address would
have to come one clock before the associated data to be written).

Therefore, write data (dat_in) is presented to the memory during

the same clock as the write address (wr_adr), but the read data

(dat_out) appears out of the memory one clock after the read
address (rd_adr).

SILT TILTITLIL LAATAIAAIAAAA
// Simple Dual Port Memory

module simpledpmem

(clk,

reset,

dat_in,

wr_adr,

wr_en,
datout,

rd_adr

Memories

output [15:0] datout;

input [9:0] rd_adr;

reg [15:0] memory[0:1023];

reg [15:0] dat_out;

[[-----7 Design implementation -----

// Memory
//
always @(posedge clk)

begin

if (wren)

memory[wr_adr] <= dat_in;

datout <= memory[rdadr];

end

endmodule

Simple Dual-port Memory

So, notably, here we are representing the greatest quantity of

FPGA logic so far with the least amount of verilog code. We see

now how register array (“memory”) implements a memory; the
addresses, both write and read, each point to one location (or word)

in the array. If the write enable signal (wr_en) 1s active, at the rising

edge of the clock the write data word (dat_in) is loaded into the
register array at the location specified by the write address (wr_adr).

Simultaneously, the value located at the location specified by the

read address (rd_adr) is loaded into the memory’s output register
(dat_out).

Left to the fate of chance by ambiguity, this code would

probably result in the synthesis software using the RAM block

resources of the FPGA if available. Explicit direction can be
included to direct the synthesis tool to either specifically use RAM

blocks or specifically not use RAM blocks (in which case the
memory is then referred to as distributed RAM). Each synthesis

tool has its own format for these types of embedded directions, and
the designer must consult the tool’s documentation for guidance.
In general, though, the synthesis directions are communicated via

comments in the verilog code that include one or more keywords

that the tool recognizes (strictly speaking this violates the premise
of a comment). Here is an example—this directs the Xilinx XST

Verilog by Example

synthesis software to implement the memory not as RAM blocks,

but as distributed RAM:

//synthesis attribute ram_style of memory is distributed

This comment would be placed just prior to the memory register

array declaration. Note that “memory” in the commentts the label

of the register array in our code.

Note that although “reset” is brought into the module,it 1s not

used in our memory implementation (in fact, it’s not used atall,

which is permissible in verilog). This is because RAM blocks, per

se, do not have resets. If we wanted to implement the memory as

distributed RAM, we would have to consult the vendor’s FPGA

documentation to see if resets are allowed. We should also note

that the ascending/descending direction of the array size field 1s

irrelevant. We declared the array size as “[0:1023]”, but we could
have equally declaredit as “[1023:0]”.

Finally, we need to address a troublesome point regarding the

memory’s operation when a write and read are made to the same
address simultaneously. There are two possibilities: 1) the data that

is read is the original value before the write replaced it (called “read-
before-write”), or 2) the data is the new value that is being written
(called “write-before-read”). Our code implies a write-before-read

operation based on the simple fact that the write assignment comes

before the read assignment in the always-block (reversing the order
would imply a read-before-write). Newer RAM blocks typically

accommodate either type of operation, but some older versions are

fixed, and in that case, as the designer you would have to makesure

your code matches(and that your design operates correctly).

Next, we look at a full dual-port memory, where both ports

have both write and read capability.

Memories

dat_in_a{15:0] | 1 legs Gat_in_b[15:0]
address _a[9:0> nan sar => address_b{9:0]

port a at_out_af15:0f Dout_a Dout_b cattO port b

Wra = we_a we_bF— We

clk_a 1Kx16 clk_b
———r- memory ¢-<————_

fulldpmem
Full Dual-port Memory

As with the simple dual-port memory, this memory 1s fully

synchronous, where write data (dat_in_[a/b]) is presented to the

memory during the same clock as the address (address_[a/b]) for

wtites (when wr_[a/b] is active), but the read data (dat_out_[a/b])

appears out of the memory one clock after the address for reads
(when wr_[a/b] is inactive). If you’re not familiar with full dual-

port memories, note that data written from either port can be read

from either port—the contents of the memory are shared between

the two ports. Note that we’ve also added a second clock, so that

each port is now clocked independently (both ports could share a

clock if independent clocking is not needed).

SILTTTITSTILAITAETALTITTATTIATA TTT T
// Full Dual Port Memory

module fulldpmem

(reset,

// porta
clka

dat_ina,
addressa,

dat_out_a,
wr_a,

//port b
clk_b
dat_inb,

addressb,

dat_out_b,

wr b

Verilog by Example

input [9:0] addressa;
output [15:0] dat_out_a;
input wra;

input clkb;

input [15:0] dat_inb;

input [9:0] addressb;

output [15:0] dat_out_b;

input wrb;

reg [15:0] memory[0:1023];

reg [15:0] dat_out_a;

reg [15:0] dat_out_b;

[/[------ Design implementation -----

// Port a
//
always @(posedge clka)

begin

dat_out_a <= memory[addressa];

if (wra)

begin

dat_out_a <= dat_ina;
memory[addressa] <= dat_ina;

end
end

// Port b
//
always @(posedge clkb)

begin

dat_out_b <= memory[addressb];
if (wr_b)

begin

dat_out_b <= dat_in_b;
memory[addressb] <= dat_inb;

end

end

endmodule

Full Dual-port Memory

For as much complexity as a full-featured dual-port memory
contains, the verilog codeis still relatively simple. Since each port

operates from its own dedicated clock, we use separate identical

(other than signal names) always-blocks for each. Whereas for the

simple DP memory, each port was dedicated as either a write or a

read, now each port includes both modes. Since each port shares

Memories

an address for reading and writing, the question arises as to what

happens to the read output during write cycles. In the case of this

code, the operation 1s essentially write-before-read, meaning that

when wr_[a/b] is active, the data presented on dat_in_[a/b] is
copied to the read signal dat_out_[a/b]. However, whereas for the

simple DP memory code the write-before-read was implied, here

the operation is explicitly defined with the “dat_out_[a/b] <=

dat_in_[a/b]” assignmentinside the write “if” statement. Analyzing

the always-block, we see that first the read assignment is made, and

if this is not a write cycle (i.e., wr_[a/b] is not active), then weare

done. However, if this is a write cycle, (wr_[a/b] is active), then the

write data (dat_in_[a/b]) replaces the value that was read from the

memory atray on the read output signal (dat_out_[a/b]) before the

write data is loaded into the specified address location.

But this introduces an important point. For the first time we

see a signal being assigned values from within two different

statements within an always-block (there were previously multiple

assigenments—the if-else and case statements—but they were all

within the same statement). This is allowed in verilog, and the rule
is that the assignment that is ultimately used is the last one

executed. Of course, the “last one” may be different for each
execution of the always-block (1.e., from clock to clock).

Although supported by the verilog language, assignments from
within multiple statements should be used with caution. Even

though the results can be predictably simulated, when synthesized

into actual hardware, the operation may not always be what you

expect. Additionally, the code tends to be more difficult to read
with assignments made across multiple statements, especially in

large always-blocks.

Speaking of multiple assignments, notice that, not only do we

assion the output data from within two statements within the same
always-block, but in this code we also make assignments from

within two different always-blocks—assigning the memory with
write data. This is normally a no-no, and would be as a minimum

flagged as a warning by the synthesis software, and possibly as an

error. In this case, though,it is appropriate since we are expecting
the synthesis software to recognize that the two always-blocks go

together to form onestructure (the DP memory).

Verilog by Example

The dual always-blocks bring us to a last subject regarding this

full dual-port memory: simultaneous accesses to the same address
from the two ports (as implemented in the two always-blocks).

This could be two simultaneous writes, or a write and a read. With

the previous simple dual-port structure with one clock, we had the

means to define what should happen—either write-before-read, or

read-before-write. Here, though, because each port operates off its

own clock, we have no mechanism in verilog to describe what

should happen. In this case it is up to the synthesis software, and

possibly the hardware fabric itself.

Lastly we look at a simple single-port memory—atype thatis

almost never used in FPGAs1n any substantial way. The reason 1s
that FPGA memory, whether RAM blocks or distributed, is based

on d-flop registers rather than bone fide memory cell elements.

Thus, RAM blocks inherently provide separate write and read ports;

in fact, extra logic must be used to implementa single-port memory

over a simple dual-port. We present this structure for illustration

only.

data_io[15:0]
<q =e oY Bical lam Lad

address/[9:0] pl adr
wr_en || we
rd pl rc 1Kx16

clk pi} memory single_port_mem

Single-port Memory

Data to be written is presented along with the write address and

an active “wr_en” all during the same clock, while for reads, the

read address along with an active “read” are presented during one

clock, and the data appears oneclock later. Since there is only one

port, the data bus is bi-directional (input for writes, output for

reads).

Memories

TELTTTTITTATTITTIES TT
// Single-port Memory

module singleportmem

(clk,
reset,

data_io,
address,

wr_en,

rd

);

input clk;

input reset;

inout [15:0] data_io; //new I/O type

input [9:0] address;

input wren;

input rd;

reg [15:0] memory[0:1023];

reg [15:0] dat_out;
reg rddl;

[[o --7--7-- Design implementation -----

// Memory
//
always @(posedge clk)

begin

if (wren)

memory[address] <= data_io;

datout <= memory[address];

rddl <= rd;
end

assign data_io = rddl ? data_out : 16'bz;

endmodule

Single-port Memory

We introduce a new I/O port type; the “data” signal is declared
as an “inout.” This is verilog’s way of defining bi-directional
signals. If “wr_en” is active, data driven onto the bi-directional data

bus (data_io) from some source external to the FPGA 1s loaded

into the “address” memory location. The data at this location 1s

also registered into “data_out”, but this goes into the bit-bucket.

