

Principles of
Verifiable RTL

Design
Second Edition

This page intentionally left blank

Principles of
Verifiable RTL

Design
Second Edition

A functional coding style
supporting verification

processes in Verilog

Lionel Bening and Harry Foster
Hewlett-Packard Company

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

0-306-47631-2
0-7923-7368-5

2001 Kluwer Academic Publishers
Dordrecht

Dedicated to:

Ann, Laura and Donna

-Lionel

Roger, Elliott, Lance, Hannah and Jeanne

-Harry

This page intentionally left blank

Table of Contents

FOREWORD xv

PREFACE xix

1 Introduction 1
1.1 Register Transfer Level 2

2
3
4
4

5

1.1.1
1.1.2
1.1.3

What is It?
Verifiable RTL
Applying Design Discipline

1.2

1.3

Assumptions
Organization of This Book

2 The Verification Process 9
2.1 Specification Design Decomposition

2.1.1
2.1.2
2.1.3
2.1.4

High-Level Design Requirements
Block-Level Specification and Design
RTL Implementation
Synthesis and Physical Design

2.2 Functional Test Strategies
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

Deterministic or Directed Test
Random Test
Transaction Analyzer Verification
Chip Initialization Verification
Synthesizable Testbench

10
11
13
13
13
14
15
16
18
19
20

viii

2.3
2.4

Transformation Test Strategies
Summary

20
21

3 Coverage, Events and Assertions 23
3.1 Coverage

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

Ad-hoc Metrics
Programming Code Metrics
State Machine and Arc Coverage Metrics
User Defined Metrics
Fault Coverage Metrics
Regression Analysis and Test Suite Optimization

3.2 Event Monitors and Assertion Checkers
3.2.1
3.2.2
3.2.3
3.2.4

Events
Assertions
Assertion Monitor Library Details
Event Monitor and Assertion Checker Methodology

3.2.4.1
3.2.4.2
3.2.4.3

Linting Strategy
Implementation Considerations
Event Monitor Database and Analysis

3.3 Summary

24
25
25
27
27
27
28
28
29
31
36
37
39
39
40
41

4 RTL Methodology Basics 43
4.1
4.2

Simple RTL Verifiable Subset
Linting
4.2.1
4.2.2

Linting in a design project.
Lint description

4.2.2.1
4.2.2.2

Project Oriented
Linting Message Examples

4.3 Object-Based Hardware Design
4.3.1
4.3.2
4.3.3

OBHD and Simulation
OBHD and Formal Verification
OBHD and Physical Design

4.3.3.1
4.3.3.2

OBHD Synthesis
OBHD Scan Chain Hookup

4.3.4 A Text Macro Implementation
4.4 Summary

44
48
49
50
50
51
53
56
59
60
60
62
64
67

5 RTL Logic Simulation 69
5.1 Simulation History

5.1.1 First Steps
71
71

TABLE OF CONTENTS ix

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

X, Z and Other States
Function and Timing
Gate to RTL Migration
Acceleration and Emulation
Language Standardization

5.2 Project Simulation Phases
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

Debugging Phase
Performance Profiling Phase
Regression Phase
Recreating Hardware Problems
Performance

5.3 Operation
5.3.1 Sequencing
5.3.1.1
5.3.1.2

Event-Driven
Rank-Ordered

5.3.2 Evaluation
5.3.2.1
5.3.2.2
5.3.2.3

Interpreted
Compiled code
RTL Methods

5.4 Optimizations
5.4.1
5.4.2
5.4.3

Flattening
Rank-Ordering
Bus Reconstruction

5.4.3.1
5.4.3.2

Concatenation
Expression Simplification

5.4.4 OBHD-based Optimization
5.4.4.1
5.4.4.2

Common Sub-expression Consolidation
Common if-else Control Consolidation

5.4.5 Partitioning
5.4.5.1
5.4.5.2
5.4.5.3

Branch Partitioning
Clock Partitioning
Chip Partitioning

5.5 Random Two-State Simulation Methods
5.5.1 Start Up State
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4

Design Method
Zero Initialization
Random Initialization
Verification Test

5.5.2
5.5.3
5.5.4

Tri-state Buses
Assertion Monitors
Two-State in the Design Process

5.6 Summary

73
73
74
74
76
78
79
80
81
82
82
83
84
84
86
88
88
88
89
89
90
90
90
91
91
92
92
92
92
93
94
94
95
95
95
96
97
98
98
99

100
100

x

6 RTL Formal Verification 103
6.1
6.2

Formal Verification Introduction
Finite State Machines
6.2.1
6.2.2

Machine Equivalence
FSM Property Verification

6.3 Formal Transformation Verification
6.3.1 Equivalence Checking
6.3.1.1
6.3.1.2

Equivalence Checking Flow
Closing the Verification Loop

6.3.2
6.3.3

Cutpoint Definition
Equivalence Checking RTL Coding Style

6.3.3.1
6.3.3.2
6.3.3.3

Isolating Functional Complexity
Test Expressions within Case Statements
Equivalence Checking OBHD Practices

6.3.4
6.3.5

RTL Static Sign-off
Effective Equivalence Checking Methodology

6.4 Formal Functional Verification
6.4.1
6.4.2
6.4.3

Specification
Model Checking and Parameterized Modules
Model Checking OBHD Practices

6.5 Summary

106
107
110
111
112
112
112
114
115
117
117
118
118
120
122
124
124
126
127
128

7 Verifiable RTL Style 131
7.1 Design Content

7.1.1
7.1.2
7.1.3
7.1.4

Asynchronous Logic
RTL Races
Combinational Feedback
Case Statements

7.1.4.1
7.1.4.2

Fully-Specified case Statements
Test Signal and Constant Widths

7.1.5 Tri-State Buses
7.2 Organization

7.2.1 System Organization
7.2.1.1
7.2.1.2
7.2.1.3
7.2.1.4

Compiler Options
Design Hierarchy
Files
Libraries

7.2.2 Module Organization
7.2.2.1
7.2.2.2

Overall Organization
Connections

7.2.3 Expression Organization

132
132
133
135
137
138
143
144
146
146
146
148
149
150
151
151
153
153

TABLE OF CONTENTS xi

7.3 Naming Conventions
7.3.1 General Considerations
7.3.1.1
7.3.1.2
7.3.1.3
7.3.1.4
7.3.1.5

Consistency
Upper/Lower Case
Hierarchical Name References
Global/Local Name Space
Profiling Support

7.3.2 Specific Naming Conventions
7.3.2.1
7.3.2.2
7.3.2.3
7.3.2.4
7.3.2.5
7.3.2.6
7.3.2.7

Constants
File Names
Instances
Modules
Port Names
Signal Names
User Tasks / Functions and Program Libraries

7.4
7.5

Naming In Verilog Library Modules
Editing Practices
7.5.1
7.5.2

Indentation
Comments

7.5.2.1
7.5.2.2
7.5.2.3
7.5.2.4
7.5.2.5

Header
Declarations
end Identification
Tool Controls
Embedded Comments

7.5.3 Line Length
7.6 Summary

155
155
155
156
157
158
159
161
161
161
161
162
163
164
165
166
166
167
167
168
168
169
169
171
171
172

8 The Bad Stuff 173
8.1
8.2

In-Line Storage Element Specification
RTL X State
8.2.1 RTL X-STATE PROBLEMS
8.2.1.1
8.2.1.2
8.2.1.3

RTL X-State Pessimism
RTL X-State Optimism
Impractical

8.3 Visits
8.3.1
8.3.2
8.3.3

Bit Visits
Configuration Test Visits
for Loops

8.4 Simulation vs. Synthesis Differences
8.4.1 Explicit Differences
8.4.1.1
8.4.1.2

Full and Parallel Case
X Assignment

174
175
176
176
177
177
180
180
181
182
184
185
185
188

xii

8.4.1.3
8.4.1.4

Other Forms of State Machines
Initial blocks

8.4.2 Inadvertent Coding Errors
8.4.2.1
8.4.2.2
8.4.2.3

Incomplete Sensitivity List
Latch Inference in functions
Incorrect Procedural Statement Ordering

8.4.3 Timing
8.4.3.1
8.4.3.2

Delays
Race Conditions

8.5 Problematic RTL Verilog
8.5.1
8.5.2
8.5.3

Linting and Problematic RTL Verilog
Simulation and Problematic RTL Verilog
Formal Verification and Problematic Verilog

8.6 EDA Tool Vendors
8.6.1
8.6.2
8.6.3

Tool Library Function Naming
Command Line Consistency
Vendor Specific Properties

8.7
8.8

Design Team Discipline
Language Elements
8.8.1
8.8.2
8.8.3

Keywords
Parameters
User-Defined Primitives

8.9 Summary

189
190
191
191
192
192
193
193
196
198
198
199
199
200
201
202
203
204
205
205
205
206
207

9 Verifiable RTL Tutorial 209
9.1 Module

9.1.1
9.1.2
9.1.3
9.1.4

Specification
Comments
Instantiation
Interconnection

9.2
9.3
9.4
9.5

Adding Behavior
Multi-bit Interconnect and Behavior
Parameters
Expressions
9.5.1 Operators
9.5.1.1
9.5.1.2
9.5.1.3

Binary operators
Unary operators
Miscellaneous operators

9.5.2 Operator precedence
9.6 Procedural Blocks

9.6.1 Combinational Logic

210
210
211
212
212
215
216
217
218
218
218
219
220
221
222
222

TABLE OF CONTENTS xiii

9.6.1.1
9.6.1.2
9.6.1.3
9.6.1.4

Procedural Assignments
Functions
if-else Statement
case, casex Statements

9.6.2 Storage Elements
9.6.2.1
9.6.2.2
9.6.2.3

Flip-flops
Latches
Memories

9.6.3 Debugging
9.6.3.1
9.6.3.2

$display and $ write Statements
$finish

9.7
9.8

Testbench
Verilog Compilation
9.8.1 Compiler directives
9.8.1.1
9.8.1.2
9.8.1.3

Constants
Code Inclusion
Command Line

9.9 Summary

222
224
225
225
227
227
228
228
229
230
231
231
235
235
235
236
237
238

10 Principles of Verifiable RTL Design 239
10.1 Principles

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
10.1.9

Disciplined User Principle
Fundamental Verification Principle
Retain Useful Information Principle
Orthogonal Verification Principle
Functional Observation Principle
Verifiable Subset Principle
Project Linting Principle
Object-Based Hardware Design Principle
Fast Simulation Principle

10.1.10
10.1.11
10.1.12
10.1.13
10.1.14
10.1.15
10.1.16
10.1.17
10.1.18

Visit Minimization Principle
Cutpoint Identification Principle
Numeric Value Parameterization Principle
Consistency Principle
Asynchronous Principle
Combinational Feedback Principle
Property Principle
Faithful Semantics Principle
Good Vendor Principle

10.2 Summary

239
240
240
240
240
241
241
241
242
242
242
242
243
243
244
244
244
244
245
245

xiv

Bibliography

A. Comparing Verilog Construct Performance

B. Quick Reference

C. Assertion Monitors

247

255

259

265

FOREWORD

System designers, computer scientists and engineers have con-
tinuously invented and employed notations for modeling, specify-
ing, simulating, documenting, communicating, teaching, verifying
and controlling the designs of digital systems. Initially these sys-
tems were represented via electronic and fabrication details. Fol-
lowing C. E. Shannon’s revelation of 1948, logic diagrams and
Boolean equations were used to represent digital systems in a fash-
ion that de-emphasized electronic and fabrication detail while
revealing logical behavior. A small number of circuits were made
available to remove the abstraction of these representations when it
was desirable to do so. As system complexity grew, block diagrams,
timing charts, sequence charts, and other graphic and symbolic
notations were found to be useful in summarizing the gross features
of a system and describing how it operated. In addition, it always
seemed necessary or appropriate to augment these documents with
lengthy verbal descriptions in a natural language.

While each notation was, and still is, a perfectly valid means of
expressing a design, lack of standardization, conciseness, and for-
mal definitions interfered with communication and the understand-
ing between groups of people using different notations. This
problem was recognized early and formal languages began to
evolve in the 1950s when I. S. Reed discovered that flip-flop input
equations were equivalent to a register transfer equation, and that

xvi

tor-like notation. Expanding these concepts Reed developed a nota-
tion that became known as a Register Transfer Language (RTL).
While the notation had only a few features that are associated with
RTLs today, its development started an evolutionary process that is
still underway. RTLs such as Verilog improve the ability of the
designer to communicate the design intent as well as providing a
mechanism to verify correctness.

In the late 1980s, progress in RTL synthesis provided productiv-
ity gains by translating the designer’s intent into gates and silicon.
Success with RTL synthesis resulted in the acceptance of an RTL
synthesizable subset. In other words, by constraining a rich RTL to
a subset of keywords and an explicit coding style, synthesis can use
precise semantics to provide an efficient and clear mapping to a
specific hardware implementation.

Unfortunately, the synthesis productivity gain has resulted in an
increase in verification complexity. In this book, the focus is on ver-
ification productivity gains. This seems to be a normal progression
to emphasize synthesis productivity gains when synthesis was in
the critical path, and then turn to verification productivity gains
when it became the biggest problem for the design team. This book
promotes a strong coupling between the RTL specification and the
verification process. The authors have placed emphasis on describ-
ing verification processes and explicitly how they relate to RTL
coding style. Many other Verilog books describe details for the
entire language without considering the coding impact related to
the verification process.

By constraining a rich hardware description language to an RTL
verifiable subset, emerging verification technologies can easily be
integrated into the design flow (e.g., model checking, equivalence
checking, cycle-based simulation and fast two-state simulation).
The RTL verifiable subset in this book is actually a smaller synthe-
sizable subset, which includes the keywords supporting higher lev-
els of modeling and abstraction. Some Hewlett-Packard engineers
outside the authors’ team have found the ideas too revolutionary,
and out-of-line with the way that they learned to use Verilog for
simulation and synthesis. However, the authors’ team has success-
fully developed very large complex systems in Hewlett-Packard fol-
lowing the guidelines and methodologies discussed in this book.
Furthermore, the authors’ team has successfully integrated emerg-
ing verification technologies into their design flow, while other
design teams are struggling and fighting the verification tools and
processes.

I find this book to be a significant contribution in helping other

FORWARD xvii

teams of engineers cope with large system design complexity and
survive the verification processes, which have become the most
time consuming critical path item in the design process today.

James R. Duley, Ph.D.
Hewlett-Packard Company
Palo Alto. California

This page intentionally left blank

PREFACE

The need for a
verifiable RTL
philosophy is
justified by the
complexity,
density, and
clock speeds of
today’s chips
and systems.

The conception of a verifiable register transfer level (RTL) phi-
losophy is a product of two factors: one, inherited seat-of-the-pants
experiences during the course of large system design; the other, the
sort of investigation which may be called “scientific.” Our philoso-
phy falls somewhere between the knowledge gained through expe-
riences and the knowledge gained through scientific research. It
corroborates on matters as to which definite knowledge has, so far,
been ascertained; but like science, it appeals to reason rather than
authority. Our philosophy consists of a fundamental set of princi-
ples, which when embraced, yield significant pay back during the
process of verification.

The need for a verifiable RTL philosophy is justified by the
complexity, density, and clock speeds of today’s chips and systems,
which continue to grow at exponential rates. This situation has
raised the cost of design errors to a critical point--where, increas-
ingly, the resources spent on the process of verification exceeds
those spent on design.

Myriad books, manuals, and articles have addressed the issue of
RTL Verilog style with an emphasis on synthesis-oriented policies.
They explain how to write Verilog to wrest optimal gates from the
synthesis process. Still other material presents the entire spectrum
of Verilog constructs from the architectural specification to

xx

We have
deliberately
linked the
RT-level
verification
process to the
language and
have chosen
not to discuss
the details of
the Verilog
language
reference
manual.

Intended
Audience.

switch-level strengths. Yet, these works leave it to the readers to
find their way to good practices for verification. Unfortunately, few
guidelines govern the coding of RTL Verilog to achieve an opti-
mum flow through the various functional and logical verification
processes.

This vacuum clearly becomes a problem as design complexity
increases, and as design teams consider incorporating more
advanced traditional and formal verification processes within their
flow (for instance, cycle-based simulation, two-state simulation,
model checking and equivalence checking). Our solution is to intro-
duce a verifiable subset of Verilog and a simple RTL coding style.
The coding policies we present have enabled us to effectively incor-
porate these new verification technologies into our design flow. To
provide a framework for discussion, we place emphasis on describ-
ing verification processes throughout the text--as opposed to an
in-depth discussion of the Verilog language. Specifically, we are
interested in how an engineer’s decision to code their RTL impacts
a verification tool’s performance and the quality of the overall veri-
fication process. Thus, we have deliberately linked the RT-level ver-
ification process to the language and have chosen not to discuss the
details of the Verilog language reference manual.

In writing and public speaking training, students are always told
to know their reader and audience, and adjust their presentation
accordingly. In verification, the audience for a design description is
the verification processes and tools. This book presents the verifica-
tion process and tools in the first chapters, then presents RTL Ver-
ilog in later chapters.

This book tells how you can write Verilog to describe chip
designs at the RT-level in a manner that cooperates with verification
processes. This cooperation can return an order of magnitude
improvement in performance and capacity from tools such as simu-
lation and equivalence checkers. It reduces the labor costs of cover-
age and formal model checking, by facilitating communication
between the design engineer and the verification engineer. It also
orients the RTL style to provide more useful results from the overall
verification process.

One intended audience for this book is engineers and students
who need an introduction to various design verification processes
and a supporting functional Verilog RTL coding style. A second
intended audience is engineers who have been through introductory
training in Verilog, and now want to develop good RTL writing
practices for verification. A third audience is Verilog language
instructors who are using a general text on Verilog as the course

PREFACE xxi

textbook, but want to enrich their lectures with an emphasis on ver-
ification. A fourth audience is engineers with substantial Verilog
experience who want to improve their Verilog practice to work bet-
ter with RTL Verilog verification tools. A fifth audience is design
consultants searching for proven verification-centric methodolo-
gies. A sixth audience is EDA verification tool implementers who
want some suggestions about a minimal Verilog verification subset.

The concepts presented in this book are drawn from the authors’
experience with large-scale system design projects. The scale of
these design projects ranged to more than 200 million gate-equiva-
lents, and we are happy to report that the products were commer-
cially successful. To support the design processes in these projects,
we evaluated and integrated verification tools from the marketplace.
Before there were commercially available tools, we developed the
tools ourselves. The tools include equivalence checkers,
cycle-based simulators, linters, implicit interconnection, macro pre-
processors, and RTL scan simulation support.

Second Edition

Open
Verification
Library
Initiative.

The first edition of Principles of Verifiable RTL Design offered
a common sense method for simplifying and unifying assertion
specification. This method includes creating a set of predefined
specification modules that can be instantiated within the designer’s
RTL.

Since the release of the first edition, an industry wide initiative
for assertion specification has emerged based on ideas presented in
our book. This initiative, known as Open Verification Library Initia-
tive (www.verificationlib.org), provides an assertion interface stan-
dard that allows the design engineer to capture many interesting
properties of the design and precludes the need to introduce new
HDL constructs (i.e., extensions to Verilog are not required). Fur-
thermore, this standard enables the design engineer to “specify
once,” then target the same RTL assertion specification over multi-
ple verification processes, such as traditional simulation, semi-for-
mal and formal verification tools. We view the Open Verification
Library Initiative as an empowering technology that will benefit
design and verification engineers, and establish unity among the
EDA community (i.e., providers of testbench generation tools, tra-
ditional simulators, commercial assertion checking support tools,
symbolic simulation, and semi-formal and formal verification
tools). We are delighted that our book has provided a positive influ-
enced on both design teams and the EDA industry.

xxii

Expanded
discussion.

This second edition of Principles of Verification RTL Design
expands the discussion of assertion specification by including a new
chapter, titled Coverage, Events and Assertions. All assertions
exampled are aligned with the Open Verification Library Initiative
proposed standard. In addition, the second edition provides
expanded discussions on the following topics:

start-up verification

the place for 4-state simulation

race conditions

RTL-style - synthesizable RTL. (unambiguous mapping to
gates)

more “bad stuff”

Reorganized
topic
presentation.

21 principles
combined into
18.

Since the first edition, we have presented tutorials on Verifiable
RTL Design in dozens of venues to a total of over 2,000 design
engineers. Based on their feedback, we have tuned up the order of
presentation in many chapters, but particularly in Chapter 4.

Of the 21 principles from the first edition, 15 remain intact. The
changes in principles in the second edition include:

Two principles
change their
wording.

Superlog and
SystemC.

folding the Test Expression Observability Principle into the
Cutpoint Identification Principle,

combining the Indentation Principle, the Code Inclusion
Control Principle, and the Entry Point Naming Principle into
a single Consistency Principle, and

changing the Meta-comment Principle into the Property
Principle, and the Object-Oriented Hardware Design Princi-
ple into the Object-Based Hardware Design Principle.

Keeping
verification
current.

Visit our web
site.

At the time of this writing, verification processes and tools for
Superlog and SystemC are not ready. Without design project expe-
rience, RTL verification based on these languages could only be
projections.

Our goal in releasing a second edition is to keep the topic cur-
rent. The bibliography has been expanded to include the latest
research. Every chapter of the book has been enhanced based on
positive and critical feedback. Finally, the overall book’s look and
feel has been enhanced to a more contemporary appearance.

Readers can find more information about this book and e-mail
the authors from the URL www.verifiableRTL.com.

PREFACE xxiii

Acknowledgments
The authors wish to thank the following people who partici-

pated in discussions, made suggestions and other contributions to
our Principles of Verifiable RTL Design project:

Greg Brinson, Bill Bryg, Christian Cabal, Dr. Albert Camilleri,
Dino Caporossi, Michael Chang, Dr. K.C. Chen, Dr Kwang-Ting
(Tim) Cheng, Carina Chiang, Dr. Claudionor Coelho, Dr. James R.
Duley, Jeanne Foster, Bryan Hornung, Michael Howard, Tony
Jones, James Kim, Ruth McGuffey, Dr. Gerard Memmi, Dr. Ratan
Nalumasu, Bob Pflederer, Dr. Carl Pixley, Dr. Shyam Pullela, Rob
Porter, David Price, Hanson Quan, Jeff Quigley, Mark Shaw, Dr.
Eugene Shragowitz, Dr. Vigyan Singhal, Bob Sussman, Paul Vogel,
Ray Voith, Chris Yih, Nathan Zelle, and numerous design engineers
from the Hewlett-Packard Richardson Lab.

This page intentionally left blank

1
Introduction

Few guidelines
govern the
coding of RTL
for an optimum
verification
flow.

Myriad books, manuals, and articles have addressed the issue of
RTL Verilog style with an emphasis on synthesis-oriented policies.
They explain how to write Verilog to wrest optimal gates from the
synthesis process. Still other material presents the entire spectrum
of Verilog constructs from the architectural specification to
switch-level strengths. Yet, these works leave it to the readers to
find their way to good practices for verification. Unfortunately, few
guidelines govern the coding of RTL Verilog to achieve an opti-
mum flow through the various functional and logical verification
processes. This vacuum clearly becomes a problem as design com-
plexity increases, and as design teams consider incorporating more
advanced traditional and formal verification processes within their
flow (for instance, cycle-based simulation, two-state simulation,
model checking and equivalence checking). Our solution is to intro-
duce a verifiable subset of Verilog and a simple RTL coding style.
The coding policies we present have enabled us to effectively incor-
porate these new verification technologies into our design flow. To
provide a framework for discussion, we place emphasis on describ-
ing verification processes throughout the text--as opposed to an
in-depth discussion of the Verilog language. Specifically, we are
interested in how an engineer’s decision to code their RTL impacts
a verification tool’s performance and the quality of the overall veri-
fication process. Thus, we have deliberately linked the RT-level ver-

2 CHAPTER 1

Design errors
detected after
production are
expensive to
fix.

ification process to the language and have chosen not to discuss the
details of the Verilog language reference manual (e.g., [IEEE 1364
1995]).

The likelihood and cost of design errors generally rises with
complexity. Design errors detected after the product is delivered in
large numbers to the marketplace can result in prohibitive cost. In
one famous example, an arithmetic design error is said to have cost
the company a half-billion dollars, according to Hoare [1998]. He
also notes that design errors can have catastrophic effects even in
smaller volume products. Examples are launches and improper
function of billion dollar satellites, and life-critical system control
units in hospitals.

Design errors
detected early
in the design
cycle are
cheaper to fix.

Design errors found prior to customer release are costly as well,
leading to long cycles of regression test, inability to run self-test on
first silicon, re-spins of silicon, and ultimately, delayed
time-to-market. Fortunately, design errors detected early in the
design cycle can be corrected far more easily and at a smaller cost
than those detected later.

These experiences have forced project managers and design
engineers to focus more of their attention on all aspects of verifica-
tion. Therefore, the performance of design and analysis tools is of
paramount concern within any verifiable RTL methodology.

1.1 Register Transfer Level

1.1.1 What is It?
Although the fundamental idea of Register Transfer Level

(RTL) is universally understood for the most part, there are differ-
ences in exact interpretation between different research and devel-
opment groups. Since RTL is fundamental to this book, starting
with the title, it is important that we bring the reader into alignment
with the authors’ understanding of RTL.

Let us start by examining the three words.

Register. Registers are storage elements (latches, flip-flop, and memory
words) that accept input logic states and hold them as directed by
timing signals. The timing signals may be clock edges, clock
phases or reset. When registers hold multi-bit states, RTL lan-
guages declare and reference these state elements either as a vector
notation (i.e. a set), or as a bit-by-bit notation.

INTRODUCTION 3

Transfer.

Level.

Transfer refers to the input-to-register, register-to-register, and
register-to-output equations and transformations. As with the regis-
ter declarations and references, the equations and transformations
operate on vectors as well as bits.

This refers to the level of abstraction. Just as designers of logic
systems are more productive by moving from circuit-level design
using volts and amperes to Boolean-level zero and one, they
become far more productive by designing at the register transfer
level operating on the vector-values of sets of bits.

The level in RTL allows for a range of abstraction for equation
and transformation notations. For verifiability, we suggest that
designer’s use the RTL constructs related to the higher-levels of
abstraction. For example, where designers can describe
state-machines and multiplexers using case, if-else or Boolean, we
favor the case and if-else over the Boolean.

Unlike an architectural level of abstraction, the RT-level pro-
vides a cycle-by-cycle state-by-state exact correspondence with the
gate-level design. The state mapping may be one-to-many or
many-to-one, but the correspondence is exact.

Unlike a gate-level of abstraction, for improved verifiability, the
RT-level design must not specify timing or other physical character-
istics. For example, while the efficient notation of RTL languages
make “add” and “and” look the same, in gates a simple n-bit “add”
(that would complete its function in one-cycle) will take more time
(and area) than a n-bit “and.” The focus of RTL abstraction is on the
cycle-by-cycle state-by-state correctness.

1.1.2 Verifiable RTL
RTL remains
the golden
model
throughout the
course of
design.

We define verifiable RTL as a combination of coding style and
methodology techniques that, when used properly, will ensure
cooperation and support for multiple EDA tools used during the
course of verification. This cooperation can return an order of mag-
nitude improvement in performance and capacity from tools such as
simulation and equivalence checkers. It reduces the labor costs of
coverage and formal model checking, by facilitating communica-
tion between the design engineer and the verification engineer. It
also orients the RTL style to provide more useful results from the
overall verification process.

Central to our Verifiable RTL methodology is the concept that
the RTL remain the main or golden model throughout the course of
design. Hence, our functional verification process (e.g., simulation
or model checking) can focus its effort on a faster RTL model as

4 CHAPTER 1

opposed to a slower gate-level model. To promote this methodol-
ogy, the formal verification process of equivalence checking must
be used to completely validate equality on all design transforma-
tions.

1.1.3 Applying Design Discipline
As Chappell [1999] observes, “designers who get access to the

most degrees of freedom will encounter the most anomalies in tool
behavior.” These designers experience time-to-market costs and
delays as they require significantly more EDA tool support.

On one hand, designers using EDA tools should encourage
EDA tool developers to be fully compliant with RTL standards. On
the other hand, designers should not assume the role of an EDA tool
“standards compliance tester” by using every feature described in
the standard. While EDA tools will likely improve in future
releases, based on compliance testing by users, the design project’s
costs and delays resulting from tool anomalies will likely damage
the corporate bottom line (as well as the designer’s career).

Fundamental to the success of today’s design projects is a disci-
plined approach to RTL design. We refer to this as the Disciplined
User Principle.

Disciplined User Principle

Designers who limit their degree of freedom in writing RTL will
encounter the fewest anomalies in tool behavior.

1.2 Assumptions

Synchronous
Design

As the difficulties in fanning out signals as clock frequencies
increase, verification of interacting independent clock domains is
becoming more important. This book, however, addresses verifica-
tion of synchronous designs. This assumption implicitly pervades
all of the chapters. Although self-timed asynchronous logic remains
an active area of research, RTL verification tool support for
clock-synchronized logic domains is far more developed and in
widespread use.

EDA Tools. Without discussing specific EDA vendor tool details, this book
provides the reader with a comprehensive understanding of various
verification processes from a conceptual and practical level. We

INTRODUCTION 5

have deliberately decided not to reference EDA vendor names
within the text for two reasons:

to be fair to all EDA vendors,

to not date the text with this week’s latest EDA vendor acquisi-
tion.

A good reference for the latest EDA tools and vendors can be
found on the world wide web at the Design Automation Confer-
ence’s exhibitors list (see http://www.dac.com) and the
comp.lang.verilog news group.

Applicability The concepts presented in this book are drawn from the authors’
experience with large-scale system design projects. Our discussion
and examples draw from actual product design processes and tool
experience. Most of the concepts and recommendations discussed
are appropriate to designs of any size and complexity. The decision
to apply some of the advance concepts (e.g., an object-based hard-
ware design pre-processor methodology) needs to be scaled appro-
priately to accommodate each design project’s size, complexity and
time-to-market requirements.

1.3 Organization of This Book

Chapter 2 This chapter introduces various components of the verification
process specifically related to verifiable RTL design, such as design
specification, test strategies. In addition, this chapter introduces
three important principles of verifiable RTL design, which include
the:

Fundamental Verification Principle,

Retain Useful Information Principle, and the

Orthogonal Verification Principle.

Chapter 3 This chapter introduces the concept of coverage analysis, and
techniques to improve functional coverage using both event and
assertion monitors. In addition, this chapter introduces the follow-
ing principle:

Functional Observation Principle.

Chapter 4 This chapter, entitled RTL Methodology Basics, addresses the
problem of complexity due to competing tool coding requirements
by:

6 CHAPTER 1

introducing a simplified and tool-efficient Verilog RTL verifi-
able subset,

introducing an Object-Based Hardware Design (OBHD) meth-
odology, and

detailing a linting methodology.

The linting methodology is used to enforce project specific cod-
ing rules and tool performance checks. The principles introduced in
this chapter include the:

Verifiable Subset Principle,

Object-Based Hardware Design Principle, and the

Project Linting Principle.

Chapter 5 Chapter 5 presents the authors’ views of the history of logic
simulation, followed by a discussion on applying RTL simulation at
various stages within the design phase. We then discuss how logic
simulators work, and how their operation affects simulation perfor-
mance. Next, we describe optimizations that RTL simulation com-
pilers apply in their translation from Verilog to an executable
simulation model. Finally, we discuss techniques for productive
application of simulation for design verification entirely at the
RT-level. The principles introduced in this chapter include the:

Fast Simulation Principle and the

Visit Minimization Principle.

Chapter 6 This chapter, titled Formal Verification, discusses RTL and the
formal verification process. We introduce the notion of a finite state
machine and its analysis and applicability to proving machine
equivalence and FSM properties. In addition, we discuss coding
styles and methodologies that will improve the overall equivalence
and model checking process. Finally, we illustrate how event moni-
tors and assertion checkers, described in Chapter 3 for simulation,
can be leveraged during the formal verification process. The princi-
ples introduced in this chapter include the:

Cutpoint Identification Principle, and the

Numeric Value Parameterization Principle.

Chapter 7 Chapter 7 discusses ideas on verifiable RTL style, and the rea-
soning behind them. The style ideas begin with design content, fol-
lowed by editing practices. The design content includes
asynchronous logic, combinational feedback, and case statements.
The section on case statements presents the arguments favoring a
fully-specified case statement style to facilitate verification.

INTRODUCTION 7

We then present naming conventions for the various elements of
our verifiable RTL style, again with reasoning in support of the
style. An important factor in the naming of modules as well as user
tasks and vendor library functions is the support of simulation per-
formance profiling, as well as avoiding clashes in their global name
spaces during system integration.

The principles introduced in this chapter include the:

Consistency Principle, the

Asynchronous Principle, the

Combinational Feedback Principle, and the

Property Principle.

Chapter 8 Chapter 8, entitled The Bad Stuff, provides specific examples
from projects, designers, and EDA verification tool developers that
are an impediment to a productive verification process. Compared
with other books and papers on RTL design, the most revolutionary
ideas in this chapter include classifying the following as bad stuff:

in-line flip-flop declarations, and the

RTL X-state.

Other bad stuff includes:

RTL versus gate-level simulation differences,

RTL styles that hamper simulation performance,

poor design team discipline,

poor communication between the EDA vendors and the design
project, and

lack of RTL language element policies.

The principles introduced in this chapter include the:

Faithful Semantics Principle and the

Good Vendor Principle.

Chapter 9 Chapter 9 presents a tutorial on Verilog language elements
applicable to the register transfer abstraction levels and their verifi-
able use. For verifiability, we emphasize strong typing, which is not
inherently built into the Verilog language, and fully-specified state
machines using case, casex and if-else statements. We discuss
debugging statements, constant naming, code inclusion controls
and command line options for compilation and simulation in a veri-
fication environment.

8 CHAPTER 1

It is the authors’ belief that engineers can be far more successful
in completing their design by copying and modifying examples.
These examples meet the requirements of an entire design flow
methodology, and emphasize verification. Formal meta-language
specifications of the Verilog language are de-emphasized. Formal
specifications are important to Verilog tool implementers concerned
with lexical and semantic precision. To the design or verification
engineer, however, Verilog examples speak far more clearly than
the legalism of precise specification.

Chapter 10 Chapter 10 draws together and summarizes the eighteen funda-
mental Principles of Verifiable RTL Design, which are discussed
throughout the book. We believe that by applying these principles
of verifiable RTL design, the engineer will succeed in adding or
improving the use of cycle-based simulation, two-state simulation,
formal equivalence checking and model checking in the traditional
verification flow. Furthermore, a verifiable RTL coding methodol-
ogy permits the engineer to achieve greater verification coverage in
minimal time, enhances cooperation and support for multiple EDA
tools within the flow, clarifies RTL design intent, and facilitates
emerging verification processes. The design project will accom-
plish a reduction in development time-to-market while simulta-
neously achieving a higher level of verification confidence in the
final product through the adoption of a Verifiable RTL design meth-
odology.

2
The Verification

Process

Few guidelines
govern the
coding of RTL
for an optimum
verification
flow.

An historical perspective of the design and productivity gain
resulting from the progression of one design notation to the next
can be viewed as:

1.

2.

3.

4.

5.

Schematics (initially used to represent electronic and fab-
rication details)

Boolean equations (Shannon’s revelation 1938)

Block diagrams and timing charts to handle growing sys-
tem complexity

Flip-flop input equations to a register equation ([Reed
1952])

Register Transfer Languages (e.g., DDL [Duley and Diet-
meyer 1968])

As these notations progress from one level of abstraction to the
next, communicating design intent as well as providing a mecha-
nism to verifying correct functionality are improved [Dietmeyer
and Duley 1975].

In the late 1980s, progress in RTL synthesis provided additional
productivity gains in turning the designer’s notational intent into
gates and silicon. Unfortunately, this synthesis productivity gain
has resulted in an increase in verification complexity. What we are

10 CHAPTER 2

promoting is a strong coupling of the RTL notation with the verifi-
cation process. Our focus is on the verification productivity gains
resulting from good coding practices. Therefore, to provide a
framework for discussion, this chapter (and chapters throughout the
book) places emphasis on describing various verification processes.
Specifically, we are interested in how an engineer’s decision to code
their RTL impacts a verification tool’s performance and the quality
of the overall verification process.

2.1 Specification Design Decomposition
During the decade of the 1960s, software productivity was dra-

matically elevated from a low level assembly language coding envi-
ronment through the inception of higher level programming
languages (e.g., FORTRAN, ALGOL). This facilitated the develop-
ment of interactive, multi-user and real-time systems; which
included such complex systems as airline reservations, process con-
trol, navigation guidance, and military command and control.
Accompanying these new complex software systems, however,
were numerous startling problems rarely experienced in the soft-
ware realm--such as system dead lock, live lock and forward
progress problems. To address these problems, the systematic disci-
pline of Software Engineering emerged, providing a management
solution to the ever-increasing system complexity [Pfleeger 1998].
Large software system houses abandoned the ad-hoc Code
Design -> Specify development model for a verifiable systematic
approach to design (i.e., Specify Design Code).

It is interesting to compare the events that led to a systematic
approach to software design with the state of hardware design
today. During the late 1980s, the productivity in hardware design
was dramatically elevated from the process of manually generating
schematics, to a process of writing a higher level RTL model. At the
same time, synthesis technology emerged as an efficient process
used to translate the RTL model into a gate-level implementation.
This productivity gain has resulted in an increase in design verifica-
tion complexity. To address these complexities, engineers are
beginning to adopt a more systematic and verifiable approach to
hardware design--one whose foundation is based on the research,
experiences and practice of Software Engineering. Fundamental to
the success of this discipline is complete, unambiguous and verifi-
able specifications.

[Figure 2-1] illustrates the concept of a specification based
top-down refinement process utilizing design decomposition. The

THE VERIFICATION PROCESS 11

top levels of the pyramid illustrate what we specified, while the
base of the pyramid illustrates how the specification was imple-
mented. This top-down refinement process enables us decompose a
higher level of abstraction into a set of lower level components,
which can be designed and verified independently [Sangio-
vanni-Vincentelli et al. 1996].

A common misconception made by many design engineers is
reasoning that specification is simply documentation written simul-
taneously with the RTL code or written as a last step in the design
cycle. These designers have a tendency to begin RTL coding prior
to fully understanding the block-to-block interface requirements
and possible design implementation alternatives. This approach
locks the design into specific implementation details too soon while
placing unnecessary complexity at the interface between blocks.
Thus, this ad-hoc design methodology has a tendency to drive the
block interface requirements instead of the other way around. Fur-
thermore, without a clear understanding of the verification target,
this ad-hoc design approach limits the concurrent development of
tests by the design verification group. Developing an unambiguous
specification is fundamental to verifiable design. We summarize the
importance of specification by stating the Fundamental Verifica-
tion Principle:

Fundamental Verification Principle
To avoid unnecessarily complex and unverifiable designs, specification

must be completed before RTL implementation.

2.1.1 High-Level Design Requirements

In [Figure 2-1], level one represents the high-level design
requirements. These requirements typically include functional
behavior definition, timing, clock frequency, area, power, perfor-
mance, as well as software and other hardware interface require-
ments. Historically, natural languages have been used to describe
these high-level design requirements. Keating and Bricaud [1998],
however, enumerate limitations with this approach of specifying
requirements (e.g., ambiguities, incompleteness, and errors). To
resolve these natural language ambiguities, designers typically con-
vert a written specification into more restricted verifiable forms of
specification, which include: a formal specification (written in a
high-level system modeling specification language [Bergé et al.
1995]), executable specification used as a reference model (usually

12 CHAPTER 2

written in C, C++, or SDL [Ellsberger 1997], or table specification
[Eiriksson 1996]). Existing HDLs, such as VHDL or Verilog, are
insufficient as specification languages due to:

Why existing
HDLs are
insufficient
specification
languages.

the difficulty or inability of expressing environment design
assumptions, non-determinism and temporal properties,

the engineer’s tendency to migrate the executable specification
toward a lower-level cycle-by-cycle implementation model.

The focus of the executable specification should be on modeling
algorithms, not design implementation details.

THE VERIFICATION PROCESS 13

2.1.2 Block-Level Specification and Design
Level two of [Figure 2-1] represents a refinement of the

high-level design requirements into a block-level specification
through partitioning and decomposition. The block-level specifica-
tion provides an important link between the high-level design
requirements and the RTL implementation. It is through the process
of block-level specification and design that we are enabled to
explore multiple design alternatives. To reduce implementation and
verification complexity, Rowson and Sangiovanni-Vincentelli
[1997] assert the premise that a clear separation be maintained
between a design's communication (i.e., interfaces) and its behavior
at all levels of design refinement (e.g., block and sub-block levels).
They point out that an interface-based design approach provides
many implementation and verification advantages, such as:

Interface-based
design
advantages.

1.

2.

3.

4.

5.

It partitions a large verification problem into a collection
of more manageable pieces, resulting in an increase in
verification coverage while improving verification
efficiency.

It simplifies design and implementation while improving
synthesis productivity.

It provides a clear interface contract between designers of
multiple blocks.

It facilitates formal verification methodologies.

It enables a parallel development of block-level test-
benches during RTL implementation.

2.1.3 RTL Implementation
RTL implementation, represented by level three of [Figure 2-1],

is a process of refining the block level design specification into a
detailed cycle-by-cycle accurate model. The focus of the later chap-
ters in this book is on coding the RTL implementation to facilitate
cooperation with all the verification processes within the design
flow.

2.1.4 Synthesis and Physical Design
Level four of [Figure 2-1] illustrates the synthesis and physical

flow, which represents the process of translating the RTL descrip-
tion into a gate level implementation. To conveniently operate
between the RTL description and the physical flow, it is important
that the various transformations consider subsequent process

14 CHAPTER 2

requirements within the flow. We refer to this as the Retain Useful
Information Principle.

Retain Useful Information Principle
A single process within a design flow should never discard information that is

pertinent to another process within the flow.

The Retain Useful Information Principle must be considered
during all transformation processes involved in the design flow. An
example of its application would be embedding the hierarchical
RTL signal and wire names in the physical design during flattening.
Preserving hierarchical RTL names provides the following advan-
tages for subsequent processes within the flow:

Retain useful
information
advantages.

Permits automatic cross-circuit cutpoint identification using
efficient name mapping techniques. Cutpoints, as described in
Chapter 6, provides a means for partitioning a large cone of
logic into a set of smaller cones. Generally, the equivalence
checking process can prove significantly faster a set of smaller
cones of logic than one large cone.

Enables back annotating the place-and-route based scan connec-
tions into our RTL (as described in Chapter 4). This yields a
5-10X memory and speed advantage when simulating manufac-
turing test patterns on the RTL.

Provides designers with reference points in the physical design
when reviewing manual timing tweaks or output from a
gate-level simulation. This improves communication between
various groups within the design organization.

2.2 Functional Test Strategies
Each hierarchical layer of the specification-driven design pro-

cess can be validated optimally by defining a clear separation of
verification objectives. For example, an executable specification is
ideal for validating algorithmic requirements and uncovering
high-level conceptual problems. Correct ordering of memory
accesses (e.g., loads / stores) is a class of properties that are easier
to validate at the algorithmic or higher-level verification level than
at a lower level of verification.

At the RTL implementation level, ideally a divide-and-conquer
and bottom up verification approach should be practiced. This is

THE VERIFICATION PROCESS 15

generally necessary because internal node observability and con-
trollability decrease as the design size increases. For this reason,
lower-level RTL implementation properties (e.g., a one-hot state
machine will always remain one-hot) are more suitably verified at a
block or sub-block level and might otherwise be missed during
complete chip or system level verification.

By adopting an interface-based design approach, as suggested
in section 2.1, transaction based verification can be employed to
prove communication correctness when integrating the verified
blocks (or sub-blocks). A transaction based verification approach
complements a bottom-up verification philosophy. For example, the
transaction based verification process can now focus its effort on
proving the proper interaction between verified blocks, effectively
managing the overall verification complexity. As we move our veri-
fication effort up from a block-level to a chip or systems level, a
transaction based verification strategy should be employed.

In the following sections, we introduce the most prevalent simu-
lation test strategies used to prove functional correctness at all lev-
els of design. These strategies include directed, random and
transaction-based testing. Typically, directed and random testing
strategies will employ either self-checking code or a reference
model comparison as the checking mechanism. Transaction-based
testing, on the other hand, utilizes rule-based bus monitors. To
improve observability, all of these methods can benefit from the use
of assertion checkers, which will be discussed in Chapter 3.

2.2.1 Deterministic or Directed Test

Deterministic or directed tests are manually written to focus the
verification process on particular functional aspects of the design or
to increase verification coverage on a specific area of concern (e.g.,
corner cases). Directed testing, coupled with self-checking code
and assertion checkers, is the primary means for validating an exe-
cutable specification (e.g., a reference model). In general, develop-
ing directed tests is labor intensive--even for the simplest test. A
more pervasive problem with developing a set of directed tests is
anticipating and modeling all the unexpected environment behav-
iors required for thorough verification.

[Figure 2-2] is an example of a simple testbench environment.
This common testing environment allows the direct testing of a
block, chip or a combination of blocks and chips. This environment
operates on the self-checking test paradigm of (a) providing stimu-
lus for the device under test (DUT), (b) collecting data from the

16 CHAPTER 2

DUT outputs, and (c) comparing the observed data against a set of
expected results.

This environment can be constructed to support either
cycle-by-cycle or event-by-event testing. The distinction between
the two is that for a cycle-by-cycle test environment, the test has an
explicit time base reference (e.g., control) for determining when to
apply the test stimulus. For an event-by-event test environment, the
sequence of operations are applied without an explicit time base
reference. This results in a more productive test development envi-
ronment. The operation of the DUT can be verified to be correct
using event-by-event testing; however, the performance characteris-
tics of the DUT are not verified.

2.2.2 Random Test
Directed tests are an effective method for verifying anticipated

corner cases. Experience has revealed, however, that the types of
defects likely to escape the RTL verification process involve
unimaginable and subtle interactions between design blocks or,
more likely a complex sequence of multiple simultaneous events. A
more appropriate means for finding this complex class of problems
(using simulation) is through the use of pseudo-random test genera-
tors.

THE VERIFICATION PROCESS 17

[Figure 2-3] illustrates a simplified random simulation environ-
ment. The testbench environment serves the purpose of constrain-
ing the device under test inputs to legal combinations. The random
stimulus generation block can be of varying complexity (e.g., sim-
ple random stimulus, weighted random stimulus, more exotic meth-
ods that use feedback from the device under test or testbench
environment).

Alternatively, a pseudo-random test methodology can be imple-
mented utilizing test case templates, written by the verification
engineer. The test case template specifies fundamental test interac-
tion at a high level of abstraction, allowing a simple template
expander tool to unfold the template into a family of test
cases--replacing unspecified parameters with random values.

For a complex test scenario, quite often the testbench environ-
ment is modeled using a combination of bus functional models as
shown in [Figure 2-4]. These bus functional models enable the veri-
fication engineer to specify the tests as a sequence of transactions at
a high level of abstraction, instead of a set of lower level vectors.
The bus functional models are used to convert the higher-level
transactions into the explicit lower-level signals and operations.

The environment in [Figure 2-4] is referred to as a hybrid ran-
dom simulation environment, which will support the use of directed
and pseudo random generated tests, either individually or collec-
tively. Directed tests are supplied to each bus functional model via
the use of a static test input file and the pseudo random tests will be
controlled via a bus functional model specific weight file.

18 CHAPTER 2

The simulation controller manages the initialization of memory,
coordinates the test with the bus functional model, and controls the
shutdown sequences during error detection. The test execution is
coordinated by the simulation controller on a clock-by-clock basis,
while the bus functional model interface to the simulation environ-
ment is handled on an event-by-event basis. As with our simplified
testbench environment example, the simplified random simulation
environment is limited to controlling the chip interfaces on specific
event boundaries.

2.2.3 Transaction Analyzer Verification
The simplified transaction analyzer simulation environment,

illustrated in [Figure 2-5], is an enhancement to our simplified ran-
dom simulation environment. It includes the addition of a bus trans-
action analyzer. The transaction analyzer functions as a passive
collection of bus monitors, which track and verify data movement
throughout the chip or system. For example, an elaborate transac-
tion analyzer could be constructed to keep track of the exact con-
tents of any system memory. In case of a system deadlock, the
transaction analyzer is useful for identifying incomplete data trans-
fers--simplifying the debug effort.

THE VERIFICATION PROCESS 19

2.2.4 Chip Initialization Verification

There are many documented cases [Taylor et al. 1998][Bening
1999], which after many hours of verification prior to silicon, the
delivered chip is found to be:

non-functional for certain power-on states, or worse,

dead-on-arrival for all initial power-on states.

One cause for these initialization problems is due to the occur-
rence of both RTL X-state pessimism and optimism as described in
Chapter 8.

Unfortunately, the equivalence checking process will prove that
the RTL model and the gate-level model are logically equivalent.
Yet, the gate level simulation might uncover an initialization prob-
lem that would always be missed due to X-state optimism during
RTL simulation. For example, an X value in the RTL will cause the
CASE or IF branch to always take the default statement. The engi-
neer, however, might have a functional bug in an alternative branch
statement within the RTL. During gate-level simulation, there is no
CASE or IF statement X optimism--so the functional bug can be
observable if properly stimulated. Hence, the cones of logic are log-

20 CHAPTER 2

the functional bug is not observable at the RT-level. Chapter 8 pro-
vides additional details on X-state optimism.

Clearly, strategies for verifying chip initialization need to be
considered as a fundamental part of the verification process. Chap-
ter 5 describes a method of using two-state simulation in conjunc-
tion with consistent random initialization as a better means for
verifying chip initialization at the RT-level. In addition, special con-
sideration needs to be given to running a small set of gate-level sim-
ulations earlier in the design cycle to uncover initialization
problems.

2.2.5 Synthesizable Testbench
Constraining the testbench HDL to a synthesizable subset

appears to be an effective measure. In general, for most chip
designs, the RTL description has been successful at preventing race
conditions. Testbenches, however, historically have not been quite
as successful.

In the racy testbench, typically verification engineers tune the
races to work with a specific version of a vendor's simulator. This
becomes problematic when evaluating competing vendor simula-
tors or new versions of a simulator from the same vendor.

By restricting the testbench HDL to a synthesizable subset and
isolating all timing controls into separate modules within the test-
bench, we are able to prevent race conditions from occurring. Fur-
thermore, the testbench can be moved directly into a cycle-based or
emulation environment--significantly improving the overall verifi-
cation runtime performance. The tutorial in Chapter 9 provides
examples of synthesizable testbenches.

2.3 Transformation Test Strategies
It is the authors intent that the RTL remain the golden model

throughout the course of functional verification. To achieve this
goal, its necessary to verify that all transformed models preserve
the logical equivalence characteristics of the original RTL model.
Formal equivalence checking techniques used to validate design
flow transformations will be discussed in detail in Chapter 6.

It is our contention that the verification of functional behavior,
logical equivalence and physical characteristics be treated as
orthogonal processes, with a clear separation of concerns within the
verification flow. We refer to this as the Orthogonal Verification
Principle. For example, SPICE, static timing verification or

THE VERIFICATION PROCESS 21

gate-level simulation is recommended for verifying physical char-
acteristics (e.g., tri-state, timing, etc.)--while behavioral simulation,
RTL simulation and model checking are used to verify functional
behavior. Equivalence checking should be used to ensure that the
reference RTL model is logically equivalent to a transformed or
refined model. In other words, for efficiency and thoroughness,
physical characteristic verification is orthogonal to the equivalence
checking or functional verification process.

The Orthogonal Verification Principle provides the founda-
tion for today’s static verification design flows, which enables a ver-
ification process to focus on its appropriate concern through
abstraction. By applying this principle, we are able to achieve
orders of magnitude faster verification, support larger design capac-
ity, and higher verification coverage including exhaustive equiva-
lence and timing analysis.

Orthogonal Verification Principle
Within a design flow, functional behavior, logical equivalence, and physical

characteristics should be treated as orthogonal verification processes.

2.4 Summary
In this chapter, we examined various components of the verifi-

cation process specifically related to verifiable RTL design--such as
design specification, and test strategies. Furthermore, this chapter
introduced four essential principles of verifiable RTL design. We
emphasized the importance of specification in the verification pro-
cess, which we referred to as the Fundamental Verification Prin-
ciple. This principle enables us to reduce design complexity while
increasing verifiability. We then introduced the Retain Useful
Information Principle, which enables us to globally optimize pro-
cesses within the design flow while capturing environmental
assumptions and design knowledge. Next, we discussed the impor-
tance of maintaining a clear separation of verification concerns,
which provides the foundation for today's static verification design
methodology. We refer to this as the Orthogonal Verification
Principle.

This page intentionally left blank

3
Coverage, Events

and Assertions

In this chapter, we examine various coverage metrics used in
today’s hardware design practices. Coverage goals are used to mea-
sure the degree of confidence in our total verification effort and to
help the design team predict the optimal time for design release. To
address the lack of a good functional coverage metrics, we intro-
duce the idea of refining the design’s specification (i.e., higher level
requirements) into a set of verifiable RT-level assertions. We have
found this technique practical and effective for capturing the
designer’s functional intent, while providing an automatic path for
validation.

Today, several categories of design verification and analysis
tools exist for validating functional intent. This set includes logic
simulators, testbench generators, and formal and semi-formal veri-
fication tools. The first, logic simulators, validate design behavior
responses for a given set of input stimuli or test vectors. Predict-
ably, the results obtained using logic simulation tools are only as
good as the functional coverage quality of the set of input stimuli.
Another category of tools includes those identified as testbench
generators. These are used to model the design environment and
generate simulation-input stimuli. In addition, these tools observe
and validate proper output behavior [Begeron 2000]. The specifica-
tion for proper behavior might be defined as events and assertions
in the tool’s proprietary language. More recently, the so-called for-

24 CHAPTER 3

mal and semi-formal categories of tools have emerged, which are
heavily proof driven and mathematical in approach. These tools
include state-space exploration, such as property and model check-
ers, which validate user-specified properties using formal tech-
niques without test vectors [Clarke et. al 1999]. Semi-formal
verification, such as amplification tools, combine traditional simu-
lation techniques with formal state-space exploration and model
checking techniques. For these tools, the mathematical proofs are
employed with a limited or bounded search at precise times during
the verification process.

As engineers begin to apply more advanced forms of verifica-
tion to the design flow, they quickly realize that to be successful,
verifiable forms of specification are required. One method of speci-
fying the designer’s functional intent is to create a set of module
design assertions. As an example, consider that a possible design
assertion is that a state machine’s encoding is always “one-hot”
after a reset, meaning that only one bit of a collection of bits is
actively high at a time. If the state machine violates the one-hot
assertion following a reset, then the logic design is flawed in some
way.

In this chapter, we describe a library of module assertion moni-
tors we have created. These assertion monitors can be used to vali-
date many different aspects of the designer’s functional intent, such
as a “one_hot” condition.

3.1 Coverage

See Chapter 6
for a discussion
on formal
verification
techniques.

To guarantee correctness using traditional verification tech-
niques requires enumerating all possible sequences of input and
register state, followed by exhaustive simulation and detailed analy-
sis. Although this approach is theoretically possible, it is combina-
torially intractable for all but the smallest designs. In practice,
formal equivalence checking has been successful in providing
100% coverage when proving equivalence between an RTL refer-
ence model and its lower-level transformations (e.g., a gate or tran-
sistor netlist). Other formal verification techniques, such as model
checking, are being used to exhaustively prove correct functional
behavior on specific block-level design properties. Unfortunately,
this technique does not scale well for high level properties on large
RTL models and is not appropriate for proving data path properties
within the design. Clearly, a good simulation coverage metric is
required that enables us to measure the degree of confidence in our
total verification effort and helps us predict the optimal time for

COVERAGE, EVENTS AND ASSERTIONS 25

Defining
coverage.

design release (i.e., tape-out). Abts [1999] refers to a set of cover-
age metrics as the release criteria.

