

WRITING TESTBENCHES

Functional Verification of HDL Models

This Page Intentionally Left Blank

WRITING TESTBENCHES

Functional Verification of HDL Models

Janick Bergeron
Qualis Design Corporation

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47687-8
Print ISBN: 0-7923-7766-4

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2000 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

TABLE OF CONTENTS

About the Cover xiii

Foreword xv

Preface xvii

Why This Book Is Important

What This Book Is About
What Prior Knowledge You Should Have
Reading Paths
VHDL versus Verilog

For More Information

Acknowledgements

xvii
xviii

xix
xx
xx

xxii
xxii

CHAPTER 1 1
1
2
4
5
6
6

v

What is a Testbench?
The Importance of Verification
Reconvergence Model
The Human Factor

Automation
Poka-Yoka

Writing Testbenches: Functional Verification of HDL Models

What is Verification?

Table of Content

Redundancy 6

7
7
8
9

10
11

11
12
13
13

13
14
16

16
16
17

17
19

21

22
23
25
26
28

28
29
29
31
34

36
37

38
40
42
44
45

vi Writing Testbenches: Functional Verification of HDL Models

What Is Being Verified?
Formal Verification
Equivalence Checking
Model Checking
Functional Verification
Testbench Generation

Functional Verification Approaches
Black-Box Verification
White-Box Verification
Grey-Box Verification

Testing Versus Verification
Scan-Based Testing
Design for Verification

Verification and Design Reuse
Reuse Is About Trust
Verification for Reuse

The Cost of Verification
Summary

CHAPTER 2 Verification Tools

Linting Tools
The Limitations of Linting Tools
Linting Verilog Source Code
Linting VHDL Source Code
Code Reviews

Simulators
Stimulus and Response
Event-Driven Simulation
Cycle-Based Simulation
Co-Simulators

Third-Party Models
Hardware Modelers

Waveform Viewers

Code Coverage
Statement Coverage
Path Coverage
Expression Coverage

45

46
47
48
50
51

52
52
53
54
55
55

57
57
58
59

60

61

62
62
63

64
65
66
67
68
68

69
70
71

72
73
73
74

75
75
76
77

viiWriting Testbenches: Functional Verification of HDL Models

What Does 100 Percent Coverage Mean?

Verification Languages

Revision Control
The Software Engineering Experience
Configuration Management
Working with Releases

Issue Tracking
What Is an Issue?
The Grapevine System
The Post-It System
The Procedural System
Computerized System

Metrics
Code-Related Metrics
Quality-Related Metrics
Interpreting Metrics

Summary

CHAPTER 3 The Verification Plan

The Role of the Verification Plan
Specifying the Verification
Defining First-Time Success

Levels of Verification
Unit-Level Verification
Reusable Components Verification
ASIC and FPGA Verification
System-Level Verification
Board-Level Verification

Verification Strategies
Verifying the Response
Random Verification

From Specification to Features
Component-Level Features
System-Level Features
Error Types to Look For

From Features to Testcases
Prioritize
Group into Testcases
Design for Verification

Table of Content

79
80

81

From Testcases to Testbenches
Verifying Testbenches

Summary

Behavioral Hardware Description
Languages 83

83
85

87
87
88
91

92
93
94
97

100
101
105
112
115
121
124

125
125
126
127
128
129
132
134
137

140
141
144
146
147
147
148

viii Writing Testbenches: Functional Verification of HDL Models

Behavioral versus RTL Thinking
Contrasting the Approaches

You Gotta Have Style!
A Question of Discipline

Optimize the Right Thing
Good Comments Improve Maintainability

Structure of Behavioral Code
Encapsulation Hides Implementation Details
Encapsulating Useful Subprograms
Encapsulating Bus-Functional Models

Data Abstraction
Real Values
Records
Multi-Dimensional Arrays
Lists
Files
Interfacing High-Level Data Types

The HDL Parallel Engine
Connectivity, Time, and Concurrency..
Connectivity, Time, and Concurrency in HDLs
The Problems with Concurrency
Emulating Parallelism on a Sequential Processor
The Simulation Cycle
Parallel vs. Sequential
Fork/Join Statement
The Difference Between Driving and Assigning

Verilog Portability Issues
Read/Write Race Conditions
Write/Write Race Conditions
Initialization Races
Guidelines for Avoiding Race Conditions
Events from Overwritten Scheduled Values
Disabled Scheduled Values

CHAPTER 4

150
151

153

155

155
156
159
160
164
165
167
169
172
172
172
174
174

176
176
177
179

183
183
184
187
189
192

193
194
195
199
202
203
205

211
211
215
216

ix

Output Arguments on Disabled Tasks
Non-Reentrant Tasks

Summary

CHAPTER 5 Stimulus and Response

Simple Stimulus
Generating a Simple Waveform
Generating a Complex Waveform
Generating Synchronized Waveforms
Aligning Waveforms in Delta-Time
Generating Synchronous Data Waveforms
Encapsulating Waveform Generation
Abstracting Waveform Generation

Verifying the Output
Visual Inspection of Response
Producing Simulation Results
Minimizing Sampling
Visual Inspection of Waveforms

Self-Checking Testbenches
Input and Output Vectors
Golden Vectors
Run-Time Result Verification

Complex Stimulus
Feedback Between Stimulus and Design
Recovering from Deadlocks
Asynchronous Interfaces
CPU Operations
Configurable Operations

Complex Response
What is a Complex Response?
Handling Unknown or Variable Latency
Abstracting Output Operations
Generic Output Monitors
Monitoring Multiple Possible Operations
Monitoring Bi-Directional Interfaces

Predicting the Output
Data Formatters
Packet Processors
Complex Transformations

Writing Testbenches: Functional Verification of HDL Models

Table of Content

Summary 219

CHAPTER 6 Architecting Testbenches 221

Reusable Verification Components 221
225
226

227
228
231

237
238
240
243
246
247
249

250
250
253
255
255
258

258
259
260
261
262

263
265
266

268

269

269
270
271
273

x Writing Testbenches: Functional Verification of HDL Models

Procedural Interface
Development Process

Verilog Implementation
Packaging Bus-Functional Models
Utility Packages

VHDL Implementation
Packaging Bus-Functional Procedures
Creating a Test Harness
Abstracting the Client/Server Protocol
Managing Control Signals
Multiple Server Instances
Utility Packages

Autonomous Generation and Monitoring
Autonomous Stimulus
Random Stimulus
Injecting Errors
Autonomous Monitoring
Autonomous Error Detection

Input and Output Paths
Programmable Testbenches
Configuration Files
Concurrent Simulations
Compile-Time Configuration

Verifying Configurable Designs
Configurable Testbenches
Top Level Generics and Parameters

Summary

CHAPTER 7 Simulation Management

Behavioral Models
Behavioral versus Synthesizable Models
Example of Behavioral Modeling
Characteristics of a Behavioral Model

xiWriting Testbenches: Functional Verification of HDL Models

276
281
285
286
286
289

289
292
294
295
301
305
309

312
313
314

316

317

318
320
320

321
321
323
326
329

329
330
332
334
334
336

336
337
337
337
340

APPENDIX A Coding Guidelines

Modeling Reset
Writing Good Behavioral Models

Behavioral Models Are Faster
The Cost of Behavioral Models
The Benefits of Behavioral Models
Demonstrating Equivalence

Pass or Fail?
Managing Simulations

Configuration Management
Verilog Configuration Management
VHDL Configuration Management
SDF Back-Annotation
Output File Management

Regression
Running Regressions
Regression Management

Summary

Directory Structure
VHDL Specific
Verilog Specific

General Coding Guidelines
Comments
Layout
Syntax
Debugging

Naming Guidelines
Capitalization
Identifiers
Constants
HDL Specific
Filenames

HDL Coding Guidelines
Structure
Layout
VHDL Specific
Verilog Specific

Table of Content

Afterwords

Index

347

349

xii Writing Testbenches: Functional Verification of HDL Models

ABOUT THE COVER

The Quebec Bridge Company was formed in 1887 and for the next
thirteen years, very little was done. In 1900, Thomas Cooper, a con-
sultant in civil engineering specializing in bridge building was
appointed the company’s consulting engineer for the duration of the
work. The Sixth Street bridge in Pittsburgh, the Seekonk bridge in
Providence, and the Second Avenue bridge in New York were
already part of his portfolio.

Conscious of the precarious financial situation of the Quebec
Bridge Company, Cooper recommended the cantilever superstruc-
ture proposed by the Phoenix Bridge Company, of Phoenixville,
Pennsylvania as the best and cheapest of the proposals. He also rec-
ommended that the span of the bridge be increased from 1600 feet
to 1800 feet to minimize the cost of constructing the piers support-
ing the bridge. The specifications were also modified to allow for
greater unit stresses in the structure. The Quebec Bridge was to be
the longest cantilever bridge in the world.

For the next three years, the assumptions underlying the modified
design of the most technically ambitious bridge in the world went
unchallenged. After the Canadian government guaranteed a bond
issue in 1903, the construction shifted into high gear. In the rush to
minimize delays, the assumed weight of the revised bridge was not
recalculated. Instead, work continued with the estimated weight the
Phoenix Company had provided with the original proposal. Cooper
was personally offended when the Canadian Department of Rail-
ways and Canals requested that the plans be independently

Writing Testbenches: Functional Verification of HDL Models xiii

About the Cover

reviewed and approved. With full confidence in his own design and
expertise, Cooper managed to turn the independent review into a
rubber stamp approval by unqualified individuals.

Subsequent warnings were also summarily ignored. In 1906, the
Phoenix Company’s inspector of material reported that the actual
weight of steel put into the bridge had already exceeded the original
estimated weight. The final weight of the bridge was estimated to
be eleven million pounds higher than originally thought. The alter-
native being to start building the bridge all over again, Cooper con-
cluded that the increase in stresses was acceptable.

In early August 1907, the lower horizontal pieces running the
length of the bridge began to show signs of buckling. The Phoenix
Company insisted that they were already bent when they left the
shop in Phoenixville and work continued. They made no effort to
explain why a deflection had increased by an inch and a half in the
past week. On August 29th, the south arm of the bridge collapsed
under its own weight, killing 73 workers.

The bridge was eventually redesigned and rebuilt, weighing two
and a half times more than its predecessor. Ironically, it suffered a
tragedy of its own in 1916 when the central span fell into the river
while it was being hoisted into place. The bridge was finally com-

pleted in 19181. It is still in use today and it is still the longest canti-
lever bridge in the world.

The parallel with today’s micro-electronic designs is obvious. The
next design is always more challenging than the previous one and it
takes the designers into previously uncharted waters. A design can-
not go unchallenged simply because it worked in the last implemen-
tation. Changes in the specifications or new functionality cannot be
assumed to work simply because they were designed by the best
engineers. Errors will be made. It is important that any design be
independently verified to ensure that it is indeed functionally cor-
rect. The alternative is to manufacture a non-functional design.
Hopefully, no one will get killed. But many could lose their jobs.

1. The technical drawing on the cover, from the St. Lawrence Bridge Com-
pany, is of that newer bridge, copyright ADF Industries Lourdes,
Lachine, Qc, Canada. All Rights Reserved. Photo: CP Picture Archive.
Cover designed by Elizabeth Nephew (www.nephco.com).

xiv Writing Testbenches: Functional Verification of HDL Models

With gate counts and system complexity growing exponentially,
engineers confront the most perplexing challenge in product
design: functional verification. The bulk of the time consumed in
the design of new ICs and systems is now spent on verification.
New and interesting design technologies like physical synthesis and
design reuse that create ever-larger designs only aggravate the
problem. What the EDA tool industry has continuously failed to
realize is that the real problem is not how to create a 12 million gate
IC that runs at 600 MHz, but how to verify it.

The true path to rapid and accurate system verification includes
both tool and methodology innovation. Engineers are compelled to
use the best verification and design tools available to shorten design
cycle time. But it is a grave mistake to assume that simply having
the best tools will result in quality ICs and systems that meet mar-
ket demands and mitigate competitive pressures. Indeed, the best
determinant of successful IC and system design is how the engineer
approaches the problem. The vast majority of engineers still
approach verification using methods dating back a dozen years or
more. If dramatic improvement in verification efficiency is to come
about, real change in the way engineers approach verification is
mandatory and urgent.

A review of available texts on verification reveals a lack of mature
knowledge and leadership on the topic: the EDA tool industry is
conspicuously silent. This text marks the first genuine effort at

Writing Testbenches: Functional Verification of HDL Models xv

FOREWORD

Foreword

defining a verification methodology that is independent of both
tools and applications. Engineers now have a true reference text for
quickly and accurately verifying the functionality of their designs.
Experts may disagree on the specifics of implementing the method-
ology, but the fact still remains that a mature verification methodol-
ogy like this is long overdue.

A reasonable question to ask is, why develop a verification method-
ology that is tool-independent? Simply put, tool-independent meth-
odologies yield more predictable and adaptable processes, have
lower adoption costs, and are not dependent upon the continued
technical superiority of any one EDA tool vendor. As has been
proven so many times in the EDA tool industry, today's technology
leader can quickly become tomorrow's lost cause. An independent
methodology yields the ability to tap the best of today's EDA tools,
while retaining the powerful option of switching to competing
products as they become technically or financially superior.

The future of system verification undoubtedly will include new and
innovative approaches and more powerful tools. Much work
remains in the area of hardware/software co-verification. New veri-
fication-centric languages that leverage object-oriented techniques
hold great promise. However, the best verification methodologies
of the future will come from a tool-independent view, where the
mind is free to dream up new and innovative ways to tackle verifi-
cation. This book is a necessary and great beginning.

Michael Home, President & CEO
Quails Design Corporation

xvi Writing Testbenches: Functional Verification of HDL Models

PREFACE

If you survey hardware design groups, you will learn that between
60 and 80 percent of their effort is now dedicated to verification.
Unlike synthesizeable coding, there is no particular coding style
required for verification. The freedom of using any features of the
languages has produced a wide array of techniques and approaches
to verification. The absence of constraints and lack of available
expertise and references in verification has resulted in ad hoc
approaches. The consequences of an informal verification process
can range from a non-functional design requiring several re-spins,
through a design with only a subset of the intended functionality, to
a delayed product shipment.

WHY THIS BOOK IS IMPORTANT

Take a survey of the books about Verilog or VHDL currently avail-
able. You will notice that the majority of the pages are devoted to
explaining the details of the languages. In addition, several chapters
are focused on the synthesizeable coding style - or RTL - replete
with examples. Some books are even devoted entirely to the subject
of RTL coding.

When verification is addressed, only one or two chapters are dedi-
cated to the topic. And often, the primary focus is to introduce more
language constructs. Verification is often presented in a very rudi-
mentary fashion, using simple techniques that become tedious in
large-scale, real-life designs.

Writing Testbenches: Functional Verification of HDL Models xvii

Preface

Basic language textbooks appeared early in the life of hardware
description languages. They continue to appear as the presentation
styles are refined to facilitate their understanding or as they are
tuned to a particular audience. But the benefits of additional lan-
guage textbooks is quickly diminishing.

Since the introduction of hardware description languages and logic
synthesis technology in the mid 80’s, a lot of expertise on coding
styles and synthesis methodologies has been developed to obtain
desired results. A lot of that expertise has been presented at confer-
ences, has been codified in textbooks, and is available as introduc-
tory and advanced training classes. Early language-focused
textbooks were re-edited to include chapters on synthesizeable cod-
ing and many books entirely devoted to that topic now exist. The
synthesis process, although complex, is now well understood and
many resources are available to communicate that understanding.
Standard procedures and techniques have been developed to pre-
dictably produce adequate results.

At the time I started writing this book, it was going to be the first
book specifically devoted to verification techniques for hardware
models. I will introduce you to the latest verification techniques
that have been successfully used to produce first-time-right ASICs,
Systems-on-a-Chip (SoC), boards, and entire systems.

WHAT THIS BOOK IS ABOUT

I will first introduce the necessary concepts and tools of verifica-
tion, then I’ll describe a process for carrying out an effective func-
tional verification of a design. It is necessary to cover some
language semantics that are often overlooked or oversimplified in
textbooks intent on describing the synthesizeable subset. These
unfamiliar semantics become important in understanding what
makes a well-implemented and robust testbench and in providing
the necessary control and monitor features.

I will also present techniques for applying stimulus and monitoring
the response of a design, by abstracting the operations using bus-
functional models. The architecture of testbenches built around
these bus-functional models is important to minimize development
and maintenance effort.

xviii Writing Testbenches: Functional Verification of HDL Models

What Prior Knowledge You Should Have

Behavioral modeling is another important concept presented in this
book. It is used to parallelize the implementation and verification of
a design and to perform more efficient simulations. For many,
behavioral modeling is synonymous with synthesizeable or RTL
modeling. In this book, the term “behavioral” is used to describe
any model that adequately emulates the functionality of a design,
usually using non-synthesizeable constructs and coding style.

WHAT PRIOR KNOWLEDGE YOU SHOULD HAVE

This book focuses on the functional verification of hardware
designs using either VHDL or Verilog. I expect the reader to have
at least a basic knowledge of one of the languages. Ideally, you
should have experience in writing synthesizeable models and be
familiar with running a simulation using any of the available
VHDL or Verilog simulators. There will be no description of lan-
guage syntax or grammar. It may be a good idea to have a copy of a

language-focused textbook as a reference along with this book1. I
do not describe the synthesizeable subset, nor limit the implementa-
tion of the verification techniques to using that subset. Verification
is a complex task: the power of either language will be used to their
fullest.

I also expect that you have a basic understanding of digital hard-
ware design. This book uses several hypothetical designs from var-
ious domains of application (video, datacom, computing, etc.).
How these designs are actually specified, architected, then imple-
mented is beyond the scope of this book. The content focuses on the
specification, architecture, then implementation of the verification
of these same designs.

1. For Verilog, I recommend The Verilog Hardware Description Language
by Thomas & Moorby, 3rd edition or later (Kluwer Academic Pub-
lisher). For VHDL, I recommend VHDL Coding Styles and Methodolo-
gies by Ben Cohen (Kluwer Academic Publisher).

Writing Testbenches: Functional Verification of HDL Models xix

Preface

READING PATHS

You should really read this book from cover to cover. However, if
you are pressed for time, here are a few suggested paths.

If you are using this book as a university or college textbook, you
should focus on Chapter 4, Chapter 5, and Appendix A. If you are a
junior engineer who has only recently joined a hardware design
group, you may skip Chapters 3, 6 and 7. But do not forget to read
them once you have gained some experience.

Chapters 3 and 6, as well as Appendix A, will be of interest to a
senior engineer in charge of defining the verification strategy for a
project. If you are an experienced designer, you may wish to skip
ahead to Chapter 3. If you are an experienced Verilog or VHDL
user, you may wish to skip Chapter 4 - but read it anyway, just to
make sure your definition of “experienced” matches mine.

If you have a software background, Chapter 7 and Appendix A may
seem somewhat obvious. If you have a hardware design and RTL
coding mindset, Chapters 4 and 7 are probably your best friends.

If your responsibilities are limited to managing a hardware verifica-
tion project, you probably want to concentrate on Chapter 3, Chap-
ter 6, and Chapter 7.

VHDL VERSUS VERILOG

The first decision a design group is often faced with is deciding
which language to use. As the author of this book, I faced the same
dilemma. The answer is usually dictated by the individual’s own
knowledge or personal preference.

I know both languages equally well. I work using both. I teach them
both. When asked which one I prefer, I usually answer that I was
asked the wrong question. The right question should be “Which one
do I hate the least?” And the answer to that question is: “the one
I’m not currently working with”.

When working in one language, you do not notice the things that
are simple to describe or achieve in that language. Instead, you

xx Writing Testbenches: Functional Verification of HDL Models

VHDL versus Verilog

notice the frustrations and how it would be easy to do it if only you
were using the other language.

In my opinion, both languages are inadequate by themselves, espe-
cially for verification. They are both equally poor for synthesize-
able description. Some things are easier to accomplish in one
language than in the other. For a specific model, one language is
better than the other: one language has features that better map to
the functionality to be modeled. However, as a general rule, neither
is better than the other.

Verification techniques transcend the language used. VHDL and
Verilog are only implementation vehicles. Both are used throughout
the book. It is not to say that this book is bilingual: examples are
shown in only one language. I trust that a VHDL-only or Verilog-
only reader will be able to understand the example in the other lan-
guage, even though the syntax is slightly different.

Some sections are Verilog only. In my experience Verilog is a much
abused language. It has the reputation for being easier to learn than
VHDL, and to the extent that the learning curve is not as steep, it is
true. However, both languages provide similar concepts: sequential
statements, parallel constructs, structural constructs, and the illu-
sion of parallelism.

For both languages, these concepts must be learned. Because of its
lax requirements, Verilog lulls the user into a false sense of security.
The user believes that he or she knows the language because there
are no syntax errors or because the simulation results appear to be
correct. Over time, and as a design grows, race conditions and frag-
ile code structures become apparent, forcing the user to learn these
important concepts. Both languages have the same area under the
learning curve. VHDL’s is steeper but Verilog’s goes on for much
longer. Some sections in this book take the reader further down the
Verilog learning curve.

Writing Testbenches: Functional Verification of HDL Models xxi

Preface

FOR MORE INFORMATION

If you want more information on topics mentioned in this book, you
will find links to relevant resources at the following URL:

http://janick.bergeron.com/wtb

In the resources area, you will find links to publicly available utili-
ties, documents and tools that make the verification task easier. You
will also find an errata section listing and correcting the errors that

inadvertently made their way in the book.2

The website also has a set of quizzes corresponding to each chapter
in this book. I recommend you complete them to verify your under-
standing of the material. You may even choose to start with a quiz
to determine if you need to read a chapter or not!

ACKNOWLEDGEMENTS

My wife, Danielle, gave this book energy against its constant drain.
Kyle Smith, my editor, gave it form from its initial chaos. Ben
Cohen, Ken Coffman, and Bernard Delay, my technical reviewers,
gave it light from its initial darkness. And FrameMaker, my word
processing software, reliably went where no Word had gone before!

2. If you know of a verification-related resource or an error in this book
that is not mentionned in the website, please let me know via email at
janick@bergeron.com. I thank you in advance.

xxii Writing Testbenches: Functional Verification of HDL Models

CHAPTER 1 WHAT IS VERIFICATION?

Verification is not a testbench, nor is it a series of testbenches. Veri-
fication is a process used to demonstrate the functional correctness
of a design. We all perform verification processes throughout our
daily lives: balancing a checkbook, tasting a simmering dish, asso-
ciating landmarks with symbols on a map. These are all verification
processes.

In this chapter, I introduce the basic concepts of verification, from
its importance and cost, to making sure you are verifying that you
are indeed implementing what you want. We look at the differences
between various verification approaches as well as the difference
between testing and verification. I also show how verification is
key to design reuse.

WHAT IS A TESTBENCH?

The term “testbench”, in VHDL and Verilog, usually refers to the
code used to create a pre-determined input sequence to a design,
then optionally observe the response. It is commonly implemented
using VHDL or Verilog, but may also include external data files or
C routines.

Figure 1-1 shows how a testbench interacts with a Design Under
Verification (DUV). The testbench provides inputs to the design
and monitors any outputs. Notice how this is a completely closed
system: no inputs or outputs go in or out. The testbench is effec-

Writing Testbenches: Functional Verification of HDL Models 1

What is Verification?

tively a model of the universe as far as the design is concerned. The
verification challenge is to determine what input patterns to supply
to the design and what is the expected output of a properly working
design.

THE IMPORTANCE OF VERIFICATION

Most books focus
on syntax, seman-
tic and RTL sub-
set.

If you look at a typical book on Verilog or VHDL, you will find that
most of the chapters are devoted to describing the syntax and
semantics of the language. You will also invariably find two or
three chapters on synthesizeable coding style or Register Transfer
Level (RTL) subset.

Most often, only a single chapter is dedicated to testbenches. Very
little can be adequately explained in one chapter and these explana-
tions are usually very simplistic. In nearly all cases, these books
limit the techniques described to applying simple sequences of vec-
tors in a synchronous fashion. The output is then verified using a
waveform viewing tool. Most also take advantage of the topic to
introduce the file input mechanisms offered by the language, devot-
ing yet more content to detailed syntax and semantics.

Given the significant proportion of literature devoted to writing
synthesizeable VHDL or Verilog code compared to writing test-
benches to verify their functional correctness, you could be tempted
to conclude that the former is a more daunting task than the latter.
The evidence found in all hardware design teams points to the con-
trary.

Today, in the era of multi-million gate ASICs, reusable Intellectual
Property (IP), and System-on-a-Chip (SoC) designs, verification
consumes about 70% of the design effort. Design teams, properly
staffed to address the verification challenge, include engineers ded-
icated to verification. The number of verification engineers is usu-
ally twice the number of RTL designers. When design projects are

2 Writing Testbenches: Functional Verification of HDL Models

70% of design
effort goes to veri-
fication.

The Importance of Verification

completed, the code that implements the testbenches makes up to
80% of the total code volume.

Given the amount of effort demanded by verification, the shortage
of qualified hardware design and verification engineers, and the
quantity of code that must be produced, it is no surprise that, in all
projects, verification rests squarely on the critical path. It is also the
reason verification is currently the target of new tools and method-
ologies. These tools and methodologies attempt to reduce the over-
all verification time by enabling parallelism of effort, higher levels
of abstraction and automation.

If effort can be parallelized, additional resources can be applied
effectively to reduce the total verification time. For example, dig-
ging a hole in the ground can be parallelized by providing more
workers armed with shovels. To parallelize the verification effort, it
is necessary to be able to write - and debug - testbenches in parallel
with each others as well as in parallel with the implementation of
the design.

Providing higher levels of abstraction enables you to work more
efficiently without worrying about low-level details. Using a back-
hoe to dig the same hole mentioned above is an example of using a
higher level of abstraction.

Higher levels of abstraction are usually accompanied by a reduction
in control and therefore must be chosen wisely. These higher levels
of abstraction often require additional training to understand the
abstraction mechanism and how the desired effect can be produced.

Using a backhoe to dig a hole suffers from the same loss-of-control
problem: the worker is no longer directly interacting with the dirt;
instead the worker is manipulating levers and pedals. Digging hap-
pens much faster, but with lower precision and only by a trained
operator. The verification process can use higher levels of abstrac-
tion by working at the transaction- or bus-cycle-levels (or even
higher ones), instead of always dealing with low-level zeroes and
ones.

Automation lets you do something else while a machine completes
a task autonomously, faster, and with predictable results. Automa-
tion requires standard processes with well-defined inputs and out-
puts. Not all processes can be automated. Holes must be dug in a

Verification is on
critical path.

Writing Testbenches: Functional Verification of HDL Models 3

Verification time
can be reduced
through parallel-
ism.

Verification time
can be reduced
through abstrac-
tion.

Using abstraction
reduces control
over low-level
details.

Verification time
can be reduced
through automa-
tion.

What is Verification?

variety of shapes, sizes, depths, locations, and in varying soil condi-
tions, which render general-purpose automation impossible.

Verification faces similar challenges. Because of the variety of
functions, interfaces, protocols, and transformations that must be
verified, it is not possible to provide a general purpose automation
solution for verification given today’s technology. It is possible to
automate some portion of the verification process, especially when
applied to a narrow application domain. For example, trenchers
have automated digging holes used to lay down conduits or cables
at shallow depths. Tools automating various portions of the verifi-
cation process will be introduced. Hopefully, this book may help
define new standard verification practices that could be automated
in a near future.

RECONVERGENCE MODEL

The reconvergence model is a conceptual representation of the veri-
fication process. It is used to illustrate what exactly is being veri-
fied.

One of the most important questions you must be able to answer is:
What are you verifying? The purpose of verification is to ensure
that the result of some transformation is as intended or as expected.
For example, the purpose of balancing a checkbook is to ensure that
all transactions have been recorded accurately and confirm that the
balance in the register reflects the amount of available funds.

Do you know what
you are actually
verifying?

Verification is the
reconciliation,
through different
means, of a speci-
fication and an
output.

Figure 1-2 shows that verification of a transformation can only be
accomplished through a second reconvergent path with a common
source. The transformation can be any process that takes an input
and produces an output. RTL coding from a specification, insertion
of a scan chain, synthesizing RTL code into a gate-level netlist, and
layout of a gate-level netlist are some of the transformations per-
formed in a hardware design project. The verification process rec-

Writing Testbenches: Functional Verification of HDL Models4

The Human Factor

onciles the result with the starting point. If there is no starting point
common to the transformation and the verification, no verification
takes place.

The reconvergent model can be described using the checkbook
example as is illustrated in Figure 1-3. The common origin is the
previous month’s balance in the checking account. The transforma-
tion is the writing, recording and debiting of several checks during
a one-month period. The verification reconciles the final balance in
the checkbook register using this month’s bank statement.

THE HUMAN FACTOR

If the transformation process is not completely automated from end
to end, it is necessary for an individual (or group of individuals) to
interpret a specification of the desired outcome then perform the
transformation. RTL coding is an example of this situation. A
design team interprets a written specification document and pro-
duces what they believe to be functionally correct synthesizeable
HDL code. Usually, each engineer is left to verify that the code
written is indeed functionally correct.

A designer verify-
ing his or her own
design verifies
against his or her
own interpreta-
tion, not against
the specification.

Figure 1-4 shows the reconvergent path model of the situation
described above. If the same individual performs the verification of
the RTL coding that initially required interpretation of a specifica-
tion, then the common origin is that interpretation, not the specifi-
cation.

Writing Testbenches: Functional Verification of HDL Models 5

What is Verification?

In this situation, the verification effort verifies whether the design
accurately represents the implementer’s interpretation of that speci-
fication. If that interpretation is wrong in any way, then this verifi-
cation activity will never highlight it.