Verilog by Example

If instead of “wr_en’, “rd” 1s active, then along with the data in

memory being registered as “data_out”, the active “rd” is also

registered (1.e., delayed) as “rd_d1”. During the following clock

(when “rd_d1” is now active) the memory data being held in

“data_out” is driven onto the external bi-directional data bus

“data_io” by the assign statement. Thus, for reads, the addressed

memory data appears one clock after the read (rd) control1s active.

You may rememberthat this is how the dual-port structures worked

as well. When reads are not occurring (1.e., when “rd_d1”is not

active) the bus1s tri-stated via “16’bz”—meaning “16 bits of high-
impedance ‘2’ ”’.

This assignment statement—using tri-state internal buffers—ts

the key method to implementbi-directional buses. The following

diagram illustrates the tri-state buffer as it would appear in our
code.

(to the memory

array for writes)

<< (from the memory
array for reads)

rd rd di
—————_——__ Reg (

<4 data_io[15:0]_y» _

Ne FPGA

Tri-state buffer for bi-directional I/O

Managing Clocks

Synchronous design is synonymous with clocked operation, and

virtually all non-trivial FPGA designs use one, and often multiple,

clocks. It is difficult to understate the importance of ensuring

sound, precise clocking. For large, complex printed circuit board
designs, this is often a dedicated development sub-system—a design

specialization. Fortunately, the FPGA manufacturers have invested

commensurate effort in developing reliable integrated clocking

resources. Their engineers have developed a sophisticated clock
generation, management, and distribution sub-system for you.

The clocking resources in FPGAs can be grouped into two

categories: 1) clock distribution, and 2) clock synthesis. We have

now encountered two uses of the word “synthesis,” but whereas

our first instance pertains to the formal definition of the word,

whereby the verilog code synthesis software “combines

components to form a connected whole,” clock synthesis, as we

shall see, is more a process of creating modified versions of

something (in this case, from a source clock).
The first category of clocking resource—distribution—consists

of specialized FPGA buffers and routing facilities. Clock buffers

are essentially current amplifiers powerful enough to drive a clock
into the multitude ofloads at far-flung locations with enough umph

to ensure that the clock edge can arrive at each destination with

minimum delay (and all at the same time, Le., with no skew). In

order to achievethis, the routing paths along the way must also be
robust enough not to impose a load, meaning that they need to
have sufficient metal. To this end, FPGAs have dedicated routing

just for clocks.
Accessing these special clock buffers (often called global

buffers) and associated robust routing structures can be achieved in

vetilog code by instantiating the clock buffer directly. Since the

robust low-skew routing is driven directly by the buffer, it comes

59

Verilog by Example

along for free. The following diagram shows a Xilinx clock buffer

(BUFG), but each FPGA vendorhas its own version. For example,

the predominant Altera clock buffer 1s called “GCLK”’.

dat_ing. Reg] dat_out>

clk Ing clk

BUFG

FPGA

Clock Buffer

The following code shows the clock buffer instantiation, which
looks like the module instantiations we saw earlier, because, of

course, this 1s exactly what it is. The “BUFG”clock buffer is a

vendor primitive, and is interpreted by the synthesis software as a

black box (recall that the synthesis software simply passes these

down to the vendor compiler, which presumably knows what they
are). We recognize that once we begin using vendor-specific

primitives, we are dedicating our code to that vendor.

SIT ITIIIESITATIATATIAAAIATAAIATA
// Clock Buffer

module clockbuffer

(reset,

clkin,

dat_in,

dat_out
)F

input reset;

input clk;

input dat_in;

output dat_out;

wire clk;

reg datout;

Managing Clocks

//[------ Design implementation -----

// clock buffer instantiation
BUFG clockbufferinst

(

1 (clkin),

.O (clk)

>

// register
always @(posedge clk or posedge reset)

begin

if (reset)

datout <= 1'b0;

else

dat_out <= dat_in;

end

endmodule

Clock Buffer

This example used an external clock input, but it is usually
possible to drive internally sourced clocks though clock buffers as

well. One example is when receiving a high-speed serial interface

(e.g., Gigabit Ethernet), where the Serdes IP core recovers the line

clock, which must then be used for portions of the internal

operation.
Sometimes the FPGA will have special dedicated clock inputs

that connect to internal clock buffers directly, further reducing

delay and skew. For example, most Xilinx FPGAs have dedicated
clock inputs that are labeled as “GCLK” (makingit a bit confusing

when comparing to Altera devices, since they use the label for their

clock buffers). Since dedicated clock inputs are directly connected

to internal clock buffers, there is no need to instantiate the clock

buffer in the verilog code (although it doesn’t hurt). Further, in
order to even use a global clock buffer, you might have to bring the

clock in on one of these special clock inputs. There’s no getting

around a careful look at the documentation regarding clocking
requirements for the specific FPGA you intendto use.

Verilog by Example

Many newer synthesis tools will attempt to recognize clock

signals that could do with a clock buffer and will automatically
insert them for you (again, it doesn’t hurt, and can only help, to

make a direct instantiation).
A last word about clock distribution: newer, large FPGAs

include increasingly complex clock routing and buffering resources.

Particularly, due to the vast size and enormous quantity of potential

loads, many large FPGAs include clocking subsections. These

“regions” (often a quadrant of the die) host their own dedicated

buffers and routes, where delay and skew can be reduced below

what is possible for the global clocks (whichare still available) that

reach across the entire device. Some devices even include an even

smaller sub-section. Often called “local clocks,” these sub-areas are

usually located along the periphery of the die and are associated

with time-critical external interfaces.

The downside to this clocking sophistication is that when using

these regional and local clocks, you introduce inherent partitioning
to your design. You now have to be careful that all the logic

associated with one of these sub-clocks can fit within the resources

available in the sub-area, and more problematic, that all the logic
can actually be p/aced by the complier in the sub-area. Conflicts

arise, for example, when a signal that should be part of this sub-area

is fed from or drives an external pin that is located in a different
sub-area.

So far, we have looked at clock distribution that is sourced

directly from an external clock. This is a common application,
particularly where a single clock suffices for the logic operation, and

the speeds are moderate enoughthat external signals can be clocked
into and out of the FPGA with sufficient setup and hold times—up

to perhaps 100 MHz. When the clocking structure and/or speeds

extend beyond this, most FPGAs provide integrated PLL (Phase-
Locked Loop) and/or DLL (Delay-Locked Loop) blocks that
provide the resources needed for clock synthesis. PLL/DLLs

provide the following functions in their role as the clock synthesis
foundation, which we'll get to in turn:

o phase alignment;

o phased clocksets;

Managing Clocks

o frequency multiplication.

We start with the DLLs, the simpler of the two synthesis

functions. The delay in the diagram below1s just that, except that1t

consists of a series of precise delay elements, from which the

propagating clock signal can be tapped as “clk.” The phase

detector compares the phases (relative edges) at the input and

output of the delay, and can select the delay tap that creates the

desired phase offset. Thus, for example, we could choosea slightly

negative phase offset (1.e., something less than 360 degrees) so that

“clk” is effectively moved back in time. Then it could incur

propagation delay in the FPGA and be back to approximately

where it was coming in as “clk_in.” The clock edges at the FPGA’s

internal registers would be (approximately) synchronized with those

on the circuit board.

clk in Delay clk

A tap select

phase

detector

Simple DLL

But we can do better than this. Using the feedback path, we

can arrange for the locked loop to automatically compensate for the

internal propagation delays. If the phase detector in the following

diagram were set to find a zero-degree phase difference, then it

would select a delay tap accordingly. No matter how much delayis

introduced between the delay and “clk,” the internal clock would

always be precisely in phase with the input clock (to within the

quantum margins ofthe taps).

clk in

Delay clk

A tap select BUFG

phase feedback

detector

Propagation Compensated DLL

Verilog by Example

Thus, we have achievedthefirst point above: phase alignment.
Now imagine that we have multiple delay/phase detectorsets.

Supposethat the first is configured to select a tap to achieve phase

alionment as described above, but the rest are slaved to the first,

whereby each produces a version of “clk” that has a fixed (and

convenient) phase offset—say, 90, 180, and 270 degrees. This 1s

exactly what we often need in very high-speed designs—DDR and

QDR memory interfaces, for example.

That knocks off the second point: phased clocksets.

We've dealt so far only with DLLs, and it’s time to introduce

the PLLs. The results are similar, but the means is radically

different. You are probably already familiar with PLLs, as they have

been a mainstay of electronics for nearly a century. The following
diagram showsthe delay unit of the DLL replaced with a voltage-

controlled oscillator (VCO). Now, though, instead of selecting a

delay tap, the phase detector develops a voltage (called an error

signal) based on the phase difference. This voltage is arranged to

provide negative feedback to the VCO—the phase offset moves the

frequency of the VCO in the direction to bring the phase back to

the desired position. If the phase detector is set to zero-phase
offset, then you can see that this diagram functions the same as the

previous DLL.

VCO clk

A BUFG
error signal

clk_in phase feedback
—_—=—_—_—_ -<¥j-

detector

Propagation Compensated PLL

Since the DLL and PLL versions operate similarly, we will

collect them together as a generic “Clock Generator’ block and

move on to talk about how internal clocks can be generated that

have different frequencies than (but are still synchronized to) the

Managing Clocks

original source clock. Frequency synthesis in FPGAs 1s

accomplished in twosteps: first, the frequency of the input source

clock is multiphed up by some multiple amount (e.g., by 2, 3, 4,

etc.), and then this higher frequency clock is divided back down by

some other value. Although the up-multiplier 1s limited to integer

numbers, the down-divider can typically also include half-values

(e.g., 1.5, 2.0, 2.5, etc.). Thus, if we start with 10 MHz, and would

like an internal clock of, say, 33.33 MHz, we could multiply up by

ten, and then back downbythree.