Defining exactly what we mean by coverage is a difficult task.
Dill and Tasiran [1999] suggest that an objective of verification
coverage should be to “maximize the probability of stimulating and
detecting bugs, at minimum cost (in time, labor, and computation).”
They point out, however, that it is difficult to formally prove that a
coverage metric provides a good proxy for bugs, although
empirically this seems true. In this section, we explore many
different techniques and metrics for measuring verification
coverage--and the role coverage plays in contributing to
comprehensive validation without redundant effort.

3.1.1 Ad-hoc Metrics
Ad-hoc metrics, such as bug detection frequency, length of simu-

lation after last bug found, and total number of simulation cycles
are possibly the most common metrics used to measure the degree
of confidence in the overall verification process. These ad-hoc met-
rics indicate, after a stable period, that our verification productivity
level has diminished. At this point, the verification manager may
choose to employ additional verification strategies--or decide to
release the design. Malka and Ziv [1998] have extended the use of
these metrics by applying statistical analysis on post-release bug
discovery data, cost per each bug found, and the cost of a delayed
release to estimate the reliability of the design. This technique pro-
vides a method of predicting the number of remaining bugs in the
design and the verification mean time to next failure (MTTF).
Unfortunately, metrics based on bug rates or simulation duration
provide no qualitative data on how well our verification process val-
idated the design space, nor does it reveal the percentage of the
specified functionality that remains untested. For example, the veri-
fication strategy might concentrate on a few aspects of the design's
functionality--driving the bug rate down to zero. Using ad-hoc met-
rics might render a false sense of confidence in our verification
effort, even though portions of the design's total functionality
remain unverified.

3.1.2 Programming Code Metrics
Most commercial coverage tools are based on a set of metrics

originally developed for software program testing [Beizer
1990][Horgan et al 1994]. These programming code metrics mea-
sure syntactical characteristics of the code due to execution stimuli.
Examples are as follows:

26 CHAPTER 3

Programming
Code Metrics.

Line coverage measures the number of times a statement is vis-
ited during the course of execution.

Branch coverage measures the number of times a segment of
code diverges into a unique flow.

Path coverage measures the number of times each path (i.e., a
unique combination of branches and statements) is exercised
due to its execution stimuli.

Expression coverage is a low-level metric characterizing the
evaluation of expressions within statements and branch tests.

Toggle coverage is another low-level metric, which provides
coverage statistics on individual bits that toggle from 1 to 0, and
back. This coverage metric is useful for determining bus or
word coverage.

Controllability
vs.
Observability.

A shortcoming of programming code metrics is that they are
limited to measuring the controllability aspect of our test stimuli
applied to the RTL code. Activating an erroneous statement, how-
ever, does not mean that the design bug would manifest itself at an
observable point during the course of simulation. Techniques have
been proposed to measure the observability aspect of test stimuli by
Devadas et al. [1996] and Fallah et al. [1998]. What is particularly
interesting are the results presented by Fallah et al. [1998], which
compare traditional line coverage and their observability coverage
using both directed and random simulation. They found instances
where the verification test stimuli achieved 100% line coverage, yet
achieved only 77% observability coverage. Other instances
achieved 90% line coverage, and achieved only 54% observability
coverage.

Another drawback with programming code metrics is that they
provide no qualitative insight into our testing for functional correct-
ness. Kantrowitz and Noack [1996] propose a technique for func-
tional coverage analysis that combines correctness checkers with
coverage analysis techniques. In section 3.2, we describe a similar
technique that combines event monitors, assertion checkers, and
coverage techniques into a methodology for validating functional
correctness and measuring desirable events (i.e., observable points
of interest) during simulation.

In spite of these limitations, programming code metrics still
provide a valuable, albeit crude, indication of which portions of the
design have not been exercised. Keating and Bricaud [1999] recom-
mend targeting 100% programming code coverage during block
level verification. It is important to recognize, however, that achiev-
ing 100% programming code coverage does not translate into 100%
observability (detection) of errors or 100% functional coverage.

Functional
Correctness.

COVERAGE, EVENTS AND ASSERTIONS 27

The cost and effort of achieving 100% programming code coverage
needs to be weighed against the option of switching our focus to an
alternative coverage metric (e.g., measuring functional behavior
using event monitors or a user defined coverage metric).

3.1.3 State Machine and Arc Coverage Metrics
State machine and arc coverage is another measurement of con-

trollability. These metrics measure the number of visits to a unique
state or arc transition as a result of the test stimuli. The value these
metrics provide is uncovering unexercised arc transitions, which
enables us to tune our verification strategy. Like programming code
metrics, however, state machine and arc coverage metrics provide
no measurement of observability (e.g., an error resulting from arc
transitions might not be detected), nor does it provide a measure-
ment of the state machine’s functional correctness (e.g., valid
sequences of state transitions).

3.1.4 User Defined Metrics
Grinwald, et al. [1998] describe a coverage methodology that

separates the coverage model definition from the coverage analysis
tools. This enables the user to define unique coverage metrics for
significant points within the design. They cite examples of user
defined coverage metrics targeting the proper handling of interrupts
and a branch unit pipe model of coverage. In general, user defined
metrics provide an excellent means for focusing and directing the
verification effort on areas of specific concern [Fournier et al.
1999].

3.1.5 Fault Coverage Metrics
For completeness we will discuss fault coverage metrics, which

have been developed to measure a design's testability characteris-
tics for manufacturing. Unlike programming code coverage, the
fault coverage metrics address both controllability and observabil-
ity aspects of coverage at the gate-level of design. Applying fault
coverage techniques to RTL or functional verification, however, is
still an area of research [Kang and Szygenda 1992] [Cheng 1993].

1.

2.

These metrics are commonly based on the following steps:

Enumerate stuck-at-faults on the input and output pins on
all gate (or transistor) level models in the design.

Apply a set of vectors to the design model using a fault
simulator to propagate the faults.

28 CHAPTER 3

3. Measure the number of faults that reach an observable
output.

3.1.6 Regression Analysis and Test Suite Optimization

By using a combination of the various coverage metrics
described in this chapter, we are able to perform the processes
known as regression analysis and test suite optimization. These
combined processes enable us to significantly reduce regression test
runtimes, and maximize our overall verification coverage. Using
regression analysis and test suite optimization techniques, develop-
ment labs at Hewlett-Packard have successfully reduced regression
vectors by up to 86% while reducing regression simulation runt-
imes by 91%. Alternatively, Buchnik and Ur [1997] describe a
method they have developed for creating small (yet comprehensive)
regression suites incrementally on the fly by identifying a set of
coverage tasks using regression analysis. Obviously, coverage met-
rics play an important role in optimizing regression test suites.

3.2 Event Monitors and Assertion Checkers
In section 3.1, we explored various coverage metrics that are

used to determine our degree of confidence in the verification pro-
cess. A deficiency with this standard set of coverage metrics is their
inability to quantify functional coverage. In general, verification
strategies can be classified as either end-to-end (black-box) testing
or internal (white-box) testing. Properties of the design we wish to
validate using white-box testing are easier to check, since it is
unnecessary to wait for test results to propagate to an observable
output. In this section, we explore the use of event monitors and
assertion checkers as a white-box testing mechanism for measuring
functional correctness as well as detecting erroneous behavior. The
use of event monitors and assertion checkers provides the following
advantages:

Event monitor
and assertion
checker
advantages.

halts simulation (if desired) on assertion errors to prevent
wasted simulation cycles

simplifies debugging by localizing the problem to a specific area
of code

increases test stimuli observability, which enhances pseudo-ran-
dom test generation strategies

provides a mechanism for grading test stimuli functional cover-
age (e.g., event monitoring coverage)

COVERAGE, EVENTS AND ASSERTIONS 29

enables the use of formal and semi-formal verification tech-
niques (e.g., provides verification targets and defines constraints
for formal assertion checkers)

provides a means for capturing and validating design environ-
ment assumptions and constraints

See chapter 2
for a discussion
on the Retain
Useful
Information
Principles.

The last point, capturing assumptions and constraints, is a nota-
ble application of the Retain Useful Information Principle.
Assertion checkers are a useful mechanism for capturing design
assumptions and expected input environmental constraints during
the RTL implementation phase. Likewise, event monitors embed-
ded in the RTL provide a mechanism for flagging corner-case
events for which the design engineer has verification concerns. The
loss of this design knowledge and environmental assumptions can
result in both higher verification cost and maintenance costs.

3.2.1 Events
An event can be thought of as a desirable behavior whose occur-

rence is required during the course of verification for completeness.
Examples of events include corner-case detection, such as an error
memory read, followed by its proper error handling function. In
general, we can classify events as either static (a unique combina-
tion of signals at some fixed instance of time) or temporal (a unique
sequence of events or state transitions over a period of time).

[Figure 3-6] illustrates the concept of a static event, which is a
unique combination of signals occurring at some fixed point in
time. For example, the static event might be the occurrence of a
“queue full” condition concurrent with a queue write request. Cre-
ating an event monitor enables us to track this legal corner-case
condition, consequently determining whether it has been exercised
during the verification process.

30 CHAPTER 3

[Figure 3-7] illustrates a combined sequence of events exhibit-
ing a unique temporal relationship. For example, given that Event 1
occurs, Event 2 will eventually occur prior to the occurrence of
Event 3.

Example 3-1

[Example 3-1] illustrates a simple method of embedding an
event directly into the Verilog RTL.

`ifdef EVENTS_ON
// Detects when queue is full
// and queue write request occur simultaneously
always @(posedge ck) begin

if(reset_n == 1’b1 && c_q_full && c_q_write) begin
$display("EVENT%0d:%t:%m",

`EV_Q_FULL_WR, $time);
end

end
`endif

An alternative solution to embedding the event monitor's detec-
tion and reporting code directly into the RTL would be to encapsu-
late the event monitor in a module. This approach provides the
following advantages:

Advantage of
encapsulating
event monitor
into a module.

1.

2.

3.

4.

simplifies the work required by the engineer when
specifying events

provides clear separation of functional design intent from
event monitoring code

ensures concurrent detection of events with the execution
of the RTL code (as opposed to procedural detection when
the event monitor is mixed in with the design's RTL
description)

permits a seamless optimization of event monitor
detection and reporting code throughout design and
verification--without disturbing the engineer's text

COVERAGE, EVENTS AND ASSERTIONS 31

5. permits a seamless augmentation of new event monitoring
features throughout the course of verification

For details on
Programming
Language
Interface (PLI)
see [Mittra
1999] and
[Sutherland
1999].

A case in point: the design verification group might decide to
augment the [Example 3-1] event monitor reporting mechanism by
replacing the simple $display call with a PLI call. This could be
used to provide support for a sophisticated event monitor detection
scheme that involves a hierarchy of multiple events. By encapsulat-
ing the event monitor functionality within a library module, the
augmentation of new features can be conducted in a seamless fash-
ion.

[Example 3-2] illustrates a simple method of instantiating an
event monitor module directly into the Verilog RTL as opposed to
the direct embedded method of [Example 3-1].

Example 3-2

Example 3-3

// Detects when both queue full
// and queue write request simultaneously occur
event_monitor #(`EV_Q1_Q2_FULL) dv_q_full_write (ck, reset_n,

c_q_full && c_q_write);

The module definition for [Example 3-2] is described in [Exam-
ple 3-3]. Encapsulating the event detection code within a module
permits performance tuning to occur seamlessly.

module event_monitor (ck, reset_n, test);
input ck, reset_n, test;
parameter event_id=0;
//rtl_synthesis off

‘ifdef EVENTS_ON
always @(posedge ck) begin

if(reset_n == 1’b1 && test==1’b1) begin
$display("EVENT LOG %d:%t:%m", event_id,

$time);
end

end
`endif

//rtl_synthesis on
endmodule // event_monitor

3.2.2 Assertions
Assertion checkers are a mechanism used to enforce design

rules by trapping undesirable behavior during the verification pro-
cess (e.g., check for an illegal event or an invalid design assump-
tion). Assertions, like events, can be classified as either static or
temporal. A static assertion can be implemented in a manner simi-
lar to that used with an event monitor, with the exception that the

32 CHAPTER 3

event we wish to trap is undesirable behavior. While an temporal
assertion can be viewed as an event-triggered window, bounding
the assertion.

For example, [Figure 3-8] illustrates an assertion check for an
invariant property. The assertion P in this example is checked after
Event 1 occurs, and continues to be checked until Event 2. The
event-triggers are expressed using any valid Verilog expression.
Likewise, the assertion P is expressed using a valid Verilog expres-
sion.

As another example, [Figure 3-9] illustrates an assertion check
for a liveness property. The event P, in this example, must eventu-
ally be valid after the first event-trigger occurs and before the sec-
ond event-trigger occurs. An assertion error is flagged if event P
does not occur within the specified event-triggered window.

Example 3-4

VHDL provides semantics for specifying static or invariant
assertions directly within the RTL as illustrated in [Example 3-4]:

assert condition
report message

severity level

COVERAGE, EVENTS AND ASSERTIONS 33

Example 3-5

Verilog, unfortunately, has no equivalent semantics. The tech-
niques we previously presented for monitoring Verilog events, how-
ever, are easily extended to validating design assertions. For
example, [Figure 3-9] can be expressed using an assertion check as
shown in [Example 3-5]:

assert_eventually err_num (ck, reset_n, ev1_expr, p_expr,
ev2_expr, `ASSERT_ERR_NUM);

In this example, the Event 1 expression ev1_expr will initiate
the monitoring process when it evaluates to true. The assertion
checker will then look for a valid p_expr expression prior to the
Event 2 expression ev2_expr evaluating true. If event p_expr does
not occur prior to the occurrence of ev2_expr (or the end of the
simulation test) then the assertion check fails.

By instantiating a module for the assertion checker, the verifica-
tion process is able to isolate assertion implementation details from
the functional intent of the RTL. This permits the creation of multi-
ple assertion libraries optimized for specific verification processes
within the flow. For example, we might create an assertion library
optimized for formal verification that contains either vendor spe-
cific model checking meta-comments or a library that implements a
state machine to trap illegal temporal behavior. Similarly, we could
create a simulation-targeted assertion library, which logs events to
be post-processed and analyzed for correctness.

Our assertion monitor library, listed in [Table 3-1], was devel-
oped to provide designers, integrators, and verification engineers
with a single, vendor-independent interface for design validation

34 CHAPTER 3

using simulation, semi-formal verification, and formal verification
techniques. By using a single well-defined interface, our assertion
monitor library can bridge the gap between the different types of
verification, making the use of more advanced verification tools and
techniques available for non-expert users.

An assertion monitor library similar to our own, which includes
Verilog source code and full documentation, can be freely down-
loaded from the Open Verification Library Initiative web-site
(www. verificationlib. org).

Example 3-6
module assert_always (ck, reset_n, test_expr);

input ck, reset_n, test_expr;
parameter severity_level = 0;
parameter msg="ASSERT ALWAYS VIOLATION";

‘ifdef ASSERT_ON
integer error_count;
initial error_count = 0;
always @(posedge ck) begin
‘Ifdef ASSERT_GLOBAL_RESET
if (‘ASSERT_GLOBAL_RESET != 1’b0) begin

‘else
if (reset_n != 1’b0) begin

‘endif
if (test_expr != 1’b1) begin
error_count = error_count + 1;
‘Ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <=
‘ASSERT_MAX_REPORT_ERROR)

‘endif
$display("%s : severity %0d : time %0t: %m",

msg, severity_level, $time);
if (severity_level == 0) $finish;

end
end

end // always
‘endif
endmodule // assert_always

[Example 3-6] provides an example for coding an assertion
checker used during simulation. For this example we have selected
the assert_always, which is one of the most general assertion. This
assertion does not contain any complex sequential check, with the
exception of sampling test_expr at every positive edge of clk. It is
employed when ever the user wants to verify an invariant property.

COVERAGE, EVENTS AND ASSERTIONS 35

The following example illustrates using the assert_never to
ensure that the q_underflow signal is never activated. Furthermore,
this example demonstrates how to specify a logical implication
(i.e.,p-> q):

assert_never q_safe (clk, reset_n,
(q_valid==1’b1) ? (q_underflow==1’b1): 1’b1);

For assertions requiring a more complex sequential check, the
assertion monitors follow the convention illustrated in [Figure
3-10]. The start_event will initiate the assertion validation pro-
cess, which will be performed on a specified test_expr. The asser-
tion monitor will continue to validate the assertion until an
end_event occurs.

See Appendix
C for
time-bounded
assert_change
monitor
example.

There are two classes of sequential monitors in our assertion
library. The first class is a time-bounded monitor. For example,
assert_change is a time-bounded assertion that will continuously
monitor the start_event at every positive edge of the clock. Once
this signal (or expression) evaluates TRUE, the assert_change
monitor will ensure that the test_expr will change values within a
specified number of clocks (e.g., num_cks). For this monitor, the
end_event occurs at the end of num_cks clocks.

The second class of sequential monitors is an event-bounded
monitor. For example, the assert_window is an event-bounded
assertion that continually monitors the start_event at every positive
edge of the clock. Once this signal (or expression) evaluates TRUE,
the assert_window monitor will ensure that the test_expr remains
TRUE until a user specified end_event expression triggers (i.e.,
evaluates TRUE).

The tutorial in Chapter 9 provides additional details and exam-
ples on assertion checker use. Chapter 6 discusses additional details
and techniques for extending the use of the assertion checkers into a
formal module checking environment. Section 3.2.4 discusses addi-
tional considerations and details required to create an effective
event monitor and assertion checker methodology.

See Appendix
C for
event-bounded
assert_window
monitor
example.

36 CHAPTER 3

3.2.3 Assertion Monitor Library Details
All assertion monitors within our library observe the following

BNF format detailed in [Example 3-7] and defined in compliance
with the standard module instantiation of the IEEE Std 1364-1995
“Verilog Hardware Description Language.”

Example 3-7

assertion_instantiation ::= assert_identifier
[parameter_value_assignment] module_instance ;

parameter_value_assignment ::= #(severity_number{,other
parameter expressions}, message)

module_instance ::= name_of_instance
([list_of_module_connections])

name_of_instance ::= module_instance_identifier

list_of_module_connections ::=
ordered_port_connection {,ordered_port_connection) |
named_port_connection {,named_port_connection}

ordered_port_connection ::= [expression]

named_port_connection ::= .port_identifier ([expression])

assert_identifer ::= assert_[type_identifier]

type_identifier ::= identifier

To enable the assertion monitors during verification, the user
must define the macro ASSERT_ON (e.g., +define+ASSERT_ON).
During synthesis, the ASSERT_ON would not be defined. In addi-
tion, //synthesis translate_off meta-comments are contained within
the body of each monitor to prevent accidental synthesis of the
monitor logic.

There are two parameters always present in the assertion library
definition: severity_level and message.

The severity_level (see [Example 3-6]) is an optional parameter
that is used to describe the severity of a failure. By default, this
parameter is set to 0, the highest severity. The way a specific tool
will deal with this parameter is tool dependent. In simulation, if an
error is encountered with a severity_level of 0, the simulation will
halt. Severity level values greater than 0 will be displayed as warn-
ings; however, simulation will continue to run.

The message is an optional parameter that is used to describe
the error message that should be printed when the assertion fires.

COVERAGE, EVENTS AND ASSERTIONS 37

The list_of_module_connections for all library assertions have
two common port connections, test_expr and reset_n. The test_expr
port connects the assertion expression that is to be validated. The
reset_n port connects an active low expression that indicates circuit
initialization completion to the assertion monitor. During the time
reset_n is low, the assertion monitor will be disabled and initialized.
An alternative to specifying a reset_n signal or condition for each
assertion monitor, is for the user to define the macro
‘ASSERT_GLOBAL_RESET, which should reference a reset sig-
nal in the top module of the design. When defined, all instantiated
monitors will disregard their respective reset_n signals, and they
will be initialized whenever ‘ASSERT_GLOBAL_RESET is low.

Most of the assertions are sampled at the positive edge of a trig-
gering signal or expression clk, with the exception of
assert_proposition (which requires no clk).

Every assertion monitor maintains an internal register
error_count that stores the number of times the assertion monitor
has fired. This internal register can be accessed by the testbench to
signal when a given testbench should be aborted. When the macro
‘ASSERT_MAX_REPORT_ERROR is defined, the assertion
instance will report a problem if the number of errors for that
instance is smaller than the maximum limit defined by the macro
(i.e., new errors will be ignored).

3.2.4 Event Monitor and Assertion Checker Methodology

Kantrowitz and Noack [1996] describe an effective verification
process developed for the DEC Alpha 21264 Microprocessor,
which combines assertion checkers, coverage analysis and
pseudo-random test generation. Measuring the effectiveness of their
various bug detection mechanisms revealed that 34% of all design
bugs were identified through assertion checkers (compared with
11% of bugs identified with self-checking directed test). Likewise,
[Taylor et. al. 1998] revealed that assertion checkers identified 25%
of their total design bugs. Clearly, a verification process that
includes event monitors and assertion checkers will quickly identify
and isolate errors while improving observability required for func-
tional coverage analysis.

From our experience in using the assertion monitor library, it is
apparent that an effective assertion methodology is one in which the
design engineer captures the assertion during code development.
This type of methodology is preferable to augmenting the RTL with
assertions after code completion. In fact, many RTL bugs are

Capturing
Assertions.

38 CHAPTER 3

revealed to the designer during the process of creating the steps
required to specify the assertion monitor arguments--prior to apply-
ing any form of verification.

Our assertion monitor library permits the designer to capture the
assertion independent of the Verilog source file (i.e., assertions can
be placed in a separate file). We favor, however, embedding the
assertions directly in the RTL to facilitate:

Advantages for
embedding
assertions
directly into
RTL source.

linting, in a single step, the RTL source for syntactical errors
related to assertion specification; and

capturing design assumptions and knowledge at the point of
development; which, in addition to the RTL, becomes a perma-
nent record of the design intent.

Constraints.

Peer Reviews.

Non-Assertion
Identified Bugs.

For an effective assertion checking methodology, engineers
must translate their block-level informal interface specifications
into a set of assertions. First, assertion modules are selected from a
monitor library, which represent our translated set of assertions;
then, these modules are instantiated directly into the engineer’s
RTL code. Later, when formal verification techniques are applied to
the design, these assertions can be treated as design constraints, the
semi-formal and formal tools limited their search process to legal
input behavior. During formal verification, new constraints can be
added whenever a false firing occurred on an assertion property.

An effective assertion methodology should include RTL asser-
tion code reviews. These peer reviews permit the design engineers
to describe their corner case concerns and, in the course of the
review, potentially identify new concerns. We found that the peer
reviews provided a useful learning experience for less accom-
plished assertion monitor users.

For all bugs found in the course of simulation, which were iden-
tified by means other than an assertion monitors, we recommend
that the designer add new assertions. This process addresses the fol-
lowing objectives:

New assertions
should be
added for all
non-assertion
identified bugs.

to capture the known corner case that will document a perma-
nent characteristic of the design,

to provide the engineer with an increased awareness of how to
code assertion, and

to ensure (given the correct stimulus) the bug can be identified
in the original design, while providing a target to validate the
modified design.

COVERAGE, EVENTS AND ASSERTIONS 39

3.2.4.1 Linting Strategy

An effective event monitor and assertion checker linting strat-
egy is required to ensure their successful use within the verification
process. For example, by comparing different revisions of both the
RTL code and event definitions, a simple event linting tool can be
created to identify and verify:

duplicated, new or deleted events

the absence of events required by a post-processing coverage or
verification tool
signals triggering an event or assertion that have been modified

3.2.4.2 Implementation Considerations

Control For performance reasons, a monitor enable (or disable) control
mechanism must be incorporated within the verification process.
[Example 3-3] shows the use of an `ifdef EVENTS_ON mecha-
nism to coarsely control the inclusion of monitors at compile time.
An alternate mechanism can be implemented, permitting the activa-
tion of various classes or sets of monitors at runtime. This allows
fine-tuning simulation performance while focusing the verification
process on a class of events. For example, a level or classification
number could be added as an argument to the event monitor or
assertion checker module definition and used for fine tuning con-
trol.

Generally, we are interested in monitoring events or checking
assertions only after the design has initialized. Determining the sta-
tus of reset and initialization can be encapsulated within the moni-
tors and checkers to simplify RTL coding. For example:

if (‘TOP.dv_initialization_complete) // Check for reset done
if(event_expr) // Check for event

$display("EVENT%0d:%d:%m", `EVENT_NUM, $time);

Note that ‘TOP is defined as a reference to the top module in the
design (i.e., testbench), and the dv_initialization_complete vari-
able would be set to TRUE after the completion of reset of initial-
ization.

A text macro pre-processing flow can greatly reduce the amount
of coding required when embedding events and assertions directly
into the RTL. This approach permits a seamless augmentation of
new features throughout the course of a design project without
interfering with the text or functional intent of the designer's RTL.

Reset and
Initialization

Example 3-8

Text Macro
Pre-Processing

40 CHAPTER 3

It provides consistency in control and flow--while providing a
mechanism for process optimization. From our experience, devel-
oping a text macro pre-processor is a minor effort involving a sim-
ple perl script and small 100 line C program. Isolating assertion
checker tool specific details from the design engineer simplifies the
task of capturing events and assertions in the RTL while permitting
the verification group to tune the methodology at a single point (e.g.
the assertion checker targeted library).

[Example 3-9] illustrates a method of coding a text macro
directly into the pre-processed RTL file for the liveness check
described in [Example 3-5]:

ASSERT_EVENTUALLY (err_num, ck, reset_n, evl_expr,
p_expr, ev2_expr, `ASSERT_ERR_NUM);

A simple assertion pre-processor can be created that reads in the
text macro source file and generates the final Verilog RTL. The text
macros would be expanded in the final Verilog RTL by adding the
necessary controls to prevent processing the code during synthesis,
along with potential additional controls for tuning verification per-
formance:

// rtl_synthesis off
`ifdef ASSERT_ON

assert_eventually err_num (ck, reset_n, ev1_expr, p_expr,
ev2_expr, `ASSERT_ERR_NUM);

`endif
// rtl_synthesis on

As an alternate implementation, the pre-processor could replace
the text macro with an inline version of the event monitor or asser-
tion checker. The significance of the text macro approach is that it
permits the verification process to change implementation details
seamlessly at a later point in time, while eliminating or minimizing
the amount of coding required by the design engineer.

Example 3-9

Example 3-10

3.2.4.3 Event Monitor Database and Analysis
The development of the Hewlett-Packard PA-RISC 8000 pro-

cessor provides an alternate example of an event-monitoring meth-
odology. Engineers developing the PA 8000 described events of
interest using Boolean equations and timing delays. Rather than
embed the events directly into the RTL, however, events were gath-
ered into a simulation event input file and used during the verifica-
tion process by a simulation event-monitor add-on tool. The list of
events the engineers wished to monitor included those that were
expected to occur on a regular basis during the verification process,

COVERAGE, EVENTS AND ASSERTIONS 41

as well as assertion checks that the designer expects to never occur.
After simulation, detected events were post-processed and assem-
bled into an event database. This database was used to generate
activity reports, which included statistics such as frequency of
events, duration of events, the average, and maximum and mini-
mum distance between two occurrences of events. For details on
this methodology, see Mangelsdorf et al. [1997].

The event-monitoring methodology used on the Hewlett-Pack-
ard PA-RISC 8000 processor development has the advantage of
separating the description of events from the simulated code. In
other words, the process of event-monitoring is not limited to RTL
simulations (e.g., behavior, gate, or transistor level event-monitor-
ing could utilize the same process). An advantage of a methodology
that embeds events directly into the RTL, however, is that it enables
the engineer to capture design assumptions and design knowledge
during the development process. Regardless of which event-moni-
toring methodology is implemented, all methodologies should
include a mechanism that creates an event monitor database. Analy-
sis of this database enables us to identify test suite coverage defi-
ciencies and provides valuable feedback on the overall quality of
our verification process.

Without looking for specific events and assertions during the
course of verification, the designer has no convenient means for
measuring functional correctness. The importance of observability
and coverage in the design flow is summarized as the Functional
Observation Principle:

Functional Observation Principle
A methodology must be established to provide a mechanism to observe and

measure specified function behavior.

3.3 Summary
In this chapter, we introduced the Functional Observation

Principle that is fundamental to the verification process’ ability to
observe (white-box testing) and measure (coverage) functional
behavior.

In addition to the principle presented in this chapter, a simple
and effective coding technique for embedding event monitors and
assertion checkers directly into the RTL was our main focus. This

42 CHAPTER 3

coding technique provides a mechanism for (a) measuring func-
tional coverage, (b) increasing verification observability, and (c)
defining verification targets for block-level simulation and model
checking.

4
RTL Methodology

Basics

Recent productivity gains in a designer's ability to generate
gates have stemmed from the advances and widespread acceptance
of synthesis technology into today’s design flows. In fact, design
productivity has risen tenfold since the late 1980s, to over 140 gates
per day in the late 1990s. Unfortunately, design verification engi-
neers are currently able to verify only the RTL equivalent of
approximately 100 gates per day. Moreover, designers must now
comprehend the relationships, dependencies and interactive com-
plexity associated with a larger set of functional objects, all result-
ing from the productivity gains of synthesis. Clearly, designers
should place proportional emphasis on coding RTL to increase their
verification productivity, matching their attention to insuring an
optimal synthesis process.

Selecting a single RTL coding style--one that maximizes the
performance of simulation, equivalence and model-checking, as
well as achieving an optimal flow through synthesis and physical
design--is a formidable task. To address the problem of competing
tool coding requirements, this chapter introduces three essential
RTL methodology basic techniques:

A simplified and tool efficient verifiable subset of RTL

An Object-Based Hardware Design (OBHD) methodology,
incorporating modern programming language principles

44 CHAPTER 4

A tool-performance-enhancing and design-error linting strategy
targeted as the initial check in a complete line of verification
tools

This RTL verification-centric methodology creates numerous
advantages. It permits a seamless optimization of design processes
throughout the duration of the design and enables a seamless aug-
mentation of new processes. In addition, it leaves the designer's text
and functional intent undisturbed throughout the course of design.
It also offers cooperation and support for multiple EDA tools while
achieving higher verification coverage in minimal time. Finally, it
clarifies the design intent at the RT level.

4.1 Simple RTL Verifiable Subset
As C. A. R. Hoare [1981] pointed out in his Turing Award Lec-

ture, “there are two ways of constructing a design: One way is to
make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies.” The same can be said for RTL-based methodologies.

EDA tool vendors are generally proud of their support of the
entire semantic range of the various HDLs. This is as it should be to
serve the purpose of selling to a large number of customers. One
problem associated with these rich HDLs is that they provide
design teams with many alternative methods for expressing the
same functionality. Using multiple methods of expression within
and across chip designs adds to the overall complexity and there-
fore cost of verification (in terms of tools, processes and people
resources alike).

With the advent of synthesis technology, an RTL synthesizable
subset has emerged, along with checkers for adherence to a vendor
specific synthesis subset. By constraining the rich HDL to a subset
of keywords and an explicit coding style, we can use the precise
semantic to provide an efficient and clear mapping to a specific
hardware implementation.

Other processes within the design flow will also benefit from a
constrained subset of the full HDL. For example, the full range of
an HDL is supported by event-driven simulation. A faster
cycle-based simulation model, however, requires constraining the
HDL to a precise subset. The cycle-based simulation HDL subset is
generally similar from vendor-to-vendor and similar to the synthe-
sis subset.

RTL METHODOLOGY BASICS 45

Why use a
verifiable
subset of
Verilog?

The practice of writing HDL that we are advocating in this book
is a simple HDL style that serves all verification tools accepting
RTL as well as providing a device for communicating clear func-
tional intent between designers.

Vendor tool
plug-n-play.

Our justification for advocating an RTL verifiable subset are:

It has been our experience that a Verilog verifiable subset
enables new vendor tools to work “right out of the box”, provid-
ing an smooth integration path into our design flow. This can be
accomplished without the need to re-code the user’s Verilog or
waiting until a future release of the tool provides adequate lan-
guage support.

Clearer
functional
intent.

Many of the Verilog keywords outside the verifiable subset are
used to describe lower level switch and Boolean characteristics
of the design. Our verifiable subset is better suited for describ-
ing a higher RT-level of functional intent.

Performance. Using keywords outside of the verification subset results in
slower RTL functional verification and in many cases precludes
the adoption of newer verification technologies, such as
cycle-based and two-state simulation, model and equivalence
checking.

Tool
development
cost and
project
schedule.

Internal (as well as vendor) tool development cost are signifi-
cantly higher for each additional keyword supported. A verifi-
able subset has enabled us to meet project schedules while
permitting the successful evaluation and adoption of new verifi-
cation tools and technologies.

The simplified RTL Verilog subset we are promoting can be
measured according to the metrics of keywords, operators, and our
“pocket guide.”

Keywords. For our verifiable subset1, coding simplicity is emphasized with
the use of only 27 out of the 102 Verilog reserved words.

1. Our Verilog verifiable subset is actually a subset of the synthesizable subset.

46 CHAPTER 4

Typically, minor changes occur between projects, depending on
project-specific needs. We believe that it is important, however, to
prevent the RTL description from migrating towards lower or
gate-level keywords. If it is absolutely necessary to describe physi-
cal or implementation level characteristics, then the exceptions
should be localized and isolated within their own modules. Physical
and implementation details should not be embedded directly in with
the standard RTL that is used to describe the functional behavior.

The following are 75 Verilog keywords that we recommend be
eliminated from a verifiable subset and RTL design flow. Most of
these keywords specify implementation or lower-levels of abstrac-
tion details.

On rare exceptions, a few of the non-RTL keywords missing
from our subset can serve in various test bench or system simula-
tion environments. Examples of where these non-RTL keywords
appear are:

Unsupported
Non-Verifiable
RTL Keywords.

ASIC test benches: force, release, forever.

System board level: supply0, supply1.

Gate-level chip model: primitive, and many others.

Rare exceptions can be made for looping constructs within
library elements or special circumstances by isolating or abstracting
the loop into a simple module. To simplify tool support, however,
only one of the three Verilog RTL looping constructs should be

RTL METHODOLOGY BASICS 47

selected for a given project.

Recommendation: for Loop Construct
The authors favor the selection of the for looping construct over forever and

while if a design project requires an exception to the basic 27 keywords.

Operators. In our verifiable subset, we recommend the use of 30 out of the
35 Verilog expression operators. The remaining five Verilog opera-
tors are limited to libraries in our simplified RTL Verilog coding
style.

Pocket guide.

Library module designers can make an exception with these
operators because they are isolated from the standard RTL Verilog
descriptions.

Chapters 5, 7 and 8 describe the advantages (and techniques) for
supporting a two-state simulation methodology. Hence, the last two
operators are only required at two-state and tri-state boundaries.

Another measure of simplicity for our recommended RTL Ver-
ilog coding style is the small 5 page “pocket guide” described in
Appendix B, when compared with other much larger full Verilog
language pocket guides.

To achieve a verifiable RTL design, we believe it necessary to
adopt and enforce a discipline in coding style and RTL subset. We

48 CHAPTER 4

refer to this philosophy as the Verifiable Subset Principle:

Verifiable Subset Principle
A design project must select a simple HDL verifiable subset, to serves all

verification tools within the design flow, as well as providing an uncompli-
cated mechanism to convey clear functional intent.

4.2 Linting
A linting strategy targeted as an initial check in the complete

line of verification tools is the most cost-effective method of finding
design errors. In addition to identifying syntax errors and project
specific coding rule violations, verification-based linting makes
design and analysis tools--as well as engineering teams--more pro-
ductive. Hence, a linting methodology must be established early in
the design cycle, and used to enforce all verifiable subset and
project specific coding style requirements and rules. Ideally, the
linting process should be embedded directly into the design flow (in
Makefiles, for example), and used to prevent advancing to subse-
quent processes within the flow upon detection of errors or code
style violations. Enforcing a project-specific coding style (Project
Linting Principle) allows us to achieve a truly verifiable RTL
design and is key to our verifiable RTL philosophy.

Project Linting Principle
Project specific coding rules must be enforced to ensure a productive design

and analysis process.

RTL METHODOLOGY BASICS 49

4.2.1 Linting in a design project.

RTL-based
verification
flow.

[Figure 4-1] illustrates an RTL-based verification flow, which
includes linting. The various RTL-based verification flow processes

are described as follows:2

Linting. 1. For general-purpose and project-specific rule checks.

Simulation. 2. Design verification including both chip and system
simulation, and is either based on slower event-driven
simulation models (used for error diagnosis) or a faster
cycle-based simulation models (used for error detection).
In addition, a faster 2-state simulation model could be
used as described in chapter 5.

Model
Checking.

3. Model checking targets highly suspect areas where corner
cases are not completely known and unlikely to be reached
through random simulation test methods.

Synthesis. 4. The design process that mixes automatic synthesis plus
data path generators, some manual gate design, as well as
the physical place and route flow.

2. Physical verification is equally as important as functional verification. The authors, however,
have chosen to limit their discussion to an RTL-based verification flow.

50 CHAPTER 4

Equivalence
Checking.

5. Equivalence checking is used to verify that the refinements
or transformations on the design are logically equivalent.

ATPG. 6. Automatic Test Pattern Generation is used to produce the
manufacturing test vectors.

RTL level
test vector
verification.

7. Simulation of the manufacturing test vectors against the
RTL provides a “belt plus suspenders” double-check of the
overall design flow

4.2.2 Lint description

4.2.2.1 Project Oriented
Many of today's commercial linting tools permit customizing

project specific rules into the general-purpose set of checks. In
addition to project specific rules, the following is a list of lint
checks aligned with our verifiable RTL design philosophy:

Project specific
lint checks.

Strong type checking – e. g. mismatched widths across expres-
sion operators are treated as errors.

Case statement completeness checking - Enforces use of fully
specified case statements. See chapter 7 and 8 for additional
details and justification of fully specified case statements.

Project naming conventions – Makes the RTL text better for
communication between designers. See chapter 7 for additional
details.

Cycle-based simulation constraints – Includes feedback loop
detection, bit-wise check of assignment-before-use in proce-
dural blocks.

RTL-only subset – Model checking and fast simulation can be
compromised by mixing gates with RTL design.

Clocking restrictions – Enforce project specific clocking con-
ventions.

There are many cases when the design engineer finds it tempt-
ing to hand instantiate explicit vendor macro cells directly in the
RTL. For example, to secure the timing performance of logic syn-
thesis or to describe a specific implementation for some unique
functionality. To prevent loss of the designer's functional intent, and
to prevent the RTL code from degenerating into a gate level netlist,
the RTL should be written as in [Example 4-1]:

RTL METHODOLOGY BASICS 51

Example 4-1 `ifdef RTL
<RTL behavior specification>

`else
<macro cell instance implementation>

`endif

For example:

`ifdef RTL
assign perr = ^in; //calculate parity on ‘in’

`else
wire t1, t2, t3;
XOR3 u1 (t1, in[0], in[1], in[2]);
XOR3 u2 (t2, in[3], in[4], in[5]);
XOR3 u3 (t3, in[6], in[7], in[8]);
XOR3 u4 (perr, t1, t2, t3);

`endif

The preceding example illustrates how a designer might write
their Verilog for the gate-level and RTL versions of the same logic
within the same module. Chapter 6 describes a methodology for
ensuring these two descriptions are logically equivalent.

4.2.2.2 Linting Message Examples
Based on our experience of a good project-specific linting meth-

odology, three classes of lint detection conditions must be estab-
lished:

Errors. These apply to constructs that would cause incorrect operation,
or are not compatible with the various verification processes
within the flow (e.g. fast RTL cycle-based simulation or fast
boolean equivalence checking). Examples include
out-of-sequence statements in procedural blocks, and gate-level
constructs (primitives, timing detail) that simulate too slowly.

Warnings These point to questionable areas of the design that need review
before the design can be regarded as complete. Examples
include unreferenced bits in a bus and violations of project nam-
ing conventions.

Advisories These apply to simulation performance-related usage. There are
typically thousands of these messages about the Verilog for each
chip. Designers can optionally ignore them or correct their code
for simulation performance as time permits. Typically, designers
experience about a one percent improvement in simulation per-
formance for every 100 advisory message that they clear up.

52 CHAPTER 4

Designers can disable Warning and Advisory message types
by their identifying number. Error messages cannot be disabled
and are used to prevent the design from advancing to any subse-
quent process within the design flow.

Here are a few diagnostic linting check examples that we have
found useful and have customized into a project specific linting
methodology. (NOTE: in the following examples, %s is a valid Ver-
ilog identifier or string. Also, bold face lines are actual lint mes-
sage.)

Error messages. Although many commercial linting tools detect some of these
conditions as a warning, a verifiable RTL design methodology uti-
lizing cycle-based simulation requires reporting these as errors.

Path missing from statement to output

Combinational loop path detected

Identifier '%s' appears both as an assignment target and in
the 'always' sensitivity list.

Identifier '%s' appears on both sides of equation.

Identifier '%s' referenced before being assigned.

Warning
messages.

These may preclude cycle-based simulation.

%s assigned prior to current assign.

Combinational variable '%s' not assigned prior to use in
expression

Advisory
messages.

These relate to simulation performance. We measured the effi-
cacy of the recommended style by making simulation runs compar-
ing the performance of both styles. In general, the advisory
messages try to steer Verilog usage towards references and assign-
ments to an entire bus instead of bit sliced pieces of the bus.

Assigning a literal to target '%s' bit or subrange results in
slower compiled simulation code; 'or' ('and') variable with
a mask '1' ('0') value(s) in the bit position(s) that you need
to set (clear).

Instead of:

r_b[15:8]<=8'h00;

use:

r_b <= r_b & 24'hff00ff;

RTL METHODOLOGY BASICS 53

Assigning target '%s' subrange results in slower simulation
code. Use concatenation instead.

Instead of:

c_x[23:16] = r_a;
c_x[15:8] = r_b;
c_x[7:0] = r_c;

use:

c_x = {r_a, r_b, r_c};

Simulation code for multiple 'xor' operations on selected bits
of the same operand as the unary 'xor' ̂ operator. Use a
mask and unary ^ instead.

Instead of:

c_ecc_out_1= cin[29] ̂cin[28]^
cin[27] ̂cin[26] ̂cin[25] ̂cin[24] ̂cin[23] ^
cin[22] ̂cin[21] ̂cin[20] ̂cin[19] ̂cin[18] ^
cin[17] ̂cin[16] ̂cin[15] ̂cin[14] ̂cin[13] ^
cin[12] ̂cin[11] ̂cin[7] ̂cin[4] ̂cin[1] ^
cin[0];

use:

c_ecc_out_l = ^ (c_in & 40'h003ffff893);

Simulation code for shift by constant is not as fast as simu-
lation code for concatenation. Use concatenation instead.

Instead of:

c_v = c_s << 8; // c_v, c_s are 48 bits wide

use

c_v = { c_s [39:0], 8'h00 };

4.3 Object-Based Hardware Design
Developed in the mid-1960s, the original hardware description

languages (HDLs) addressed the deficiencies of building hardware
models using first-generation higher-level programming lan-
guages.3 For example, higher-level programming languages during

3. Examples of first-generation high-level programming languages are ALGOL, FORTRAN,
COBOL and APL [Iverson 1992]. Examples of the earliest Hardware Description Lan-
guages are CDL, DDL, AHPL, and ISP [Chu 1965][Duley and Dietmeyer 1968][Hill and
Peterson 1973][Barbacci and Siewiorek 1973].

54 CHAPTER 4

Principle of
Information
Hiding.

this period lacked support for concurrency and a correspondence or
relationship to a specific hardware implementation, at least when
modeling at the RT-level. These features are necessary for hardware
design analysis and synthesis automation. Today’s HDLs have
evolved to support the concepts and advancements in modern pro-
gramming languages as well as the principles that underlie good
programming practices (e.g., VHDL [IEEE1076 1993] and Verilog
[IEEE1364 1995]). The decision to apply these programming prin-
ciples when coding in HDLs, however, generally remains up to the
engineer.

D.L. Parnus [1972] of Carnegie Mellon University introduced
the programming Principle of Information Hiding, which instructs
designers to hide details pertaining to a single design decision (par-
ticularly a design decision that is likely to change) within a program
module. This principle enables designers to isolate or localize the
design decision details within a module, allowing their interface
relationship with other segments of the design to create a level of
design abstraction (this is known as the Abstraction Principle [Ross
et al. 1975]).

Abstraction
Principle.

Engineers are accustomed to creating multiple levels of abstrac-
tion within the design’s RTL description by partitioning and local-
izing related functionality into a module description. To optimize
each EDA tool’s performance, however, we recommend that the
Principle of Information Hiding be applied (at a minimum) to each
distinct grouping of state elements within the design’s RTL. This
technique allows each register bit (the fundamental building block
of an RTL description) to be functionally grouped into a register
object and detailed at a lower level of abstraction. The process
enables the project CAD or design verification group to automati-
cally generate tool-specific libraries, which provide the lower level
of abstraction details in an optimized EDA process format. The
object's abstraction interface within the RTL description permits
referencing a targeted tool specific optimized library for each pro-
cess point within the design flow. An equivalence checking tool
(see Chapter 6) can be used to validate functional consistency
between the targeted libraries as shown in [Figure 4-1].

Object-Based Hardware Design Principle
Design engineers must code at a higher object level of abstraction—as

opposed to a lower implementation or tool specific detailed level—to facili-
tate verification process optimizations and design reuse.

On the surface, our proposed object-based methodology might

RTL METHODOLOGY BASICS 55

appear as if we are recommending coding the design at a low gate
instance or cell based level. On the contrary, an object-based hard-
ware design (OBHD) methodology actually enables coding at a
higher level of abstraction. The engineer is now free to design with
higher-level objects as oppose to coding lower-level implementa-
tion details. In other words, the tool-specific optimization details
are now isolated and localized within process specific libraries. Fur-
thermore, the OBHD methodology facilitates design reuse [Keating
and Bricaud 1999] by maintaining cell technology independence,
which (if required) is controlled within a synthesis-targeted library.
The inference of register cells from a library object is still possible
during the synthesis process. Alternatively, the explicit referencing
of a unique technology cell type within the library object can be
controlled during synthesis depending on the user’s synthesis opti-
mization requirement

A point the authors would like to make is that developing the
object libraries does not require a significant amount of effort,
which is based on our experience of developing large systems. The
cost of revisiting thousands of lines of RTL code simply to optimize
or enable a new verification feature--compared with the cost of
developing tools specific libraries--supports our argument for the
importance of an object-based hardware design approach. Further-
more, our experience has shown that the object pre-processor
shown in [Figure 4-2] is easily implemented with a simple perl
script and small 100 line C program.4

The following sections highlight a few example processes
within a typical design flow, and optimization benefits that can be
achieved through an OBHD methodology. The specific optimiza-
tions described in these examples are not the topics we wish to
emphasize. The ability, however, to optimize and tune these and
other processes throughout the duration of a project, without inter-
fering with the text or functional intent of the original RTL descrip-
tions, is our principal justification for promoting an OBHD
methodology.

4. Object-based programming focuses on the data to be manipulated rather than on the proce-
dures to do the manipulation. Similarly, object-based hardware design (OBHD) focuses on
a hardware object (such as a 64 bit register, a latch array, or a 32 bit mux) and not the imple-
mentation details. The concept of encapsulation applies to object-based hardware design;
however, the object-based programming concepts of inheritance and polymorphism do not
apply for our current implementation OBHD using standard Verilog.

56 CHAPTER 4

4.3.1 OBHD and Simulation

Simulation
Compiler
Performance
Optimizations

The OBHD methodology contributes to a uniform coding style,
which enables the functional verification (e.g. simulation or model
checking) to remain at the RTL level for the duration of the design
process. In addition, the OBHD methodology allows the encapsula-
tion of new verification functionality within a simulation-targeted
library later in the design process without disturbing the original
RTL description. The next sections describe alternative methods of
using the simulation-targeted library to optimize simulation perfor-
mance.

An OBHD methodology favors tuning and optimizing a simula-
tion targeted library for best simulation performance (see [Figure
4-2], SIM. LIB.). This is accomplished by providing a uniform cod-
ing style within the library to cooperate with the optimizations per-
formed by both event-driven and cycle-based simulation compilers.

For example, the simulation-targeted library can be generated to
accommodate an optimization known as common control consoli-
dation. By using a standard sequence of control structures for all

RTL METHODOLOGY BASICS 57

state elements within the library, the simulator’s compiler optimiza-
tions is able to maximize its common control structure grouping.

To illustrate common control consolidation, consider the fol-
lowing Verilog simple state element assignment with multiplexers,
which might be contained in a simulation-targeted library:

Example 4-2 module dff (ck,q,d,ck,rst_,scan_sel,scan_in);
: // parameterized module

always @(posedge ck)
if (rst_ == 0)

q <= 0;
else if (scan_sel)

q<=scan_in;
else

q<=d;
endmodule // dff

Three 16-bit state element objects could be instantiated within
the RTL as follows:

Example 4-3 dff #(16) dff_a (ck, r_a, c_a, reset_, scan_sel);
dff #(16) dff_b (ck, r_b, c_b, reset_, scan_sel);
dff #(16) dff_c (ck, r_c, c_c, reset_, scan_sel);
After an optimizing compiler flattens these three 16-bit grouped

state elements from the simulation targeted library; the equivalent
Verilog for the assignments would be:

Example 4-4 if (rst_ == 1’b0)
r_a<= 16’h0;

else if (scan_sel)
r_a <= \dff_a.scan_in ;

else
r_a <= c_a;

if(rst_ ==1’b0)
r_b<= 16’h0;

else if (scan_sel)
r_b <= \dff_b.scan_in ;

else
r_b <= c_b;

if (rst_ == 1’b0)
r_c<= 16’h0;

else if (scan_sel)
r_c <= \dff_c.scan_in ;

else
r_a <= c_c;

Then, the compiler is able to apply the common control consoli-
dation optimization, the final optimized equivalent statements are:

58 CHAPTER 4

Example 4-5 if (rst_ == 1’b0) begin
r_a <= 16’b0;
r_b <= 16’b0;
r_c<= 16’b0;

end
else if (scan_sel) begin

r_a <= \dff_a.scan_in ;
r_b <= \dff_b.scan_in ;
r_c <= \dff_c.scan_in ;

end
else begin

r_a <= c_a;
r_b <= c_b;
r_c <= c_c;

end

Note that [Example 4-3] is actually at a higher level of abstrac-
tion and easier to code than either [Example 4-4] or [Example 4-5].
If at some future point in time we wish to add a new verification
feature or take advantage of a new compiler optimization, encapsu-
lating this new functionality within the dff library module in
[Example 4-2] requires less work than visiting each state element in
the RTL source when expressed as in [Example 4-5]. Examples of
adding new verification functionality include a PLI call to inject
errors for high availability testing or a PLI call to support random
initialization. Similarly, the OBHD allows us to seamlessly evaluate
new EDA or public domain tools that initially require a unique cod-
ing restriction much earlier than waiting for the final EDA product
Verilog support to stabilize.

Other Verilog simulation compiler optimizations that can be
removed from the RTL designer concern and controlled in a simula-
tion-targeted library are:

Bus reconstruction. Occasionally the engineer will group state
elements on a bit-sliced portion of a bus. After flattening, the
translator optimizer can often combine bit-sliced variable refer-
ences and operations into full variable references.

Flattening. The translator optimizer flattens (i.e. “inlines”) the
abstraction boundaries for each module instance within the sim-
ulation-targeted library to prevent degradation to simulation per-
formance.

The preceding simulation performance optimizations are exam-
ples related to one vendor’s simulation recommended HDL style.
Simulators from different vendors (as well as successive releases
from the same vendor or an in-house simulator) favor unique HDL

RTL METHODOLOGY BASICS 59

Two-State
Simulator
Optimization

coding styles for cooperation with their proprietary optimizations.
The ability to control a uniform coding style, resulting from an
OBHD methodology, allows for continual refinement to accommo-
date these simulation performance optimizations, without disturb-
ing the designer’s HDL.

In Chapter 5, 7 and 8, we define two-state simulation as the
elimination of X from an RTL simulation, and using only 0 and 1
states (and occasionally the Z state). Although tri-state buses have
an important place in a system design and simulation, the bulk of
the logic and nodes are only 0 and 1, not Z.

During the implementation of a two-state methodology, the ver-
ification engineer will generally focus on the improved simulation
performance achieved through the elimination of X from our RTL.
However, as the verification engineer begins their two-state RTL
simulation, they will quickly determine that this method of simula-
tion is a far better verification technique than simulation with an
X-state at the RTL-level. For example, Bening [1999], as well as
chapter 5, describes the difficulty of identifying start-up initializa-
tion or reset problems during RTL-level simulation due to X-state
optimism and pessimism.

Two-state RTL techniques that can be encapsulated in a simula-
tion targeted library include:

Consistent random value initialization across simulators, as well
as before and after design changes [Bening 1999].

Transformation of Z (and X) inputs to random two-state values.

The facility and functionality to support consistent random ini-
tialization and Z/X input transformation can be encapsulated within
the module descriptions in a simulation-targeted library (e.g., see
[Example 4-14]). The support for these two-state verification tech-
niques is an example of adding new process functionality to an
existing design flow without disturbing the original RTL when
adapting an OBHD methodology.

Key Point Without an OBHD methodology, the design engineer would be
forced on large designs to edit potentially tens-of-thousands of lines
of Verilog RTL source code, involving thousands of files, to add
optimizations or new verification functionality support.

4.3.2 OBHD and Formal Verification
Chapter 6 describes techniques for applying OBHD to a formal

verification design flow. Specifically, equivalence checking is
shown to benefit from an OBHD methodology by simplifying the

60 CHAPTER 4

process of latch mapping and master-slave latch folding or com-
pression. Although there are algorithms integrated into commercial
tools that automatically identify latch mappings and perform latch
folding, applying an OBHD methodology can significantly improve
the performance of these tools. Chapter 6 also describes the appli-
cation of OBHD in a model checking flow, which can be used to
solve the multi-phase related clock abstraction problem.

4.3.3 OBHD and Physical Design
To ensure a specific macro-cell implementation during synthe-

sis, particularly related to multiplexers or specific scan-based regis-
ters, designers are frequently forced to instantiate vendor specific
macro-cells directly into their RTL. By adopting an OBHD method-
ology, however, the functional verification process is not required to
operate on slower gate-level macro-cell models during simulation
and model checking. In other words, the synthesis-targeted library
(as shown in [Figure 4-2]) allows tuning the lower-level synthesis
process for the duration of the project--while a simulation-targeted
library maintains a higher level of abstraction view within the RTL.

The following are two areas of physical design, which we have
found benefits from our design abstraction and tool-specific library
methodology.

4.3.3.1 OBHD Synthesis
There are many details pertaining to developing a com-

pany-wide synthesis mythology. One of the challenges is develop-
ing a RTL reuse methodology that maintains vendor cell library
independence at the RT-level. Our OBHD methodology supports
RT-level reuse by:

1.

2.

3.

identifying a common set of RTL functional objects,

creating a generic Verilog library describing the functional
behavior for each object,

create, when appropriate, an explicit gate-level version of
the generic library to be referenced during synthesis.

An OBHD methodology enables careful control for exact multi-
plexer (or other) cell selection during synthesis. For many circum-
stances, correct register inference is still problematic during
synthesis. In theory, however, there are good reasons not to force
registers to a specific instantiation. For example, it limits synthesis
flexibility to select appropriate cell types based on specific optimi-
zation time/area compromises.

RTL METHODOLOGY BASICS 61

The reality of day-to-day design is that the designer can usually
make the correct choice with only modest extra effort. The benefit
is a consistent synthesis result after multiple interations; and a con-
sistent strategy of specifying and implementing clocking, reset and
scan across the entire design organization.

Based on our experience using OBHD, groups of register or
multiplexer cells can be bundled into an object under one level of
hierarchy, which permits referencing the appropriate library for
each process within the design flow. For example, in [Figure 4-2],
the synthesis targeted library contains the exact instances of desired
vendor cells, and is referenced from the RTL during synthesis.