Any human intervention in a process is a source of uncertainty and
unrepeatability. The probability of human-introduced errors in a
process can be reduced through several complementary mecha-
nisms: automation, poka-yoka, or redundancy.

Automation

Eliminate human
intervention.

Automation is the obvious way to eliminate human-introduced
errors in a process. Automation takes human intervention com-
pletely out of the process. However, automation is not always pos-
sible, especially in processes that are not well-defined and continue
to require human ingenuity and creativity, such as hardware design.

Poka-Yoka

Make human inter-
vention foolproof.

Another possibility is to mistake-proof the human intervention by
reducing it to simple, and foolproof steps. Human intervention is
needed only to decide on the particular sequence or steps required
to obtain the desired results. This mechanism is also known as
poka-yoka in Total Quality Management circles. It is usually the
last step toward complete automation of a process. However, just
like automation, it requires a well-defined process with standard
transformation steps. The verification process remains an art that,
to this day, does not yield itself to well-defined steps.

Redundancy

Have two individ-
uals check each
other’s work.

The final alternative to removing human errors is redundancy. It is
the simplest, but also the most costly mechanism. Redundancy
requires every transformation resource to be duplicated. Every
transformation accomplished by a human is either independently
verified by another individual, or two complete and separate trans-
formations are performed with each outcome compared to verify
that both produced the same or equivalent output. This mechanism
is used in high-reliability environments, such as airborne systems.
It is also used in industries where later redesign and replacement of

6 Writing Testbenches: Functional Verification of HDL Models

What Is Being Verified?

a defective product would be more costly than the redundancy
itself, such as ASIC design.

A different person
should be in
charge of verifica-
tion.

Figure 1-5 shows the reconvergent paths model where redundancy
is used to guard against misinterpretation of an ambiguous specifi-
cation document. When used in the context of hardware design,
where the transformation process is writing RTL code from a writ-
ten specification document, this mechanism implies that a different
individual must be in charge of the verification.

WHAT IS BEING VERIFIED?

Choosing the common origin and reconvergence points determines
what is being verified. These origin and reconvergence points are
often determined by the tool used to perform the verification. It is
important to understand where these points lie to know which trans-
formation is being verified. Formal verification, model checking,
functional verification, and testbench generators verify different
things because they have different origin and reconvergence points.

Formal Verification

Formal verifica-
tion does not elim-
inate the need to
write testbenches.

Formal verification is often misunderstood initially. Engineers
unfamiliar with the formal verification process often imagine that it
is a tool that mathematically determines whether their design is cor-
rect, without having to write testbenches. Once you understand
what the end points of the formal verification reconvergent paths
are, you know what exactly is being verified.

Formal verification falls under two broad categories: equivalence
checking and model checking.

Writing Testbenches: Functional Verification of HDL Models 7

What is Verification?

Equivalence Checking

Equivalence
checking com-
pares two models.

Figure 1-6 shows the reconvergent path model for equivalence
checking. This formal verification process mathematically proves
that the origin and output are logically equivalent and that the trans-
formation preserved its functionality.

It can compare two
netlists.

In its most common use, equivalence checking compares two
netlists to ensure that some netlist post-processing, such as scan-

chain insertion, clock-tree synthesis, or manual modification1, did
not change the functionality of the circuit.

Another popular use is to verify that the netlist correctly imple-
ments the original RTL code. If one trusted the synthesis tool com-
pletely this verification would not be necessary. However, synthesis
tools are large software systems that depend on the correctness of
algorithms and library information. History has shown that such
systems are prone to error. Equivalence checking is used to keep the
synthesis tool honest. In some rare instances, this form of equiva-
lence checking is used to verify that manually written RTL code
faithfully represents a legacy gate-level design.

Less frequently, equivalence checking is used to verify that two
RTL descriptions are logically identical, sometimes to avoid run-
ning lengthy regression simulations when only minor non-func-
tional changes are made to the source code to obtain better
synthesis results.

Equivalence checking is a true alternative path to the logic synthe-
sis transformation being verified. It is only interested in comparing
boolean and sequential logic functions, not mapping these functions
to a specific technology while meeting stringent design constraints.

1. vi and emacs remain the greatest design tools!

8 Writing Testbenches: Functional Verification of HDL Models

It can detect bugs
in the synthesis
software.

Equivalence
checking found a
bug in an arith-
metic operator.

What Is Being Verified?

Engineers using equivalence checking found a design at Digital
Equipment Corporation to be synthesized incorrectly. The design
used a synthetic operator that was functionally incorrect when han-
dling more than 48 bits. To the synthesis tool’s defense, the docu-
mentation of the operator clearly stated that correctness was not
guaranteed above 48 bits. Since the synthesis tool had no knowl-
edge of documentation, it could not know it was generating invalid
logic. Equivalence checking quickly identified a problem that could
have been very difficult to detect using gate-level simulation.

Model Checking

Model checking
looks for generic
problems or viola-
tion of user-
defined rules about
the behavior of the
design.

Model checking is a more recent application of formal verification
technology. In it, assertions or characteristics of a design are for-
mally proven or disproved. For example, all state machines in a
design could be checked for unreachable or isolated states. A more
powerful model checker may be able to determine if deadlock con-
ditions can occur.

Another type of assertion that can be formally verified relates to
interfaces. Using a formal description language, assertions about
the interface are stated and the tool attempts to prove or disprove
them. For example, an assertion might state that, given that signal
ALE will be asserted, then either the DTACK or ABORT signal
will be asserted eventually.

Knowing which
assertions to prove
and expressing
them correctly is
the most difficult
part.

The reconvergent path model for model checking is shown in
Figure 1-7 . The greatest obstacle for model checking technology is
identifying, through interpretation of the design specification,
which assertions to prove. Of those assertions, only a subset can
feasibly be proven. Current technology cannot prove high-level
assertions about a design to ensure that complex functionality is
correctly implemented. It would be nice to be able to assert that,
given specific register settings, a set of Asynchronous Transfer

Writing Testbenches: Functional Verification of HDL Models 9

What is Verification?

Mode (ATM) cells will end up at a set of outputs in some relative
order. Unfortunately, model checking technology is not at that level
yet.

Functional Verification

Functional verifi-
cation verifies
design intent.

The main purpose of functional verification is to ensure that a
design implements intended functionality. As shown by the recon-
vergent path model in Figure 1-8, functional verification reconciles
a design with its specification. Without functional verification, one
must trust that the transformation of a specification document into
RTL code was performed correctly, without misinterpretation of the
specification’s intent.

It is important to note that, unless a specification is written in a for-

mal language with precise semantics,2 it is impossible to prove that
a design meets the intent of its specification. Specification docu-
ments are written using natural languages by individuals with vary-
ing degrees of ability in communicating their intentions. Any
document is open to interpretation. Functional verification, as a
process, can show that a design meets the intent of its specification.
But it cannot prove it. One can easily prove that the design does not
implement the intended function by identifying a single discrep-
ancy. The converse, sadly, is not true: no one can prove that there
are no discrepancies, just as no one can prove that flying reindeers
or UFOs do not exist. (However, producing a single flying reindeer
or UFO would be sufficient to prove the opposite!)

You can prove the
presence of bugs,
but you cannot
prove their
absence.

2. Even if such a language existed, one would eventually have to show
that this description is indeed an accurate description of the design
intent, based on some higher-level ambiguous specification.

10 Writing Testbenches: Functional Verification of HDL Models

Functional Verification Approaches

Testbench Generation

Tools can gener-
ate stimulus to
exercise code or
expose bugs.

The increasing popularity of code coverage (see section titled
"Code Coverage" on page 40 for more details) and model checking
tools has created a niche for a new breed of verification tools: test-
bench generators. Using the code coverage metrics or the results of
some proof, and the source code under analysis, testbench genera-
tors generate testbenches to either increase code coverage or to
exercise the design to violate a property.

These tools appear attractive on the surface, but, as shown in
Figure 1-9, do little to contribute to the verification process. The
RTL code is the common origin and there is no reconvergence
point. The verification engineer is left to determine if the testbench
applies valid stimulus to the design. In the affirmative, he or she
must then determine, based on this stimulus, what the expected out-
put is and compare it to the output that was produced by the design.

Designer input is
still required.

The jury is still out
on the usefulness
of these tools.

The usefulness of testbenches generated from code coverage met-
rics will be discussed in the next chapter (see section titled "What
Does 100 Percent Coverage Mean?" on page 45). Testbenches gen-
erated from model checking results are useful only to illustrate how
a property can be violated and what input sequence leads to the
improper behavior. It may be a useful vehicle for identifying patho-
logical conditions that were not taken into account in the specifica-
tion or to provide a debugging environment for fixing the problem.

FUNCTIONAL VERIFICATION APPROACHES

Functional verification can be accomplished using three comple-
mentary but different approaches: black-box, white-box, and grey-
box.

Writing Testbenches: Functional Verification of HDL Models 11

What is Verification?

Black-Box Verification

Black-box verifi-
cation cannot look
at or know about
the inside of a
design.

With a black-box approach, the functional verification must be per-
formed without any knowledge of the actual implementation of a
design. All verification must be accomplished through the available
interfaces, without direct access to the internal state of the design,
without knowledge of its structure and implementation. This
method suffers from an obvious lack of visibility and controllabil-
ity. It is often difficult to set up an interesting state combination or
to isolate some functionality. It is equally difficult to observe the
response from the input and locate the source of the problem. This
difficulty arises from the frequently long delays between the occur-
rence of a problem and the apparition of its symptom on the
design’s outputs.

The advantage of black-box verification is that it does not depend
on any specific implementation. Whether the design is imple-
mented in a single ASIC, multiple FPGAs, a circuit board, or
entirely in software, is irrelevant. A black-box functional verifica-
tion approach forms a true conformance verification that can be
used to show that a particular design implements the intent of a
specification regardless of its implementation.

In very large or complex designs, black-box verification requires
some non-functional modifications to provide additional visibility
and controllability. Examples include additional software-accessi-
ble registers to control or observe internal states, or modify the size
of the processed data to minimize verification time. These registers
would not be used during normal operations. They are often valu-
able during the integration phase of the first prototype systems.

The black-box approach is the only one that can be used if the func-
tional verification is to be implemented in parallel with the imple-
mentation of the design itself. Because there is no implementation
to know about beforehand, black-box verification is the only possi-
ble avenue.

My mother is a veteran of the black-box approach: to prevent us
from guessing the contents of our Christmas gifts, she never puts
any names on the wrapped boxes. At Christmas, she has to cor-
rectly identify the content of each box, without opening it, so it can
be given to the intended recipient. She has been known to fail on a
few occasions, to the pleasure of the rest of the party!

Testcase is inde-
pendent of imple-
mentation.

In black-box veri-
fication, it is diffi-
cult to control and
observe specific
features.

12 Writing Testbenches: Functional Verification of HDL Models

Testing Versus Verification

White-Box Verification

White box verifi-
cation has inti-
mate knowledge
and control of the
internals of a
design.

As the name suggests, a white-box approach has full visibility and
controllability of the internal structure and implementation of the
design being verified. This method has the advantage of being able
to quickly set up an interesting combination of states and inputs, or
isolate a particular function. It can then easily observe the results as
the verification progresses and immediately report any discrepan-
cies from the expected behavior.

However, this approach is tightly integrated with a particular imple-
mentation and cannot be used on alternative implementations or
future redesigns. It also requires detailed knowledge of the design
implementation to know which significant conditions to create and
which results to observe.

White-box verification is a useful complement to black-box verifi-
cation. This approach can ensure that implementation-specific fea-
tures behave properly, such as counters rolling over after reaching
their end count value, or datapaths being appropriately steered and
sequenced.

Grey-Box Verification

Grey box verifica-
tion is a black box
testcase written
with full knowl-
edge of internal
details.

Grey-box verification is a compromise between the aloofness of a
black-box verification and the dependence on the implementation
of white-box verification. The former may not fully exercise all
parts of a design, while the latter is not portable.

TESTING VERSUS VERIFICATION

Testing verifies
manufacturing.

Testing is often confused with verification. The purpose of the
former is to verify that the design was manufactured correctly. The

Writing Testbenches: Functional Verification of HDL Models 13

White-box verifi-
cation is tied to a
specific imple-
mentation.

Testcase may not
be relevant on
another implemen-
tation.

As in black-box verification, a grey-box approach controls and
observes a design entirely through its top-level interfaces. How-
ever, the particular verification being accomplished is intended to
exercise significant features specific to the implementation. The
same verification on a different implementation would be success-
ful but may not be particularly more interesting than any other
black-box verification.

What is Verification?

purpose of the latter is to ensure that a design meets its functional
intent.

Figure 1-10 shows the reconvergent paths models for both verifica-
tion and testing. During testing, the finished silicon is reconciled
with the netlist that was submitted for manufacturing.

Testing is accomplished through test vectors. The objective of these
test vectors is not to exercise functions. It is to exercise physical
locations in the design to ensure that they can go from 0 to 1 and
from 1 to 0. The ratio of physical locations tested to the total num-
ber of such locations is called test coverage. The test vectors are
usually automatically generated to maximize coverage while mini-
mizing vectors through a process called Automatic Test Pattern
Generation (ATPG).

Testing and test coverage depends on the ability to set internal
physical locations to either 1 or 0, and then observe that they were
indeed appropriately set. Some designs have very few inputs and
output, but have a large number of possible states, requiring long
sequences to properly observe and control all internal physical
locations. A perfect example is an electronic wrist-watch: its has
three or four inputs (the buttons around the dial) and a handful of
outputs (the digits and symbols on the display). However, if it
includes a calendar function, it has billions of possible states (milli-
seconds in hundreds of years). At speed, it would take hundreds of
years to take such a design through all of its possible states.

Testing verifies
that internal nodes
can be toggled.

Scan-Based Testing

Linking all regis-
ters into a long
shift register
increases
controllability and
observability.

Fortunately, scan-based testability techniques help reduce this prob-
lem to something manageable. With scan-based tests, all registers
inside a design are hooked-up in a long serial chain. In normal
mode, the registers operate as if the scan chain was not there (see

14 Writing Testbenches: Functional Verification of HDL Models

Thoroughness of
testing depends on
controllability and
observability of
internal nodes.

Testing Versus Verification

Figure 1-1l(a)). In scan mode, the registers operate as a long shift
register (see Figure 1-1l(b)).

To test a scannable design, the unit under test is put into scan mode,
then an input pattern is shifted through all of its internal registers.
The design is then put into normal mode and a single clock cycle is
applied, loading the result of the normal operation based on the
scanned state into the registers. The design is then put into scan
mode again. The result is shifted out of the registers (at the same
time the next input pattern is shifted in) and the result is compared
against the expected value.

Scan-based test-
ing puts restric-
tions on design.

This increase in controllability and observability, and thus test cov-
erage, comes at a cost. Certain restrictions are put onto the design to
enable the insertion of a scan chain and the automatic generation of
test patterns. Some of these restrictions include, but are not limited
to: fully synchronous design, no derived or gated clocks, and use of
a single clock edge. The topic of design for testability is far greater
and complex than this simple introduction implies. For more

details, there are several excellent books3 and papers4 on the sub-
ject.

Hardware designers introduced to scan-based testing initially rebel
against the restrictions imposed on them. They see only the imme-
diate area penalty and their favorite design technique rendered
inadequate. However, the increased area and additional design
effort are quickly outweighed when a design can be fitted with one
or more scan chains, when test patterns are generated and high test

3.

4.

Abramovici, Breuer, and Friedman. Digital System Testing and Testable
Design. IEEE. ISBN 0780310624

Cheung and Wang, “The Seven Deadly Sins of Scan-Based Design”,
Integrated System Design, Aug. 1997, p50-56.

Writing Testbenches: Functional Verification of HDL Models 15

But the drawbacks
of these restric-
tions are far out-
weighed by the
benefits of scan-
based testing.

What is Verification?

coverage is achieved automatically, at the push of a button. The
time saved and the greater confidence in putting a working product
on the market far outweighs the added cost for scan-based design.

Design for Verification

Design practices need to be modified to accommodate testability
requirements. Isn’t it acceptable to modify those same design prac-
tices to accommodate verification requirements?

With functional verification taking twice as much effort as the
design itself, it is reasonable to require additional design effort to
simplify verification. Just as scan chains are put in a design to
improve testability without adding to the functionality, it should be
standard practice to add non-functional structures and features to
facilitate verification. This requires that verification be considered
at the outset of a project, during its specification phase. Not only
should the architect of the design answer the question “what is this
supposed to do?”, but also “how is this thing going to be verified?”

Typical design-for-verification techniques include providing addi-
tional software-accessible registers to control and observe internal
locations, and providing programmable multiplexors to isolate or
by pass functional units.

Verification must
be considered dur-
ing specification.

VERIFICATION AND DESIGN REUSE

Today, design reuse is considered the best way to overcome the dif-
ference between the number of transistors that can be manufactured
on a single chip, and the number of transistors engineers can take
advantage of in a reasonable amount of time. This difference is
called the productivity gap. Design reuse is a simple concept that
seems easy to put in practice. The reality is proving to be more
problematic.

Reuse Is About Trust

You won’t use
what you do not
trust.

The major obstacle to design reuse is cultural. Engineers have little
incentive and willingness to incorporate an unknown design into
their own. They do not trust that the other design is as good or as
reliable as one designed by themselves. The key to design reuse is
gaining that trust.

16 Writing Testbenches: Functional Verification of HDL Models

The Cost of Verification

Trust, like quality, is not something that can be added to a design
after the fact. It must be built-in, through the best possible design
practices. And it must be earned by standing behind a reusable
design: providing support services and building a relationship with
the user. Once that trust is established, reuse will happen more
often.

Trustworthiness can also be demonstrated through a proper verifi-
cation process. By showing the user that a design has been thor-
oughly and meticulously verified, according to the design
specification, trust can be built and communicated much faster.
Functional verification is the only way to demonstrate that the
design meets, or even exceeds, the quality of a similar design that
an engineer could do himself or herself.

Proper functional
verification dem-
onstrates trustwor-
thiness of a design.

Verification for Reuse

Reusable designs
must be verified to
a greater degree of
confidence.

If you create a design, you have a certain degree of confidence in
your own abilities as a designer and implicitly trust its correctness.
Functional verification is used only to confirm that opinion and to
augment that opinion in areas known to be weak. If you try to reuse
a design, you can rely only on the functional verification to build
that same level of confidence and trust. Thus, reusable designs must
be verified to a greater degree of confidence than custom designs.

Because reusable designs tend to be configurable and programma-
ble to meet a variety of possible environment and applications, it is
necessary to verify a reusable design under all possible configura-
tions and for all possible uses. All claims made about the reusable
design must be verified and demonstrated to users.

THE COST OF VERIFICATION

Verification is a necessary evil. It always takes too long and costs
too much. Verification does not generate a profit or make money:
after all, it is the design being verified that will be sold and ulti-
mately make money, not the verification. Yet verification is indis-
pensable. To be marketable and create revenues, a design must be
functionally correct and provide the benefits that the customer
requires.

Writing Testbenches: Functional Verification of HDL Models 17

All claims, possi-
ble configurations
and uses must be
verified.

What is Verification?

As the number of
errors left to be
found decreases,
the time - and cost
- to identify them
increases.

Verification is a process that is never truly complete. The objective
of verification is to ensure that a design is error-free, yet one cannot
prove that a design is error-free. Verification can only show the
presence of errors, not their absence. Given enough time, an error
will be found. The question thus becomes: is the error likely to be
severe enough to warrant the effort spent identifying it? As more
and more time is spent on verification, fewer and fewer errors are
found with a constant effort expenditure. As verification
progresses, it has diminishing returns. It costs more and more to
find fewer and fewer, often unlikely, errors.

Functional verification is similar to statistical hypothesis testing.
The hypothesis under test is: is my design functionally correct? The
answer can be either yes or no. But either answer could be wrong.
These wrong answers are Type II and Type I mistakes, respectively.

False positives
must be avoided.

Figure 1-12 shows where each type of mistake occurs. Type I mis-
takes, or false negatives, are the easy ones to identify. The verifica-
tion is finding an error where none exist. Once the misinterpretation
is identified, the implementation of the verification is modified to
change the answer from no to yes, and the mistake no longer exists.
Type II mistakes are the most serious ones: the verification failed to
identify an error. In a Type II mistake, or false positive situation, a
bad design is shipped unknowingly, with all the potential conse-
quences that entails.

The United States Food and Drug Administration faces Type II mis-
takes on a regular basis with potentially devastating consequences:
in spite of positive clinical test results, is a dangerous drug released
on the market? Shipping a bad design may result in simple product
recall or in the total failure of a space probe after it has landed on
another planet.

18 Writing Testbenches: Functional Verification of HDL Models

Summary

With the future of the company potentially at stake, the 64-thousand
dollar question in verification is: how much is enough? The func-
tional verification process presented in this book, along with some
of the tools described in the next chapter attempt to answer that
question.

The 64-million dollar question is: when will I be done? Knowing
where you are in the verification process, although impossible to
establish with certainty, is much easier to estimate than how long it
will take to complete the job. The verification planning process
described in Chapter 3 creates a tool that enables a verification
manager to better estimate the effort and time required to complete
the task at hand, to the degree of certainty required.

SUMMARY

In this chapter, after briefly outlining what a testbench is, I
described the importance of verification. Parallelism, automation
and abstractions were identified as strategies to reduce the time
necessary to implement testbenches. A model was developed to
illustrate and identify what exactly is being verified in any verifica-
tion process. It was then applied to various verification tools and
methodologies currently available and to differentiate verification
from manufacturing test. Techniques for eliminating the uncertainty
introduced by human intervention in the verification process were
also described. The importance of verification for design reuse and
the cost of verification were also discussed.

Writing Testbenches: Functional Verification of HDL Models 19

This Page Intentionally Left Blank

CHAPTER 2 VERIFICATION TOOLS

It is not necessary to use all of the tools described here. Nor is this
list exhaustive, as new application-specific and general purpose
verification automation tools are made available. As a verification
engineer, your job is to use the necessary tools to ensure that the
outcome of the verification process is not a Type II mistake, which
is a false positive. As a project manager responsible for the delivery
of a working product on schedule and within the allocated budget,
your responsibility is to arm your engineers with the proper tools to
do their job efficiently and with the greatest degree of confidence.
Your job is also to decide when the cost of finding the next func-
tional bug have increased above the value the additional functional
correctness brings. This last responsibility is the heaviest of them
all. Some of these tools provide information to help you decide
when you’ve reached that point.

I mention some commercial tools by name. They are used for illus-
trative purposes only and this does not constitute a personal

Not all tools are
mentioned in
this chapter. It
is not necessary
to use all the
tools mentioned.

As mentioned in the previous chapter, one of the mechanisms that
can be used to improve the efficiency and reliability of a process is
automation. This chapter covers tools used in a state-of-the-art
functional verification environment. Some of these tools, such as
simulators, are essential for the functional verification activity to
take place. Others, such as linting or code coverage tools, automate
some of the most tedious tasks of verification and help increase the
confidence in the outcome of the functional verification.

Writing Testbenches: Functional Verification of HDL Models 21

No endorse-
ments of com-
mercial tools.

Verification Tools

endorsement. I apologize in advance to suppliers of competitive
products I fail to mention. It is not an indication of inferiority, but
rather an indication of my limited knowledge. All trademarks and
service marks, registered or not, are the property of their respective
owners.

LINTING TOOLS

Linting tools find
common program-
mer mistakes.

The term lint comes from the name of a UNIX utility that parses a
C program and reports questionable uses and potential problems.
When the C programming language was created by Dennis Ritchie,
it did not include many of the safeguards that have evolved in later
versions of the language, like ANSI-C or C++, or other strongly-
typed languages such as Pascal or ADA. lint evolved as a tool to
identify common mistakes programmers made, allowing them to
find the mistakes quickly and efficiently, instead of waiting to find
them through a dreaded segmentation fault during verification of
the program.

lint identifies real problems, such as mismatched types between
arguments and function calls or mismatched number of arguments,
as shown in Sample 2-1. The source code is syntactically correct
and compiles without a single error or warning using gcc version
2.8.1.

Sample 2-1.
Syntactically
correct K&R
C source code

int my_func(addr_ptr, ratio)
int* addr_ptr;
float ratio;
{

return (*addr_ptr)++;
}

main()
{

int my_addr;
my_func(my_addr);

}

However, Sample 2-1 suffers from several pathologically severe
problems:

The my_func function is called with only one argument instead
of two.

1.

22 Writing Testbenches: Functional Verification of HDL Models

Linting Tools

2. The my_func function is called with an integer value as a first
argument instead of a pointer to an integer value.

Problems are
found faster than
at run-time.

As shown in Sample 2-2, the lint program identifies these prob-
lems, letting the programmer fix them before executing the pro-
gram and observing a catastrophic failure. Diagnosing the problems
at run-time would require a run-time debugger and would take sev-
eral minutes. Compared to the few seconds it took using lint, it is
easy to see that the latter method is more efficient.

src.c(3): warning: argument ratio unused in
function my_func
src.c(ll): warning: addr may be used before set
src.c(12): warning: main() returns random value
to invocation environment
my_func: variable # of args. src.c(4) ::
src.c(ll)
my_func, arg. 1 used inconsistently
src.c(4) :: src.c(11)
my_func returns value which is always ignored

Sample 2-2.
Lint output for
Sample 2-1

Linting tools are
static tools.

Linting tools have a tremendous advantage over other verification
tools: they do not require stimulus, nor do they require a description
of the expected output. They perform checks that are entirely static
in nature, with the expectations built into the linting tool itself.

The Limitations of Linting Tools

Linting tools can
only identify a cer-
tain class of prob-
lems.

Other potential problems were also identified by lint. All were fixed
in Sample 2-3 but lint continues to report a problem with the invo-
cation of the my_func function: the return value is always ignored.
Linting tools cannot identify all problems in source code. They can
only find problems that can be statically deduced by looking at the
code structure, not problems in the algorithm or data flow. For
example, in Sample 2-3, lint does not recognize that the uninitial-
ized my_addr variable will be incremented in the my_func function,
producing random results. Linting tools are similar to spell check-
ers; they identify misspelled words, but do not determine if the
wrong word is used. For example, this book could have several
instances of the word “with” being used instead of “width”. It is a
type of error the spell checker (or a linting tool) could not find.

Many false nega-
tives are reported.

Another limitation of linting tools is that they are often too paranoid
in reporting problems they identify. To avoid making a Type II mis-

Writing Testbenches: Functional Verification of HDL Models 23

Verification Tools

Sample 2-3.
Functionally
correct K&R
C source code

int my_func(addr_ptr)
int* addr_ptr;
{

return (*addr_jptr)++;
}

main()
{

int my_addr;
my_func(&my_addr);
return 0;

}

take - reporting a false positive, they err on the side of caution and
report potential problems where none exist. This results in many
Type I mistakes - or false negatives. Designers can become frus-
trated while looking for non-existent problems and may abandon
using linting tools altogether.

You should filter the output of linting tools to eliminate warnings or
errors known to be false. Filtering error messages helps reduce the
frustration of looking for non-existent problems. More importantly,
it reduces the output clutter, reducing the probability that the report
of a real problem goes unnoticed among dozens of false reports.
Similarly, errors known to be true positive should be highlighted.
Extreme caution must be exercised when writing such a filter: you
must make sure that a true problem does not get filtered out and
never reported.

Carefully filter
error messages!

A properly defined naming convention is a useful tool to help deter-
mine if a warning is significant. For example, the report in Sample
2-4 about a latch being inferred on a signal whose name ends with
“_LT” would be considered as expected and a false warning. All
other instances would be flagged as true errors.

Naming conven-
tions can help out-
put filtering.

Sample 2-4.
Output from a
hypothetical
Verilog lint-
ing tool

Warning: file decoder.v, line 23: Latch
inferred on reg "ADDRESS_LT".
Warning: file decoder.v, line 36: Latch
inferred on reg "NEXT_STATE".

Filtering the output of a linting tool is preferable to turning off
checks from within the source code itself or via the command line.
A check may remain turned off for an unexpected duration, poten-

Do not turn off
checks.

24 Writing Testbenches: Functional Verification of HDL Models

Linting Tools

tially hiding real problems. Checks that were thought to be irrele-
vant may become critical as new source files are added.

Lint code as it is
being written.

Because it is better to fix problems when they are created, you
should run lint on the source code while it is being written. If you
wait until a large amount of code is written before linting it, the
large number of reports - many of them false - will be daunting and
create the impression of a setback. The best time to identify a report
as true or false is when you are still intimately familiar with the
code.

The linting process can also be used to enforce coding guidelines

and naming conventions1. Therefore, it should be an integral part of
the authoring process to make sure your code meets the standards
of readability and maintainability demanded by your audience.

Enforce coding
guidelines.

Linting Verilog Source Code

Many people compare Verilog to C and VHDL to ADA. I do not
think it is a fair comparison: C (at least ANSI-C) is a strongly-typed
language. In C, you cannot assign an integer value to a real variable
nor vice-versa. You can in Verilog. Verilog is more like assembler
or BASIC: it is a typeless language. You can assign any value to
any register or subprogram argument, sometimes with disastrous
consequences (such as assigning the value of an expression in a
narrow register, clipping the most significant bits).

Linting Verilog source code ensures that all data is properly han-
dled without accidentally dropping or adding to it. The code in
Sample 2-5 shows a Verilog model that looks perfect, compiles
without errors, but produces unintended results under some circum-
stances.

The problem is in the width mismatch in the continuous assignment
between the output “out” and the constant “'bz”. The unsized con-
stant is 32-bit wide (or a value of “32'hzzzzzzzz”), while the output
has a user-specified width. As long as the width of the output is less
than or equal to 32, everything is fine: the value of the constant will
be appropriately truncated to fit the width of the output. However,
the problem occurs when the width of the output is greater than 32

1. See Appendix A for a set of coding guidelines.

Writing Testbenches: Functional Verification of HDL Models 25

Verilog is a type-
less language.