The following diagram shows howthis is accomplished.

Clock i_clk Output
- | Generator Divider clk

(DLL) A BUFG

clk in ! ' phase FB
detector Divider

Frequency Synthesis

Since the phase detector wants to match the feedback clock to

the input source clock, it must instruct the Clock Generator to

create a higher frequency so that the FB Divider can reduce it back

to that of the input source. (We haven’t discussed how a tapped
delay line can create outputs that are higher frequencies of the

input, and we won’t; you'll just have to take it on faith that this 1s

so, as long as the desired frequency is an integer multiple of the

source). The output of the Clock Generatorts the intermediate up-
multiplied clock mentioned above,labeled “i_clk” in the diagram.

You can see that the multiplier value that is applied to the input

source clock is simply the divider amount of the FB Divider. The
Output Divider is just another divider that then reduces “i_clk” to

the final desired frequency.

If we let “FB” stand for the FB Divider value, and “OD”stand

for the Output Divider value, then the frequency of the final

internal “clk” signal1s:

clk frequency = (clk_in frequency) x (FB/OD)

Verilog by Example

The final step is now to mate the delay compensation of the

earlier section with the frequency synthesis. In the following

diagram, we’ve broken the path between the intermediate “1_clk”

sional and carried it out through the FPGA clocking resources

before presenting it to the FB Divider. As we saw earlier, this

forces the “feedback” signal to be phase-aligned with the input

“clk in’.

Output

Divider clk
BUFG

Clock i_clk
p> Generator

(DLL) BUFG

clk in ! phase FB <4 feedback
- detector Divider

Frequency Synthesis w/ Delay Compensation

It is up to you, the designer, to make sure that the BUFG and

routing paths associated with “feedback” match as closely as

possible those associated with the main “clk” signal (the compiler

software can often help with this via matched delays). The closer
they match, the closer “clk” will be phase-aligned with the input

“clkin”. We note that the FB Divider block will introduce some

amount of delay, which offhand we might think would mess up the

wotks, but it tends to be balanced by the Output Divider. The

following timing diagram illustrates this.

Managing Clocks

buffer and distribution delay divider delay
divider delay \ buffer and distribution delay

clk_in f] _——_

i_clk \— |_ |— \,_ \ 1
feedback — } /| —

FB Divider output a | c—

Output Divider output_j3=—=—— -—

clk yi 1 -—_

Frequency Synthesis Delay Compensation Timing

Note that “clk_in” and “clk” line up. This of course was the

whole point. The output of the FP Divider also occurs coincident

with “clk_in’’, and this is automatically a result of configuring a zero

phase offset in the phase detector. Finally, note that “i_clk’”’ 1s first

in the pack, occurring far “before” the input clock “clk_in’”’. This1s
magic of phase-locked loops.

Before we leave the subject of FPGA clocking, we'll compare

DLLs and PLLs.

DLL PLL

jitter The digital nature of The analog nature of
DLLsresults in some PLLs, on the other

amount of small impulse- hand, exhibit muchless

type jitter. This is rarely a jitter, and in some cases,

problem with the internal a PLL might be inserted

digital logic, but can pose prior to a DLL for the
a problem for external exclusive purpose of

interfaces that limit reducing input jitter.
allowable jitter, such as
communicationslinks.

 phase shift Because of the same PLLs offer some degree

digital nature, DLLs of phase-shifting,

generally have superior however, usually only in phase shifting capabilities, more general categories

Verilog by Example

with outputs

programmable to phase

accuracies of just a few

percent. Additionally, the

phase shifts can often be

programmed dynamically,

meaning the FPGA logic

can set them. Sometimes,

even duty-cycles can be

configured.

(e.g., phase quadrants).

Also the phaseshifts

can not(yet) be

dynamically selected.

operating
frequency

DLLs can operate at

frequencies that approach

the practical limits of the

internal FPGAlogic, but
there are some cases

where their ceiling is a

limitation. More

bothersome,they tend to
operate in ranges(e.g.,
low, medium,and high),

which need to be

configured prior to
compiling (and are

therefore fixed).

PLLsare able to

operate at higher
frequencies for those

special cases.

 lock time can be long relatively short

We didn’t introduce very much verilog code in this chapter, but
since it would be impossible to even begin many FPGA designs

without an understanding of clocking methods, we might consider

the material as a required entry ticket.

I/O Flavors

This is another chapter with very little actual verilog code, but

also another chapter that’s hard to ignore once youstart coding an

actual design. Long gone are the days when digital circuits were

entirely TTL, and the only interface question was whether the DIP

chip was “AS” or “ALS” (“Advanced Schottky” or “Advanced

Low-power Schottky”). With the emphasis now on high-speed

operation, a large part of the circuit board design often comes down

to a process of careful coordination of specialized interface
sionals—making sure the I/O signals of the integrated circuits are

compatible. FPGAs havea tally-ho leg-up here, since not only do

most host a wide selection of interface options, but they are
configurable on a pin-by-pin basis (almost), making them the

consummately flexible partner in the circuit board puzzle. In this
chapter we'll review the general categories and types of interface

options available.

Signal interfacing has evolved into a vast menagerie of
standardized forms—LVCMOS(3.3V, 2.5V, 1.8V, etc.), LVDS,

HSTL, LVPECL, SSTL(3, 2, 18, etc.), etc., etc.. Among the

parameters defined for each are:

o voltage levels;

o slew rate;

o switching thresholds;

o differential pair versus single-ended;

oO termination;

o drive impedance.

Fortunately, most current FPGAs allow some amount of
control over each of these. Additionally, many vendors also

provide some degree of control over additional I/O attributes, such
as:

o inserted delay;

o drive strength;

69

Verilog by Example

o pullup/pulldown/keepers;

o tri-state drive.

These various parameters are defined via three methods in the

design of the FPGA:1) instantiating special I/O primitives in the

verilog code, 2) voltages applied externally to dedicated pins, and 3)

design constraints.

We haven’t talked about design constraints yet. Every FPGA

design consists of two parts: the design code (verilog or VHDL),

and a list of constraints. All of these—code and constraints—

consist of text files. These constraints comprise essentially
everything needed to build an operating FPGA that isn’t included

directly in the codeitself. The constraints are entirely unique to the
particular FPGA vendor, and many to the particular device itself,

right down to the exact device package. The most commontype of
constraint 1s the pin definition—information associating an external

device pin to an I/Osignal. A 16-bit bus will have 16 different pin

constraints. Every design has pin constraints as a minimum, but

beyondthese, there are many, many types of information that can

be included. One major class is timing constraints, whereby you
can define minimum and/or maximum propagation paths, I/O

setup and hold, and minimum clock speeds. Discussions of these

are well beyond the scope of this book, and are best handled via the
vendor’s documentation anyway. The third major class of

constraints is the I/O definitions, which brings us back to these

parameters.

We'll take a look at each of these and see how theyare used and
defined.

outputvoltagelevels

Interface signal levels can range from 3.3 Volts down to less

than a Volt. External input pins define the drive voltage. The

FPGA designer must coordinate with the circuit board design to

make sure the proper voltage is used for a desired standard. Note

that I/O pins are grouped together in banks, where all I/O pins in
the same bank share the same external drive voltage pin. Thus, all

the signals connecting to a bank must share the samesignal voltage

I/O Flavors

level. We guarantee that this limitation will ultimately cause you

mucherief.

slew rate

Slew rate is typically categorized as simply “slow” or “fast”.

This parameter is defined, per pin, in the constraintfile.

switching thresholds

Input voltage thresholds are for the most part defined via

constraints. Each pin has its own constraint line, where the actual

I/O standard is declared (one that is supported by the vendor).

The constraint format is defined in the FPGA vendot’s

documentation.

Some I/O standards(those that define pseudo-differential input

amplifiers) require a reference voltage provided by an external pin
similar to that which establishes the outputdrive voltage.

differential pair versus single-ended

Differential pairs are defined by two means, both required.

First, the two halves of a differential pair must be paired to proper
FPGA I/O pins. The FPGA device hosts pin pairs that can either

be used as one differential pair, or two single-endedsignals. If used

as a differential pair, these two pins further must be mated correctly

with the positive and negative halves of the differential pair (af not,
the logic polarity of the signal is reversed). Second, a differential

receiver/driver black box primitiveis instantiated in the code.
Single-ended signals are the default and need no definition.

Note that in addition to assigning the differential pair to proper

pin pairs and instantiating a differential driver/receiver black box, a

constraint may be additionally neededif the differential signal is to

adhere to a specific I/O standard.

Verilog by Example

source impedance / termination

The very resourceful FPGA vendor engineers have developed

means to digitally mimic source (1e. drive impedance) and

termination resistors. When used, these virtual resistors eliminate

the physical resistors normally placed on the circuit board near the

FPGA I/O pin. This has distinct advantages, particularly with ever-
higher speeds and ever-denser FPGA packaging. With very dense

ball-grid packaging, the resulting cluster of termination resistors

means that many resistors simply cannot be located optimally close,
resulting in high-speed stubeffects.

Theinternal virtual FPGA termination resistors can be either in

series or parallel. The impedance value (drive source for outputs,
and termination for receivers) is set using two external resistors:

one tied up to the same pin that defines the output drive voltage,

and the other tied to ground. The value of these resistors (they

have the same value) determine the internal virtual impedance for

the entire bank as described above for output voltage levels.

Additionally, special I/O buffer black box primitives are
instantiated in the verilog code. These may be dedicated primitives

per resistor configuration, or the standard I/O primitive with
additional attributes included—often simply the I/O standard being

implemented. In all cases, as with other black boxes, these

primitives will be unique to the FPGA vendor.