The following is an example of a 20 bit wide 2-to-1 multiplexer
macro with an inverted output. It would appear as a pre-process text
macro in the RTL as:

Example 4-6 MUX2_20 muxes (
.S (<1 bit port connection>),
.D0 (<20 bit port connection>),
.D1 (<20 bit port connection>),
.X_ (<20 bit port connection>)

);
The simulation-targeted library would contain its functional

behavior optimized for simulation as follows:

Example 4-7 module mux2_20(x_, d0, d1, s);
output [19:0]x_;
input s;
input [19:0]d0;
input [19:0] d1;
assign x_ = ~(s ? d1 : d0);
endmodule // mux2_20

The synthesis-targeted library would appear as follows:

Example 4-8 module mux2_20(x_, d0, d1, s);
output[19:0] x_;
input s;
input [19:0] d0;
input [19:0] d1;

mux2_4 m0(
.s(s), .d1(d1[19:16]), .d0(d0[19:16]),
.x_(x_[19:16]));

mux2_4 m1(
.s(s), .d1(d1[15:12]), .d0(d0[15:12]),

62 CHAPTER 4

.x_(x_[15:12]));
mux2_4 m2(

.s(s), .d1(d1[11:8]), .d0(d0[11:8]),

.x_(x_[11:8]));
mux2_4 m3(

.s(s), .d1(d1[7:4]), .d0(d0[7:4]),

.x_(x_[7:4]));
mux2_4 m4(

.s(s), .d1(d1[3:0]), .d0(d0[3:0]),

.x_(x_[3:0]));
endmodule // mux2_20

module mux2_4(s, d0, d1, x_);
input s;
input [3:0] d0, d1;
output [3:0] x_;
// Vendor Macro Cell

SLI42M sli42_0(
.A1(d1[0]),A2(d1[1]),.A3(d1[2]),.A4(d1[3]),
.B1(d0[0]),.B2(d0[1]),.B3(d0[2]),.B4(d0[3]),.S(s),
.X1(x_[0]),.X2(x_[1]),.X3(x_[2]),.X4(x_[3]));

endmodule // mux2_4
module SLI42M (A1,A2,A3,A4,B1,B2,B3,

B4,S,X1,X2,X3,X4);
input S;
input A1 ,A2,A3,A4,B1,B2,B3,B4;
output X1,X2,X3,X4;
assign X1 =~(S ? A1 : B1);
assign X2 =~(S ? A2 : B2) ;
assign X3 =~(S ? A3 : B3);
assign X4 =~(S ? A4 : B4);
endmodule // SLI42M

Section 4.3.4 gives additional details on a possible text macro
implementation for an OBHD methodology.

4.3.3.2 OBHD Scan Chain Hookup
Typically, the design’s scan ring is connected (or stitched)

within the physical design flow. When adapting an OBHD method-
ology, the wire interconnect for the scan ring can be automatically
back annotated into the RTL by including a scan connect stitching
file at the top level of the design. This file consists of global refer-
ences to the scan port connection defined by each of the tool-spe-
cific targeted library instantiations. For example, an n-bit

RTL METHODOLOGY BASICS 63

parameterized register in the simulation-targeted library might
appear as follows:

Example 4-9 module dff (q,d,ck,rst,scan_sel,scan_in);
: // parameterized module
always @(posedge ck)
q <= (rst == 1'b1) ? 0 : (scan_sel ? scan_in : d);

endmodule // dff

The scan stitch back annotation file, containing global refer-
ences to the OBHD register instances might appear as follows:

Example 4-10 // scan stitch include file -- to be included in the top module of the design

assign core.in_p3.in_reg.rb0_s.scan_in[3:0] = {
core.out_m3.out_reg.rb0.q[29],
core.in_m2.err.r12.q [4],
core.in_p3.pkt_info.r11.q [7],
core.out_p3.out_reg.rb0.q [32]};

assign core.in_p3.in_reg.rb1.scan_in =
core.in_p3.in_reg.rb0_s.q [3];

Notice that the scan_in port, in [Example 4-10], is hierarchi-
cally and globally referenced in the scan stitch include file

64 CHAPTER 4

described in [Example 4-9]. Without an OBHD methodology, back-
annotating the scan connection into the RTL becomes impractical.

[Figure 4-3] illustrates the process of back annotating the scan
ring stitch include file back into the RTL In our experience,
back-annotating the scan connection into the RTL has enabled us to
re-validate the ATPG vectors using RTL simulation (~5 to l0x
faster than gate level simulation).5 Simulating the ATPG vectors on
the RTL model enable us to identifying any revision-control or pro-
cess flow errors, as well as a final functional validation on all librar-
ies used by synthesis, place-and-route and ATPG. These errors
might otherwise be missed when equivalence checking at various
sequential points within the design flow. In addition, simulating the
ATPG vectors on the RTL golden model validates the synthesis tool
(and the equivalence checker) by identifying most RTL coding style
or interpretation differences between the simulator and the synthe-
sis tool. Without an OBHD methodology, back-annotating the scan
connection into the RTL becomes impractical. With OBHD, how-
ever, back-annotation is a trivial effort.

4.3.4 A Text Macro Implementation
There are myriad possible techniques for implementing an

OBHD methodology [Bening et al. 1997][Barnes and Warren
1999]. One example would be to automatically generate tool-spe-
cific libraries during a post process of the RTL by identifying spe-
cific instantiations (or objects) requiring a model in the process
specific libraries. Conversely, the RTL can be pre-processed and a
text macro instantiation used to identify unique objects. Tool-spe-
cific libraries are then built along with Verilog RTL expansion of
the text-macro as shown in [Figure 4-2]. The pre-process approach
has the following advantages over a post-processing technique:

The unrolling of instance names can be controlled within the
synthesis library, which would not be possible using parameter-
ized modules. This is necessary for identifying latch-mapping
points between an RTL specification and a gate level implemen-
tation.

5. Simulating the ATPG vectors on the RTL is not fault simulation, since there are no gates in
our RTL recommended style. From an input, output and register point of view the scan
based ATPG vectors should yield the same simulated results between RTL and gates. This is
true, provided that all case statements are fully specified and X-state assignments has been
eliminated. The advantages for following these coding recommendations will be discussed
in Chapter 5 and 7.

RTL METHODOLOGY BASICS 65

Redefining the RTL module port definition is possible for spe-
cific process points within our design flow without changing the
original RTL pre-process description. For example, adding an
enable signal port to support model checking multi-phase
related clock abstraction, as described in Chapter 6, is possible
without modifying the original RTL pre-process code.

A boilerplate or template (set of port connection defaults) for
commonly used signals within the macro definition (e.g. scan
control and reset connections) is easily provided, simplifying
the instantiation of objects within the design.

As we previously mentioned, our experience has shown that an
object pre-processor is easily implemented with a simple perl script
and small 100 line C program. A pre-processing implementation of
the OBHD methodology would consist of the following steps:

Identify all user-specified text macros within the design’s RTL
by the pre-processor.

Replace the text macro in the RTL with a unique instantiated
module call, creating a new level of abstraction within the
design.

Generate or supplement tool-specific libraries (if needed),
which are optimized for specific process points within the

design flow.6

Validate the functional equivalence between all tool-specific
library created in step 3, using equivalence checking.

[Figure 4-2] illustrates a typical ASIC design flow using the text
macro object pre-processor. The RTL-with-Objects file is the
designer's source RTL, which is written in Verilog with the excep-
tion of the various objects, which have been implemented as text
macro calls. The Object Library contains a macro template descrip-
tion for all targeted libraries within the ASIC flow. For example,
[Example 4-11] illustrates the macro template description for a sim-
ple non-scan and non-reset based flip-flop, which is targeted for
simulation and synthesis, would appear as:

6. The modules contained within these libraries can be created either uniquely sized or param-
eterized. The authors favor uniquely sized modules over parameterized modules for reasons
described in Chapter 8.

66 CHAPTER 4

Example 4-11 simulation dff_<$1>(q, ck, d);
output [<$1-1:0>] q;
input ck; input [<$1-1:0>] d;
always @(posedge ck) begin

q <= d;
end
initial $lnitialState(q);

synthesis dff_<$1>(q, ck, d);
output [<$1-1:0>] q;
input ck; input [<$1-1:0>] d;
cffd r<$1-1:0>(.d(d<$1-1:0>),.ck(ck), .q(q<$1-1:0>));

The $1 symbol in the text macro definition is replaced by the
macro’s formal parameter that specifies the bits size of the state ele-
ment.

In the body of the RTL-with-Objects source file, the designer
instantiated their text macro (i.e. object) choices and actual design
variables corresponding to the macro’s formal parameters.

Example 4-12 DFF (2, reg_idle, r_idle, ck, c_idle);
DFF (4, reg_head, r_head, ck, c_head);

The pre-processor replaces the text macro references with spe-
cific module instances and creates the final Verilog RTL file.

Example 4-13 dff_2 reg_idle (.d(c_idle), .ck(ck_a), .q(r_idle));
dff_4 reg_head (.d(c_head), .ck(ck_a), .q(r_head));

In addition, the pre-processor automatically generates or sup-
plements all tool-specific targeted libraries with unique sized (or
parameterized) module definitions. To continue our example, the
simulation targeted library, would appear as:7

Example 4-14 module dff_2(q, ck, d);
output [1:0] q;
input ck; input [1:0] d;
always @(posedge ck) begin
q <= d;

end
initial $lnitialState(q);

endmodule // dff_2
module dff_4(q, ck, d);

7. Note the encapsulation of a user task ($InitialState(q,n)) in [Example 4-14], which provides
a mechanism for register consistent random initialization. [Bening 1999b]

RTL METHODOLOGY BASICS 67

output [3:0] q;
input ck; input [3:0] d;
always @(posedge ck) begin

q <= d;
end
initial $lnitialState(q);

endmodule // dff_4

As previously mentioned, the simulation targeted can be con-
structed using parameterized modules. However, the Verilog
instance name iterater (i.e. parameter iteration on instance names)
is not supported in standard Verilog. This is required for efficient
name mapping and equivalence checking the final netlist. For
example, an optimized synthesis-targeted library for our previous
example, which contains the appropriate number of cell instances
required for the designer’s specified text macro bit width (with
uniquely composed instance names), might appear as:

Example 4-15 module dff_2(q, ck, d);
output [1:0] q;

inputck;
input [1:0] d;
cffd r0(.d(d[1]), .ck(ck), .q(q[1]));
cffd r1(.d(d[0]), .ck(ck), .q(q[0]));

endmodule // dff_2
module dff_4(q, ck, d);

output [3:0] q;
input ck;

input [3:0] d;
cffd r0(.d(d[3]), .ck(ck), .q(q[3]));
cffd r1(.d(d[2]), .ck(ck), .q(q[2]));
cffd r2(.d(d[1]), .ck(ck), .q(q[1]));
cffd r3(.d(d[0]), .ck(ck), .q(q[0]));

endmodule // dff_2

The equivalence checking process, as described in Chapter 6,
can now take advantage of mapping these unique instance names
(e.g. r0, rl, etc.).

4.4 Summary
In this chapter, we addressed the problem of complexity due to

competing tool coding requirements by: (a) introducing a simplified
and tool efficient Verilog RTL verifiable subset, (b) detailing a lint-
ing methodology used to enforce project specific coding rules and

68 CHAPTER 4

tool performance checks, and (c) introducing an Object-Based
Hardware Design (OBHD) methodology, .

By constraining the RTL to a verifiable subset, the designer will
succeed in augmenting their traditional verification process with
cycle-based simulation, 2-state simulation, formal equivalence
checking, and model checking. A verifiable RTL coding style
allows the engineer to achieves greater verification coverage in
minimal time, enhances the cooperation and support for multiple
EDA tools within the flow, clarifies RTL design intent, and facili-
tates emerging verification processes.

By applying the principle of information hiding and developing
an OBHD methodology, the designer will succeed in isolating
design details within tool-specific libraries. This methodology facil-
itates simultaneously optimizing the performance of simulation,
equivalence checking, model checking and physical design within a
project's design flow. Furthermore, an OBHD methodology allows
adding new features and tools to the design flow throughout the
duration of a project, without interfering with the text or functional
intent of the original design.

5
RTL

Logic Simulation

The ultimate goal of simulating a design, prior to manufacturing
hardware, is to clear out all design errors. This is desirable, to pre-
vent a silicon respin, and provide assurance that the final hardware
operates correctly. With the complexities of ever-larger designs, a
more practical goal is simulating enough to achieve self-test on the
first version of silicon. The worst case scenario is to have the first
spin of the hardware lock up at power-on in a state that precludes
self-testing.

The challenge in using simulation to achieve self-test, or
fully-operational hardware, is that simulation testing is inherently
incomplete [Hoare 1998]. Furthermore, the process of simulation
makes the validation effort somewhat more incomplete because it is
so slow when compared with the actual hardware.

Though
incomplete,
simulation
effort supports
achieving
self-test in first
hardware.

Major design projects of a million gates or more generally run
simulation after simulation for months on compute farms consisting
of hundreds of CPUs. These simulations run around the clock, 24
hours a day and seven days a week. The total amount of computer
time spent in simulation is typically on the order of a million CPU
hours. Because logic simulation on workstation and server CPUs
runs millions of times slower than the actual hardware, the total of
all the simulated clock-cycles typically amounts to one-to-ten sec-
onds of clock-cycles on the actual hardware.

70 CHAPTER 5

Formal
methods in
Chapter 6
address
“high-quality”
design errors.

Linting
(Chapter 4)
focuses on
“low-quality”
design errors.

Teams of design and verification engineers craft the simulation
test cases. They write directed tests that target basic functionality,
so that the first hardware version of the design can achieve self-test.
They also develop random tests that try to find unexpected corner
cases. To get to the more extreme corner cases, they direct the ran-
dom cases by skewing the random choices in a direction that
stresses the logic architecture. Examples of random stressful condi-
tions processor-based designs might be high cache miss rates,
memory addressing bank conflicts, and high no-op counts between
instructions. For communication-oriented designs, high transaction
rates and severely unbalanced transaction loads may be bring out
design errors.

Even though logic simulation is incomplete, design projects find
that it is highly productive at finding the numerous simple design
errors that occur in the initial version of every design. Designers
refer to these as their stupid errors, low-quality errors, or not even
errors at all, but mere bookkeeping details, like the use of an
active-low signal in place of an active-high signal.

shortens the time to silicon, by reducing the bug rate earlier.

provides more productive use of the CPU’s in the simulation
farm,

locates a few more of those far-between bugs before silicon.

As the low-quality errors are cleared away, and simulation tests
begin to pass, design errors become more and more difficult to find
through random testing. As the project progresses, increasingly
more complex tests are needed to find remaining design errors.
Apriori understanding of how to craft tests that make specific errors
show themselves becomes more important. At this point, it is possi-
ble that an unanticipated design error requiring a complex test
sequence may be missed in simulation testing. These are the high
quality design errors (brilliant mistakes, made by the best engi-
neers) that must be addressed by the formal verification model
checking techniques described in Chapter 6.

Just as formal verification (e.g., model checking) supplements
simulation in locating high quality errors, linting supplements logic
simulation for the low quality errors. By always linting before run-
ning any simulations, a project can clear out design bookkeeping
errors more productively than by simulation.

An underlying value that pervades this chapter is the importance
of fast simulation, particularly later in the project, when bugs are
few and far between. Fast simulation at this phase in the project has
the following beneficial results:

RTL SIMULATION 71

Fast Simulation Principle
A design project must include tailored RTL (and a complementing design pro-

cess) to achieve the fastest simulation possible.

In section 5.1, we present the authors’ views of the history of
logic simulation, followed in section 5.2 with how current design
projects apply RTL simulation across the design phases. Section 5.3
discusses how logic simulators work, and how their operation
affects simulation performance. Section 5.4 describes optimizations
that RTL simulation compilers apply in their translation from Ver-
ilog to an executable simulation model. Section 5.5 discusses tech-
niques for productive application of simulation for design
verification entirely at the RT-level.

5.1 Simulation History
The following history of simulation emphasizes industry appli-

cation of simulation technology. In some cases, university studies
introduced the simulation concepts five to ten years (or more)
before they found widespread use in industry computer design
shops. In other cases, industry development teams applied ad-hoc
methods to solve their problems.

5.1.1 First Steps

First RTL
notations
generally not
simulated.

Logic simulation began as an idea in the 1950s [Hughes, 1958]
when engineers proposed using a simulation model running on a
current-generation computer to verify correct function of a pro-
posed next-generation computer design. Designers made little use
of logic simulation for design verification, since computers of the
1950s and well into the 1960s had logic gate interconnections in the
form of discrete wires. Designers built breadboard prototypes, and
made changes to the wiring interconnections when they found a
design error. As the design community turned from integrated cir-
cuits with a handful of gates to large scale integrated circuits with
hundreds of gates, breadboarding for design verification was largely
replaced by logic simulation.

Computer design architects in the 1960s used company-specific
RTL-like higher-level design notations (above the gate-level) to
specify the major design blocks, the data paths, and controls for

72 CHAPTER 5

Simulation was
first applied on
a large scale to
fault simulation.

their designs before building the breadboard prototype. Designers
verified their higher-level specifications by their own manual
inspection and review by peers. There was generally no com-
puter-based simulation of the higher-level specification.

The first wide production use of logic simulation was gate-level
fault simulation, not design verification. These simulators assumed
that the design description was good, and determined whether man-
ufacturing faults or field failures in the logic hardware were detect-
able with a given set of test sequences. The Seshu [Seshu and
Freeman 1962][Seshu 1965] sequential analyzer would first auto-
matically enumerate all possible stuck-at-one and stuck-at-zero
faults for all inputs and outputs on the gates in a design. It would
then simulate the effect of these faults, taking advantage of parallel
logic operations on the 48-bit word of the host computer to simulate
48 faults at a time.

The simulator in the sequential analyzer used two states, 1 and
0, and compiled the input logic description into host computer
assembly language instructions to perform boolean logic opera-
tions. The compilation broke feedback loops to form a combina-
tional logic block from sequential logic, and organized the
assembly language boolean instructions representing the combina-
tional logic into logic rank order.

Rank-ordered
simulation.

In addition to the primary inputs and outputs of the original
model, the broken feedback loops in the simulation formed second-
ary outputs with corresponding secondary inputs. With a given test
vector on the primary inputs, the simulator would make an evalua-
tion pass through the combinational logic, then check whether the
states of the secondary outputs matched the state of the secondary
inputs. If they did not match, the simulator would pass the states of
the secondary outputs to the secondary inputs, and re-evaluate the
combinational logic. The simulator repeated the evaluations until
the secondary output and input states matched, which would indi-
cate that the network had “relaxed”, or until a given limit of 100 or
so, which would likely mean that there was an oscillation.

Event-ordered
simulation.

Ulrich [1965] described a more realistic simulation time
sequencing method to replace rank-ordering. The method mapped
cause-and-effect events during simulation, starting at the primary
inputs and propagating logic changes through the logic to the out-
puts. If the logic contained feedback, events propagated (and some-
times created oscillations) through the feedback just like in the
hardware. The mapping of time allowed the simulator to deal realis-
tically with logic and wire propagation delays, so that the output of

RTL SIMULATION 73

the simulator could look much like the waveforms of logic signals
from the actual hardware on an oscilloscope.

5.1.2 X, Z and Other States
Around 1970, authors reported [Bening 1969][Jephson et al

1969][Chappell 1971] application of a third “X” state to their logic
simulators to model conditions of uncertainty as to whether a logic
value was a 0 or a 1. These uncertainties could arise from the
start-up state, the outcome of races or min-max delay ambiguity.

X state in
simulation.

Users of gate-level simulators with an X state quickly discov-
ered that the X state simulations erred on the side of pessimism, as
described by Breuer [1972]. In spite of the fact that X-state pessi-
mism might lead a designer to fan out a reset signal more widely
than really necessary, designers regarded use of the X for a start-up
state as a safer design practice than use of an optimistic 0 or 1 initial
state.

Timing states in
simulation.

Some simulators added separate timing-related state values
associated with specific transitions, such as rising “U” and falling
“D” [Szygenda 1972], which more precisely mapped knowledge of
state transitions than using an X for all transitions.

Tri-state
simulation.

Wilcox and Rombeck [1976] described an extra “Z” state to
specify a disconnected node in their simulator. Use of a Z state
became widespread in the later 1970s, and continues to this day.

5.1.3 Function and Timing
By the 1980s, static timing verification tools [McWilliams

1980][Hitchcock 1982][Bening 1982] had largely eliminated the
need for detailed timing states and delay values in logic simulators.
Static timing verifiers largely ignore the logic state values.

If a designer accepts a degree of pessimism, timing verifiers can
run in O(n) time and memory complexity, where n is the number of
timing blocks in the design. The pessimism arises from a property
of timing verifiers that identifies some timing paths as critical
where in fact they can never be fully enabled if logic states are con-
sistent. This is known as the false path problem. Designers used to
deal with the false path problem by manual analysis and ruling out
the offending path, or by case-by-case analysis. Recent develop-
ments in static timing verification tools support automatic false path
detection algorithms that target failing critical paths.

Timing verification tools far more productive and complete than
simulation.

74 CHAPTER 5

Even though there is the false path problem with static timing
verifiers, they are far more productive than dynamic simulation for
timing verification. Simulation for timing verification requires
crafting and running of tests for all paths, not just the false paths. It
is a very labor and compute-intensive process, with no possibility of
completeness on logic designs of a thousand gates or more.

The basis of timing verifiers is the design method of isolating
feedback to registers, with no feedback in combinational logic. This
was originally described to support testability [Eichelberger and
Williams 1977], but serves to support static timing verification as
well.

Simulation
focus turns to
function
verification.

The fact that static timing verifiers focused on timing allowed
logic simulation to focus on logic function verification. Design
projects using timing verifiers simplified the timing in their logic
function simulation, from min-max timing, to unit delay and zero
delay. They also turned to larger functional blocks in their simula-
tion, since there was no longer a need for mapping wire intercon-
nect and gate delays into their simulation models.

5.1.4 Gate to RTL Migration
In the 1970s, industry design projects increasingly turned to a

register-transfer level description and simulation of their new
designs. When the RTL model passed its simulation tests, designers
would manually specify the gate-level version of the design, and
simulate the tests that had passed at the RT-level. On some projects,
designers abandoned the RT-level model once they had a gate-level
model that worked.

By the 1990s, synthesis and boolean equivalence checking tools
(see Chapter 6) became widely available. Synthesis contributed to
the confidence that the gates matched the RTL for the blocks that it
could handle. Boolean equivalence proved that the manually crafted
gates and the gates that needed timing tweaks matched the RTL as
well. This meant that the RTL models could remain the master, and
gate-level design verification simulation testing could be elimi-
nated.

5.1.5 Acceleration and Emulation
Many simulation-specific machine architectures have been pro-

posed. [Blank 1984] In their hardware realizations, they have
become known as either accelerators or emulators, depending upon
their architectures

RTL SIMULATION 75

Gate-level
accelerators.

Gate-level simulation accelerators based on architectures spe-
cific to the gate-level simulation application became commercially
available around 1984, and experienced rapid sales growth through
the 1980s. In the 1990s, gate-level accelerators continue to be com-
mercially available, but their market growth has slowed down.

Earlier simulation accelerators interpreted a machine language
instruction set that was comprised of interconnected logic primitive
types. Each logic primitive was an instruction to the accelerator,
and the instruction addresses were the interconnections. Some sim-
ulation accelerators sequenced the evaluation of primitives by use
of event lists, and others have used logic rank ordering.

From a single-job throughput point of view, these gate-level
simulation accelerators provided a significant advantage over the
same gate-level simulation run on a workstation. From a price/per-
formance/ease-of-use point-of-view, the advantage was not as good.

Gate-level logic
emulators.

Gate-level logic emulators became available in the early 1990s.
Emulators can execute logic models at speeds approaching a mega-
hertz. They are about three orders of magnitude faster than simula-
tion accelerators, but are somewhat higher cost and less capacity.

Logic emulators model logic in reprogrammable logic array
chips. Modeling logic in logic arrays provides a high degree of
gate-level parallelism in execution of the logic model.

In the later 1990s, a new class of accelerators based on arrays of
reconfigurable microprocessors has emerged.

RTL emulator/
accelerator
support.

To support RTL design, both accelerator and emulator boxes
require compilation of the RTL into gate-like box languages. EDA
vendors of these boxes provide software support for compiling RTL
directly to their box languages, without having to synthesize the
RTL to a semiconductor vendor cell library. Later in a project,
accelerators and emulators can base their compilation directly on
the logic as synthesized into interconnected cells from a semicon-
ductor vendor’s library. Simulation performance on accelerators
and emulators is the same for a given design described at the RTL
or gate-level.

In the past, RTL accelerators directly modeling RTL constructs
on special architectures have been unsuccessful in the marketplace.
Products specifically targeting accelerated simulation beyond the
gate-level included Star Technologies STE-264 and the ZYCAD
VIP. The STE-264 faded from the scene just a week after its presen-
tation at the Design Automation Conference [Hefferan et al. 1985],
while the ZYCAD VIP box disappeared in early 1995 with barely
any mark left behind.

76 CHAPTER 5

[Figure 5-1] presents approximate relative performance com-
parisons between RTL simulation running on general-purpose com-
puters and emulator/accelerator boxes. Notice how emulator and
accelerator performance is independent of the number of gates, and
stays flat until they run out of capacity. RTL simulation declines lin-
early with increasing model sizes. In our experience performing
cycle-accurate RTL simulations up to 450 million gate-equivalents,
we have not run into a capacity barrier. This is running on comput-
ers with gigabyte memories and using the cycle-based techniques
described later in this chapter.

Gate-level simulation in software running on general-purpose
computers is one to two orders of magnitude slower than RTL sim-
ulation on the same machines.

5.1.6 Language Standardization
The RTL Babel
Era ends.

By 1980, there were dozens of different RTL languages [Dewey
1992a][Dewey 1992b]. The RTL languages originating from uni-
versity-based researchers had externally accessible papers and doc-
umentation about them. But there was little published about RTL
languages originating within industry computer development divi-
sions. In some larger companies, different computer development
divisions separately developed their own RTL languages and simu-

RTL SIMULATION 77

lators. The fact that there were so many different languages in use
in 1980 meant that tool support was language and developer-spe-
cific.

There was insufficient formal specification of the semantics of
these earlier RTL languages. The implementation of a logic simula-
tor was the embodiment of the semantics. Even where some seman-
tic documentation existed outside the simulator, reports of the
simulator not working as documented would result in a change in
the documentation.

The syntax was inconsistent within the RTL language in many
cases. Within a part hierarchy containing behavioral and structural
interconnect modules:

ports on behavioral modules had one syntax, while ports on a
structural interconnect module had another syntax.

multibit buses were permitted in behavioral modules, and lim-
ited in other modules.

HDL
Standardization

VHDL and Verilog development in the 1980s addressed these
and many other problems, and became open languages with
multi-vendor support.

VHDL started in June, 1981 with a meeting of the Woods Hole
Study Group. This select group of 32 HDL language specialists rep-
resented about ten different HDLs used by Department of Defense
(DOD) contractors and university researchers. There followed a
multi-year development process consisting of many meetings and
document drafts. By 1987, VHDL was defined, and turned over to
the IEEE for standardization. After some changes, IEEE completed
its standardization process and released the printed VHDL standard
in March, 1988. As part of the DOD contract that funded the VHDL
standardization, Intermetrics developed and released the first
VHDL simulator.

More simulators and other VHDL-based EDA tools emerged in
the market in the following years.

Verilog began with its first customer shipment in 1985 as a pro-
prietary language simulator developed by Gateway Design Auto-
mation. Even though its original design target was RTL simulation,
the simulation product distinguished itself based on its gate-level
simulation performance. Even in design shops that began with an
RTL model, there was a need to run regression tests at the gate
level.

Gateway merged with Cadence Design Systems, and added tool
support for the Cadence language. To sell to customers who favored

78 CHAPTER 5

using an open, standard language with multi-vendor tool support,
Cadence put the Verilog language in the public domain in 1990.
Cadence Verilog XL™ simulator sales continued their rapid
growth, and other vendors developed Verilog tools.

In 1992, Chronologic released their vcs™ “Verilog Compiled
Simulator,” targeting RTL simulation performance and memory
economy, while maintaining close parity at the gate-level with the
Cadence simulator.

VHDL vs.
Verilog

Our benchmarks showed that, for our designs, Verilog RTL sim-
ulation was several times faster than VHDL RTL simulation. Simu-
lation performance has always been a primary value in our design
methodology. We regarded the limitations of Verilog compared
with VHDL as less significant, and could be overcome. These Ver-
ilog limitations include

weak data type-checking,

lack of language-based extensibility/configurability, and

inconsistent evaluation ordering of simultaneous events between
different versions of Verilog simulators.

Chapter 4 describes our recommended Verilog RTL methodol-
ogy to overcome the first two of these limitations.

To design projects that place a higher value on simulation per-
formance than repeatability and use synchronous design methods,
the third limitation is not a limitation, but a feature. Leaving evalua-
tion ordering open allows simulator developers opportunities for
run time and memory performance optimizations. Synchronous
design methods eliminate logic races. With no logic races, any eval-
uation ordering of simultaneous events results in identical
cycle-by-cycle register behavior.

5.2 Project Simulation Phases
Depending upon the amount of design innovation in a new

project, the emphasis on the different simulation phases may vary,
but generally they consist of:

debugging.

regression.

recreating hardware problems.

To this set of usual simulation phases, we add simulation per-
formance profiling between the debugging and regression phases.

RTL SIMULATION 79

There is overlap between these phases in a large system design
project. For example, the chip design simulation models may be
largely debugged and in their regression phase, while the system
simulation model built from a combination of these chips may be in
a debugging phase.

5.2.1 Debugging Phase
As engineers begin their first simulations of their designs, simu-

lations invariably fail to pass their tests due to design bugs. The
number of bugs is generally proportional to the size of the simu-
lated design and the amount of innovation applied in the new
design.

At this point in the project, an environment that supports pro-
ductive diagnosis and repair of bugs is of paramount importance.
Since the simulations fail their tests in the first 10 to 100
clock-cycles, simulation performance is not as important as the
debugging environment. Important components of the simulation
debug phase environment include the following:

Access to
internal signal
values.

To track down the causes of design bugs, engineers need to
bisect their way anywhere into the design. This requires that the
simulation provide access to all intermediate combinational values
as well as storage element and memory states.

Event logging. By including logging about state behaviors that lead up to the
point where a design error manifests itself, designers can often
more quickly determine the sequence of events that leads to a
detected error condition. This can shorten the time that it takes for a
designer to diagnose and develop a fix for a design error.

Fast
turn-around on
design changes.

After the engineers diagnose a problem and devise a fix, they
need to quickly compile their changed Verilog and re-simulate the
test that failed before the change.

Simulation
model integrity.

To set up the simulation project for fast and effective high-per-
formance simulation in the following phases, design and verifica-
tion engineers must ensure that the simulation models can run in a
2-state mode and contain no logic races.

No X's! Running some simulations 4-state during the debugging phase
can expose errant storage element models that are not randomly ini-
tialized to one or zero (see section 5.5.1.3). These 4-state simula-
tions can also expose unconnected control inputs that somehow
escape lint checks.

80 CHAPTER 5

No races! All logic races must be eliminated from the logic simulation
models and their test fixtures. These races may be one-time only
start-up races, or repetitive races with every clock cycle.

Changes in PLI calls (adding or removing) and simulation opti-
mizations affect the evaluation ordering of simultaneous events in
simulations. These changes in simultaneous event-trigger evalua-
tions may cause a test to fail as add or remove a debugging tool, or
apply simulation compile optimizations.

5.2.2 Performance Profiling Phase
Before regression testing reaches its peak, it is important to pro-

file the performance of the simulation model and fix any functions
that show performance problems. In every simulation that we pro-
file, there are always a handful of functions out of the thousands of
functions that stand out as slowing the simulation.

There are always a couple of project-written PLI C/C++ func-
tions in which the algorithms can be changed to greatly improve
their performance. Reducing character string operations and con-
verting to block-oriented instead of element-oriented memory man-
agement are some of the performance improvement techniques that
we have applied based on performance profiling reports.

Most often, our performance problems relate to the simulation
output files. Here are some of the output file-related performance
problems.

Writing simulation output files over a network. Use of a disk
that is local to the machine on which the simulation is running
can give a 5X or more improvement in simulation performance.

Simultaneously creating multiple simulation output files on a
single disk. On multi-CPU machines, consider using multiple
disks for the multiple simulation CPU’s. This can provide a
1.5X or more improvement in simulation performance.

Large scale output logging. Where designers ignore most of the
logged output, controls on the logged output levels and areas
improves simulation performance.

By considering simulation performance important and applying
profiling, a project can improve the performance of its simulation
model by 10 to 20X over projects that largely ignore performance.

From one project to the next, it is important to re-profile and
measure the performance effect of changes to newer host CPU’s,
larger disks, different simulation version/vendor, and the new
design.

 RTL SIMULATION 81

5.2.3 Regression Phase
The regression simulation phase begins when a design passes

nearly all of its tests. During this phase, the project uses as much
computing horsepower as it can find to run as many different
directed, directed random, and random simulations as it can on all
the possible configurations of the simulated model.

The rate at which these simulations detect bugs and improve test
coverage tapers off in a manner approximating an exponential
decay. At some point the bug reporting rate falls off and coverage
improvements slow down to a point where the project management
team decides that the design is ready to be built into hardware. The
timing of this decision is critical to the success of the project. To
help them with their decision, the management team applies cover-
age metrics. See Chapter 3 for more details on coverage metrics.

Later in the regression phase, the verification engineers run
thousands of simulations per day and might detect one design error.
Because the focus is on detecting errors by running as many simu-
lations per day where nearly all simulations pass their tests, we sac-
rifice debug support in order to get maximum simulation
performance. Here are the ways in which we turn around the priori-
ties for debugging identified in section 5.2.1 when we go into the
regression phase:

Limit access to
internal signal
values.

By using and reusing internal registers instead of memory for
internal signal values, simulations can run two or three times as
fast, and require less memory. Cycle-based [McGeer et al 1995]
and other optimizations [Ashar and Malik 1995] bypass calculating
and storing intermediate combinational logic states.

Reduce event
logging.

While event logging can help designers diagnose errors detected
in simulation, event logging takes simulation time, particularly
when it requires a function call. For maximum simulation perfor-
mance in regression testing, we allow that it may take many cycles
before a design error shows itself an abbreviated event log file.

Slower
turn-around on
design changes.

After verification engineers detect a problem in a regression
run, they generally have to rerun the same test in order to diagnose
the design error and devise a fix. After some preliminary testing in
the diagnosis-oriented simulation environment, the designers sub-
mit the change to the longer running, more highly optimized compi-
lation for detection-oriented regression simulations.

It should be noted that many of the failing simulations later in
the regression phase are not design errors, but rather errors in the
test. As verification engineers turn to increasingly complex tests to
reveal corner case design errors, it is more and more likely that they

82 CHAPTER 5

have an error in their complex tests than locate a design error in the
logic.

Regression RTL simulations continue at a near-peak level even
after the project sends out the design data tapes for pre-production
prototype chip and board hardware. Design errors detected by sim-
ulation can help direct the hardware lab testing, and join what bugs
are found in the lab in any respin of the parts.

5.2.4 Recreating Hardware Problems
An important application of RTL simulation is recreating design

problems that show up in the hardware lab testing. The first step is
crafting the test that duplicates the hardware problem in simulation.
The next step is devising the logic change that fixes the problem,
then running the test to show that the problem is fixed for that test.
The test can then join the regression suite of tests.

Chapter 6 describes in greater detail how projects can focus
model checking on the logic area that contained the hardware prob-
lem to ensure that the logic change completely fixes the problem.

5.2.5 Performance
With planning, a design project can set up two verification mod-

els for simulation of the chips and the system: debugging and
regression. The debugging model targets the human user’s success,

RTL SIMULATION 83

while the regression model targets the CPU performance. [Table
5-1] lists the differences between the two models.

The key factor in making the detection and diagnostic models
work for a project is the ability to duplicate the behavior of each
environment in the other environment.

1.

2.

As designs begin passing all of their tests in the slower
debugging model and the project moves to the regression,
the regression model must pass all of the tests that run
correctly on the debugging model.

If a regression model simulation run reveals an error
running a test, the corresponding debugging model
simulation run must duplicate the error behavior running
the same test.

Success in making both simulation models match requires that
the design project use a modeling style that embodies the same
semantics in both the debugging and regression simulation models.
Areas to watch for semantic divergence include:

RTL X-state and two-state. See section 5.5 for details about
using random two-state methods to replace the X-state in RTL
simulation, and chapter 8 about X-state RTL semantic difficul-
ties.

Randomly determined test parameters. Since simultaneous
event ordering is different between simulation models, ran-
domly generated test parameters must be independent of the
order of the calls to the random number generator. This applies
to both test direction and start-up state. For test direction, keep
the state of the random number generator outside of the random
number generator. For more on random start-up state, see sec-
tion 5.5.1.3.

Logic races. Where logic contains races, simulation state behav-
ior often diverges as a result of differing simultaneous event
ordering between simulations.

Making debugging and regression simulation models run con-
sistently is part of an overall cooperation with all verification tool
semantics embodied in the Faithful Semantics Principle dis-
cussed in chapter 8.

5.3 Operation
To get the best performance from logic simulation, some under-

standing of the way that simulators work is desirable. Fundamental

84 CHAPTER 5

to logic simulation performance is minimizing the number of visits.
Visits include signal references and statement/expression evalua-
tions. Visit minimization begins with EDA tool engineers designing
logic simulators for efficiency. Design engineers writing Verilog
can also contribute to logic simulation visit minimization by the
way that they write their Verilog.

Visit Minimization Principle
For best simulation (and any EDA tool) performance, minimize the frequency

and granularity of visits.

5.3.1 Sequencing
For the RTL Verilog style described in this book, the sequence

of simulation operations consists of alternately evaluating the com-
binational logic and updating the storage element states. A clock
event triggers the storage element state update. Depending on the
simulator architecture, the combinational logic evaluation can be
sequenced by events during simulation, or rank-ordered during
compilation and evaluated in that rank order during simulation.

5.3.1.1 Event-Driven

An event-driven simulator only evaluates logic when input
states change value. Evaluations begin with events indicating
changes to the inputs. The simulator generates new events for
changes to logic states resulting from the evaluations triggered by
input state changes. The simulator repeats this process of event
propagation until there are no more events in a current time step.
The simulator then advances time to the next time step containing
events.

Event-driven simulators provide efficiency in two ways.

1.

2.

Where a simulation model includes fine-grained delays in
combinational logic, the event-evaluate activity per time
step is extremely small.

Only state changes propagate evaluation visits. Where an
event triggers an evaluation of logic that and’s with a 0 or
or’s with a 1, the simulator schedules no event triggering
evaluation on the output of that logic. When events are
sparse, the simulator performs few evaluations.

These advantages of event-driven simulation are now largely
obsolete for RTL simulation.

RTL SIMULATION 85

Fine-grained event time management results in simulation per-
formance overhead. Krohn [1981] reported a 52% event manage-
ment overhead. With static timing verifiers doing the timing
verification, logic simulators can focus on logic function verifica-
tion, and ignore the fine-grained timing.

While some logic designs tend to have low activity in which
event propagation gets cut off, other logic designs tend to have high
event activity, in which logic blocks may be visited two or more
times within a simulated clock cycle. Some sources of high activity
and multiple evaluations in event-driven simulation include:

Exclusive or’s. Exclusive or logic results in high event activity.
Exclusive or’s propagate every input change to their outputs.

Convergent short-paths and long-paths. Events arriving through
a short path trigger a visit that causes the logic to switch, while
an event arriving through a long path will cause a visit to the
same logic, and may cause the logic output to switch again.

Arithmetic logic networks are one example that include both
exclusive or events in their short paths, and propagate carry/borrow
events along their long paths.

The Verilog in [Example 5-1] illustrates multiple evaluation vis-
its in an event-driven simulation for an evaluation cycle at time 1.

The path from a to e is a short path, while the paths from b and
c to e are the long paths. We simulated this model on two simula-
tors from different vendor, and they both reported:

e = 1
e = 0

showing that the simulators visited the e = a ̂d evaluation block
twice.

86 CHAPTER 5

Example 5-1 module x;
rega,b,c;
reg d,e;

always @(b or c)
d = b ^c;

// Extra evaluation in event-driven simulation
always @(a or d)

begin
e = a ^ d;
if ($time > 0) $display(“ e = %b”,e);
end

initial
begin

{a,b,c} = 3’b000;
#1;
a = 1’b1;
b = 1’b1;
#1;
$finish;

end
endmodule // x

This example is a near gate-level design. RTL procedural blocks
are generally far larger and represent logic function at the concep-
tual level instead of the boolean function level. For example, RTL
addition uses the plus + operator on buses instead of the exclu-
sive-or ̂operator on bits.

RTL procedural blocks may represent all of the combinational
logic between registers in many cases. For the cases where combi-
national logic drives the inputs of larger procedural blocks, multiple
visits per cycle can be expensive in terms of performance.

5.3.1.2 Rank-Ordered

Rank-ordering combinational logic prior to simulation greatly
reduces the event management overhead during simulation. Com-
pared to gate-level simulation, RTL simulation event overhead is
small, while the cost of evaluation visits is usually higher. Eliminat-
ing revisit evaluations during a clock cycle is an important benefit
that comes from rank-ordered evaluation sequencing.

While it is possible for a logic designer to rank-order manually,
a simulation compiler usually performs the rank-ordering. Given
the [Example 5-1], we can illustrate rank-ordering by rearranging
its two always blocks into one as shown in [Example 5-2].

RTL SIMULATION 87

Example 5-2 always @(b or c) begin
d = b ^c;
e = a ^ d;

// Only one evaluation in rank-ordered simulation
if ($time > 0) $display(“ e = %b”,e);

end

In both standard vendor Verilog simulators and cycle-based
simulators, the test sequence shown in [Example 5-2] results in
only the display of the final value.

e = 0

[Example 5-3] illustrates a more complex rank-ordering that
mixes assign statements with an always procedural block.
Designers need not favor one of these two styles over the other,
since simulation compilation optimizations rearrange the original
form of the Verilog for performance. Use whatever form most
clearly expresses the design from a human point-of-view.

Note that if designers use the larger, multi-statement procedural
blocks to specify their logic, they are responsible for placing the
statements in rank order. Designers must assign a signal before ref-
erencing the signal in an expression. In the [Example 5-3], assign-
ments to c and d must precede the case statement that uses them,
and the g assignment that references f must follow the case state-
ment in which f is assigned. Linting checkers are available in the
marketplace that flag out-of-sequence statements in procedural
blocks as an error.

Example 5-3

a) Original Verilog

assign c = a;
assign g = f;
always @(c or d) begin

case (c)
2’h0 : f = d;
2’h1 : f = 1’b0;
default : f = 1’b1;

endcase
end
assign d = b;

b) Rank-ordered Verilog

always @(a or b or c) begin
c = a;
d = b;
case (c)

2’h0 : f = d;
2’h1 : f = 1’b0;
default : f = 1’b1;

endcase
g = f;

end

88 CHAPTER 5

5.3.2 Evaluation
With event-driven and rank-ordered logic evaluation sequencing

visits, different researchers and EDA vendors have developed simu-
lators using interpreted or compiled-code evaluation methods. In
addition, simulator developers have employed evaluation methods
specifically targeting RTL statements.

5.3.2.1 Interpreted
Compilers for interpreted simulators generate files of binary

address references and instruction codes specifically targeting logic
simulation. The simulator consists of an engine that interprets the
simulation instruction codes and acts on the codes using selected
instructions specific to the host machine.

Interpreted simulation models have the advantages of:

portability - The file produced by the logic compiler can be
independent of a vendor-specific host machine instruction set
architecture. Only the simulators interpreting engine needs to
target a vendor-specific host machine.

compactness - the simulator designers optimize the instruction
code set for logic simulation.

The big disadvantage of interpreted simulators is that they are
slower than compiled-code simulators. Interpreted simulators per-
form mapping of instruction codes to host machine instructions
throughout the entire simulation run.

5.3.2.2 Compiled code
Compilers for compiled code simulators generate host machine

instructions that, with the help of a vendor-supplied function
library, perform the evaluations required of the simulation model.

Early versions of compiled code simulators generated C or
assembly language as an intermediate step in their compilation pro-
cess, then use the host machine C compiler or assembler to arrive at
the object code files representing the design.

The compilers for newer compiled code simulators generate
object code files directly, without any intermediate C or assembly
language step. These newer compilers use optimization engines and
code generators supplied by host-machine hardware vendors, so the
code generated is just about as fast as the code that comes from C
language compiled with high optimization. The optimization com-
pile time penalty in going directly from Verilog to object code is far

RTL SIMULATION 89

smaller (1/10th or less) than the optimization compile time penalty
in going from C to object code.

5.3.2.3 RTL Methods

Operators, case
and procedural
blocks.

Reference buses
instead of bits.

Throw the X out
of your RTL.

When first learning Verilog, anyone who already knows the C
language notices the resemblance of many Verilog constructs as
being very much like programming language constructs, particu-
larly within procedural blocks. Since general-purpose simulation
host computers optimize their instruction sets and their operation
for programming languages, RTL simulation compilers can take
advantage of mapping to host computer instructions.

The transfer in RTL covers a wide range of abstraction levels
that can specify the same clock-by-clock and state-by-state behav-
ior. By specifying designs using language elements at the higher
end of the RTL abstraction range, designers can take advantage of
host computer instructions that result in higher simulation perfor-
mance. Here are three ways in which higher levels of RTL abstrac-
tion can result in higher simulation performance.

Instead of boolean expressions in assign statements, favor add/
subtract operators (+ and -), case/if-else statements, and procedural
blocks to achieve faster simulations, as well as a more clear specifi-
cation of a design.

RTL bus and bit references are another simulation performance
factor related to how Verilog statements and expressions map into
host computer instructions.Visiting buses instead of bits in the RTL
Verilog generally results in faster simulation, as well as simplifying
the Verilog.

By throwing out the X state, the RTL to host computer instruc-
tion mapping is made even more direct and therefore results in
higher simulation performance.

5.4 Optimizations
The optimizations described in this section are only a subset of

the RTL optimizations that Verilog compiler writers have put in
their software. They continue adding new optimizations in their
quest for faster simulation.

An optimizing Verilog compiler may not recognize an opportu-
nity for optimization for some Verilog statements, even though it
seems to fit into a class of optimizations. For high usage subblocks,
it can be worthwhile in terms of simulation performance to apply

90 CHAPTER 5

some hand-optimization to the Verilog style, and not entirely count
on the automatic optimizations doing what you would expect.

5.4.1 Flattening
Flattening eliminates hierarchical boundaries between submod-

ules and the modules that contain the submodules. Flattening can
make simulations run faster by eliminating traversal of hierarchical
boundaries between submodule port connections.

RTL simulation compilers vary in the degree to which they
apply flattening optimizations. Some apply flattening only to
smaller, high-usage submodules, and retain the name accessibility
to the port connections, even though the port connections no longer
exist in the flattened simulation model.

Other RTL simulation compilers aggressively optimize by com-
pletely flattening a hierarchy of modules into a single module, and
discarding name accessibility to the port connections that they lose
in the flattening process. These compilers start their flattening with
the top level module in the hierarchy and recursively flatten travers-
ing all of the instances of submodules within the hierarchy.

5.4.2 Rank-Ordering
In section 5.3.1.2, we discussed rank-ordering as an alternative

or complementary simulator sequencing option method for
event-driven sequencing. Depending on the simulator, different
simulation compilers apply rank-ordering to varying degrees. Some
simulation compilers apply rank-ordering to all of the logic in a
flattened module, so that the only events are clock events.

5.4.3 Bus Reconstruction
With bus reconstruction optimizations, the RTL compiler com-

bines separate bit and subrange references. These optimizations
improve the performance of logic simulation by reducing the num-
ber and the granularity of read and write visits.

Note that if subrange assignment statements are far apart in the
Verilog, an optimizer may not be able to put the bus back together.
Designers can ensure that they get the simulation performance that
comes from referencing buses instead of bits by writing their origi-
nal Verilog in terms of bus references.

RTL SIMULATION 91

5.4.3.1 Concatenation
In many cases, a simulation compiler optimizer can detect and

automatically do the subrange assignment-to-concatenation change
that turns three bit-wise references into a single full-bus references.

For example, consider optimization of the following source
code:

Before: After:

c_b [3:0] = c_b0; c_b = { c_b2, c_b1, c_b0 } ;
c_b [7:4] = c_b1;
c_b [11:8] = c_b2;

The After is faster because it only makes one reference to c_b
in simulation. (Verilog compilers map signal bits across the bits of
simulation host machine words.) Without the concatenation optimi-
zation, the simulator has to mortise bits into the assignment target,
which requires reads and rewrites of c_b. In Verilog, the work that
the simulator has to do looks like:

c_b = { c_b [11:4], c_b0 };
c_b = { c_b [3:0] , c_b1, c_b [11:8] } ;
c_b = { c_b2, c_b [7:0] };

5.4.3.2 Expression Simplification
In some cases where the raw flattened Verilog shows that the

design uses separate submodule instances to transfer slices from a
bus to subranges from another bus. An optimizer can recognize this
and simplify the concatenated slices from the same variable into a
reference to the entire variable. For example, consider the following
code:

Before:After:

c_c [7:0] = c_a [7:0]; c_c= c_a ;
c_c [15:8] =c_a [15:8];
c_c [23:16] =c_a [23:16];

The preceding expression simplification is an RTL-oriented
optimization. With the “before optimization” code translated
directly to C statement-by-statement, a C optimizer cannot recog-
nize that the goal of all the slicing and shifting is the simple assign-
ment shown in the “after optimization.”

92 CHAPTER 5

5.4.4 OBHD-based Optimization
Design libraries
discussed in
Chapter 4.

Use of a design library of standard component written in a uni-
form coding style results in a large number of common elements in
the flattened Verilog. The next two sections discuss optimizations
based on expressions and control.

5.4.4.1 Common Sub-expression Consolidation
RTL compiler optimization includes the classic common

sub-expression consolidation technique on common statement
structures. After flattening the design formed from instantiation of
library components, there are thousands of statements of the fol-
lowing form.

in_p0.misc.r1.dsel = (~ i_scan) & (~ reset) ;
in_p1.misc.r1.dsel = (~ i_scan) & (~ reset) ;
in_p2.misc.r1.dsel = (~ i_scan) & (~ reset) ;
in_p3.misc.rl.dsel = (~ i_scan) & (~ reset) ;

Then, after optimization, there is only one statement to simu-
late.

in_p0.misc.r1.dsel = (~ i_scan) & (~ reset) ;

The optimization replaces all of the names that fan out from the
common expression with the fanout name in the single remaining
statement.

5.4.4.2 Common if-else Control Consolidation
Where designs have multiplexers in front of flip-flops, common

if-else control occurs throughout the submodules of an ASIC
design. In the flattened Verilog, these appear as obvious candidates
for optimization. Chapter 4 presents an example of simulation opti-
mization based on common control.

5.4.5 Partitioning
Partitioning optimizations improve simulation performance by

reducing the amount of logic that the simulator visits in each simu-
lation cycle and fitting evaluated partitions within the simulation
host machine cache size. The following sections present RTL parti-
tioning optimizations based on logic branches (case and if), clocks,
and chips.

RTL SIMULATION 93

5.4.5.1 Branch Partitioning
[Example 5-4] (a) shows a form of statement sequence that

occurs thousands of times in flattened Verilog. Note that case out-
put z is used in only one branch of the conditional expression
assigned to w. In turn, w is used in only one branch of the case that
outputs d. When the case control variable b is non-zero, all simu-
lation time spent on calculating z and w is wasted.

[Example 5-4] (b) shows the reorganized Verilog after branch
partitioning optimizations. Follow the arrows to see how the origi-
nal statements get moved by the partitioning. These statements only
simulate the evaluations resulting in z and w as needed. Branch par-
titioning improves simulation performance. However, it is some-
times disconcerting to designers when they do not see z and w
changing in response to changes in their inputs because they are in
the inactive branch of the outer case (b) control after optimization.

In addition to bypassing evaluations, the fact that z and w are
local variables becomes more clear to downstream optimizations
that assign host machine registers instead of memory for local vari-
ables.

[Example 5-4] is random control logic from a real chip design,
with only the names changed. We find around several thousand
lines of these branch partitioning optimization opportunities in con-
trol logic out of every 100,000 lines of RTL code. This results in
around three to five per cent simulation performance improvement
from branch partitioning.

The bigger (2X or more) simulation performance improvement
comes in simulation of the scan mode data path. Branch partition in
scan mode allows the simulator to bypass evaluation of all the logic
in the data path, and only consider the scan path.

94 CHAPTER 5

Example 5-4

a) Original RTL logic. b) After branch partitioning.

5.4.5.2 Clock Partitioning
Clock partitioning improves simulation performance for designs

in which a single master clock arrives at a chip pin, and logic within
the chip divides the incoming clock to generate different clock
phases. In these designs, the master clock and the clock phases fan
out to different flip-flops within the chip.

In designs where some internal clocks fan out only to a few
flip-flops, clock partitioning provides a 3X or more simulation per-
formance improvement. The clock partitioning optimization pro-
cesses chip logic and flip-flops to generate a simulation model that
visits and evaluates only the logic and flip-flops affected by each
clock.

5.4.5.3 Chip Partitioning
Some RTL simulation compilers flatten a design to the system

level, dissolving chip boundaries in multi-chip systems. For larger
systems, this method runs into data cache-miss performance diffi-
culties because of random references to the state storage that
exceeds the cache size limit.

RTL SIMULATION 95

Chapter 2
introduces the
retain Useful
Information
Principle.

Application of the retain Useful Information Principle can tell
the RTL compiler which modules are in which chips. The RTL
compiler can then generate a system model partitioned by chip
instance. This improves the cache-hit percentages and thereby
speeds the simulations for multi-chip systems.

At the level of RTL presented in this book, we find that the
state-storage memory required per chip for simulation is about 1
byte per gate. Up until now, we have been able to fit the state stor-
age for each chip instance within the cache size available on our
host machines. This provides the locality of reference so that simu-
lations can stay in the cache for each evaluation cycle for each chip
instance.

If future chip designs require simulation state storage that
exceeds data cache limits on future simulation host machines, parti-
tioning to major blocks within each chip will be necessary.

5.5 Random Two-State Simulation Methods
In chapter 8, we describe in detail why RTL simulation with an

added X state is not a good idea. In this section, we describe ran-
dom two-state RTL simulation methods that address start up state
and other design problems.

Two-state here refers to eliminating the X, and using only 0, 1
and Z states. Although tri-state buses have an important place in
system design and simulation, the bulk of the logic and nodes are
only two-state, not tri-state. Most of the following discussion
addresses 0/1 two-state simulation, but it does include techniques
for treatment of tri-state Z’s (or even X’s) arriving into a two-state
model.

5.5.1 Start Up State

5.5.1.1 Design Method
In their chip logic, designers combine reset signals and chip

instance “personalization” input ports to bring their registers to an
acceptable start up state.

Some registers do not connect to either reset or input ports.
They are designed to be acceptable in any state, or arrive at an
acceptable state given a few clock cycles and being fed by the states
of the registers that did connect to reset or personalization input
ports.

96 CHAPTER 5

Why not fan out the reset to all the registers?

Routing area. Reset fanout requires routing area, adding to the
cost of physical design, or reducing the total amount of logic
that can fit on a given ASIC. Note that for full reset, reset has to
go everywhere that the clock goes.
Timing. Considering the start of reset, reset timing does not
immediately seem to be critical. However, the time when the
reset signal goes away has to be carefully tuned so that it hap-
pens everywhere within the intended clock cycle. Otherwise,
some state machines may start “moving” a clock cycle before
the others that are still reset. The interaction between them will
likely lead to bad outcomes.
Design verification test. For some free-running counter regis-
ters, any start-up state should be acceptable.

5.5.1.2 Zero Initialization
Bening [1999b] described a project that turned to two-state RTL

simulation when their ASIC designs started passing their tests using
the vendor Verilog RTL simulation model. The project began their
simulations with registers in an X state.

All of their chips failed their tests using a cycle-based two-state
simulation that started with registers in an zero state. They first sus-
pected that there was a bug in their cycle-based two-state ASIC
simulation, because it was newer and not as widely used on differ-
ent designs as the vendor simulator.

To verify this, they added PLI calls to the chip RTL Verilog that
initialized all registers and memory arrays to zero, and simulated
them using the vendor simulator. They all failed their tests!