Linting Verilog
source code
catches common
errors.

Problems may not
be apparent under
most conditions.

Verification Tools

Sample 2-5.
Potentially
problematic
Verilog code

module tristate_buffer(in, out, enable);
parameter WIDTH = 8;
input [WIDTH-1:0] in;
output [WIDTH-1:0] out;
input enable;

assign out = (enable) ? in : 'bz;

endmodule

bits: Verilog zero-extends the constant value to match the width of
the output, producing the wrong result. The least significant bits is
set to high-impedance while all the other more significant bits are
set to zero.

It is an error that could not be found in simulation, unless a config-
uration greater then 32 bits was used and it produced wrong results
at a time and place you were looking at. A linting tool finds the
problem every time, in just a few seconds.

Linting VHDL Source Code

Because of its strong typing, VHDL does not need linting as much
as Verilog. However, potential problems are still best identified
using a linting tool.

Linting can find
unintended multi-
ple drivers.

For example, a common problem in VHDL is created by using the
STD_LOGIC type. Since it is a resolved type, STD_LOGIC signals
can have more than one driver. When modeling hardware, multiple
driven signals are required in a single case: to model buses. In all
other cases (which is over 99 percent of the time), a signal should
have only one driver. The VHDL source shown in Sample 2-6 dem-
onstrates how a simple typographical error can easily go undetected
and satisfy the usually paranoid VHDL compiler.

Typographical
errors can cause
serious problems.

In Sample 2-6, both concurrent signal assignments labelled
“statement1” and “statement2” assign to the signal “s1” (ess-one),
while the signal “sl” (ess-ell) remains unassigned. Had I used the
STD_ULOGIC type instead of the STD_LOGIC type, the VHDL
toolset would have reported an error after finding multiple drivers
on an unresolved signal. However, it is not possible to guarantee the
STD_ULOGIC type is used for all signals with a single driver. A

26 Writing Testbenches: Functional Verification of HDL Models

Linting Tools

Sample 2-6.
Erroneous
multiple
drivers

library ieee;
use ieee.std_logic_1164.all;
entity my_entity is

port (my_input: in std_logic);
end my_entity;

architecture sample of my_entity is
signal s1: std_logic;
signal s1: std_logic;

begin
statement1: s1 <= my_input;
statement2: s1 <= not my_input;

end sample;

linting tool is still required to report multiply driven signals regard-
less of the type, as shown in Sample 2-7.

Sample 2-7.
Output from a
hypothetical
VHDL linting
tool

Warning: file my_entity.vhd: Signal "s1" is
multiply driven.
Warning: file my_entity.vhd: Signal "s1" has no
drivers.

Use naming con-
vention to filter
output.

It would be up to the author to identify the signals that were
intended to model buses and ignore the warnings about them. Using
a naming convention for such signals facilitates recognizing warn-
ings that can be safely ignored, and enhances the reliability of your
code. An example of a naming convention, illustrated in Sample 2-
8, would be to name any signals modeling buses with the “_bus”
prefix2.

data_bus, addr_bus and sys_err_bus
are intended to be multiply driven

signal data_bus : std_logic_vector(15 downto 0);
signal addr_bus : std_logic_vector(7 downto 0);
signal ltch_addr: std_logic_vector(7 downto 0);
signal sys_err_bus: std_logic;
signal bus_grant : std_logic;

Sample 2-8.
Naming con-
vention for
signals with
multiple driv-
ers

2. See Appendix A for an example of naming guidelines.

Writing Testbenches: Functional Verification of HDL Models 27

Verification Tools

Linting can iden-
tify inferred
latches.

The accidental multiple driver problem is not the only one that can
be caught using a linting tool. Others, such as unintended latch
inference in synthesizeable code, or the enforcement of coding
guidelines, can also be identified.

Code Reviews

Although not technically linting tools, the objective of code reviews
is essentially the same: identify functional and coding style errors
before functional verification and simulation. In code reviews, the
source code produced by a designer is reviewed by one or more
peers. The goal is not to publicly ridicule the author, but to identify
problems with the original code that could not be found by an auto-
mated tool.

Reviews are per-
formed by peers.

Identify qualitative
problems and
functional errors.

A code review is an excellent venue for evaluating the maintain-
ability of a source file, and the relevance of its comments. Other
qualitative coding style issues can also be identified. If the code is
well understood, it is often possible to identify functional errors or
omissions.

Code reviews are not new ideas either. They have been used for
many years in the software design industry. Detailed information on
how to conduct effective code reviews can be found in the
resources section at:

http://janick.bergeron.com/wtb

SIMULATORS

Simulate your
design before
implementing it.

Simulators are the most common and familiar verification tools.
They are named simulators because their role is limited to approxi-
mating reality. A simulation is never the final goal of a project. The
goal of all hardware design projects is to create real physical
designs that can be sold and generate profits. Simulators attempt to
create an artificial universe that mimics the future real design. This
lets the designers interact with the design before it is manufactured
and correct flaws and problems earlier.

You must never forget that a simulator is an approximation of real-
ity. Many physical characteristics are simplified - or even ignored -
to ease the simulation task. For example, a digital simulator

Simulators are
only approxima-
tions of reality.

28 Writing Testbenches: Functional Verification of HDL Models

Simulators

assumes that the only possible values for a signal are ‘0’, ‘1’,
unknown, and high-impedance. However, in the physical - and ana-
log - world, the value of a signal is a continuous function of the
voltage and current across a thin aluminium or copper wire track:
an infinite number of possible values. In a discrete simulator, events
that happen deterministically 5 ns apart may be asynchronous in the
real world and may occur randomly.

Within that simplified universe, the only thing a simulator does is
execute a description of the design. The description is limited to a
well-defined language with precise semantics. If that description
does not accurately reflect the reality it is trying to model, there is
no way for you to know that you are simulating something that is
different from the design that will be ultimately manufactured.
Functional correctness and accuracy of models is a big problem as
errors cannot be proven not to exist.

Simulators are at
the mercy of the
descriptions being
simulated.

Stimulus and Response

Simulation
requires stimulus.

Simulators are not static tools. A static verification tool performs its
task on the design without any additional information or action
required by the user. For example, linting tools are static tools. Sim-
ulators, on the other hand, require that you provide a facsimile of
the environment in which the design will find itself. This facsimile
is often called a testbench. Writing this testbench is the main objec-
tive of this textbook. The testbench needs to provide a representa-
tion of the inputs observed by the design, so the simulator can
emulate the design’s responses based on its description.

The simulation
outputs are vali-
dated externally,
against design
intents.

The other thing that you must not forget is that simulators have no
knowledge of your intentions. They cannot determine if a design
being simulated is correct. Correctness is a value judgment on the
outcome of a simulation that must be made by you, the designer.
Once the design is submitted to an approximation of the inputs
from its environment, your primary responsibility is to examine the
outputs produced by the simulation of the design’s description and
determine if that response is appropriate.

Event-Driven Simulation

Simulators are continuously faced with one intractable problem:
they are never fast enough. They are attempting to emulate a physi-

Simulators are
never fast enough.

Writing Testbenches: Functional Verification of HDL Models 29

Verification Tools

cal world where electricity travels at the speed of light and transis-
tors switch over one billion times in a second. Simulators are
implemented using general purpose computers that can execute,
under ideal conditions, up to 100 million instructions per second.
The speed advantage is unfairly and forever tipped in favor of the
physical world.

Outputs change
only when an input
changes.

One way to optimize the performance of a simulator is to avoid
simulating something that does not need to be simulated. Figure 2-1
shows a 2-input XOR gate. In the physical world, if the inputs do
not change (Figure 2-1 (a)), even though voltage is constantly
applied to the output, current is continuously flowing through the
transistors (in some technologies), and the atomic particles in the
semiconductor are constantly moving, the interpretation of the out-
put electrical state as a binary value (either a logic ‘1’ or a logic ‘0’)
does not change. Only if one of the inputs change (as in Figure 2-
l(b)) does the output change.

Change in values,
called events, drive
the simulation pro-
cess.

Sample 2-9 shows a VHDL description (or model) of an XOR gate.
The simulator could choose to continuously execute this model,
producing the same output value if the input values did not change.
An opportunity to improve upon that simulator’s performance
becomes obvious: do not execute the model while the inputs are
constants. Phrased another way: only execute a model when an
input changes. The simulation is therefore driven by changes in
inputs. If you define an input change as an event, you now have an
event-driven simulator.

XOR_GATE: process (A, B)
begin

if A = B then
o <= ’0’;

else
o <= ’1’

end if;
end process XOR_GATE;

Sample 2-9.
VHDL model
for an XOR
gate

30 Writing Testbenches: Functional Verification of HDL Models

Simulators

Sometimes, input
changes do not
cause the output to
change.

But what if both inputs change, as in Figure 2-l(c)? In the physical
world, the output does not change. What should an event-driven
simulator do? For two reasons, the simulator should execute the
description of the XOR gate. First, in the real world, the output of
the XOR gate does change. The output might oscillate between ‘0’
and ‘1’ or remain in the “neither ‘0’ nor ‘1’” region for a few hun-
dredths of picoseconds (see Figure 2-2). It just depends on how
accurate you want your model to be. You could decide to model the
XOR gate to include the small amount of time spent in the
unknown (or ‘x’) state to more accurately reflect what happens
when both inputs change at the same time.

Descriptions
between inputs
and outputs are
arbitrary.

The second reason is that the event-driven simulator does not know
apriori that it is about to execute a model of an XOR gate. All the
simulator knows is that it is about to execute a description of a 2-
input, 1-output function. Figure 2-3 shows the view of the XOR
gate from the simulator’s perspective: a simple 2-input, 1-output
black box. The black box could just as easily contain a 2-input
AND gate (in which case the output might very well change if both
inputs change), or a 1024-bit linear feedback shift register (LFSR).

The mechanism of event-driven simulation introduces some limita-
tions and interesting side effects that are discussed further in
Chapter 4.

Cycle-Based Simulation

Figure 2-4 shows the event-driven view of a synchronous circuit
composed of a chain of three two-input gates between two edge-

Writing Testbenches: Functional Verification of HDL Models 31

Verification Tools

triggered flip-flops. Assuming that all other inputs remain constant,
a rising edge on the clock input would cause an event-driven simu-
lator to simulate the circuit as follows:

The event (rising edge) on the clock input causes the execution
of the description of the flip-flop models, changing the output
value of Q1 to ‘1’ and of Q2 to ‘0’, after a delay of 1 ns.

The event on Q1 causes the description of the AND gate to exe-
cute, changing the output S1 to ‘1’, after a delay of 2 ns.

The event on S1 causes the description of the OR gate to exe-
cute, changing the output S2 to ‘1’, after a delay of 1.5 ns.

The event on S2 causes the description of the XOR gate to exe-
cute, changing the output S3 to ‘1’ after a delay of 3 ns.

The next rising edge on the clock causes the description of the
flip-flops to execute, Q1 remaining unchanged but Q2 changing
back to ‘1’, after a delay of 1 ns.

1.

2.

3.

4.

5.

Many intermedi-
ate events in syn-
chronous circuits
are not function-
ally relevant.

To simulate the effect of a single clock cycle on this simple circuit
required the generation of six events and the execution of seven
models. If all we are interested in are the final states of Q1 and Q2,
not of the intermediate combinatorial signals, the simulation of this
circuit could be optimized by acting only on the significant events
for Q1 and Q2: the active edge of the clock. Phrased another way:
simulation is based on clock cycles. This is how cycle-based simu-
lators operate.

The synchronous circuit in Figure 2-4 can be simulated in a cycle-
based simulator using the following sequence:

32 Writing Testbenches: Functional Verification of HDL Models

Cycle-based simu-
lators collapse
combinatorial
logic into equa-
tions.

When the circuit description is compiled, all combinatorial
functions are collapsed into a single expression that can be used
to determine all flip-flop input values based on the current state
of the fan-in flip-flops.

For example, the combinatorial function between Q1 and Q2
would be compiled from the following initial description:

1.

S1 = Q1 & ’1’
S2 = S1 | ’0’
S3 = S2 ^ ’0’

into this final single expression

S3 = Q1

The cycle-based simulation view of the compiled circuit is
shown in Figure 2-5.

During simulation, whenever the clock input rises, the value of
all flip-flops are updated using the input value returned by the
pre-compiled combinatorial input functions.

2.

The simulation of the same circuit, using a cycle-based simulator,
required the generation of two events and the execution of a single
model.

This great improvement in simulation performance comes at a cost:
all timing and delay information is lost. Cycle-based simulators
assume that the entire design meets the set-up and hold require-
ments of all the flip-flops. When using a cycle-based simulator,
timing is usually verified using a static timing analyzer.

Cycle-based simu-
lations have no
timing informa-
tion.

Cycle-based simulators further assume that the active clock edge is
the only significant event in changing the state of the design. All
other inputs are assumed to be perfectly synchronous with the
active clock edge. Therefore, cycle-based simulators can only sim-
ulate perfectly synchronous designs. Anything containing asyn-

Cycle-based simu-
lators can only
handle synchro-
nous circuits.

Writing Testbenches: Functional Verification of HDL Models 33

Simulators

Verification Tools

chronous inputs, latches, or multiple-clock domains cannot be
simulated accurately. Fortunately, the same restrictions apply to
static timing analysis. Thus, circuits that are suitable for cycle-
based simulation to verify the functionality, are suitable for static
timing verification to verify the timing.

Co-Simulators

Very few real-world circuits are perfectly synchronous. Some may
have a single clock domain and use only flip-flops, but their exter-
nal inputs are likely to be asynchronous. Few real-world circuits
could thus take advantage of cycle-based simulation.

Multiple simula-
tors can handle
separate portions
of a design.

To handle the portions of a design that do not meet the requirements
for cycle-based simulation, most simulators are integrated with an
event-driven simulator. As shown in Figure 2-6, the synchronous
portion of the design is simulated using the cycle-based algorithm,
while the remainder of the design is simulated using a conventional
event-driven simulator. Both simulators (event-driven and cycle-
based) are running together, cooperating to simulate the entire
design.

Other popular co-simulation environments provide VHDL and Ver-
ilog, HDL and C, or digital and analog co-simulation.

During co-simulation, all simulators involved progress along the
time axis in lock-step. All are at simulation time at the same
time and reach the next time at the same time. This implies that
the speed of a co-simulation environment is limited by the slowest
simulator. Some experimental co-simulation environments imple-

All simulators
operate in locked-
step.

34 Writing Testbenches: Functional Verification of HDL Models

Simulators

ment time warp synchronization where some simulators are
allowed to move ahead of the others.

Performance is
decreased by the
communication
and synchroniza-
tion overhead.

The biggest hurdle of co-simulation comes from the communica-
tion overhead between the simulators. Whenever a signal generated
within a simulator is required as an input by another, the current
value of that signal, as well as the timing information of any change
in that value, must be communicated. This communication usually
involves a translation of the event from one simulator into an
(almost) equivalent event in another simulator. Ambiguities can
arise during that translation when each simulation has different
semantics. The difference in semantics is usually present: the
semantic difference often being the requirement for co-simulation
in the first place.

Translating values
and events from
one simulator to
another can create
ambiguities.

Examples of translation ambiguities abound. How do you map Ver-
ilog’s 128 possible states (composed of orthogonal logic values and
strengths) into VHDL’s nine logic values (where logic values and
strengths are combined)? How do you translate a voltage and cur-
rent value in an analog simulator into a logic value and strength in a
digital simulator? How do you translate the timing of zero-delay

events from Verilog (which has no strict concept of delta cycles)3 to
VHDL?

Co-simulation
should not be con-
fused with single-
kernel simulation.

Co-simulation is when two (or more) simulators are cooperating to
simulate a design, each simulating a portion of the design, as shown
in Figure 2-7. It should not be confused with simulators able to read
and compile models described in different languages. For example,
Cadence’s NCSIM simulator and Model Technology’s ModelSim
simulator can both simulate a design described using a mix of
VHDL and Verilog. As shown in Figure 2-8, both languages are
compiled into a single internal representation or machine code and
the simulation is performed using a single simulation engine.

3. See “The Simulation Cycle” on page 129 for more details on delta
cycles.

Writing Testbenches: Functional Verification of HDL Models 35

Verification Tools

THIRD-PARTY MODELS

Board-level
designs should
also be simulated.

Your board-level design likely contains devices that were pur-
chased from a third party. Sometimes these devices are programma-
ble, such as memories, PLDs, or FPGAs. You should verify your
board design to ensure that the ASICs interoperate properly
between themselves and with the third-party components. You
should also make sure that the programmable parts are functionally
correct or simply verify that the connectivity, which has been hand-
captured via a schematic, is correct.

You can buy mod-
els for standard
parts.

If you want to verify your board design, it is necessary to have
models for all the parts included in a simulation. System-level sim-
ulations, composed of a subset of board designs or multiple board
designs, also require models for these external components. If you
were able to procure the part from a third party, you should be able
to procure a model of that part as well. You may have to obtain the
model from a different vendor than the one who supplies the physi-
cal part.

There are several providers of models for standard SSI and LSI
components, memories and processors. Many are provided as non-
synthesizeable VHDL or Verilog source code. For intellectual prop-
erty protection and licensing technicalities, most are provided as
compiled binary models.

At first glance, procuring a model of a standard part from a third-
party provider may seem expensive. Many have decided to write
their own models to save on licensing costs. However, you have to
decide if this endeavor is truly economically fruitful. If you have a
shortage of qualified engineers, why spend critical resources on
writing a model that does not embody any competitive advantage
for your company? If it was not worth designing on your own in the
first place, why is writing your own model suddenly justified?

It is cheaper to buy
models than write
them yourself.

36 Writing Testbenches: Functional Verification of HDL Models

Third-Party Models

Your model is not
as reliable as the
one you buy.

Secondly, the model you write has never been used before. Its qual-
ity is much lower than a model that has been used by several other
companies before you. The value of a functionally correct and reli-
able model is far greater than an uncertain one. Writing and verify-
ing a model to the same degree of confidence as the third-party
model is always more expensive than licensing it. And be assured:
no matter how simple the model is (such as a quad 2-input NAND
gate, 74LSOO), you’ll get it wrong the first time. If not functionally,
then at least with respect to timing or connectivity.

Hardware Modelers

What if you cannot
find a model to
buy?

You may be faced with procuring a model for a device that is so
new or so complex, that no provider has had time to develop a reli-
able model for it. For example, at the time this book was written,
you could license full-functional models for the Pentium processor
from at least two vendors. However, you could not find a model for
the Pentium III. If you want to verify that your new PC board,
which uses the latest Intel microprocessor, is functionally correct
before you build it, you have to find some other way to include a
simulation model of the processor.

You can “plug” a
chip into a simula-
tor.

Hardware modelers provide a solution for that situation. A hard-
ware modeler is a small box that connects to your network. A real,
physical chip that needs to be simulated is plugged in it. During
simulation, the hardware modeler communicates with your simula-
tor (through a special interface package) to supply inputs from the
simulator to the device, then sends the sampled output values from
the device back to the simulation. Figure 2-9 illustrates this com-
munication process.

Timing of I/O sig-
nals still needs to
be modeled.

Using a hardware modeler is not a trivial task. Often, an adaptor
board must be built to fit the device onto the socket on the modeler
itself. Also, the modeler cannot perform timing checks on the
device’s inputs nor accurately reflect the output delays. A timing

Writing Testbenches: Functional Verification of HDL Models 37

Verification Tools

shell performing those checks and delays must be written to more
accurately model a device using a hardware modeler.

Hardware model-
ers offer better
simulation perfor-
mance.

Hardware modelers are also very useful when simulating a model
of the part at the required level of abstraction. A full-functional
model of a modern processor that can fetch, decode and execute
instructions could not realistically execute more than 10 to 50
instructions within an acceptable time period. The real physical
device can perform the same task in a few milliseconds. Using a
hardware modeler can greatly speed up board- and system-level
simulation.

WAVEFORM VIEWERS

Waveform view-
ers display the
changes in signal
values over time.

Waveform viewers are the most common verification tools used in
conjunction with simulators. They let you visualize the transitions
of multiple signals over time, and their relationship with other tran-
sitions. With such a tool, you can zoom in and out over particular
time sequences, measure time differences between two transitions,
or display a collection of bits as bit strings, hexadecimal or as sym-
bolic values. Figure 2-10 shows a typical display of a waveform
viewer showing the inputs and outputs of a 4-bit synchronous
counter.

Waveform view-
ers are used to
debug simulations.

Waveform viewers are indispensable during the authoring phase of
a design or a testbench. With a viewer you can casually inspect that
the behavior of the code is as expected. They are needed to diag-
nose, in an efficient fashion, why and when problems occur in the
design or testbench. They can be used interactively during the sim-
ulation, but more importantly offline, after the simulation has com-
pleted. As shown in Figure 2-11, a waveform viewer can play back

38 Writing Testbenches: Functional Verification of HDL Models

Waveform Viewers

the events that occurred during the simulation that were recorded in
some trace file.

Recording wave-
form trace data
decreases simula-
tion performance.

Viewing waveforms as a post-processing step lets you quickly
browse through a simulation that can take hours to run. However,
keep in mind that recording trace information significantly reduces
the performance of the simulator. The quantity and scope of the sig-
nals whose transitions are traced, as well as the duration of the
trace, should be limited as much as possible.

Do not use a wave-
form viewer to
determine if a
design passes or
fails.

In a functional verification environment, using a waveform viewer
to determine the correctness of a design involves interpreting the
dozens (if not hundreds) of wavy lines on a computer screen against
some expectation. It can be an acceptable verification method used
two or three times, for less than a dozen signals. But, as the number
of signals increases, and the number of transitions on these signals
increases, and the number of relationships between transitions criti-
cal to the correctness increases, and the duration of the simulation
that must be checked for correctness increases, and the number of
times simulation results must be checked increases, the probability
that a functional error is missed increases exponentially and quickly
reaches one.

Some viewers can
compare sets of
waveforms.

Some waveform viewers can compare two sets of waveforms. One
set is presumed to be a golden reference, while the other is verified
for any discrepancy. The comparator visually flags or highlights
any differences found. This approach has two significant problems.

First, how is the golden reference waveform set declared “golden”?
If visual inspection is required, the probability of missing a signifi-
cant functional error remains equal to 1 in most cases. The only
time golden waveforms are truly available is in a redesign exercise,
where cycle-accurate backward compatibility must be maintained.
However, there are very few of these designs. Most redesign exer-
cises take advantage of the process to introduce needed modifica-

How do you define
a set of waveforms
as “golden”?

Writing Testbenches: Functional Verification of HDL Models 39

Verification Tools

tions or enhancements, thus tarnishing the status of the golden
waveforms.

And are the differ-
ences really signif-
icant?

Second, differences from the golden waveforms may not be signifi-
cant. The value of all output signals is not significant all the time.
Sometimes, what is significant is the relative relationships between
the transitions, not their absolute position. The new waveforms may
be simply shifted by a few clock cycles compared to the reference
waveforms, but remain functionally correct. Yet, the comparator
identifies this situation as a mismatch.

CODE COVERAGE

Did you forget to
verify some func-
tion in your code?

Code coverage is a methodology that has been in use in software
engineering for quite some time. The problem with false positive
answers (i.e. a bad design is thought to be good), is that they look
identical to a true positive answer. It is impossible to know, with
100 percent certainty, that the design being verified is indeed func-
tionally correct. All of your testbenches simulate successfully, but
is there a function or a combination of functions that you forgot to
verify? That is the question that code coverage can help answer.

Code must first be
instrumented.

Figure 2-12 shows how a code coverage tool works. The source
code is first instrumented. The instrumentation process simply adds
checkpoints at strategic locations of the source code to record
whether a particular construct has been exercised. The instrumenta-
tion method varies from tool to tool. Some may use file I/O features
available in the language (i.e. use $write statements in Verilog or
textio.write procedure calls in VHDL). Others may use special fea-
tures built into the simulator.

40 Writing Testbenches: Functional Verification of HDL Models

Code Coverage

No need to instru-
ment the test-
benches.

Only the code for the design under test is instrumented. The objec-
tive is to determine if you have forgotten to exercise some code in
the design. The code for the testbenches need not be traced to con-
firm that is has executed. If a significant section of a testbench was
not executed, it should be reflected in some portion of the design
not being exercised. If not, that section may not be as significant as
once thought.

Trace information
is collected at run-
time.

The instrumented code is then simulated normally using all avail-
able, uninstrumented, testbenches. The cumulative traces from all
simulations are collected into a database. From that database,
reports can be generated to determine various coverage metrics of
the verification suite on the design.

Statement and
block coverage are
the same thing.

The most popular reports are statement, path and expression cover-
age. Statement coverage can also be called block coverage, where a
block is a sequence of statements that are executed if a single state-
ment is executed. The code in Sample 2-10 shows an example of a
statement block. The block named acked is executed entirely when-
ever the expression in the if statement evaluates to TRUE. So
counting the execution of that block is equivalent to counting the
execution of the four individual statements within that block.

Sample 2-10.
Block vs.
statement exe-
cution

if (dtack == 1’b1) begin: acked
as <= 1’b0;
data <= 16’hZZZZ;
bus_rq <= 1’b0;
state <= IDLE;

end

But block bound-
aries may not be
that obvious.

Statement blocks may not be necessarily clearly delimited. In Sam-
ple 2-11, two statements blocks are found: one before (and includ-
ing) the wait statement, and one after. The wait statement may have
never completed and the process was waiting forever. The subse-
quent sequential statements may not have executed. Thus, they
form a separate statement block.

Sample 2-11.
Blocks sepa-
rated by a wait
statement

address <= 16#FFED#;
ale <= ’1’;
rw <=’1’;
wait until dtack = ’1’;
read_data := data;
ale <= ’0’;

Writing Testbenches: Functional Verification of HDL Models 41

Verification Tools

Statement Coverage

Did you execute
all the statements?

Statement or block coverage measures how much of the total lines
of code were executed by the verification suite. A graphical user
interface usually lets the user browse the source code and quickly
identify the statements that were not executed. Figure 2-13 shows,
in a graphical fashion, a statement coverage report for a small por-
tion of code from a model of a modem. The actual form of the
report from any code coverage tool or source code browser will
likely be different.

Why did you not
execute all state-
ments?

The example in Figure 2-13 shows that two out of the eight execut-
able statements - or 25 percent - were not executed. To bring the
statement coverage metric up to 100 percent, a desirable goal, it is
necessary to understand what conditions are required to cause the
execution of the uncovered statements. In this case, the parity must
be set to either ODD or EVEN. Once the conditions have been
determined, you must understand why they never occurred in the
first place. Is it a condition that can never occur? Is it a condition
that should have been verified by the existing verification suite? Or
is it a condition that was forgotten?

It is normal for
some statements to
not be executed.

If it is a condition that can never occur, the code in question is
effectively dead: it will never be executed. Removing that code is a
definite option; it reduces clutter and increases the maintainability
of the source code. However, a good defensive (and paranoid)
coder often includes code that is not meant to be executed. This
additional code simply monitors for conditions that should never
occur and reports that an unexpected condition happened should the
hypothesis prove false. This practice is very effective. Functional
problems are positively identified near the source of the malfunc-

42 Writing Testbenches: Functional Verification of HDL Models

Code Coverage

[ion, without having to rely on the possibility that it produces an
unexpected response at the right moment when you were looking
for something else.

Sample 2-12.
Defensive pro-
gramming
technique

case (mode[1:0]) // synopsys full_case
2’b00: ...
2’b10: ...
2’b01: ...
// synopsys translate_off
// coverage off
default: $write("Case was not really full!\n");
// coverage on
// synopsys translate_on
endcase

Your model can
tell you if things
are not as
assumed.

Sample 2-12 shows an example of defensive modeling in synthe-
sizeable case statements. Even though there is a directive instruct-
ing the synthesis tool that the case statement describes all possible
conditions, it is possible for an unexpected condition to occur dur-
ing simulation. If that were the case, the simulation results would
differ from the results produced by the hardware implementation,
and that difference would go undetected until a gate-level simula-
tion is performed, or the device failed in the system.

Do not measure
coverage for code
not meant to be
executed.

It should be possible to identify code that was not meant to be exe-
cuted and have it eliminated from the code coverage statistics. In
Sample 2-12, significant comments are used to remove the defen-
sive coding statements from being measured by our hypothetical
code coverage tool. Some code coverage tools may be configured
to ignore any statement found between synthesis translation on/off
directives. It may be more interesting to configure a code coverage
tool to ensure that code included between synthesis translate on/off
directives is indeed not executed!

Add testbenches to
execute all state-
ments.

If the conditions that would cause the uncovered statements to be
executed should have been verified, it is an indication that one or
more testbenches are either not functionally correct or incomplete.
If the condition was entirely forgotten, it is necessary to add to an
existing testbench or create an entirely new one.

Writing Testbenches: Functional Verification of HDL Models 43

Verification Tools

Path Coverage

There is more than
one way to execute
a sequence of
statements.

Path coverage measures all possible ways you can execute a
sequence of statements. The code in Sample 2-13 has four possible
paths: the first if statement can either be true or false. So can the
second. To verify all paths through this simple code section, it is
necessary to execute it with all possible state combinations for both
if statements: false-false, false-true, true-false, and true-true.

Sample 2-13.
Example of
statement and
path coverage

Why were some
sequences not exe-
cuted?

The current verification suite, although it offers 100 percent state-
ment coverage, only offers 75 percent path coverage through this
small code section. Again, it is necessary to determine the condi-
tions that cause the uncovered path to be executed. In this case, a
testcase must set the parity to neither ODD nor EVEN and the num-
ber of stop bits to two. Again, the important question one must ask
is whether this is a condition that will ever happen, or if it is a con-
ditions that was overlooked.

Limit the length of
statement
sequences.