A common example is a differential receiver, where a virtual
differential 100 Ohm termination is added.

inserted delay

Another tool developed by the FPGA vendors is insertable

delays for both inputs and outputs. These are used to adjust setup

and hold times, and are essentially the same as the external delay

lines used since the beginning ofdigital design in the seventies. The
signal passes through a delay path, and the outputis selected from
one of a series of taps. The tap selection (1.e., the delay incurred)

can be fixed, or dynamically controlled. The latter is generally used
when fine tuning very high-speed ports.

I/O Flavors

These artificial delays are invoked via instantiated black box

primitives in the verilog code.

drive strength

The current drive of outputs can be controlled to some extent.

The drive capability can be limited, often in increments of 2 mA;

thus you can set the drive strength at 2 mA, 4 mA, 6 mA,etc.. In

fact, the drive strength isn’t so much limited, as enabled (how many

drive transistors are used), so the actual maximum current available

will vary somewhat.

Limiting the drive current is often useful in controlling

transmission effects; limiting drive current can dampen the energy

that might otherwise go into reflections. The downsideis that too-
low drive strength can result in too-slow transitions. Drive strength

often goes hand-in-hand with the slew-rate control.

Note that the FPGA die can handle only so much powerlocally

at the I/O areas, and there may be a limit to how many high-drive
outputs are defined in any one group.

The drive strength is normally defined in the constraintfile.

tri-state drive

Tri-state outputs were covered above in the Memories section,

but here we note that, in addition to the verilog inferred method

discussed there, these can also be invoked directly with vendor-

specific black box primitives.

pullup / pulldown / keepers

These pullups and pulldowns are different from the virtual

soutce/termination resistors discussed above in that they are actual

resistors, albeit weak (high-value). They are not meant for

termination, but rather to maintain an undriven input at either a
high or low logic level. Pullups and pulldownscan also be added to

tri-state outputs, again keeping the signal at a known level when the

tri-state buffer is disabled (but allowing other external tri-state
drivers to override the weak resistor).

Verilog by Example

Additionally, “keepers” can be addedto tri-state outputs. These

are nifty little circuits that hold the output weakly at whateverlevel

was present when thetri-state driver was disabled. Handily, they

work even whenit’s an external tri-state driver that has retired its

drive. Since tri-state outputs are half of a bi-directional port, a

keeper would in this case be holding the last driven level also for

internal logic of the FPGA.

All of these weak input/output level-maintaining features are

invoked by either instantiating black box primitives in the verilog

code, or with attributes in the constraint file.

Before leaving the subject of special I/O, we will look briefly at

a functional block that is a type of I/O, but also a whole complex

sub-design of its own. This is the SERDES, which stands for
SERualizer-DESerializer, and like the memory structures earlier, 1s

included in many FPGAs as a pre-designed section of circuitry

separate from the programmable logic fabric. SERDES blocks

allow relatively easy access to high-speed serial interfaces that

otherwise might not be implementable in the FPGAatall.

At their core they are, as their name implies, blocks that convert

incoming serial streams into parallel words, and vice-versa. But

they are more than simple shift registers. The simplest ones
facilitate DDR (dual data rate) and bit-slip operation (useful when

the serial stream includes a framing pattern that must be located).

The complex SERDESavailable in the larger FPGAs perform PLL-

based clock recovery from theserial stream, and link layer functions
such as 8B10B symbol encoding/decoding, comma detection and

word alignment, and beacon signaling. Additionally, they include

FIFOs for rate smoothing and PRBS generators/checkers for

testing. Coupled with IP cores, they allow FPGAs to host such

high-bandwidth serial interfaces as PCI Express, 10 Gigabit
Ethernet, and SONET high-rate links. These sophisticated blocks

perform as an auxiliary function in FPGAs what used to require an

entire dedicated ASIC.

A Taste of Simulation

Verilog simulation is another subject that would require an

entire (thick) book of its own to cover comprehensively. We will,
however, take a passing look at how you canatleast get started with

simple approaches, perhaps useful for initial syntax checking and

testing example code.

Simulation of verilog code consists of creating even more

verilog code that exercises and monitors the code to betested. This
test-only code is called a testbench, and as the name evokes, 1s a

virtual platform upon which your design rests and where virtual

wires are connected to your I/O for stimulation and response. All

of this is done under the control and execution of the hosting

simulation software tool. To repeat, in order to simulate your

design, you need some sort of simulation software tool. Luckily,

“beginner” versions of popular simulation software are often

available free from the FPGA vendors.

Firstly, we need some sample code to simulate. The following

diagram shows a simple function, whereby if enabled, a series of 8-

bit words are checked as to whether any two consecutive values are

the same, and if found, are tallied. Note that the last word of a

sequence block is held in the register and compared with the first

word of the nextseries.

Verilog by Example

dat in{7-Ol, dat in d1[7:0

compicnt{9:O}.

enable :

clk _»

sim_sample

Sample Simulation Design

Andhere’s the code.

TPILITLISTISSSITSTSTSTTTTTITASTATTT
// Sample Design for Simulation

module simsample (

input

input

input [7:0]

input

output [9:0]

clk,

reset,

dat_in,

enable,

compcnt

)>

clk;

reset;

dat_in;
enable;

compcnt;

reg [7:0] dat_indl;

reg [9:0] compcnt;

A Taste of Simulation

[[-----7- Design implementation -----

always @(posedge clk or posedge reset)

begin

if (reset)

begin

dat_in_dl <= 8'h0O;
compcnt <= 10'd0;

end

else if (enable)

begin

dat_in_dl <= dat_in;

if (dat_indl == dat_in)
compcnt <= compcnt + 1;

end

end
endmodule

Sample Simulation Design

Now we need a testbench (verilog code) to test our design.

What we require is some wayto feed a series of 8-bit values to our

“‘sim_sample” module along with an enable signal, and then check

to makesure the tallied count is incrementing correctly.

The following diagram showsthepieces.

vector dat_in[7:0]

generator
. (observedin

comp_cnt[9:0] --» simulation tool)

clock > —p| enable

 generator
 Bw clk

reset Bi reset

generator sim_sample tb_sim_sample

Testbench Using Embedded Vectors

Verilog by Example

We'll start with the simplest possible testbench.

ee
// Simple Testbench Using Embedded, Explicit Vectors

module tbsimsample1

(
// no I/O for the testbench

)i

// input signals to the test module.

reg reset;

reg simclk;
reg [7:0] dat_in;

reg enable;

// output signals from the test module.
wire [9:0] compcnt;

// testbench signals.
integer i;

integer j;

// clock periods
parameter CLK_PERIOD = 10; // 10 ns = 100 MHz.

[/[------ Design implementation -----

// module under test

Sim_sample mut

(
-clk (simclk),
.reset (reset),

-dat_in (dat_in)y
.enable (enable),

-comp_cnt (comp_cnt)

);

// generate clock and reset

initial sim_clk = 1'b0;

always #(CLK_PERIOD/2.0)
sim_clk = ~sim_clk;

initial reset = 1'bl;

initial i = 0;

// reset goes inactive after 20 clocks
always @(posedge simclk)

begin

A Taste of Simulation

i = itl;

1f (1 == 20)

#1 reset <= 1'b0;

end

// feed stimulus vectors to module under test

initial

begin

dat_in = 8'b0;

enable = O0O'bO;

//
wait (reset);

wait (~reset);

@(posedge simclk);
for (37 = 0; 3 < 20; 37 = 3 +1)

begin

@(posedge sim_clk);
end

enable = 1'bl;

dat_in = 8'h0O;

//
@ (posedge simclk);

dat_in = 8'hOl;
@ (posedge sim_clk);
dat_in = 8'h20;
@(posedge sim_clk);
dat_in = 8'h21;

@(posedge sim_clk);
dat_in = 8'h21;
@(posedge simclk);
datin = 8'h33;

@(posedge simclk);

dat_in = 8'h56;
@(posedge simclk);
dat_in = 8'h56;

@(posedge sim_clk);
dat_in = 8'h33;

//
@(posedge sim_clk);
enable = 1'bO;

//
forever

begin

@(posedge simclk)
enable = 1'b0O;

end

end

endmodule

Testbench Using Embedded, Explicit Vectors

Verilog by Example

For a simplest of testbenches, there’s still a lot of new verilog

material to be explained. Westart at the very beginning with the

module declaration “tb_sim_sample_1”. We include no port list,

since the testbench has nosignals entering or leaving—it comprises

the entire simulation universe. Next we have the signal

declarations, and they consist of two categories: signals that are

inputs to the module to be simulated, and signals that are outputs

from the module. The former are “reg” types since they are all

generated as such, while the latter are a “wires” since they do

nothing but make port connections to the module. The simulation

software will use these wire labels for displaying those signals’

simulated operation. In general, all inputs to the module to be

simulated are declared as “regs”, while all outputs are declared as

“wiures’’.

Skip over the integer and parameter declarations for now. Next

we cometo the instantiation of our sample module—the module to

be simulated. Note thatall the instantiat-ing signals within the port

connection list are those that we declared in the regs and wires

earlier.

Finally we get to some actual simulation activity. The first
signal we'll generate as part of the simulation is the clock. The

“initial” statement is new, and this is because it is only used in

simulation. The first one in the testbench simply establishes the

state of the clock “sim_clk” at time zero. Note that assignments

inside initial statements can only be made to “reg” signals. As a

tule, “wires” in testbenches are used only for monitoring simulated

module outputs, or sometimes for connecting together multiple

modules that may be instantiated in the testbench. Following the

first initial statement, the next “always” statement generates the
toggling clock. The “#” symbol is a delay indication, again
generally used only in simulation (you maysee it in a design, but

that would probably be because the designer ran out of better
design options). This “always” statement waits the amount of time

indicated inside the parenthesis, then executes its contents (here,

just the sim_clk assignment), then waits again. This goes on forever

(.e., “always”). The amount of time to wait is given as

“CLK_PERIOD/2.0”. In the parameter statement earlier, we

declared CLK_PERIODas 10ns. Since the always statement waits

A Taste of Simulation

half that time, and since the clock consists of a high time and a low

time, the total duration of the final clock is indeed 10ns. At the end

of each half-clock wait time, the assignment statement simply

toggles the clock polarity. ““~sim_clk” means, “not sim_clk”.