The problems were in the designs and not in the cycle-based
simulator. What the designers found was that they had tuned their
RTL designs to simulate with registers initialized to X. Their if and
case/casex statements tested their control variables against
two-state constants. With registers initialized to X, in the first simu-
lation cycles if-else statements took the else branch, casex state-
ments took their first branch, and case statements took their
default branch.

With registers initialized to 0, wherever if-else and case/
casex statements compared control variables with zero, the state-
ment took that branch.

In effect, initializing registers to zero amounted to a different
test for the ASIC than initializing to X.

RTL SIMULATION 97

Designers found that design problems brought to light by ini-
tializing registers to zero were relatively easy to track down, com-
pared with whatever gate-level X-initialization problems they had
faced in the past. This was a result of working with “real” 0 and 1
states that occur in the hardware, not the X, which only occurs in
simulation.

5.5.1.3 Random Initialization

OBHD
techniques
described in
Chapter 4

If RTL zero initialization can find more bugs in RTL simulation
than the X state, it is intuitive that random initialization is even bet-
ter. The same PLI calls that initialize to zero can initialize storage
elements to random 0 and 1 states.

The PLI functions can use a time-of-day or user-specified seed
for generating random values. When using the time-of-day seed, the
PLI functions must report that seed, so a user can re-create any
problems detected with the time-of-day seed by specifying that
seed in subsequent simulations.

Note that instead of spraying the design with random state by a
single PLI function that traverses the design tree, our OBHD meth-
odology supports each library module taking care of its own initial-
ization in a separate PLI function call.

Spraying the design with random state by traversing the design
tree works all right with an event-driven four-state simulator in
which registers start at X. However, it does not work in two-state. In
two-state event-driven simulation where registers start at 0, many
values inserted into combinational variables driven by registers
starting at 0 will be inconsistent with the register that drives them.
The inconsistency happens wherever a registers starts at 0 and gets
set to 0. Unlike starting at X, there will be no event to propagate to
make the values of the combinational variables that the register
drives consistent.

An important random state initialization feature is consistent
random initialization [Bening and Chaney 2000]. The consistent
result aspect is important for two reasons. Given the same seed, a
project needs to duplicate the machine start-up state for a design
problem:

98 CHAPTER 5

Duplicate the
machine state

1.

2.

between the cycle-based chip simulation model and the
vendor-based chip simulation model. A design problem
detected by detection-oriented simulation model could be
re-created and diagnosed by the other simulation model,
given the same seed.

after a design change intended to fix the problem. This
allows designers to verify that a design problem for a
given state had been fixed after the design change. Given
the same seed, all register state bits start in the same state
as before the design change, except for new register bits
that were added in the with the design change.

5.5.1.4 Verification Test
One important fact to note is that by NOT fanning out reset

everywhere and NOT scanning a defined state into every register
bit, random state initialization becomes a design verification test
feature in some cases.

If a project designs their chips in a way that all register states
were defined at start up, it might take many clocks of a directed or
random test sequence for the interacting state machines to arrive at
states that manifests a design problem in their interaction.

By leaving registers open to random states at start up, a project
can find some state machine interaction design problems at the
beginning of a simulation.

One example of this is a refresh counter. With each run of a sim-
ulation test, the timing of the refresh cycles interrupts the test
sequence at different times. As the test passes for each run, it pro-
vides additional assurance that the interacting state machines in the
design can handle the test refresh interruption correctly.

5.5.2 Tri-state Buses
To simulate tri-stated buses in a system design, a project can set

up boundaries between the two-state simulation regions and the
tri-state signal lines. The tri-state signal lines can use 0, 1, Z and X
values, while the remainder of the system signals uses only 0 and 1.
The bus drivers consist of a two-state enable signal, and the
two-state signal being enabled.

The tri-state bus receivers have to deal with the situation of
interfacing the potentially inactive bus signals at a Z state with
two-state logic and registers. A correct logic design would not
enable the bus at a Z state into any two-state region, but we want to

RTL SIMULATION 99

OBHD
techniques
described in
Chapter 4

somehow expose the situation where a design problem caused the
bus signal receiving logic to be active when the bus signal was at a
Z state.

For the same reasons (simulation performance, labor content,
complexification, completeness, synthesis) we do not extend our
RTL Verilog to watch for the X state in if-else and case statements,
we do not extend them for the Z state either.

Using OBHD techniques, we add a Z state trapping PLI call
right at the tri-state to two-state bus receiver boundary. So, given a
tri-state pin on one side of the boundary, and a two-state ipin on the
other side, the

$TrapXZ(ipin,pin,qpin);

function passed through 0 and 1 values on pin to ipin, but put ran-
dom 0 and 1 values from qpin onto ipin for any bit(s) that were Z
(or X) on pin.

The intent of the random values is to cause design problems to
manifest themselves because of bad data or invalid control signals.

5.5.3 Assertion Monitors
It is possible to envisage assertion monitors as an alternative or

complementary method to two-state simulation and inserting ran-
dom values.

Here are some examples:

the default in a case statement that checks for all possible
two-state values could issue a diagnostic message when the case
control variable has X bit values.

bus Z-states arriving at an active input

Compared with assertions, design problems expose themselves
differently when found by random values. The random values at
start up and substituted for Z-state signals coming into a two-state
register introduce data path parity errors and control state machine
sequence malfunctions. Though a little harder to diagnose than an
assertion that “talks to” the test engineer, the random values provide
more complete coverage with less labor content than assertions.

As with other verification methods that may overlap in terms of
what they can detect and diagnose, assertion monitors are accept-
able in a two-state methodology. However, it should be noted that
we do not allow X-detecting assertions from our RTL style.

100 CHAPTER 5

5.5.4 Two-State in the Design Process

Bening [1999b] reported that combining:

0.5 * 10 6 RTL two-state simulations randomly initialized with
different seeds combined, and

500 gate-level simulations starting at X

were sufficient for completely eliminating start-up state design
problems in the first silicon. The RTL two-state simulations
detected 18 start-up state design bugs, and the gate-level simulation
starting at X detected five more.

In our experience on prior chip design projects, X-state RTL
simulation masked start-up state problems that made it to silicon.
Zero and random two-state initialization would have caught those
problems in simulation, according to the designers on those earlier
ASIC projects.

Describing the DEC Alpha functional verification methods and
experience in [Taylor et al. 1998], the authors mentioned a bug that
got through to silicon due to insufficient randomization of the RTL
simulation model initial state. The authors did not quantify insuffi-
cient.

Bening [1999b] reported that unlike other HDL dialect and pol-
icy recommendations where there was sometimes been lingering
disagreement, acceptance of the two-state simulation HDL style
among the design team was one hundred percent. All it took to con-
vince the designers was the experience of simulating a design that
passed tests starting at X, and failed tests starting at zero.

Fundamental Rule: Simulate RTL two-state
RTL chips and systems must be designed to simulate correctly with a two-state

simulation model.

5.6 Summary
Even though RTL simulation is slow compared with the actual

hardware that it models, it is highly productive in finding the many
simple design errors that invariably exist in new designs. Fast RTL
simulation can help shorten a project’s schedule, find more design
errors and use simulation host machines more productively.

The history of simulation has carried us to a point where we
now have standard design languages with broad tool support. Static

RTL SIMULATION 101

timing verifiers and RTL-to-gate boolean equivalence tools now
allow design projects to use RTL simulation for all of their design
verification simulation work.

Design projects can be most productive by employing an RTL
style that targets both efficient debugging simulations as well as fast
regression simulations. Achieving this kind of productivity early
and later in the project requires consistent RTL semantics between
the regression and debugging simulations.

Some understanding of how simulators work can point a
designer writing Verilog towards RTL language elements that simu-
late faster, as well as clarifying the designer’s intent. Examples
include reducing the number and granularity of evaluation visits to
statements and use of statements that describe the design at higher
RT levels.

Similarly, understanding of RTL simulation logic compiler opti-
mizations suggests RTL styles by which the logic designers can
express their designs already pre-optimized.

Attention to RTL language elements and styles that simulate
fastest is particularly important in high-usage library elements.
Where there is doubt about which of several alternative styles that
simulate faster, library component developers should compare the
simulation performance using a setup like that shown in appendix
A.

Two-state simulation provides a faster regression simulation
model than simulation using an X state. Random start up state ini-
tialization supports RTL Two-state verification that is superior to X
state for verifying common case-default and if-else constructs. Use
of two-state and random simulation methods in a regression envi-
ronment requires that debugging simulations can replicate problems
detected in regression simulations. The random simulation replica-
tion methods include both random test direction and random start
up state.

This page intentionally left blank

6
RTL

Formal Verification

In Chapter 2, we introduced the Orthogonal Verification Prin-
ciple, which states that functional behavior, logical equivalence and
physical characteristics should be treated as orthogonal verification
processes within a design flow. With increasingly complex designs,
we need to spend more time verifying functionality and automate
the process of verifying design transformations (e.g., synthesis and
physical design). In this chapter, our goal is to introduce a tech-
nique that enables us to separate the verification of circuit equality
vs. circuit functionality. Furthermore, to address the verification
coverage concerns of traditional simulation, we introduce the tech-
nique of state- space exploration focussed on the RTL (e.g., model
checking).

Equality Transforming a high-level model representation of a design into
a physical implementation involves many steps. Historically, prov-
ing equality between these various design representations has been
a challenge. One approach traditionally used to overcome this chal-
lenge has been for the design team to abandon their RTL model in
support of a single representation (i.e., the gate-level model). Con-
sequently, the gate-level representation became the golden model of
the design and was then used for functional verification-as well as
timing analysis and other forms of physical verification. The prob-
lem with this approach is that it lacks a clear separation between

104 CHAPTER 6

functional verification and physical verification, which impedes the
overall verification flow.

Other approaches, traditionally used by design teams to over-
come the equivalence checking challenge, include maintaining the
RTL representation as the golden model during functional verifica-
tion. For these teams, equality is established by running regression
simulations on both the RTL and gate-level models and comparing
the output results. This alternative presents its own challenges in
that using simulation to prove equivalence is incomplete. In addi-
tion, both approaches severely impact a project’s time-to-market
goals by creating a simulation bottleneck within the design flow.
These problems precipitated the search for improved equivalence
checking methods.

Today, proof of equality can be established for many designs
using techniques of mathematical reasoning as opposed to simula-
tion and test vectors, which offers a dramatic improvement to the
equivalence checking challenge. This form of reasoning, referred to
as formal verification, is a systematic method of ensuring that a
design’s implementation (e.g., revised model) satisfies its specifica-
tion (e.g., reference model). What traditionally took weeks and
days to partially check using a simulation-based approach can now
be verified completely on many designs in a matter of hours and
minutes using formal Boolean equivalence verification. Further-
more, formal equivalence checking tools are one of the three key
components of today’s RTL static sign-off flow along with static
timing verifier and automatic test pattern generation (ATPG) tools.

The methodology we are recommending requires that the verifi-
cation process (e.g., either simulation or model checking) remain at
the RT-level throughout the duration of the project. To promote this
methodology, the formal verification process of equivalence check-
ing must be used to completely validate equality on all design trans-
formations.

Consistency In addition to the challenges of proving equivalence, increas-
ingly complex designs have revealed increasingly complex prob-
lems. For years, the system design community has observed a class
of functional verification problems, which is inherently difficult to
identify either through traditional simulation, emulation testing, or
even under a post-silicon design verification lab environment. To
define these problems requires understanding their byzantine
nature--which can be characterized as possessing a complex set of
interactions between multiple components or processors, and
requiring a unique (and usually long) sequence of events to demon-
strate the failure. Unfortunately, the probability of generating the

RTL FORMAL VERIFICATION 105

unique and complex sequence of interactions necessary to expose
these problems is unlikely under random test simulations, and usu-
ally too intricately involved to anticipate using traditional directed
simulation techniques.

To address this class of verification problems, researchers have
been studying state space-exploration techniques (and other mathe-
matical approaches) to prove correctness. These approaches at first
glance appear to offer a solution to all of today’s complex func-
tional verification problems. In reality, expectations must be prop-
erly set when applying state space exploration techniques,
particularly at the RT-level of design. In Chapter 2 we indicated that
system, algorithmic or architectural level characteristics are more
effectively validated on a higher-level model (e.g., an executable
specification written in C, C++, or SDL). Similarly, successful use
of state-space exploration techniques to prove chip or algorithmic
level properties will typically require a higher-level and more
abstract model than is represented by the RTL model.

To successfully apply model checking to the RT-level requires
partitioning the large design into smaller verifiable blocks, and then
creating a valid environment description for each partition (e.g., a
testbench or set of constraints to model the block-level environ-
ment). The interface-based design approach discussed in Chapter 2
can simplify the partitioning and modeling effort. It is important,
however, not to underestimate the effort required to construct and
debug the testbench or constraint-driven environment during the
formal verification process.

There are still many interesting RT-level (i.e., generally lower
level, not system level) properties and potential corner case con-
cerns that can benefit from the use of model checking. For example,
in Chapter 3 we discussed the controllability and observability chal-
lenges with simulation and coverage on internal blocks of the
design. State-space exploration techniques applied to these internal
blocks will provide exhaustive coverage on “hard-to-be-sure” prop-
erties. The challenge of applying formal functional verification at
the RT-level is limiting the set of model checking properties to only
those with the highest coverage concern. This is due to the cost and
effort required to model the block-level environment. Examples of
successfully applying RT-level model checking include: queue con-
troller underflow or overflow conditions, error correction encode
and decode circuits, bus contention, one-hot state machines,
block-level interacting state machines, etc.

From our experience, even with all of the limitations and com-

106 CHAPTER 6

plexities associated with RT-level model checking, the formal veri-
fication process can provide the following overall design and
verification benefits:

discover high-quality (complex) bugs

reveal space/performance improvement opportunities during
verification

serve as a prototyping exploratory tool

contribute to a more in-depth design review

serve as a “second pair of eyes” for simulation

increased understanding, confidence and quality of design

In this chapter, we introduce the notion of a finite state machine
and its analysis and applicability to proving machine equivalence
and FSM properties through state-space exploration. We then sepa-
rate our discussion of the RT-level formal verification process into
transformation verification (e.g., equivalence checking) and func-
tional verification (e.g., model checking). A broad-based discussion
on RTL constraints, properties, coding styles and methodologies
are presented, which we have found improves the overall equiva-
lence and RT-level model checking process. Finally, we illustrate
how to use the assertion monitors (introduced in Chapter 3 for sim-
ulation) can contribute to an improved RT-level formal functional
verification process. The use of assertion monitors removes formal
verification language (and tool) details from the design engineer
and allows the engineer to identify RT-level corner case concerns
that need verification attention.

6.1 Formal Verification Introduction
Formal verification is a systematic method of ensuring that a

design's implementation satisfies its specification. In a traditional
verification flow, a Design Verification (DV) engineer develops a
set of tests, based on his interpretation of the design's specification,
coupled with his understanding of the design's implementation.
Design correctness is then established through simulated results.
Unfortunately, this approach provides no assurance that all corner
cases have been covered.

One naive approach to formal verification is to enumerate all
possible cases, then run directed tests to cover each case. Although
this approach is theoretically possible, it is combinatorially intracta-
ble for all but the smallest designs.

Formal verification techniques have been developed that use a

RTL FORMAL VERIFICATION 107

mathematical proof, rather than simulation and test vectors, to pro-
vide a higher level of verification confidence on certain properties
[Clarke and Kurshan 1997] [Clarke and Wing 1996]. For example,
the implementation can be either a Verilog RTL module or an
abstract version of the design, while the specification is a set of
properties (i.e. expected behavior) to be verified, expressed in a
suitable form. The proof will then show a relationship between the
implementation and specification, and, without test vectors, pro-
vides a complete verification for each specification property under
consideration (i.e. corner cases are completely covered for the spec-
ified property).

The most mature class of RTL formal verification tools is
known as equivalence checkers [Huang and Cheng 1998]. This
class of tools mathematically proves the logical equivalence
between different refinements of a design without simulation and
test vectors. Specifically, equivalence checkers are used for imple-
mentation verification and are created to answer the question: “Has
my implementation been preserved during process transforma-
tions?” Equivalence checkers, in general, are easily integrated into
existing design flows with minimal changes. Unlike simulation,
they provide a fast and complete verification of equivalence for a
given set of constraints (e.g., a gate-level netlist versus its RTL
functional model).

Model checking is another class of formal verification tools
[McMillan 1993] [Kurshan 1994]. These tools answer the question:
“Does my implementation satisfy the properties of my specifica-
tion?” Fairness within a system's bus arbitration is a classic exam-
ple of a design specification property that can be verified against the
design's implementation using a model checker (e.g., a bus access
will always eventually be granted to a client requesting the bus).

Formal tools and methods, however, are not a single-point (or
complete) solution to today's system design verification problems.
All verification methodologies (e.g., simulation, equivalence and
model checking) still suffer the consequence of potentially masking
real problems by over constraining a design's input.

6.2 Finite State Machines
The process of traversing (or exploring) a finite state machine's

state-space is fundamental to understanding formal verification
techniques. Intuitively, state-space exploration is the most appropri-
ate coverage metric for identifying bugs. For example, the byzan-
tine class of problems previously discussed are generally due to a

108 CHAPTER 6

unique and complex interaction between finite state machines
(FSM), which in theory should be uncovered during state-space
exploration. In reality, successful state-space traversal is limited to
properties directly involving approximately 200 state bits. To gen-
erate an appreciation for state-space exploration, this section intro-
duces a definition for an FSM and its analysis and applicability
when proving (a) machine equivalence and (b) FSM static and tem-
poral properties.

[Figure 6.1] illustrates a Huffman model representation of an
FSM. This model consist of the m-tuple input variables

the n-tuple output variables the
p-tuple of current state element variables and the
next-state variables

Formally, a finite state machine is denoted as a 6-tuple
where:

X represents the machine's input space, which is a set of m-tuple
input vectors

Z represents the machine's output space, which is a set of
n-tuple output vectors

S represents the machine's reachable state space, which consist-
ing of the p-tuple set of state element variables

The finite state machine has a maximum of

RTL FORMAL VERIFICATION 109

possible states; however, not all states are necessarily reach-
able. Hence,

is the initial reset state.

is a set of mapping functions from the present state of the
machine to the next state based on the values of an input vectors

In other words, For example,

where and for

is a set of mapping functions from the present state of the
machine to an output variable based on the values of

an input vector In other words,

To traverse the FSM state space, the sets of reachable states are
iteratively calculated by a process known as image computation. In
other words, by starting with the FSM's initial reset state a
new set of reachable states is calculated by applying
the set of 5 mapping functions to all state elements for all input vec-
tors This process continues for
When the newest set of reachable states is identical to the previous
set of reachable states (e.g.,), the iterative process termi-
nates. This is known as a fixed-point calculation, as shown in [Fig-
ure 6-2]

A breakthrough in FSM state space traversal occurred in the late
1980s when researchers began representing state transition relation-
ships implicitly rather than representing explicit state enumeration
by state transition graphs or tables [McMillan 1993]. For example,

110 CHAPTER 6

the transition relation for machine M is defined as T:X x S x S. Spe-

tor Symbolic techniques (e.g., BDDs [Bryant
1986]) are commonly used to efficiently represent the set of transi-
tion relationships. Even with the breakthroughs in FSM state space
representation, there are many designs whose state space is too
large to represent implicitly, resulting in a condition commonly
known as memory state explosion.

6.2.1 Machine Equivalence
[Figure 6-3] represents a simple model, known as a miter, that is

used for proving equivalence. This model is constructed by XOR-
ing the primary output pairs for the two machines forming what is
referred to as a product machine. The product machine is a tautol-
ogy '0' for any input vector and any reachable state

when the specification machine is equivalent to
the implementation machine. Otherwise, the two machines are not
equivalent, and the input vector and reachable state form a
unique distinguishing vector used to demonstrate the inequality.The
problem presented when proving equivalence can be simplified by
maintaining a consistent state space and state encoding between the
specification (e.g., RTL) and the implementation (e.g., gate-level
netlist). Thus, a process intensive reachability analysis (i.e. image

cifically, iff state transitions to for the input vec-

RTL FORMAL VERIFICATION 111

computation of S) is no longer required by the equivalence check-
ing tool. Additionally, the equivalence check problem is reduced to
proving combinational equivalence

For combinational equivalence checking [Matsunaga
1996][Burch and Singhal 1998] (e.g., two machines with a consis-
tent state space, state encoding and reset state), state elements are
first identified and then mapped between designs. In effect, the
state-elements themselves can be abstracted away from the equiva-
lence checking process. Thus, the p-tuple of current state element
variables are now viewed as circuit inputs and
added to the input set X.

Likewise, the next-state variables are
viewed as circuit outputs and added to the set Z, and the set of
mapping functions is added to the set of out mapping functions. As
a result, the set of mapping functions are now only dependent on
the values of the input vector
where Hence, and equivalence is now
determined by the tautology defined in [Equation 6-1] for the out-
put variable where

Equation 6-1:

6.2.2 FSM Property Verification
For a complete
discussion of
events and
assertions, see
chapter 3.

Invariance and liveness are common properties often proved on
FSMs. Invariant or safety properties are valid for all time (e.g.,
some good event should always occur during a given state, or we
assert that some bad event should never occur). Invariant checking
can be efficiently performed during the process of image computa-
tion, and the sequence of states (e.g., an error trace) leading to the
failing property is easily generated during reachability analysis.

Liveness properties on an FSM are valid at some future point in
time (e.g., eventually some event should happen). For temporal
logic model checkers, these properties require a step of preimage
computation in addition to reachability analysis. Formally, we
define the preimage of set S as: Preimage

and In other words, the preimage
is a set of states whose transition relation for a given input vector
will lead from state to where

1. Equation 5-1 can also be written to account for the don't care input space D(X). The tautology would
then appear as where Accounting for the don't care
space can be eliminated, provided that all case statements within the RTL are fully specified as recom-
mended and the use of X is eliminated from the RTL as recommended in chapters 5, 7 and 8.

112 CHAPTER 6

6.3 Formal Transformation Verification

6.3.1 Equivalence Checking
The following sections describe the processes involved in a typ-

ical design flow and the process points at which equivalence check-
ing can be applied (See [Figure 6-4]).

6.3.1.1 Equivalence Checking Flow

RTL Refine-
ment

In the initial stages of the design flow, engineers occasionally
tweak their RTL coding style in an attempt to improve simulation
performance, or explore different coding styles for an improved
synthesis mapping. Equivalence checking at this step ensures that
the original functionality of the design has been preserved during
the RTL refinement.

`ifdef RTL Central to our Verifiable RTL methodology is the concept that
the RTL remain the main or golden model throughout the course of

RTL FORMAL VERIFICATION 113

design. Hence, our functional verification process can focus its
effort on a faster RTL model as opposed to a slower gate-level
model.

Frequently, to secure the timing performance of logic synthesis,
design engineers need to specify explicit vendor macro cell
instances within the RTL module specification. To prevent the loss
of the designer's functional intent, and to prevent the RTL code
from degenerating into a slower-simulating gate-level netlist, we
recommend coding the RTL as illustrated in [Example 6-1]:

Example 6-1: `ifdef RTL
assign perr = în; // calculate parity on ‘in’

`else
wire t1, t2, t3;
XOR3 u1 (t1, in[0], in[1], in[2]);
XOR3 u2 (t2, in[3], in[4], in[5]);
XOR3 u3 (t3, in[6], in[7], in[8]);
XOR3 u4 (perr, t1, t2, t3);

`endif

We define the RTL text macro during the simulation process and
undefine it during synthesis. This combination preserves clarity in
the RTL description and optimizes the RTL for simulation perfor-
mance, while insuring a specific implementation during synthesis.
At this point, we use equivalence checking to verify consistency
between the RTL behavior description and the macro cell instance
implementation--simply a self-compare on the RTL module. Simi-
larly, during the equivalence checker's compilation process, we
define the RTL text macro for the specification, and undefine it for
the implementation model.

Logic Synthesis Synthesis is a process of mapping the RTL specification to a
gate level implementation. Since simulations should remain exclu-
sively RTL, ensuring that the original RTL specification is correctly
mapped to its gate implementation is accomplished using equiva-
lence checking.

Floor Planning Floor planning is a placement process of major blocks of logic.
In many design flows, the physical hierarchy of the design is ini-
tially used to match the logical hierarchy of the design. During the
floor plan editing process, however, the physical hierarchy of the
design can be changed to anything the engineer desires. Equiva-
lence checking at this step ensures the original functionality of the
design has been preserved after floor plan editing.

114 CHAPTER 6

Placement Placement is a process of fixing each floor planned macro cell
instance to a unique location on the chip die with the goal of mini-
mizing wire routing interconnect between each macro cell. The
netlist would not normally change during the placement process.
Equivalence checking, however, can be used at this step to ensure
that the original functionality of the design has been preserved.

Layout and
Placement
Based Optimi-
zation

Layout and placement based optimization (LBO and PBO)
[Bening et. al. 1997] can be thought of as an elaborate in-place
optimization step. This optimization step is used to reduce logic,
build and place optimal fanout trees, and change macro cell power
levels (i.e. transistor sizes) to the minimum necessary to meet tim-
ing. Equivalence checking must be used at this step to ensure that
the original functionality of the design has been preserved.

Clock Tree and
Scan Chain
Insertion

Clock tree insertion is a step of synthesizing an ASIC’s clock
distribution network. Scan chain hookup is a process of stitching
together a set of registers into a scannable ring of sequential ele-
ments. To prove equivalence requires that a constraint be applied to
disable the implemented scan logic paths when comparing against
an RTL model without a scan chain.

Routing Routing is the process of specifying the specific layers of metal
and the exact routing interconnect to be used between the various
macro cells. Equivalence checking at this step ensures that all edit-
ing to the wiring interconnect has preserved the original functional-
ity of the design.

Timing Tweak
Editor

The tweak editor is used to quickly fix last minute timing breaks
or late (yet simple) functional RTL changes by interactively editing
the netlist and placement. This is the point in the physical flow at
which most logic errors are inadvertently inserted into the design.
Equivalence checking is critical at this step to ensure the RTL spec-
ification matches the new netlist and placement.

Vendor Inter-
face / Final
Netlist

The final design is translated into the chip vendor’s proprietary
format. A final Verilog netlist is generated from this translated
design and equivalence checking must be used to verify that the
final netlist implementation matches its original RTL specification.

6.3.1.2 Closing the Verification Loop

[Figure 6-4] provides a high level view of a recommended
equivalence checking flow. Two essential elements of this flow are
the final full chip hierarchical-RTL to flat-gate equivalence check,
and a simulation of the implemented gate’s ATPG vectors on the

RTL FORMAL VERIFICATION 115

RTL specification. These two processes effectively close the verifi-
cation loop by identifying any revision-control or process flow
errors.

Intuitively, if the design engineer is rigorously checking the
design after each transformation, everything should be correct.
Experience has revealed that any late updates to source or globally
shared `include files in the RTL specification, which were inadvert-
ently omitted from synthesis, could be missed without a final chip
RTL-to-gate equivalence check. As another example, many pro-
cesses within the physical design flow involve looping. Any missed
verification while looping on a specific process point along the nor-
mal design flow would invalidate the flow's transitive relationship
of equivalence. Closing the verification loop will detect these
errors.

In general, if a few small changes are made to the design during
each process transformation, it is easier to find comparison points
during the equivalence check process. The sum of these transforma-
tion deltas, however, could make identifying these points extremely
difficult. Again, our experience has shown that ensuring the various
design transformations apply the Retain Useful Information Prin-
ciple (see Chapter 2), as well as the design methodology embracing
the object-based Hardware Design Principle, sufficient compar-
ison points are identified to complete the equivalency proof for the
entire design.

Simulating the ATPG vectors on the RTL specification can be
effectively accomplished provided: (a) all case statements within
the RTL are fully specified as recommended in Chapter 7, (b) the
scan chain is back annotated into the RTL design as proposed by
the OBHD methodology in Chapter 4. Closing the verification loop
provides a final validation on all libraries used during the synthesis,
place-and-route and ATPG processes. These errors might otherwise
be missed when equivalence checking at various sequential pro-
cesses along a design flow (i.e. not referencing back to the original
RTL specification). In addition, closing the verification loop on the
RTL golden model validates the synthesis tool (and the equivalence
checker) by identifying most RTL coding style or interpretation dif-
ferences between the simulator and the synthesis tool.

6.3.2 Cutpoint Definition

The use of internal signal pairs was first proposed by Berman
and Trevillyan [1989] to reduce a larger equivalence checking prob-
lem into a process of checking a set of smaller related functions.
These internal signal equivalent pairs, referred to as cutpoints, form

116 CHAPTER 6

the boundaries for corresponding functions between a specification
and its implementation. In [Figure 6-5], we illustrate the concept of
partitioning a large cone of logic into a set of smaller cones of logic,
which can be proved independently.

In [Example 6-2], we show an example of a simple RTL specifi-
cation:

Example 6-2: assign c_a = f1;
assign c_b = f2;
assign c_c = f3;
assign c_y =(c_a & c_b) | c_c;

In [Figure 6-6], we show an equivalent gate implementation to
the specification described in [Example 6-2]:

The RTL specification variables c_a, c_b, c_c, and c_y can be
mapped into the gate implementation's functionally corresponding
points as shown in [Example 6-3]:

Example 6-3: Map (c_a, A)
Map (c_b, B)
Map (c_c, C)
Map(c_y, X)

In general, mapping points consist of a set of corresponding
design specification and implementation latches, input and output

RTL FORMAL VERIFICATION 117

ports and internal signal equivalent pairs or cutpoints. Many
approaches have been proposed and implemented to facilitate the
identification of these corresponding points [Brand 1993] [Berman
and Trevillyan 1989] [Cerny and Mauras 1990] [Foster 1998] [Kue-
hlmann and Krohm 1997] [Kunz 1993].

6.3.3 Equivalence Checking RTL Coding Style
In this sections, we examine RTL coding styles that can impact

the performance of the equivalence checking tool.

6.3.3.1 Isolating Functional Complexity

Cutpoints were defined in the previous section as a mechanism
to speed up the equivalence checking verification process. In gen-
eral, the designer's RTL should be coded so that the equivalence
checking tool can efficiently exploit the structural similarities of the
RTL specification and the gate-level implementation. Isolating the
functional complexity of multipliers is a classic example of how the
equivalence checker's runtime performance can be improved by
applying the Cutpoint Identification Principle,

Cutpoint Identification Principle
A single design decision pertaining to functional complexity must be

isolated and localized within a module to identify equivalence checking
cutpoints.

Example 6-4

In [Example 6-4], a 16x16 multiplier has been combined with
other sub-expression to form a complex expression.

assign c_indx = (((coord_x * coord_y) & dx_mask) +
indx_offset);

In [Example 6-5], the functional complexity of the multiplier
has been isolated within a module instantiation. The equivalence
checking process will benefit by the clean interface when exploring
the structural similarities between the specification and the imple-
mentation. In addition, instantiating the mult_16x16 module
permits referencing a process specific optimized library. For exam-
ple, simulation can potentially take advantage of the host machine
multiplication while modeling the multiplier. Similarly, the synthe-
sis or equivalence checking process can take advantage of a
uniquely specified multiplication algorithm (e.g., Booth), optimized
specifically for the appropriate process.

118 CHAPTER 6

Example 6-5 mult_16x16 mult1 (coord_x, coor_y, mult1_prod);
assign c_indx = ((mult1_prod & indx_mask) + indx_offset);

6.3.3.2 Test Expressions within Case Statements

Complex test expressions within a Verilog case statement can
complicate the verification process. It is easier to debug the branch-
ing effect within a simulation trace file when the case test expres-
sion is an observable variable. In addition, equivalence checking the
RTL specification to a gate level implementation is improved
through potentially additional observability or cutpoints.

[Example 6-6] provides an illustration of functional complexity
within the test expression of case statements.

Example 6-6 case ((a & b | c ^ d) || mem[idx])
4'b0100: c_nxt_st = r_nxt_st << 1;
4'b1000: c_nxt_st = r_nxt_st >> 1;
default: c_nxt_st = r_nxt_st;

endcase;

Example 6-7

In [Example 6-7], we show the test expression after factoring
the complex expression into a variable assignment.

c_nxt_st_test = (a & b | c ^ d) || mem[idx];
case (c_nxt_st_test)

4'b0100: c_nxt_st = r_nxt_st << 1;
4'b1000: c_nxt_st = r_nxt_st >> 1;
default: c_nxt_st = r_nxt_st;

endcase;

By adapting the Cutpoint Identification Principle, the result-
ing RTL is easier to debug during simulation and provides potential
cutpoints during equivalence checking.

6.3.3.3 Equivalence Checking OBHD Practices

Chapter 4 introduced the practices of object-based hardware
design. This section will show how these practices are applied to
optimize the equivalence checking process.

A large percentage of the equivalence-checking process time is
expended while identifying register or latch pair mapping points.
The identification of these mapping points and, in general, the
entire equivalence-checking process can benefit from an OBHD
practice and tool-specific library methodology

RTL FORMAL VERIFICATION 119

Register Name
Mapping

The OBHD methodology provides an equivalence checking
optimization by automatically identifying all register and latch
pairs between the RTL specification and its gate-level implementa-
tion. For example, by referencing the equivalence checking or syn-
thesis targeted library we are able to directly map the hierarchical
RTL instances to their synthesized netlist instances.2 [Figure 6-7]
illustrates the method of referencing the synthesis targeted library
from the RTL during the equivalence-checking process. Note that
the hierarchical RTL reference ‘foo.r0.q’ is directly mapped into
the flat gate-level netlist reference ‘\foo.r0 .q’ due to the synthesis
(or equivalence checking) targeted library referencing the shared
vendor cell library. The equivalence-checking targeted library is
validated against the higher-level simulation targeted library effi-
ciently by using an equivalence checker.

TMaster-Slave
Latch Pair
Folding

Another equivalence checking optimization advantage the
OBHD methodology provides is a mapping a two-state mas-
ter-slave latch pair to a single state-point representation (within the

2. The RTL synthesis-target library in our example flow contains actual
vendor macro cells for the flip-flops and input muxes (i.e. we control all
synthesis of registers and their related input muxes by library refer-
ences). See reference [Bening et al. 1997] for details on this physical
flow using text macros.

120 CHAPTER 6

RTL description). This is accomplished by referencing an equiva-
lence-checking optimized targeted library for the state-element
object. The equivalence-checking targeted library is constructed to
accurately model the master-slave functionality for each bit, within
the functional grouping of state elements instantiated in the RTL
(e.g., a 16 bit instantiated register can be optimally modeled for
equivalence-checking using 16 lower-level master-slave latch
pairs). Without utilizing an equivalence-checking targeted library,
the equivalence checker is forced to invoke routines to identify the
two-to-one state mapping between the implementation and the
specification.

6.3.4 RTL Static Sign-off
In a typical design flow, the completion of particular stages of

design requires sign-off approvals from either the design manager
or the chip's customer. Examples of these various sign-off stages
include functional checks, timing-checks, electrical
design-rule-checks, RTL-to-gate equivalence checks, manufactur-
ing test vector generation, and fault coverage analysis. Historically,
gate-level simulation has played a major role in verification as the
tool used prior to many of these sign-off stages. Yet, as previously
stated, using gate-level simulation to prove correctness provides
low coverage and generally creates a bottleneck within the design
flow.

As an example, in the late 1980’s and early 1990’s the typical
size of an ASIC design was in the order of 50-100k gates. From the
authors’ own experience during this period, verifying equivalence
by means of running multiple gate-level regression simulations
required approximately three to four weeks to complete, with
unknown coverage results. To address these problems, we began
researching alternative static verification methods as well as disci-
plined approaches to RTL-based design. Consequently, by 1993 we
had successfully eliminated all gate-level simulations previously
required for sign-off. What had previous taken weeks to check
using gate-level simulation could now be verified in a matter of
minutes. The static sign-off methodology we implemented included
a high-performance equivalence checker, static timing verifier, and
an ATPG tool to achieve high manufacturing fault coverage. This
methodology enabled our RTL model to truly remain the golden
model of the design.

While an RTL static sign-off methodology holds great potential
for improving development time-to- market, along with increasing
verification confidence, a number of issues related to poor RTL

RTL FORMAL VERIFICATION 121

coding practices must be closely examined prior to embracing this
methodology. For instance, equivalence checkers can successfully
verify that a design’s Boolean behavior is preserved during design
transformations. However, equivalence checkers cannot verify that
a model’s simulation semantics have been preserved for the same
transformations. This can result in pre- and post-synthesis simula-
tion mismatches for logically equivalent circuits. What is particu-
larly insidious are situations in which design errors cannot be
demonstrated during RTL-simulation, yet are easily revealed using
gate-level simulation. This is due to RTL coding styles that mask a
class of functional errors as demonstrated by the following exam-
ple.

Example 6-8 wire a, b, q;
reg [1:0] s;
reg [1:0] en_n;

Unfaithful
semantic
RTL-to-gate
differences

always @(s) begin
case (s) //rtl_synthesis full_case

2’b00: en_n = 2’b11;
2’b01: en_n = 2’b10;
2’b10: en_n = 2’b01;

endcase
end

assign q = (~en_n[0]) ? a : 1’bz;
assign q = (~en_n[1]) ? b : 1’bz;

[Example 6-8] illustrates a circuit, which has been overly sim-
plified for the purpose of example. This example yields simulation
mismatches between the RTL and gate-level models. In this exam-
ple, the RTL full_case synthesis-directive asserts that all possible
branches of a case statement are covered. This prevents the infer-
ence of a latch during the synthesis process, while enabling the
unspecified branches to be treated as don’t cares by the synthesis
optimizer. However, unlike synthesis tools, simulators do not recog-
nize the various synthesis directive. If a functional error exists in
the RTL model that results in the illegal assignment of s=2’b11 for
this example, then during simulation the ’en_n’ signal maintains its
previous assignment (i.e., ’en_n’ behaves as a latch during simula-
tion). Since the previous latched value is valid, the design error
might go undetected in an RTL simulation. Yet, the same functional
error is quickly identified as a tri-state bus contention problem
using gate-level simulation. This problem can be avoided by coding

:

122 CHAPTER 6

in a manner that preserves faithful semantics during synthesis.

To prevent mismatches between pre- and post-synthesis simula-
tion, both the simulator and synthesis tool must possess an equal
understanding of the RTL model. Chapter 8 details bad coding
practices that can result in unfaithful semantics between pre- and
post-synthesis simulation.

6.3.5 Effective Equivalence Checking Methodology
Today, equivalence checking is being successfully applied to

very large designs in industry. However, it is important to under-
stand that a poor design methodology can sabotage a good equiva-
lence checking tool. This section discusses methodology techniques
that will ensure optimal benefits during the equivalence checking
process.

In order to benefit from the emerging technology, thought must
also be given to managing tool integration. Specifically, three key
points should be considered when creating an effective static
sign-off methodology using equivalence checking. Equivalence
checking should:

be performed early and often throughout the design process

be in the hands of the design engineer

be combined with RTL re-coding practices to promote optimiz-
ing tool performance

Equivalence
checking
should be
performed
early and
often.

By performing equivalence checking early and often throughout
development, process issues can be resolved prior to the sign-off
stage. The following points demonstrate this argument:

1.

2.

Equivalence checking early in the design process permits
the designer to resolve name mapping issues prior to
sign-off. The idea of exploiting structural similarity was
previously introduced in this article as a technique used to
reduce equivalence checking complexity. While many
commercial equivalence checkers will utilize name-map-
ping techniques to identify structural similarity between
designs, these algorithms are not perfect. User intervention
is often required to resolve mapping issues. Waiting until
the sign-off stage of design to resolve these issues is an
invitation for trouble.

Equivalence checking early in the design process will help
identify complex logic cones while there is still time to
restructure the RTL in a manner that will positively impact
the equivalence checker’s overall performance.

RTL FORMAL VERIFICATION 123

3. Equivalence checking early in the design process will
identify portions of logic that might require alternative
solutions for verification (e.g., cones of logic which time-
out, complex multipliers, etc.).

Equivalence
checking
should be in
the hands of
the design
engineer.

In a traditional sign-off methodology, equivalence checking
using gate-level simulation was generally performed by a project’s
design verification group. When commercial equivalence checking
tools became available, these verification groups continued to be
responsible for the equivalence check process. The problem with
this usage model occurs when an equivalence error is detected by
the verification group. At this point, the verification engineer must
then consult the design engineer to debug the problem. This process
can result in a bottleneck within the design flow. Furthermore, veri-
fication groups will typically schedule the equivalence check as a
single step within the flow rather then integrate the technology into
the design process. A more effective methodology is to create a
tighter, seamless integration of equivalence checking into the
design process, as opposed to manually performing a single check
within a verification process. This can be accomplished by includ-
ing the equivalence check as an automatic step within multiple pro-
cesses in the design flow.

Equivalence
checking
should be
combined with
RTL re-coding
to optimize
tool
performance.

In an RTL centric design flow, the RTL should be optimized to
corporate with the various tools within the flow. For example, it has
been the author's experience that profiling a large system simula-
tion can result in simulation performance improvements in the
order of 10x. Although most performance issues are related to sim-
ulation logging or PLI C function calls, profiling will quickly iden-
tify poor performing RTL code. In many cases the RTL code can be
modified to improve simulation performance before regression test-
ing reaches its peak. Prior to adopting equivalence checking tools,
tuning RTL code for modules that negatively impacted simulation
performance was rarely done. Today, RTL re-coding is safe and
easily verified using equivalence checking.

By applying the techniques described in this section, an effec-
tive equivalence checking methodology can be built. In our lab,
approximately 3000 equivalence checks are performed during a
typical development cycle for a 2M gate design. This includes a
combination of RTL refinement as well as implementation transfor-
mation checks. Achieving a high number of equivalence checks
raises the level of confidence that the design will ultimately meet its
sign-off objectives without unforeseen problems.

124 CHAPTER 6

6.4 Formal Functional Verification
This section describes: (a) techniques for capturing design spec-

ification properties and assumptions directly within the RTL code,
(b) methods of coding to prevent state explosion and facilitate an
efficient model checking process, (c) adapting OBHD practices to
solve multi-phase clock abstracting and seamless support for multi-
ple tool coding requirements, and (d) pre- and post-silicon model
checking methodologies.

6.4.1 Specification
The successful integration of block level RTL model checking

into the design flow require unambiguous specifications. Specifi-
cally, what design block level output properties are required for ver-
ification? During verification, what block-level environmental
assumptions must be put to use? Are the input assumptions valid?

In Chapter 2, we discuss specification as a process of creating a
precise and unambiguous description of the design's behavior. We
emphasized that it is the act of specification that enables the engi-
neer to acquire an intimate understanding of the design space and
ultimately uncover design deficiencies prior to RTL coding. Fur-
thermore, the product of specification provides an effective device
useful for both communication and analysis.

At the time of this publication, there is no Accellera/Open Ver-
ilog International (OVI) standard for capturing a design's specifica-
tion within the RTL. A number of commercial tools have developed
their own proprietary languages or meta-languages, which are
embedded into the RTL as comments and can be used to describe a
design's properties and assumptions. Likewise, a few public domain
tools permit embedded temporal property languages (such as CTL
[Clarke, Emerson and Sistla 1986]) directly into the Verilog RTL as
meta-comments. Even with the lack of a standard RTL specification
language, successful RTL block level model checking can be
achieved when the design's expected behavior and assumed operat-
ing environment have been specified.

In discussing design assertions, it is helpful to understand both
verification events and design assertions. A verification event may
be defined as an HDL expression, which evaluates to a TRUE
value. For example, if the expression (c_req == 1)&&(c_ack == 1)
evaluates TRUE, then an event has occurred in the verification envi-
ronment. An assertion is a claim we make about an event or

RTL FORMAL VERIFICATION 125

sequence of events in a design. In other words, an assertion is a
property of a design and may be classified as either static or tempo-
ral. A static assertion is an event that must be TRUE for all time. A
temporal assertion has a time relationship of events associated with
it, whose correct sequence must be TRUE. For example, a temporal
assertion can be viewed as an event-triggered window, bounding a
specific property, i.e., an event.

The following examples illustrate aspects of temporal, static,
and combinations of temporal and static assertion. [Figure 6-9]
illustrates an assertion for an invariant (or safety) property. The
property (i.e., event P) in this example is always valid after Event 1
occurs, and continues to be TRUE until Event 2 occurs. [Figure
6-10] illustrates an assertion for a liveness property. The event P, in
this example, must eventually be valid after the first event-trigger
occurs and before the second event-trigger occurs. In this example,
a property of the design is invalid if event P does not occur within
the specified event-bounded window.

In addition to static and temporal, an assertion can be classified
as either a constraint or a property, depending upon where the asser-
tion is made. A constraint may be thought of as a range of allowable
values. An assertion made on an input port of the design model
being verified is an example of a constraint because it bounds the
input stimulus to permissible operating values for that particular

126 CHAPTER 6

input port. The design cannot be guaranteed to operate correctly if
its input stimulus violates a specified constraint. A property may be
thought of as expected behavior in response to defined constraints.
An assertion made on an output port of a design, or an internal
point in the design, is an example of a property. For any permissible
sequence of input values applied to design, its properties will not be
violated if the design is functionally correct.

In Chapter 3, we introduced the use of event monitors and asser-
tion monitors as a mechanism for capturing and validating design
assumptions and properties during simulation. We showed how an
assertion-targeted library could be generated and used during the
simulation-debugging phase. This library contains runtime checks
that will halt the simulation process upon the detection of an error.
Furthermore, an assertion-targeted library can be generated for the
faster simulating regression-phase by providing a mechanism for
logging events, which will be post-processed and analyzed for cor-
rectness.

By encapsulating vendor specific property specification lan-
guages directly in the assertion checking module, the engineer can
concentrate on the specific properties of the design he wants veri-
fied--leaving the details of the checking mechanism to the verifica-
tion group. This provides the verification group with the ability to
optimize and tune the assertion-targeted library throughout the
duration of a project, without interfering with the text or functional
intent of the original RTL description. It enables the formal verifi-
cation engineer to create various model checking assertion-targeted
libraries written in a specific commercial proprietary specification
language (or our neutral RTL specification pseudo-language that
can be automatically translated to a specific model checking tool).
See Chapter 3 and Appendix C for additional details on an assertion
monitor library.

6.4.2 Model Checking and Parameterized Modules
Queue structures, in general, must be treated as independent

objects and abstracted away from other functionality within the
Verilog RTL. In other words, a parameterized model for the queue
should be instantiated to provide a mechanism for queue size reduc-
tion during verification. Queue depth and word size reduction will
result, in many instances, in an improvement in the model checking
runtime performance while potentially preventing the condition of
state explosion. This is achieved by applying the Numeric Value
Parameterization Principle.

RTL FORMAL VERIFICATION 127

Numeric Value Parameterization Principle

Numeric values should be parameterized, not hard-coded directly into the
RTL source.

6.4.3 Model Checking OBHD Practices
This section describes the advantages of adopting the OBHD

practices, which were described in Chapter 4, when integrating
model checking into a design flow. It is important to note that the
OBHD methodology does not optimize the typical problems associ-
ated with model checking (i.e. state explosion). This methodology,
however, enables the verification engineer to overcome various tool
specific coding restrictions and the ability to abstract out
phase-related clocks across multiple clock domains without dis-
turbing the engineer's original RTL source. Overcoming tool coding
and usage restrictions in a seamless and unobtrusive step within the
design flow is an essential point for adopting an OBHD methodol-

ogy.

Coding
Restrictions
and
Initialization.

In our experience, a few public domain model checker transla-
tors require that all registers be coded using the Verilog blocking
assignment as opposed to the typical register non-blocking assign-
ment. Without requiring the design engineer to re-code their RTL
for tool evaluation or integration, the OBHD methodology permits
the generation of a model-checker targeted library with the optimal
tool-specific coding policy. In addition, the targeted library enables
the designer to overcome some of the public domain model check-
ers inability to globally initialize state elements by including initial
blocks directly within the library model. It is true that there are
commercial tools available without these coding restrictions and
initialization problems. The point we would like to emphasize,
however, is that the OBHD methodology permits its users to evalu-
ate multiple tools (with and without coding and usage restrictions)
quickly and in a seamless fashion.

Clock
Abstraction.

The second coding restriction the OBHD methodology permits
us to solve deals with modifying all state-element clocking descrip-
tions to support a common clock within the model checking tool.
This is problematic when there are different phase-related versions
of a common clock distributed throughout the design (e.g., a com-
mon clock ck and a half speed clock ck_hs). Without clock abstrac-
tion, many designs will encounter memory explosion during

128 CHAPTER 6

state-space traversal since the BDD data structures can effectively
double when accounting for the clock.

To support multi-phase related clock abstraction during the
model-checking process, the OBHD methodology permits distrib-
uting a phase enable signal directly to all state elements in the
design during the model checking process and then uses a single
common clock. For example, the OBHD pre-processor (described
in Chapter 4) will automatically identify all phase related half speed
clock signals (e.g., ck_hs). Then the pre-processor replaces the
phase related clock with the common clock (e.g., ck), and creates a
new interface port with an appropriate phase enable signal. The
model-checking targeted library will now describe the state ele-
ment, using the phase enable signal, as follows in [Example 6-9]:

Example 6-9 module dff_xc_4 (q, d, scan_in, ck, scan_sel, reset_,
phase_en);

output [3:0] q;
input [3:0] d, scan_in;
input ck, scan_sel, reset_, phase_en;
reg [3:0] q;
always @(posedge ck) begin // model checking model

if (phase_en) // to support common clock abstraction
q <= (reset_n==0)?4’b0000:((scan_sel)?scan_in:d);

end
endmodule // dff_xc_4

For designs containing multiple phase-related clocks, the
OBHD design abstraction and tool-specific library methodology
provides a technique for abstracting out the clock during the
model-checking process.

6.5 Summary
In the late 1980's, the system design community underwent tre-

mendous productivity gains in gate-level design due to engineers
embracing synthesis technology. Unfortunately, this resulted in an
increase in the design verification problem space. To keep up with
escalating design complexity and sizes, we recommend that design
verification engineers augment their traditional verification flows
with formal methods. This chapter introduced concepts and tools
that are used in a formal verification design flow with an emphasis
on RTL coding styles and methods of specification that lend them-
selves to efficient equivalence and model checking.

RTL FORMAL VERIFICATION 129

A question quite often asked by design verification managers is
“do formal verification tools really increase design productivity?”
Our answer is “it depends.” Certainly formal equivalence checking
has enabled us to replace regression simulation--achieving greater
verification coverage in minimal time. The benefit of using this
technology has been a reduction in development time-to-mar-
ket--while simultaneously achieving a higher level of verification
confidence in the final product. However, in an industrial environ-
ment the RT-level model checking process has not fared as well as
equivalence checking. One of the biggest challenge facing the suc-
cessful integration of model checking into today’s design flow is
not entirely due to technology and tool limitations. Just as signifi-
cant is (a) the reluctance of engineers to adopt a design discipline
that cooperates with the formal process, (b) the dearth of usable and
unambiguous design specifications. Primarily, it is the act of speci-
fication that enables us to achieve an intrinsic understanding of the
design space and ultimately uncover design deficiencies prior to the
process of design and verification. Ultimately, it will be the act of
formalism that will increase our design productivity by assisting
both the traditional and formal verification process and tools.

In this chapter, we introduced the notion of a finite state
machine and its analysis and applicability to proving machine
equivalence and FSM properties. We then separated our discussion
of the formal verification process into transformation verification
(e.g., equivalence checking) and functional verification (e.g., model
checking). In addition, we also discussed coding styles and method-
ologies which will improve the overall equivalence and model
checking process. Finally, we illustrated how the assertion moni-
tors, described in Chapter 3 for simulation, could be leveraged dur-
ing the formal functional verification process.

This page intentionally left blank

7
Verifiable RTL

Style

Writing RTL Verilog following a verifiable style serves both
EDA tool success and the productivity of the other engineers who
participate in the design process.

The verifiable RTL Verilog style ideas in this chapter draw from
the authors’ experiences developing and supporting an RTL-based
design flow on large system (> 200 million gate-equivalents)
projects. We have found other good sources of ideas in:

prior writings on reuse [Keating and Bricaud 1999].

gems from the internet comp.lang.verilog news group.

To prior writings on Verilog style, this chapter adds additional
principles of style based on verification, as well as explanations of
the reasoning behind the style.

Section 7.1 describes the RTL style considerations for seman-
tics of the design content.

132 CHAPTER 7

The remaining sections 7.2 through7.5 identify syntactic and
lexical RTL style element considerations supporting the Consis-
tency Principle.

Consistency Principle
A design project must agree upon and employ a consistent RTL coding style.

As well as general style elements for major modules, this chap-
ter also prescribes specific style elements applicable to smaller
(around 20 lines or less), high usage modules from a library. The
special style rules for the small modules in libraries are listed in
sections 7.2.1.4 and 7.4.

7.1 Design Content

7.1.1 Asynchronous Logic
With the ever increasing clock speeds of synchronous logic

domains, the asynchronous boundaries between these domains are
closer together than ever before. The need to deal with resynchroni-
zation within the box enclosing a single large system is becoming
widespread.

RTL simulation can perform some sampled test relationships of
asynchronous transactions, but there are two other tools which are
both more important than RTL simulation for asynchronous verifi-
cation. Details about these tools are beyond the scope of this book,
but they are important to mention so that the reader is appropriately
object-based and can know where to look for more information.

Asynchronous
protocol
verification

Telecommunications system designers have had to verify asyn-
chronous communications protocols for decades, and have gener-
ally turned to Petri net models. Murata [1989] presents an excellent
survey of Petri net modeling.

Petri net modeling requires mapping an asynchronous protocol
design into an abstract graph. If the design is tractable for Petri net
model reachability analysis, it is possible to know whether asyn-
chronous events in different sequences can lead to adverse states
(deadlock, livelock, etc.) If the design turns out to be intractable, it
must be simplified.

RTL STYLE 133

Resynchronizati
on failure rate
analysis.

All mechanisms for resynchronization between asynchronous
time domains have a metastable failure rate. For a given resynchro-
nization frequency rate and resync circuit speed, it is possible to
calculate a mean time between failure (MTBF) rate. Safe design
practices considering resynchronization frequency and circuit
speeds can result in predicted failure rate of one every ten billion
years or more. Kleeman and Cantoni [1987] present an excellent
explanation of metastable failure rate design considerations.

It is of utmost importance for design project members to know
that an increased resynchronization frequency rate or a slower
resync circuit speed can result in a catastrophic change in failure
rates. Failure rates can go from one every million years to three per
day by doubling the frequency.

Asynchronous Principle
A design project must minimize and isolate resynchronization logic between

asynchronous clock domains.

Asynchronous protocol verification and resynchronization anal-
ysis are rare engineering specialties, which makes them expensive.

In addition to costs of asynchronous protocol and failure analy-
sis, there is the case derived from testability for minimizing and iso-
lating resynchronization logic between asynchronous clock
domains. The theory and methods for test are not well-developed
across asynchronous boundaries.

7.1.2 RTL Races
See Section
8.4.3.2 for a list
of bad stuff that
results from
races.

In order to have verifiable RTL design model, a design project
must systematically eliminate logic races. Logic races occur when
the result state of a storage element depends upon the arrival
sequence of simultaneous transition events. Logic races result from
RTL Verilog:

Coding errors, where more than one initial or always block
assigns a value to a signal, or a designer codes a flip-flop as a
blocking assignment.

Timing anomalies, when state-controlling inputs, such as data,
clock, and reset change at the same simulation evaluation cycle
time.

134 CHAPTER 7

Time 0 races. Many logic races occur at the start of simulation when test
bench designers try to do too many start-up operations at or close to
time 0.

Test bench designers can eliminate start up races by allocating
separate times for each class of start up operation. [Example 7-1]
illustrates use of defined and separated time ordering for startup
steps in a simulation.