The number of paths in a sequence of statements grows exponen-
tially with the number of control-flow statements. Code coverage
tools give up measuring path coverage if their number is too large
in a given code sequence. To avoid this situation, keep all sequen-
tial code constructs (in Verilog: always and initial blocks, tasks and
functions; in VHDL: processes, procedures and functions) to under
100 lines.

Reaching 100 percent path coverage is very difficult.

44 Writing Testbenches: Functional Verification of HDL Models

Code Coverage

Expression Coverage

There may be
more than one
cause for a con-
trol-flow change.

If you look closely at the code in Sample 2-14, you notice that there
are two mutually independent conditions that can cause the first if
statement to branch the execution into its then clause: parity being
set to either ODD or EVEN. Expression coverage, as shown in
Sample 2-14, measures the various ways paths through the code are
executed. Even if the statement coverage is at 100 percent, the
expression coverage is only at 50 percent.

Sample 2-14.
Example of
statement and
expression
coverage

Once more, it is necessary to understand why a controlling term of
an expression has not been exercised. In this case, no testbench sets
the parity to EVEN. Is it a condition that will never occur? Or was it
another oversight?

Reaching 100 percent expression coverage is extremely difficult.

What Does 100 Percent Coverage Mean?

Completeness
does not imply
correctness.

The short answer is: not much. Code coverage indicates how thor-
oughly your entire verification suite exercises the source code. It
does not provide an indication, in any way, about the correctness of
the verification suite.

Results from code coverage tools should be interpreted with a grain
of salt. They should be used to help identify corner cases that were
not exercised by the verification suite or implementation-dependent
features that were introduced during the implementation.

Writing Testbenches: Functional Verification of HDL Models 45

Verification Tools

Code coverage lets
you know if you
are not done.

Code coverage is an additional indicator for the completeness of the
verification job. It can help increase your confidence that the verifi-
cation job is complete, but it should not be your only indicator.
Code coverage indicates if the verification task is not complete -
through low coverage numbers. A high coverage number is by no
means an indication that the job is over.

Some tools can
help you reach
100% coverage.

As mentioned in section titled "Testbench Generation" on page 11,
there are testbench generation tools that automatically generate
stimulus to exercise the uncovered code sections of a design. In my
opinion, these tools are the embodiment of a misguided focus on
code coverage metrics and the all-powerful and magic “100 per-
cent”. All these additional testbenches only exercise code. They do
not demonstrate functional correctness. One interesting aspect of
these tools occurs when they cannot generate a sequence of stimu-
lus to exercise some code construct: the construct is conclusively
unexecutable and should be removed (or marked as uncovered).

Code coverage
tools can be used
as profilers.

When developing models for simulation only, where performance
is an important criteria, code coverage tools can be used for profil-
ing. The aim of profiling is the opposite of code coverage. The aim
of profiling is to identify the lines of codes that are executed most
often. These lines of code become the primary candidates for per-
formance optimization efforts.

VERIFICATION LANGUAGES

Verification lan-
guages can raise
the level of
abstraction.

As mentioned in Chapter 1, one way to increase productivity is to
raise the level of abstraction used to perform a task. High-level lan-
guages, such as C or Pascal, raised the level of abstraction from
assembly-level, enabling software engineers to become more pro-
ductive. Similarly, computer languages specifically designed for
verification are able to raise the level of abstraction compared to
general-purpose simulation languages.

VHDL and Verilog
are simulation lan-
guages, not verifi-
cation languages.

Verilog was designed with a focus on describing low-level hard-
ware structures. It does not provide support for high-level data
structures or object-oriented features. VHDL was designed for very
large design teams. It strongly encapsulates all information and
communicates strictly through well-defined interfaces. Very often,
these limitations get in the way of an efficient implementation of a
verification strategy. Neither integrates easily with C models. This

46 Writing Testbenches: Functional Verification of HDL Models

Revision Control

creates an opportunity for verification languages designed to over-
come the shortcomings of Verilog and VHDL. However, using ver-
ification language requires additional training and tool costs. Given
the importance of the verification task, these additional costs are
likely very good investments.

Proprietary verifi-
cation languages
exist.

At the time I wrote this book, I knew of only three proprietary veri-
fication languages: e/Specman from Verisity, VERA from Synopsys,
and Rave from Chronology. I hope that a public-domain language
will evolve (possibly from the proprietary languages) and be stan-
dardized by the IEEE. As users, we benefit most from the largest
possible support for languages from as many vendors as possible.
That is why VHDL and Verilog are the most popular simulation
languages in the hardware design industry today. Proprietary lan-
guages constrain you to a single vendor.

You must learn the
basics of verifica-
tion before learn-
ing verification
languages.

In this book, I use VHDL and Verilog as the implementation
medium for the verification infrastructure and testbenches. Most
parts could be more efficiently implemented using a verification
language. But verification languages are only alternative imple-
mentation mediums. They facilitate small portions of the stimulus
generation and output verification process. You still need to plan
your verification, design its strategy and architecture, design the
stimulus, determine the expected response, and compare the actual
output. These are concepts that can be learned and applied using
VHDL or Verilog. This book is primarily about these concepts and
how to implement them in a language you already know (hence the
decision to use both VHDL and Verilog). You need to concentrate
on learning basic verification skills before learning a new language
to implement them.

REVISION CONTROL

Are we all looking
at the same thing?

One of the major difficulties in verification is to ensure that what is
being verified is actually what will be implemented. When you
compile a Verilog source file, what is the guarantee that the design
engineer will use that exact same file when synthesizing the
design?

When the same person verifies and then synthesizes the design, this
problem is reduced to that person using proper file management
discipline. However, as I hope to have demonstrated in Chapter 1,

Writing Testbenches: Functional Verification of HDL Models 47

Verification Tools

having the same person perform both tasks is not a reliable func-
tional verification process. It is more likely that separate individuals
perform the verification and synthesis tasks.

Files must be cen-
trally managed.

In very small and closely knit groups, it may be possible to have
everyone work from a single directory, or to have the design files
distributed across a small number of individual directories. Every-
one agrees where each other’s files are, then each is left to his or her
own device. This situation is very common and very dangerous:
how can you tell if the designer has changed a source file and
maybe introduced a functional bug since you’ve last verified it?

It must be easy to
get at all the files,
from a single loca-
tion.

This methodology is not scalable either. It quickly breaks down
once the team grows to more than two or three individuals. And it
does not work at all when the team is distributed across different
physical or geographical areas. The verification engineer is often
the first person to face the non-scalability challenge of this environ-
ment. Each designer is content working independently in his or her
own directories. Individual designs, when properly partitioned,
rarely need to refer to some other design in another designer’s
working directory. As the verification engineer, your first task is to
integrate all the pieces into a functional entity. That’s where the dif-
ficulties of pulling bits and pieces from heterogeneous working
environments scattered across multiple file servers become
apparent.

The Software Engineering Experience

HDL models are
software projects!

Free and commer-
cial tools are avail-
able.

Software engineering has about 20 years of lead time dealing with
the issues of managing a large number of source files, authored by
many different individuals, verified by others, and compiled into a
final product. Make no mistake: managing a HDL-based hardware
design project is very similar to managing a software project.

To help manage files, software engineers use source control man-
agement systems. Some are available, free of charge, either bundled
with all UNIX operating systems (SCCS), or distributed by the
GNU project (RCS, CVS) and available in source form at:

ftp://prep.ai.mit.edu/pub/gnu

Commercial systems, some very sophisticated, are also available.

48 Writing Testbenches: Functional Verification of HDL Models

Revision Control

All source files are
centrally managed.

Figure 2-14 shows how source files are managed using a source
control management system. All accesses and changes to source
files are mediated by the management system. Individual authors
and users interact solely through the management system, not by
directly accessing files in working directories.

The history of a
file is maintained.

Source code management systems maintain not only the latest ver-
sion of a file, but also keep a complete history of each file as sepa-
rate versions. Thus, it is possible to recover older versions of files,
or to determine what changed from one version to another. It is a
good idea to frequently check-in file versions. You do not have to
rely on a back-up system if you ever accidentally delete a file.
Sometimes, a series of modifications you have been working on for
the last couple of hours is making things worse, not better. You can
easily roll back the state of a file to a previous version known to
work.

The team owns all
the files.

When using a source management system, files are no longer
owned by individuals. Designers may be nominally responsible for
various sections of a design, but anyone - with the proper permis-
sions - can make any change to any file. This lets a verification
engineer fix bugs found in RTL code without having to rely on the
designer, busy trying to get timing closure on another portion of the
design, to fix them. The source management system mediates
changes to files either through exclusive locks, or by merging con-
current modifications.

Writing Testbenches: Functional Verification of HDL Models 49

Verification Tools

Configuration Management

Each user works
from a view of the
file system.

Each engineer working on a project managed with a source control
system has a private view of all the source files (or a subset thereof)
used in the project. Figure 2-15 shows how two users may have two
different views of the source files in the management system.
Views need not be always composed of the latest versions of all the
files. In fact, for a verification engineer, that would be a hindrance.
Files checked-in on a regular basis by their author may include syn-
tax errors, be simple placeholders for future work, or be totally bro-
ken. It would be very frustrating if the model you were trying to
verify kept changing faster than you could identify problems with
it.

Configurations are
created by tagging
a set of versions.

All source management systems use the concept of symbolic tags
that can be attached to specific versions of files. You may then refer
to particular versions of files, or set of files, using the symbolic
name, without knowing the exact version number they refer to. In
Figure 2-15, the user on the left could be working with the versions
that were tagged as “ready to simulate” by the author. The user on
the right, the system verification engineer, could be working with
the versions that were tagged as “golden” by the ASIC verification
engineer.

Configuration
management trans-
lates to tag man-
agement.

Managing releases becomes a problem of managing tags, which can
be a complex task. Table 2-1 shows a list of tags that could be used
in a project to identify the various versions of a file as it progresses
through the design process. Some tags, such as the “Version_M.N”
tag, never move once applied to a specific version. Others, such as
the “Submit” tag, move to newer versions as the development of the
design progresses. Before moving a tag, it may be a good idea to
leave a trace of the previous position of a tag. One possible mecha-
nism for doing so is to append the date to the tag name. For exam-
ple, the old “Submit” version gets tagged with the new tag

50 Writing Testbenches: Functional Verification of HDL Models

Revision Control

“Submit_000302” on March 2000 and the “Submit” tag is
moved to the latest version.

Working with Releases

Views can become out of date as new versions of files are checked
into the source management system database and tags are moved
forward.

Releases are spe-
cific configura-
tions.

The author of the RTL for a portion of the design would likely
always work with the latest version of the files he or she is actively
working on, checking them in frequently (typically at relevant
points of code development throughout the day and at the end of
each day). Once the source code is syntactically correct and its
functionality satisfies the designer (by using a few ad hoc test-

Writing Testbenches: Functional Verification of HDL Models 51

Verification Tools

benches), the corresponding version of the files are tagged as ready
for verification.

Users must update
their view to the
appropriate
release.

You, as the verification engineer, must be constantly on the look-
out for updates to your view. When working on a particularly diffi-
cult testbench, you may spend several days without updating your
view to the latest version ready to be verified. That way, you main-
tain a consistent view of the design under test and limit changes to
the testbenches - which you make. Once the actual verification and
debugging of the design starts, you probably want to refresh your
view to the latest “ready to verify” release of the design before run-
ning a testbench.

You can be noti-
fied of new
releases.

An interesting feature of some source management systems is the
ability to issue email notification whenever a significant event
occurs. For example, such a system could send email to all verifica-
tion engineers whenever the tag identifying the release that is ready
for verification is moved. Optionally, the email could contain a
copy of the descriptions of the changes that were made to the
source files. Upon receiving such an email, you could make an
informed decision about whether to update your view immediately.

ISSUE TRACKING

There be bugs
there!

The job of any verification engineer is to find bugs. Under normal
conditions, you should expect to find functional irregularities. You
should be really worried if no problems are being found. Their
occurrence is normal and do not reflect the abilities of the hardware
designers. Even the most experienced software designers write
code that includes bugs, even in the simplest and shortest routines.
Now that we’ve established that bugs will be found, how will you
deal with them?

Bugs must be
fixed.

Once a problem has been identified, it must be resolved. All design
teams have informal systems to track issues and ensure their resolu-
tions. However, the quality and scalability of these informal sys-
tems leaves a lot to be desired.

What Is an Issue?

Before we discuss the various ways issues can be tracked, we must
first consider what is an issue worth tracking. The answer depends

Is it worth worry-
ing about?

52 Writing Testbenches: Functional Verification of HDL Models

Issue Tracking

highly on the tracking system used. The cost of tracking the issue
should not be greater than the cost of the issue itself. However, do
you want the tracking system to dictate what kind of issues are
tracked? Or, do you want to decide on what constitutes a trackable
issue, then implement a suitable tracking system? The latter posi-
tion is the one that serves the ultimate goal better: making sure that
the design is functionally correct.

An issue is anything that can affect the functionality of the design:

Bugs found during the execution of a testbench are clearly
issues worth tracking.

Ambiguities or incompleteness in the specification document
should also be tracked issues. However, typographical errors
definitely do not fit in this category.

Architectural decisions and trade-offs are also issues.

Errors found at all stages of the design, in the design itself or in
the verification environment should be tracked as well.

If someone thinks about a new relevant testcase, it should be
filed as an issue.

1.

2.

3.

4.

5.

When in doubt,
track it.

It is not possible to come up with an exhaustive list of issues worth
tracking. Whenever an issue comes up, the only criteria that deter-
mines whether it should be tracked, should be its effect on the cor-
rectness of the final design. If a bad design can be manufactured
when that issue goes unresolved, it must be tracked. Of course, all
issues are not created equal. Some have a direct impact on the func-
tionality of the design, others have minor secondary effects. Issues
should be assigned a priority and be addressed in order of that
priority.

You may choose
not to fix an issue.

Some issues, often of lower importance, may be consciously left
unresolved. The design or project team may decide that a particular
problem or shortcoming is an acceptable limitation for this particu-
lar project and can be left to be resolved in the next incarnation of
the product. The principal difficulty is to make sure that the deci-
sion was a conscious and rational one!

The Grapevine System

Issues can be ver-
bally reported.

The simplest, and most pervasive issue tracking system is the
grapevine. After identifying a problem, you walk over to the hard-

Writing Testbenches: Functional Verification of HDL Models 53

Verification Tools

ware designer’s cubicle (assuming you are not the hardware
designer as well!) and discuss the issue. Others may be pulled in the
conversation or accidentally drop in as they overhear something
interesting being debated. Simple issues are usually resolved on the
spot. For bigger issues, everyone may agree that further discussions
are be warranted, pending the input of other individuals. The prior-
ity of issues is implicitly communicated by the insistence and fre-
quency of your reminders to the hardware designer.

It works only
under specific con-
ditions.

The grapevine system works well with small, closely knit design
groups, working in close proximity. If temporary contractors or
part-time engineers are on the team, or members are distributed
geographically, this system breaks down as instant verbal commu-
nications are not readily available. Once issues are verbally
resolved, no one has a clear responsibility for making sure that the
solution will be implemented.

You are con-
demned to repeat
past mistakes.

Also, this system does not maintain any history. Once an issue is
resolved, there is no way to review the process that led to the deci-
sion. The same issue may be revisited many times if the implemen-
tation of the solution is significantly delayed. If the proposed
resolution turns out to be inappropriate, the team may end up going
in circles, repeatedly trying previous solutions. Without history, you
are condemned to repeat it. There is no opportunity for the team to
learn from its mistakes. Learning is limited to the individual, and to
the extent that he or she keeps encountering similar problems.

The Post-It System

Issues can be
tracked on little
pieces of paper.

When teams become larger, or when communications are no longer
regular and casual, the next issue tracking system that is used is the
3M Post-It™ note system. It is easy to recognize at a glance: every
team member has a number of telltale yellow pieces of paper stuck
around the periphery of their computer monitor.

If the paper disap-
pears, so does the
issue.

This evolutionary system only addresses the lack of ownership of
the grapevine system: whoever has the yellow piece of paper is
responsible for its resolution. This ownership is tenuous at best.
Many issues are “resolved” when the sticky note accidentally falls
on the floor and is swept away by the janitorial staff.

Issues cannot be
prioritized.

With the Post-It system issues are not prioritized. One bug may be
critical to another team member, but the owner of the bug may

54 Writing Testbenches: Functional Verification of HDL Models

Issue Tracking

choose to resolve other issues first simply because they are simpler
and because resolving them instead reduces the clutter around his
computer screen faster. All notes look alike and none indicate a
sense of urgency more than the others.

History will repeat
itself.

And again, the Post-It system suffers from the same learning dis-
abilities as the grapevine system. Because of the lack of history,
issues are revisited many times, and problems are recreated
repeatedly.

The Procedural System

Issues can be
tracked at group
meetings.

The next step in the normal evolution of issue tracking is the proce-
dural system. In this system, issues are formally reported, usually
through free-form documents such as e-mail messages. The out-
standing issues are reviewed and resolved during team meetings.

Only the biggest
issues are tracked.

Because the entire team is involved and the minutes of meetings are
usually kept, this system provides an opportunity for team-wide
learning. But the procedural system consumes an inordinate amount
of precious meeting time. Because of the time and effort involved
in tracking and resolving these issues, it is usually reserved for the
most important or controversial ones. The smaller, less important -
but much more numerous - issues default back to the grapevine or
Post-It note systems.

Computerized System

Issues can be
tracked using data-
bases.

A revolution in issue tracking comes from using a computer-based
system. In such a system, issues must be seen through to resolution:
outstanding issues are repeatedly reported loud and clear. Issues can
be formally assigned to individuals or list of individuals. Their res-
olution need only involve the required team members. The com-
puter-based system can automatically send daily or weekly status
reports to interested parties.

A history of the decision making process is maintained and
archived. By recording various attempted solutions and their effec-
tiveness, solutions are only tried once without going in circles. The
resolution process of similar issues can be quickly looked-up by
anyone, preventing similar mistakes from being committed repeat-
edly.

Writing Testbenches: Functional Verification of HDL Models 55

Verification Tools

But it should not
be easier to track
them verbally on
paper.

Even with its clear advantages, computer-based systems are often
unsuccessful. The main obstacle is their lack of comparative ease-
of-use. Remember: the grapevine and Post-It systems are readily
available at all times. Given the schedule pressure engineers work
under and the amount of work that needs to be done, if you had the
choice to report a relatively simple problem, which process would
you use:

Walk over to the person who has to solve the problem and ver-
bally report it.

Describe the problem on a Post-It note, then give it to that same
person (and if that person is not there, stick it in the middle of
his or her computer screen).

Enter a description of the problem in the issue tracking database
and never leave your workstation?

1.

2.

3.

It should not take
longer to submit
an issue than to fix
it.

You would probably use the one that requires the least amount of
time and effort. If you want your team to successfully use a com-
puter-based issue tracking system, then select one that causes the
smallest disruption in their normal work flow. Choose one that is a
simple or transparent extension of their normal behavior and tools
they already use.

I was involved in a project where the issue tracking system used a
proprietary X-based graphical interface. It took about 15 seconds to
bring up the entire interface on your screen. You were then faced
with a series of required menu selections to identify the precise
division, project, system, sub-system, device, and functional aspect
of the problem, followed by several other dialog boxes to describe
the actual issue. Entering the simplest issue took at least three to
four minutes. And the system could not be accessed when working
from home on dial-up lines. You can guess how successful that sys-
tem was....

Email-based sys-
tems have the
greatest accep-
tance.

The systems that have the most success invariably use an email-
based interface, usually coupled with a Web-based interface for
administrative tasks and reporting. Everyone on your team uses
email. It is probably already the preferred mechanism for discuss-
ing issues when members are distributed geographically or work in
different time zones. Having a system that simply captures these
emails, categorizes them and keeps track of the status and resolu-
tion of individual issues (usually through a minimum set of

56 Writing Testbenches: Functional Verification of HDL Models

Metrics

required fields in the email body or header), is an effective way of
implementing a computer-based issue tracking system.

METRICS

Metrics are essen-
tial management
tools.

Managers love metrics and measurements. They have little time to
personally assess the progress and status of a project. They must
rely on numbers that (more or less) reflect the current situation.

Metrics are best
observed over time
to see trends.

Metrics are most often used in a static fashion: what are the values
today? How close are they to the values that indicate that the
project is complete? The odometer reports a static value: how far
have you travelled. However, metrics provide the most valuable
information when observed over time. Not only do you know where
you are, but you can know how fast you are going, and what direc-
tion you are heading (is it getting better or worse?).

Historical data
should be used to
create a baseline.

When compared with historical data, metrics can paint a picture of
your learning abilities. Unless you know how well (or how poorly)
you did last time, how can you tell if you are becoming better at
your job? It is important to create a baseline from historical data to
determine your productivity level. In an industry where the manu-
facturing capability doubles every 18 months, you cannot afford to
maintain a constant level of productivity.

Metrics can help
assess the verifica-
tion effort.

There are several metrics that can help assess the status, progress
and productivity of functional verification. One has already been
introduced: code coverage.

Code-Related Metrics

Code coverage
may not be rele-
vant.

Code coverage measures how thoroughly the verification suite
exercises the source code being verified. That metric should climb
steadily toward 100 percent over time. From project to project, it
should climb faster, and closer. However, code coverage is not a
suitable metric for all verification projects. It is an effective metric
for the the smallest design unit that is individually specified (such
as an FPGA, a reusable component, or an ASIC). But it is ineffec-
tive when verifying designs composed of sub-designs that have
been independently verified. The objective of that verification is to
confirm that the sub-designs are interfaced and cooperate properly,

Writing Testbenches: Functional Verification of HDL Models 57

Verification Tools

not to verify their individual features. It is unlikely (and unneces-
sary) to execute all the statements.

The number of
lines of code can
measure imple-
mentation effi-
ciency.

The total number of lines of code that is necessary to implement a
verification suite can be an effective measure of the effort required
in implementing it. This metric can be used to compare the produc-
tivity offered by verification languages. If they can reduce the num-
ber of lines of code that need to be written, they should reduce the
effort required to implement the verification.

Lines-of-code
ratio can measure
complexity.

The ratio of lines of code between the design being verified and
the verification suite may measure the complexity of the design.
Historical data on that ratio could help predict the verification effort
for a new design by predicting its estimated complexity.

Code change rate
should trend
toward zero.

If you are using a source control system, you can measure the
source code changes over time. At the beginning of a project, code
changes at a very fast rate as new functionality is added and initial
versions are augmented. At the beginning of the verification phase,
many changes in the code are required by bug fixes. As the verifica-
tion progresses, the rate of changes should decrease as there are
fewer and fewer bugs to be found and fixed. Figure 2-16 shows a
plot of the expected code change rate over the life of a project.
From this metric, you are able to determine if the code is becoming
stable, or identify the most unstable sections of a design.

Quality-Related Metrics

Quality is subjec-
tive, but it can be
measured indi-
rectly.

Quality-related metrics are probably more directly related with the
functional verification than other productivity metrics. Quality is a
subjective value, yet, it is possible to find metrics that correlate
with the level of quality in a design. This is much like the number
of customer complaints or the number of repeat customers can be
used to judge the quality of retail services. All quality-related met-
rics in hardware design concern themselves with measuring bugs.

58 Writing Testbenches: Functional Verification of HDL Models

Metrics

A simple metric is
the number of
known issues.

The easiest metric is the number of known outstanding issues.
The number could be weighed to count issues differently according
to their severity. When using a computer-based issue tracking sys-
tem, this metric, as well as trends and rates, can be easily generated.
Are issues accumulating (indicating a growing quality problem)?
Or, are they decreasing and nearing zero?

Code will be worn
out eventually.

If you are dealing with a reusable or long-lived design, it is useful
to measure the number of bugs found during its service life.
These are bugs that were not originally found by the verification
suite. If the number of bugs starts to increase dramatically com-
pared to historical findings, it is an indication that the design has
outlived its useful life. It has been modified and adapted too many
times and needs to be re-designed from scratch. Throughout the
normal life cycle of a reusable design, the number of outstanding
issues exhibits a behavior as shown in Figure 2-17.

Interpreting Metrics

Whatever gets
measured gets
done.

Because managers rely heavily on metrics to measure performance
- and ultimately assign reward and blame, there is a tendency for
any organization to align its behavior with the metrics. That is why
you must be extremely careful to select metrics that faithfully rep-
resent the situation and are correlated with the effect you are trying
to measure or improve. If you measure the number of bugs found
and fixed, you quickly see an increase in the number of bugs found
and fixed. But do you see an increase in the quality of the code
being verified? Were bugs simply not previously reported? Are
designers more sloppy when writing their code since they’ll be
rewarded only when and if a bug is found and fixed?

Make sure metrics
are correlated with
the effect you want
to measure.

Figure 2-18 shows a list of files names and current version numbers
maintained by two different designers. Which designer is more pro-
ductive? Do the large version numbers from the designer on the left

Writing Testbenches: Functional Verification of HDL Models 59

Verification Tools

indicate someone who writes code with many bugs that had to be
fixed?

On the other hand, Figure 2-19 shows a plot of the code change rate
for each designer. What is your assessment of the code quality from
designer on the left? It seems to me that the designer on the right is
not making proper use the revision control system...

SUMMARY

In this chapter, I described different kinds of tools that can be used
in a verification process. Each is used to verify a different aspect of
the design and identify different types of errors. Linting tools find
problems created by using questionable constructs. Simulators
exercise your design to find functional errors. Waveform viewers
display your simulation results in a familiar graphical presentation.
Code coverage analysis helps you determine the thoroughness of
your testbenches. Revision control and issue tracking systems help
manage your design data. Metrics produced by these tools allow
management to keep informed on the progress of a project and to
measure productivity gains.

60 Writing Testbenches: Functional Verification of HDL Models

CHAPTER 3 THE VERIFICATION PLAN

In this chapter, I describe the verification plan as a specification for
the verification effort. It is used to define what is first-time success,
how a design is verified, and which testbenches are written.

The design project that sits before you will propel your company to
new levels of market share and profitability. A few system archi-
tects have designed and specified a system that should meet perfor-
mance and cost goals. Several design leaders, using the system
specification, have been working on writing detailed functional
specification documents for each of the ASICs and FPGAs that are
required to build this new product. Teams of hot-shot hardware
designers are being assembled to implement each ASIC or FPGA.
Using the detailed specification documents for each device, they
are coming up with a detailed implementation schedule. So far, it
appears that the project will meet its production deadline.

You are in charge of the verification for this design. Not only must
this product be on-time, but it must be functionally correct. Your
company’s reputation depends on it. You have been asked by the
project manager to produce a detailed schedule for the verification
and define your staffing requirements. How can you determine
either?

61Writing Testbenches: Functional Verification of HDL Models

The Verification Plan

THE ROLE OF THE VERIFICATION PLAN

Traditionally, veri-
fication is an ad-
hoc process.

In a traditional verification process, your decision would be simple.
In fact, your own position would not exist. Verification would be
left to each hardware designer to do as they wish. It would be per-
formed as time allows. And everybody’s fingers would be crossed
hoping that system integration would be smooth and that the board
designs would not need too many barnacles. Many devices would
be implemented in FPGAs, trading additional per-unit costs for
flexibility in fixing problems later found during system integration.

Tools exist to help
determine when
you are done.

The tools described in the previous chapter will help during your
verification effort. Code coverage, bug find rate, and code change
rates are metrics that indicate how much progress you have made
toward your goal. But they are like stock market indices or batting
averages: they provide a snapshot of the current situation and, if
recorded over time, show trends and progression. However, they

cannot be used to predict the future.1

Specifying the Verification

You need a tool to
determine when
you will be done.

Today’s question is about producing a schedule. You must deter-
mine, as reliably as possible, when the verification will be com-
pleted to the required degree of confidence. Unless you have a
detailed specification of the work that needs to be accomplished,
you cannot determine how many persons you need, nor how long it
is going to take, or even if you are doing work that needs to be
done. That’s what the verification plan is about.

Start from the
design specifica-
tion.

Before you can decide on a plan of attack for the verification, a
complete specification document for the design to be verified must
exist. And it must exist in written form. “Folklore” specifications
that describe the design as “the same thing as we did before, but at
twice the clock rate and with these additional features” are insuffi-
cient. The specification document is the common source for the
verification and implementation efforts. It is the golden reference
and the rule of law. Later, when discrepancies are found between

1. Although many financial and sports analysts make a good living
predicting an essentially random process or explaining, after the
fact, why everybody was wrong.

62 Writing Testbenches: Functional Verification of HDL Models

The Role of the Verification Plan

the response expected by the testbench and the one produced by the
design under verification, the specification document arbitrates and
decides which one has the correct answer.

The verification
plan is the specifi-
cation document
for the verifica-
tion effort.

Today’s million-gate ASIC designs cannot proceed without a
detailed specification document being written first. With the verifi-
cation effort being 100 to 200 percent of the RTL design effort, why
should it proceed without a specification document of its own? The
verification plan is the specification document for the verification
effort.

Defining First-Time Success

If, and only if, it is
in the plan, will it
be verified.

The verification plan provides a forum for the entire design team to
define what first-time success is. It is a mechanism that ensures all
essential features are appropriately verified. If you want first-time
success, you must identify which features must be exercised under
which conditions and what the expected response should be. The
verification plan documents which features are a priority and which
ones are optional. In the face of schedule pressure, the decision to
drop features from the first-time success requirements becomes a
conscious one. The alternative is to live with whatever happens to
work when the decision to ship the design cuts off the verification
effort like a guillotine. Some of the features, essential for market
acceptance, might fall in the basket.

From the verifica-
tion plan, a
detailed schedule
can be created.

The verification plan creates a line-in-the-sand that cannot be
crossed without endangering the success of the project in the mar-
ket place. Once the plan is written, you know how many test-
benches must be written, how complex they need to be, and how
they depend on each other. You can define a detailed verification
schedule, and allocate testbenches to resources, parallelizing verifi-
cation as much as possible. Once all the testbenches verifying the
must-have features are written, and the RTL passes those testcases,
the design can be shipped. Not before.