Next we generate a reset signal. First, we again establish the

initial state, and here that is a one—this is because we want the

simulation to start with the reset active. Next weinitialize the entity

labeled “1’’. We can see from an earlier declaration that this has

been declared as an integer. Integers are very useful in simulation,

but are rarely used in designs (they can’t be synthesizedas flip-flops
C6599or wires). In the always statement that then follows, the “1” integer

is used just as a counter. We count twenty clock periods, then set

the reset inactive. Again we encounter the “#” symbol—we’re

simply forcing the reset to wait a nanosecond after the clock edge
before going high, avoiding potential timingissues.

Finally we come to the generation of the stimulus vectors for

the data bus input. We use an expanded, multi-line “initial”

statement. Initial statements are actually another form of the

structured procedural statements that we introduced way back with

the “always-block”. As with the always-block, when there is more
than one assignment line, they are grouped within “begin” and
“end” keywords. Initial-blocks always start at time zero, and

execution proceeds line-by-line to the end. Unlike always-blocks,

initial-blocks execute just once in the stmulation—when the end of

the initial block is reached, it’s done. Multiple initial-blocks all

operate simultaneously (1.e., concurrently), and each starts at time

zero.

Let’s look at our vector generation initial-block. We start by

setting both the data bus and the enable signal to zero at time zero.
Note that even though the simulation executes the two assignment
lines in sequence, since we haven’t advanced time yet, they

effectively occur at the same time (zero). But now we cometo a
new statement that allows time to begin ticking. When the

simulation executes “wait (reset)”, it literally waits until the reset

signal goes active (true). Again, note that other tnitial-blocks (and
always-blocks) are continuing to operate while this one 1s idle,
waiting for reset to go active.

Verilog by Example

So, the two consecutive “wait” statements instruct the initial-

block to wait for “reset” to go high (which, as it happens, 1s

immediately), and then low—1in other words, it waits until the reset

period is done.

Next comes something we’ve seen before—whatlookslike a

piece of the first line of previous always-blocks: “@(posedge

sim_clk)”. Not surprisingly, it works the same; the simulation waits

until the next rising edge of “sim_clk”. This is essentially also what

happens each time an always-blocks loops around.

Following this is something you may have encountered before

in software. The “for loop” in verilog is straightforward, with the

parameters in the first line defining how many times to loop. Here

we use an integer “j” for counting. The three definitions within the

parenthesis, in order, are:

1) the starting value of the loop counter (“)=0”);

2) the condition to continue looping (“4<20”);

3) the loop increment/decrement (“J=j+1”).

For the definitions we’ve selected, our for-loop will loop 20

times (0 through 19). Note that we could have, for example, started
j at 20 and counted downto 1.

But what does this for-loop do? Well, again we’re just

instructing the simulation to continue on a bit. But instead of

waiting for an event (like the end of reset), here we count a
particular number of clocks (20). We want the simulation to get a

little ways from the end of reset before we start feeding valid data
vectors. We could have also just told the simulation to wait a

specific amount of time, but this method 1s cleaner—the simulation

will operate the same no matter what the clock period happens to

be. Also, this way the simulation remains synchronous—we come

out of the for-loop just at the rising edge of the clock.

Time to feed vectors. For the first clock period, we finally set

the enable active, along with the first data value (hex 00). Then,for

each subsequent clock period we feed eight more values (hex x01,
x20, x21, etc.). Note that since we don’t do anything with the

enable for this sequence, it remains as we left it—active. On the

ninth clock, though, we de-activate the enable, ending this block of

data vectors.

A Taste of Simulation

The initial-block ends with something of a contradiction. We

stated earlier that an initial block executes once and when the end 1s

reached it’s done. Well, it so happens that there’s no requirement

that an initial-block actually ever reaches the end. The “forever”

statement does exactly what it implies: it loops forever—here,

simply performing a dummyact ofsetting the enable inactive over

and over. Why do something inane just to prevent the initial-block

from ending? Somesimulation tools will sometimes halt when any

initial-block terminates, even thoughotherinitial-blocks aren’t done

yet. Forcing every initial-block to proceed forever guarantees that

all of them can complete. And there’s nothing wrong with having a

simulation that could theoretically go on forever—wegenerally tell

it how long to run anyway.

So, what have we done with this simulation? We set the clock

running, reset the FPGA, and then fed eight input data samples.

Looking at the values we fed, we see that there were two instances

of repeating data words (hex 21 and hex 56). In our simulation, we

would have monitored the counter output (“com_cnt”, perhaps

within a waveform window) and would have seen it increment from

zero to one, and then to two. Alternatively, we could have

programmed the testbench to itself recognize that the count has

incremented and display the fact on our monitor. This could be

done via the “$display” simulation directive, but we won’t go
further with that avenue here.

The previous testbench is fine for a hmited amountof data, but

it obviously becomes quickly cumbersome as the amountincreases

to practical quantities (practical quantities for a practical design, that
is—eight samples was probably fine for our simple sample design).
The following testbench generates stimulus data vector values
automatically using random numbers. It has the advantage that we

can genetate as many vectors as we like by simply changing a

parameter value.

Verilog by Example

TELETITILITTIAATITTIES
// Simple Testbench Using Embedded, Automatic Vectors

module tb_sim_sample2

(
// no I/O for the testbench

)i

parameter QUANTVECTORS = 32; //quantity of vector
samples

// input signals to the test module.
reg reset;

reg simclk;

reg [7:0] dat_in;

reg enable;

reg [31:0] random_num;

// output signals from the test module.
wire [9:0] compcnt;

// testbench signals.
integer i;

integer j;

// clock periods
parameter CLKPERIOD = 10; // 10 ns = 100 MHz.

/{ ------ Design implementation -----

// module under test

Simsample mut
(

~clk (simclk),

.reset (reset),

.dat_in (dat_in by
-enable (enable)y

-compcnt (compcnt)

)i

// generate clock and reset

initial sim_clk = 1'b0;

always #(CLKPERIOD/2.0)
sim_clk = ~sim_clk;

initial reset = 1'bl;

initial i = 0;

A Taste of Simulation

begin

1 = itl;

1f (1 == 20)

#1 reset <= 1'b0O;

end

// feed stimulus vectors to module under test

initial

begin

dat_in = 8'b0;
enable = O0'bO;

randomnum = Srandom(1);

//
wait (reset);

wait (~reset);

@(posedge sim_clk);
for (3 = 0; j3 < 20; j =4j +1)

begin

@(posedge simclk);
end

enable = 1'bl;

dat_in = 8'h00O;
//
for (3 = 0; 3 < (QUANTVECTORS); 3 =j +1)
begin

@(posedge simclk);
randomnum = Srandom;
if (random_num[2:0] != 3'hO)

dat_in = dat_in+ 1;
end

//
@(posedge simclk);
enable = 1'b0O;

//
forever

begin

@ (posedge simclk)
enable = 1'b0O;

end

end

endmodule

Testbench Using Embedded, Automatic Vectors

Starting from the beginning of the code, let’s look at what’s
different from the previous testbench. First, we have a new

parameter called QUANT_VECTORS. Aswe'll see (and as you’ve
guessed), this parameter defines how many stimulus vectors we'll

Verilog by Example

generate for the test run. Next, we’ve introduced a new register

signal, “random_num”. As the name suggests, this will hold a

random number. Nothing is different now until we get to the

assignment of the stimulus vectors downin the initial-block. Where

in the first testbench we specifically assigned a list of vector values,

here we have a for-loop. Wesee that the length of the loop 1s

defined by our earlier QUANT_VECTORSparameter. Each pass

through the loop, 1e., each subsequent clock period, we assign a

new value to “dat_in”. Sometimes we increment the value, and

sometimes we don’t. Those times that the value is not incremented

will result in our comparison counter in our design incrementing.

But what determines if we increment “dat_in” or not? As

you've astutely guessed, a random number, of course. The

expression “$random(1)” is a verilog system task. It generates a 32-

bit random number. The “1” in the parenthesis is the seed, and is

optional, but by including a seed, we ensure that each simulation

run will be the same. Now you see why we declared

“random_num” as a 32-bit signal. We’re only using the LS three

bits, though. Each clock period, there 1s a 1:8 chance that

“random_num7”’ will have “3’b000” as the LS bits, and the “dat_in”

value will not increment.

In operation, you would monitor both “dat_in” and

“comp_cnt” from within the simulation tool to confirm that the
design 1s working properly.

Although efficient and easily understood, this testbench does
have the weakness that the stimulus vector values are always

incrementing by one (or occasionally static). In some designs, this

limitation could be limiting, foregoing some value transitions that

might be important—values stepping from 8’h55 to 8’hAA,to take
one example. Often, it 1s better to incorporate more randomness

into the vector generation. In the case of our simple design, for

example, we could have simply used the LS eight bits of the 32-bit

tandom number. Of course, then there would only be a 1:256
chance that we would see repeating values and consequential

“comp_cnt” increments.
In the opposite direction, we might need less randomness and

even more control. One example is a local processor bus, where we

are simulating bus protocol activity—perhaps a microprocessor on

A Taste of Simulation

the host board filling a configuration memory inside the FPGA.

For specific control over the stimulus values we might come right

back to that long list of embedded specific stimulus values. But

there is a better way to handle long lists of vectors, a flexible and

powerful method of generating stimulus vectors, whereby the

testbench reads the values from externalfiles, files that we’ve filled

with our test vectors. Further, the testbench could even confirm

outputs from the design by comparing them against additional

result-files.