Example 7-1 ‘timescale 1 ns / 10 ps
// Define time to offset random initialization of registers.
‘define TIMEINIT #0.05;
‘define TIMEINITLATCH #0.06;
‘define TIMEINITRESET #0.07;
‘define TIMEINITTEST #0.1

initial
Initialize the waveform viewer.

initial begin
‘TIMEINIT
Randomly initialize flip-flops.

end
initial begin

‘TIMEINITLATCH
Randomly initialize latches.

end
initial begin

‘TIMEINITRESET
Randomly initialize reset flip-flops.

end
initial begin

‘TIMEINITTEST
Start the clocks and the test.

end

The [Example 7-1] ordering is not as important as the fact that
interdependent events are separated into their own times, and the
timings are globally tunable. The state outcome of the storage ele-
ments is not be dependent upon the simulator vendor or version, or
the Verilog tools.

Later races. An example of a race than can occur later in a design simulation
include a clock signal controlling a multiplexer select for a data
path that goes to a flip-flop controlled by the same clock. Since the
physical implementation for this kind of design generally counts on
the steered data arriving at the receiving flip-flop after the control-

...

...

RTL STYLE 135

ling clock edge, we have to add some delay to the data path in the
RTL model.

We can do this by delaying the multiplexer -control clock signal
with a non-blocking assignment

Example 7-2 always @(BCK)
BCK_NBA <= BCK;

assign ‘TIMEASSIGN DATA = BCK ? QH : QL;

or add a defined delay value ‘TIMEASSIGN in the data path fol-
lowing the multiplexer.

Example 7-3 assign ‘TIMEASSIGN DATA = BCK ? QH : QL;

Diagnosing
races.

After an engineer detects a race, the next step is to diagnose the
root cause of the race and fix the race at the point of origin. In sim-
ulation, we find it effective to design a non-blocking assignment
delay in all of the flip-flops, so that the waveform display clearly
distinguishes the flip-flop output signals from the data signals that
might be racing with the clock.

Example 7-4 ‘define TIMENBA #0.01

always @posedge (ck)
q <= ‘TIMENBA d;

After all the races are cleaned up, the engineer can remove the
#0.01 from the definition in the test fixture (if it helps improve sim-
ulation performance).

7.1.3 Combinational Feedback
In modern logic design practice, combinational logic feedback

is universally avoided. Verification tools that count on no combina-
tional logic feedback (cycle-based simulators, boolean equivalence
checkers, timing verifiers) diagnose such feedback loops.

Though rare, designers sometimes inadvertently specify combi-
national feedback loops in their RTL. Three sources of feedback
loops that can hinder RTL verification flow are design errors, false
paths and apparent (not real) feedback.

Design error. These are real unintended combinational feedback loops. About
half the time they will have an odd number of inversions in the
feedback path. The resultant inversion can result in short or 0-delay
oscillations in an event-driven simulator. Before the availability of
tools that would identify feedback loops in RTL Verilog, 0-delay

...

136 CHAPTER 7

oscillations in a simulation would take several frustrating days of a
designer’s time to locate and fix.

False path. Every other year or so, a clever designer will come up with a
way to correct a short-path timing problem by cross-coupling com-
binational logic in a manner that can never be fully enabled. [Figure
7-1] shows an example of two cross-coupled multiplexers with an
inverted select signal on one of the multiplexers. Note that with the
select line s at a logic 0, the feedback path from y is disabled, and
with s at a logic 1, the feedback path from z is disabled.

module m (s, a, b, y, z);
input s;
input a, b;
output y, z;
wire s, a, b;
wire y, z;
assign y = s ? a : z;
assign z = s ? y : b;

endmodule // m

Apparent
feedback.

The combinational feedback checking performed by verification
tools that are sensitive to feedback is often fast and simple. Simple
checking may identify a combinational logic feedback condition
where none actually exists. [Example 7-5] (a) illustrates some Ver-
ilog code that can appear to have combinational logic feedback. A
simple feedback checker treats the always procedural block as a
black box, with all inputs connected to all outputs.

RTL STYLE 137

Example 7-5

a) Module with appar-
ent feedback

b) Inlining assign to
clear up feedback

c) Moving procedural
assignments to

module m (a, d);
input a;
output d;
reg b, d;
wire c;
always @(a or c)

begin
b = a;
d = c;

end
assign c = b;

endmodule // m

module m (a, d);
input a;
output d;
reg b, c, d;
always @(a)

begin
b = a;
c = b;
d = c;

end
endmodule // m

assign

module m (a, d);
input a;
output d;
wire b, c, d;
assign b = a;
assign d = c;
assign c = b;

endmodule // m

[Example 7-5] (b) shows one remedy in which the designer
moves the assign inside the procedural block in functionally cor-
rect evaluation order, and with no apparent feedback.

[Example 7-5] (c) shows another apparent feedback remedy in
which the designer moves the procedural assignments into indepen-
dent assign statements. Use of assign statement relieves the
designer of the burden of ordering the statements, since verification
tools that need to rank-order for their function take care of
rank-ordering in their compilation process. However, the verifica-
tion labor costs will be greater if the evaluation order of combina-
tional logic is not immediately apparent to a reader.

Combinational Feedback Principle
Designers must avoid all forms of combinational logic feedback (real,

false-path, or apparent).

7.1.4 Case Statements
In Chapter 5, we pointed out how case statements provide a sig-

nificant part of the simulation performance advantage of RTL simu-
lation over gate-level simulation. We also showed there how
two-state simulation at the RT-level results in better verification of
case statements (and if-else statements) than simulating with an
X-state.

138 CHAPTER 7

In Chapter 6, we discussed how test signals in case statements
support formal verification better than test expressions in case state-
ments.

In this section, we discuss two case statement style require-
ments that support design verification processes: fully-specified
case statements and case test signal and constant consistency.
Throughout this section, the case statement style requirements
apply to casex as well as case statements.

7.1.4.1 Fully-Specified case Statements
Verifiable RTL design requires that designers fully specify case

statements. Designers must specify all resultant output values cor-

responding to 2N input values, where N is the bit-width of the case
statement control signal. [Example 7-6] illustrates a case state-
ment that specifies next states for only the intended zero-to-two
three-state counter function (a), and for all values of r_o, including
the “impossible” 2’b11.

Example 7-6

a) Functionally-specified case

module c (r_o, c_n);
input [1:0] r_o;
output [1:0] c_n;
reg [1:0] c_n;
always @(r_o)

case (r_o) // rtl_synthesis full_case
2’b00 : c_n = 2’b01;
2’b01 : c_n = 2’b10;
2’b10 : c_n = 2’b00;

endcase
endmodule // c

b) Fully-specified case

module c (r_o, c_n);
input [1:0] r_o;
output [1:0] c_n;
reg [1:0] c_n;
always @(r_o)

case (r_o)
2’b00 : c_n = 2’b01;
2’b01 : c_n = 2’b10;
2’b10 :c_n =2’b00;
2’b11: c_n =2’b00;

endcase
endmodule // c

To many designers in many design groups, use of fully-specified
case statements throughout their entire system design is a major
departure from their general practice in prior work. To these design-
ers, the way to handle the impossible states in a case statement is
to:

1.

2.

add a default and assign an “x” to the next-state signal, and

issue a diagnostic message.

RTL STYLE 139

Because the authors cannot assume that very many of the read-
ers are apriori in sympathy with use of fully-specified case state-
ments throughout a system, we now present some justification.

First, the use of fully-specified case statements for an entire
design not a theoretical idea that the authors have only used in
experiments. It is based on its application in an actual large-scale
design project comprised of millions of gates on chips, 100’s of
these chips in systems, and thousands of these systems delivered to
customers [Bening et al. 1997].

Next, we know that there are advantages and disadvantages to
fully-specifying case statements. Even though the authors feel that
verifiability tips the balance in favor of fully-specified case state-
ments, the following itemizations list advantages and disadvantages
that the reader should be aware of.

The verification advantages that come from fully specifying
case statements are:

Boolean equivalence checking performance.

Not having to deal with the exponential number of don’t care
sets in boolean equivalence results in a typical 5-10X boolean
equivalence checking performance improvement, and makes it
possible to prove equivalence on some cones that would other-
wise be unprovable in any practical amount of run time.

RTL - gate-level simulation alignment.

When the RTL specifies a logic output for all values, designers
can be certain that the RTL simulation model precisely corre-
sponds cycle-by-cycle and state-by-state to what would happen
in the gate-level simulation model.

Improved RTL simulation performance/verification

Completely specified case statements eliminate the need for an
X-state, improving RTL simulation performance, as well as star-
tup state testing, as described by one of the authors in [Bening
1999b].

RTL manufacturing test simulation.

The RTL - gate-level simulation alignment provided by
fully-specified case statements allows a design project to run its
manufacturing test vector simulations against the RTL. This fea-
ture provides a 5-10X performance advantage in simulation run
times compared to gate-level simulation, as well as an overall
double check on boolean equivalence, gate-level test generation
process, and the overall design flow.

140 CHAPTER 7

Verification considerations with respect to fully-specifying case
statements run opposite to other design considerations which have
weighed in favor of partial specification. These include synthesis
minimization, test generation, and loss of simplicity.

Synthesis minimization.

We have done synthesis experiments using the 8-bit one-hot
decoder module shown in [Example 7-7]. Fully-specifying the
case statement with the default included, a synthesis tool gen-
erated 3X as many gates as only specifying the eight one-hot
cases without the default.

In counter argument, there are other ways to specify logic that
results in full-specification while still achieving timing and
gate-minimization. An example is presented later in this section.
We have found that when creative designers on a project pool
their ideas, they can use full specification while still achieving
timing and area goals.

Example 7-7 module one_hot(c_hot,c_code);
input [7:0] c_hot;
output [2:0] c_code;
reg [2:0] c_code;
always @ (c_hot) begin

case (c_hot) // RTL synthesis full_case
8’b10000000: c_code = 3’b000;
8’b01000000: c_code = 3’b001;
8’b00100000: c_code = 3’b010;
8’b00010000: c_code = 3’b011;
8’b00001000: c_code = 3’b100;
8’b00000100: c_code = 3’b101;
8’b00000010: c_code = 3’b110;
8’b00000001: c_code = 3’b111;

default: c_code = 3’b000; // causes 3X gates
endcase

end // always (c_hot)
endmodule // one_hot

Test generation.

Combining two separately synthesized blocks in which one
block generates a one-hot encoded signal and the other block
receives the signal using a fully-specified case statement will
result in redundant logic. Redundancies present test generation
methods with logic that may result in untestable sections [Abra-
movici et al 1990 pp. 100-103].

RTL STYLE 141

In counter argument, one-hot encoding is just one source of
many possible redundancies introduced between separately syn-
thesized logic blocks, as designers combine them prior to test
generation.

Loss of simplicity.

Throughout this book, we argue for simplicity as a fundamental
ingredient of RTL-based verification. However, to express a
design using fully-specified case statements while still achiev-
ing sufficient gate minimization to achieve area and timing goals
often requires that a designer code Verilog using more state-
ments.

In counter argument, the descriptive methods for fully-specify-
ing logic while achieving timing and area goals form common
statement patterns in the Verilog for a design project, and soon
become easily recognized (and welcome) by verifica-
tion-object-based engineers.

Productive designers draw from examples, from the Verilog that
they have written in previous projects, and from synthesis guide-
lines in manuals. Most readers will likely find plenty of incom-
pletely specified case statements from their sources of examples. To
counter this situation, we now present examples of fully-specified
case statements for various functionalities.

Small case
statements.

For case statements that use a control variable which is only two
or three bits wide, the increased gate cost of fully-specifying all
possibly states is small. [] showed a small case statement where
fully-specifying all values of the control variable does not add
many gates.

One-hot
encoding.

[Example 7-8] illustrates a way to process the one-hot encoding
shown in [Example 7-7] to get faster gates. It tests each bit to get
the next state, and separately test for the error condition illustrates
one-hot decoding in a fully-specified manner that results in a mini-
mum gate count from synthesis.

142 CHAPTER 7

Example 7-8 module one_hot(c_hot,c_code);
input [7:0] c_hot;
output [2:0] c_code;
reg [2:0] c_code;
reg [2:0] c_code0,c_code1,c_code2,c_code3;
reg [2:0] c_code4,c_code5,c_code6;
always @ (c_hot) begin

c_code6 = (c_hot [6]) ? 3’b001 : 3’b000;
c_code5 = (c_hot [5]) ? 3’b010 : 3’b000;
c_code4 = (c_hot [4]) ? 3’b011 : 3’b000;
c_code3 = (c_hot [3]) ? 3’b100 : 3’b000;
c_code2 = (c_hot [2]) ? 3’b101 : 3’b000;
c_code1 = (c_hot [1]) ? 3’b110 : 3’b000;
c_code0 = (c_hot [0]) ? 3’b111 : 3’b000;
c_code = c_code0 | c_code1 | c_code2 | c_code3 |

c_code4 | c_code5 | c_code6;
end // always (c_hot)

endmodule // one_hot

The test for the error condition can either be implemented in
actual hardware (for the situation where the data path carrying the
c_hot one-hot signal is not reliable), or as a verification assertion,
or both

[Example 7-9] shows how the error condition for the one-hot
signal can be detected as a separate case statement test. It demon-
strates how to isolate the on-hot decode complexities for error-test-
ing. Notice how we separate the correct operation path from the
error test. In [], the correct operation path, the logic only does a test
of one bit, which makes room for several levels more logic before
the next clocked register stage.

See chapter 2
for more on
encapsulation.

[Example 7-9] also illustrates use of encapsulation of error log-
ging treatment details. The assert_one_hot is a non-hardware
macro module that addresses verification needs, both simulation
and formal methods. Without changing the design Verilog, verifica-
tion engineers can progressively refine the assert_one_hot with
additional internal controls to deal with simulation of:

good machine testing and error testing. With good machine test-
ing, an engineer would likely want the simulation to stop if the
one-hot encoding failed. With error testing, in which the engi-
neer injects errors to see whether the hardware recovery or shut
down processes run correctly, the engineer would likely want
the simulation to continue so that many errors can be injected
and tested in one run.

RTL STYLE 143

pre and post reset simulation. Prior to completion of a reset
sequence, the engineer would not want the simulator to stop
when detecting an error in one-hot encoding, but after the reset
completes, the simulation should log encoding errors

diagnosis and regression. For the fastest possible regression
simulation, reduced logged data is a good idea.

Example 7-9
case (c_hot)

8’b00000001,
8’b00000010,
8’b00000100,
8’b00001000,
8’b00010000,
8’b00100000,
8’b01000000,
8’b10000000: c_hot_error = 1’b0;
default: c_hot_error = 1’b1;

endcase
end // always (c_hot)
assert_one_hot c_hot_check #(0, 8)

(ck, reset_n, c_hot);
endmodule // one_hot

And, with a different library definition, assert_one_hot can
serve as a formal model checking constraint and property. See
Chapter 6 for details.

In this section, we have presented arguments favoring
fully-specifying case statements, and one example showing how a
designer can achieve timing and area goals while fully-specifying
the logic outcomes in the RTL. To develop fully-specified RTL
design solutions for all design functions needed on a project would
require an entire book devoted to the topic.

We recommend that the project set full-specification as a
requirement, and then share the fully-specified design solutions to
timing and area problems that their designers develop across the
project.

7.1.4.2 Test Signal and Constant Widths
There are two kinds of consistency designers must maintain in the
case statements for their designs: signal-to-constant, and
constant-to-constant.

...

144 CHAPTER 7

Verifiable RTL design requires that the bit width of the case test
signal match the bit width of the constants with which it compares.
Simulators do not check for this, but lint-type rule checkers do per-
form the check. This is fortunate, since such a mismatch invariably
means a design oversight that results in an eventual simulation test
failure, which in turn results in computer time and human labor
costs.

In case statements, each constant must be unique. Duplicate
constants always mean an oversight by the designer, and they can
often cause bugs that become hard to diagnose. We have seen situa-
tions where a designer adds a case constant and some action, then
wonders why the action never happens, not noticing that there was
an identical constant value earlier in the case statement with another
action. As with width conflicts, case constant duplication often
results in an eventual simulation test failure, with similar costs and
frustration.

In casex statements, each constant should be unique, or spec-
ify a unique range if it contains don’t-care “?” values. The ranges
should not overlap, or encompass one another. We weaken the
checking for casex statements compared to case because some
designers assert that there are a few logic functionalities that are
expressed much more efficiently with overlap.

To perform constant duplication and overlap checks, lint rule
check implementors have independently arrived at a bit-mapping
algorithm that counts on the width of the case test signal and the
constants being less than 31 bits. Limiting case test signal width to
less that 32 bits also speeds simulation by allowing a direct conver-
sion of the Verilog case statement to simulation host machine
instructions that support programming language case statements.
(This assumes a 32-bit simulation host machine word length).

7.1.5 Tri-State Buses
Tri-state buses present specialized challenges to design and
verification. Timing verification, boolean equivalence, and logic
simulation are tools that need to treat tri-state buses as exceptions to
their normal boolean logic processing. The object-based RTL design
methodology basics introduced in Chapter 4 points the way towards
encapsulation and selection of a uniform practice for specifying
tri-state function.

Drivers. [Example 7-10] illustrates the encapsulation and uniform prac-
tice for specifying a tri-state driver.

RTL STYLE 145

Example 7-10 module dff_tri(pin,qin,ck,dis);
parameter w = 3;
output [w-1:0] pin;
input [w-1:0] qin;
input ck;
input dis;
reg [w-1:0] qout;
always @(posedge ck)

qout <= qin;
tri [w-1:0] pin = !dis ? qout : {w{1’bZ}};

endmodule // dff_tri

The expression sequence across the tri statement must be uni-
form in all tri-state drivers in a design: test, normal output and Z
output.

In tri-state buses, designers often need pull-down (or pull-up)
resistors to keep CMOS transistors from creating a short-circuit
path and burning out in an adverse power-up combination of states.
To express the start up state function of these resistors for simula-
tion at the register transfer level, use tri0 and tr1 in place of tri.
Specify the net driven by a tri, tri0 or tr1 up and down the hierar-
chy as type wire wherever it connects up and down the hierarchy.
The net function “inherits” the pull-down/pull-up function from the
driver declaration.

Receivers. Encapsulation of tri-state bus receivers within library modules
localizes the special treatment of the boundary between:

a net that can be at a Z state and

the boolean two-state logic.

In RTL verification, there are cycle-by-cycle state-by-state
design errors that need to be addressed:

multiple drivers on a tri-state bus.

a receiver that is active when there are no drivers on a tri-state
bus.

Both of these are best addressed by assertions, but the assertions
can be supplemented by simulation modeling style that intercepts
Z’s (or X’s in the case of bus multi-driver conflicts). [Example
7-11] shows a tri-state receiver in which the user task $InitialState
plugs random 0/1 bit values into the holding signal qpin. Then,
every time a new value comes in on pin, the user task $Trapxz
plugs in the random 0/1 bits from qpin into ipin corresponding to
the bit positions in pin that are Z (or X).

146 CHAPTER 7

Example 7-11 module rec_tri_4(pin);
inout [3:0] pin;
reg [3:0] ipin,qpin;
always @(pin or qpin) begin

ipin = pin;
$Trapxz(ipin,pin,qpin);

end
initial

$lnitialState(qpin);
endmodule // rec_tri_4

7.2 Organization

7.2.1 System Organization

7.2.1.1 Compiler Options

Defining
constants.

In Verilog, it is good system design practice to specify constants
by name within sub-block modules, and assign their value using
‘define to specify constant value assignments.

Good places for named constants are case statements specifying
state machines, and bit-widths/depths of reusable data path mod-
ules, such as fifo buffers, register files and memories.

For constant names shared across multiple modules, use
‘include “file-name” within each module, and specify the constant
definitions only once in a single file.

Compared to ‘define, parameter-based constants defined by
parameter and defparam statements may at first appear to be the
better choice for specifying constant values. They are better
behaved when a design project integrates sub-block modules into
system blocks in that they retain their definition only within the
modules containing their definitions. The fact that parameter and
defparam definitions end at the endmodule statement provides a
cleaner mechanism for controlling the scope of constant definitions.

See
preprocessor-
based
techniques in
Chapter 4.

However, parameters have shortcomings as listed below.

The per-instance constant substitution that gives parameters a
power that ‘define constant definitions don’t have is provided
with greater flexibility by preprocessor-based techniques.

RTL STYLE 147

Parameters can introduce simulation run time penalties in cases
where a designer uses run time parameter values to check for a
instance configuration that is constant-based.

Parameters have a higher degree of difficulty than ‘define in
their implementation by EDA tool developers. As well as star-
tups, major established vendors have differences (bugs?) in their
implementations of parameters.

We recommend that you let your competitors spend their time
on the parameter issues while your project sails on to success with-
out parameters.

In Verilog language parsing, ‘define macro definitions remain
“alive” from the point in the Verilog text stream input where they
are defined, independent of module and file boundaries. To avoid
macro name clashes when integrating their system model, a design
project must have a macro definition naming convention.

Code Inclusion
Control.

The ‘ifdef - ‘else - ‘endif conditional compilation directives
can control inclusion of test assertions, diagnostic statements,
waveform output PLI calls, and RTL abstractions.

For the fastest possible logic simulation later in a design project
when design bugs are very rare, reducing diagnostic aids in the Ver-
ilog source is desirable. If one simulation out of 10,000 fails due to
a design error, having to rerun the failed simulation with the diag-
nostic aids included is a good trade-off when the 9,999 simulations
run 2X faster without the diagnostic aids.

Even though inclusion control could be done by ‘define state-
ments within the Verilog input files, it is more flexible to do the
control by EDA tool command line macro definition options. These
are generally of the form

... +define+INITSTATE+RECORDOFF+ ...

Code inclusion control supports productive simulation-based
verification, where all design verification simulations must be done
using RTL abstraction for best simulation performance. In some
design blocks, synthesis and data-path mapping from the RTL can-
not produce a gate-level design that meets the design constraints.
For these blocks, boolean equivalence must be used to prove that
the RTL version of the design exactly matches another version that
is closer to gate-level. [Example 7-12] shows the inclusion control
statements bracketing gate-level and RTL versions of the same
logic, and the corresponding boolean equivalence command line
options.

148 CHAPTER 7

Example 7-12 a) Verilog Source

‘ifdef RTL
RTL version of logic

‘else
gate-level version of logic

‘endif

b) Boolean equivalence command line options

-model1 a.v -model2 +define+RTL a.v

Command line +define+ code inclusion controls are global to
the all the Verilog files that an EDA tool’s Verilog compiler reads.
On large design projects, the Verilog files for a design are the work
product of a large number of engineers, so there is a danger that
code inclusion controls may become complicated and redundant if
their definition and use are not coordinated.

7.2.1.2 Design Hierarchy
For design of computer systems, design projects divide up their
design descriptions into a hierarchy of modules.

The top-level modules specify interconnect above the
chip-level, usually PC boards and multi-chip modules. For verify-
ing a system design, we believe that the hierarchy of modules
describing the instances of chips, daughterboards and motherboards
must match the hardware hierarchy.

Within a large chip, the first level down from the chip module
consists of a clock tapper module and a core logic module, as
shown in [Example 7-13]. The tapper module takes the clock and
test controls as input, and generates special clocks (half-speed,
phased) as needed, plus test outputs. The core logic module instan-
tiates the modules which perform the function of the chip.

...

...

RTL STYLE 149

Example 7-13 module chip0(
chip timing inputs,
chip function i-o’s);
tapper1 tapper(

chip timing inputs
core timing outputs);

chip_core1 core(
chip function i-o’s);

endmodule // chip0

module chip_tapper1(
chip timin inputs,
core timing inputs);

timing control procedures
endmodule // chip_tapper1

module chip_core1(
core timing inputs,
chip function i-o’s);

chip major module instances
endmodule // chip_core1

This design hierarchy method isolates the complication of clock
timing and test from the function of the chip. Clock and test spe-
cialists can focus their design and verification effort on the tapper,
and leave the chip core designs to focus on the chip’s function.

Starting early in the project, design engineers can lint the design
from the core module on down to ensure that its part of the design is
fully compliant with cycle-based simulation. Then, later in the
project, when simulation performance is a greater concern, the core
part of the chip design can be simulated with all of the performance
advantage of cycle-based techniques.

7.2.1.3 Files

File names. Efficient team-based design and verification requires that a sep-
arate file hold a single module description, and that the file name be
the same as the module name. Because separate small files come up
faster in editors, it is natural for design engineers to break up their
Verilog for a large design into separate files.

However, some designers may think that it is a good idea to put
a set of smaller modules that have a strong functional relationship
into a single file. The grouping of modules into a file may help the
design engineer, but it will inevitably cost more than it saves. Other
engineers verifying the design and running it through the EDA tool
flow will be repeatedly be hindered in their work when trying to
find a module that is buried within a file. Compared to issues of
design size and complexity, the hindrance is not a big deal, but it
does add some cost that the originating design engineer must con-
sider.

150 CHAPTER 7

Files in
directory
hierarchy.

The only exception to the one-module-per-file rule is shared and
standard modules stored together in a library file.

We have seen some designers closely map their module design
hierarchy into a directory hierarchy, such that a module file that is
five levels down in the design hierarchy is also five levels down in
the directory hierarchy.

The better way is to have some grouping of design module lev-
els at each directory level. This practice provides some knowledge
of functionally-related sets of modules at a glance.

Note that the use of a design level suffix digit on the module/file
name is very helpful to the engineer who is picking up someone
else's design. Here we have an example of six hierarchically suf-
fixed file in one directory.

pa_cam_loc7.v pa_resp_dec6.v pa_resp_in4.v
pa_resp_arb5.v pa_resp_find6.v pa_resp_side5.v

Modern hierarchical browsers have reduced the importance of
the file organization in a directory hierarchy, but not eliminated it.
Some unifying scheme of file and directory structure greatly simpli-
fies the task of setting up the list of files for verification tools, which
includes hierarchical browsers.

7.2.1.4 Libraries
Library files contain all of the encapsulated and reusable mod-

ules for a design. These modules include all flip-flops, memories,
input-output/tri-state drivers and receivers, as well as other design
modules that fit encapsulation or reuse goals. Examples of the other
design modules that may fit into a library include clock-generators,
parity trees, multiplexers, error-correcting encode/decode logic, and
queues.

In addition to providing the mechanism for sharing of module
designs across the project, they also support the library-based con-
cepts described in Chapter 4.

In our design work, we have typically used two to four libraries,
where each library contains the module definitions related to a chip
design technology (fabrication, test), and grouped by function.
Flip-flops and muxes would be in one library, and memories in
another.

Here are some organizing methods within a library:

RTL STYLE 151

Include a comment header for the entire library file,
containing a complete body of header information as
described in section 7.5.2.1.

Group modules with similar function, e.g., flip-flop
modules followed by input-output modules.

Place comments in each library module in proportion to
the complexity of the module. For modules about fifteen
lines or less, a minimum is a one-line comment spelling
out the function of the module in words.

// D-flip-flop with scan, reset, and inverted output
module dff_srn (...

From the convention established for Verilog gate-level
primitives, declare the output of simple Verilog library
modules first in the I-O list on the module line. If there is
an inverted output, declare it next.

7.2.2 Module Organization

7.2.2.1 Overall Organization
By applying common organization methods to all modules, a

project improves the productivity of everyone working on the
project, including the originator of the design. Every engineer can
know where to look for statement types of interest in their analysis.
Moreover, planned ‘define names in project-wide ‘include files
common to every design module avoids integration clashes.

In upper-level modules in the design hierarchy, it is good design
practice to only instantiate and interconnect major submodules. All
behavioral details must be in the lower-level modules.

[Example 7-14] specifies the sequence of statements for upper
level modules that instantiate and interconnect major sub-modules
in a design.

152 CHAPTER 7

Example 7-14 <header comment block>
‘include “<file name>”
module <prefix><name><level number> (input-output);
<input declarations>

<clocks>
<reset>
<data>

<output declarations>
<inout declarations>
<wire declarations>
<major submodule instances - explicit port connections>
endmodule // <prefix><name><level number>

In [Example 7-15], lower-level modules include behavioral
statements (always, assign) and library module instances in their
organization. Note that the library module instances are at the bot-
tom of the module. This allows for the way that the preprocessor
(see Chapters 2 and 4) expands module instance macros and adds
lines that change line numbers between its input file and its Verilog
output file. Many types of diagnostic messages from verification
tools that read the Verilog point to line numbers in the Verilog. Put-
ting the module instance macros at the end keeps the line numbers
the same for all of the lines preceding them in both the preprocessor
input and its generated Verilog file.

Example 7-15 <header comment block>
‘include “<file name>”
module <prefix><name><level number> (input-output);
<input declarations>

<clocks>
<reset>
<data>

<output declarations>
<inout declarations>
<wire declarations>
<reg declarations>
<always procedural blocks>
<assign statements>
<major submodule instances - explicit port connections>
<library module instances -

may have implicit port connections>
endmodule // <prefix><name><level number>

The line numbers for the statements from the beginning of the
file and through the assign and major module instances are the

RTL STYLE 153

same between the source and the Verilog output. This makes chang-
ing the source file based on EDA tool diagnostic messages about
the Verilog line numbers much simpler.

7.2.2.2 Connections
See Chapter 4
for more about
library module
instance
connection
processing.

Generally, we believe in explicitly specified port-signal connec-
tions. An exception can be made for connecting instantiated library
elements in preprocessor source file input. The preprocessor can
take the implicitly connected input and generate Verilog with
explicit connections, as shown in [Example 7-16].

Example 7-16 a) Implicit port-order based signal connections input

dff #(4) reg_head (r_head, ck, c_head);

b) Explicit port-signal connections output

dff #(4) reg_head (.d(c_head),
.ck(ck),
.q(r_head));

The only kind of expressions allowed on ports are concatenation
expressions. Concatenation has special meaning in terms of bus
joining and bus splitting, as well as being applicable to input, out-
put and bidirectional port connections.

By putting expressions on ports, you lose the direct observabil-
ity of the result of the expression, even with concatenation expres-
sions. Observability is discussed with regard to case statement
control expressions in Chapter 6.

Expressions on ports usually point to a less than desirable parti-
tioning between module function and interconnection. Separating
function from connection makes a module easier to understand, as
well as tracking in verification through improved observability.

7.2.3 Expression Organization
In addition to making a design more understandable to engi-

neers reading the Verilog source code, the designer originating the
Verilog can avoid verification tool pitfalls by writing well-crafted
expressions.

The first tool to get through is the lint check, as described in
Chapters 2 and 4. The lint check brings strong typing to the Verilog
language expressions. (Without expression checking, the Verilog
language is not a suitable vehicle for design description on a com-
mercial project).

154 CHAPTER 7

The tutorial in Chapter 9 presents specific RTL design rules for
all of the allowed operators. Here we present some general princi-
ples, repeating some of the rules from Chapter 9, as well as basics
and formal methods from Chapter 6.

Precedence. Use parenthesis instead of operator precedence to get the
expression behavior that you want, and document the behavior for
engineers reading your Verilog.

Logical
operators.

Use logical &&, || and ! in place of their bit-wise &, | and ~ only
where they fit into expressions. The basic rule is that the &&, || and
! apply to one-bit operands. Since the &, | and ~ apply to one-bit
operands as well, a more narrow application of the logical operators
in order. The narrow application is in comparison sub-expressions,
as in the following code:

if (((r_tm_hdr_len == 2’h1) && (r_tm_data_len == 4’h0))
II

((r_tm_hdr_len == 2’h0) && (r_tm_data_len == 4’h1)))

and to one-bit operands regarded as boolean, as in the following
code.

if (c_res_ready && (r_req_last || (!c_req_ready))) begin

Observability. If complex expressions become too long, break them up into
two (or more) expressions with an intermediate signal to carry the
subexpression value to the next expression. At about four lines for a
single complex expression is a good threshold at which the designer
should begin thinking about breaking an expression into separate
statements.

In addition to providing the observability that is important to
formal verification discussed in Chapter 6, adding intermediate sig-
nals makes the Verilog easier to debug in simulation.

When an expression consists of many symmetrical subexpres-
sions that are nearly the same from one line to the next, it is all right
to run across many more than four lines. About a half page (or 30
lines) is a good threshold for breaking symmetrical subexpressions
into separate statements.

Simulation
performance.

Where there are opportunities, write expressions in a style that
improves simulation performance, particularly in high usage library
modules. Here are a couple of common expression patterns that
occur in many designs.

...

...

RTL STYLE 155

Concatenation - In general, Verilog logic simulators perform
better with concatenation than with subrange assignments.
Instead of:

c_x [23:16] = r_a;
c_x [15:8] = r_b;
c_x [7:0] = r_c;

use
c_x = {r_a, r_b, r_c };

The Verilog compilers for some newer simulators are able to
perform this optimization automatically, but only in cases where
the pattern of statements for subrange assignment are complete
and local to a single procedural block of code.

Parallel value operations. Where there is a repeated logic opera-
tion across selected bits of a multi-bit signal, you can simulate
faster by using a mask constant to select the bits, then apply the
unary operator that matches the logic. This kind of expression
happens in content-addressable memories and error-correcting
code encodings. Instead of:

cam_1 = s[30] | s[26] | s[22] | s[18] |
s[14] | s[10] | s[6] | s[2];

use
cam_1 = | (s & 32’h44444444);

Note that by a quick inspection, it is easier to verify the correct-
ness of the pattern in the mask than the correctness of the eight
subscripts.

While writing Verilog expressions, watch for opportunities to
use concatenation and parallel value operations. And, minimize
individual bit visits. Even though Verilog compiler writers continu-
ally enlarge their set of optimizations, there are plenty of opportuni-
ties to code Verilog for simulation performance.

7.3 Naming Conventions

7.3.1 General Considerations

7.3.1.1 Consistency
The main goal of a design language is communication. This

includes communication with engineers as well as the programs
that aid the engineers in their verification and implementation of a
design. In order to facilitate this main goal, design projects must

156 CHAPTER 7

apply consistent naming practices for all of the Verilog that
describes a system design.

This consistency begins with use of names that have become
widespread and thereby defacto standards throughout the industry.
Keating and Bricaud [1999] relate some of these names, like ck and
rst. The next step is to add naming conventions to carry the seman-
tics specific to a design project.

Language efficiency is an important consideration when a
project devises consistent names for signals, instances, constants,
modules, etc.

Note that in all natural languages in the world, high-usage
names are short words. Consider one, two, three, you and me in
English and other world languages. It is not an accident that HDL
technology has wound up with ck and rst as short names.

Another consistent naming practice for deriving shorter names
is throwing out vowels, and some consonants, while still retaining
enough letters in a name to at least distinguish it from other nearby
names.

High usage
names must be
short.

7.3.1.2 Upper/Lower Case
Use lower case
for names that
relate RTL to
gate.

A design project can prepare for a smooth flow through the gate
and physical design tools by using lower case for ALL wire, reg,
instance, and port names. Mixing the upper/lower case in Verilog
designs will work fine through simulation, but will bring schedule
and labor costs when putting together the EDA flow for the gate and
physical design processes.

Design projects are increasingly using tools that relate the
gate-level design back to the RTL behavioral Verilog, like boolean
equivalence checking and back-annotation. It is easy to visualize a
simple automated full-duplex mapping of all-lower-case names in
the RTL behavioral Verilog to all-upper-case names in gate-level
design. If the RTL behavioral Verilog uses mixed case for its
names, automated full-duplex mapping becomes more than a trivial
filter. The labor costs and schedule hits in the EDA flow resulting
from arbitrarily mixing upper/lower case are worth avoiding. Fol-
lowing the all-lower-case rule will make every tool that reads your
Verilog check for name collisions early in the design process.

Use of upper case characters is the best practice for all constant
names and code inclusion control names defined by ‘ ifdef and
‘define statements. Upper case clearly distinguishes these names

Use upper case
for defined
names.

RTL STYLE 157

from signals where they are referenced in the in the text. Following
this practice, the example,

if (c_ptr > ‘FIFO_DEPTH) …

instantly shows ‘FIFO_DEPTH to be a ‘define, and

if (c_ptr > fifo_depth) …

instantly shows fifo_depth to be a reg or wire signal.

7.3.1.3 Hierarchical Name References
In verifiable RTL design practice, connection by hierarchical

name references has two uses. One is to allow an engineer to refer-
ence local signal names within the hierarchy of a design from a ver-
ification environment, such as a simulation testbench. The other is
to specify back annotation of physical-placement-based hookup of
a scan chain back into an hierarchical RTL model by means of scan
“stitching.”

The following line illustrates use of a testbench statement to set
up configuration values in a design prior to starting a simulation.

force stc0.core.csr.csr_regs.rc_nfig = {2’h1, 1’h0, 1’h1};

The names stac0, core, csr, and csr_regs are module instance
names going down the hierarchy, and r_toc_config is a wire
declared within module instance csr_regs.

Other verification environments in which hierarchical refer-
ences are important are cutpoints for equivalence checking, and
constraints in model checking.

Note how the use of shorter module instance names allows the
entire path hierarchy to be expressed on one line. Shorter module
instance names help in waveform viewer windows as well, leaving
more room for the waveform, while showing the hierarchical path
that labels each waveform.

Simulating scan-based manufacturing test vectors developed
from the gates against the RTL chip model benefits a design project
in two ways.

Referencing
local signals.

Scan stitching.

1.

2.

The test vectors can be simulated far faster (5X or more) at
the RT-level than at the gate-level.

Running the gate-derived scan vectors against the RTL
provides a double-check of synthesis, boolean equivalence
tools and gate-level test generation libraries.

158 CHAPTER 7

See Chapter 4
for RT-level
scan stitching
using OBHD
techniques.

Here we have an example of a scan stitch statement consisting
of four lines from a 6,747-line file that hierarchically back-anno-
tates RTL scan connections for a small (250K-gate) chip.

assign erac0.core.in_p3.pkt_info.r15.scan_in[2:0] = {
erac0.core.in_p3.pkt_info.r15.q [1],
erac0.core.out_m1.mux.r2.q [3],
erac0.core.in_p3.read_1.r2.q [4]};

You can see the power of hierarchical references if you consider
what it would take to back-annotate scan connections directly into
the modules. It would require changes to all of the modules to wire
the scan connections through their ports, up and down the hierar-
chy.

7.3.1.4 Global/Local Name Space
As successive projects develop ever-larger chips and systems,

global names require an increasing degree of planning in order to
prevent name conflicts as the pieces of the design are put together to
form the system model. Project-wide allocation of names and
unique prefixes for the different major pieces of a design prevents
name clashes for global names.

In the Verilog language, the global names that require planning
on large design projects include:

module type names

‘ifdef - ‘else - ‘endif conditional compilation names

user task/function names

Design project
members and
EDA vendors
must choose
global names
carefully!

In addition to the preceding names, entry point names mapped
from user task/function names must be unique within the entire
design model. Moreover, these user-defined entry-point names must
not clash with entry-point names defined by simulation tool ven-
dors in their object-code libraries.

To assure good order in the process of integrating a large system
model, planning for the integration is a must.

‘ifdef - ‘else - ‘endif conditional compilation names and
‘define’d timing names must be allocated from a project-wide
data dictionary.

RTL STYLE 159

The project must allocate short prefixes for engineers to use on
all of their:

– module names in their chips

– user task/function names, and

– user-defined entry-point names.

Vendors must use their own uniform sets of prefixes for all of
their entry-points on their programming libraries.

It is important to note that the same prefixes that serve to avoid
name clashes in the integration of a large system simulation model
also help support performance profiling.

7.3.1.5 Profiling Support
With the performance improvements in successive releases of

EDA vendor RTL Verilog simulators, an increasing share of the
responsibility for poor simulation performance can be attributed to
inefficiencies in the way users code their Verilog and PLI C code.

To locate points of simulation inefficiency in the Verilog and
PLI C that comprise a system model, design projects turn to perfor-
mance profiling tools. These tools sample a representative run of a
simulation model, and report the percentage of the run time spent in
each of functions that comprise the model.

With the ever larger sizes of chip and system simulations, and
the related growth in PLI C code, the profiled simulation model
may be comprised of 100,000 or more functions. In a profiling
report for such a large model, the engineer doing the profile report
analysis needs help.

Profiling tools provide some help for grouping related functions
where one function calls subordinate functions, and the subordinate
functions also call functions, and so on. The help comes from a pro-
filer’s ability to sum the time percentage spent in the function itself
plus all of the time spent in the subordinate functions and the func-
tions they call. This works well for seeing the performance of a
large number of related functions in PLI C code.

However, simulator calls to the code in most Verilog modules as
well as some PLI C code functions do not relate to the hierarchy of
instances in the design tree. As shown in [Figure 7-2], simulators

160 CHAPTER 7

call blocks of code scattered across the modules and functions from
an event manager.

a) Design: module hierarchy

b) Simulator: call hierarchy

The profiling report for the simulation of the modules in [Figure
7-2] shows the percentage of host computer time spent in the four
modules as independent numbers. If we consider that large system
profile reports have 1000’s of modules, the absence of information
relating submodules to the chip in which they are instantiated
makes it difficult to relate performance problems back to the
responsible design group.

Profiling support requires that designers prefix their submodule
design names with one or two characters that relate all of the sub-
modules to the major block or chip in which they are used. Modules
from libraries and shared across chip designs must relate to the
library name.

Use common
prefixes on
related module
names.

RTL STYLE 161

Use common
prefixes on
related PLI
function
names.

The same holds true for C code in verification tool PLI libraries,
as well as simulation and tool vendor libraries. To support profiling
of large system simulations, the prefix on all functions within pro-
gram library must identify the library. Here are some suggested pre-
fixes:

Simulation user task/function libraries: ut_, ta_, … .

Simulation and tool vendor libraries: vcs_, nc_, vc_, … .

7.3.2 Specific Naming Conventions
The following subsections itemize naming conventions specific

to each named class of Verilog entity. In some cases, a section
points back to earlier discussion of background details that support
the convention.

7.3.2.1 Constants
Use upper-case names for constants specified by ‘define macro

names. See section 7.2.1.1 for more information.

7.3.2.2 File Names
Here are file name suffix-based naming conventions specific to

each kind of Verilog file content.

a.s - Contains one module a() … endmodule consisting of
the Verilog plus the macro instances for a design. Run this file
through a translator to get the following Verilog file for a design
block. (See Chapters 2 and 4 for details about the translator and its
relationship to the above files.)

a.v - Contains one module a() ... endmodul e that describes
one block in a design. This is the verifiable RTL Verilog version of
the design, with the macro instances now in the form of in-line Ver-
ilog code or instances of Verilog modules from a library.

file.h - Contains constant definitions in terms of ‘define names
for a design. The constants may be state codes or bit ranges.

m.vlib - Library of modules.

7.3.2.3 Instances
Instance names can and must be short. Short here means

four-to-eight characters typically, and 15 characters as a maximum.

They can be short because they only need to be unique within a
module.

162 CHAPTER 7

See section
7.2.1.2.

This fits the
natural
language
pattern of short
higher usage
names (see
7.3.1.1).

They must be short in order to keep hierarchical path references
from becoming cumbrously long.

Note also that the benefit of short instance names is greater for
modules that are above the bottom level of the design hierarchy.
These modules are used more often in hierarchical path references,
and therefore provide the most benefit in terms of keeping hierar-
chical path references short.

7.3.2.4 Modules
Module names need to be unique across the entire set of mod-

ules that comprise a system design. Each chip design might consist
of 200 or more modules, so to prevent name conflicts as a project
begins combining the Verilog modules for multiple chips into a sys-
tem, the project must have a module naming methodology.

A simple and effective method is to prefix all of the module
names within a chip with the module name for the top-level module
in the chip (which is usually the chip name).

Another useful bit of knowledge to carry in the module name is
where the module fits into a chip design hierarchy. To do this, we
add a number suffix to our module names, where “0” is the
top-level module in the chip design, and larger numbers specify
lower level modules.

So, given a chip named “ab ,” the module names within the chip
hierarchy would be:

module ab0(…);

module ab_muxin4(…);

module ab_tbd_queue2(…);

Note that this chip-based prefix naming method can also help
improve large multiple-chip system model logic simulation perfor-
mance, by making simulation performance profiling reports relate
far more clearly to the chips that comprise the system. By simply
adding up the percentages for all of the functions prefixed with
ab_*, the simulation performance analyst can quickly determine
whether the ab chip design is important to the overall system model
simulation performance. For more information about profiling, see
section 7.3.1.5.

Avoiding global
name clashes.

Supporting
simulation
performance
profiling.

...

...

...

RTL STYLE 163

As with instance names, engineers more often see and use
names for modules that are higher in the design hierarchy, and they
therefore can be shorter. This again fits the natural language pattern
of higher usage names being short (see 6.5.1.1).

7.3.2.5 Port Names
For verifiable RTL design, consistency in port naming is a must!

Where an output port on one module connects directly to an
input port, the port names must be the same. The primary reason for
this rule is that it makes it much easier for an engineer reading
someone else’s Verilog and follow connections through the design.

Another benefit of consistent port naming is that it allows a sim-
ple tool to automatically generate connections in the Verilog for the
module next up in the hierarchy. [Example 7-17] shows how such a
tool does the work of filling in all of the details of connections
implied by consistent port names. Space limitations make the
example look insignificant, but in actual designs, submodules might
have 50 or more ports that a tool can implicitly connect based on
consistent port naming [Bening 2001].

Example 7-17

a) Submodules with
consistent names

b) Module instantiating
dr5 and rc5

c) Consistent names
imply connections

module dr5(a, s, t);
input a;
output [1:0] s, t;

endmodule // dr5

module rc5(s, t, z);
input [1:0] s, t;
output z;

endmodule // rc5

module nu4();
dr5 dr();
rc5 rc();
endmodule // nu4

module nu4 (a,z);
input a;
output z;
wire [1:0] s;
wire [1:0] t;
dr5 dr (
.a (a),
.s (s),
.t (t));

rc5 rc (
.s (s),

.z (z));
endmodule // nu4

Most major Verilog design shops have used ad. hoc. implicit
connection tools in-house. Implicit connection tools based on con-
sistent port names are now emerging in the marketplace.

...

...

.t (t),

164 CHAPTER 7

Except for main bus ports and port names connected to signals
that fanout everywhere, most port names must be descriptive and
somewhat longer than the typical module or instance name. About
10-15 characters is a good rule of thumb for port names.

7.3.2.6 Signal Names
The general rule is that signal names must match port names

that they connect, and that they be named after the source signal
name or primary input port that drives them.

A signal name policy that matches signal and port names must
deal with cases where a module instantiates a submodule two or
more times. Common practices are based on suffixing the name car-
ried through the hierarchy, such as the following:

adding a suffix to the signal name for the connection to each
submodule. Here we add an _l and _r to designate left and right.

wire [15:0] r_bus_l, r_bus_r;

r_bus_driver r_bus_driver_I (.r_bus (r_bus_l), …

r_bus_driver r_bus_driver_r (.r_bus (r_bus_r), …

using a suffix to indicate a partial bus driver within the submod-
ule. Here we add a _p in the submodule to indicate a partial bus.

wire [31:01] r_bus;

r_bus_driver r_bus_driver_I (.r_bus_p (r_bus[31:16]), …

r_bus_driver r_bus_driver_r (.r_bus_p (r_bus[15:0]), …

The above examples show only a few cases of what designers
encounter when trying to carry consistency up through the hierar-
chy where multiple instances of a specified module type are
involved. Admittedly, in some cases the functionality of a port may
change wildly per instance, and the practice of carrying part of the
name through the hierarchy becomes impractical.

The name length rule for signals is the same as that for port
names: short two-to-eight for high usage names, and up to 15 or so
characters for other signal names.

We recommend a signal-naming practice in which signals
directly driven by registers have an r_ prefix, and the combinational
signals have a c_ prefix. The signal name for the combinational

...

...

...

...

RTL STYLE 165

logic cone that drives the input of a register should be the same as
the register output except for the c_ and r_ prefix. In [Example
7-18], we have a flip-flip instance with the c_eri_last signal com-
ing in on the data input, and the flip-flop output q driving the regis-
tered version of the r_eri_last signal.

Example 7-18 dfft_xc reg_eri_last (
.q(r_eri_last),
.xq(r_eri_last_n),
.ck(ck),
.d(c_eri_last),
.reset_n(reset_n),
.i_scan(i_scan)
);

7.3.2.7 User Tasks / Functions and Program Libraries
Like module names, user task and function names relate to a

global name space. For the reasons discussed in 7.3.1.4, user task
and function naming must consider simulation performance profil-
ing and module integration into a system model.

The authors recommend project-wide allocation of prefixes to
user task and function names, as well as their corresponding PLI
function library. [Table 7-1] presents some examples of consistent
prefix names for all of the entry points for a given library.

In actual experience with large system models, we have seen as
many as 50 libraries, and with around 50 to 100 entry points on
each library.

Vendor simulator and simulation tool libraries enter into the
global name space and profiling of large system designs. In earlier
days, we encountered a name clash between a new release of ven-
dor library and one of our in-house libraries that did not observe our
current prefix-based naming method. Performance profiling was
encumbered by lack of a coherent naming convention for vendor

166 CHAPTER 7

entry points. We reported these problems to the vendor, and they
fixed them by adding a common prefix to their library entry point
names.

Sadly, the entry point names in standard UNIX libraries provide
very few unifying conventions in their naming. It is probably a little
late to fix.

7.4 Naming In Verilog Library Modules
Because the functionality of library modules is generic and sim-

ple, and because they generally have wide usage, their internal port
and signal names should be short. [Example 7-19] presents a simu-
lation model that illustrates typical generic short names, like d for
data input and q for register output.

Example 7-19 // Flip-flop with scan and inverted output
module dff_sn_32(q, q_, ck, d, sc_sel, scan_in);

output [31:0] q;
output [31:0] q_;
input ck;
input [31:0] d;
input sc_sel;
input [31:0] scan_in;
tri0 [31:0] scan_in;
reg[31:0] q;
assign q_ = ~q;
always @(posedge ck) begin

q <= sc_sel ? scan_in : d;
end

endmodule // dff_sn_32

There is little need for comments inside small Verilog library
modules. a one-line comment preceding the module is all that is
typically needed. One block of header comments (see section
7.2.1.4) at the beginning.

7.5 Editing Practices
Some readers may regard editing practices as mundane and dis-

cussed too often in the different books available on Verilog, hard-
ware description languages, and programming languages in
general.

RTL STYLE 167

The authors feel that consistent editing practices, particularly in
larger design projects, can be as critical to RTL verification success
as any other topic in this book. The importance of consistent,
good-looking Verilog to verification success makes it worthwhile to
repeat the basic editing practices in this book. To those who need to
know the why behind an editing practice, we supply some reasoning
behind them.

7.5.1 Indentation
Designers writing Verilog source code who follow source line

indentation policies help the engineer reading the Verilog code to
see the relationship of control statements.

Keating and Bricaud [1999] suggest using 4 spaces for indenta-
tion and not tabs. They point out that treatment of tabs is not uni-
form across various source viewers that different engineers may
need to use to read a given Verilog source. On top of the eternal
split between the choice of vi and emacs by different engineers,
some new verification tools supply their own source viewer and edi-
tor that is neither vi or emacs.

On the other hand, tabs may be no problem to the engineers
reading Verilog with their various source viewing and editing tools.
If so, use of tabs in place of multiple spaces for indentation can save
file space. In one experiment, we found that tabs in place of spaces
for indentation reduced the file space for the 60,000 lines of RTL
representing a 300K -gate ASIC from 16 Mbytes to 11 Mbytes.
Measuring simulation compilation time for these two files showed
no difference between the time required for parsing the spaces and
the tabs for indentation.

In spite of the file space argument, the authors believe that
designers must adopt the habits that support reuse, and use spaces
instead of tabs even for modules in projects that have no possible
use outside the project domain.

7.5.2 Comments
Before going into detail about specific classes of comments, let

us first state that comments must be supplementary to the actual
Verilog code, and must not overwhelm it. A reasonable limit on the
amount of text devoted to comments is around 30% or less.

Place comments to the right of Verilog statement, or in a block
preceding the lines to which they apply. This practice allows engi-
neers reading the Verilog to focus on the code itself, or on the com-
ments for supplementary understanding.

168 CHAPTER 7

Comment blocks must describe higher-level aspects of the Ver-
ilog that follows, and not merely repeat in prose exactly what the
Verilog statements express.

Small library modules need few, if any comments, since the
Verilog should be short and self-explanatory. A single header block
at the beginning of the multi-module library file and a short descrip-
tive header preceding each module should suffice.

7.5.2.1 Header

Copyright
notice.

Authors
name(s).

Date written.

A short
description.

Revision
history.

Credit
verification tool
in
revision history!

Comments identifying the design content of a design file must
be placed at the beginning of each design file. The comments must
include

The beginning of protection for the author and employer.

Tells engineers looking at the file who can answer questions regard-
ing the file. If the author(s) are no longer available, engineers can
upwardly adjust the cost estimate of changes and verification
accordingly

Knowing the date that the file was originally written helps engi-
neers more accurately estimate the cost changes and verification. In
general, the older the design, the less likely it will be to find anyone
with fresh knowledge of the design trade-offs in the original design.

Provides the key information that will help engineers get started in
their understanding of the design file contents.

Following a revision identifier, the author, date, and short descrip-
tion must be included with each revision, just as with the header for
the file.

Automated revision control systems provide help with most of
the above the bookkeeping details. The author must provide
thoughtful entries beyond automated boiler plate. One key item in
the revision description is crediting the tool or process that
prompted the revision. This credit helps later in the project when
designers want to know what tools and processes are providing the
most verification payoff.

7.5.2.2 Declarations

Comments on the right-hand end of the line that expand on the
abbreviation and function of a declared port or signal are effective.

RTL STYLE 169

Here is an example that expands on the meaning of port name dec-
laration.

tabd_rreq, // table data read request

7.5.2.3 end Identification
Verilog designs that contain end identification comments are

very helpful whenever engineers read someone else’s Verilog that
contains large blocks of code.

When viewing Verilog source with editors and source browsers,
engineers often find themselves looking at the bottom of a block of
code and having to page up in order to find the top of the block to
see what block they are in. A comment at the bottom of the block
that identifies the block makes this aspect of Verilog analysis work
easier.

[Example 7-20] illustrates end identification comments for
function, procedural block, and module.

Example 7-20 module respsend (

function [6:0] start_pointer;

endfunction // start_pointer

always @(r_pop_cnt …
begin

end // always @(r_pop_cnt

endmodule // respsend

7.5.2.4 Tool Controls

Meta-
Comments

The semantics of the Verilog language primarily relate to an
event-driven simulator. With extra pieces of information, other
EDA applications can use Verilog as their primary input. EDA tools
have used meta-comments for this extra information for many
years. More recently, Verilog language extensions to carry proper-
ties have been proposed.

Meta-comments are ordinary //-prefixed or /* …*/-bracketed
comments that carry specialized information to Verilog-based

...

...

...

...

...

170 CHAPTER 7

applications. The specialized information is generally beyond that
which can be carried within the semantics of the Verilog language.

The specialized information for cycle-base simulation, synthe-
sis and code coverage applications has generally been simple off-on
switches, or mode settings directing interpretation.

The following four examples are off-on switching comments
that tell vendor code coverage or synthesis tools to exclude the code
bracketed between these comments from coverage or synthesis
tools.

// <vendor> coverage_off
// <vendor> coverage_on
// <vendor> synthesis_off
// <vendor> synthesis_on

The following example shows code exclusion directed by IEEE
vendor-independent comments.

// rtl_synthesis off
<test and diagnostic statements in Verilog>

// rtl_synthesis on

Here we have a comment that tells a simulation compiler to
model the specified including the Z state even when compiling the
rest of the design variables for cycle-based two-state simulation.

wire /*4value*/ [31:0] tri_data;

Some formal model checking vendors have added proprietary
property checking languages as comments within Verilog design
files.

Attributes Language design experts regard attributes built into a language
as superior to comments for communicating application-specific
information to an extended set of applications.

Version 2.0 of the [OVI LRM 1993] included Verilog extensions
for attributes, but in the standardization process that resulted in
[IEEE Std 1364 1996], the committee and the balloting decided to
take properties out of the language definition.

The [IEEE Std 1364 2000] draft 5 also includes attributes as a
mechanism for specifying properties of objects, statements and
groups of objects. These attributes may supplement the Verilog text
to provide addition controls on the operation of various verification
and physical implementation tools.

RTL STYLE 171

Non-
Proprietary
Properties

In general, it is a good idea to use standard, non-proprietary and
vendor-independent meta-comments or attributes to send extra
information to applications. Use of vendor-neutral source for a
design allows a project maximum flexibility in its tool choices, and
may facilitate re-use on future projects.