The team owns the
verification plan.

It is important for everyone involved with the design project to real-
ize that they have a stake in the verification plan. The responsibility
of an RTL designer is not to design RTL. That’s only his job. His
responsibility is to produce a working design. The entire design
team must contribute to the verification plan, to make sure that it is
complete and correct.

Writing Testbenches: Functional Verification of HDL Models 63

The Verification Plan

This process is not
revolutionary.

The process used to write a verification plan is not new. It has been
used for decades by NASA, the FAA and aerospace companies to
ensure that the ultra-reliable systems they were implementing met
their specifications. This process has been used for software as well
as for hardware designs.

LEVELS OF VERIFICATION

Verification can be
performed at vari-
ous levels of gran-
ularity.

The first question, when planning the verification, is to determine
the level of granularity for the verification effort. A design is poten-
tially composed of several levels. Some have a physical partition,
such as printed circuit boards, FPGAs, and ASICs. Others have a
logical partition, such as synthesized units, reusable components, or
sub-systems.

As illustrated in Figure 3-1, each level of verification is best suited
for a particular application and objective. The nature of design with
reusable components shifts where stand-alone unit-level verifica-
tion ends and system-level verification starts within the physical
hierarchy, compared with a more traditional design process. Design
with reuse does not diminish the need for verification. The unit-to-
system boundary is a logical one instead of a physical one.

64 Writing Testbenches: Functional Verification of HDL Models

Levels of Verification

Deciding between
levels of granular-
ity involves trade-
offs.

Smaller partitions are easier to verify because they offer greater
controllability and observability. It is easier to setup interesting
conditions and state combinations and to observe if the response is
as expected. With larger partitions, the integration of the smaller
partitions contained within it is implicitly verified at the cost of
lower controllability and observability.

Verifying at a
given level of
granularity
requires stable
interfaces.

Because the verification requires a significant implementation
effort, any partition being verified must have relatively stable inter-
faces and intended functionality. If the interfaces keep changing, or
functionality keeps being moved from one partition to another, the
testbenches will constantly need to be changed with little progress
being made. Once you’ve decided on specific partitions to be veri-
fied, their interface and overall functionality must be specified early
on and remain as stable as possible. Ideally, each verified partition
should have its own specification document.

Unit-Level Verification

Implementation
determines the
content of this par-
tition.

Design units are logical partitions. They are created to facilitate the
implementation or the synthesis process. They vary from the rela-
tively small (e.g. FIFOs and state machines) to the complex (e.g.
PCI slave interface and DSP datapaths). Their interfaces and func-
tionality tend to vary a lot over time, as implementation details
highlight shortcomings in the initial design. They usually do not
have an independent specification document to verify against
either.

Use ad-hoc verifi-
cation for design
units.

Because these design units are usually in a constant state of flux,
they are better left to an ad-hoc verification process. The designer
himself verifies the basic operation of the unit. The objective of this
verification is to ensure that there are no syntax errors in the RTL
code, and that basic functionality is operational. It is not to create a
regressionable test suite and obtain high code coverage.

They are too
numerous to verify
formally.

The high number of design units in any project makes a verification
process implemented at that level too time-consuming. Each would
require a custom verification environment, as described in Chapters
5 and 6. The precious verification resources would spend an inordi-
nate amount of time creating stimulus generators and response
monitors for a myriad of ever-changing interfaces. Writing a lot of
simple testbenches is just as much work, if not more, as writing a
few complex ones. And verification at the ASIC- or FPGA-level

65Writing Testbenches: Functional Verification of HDL Models

The Verification Plan

would still be required to verify the integration of these design
units.

Unit-level verifi-
cation may be
required in large
devices.

In today’s very large and complex ASIC and FPGAs, it may not be
possible to obtain the necessary functional coverage when verifying
from the ASIC or FPGA partition. For the highly sensitive and
complex functional blocks inside them, it may be necessary to per-
form unit-level verification to have sufficient levels of controllabil-
ity and observability. Ideally, each functional unit verified at the
unit level should have its own specification document.

Architect the
design to facilitate
unit-level verifica-
tion.

If your design is so complex that you have to perform some unit-
level verification, it should be designed to make that unit-level ver-
ification as relevant and complete as possible. Partition the design
so the features to be verified are completely contained within a unit
and can be verified on a stand-alone basis. Once verified, these fea-
tures can be assumed to work during the verification of the higher
levels. If the features to be verified at the unit level require interac-
tion with other units, they have to be re-verified at a higher-level
where the features are fully contained, to ensure that the integration
correctly implements them.

Reusable Components Verification

Reusable designs
are independent of
any particular use.

Reusable components are designed to an independent specification.
They are intended to be used as-is and unchanged in many different
designs. Their reusability can be limited to a single product, the
entire product family, or they could be applicable to any product
requiring their functionality. They must be designed - and thus veri-
fied - independent of any one usage.

Verification com-
ponents can be
reused as well.

Reusable components are usually designed using standardized
interfaces. These interfaces can be designed to standard on-chip
buses, or industry-standard external physical interfaces. The verifi-
cation components used to stimulate and monitor these interfaces
can be themselves reused across the various verification environ-
ments used to verify different reusable components. The verifica-
tion effort can be leveraged across multiple components, thus
minimizing the overall investment in verification. Chapter 6 will
detail how to architect a testbench to promote the creation and use
of reusable verification components.

66 Writing Testbenches: Functional Verification of HDL Models

Levels of Verification

Reusable compo-
nents need a
regression test
suite.

Reusable components are used in many designs. When they are
modified, either to fix problems that were found, or to enhance their
functionality, you must make sure that they remain backward-com-
patible. This is accomplished by implementing a regression test
suite that verifies the compliance of the component after any modi-
fication. Checking the equivalence of the new version with the pre-
vious version using formal verification would not really work
unless the modifications were not functional. Adding functionality
or fixing problems, by definition, make the new version of the
design not equivalent to the previous one.

They need thor-
ough functional
coverage.

Components will not be reused if potential users do not have confi-
dence that they perform better and more reliably than one they
could design themselves. This confidence can be obtained only by
demonstrating the correctness and robustness of the components
through a thorough, well documented verification process.

ASIC and FPGA Verification

The physical parti-
tion is an ideal ver-
ification level.

ASICs and FPGAs are physical partitions. They form a natural par-
tition for the verification because their interfaces and functionality
do not change very much after the initial specification of the system
and the completion of their specification documents.

They may have to
be treated as sys-
tems.

The ever increasing densities offered by the semiconductor technol-
ogy enables ever increasing integration of complex functionality
into a single device. To manage this complexity from a design and
verification standpoint, they are often designed as a collection of
independently designed and verified components, usually reusable
but not necessarily so. In that case, the ASIC is called a System-on-
a-Chip (SoC) and its verification resembles a system-level verifica-
tion process, as described in the next section. The bulk of the func-
tional verification is performed using unit-level verification.

FPGAs now
require an ASIC-
like verification
process.

Traditionally, FPGAs were able to survive an ad-hoc or even the
complete absence of a verification process. Their ease of program-
mability, often without additional component costs, allowed their
functionality to be modified up to the last minute. But today’s mil-
lion-gate FPGAs, even with only 50 percent effective usage, can
implement functions that are too complex to verify and debug dur-
ing integration. Their functionality must be verified from the RTL
code, before synthesis and implementation.

Writing Testbenches: Functional Verification of HDL Models 67

The Verification Plan

System-Level Verification

A system need not
follow physical
boundaries.

Everybody’s definition of a system is different. In this book, a sys-
tem is a logical partition composed of independently verified com-
ponents. A system could thus be composed of a few reusable
components and cover a subset of an SoC ASIC. A system could
also be composed of several ASICs physically located on separate
printed circuit boards, as illustrated in Figure 3-2.

The verification
focuses on interac-
tion.

The system-level verification focuses on the interactions between
the individual components instead of the functionality implemented
in each one. The latter is better verified at the component-level ver-
ification. The system verification engineer has to rely on the indi-
vidual components being functionally correct.

The testcase
defines the system.

Since systems are logical partitions, they can be composed of any
number of components, regardless of their physical location. Which
system to use and verify depends on the testcases that are deter-
mined to be interesting and significant. To minimize the simulation
overhead, it is preferable to use the smallest possible system neces-
sary to execute the specified testcase. However, the number of pos-
sible systems being very large, a set of “standard” systems should
be defined. The same system is used for many testcases even if, in
some cases, some of the included components are not required.

Board-Level Verification

Board-level mod-
els are generated
from the board
design tool.

The primary objective of board-level verification is to confirm that
the connectivity captured by the board design tool is correct. An
entire board can also be used as a system to verify its functionality.
Unlike a logical system model, the model for the board design must
be automatically generated by the board capture tool. When verify-
ing the board design, or any other physical partition, you must
make sure that what is being verified is what will be manufactured.
There must be a direct link between the captured design and what is
simulated. Automatic generation of the board-level model from the

68 Writing Testbenches: Functional Verification of HDL Models

Verification Strategies

capture tool provides that link. A logical system model has no such
restriction: it can be manually generated for the system of interest.

Many components
on a board do not
fit in a digital sim-
ulation environ-
ment.

The main difficulty with board-level models is obtaining suitable
models for all the components. That is where third-party sources
and hardware modelers are useful (see “Third-Party Models” on
page 36). Also, generating a model out of a board design tool
involves introducing approximations. For example, how do you
represent capacitors in a digital simulation environment? Analog
devices, connectors, opto-couplers, and other components used in
board-level designs do not translate easily in a digital simulation
environment either.

Board-level para-
sitics can be mod-
eled.

The generated model may include models for board-level parasitics
that may affect the functional correctness of the board. As the speed
of signals in a board increases, transmission line effects are becom-
ing important. ASICs can no longer be designed without consider-
ation of their eventual use on a circuit board.

How about a con-
nectivity formal
verification tool?

I’ve always been of the opinion that using functional simulation to
verify connectivity is a poor verification strategy. I would like to
see a tool that, given a formal description of the intended connectiv-
ity (e.g. this pin of this ASIC is connected to that pin of that CPLD)
and a netlist automatically extracted from a board design tool,
would compare the two and identify any discrepancies. This would
accomplish the task in a static fashion, without requiring stimulus
or verifying the response. Errors could not go unnoticed simply
because they were not exercised during the simulation. I am con-
vinced that the time to independently capture a formal specification
of the board connectivity would take less time than writing a single
testbench for it. Existing formal verification tools could probably
be easily extended to include this functionality.

VERIFICATION STRATEGIES

Decide on a black-
or white-box
approach for vari-
ous levels of gran-
ularity.

Given the functionality that needs to be verified, you must decide
on a strategy for carrying out the verification. You must decide on
the level of granularity where verification will be accomplished.
You must also decide on the types of testcases that will be used for
each level of granularity. Testcases can be either white-box or
black-box, depending on the visibility and knowledge you have of
the internal implementation of each unit under verification (see

69Writing Testbenches: Functional Verification of HDL Models

The Verification Plan

“Black-Box Verification” on page 12 and “White-Box Verification”
on page 13).

Decide on the
level of abstraction
where the tescases
will be specified.

You also need to decide the level of abstraction where the bulk of
the verification will be performed. The higher levels of abstraction
usually apply to coarser granularity of design under verification.
With higher levels of abstraction, your have less detailed control
over the timing and coordination of the stimulus and response, but
it is much easier to generate a lot of stimulus and verify long
responses. If detail controls are required to perform certain
testcases, it may be necessary to work at a lower level of abstrac-
tion.

A processor inter-
face could be veri-
fied at the cycle or
device driver level.

For example, verifying a processor interface can be accomplished
at the individual read and write cycle levels. But that requires each
testcase to have an intimate knowledge of the memory-mapped reg-
isters and how to program them. That same interface could be
driven at the device driver level. The testcase would have access to
a set of high-level procedural calls to perform complete operations.
Each operation is composed of many individual read and write
cycles to specific memory-mapped registers, but the testcase is
removed from these implementation details.

Verifying the Response

Plan how you will
check the
response.

Deciding how to apply the stimulus is relatively easy. You are under
complete control of its timing and content. It is verifying the
response that is difficult. You must plan how you will determine the
expected response, then how to verify that the design provided the
response you expected. The section titled “Predicting the Output”
on page 211 suggests several techniques for implementing output
verification.

Some responses
are difficult to ver-
ify in the simula-
tion.

Throughout this book, implementing self-checking testbenches is
recommended (see “Verifying the Output” on page 172). But, it can
sometimes be difficult for a testbench to verify a response that can
be immediately recognized as right or wrong by a human. For
example, verifying a graphic engine involves checking the output
picture for expected content. A self-checking simulation would be
very good at verifying individual pixels in the picture. But a human
would be more efficient in recognizing a filled red circle. The veri-
fication strategy must find a way to automate these type of
testcases.

70 Writing Testbenches: Functional Verification of HDL Models

Verification Strategies

Detect errors as
early as possible.

It may be more efficient to have the simulation produce a set of out-
puts that can be later compared against a set of reference outputs.
The result of a simulation can be further processed outside of the
simulator to determine success or failure. However, it is more effi-
cient to detect problems as early as possible. When the response is
checked within the simulation, the error is identified while the
model is near the state that produced the error. It is easier to identify
and fix the error.

Random Verification

Random verifica-
tion still provides
valid stimulus.

A strategy often used for system-level verifications is random veri-
fication. Random verification does not mean that you randomly
apply zeroes and ones to every input signals in the design. This
would not represent an accurate usage of the design and would not
accomplish anything. With random verification, the inputs are sub-
jected to valid individual operations, such as a read cycle or an
Ethernet packet. It is the sequence of these operations and the con-
tent of the data transferred that is random.

They will create
conditions you did
not think of.

Random simulations are used to create conditions that you have not
thought about when writing your verification plan. They create
unexpected conditions or hit corner cases. They also reduce the bias
introduced by the verification engineer when coding the test-
benches. Instead of creating input sequences that are easy to code,
they create more realistic stimulus. Random stimulus can also be
used to create background activity on other interfaces, while you
focus on creating well-specified testcases on one or two interfaces.

Random simula-
tions are usually
used at the system
level.

Because of the complexity of implementation, random verification
is usually applied at coarser levels of granularity. Many design units
and smaller partitions can thus take advantage of a single random
simulation environment. A possible strategy, encouraged by the

They are complex
to specify and
code.

Because of their nature, random simulations are complex to specify.
The sequence of data and operations applied to the design must be a
fair representation of the operating conditions the design will be
under. The specification for a random simulation must include dis-
tributions and ranges of data and operations. More complicated is
the prediction of the expected output. Since you do not know what
stimulus will be generated, how can you know what the response
will be? The strategy used for random testcases must address how
an invalid response is detected.

Writing Testbenches: Functional Verification of HDL Models 71

The Verification Plan

verification language e from Verisity, is to start with a random veri-
fication. Based on the verification plan, source code, and functional
coverage metrics, the random simulation is tuned and constrained
into individual directed testcases.

FROM SPECIFICATION TO FEATURES

Identify features. The first step in writing a verification plan is to identify the features
that will be verified. From the specification document, you enumer-
ate all the features that are described and thus must be verified.
Other team members, especially the system architects and RTL
designers, contribute additional features to be verified. These addi-
tional features may not have been obvious in the specification to
someone unfamiliar with the purpose or characteristics of the
design. Other features may become significant once a particular
implementation is chosen.

Label each feature. Features should be labelled and have a short description. The fea-
ture should be described in terms what needs to be verified, not how
it is to be implemented. Each feature should be cross-referenced to
the section or paragraph describing it in details in the specification
document. Ideally, the specification document should also contain a
cross-reference to the feature list in the verification plan. A subset
of the feature list for a Universal Asynchronous Receiver Transmit-
ter (UART) is shown in Sample 3-1.

Sample 3-1.
Some of the
features of a
UART design

The Clear-To-Send (CTS) pin must be asserted when the
UART can accept a new word to be transmitted via the CPU
interface. See section 4.2 of the UART specification docu-
ment.

The CTS bit in the status register must reflect the level of the
CTS pin. See table A.2

The Data Ready (DTR) pin must be asserted when there is a
received word ready to be read by the CPU interface. See
section 4.1 of the UART specification document.

The DTR bit in the status register must reflect the level of the
DTR pin. See table A.2

Data bits are serially sent and received with the least signifi-
cant bit first. See section 5.2 of the UART specification doc-
ument.

1.

2.

3.

4.

5.

72 Writing Testbenches: Functional Verification of HDL Models

From Specification to Features

Specify features
for the proper level
of verification.

When enumerating features, be careful to include them in the verifi-
cation plan for the proper verification level. Some features are bet-
ter verified at the component (unit, reusable, ASIC) level, while
others must be verified at the system level.

Component-Level Features

They are fully con-
tained within the
unit being verified.

A component can be a unit, a reusable component, or an entire
ASIC. Component-level features are fully contained within the
component being verified. They do not involve system-level inter-
action with other components. Their correctness can be determined
without depending on a subsequent verification of the integration of
the component into a high-level system. Examples of component-
level features include the ones listed in Sample 3-1.

The bulk of the features will be component-level features. These
features are assumed to be functional when the component is used
in a system-level verification.

System-Level Features

Minimize system-
level features.

A system can be a subset of an ASIC, a few ASICs from different
boards, an entire board design, or the complete product. Because of
the large size and long runtime of system-level simulations, it is
necessary to minimize the features verified at this level. Whenever
something is identified as a system-level feature, question whether
it can be verified as a component-level feature instead. For exam-
ple, in the design illustrated in Figure 3-3, the MX ASIC can select
between the data from ASICs ID0 or ID1 under software control. Is
the switching feature a system-level feature? The answer is no. The
switching feature is entirely contained within the MX ASIC and is
thus a component-level feature.

Writing Testbenches: Functional Verification of HDL Models 73

The Verification Plan

System-level fea-
tures include con-
nectivity, flow
control and inter-
operability.

System-level features are usually limited to connectivity, flow-con-
trol, and inter-operability. For example, the connectivity from the
input ports to the output port would be a system-level feature. In
verifying the connectivity, it is necessary to switch the input from
the ID0 stream to the ID1 stream. But the switching is not the pri-
mary objective of the verification and would be assumed to work.

Another system testcase would be verifying that full input FIFOs in
the MX ASIC creates back-pressure through the ID0 and ID1
ASICs and stop the flow of data until the congestion clears.

Error Types to Look For

Assume design
tools do not intro-
duce functional
errors.

When listing features to be verified, there is an implicit assumption
about the errors that are likely to occur and should be found. Func-
tional verification must focus on finding functional errors in the
design. It is not the responsibility of the functional verification to
make sure that the design tools are bug-free. Functional simulation
ensures that the design was implemented as specified without inter-
pretation errors or problems introduced by the designers. For exam-
ple, running all functional testbenches on the gate-level netlist only
verifies that the synthesis tool works properly. Formal verification
and static timing analysis are better tools to accomplish this task.

Likely errors are
different based on
the capture tool
used.

The types of errors that can be made are different when using dif-
ferent capture tools. When schematic capture tools are used, con-
nectivity errors, such as reversed bit orders in a bus, or mis-
connected individual bits within a bus, are very common. In a RTL
coding and logic synthesis environment, this type of error is not
likely to occur: if a bus is properly connected, either all the bits
work, or none do. Linting tools can detect some connectivity prob-
lems such as multiple drivers on a wire or an output that goes
nowhere and would be a better strategy for identifying these types
of problems.

Look for func-
tional errors.

Common errors in a synthesis-based design flow include wrong
polarities, protocol violations or incorrect computations. The type
of stimulus that proved useful in the days of schematic capture,
such as walking ones and zeroes may not be as useful in a RTL
design verification. A pair of patterns of alternating ones and
zeroes, for example “0xAAAA” followed by “0x5555”, is usually
sufficient. Using signatures in the data stream is another efficient
technique to detect functional error. A signature can be as simple as

74 Writing Testbenches: Functional Verification of HDL Models

From Features to Testcases

a sequential number to help detect missing or repeating data items.
A signature can also encode either the source or the expected desti-
nation of a data item. For example, the data associated with an
address in a write cycle could contain a portion of the address and
an identification of the bus master issuing the cycle. The section
titled “Packet Processors” on page 215 details how to use signa-
tures to verify a class of designs.

FROM FEATURES TO TESTCASES

Prioritize

Prioritize the fea-
tures.

Not all features are created equal. Once they are enumerated, they
must be prioritized. Some features are must-have for the design to
properly function or to meet the demands of the market. This is the
stage that defines first-time success. These features must operate
properly for the design to be shipped. The completion of the verifi-
cation of these features gates the successful completion of the
project and the testbenches verifying these features are often on the
critical path. The must-have features need to be thoroughly verified
for all possible configuration and usage options.

Less important
features receive
less attention.

The should-have features are not primordial for the commercial
success of the design. They may simply offer expansion capabilities
or differentiation from the competition. The main objective is to
verify their basic functionality for correct operation. If time and
resources allow, more detailed verification of these features may be
accomplished. The verification of these features may be cancelled
if schedule pressure forces the reallocation of resources to the veri-
fication of more important features.

Some features are
verified only as
time allows.

The nice-to-have features are purely optional. They are verified
only as time allows, usually in a primitive fashion. The reality of
today’s design schedule almost guarantees that they’ll never be ver-
ified!

Make an informed
decision when cut-
ting back on the
verification effort.

The prioritization of the features to be verified lets a project man-
ager make informed decisions when schedule pressures make it
necessary to eliminate some planned activities. The verification
effort can be trimmed starting with features that were pre-deter-
mined to be less important. If a greater impact of the project com-
pletion date is required and must-have features are dropped from

Writing Testbenches: Functional Verification of HDL Models 75

The Verification Plan

the verification, the decision will be a conscious one as these prior-
ities were clearly identified as critical to the initial marketing objec-
tives. Cutting the verification effort of must-have features requires a
conscious re-evaluation of the marketing objectives for the project.

Group into Testcases

Groups features
with similar verifi-
cation require-
ments.

Features naturally fall into groups. Some features require similar
configuration, granularity, or verification strategy to perform their
verification. To maximize productivity, these features should be
grouped together and assigned to the same verification engineer.
For example, all features related to the CPU interface should be
grouped together. As another example, verifying the baud rate,
number of data bits and parity generation of a UART falls within
the same group. Each group of feature verification forms a testcase.

Testcases can be
specified from
code coverage
metrics.

Some testcases will not come directly from features extracted from
the specification. For example, testcases created to increase code
coverage are not usually attached to a particular set of features.
These testcases should be clearly identified as such.

Cross-reference
into the feature
list.

Each testcase should be labelled and given a short description of its
objective. Its description should contain a list of the features veri-
fied in this testcase. The feature list should also be annotated with
cross-references to the testcases where a particular feature is being
verified. If a feature does not have a cross-reference to a testcase, it
is not being verified.

Define dependen-
cies.

The description of a testcase should also contain a list of the fea-
tures assumed to be operational and functionally correct. From
these dependencies, you can determine the order in which the
testcase must be written, and identify any parallelism opportunities
in the testbench development effort.

Specify the
testcase stimulus.

The sequence and characteristics of the stimulus for the testcase
must also be described. For example, describe the various opera-
tions or bus cycles that must be performed. For random testcases,
specify the range and distribution of the input data and types of
operations.

Specify the accep-
tance criteria.

More than just the expected response, the testcase specification
must state how the response will be determined as valid. This
includes expected values, timing, and protocol. For example, the

76 Writing Testbenches: Functional Verification of HDL Models

From Features to Testcases

output of a packet processor could be determined as correct solely
on the basis of the destination address matching the output port
where it appeared. Or, a more stringent requirement could be speci-
fied, such as packets from different sources showing up in the
proper order and interleaved with a proper distribution.

Specify what
should not happen.

One of the more explicit ways of describing acceptance criteria is to
state exactly which errors to look for. For example, making sure
that a packet comes out with a correct CRC value. Another example
is to describe events that are mutually exclusive, such as the asser-
tion of the full and empty flags in a FIFO. Being explicit about what
errors to look for lets a verification engineer, who is not intimately
familiar with the design, implement a highly reliable testbench.

Inject errors to
make sure they are
detected.

Never trust a testbench that does not produce error messages. Every
testcase should include some error injection mechanism to make
sure that errors are detected and reported by the testbench. The
absence of an error message would be a failure condition for that
testcase. For example, a testcase verifying the parity generation in a
UART should purposefully misconfigure the parity in the UART to
make sure that the testbench detects a wrong parity.

Design for Verification

Hard-to-verify fea-
tures will be iden-
tified.

At this stage of the verification planning, hard-to-verify features
will be identified. They can be difficult to verify because the test-
bench lacks suitable controllability or observability of the features.
An example would be the verification that an embedded 64-bit
counter properly rolls over and that the processing algorithm works
properly across the roll-over point. The difficulty may be because
of a poor choice in verification granularity. In that case, a smaller
partition containing the hard-to-verify features should be used. The
difficulty may also be due to the choice of implementation architec-
ture or an artifact of the design itself. If a smaller partition cannot
be used, or would not ease the verification of these features, a grey-
or white-box approach must be taken.

Modify the design
to aid verification.

The advantage of planning the verification up front is that you can
still influence the implementation of the design. If some features
prove to be to difficult to verify given the current architecture and
feature set of the design, have the design modified to include addi-
tional features to aid in their verification. Hardware design engi-
neers will no doubt complain about adding functionality that is not

77Writing Testbenches: Functional Verification of HDL Models

The Verification Plan

really needed by the design. However, if the alternative is to create
a design you cannot verify, what choice do they have? These fea-
tures have always proven to be useful during lab integration of sam-
ple parts.

Provide counter
pre-load functions.

If the design contains long counters or other state elements with
large numbers of states, make sure they can be pre-loaded to an
arbitrary value via a memory-mapped register. Ideally, their current
value should be available for read back through the same register
set. In the previous example, a series of 8 bytes in the address space
of the design could be allocated to pre-loading and reading back the
value of the 64-bit counter.

Provide datapath
by-pass paths.

The correct implementation of long data paths can also be difficult
to verify if you do not have detailed control over all the operands.
For example, speech synthesizers are simple digital signal process-

ing designs with a datapath that shapes random noise2. You have
complete control over the coefficients applied to the data samples to
form specific sounds. However, you do not have control over one
critical element: the primary input data value. That’s a random
number. To properly verify the operation of this datapath, you need
control over its initial input value.

As shown in Figure 3-4, the design should include a mechanism to
use a programmable constant input values instead of a random
number as input to the datapath. Conversely, you should also be
able to read back the output of the random number generator to
ensure that it is indeed producing random numbers. Pop quiz: why
is the read-back point located after the multiplexor that selects
between the normal operation using the random number generator

2. It is used to produce consonant sounds, such as the sh sound. It is then
mixed with a shaped base frequency used to produce vowel sounds,
such as the a sound, to hopefully create intelligible speech.

78 Writing Testbenches: Functional Verification of HDL Models

From Testcases to Testbenches

and the programmable static value, and not at the output of the ran-

dom number generator?3

Provide sample
points.

If observability is the problem but not controllability, adding sam-
ple points readable through memory-mapped registers can help
ease the verification of some features. If the address space allocated
to the design is at a premium, these sample points could be multi-
plexed into a single address location, using a second address to
select which point is currently being sampled.

Provide error
injection mecha-
nism.

If the design includes error detection mechanisms, you may want to
have provisions in an upstream design to inject errors. The decision
to include error injection should be carefully considered. If it is for
hardware verification only, it may not be properly documented for
the software engineers. This feature may be accidentally turned on
when a device driver writes a value that was thought to be inoffen-
sive.

FROM TESTCASES TO TESTBENCHES

Testcases natu-
rally fall into
groups.

Just like features, testcases naturally fall into groups. They require a
similar configuration of the design, use the same abstraction level
for the stimulus and response, generate similar stimulus, determine
the validity of the response using a similar strategy, or verify
closely-related features. For example, the testcase verifying that a
UART properly transmits data can be grouped with the testcase that
verifies its configuration controls. Both need similar stimulus (a
variety of data words to transmit), and both verify the correctness of
the output in a similar fashion (is the data value identical, with no
parity error).

Group testcases
into testbenches.

Each group of testcases is then divided into testbenches. A popular
division, the one used in this book, is one testcase per testbench.
The minimization of Verilog compilation time, or the time spent
back-annotating a large gate-level netlist with a correspondingly
large Standard Delay File (SDF) may dictate that a minimum num-

3. You want to verify that, when the datapath is put into normal operation
mode, the multiplexor is functionally correct and the input value is
indeed coming from the random number generator.

Writing Testbenches: Functional Verification of HDL Models 79

The Verification Plan

ber of testbenches be created by grouping several testcases into a
single testbench.

Cross-reference
testbenches with
testcases.

Each testbench should be labelled and uniquely identified. This
identifier should be used as the filename where the top-level HDL
code for the testbench is implemented. For each testbench, enumer-
ate the list of testcases it implements. Then cross-reference each
testbench into the testcase list. The description of a testcase should
contain the name of the testbench where it is implemented. If a test-
bench is not identified, a testcase has not yet been implemented.

Allocate each
group to an engi-
neer.

Regardless of the division of testcases into testbenches, allocate
each group of testcases to a verification engineer. Testcases in the
same group have similar implementation requirements. They can
build on the implementation of previous testcases in the group. The
first testbench takes the longest to write. But as the engineer
responsible for the testcase group gains experience and debugs his
or her verification infrastructure, a lot can be reused, often through
cut-and-paste, in subsequent testbenches. The name of the individ-
ual to whom a testbench has been assigned should be recorded in
the verification plan. That person is responsible for implementing
the testbench according to its specification.

Verifying Testbenches

How do you verify
that testbenches
implement the ver-
ification plan?