This is where we could continue if this book were a thorough,

dedicated treatise of simulation instead of a concise introduction to

overall verilog design.

Verilog by Example

The Rest for Reference

The best way to learn is to do, and in this case doing 1s

designing. This has not been an exhaustive study of all the fine

points of verilog, but by now you should at least have acquired a

solid foundation to begin in earnest.

You'll need tools, though. The two dominant FPGA vendors,

Xilinx and Altera, provide free introductory packages that also

include free introductory modelsim simulation software. The web

packages are quite large, so be sure to check your computer’s
resources against the requirements listed on the vendot’s website.

What follows is for reference. As you work to mold lines of
code into something that implements target operations, or struggle

to reverse-engineer an undocumented design, peruse these pages
for tidbits to help you towards your goal.

Expressions

Concatenation {}

{Vh6, 3’b101, 5’7hO2} = 12’b011010100010

Replication {{t}

{3{2°b10}} = {2’b10, 2’b10, 2°b10} = 101010

Arithmetic +, -, *, /

Modulus %o

(FhA %43) = 1
(VhA % 4’h2) = 0
(PhA % 4h4) = 2

Relational ><, >=, <=

Verilog by Example

Logical Negation

Logical AND

Logical OR

Logical Equality

Logical Inequality

Case Equality

Case Inequality

Bitwise Negation

Bitwise AND

Bitwise OR

Bitwise XOR

Bitwise Equivalence

Reduction AND

&&

((3°b101 == 3°h5) && (8'h5 > 8'h4)) = 1
((3°b101 == 3°h5) && (8"h5 < 8’h4)) = 0

(7’b0x01 === 4’b0x01) = 1

(4’b0x01 === 4’bOxx1) = 0
CCI?

where “x” is “don’t care”

ww!

~(4’b1001) = 4’b0110

&

(4’b1001 & 4’b1100) = 4’b1000

(6’b111111 & 4b1111) = 6’b001111

(6’b111111 | 4’b1010) = 6’b111111

N

(4b1010 ~* 4’b1110) = 4’b0100

N &
nw r~—

(4’b1010 ~* 4’b1110) = 4’b1011

&

& 4b1010 = 0

The Rest for Reference

& 4b1111 = 1

Reduction NAND ~&

Reduction OR |

| 4’b0000 = 0
| 4’b1010 = 1

Reduction NOR ~ |

Reduction XOR “

“ 4b1000 = 1

“ 47b1100 = 0

Left Shift <<

6’b101011 << 1= 6’b010110

Right Shift >>

6°b101011 >> 1 = 6’b010101

Shortcuts

Shortcuts often end up being the long way round in the end,

but for the record, here are some you mightsee in yourtravels.
Declarations don’t have to be one-per-line. You can smash

them together as much as youlike.

input Siga, sigb, enable1, clk;

input [7:0] data_in, dataout;

You can also add assignments to wire declarations. Be careful
here, though, because verilog requires that you make a declaration

before you use the signal. So whatever is on the right hand of the

assignment has to have been declared prior to this line (this 1s the
main reason we generally locate all the declare statements before the
implementation code).

Verilog by Example

wire Siga= reg1 & reg2;

If you’d really like to throw people trying to understand your

codeoff the track, you can even smash multiple assignments on the

sameline (sigh).

cm =a | bj cg = t | vs wire sa= cm Cg;

More Shortcuts

The Verilog-2001 standard (supported virtually universally)

allows port direction and reg declarations to be combined with the

module port list. For example:

module combinedecarations

(input [7:0] antl,

input [3:0] in2,

input sel,

output reg [7:0] outl

3

[other reg and wire declarations start here]

Combinatorial Always-block

Always-blocks are not limited to clocked registers only. They

can be used to implement combinatorial logic as well. The
advantage is that we then have access to conditional statements
(e.g., if/else), case statements, etc.. The disadvantage is that every

signal contributing to assignments must be included in the
sensitivity list. Note that some synthesis software is forgiving of

missing signals in the list, but this practice renders your code
potentially less portable.

The Rest for Reference

always @(sel[2:0] or en or sl or s2 or s3);

begin

if (en)

case (sel)

3’b000: outsig = sl | s2 | s3;

3’bO001: outsig = sil;

3’b010: outsig = s2;

3’b100: outsig = s3;

default: outsig = 1’bl;

endcase

else

outsig = 1’b0;

end

Note that we used the regular “=” assignment rather than the

non-blocking “<=”. This is because the order of execution doesn’t

matter for combinatorial logic (as opposed to clocked registers,

where it very much does, thus the non-blocking assignment).

Passing Parameters

We saw parameters used earlier as labels for state machines.

Later, in stimulation, we saw one used 1n the more traditional way as

a labeled replacement for a constant value (CLK_PERIOD was

defined as 10ns). Using a parameter this way is a convenient

method to define a value once, and then use it multiple places. For

example, in the simulation we can change the basic clock rate by

modifying one quickly-visible line of the code. We can say that we
are configuring the design via that value.

Any time we have a design where we might want to change
values later—bus widths, for example—configuring via parameters

is a very useful tool. What’s even more useful is to pass parameters
downinto instantiated modules, and here we show how.

First, we'll create the lower-level module which uses a

parameter to set the bus width.

Verilog by Example

module mux

(anil,

in2,

sel,

out

3

parameter SIZE = 8;

|input [SIZE - 1:0] inl, in2;

input sel;

output [SIZE - 1:0] out;

[[oo ---7-7-7-7

out = sel ? inl : in2;

endmodule

You can see that we’ve snuck in a new verilog feature: bus

width fields can be labels. So, “[SIZE - 1:0]” is the same as

“(7:0)”. This is a handy way to quickly configure bus widths, and

you'll see this used often.

Next, we'll instantiate the “mux” module within a higher-level

module and pass the “SIZE” parameter down.

module toplevel

(anil,

in2,

sel_a,

out_a

The Rest for Reference

.out (outa)

);

endmodule

In this top level module we’ve set the bus widths using a

parameter (SIZE_A) in the same way that we did in “mux’, but

here they are 16 bits instead of 8. We pass this value downinto the

“mux” module via the line that starts with “#” between the name

of the module being instantiated (mux) and the instantiation label

(U1). If we had multiple parameters to pass down, each additional

patameter set would be separated by commas. The field following

the “.” is the name of the parameter in the lower-level module

(SIZE), and the field in the parenthesis is the value to pass down.
This could be a direct number, or as here, another constant label

(SIZE_A). The parameter value passed down overrides whatever
was set inside the lower-level module, so the parameter “SIZE” in

“mux” will become 16 instead of 8, which 1s good, since that’s what

we want in order to be compatible with the bus widths of the top

level module.
Since a parameter label can be used to assign the value to be

passed down, you can see that you could pass parameters down

through multiple layers of a hierarchy, using the parameter name

within each intermediate module (which itself is overridden from
above) to assign the value that’s passed down.

But there’s another way to pass parameters down through a
hierarchy—one that some designers dislike, but that you will surely

see (or use) eventually. This is the defparam, and it explicitly

defines both the instantiated name of the lower-level module as well
as the parameter name used in that lower-level module. This is how

it would be used in our top level module.

Verilog by Example

input [SIZEA - 1:0] in_1, in2;

input sela;

output [SIZEA - 1:0] out_a;

/ [| ------------
defparam U1.SIZE = SIZEA;

mux Ul

(-inl (in 1),

~in2 (in 2

()

(in 2),

-sel (sela),

.out (a)

)F

endmodule

The defparam statement is located in this sample code just

before the lower-level module instantiation, but it could be

anywhere in the body of the code (although it would seem to be

most sane right where it is). If used carefully, the defparam 1s

perfectly fine. Each module in the hierarchy would have defparam

statements that would define the override values for the parameters
in the next module down. The potential danger arises because
defparam statements are not limited to being located just in the
module that’s doing the lower-level instantiating, opening the

possibility for unintentional and/or seemingly invisible parameter
replacements. But we won’t talk about this in any more detail, as

that would be opening a Pandora’s Box. As we'll see next, this is a
similar problem that can arise using ‘define statements.

Passing ‘Defines

Like parameters, “defines can be used as labels representing a

fixed constant. But unlike parameters, ‘defines are considered to

have global reach, meaning that they manifest across layers of a
hierarchy implicitly, and there lies both the power and the potential

trap. “Defines declared within one module could override those of

another, but since there are no explicit directions to do so, this

could come as a surprise to you (potenually after many hours of

puzzled debug). Further, which ‘define overrides which is not even

The Rest for Reference

necessarily easily predicted. Unlike parameters, ‘defines are

directives to the synthesis tool (thus the “°”tick), and any particular
‘define takes the final value that the synthesis software encounters

as it compiles the modules (this is a little confusing I know,since

there is a separate, complete compile stage performed by the

vendor tool). Granted, the synthesis or simulation software will

probably warn you if it encounters two ‘define definitions to the

same label, but often warnings are missed. So, the final value for a

‘define that has the same name in multiple modules depends on the

order of compile. This is usually configurable in the synthesis or

simulation tool, but can get messy all the same. Finally, what

happens if the compile order is different between simulation and

synthesis? Obviously the compiled FPGA will not operate as

simulated. Very bad.

If you’ve gotten the idea that we’re trying to make you nervous

about using ‘defines, good. That said, “defines are very powerful

and useful, and luckily there is way to use them that is relatively

foolproof: pull all ‘define definitions into oneinclude file (we'll talk

about include files next). Now you only have to makesure that this
top-level include file is at the top of the compile order. Using one

master include file makes overall sense anyway, since ‘defines are

really geared towards system-wide configuration, and it is useful

having all system configurations collected together in one file. For

one thing, different system configurations can be associated each

with one specific file.