Here are some methods by which a project can keep their design
source vendor neutral.

1.

2.

3.

Use a preprocessor to translate from a vendor-neutral
meta-comments to vendor-specific meta-comments and
attributes.

Use IEEE standard property entry methods and keep
asking the application vendor about the status of their
support for IEEE standards.

Use Verilog ‘ifdef - ‘else -‘endif where possible to serve
the purpose of application off-on bracketing comments.

Property Principle
Vendor-specific meta-comments and attributes used to specify properties must

be avoided whenever possible.

7.5.2.5 Embedded Comments

These are the hardest to write, but are potentially the most use-
ful comments in a design file. They must not just repeat the Verilog
code in prose form, but rather provide higher-level or alternative
view of the Verilog functionality. [Example 7-21] illustrates a com-
ment that expresses the functional intent of some Verilog source
and in no way repeats the Verilog.

Example 7-21 // Determine if we can bypass. Unfortunately,
// we need to wait for the A cycle In the table
// since the MC needs A cycle bits coincident
// with the win. Only local requests will be bypassed.
assign c_bp_hdr_val = (r_hdr_valids_1 == 11 ’b0) &&

(r_hdr_valids == 11’h400);

7.5.3 Line Length
In parallel with the move to larger screens on EDA worksta-

tions, increasing numbers of EDA tools require a multitude of win-

172 CHAPTER 7

dows be open at the same time. In many cases, these tools include a
window for viewing and perhaps editing the Verilog source code.

Even though the 80-character limit on screens of the early
1980’s are long past, an 80-character limit on line length is still a
good idea. This limit allows entire lines to be seen within a smaller
source window on a larger multi-window screen.

7.6 Summary
In this chapter, we specified ideas on style, and the reasoning

behind them. The style ideas began with design content. The design
content included asynchronous logic, RTL races, combinational
feedback, and case statements. The case statement section pre-
sented the arguments favoring the fully-specified case statement
style to facilitate verification.

We then presented organization and naming conventions for the
various elements of our verifiable RTL style, again with the reason-
ing in support of the style. An important factor in the naming of
modules as well as user tasks and vendor library functions is sup-
port of simulation performance profiling, as well as avoiding
clashes in their global name spaces during system integration.

We concluded with discussion of editing practices and their
importance with respect to verification processes.

8
The

Bad Stuff

In previous chapters, we have tried to show good ways to write
and use RTL Verilog to support verification processes. In this chap-
ter, we look at specific examples of what projects, designers, and
EDA verification tool developers have done that obstruct a produc-
tive verification process flow.

By explicitly pointing out the bad stuff, this chapter may be
helpful to some readers of the preceding chapters who want to see
what we are explicitly ruling out to achieve verifiable RTL design.
Other readers may skip directly to this chapter with the intriguing
title, and then read the preceding chapters that tell them what to do
instead of the bad stuff.

Some of the bad stuff cited in this chapter is not all that bad, but
is near the borderline between what we would consider verifiable
RTL and not so verifiable RTL. Some are a matter of degree that
might not hurt verification, like using a couple extra care-
fully-selected keywords from the unsupported set, or making a few
bit-references to a bus.

Others are purely a matter of arbitrary choice. Where there are
three different ways to do the same thing in RTL Verilog, we pick
one, and relegate the other two to this bad stuff chapter. Leaving the
choice up to each designer on a project team may seem to provide
an initial gain in designer productivity. This productivity gain, how-

174 CHAPTER 8

ever, is overwhelmed by the increased costs of reading and support-
ing a wide range of constructs by verification engineers and EDA
tools.

Examples of the very bad stuff include:

flip-flops expressed as in-line code instead of objects

X-state in RTL Verilog

killing RTL simulation performance by frequent and bit-level
visits

constructs that cause simulation differences between the RTL
and the synthesized gate model

Verilog that has logic timing problems, where a resultant state is
dependent upon a particular sequence of simultaneous events

Verilog that has no obvious boolean interpretation.

vendor EDA tools that break their customer’s verification pro-
cess flow

design teams that do not define and follow a verification-ori-
ented process

drawing keywords and statement types from the entire Verilog
language in RTL design

user-defined primitives, and especially sequential user-defined
primitives

8.1 In-Line Storage Element Specification
[Example 8-1] (a) illustrates a familiar RTL coding style that

specifies flip-flops in-line. It is bad because it locks in on a flip-flop
description style, which hinders adaptation to design and verifica-
tion tools.

THE BAD STUFF 175

Example 8-1

a) Bad: Flip-flops in-lined
in module

b) Good: Flip-flops instantiated
in module

always @(posedge ck250)
begin

r_rcs <= rst_ ? c_rcs : 0;
r_del <= c_del;
r_avail <= c_avail;
r_n1 <= rst_ ? c_n1 : 0;
r_n2 <= rst_ ? c_n2 : 0;
r_n3 <= rst_ ? c_n3 : 0;
r_n4 <= rst_ ? c_n4 : 0;
r_n5 <= rst_ ? c_n5 : 0;
r_n6 <= rst_ ? c_n6 : 0;

end

dff_r reg_rcs (r_rcs, ck250, rst_, c_rcs);
dff_r5 reg_del (r_del, ck250, c_del);
dff reg_avail (r_avail, ck250, c_avail);
dff_r5 reg_n1 (r_n1, ck250, rst_ , c_n1);
dff_r5 reg_n2 (r_n2, ck250, rst_ , c_n2);
dff_r5 reg_n3 (r_n3, ck250, rst_ , c_n3);
dff_r5 reg_n4 (r_n4, ck250, rst_ , c_n4);
dff_r5 reg_n5 (r_n5, ck250, rst_ , c_n5);
dff_r5 reg_n6 (r_n6, ck250, rst_ , c_n6);

See chapter 4
for a complete
explanation of
OBHD.

[Example 8-1] (b) is good because it isolates tool-specific
details about flip-flop modeling within tool-specific libraries. This
methodology facilitates simultaneously optimizing the performance
of simulation, equivalence-checking, model-checking and physical
design within a project’s design flow.

8.2 RTL X State
Two-state in this book refers to eliminating the X, and using

only 0, 1 and Z states. Although tri-state buses have an important
place in modern system design and simulation, the bulk of the logic
and nodes are only two-state, not tri-state.

Our initial purpose in eliminating the fourth X-state was simula-
tion performance. We are not alone in eliminating the X. In recent
years, new vendor simulator releases provide the option of simulat-
ing without an X-state in order to achieve greater simulation perfor-
mance.

However, we believe that using the X-state in RTL simulation is
a bad idea, even without the performance penalty that it causes.
RTL simulation using the X-state can be both excessively pessimis-
tic and optimistic, and attempts at overcoming these shortcomings
are impractical.

176 CHAPTER 8

8.2.1 RTL X-STATE PROBLEMS

8.2.1.1 RTL X-State Pessimism

Arithmetic operations are one example of gross pessimism in
X-state RTL simulation. Consider the [Example 8-2].

reg [15:0] a,b,c;

begin
b = 16’b0000000000000000;
c = 16’b000000000000X000;
a = b + c;
$display(" a = %b",a);

end

The result for “a” in a four-state Verilog simulator will be

“a = XXXXXXXXXXXXXXXX”.

In RTL simulation of arithmetic operations, fast simulators map
these operations into host computer instructions. These fast simula-
tors detect any X-bits in the input operands by checking an extra
“flag word” for each input operand. Bits that are “1” in the “flag
word” mark bit positions that are X in the input operand. So if the
flag word is non-zero for either input operand, the simulator skips
the addition instruction, and assigns all X’s to the result. Note that
the overhead added by the check for X-bits in an input operand is a
single-instruction step, and therefore closely matches the perfor-
mance of a single host-machine arithmetic instruction.

At the cost of reduced simulation performance, a Verilog
gate-level simulation can more accurately handle this addition,
resulting in “a = 000000000000X000”. The gate level simulator can
propagate the X more accurately because it pays the performance
cost of visiting each bit in each operand, and generates a result
bit-by-bit.

[Example 8-3] illustrates pessimism in a case statement.Con-
sider the situation where the control signal “d” is “0X.” Interpreting
the “X” as a possible “0” or “1,” only the first two case branches
should be reachable. So, less pessimistically, only the left bit of “e”
is ambiguous, and the result should be “e = X1.” However, a
four-state Verilog simulator will give “e = XX” when control signal
“d” is “0X.”

Example 8-2
...

THE BAD STUFF 177

Example 8-3 reg [1:0] d,e;

begin
d = 2’b0X;
case (d)

2’b00 : e = 2’b01;
2’b01 : e = 2’b11;
2’b10: e = 2’b10;
2’b11: e = 2’b00;
default : e = 2’bXX;

endcase
$display(" e = %b",e);

end

8.2.1.2 RTL X-State Optimism

More insidious is the way that RTL simulation of case state-
ments and if-else statements with an X-state can lead to optimistic
results, and thereby hide real start-up problems in a design.

Given an XX as the start-up state for d, the case statement in
[Example 8-4] will take the default branch. That only test one of
the four possible branches the start-up condition could actually
take, if we consider the four possible two-state interpretations of the
XX bits.

Example 8-4 reg [1:0] d,e;

begin
case (d)

2’b00 : e = 2’b01;
2’b01 : e = 2’b11;
2’b10 : e = 2’b10;
default : e = 2’b00;

endcase
$display(" e = %b",e);

end

8.2.1.3 Impractical

As a thought exercise, it is possible to envisage an RTL style
that would intercept and process X-states more accurately, moderat-
ing both the pessimism and the optimism.

[Example 8-5] (a) shows an if-else statement that accurately
intercepts and propagates an X-state. [Example 8-5] (b) presents a

...

...

178 CHAPTER 8

case statement that is similarly modified to intercept X-states and
propagate their affect on the result more accurately.

Example 8-5

a) X intercept in if-else

if (f = = = 1’b0)
g= 2’b00;

else
if (f = = = 1’bX)

g = 2’b0X;
else

g = 2’b01;

b) X intercept in case

reg[1:0]d,e;

begin
case (d)

2’b00 : e = 2’b01;
2’b0X : e = 2’bX1;
2’b01 : e = 2’b11;
2’bX0 : e = 2’bXX;
2’bXX : e = 2’bXX;
2’bX1 : e = 2’bXX;
2’b10 : e = 2’b10;
2’b1X : e = 2’bX0;
2’b11 : e = 2’b00;

endcase
end

Example 8-6

Another way around the pessimism/optimism problems with the
case and if-else statements is to express the state transitions in
boolean form. [Example 8-6] shows how the state transitions in
[Example 8-4] can be expressed in a boolean form that propagates
X’s with only the mild pessimism familiar to users of X-state in
gate-level simulators.

reg [1:0] d,e;

begin
e = { (^d),~d[1]};

end

These examples illustrate how RTL usage that attempts to inter-
cept X’s everywhere is a not a good idea. Here are some reasons for
not intercepting X’s.

Simulation performance. For case and if-else statements, all
the extra tests for X’s add to the CPU processing that the simu-
lator has to do.

Labor content. Someone has to do the work of adding the extra
X-test case and if-else statements, or reduce the branch state-
ments to boolean form.

...

...

THE BAD STUFF 179

Complexification. A good feature of RTL design is that it can
present a designer’s intent more clearly than boolean-level
design, and intercepting X’s detracts from the clarity.

Completeness. There is no current method of guaranteeing that
the designer’s X interception and propagation is complete
enough to avoid the pessimism and optimism.

Synthesis. X interception makes the RTL a ternary logic design,
which has to be thrown out when mapping the design to binary
logic gates in synthesis.

We prohibit use of X-intercepting and X-assignments anywhere
in our RTL logic design. This includes the X-intercepting default in
fully specified case statements as shown in Thomas and Moorby
[1998] and in [Example 8-7].

case (select)
2’b00 : mux = a;
2’b01 : mux = b;
2’b10 : mux = c;
2’b11 : mux = d;
default : mux = ’bX;

endcase

Our RTL design style requires that all case/casex statements
be fully-specified, so assigning an X in a default is never needed for
telling synthesis about don’t-care situations.

Contemporary logic synthesis technology allows for greater
optimization of generated gates for case/casex statements in
which certain input control variable state values are impossible. For
these case/casex statements, the designer does not care about
what output states the gates generate for those control state values.

Given the importance that we assign to RTL-based verification,
we feel that the extra gates saved by allowing synthesis to optimize
don’t-care logic are not worth:

Example 8-7

precluding the simulation of gate-based ATPG test vectors
against the RTL chip models.

the challenges it presents to fast RTL-to-gate boolean equiva-
lence checking between the RTL and the gate level description
[Foster 1998].

the semantic mismatches between RTL and gate-level simula-
tion.

...

180 CHAPTER 8

8.3 Visits
See Visit
Minimization
Principle in
section 5.3

Chapter 5 introduced the principle of minimizing the frequency
and granularity of visits for best RTL logic simulation software
performance. In this section, we review RTL styles that degrade
simulation performance by their high visit frequency and fine visit
granularity. Primary visit simulation performance offenders include:

referencing bits instead of buses,

configuration tests throughout the duration of a simulation, and

loops.

8.3.1 Bit Visits
To achieve the best RTL simulation performance, designers

writing Verilog code focus on the signal bus instead of the signal bit.
In Chapter 6, we recommended parallel value operations instead of
operations on individual bits. In that chapter, we used the example
of a content-addressable memory coding. In [Example 8-8], we
illustrate the Verilog coding for error-correcting encoding logic,
using bit references (a), which simulate slow (bad), and parallel
value operations (b), which simulate fast.

a) Bit references

c_ecc_out_1 =c_in [10] ^ c_in[11]
^ c_in[12] ^ c_in[13]
^ c_in[14] ^ c_in[15]
^ c_in[16] ^ c_in[17]
^ c_in[18] ^ c_in[19]
^ c_in[20] ^ c_in[21]
^ c_in[22] ^ c_in[23]
^ c_in[24] ^ c_in[25]
^ c_in[26] ^ c_in[27]
^ c_in[28] ^ c_in[32]
^ c_in[35] ^ c_in[38]
^ c_in[39];

b) Parallel value operations

c_ecc_out_1 =^ (c_in & 40’h003ffff893);

Note that [Example 8-8] (b) is a more of a register transfer
operation. Its compactness makes the functional intent more clear
and obvious to a reader, in addition to simulating faster.

Example 8-8

THE BAD STUFF 181

8.3.2 Configuration Test Visits

A project can improve simulation performance by eliminating
configuration test visits after simulation start up. Move configura-
tion decisions to:

compilation controlled by ‘ifdef -‘else - ‘endif.
text macro preprocessing (as described in Chapter 3), or

instantiation of distinct library module types for each distinct
functionality.

Consider the [Example 8-9] of a parameterized first-in-first-out
(FIFO) queue model that designers instantiate in different flavors
throughout a design. The instances differ in their width, depth and
whether to encode the one-hot data input. With every different
value written to the queue, the model calls the encoder function and
returns the indata or the encoded version of indata. This call costs in
simulation run time with every write to the queue.

Example 8-9 module fifo(

parameter WIDTH = 13;
parameter DEPTH = 32;
parameter ENCODE = 0;

function [31:0] encoder;
input [WIDTH-1:0] indata;
begin

if (ENCODE != 0) begin
< calculate encode value based on indata >
end

else
encoder = indata;

end
endfunction // encoder

The simpler and better way is to define two FIFO library types,
one that encodes its data input, and another that doesn’t. Just as
with a parameterized FIFO module instance, the decision as to
whether to use an encoding version or not is on the instantiation
line.

fifo #(12, 64,1) iqueue (…); // Bad, parameterized functionality

fifo_e #(12, 64) iqueue (...); // Good, functionality decided at compile time

...

...

...

182 CHAPTER 8

The separate models for each functionality makes the models
easier to understand, and more likely to simulate correctly as well
as fast.

8.3.3 for Loops
See chapter 3
for OBHD
details.

In our experience, the only RTL need for a for loop is memory
array models that have a clear memory functionality. Since the
OBHD methodology encapsulates memory in library modules, we
limit the for loop to the library designer, and do not make it avail-
able to the chip designer.

Widespread use of the for loop degrades simulation perfor-
mance when designers misapply it. Sampling Verilog from projects
that allowed the for loop in chip designs, we found that every
non-memory for could be eliminated, and the clear memory for
loop could be rewritten to achieve far better simulation perfor-
mance.

[Example 8-10] presents an example of a for loop from a real
design, and the simpler, faster, clearer way to write the same logic.
In the bad example, notice how there is a count increment, a test for
loop completion, and a visit to every bit. The good example elimi-
nates the loop overhead, and allows the simulator to act on the bits
in parallel, loading, inverting and storing the host machine word.

Example 8-10

a) Bad: Slow / Less Obvious b) Good: Fast / Simple and Clear

input [‘N-1:0]a;
output [‘N-1:0] b;
integer i;
reg[‘N-1:0] b;
always @ (a) begin

for(i=0; i<=‘N-1; i=i+1)
b[i] = ~a[i];

end

input [‘N-1:0]a;
output [‘N-1:0] b;
assign b = ~a;

It is often impossible for even the writers of the original Verilog
to determine what would lead to their using a for loop like [Exam-
ple 8-10] (a). We can guess that they had a “gate-instantiation”
viewpoint instead of a RTL viewpoint at the time that they wrote
the Verilog.

Compared to [Example 8-10], it may appear somewhat legiti-
mate to use a for loop at interfaces between opposite bit-ordering

THE BAD STUFF 183

conventions. [Example 8-11] shows a loop-based bus reversal and a
concatenation-based bus reversal.

In good design practice, the need for bus bit-ordering reversals
is very rare. It might be argued that because they are rare, their sim-
ulation performance effects would be small. Amdahl’s Law
[Amdahl 1967], however, warns that slow parts of a process will
tend to dominate in the overall process performance. Their rarity
also means that the productivity gain from using the for loop
instead of concatenation would be very minor.

Example 8-11 a) Bad: Simulates slower

input [15:0] a;
output [0:15] b;
integer i;
reg[0:15]b;
always @ (a) begin

for (i=0; i<=15; i=i+1)
b[15-i] = a[i];

end

b) Good: Simulates faster

input [15:0] a;
output [0:15] b;
assign b = {a[0], a[1], a[2], a[3],

a[4], a[5], a[6],a[7],
a[8], a[9], a[10], a[11],
a[12], a[13], a[14], a[15]};

[Example 8-12] (a) shows a FIFO memory model example with
poor simulation performance. Here are some of its performance
problems.

Putting the for loop outside the case results in repeatedly testing
whether reset is on or off.

Rewriting all of the unaddressed words takes simulation time
and contributes nothing to the function’s verification.

[Example 8-12] (b) shows the same FIFO memory model with
improved simulation performance. It tests for reset only once, and
only loops if the reset is true. It also eliminates the rewriting of the
unaddressed memory words

184 CHAPTER 8

Example 8-12 a) Memory model with poor simulation performance

for(i = 0; i < fifo_depth; i = i+1)
begin

case({reset_L_ff, w_addr_ff == i})
2’b00,
2’b01:entry_ff[i] <= 0;
2’b11: entry_ff[i]<= write_data;
2’b10: entry_ff[i]<= entry_ff[i];

endcase
end

b) Memory model with improved simulation performance

if (reset_L_ff)
for(i = 0; i < fifo_depth; i = i+1) entry_ff[i] <= 0;

else
entry_ff[w_addr_ff] <= write_data;

8.4 Simulation vs. Synthesis Differences
This section describes Verilog RTL coding styles that yield mis-

matches between RTL simulation and post-synthesis gate-level
simulation. Prior work on the subject of RTL and gate-level simula-
tions include:

Howe [1997] lists sources of mismatches between pre- and
post-synthesis simulations.

Mills and Cummings [1999] state “that any coding style that
gives the HDL simulator information about the design that can-
not be passed on to the synthesis tool is a bad coding style.
Additionally, any synthesis switch that provides information to
the synthesis tool that is not available to the simulator is bad.”
To prevent mismatches between RTL and post-synthesis simula-
tion, both processes must possess equal understanding of the
RTL design model.

We restate these ideas in the Faithful Semantics Principle.

Faithful Semantics Principle
An RTL coding style and set of tool directives that ensure semantic consistency

between simulation, synthesist and formal verification tools is required.

To avoid RTL and gate-level simulation differences, design
projects can adopt the RTL Verilog style presented in this book.

THE BAD STUFF 185

They must enforce the style by tailoring a lint tool rules set, and
locking the linting step into their design process to check all RTL
Verilog.

If a project does not enforce faithful semantics, RTL simula-
tions lose their credibility, and much more gate-level simulation is
required. Because equivalence checkers base their RTL semantics
on synthesis RTL policies, they are generally no help in detecting
RTL simulation and synthesized gate simulation differences.

The following RTL simulation and synthesized gate simulation
differences draw from our own and others’ experience. Mills and
Cummings’ [1999] paper tells story after story of bad silicon result-
ing from designers overlooking RTL simulation and synthesis dif-
ferences. We are in complete agreement with their goal of avoiding
these differences, and carry this one step further by not allowing the
X-state in RTL Verilog simulation.

We divide the causes of differences into three categories:

explicit differences,
careless coding, and
timing.

8.4.1 Explicit Differences
RTL-based Verilog simulation and synthesis tools allow

designers to deliberately go awry in their RTL verification process,
and create differences between the RTL and gate-level simulation
behaviors.

8.4.1.1 Full and Parallel Case
The full_ and parallel_ case synthesis-directing comments pro-

vide more information to the synthesis tool than used by the RTL
simulator. They too often result in gates that don’t simulate the
same as the RTL.

In Chapter 7, we presented the verifiable RTL design require-
ment of fully-specifying case/casex statements in the RTL, using
the full_case [Example 7-6] (a). Let us look again at this example
here in [Example 8-13] and consider what goes wrong in RTL sim-
ulation.

Full case.

186 CHAPTER 8

Example 8-13 module c (r_o, c_n);
input [1:0] r_o;
output [1:0] c_n;
reg [1:0] c_n;
always @(r_o)

case (r_o) // rtl_synthesis full_ case
2’b00 : c_n = 2’b01;
2’b01 : c_n = 2’b10;
2’b10 : c_n = 2’b00;

endcase
endmodule // c

Given the synthesis-directing full_case, contemporary synthe-
sis tools generate gates that assign 0 or 1 values to the two bits of
c_n for the case when r_o has the value 2’b11. Synthesis optimi-
zations choose the value for c_n in this case.

On the other hand, the RTL simulator treats c_n as a latch when
r_o has the value 2’b11. The designer may contend that the 2’b11
for r_o is impossible in normal operation, but there are circum-
stances that the designer must consider when making that conten-
tion:

states during the start-up sequence,

scan state sequences, and

the designer’s contention may be wrong.

Parallel case.

Designers can add an assertion for the impossible r_o in the
2’b11 state and get diagnostic messages to deal with the normal
operation. However, the assertion for the 2’b11 state does not
address problems with the start-up sequence and scan operation.

For casex statements that have overlapping case-item con-
stants, the parallel_ case synthes is directive produces gates that do
not simulate the same as the RTL.

For casex statements with unique non-overlapping case-item
constants, the simulation behavior is the same between the gates
and the RTL. Whether the parallel_case synthesis directive is
present or not, synthesis produces the same gates for this class of
casex statements. So the parallel_case synthesis directive is
superfluous.

[Example 8-14] shows a casex statement implementation of a
priority encoder. It includes the added parallel_case that tells syn-
thesis to produce faster logic based on the assumption that only one
bit of c_hot is 1. In response to the parallel_ case, the synthesized

THE BAD STUFF 187

logic behaves like a multiplexer, selecting one of the values, and
or’ing it with the non-selected paths. The gate simulation matches
the RTL simulation only within the bounds of the assumption. In
situations where more than one bit is 1, the gate-level version or’s
the assigned c_code values, while the RTL version still simulates
as a priority encoder selecting only one assigned value for c_code.

Example 8-14 casex (c_hot) // RTL synthesis parallel_case
8’b1???????: c_code = 3’b000;
8’b?1??????: c_code = 3’b001;
8’b??1?????: c_code = 3’b010;
8’b???1????: c_code = 3’b011;
8’b????1???: c_code = 3’b100;
8’b?????1??: c_code = 3’b101;
8’b??????1?: c_code = 3’b110;
8’b???????1: c_code = 3’b111;

endcase

Just as with the full_case synthesis directive, use of the
parallel_case synthesis directive too often is based on the same
assumptions that turn out to be wrong.

Here are the style elements that eliminate the full_case and
parallel_case synthesis directives, and thereby maintain alignment
between RTL and synthesized gate simulation behavior.

Eliminating full
and parallel
case.

Fully-specified case/casex statements. For case/casex
statements, this means enumerating all case-item constant val-
ues, with either explicit constant values, a default within the
case/casex statement, or a default value assignment preceding
the case/casex statement.

Eliminating all overlaps from case-item constant values. In the
[Example 8-14], replacing all of the ‘?’s to the left of the ‘1’
with ‘0’s eliminates the overlaps.

Accepting the priority encoder in gates that synthesis generates,
with its added timing delays and gate count. This makes the
simulation behavior of the gates match that of the priority
encoder in the RTL. In non-critical delay paths and areas where
gate-count is not significant, a priority encoder in gates is per-
fectly acceptable.

Explicitly specifying a multiplexer in the RTL. Implementing
the RTL priority encoder as multiplexer makes the RTL simula-
tion match the gate simulation, as well as minimizing the delay
and gate count.

See chapter 7,
[Section 7.1.5]

188 CHAPTER 8

8.4.1.2 X Assignment
In addition to all of the pessimism, optimism and impracticality

problems of RTL X-state simulation discussed earlier in section 8.2
of this chapter, we also remind the reader that it causes simulation
differences between the RTL and the gate-level.

Although it is possible to craft RTL logic in terms of boolean
expressions in place of case/casex and if-else statements to
make the X-state propagate more accurately, such crafting is coun-
terproductive. To be completely safe in their X propagation, design-
ers have to rule out their use of case/casex and if-else constructs
from their Verilog RTL design style.

Many designers believe that making ‘X’ assignments for unused
states in RTL state machine design is a useful trick for debugging
bogus state machines. Because they see this trick working for them
on many of their state machines, it is a strongly-held belief.

However, hard-earned experience with bad silicon caused by the
RTL X-state optimism on other projects, and repeated success with
good silicon on our projects using two-state RTL simulation with
random initialization has convinced us that any crafting of the
X-state in the RTL is misguided.

It is better to eliminate thinking about the X in RTL Verilog, and
focus the project’s Verilog style towards the fastest cycle-based,
two-state RTL simulation possible. Random initialization in the
cycle-based simulator can bring out the start-up problems previ-
ously thought to be addressed by the X-state in standard Verilog
RTL simulations.

Our goal is to run 99% of our simulations at the RT-Level using
cycle-based, two-state techniques with random initialization, and
1% of our simulations at the gate-level with X’s. We run some RTL
4-state simulations, most of them early in the project, to catch over-
sights in the random initialization, missing connections, and other
bookkeeping errors that escape our lint screening.

After all these bookkeeping errors are cleaned up (and we are
no longer seeing X’s in our simulation) we then turn to 2-state sim-
ulation with random initialization to catch the harder bugs and to
prevent X-state optimism problems from masking real design
errors.

So far, this method has caught all of our start-up state problems
before silicon. We usually detect and fix one last start-up state prob-
lem for each new chip design using X-state simulation at the
gate-level before going to first silicon [Bening 1999b].

THE BAD STUFF 189

8.4.1.3 Other Forms of State Machines
Chapter 4
introduces the
Verifiable
Subset
Principle.

To the other forms of state machines, we apply the Verifiable
Subset Principle. Applying this principle to a design project using
two-state RTL simulation, the case and the casex (for its wild
card) with control variables are a simple and sufficient subset. This
policy rules out:

constant case test expressions,

implicit state machines, and

casez.

Each of these adds to the complexity of the Verilog, and have
their own peculiar ways of compounding the complexities of simu-
lation differences between the RTL and gate-level.

Constant case
test expressions

Case statements with a constant (typically a ‘1’) in their test
expression combined with parallel_case as shown in [Example
8-15] produce RTL and gate-level simulation differences in the same
way as the case/casex statement with a controlling signal as
shown in [Example 8-15].

Example 8-15 casex (1 ’b1) // RTL synthesis parallel_case
c_hot[7] : c_code = 3’b000;
c_hot[6] : c_code = 3’b001;
c_hot[5] : c_code = 3’b010;
c_hot[4] : c_code = 3’b011;
c_hot[3] : c_code = 3’b100;
c_hot[2] : c_code = 3’b101;
c_hot[1] : c_code = 3’b110;
c_hot[0] : c_code = 3’b111;

endcase

Since constant case test expressions are another way to say the
same thing, we follow the Verifiable Subset Principle and rule it
out.

Implicit state
machines

[Example 8-16] illustrates Verilog code for an implicit state
machine. Synthesis tools support implicit state machines. Implicit
state machines eliminate the case/casex statement from the state
machine and merge the state transitions into the single flow of
control. While Arnold etal. [1998] described and advocated implicit
state machine techniques in Verilog, they noted that designers need
to take care to avoid simulation and synthesis differences.

190 CHAPTER 8

Example 8-16 always
begin

@(posedge ck);
e1 <= 2’b00;

@(posedge ck);
e1 <=2’b01;

@(posedge ck);
e1 <=2’b11;

@(posedge ck);
e1 <=2’b10;

end

Implicit state machines do not fit into our verifiable RTL design
style for two reasons:

They introduce another set of complex rules regarding potential
RTL simulation and synthesized gate simulation differences.

They merge the designer’s functional intent with the state
machine state register storage.

casez. In its two-state semantics, the casez is exactly the same as the
casex. . They both provide the very useful wildcard ‘?’ “don’t care”
option for case-item constants. Based on alphabetical order, we
picked the casex to support, and avoid any issues regarding differ-
ences in RTL and gate-level simulation of the casez.

As described in
section 7.1.5.

In verifiable RTL design style, we accommodate the Z-state by
encapsulation and assertions. The encapsulation methods for
tri-state receivers shown there provide better verification than the
“don’t care” treatment of the Z-state in casez statements.

8.4.1.4 Initial blocks
Designers generally enclose initial blocks between translate off/

on directives. This method explicitly gives more information the
RTL simulation than to the synthesized gate-level simulation. The
designers generally do this to temporarily bypass start-up sequence
testing, and go straight to testing the post-reset functionality of the
block, chip and systems.

THE BAD STUFF 191

Example 8-17 module dff (q, d, ck);
output [7:0] q;
input [7:0] d;
input ck;

always @(posedge ck)
q<= d;

// rtl_synthesis off
initial

q = 8’h00;
// rtl_synthesis on
endmodule // dff

[Example 8-17] places initialization code directly into the mod-
ule. This method of bypassing initialization testing typically invali-
dates any later initialization testing with RTL simulation.

A better way to bypass or inclusion initialization testing is to
make the decision conditional in the testbench, outside the chip
design. This method localizes the control of whether a test runs
with or without initialization testing.

Encapsulation
is described in
Chapter 3 as
another one of
the benefits
resulting from
the OBHD
methodology.

The best way to control initialization is encapsulating it in an
$InitialState(q) user task called from within the initial procedural
block, replacing the assignment to q. This localizes the deci-
sion-making as to whether to apply initialization within the user
task, so that it does not have to be repeated in block, chip and sys-
tem testbenches.

8.4.2 Inadvertent Coding Errors
This section describes specific examples of inadvertent Verilog

coding errors that can cause differences between the simulated
behavior of the RTL Verilog and the gate-level Verilog. Designers
with any experience in RTL Verilog quickly become familiar with all
of these kinds of coding errors, which generally reinforces their
locking linting into their design process as the first step.

8.4.2.1 Incomplete Sensitivity List
Incomplete sensitivity lists are the most well-known source of

RTL simulation problems, RTL and gate-level simulation differ-
ences, and annoyance to logic designers. [Example 8-18] illustrates
an incomplete sensitivity list, where the “or z” required for correct
RTL event-driven simulation functionality is omitted.

192 CHAPTER 8

Example 8-18 module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] w, x, y, z;
reg [7:0] p, r, s;

always @(w or x or y) // or z omitted
begin

r = w | x ;
s = y | z ;
p = r & s;

end
endmodule // b

8.4.2.2 Latch Inference in functions
Inadvertent latch inferences happen because of omitted default

assignments in if and case/casex statements. Outside of functions,
inadvertent latch inferences are indeed design errors, but they
simulate the same in RTL and gate-level simulation models.

Within functions, inadvertent latch inferences due to omitted
default assignments create RTL and gate-level simulation
differences. The RTL function behaves as a latch in simulation,
while the synthesize gates behave as combinational logic, with no
state storage.

8.4.2.3 Incorrect Procedural Statement Ordering
Synthesized gates in the gate-level simulation behave as if a

sequence of combinational logic statements is ranked ordered cor-
rectly, even where they are not. RTL simulations can behave as a
latch, hanging on to previously assigned values for out-of-order
assignments.

The procedural block in [Example 8-19] has an out-of-order
assignment to p. If only y and z change within an evaluation cycle,
the changes that they cause will not be seen on p until the next eval-
uation cycle. The simulation of the gates synthesized from this RTL
propagates changes in y and z through to p within the same evalua-
tion cycle.

THE BAD STUFF 193

Example 8-19 module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] w, x, y, z;
reg [7:0] p, r, s;

always @(w or x or y or z)
begin

r = w | x; // rank 1
p = r & s; // rank 2
s = y | z; // rank 1

end
endmodule // b

In our experience, designers correctly sequence statements
within procedural blocks as they initially write their Verilog over
99% of the times, but not 100%. Out of every 100,000 lines of Ver-
ilog, they may make one or two mistakes in their procedural state-
ment sequencing. While RTL simulation may reveal these errors
eventually, it is much more productive to detect them immediately
after design entry through linting.

8.4.3 Timing
Verifiable RTL design requires that a design project encapsulate

all Verilog containing timing or clock-generation. A project that
allows RTL timing control decisions to be distributed throughout the
team members will likely create difficulties in their verification
process. In addition to RTL and gate-level simulation differences,
other difficulties include:

Haphazard use of delays in a design adds labor (or roadblocks)
in progressing to cycle-based simulation and emulation.

Logic races cause test differences (and failures) in moving a
simulation from one vendor’s simulator version to another ver-
sion (or vendor).

Verilog practices that use delays and introduce races in the RTL
design complicate the timing verification of the RTL model.
Commingling timing with the RTL function violates the
Orthogonal Verification Principle.

See
Orthogonal
Verification
Principle in
chapter 2.

8.4.3.1 Delays
Delay specification has limited use in a designer’s RTL Verilog.

Because synthesis discards all delay values in the RTL, their use
can result in confusion to the engineers reading the Verilog at a

194 CHAPTER 8

minimum, and differences between the simulation behavior of RTL
and the synthesized gate-level logic. The following examples go
from controversial to worse practices.

Flip-flop assign-
ment delays.

Example 8-20

The [Example 8-20] of delay usage in flip-flop model blocking
assignments is fairly widespread practice.

module dff_2 (q, ck ,rst, d);
input clk ,rst;
input [1:0] d;
output [1:0] q;
reg [1:0]q;
always @(posedge ck)
q <= #1 (rst == 1’b0) ? d : 2’b00;

endmodule // dff_2

A feature of putting a delay in the nonblocking assignment is
that it separates the controlling clock edge from the resultant q out-
put change in a waveform viewer. Without the delay, the waveform
display showing the clock and the data change appearing to happen
at the same time is disconcerting to some designers.

A project must globally control the flip-flop assignment delay to
be less than the clock period (to prevent long-path problems) and to
be identical (for simulation efficiency). Data changes in q will be
late if the delay #1 exceeds the clock period. If a project has many
different delay values for flip-flop assignments, the simulator has to
revisit all of the changed outputs at the different times when they
change.

Flip-flop assignment delays may mask simulation event clock
skew. This skew is not physical clock skew, but skew in the RTL
simulation events.

Masking simulation event clock skew with delays in flip-flop
non-blocking assignments is regarded as a feature in some design
teams. However, we feel that skew in clock fanout paths reflects a
poorly disciplined RTL design practice. It should be detected and
cleaned out. Skew can sneak into the clock fanout paths of an RTL
design when designers slip up and put non-blocking assignments or
gate-level cells with “realistic delays” in their clock fanout paths.

In verifiable RTL design, the entire clock fanout must be either

connections through ports,

non-blocking assignments in procedural blocks, or

assign statements.

THE BAD STUFF 195

We have used flip-flop non-blocking assignment delays in past
projects, we currently use a test-bench definable ‘DELAYNBA that
can either be defined as :

a blank, to detect inadvertent introduction of skew in the clock
fanout, or

a delay value, to distinguish between flip-flop assignments and
clock fanout signals in a waveform display.

It is important to note that if a project’s leadership changes its
mind about time delay policies for flip-flop assignments, the OBHD
library-based technique localizes the change to the flip-flop library
file.

Testbench
delays.

Engineers often write Verilog testbenches in a less disciplined
manner than the way that they write Verilog for their chip designs.
As shown in [Example 8-21] (a), they sometimes introduce delays
to make the testbench insert control states or observe states just
after a clock edge.

Example 8-21 a) Custom-timed inserted states

always @(posedge ck)
begin

o_ad_valid <= #0.01 2’bz;
o_ad_validb <= #0.01 2’bz;
o_trans_id <= #0.01 6’bz;
o_master_id <= #0.01 3’bz;

end

b) Common-timed inserted states

always @(posedge ck)
begin

o_ad_valid <= ‘DELAYNBA 2’bz;
o_ad_validb <= ‘DELAYNBA 2’bz;
o_trans_id <= ‘DELAYNBA 6’bz;
o_master_id <= ‘DELAYNBA 3’bz;

end

c) Clock-timed inserted states

always @(posedge ‘top.ck_i)
begin

o_ad_valid <= 2’bz;
o_ad_valldb <= 2’bz;
o_trans_id <= 6’bz;
o_master_id <= 3’bz;

end

196 CHAPTER 8

Use of numeric delay values to tune timing in test benches is not
good for verification. It hinders application of cycle-based simula-
tion by complicating the simulator’s evaluation cycles. It also
makes it impossible to synthesize the test bench into gates to
include it in an emulation box along with gates for the chip design.

A better way is globally specifying the timing with a
project-wide named constant delay for inserted states as shown in
[Example 8-21] (b). Use of a named constant helps establish a
project-wide time for inserting values, and allows for refinement of
that time.

The best way is encapsulating the timing for observability and
controllability within a special clock generator as shown in [Exam-
ple 8-22] (c). This encapsulation supports both emulation synthesis
and cycle-based simulation of the test bench along with the hard-
ware design under test.

#0 delays. One form of timing control that is especially bad is insertion of
#0 delays to fine-tune the event ordering for a particular simulator.
These may work around a race for a particular version of a particu-
lar vendor’s simulator, but too often get in the way migrating to the
another version of a simulator.

8.4.3.2 Race Conditions
Logic races arise when engineers code their Verilog in a way

that makes the resultant state dependent on the evaluation order of
two procedural blocks triggered by the same event or simultaneous
events.

Separate but
interdependent
procedural
blocks

Another frequent form of logic race we have seen is in test-
benches where the engineer used blocking assignments in two
interrelated clock-triggered procedural blocks, as shown in [Exam-
ple 8-22] (a).

The evaluation order in this example affects whether a simula-
tion propagates changes from a to c in a single clock cycle or two
clock cycles. If the first always block evaluates first, changes prop-
agate from a to c in a single clock cycle. If the second always
block evaluates first, changes propagate from a to c in two clock
cycles.

The evaluation order in [Example 8-22] (a) cannot be guaran-
teed between two different vendor’s simulators, or even successive
version of Verilog simulators from the same vendor. Some people
regard this as a bug in Verilog. In other viewpoints, it is a feature,

THE BAD STUFF 197

since it allows enhancements to simulation performance to be
unconstrained by a rigid evaluation order for simultaneous events.

Gates synthesized from [Example 8-22] (a) behave as though
both assignments are non-blocking assignments as in (b), and take a
second clock cycle to propagate changes from a to c.

Example 8-22

a) Blocking assignments with
a race

b) Non-blocking assignments
eliminate the race

always @(posedge ck)
begin

b = a;
end
always @(posedge ck)
begin

c = b;
end

always @(posedge ck)
begin

b<= a;
end
always @(posedge ck)
begin

c<=b ;
end

c) Sequential/combinational
blocks eliminate the race

d) Combined combinational
block eliminates the race

always @(posedge ck)
begin

b <= a;
end
always @(b)
begin

c = b;
end

always @(a)
begin

b = a;
c = b;

end

The (b), (c), and (d) in [Example 8-22] show ways of eliminat-
ing the race in (a). Each of them has a different behavior, but their
state outcome is independent of a simulator’s simultaneous event
evaluation order.

(b)

(c)

(d)

takes a second clock cycle to propagate changes from a to c.

propagates changes from a to c in a single clock cycle.

propagates changes from a to c in response to changes in a.

Race analysis
tools

Engineers can use the race analysis features in logic simulators
and static lint checkers to help detect and diagnose logic race condi-
tions, then change their logic timing controls to more precisely
specify the intended evaluation order.

198 CHAPTER 8

8.5 Problematic RTL Verilog
On large chip designs, there are usually some modules in which

the RTL Verilog is out-of-the-ordinary and therefore problematic
with respect to its simulation, formal verification and/or synthesis
interpretation. The verification of these modules often have to be
black-boxed out of the normal course of system verification, and
proven independently.

For RTL submodules that are large, complex and need to be
highly optimized for physical area and timing, such as multipliers
and memory arrays, black-boxing makes sense. In those designs,
separate formal proving techniques are in order.

But for simple modules written in a Verilog style that has
ambiguous functional or boolean interpretation, there the added
costs of verifying their function and equivalence independently is
not worth the effort. On top of the costs, there is an increased risk of
incomplete verification when projects attempt to verify designs in a
new context.

Frequent sources of problematic Verilog include:

Designers who bypass lint checks.
Portions of the design that bypass synthesis and implemented
directly as gates or transistors.
Legacy logic believed to be proven “good” because it is already
in silicon and works.
New designers whose interpretation of RTL-to-gate understand-
ing is not yet developed.

8.5.1 Linting and Problematic RTL Verilog
Linting is fundamental in screening out problematic RTL Ver-

ilog. [Example 8-23 a)] shows a design problem that we were able
to catch through the lint tool’s strong type checking, which reports
mismatched widths across expression operators as errors.

Example 8-23 a)

b)

done is always zero, whatever the value of count_ff

assign done = & (count_ff [4:0] + 1);

done is one, when count_ff is 5’b11110

assign done = & (count_ff [4:0] + 5’d1);

In [Example 8-23 b)], specifying the width of the literal results
in the intended operation.

THE BAD STUFF 199

Without strong type checking on [Example 8-23 a] Verilog, a
project has to hope that their simulation coverage will be sufficient
and create a condition where done should be one, and be detected
by a simulation test.

8.5.2 Simulation and Problematic RTL Verilog
[Example 8-24] presents a Verilog example from a designer

who wondered “what was wrong with this? It simulates all right.”

Example 8-24
always @(a_r or b_c) begin

if (a_r==1’b1)
d_c = d_c + b_c;

else
d_c = d_c - b_c;

end

To begin with, [Example 8-24] has the problem of what appears
to be feedback, in that d_c ‘s state is dependent upon itself. On top
of that, its simulated behavior is dependent on a simulator’s inter-
pretation of simultaneous changes in a_r and b_c.

8.5.3 Formal Verification and Problematic Verilog
See chapter 6. Formal model checking and formal boolean equivalence check-

ing generally require that the RTL for the that they check have an
unambiguous boolean interpretation. Formal methods may have to
bypass or “black-box” those portions of the RTL design that it can-
not interpret in boolean equations.

The following [Example 8-25] is a model for some hand-crafted
logic that was supplied to us and said to be “already successfully
running in silicon.”

Example 8-25
always @(posedge clk or reset_)

pad_ff <= reset_ ? pad_o : 32’h0;

If you consider what happens in simulation when the reset goes
inactive, this asynchronous reset flip-flop model has
out-of-the-ordinary behavior.

A formal boolean equivalence tool will probably have to “black
box” this, and thereby hinder verification.

The Verilog fragment in [Example 8-26] has two separate
always procedural blocks driving the same d1_ready signal. It

...

...

...

200 CHAPTER 8

was from a 200-line Verilog file supplied to us for a part that was
“proven in simulation and silicon.”

Example 8-26
always @(posedge s1)

d1_ready <= (reset_L) ? 1’b1 : 1’b0;
always @(negedge clk)

d1_ready <= ~d0_ready & d1_ready;

The assignment to the same reg name from separate always
blocks is a problem to many tools, as well as being difficult to inter-
pret by design and verification engineers. We recoded the Verilog
for this design to eliminate assignments from separate always
blocks, and thereby made it

formally-provable,

easier to understand (30 less lines), and

run 4 nanoseconds faster in its physical implementation!

In general, even for logic already running in silicon, we favor
recoding supplied models for verification if there is any problem
with regard formal methods, simulation, or designer interpretation.
Although arguably more complete test than simulation, operating a
part in silicon is not as complete a proof of correct function as can
be accomplish today with the advancements in formal, semi-formal,
and simulation verification methods.

8.6 EDA Tool Vendors
Design projects increasingly rely on EDA vendor tools for their

success in design verification. In addition to contributing to the suc-
cess in verification on design projects, the EDA vendor verification
tools too often add difficulties to a project’s verification process.

Good Vendor Principle
Verification tool vendors must support real user needs relative to a project ’s

design environment, not the tool vendor’s preferred environment.

The following three sections go into detail about difficulties we
have encountered that could have been avoided if the vendors only
knew ahead of time about the project’s design environment. The
difficulties include:

library name clashes/profiling support,

...

...

THE BAD STUFF 201

existing command-line/script “make” environments, and

proprietary tool-directing comments.

To be fair, projects asking vendors to comply with the Good
Vendor Principle should be complying with the Disciplined User
Principle (see chapter 1) in their own work.

8.6.1 Tool Library Function Naming
Vendor simulation support library developers have generally not

been completely aware of the scale of the system simulation models
into which design projects link functions from multiple libraries. In
our system simulation model executables, we have seen fifty or
more function libraries linked with the compiled Verilog, totaling
30,000 to 120,000 functions.

Global naming
discussed in
Chapter 7

To avoid integration name clashes and for profiling support
within such a large name space, all functions must use a prefix com-
mon to all functions within each library.

Part of the quality testing and evaluation process at both the
vendor and the user site should include review of the function entry
point names, to ensure that they all have a common prefix. You can
check for this in UNIX/LINUX environments by going to the
library directory and entering:

nm Iibcv2c.a | grep entry | grep -v static | more

where libcv2c.a is a project-specific PLI library being examined.
The list should contain names with a common prefix as shown
below.

cv2c_report_percentages|2576|extern|entry|$CODE$
cv2c_run_thread|2208|extern|entry |$CODE$
cv2c_run_time_check|2280|extern|entry|$CODE$
cv2c_run_tq| 1208|extern|entry|$CODE$
cv2c_stopwatch|480|extern|entry|$CODE$

Simulation tool developers vary in the degree to which they
apply good prefix-based naming practices in their library functions.
Sampling some libraries at the time of this writing, we see that the
library developers generally have used a prefix-based naming for
their functions to some degree, as shown in [Table 8-1].

...

202 CHAPTER 8

We expect to see better use of prefixes on library functions in
future releases of their simulation tool products.

8.6.2 Command Line Consistency
After Cadence opened the Verilog language in 1990, the first

independent vendors began supplying simulators and support tools
that closely followed the entire Cadence Verilog Reference Manual.
This included the basic command line options, such as +incdir, -f,
-F and +define. Users set up their scripts to run Verilog-based tools
invoking these common command line options.

Since the arrival of these first Verilog-based tools, some vendors
have departed from the original command line options to supply
their own methods for invoking include directories, specifying file
lists and defining compiler options. From our own experiences with
vendor tool evaluations, we find that vendors depart from the
original options for different reasons.

Some tools have their origins in VHDL versions of a predeces-
sor tool that the vendor extended for Verilog. Instead of a C,
UNIX and script-based origin like Verilog, these tools reflect
context semantics that are independent of a specific operating
system.

The original command line options are not in the IEEE 1364
[1995] standard. The tool developers who are not aware of the
large investment users already have in the original options may
think that adherence to these options is not important.

It appears that some vendors are introducing frameworks so that
their Verilog tools run in a consistent manner within their own
domain.

Whatever the reasons, departing from support of the basic com-
mand line options is not a good idea.

THE BAD STUFF 203

It adds to the set up time for evaluation and integration of new
EDA tools. The scripts that support the standard option lists will
not plug and play.

The delay in setting up new tools may cause a user to run out of
time for evaluation before fully realizing the advantages of the
tools.

Vendors who listen carefully to their customers quickly get the
message and generally add a method that supports these options, at
least as an extension to their own manner of invoking their tool.

8.6.3 Vendor Specific Properties

Support for design tools beyond the Verilog language’s original
application to the Cadence Verilog XL™ simulator requires addi-
tional semantic information. Synthesis, coverage, and cycle-based
simulation are examples of Verilog-based tools that include addi-
tional lines to direct them.

The common practice that has grown up across Verilog-based
tools is the use of tool-directing comments, as shown below.

// rtl_synthesis off
// Diagnostic non-hardware Verilog code
// rtl_synthesis on

What is particularly disconcerting is the way that some Verilog
tool vendors format their tool-directing comments to include their
company or tool name.

// <vendor-name> coverage off
// Diagnostic non-hardware Verilog code
II <vendor-name> coverage on

For the user-oriented tool developers, the better way is to format
their tool-directing comments in a form that is open, and a candi-
date for standardization. The IEEE Verilog RTL synthesis standard-
ization group [IEEE 1364.1 1999] proposes tool-directing
comments that do not specify the vendor or any proprietary tool
name. This consensus-building should start at the original inception
of the new tool with a standardization-oriented design.

Here is a general organization of a standardization-oriented
tool-directing comment:

// rtl_<application-name> <application-keyword>

where <application-name> is a generic name for an application,
such as coverage or synthesis.

204 CHAPTER 8

8.7 Design Team Discipline
Poor design team discipline invariably drives up project costs,

increases frustration with design tools, and results in project sched-
ule delays. In the history of technology, certain teams of intelligent,
creative engineers have been exemplary in following a high degree
of design discipline. Other teams have included engineers who mis-
directed their creativity and upset the overall design and verification
process flow.

Since each new project brings a new mix of engineers, design
goals, and verification technologies, the project has to revisit the
process by which they establish a design team discipline. The
essential ingredient in the process is application of the Disciplined
User Principle.

Readers with prior RTL design project experience will recog-
nize the varying degrees of designer discipline they have seen, and
have their own horror stories. The following are some of our experi-
ences with lapses in chip and module level design team discipline.

Chapter 1
introduces the
Disciplined
User Principle.

Chip level. A project had one chip design out of five that did not follow all
of the verifiable design practices of the other four. Some of the
deviations from the common design practices included:

mixed upper and lower case in names,

multiple modules per file, where the name of the file had no
relationship to the names of any of the modules included,
X-state assignments and tests, and

incompletely specified case/casex statements.

Consequently, this chip could not use the full-chip fast
RTL-to-gate equivalence check or the cycle-based simulation tech-
nologies. Other schedule delays came when other designers were
hampered in their understanding of this chip as they tried to help
with the design and verification.

After the frustrations in working on this chip, the project
decided to spend the six labor-weeks to upgrade this chip design to
the common verifiable RTL style used on the other four chips.

Out of the hundreds of modules that comprised each of the other
four chips in the same project, there were two modules that used
in-lined non-blocking procedural assignments instead of library
module instances for flip-flops.

Module level.

THE BAD STUFF 205

This meant that as the engineers added verification tool support
changes to the flip-flop modules in the libraries, they had to remem-
ber to revisit the non-blocking procedural assignments outside the
library in the chip modules. This was a minor hindrance in the
project flow, so the project postponed corrective action for the next
project.

8.8 Language Elements

8.8.1 Keywords
Some readers may not have read Chapter 4 and have skipped to

this chapter directly. For them, [Table 8-2] repeats the list of Verilog
keywords that we do not support for use in RTL chip designs.

Most of these are for gate-level, not RTL design. Some that are
not gate-level are more for test benches (for, force, release). The
for also targets memory library elements.

As mentioned
in chapter 4

8.8.2 Parameters
Although parameter is not in our bad keywords list, we

recommend care in its use in RTL design. The main reasons that
parameters run into troubles in a verification flow are:

206 CHAPTER 8

parameters often cause simulation run-time penalties, for con-
figuration tests that could have been done at compile time, and

the quality of parameter implementation varies between differ-
ent vendor verification tools.

We favor use of ‘define and macro preprocessing (see chapter
4) for our design work. We use ‘define for specification of all con-
stants. Where others might turn to parameters for their ability to
specify constants per-instance, we use macro preprocessing.

Here are some specific examples of ‘define and macro prepro-
cessing in place of parameters.

Code inclusion controls

Use of parameters for code inclusion control is generally very
bad for simulation performance. For modules that have several
functional variants, specify a separate library module type for
each functional variant. Where there is a global inclusion con-
trol on all instances within a design, use ‘ifdef-‘else-‘endif
controlled by a compiler option.

case, casex statement state machine constants

Since designers do not assign state machine constants
per-instance, use of parameters for these constants is question-
able. The ‘define provides the same constant definition by
name capability for state machine constants.

Bit width, memory array sizes

Where a design has the same function applied to different
widths and memory array sizes for each instance, parameters
may be a good fit. However, macro preprocessing can do the
same per-instance width and size adjustments, and add the bene-
fit of generating application-oriented libraries.

8.8.3 User-Defined Primitives
Even though this book is about RTL design, and we rule out the

gate-level keywords primitive and endprimitive from our RTL
style, it is important to emphasize that, for verification processes,
user-defined primitives (UDP’s) are VERY bad stuff both at the
RTL and gate-level.

Model checking and equivalence checking products generally
support combinational UDP’s in later releases. For sequential
UDP’s, verification product support remains questionable. Deriving
the Boolean functionality from sequential UDP’s is a far more diffi-
cult process than deriving Boolean functionality from combina-
tional UDP’s.

THE BAD STUFF 207

Successful RTL verification counts on the RTL design being the
equivalent of the gate-level design. Sequential UDP’s that impede
RTL-to-gate-level equivalence checking wreck the whole
RTL-based verification process, described in Chapters 2 through 6.

Compared with their competitors’ projects that insist on UDP’s
in the Verilog, projects that completely eliminate UDP’s from their
Verilog are able to apply releases of advanced verification tools ear-
lier and with more successful results. In our project work, we elimi-
nate the vestigial UDP’s by applying libraries that support the
object-based methods described in Chapter 4.

Elimination of UDP’s is a key application of the Disciplined
User Principle presented in Chapter 1, by which projects can avoid
problems with Verilog tools, especially formal tools.

8.9 Summary
Compared with most of the current publicly available books and

papers on RTL design, the two most revolutionary ideas in this
chapter are classifying:

in-line flip-flop declarations, and

the RTL X-state

as bad stuff. Through Barnes and Warren [1999], anonymous ref-
eree comments, and informal communication channels, we are
aware of other design shops outside of our own company who have
adopted encapsulated grouping of storage elements as well as
thrown out the X from their RTL design.

On the other topics, there seems to be general agreement that
the following are bad stuff:

RTL and gate-level simulation differences,

RTL styles that hamper simulation performance,

poor design team discipline,

EDA tool vendors who have no understanding of the users’
environment,

lack of RTL language element policies, and

use of UDP’s.

On one hand, designers are looking for specific examples of
what is bad, and why it is bad. On the other hand, some readers in
general agreement with many of the bad stuff ideas may disagree
with details, or may have much more to add to some or all areas.

208 CHAPTER 8

That is as it should be. The authors have changed their minds about
details during the writing of this book, and will continue to do so in
the future. That is called progress.