The purpose of the verification effort and writing testbenches is to
verify that a design meets its specification. If the verification plan is
the specification for the verification effort, how do you verify that
the testbenches implement their specification? How can you pre-
vent a significant portion of a testcase from being skipped because
of human error? Testbenches often include temporary code struc-
tures to by-pass large sections to speed up the debugging of a criti-
cal section. How can you make sure that they are taken out,
returning the testbench to implementing the entire set of testcases it
is supposed to contain?

Using a model that
is known to be
broken would be
too cumbersome.

One possible strategy is to use a known broken model. But you
would have to have a broken model for each feature that is verified
in a verification plan. Each would have to be maintained so that the
unbroken features match the latest version of the design under veri-
fication. You could be tempted to introduce these breaks directly
into the model of the design itself with some control mechanism to
select which one to turn on or off. But that would increase the risk

80 Writing Testbenches: Functional Verification of HDL Models

Summary

of introducing a fault in the design that would be manufactured.
Using a broken model to verify testbenches is not practical because
of the complexity of managing a large number of controlled and
known failure modes inside a design.

Verify testbenches
through peer
reviews.

As described in “The Human Factor” on page 5, one way to verify a
transformation performed by a human (in this case, writing a test-
bench from a specification), is to provide redundancy. Once com-
pleted, testbenches should be reviewed by other verification
engineers to ensure that they implement the specification of the
testcases they contain. For more details, refer to section “Code
Reviews” on page 28. The simulation output log should also be
reviewed to ensure that the execution of the testbench follows the
specification as well. To that effect, the testbench should produce
regular notice messages. It should state what stimulus is about to be
generated, and what error or response is being checked. The output
log should ultimately contain, in a bullet form, the specification of
the testcases that have been executed.

SUMMARY

In this chapter, I have outlined a process for writing a verification
plan. This plan is the specification document for the verification
process. It is used to define first-time success and to influence the
design specification to include features that will facilitate verifica-
tion. This chapter also defined how a system-level testcase is differ-
ent from a unit-level testcase. Once the verification plan is written,
a schedule for the verification can be created: you know how many
testbenches must be written and how complex they are.

Writing Testbenches: Functional Verification of HDL Models 81

This Page Intentionally Left Blank

CHAPTER 4 BEHAVIORAL HARDWARE
DESCRIPTION LANGUAGES

A proper verification engineer must break the “RTL mindset” that
most hardware engineers, out of necessity, have grown into. To effi-
ciently accomplish the verification task, you must be well-versed in
behavioral (i.e. non-synthesizeable and highly algorithmic) descrip-
tions. To reliably and correctly use the behavioral constructs of
VHDL or Verilog, it is necessary to understand the side effects of
the simulation algorithm and the limitations of the language - and
ways to circumvent them. This understanding was not required to
successfully write RTL models.

BEHAVIORAL VERSUS RTL THINKING

In this section, I illustrate the difference between the approach to
writing a RTL model compared with writing a behavioral model.

All experienced hardware design engineers are very comfortable
with writing synthesizeable models. They conform to a well-
defined subset of the VHDL or Verilog languages and follow one of
a few coding styles. Numerous RTL coding guidelines have been

published.1 They help designers obtain efficient implementations:
low area, high speed, or low power. Guidelines, such as the ones
shown in Sample 4-1, can help a novice designer avoid undesirable
hardware components, such as latches, internal buses, or tristate
buffers. More importantly, guidelines can also help maintain an

Many guide-
lines help code
RTL models.

Writing Testbenches: Functional Verification of HDL Models 83

Behavioral Hardware Description Languages

identical behavior between the synthesizeable model and the gate-
level implementation, such as the ones shown in Sample 4-2.

To avoid latches, set all outputs of combinatorial blocks to
default values at the beginning of the block.

To avoid internal buses, do not assign regs from two separate
always blocks (Verilog only).

To avoid tristate buffers, do not assign the value 'Z' (VHDL)
or 1 'bz (Verilog).

1.

2.

3.

Sample 4-1.
RTL coding
guidelines to
avoid undesir-
able hardware
structures

All inputs must be listed in the sensitivity list of a combinato-
rial block.

The clock and asynchronous reset must be in the sensitivity
list of a sequential block.

Use a non-blocking assignment when assigning to a reg
intended to be inferred as a flip-flop (Verilog only).

1.

2.

3.

Sample 4-2.
RTL coding
guidelines to
maintain simu-
lation behavior

The adherence to the synthesizeable subset and proper coding
guidelines can be easily verified using a linting tool (more details
are in the section titled "Linting Tools" on page 22). After several
months of experience, the subset becomes very natural to hardware
designers. It matches their mental model of a hardware design: state
machines, operators, multiplexers, decoders, latches, clocks, etc..

The synthesizeable subset is adequate for describing the implemen-
tation of a particular design. I often claim that VHDL and Verilog
are both equally poor at this task. The subset was dictated by the
synthesis technology, not by someone with a warped sense of
humor playing a practical joke on the entire industry. It was
designed to describe hardware structures and logical transforma-
tions between registers, matching the capability of logic synthesis
technology. However, this subset becomes quickly insufficient

Do not use RTL-
like code when
writing test-
benches.

The IEEE will soon publish (or may have already published) a standard
set of guidelines for RTL coding. For Verilog, see “IEEE P1364.1 Stan-
dard for Verilog Register Transfer Level Synthesis” prepared by the Ver-
ilog Synthesis Interoperability Working Group of the Design
Automation Standards Committee. For VHDL, see “IEEE P1076.6
Standard for VHDL Register Transfer Level Synthesis” prepared by the
VHDL Synthesis Interoperability Working Group of the Design Auto-
mation Standards Committee.

1.

84 Writing Testbenches: Functional Verification of HDL Models

Behavioral versus RTL Thinking

when writing testbenches that were never intended to be imple-
mented in hardware. Both languages have a rich set of constructs
and statements. If you have an “RTL mindset” when writing test-
benches and limit yourself to using a coding style designed to
describe relatively low-level hardware structures, you will not take
full advantage of the language’s power. The verification task will be
needlessly tedious and complicated.

Contrasting the Approaches

The example below shows a simple handshaking protocol. Your
task is to write some VHDL or Verilog code that implements the
simple handshaking protocol shown in Figure 4-1. It detects that an
acknowledge signal (ACK) is asserted (high) after a requesting sig-
nal (REQ) is asserted (high). Once the acknowledge is detected, the
requesting signal is deasserted, and it then waits for the acknowl-
edge signal to be deasserted.

RTL-Thinking Example. A hardware designer, with an RTL
mindset, will immediately implement the state machine shown in
Figure 4-1. The corresponding VHDL code is shown in Sample 4-
3. This relatively simple behavior required 28 lines of code and two
processes to describe, and two additional states in a potentially
more complex state machine.

Behavioral-Thinking Example. A verification engineer, with a
behavioral mindset, will instead focus on the behavior of the proto-
col, not its implementation as a state machine. The corresponding
code is shown in Sample 4-4. The functionality can be described
behaviorally using only four statements.

Focus on behav-
ior, not implemen-
tation.

Behavioral mod-
els are faster to
write.

Modeling this simple protocol using behavioral constructs should
require less than 10 percent of the time required to model it using
synthesizeable constructs. Not only is there less code to write (14

Writing Testbenches: Functional Verification of HDL Models 85

Behavioral Hardware Description Languages

Sample 4-3.
Synthesize-
able VHDL
code for sim-
ple handshak-
ing protocol

type STATE_TYP is (..., MAKE_REQ, RELEASE, ...);
signal STATE, NEXT_STATE: STATE_TYP;

COMB: process (STATE, ACK)
begin

NEXT_STATE <= STATE;
case STATE is

when MAKE_REQ =>
REQ <= ’1’;
if ACK = ’1’ then

NEXT_STATE <= RELEASE;
end if;

when RELEASE =>
REQ <= ’0’;
if ACK = ’0’ then

NEXT_STATE <= ...;
end if;

end case;
end process COMB;

SEQ: process (CLK)
begin

if CLK’event and CLK = ’1’ then
if RESET = ’1’ then

STATE <= ...;
else

STATE <= NEXT_STATE;
end if;

end if;
end process SEQ;

process
begin

REQ <= ’1’;
wait until ACK = ’1’;
REQ <= ’0’;
wait until ACK = ’0’;

end process;

Sample 4-4.
Behavioral
VHDL code
for simple
handshaking
protocol

percent), but it is also simpler, requiring less effort to ensure that it
is correct.

Another benefit of behavioral modeling is the increase in simula-
tion performance. Assuming that there is a long delay between a

Behavioral mod-
els simulate faster.

86 Writing Testbenches: Functional Verification of HDL Models

...

...

...

...

...

You Gotta Have Style!

change in the request and the corresponding acknowledgement, the
simulation of the synthesizeable model would still execute the SEQ
process at every transition of the clock (because that process is sen-
sitive to the clock signal). The process containing the behavioral
description would wait for the proper condition of the acknowledge
signal, resuming execution only when the protocol is satisfied. If
the acknowledge signal replies after a 10-clock-cycle delay, this
represents a reduction of process execution from 40 in the synthe-
sizeable version to two in the behavioral one, or a 1900 percent
increase in simulation performance.

YOU GOTTA HAVE STYLE!

The synthesizeable subset puts several constraints on the coding
style you may use. Even with these restrictions, many less experi-
enced hardware designers manage to write RTL code that is diffi-
cult to understand and maintain. There are no such restrictions with
behavioral modeling. With this complete and thorough freedom, it
is not surprising that even experienced designers produce testbench
code that is unmaintainable, fragile, and not portable.

A Question of Discipline

Write maintain-
able, robust code.

There are no laws against writing bad code. If you do, the conse-
quences do not involve personal fines or prison terms. However, the
consequences do involve a real economic cost to your employer.
Your code will need to be modified: either to fix a functional error,
to extend its functionality, or to adapt it to a new design. When (not
if) your code needs to be modified, it will take the person in charge
of making that modification more time than would otherwise have
been required had the code been written properly the first time.
Under extreme conditions, your code may even have to be re-writ-

ten entirely.2

My first job after graduating from university was to design and
implement a portion of a logic synthesis tool using the C language.
In those days, I had been writing code in various languages for over
eight years and I measured my performance as a software engineer

2. Do not think “It won’t be my problem”. You may very well be that per-
son and you may not be able to understand your own code weeks later.

Writing Testbenches: Functional Verification of HDL Models 87

Behavioral Hardware Description Languages

by the cleverness of my implementations of algorithms. I felt really
proud of myself when I was able to craft a complex computation
into a “poetic” one-liner. C is the ultimate software craftsman lan-
guage!

I soon came to realize the error of my ways. During the eight previ-
ous years, I always wrote “disposable” code: the programs were
either short-lived (school assignments or personal projects), or they
had a narrow audience (utilities for university professors or a learn-
ing aid for a particular class). Never had I written a program that
would live for several years and be used by dozens of persons, each
with their own sophisticated needs and attempting to use my pro-
gram in ways I had never intended or even thought of. As I found
myself having to fix many problems reported by users, I had diffi-
culties understanding my own code written only weeks before. I
quickly learned that time invested in writing better code would be
saved many times over in subsequent support efforts.

Invest time now,
save support time
later.

Optimize the Right Thing

You should always strive for maintainability. Maintainability is
important even when writing synthesizeable code. Before optimiz-
ing some aspect of your code, make sure it really needs improve-
ment. If your code meets all of its constraints, it does not need to be
optimized. Maintainability is the most important aspect of any code
you write because understanding and supporting code is the most
expensive activity.

Saving lines actu-
ally costs money.

There is no economic reason to reduce the number of lines of code.
Unless, of course, it also improves the maintainability. Saving one
line of code, with an average of 50 characters per line, saves only
50 bytes on the storage medium. With 10Gb hard drives costing

less than $300 today, this represents a savings of The
time saved in typing, assuming an extremely slow typing speed of
one character per second and a loaded labor rate for an engineer at
$100,000 a year, amounts to $0.69. However, if saving that line
reduces the understandability of the code where it will require an
additional 5 minutes to figure out its operation, the additional cost
incurred amounts to $4.17. The total loss from reducing code by 1
line equals $3.48. And that is for a single line, and a single instance
of maintenance.

88 Writing Testbenches: Functional Verification of HDL Models

You Gotta Have Style!

Optimizing perfor-
mance costs
money.

Similar costs are incurred when optimizing code for performance.
These optimizations usually reduce maintainability and must be
done only when absolutely required. If the code meets its con-
straints as is, do not optimize it. That principle applies to synthe-
sizeable code as well. The example in Sample 4-5 was taken from
the user’s manual of a verification language. It is a synthesizeable
description of a 2-bit round-robin arbiter.

module rrarb(request, grant, reset, clk) ;
input [1:0] request;
output [1:0] grant;
input reset;
input clk;
wire winner;
reg last_winner
reg [1:0] grant;
wire [1:0] next_grant;

assign next_grant[0] =
~reset & (request[0] &

(~request[l] | last_winner));

assign next_grant[1] =
~reset & (request[1] &

(~request[0] | ~last_winner));

assign winner =
~reset & ~next_grant[0] &
(last_winner | next_grant[1]);

always @ (posedge clk)
begin

last_winner = winner;
grant = next_grant;

end
endmodule

Sample 4-5.
Synthesize-
able code for
2-bit round-
robin arbiter

RTL code can be
too close to sche-
matic capture.

Some aspects of maintainable code were used in Sample 4-5: iden-
tifiers are meaningful and the code is properly indented. However,
the continuous assignment statements implementing the combina-
torial decoding demonstrate that the author was thinking in terms of
boolean equations, maybe even working from a schematic design,
not in terms of functionality of the design.

This approach complicates making even the simplest change to this
design. If you need further convincing that this design is difficult to

Writing Testbenches: Functional Verification of HDL Models 89

Behavioral Hardware Description Languages

understand, try to figure out what happens to the content of the
last_winner register when there are no requests. Another potential
problem are the race conditions created by using the blocking
assignments in the always block (for more details, see “Read/Write
Race Conditions” on page 141).

Specify function
first, optimize
implementation
second - and only
if needed.

The code shown in Sample 4-6 implements the same function, but it
is described with respect to its functionality, not its gate-level
implementation. It is easier to understand and to determine whether
it is functionally correct by simple inspection.

If you need further convincing that this design is easier to under-
stand, try to figure out what happens to the content of the
last_winner register when there are no requests. Was it easier to
determine with this model or the one in Sample 4-5?

module rrarb(request, grant, reset, clk);
input [1:0] request;
output [1:0] grant;
input reset;
input clk;

reg [1:0] grant;
reg last_winner;
always @ (posedge clk)
begin

if (reset) begin
grant <= 2’b00;
last_winner <= 0;

end
else begin

grant <= 2’b00;
if (request != 2’bOO) begin: find_winner

reg winner;
case (request)
2’b0l: winner = 0;
2’bl0: winner = 1;
2’bll:

if (last_winner == 1’b0) winner = 1;
else winner = 0;

endcase
grant[winner] <= 1’bl;
last_winner <= winner;

end
end

end
endmodule

Sample 4-6.
Synthesize-
able code for
2-bit round-
robin arbiter

90 Writing Testbenches: Functional Verification of HDL Models

You Gotta Have Style!

It is also easier to modify, for example, should the request and grant
signals be asserted low instead of high. The synthesized results
should be close to that of the previous model. It should not be a
concern until it is demonstrated that the results do not meet area,
timing or power constraints. Your primary concern should be main-
tainability, unless shown otherwise.

Good Comments Improve Maintainability

If reducing the number of lines of code actually increases the over-
all cost of a design, the same argument applies to comments. One
could argue that reducing the number of lines of code can yield a
better program, since there are fewer statements to understand.
However, the primary purpose of comments is explicitly to improve
maintainability of code. No one can argue that reducing their num-
ber can lead to better code.

However, just as there is bad code, there are bad comments. Obso-
lete or outdated comments are worse than no comments at all since
they create confusion. Comments that are cryptic or assume some
particular knowledge may not be very useful either. One of the most
common mistakes in commenting code, illustrated in Sample 4-7, is
to describe in written language what the code actually does.

You can write bad
comments.

-- Increment addr
addr := addr + 1;Sample 4-7.

Poor comment

Unless you are trying to learn the language used to implement the
model, this comment is self-evident and redundant. It does not add
any information. Any reader familiar with the language would have
understood the functionality of the statement. Comments should
describe the intent and purpose of the code, as illustrated in Sample
4-8. It is information that is not readily available to someone unfa-
miliar with the design.

Sample 4-8.
Proper com-
ments

Writing Testbenches: Functional Verification of HDL Models 91

In burst mode, the bytes are written in
consecutive addresses. Need to access the
next address to verify that the next byte
was properly saved,

addr := addr + 1;

Behavioral Hardware Description Languages

Assume an inexpe-
rienced audience.

When commenting code, you should assume that your audience is
composed of junior engineers who are familiar with the language,
but not with the design. Ideally, it should be possible to strip a file
of all of its source code and still understand its functionality based
on the comments alone.

STRUCTURE OF BEHAVIORAL CODE

This section describes techniques to structure and encapsulate
behavioral code for maximum maintainability. Encapsulation can
be used to hide implementation details and package reusable code
elements.

RTL models
require a well-
defined structure
strategy.

Structuring code is the process of allocating portions of the func-
tionality to different modules or entities. These modules or entities
are then connected together to provide the complete functionality of
the design. There are many guidelines covering the structure of syn-
thesizeable code. That structure has a direct impact on the ease of
meeting timing requirements. The structure of a synthesizeable
model is dictated by the limitations of the synthesis tools, often
with little regard to the functionality.

Testbenches are
structured accord-
ing to functional
needs.

A testbench implemented using behavioral Verilog or VHDL code
does not face similar tool restrictions. You are free to structure your
code any way you like. For maintainability reasons, behavioral
code is structured according to functionality or need. If a function is
particularly complex, it is easier to break it up in smaller, easier to
understand subfunctions. Or, if a function is required more than
once, it is easier to code and verify it separately. Then you can use it
as many times as necessary with little additional efforts. Table 4-1
shows the equivalent constructs available in each language to help
structure code appropriately.

92 Writing Testbenches: Functional Verification of HDL Models

Structure of Behavioral Code

Encapsulation Hides Implementation Details

Encapsulation is an application of the structuring principle. The
idea behind encapsulation is to hide implementation details and
decouple the usage of a function from its implementation. That
way, the implementation can be modified or optimized without
affecting the users, as long as the interface is not modified.

Keep declarations
as local as possible

The simplest encapsulation technique is to keep declarations as
local as possible. This technique avoids accidental interactions with
another portion of the code where the declaration is also visible. A
common problem in Verilog is illustrated in Sample 4-9: two
always blocks contain a for-loop statement using the register i as an
iterator. However, the declaration of i is global to both blocks. They
will interfere with each other’s execution and produce unexpected
results.

integer i;

always
begin

for (i = 0; i < 32; i = i + 1) begin

end
end

always
begin

end
end

Sample 4-9.
Improper
encapsulation
of local
objects

In Verilog, put
local declarations
in named blocks.

In Verilog, you can declare registers local to a begin/end block if
the block is named. A proper way of encapsulating the declarations
of the iterators so they do not affect the module-level environment
is to declare them locally in each always block, as shown in Sample
4-10. Properly encapsulated, these local variables cannot be acci-
dentally accessible by other always or initial blocks and create
unexpected behavior.

Other locations where you can declare local registers in Verilog
include tasks and functions, after the declaration of their arguments.

Writing Testbenches: Functional Verification of HDL Models 93

...

for (i = 15; i >= 0; i = i - 1) begin
...

Behavioral Hardware Description Languages

Sample 4-10.
Proper encap-
sulation of
local objects

always
begin: block_l

integer i;
for (i = 0; i < 32; i = i + 1) begin

end
end

always
begin: block_2

integer i;
for (i = 15; i >= 0; i = i - 1) begin

end
end

An example can be found in Sample 4-11. In VHDL, declarations
can be located before any begin keyword.

task send;
input [7:0] data;

reg parity;
begin

end
endtask

function [31:0] average;
input [31:0] va1l;
input [31:0] val2;

reg [32:0] sum;
begin

sum = val1 + val2;
average = sum / 2;

end
endfunction

Sample 4-11.
Local declara-
tions in tasks
and functions

Encapsulating Useful Subprograms

Some functions and procedures are useful across an entire project
or between many testbenches. One possibility would be to replicate
them wherever they are needed. This obviously increases the
required maintenance effort. It also duplicates information that was
already captured. VHDL has packages to encapsulate any declara-

Writing Testbenches: Functional Verification of HDL Models94

...

...

...

Structure of Behavioral Code

tion used in more than one entity or architecture. Verilog has no
such direct features, but it provides other mechanisms that can
serve a similar purpose.

Example: error
reporting routines.

One example of procedures that is used by many testbenches are
the error reporting routines. To have a consistent error reporting
format (which can be easily parsed later to check the result of a
regression), a set of standard routines are used to issue messages
during simulation. In VHDL, they are implemented as procedures
in a package. In Verilog, they are implemented as tasks, with two
packaging alternatives.

Verilog packages
can be simple
`include files.

The simplest packaging technique is to put the tasks in a file to be
included via a compiler directive within the module where they are
used. This implementation, shown in Sample 4-13 and used in
Sample 4-12, has two drawbacks:

1.

2.

First, the package cannot be compiled on its own since the tasks
are not contained within a module.

Second, since the tasks are compiled within each module where
it is included, it is not possible to include global variables, such
as an error counter.

Sample 4-12.
Using tasks
packaged
using ̀ include
file in Verilog

module testcase;

‘include "syslog.vh"

initial
begin

if (...) error("Unexpected response\n");

terminate;
end
endmodule

This implementation has one clear advantage compared to the alter-
native implementation presented in the following paragraphs: it can
be used in synthesizeable code whereas the other cannot.

Tasks can be pack-
aged in a module
and used using a
hierarchical name.

The other packaging technique is to put the tasks in a module to be
included in the simulation, but never instantiated within any of the
modules where they are used. Instead, an absolute hierarchical
name is used to access the task in this global module. This imple-

Writing Testbenches: Functional Verification of HDL Models 95

...

...

Behavioral Hardware Description Languages

Sample 4-13.
syslog.vh:
packaging
tasks using
`include file in
Verilog

task warning;
input [80*8:1] msg;

begin
$write("WARNING at %t: %s", $time, msg);

end
endtask

task error;
input [80*8:1] msg;

begin
$write("-ERROR- at %t: %s", $time, msg);

end
endtask

task fatal;
input [80*8:1] msg;

begin
$write("*FATAL* at %t: %s", $time, msg);
terminate;

end
endtask

task terminate;
begin

$write("Simulation completed\n");
$finish;

end
endtask

Sample 4-14.
Packaging
tasks using a
module in Ver-
ilog.

module syslog;

integer warnings;
integer errors;
initial
begin

warnings = 0 ;
errors = 0;

end

task warning;
input [80*8:1] msg;

begin
$write("WARNING at %t: %s", $time, msg);
warnings = warnings + 1;

end
endtask

endmodule

96 Writing Testbenches: Functional Verification of HDL Models

...

mentation, shown in Sample 4-14 and used in Sample 4-15, can be
compiled on its own since the tasks are now contained within a
module. It is also possible to include global variables, such as an
error counter. This implementation technique is also consistent with
the one used to encapsulate bus-functional models, as explained in
the following section.

module testcase;

initial
begin

if (...) syslog.error("Unexpected response");

syslog.terminate;
end
endmodule

Sample 4-15.
Using tasks
packaged
using a mod-
ule in Verilog

Encapsulating Bus-Functional Models

In Chapter 5, I describe how data applied to the design under verifi-
cation via complex waveforms and protocols can be implemented
using tasks or procedures. These subprograms, called bus-func-
tional models, are typically used by many testbenches throughout a
project. If they model a standard interface, such as a PCI bus or a
Utopia interface, they can even be reused between different
projects. Properly packaging these subprograms facilitates their use
and distribution.

Figure 4-2 shows a block diagram of a bus-functional model. On
one side, it drives and samples low-level signals according to a pre-
defined protocol. On the other, subprograms are available to initiate
a transaction with the specified data values. The latter is called a
procedural interface.

Writing Testbenches: Functional Verification of HDL Models 97

Structure of Behavioral Code

...

...

Behavioral Hardware Description Languages

library ieee;
use ieee.std_logic_1164.all;
package cpu is

subtype byte is std_logic_vector(7 downto 0);

procedure write(variable wadd: in natural;
variable wdat: in natural;
signal addr: out byte;
signal data: inout byte;
signal rw : out std_logic;
signal ale : out std_logic;
signal vald: in std_logic);

end cpu;

library ieee;
use ieee.numeric_std.all;
package body cpu is

procedure write(variable wadd: in natural;
variable wdat: in natural;
signal addr: out byte;
signal data: inout byte;
signal rw : out std_logic;
signal ale : out std_logic;
signal vald: in std_logic)

is
constant Tas: time = 10 ns;

begin
if vald /= ’0’ then

wait until vald = ’0’;
end if;
addr <= std_logic_vector(unsigned(wadd, 8));
data <= std_logic_vector(unsigned(wdat, 8));
rw <= ’0’;
wait for Tas;
ale <= ’1’;
wait until vald = ’1’;
ale <= ’0’;

end write;

end cpu;

Sample 4-16.
Encapsulating
bus-functional
models in
VHDL

In VHDL, use pro-
cedures with sig-
nal arguments.

In VHDL, the bus-functional model would be implemented using a
procedure located in a package. For the procedure to be able to
drive the interface signals, they must be passed through the proce-
dure’s interface as formals of class signal. If the procedure had been
declared in a process, you could drive the signals directly using side

98 Writing Testbenches: Functional Verification of HDL Models

Structure of Behavioral Code

effects. It would have been possible in that context since the driver
on each signal is clearly identified with the process containing the
procedure declaration. Once put in a package, the signals are no
longer within the scope of the procedure, nor are the drivers within
the procedure attached to any process. Using signal-class formals
lets a process pass its signal drivers to the procedure for the dura-
tion of the transaction. Sample 4-16 shows an example of properly
packaged bus-functional models in VHDL.

Task arguments
are passed by
value only.

In Verilog, you might be tempted to implement the bus-functional
model using a task where the low-level signals are passed to the
tasks, similar to VHDL’s procedure. However, Verilog arguments
are passed by value when the task is called and when it returns. At
no other time can a value flow into or out of a task via its interface.
For example, the task shown in Sample 4-17 would never work.
The assignment to the bus_rq variable cannot affect the outside
until the task returns. The task cannot return until the wait statement
sees that the bus_gt signal was asserted. But the value of bus_gt
cannot change from the value it had when the task was called.

A simple modification to the packaging can work around the prob-
lem. Instead of passing the signals through the interface of the task,
they are passed through the interface of the module implementing
the package, as shown in Sample 4-18. This also simplifies calling
the bus-functional model tasks as the (potentially numerous) sig-
nals need not be enumerated on the argument list for every call.

module arbiter;

task request;
output bus_rq;
input bus_gt;

begin
// The new value does not "flow" out
bus_rq <= 1’b1;
// And changes do not "flow" in
wait bus_gt == 1’b1;

end
endtask
endmodule

Sample 4-17.
Task argu-
ments in Ver-
ilog are passed
by value

Writing Testbenches: Functional Verification of HDL Models 99

Behavioral Hardware Description Languages

module arbiter(bus_rq, bus_gt) ;
output bus_rq;
input bus_gt;

task request;
begin

// The new value "flows" out through the pin
bus_rq <= 1’b1;
// And changes "flow" in as well
wait bus_gt == 1’b1;

end
endtask
endmodule

Sample 4-18.
Signal inter-
face on Ver-
ilog package

DATA ABSTRACTION

Synthesizeable
models are limited
to bits and vectors.

The limitation of logic synthesis technology has forced the synthe-
sizeable subset into dealing only with data formats that are clearly
implementable: bits, vectors of bits, and integers. Behavioral code
has no such restrictions. You are free to use any data representation
that fits your need.

Work at the same
level as the design
under verification.

You must be careful not to let an RTL mindset artificially limit your
choice, or to keep you from moving to a higher level of abstraction.
You should approach the verification problem at the same level of
granularity as the “unit of work” for the design. For an ATM cell
router, the unit of work is an entire ATM cell. For a SONET framer,
the unit of work is a SONET frame. For a video compressor, the
unit of work is either a video line or an entire picture, depending on
the granularity of the compression. The interesting conditions and
testcases are much easier to set up at that level than at the low-level
bit interface.

VHDL provides excellent support for abstracting data into high-
level representations. Verilog does not have as many features, but
with the proper technique and discipline, a lot can be accomplished.
The following sections use Verilog to illustrate how various data
abstractions can be implemented since it is the more limiting lan-
guage. Their implementations in VHDL is much easier and you are

invited to consult a book on the VHDL language3 to learn the
details.

Abstracting data in
Verilog requires
creativity and dis-
cipline.

A title is suggested in the Preface on page xix.3.

100 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

Real Values

This section shows how floating-point values can be used to
abstract algorithmic computations. It also shows how to work
around the limitations of Verilog’s real type. The section ends with
a technique to translate this abstract representation into its corre-
sponding physical implementation.

Use real when ver-
ifying DSP
designs.

If you are verifying any digital signal processing design, the real
type is your friend. It is much easier to compute the expected output
value of a filter using floating-point arithmetic than trying to
accomplish the same thing in fixed-point representation using bit
vectors, as the implemention is sure to do. Furthermore, does the
latter technique offer a truly independent path to the expected
answer? Or, is it simply reproducing the implementation - and thus
not providing any functional verification?

For example, you have to verify a design that implements Equation
1, where and b2 are programmable, the a and b values
are between +2.0 and -2.0, and the x and y values are between +1.0
and -1.0. How would you compute the expected response to an

input sequence?