Finally, here’s the syntax for defining the value of a ‘define;

“define NUMCHANS 8'd32

Here, we’re defining “NUM_CHANS”as decimal 32. Note

that there 1s no semi-colon at the end of the line. The label is then

invoked using a “~”tick. For example:

Verilog by Example

always @(posedge clk)

begin

if (count != ~NUM_CHANS)

mem_array[count] <= dat_in;

count <= count + 1;

else

count <= 0;

end

A note of technical precision: parameters define constants, but

“defines represent a text substitution. If the text happens to be a

label followed by a number, then the ‘define operates like a

constant. So, a ‘define has more comprehensive application, since

it could be used to substitute words in addition to values. We'll see

them again when wegetto “ifdef’s.

“Include files

We introduced the concept of include files in the previous

section. Like ‘defines, include files are communicated as a compiler
directive, and so the form for invoking it is to add a ““”tick. Like

SO:

‘include header_defs.h

“Include directives allow us to incorporate the contents of entire

files into a module of our design. The most common example is to

define system-wide configuration information, as explained in the
ptevious section. Since the synthesis or simulation software does

not treat this file as a module within the verilog hierarchy, it does

not need to use a “.v” extension. Thus, in our example, we used

“h’—the common file extension used for header files in the C

family of languages.
Note that the file name can be an entire path name (ending in

the file nameitself).

The Rest for Reference

Note also that if the included file contains only ‘define

definitions, the “include directive can occur anywhere in the host

module—generally near the beginning for visibility. If, however,

the included file contains any parameter or defparam statements,

then the ‘include directive must be placed after the module

declaration (1.e., after the module portlist).

Conditional Compiling

Verilog includes a very convenient method of selectively

including or excluding whole sections of code from a design at time

of synthesis or stimulation. This is yet another compiler directive,

and it works very similar to the already-familiar if/else conditional

statement. Here’s an example:

SLITS TLIITIITTI TSTTITTIES

// ifdef example

‘define bypassscramble

module exampleifdef

(input clk,

input [7:0] inl,

input [7:0] in2,

input sel,

output reg [7:0] out

)?

wire [7:0] in1a;

‘ifdef bypassscramble

assign inla#= inl;

‘else

assign in1a= {in1[3:0],in_1[7:4]};

“endif

[the rest of the code here]

Verilog by Example

In the code, if the flag “bypass_scramble”1s set, then “in_1”’1s

assigned directly to “in_1_a”, otherwise, in_1 is scrambled (its

nibbles are swapped). The flag (bypass_scramble) is set via the

‘define at the beginning. If the ‘define statement is removed(or,

more likely, commented out), then the ‘ifdef conditional flag 1s

considered not set. Note that the “define statement could be in a

different file (e.g., a configuration headerfile).

In our example we use only oneline of code for the conditional

compile, but of course there could be any number. The else 1s

optional, but not the ‘endif. The conditional options can be

extended with ‘elsif (similar to “else if’ statements). Note that each
‘ifdef and ‘elsif condition decision consists of a single ‘define flags,

e.g.,no Boolean combinations allowed.

Sometimes we would like to simply add some codeif a flag 1s

set, in which case we could use an ‘ifdef directive paired with an

‘endif. We might, though, also want to add codeonly if a flag is not

set. One way to do this (and the only way before the introduction

of Verilog-2001) waslike this:

‘ifdef bypassscramble

“else

assign in1a = {in1[3:0], in1[7:4]};

‘endif

It looks like we forgot something whentyping, but this works—

if the flag is set, the compiler just ignores the whole directive set of
lines. Verilog-2001, though, added the ‘ifndef. You can guess what
this does. Here’s the same directives using this:

‘ifndef bypassscramble

assign in1a = {in1[3:0], in_1[7:4]};

“endif

Another example of conditional compiling is the “generate”

statement introduced with Verilog-2001. This allows you to
selectively instantiate sub-modules, or create multiple sets, each

with a different parameter attribute. There are three basic types: 1)

simple conditional instantiation, 2), selecting among a list of

The Rest for Reference

possible module instantiations, and 3) looping to create a series of

module instantiations.

Here’s an example ofthe first type, the conditional instantiation.

Note that we use the ordered-list form of port connections (we only

define the signals of the instantiating module—the mating signals of

the instantiated module are inferred by their position in the list)—

not preferred, but this is generally how ‘generate modules are used:

generate

if (UPCOUNT = 1)

upcounter ul

(inl,

in2,

countout

);

else

downcounter u2

(inl,

in2,

countout

) i

endgenerate

If the constant UP_COUNT has been set to 1, then the

“up_counter”’ module is imstantiated, otherwise the
“down_counter’” module is instantiated. Note that since the

decision about which module to instantiate is made at the time of

compiling (synthesis or simulation), only constants can be used for
conditional decisions, not signals or variables whose value is only

known during operation. In general, the constants used in

“generate directives are parameters or defines, probably residing in
the headerfile we talked aboutin the previoussections.

The next type of ‘generate uses a case-type construct to select
among a list of possible module instantiations:

Verilog by Example

generate

case (OPTION)

1: upcounterfrz ul //freezes at max
(inl,

in2,

countout

);
2: upcounterroll u2 //rolls over

(inl,

in2,
countout

)i
3: downcounterfrz u3 //freezes at zero

(inl,

in2,

countout

)i
4: downcounterroll u4 //rolls under

(inl,

in2,

countout

i
default:

staticreg ud
(inl,

in2,

countout

)i
endgenerate

The code should be self-explanatory. Note again that
“OPTION”must be a constant (parameter or ‘deftne).

The final type of ‘generate loops to create multiple module

instantiations:

The Rest for Reference

generate

genvar i;

for (1=0; i<=7; 1=1+1)

memory U (read,

write,

dat_in[(1*8)+7: (1*8)],

addr,

dat_out[(1*8)+7: (1*8)]

)?

endgenerate

Here we have a module that implements a simple 8-bit memory,

which wereplicate and concatenate into a 64-bit memory. The first

instantiation of the module implements bits [7:0] of the memory,

the second, [15:8], etc.. Note the new variable type, “genvar”. This
is unique to the “for” “generate form, and cannot be used for

anything other than the ‘generate for-loop indexing (e.g., 1t cannot

be used outside the ‘generate structure).
We should note that the looping “for” version of the ‘generate

directive can also be used to implement repeated combinatorial

assignments directly.

generate

genvar 1;

for (1=0; i<=SIZE; i=i+1)

assign diffs[i] = insig[i] * insig[i+1l];

endgenerate

The SIZE-bit wide signal “diffs” contains information related

to bit-changes along adjacent bits of the word vector “insig” (for

whatever purpose this might be useful).

Finally, note that some synthesis tools have additional specific
requirements associated with the set of ‘generate directives, e.g.,

sometools require named begin/end blocking.

Verilog by Example

Functions & Tasks

A function in verilog is similar to those you may have

encountered in other programming languages: a function can have

one or more inputs, but there are no outputs, or rather, there is

virtually just one output—the value returned by the function.

Functions are declared and defined within a module, and can only

be used in that module (they must be re-defined if used in other

modules). They cannot contain always-blocks, and thus are only

used to implement combinatorial operations—generally those that

are used multiple times in the code. Functions are called from an
expression, and the returned value becomes part of that expression.

There’s no utility in performing a stmple combinatorial operation in

a function that you use just once, unless your goal is to fatten your

lines of code.
Here’s an example of a function that finds the location of the

most-significant bit of a 16-bit word. The function returns a zero if

no ones are found (.e., if “word_in”1s all zeros).

function [4:0] ms_loc;

input [15:0] wordin;

begin

// find the location of the most-

// significant bit. Return zero

// 1£ no ones found.

msloc = wordin[15] ? 5'dlo6

word in[{14] ? 5'dl5

word in[13] ? 5'dl4

word in[12] ? 5'dl13

word in[1l1] ? 5'dl2

word in[10] ? 5'dll

word in[9] 2 5'dl1O

wordin[8] ? 5'd9g

word in[7] ? 5'da8

word in[6] 2? 5'd7

word in[5] ? 5'd6

The Rest for Reference

wordin[4] ? 5'd5

wordin[3] ? 5'd4

wordin[2] 2? 5'd3

wordin[l1] 2? 5'd2

word in[0] 2? 5'dl

5'd0;

end

endfunction

A couple of things to note: the name of the function 1s

“ms_loc’”; we define its size as [4:0] since this is also the value that’s

returned; it has one input, “word_in”; there is no “assign’

command,since this is assumed for functions.

The next snippet of code shows how we might use this

function.

?

wire [15:0] datwrd;

reg [3:0] msbit;

reg onesfound;

reg blank;

always @(posedge clk)

begin

if (msloc(dat_wrd) == 5’b0)

onesfound <= 1’b0;

else

onesfound <= 1’bl;

{blank, msbit} <= ms_loc(dat_wrd) - 1;

end

We call the “ms_loc” function twice, each time with “dat_wrd”’’,

which becomes “‘word_in’”inside the function. If there were more

than one input to the function, the order of their declarations must
match the order of their location in the calling statement (ie.,
functions essentially use ordered-list ports).

Verilog by Example

Note that we use a dummysignal “blank” since “ms_loc”’ is

interpreted as a 5-bit value, while “ms_bit” is 4 bits (and register

assignments should have matching field widths).

Although functions are often placed at the end of the module,

they can be located anywhere after the module declaration.

Where functions are similar to counterparts of the same name

in other programming languages, tasks can be compared to

subroutines. Unlike functions, tasks can have multiple outputs, or

even no outputs (or even no inputs). While called functions are

placed in code where they are replaced by a single calculated
combinatorial value, tasks are called to do potentially many different

things, virtually anything in fact that the calling code could do—
implement state machines, call other sub-modules, emulate a micro-

processor.