Verifiable RTL
Tutorial

This chapter presents a verification/user-oriented tutorial on
behavioral register transfer level Verilog. To support good verifica-
tion practices, it presents Verilog as a strongly-typed language with
a keyword set limited to RTL design.

The focus on RTL verification distinguishes this tutorial from
the many sources of Verilog training available in textbooks and
courses. These other sources generally describe the Verilog lan-
guage as specified in the IEEE 1364 [1995] standard, including
delay, switch-level, gate-primitive, and X-state modeling.

Project Linting Principle described in Chapter 4. The Verilog
language specification directs Verilog tool implementors all right,
but Verilog’s poor type-checking, extensive levels of abstraction,
and large keyword set makes the language, as specified, unsuitable
for RTL verification. Use of Verilog in the RTL-specific style
described in this chapter counts on a strong rule checking by a lint-
ing tool.

It is the authors’ belief that engineers can be far more successful
in completing their design by copying and modifying examples.
These examples must meet the requirements of an entire design
flow methodology, and emphasize verification.

9

210 CHAPTER 9

This chapter uses **double asterisks to highlight rules limiting
Verilog language to a Verifiable RTL subset.

This tutorial starts with a minimal design showing two state-
ments, and then proceeds by adding examples of additional Verilog
language statements. Statements consist of combinations of the lan-
guage elements listed below.

Keywords - shown in arial boldface, these are reserved by the
Verilog language.

Names - Begin with a-z, A-Z, and may contain these letters,
numbers 0-9 or underbar _.

Unsized decimal integers - Specify bit ranges, memory sizes.
Examples: r_bit_range[7:0], reg [15:0] m_emory[0:511].

Sized integers - use to represent bits. May be binary, octal, hex
or decimal. Examples: 8’b0011_1001, 2’o2, 13’h0f, 9’d255.
Maximum width: 512 bits. Bits - may have binary 0 or 1 values.
Use “z” values only in binary sized integers to directly drive
tri-state output or inout ports.

9.1 Module

9.1.1 Specification
The following [Example 9-1] illustrates the beginnings of a

design in terms of the smallest possible Verilog module.

module b;
endmodule

The Verilog language does allow you to make this file a little
smaller by placing the above two lines on a single line, but that
would violate a policy that we are starting with here and carrying
through the rest of this book: place no more than one statement per
line.

The user-assigned module name “b” in this example is an ade-
quate name for personal desk-drawer experiments with the Verilog
language, but for a real design project, you would use a more
descriptive name or acronym that follows a project-wide policy.

Example 9-1

VERIFIABLE RTL TUTORIAL 211

[Figure 9-1] illustrates the module type “b” schematically as a
square, with the type name designator at the bottom of the square.

Example 9-2

The module and endmodule are Verilog reserved keywords.
You may not use Verilog keywords as a name for a module, or any
other name that you assign within your Verilog text. For example.

module module;
endmodule

is not legal.

9.1.2 Comments
There are two formats for entering comments in the Verilog lan-

guage.

// to end-of-line
/* to */

For the most part, comments relay supplementary information
from the design engineer that originally enters the Verilog text to
other engineers on the project. Design projects generally have a
standard template for comments that precede each module. Other
comments specific to the design interspersed with the rest of the
Verilog text should be written to supplement the design intent. They
should supplement good layout and naming conventions, and not
obscure the Verilog text itself.

Some comments relay information from the engineer to special-
ized tools that use the Verilog text. Standard Verilog language
semantics define meaning in terms of an event-driven 4-state simu-
lator. Use of Verilog in other types of tools (e.g., cycle-based simu-
lators, synthesis, model checking) require more information than
can be carried in standard Verilog reserved words and statements.

Throughout this tutorial, engineer-to-engineer Verilog com-
ments are shown in italic text, while engineer-to-tool-directive
comments are shown in bold italic text.

Here are some examples of the various forms of comments.

Example 9-3

212 CHAPTER 9

Example 9-4 /* The following module is a simulation
diagnostic aid, not real hardware */

II rtl_synthesis off
module a ;
// The internals of this module will be supplied by
// the formal DV project
endmodule // a
II rtl_synthesis on

In formal terms, Verilog standards documents refer to a com-
ment that communicates information from a user to a tool as
meta-comment. The information within the comment is a pragma.

9.1.3 Instantiation

Modules may be instantiated within modules to form a hierar-
chy of modules. [Figure 9-2] presents the hierarchical diagram
showing the relationship of module “b” with its submodule
instances c1, c2, and d0 within b.

module b;
b_c c1();
b_c c2();
b_d d0();

endmodule // b
module b_c;
endmodule // b_c
module b_d;
endmodule // b_d

This example illustrates instantiations of module types b_c and
b_d within module type b. The two lines starting with module type
name b_c specify instance names c1 and c2 as the instance names
for the two instances.

Also within module b, “d0” is the instance name for module
type b_d.

9.1.4 Interconnection

Now let us look at how we can express the interconnection of
submodules within a module in Verilog. To illustrate module inter-

VERIFIABLE RTL TUTORIAL 213

connection in Verilog, we now introduce three more Verilog key-
words: input, output, and wire.

Implicit Inter-
connection.

Consider the interconnected submodules in [Figure 9-3]. This
example shows the implicit style of expressing interconnection in
Verilog. The input ports in each submodule are “i” and “j”, while
the output ports are called “o.” For the module “b,” the input ports
are “w,” “x,” “y,” and “z” and the output port is “p.” The signal
wires connecting c1 and c2 to d0 are “r” and “s,” respectively.

The port order o, i, j defined for module type b_c in line 5 of the
Verilog defines the connection of these ports to the wires in the
instances b_c within module b.

wire r connects to the output port “o” .

wire w connects to input i.

wire x connects to input j.

module b (p, w, x, y, z);
input w, x, y, z;
output p;
wire p, r, s, w, x, y, z;
b_c c1(r,w,x); // line 5
b_c c2(s,y,z);
b_d d0(p,r,s);

endmodule // b

module b_c(o, i, j);
input i, j;
output o;

endmodule // b_c

module b_d(o, i, j);
input i, j;
output o;

endmodule // b)d

Explicit inter-
connection

The Verilog language also supports explicit identification of a
submodule ports and the wire’s to which they connect. By explic-
itly naming each submodule port and the wire to which you want it
connected to, the declaration order of the ports on the submodule is
immaterial.

214 CHAPTER 9

[Figure 9-4] illustrates the same interconnected modules shown
in [Figure 9-3], but with explicit connections. You can see the con-
trast between implicitly specified connections and the explicitly
specified connections.

Implicit: b_c c1(r,w,x); // line 5

Explicit: b_c c1(.j (w), .j (x), .o (r)); // line 5

In terms of the connections that they specify, these lines are
exactly equivalent.

module b (p, w, x, y, z);
input w, x, y, z;
output p;
wire p, r, s, w, x, y, z;
b_c c1(.i (w), .j (x), .o (r)); // line 5
b_c c2(.i (y), .j (z), .o (s));
b_d d0(.i (r), .j (s), .o (p));

endmodule // b

module b_c(o, i, j);
input i, j;
output o;

endmodule // b_c

module b_d(o, i, j);
input i, j;
output o;

endmodule // b_d

Implicit vs.
Explicit.

The general rules for proper use of implicit and explicit connec-
tions of module instances are:

Use explicit connection specification
on instantiations of modules that have:

complexity

multiple outputs

large number of inputs or outputs (more than five or
so)

low usage

functionality for a specific part of a design in the
project.

VERIFIABLE RTL TUTORIAL 215

Wherever you (or anyone else) has any doubt as to
whether to use explicit or implicit connections.

Use implicit connection specification
on instantiations of modules:

that have simple behavior.

that are single-output, with the output on the left end
of the input-output list.

that have high usage.

that have functionality shared across the entire
project.

that are from a library.

only after the entire project is in prior and complete
agreement about using implicit connections for the
module.

9.2 Adding Behavior
Up until now, we have only looked at the Verilog language for

describing structure. The keywords input and output relate to
behavior, but not enough that we can simulate.

To illustrate behavior, we introduce the Verilog assign key-
word, and our first use of a logic expression.

Example 9-5 a) Module b_c

module b_c(o, i, j);
input i,j;
output o;
wire o;

assign o = i | j;
endmodule // b_c

b) Module b_d

module b_d(o, i, j);
input i, j;
output o;
wire o;

assign o = i & j ;
endmodule // b_d

The & and | operators in the above expressions perform the
bit-to-bit and and or functions on the 1 or 0 values carried by i and

216 CHAPTER 9

j. Using logic symbols for 2-or and 1-and in our hierarchy of mod-
ules, the overall behavior is shown in [Figure 9-5].

9.3 Multi-bit Interconnect and Behavior
In the preceding sections, we have looked at specifying sin-

gle-bit interconnect and behavior in Verilog.

Since the word register in RTL implies something multi-bit, let
us next look at how to extend our preceding examples to a multi-bit
functionality. In the following example, the declarations input, out-
put and wire use the notation [7:0] to specify that the signals are
eight bits wide.

Example 9-6 a) Submodules b_c, b_d b) Module b

module b_c(o, i, j);
input [7:0] i, j;
output [7:0] o;
wire [7:0] o;

assign o = i | j;
endmodule // b_c

module b_d(o, i, j);
input [7:0] i, j;
output [7:0] o;
wire [7:0] o;

assign o = i & j;
endmodule // b_d

module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] p, r, s,

w, x, y, z;
b_c c1(r, w, x);
b_c c2(s, y, z);
b_d d0(p, r, s);

endmodule // b

The assignment target o and the operands i and j in the
above. assign statements refer to all eight bits that comprise these

VERIFIABLE RTL TUTORIAL 217

signals. The follow examples show the equivalent bit-wise behavior
represented by the or assign statement in module b_c.

Example 9-7 a) Expressed as a bit range

assign o [7:0] = i [7:0] | j [7:0];

b) Expressed as individual bit-wise or operations:

assign o [7] = i [7] | j [7];
assign o [6] = i [6] | j [6];
assign o [5] = i [5] | j [5];
assign o [4] = i [4] | j [4];
assign o [3] = i [3] | j [3];
assign o [2] = i [2] | j [2];
assign o [1] = i [1] | j [1];
assign o [0] = i [0] | j [0];

9.4 Parameters

Example 9-8

Instead of having a separate module to perform the same logic
operations on signals of different bit-widths, it is better to use a
common library modules for each function with a parameterized
width.

We can parameterize the signal width of the submodule b_c
shown in [Example 9-6] by using a parameter statement, as shown
in [Example 9-8].

module b_c(o, i, j);
parameter w = 1; // 1 is the default value
input [w-1:0] i, j;
output [w-1:0] o;
wire [w-1:0] o;

assign o = i | j;
endmodule // b_c

b_c #(8) c1 (r, w, x); // 8-bit instantiation of b_c

Library modules may have multiple parameters in their Verilog.
Values assigned to the parameters with each instantiation corre-
spond to the order of the parameter declaration within the library
module. A 32 8-bit word instantiation for a parameterized library
memory module could be written as:

mem #(32,8,5) c1 (...); // “5” is the address register width

...

218 CHAPTER 9

9.5 Expressions
Expressions in RTL Verilog consist of signals, constants, opera-

tors and parenthesis.

Parenthesis force the order of evaluation of an expressions,
starting with the innermost parenthesis, and continuing outward.
For example, the and and or behavior of the preceding hierarchy of
modules examples could be (and more likely would be in RTL for
real designs) written as a single assign statement within the mod-
ule b.

Example 9-9 module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] p, w, x, y, z;

assign p = (w | x) & (y | z);
endmodule // b

9.5.1 Operators

In the following sections, we divide the 28 Verilog RTL opera-
tors into four groups:

**Verifiable RTL

Binary - operate on two operands

Unary - operate on a single operands

Miscellaneous - multiple operators function as a set on two or
more operands.

Library operators - operators limited to use in libraries.

In the following four sections describing operators, a and b rep-
resent signals, constants, or the result calculated from a subexpres-
sion.

9.5.1.1 Binary operators

Arithmetic.

**Verifiable RTL
a, b must be
the same width.

Addition and subtraction is 2’s complement. The operands a
and b must be** the same width, and the result is the same width.
The modulo b operand must be** a power of 2. The modulo result
width is the same as a.

Operator Context Function

+ a + b addition

a - b subtraction

% a % b modulo

-

VERIFIABLE RTL TUTORIAL 219

Bit-wise.

** Verifiable RTL
a, b must be
the same width.

The operands a and b must be** the same width, and the result
is the same width.

Operator Context Function
& a & b and

| a | b or
^ a ^ b exclusive or

~^ a ~^ b exclusive nor

Logical.

**Verifiable RTL
a, b must be
one bit wide.

The operands a and b must be** one bit wide, and the result is
one bit wide.

Operator Context Function
&& a && b and

II a || b or

Relational.

**Verifiable RTL
a, b must be
the same width.

The operands a and b must be the same width, and the result is
one bit wide.

Operator Context Function
== a == b equality
!= a != b inequality
> a > b greater than
< a < b less than

>= a >= b greater or equal
<= a <= b less than or

equal

Shift. The result is the same width as a. The result bits are zero-filled
corresponding to the size of the shift value b.

Operator Context Function
<< a << b logical shift left
>> a >> b logical shift right

9.5.1.2 Unary operators

Bit-wise. The result is the same width as a.

Operator Context Function
~a invert a~

220 CHAPTER 9

Logical.

**Verifiable RTL
a must be one
bit wide.

The operand a must be one bit wide, and the result is one bit
wide.

Operator Context Functionn

! ! a logical not

Reduction. After performing the logic function on all of the bits of a, the
result is one bit wide.

Operator Context Function

^ ^a parity of a

~^ ~^a not parity of a

& &a reduction and

| | a reduction or

~& ~&a reduction nand

~| ~| a reduction nor

9.5.1.3 Miscellaneous operators

Conditional
expression

**Verifiable RTL
a, b must be
the same width.

The operand a must be one bit wide, the operands b and c must
be the same width, and the result is the same width as b and c.

Operator Context Example

? : a ? b : c assign x = (m[3:0] == 4’d5) ?
q[7:4] :
r[3:0];

Concatenation. There are no restrictions on the widths of operands a, b, and c,
The result width is equal to the sum of the widths of the operands.
The number of operands can be 2, 3, 4 etc.

Operator Context Example

{,} {a,b,c} assign t[7:0] = {3’h2,m[0],
q[5:4],
r[1:0] };

Replication. Operand a specifies the result width, and must be a decimal
number.

Operator Context Example

{{}} {a{b}} assign v[7:0] = {8{t[7]}};

VERIFIABLE RTL TUTORIAL 221

Library-only
operators

The following operators are supported only in library modules
for Verifiable RTL **.

Operator Context Function

-a unary minus

* a * b multiply

/ a / b divide
=== a === b equality (0/1/X/Z)
!== a !== b inequality (0/1/X/Z)

The reasons for limiting these five operators to libraries are spe-
cific to the operators.

unary minus - At the RT-level, the invert (~) makes the unary
minus operator redundant, and therefore unnecessary for use
outside of libraries.

multiply, divide - For formal methods, such as boolean equiva-
lence, these operators generally need to be black-boxed and
bypassed within a submodule boundary. Verification of their
correctness must be addressed at their module level.

equality, inequality - Testing for X and Z values is too
error-prone and wasteful of human as well as computing
resources in general use. Limit their use to a small set of thor-
oughly-tested library modules.

9.5.2 Operator precedence

In the absence of parentheses, there is a defined expression eval-
uation order for Verilog expression operators.

However, human memories are fallible, and verification tool
implementors are imperfect. Because the writers, the readers, and
the verification tools occasionally (but too often) get the opera-
tor-precedence-based evaluation order wrong, designers must
ALWAYS use parenthesis in their Verilog to document and enforce
the evaluation order that they intend.

An example of inconsistency with vendor tools and expression
operator precedence is mixing the binary and unary “or” operators.

Example 9-10 wire c, a;
wire [7:0] b;
assign c = a II b; // is not treated consistently
assign c = a I (I b); // is treated consistently

-

222 CHAPTER 9

9.6 Procedural Blocks
A reader could envisage describing most or all of the logic for a

design using assign statements. However, Verilog provides proce-
dural block constructs for more elegantly expressing flip-flops, state
machines and memories.

A procedural block may consist of a single procedural state-
ment, or one or more procedural statements enclosed within begin
and end keywords.

Procedural blocks may be nested within procedural blocks. The
outermost procedural block must be preceded by an always state-
ment or enclosed within function and endfunction keywords.

9.6.1 Combinational Logic

9.6.1.1 Procedural Assignments

Procedural assignment statements are similar to assign statements,
except that:

they don’t have the keyword assign in front of them.

their assignment target must be declared as type reg instead of
wire.

they evaluate based on changes to the signals in the always
statement that precede them (assign statements evaluate in
response to changes to the signals in the expression to the right
of the equal sign).

The following example illustrates combinational logic in the
form of a procedural block that is functionally the same as the logic
described using assign statements in a hierarchy of modules in
section 9.3.

VERIFIABLE RTL TUTORIAL 223

Example 9-11 module b (p, w, x, y, z);
input [7:0] w, x, y, z;
output [7:0] p;
wire [7:0] w, x, y, z;
reg [7:0] p, r, s;
always @(w or x or y or z)

begin
r = w I x;
s = y I z;
p = r & s;

end
endmodule // b

**Verifiable RTL
rules

There are two fundamental rules about describing combina-
tional logic as procedural assignments.

1. The list of signals in the always sensitivity list must contain
all** the primary inputs and only** the primary inputs to the
combinational logic within the procedural block. For example

Omitting “ or z” is incorrect. In an event-driven
simulator, changes to the signal z would not trigger
re-evaluation of the procedural assignments. A
cycle-based simulator might use the wrong order of
evaluation with respect the logic that assigns the
variable z.

Adding “ or s” is also incorrect. In an event-driven
simulator, changes in the logic value of s would
trigger unnecessary evaluations of the procedural
block. For cycle-based simulator, the appearance of
feedback precludes compilation.

**Verifiable RTL
rule

2. The sequence of assignments must be in ascending logic rank
order**. In the preceding example, the assignments to r and s
can be in either order, because they are at the same rank. But
they must precede the assignment to r, where the expression r &
s counts on updated values.

Example 9-12

For logic in the preceding example, we could throw out the r
and s intermediate variables, and the begin - end to get the fol-
lowing functionally equivalent logic.

always @(w or x or y or z)
p = (w l x)&(y l z) ;

Note that this simplified procedural block is logically equivalent
to the following assign statement.

224 CHAPTER 9

Always remember to change the type declaration for the assign-
ment target from reg to wire when changing logic from a proce-
dural assignment to an assign, and from wire to reg when
changing from an assign to a procedural assignment.

9.6.1.2 Functions

Functions specify combinational logic that evaluates input sig-
nal values to produce an output value. The function c_data_in in
[Example 9-14] concatenates an error correcting code to the left
end of a data path.

Example 9-14 module b_dp(ap_in0,ap_in1, ap_out0,ap_out1);
input [39:0] ap_in0, ap_in 1;
output [47:0]ap_out0, ap_out1;
reg [47:0]ap_out0, ap_out1 ;

function [47:0]c_ecc_out;
input [39:0] c_data_in;
begin

c_ecc_out = {(^ (c_data_in & 40’h00000007f8)),
(^ (c_data_in & 40’h003ffff893)),
(^ (c_data_in & 40’h0fc03f5c06)),
(^ (c_data_in & 40’h71c3cfa84d)),
(^ (c_data_in & 40’hb6445533ff)),
(^ (c_data_in & 40’hd298e2fa38)),
(^ (c_data_in & 40’h0f294bd 7f)),
(^ (c_data_in & 40’hea360cfc67)),
c_data_in};

end
endfunction

always @(ap_in0 or ap_in1)
begin

ap_out0 = c_ecc_out (ap_in0);
ap_out1 = c_ecc_out (ap_in1);

end
endmodule // b_dp

Functions may be called from expressions in procedural state-
ments, as in the example, and from assign statements. If we
declare the outs in the example as wire instead of reg, we can
replace the always ... begin ... end with

Example 9-15 assign ap_out0 = c_ecc_out (ap_in0);
assign ap_out1 = c_ecc_out (ap_in1);

VERIFIABLE RTL TUTORIAL 225

9.6.1.3 if-else Statement

The if-else keywords specify logic representing a multiplexer,
as shown in [Figure 9-6].

module b (p, q, s, w, x, y, z);
input s;
input [7:0] w, x, y, z;
output [7:0] p, q;
wire s;
wire [7:0] w, x, y, z;
reg [7:0] p, q;
always @ (s or w or x or y or z) begin

if(s==1’b1)
begin

p = w;
q = y;

end
else

begin
p = x;
q = z;

end
end

endmodule // b

**Verifiable RTL Both branches of the if-else must assign values to the same sig-
rule nals.**

9.6.1.4 case, casex Statements

The case statements represent N-way multiplexers or simple
state machines, while casex statements represent priority, one-hot
or other complex encodings of state transitions.

Both statements compare the control signal within the parenthe-
sis following the case or casex keyword with the literals preced-
ing a colon. Where the control signal value first matches a literal, a
simulator executes the statement or procedural block following the
colon, and skips comparisons of the remaining literals.

The following rules must be observed in case and casex state-
ments.

226 CHAPTER 9

**Verifiable RTL
rule

**Verifiable RTL
rule

**Verifiable RTL
rule

**Verifiable RTL
rule

The bit-width of the control signal must be the same as all of the
literals to the left of the colons.

Either the literal list must account for all possible values of the
control signal, or

there must be a default keyword as the last branch
preceding the endcase,

or a default value must be assigned immediately
preceding the case statement.

The examples below illustrate these various uses of case and
casex statements.

[Example 9-16] shows a 4-way multiplexer. Note that inputs w,
x, y, z and s are in the always sensitivity list, and depending on
the select input s, each one of the case branches assigns one of the
data path input signal values to p.

Example 9-16 module b_mux (p, s, w, x, y, z);
input [1:0] s;
input [7:0] w, x, y, z;
output [7:0] p;
wire [1:0] s;
wire [7:0] w, x, y, z;
reg [7:0] p;
always @(s or w or x or y or z)

case (s)
2’b00 : p = w;
2’b01 : p = x;
2’b10 : p = y;
2’b11 : p = z;

endcase
endmodule // b_mux

This next [Example 9-17] is a state-machine implementation of
a gray-code counter.

VERIFIABLE RTL TUTORIAL 227

Example 9-17. module b_gc (ck ,rst, r_gc);
input ck ,rst;
output [1:0] r_gc;
wire [1:0] r_gc;
reg [1:0] n;
always @(r_gc)

case (r_gc)
2’b00 : n = 2’b01;
2’b01 : n = 2’b11;
2’b11 : n = 2’b10;
2’b10 : n = 2’b00;

endcase
dff #(2) reg_r (.q(r_gc), .ck(ck), .d(n), .rst (rst));

endmodule // b_gc

The following [Example 9-18] shows how a casex can imple-
ment a priority encoder.

Example 9-18 module enum_encode (c_error_vector, c_code);
input [4:0] c_error_vector;
output [2:0] c_code;
reg [2:0] c_code;
always @ (c_error_vector)

begin
casex (c__error_vector)

5’b1????: c_code = 3’h1;
5’b01???: c_code = 3’h2;
5’b001??: c_code = 3’h3;
5’b0001 ?: c_code= 3’h4;
5’b00001: c_code = 3’h5;
5’b00000: c_code = 3’h0;

endcase
end

endmodule // enum_encode

9.6.2 Storage Elements

9.6.2.1 Flip-flops

In [Example 9-17] we showed a grey-code counter with the suc-
cessive counter values stored in a two-bit flip-flop submodule.
[Example 9-19] shows the Verilog for that flip-flop.

228 CHAPTER 9

Example 9-19 module dff (q, ck ,rst, d);
parameter w = 1;
input ck ,rst;
input [w-1:0] d;
output [w-1:0] q;
reg [w-1:0] q;
always @ (posedge ck)

q <= (rst == 1 ’b0) ? d : {w{1 ’b0}};
endmodule // dff

**Verifiable RTL
rule

Verifiable RTL limits flip-flop models to libraries.

9.6.2.2 Latches

Design projects nowadays generally rule out latches, except in
specific areas. Some specific areas where latches may find wide use
are in level-sensitive scan design (LSSD) and memory arrays. In
these areas, projects generally constrain designers to use the latches
in a narrow and exactly specified manner.

Latches have the design advantages of using less area than
flip-flops, and providing timing performance improvements. The
disadvantages are latches can complicate timing verification, as
well as function verification using cycle-based simulation in many
cases.

**Verifiable RTL
rule

Verifiable RTL limits latch models to libraries.**

9.6.2.3 Memories

Memories are extensions of reg signals, with an added specifi-
cation of the size of the memory following the memory name. The
following line declares a memory core, consisting of 512 16-bit
words.

reg [15:0] core [0:511];

[Example 9-20] shows a simulation model for a latch-based
memory with asynchronous read.

VERIFIABLE RTL TUTORIAL 229

Example 9-20 module mwxd(clk,we,wr_ad,rd_ad,di,r_do);
parameter w = 16; // word width
parameter d = 512; // memory depth
parameter a = 9; //address width
input clk, we;
input [a-1:0] wr_ad;
input [a-1:0] rd_ad;
input [w-1:0] di;
output [w-1:0] r_do;
reg [a-1:0] r_wr_ad;
reg [a-1:0] r_rd_ad;
reg r_we;
reg[w-1:0] r_di;
reg[w-1:0] r_do;
reg [w-1:0] core [0:d-1];
wire [w-1:0] c_do;

always @(posedge clk) begin
r_wr_ad <= wr_ad;
r_rd_ad <= rd_ad;
r_we <= we;
r_di<=di;
r_do <= c_do;

end // always
assign c_do = core[r_rd_ad];
always @ (negedge clk)

if (r_we)
core[r_wr_ad] = r_di;

endmodule // mwxd.

References and assignments to memory words must specify an
address, and cannot specify a subrange of a memory word. When
you read or write to a memory word, you get or put an entire word.

**Verifiable RTL
rule

Verifiable RTL limits memory models to libraries.

9.6.3 Debugging

The $display, $write and $finish Verilog language elements
for debugging described in the following sections form the starting
points for addressing design problems. Techniques described in
chapter 3 show how to put Verilog language elements together into
an event monitor and assertion checking methodology.

There is much more to know about debugging tools and tech-
niques that is beyond the scope of this book. There are powerful

230 CHAPTER 9

tools for debugging outside the language for detecting and diagnos-
ing design problems. See your simulation vendor about the latest in
advanced tools for finding bugs.

9.6.3.1 $display and $write Statements

The $display and $write statements consists of the keyword
followed by parenthesis enclosing:

text and optional format specifications in quotes,

optional signals and function calls.

$display and $write statements are the same, except that the
$display statement automatically inserts a newline \n escape char-
acter. The following two lines produce equivalent output.

$display(“Hello Verilog”);
$write(“Hello Verilog\n”);

Additional escape sequences for printing special characters in
text include:

\tThe tab character

\\The \ character

\”The “ character

\dddASCII character specified by octal ddd digits

%%The % character

%mHierarchical path to module containing $display and
$write statement

Verilog provides the following format specification options:

%bsignal in binary

%dsignal in decimal

%hsignal in hexadecimal

%osignal in octal

%ssignal as string

%t$time in decimal

Assigning 16’h7071 value to a 16-bit signal named h, the fol-
lowing $display statement:

$display(" t %t B %b D %d H %h o %o s %s ",$time,h,h,h,h,h);

results in the following output line from simulation:

t 0 B 0111000001110001 D 28785 H 7071 o 070161 s pq

VERIFIABLE RTL TUTORIAL 231

9.6.3.2 $finish

When encountered during simulation, the $finish statement
stops and exits the simulation program. Designers use $finish
statements in testbench Verilog to stop at the end of a test, or in
assertion checkers within chip design, as shown in [Example 9-21].

Example 9-21
if (severity_level == 0) $finish;

9.7 Testbench
None of the examples previously presented in this chapter will

do anything in simulation unless we add a testbench. Here are six
components that we include in a testbench example:

timing control,

input stimulus,

device under test,

reference model,

diagnostic logging, and

assertion checking.

Timing control For best results with cycle-based simulation and logic emula-
tors, as well as preventing races in logic simulations, it is important
that testbench designers isolate timing control into separate mod-
ules. At the core of the timing control is a master clock ck in the
form shown in [Example 9-22]. The test bench [Example 9-25]
assigns the delay value #5 assigned to constant CK_MSTR speci-
fies one half-cycle of the clock period.

Example 9-22 module ck_gen (ck);
outputck;
reg ck;
always ‘CK_MSTR ck = ~ck;
initialck =1’b0;

endmodule // ck_gen

Input stimula-
tion.

[Example 9-23] illustrates a test bench input stimulus module.
With each clock, it supplies successive value for the test vector
r_stimulus. To hold the test value in each clock, this test bench
instantiates the flip-flip from [Example 9-19]. The module stops the
simulation when it completes traversal of the complete set of
r_stimulus values.

...

...

232 CHAPTER 9

Example 9-23 module stimulus(ck,c_stimulus,c_reset);
inputck;
output [4:0] c_stimulus;
output c_reset;
reg reset;
reg [4:0] c_stimulus;
reg [5:0] c_counter;
reg c_reset;
wire [5:0] r_counter;
always @(r_counter) begin

c_counter = r_counter + 6’d1;
if (r_counter == 6’h20)

$finish;
c_stimulus = c_counter[4:0];

end
dff #(6) reg_counter (r_counter,ck,c_reset,c_counter);
initial begin

c_counter = 6’d0;
c_reset = 1’b1;
‘TIME_RESET;
c_reset = 1’b0;

end
endmodule // stimulus

Device under
test.

The device under test for the testbench described in this section
is the casex state machine enum_encode from [Example 9-18].

Reference
model.

To provide a reference model for comparison with the model
being tested, we add a “enum_encodez z” module instance. It is
the same as the model from [Example 9-18], except the module
name has a z suffix, and it uses casez in place of the casex This
testbench verifies that a casex is functionally equivalent to a
casez for all two-state values of a five-bit input.

Diagnostic log-
ging.

[Example 9-24] is a diagnostic logging module that tracks the
progress of a test through each clock cycle. It provides output that
assures the verification engineer that the stimulus module traverses
the sequence of test values expected, and supports diagnosis of
design errors by showing the output values side-by-side.

VERIFIABLE RTL TUTORIAL 233

Example 9-24 module log_xz_test(ck_l,c_stimulus,c_codex,c_codez);
input ck_l;
input [4:0] c_stimulus;
input [2:0] c_codex,c_codez;
always @(posedge ck_l) begin

$display (" %t %b %h %h", $time,
c_stimulus,c_codex,c_codez);

end
endmodule // log_xz_test

The special diagnostic logging clock ck_l allows designers to
see the logged signal values after the standard hardware ck triggers
updates to the registers, and their new values propagate to the
logged signals.

Assertion
checking.

To check the results with each cycle of our simulation, we
instantiate the assert_always simulation assertion checker module
from [Example 3-1] in Chapter 3. It illustrates some of the simula-
tion assertion checker concepts presented in Chapter 3, and asser-
tion checkers as object-based library modules discussed in Chapter
4.

Completing the
testbench.

In [Example 9-25], we put together the top-level testbench
from instances of the clock timing control module from [Example
9-22], the Stimulus input stimulus module in [Example 9-23], the
device under test from [Example 9-18], and the reference model
derived from editing [Example 9-18]. (The changes are replacing
the casex with a casez, and suffixing the module name with a z.)
For checking the results, the test bench instantiates log_xz_test
diagnostic logging module from [Example 9-24], the
assert_always assertion checking module from [Example 3-1].

Note that the test bench in [Example 9-25] defines the timings
for the reset and the clock.

234 CHAPTER 9

Example 9-25 // clock half-period:
‘define CK_MSTR #5
// reset hold time:
‘define TIME_RESET #6
// run with assertion active:
‘define ASSERT_ON
module testbench();

wire ck;
wire [4:0] c_stimulus;
wire [2:0] c_codex;
wire [2:0] c_codez;
wire c_reset;
ck_gen ck_gen (ck);
stimulus s (.ck (ck), .c_stimulus (c_stimulus),

.c_reset(c_reset));
enum_encode x (.c_error_vector (c_stimulus),

.c_code (c_codex));
enum_encodez z (.c_error_vector (c_stimulus),

.c_code (c_codez));
// result checking:
log_xz_test xz_test(ck,c_stimulus,c_codex,c_codez);
assert_always #(1,”c_codex != c_codez”) safety

(ck, ~c_reset, c_codex == c_codez);
endmodule // testbench

Object-Based
Hardware
Design
Principle
described in
Chapter 4
Section 4.3

System design projects apply testbenches to modules, ensem-
bles of modules in design blocks, multiple blocks in chips, and mul-
tiple chips in the system. By placing all of the clock generator,
logging and assertion modules in their own separate libraries, the
project benefits from the Object-Based Hardware Design Prin-
ciple. Verification engineers can continue to refine the clocking,
logging and assertion checking throughout the duration of the
project. Likely areas of refinement include:

Timing relationships of the clock generator(s), logging and
assertion checking.

Reduced logging through compiler code inclusion controls.

Formatting, compression and analysis of logging and assertion
outputs.

Accommodation of cycle-based simulation and emulation.

VERIFIABLE RTL TUTORIAL 235

9.8 Verilog Compilation

9.8.1 Compiler directives

Verilog compiler directives support named constant values and
code inclusion controls.

9.8.1.1 Constants

Named constant value examples are state machine state names,
data path fields/widths, and memory array sizes.

Example 9-26 a) Here we have state machine state names defined in terms of
numeric equivalents.

‘define R_NORMAL2’h0
‘define R_WAIT 2’h1
‘define R_DONE 2’h2
‘define R_IDLE 2’h3

b) The following lines define names for bit fields.

‘define IO_T_FLD 15:10
‘define IO_Q_FLD 9:4
‘define IO_S_FLD 3:0

c) This line defines a memory array size.

‘define QT_DEPTH 64

Using ‘include directives, a design project can centralize their
‘define constant definitions on a few files, and share the definitions
across all the modules that use these constant definitions. Wherever
one module writes a code value to a signal or memory and another
module must read that same information, use a ‘include pointing
to the same file of ‘define values in both modules.

The following [Example 9-27] illustrates an application of the
grey code to the state machine states from a file named
“Example9-25”.

236 CHAPTER 9

Example 9-27 module b_gc (ck ,rst , r_gc);
‘include “Example9-25”

input ck ,rst;
output [1:0] r_gc;
wire [1:0] r_gc;
reg [1:0] n;
always @(r_gc)

case (r_gc)
‘R_NORMAL : n = ‘R_WAIT;
‘R_WAIT : n = ‘R_IDLE;
‘R_IDLE : n = ‘R_DONE;
‘R_DONE : n = ‘R_NORMAL;

endcase
dff #(2) reg_r (.q(r_gc), .ck(ck), .d(n), .rst (rst));

endmodule // b_gc

Constant expressions are useful when designers specify the
width of signals that hold ASCII 8-bit codes, or memory arrays in
terms of the total word capacity.

Example 9-28 reg [(8 * ‘SWDTH) - 1) : 0] r_chip_id;
reg [‘IO_T_FLD] qt_array [0: ‘QT_DEPTH-1];

9.8.1.2 Code Inclusion

Code inclusion controls provide a design project with a mecha-
nism through which they can compile a single body of source files
optimally targeting selected simulation goals, such as detection,
diagnosis, or coverage measurement.

Selection of a code inclusion option begins with the presence or
absence of the option name following +define+ on the simulation
compile command line.

<vendor-compile-command>+define+RECORDOFF
<compile-options>

Then, in the Verilog for the test bench, chips, and libraries, the
compiler tests the ‘ifdef-‘else-‘endif sequences.

‘ifdef ‘RECORDOFF
‘else
<trace-file recording PLI calls>
‘endif

VERIFIABLE RTL TUTORIAL 237

9.8.1.3 Command Line

Compilation. Many Verilog EDA tool vendors support the following com-
pile-time command line options:

+define+<name> +incdir+<directory path> <files> -v
<library-file> \
-f <command-file> -F <relative-command-file>

where:

+define+<name>compile time code inclusion option names

+incdir+<directory path>paths to directories containing files of
constants for ‘include “<file-name>” in the Verilog files and
<library-files>

<files>list of files containing the Verilog code for the modules in a
design.

-v <library-file>Verilog compilers only process the modules from
these files as they are needed in the design module files.

-f <command-file>file containing compile options. Relative
<files> in the -f <command-file> are relative to the directory
where the command line executes.

-F <command-file>file containing compile options. Relative.
<files> in the -F <command-file> are relative to the directory
where the <command-file> resides.

Verilog compilers read the entire command line and all of the
command files before reading the files specified. Constants and
include directories defined at the end of the options are visible to all
of the Verilog files and libraries.

Compile options specified on the command line and in com-
mand files are the same. The layout of the options across lines is
different.

Continuation of a command line requires a backslash \ that tells
the command line parser to go on to the next line for more
options. An end-of-line with no \ marks the end of options on a
command line.

Command files do not use the backslash for continuation across
lines. The command file parser treats the end-of-line as white
space separating options. The end-of-file marks the end of
options on a command file.

Command files allow use of Verilog //-to-end-of-line comments.

238 CHAPTER 9

Simulation. Simulation run options widely supported by vendor simulators
include:

-I <log_file> +<user-plusarg>

where:

-I <log_file>Simulator writes $display and $write messages to the
specified <log_file> name.

+ <user-plusarg> Provides simulation run controls.

The Verilog $test$plusargs (<user-plusarg>) built-in func-
tion tests for +<user-plusarg> in the command line.

The Verilog PLI mc_scan_plusarg (<user-plusarg>) func-
tion tests for +<user-plusarg> and returns the remainder of the
string that follows the <user-plusarg>. A simulation command line
argument of the form:

+rseed=89674523

can be detected and processed by the following PLI C code.

char *plusarg;

plusarg = mc_scan_plusargs(“rseed= ”);

After executing the function call, plusarg contains a pointer to a
string containing “89674523.”

9.9 Summary
This chapter presented a tutorial on Verilog language elements

applicable register transfer abstraction level and their verifiable use.

For verifiability, we emphasized strong typing and fully-speci-
fied state machines using case, casex and if-else statements.
Since the Verilog X-state is counter-productive in RTL verification
(see chapter 7), we omitted it.

We reviewed debugging statements, constant naming, code
inclusion controls and command line options for compilation and
simulation in a verification environment.

...

10
Principles of

Verifiable RTL
Design

The conception of a verifiable RTL philosophy is a product of
two factors: one, inherited seat-of-the-pants experiences during the
course of large system design; the other, the sort of investigation
which may be called “scientific.” Our philosophy falls somewhere
between the knowledge gained through experiences and the knowl-
edge gained through scientific research. It corroborates on matters
as to which definite knowledge has, so far, been ascertained; but
like science, it appeals to reason rather than authority. Our philoso-
phy consists of a fundamental set of principles which, when
embraced, yield significant payback during the process of verifica-
tion.

10.1 Principles
In general, a principle is a comprehensive and fundamental law

or doctrine--while a set of principles constitutes a philosophy. In
this section we summarize the principles that combine to form the
framework for our verifiable RTL philosophy.

240 CHAPTER 10

10.1.1 Disciplined User Principle
Introduced in
Chapter 1.

The Disciplined User Principle states that designers who limit
their degree of freedom in writing RTL will encounter the fewest
anomalies in tool behavior. A disciplined design approach provides
cooperation with the various tools used during the process of design
and verification. This cooperation can return an order of magnitude
improvement in performance and capacity of simulation and equiv-
alence checking tools--while providing a common mechanism for
communicating design intent across a design organization.

10.1.2 Fundamental Verification Principle
Introduced in
Chapter 2.

The Fundamental Verification Principle states that to avoid
unnecessarily complex and unverifiable designs, specification must
be completed before RTL implementation. Developing an unambig-
uous specification is fundamental to verifiable design.

10.1.3 Retain Useful Information Principle
Introduced in
Chapter 2.

The Retain Useful Information Principle states that a single
process within a design flow should never discard information that
is pertinent to another process within the flow. To conveniently
operate between the RTL description and the physical flow, it is
important that the various transformations consider subsequent pro-
cess requirements within the flow. An example of applying this
principle would be embedding the hierarchical RTL signal and wire
names in the physical design during flattening, which will be used
by the equivalence checking process for cutpoint identification. An
alternative example is the use of assertion checkers and event moni-
tors for capturing design assumptions, environmental constraints,
and expected behavior during the RTL implementation phase. The
loss of this design knowledge and environmental assumptions can
result in both higher verification and maintenance costs.

10.1.4 Orthogonal Verification Principle
Introduced in
Chapter 2.

The Orthogonal Verification Principle states that within a
design flow, functional behavior, logical equivalence, and physical
characteristics should be treated as orthogonal verification pro-
cesses. This principle provides the foundation for today’s static ver-
ification design flows, which enables a verification process to focus
on its appropriate concern through abstraction. By applying this
principle, we are able to achieve orders of magnitude faster verifica-
tion, support larger design capacity, and higher verification cover-
age including exhaustive equivalence and timing analysis.

PRINCIPLES OF VERIFIABLE RTL DESIGN 241

10.1.5 Functional Observation Principle
Introduced in
Chapter 3.

The Functional Observation Principle states that a methodol-
ogy must be established to provide a mechanism to observe and
measure specified function behavior. Without looking for specific
events and assertions during the course of verification, the designer
has no convenient means for measuring functional correctness.
Chapter 2 describes a technique of combining event monitors,
assertion checkers and coverage tools to form a methodology which
satisfy the Functional Observation Principle.

10.1.6 Verifiable Subset Principle
Introduced in
Chapter 4.

The Verifiable Subset Principle states that a design project
must select a simple HDL verifiable subset, to serves all verification
tools within the design flow, as well as providing an uncomplicated
mechanism to convey clear functional intent. [Table 9.1] summa-
rizes our recommended Verilog RTL verifiable subset.

To achieve a verifiable RTL design, we believe it necessary to
adopt and enforce a discipline in coding style and RTL subset.

10.1.7 Project Linting Principle
Introduced in
Chapter 4.

The Project Linting Principle states that project specific cod-
ing rules must be enforced to ensure a productive design and analy-
sis process. A linting methodology must be established early in the
design cycle, and used to enforce all verifiable subset and project
specific coding style requirements and rules. Ideally, the linting
process should be embedded directly into the design flow (in Make-
files, for example), and used to prevent advancing to subsequent
processes within the flow upon detection of errors or code style vio-
lations. Enforcing a project-specific coding style allows us to
achieve a truly verifiable RTL design and is key to our verifiable
RTL philosophy.

242 CHAPTER 10

10.1.8 Object-Based Hardware Design Principle
Introduced in
Chapter 4.

The Object-Based Hardware Design Principle states that
design engineers must code at a higher object level of abstraction—
as opposed to a lower implementation or tool specific detailed
level—to facilitate verification process optimizations and design
reuse. By applying the principle of information hiding on the func-
tional grouping of state elements (and other objects) within the
RTL, and introducing a new level of design abstraction, the design
engineer will succeed in isolating design details within tool-specific
libraries. This methodology allows for the simultaneous optimiza-
tion of simulation, equivalence-checking, model-checking, and
physical design within the design flow. Furthermore, this methodol-
ogy allows augmentation of new features and tools for the duration
of a project, without interfering with the text or functional intent of
the original design.

10.1.9 Fast Simulation Principle
Introduced in
Chapter 5.

The Fast Simulation Principle states that a design project must
include tailored RTL (and a complementing design process) to
achieve the fastest simulation possible. An underlying value that
pervades this book is the importance of fast simulation, particularly
at later stages in the project, when bugs are few and far between.
Fast simulation at this phase of the design process offers the follow-
ing benefits: (a) reduces the bug detection rate sooner, (b) provides
more productive use of the CPUs in the simulation farm, and (c)
potentially locates a few more of those far-between bugs before sil-
icon.

10.1.10 Visit Minimization Principle
Introduced in
Chapter 5.

The Visit Minimization Principle states that for best simulation
tool performance, minimize the frequency and granularity of proce-
dural block, signal, and bit visits. To get the best performance from
logic simulation, some understanding of the way simulators work is
desirable. Fundamental to logic simulation performance is mini-
mizing the number of visits.

10.1.11 Cutpoint Identification Principle
introduced in
Chapter 6.

The Cutpoint Identification Principle states that a single
design decision pertaining to functional complexity must be iso-
lated and localized within a module to identify equivalence check-
ing cutpoints. Isolating the functional complexity of multipliers is a

PRINCIPLES OF VERIFIABLE RTL DESIGN 243

classic example of how the equivalence checker's runtime perfor-
mance can be improved when applying this principle.

10.1.12 Numeric Value Parameterization Principle
Introduced in
Chapter 6.

The Numeric Value Parameterization Principle states that
numeric values should be parameterized, not hard-coded directly
into the RTL source. For example queue structures must be treated
as independent objects and abstracted away from other functional-
ity within the Verilog RTL. This is achieved by applying the
Numeric Value Parameterization Principle. In other words, a
parameterized model for the queue should be instantiated to pro-
vide a mechanism for queue size reduction during verification.
Queue depth and word size reduction will result, in many instances,
in an improvement in model checking runtime performance while
potentially preventing the condition of state explosion.

10.1.13 Consistency Principle
Introduced in
Chapter 7.

The Consistency Principle states that a design project must
agree upon and employ a consistent RTL coding style. Designers
who write Verilog source code and follow source line indentation
policies help other engineers who encounter their code see the rela-
tionship of control statements.

A design project must define and document code inclusion con-
trols (e.g. ‘ifdef IDENTIFIER) and provide a process for managing
them. On large design projects, the Verilog files for a design are the
work product of a large number of engineers, so there is a danger
that code inclusion controls may become complicated and redun-
dant if their definition and use are not coordinated.

RTL tool libraries must support a prefix-based entry point nam-
ing convention. Identical module names, user task and function
names conflict in the global name space. For the reasons discussed
in 7.4.1.4, user tasks and function naming must consider simulation
performance profiling and module integration into a system model.
The authors recommend project-wide allocation of prefixes to user
tasks and function names, as well as their corresponding PLI func-
tion library.

The authors believe that designers must adopt the habits that
support reuse, and use spaces instead of tabs even for modules in
projects that have no possible use outside the project domain.

244 CHAPTER 10

10.1.14 Asynchronous Principle
Introduced in
Chapter 7.

The Asynchronous Principle states that a design project must
minimize and isolate resynchronization logic between asynchro-
nous clock domains. It is of the utmost importance for design
project members to understand that an increased resynchronization
frequency (or a slower resync circuit speed) can result in a cata-
strophic change in device failure rates. Failure rates can go from
one every million years to three per day by doubling the frequency.

10.1.15 Combinational Feedback Principle
Introduced in
Chapter 7,

The Combinational Feedback Principle states that designers
must avoid all forms of combinational logic feedback (real,
false-path, or apparent). In modern logic design practice, combina-
tional logic feedback is universally avoided. Verification tools that
count on no combinational logic feedback (cycle-based simulators,
equivalence checkers, timing verifiers) diagnose such feedback
loops. Designers occasionally (though rare) will inadvertently spec-
ify combinational feedback loops in their RTL. Three sources of
feedback loops that can hinder the RTL verification process are
design errors, false paths and apparent (not real) feedback.

10.1.16 Property Principle
Introduced in
Chapter 7.

The Property Principle states that vendor-specific meta-com-
ments and attributes used to specify properties must be avoided
whenever possible. In general, it is preferable to use standard,
non-proprietary and vendor-independent properties (or other meth-
ods) to specify extra application directives. Use of vendor-neutral
source for a design allows a project maximum flexibility in its tool
choices, and may facilitate reuse on future projects.

10.1.17 Faithful Semantics Principle
Introduced in
Chapter 8.

The Faithful Semantics Principle states that an RTL coding
style and set of tool directives that ensure semantic consistency
between simulation, synthesist and formal verification tools is
required. To avoid RTL and gate-level simulation differences,
design projects should adopt the RTL Verilog style presented in this
book. They must enforce a project specific style by tailoring a lint-
ing tool rules set, and locking the linting step into their design pro-
cess to check all RTL Verilog.

When a project does not enforce faithful semantics, RTL simu-
lations loses its credibility, and significantly more gate-level simu-
lation is required. Because equivalence checkers base their RTL

PRINCIPLES OF VERIFIABLE RTL DESIGN 245

semantics on synthesis RTL policies, they are generally no help in
detecting RTL and synthesized gate simulation semantic differ-
ences.

10.1.18 Good Vendor Principle
Introduced in
Chapter 8.

The Good Vendor Principle states that verification tool ven-
dors must support real user needs relative to a project’s design envi-
ronment, not the tool vendor’s preferred environment. Design
projects increasingly rely on EDA vendor tools for their success in
design verification. In addition to contributing to the success in ver-
ification on design projects, the EDA vendor verification tools too
often add difficulties to a project’s verification process. It is unfair,
however, to ask a vendor to comply with the Good Vendor Princi-
ple when a design project does not comply with the Disciplined
User Principle. The two principles complement each other.

10.2 Summary
In the early 1990s, the system design communities underwent

tremendous productivity gains in gate-level design as engineers
embraced synthesis technology. Unfortunately, this resulted in an
increase in the design’s verification problem space for the design as
well as the verification process. To keep up with escalating design
complexity and sizes, we have presented a Verilog RTL coding
style and a verifiable subset that facilitates optimizing the verifica-
tion flow. We have emphasized the importance of two-state simula-
tion, which we believe is fundamental to the RT level verification
process--particularly at identifying start-up state initialization prob-
lems.

A verifiable RTL coding methodology permits the engineer to
achieve greater verification coverage in minimal time, enhances
cooperation and support for multiple EDA tools within the flow,
clarifies RTL design intent, and facilitates emerging verification
processes. The design project will accomplish a reduction in devel-
opment time-to-market while simultaneously achieving a higher
level of verification confidence in the final product through the
adoption a Verifiable RTL design methodology.

This page intentionally left blank

Bibliography

[Abramovici et al 1990] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press, New York.

[Abts 1999] D. Abts, “Integrating Code Coverage Analysis into a large Scale ASIC
Design Verification Flow,” Proc. Intn ’l HDL Conference, pp.
141-145, April, 1999.

[Amdahl 1967] G. M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” Proc. Spring Joint
Computer Conference, pp. 483-485, 1967.

[Arnold et al 1998] M. G. Arnold, N. J. Sample, J. D. Schuler, Guidelines for Safe
Simulation and Synthesis of Implicit Style Verilog, Proc. Intn’l
Verilog HDL Conference, pp. 59-66, March, 1998.

[Ashar and Malik 1995] P. Ashar and S. Malik, “Fast functional simulation using
branching programs,” Proc. Intn’l Conf. on Computer-Aided
Design, pp. 408-412, 1995.

[Barbacci and Siewiorek 1973] M. B. Barbacci and D. P. Siewiorek, “Automated
Exploration of the Design Space for Register Transfer (RT)
Systems,” Proc. First Annual Symposium on Computer
Architecture, December, 1973.

248

[Barnes and Warren 1999] P. Barnes, M. Warren, “A Fast and Safe Verification
Methodology Using VCS, “Synopsys User’s Group (SNUG99),
Retrieved August 23, 1999 from the World Wide Web: http://
www. synopsys. com/news/pubs/snug/snug99_papers/
Barnes_Final.pdf

[Beizer 1990] B. Beizer, Software Testing Techniques, Van Nostrand Rheinhold, New
York, second edition, 1990.

[Bening 1969] L. Bening, “Simulation of High Speed Computer Logic,” Proc. Design
Automation Workshop, pp. 103-112, June, 1969.

[Bening et al. 1982] L. Bening, T. A. Lane, C. R. Alexander, J. E. Smith,
“Developments in Logic Network Path Delay Analysis,” Proc.
Design Automation Conference, pp. 605-615, June, 1982.

[Bening et al. 1997] L. Bening, T. Brewer, H. D. Foster, J. S. Quigley, R. A. Sussman,
P. F. Vogel, and A. W. Wells, “Physical Design of Gate
Arrays for Symmetric Multiprocessing Servers,” Hewlett-Packard
Journal, pp. 95-103, April, 1997.

[Bening 1999a] L. Bening, “An RTL Design Verification Linting Methodology,”
Proc. Intn’l HDL Conference, pp. 136-140, April, 1999.

[Bening 1999b] L. Bening, “A Two-State Methodology for RTL Logic Simulation,”
Proc, Design Automation Conference, pp. 672-677, June, 1999.

[Bening and Chaney 2000] L. Bening, K. Chaney, Generation of reproducible
random states in RTL simulator, Hewlett-Packard patent
US06061819 05/09/2000.

[Bening 2001] L. Bening, B. Hornung, R. Pflederer, “Hardware Description
Language-Embedded Regular Expression Support for Module
Iteration and Interconnection,” Proc. Intn ’l HDL Conference, pp.
213-218, March, 2001.

[Bergeron 2000] J. Bergeron, Writing Testbenches : Functional Verification of HDL
Models, Kluwer Academic Publishers, 2000.

[Berman and Trevillyan 1989] C. L. Berman and L. H. Trevillyan, “Functional
Comparison of Logic Designs for VLSI Circuits,” Proc. Intn’l.
Conf. on Computer-Aided Design, pp. 456-537, 1989.

[Berge’ et al. 1995] J.-M. Berge’, O. Levia, J. Rouillard, “High-level System
Modeling Specification Languages,” in Current Issues in Electronic
Modeling, Volume 3, pp. 51-75, Kluwer Academic Publishers,
1995.

[Blank 1984] T. Blank, “A Survey of Hardware Accelerators Used in Computer-aided
Design,” IEEE Design and Test, pp. 21-39, Aug., 1984.

BIBLIOGRAPHY 249

[Brand 1993] D. Brand, “Verification of Large Synthesized Designs,” Proc. Intn’l.
Conf. on Computer-Aided Design, pp. 534-537, 1993.

[Brayton et al. 1996] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto,
A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G Swamy, T.
Villa, "VIS: A System for Verification and Synthesis," Proc.
Computer Aided Verification, 1996

[Breuer 1972] M. A. Breuer, “A Note on Three-valued Logic Simulation,” IEEE
Trans. on Computers, vol. C-21, pp. 399-402, No. 4, Apr., 1972.

[Bryant 1986] R. Bryant, “Graph-based Algorithms for Boolean Function
Manipulation,” IEEE Trans. on Computers, Vol. C-35, No. 8,
pp.677-691, Aug. 1986.

[Buchnik and Ur 1997] E. Buchnik, S. Ur, “Compacting regression-suites on-the-fly,”
Proceedings of the 4th Asia Pacific Software Engineering
Conference, 1997.

[Burch and Singhal 1998] J. R. Burch and V Singhal, “Tight Integration of
Combinational Verification Methods,” Proc. Intn ’l Conf. on
Computer-Aided Design, 1998.

[Cerny and Mauras 1990] E. Cerny and C. Mauras, “Tautology Checking Using
Cross-controllability and Cross-Observability Relations,” Proc.
Intn’l. Conf. on Computer Aided Design, pp. 34-37, 1990.

[Cerny et al. 1998] E. Cerny, B. Berkane, P. Girodias, K. Khordoc, Hierarchical
Annotated Action Diagrams, Kluwer Academic Publishers, 1998.

[Chappell 1999] B. Chappell, “The Fine Art of IC Design,” IEEE Computer, pp.
30-34, July, 1999.

[Chappell and Yau 1971] S. G. Chappell and S. S. Yau, “A Three-Value Design
Verification System,” Proc. Fall Joint Computer Conference, pp.
651-661, 1971.

[Cheng and Krishnakumar 1993] K-T. Cheng, A. Krishnakumar, “Automatic
Functional test Generation Using the Extended Finite State
Machine Model.” Proc. Design Automation Conference, pp. 86-91,
June, 1993.

[Chu 1965] Y. Chu, “An Algol-like Computer Design Language,” Communications of
the ACM, pp.607-615, Oct. 1965.