Constants could be
defined using
`define symbols.

First, it is necessary to know the value of the coefficients to use.
These would be determined using a digital signal processing analy-
sis tool using a process that is well beyond the scope of this book.
Usually, the coefficients are defined in the verification plan. Since
the coefficients are constant for the duration of the testcase, one
way to define them is to use `define symbols, as shown in Sample
4-19.

Sample 4-19.
Coefficients
defined using
`define sym-
bols

Defining them as
parameters is bet-
ter.

However, `define symbols are global to the compilation and violate
the data encapsulation principle (you can read more about this in
“Encapsulation Hides Implementation Details” on page 93). They

Writing Testbenches: Functional Verification of HDL Models 101

`define a0 0.500000
`define al 1.125987
`define a2 -0.097743
`define bl -1.009373
`define b2 0.009672

Behavioral Hardware Description Languages

also pollute the global name space, preventing the use of an identi-
cal symbol by someone else. A better approach is to declare them as
parameters as shown in Sample 4-20. They would be local to the
module.

parameter a0 = 0.500000,
al = 1.125987,
a2 =-0.097743,
bl =-1.009373,
b2 = 0.009672;

Sample 4-20.
Coefficients
defined using
parameters

Implement the fil-
ter equation as a
function.

A function could be used to compute the next output value, as
shown in Sample 4-21. Because all registers are static in Verilog
(i.e. they are allocated at compile time and a single copy exists in
memory at all time), the internal state of the filter is kept in registers
declared locally within the function. A hierarchical access is used to
reset them.

But Verilog already presents one of its limitations: real values can-
not be passed across interfaces. A function can return a real value,
but it cannot accept a real value as one of its input arguments. Nor
can tasks. Module ports cannot accept a real value either. To work
around this limitation, Verilog provides a built-in system task to
translate a real value to and from a 64-bit vector: $realtobits and
$bitstoreal, respectively. Whenever a real value needs to be passed
across an interface, it has to be translated back and forth using these
system tasks.

Use a constant
array in VHDL.

In VHDL, using constants defined as arrays of reals, as shown in
Sample 4-22, would be the proper implementation. It has the
advantage that a for-loop could be used to compute the equation, a
solution that remains simple and efficient, independent of the num-
ber of terms in the filter. If a similar requirement is present in a Ver-
ilog environment, you could use a memory of 64-bit registers,
where each memory location would contain a coefficient translated
into bits.

The implementation of the function to compute the next output
value in VHDL requires modifications from the Verilog implemen-
tation. In VHDL, all local subprogram variables are dynamic. They
are created every time the function or procedure is called. It is not
possible to maintain the state of the filter as a variable local to the

Writing Testbenches: Functional Verification of HDL Models102

Data Abstraction

Sample 4-21.
Function com-
puting the next
output value

function real yn;
input [63:0] xn;

real xn_1, xn_2;
real yn_1, yn_2;

begin
// Compute next output value
yn = a0 * $bitstoreal(xn) +

a1 * xn_1 +
a2 * xn_2 +
b1 * yn_1 +
b2 * yn_2;

// Shift state of the filter
xn_2 = xn_1; xn_1 = $bitstoreal(xn);
yn_2 = yn_1; yn_1 = yn;

end
endfunction

initial
begin: test_procedure

real y;

// Reset the filter
yn.xn_1 = 0.0; yn.xn_2 = 0.0;
yn.yn_1 = 0.0; yn.yn_2 = 0.0;

// Compute the response to an impulse
y = yn($realtobits(1.0));
repeat (99) begin

y = yn($realtobits(0.0));
end

end

Sample 4-22.
Proper imple-
mentation in
VHDL

type real_array_typ is
array(natural range <>) of real;

constant a: real_array_typ(0 to 2) :=
(0=>0.500000, 1=>1.125987, 2=>-0.097743);

constant b: real_array_typ (1 to 2) :=
(1=>-1.009373, 2 = > 0.009672) ;

function. It is not possible to use a globally visible variable either:
VHDL functions cannot have side effects. In other words, they can-
not assign to any object that is not either local or an argument.
However, a procedure declared in a process can have side effects.

Writing Testbenches: Functional Verification of HDL Models 103

Behavioral Hardware Description Languages

Sample 4-23.
Procedure
computing the
next output
value

test_procedure: process
variable xn_1, xn_2: real := 0.0;
variable yn_1, yn_2: real := 0.0;

procedure filter(xn: in real;
yn: out real) is

variable y: real;
begin

-- Compute next output value
y := a(0) * xn +

a(1) * xn_1 +
a (2) * xn_2 +
b(1) * yn_1 +
b(2) * yn_2;

-- Shift state of the filter
xn_2 := xn_1; xn_1 := xn;
yn_2 := yn_1; yn_1 := y;

-- Return next value via output argument
yn := y;

end filter;

variable y: real;
begin

-- Compute the response to an impulse
filter(1.0, y);
for I in 1 to 99 loop

filter(0.0, y);
end loop;

end process test_procedure;

Sample 4-23 shows the computation of the next value implemented
using a procedure.

Use a conversion
function to trans-
late into a fixed-
point representa-
tion.

Eventually, it is necessary to program the coefficients, represented
using real numbers, into the design under verification where a
fixed-point representation is required. This is best accomplished
through a conversion function, as shown in Sample 4-24. The argu-
ment is the real coefficient value and the return value is the fixed-
point representation of that same value. A similar function is
needed for the data values. The complementary function is required
to convert the output data value from its fixed-point representation
back to a real number to be compared against the expected value.
The comparison could be performed using fixed-point representa-
tion, but the error message would not be as meaningful if an hexa-
decimal value were reported instead of a real value.

104 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

//
//
//
//
//
//
//
//
//

The testbench
becomes much
higher level.

With these utility functions in place, the testbench becomes much
easier to implement and understand. Refer to Sample 4-25 for an
example. The if statement used to compare the output value with
the expected value should be modified to take into account quanti-
zation effects of performing the computation using fixed-point
arithmetic compared to floating points with full precision. The

comparison should accept as valid a difference within The
range of acceptable error should be specified in the verification
plan.

Records

Records are used to represent information composed of various
smaller pieces of different types. This section develops a technique
for modelling records in Verilog.

Records are ideal for representing packets or frames, where control
or signaling information is grouped with user information. The
code Sample 4-26 shows the VHDL declaration for a record used to

Writing Testbenches: Functional Verification of HDL Models 105

Sample 4-24.
Converting a
real value to a
fixed point
value

Fixed-point number format: si .ffffffffffffff
|| |<------+----->|

Sign (1=negative)---------+| |
Integer portion-----------+ |
Fractional portion------------------+
e.g. bit 14 is 2**0

bit 13 is 2**-1 (0.5)
bit 12 us 2**-2 (0.25)

etc...
function [15:0] to_fixpnt;

input [63:0] coeff;

real c;
begin

to_fixpnt = 16’hOOOO;
c = $bitstoreal(coeff);
if (c < 0) begin

to_fixpnt[15] = 1’b1;
c = -c;

end
to_fixpnt[14:0] = c * ’h4000;

end
endfunction

Behavioral Hardware Description Languages

initial
begin: test_procedure

real xn;

// Initialize prediction function
yn.xn_1 = 0.0; yn.xn_2 = 0.0;
yn.yn_1 = 0.0; yn.yn_2 = 0.0;

// Reset the design

// Program the coefficient
cpu_write(‘A0_ADDR, to_fixpnt(a0));
cpu_write(‘A1_ADDR, to_fixpnt(a1));
cpu_write(‘A2_ADDR, to_fixpnt(a2));
cpu_write (‘B1_ADDR, to_fixpnt (b1));
cpu_write(‘B2_ADDR, to_fixpnt(b2));

// Verify the response to an impulse input
xn = 1.0;
repeat (100) begin: test_one_sample

real expect;

data_in = to_fixpnt(xn);
expect = yn($realtobits(xn));
@ (posedge clk);
if (expect !== to_real(data_out)) ...
xn = 0.0;

end
$finish;

end

Sample 4-25.
DSP testcase

represent an ATM cell. An ATM cell is a fixed-length 53-byte
packet with 48 bytes of user data.

type atm_payload_typ is array(0 to 47) of
integer range 0 to 255;

type atm_cell_typ is record
vpi : integer range 0 to 4095;
vci : integer range 0 to 65535;
pt : bit_vector(2 downto 0);
clp : bit;
hec : bit_vector(7 downto 0);
payload : atm_payload_typ;

end record ;

Sample 4-26.
VHDL record
for an ATM
cell

106 Writing Testbenches: Functional Verification of HDL Models

...

Data Abstraction

Records can be
faked in Verilog.

Verilog does not support records directly, but they can be faked.
Hierarchical names can be used to access any declaration in a mod-
ule. A module can emulate a record by containing only register dec-
larations. When instantiated, the module instance emulates a record
register, with each register in the module becoming a field of the
record instance. The record declaration for an ATM cell can be
emulated, then used in Verilog, as shown in Sample 4-27. The mod-
ule containing the declaration for the record can contain instantia-
tion of lower record module, thus creating multi-level record
structures.

Sample 4-27.
Verilog record
for an ATM
cell

module atm_cell_typ;
reg [11:0] vpi;
reg [15:0] vci;
reg [2:0] pt;
reg clp;
reg [7:0] hec;
reg [7:0] payload [0:47];
endmodule

module testcase;

atm_cell_typ cell();

initial
begin: test_procedure

integer i;
cell.vci = 0;

for (i = 0; i < 48; i = i + 1) begin
cell.payload[i] = 8’hFF;

end
end
endmodule

The faked record
is not a real object.

Although Verilog can fake records, they remain fakes. The record is
not a single variable such as a register. Therefore, it cannot be
assigned as a single unit or aggregate, nor used as a single unit in an
expression. For example, Sample 4-28 attempts to compare the
content of two cells, assign them and use them as arguments. It
would produce a syntax error because the cells are instance names,
not variables nor valid expressions.

Writing Testbenches: Functional Verification of HDL Models 107

. . .

Behavioral Hardware Description Languages

Sample 4-28.
Verilog
records are not
objects

module testcase;

atm_cell_typ actual_cell();
atm_cell_typ expect_cell();
atm_cell_typ next_cell();

initial
begin: test_procedure

// Verilog records cannot be compared
if (actual_cell !== expect_cell) ...

// Nor assigned
expect_cell = next_cell;

// Nor passed through interfaces
receive_cell(actual_cell);

end
endmodule

Provide conver-
sion function to
and from an equiv-
alent vector.

You can work around the limitation of these fake records by using a
technique similar to the one built-in for the real numbers: conver-
sion functions between records and equivalent vectors. These func-
tions can be located in the record definition module and called
using a hierarchical name. The code Sample 4-29 shows how the
tobits and frombits conversion functions can be defined and used
for the ATM cell record.

Use a symbol to
predefine the size
of the equivalent
record.

One difficulty created by the workaround is knowing, as a user,
how big the bit vector representation of the record is. Should the
representation of the record change (e.g. a field is added), all wires
and registers declared to carry the equivalent bit vector representa-
tion would need to be modified.

The best solution is to define a symbol to hide the size of the corre-
sponding vector from the user as shown in Sample 4-30. This
method presents a disadvantage: the symbol must either be declared
in a file to be included using the `include directive, or the module
defining the record type must be compiled before any module mak-
ing use of it. The latter also requires that the `resetall directive not
be used.

108 Writing Testbenches: Functional Verification of HDL Models

. . .

. . .

. . .

. . .

Data Abstraction

Sample 4-29.
Conversion
functions for
Verilog
records for an
ATM cell

module atm_cell_typ;
reg [11:0] vpi;
reg [15:0] vci;

reg [7:0] payload [0:47];

reg [53*8:1] bits;

function [53*8:1] tobits;
input dummy;

begin
bits = {vpi, vci, ..., payload[47]};
tobits = bits;

end
endfunction

task frombits;
input [53*8:0] cell;

begin
bits = cell;
{vpi, vci, ..., payload[47]} = bits;

end
endtask
endmodule

module testcase;

atm_cell_typ actual_cell() ;
atm_cell_typ expect_cell();
atm_cell_typ next_cell();

initial
begin: test_procedure

// Comparing Verilog records
if (actual_cell.tobits(0) !==

expect_cell.tobits(0)) ...

// and assigned
expect_cell.frombits(next_cell.tobits(0));

//as well as passed through interfaces
receive_cell(actual_cell.bits);
actual_cell.frombits(actual_cell.bits);

end
endmodule

Writing Testbenches: Functional Verification of HDL Models 109

. . .

. . .

. . .

. . .

Behavioral Hardware Description Languages

Sample 4-30.
Hiding the
size of the
equivalent
vector

module atm_cell_typ;

‘define ATM_CELL_TYP [53*8:1]

reg [11:0] vpi;
reg [15:0] vci;

reg [7:0] payload [0:47];

reg ‘ATM_CELL_TYP bits;

function [53*8:1] tobits;

endfunction

task frombits;

endtask
endmodule

module testcase;

atm_cell_typ actual_cell() ;
reg ‘ATM_CELL_TYP actual;

initial
begin: test_procedure

// Receive the next ATM cell
receive_cel1(actual);
actual_cell.frombits(actual);

end
endmodule

Compiler symbols
provide an alterna-
tive implementa-
tion technique.

A different approach can be used if records are not nested. A single-
level record can be faked by using a vector composed of the concat-
enated fields, much like the equivalent bit vector of the record
implemented as an instantiated module. The fields are declared and
accessed using compiler symbols. The advantage of this technique
is that the records are true objects, and can thus be passed through
interfaces, or used in expressions. Sample 4-31 shows how a record
for an ATM cell would be defined and used using this technique.
Notice that, because of the linear structure of the vector, it is not
possible to use a memory for the payload data. Nor is it possible to
provide indexing into the payload using an expression.

110 Writing Testbenches: Functional Verification of HDL Models

. . .

. . .

. . .

. . .

Data Abstraction

In file "atm_cell_typ.vh":

‘define ATM_CELL_TYP [53*8:1]
‘define VPI [12: 1]
‘define VCI [28: 13]
‘define PT [31: 29]
‘define CLP [32: 32]
‘define HEC [40: 33]
‘define PAYLD_0 [48: 41]
‘define PAYLD_1 [56: 49]

‘define PAYLD_47 [424:417]

In file "testcase.v":

module testcase;

‘include "atm_cell_typ.vh"

reg ‘ATM_CELL_TYP actual_cell;
reg ‘ATM_CELL_TYP expect_cell;

initial
begin: test_procedure

// Receive the next ATM cell
receive_cell(actual_cell);
// Compare against expected one
if (actual_cell != expect_cell) ...

// Increment the VPI field
actual_cell‘VPI = actual_cell‘VPI + 1;

end
endmodule

Sample 4-31.
Alternative
implementa-
tion of Ver-
ilog record for
an ATM cell

You cannot declare
or use variant
records.

Neither VHDL nor Verilog support variant records. Variant records
provide different fields based on the content of another. For exam-
ple, ATM cells have two flavors: UNI and NNI. Both are 53 bytes
long and have a 5-byte header. They differ simply in the format of
their headers. Variant records would enable representing these two
different formats concurrently, using the same storage space.

Because variant records are not supported, a record structure that
can represent both header formats must contain two different decla-
rations. Variant records could also handle packets of varying
lengths, such as Ethernet or IP packets. Records meant to represent
variable-length packets must be declared to be large enough to han-

Writing Testbenches: Functional Verification of HDL Models 111

. . .

...

...

Behavioral Hardware Description Languages

dle the largest possible packet, resulting in wasted memory usage
and lower performance.

VHDL records
containing access
types have limita-
tions.

A variable-length record could be implemented in VHDL using an
access type for the variable-length fields. However, this would put
severe limitations on its usability as signals cannot be of a type con-
taining an access type. Only variables, which are local to a single
process, could make use of this variable-length record. Global
shared variables could be used to bypass this limitation on using
access types, but they are only available with VHDL-93. Not to
mention that using global variables is also a severe violation of
software engineering etiquette!

Multi-Dimensional Arrays

Single-dimensional arrays are useful data structures for represent-
ing linear information such as a fixed-length data sequences, look-
up tables, or memories. Two-dimensional arrays are used for planar
data such as graphics or video frames. Three-dimensional arrays are
not frequently used, but they could find an application in represent-
ing data for video compression applications such as MPEG. Arrays
with greater numbers of dimensions have rare applications, espe-
cially in hardware verification. This section shows how to imple-
ment multi-dimensional arrays in Verilog. It builds on the technique
presented in the previous section to demonstrate how to create
arrays of records.

Verilog has severe
limitations on
implementing
arrays.

VHDL provides excellent support for arrays with any number of
dimensions containing any scalar data type. Verilog, on the other
hand, presents a definite challenge and using an alternate language,
such as VHDL, e, or VERA, should be considered. However, if the
need for a two-dimensional array is for a limited portion of the ver-
ification infrastructure, it is probably not worth investing in learn-
ing a new language and developing a new environment for the sake
of a single data structure.

Verilog can easily
represent some
kinds of arrays.

Verilog can easily implement a one-dimensional array of bits using
a multi-bit reg. It can implement a one-dimensional array of either
vectors or integers using a memory. It could implement a two-
dimensional array of bits using a memory of vectors, where the
memory implements the first dimension, and the vectors in the
memory implement the second one.

112 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

Multi-dimen-
sional arrays can
be mapped onto a
single dimen-
sional structure.

However, Verilog cannot directly implement a two-dimensional
arrays of RGB values, where each RGB value is a record containing
three 8-bit fields (red, green and blue). Again, discipline and cre-
ativity can help circumvent the limitations of the language. It is
necessary to implement, in Verilog, what the compiler of a higher-
level language would do to implement a multi-dimensional array.

Remember that the memory of the underlying computer simulating
your testbench is linear: it goes from address 0 to hundreds of mil-
lions. A two-dimensional array has to be mapped onto this linear
structure. Figure 4-3 shows how a 4x4 two-dimensional array can
be mapped on a linear memory and Equation 2 shows how the loca-
tion of an array element in the linear memory can be computed. You
have to use a similar technique to map both dimensions of an array
onto the single dimension of a Verilog multi-bit register or a mem-
ory.

Use a Verilog
memory to imple-
ment the array

If a record is going to be part of a more complex data structure, it
has to be implemented using processor symbols, as shown in Sam-
ple 4-31. If you defined your RGB array using this technique, you
can then use a Verilog memory to represent your two-dimensional
array of RGB values: both dimensions are mapped to the memory,
while each of the memory elements is an RGB record. The partial
declaration for the memory is shown in Sample 4-32.

reg ‘RGB_TYP rgb_array [...];
Sample 4-32.
Partial decla-
ration for the
RGB array.

Reusability of the
array implementa-
tion becomes a
concern.

The main problem becomes: how large should the memory be? It is
not possible to know without knowing the dimensions of the array
beforehand. One solution would be is to hardcode the dimension of
the array being implemented, but that greatly limits the usefulness

Writing Testbenches: Functional Verification of HDL Models 113

Behavioral Hardware Description Languages

and reusability of the data structure. What if you need two different
array sizes in the same simulation? What about being able to use it
in a subsequent project? You want to minimize (hopefully elimi-
nate) the number of changes to code that has to be reused in a dif-
ferent context. The data structure implementation should be made
independent of the array dimensions.

Module encapsula-
tion is the pre-
ferred
implementation
method.

Two implementation avenues are available, identical to the alterna-
tives available for implementing records.

Implementing the array using a register instead of a memory is
another alternative. However, because Verilog does not allow
accessing a slice of a vector using expressions, as shown in Sample
4-33, looking up and assigning individual array elements would be
very inefficient. However, this implementation could be attractive
if it is necessary to pass the array often through many interfaces.

The first one is to encapsulate the array in a module. This is the
cleanest and most disciplined implementation technique.

The second is to use compiler symbols. However, since the
array is implemented as a Verilog memory, which cannot be
passed through interfaces nor treated as a single object, the latter
implementation technique offers no advantages over the module
encapsulation.

1.

2.

Sample 4-33.
Illegal vector
slice reference
in Verilog

function [IT_SIZE:1] lookup;
input [31: 0] x, y;

integer index;
begin

index = X_SIZE * y + x;
lookup = array[(index+1) * IT_SIZE - 1 :

index * IT_SIZE];
end
endfunction

Use parameters to
define the array
size.

Because the array is implemented using a module, you can use
parameters to define the dimensions of the array. The parameter
values can be different for each instance of that module, creating
different array sizes. The array module can be made more generic if
a parameter is also used to define the size of the memory content. A
function and a task can then be used to look-up and assign the array,
respectively. Sample 4-34 shows the implementation of a generic

114 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

two-dimensional array in Verilog. It would be a simple task to mod-
ify this implemention to implement a generic three-dimensional
array.

Sample 4-34.
Implementa-
tion of a
generic two-
dimensional
array

module ARRAY_2;

parameter X_SIZE = 2,
y_SIZE = 2,
IT_SIZE = 8;

reg [IT_SIZE:1] array [0:(X_SIZE*Y_SIZE)-1];

function [IT_SIZE:1] lookup;
input [31:0] x;
input [31:0] y;

begin
lookup = array[X_SIZE*y + x];

end
endfunction

task set;
input [31:0] x;
input [31:0] y;
input [IT_SIZE:1] it;

begin
array[X_SIZE*y + x] = it;

end
endtask

endmodule

The implementation of the two-dimensional array should also con-
tain a function and a task to convert the memory to and from a vec-
tor if the array needs to be passed through interfaces. The code in
Sample 4-35 shows an example of using the generic two-dimen-
sional array to create a 1024x768 array of RGB values, all initial-
ized to black.

Lists

This section shows how to implement dynamic one-dimension
arrays, otherwise known as lists. The use of VHDL’s dynamic
memory allocation and access types is demonstrated. A technique
similar to the one used for multi-dimensional arrays is used for Ver-
ilog. It concludes by the introduction of the operator concept.

Writing Testbenches: Functional Verification of HDL Models 115

Behavioral Hardware Description Languages

Sample 4-35.
Example use
of the generic
two-dimen-
sional array

module testcase;
‘include "rgb_typ.vh"
array_2 # (1024, 768, ‘RGB_SIZE) xvga();

initial
begin: test_procedure

integer x,y;
reg ‘RGB_TYP black;

black‘RED = 8’d0;
black‘GREEN = 8’d0;
black‘BLUE = 8’d0;

for (x = 0; x < 1024; x = x + 1) begin
for (y= 0; y < 768; y = y + 1) begin

xvga.set(x, y, black);
end;

end
end
endmodule

Lists use memory
more efficiently
than arrays

Lists are similar to one-dimensional arrays. They are used to repre-
sent linear information. While the elements of an array can be
accessed randomly, the elements in a list must be accessed sequen-
tially. If access time to various elements are your primary concern,
using an array is a more efficient implementation. On the other
hand, lists are more memory-efficient than arrays if not all locations
are used. Arrays must allocate memory for their entire size,
whereas lists can grow and shrink as the amount of information
they contain increases or decreases. If the memory usage of your
model is of concern, using lists may be the better approach.

Lists can be used
to model large
memories.

One of the best applications of a list is to model a large memory. In
system-level simulations, you may have to provide a model for a
large amount of memory. With the amount of memory available in
today’s systems, and the overhead associated with modeling them,
you may find that you do not have a computer with enough
resources to simulate your system-level model efficiently. For
example, if you model a memory with 32-bits of addressable bytes
using an array of std_logic_vector in VHDL, the amount of
memory consumed by this array alone exceeds 128Gb (9 logic val-
ues requiring 4 bits to represent each std_logic bit x 8 bits per
byte x 4G).

116 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

Only the sections
of the memory
currently in use
need to be mod-
eled.

In any simulation, it is unlikely that all memory locations are
required. Usually, the accesses are limited to a few regions within
the memory address space. A list can be used to model a very large
memory in a fashion similar to a cache memory. Only regions of the
memory that are currently in use are stored in the list. When a par-
ticular location is accessed, the list is searched for the region of
interest, allocating a new region as necessary.

Figure 4-4 shows a conceptual diagram of the various regions of
memory within a list structure. This type of partial memory model
is called sparse memory. The size of each individual region affects
the ultimate performance of the simulation. With a smaller size, the
memory is used more efficiently, but more regions are looked-up
before finding the one of interest. Using larger regions has the
opposite effect: more memory usage is traded-off for improved
look-up efficiency.

A linked list can
be used to model a
sparse memory.

A sparse memory model can be easily implemented using a list of
records, where each record represents a region of the memory. The
list can grow dynamically by allocating each region on demand,
and linking each element in the list to another using access types.
The list starts with a head access value that points to the first ele-
ment in the list. Figure 4-5 shows a sparse memory model imple-
mented using a linked list.

VHDL can imple-
ment a linked list.

The implementation of a sparse memory model using a linked list

in VHDL4 is shown in Sample 4-36. The memory regions are
implemented as records: a field for the memory region itself
(implemented as an array), and a field for the base address of that

Writing Testbenches: Functional Verification of HDL Models 117

Behavioral Hardware Description Languages

region. The record also contains a field to access the next region in
the linked list. Because access types and access values are limited
to variables, using such an implementation may be impractical if
the list needs to be passed through interfaces.

Sample 4-36.
Implementa-
tion of a
sparse mem-
ory using a
linked list in
VHDL

process
subtype byte is std_logic_vector(7 downto 0);
type region_typ is array(0 to 31) of byte;

type list_el_typ;
type list_el_ptr is access list_el_typ;
type list_el_typ is record

base_addr : natural;
region : region_typ;
next_region: list_el_ptr;

end record;

variable head: list_el_ptr;

-- See Sample 4-37 for continuation
begin

end process;

In Sample 4-37, a procedure is implemented to locate and return the
section of the memory containing any address of interest. It starts at
the head of the list, looking at every element of the list. If the end of
the list is reached without finding the required region, a new region
is allocated and prepended to the head of the list.

In Sample 4-38, a procedure is provided to read a single memory
location. After locating the proper section of memory, it simply
returns the content of the appropriate location in the section. There
is also a procedure used to assign to a memory location. It works
like the procedure to read a location, except that a new value is
assigned.

Lists can be imple-
mented using an
array.

It may be necessary to use an array to implement a list. As men-
tioned earlier, access types and values in VHDL cannot be used for
signals. If a list must be passed through the interface of an entity, a

4. For a more detailed description and alternative implementation, refer to
section 6.1 of “VHDL Answers to Frequently Asked Questions”, 2nd
edition by Ben Cohen (Kluwer Academic Publisher, ISBN 0-7923-
8115-7, 1998)

118 Writing Testbenches: Functional Verification of HDL Models

. . .

Data Abstraction

Sample 4-37.
Looking up a
sparse mem-
ory model in
VHDL

process
-- See Sample 4-36 for declarations

procedure get_region(addr: in natural;
here: out list_el_ptr)

is
variable element: list_el_ptr;

begin
element := head;
-- Have we reached the end of the list?
while (element /= null) loop

-- Is the address of interest in this
-- list element?
if (element.base_addr <= addr and

addr < element.base_addr +
element.region'length) then

here := element;
return;

end if;
element := element.next_region;

end loop;
element := new list_el_typ;
element.base_addr :=

addr / element.region'length;
element.next_region := head;
head := element;
here := element;

end get_region;

-- See Sample 4-38 for continuation
begin

end process;

different implementation strategy must be used. More importantly,
Verilog does not directly support dynamic memory allocation and
pointers or access values. There is a dynamic memory model PLI
package provided by Cadence in the distribution directory. You will
find it at:

$CDS_HOME/tools/verilog/examples/PLI/damem.

A sparse-memory
PLI package is
available.

This PLI package provides PLI routines that implement a sparse
memory model using hashed linked lists. However, if you wish to
use a list to model something other than a sparse memory (such as a
list of Ethernet packets to be applied to the design, or a list of
received video frames), you may want to implement them using

Writing Testbenches: Functional Verification of HDL Models 119

...

Behavioral Hardware Description Languages

Sample 4-38.
Reading and
writing a loca-
tion in a sparse
memory
model

process
-- See Sample 4-37 for declarations

procedure lookup(addr : in integer;
value: out byte) is

variable element: list_el_ptr;
begin

get_region(addr, element);
value := element.region(addr -

element.base_addr);
end lookup;

procedure set(addr: in integer;
value: in byte) is

variable element: list_el_ptr;
begin

get_region(addr, element);
element.region(addr - element.base_addr) :=

value;
end set;

variable val: byte;
begin

set(10000, "01011100");
lookup(1000, val);
assert val = "01011100";

end process;

pure Verilog. Alternatively, using the damem package as an inspira-
tion, you could create a PLI package. But implementing a data
structure with PLI reduces the portability of the models using it.

Using an array to implement a list has an inherent restriction com-
pared to a linked list implementation. Because an array has a fixed
length, a list implemented using such an array has a maximum
length equal to the array length. You have to provide an easy mean
of increasing the size of the array at compile-time to accommodate
simulations and testcases that require longer lists. In Sample 4-39,
you find an implementation of a generic list using an array. A paral-
lel array is used to store a flag indicating if the corresponding array
element is a valid list element or not. The packets are records
implemented using the compiler symbol techniques described ear-
lier in this chapter. The list is implemented as a module, just like the
multi-dimensional array. It is possible to have multiple instances of
this list.

120 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

Sample 4-39.
Implementing
a list using an
array in Ver-
ilog

module list;
parameter MAX_LEN = 100,

IT_SIZE = 1;

reg [1:IT_SIZE] list_data [0:MAX_LEN];
reg [0:MAX_LEN] is_valid;

// Start with an empty list
initial is_valid = 0;

// See Sample 4-40 for continuation
endmodule

Provide operators
for the data struc-
ture.