The following is an example of a task. This task is simplistic (at
could be implemented more practically as two functions, which

would be more readable when encountered in the calling code), but
illustrates the basic syntax.

task bitscan;

input [15:0] wordin;

output [4:0] msloc;

output [4:0] lsloc;

begin

// find the location of the most-
// significant bit. Return zero
// if no ones found.

msloc = wordin[15] ? 5'dl6
word in[14]}] ? 5'dl5

wordin[{13] ? 5'dl4

word in[12] ? 5'd13

word in[1ll] ? 5'dl2

wordin[10] ? 5'dll

word in[9] 2 5'dl0

word in[8] 2? 5'Aag

word inl[/7] 2? 5'da8g

word in[6] ? 5'd7

word in[5] ? 5'd6

word in[4] 2? 5'd5

word in[3] 2? 5S'dé4

The Rest for Reference

wordin[2] ? 5'd3

wordin[1] 2? 5'd2

wordin[{0] ? 5'dl

5'd0;

// find the location of the least-

// significant bit. Return zero
// if no ones found.

lsloc = wordin[O] ? 5'dl

word in[1l] 2? 5'd2

word in[2] 2? 5'd3

word in[3] ? 5'd4

word in[4] 2? 5'd5

word in[)5] ? 5'do6

word in[6] 2? 5'd7

word in[7] 2 5'd8

word in[8] 2? 5'Aag

word in[{9] 2? 5'd10

word in[10] ? 5'dll

word in[{1ll] ? 5'dl2

word in[12] ? 5'dl13

word in[13] ? 5'dl4

word in[14] ? 5'dl5

word in[15] ? 5'dlé6

5'd0;

end

endtask

It looks similar to the function, except that there 1s no bit-width

field associated with the task name declaration, since the task will

have specific individual outputs, each defining their own bit-width

field. The other difference, of course, is that there are two outputs

in the task. Actual tasks will generally be much more complicated

than this example.

On the face of it, tasks sound supremely useful, but there are

drawbacks. For one, tasks, like functions, are defined within the

module from where they are called. It’s possible to immagine a
situation wherea relatively small section of code is repeated enough

times to warrant the structural complication of snubbing it off into

a task. It’s less likely that you’ll encounter a module wherea large

amount of code is repeated multiple times—the modular,

Verilog by Example

hierarchical nature of digital design generally means that this

amount of functionality would already have been allocated its own
sub-module.

We should note here that tasks can be decoupled off into

separate files and tied back into the calling host module via “include

directives, and this would seem to open possibilities of using tasks

elsewhere in the design, but since tasks can operate directly on reg

sionals in the calling host module, conflicts arise when the task

declares regs with the same name (which happens more often than

you might think). Again, this speaks for using a regular sub-

module, where signals names are only locally valid.

For these reasons, substantial tasks are infrequently encountered

in structural design (1e., the code that’s implemented as FPGA

hardware). On the other hand, tasks are very popular in simulation,
where the structure and use are more akin to software flow (linear

progressions), and stepping aside to perform complex operations as

represented by a few lines in the main sequence of operational steps

ereatly facilitates understanding the flow. You will find

comprehensive coverage of tasks in verilog simulation reference
texts.

Nesting If/Else statements

This is allowed within an always block, but if you do nestif/else

statements, you should block each level with a begin/end pair. Not

only will this make your intentions clear to others reading your

code, but more significantly, the synthesis software will encounter

no ambiguity as well.

Rest of the Rest

The following is a pot-pourri of remnant information that
might be useful in your verilog endeavors.

RIL: we haven’t used this acronym, but you will see it. It

stands for “Register Transfer Level,” and refers to a description of

The Rest for Reference

digital operation (1.e. HDL) that includes registers (and thus, easily

extendable to counters, state machines, etc.). One of the primary

functions of synthesis software is to translate RTL into gate-level

interconnections appropriate for ASIC or FPGA implementation.

“RTL” has become somewhat synonymous generically with HDL

languages (verilog and VHDL).

Unconnected module input and output ports: it’s okay to have

the latter, but not the former. Unconnected output ports are just

left blank in the instantiating port connection list (Le., just the

parenthesis, followed by a comma). Input ports have to be tied

somehow. E.g., if a scalar input should be tied low, “1’b0” can be

used instead of a signal name.

bit markers: an underscore (“_”) can be inserted in numbers,

and they are ignored (extracted) by synthesis. Thus,

12’b011010101110 can be pleasingly written 12’b0110_1010_1110.

This goes for any radix. (Perhaps reason alone to chooseverilog

over VHDL).

signed values: Verilog-2001 added “signed” types to regs and

constants. This defines the value as signed, two’s-compliment. A

signed reg declaration might looklike:

reg signed [31:0] dataval;

and a signed constant mightbe:

parameter signed [7:0] WIDTH = 8’h56;

Inputs and outputs associated with signed regs would be:

input signed [31:0] dataval;

output signed [31:0] dataval;

signed shifts: the introduction of signed values, required new
type of shift functions—ones that know howto handle thesign bit:

datvalshftd = datval <<< 1;

This maintains the sign bit, while filling LSB zeroes.

dat_valshftd = datval >>> 1;

This maintains the two’s complimentintegrity as it shifts to the
right (extends the sign bit to the right).

Verilog by Example

Symbols/Numbers

"I"33
"8", 8, 10

"Oc", 25

"1"8,10
"||", 25
"~~" 11, 33

(delay), 80, 81
1'b0, 21
8B/10B, 44, 74

A

always block, 17

arithmetic, 89

ASIC,48

assion, 8, 17

asynchronousreset, 20

B

ball-grid, 72

begin/end, 26, 27

bitwise AND, 90

bitwise equivalence, 90

bitwise negation, 90

bitwise OR, 90

bitwise XOR, 90

black box primitive, 37, 44, 47,

60, 71-74

BUFG,61

Index

C
case equality, 90

case inequality, 90

case sensitive, 8

case statement, 32

clock buffer, 60, 61

clock distribution, 60

clock enable, 23

clock skew, 60-62

clock synthesis, 60

clocked registers, 17

clocking regions, 62

combinatorial

conditional statement, 12

commentflag, 8

concatenation, 14

concatenation, 89

concurrent operation, 24

conditional priority, 23

continuous assignment, 8, 17

cores, 44

counter, 24

D
D-flop, 17

define (define) , 32, 96-98, 101

Delay-Locked Loop, 62

design constraints, 70-74

differential pair, 69, 71

Verilog by Example

display ($display) , 83

distributed RAM,51, 52

DLL, 62-68

drive impedance, 69, 72

dual-port memories, 47-56

E

else if, 22

elsif (elsif) , 100

enable, 22

endif (endif), 100

endmodule, 8

F

falling-edge triggered, 18

FFT, 44

FIFO, 44, 47, 74

FIR filter, 44

for loop, 82, 86

forever loop, 83

frequency synthesis, 65-68

function, 104-106

G

GCLK,61

generate, 100-103

genvar, 103

Gigabit Ethernet, 44, 61, 74

global buffer, 59, 61, 62

globalreset, 22

H
HDL,3, 4
HSTL,69

I

I/O declaration, 7

if/else, 20

ifdef (ifdef), 99-100

ifndef (ifndef), 100

include (include), 98, 99, 108

inferred memory, 47, 48

initial, 80, 81

inout, 57

inserted delay, 69, 72

integer, 81

IP cores, 44, 48, 61

K

keepers, 70, 73, 74

L

latch, 12, 24

left shift, 90

local clocks, 62

logical AND,90

logical equality, 22

logical equality, 90

logical inequality, 90

logical negation, 90

logical OR, 90

LVCMOS,69

LVDS,69

LVPECL,69

M

micro-processor, 44

module, 6-8

module instantiation, 40

modulus, 89

multi-bit bus, 10

multiplexer (mux), 10, 11, 12

N

negedge, 18

net, 8, 43

non-blocking, 17, 19

O

ordered list, 45

P

parameter, 32, 85, 93-96

PCI, 44

PCI Express, 74

phase alignment, 62-64

phase detector, 63-68

Phase-Locked Loop, 62

phasedclock sets, 62-64

pin definition, 70

PLL, 62, 64-68

port connectionlist, 40

port list, 7

portability, 48, 92

posedge, 18

PRBSgenerators, 74

primitive RAM, 47

pullup/pulldown, 70, 73, 74

R

radix, 21

RAMblock, 47-49, 51, 52, 56

Verilog by Example

random ($random), 86

read-before-write, 52, 55

reduction AND,90

reduction NAND,90

reduction NOR, 90

reduction OR,90

reduction XOR, 90

Reed-Solomon, 44

reg, 18

register, 17

register array, 49, 51

relational, 89

replication, 89

replication operator, 11

reset, 20

right shift, 90

rising-edge triggered, 18

RTL, 108

S

scalar signal, 10

sensitivity list, 18

sequential, 17

SERDES,61, 74

signal declaration, 8, 43

single-ended, 69, 71

slew rate, 69, 71, 73

SONET, 74

source impedance , 71, 72

SR flop, 24

SSTL, 69

state machine, 29

structured procedural

statement, 17

Verilog by Example

switching threshold, 69, 71

synchronousclear, 22

T

task, 106-108

termination, 69, 71

testbench, 75

timing constraints, 70

Vv

VCO, 64

vector signal, 10

Viterbi, 44

W

wait, 81

wire, 8, 18

write-before-read, 52, 55, 56

	Contents
	Introduction
	The Tool Flow
	In and Out
	Clocks and Registers
	State Machines
	Modular Design
	Memories
	Managing Clocks
	I/O Flavors
	A Taste of Simulation
	The Rest for Reference
	Index