[Clarke et al. 2000] E. Clarke, O. Grumberg, D. Peled, Model Checking, The MIT
Press, 2000.

250

[Clarke, Emerson and Sistla l981] E. M. Clarke, E. A. Emerson, and A. P. Sistla,
“Characterizing Properties of Parallel Programs as Fixpoints.”
Seventh Intn’l Colloquium on Automata, Languages, and
Programming, volume 85 of LNCS, 1981.

[Clarke and Wing 1996] E. Clarke, J. Wing, “Formal Methods: State of the Art and
Future Directions,” CMU Computer Science Technical Report
CMU-CS-96-178, August 1996

[Clarke and Kurshan 1997] E. Clarke, R. Kurshan, “Computer-Aided Verification,”
IEEE Spectrum, pp.61-67, June 1997.

[Devadas et al. 1996] S. Devadas, A. Ghosh, K. Keutzer, “An Observability-Based
Code Coverage Metric for Functional Simulation,” Proc. Intn’l
Conf. on Computer-Aided Design, pp. 418-425, 1996.

[Dewey 1992a] A. Dewey ed. “Three Decades of HDLs Part 1: CDL Through
TI-HDL,” IEEE Design and Test, pp. 69-81, June, 1992.

[Dewey 1992b] A. Dewey ed. “Three Decades of HDLs Part 2: Conlan Through
Verilog,” IEEE Design and Test, pp. 54-63, September, 1992.

[Dietmeyer and Duley 1975] D. Dietmeyere, J. Duley, “Register Transfer Languages
and Their Translation,” In M. Breuer, Digital System Design
Automation: Languages, Simulation & Data Base, pp. 117-218,
Computer Science Press, Inc. 1975.

[Dill and Tasiran 1999] D. Dill, S. Tasiran, “Simulation meets formal verification,”
Proc. Intn ’l Conf. on Computer-Aided Design, pp.221, 1999.
Retrieved November 21, 1999 from Stanford University database
on the World Wide Web: http://verify.stanford.edu/

[Duley and Dietmeyer 1968] J. Duley, D. Dietmeyer, “A Digital System Design
Language (DDL),” IEEE Trans. on Computers, Vol.C-17, No. 9, pp.
850-861, Sept. 1968.

[Eichelberger and Williams 1977] E. B. Eichelberger and T. W. Williams, “A logic
Design Structure for LSI Testability,” Proc. Design Automation
Conference, pp. 462-468, June, 1977.

[Ellsberger 1997] J. Ellsberger, D. Hogrefe A. Sarma, SDL: Formal Object-oriented
Language for Communicating Systems, Prentice Hall, 1997.

[Eiriksson 1996] A. Eiriksson, “Integrating Formal Verification Methods with A
Conventional Project Design Flow,” Proc. Design Automation
Conference, pp. 666-671, 1996.

[Fallah et al. 1998] F. Fallah, S. Devadas, K. Keutzer, “OCCOM: Efficient
Computation of Observability-Based Code Coverage Metrics for
Functional Verification,” Proc. Design Automation Conference,
pp.152-157, 1998.

BIBLIOGRAPHY 251

[Foster 1998] H. D. Foster, “Techniques for Higher Performance Boolean
Equivalence Verification,” Hewlett-Packard Journal, pp. 30-38,
August, 1998.

[Foster 1999] H. Foster “Formal Verification of the Hewlett-Packard V-Class
Servers,” Proc. DesignCon99 On-Chip Design Conference, pp.
107-119, January, 1999.

[Foster and Coelho 2001] H. Foster, C. Coelho, “Assertions Targeting A Diverse Set
of Verification Tools,” Proc. Intn’l HDL Conference, pp. 115-122,
March, 2001.

[Grinwald et al. 1998] R. Grinwald, E. Harel, M. Orgad, S. Ur, A. Ziv, “User Defined
Coverage - A tool Supported Methodology for Design
Verification,” Proc. Design Automation Conference, pp. 158-163,
1998.

[Gupta et al. 1997] A. Gupta, S. Malik, P. Ashar, “Toward Formalizing a Validation
Methodology Using Simulation Coverage,” Proc. Design
Automation Conference, pp. 740-745, 1997.

[Hefferan et al. 1985] P. H. Hefferan, R. J. Smith, V. Burdick, D. L. Nelson, “The
STE-264 Accelerated Electronic CAD System,” Proc. Design
Automation Conference, pp. 352-358, June, 1985.

[Hill and Peterson 1973] F. Hill, G. Peterson, Digital Systems: Hardware
Organization and Design, Wiley, New York, 1973.

[Hitchcock 1982] R. B. Hitchcock, “Timing Verification and the Timing Analysis
program,” Proc. Design Automation Conference, pp. 594-604, June,
1982.

[Hoare 1981] C. A. R. Hoare, “The Emperor’s Old Clothes,” Communications of the
ACM, February, 1981, pp. 75-83.

[Hoare 1998] C. A. R. Hoare, “The Logic of Engineering Design,” Retrieved August
4, 1999 from the World Wide Web: http://www.comlab.ox.ac.uk/
oucl/users/tony.hoare/logic1.html, March, 1998.

[Horgan et al. 1994] J. Horgan, S. London, M. Lyu, “Achieving Software Quality with
Testing Coverage Measures,” Computer, 27(9), pp. 60-69,
September 1994.

[Howe 1997] H. Howe, “Pre- and Postsynthesis Simulation Mismatches,” Proc. 6th
International Verilog HDL Conference, March, 1997.

[Huang and Cheng 1998] S.Y. Huang and K.T. Cheng, Formal Equivalence Checking
and Design Debugging, Kluwer Academic Publishers, 1998.

[Hughes 1958] B. Hughes, One of Minnesota’s Newest Firms - Control Data
Corporation, Minnesota Technolog, pp. 33-36, April, 1958.

252

[IEEE 1076 1993] IEEE Standard 1076-1993 VHDL Language Reference Manual,
IEEE, Inc., New York, NY, USA, June 6, 1994.

[IEEE 1364 1995] IEEE Standard 1364-1995 IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description Language,
IEEE, Inc., New York, NY, USA, October 14, 1996.

[IEEE 1364 2000] IEEE Proposed Standard 1364-2000 (Draft 5) IEEE Standard
Hardware Description Language Based on the Verilog Hardware
Description Language, IEEE, Inc., New York, NY, USA, March,
2000.

[IEEE 1364.1 1999] IEEE P1364.1/D1.4, Draft Standard for Verilog Register
Transfer Level Synthesis, IEEE, Inc., New York, NY, USA, April
26, 1999.

[Iverson 1972] K.E. Iverson, “A Common Language for Hardware, Software, and
Applications,” Proceedings of the 1972 FJCC, pp.121-129, 1972.

[Jephson et al 1969] J. S. Jephson, R. P. McQuarrie, R. E. Vogelsberg, “A Three-value
Design Verification System,” IBM Systems Journal, Vol. 8, No. 3,
pp. 178-188, 1969.

[Kang and Szygenda 1992] S. Kang and S. Szygenda, “Modeling and Simulation of
Design Errors,” Proc. of the Int’l Conference on Computer Design:
VLSI in Computers and Processors, pp. 443-446, October 1992.

[Kantrowitz and Noack 1996] M. Kantrowitz, L. Noack, “I’m Done Simulating; Now
What? Verification Coverage Analysis and Correctness Checking of
the DECchip 21164 Alpha microprocessor,” Proc. Design
Automation Conference, pp. 325-330, 1996.

[Keating and Bricaud 1999] M. Keating and P. Bricaud, Reuse Methodology Manual,
Kluwer Academic Publishers, 1999.

[Kleeman and Cantoni 1987] L. Kleeman and A. Cantoni, Metastable Behavior in
Digital Systems, IEEE Design and Test, pp. 4-19, Dec., 1987.

[Kleinrock 1991] Networks”. Kleinrock, “ISDN - The Path to Broadband Networks ”
Proc. IEEE, Feb. 1991, pp. 112-117.

[Krohn 1981] H. E. Krohn, “Vector Coding Techniques for High Speed Simulation,”
Proc. Design Automation Conference, pp. 525-529, 1981.

[Kuehlmann and Krohm 1997] A. Kuehlmann and F. Krohm, “Equivalence Checking
Using Cuts and Heaps,” Proc. Design Automation Conference, pp.
263-268, 1997.

[Kunz 1993] W. Kunz, “HANNIBAL: An Efficient Tool for Logic Verification Based
on Recursive Learning,” Proc. Intn’l Conf. on Computer-Aided
Design, pp. 538-543, 1993.

BIBLIOGRAPHY 253

[Kurshan 1994] R. P. Kurshan, Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach, Princeton
University Press, 1994.

[Kurshan 1997] R. P. Kurshan, “Formal Verification in a Commercial Setting,” Proc.
Design Automation Conference, pp. 258-262, 1997.

[Malka and Ziv 1998] Y. Malka and Avi Ziv, “Design Reliability - Estimation
Through Statistical Analysis of Bug Discovery Data,” Proc. Design
Automation Conference, pp. 644-649, June, 1998.

[Mangelsdorf et al. 1997] S. Mangelsdorf, R. Gratias, R. Blumberg, R. Bhatia,
“Functional Verification of the HP PA 8000 Processor,”
Hewlett-Packard Journal, August, 1997.

[Matsunaga 1996] Y. Matsunaga, “An Efficient Equivalence Checker for
Combinatorial Circuits,” Proc, Design Automation Conference, pp.
629-634, 1996.

[McGeer et al. 1995] P. C. McGeer, K. L. McMillan, A.Saldanha, A. L.
Sangiovanni-Vincentelli. and P.Scaglia, P., “Fast Discrete Function
Evaluation Using Decision Diagrams,” Proc. Intn’l Conf. on
Computer-Aided Design, pp. 402-407, November, 1995.

[McMillan 1993] K. L. McMillan, Symbolic Model Checking, Kluwer Academic
Publishers, 1993.

[MeWilliams 1980] T. M. McWilliams, “Verification of Timing Constraints on Large
Digital Systems,” Proc, Design Automation Conference, pp.
139-147, 1980.

[Mills and Cummings 1999] D Mills and C. Cummings. “RTL Coding Styles That
Yield Simulation and Synthesis Mismatches.” Synopsys Users
Group, San Jose, 1999. Retrieved August 3, 1999 from Synopsys
database on the World Wide Web:
http://www.synopsys.com/news/pubs/snugsnug99_papers/
Mills_Final.pdf

[Mittra 1999] S. Mittra, Principles of VERILOG PLI, Kluwer Academic Publishers,
1999.

[Murata 1989] T. Murata, Petri Nets: Properties, Analysis and Applications, Proc.
IEEE, vol. 77, no. 1, pp. 541-580, Apr. 1989.

[OVI LRM 1993] Open Verilog International, Verilog Hardware Description
Language Reference Manual (LRM) Version 2.0, March, 1993.

[Parnas 1972] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems Into
Modules” Communications of the ACM, Vol. 5, No 12, pp.
1053-1058, December 1972.

254

[Pfleeger 1998] S. L. Pfleeger, Software Engineering: Theory and Practice, Prentice
Hall, 1998

[Ross and Goodenough 1975] D.T. Ross, J.B. Goodenough, C.A Irvin, “Software
Engineering: Process, Principles, and Goals,” IEEE Computer, Vol.
8, No. 5, pp. 17-27, May 1975.

[Rowson and Sangiovanni-Vincentelli 1997], J. Rowson, A. Sangiovanni-Vincentelli
“Interface-based Design,” Proc. Design Automation Conference,
pp. 178-183, 1997.

[Sangiovanni-Vincentelli et al. 1996], A. Sangiovanni-Vincentelli, P. McGeer, A.
Saldanh, “Verification of Electronic Systems,” Proc. Design
Automation Conference, pp. 106-111, 1996.

[Seshu and Freeman 1962] S. Seshu and D. M. Freeman, “The Diagnosis of
Asynchronous Sequential Switching Systems,” IEEE Trans. on
Elec. Computers, Vol 11, pp. 459-465, August, 1962.

[Seshu 1965] S. Seshu, “On an Improved Diagnosis Program,” IEEE Trans. on Elec.
Computers, Vol 12, pp. 76-79, February, 1965.

[Sutherland 1999] S. Sutherland, The Verilog PLI Handbook: A User’s Guide and
Comprehensive Reference on the Verilog Programming Language
Interface, Kluwer Academic Publishers, Norwell, MA 02061,
1999.

[Szygenda 1972] S. A. Szygenda, “TEGAS2 -- Anatomy of a General Purpose Test
Generation and Simulation System for Digital Logic,” Proc. Design
Automation Conference, pp. 116-127, June, 1972.

[Taylor et al. 1998] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J.
Huggins, J. and C. Ramey, “Functional Verification of a
Multiple-issue Out-of-order, Superscalar Alpha Processor — the
DEC Alpha 21264 microprocessor,” Proc. Design Automation
Conference, pp. 638-643, June, 1998.

[Thomas and Moorby 1998] D. E. Thomas and P. R.Moorby, The Verilog Hardware
Description Language, Kluwer Academic Publishers, Norwell, MA
02061, pp. 136, 4th Edition, 1998.

[Ulrich 1965] E. G. Ulrich, “Time Sequenced Logical Simulation Based on Circuit
Delay and Selective Tracing of Active Network Paths,” Proc. ACM
National Conference, pp. 437-448, 1965.

[Wilcox and Rombeck 1976] P. Wilcox and H. Rombeck, “F/Logic - An Interactive
Fault and Logic Simulator for Digital Circuits,” Proc, Design
Automation Conference, pp. 68-73, 1976.

A
Comparing

Verilog Construct
Performance

The design examples in this book only show a few of the many
functionalities that designers need to describe in Verilog. When
comparing the simulation performance of two possible ways of
expressing the same behavior, performance numbers may vary
between simulators from different vendors, and between different
versions of Verilog simulators from the same vendor. When writing
any high-usage functionality in Verilog, a designer should measure
the performance of alternative ways for writing the Verilog, and
adopt the one that simulates the fastest.

We have found that in most cases, the faster Verilog will be sim-
pler and more clearly express the design.

Example A-1 shows a test bench for measuring simulation per-
formance. It measures the performance of two different methods of
expressing bus reversal. Lines 16-17 show bus reversal expressed as
a for loop, and line 20 expresses the same function as concatena-
tion. Using this test bench for performance testing proceeds in four
compile and simulate steps.

1.

2.

Use +define+SHORT+CHECK+METHOD1+METHOD2+
to see whether the two methods have equivalent functionality.

Use +define+METHOD1+ and record the simulation time Ml
for executing bus reversal as a for loop.

256 APPENDIX A

3.

4.

Use +define+METHOD2+ and record the simulation time M2
for executing bus reversal using concatenation.

Omit +define+ and record the simulation time Z for executing
the empty loop.

You can then determine the speedup factor S for the lines under test
using the following formula.

Here are some performance measurement and optimization fac-
tors illustrated in the example that you must consider when measur-
ing performance.

Small CPU run time measurements of less than a second are not
very accurate. The 10 million loop iteration count accumulates a
run time that gets the timing measurement up to between 1 and
100 seconds. Depending on the complexity of the Verilog con-
struct that you are comparing, and the performance of you host
computer and simulator, you may have to adjust the iteration
count to get to an reasonable 1-100 second CPU time value.

If the result calculated is never used subsequently, some opti-
mizers will delete earlier statements that calculated the result.
By accumulating exclusive or results and then $displaying
them before the $ finish; the example forces the optimization to
retain the lines leading up to a final values for e0 and e1 .

Many compilers can recognize that an expression will not
change with loop iterations, and will move the expression before
the start of the loop and only execute it once. To keep the opti-
mization from moving the concatenation expression on line 20
up in front of the for loop statement as a loop invariant, the test
bench changes b each time around.

COMPARING PERFORMANCE OF VERILOG CONSTRUCTS 257

Example A-1. Simulation performance test bench

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

‘ifdef SHORT
‘define LIMIT 10
‘else // !SHORT
‘define LIMIT 10_000_000
‘endif // SHORT
module reverse;

integer i,j;
reg [0:7] e0,e1,b;

initial
begin

e0= 8’h99;
e1= 8’h99;
b = 8’d0;
for (i = 0; i < 'LIMIT; i = i + 1) begin

‘ifdef METHOD1
for (j= 0 ; j< 8 ; j= j+ 1)

e0[j] = e0[j]^ b[7-j];
‘endif // METHOD1
‘ifdef METHOD2

e1 = e1 ^ {b[7],b[6],b[5],b[4],b[3],b[2],b[1],b[0]};
‘endif // METHOD2
‘ifdef CHECK

if (e0 != e1) begin
$display(" e0 != e1 - %h !- %h",e0,e1);
$finish;

end
‘endif // CHECK

b = b + 8’d1;
end

‘ifdef METHOD1
$display(" e0 = %h",e0);

‘endif // METHOD1
‘ifdef METHOD2

$display("e1 =%h",e1);
‘endif // METHOD2

$finish;
end

endmodule // reverse

This page intentionally left blank

B
Quick

Reference

This appendix summarizes the RTL Verilog language elements
and organization supported for success in design verification.
**Double asterisks highlight Verifiable RTL rules.

Lexical elements
Names - Begin with a-z A-Z or _, and may contain numbers 0-9.
Examples: r_rreq, ck, rst_. Names containing dollar signs are
not supported**.

Unsized decimal integers - Specify bit ranges, memory sizes,
time. High bit maximum: 511**. Examples: [7:0], [0:511], #1.

Sized integers - use to represent bits. May be binary, octal, hex
or decimal. Maximum width: 512 bits**. Examples:
8’b0011_1001, 2’o2,13’h03f, 9’d255
Use “z” values only in binary to directly drive tri-state output
or inout ports, “x” values are not supported for verifiable RTL
Verilog**.

260 APPENDIX B

Reserved Words
bold- supported by verifiable RTL design in Verilog**:

always end inout posedge
assign endcase input reg
begin endfunction module tri
case endmodule negedge tri0
casex function or tri1
default if output wire
else initial parameter

oblique - not supported by verifiable RTL design in Verilog **:

and highz0 pullup table
buf highz1 rcmos task
bufif0 ifnone real time
bufif1 integer realtime tran
casez join release tranif0
cmos large repeat tranif1
deassign macromodule rnmos triand
defparam medium rpmos trior
disable nand rtran trireg
edge nmos rtranif0 vectored
endprimitive nor rtranif1 wait
endspecify not scalared wand
endtable notif0 small weak0
endtask notif1 specify weak1
event pmos specparam while
for primitive strong0 wor
force pull0 strong1 xnor
forever pull1 supply0 xor
fork pulldown supply1

QUICK REFERENCE 261

Module organization
module asic8 (port declarations);

port directions
port types (“reg” for non-tri-state outputs)
global reg declarations

function declarations
always @(sensitivity_list)

begin
procedural statements (combinational logic)

end
assign statements (combinational logic)
tri-state port driving tri statements
storage element module instances
endmodule //asic8

Port
declarations

Reg
declarations

Functions

Function
example:

module asic8 (ck,scan_in,scan_ctl,bdp,scan_out);
input ck;
input scan_in;
input [1:0]scan_ctl;
inout [17:0] bdp;
output scan_out;
reg scan_out; // declare all non in-state outputs “reg”

// if driven by procedural assignments

reg c_b0_bnk0_busy; // one bit variable
reg [7:0] r_p0_10_zone; //8-bit variable
reg [1:0] M_valid [0:4095]; //4096x2 memory

function [<bit_range>] function_name;
inputs
[local reg declarations]

begin
procedural statements

end
endfunction // function_name

function csa_s1;
input x:
input y;
input z;

begin
csa_s1= expression;

end
endfunction // csa_s1

262 APPENDIX B

Tristate port
driving
statements

Storage element
module
instances

Use to drive all inout and tri-state output type ports.

Set port name equal to a single term **. Put logic expression
driving that term back in procedural block **. Example:

// inside procedural statement block
c_bdp = (~csa_ & ~wa) ? r_a_reg : 18’bz;

tri [0:17] bdp = c_bdp; // preceding flip-flop macro calls

Macro call organization:
typename #(bit_width) instname (outname,clock,innames);

Example:
DFFT_X#(44) reg_addra (r_addr[43:0], clk, c_addr[43:0]);

Procedural statements

Control

A procedural block is a statement or series of statements enclosed
within a begin end;

if (expression)
statement or procedural block

else // optional else followed by:
statement or procedural block

case (scan_ctl)
2’d0 : statement or procedural block
2’d1 : statement or procedural block
default : statement or procedural block

endcase
c_q0_ctl = {i_scan, c_adv_q, c_q1_act, c_q0_act};
casex (c_q0_ctl)

4’b1_?_??:c_q0 = r_q1;
4’b0_0_?0: c_q0 = {c_qctl, c_par_data};
4’b0_0_?1:c_q0 = r_q0;
4’b0_1_00: c_q0 = {2’h0, c_qctl[8:2], c_par_data};
4’b0_1_01: c_q0 = {c_qctl, c_par_data};
4’b0_1_1?:c_q0 = r_q1;

endcase

Assignments Non-blocking: targets must be type reg; use in module defini-
tions for flip-flop assignments:

icq_0 <= c_icq_0;
Blocking: targets must be type reg; use in procedural blocks and
functions for combinational variable and output assignments:

c_i0_btab_active = c_i0_btab_out[24];

QUICK REFERENCE 263

Continuous assignments: targets must be type wire; outside
procedural blocks:

assign c_tab_reset_ctr = r_tab_reset_ctr + 5’h01;
deassign and assignments with timing controls are not sup-
ported for verifiable RTL Verilog. **

Operators
Binary
operators

Arithmetic + a + b addition
 (2’s complement) - a - b subtraction

% a % b modulo

Bit-Wise & a & b and
| a | b or
^ a ^ b exclusive or

~^ a ~^ b exclusive nor

Logical && a && b and
|| a || b or

Relational == a == b equality
!= a != b inequality
> a > b greater than
< a < b less than

>= a >= b greater or equal
<= a <= b less than or equal

Shift << a << b logical shift left
>> a >> b logical shift right

Unary
operators

~a invert a
^ ^a parity of a
~^ ~^a not parity of a
! ! a logical not
& &a unary and
| | a unary or
~& ~&a unary nand
~| ~| a unary nor

Miscellaneous
operators

? : a ? b : c conditional expression
{,} {a,b,c} concatenation
{{}} {a{b}} replication (b must be 1-bit)

~

264 APPENDIX B

Library-only The following operators are supported for Verifiable RTL only in
operators libraries **.

-a unary minus
a * b multiply

/ a/ b divide
=== a===b equality (0/1/X/Z)
!== a !== b inequality (0/1/X/Z)

Operator DON'T COUNT ON IT! Use parenthesis to force precedence**.
precedence Verilog operator precedence is not 100% defined. In the absence of

parenthesis, different tools may treat operator precedence differ-
ently. For example:

c = a | (| b) // is generally OK
c = a I I b; // is an error to some tools.

System tasks and functions
$display(“text and format specs”,signal,signal, ...);
$finish;
$time // function
$write (“text, format specs”,signal,signal, ...);

Supported format specs: %b, %d, %h, %o, %s, %t, \t, \n, \\,
\”, \\, %%, %m.

Compiler Directives
‘include “<file>”

‘define <name> <text to comment or end-of-line>

‘ifdef <name>

‘else

‘endif

‘timescale 1 ns / 10ps

-

*

C
Assertion Monitors

See Chapter 3
for additional
details on
assertions.

In this section we provide examples for a few typical assertions
monitors. An assertion monitor library similar to our own, which
includes Verilog source code and full documentation, can be freely
downloaded from the Open Verification Library Initiative web-site
(www.verificationlib.org). The OVL library contains a rich set of
assertion monitors along with the latest conventions. The monitors
contained in this appendix are provided to illustrate common fea-
tures for combinational as well as sequential checkers.

For our first example, we have selected the assert_always,
which is one of the most general assertion. This assertion does not
contain any complex sequential check, with the exception of sam-
pling test_expr at every positive edge of clk. It is employed when-
ever the user wants to verify an invariant property.

There are two classes of sequential monitors in our assertion
library. The first class is a time-bounded monitor. Our second exam-
ple, assert_change, i s a time-bounded assertion that will continu-
ously monitor the start_event at every positive edge of the clock.
Once this signal (or expression) evaluates TRUE, the assert_change
monitor will ensure that the test_expr will change values within a
specified number of clocks (e.g., num_cks). For this monitor, the
end_event occurs at the end of num_cks clocks.

266 APPENDIX C

The second class of sequential monitor is an event-bounded
monitor. Our third example, assert_window, is an event-bounded
assertion that continuously monitors the start_event at every posi-
tive edge of the clock. Once this signal (or expression) evaluates
TRUE, the assert_window monitor will ensure that the test_expr
remains TRUE until a user specified end_event expression triggers
(i.e., evaluates TRUE). _event occurs at the end of num_cks clocks.

As a final example, assert_frame, can be used to verify timing
relationships between events (i.e., signals or expressions).

assert_always
The assert_always assertion will continuously monitor the

test_expr at every positive edge of the triggering event or clock clk.
It contends that some Verilog expression will always evaluate
TRUE. Whenever test_expr evaluates to FALSE, an assertion will
fire (i.e., an error condition will be detected in the Verilog code).

assert_always [#(severity_level,msg)] [inst_name] (clk,
reset_n, test_expr)

Syntax

Usage The assert_always assertion is the most general assertion and
it does not contain any complex sequential check, other than sam-
pling test_expr at every positive edge of clk. It should be used
whenever the user wants to verify a propositional property that
should always hold TRUE at clock boundaries or at the positive
edge of clk.

module assert_always (ck, reset_n, test_expr);
input ck, reset_n, test_expr;
parameter severity_level = 0;
parameter msg="ASSERT ALWAYS VIOLATION";

‘ifdef ASSERT_ON

Definition

ASSERTION MONITORS 267

integer error_count;
initial error_count = 0;
always @(posedge ck) begin

‘ifdef ASSERT_GLOBAL_RESET
if (‘ASSERT_GLOBAL_RESET != 1’b0) begin

‘else
if (reset_n != 1’b0) begin

‘endif
if (test_expr != 1’b1) begin
error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <=‘ASSERT_MAX_REPORT_ERROR)
‘endif

$display("%s : severity %0d : time %0t : %m",
msg, severity_level, $time);

if (severity_level == 0) $finish;
end

end
end // always

‘endif
endmodule // assert_always

assert_change
The assert_change assertion will continuously monitor the

start_event at every positive edge of the triggering event or clock
clk. Once this signal (or expression) evaluates TRUE, the assertion
monitor will ensure that the test_expr will change values within the
next num_cks number of clocks.

Syntax assert_change [#(severity_level, width, num_cks, flag,
msg)] [inst_name] (clk, reset_n, start_event,
test_expr);

268 APPENDIX C

Usage The assert_change assertion should be used in circuits to ensure
that after some initial event, some variable or expression will
change. Common uses for assert_change include:

verification that synchronization circuits respond after some ini-
tial stimuli; for example, in protocol verification, this assertion
may be used to check that after a request an acknowledge will
occur within some cycles;

verification that finite-state machines change state or will go to a
specific state after some initial stimuli.

Definition

module assert_change (clk, reset_n, start_event, test_expr);
parameter severity_level=0;
parameter width=1;
parameter num_cks=1;
parameter flag=0;
parameter msg="ASSERT CHANGE VIOLATION";

input clk;
input reset_n;
input start_event;
input [width-1:0] test_expr;

//synopsys translate_off
‘ifdef ASSERT_ON
parameter CHANGE_START = 1’b0;
parameter CHANGE_CHECK = 1’b1 ;
parameter FLAG_IGNORE_NEW_START = 2’b00;
parameter FLAG_RESET_ON_START = 2’b01;

ASSERTION MONITORS 269

parameter FLAG_ERR_ON_START = 2’b10;

reg r_change;
reg [width-1:0] r_check_value;
reg r_state;
integer i;
integer error_count;
initial error_count = 0;

initial begin
r_state=CHANGE_START;
r_change=1’b0;

end

always @(posedge clk) begin
‘ifdef ASSERT_GLOBAL_RESET

if (‘ASSERT_GLOBAL_RESET != 1’b0) begin
‘else

if (reset_n != 0) begin // active low reset_n
‘endif

case (r_state)
CHANGE_START:

if (start_event == 1’b1) begin
r_change <= 1’b0;
r_state <= CHANGE_CHECK;
r_check_value <= test_expr;
i <= num_cks;

end
CHANGE_CHECK:

begin
// Count clock ticks
if (start_event == 1’b1) begin

if (flag == FLAG_IGNORE_NEW_START && i > 0)
i <=i-1;
else if (flag == FLAG_RESET_ON_START)

i <= num_cks;
else if (flag == FLAG_ERR_ON_START) begin

error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <=‘ASSERT_MAX_REPORT_ERROR)
‘endif

$display("%s : illegal start event : time %0t : %m", msg, $time);
if (severity_level == 0) $finish;

end
else begin

// illegal ’flag’ parameter value specified
// during instantiation!
error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

270 APPENDIX C

if (error_count <= ‘ ASSERT_MAX_RE PORT_ ERROR)
‘endif

$display("%s : illegal flag parameter %0d : time %0t : %m", msg,
flag, $time);

if (severity_level == 0) $finish;
end

end
else if (i > 0)

i <= i-1;
if (r_check_value != test_expr) begin

r_change <= 1’b1;
end
// go to start state on last check
if (i == 1) begin

r_state <= CHANGE_START;
// Check that the property is true
if ((r_change != 1’b1) && (r_check_value == test_expr)) begin

error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <=‘ASSERT_MAX_REPORT_ERROR)
‘endif

$display("%s : severity %0d : time %0t : %m", msg,
severity_level, $time);

if (severity_level == 0) $finish;
end

end
r_check_value <= test_expr;

end
endcase

end
else begin

r_state <= CHANGE_START;
r_change <= 1’b0;

end
end // always
‘endif
//synopsys translate_on

endmodule // assert_change

assert_window
The assert_window assertion will continuously monitor the

start_event at every positive edge of the triggering event or clock
clk. Once this signal (or expression) evaluates TRUE, the assertion
monitor will ensure that the test_expr is TRUE until the end_event
expression evaluates TRUE.

ASSERTION MONITORS 271

Syntax assert_window [#(severity_level, msg)] [inst_name] (clk,
reset_n, start_event, test_expr, end_event);;

Usage The assert_window assertion should be used in control circuits
to ensure proper synchronization of events. Common uses of
assert_window are the following:

verification that multicycle operations with enabling conditions
will always work with the same data;

verification of single cycle operations to operate correctly with
data loaded at different cycles;

verification of synchronizing conditions requiring data to be sta-
ble after some initial triggering event.

Definition

module assert_window (clk, reset_n, start_event, test_expr, end_event);
input clk, reset_n, start_event, test_expr, end_event;
parameter severity_level = 0;
parameter msg="ASSERT WINDOW VIOLATION";

//synopsys translate_off
‘ifdef ASSERT_ON
// local paramaters used as defines
parameter WINDOW_START = 1’b0;
parameter WINDOW_CHECK = 1’b1;

reg r_state;
initial r_state=WINDOW_START;
integer error_count;
initial error_count = 0;

always @(posedge clk) begin
‘ifdef ASSERT_GLOBAL_RESET

272 APPENDIX C

if (‘ASSERT_GLOBAL_RESET != 1’b0) begin
‘else

if (reset_n != 0) begin // active low reset_n
‘endif

case (r_state)
WINDOW_START:

if (start_event == 1’b1) begin
r_state <= WINDOW_CHECK;

end
WINDOW_CHECK:

begin
if (end_event == 1’b1) begin

r_state <= WINDOW_START;
end
else if (test_expr != 1’b1) begin

error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <= ‘ASSERT_MAX_REPORT_ERROR)
‘endif

$display("%s : severity %0d : time %0t: %m", msg, severity_level,
$time);

if (severity_level == 0) $finish;
end

end
endcase

end
else begin

r_state <= WINDOW_START;
end

end // always
‘endif
//synopsys translate_on

endmodule // assert_window

assert_frame
The assert_frame assertion will validate proper cycle timing

relationships between two events in the design. Once a Start_event
evaluates TRUE, then the test_expr must evaluate TRUE within a
minimum and/or maximum number of clock cycles. If the
test_expr does not occur within the min/max width boundaries, an
assertion will fire (i.e., an error condition will be detected in the
Verilog code). The intent of the min and max range, is to identify
legal boundaries in which test_expr can occur after start_event.
When both the min/max range are specified, then test_expr must
occur within the min/max frame. If no max range is provided, the
checker will ensure that the test_event does not occur until after

ASSERTION MONITORS 273

Syntax

min_cks. If no min boundary is provided, the checker will ensure
that the test_expr occurs prior to max_cks.

assert_frame [#(severity_level, min_cks, max_cks, msg)]
[inst_name] (clk, reset_n, start_event, test_expr);;

Usage The assert_frame should be used in circuits to ensure that after
some initial event, some other event must occur within a specified
number of cycles. Common uses for assert_frame include:

verification that synchronization circuits respond after some ini-
tial stimuli. For example, that a bus transaction will occur with-
out any bus interrupts. Another example is that a memory write
command will not occur if we are in a memory read cycle;

verification that finitestate machines change state or will go to a
specific state after some initial.

Definition
module assert_frame (ck, reset_n, start_event, test_expr);

parameter severity_level=0;
parameter min_cks=1;
parameter max_cks=1;
parameter flag=0;
parameter msg="ASSERT FRAME VIOLATION";
input ck;
input reset_n;
input start_event;

274 APPENDIX C

input test_expr;

//synopsys translate_off
‘ifdef ASSERT_ON

parameter FRAME_START = 1’b0;
parameter FRAME_CHECK = 1’b1;
parameter FLAG_IGNORE_NEW_START = 2’b00;
parameter FLAG_RESET_ON_START = 2’b01;
parameter FLAG_ERR_ON_START = 2’b10;

reg r_test_expr;
reg r_state;
reg r_start_event;

initial begin
r_state=FRAME_START;
r_start_event = 1’b1;

end

integer num_cks;
integer i;
integer error_count;
initial error_count = 0;

wire start_condition;
wire test_condition;

always @(posedge ck) begin
r_start_event <= start_event;
r_test_expr <= test_expr;

end

assign start_condition = (r_start_event == 1’b0)
&& (start_event == 1’b1);

assign test_condition = (r_test_expr == 1’b0)
&& (test_expr == 1’b1);

always @(posedge ck) begin
‘ifdef ASSERT_GLOBAL_RESET

if (‘ASSERT_GLOBAL_RESET != 1’b0) begin
‘else

if (reset_n != 0) begin // active low reset
‘enedif

case (r_state)
FRAME_START:

if (start_condition == 1'b1) begin
r_state <= FRAME_CHECK;

ASSERTION MONITORS 275

i <= max_cks;
end

FRAME_CHECK:
begin
// Count clock ticks
if (start_condition == 1’b1) begin

if (flag == FLAG_IGNORE_NEW_START && i > 0)
i <= i-1;

else if (flag == FLAG_RESET_ON_START)
i <= num_cks;

else if (flag == FLAG_ERR_ON_START) begin
error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <= ‘ASSERT_MAX_REPORT_ERROR)
‘endif

$display ("%s : illegal start event : time %0t : %m",
msg, $time);

if (severity_level == 0) $finish;
end
else begin
// illegal ’flag’ parameter value specified
// during instantiation!
error_count = error_count + 1;
‘ifdef ASSERT_MAX_ REPORT_ERROR

if (error_count <= ‘ASSERT_MAX_REPORT_ERROR)
‘endif
$display("%s:illegal flag parameter %0d:time %0t:%m",

msg, flag, $time);
if (severity_level == 0) $finish;

end
end
else if (i > 0)

i<=i-1;

//go to start state on last check
if ((i == 1) || test_condition) begin

r_state <= FRAME_START;

// Check that the property is false
num_cks = max_cks - i + 1;

if (!((num_cks >= min_cks) &&
(num_cks <= max_cks) &&
test_condition==1’b1)) begin

error_count = error_count + 1;
‘ifdef ASSERT_MAX_REPORT_ERROR

if (error_count <= ‘ASSERT_MAX_REPORT_ERROR)
‘endif

$display("%s : severity %0d : time %0t : %m",

276 APPENDIX C

msg, severity_level, $time);
if (severity_level == 0) $finish;

end
end

end
endcase

end
else begin

r_state <= FRAME_START;
end

end // always
‘endif
//synopsys translate_on

endmodule // assert_frame

Index

Symbols
+define 147
‘define 146
‘ifdef 31, 39, 40, 147, 171
‘include 146

A
Abstraction Principle 54
accelerators 74
assertions 33

assertion checkers 15, 28, 31, 126, 231,
233, 265

assertion checking 21, 126
assertion-targeted library 126
database and analysis 40
methodology 37
one-hot 142
Open Verification Library Initiative 34,

265
simulation performance 81
static 31
temporal 31

asynchronous logic 132
metastable failures 133
petri net modeling 132
protocol verification 132
resynchronization failures 133

ATPG 50, 114
attributes 170, 171

B
bad stuff

delays 193
EDA vendor tools 200

incorrect procedure order 192
keywords 205
latch inference 192
parameters 205
races 196

block interface requirements 11
breadboard 71
bus functional model 17

C
Cadence Design Systems 77
case statements 137, 225

constant uniqueness 144
fully-specified 138
one-hot minimization 140
signal, constant widths 143, 226
test generation 140

Chronologic vcs 78
clock tree 114
clock-generators 150
closing the verification loop 115
code inclusion control 147
command line 202
comments 167

declarations 168
embedded 171
end identification 169
header 168
meta-comments 169

conditional compilation 147
cone of logic 116
connections 153, 214
Consistency 7
coverage 21

ad-hoc metrics 25

278

arc coverage 27
assertion coverage 41
bug detection frequency 25
event coverage 41
fault coverage 27
functional correctness 26
length of simulation 25
number of simulation cycles 25
programming code metrics 25

branch coverage 26
expression coverage 26
line coverage 26
path coverage 26
toggle coverage 26

regression analysis 28
state machine 27
test suite optimization 28
user defined metrics 27

cutpoint 14, 115, 117

D
debugging phase 78
declarations 168
defparam 146
design change turn-around 79, 81
design decomposition 10
design errors

bookkeeping 70
cost 2
high quality 70
inadvertent latch inference 192
low-quality 70

design specification 21
device under test 15
directed test 15, 16, 17, 26, 37

E
emulators 20, 74
encapsulation 55, 59, 66, 150

tri-state 144
error-correcting encode/decode 150
events

database and analysis 40
event monitors 28, 30, 126
methodology 37
static 29
temporal 29

executable specification 15
expressions

operator precedence 154, 221
operators 218
organization 153
parenthesis 218

F
false paths

feedback loops 136
feedback loops 135

apparent 136
design error 135
false paths 136

file
hierarchy 150
library 150
names 149

finite state machine (FSM) 106, 107, 111
flip-flops 150
floor planning 113
formal verification 6, 24, 106, 128

binary decision diagrams 110
CTL 124
cutpoint 14, 115, 117, 157
distinguishing vector 110
equivalence checking 8, 14, 19, 20, 43,

50, 54, 59, 67, 68, 74, 104, 106, 107,
111, 112, 115, 117, 118, 157, 179,
207, 244

fully-specied case statements 139
finite state machine 108
fixed-point calculation 109
image computation 109, 110
invariant property 111, 125
liveness property 125
mapping point 116
miter 110
model checking 8, 21, 43, 49, 60, 68, 82,

105, 106, 107, 124, 126, 157, 206,
243

clock abstraction 127
object-based hardware design 59, 118,

127
preimage computation 111
product machine 110
reachability analysis 110
safety property 111
state explosion 110, 126, 243
temporal property languages 124

four-state
simulation 79

functional test strategies 14

G
Gateway Design Automation 77
global names

user task/function 165

INDEX 279
H
header

file 168
hierarchy

design 148
file 150

high-level design requirements 11
Huffman model 108

I
if-else Statements 225
indentation 167
initialization 19, 59, 95, 245

random 59, 95
random as verification test 98
X-state 97
zero 96

interface-based design 13, 15
invariant property 32, 111

L
latch 228

inferences 192
library

entry point names 201
file 150
organization 150

linting 6, 67, 70
case statements 144
cycle-based simulation 149
expression type checking 153
in a design project 49
message 51
project specific rules 50

liveness property 32, 111
lock up 69
LSSD 228

M
memories 150, 228
miter 110
module

organization 151
multiplexers 92, 134, 150

N
named constants 146
names

file 149, 161
global 158

+define 148
conditional compilation name 158
module type 158

user task/function names 158
hierarchical references 157
instance 161
module 162
port 163
signal 164
user task and function 165
verilog library modules 166

O
object-based hardware design 6, 55, 68

encapsulation 55, 59, 66, 182
equivalence checking 118
flip-flops 195
formal verification 59
initialization 191
master-slave latch pair folding 119
methodology 43
model checking 127
optimization 92
optimizations 55
physical design 60
scan chain hookup 62, 158
simulation 56
synthesis 60
text macro implementation 64
UDP elimination 207

object-based programming 55
observability

port expressions 153
one-hot encoding

error condition 142
fully specified, minimum gate/time 141

Open Verification Library Initiative 265
Open Verilog International 124
optimizations

common control 92

P
parameter 146

scope 146
parity trees 150
performance problems 80
placement 114
placement based optimization 114
PLI 80
power-on 69
preimage computation 111
principle

Asynchronous Principle 7, 133, 244
Combinational Feedback Principle 7,

137,244
Consistency Principle 7, 132,243

280

Cutpoint Identification Principle 6, 117,
242

Disciplined User Principle 4, 201, 204,
207, 240

Faithful Semantics Principle 7, 83, 184,
244

Fast Simulation Principle 6, 71, 242
Functional Observation Principle 5, 21,

41, 241
Fundamental Verification Principle 5, 21,

240
Good Vendor Principle 7, 200, 245
Numeric Value Parameterization

Principle 6, 127, 243
Object-Based Hardware Design 6, 54,

234, 242
Orthogonal Verification Principle 5, 20,

21, 103, 193, 240
Project Linting Principle 6, 241
Property Principle 7, 171, 244
Retain Useful Information Principle 5,

14, 21, 29, 95, 240
Verifiable Subset Principle 6, 48, 189,

241
Visit Minimization Principle 6, 84, 180,

242
Principle of Information Hiding 54, 68
profiling performance 78
profiling support 159
programming language interface (PLI) 31
properties 169

R
races

#0 delays 196
analysis tools 197
conditions 20, 196
eliminating 134, 197
simulation model integrity 79
simulator version/vendor differences 193
startup, repetitive 80
synchronous design 78
time 0 134
X-state 73

random
start-up state 59, 95
test 70
two-state methods 95

random test 15, 17, 20, 26, 28, 37
recreating hardware problems 78
register transfer level 2
regression phase 78
reset 95
respin 69

routing 114
RTL refinement 112
RTL Static Sign-off 120

S
scan 14, 62, 114
scan stitching 157, 158
self-checking code 15
self-test 69
simulation

compiled code 88
cycle-based 8, 20, 76, 81, 82, 87, 96, 98,

170, 244
debugging phase 82
event activity 85
event overhead 85
event-driven 72, 84
farms 69
fault 72
fully-specified case performance 139
gate-level 7, 20, 21
history 71
interpreted 88
logic evaluation 88
logic races 83
operation 83
optimizations 89

bus reconstruction 58, 90
common control 57
common sub-expression 92
concatenation 91
flattening 58, 90
partitioning 92
rank-ordering 90

other states 73
performance profiling 80
random test parameters 83
rank ordered 72, 86
recreating problems 82, 83
regression phase 81, 82
reset 143
RTL manufacturing test 139
RTL, gate-level alignment 139
sequencing 84
start up state 95
two verification models 82
two-state 8, 59, 137, 170
two-state random methods 95
Z state 145

Software Engineering 10
specification 11, 106, 124

block-level specification 13
executable specification 11

INDEX 281

formal specification 11
standardization of HDL’s 76
static verification 21
stuck-at-faults 27
synthesis 60, 113, 115, 245
synthesizable subset 20, 44

T
test cases 70

directed 70
random 70

testbench 13, 15, 17, 18, 20, 157, 231
testing

black-box 28
white-box 28

timing verification 73
false path 73

transaction analyzer 18
transaction-based test 15
transformation test strategies 20, 106, 129
tri-state 21, 59, 98

assertions 145
drivers 144, 150
encapsulation 144
multiple drivers 145
no drivers 145
receivers 145, 150
trapping 99
tri, tri0 or trl 145

two-state
simulation 8
simulation models 79

U
user-defined primitives 206

V
vcs 78
verifiable subset

clarifying intent 45
facilitates tool flow optimzation 245
introduction 1, 6
justification 45
keywords 45, 241
operators 47
pocket guide 47
simple 44
state machines 189
tool flow optimization 67
unsupported verilog keywords 46, 205

Verilog XL 78
VHDL 77
visits

minimization 6, 84

X
X-state

bad stuff 7
case statements 137
Disciplined User Principle 204
eliminating 59, 89
historical 73
optimism,pessimism 19, 176
RTL startup state verification 100
semantic divergence 83
simulation performance 139
very bad stuff 174

Z
Z-state

simulation 59, 73

	Principles of Verifiable RTL Design (2nd Ed.)
	Copyright
	Table of Contents
	Foreword
	Preface
	Ch1 Introduction
	1.1 Register Transfer Level
	1.1.1 What is it?
	1.1.2 Verifiable RTL
	1.1.3 Applying Design Discipline

	Disciplined User Principle
	1.2 Assumptions
	1.3 Organization of this Book

	Ch2 Verification Process
	2.1 Specification Design Decomposition
	2.1.1 High-Level Design Requirements
	2.1.2 Block-Level Specification & Design
	2.1.3 RTL Implementation
	2.1.4 Synthesis & Physical Design

	Fundamental Verification Principle
	Retain Useful Information Principle
	2.2 Functional Test Strategies
	2.2.1 Deterministic or Directed Test
	2.2.2 Random Test
	2.2.3 Transaction Analyzer Verification
	2.2.4 Chip Initialization Verification
	2.2.5 Synthesizable Testbench

	2.3 Transformation Test Strategies
	Orthogonal Verification Principle
	2.4 Summary

	Ch3 Coverage, Events & Assertions
	3.1 Coverage
	3.1.1 Ad-hoc Metrics
	3.1.2 Programming Code Metrics
	3.1.3 State Machine & Arc Coverage Metrics
	3.1.4 User Defined Metrics
	3.1.5 Fault Coverage Metrics
	3.1.6 Regression Analysis & Test Suite Optimization

	3.2 Event Monitors & Assertion Checkers
	3.2.1 Events
	3.2.2 Assertions
	3.2.3 Assertion Monitor Library Details
	3.2.4 Event Monitor & Assertion Checker Methodology
	3.2.4.1 Linting Strategy
	3.2.4.2 Implementation Considerations
	3.2.4.3 Event Monitor Database & Analysis

	Functional Observation Principle
	3.3 Summary

	Ch4 RTL Methodology Basics
	4.1 Simple RTL Verifiable Subset
	Recommendation: for Loop Construct
	Verifiable Subset Principle
	4.2 Linting
	4.2.1 Linting in Design Project
	4.2.2 Lint Description
	4.2.2.1 Project Oriented
	4.2.2.2 Linting Message Examples

	Project Linting Principle
	4.3 Object-Based Hardware Design
	4.3.1 OBHD & Simulation
	4.3.2 OBHD & Formal Verification
	4.3.3 OBHD & Physical Design
	4.3.3.1 OBHD Synthesis
	4.3.3.2 OBHD Scan Chain Hookup

	4.3.4 Text Macro Implementation

	Object-Based Hardware Design Principle
	4.4 Summary

	Ch5 RTL Logic Simulation
	Fast Simulation Principle
	5.1 Simulation History
	5.1.1 First Steps
	5.1.2 X, Z & Other States
	5.1.3 Function & Timing
	5.1.4 Gate to RTL Migration
	5.1.5 Acceleration & Emulation
	5.1.6 Language Standardization

	5.2 Project Simulation Phases
	5.2.1 Debugging Phase
	5.2.2 Performance Profiling Phase
	5.2.3 Regression Phase
	5.2.4 Recreating Hardware Problems
	5.2.5 Performance

	5.3 Operation
	5.3.1 Sequencing
	5.3.1.1 Event-Driven
	5.3.1.2 Rank-Ordered

	5.3.2 Evaluation
	5.3.2.1 Interpreted Code
	5.3.2.2 Compiled Code
	5.3.2.3 RTL Methods

	Visit Minimization Principle
	5.4 Optimizations
	5.4.1 Flattening
	5.4.2 Rank-Ordering
	5.4.3 Bus Reconstruction
	5.4.3.1 Concatenation
	5.4.3.2 Expression Simplification

	5.4.4 OBHD-Based Optimization
	5.4.4.1 Common Sub-Expression Consolidation
	5.4.4.2 Common if-else Control Consolidation

	5.4.5 Partitioning
	5.4.5.1 Branch Partitioning
	5.4.5.2 Clock Partitioning
	5.4.5.3 Chip Partitioning

	5.5 Random Two-State Simulation Methods
	5.5.1 Start Up State
	5.5.1.1 Design Method
	5.5.1.2 Zero Initialization
	5.5.1.3 Random Initialization
	5.5.1.4 Verification Test

	5.5.2 Tri-State Buses
	5.5.3 Assertion Monitors
	5.5.4 Two-State in Design Process

	Fundamental Rule: Simulate RTL Two-State
	5.6 Summary

	Ch6 RTL Formal Verification
	6.1 Formal Verification Introduction
	6.2 Finite State Machines
	6.2.1 Machine Equivalence
	6.2.2 FSM Property Verification

	6.3 Formal Transformation Verification
	6.3.1 Equivalence Checking
	6.3.1.1 Equivalence Checking Flow
	6.3.1.2 Closing Verification Loop

	6.3.2 Cutpoint Definition
	6.3.3 Equivalence Checking RTL Coding Style
	6.3.3.1 Isolating Functional Complexity
	6.3.3.2 Test Expressions within Case Statements
	6.3.3.3 Equivalence Checking OBHD Practices

	6.3.4 RTL Static Sign-Off
	6.3.5 Effective Equivalence Checking Methodology

	Cutpoint Identification Principle
	6.4 Formal Functional Verification
	6.4.1 Specification
	6.4.2 Model Checking & Parameterized Modules
	6.4.3 Model Checking OBHD Practices

	Numeric Value Parameterization Principle
	6.5 Summary

	Ch7 Verifiable RTL Style
	Consistency Principle
	7.1 Design Content
	7.1.1 Asynchronous Logic
	7.1.2 RTL Races
	7.1.3 Combinational Feedback
	7.1.4 Case Statements
	7.1.4.1 Fully-Specified case Statements
	7.1.4.2 Test Signal & Constant Widths

	7.1.5 Tri-State Buses

	Asynchronous Principle
	Combinational Feedback Principle
	7.2 Organization
	7.2.1 System Organization
	7.2.1.1 Compiler Options
	7.2.1.2 Design Hierarchy
	7.2.1.3 Files
	7.2.1.4 Libraries

	7.2.2 Module Organization
	7.2.2.1 Overall Organization
	7.2.2.2 Connections
	7.2.3 Expression Organization

	7.3 Naming Conventions
	7.3.1 General Considerations
	7.3.1.1 Consistency
	7.3.1.2 Upper/Lower Case
	7.3.1.3 Hierarchical Name References
	7.3.1.4 Global/Local Name Space
	7.3.1.5 Profiling Support

	7.3.2 Specific Naming Conventions
	7.3.2.1 Constants
	7.3.2.2 File Names
	7.3.2.3 Instances
	7.3.2.4 Modules
	7.3.2.5 Port Names
	7.3.2.6 Signal Names
	7.3.2.7 User Tasks/Functions & Program Libraries

	7.4 Naming In Verilog Library Modules
	7.5 Editing Practices
	7.5.1 Indentation
	7.5.2 Comments
	7.5.2.1 Header
	7.5.2.2 Declarations
	7.5.2.3 end Identification
	7.5.2.4 Tool Controls
	7.5.2.5 Embedded Comments

	7.5.3 Line Length

	Property Principle
	7.6 Summary

	Ch8 Bad Stuff
	8.1 In-Line Storage Element Specification
	8.2 RTL X-State
	8.2.1 RTL X-State Problems
	8.2.1.1 RTL X-State Pessimism
	8.2.1.2 RTL X-State Optimism
	8.2.1.3 Impractical

	8.3 Visits
	8.3.1 Bit Visits
	8.3.2 Configuration Test Visits
	8.3.3 for Loops

	8.4 Simulation vs Synthesis Differences
	8.4.1 Explicit Differences
	8.4.1.1 Full & Parallel Case
	8.4.1.2 X Assignment
	8.4.1.3 Other Forms of State Machines
	8.4.1.4 Initial Blocks

	8.4.2 Inadvertent Coding Errors
	8.4.2.1 Incomplete Sensitivity List
	8.4.2.2 Latch Inference in Functions
	8.4.2.3 Incorrect Procedural Statement Ordering

	8.4.3 Timing
	8.4.3.1 Delays
	8.4.3.2 Race Conditions

	Faithful Semantics Principle
	8.5 Problematic RTL Verilog
	8.5.1 Linting & Problematic RTL Verilog
	8.5.2 Simulation & Problematic RTL Verilog
	8.5.3 Formal Verification & Problematic Verilog

	8.6 EDA Tool Vendors
	8.6.1 Tool Library Function Naming
	8.6.2 Command Line Consistency
	8.6.3 Vendor Specific Properties

	Good Vendor Principle
	8.7 Design Team Discipline
	8.8 Language Elements
	8.8.1 Keywords
	8.8.2 Parameters
	8.8.3 User-Defined Primitives

	8.9 Summary

	Ch9 Verifiable RTL Tutorial
	9.1 Module
	9.1.1 Specification
	9.1.2 Comments
	9.1.3 Instantiation
	9.1.4 Interconnection

	9.2 Adding Behavior
	9.3 Multi-Bit Interconnect & Behavior
	9.4 Parameters
	9.5 Expressions
	9.5.1 Operators
	9.5.1.1 Binary Operators
	9.5.1.2 Unary Operators
	9.5.1.3 Miscellaneous Operators

	9.5.2 Operator Precedence

	9.6 Procedural Blocks
	9.6.1 Combinational Logic
	9.6.1.1 Procedural Assignments
	9.6.1.2 Functions
	9.6.1.3 if-else Statement
	9.6.1.4 case, casex Statements

	9.6.2 Storage Elements
	9.6.2.1 Flip-Flops
	9.6.2.2 Latches
	9.6.2.3 Memories

	9.6.3 Debugging
	9.6.3.1 $display & $write Statements
	9.6.3.2 $finish

	9.7 Testbench
	9.8 Verilog Compilation
	9.8.1 Compiler Directives
	9.8.1.1 Constants
	9.8.1.2 Code Inclusion
	9.8.1.3 Command Line

	9.9 Summary

	Ch10 Principles of Verifiable RTL Design
	10.1 Principles
	10.1.1 Disciplined User Principle
	10.1.2 Fundamental Verification Principle
	10.1.3 Retain Useful Information Principle
	10.1.4 Orthogonal Verification Principle
	10.1.5 Functional Observation Principle
	10.1.6 Verifiable Subset Principle
	10.1.7 Project Linting Principle
	10.1.8 Object-Based Hardware Design Principle
	10.1.9 Fast Simulation Principle
	10.1.10 Visit Minimization Principle
	10.1.11 Cutpoint Identification Principle
	10.1.12 Numeric Value Parameterization Principle
	10.1.13 Consistency Principle
	10.1.14 Asynchronous Principle
	10.1.15 Combinational Feedback Principle
	10.1.16 Property Principle
	10.1.17 Faithful Semantics Principle
	10.1.18 Good Vendor Principle

	10.2 Summary

	Bibliography
	AppA Comparing Verilog Construct Performance
	AppB Quick Reference
	Lexical Elements
	Reserved Words
	Module Organization
	Procedural Statements
	Operators
	System Tasks & Functions
	Compiler Directives

	AppC Assertion Monitors
	assert_always
	assert_change
	assert_window
	assert_frame

	Index