Lists are most useful when they come with a rich set of operators,
such as appending or prepending to a list, removing the element at
the head or tail of the list, finding out its length, or iterating over all
of its elements. These operators should be provided in the same
package as the data structure. The run-time efficiency of these oper-
ators is influenced by the storage policy of the list elements within
the array. If the list is packed, i.e., all list elements are located in
consecutive array locations at the beginning of the array, iterating
over the content of the list is very efficient, but inserting or deleting
elements in the middle of the list takes longer.

A sparse list, i.e., where list elements are separated by unoccupied
array locations, are very efficient when deleting or inserting new
elements, especially if the list is unordered. In Sample 4-40, there is
a set of functions implementing an iterator in a sparse list. They can
be used in far-loop statements to iterate over all of the elements of
the list, as illustrated in Sample 4-41. The same module would also
contain functions and tasks implementing the other operators, also
called using hierarchical names.

Files

External input files
complicate config-
uration manage-
ment.

Personally, I prefer to avoid using external input files for test-
benches. Configuration management of the testbench and the
design under verification is complex enough. Without good prac-
tices, it is very difficult to make sure that you are simulating the
right version of the correct model together with the proper imple-
mentation of the right testbench. If you must add to the mix making
sure you have the right version of input files, often generated by
scripts from some other format of some other files, configuration

Writing Testbenches: Functional Verification of HDL Models 121

Behavioral Hardware Description Languages

Sample 4-40.
Implementing
a list iterator
in Verilog

module list;
// See Sample 4-39 for declarations

integer iterator;
reg empty;

function [1:IT_SIZE] first;
input dummy;

begin
iterator = -1;
first = next(0);

end
endfunction

function [1:IT_SIZE] next;
input dummy;

begin: find_next
iterator = iterator + 1;
while (!is_valid[iterator] &&

iterator <= MAX_LEN) begin
iterator = iterator + 1;

end
empty = iterator > MAX_LEN;
next = list_data[iterator];

end
endfunction

endmodule

management grows exponentially in complexity. For example,
many use files to initialize Verilog memories, as shown in Sample
4-42.

Understanding the implementation of the testcase now requires
looking at two files and understanding their interaction. If the file
always contains the same data for the same testcase, it can be
replaced with an explicit initialization of the memory in the Verilog
code, as shown in Sample 4-43. Now, only a single file needs to be
managed and understood.

VHDL has a general-purpose, albeit very primitive, file input and
output capability. At the time this book was written, Verilog had a
very strong file output capability, but its file input features were
almost non-existent. A standard system task similar to C’s fscanf
routine is being proposed for inclusion in the next version of the
standard. For those of you who cannot wait, more information

VHDL has primi-
tive input/output
while Verilog as
strong output, but
poor input.

122 Writing Testbenches: Functional Verification of HDL Models

Data Abstraction

Sample 4-41.
Using a list
iterator in Ver-
ilog

module testcase;
‘include "packet.vh"

list #(32, ‘PACKET_SIZE) packet_list();

initial
begin: test_procedure

reg ‘PACKET_TYP packet;
integer last_seq;
// Receive packets
while (...) begin

packet_list.append(packet);
end
// Verify that packets were received in order
last_seq = -1;
for (packet = packet_list.first(0);

!packet_list.empty;
packet = packet_list.next(0)) begin

if (packet‘SEQ_ID >= last_seq) ...
last_seg = packet'SEQ_ID;

end
end
endmodule

Sample 4-42.
Initializing a
Verilog mem-
ory using an
external file.

module testcase;

reg [7:0] pattern [0:55];

initial $readmemh(pattern, "pattern.memh");

endmodule

Sample 4-43.
Explicitly ini-
tializing a Ver-
ilog memory

module testcase;

reg [7:0] pattern [0:55];

initial
begin

pattern[0] = 8’h00;
pattern[1] = 8’hFF;

pattern[55] = 8’hC0
end

endmodule

Writing Testbenches: Functional Verification of HDL Models 123

...

...

Behavioral Hardware Description Languages

about a public-domain implementation of a similar task using PLI
can be found in the resources section at:

http://janick.bergeron.com/wtb

The current version of Verilog can only read files of binary or hexa-
decimal values into a memory. If you want to provide high-level
data to Verilog via files, you have to “compile” it into low-level
numerical values, then interpret this low-level form back into high-
level data inside Verilog.

Verilog can only
read binary and
hexadecimal val-
ues.

If the external file is automatically generated from some other file,
a different approach can be used to circumvent Verilog’s limitation.
Instead of generating data, why not generate Verilog code? The
intermediate form is much easier to debug than an artificial numeri-
cal form coupled with translation and interpretation steps. The code
shown in Sample 4-43 could have been just as easily generated as
the data file used by Sample 4-42. The technique can be used with
VHDL as well, helping to circumvent the primitiveness of its file
input features.

Using external input files can save a lot of simulation time if you
use a compiled simulator such as NC- Verilog, VCS, or any VHDL
simulator. If you can modify your testcase by modifying external
input files. It is not necessary to recompile the model of the design
under verification nor the testbench. For large designs, this compi-
lation time can be significant, especially for a gate-level design
with SDF back-annotation.

External files can
eliminate recompi-
lation.

Files can program
bus-functional
models.

Programmable testbenches are architected around programmable
bus-functional models and checkers, and programmed via an exter-
nal input file. The “program” can be as simple as a sequence of data
patterns or as complex as a pseudo assembly language with
opcodes and operands interpreted by an engine implemented in
Verilog or VHDL.

Interfacing High-Level Data Types

It is very unlikely that high-level data types are directly usable by
any device that must be verified. Any complex data structure has to
be sent to or received from the design using a simpler protocol
implemented at the bit level, usually including synchronization,
framing, or handshaking signals. In Chapter 5, I show techniques

124 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

using bus-functional models for applying data to a design from
high-level data structures (and vice-versa on the output side).

THE HDL PARALLEL ENGINE

C and C++ lack
essential concepts
for hardware mod-
eling.

Why hasn’t C been used as a hardware description language instead
of creating Verilog and VHDL (and many other proprietary ones)?
Because C lacks three fundamental concepts necessary to model
hardware designs: connectivity, time, and concurrency.

Connectivity, Time, and Concurrency..

Connectivity is the ability of describing a design using simpler
blocks then connecting them together. Schematic capture tools are
perfect example of connectivity support

Time is the ability to represent how the internal state of a design
evolves over time. This concept is different from execution time
which is a simple measure of how long a program runs.

Concurrency is the ability to describe actions that occur at the same
time, independently of each other.

Given enough time and creativity, you could model these concepts
in a C program. However, these basic concepts would have to be
implemented over and over in a customized fashion for each
design. It is much more efficient to use a language where these con-
cepts are built-in

C and C++ could
be extended.

There have been many attempts to extend C or C++ to include some
or all of these concepts. We may see some extended versions of
C++ promoted as a verification language since it provides excellent
support for data abstraction, encapsulation and object-oriented
design. For example, the VERA verification language feels like a
hybrid between Verilog and C++ and the systemC initiative is an
open-source initiative to develop a C++-based design and verifica-
tion environment. More information on the systemC initiative can
be found in the resources section of:

http://janick.bergeron.com/wtb

Writing Testbenches: Functional Verification of HDL Models 125

Behavioral Hardware Description Languages

Connectivity, Time, and Concurrency in HDLs

Verilog and VHDL
implement these
concepts in differ-
ent ways.

The connectivity, time, and concurrency concepts are very impor-
tant to understand when learning to model using a hardware
description language. Each language implements them in a differ-
ent fashion, some easier to understand than the other.

For example, connectivity in Verilog is implemented by directly
instantiating modules within modules, and connecting the pins of
the modules to wires or registers. Understanding why registers can-
not be used in some circumstances requires understanding the con-
cept of concurrency. Concurrency is described in detail in the
following sections.

In VHDL, connectivity is implemented with entities, architectures,
components, and configurations. The mechanics of connectivity in
VHDL require a lot of statements and apparent duplication of infor-
mation and is often one of the most frustrating concept to learn in
VHDL.

Verilog imple-
ments time as unit-
less relative
values.

The concept of time is also implemented differently. Verilog uses a
unit-less time value. The time values from multiple modules are
correlated using a scale factor specified using the `timescale com-
piler directive. In VHDL, all time values are absolute, with their
units clearly stated.

VHDL and Verilog
differ most in their
implementation of
concurrency.

The implementation of concurrency is where VHDL and Verilog
differ the most. Although they both use an event-driven simulation
process, they differ in the granularity of their concurrency, and in
the timing and focus of assignments between concurrent constructs.
To write VHDL, it is necessary to understand the implementation of
this concept because of the restrictions concurrency imposes on the
use of the language. Verilog’s implementation puts very few restric-
tions on the use of the language. Verilog relies on the designer to
use concurrency appropriately. If you are limited to a certain coding
style, such as the synthesizeable subset, you can write functional
Verilog code without having to understand its implementation of
the concept of concurrency.

You write better
testbenches when
you understand
concurrency.

When writing testbenches, you are not confined to such coding
styles. It becomes necessary to understand how concurrency is
implemented and how concurrency affects the execution of the var-
ious components of the testbench.

126 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

Many testbenches are written with a severe lack of understanding
of this important concept. In the best case, the execution and overall
control structure of the testbench code is difficult to follow and
maintain. In the worst case, the testbench fails to execute properly
on a different simulator, on different versions of the same simulator,
or when using different command-line options. The understanding
of concurrency is often what separates the experienced designer
from the newcomers.

The Problems with Concurrency

There are two problems with concurrency. The first one is in
describing concurrent systems. The second is executing them.

Concurrent sys-
tems are difficult
to describe.

Since computers were created, computer scientists have tried to fig-
ure out a way to take advantage of the increased performance
offered by multi-processor machines. They are relatively easy to
build and many parallel architectures have been designed. How-
ever, they proved much more difficult to program. I do not know if
that difficulty originated with the mindset imposed by the early Von
Neumann architecture still used in today’s processors, or by an
innate limitation of our intellect.

Concurrent sys-
tems are described
using a hybrid
approach.

Human beings are adept at performing relatively complex tasks in
parallel. For example, you can drive in heavy traffic while carrying
a conversation with a passenger. But it seems that we are better at
describing a process or following instructions in a sequential man-
ner. For example, a recipe is always described using a sequence of
steps. The description of concurrent systems has evolved into a
hybrid approach. Individual processes running in parallel with each
other are themselves described using sequential instructions. For
example, a desert recipe includes instructions for the cake and the
icing as separate instructions that can be performed in parallel, but
the instructions themselves follow a sequential order.

VHDL and Verilog
models are concur-
rent processes
described sequen-
tially.

A similar principle is used in both VHDL and Verilog. In VHDL,
the concurrent processes are the process statements (all concurrent
statements are simple short-hand forms for processes). In Verilog,
the concurrent processes are the always, and initial blocks and the
continuous signal assignment statements. The exact behavior of
each instance of these constructs, in both languages, is described
individually using sequential statements.

Writing Testbenches: Functional Verification of HDL Models 127

Behavioral Hardware Description Languages

Every process in a VHDL model, and every always and initial
block in a Verilog model execute in parallel with each other, but
internally each executes sequentially. It is a common misconception
that Verilog’s initial blocks mean “initialize”. Unlike VHDL, there
is no initialization phase on Verilog. Everything is implicitly initial-
ized to ‘x’ and initial blocks are identical to always blocks except
that they execute only once. They are removed from the simulation
once the last statement in the initial block executes.

Concurrent sys-
tems must be exe-
cuted on single
processor
machines.

The second problem with concurrency is in executing it. If you look
inside the workstation that you use to simulate your VHDL or Ver-
ilog model, you will see that there is a single processor. Even if you
had access to a multi-processor machine, you can always write a
model with one more parallel constructs than you have processors
available. How do you execute a parallel description on a single
processor, which is itself a sequential machine?

Emulating Parallelism on a Sequential Processor

Multi -tasking
operating systems
are like simulators.

If you use a modern computer, you probably have a windows-based
graphical interface. During normal day-to-day use, you are very
likely to have several windows open at once, each of them running
a different application. On multi-user machines, there may be sev-
eral others running a similar environment on the same computer.
The applications running in all of these windows appear to work all
in parallel even though there is a single sequential processor to exe-
cute them. How is that possible? You probably answered time-shar-
ing. With time-sharing, each application uses the entire processor
for small portions of time. Each application has its turn according to
priority and activity. If the performance of the processor and operat-
ing system is high enough, the interruptions in the execution of a
program are below our threshold of detection: it appears as if each
program runs smoothly 100 percent of the time, in parallel with all
the others.

Simulators are
time-sharing
engines.

A VHDL or Verilog simulator works using the same principle. Each
process, or always and initial block has the simulation engine for
some portion of time, in turn, one at a time. Each appears to be exe-
cuting in parallel with the others when, in fact, they are each exe-
cuted sequentially, one after another. There is one important
difference in the time-sharing process of a simulator. Unlike a
multi-tasking operating system, it assumes that the various parallel

128 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

constructs cooperate to obtain fair access to the simulation
resources.

Simulators do not
have time slice
limits.

In an operating system, every process has a limit on the amount of
processor time it can have during each execution slice. Once that
limit is exhausted, the process is kicked out of the processor to be
replaced by another. There is no such limit in a simulator. Any pro-
cess keeps executing until it explicitly requests to be kicked out. It
is thus possible, in a simulation, to have a process grab the simula-
tion engine and never let it go. Ensuring that the parallel constructs
properly cooperate in a simulation is a large part of understanding
how concurrency is implemented.

Processes simu-
late until they exe-
cute a wait
statement.

In VHDL, a process simulates, and keeps simulating, until a wait
statement is executed. When the wait statement is executed, the
process is kicked out of the simulation engine and replaced by
another one. This process remains “out of circulation” until the con-
dition it is waiting for is realized. Verilog has a similar model:
always and initial blocks simulate and keep simulating until a @, #,
or a blocking assignment is executed. It also stops executing if a
wait statement whose condition is currently false is executed. If a
process or an always or initial block does not execute some form of
a wait statement, it remains in the simulation engine, locking all
other processes out.

The Simulation Cycle

Simulators execute
processes at the
current time, then
assign zero-delay
future values.

Figure 4-6 shows the VHDL and Verilog simulation cycle. For a
given timestep, the simulation engine executes each of the parallel
processes that must be executed. While executing, these processes
may perform assignments of future values using signal assignments
in VHDL or non-blocking assignments in Verilog. Once all pro-

Writing Testbenches: Functional Verification of HDL Models 129

Behavioral Hardware Description Languages

cesses are executed (i.e., they are all waiting for something), the
simulator assigns any future values scheduled for the current
timestep (i.e. zero-delay assignments). Processes sensitive to the
new values are then executed at the next timestep. This cycle con-
tinues until there are no more processes that must be executed at the
current timestep and there are no more zero-delay future values.

Simulators then
advance time or
starve.

If there is nothing left to be done at the current time, there must be
either:

A process waiting for a specific amount of time

A future value to be assigned after a non-zero delay.

1.

2.

If neither of the conditions are true, then the simulation stops on its
own, having reached a quiescent state and suffering from event
starvation. If one of the conditions is present, the simulator
advances time to the next time period where there is useful work to
be done. The simulator then assigns a future value, which causes
processes sensitive to the signals assigned these values to be exe-
cuted, or execute processes that were waiting.

Simulators do not
increment time
step by step.

Notice that the simulator does not increment time by a basic time
unit, timestep, or time increment. Regardless of the simulation reso-
lution, the simulation advances time as far as necessary, in a single
step, to the next point in time where there is useful work to do. Usu-
ally, that point in time is the delay in the clock generator. Increasing
the simulation time resolution should not significantly decrease the
simulation performance of a behavioral or RTL model.

Zero-delay cycles
are called delta
cycles.

The state of the simulation progresses along two axis: zero-time
and simulation time. As processes are simulated and new values are
assigned after zero delays, the state of the simulation evolves and
progresses, but time does not advance. Since time does not
advance, but the state of the simulation evolves, these zero-delay
cycles where processes are evaluated and zero-delay future values
are assigned, are called delta-cycles. The simulation progresses first
along the delta axis then along the real-time axis, as shown in
Figure 4-7. It is possible to write models that simulate entirely
along the delta axis. It is also possible to write models that are unin-
tentionally stuck in delta cycles, preventing time from advancing.

130 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

VHDL and Verilog
behave differently
after advancing
time.

In Figure 4-6, you will notice that the VHDL and Verilog simula-
tion cycles differ after time advances. In VHDL, future values are
assigned before the execution of processes. In Verilog processes are
executed first. Given the choice between executing a process or
assigning a new value at the exact same point in time in the future,

Sample 4-44.
Verilog model
apparently
identical to a
VHDL model

module testcase;

reg R;

initial
begin

R = 1’b0;
R <= #10 1’b1;
#10;
if (R !== 1'b1) $write("R is not 1\n");

end

endmodule

Sample 4-45.
VHDL appar-
ently identi-
cal to a Ver-
ilog model

entity case is
end case;

architecture test of case is
signal R: bit := ’0’;

begin
process
begin

R <= ’1’ after 10 ns;
wait for 10 ns;
assert R = ’1’

report "R is not 1"
severity NOTE;

wait;
end process;

end test;

Writing Testbenches: Functional Verification of HDL Models 131

Behavioral Hardware Description Languages

VHDL assigns the new value, while Verilog executes the process
first. This may produce different simulation results between appar-
ently identical VHDL and Verilog models, such as those shown in
Sample 4-44 and Sample 4-45. A message is displayed in the Ver-
ilog version, but not in the VHDL one. It may also affect the behav-
ior in a co-simulation environment when a new value crosses the
VHDL/Verilog boundary.

Parallel vs. Sequential

Use sequential
descriptions as
much as possible.

As explained earlier, humans can understand sequential descrip-
tions much easier than concurrent descriptions. Anything that is
described using a single sequence of statements is easier to under-
stand and maintain than the equivalent behavior described using
parallel constructs. The independence of their location and ordering
in the source file adds to the complexity of concurrent descriptions.
A concurrent description that would be relatively easy to under-
stand can be obfuscated by simply separating the pertinent concur-
rent statements with a few other unrelated concurrent constructs.
Therefore, functionality should be described using sequential con-
structs as much as possible.

A frequent misuse of sequential constructs in Verilog involves the
initialization of registers. For example, Sample 4-46 shows a clock
generator implemented using two concurrent constructs: an initial
and an always block.

Sample 4-46.
Misuse of con-
currency in
Verilog

reg clk;
initial clk = 1’b0;
always #50 clk = ~clk;

However, generating a clock is an inherently sequential process: it
starts at one value then toggles between one and zero at a constant
rate. A better description, using a single concurrent construct, is
shown in Sample 4-47.

Deterministic
sequential behav-
ior does not need
concurrency.

Another, less obvious, case of misused concurrency happens when
the behavior of the various processes is deterministically sequential
because of the data flow. For example, Sample 4-48 shows a VHDL
process labeled P2 that can execute only once the process labelled
P1 triggers the signal do. The P1 process then waits for the comple-

132 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

Sample 4-47.
Proper use of
concurrency in
Verilog

reg clk;
initial
begin

clk = 1’b0;
forever #50 clk = ~clk;

end

tion of process P2 before resuming its execution. The sequence of
execution cannot be other than the first half of P1, P2, then the sec-
ond half of P1.

Sample 4-48.
Deterministic
sequential exe-
cution in
VHDL

architecture test of bench is
signal do, done: boolean;

begin
P1: process
begin

-- First half of P1

do <= not do;
wait on done;
-- Second half of P1

end process P1;

P2: process
begin

wait on do;
-- All of P2

done <= not done;
end process P2 ,-

end test;

Sample 4-49.
Simplified
sequential exe-
cution in
VHDL

architecture test of bench is
begin

P1_2: process
begin

-- First half of P1

-- All of P2

-- Second half of P1

end process P1_2;
end test;

Writing Testbenches: Functional Verification of HDL Models 133

...

...

...

...

...

...

Behavioral Hardware Description Languages

The implementation in Sample 4-49 shows the equivalent function-
ality, implemented using a single process. Not only is the execution
flow easier to follow, but it does not require the control signals do
and done.

Fork/Join Statement

Control flow may
alternate between
sequential and
concurrent
regions.

The overall control flow for a testcase often involves a sequence of
sequential steps followed by concurrent ones. For example, testing
a configuration of a design may require configuring the device
through several consecutive reads and writes via the CPU interface,
then concurrently sending and receiving data. This process is then
repeated for another configuration. Figure 4-8 shows a control flow
diagram of such a control structure.

Implement using a
fork/join state-
ment in Verilog.

The easiest way to implement this type of control flow structure is
to use a fork/join statement in Verilog. This statement dynamically
creates concurrent processes within a region of sequential code.
The sequential execution resumes after the join statement, once all
the concurrent regions are complete. For example, the code in Sam-
ple 4-50 waits for the maximum of Ta, Tb, and Tc.

Sample 4-50.
Example of
using the fork/
join statement
in Verilog

initial
begin

fork
#(Ta);
#(Tb);
#(Tc);

join

end
endmodule

The fork/join state-
ment can be dis-
abled.

It is often necessary to have the fork/join statement continue the
sequential execution after only one of the concurrent regions has
completed. This can be accomplished by disabling the named fork/

134 Writing Testbenches: Functional Verification of HDL Models

...

...

The HDL Parallel Engine

join statement from within the execution branches. For example,
the code in Sample 4-51 detects and reports a time-out if the
posedge on gt is not received within Tmax time units.

Sample 4-51.
Example of
disabling the
fork/join state-
ment in Ver-
ilog

initial
begin

fork:wait_for_gt
@ (posedge gt) disable wait_£or_gt;
#(Tmax) begin

$write("Time-out on gt\n");
disable wait_for_gt;

end
join

end
endmodule

VHDL has no
fork/join construct.

Unfortunately, VHDL does not have a fork/join statement or its
equivalent. It is necessary to emulate this behavior using separate
processes and controlling their execution via another process. Emu-
lating the functionality of the fork is simple: an event on a single
signal can be used to trigger the execution of the concurrent
regions. Emulating the functionality of the join is more compli-
cated. You could use an event on a signal for each branch of the
join, but this would require a signal for every branch. Adding a new
branch would require adding a new signal and modifying the wait
statement implementing the join.

Sample 4-52.
Emulation of
the fork/join
statement in
VHDL

package fork_join is

type join_ctl_typ is (join, fork, run);
type branches_typ is

array(integer range <>) of join_ctl_typ;

function join_all(branches: branches_typ)
return join_ctl_typ;

function join_one(branches: branches_typ)
return join_ctl_typ;

subtype fork_join_all is join_all join_ctl_typ;
subtype fork_join_one is join_one join_ctl_typ;

end fork_join;

Writing Testbenches: Functional Verification of HDL Models 135

. . .

. . .

Behavioral Hardware Description Languages

Emulate the join
statement using a
resolution func-
tion.

Resolution functions provide a simpler mechanism for handling an
arbitrary number of branches. A different resolution function can be
used to implement a join-all or a join-one functionality. In a join-
all, all branches of the fork must complete for the join to complete.
In a join-one, any single branch, once completed, causes the join to
complete. Sample 4-52 and Sample 4-53 show the implementation
of the join resolutions functions, while the code in Sample 4-54
shows how to use it. My prayers to the VHDL gods for a fork/join
statement remain, to this day, unanswered.

Sample 4-53.
Implementa-
tion of the
fork/join emu-
lation in
VHDL

package body fork_join is

function join_all(branches: branches_typ)
return join_ctl_typ is

begin
for I in branches’range loop

if branches(i) = fork then
return fork;

end if;
if branches(i) = run then

return run;
end if;

end loop;
return join;

end join_all;

function join_one(branches: branches_typ)
return join_ctl_typ is

begin
for I in branches’range loop

if branches(i) = fork then
return fork;

end if;
if branches(i) = join then

return join;
end if;

end loop;
return run;

end join_one;

end fork_join;

136 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

Sample 4-54.
Using the
emulation of
the fork/join
statement in
VHDL

use work.fork_join.all;
architecture test of bench is

signal fk_jn1: fork_join_all;
begin

process
begin

-- Fork
fk_jn1 <= fork;
wait until fk_jn1 = fork;
fk_jn1 <= run;
-- Branch #0

fk_jn1 <= join;
-- Join
wait until fk_jn1 = join;

end process;

branch1: process
begin

fk_jn1 <= fork;
wait until fk_jn1 = fork;
fk_jn1 <= run;

fk_jn1 <= join;
wait;

end process branch1;

branch2: process
begin

fk_jn1 <= fork;
wait until fk_jn1 = fork;
fk_jn1 <= run;

fk_jn1 <= join;
wait;

end process branch2;
end test;

The Difference Between Driving and Assigning

Assignments write
a value to a mem-
ory location.

Regular programming languages provide variables that can contain
arbitrary values of the appropriate type. They are implemented as
simple memory locations. Assigning to these variables is the simple
process of storing a value into that memory location. VHDL vari-
ables and Verilog registers operate in the same way. When an
assignment is completed, whether blocking or non-blocking, the
newly assigned value overwrites any previous value in the memory

Writing Testbenches: Functional Verification of HDL Models 137

. . .

. . .

. . .

Behavioral Hardware Description Languages

location. Previous assignments have no effects on the final result.
Regular assignments behave like a multiplexer. A single value
from all of the potential contributors is somehow selected.

The last assign-
ment determines
the value.

For example, in Sample 4-55, the value of the register R goes from
‘x’ to 5 to 4 to 3 to 2 to 1, then finally to 0. Since R is a variable
shared by all three concurrent blocks, a single memory location
exists. Whatever value was assigned last, by a concurrent block, is
the value stored in the variable. This is where the name register
comes from for Verilog variables. Registers - or flip-flops - retain
whatever value was last loaded into them, without regard to the pre-
vious values or other concurrent sources.

Sample 4-55.
Assignments
to a shared
variable in
Verilog

module assignments;
integer R;

initial R <= #20 3;

initial
begin

R = 5;
R = #35 2;

end

initial
begin

R <= #100 1
#15 R = 4;
#220;
R = 0;

end

endmodule

Hardware descrip-
tion languages
need the concept
of a wire.

The variable is sufficient for ordinary sequential programming lan-
guages. When describing hardware, a construct that can describe
the behavior of a wire used to connect multiple devices together
must be provided. Figure 4-9 shows a wire, presumably part of a
data bus, connected to several devices. Each device, using a tristate
driver, can drive a value onto the wire. The final logic value on the

138 Writing Testbenches: Functional Verification of HDL Models

The HDL Parallel Engine

wire depends on all the individual values being driven, not just the
last one, like a variable.

Individual values
from connected
devices must be
continuously
driven onto the
wire.

To properly model connectivity via a wire, any value driven by a
device must be continuously driven onto that wire, in parallel with
the other driving values. The final value on that wire depends on all
of the continuously driven individual values.

For example, on a tristate wire, the individual driven values of ‘z’,
‘1’, ‘weak-0’ and ‘z’ would produce a final result of ‘1’. Figure 4-
10 shows the implementation of the wire driver in each language.

In Verilog, this continuous drive is implemented using a continuous
assignment while the final value is determined by the type of wire
being used: wire, wor, wand, or trireg.

In VHDL, the continuous drive is implemented in each process that
assigns a signal while the final value is determined by the user-
defined resolution function.

Each concurrent
construct has its
own, single driver.

Parallel drivers on a wire require concurrent constructs to describe
them. Many inexperienced engineers, when learning to code for
synthesis try to implement the design shown in Figure 4-11 using
the code shown in Sample 4-56. Unfortunately, since a single regis-
ter is used with variable assignments in sequential code, a multi-

Writing Testbenches: Functional Verification of HDL Models 139

Behavioral Hardware Description Languages

plexor is synthesized instead of the expected parallel drivers. The
proper solution requires three concurrent constructs, one for each
driver, and is shown in Sample 4-57.

Sample 4-56.
Implementa-
tion using a
multiplexer

module simple(A, B, C, SEL, O);
input A, B, C;
input [1:0] SEL;
output O;

reg O ;
always @ (A or B or C or SEL)
begin

case (SEL)
2’b00: O = 1’bz;
2’b01: O = A;
2’b10: O = B;
2’b11: O = C;
endcase

end
endmodule

Sample 4-57.
Implementa-
tion using
three tristate
drivers

module simple(A, B, C, SEL, O);
input A, B, C;
input [1:0] SEL;
output O;

assign O = (SEL == 2’b01) ? A : 1’bz;
assign O = (SEL == 2’b10) ? B : 1’bz;
assign O = (SEL == 2’b11) ? C : 1’bz;

endmodule

VERILOG PORTABILITY ISSUES

Two compliant
simulators can
produce different
results.

In my many years of consulting in design verification, I have yet to
see a single testbench that simulates with identical results on Ver-
ilog-XL and VCS. Half the time, these same testbenches can pro-
duce different results by using different command-line options! Yet,

140 Writing Testbenches: Functional Verification of HDL Models

Verilog Portability Issues

both Verilog simulators are fully compliant with the IEEE standard.
Sometimes, the problem lies with the standard: many implementa-
tion details were left unspecified or existing discrepancies between
simulators were also declared “unspecified”. The other and bigger
problem lies with the authors and their lack of understanding of
concurrency and how race conditions are created.

The problem of unspecified behavior or race conditions is conve-
niently eliminated when limiting yourself to writing synthesizeable
code. But once you start using all the features of the language, you
may find yourself with code that is not portable across different
simulators. Verilog appears easy to learn because it produces the
expected response rather quickly. Making sure that the results are
reproducible under different conditions is another matter. Learning
the idiosyncrasies of the language are what takes time and differen-
tiates an experienced modeler from a new one.

Shared variables in
VHDL can create
race conditions.

VHDL was designed to make race conditions impossible to imple-
ment. However, with the introduction of shared variables in the
1993 version of the standard, race conditions are now just as easily
introduced in VHDL as in Verilog. If you use shared variables in
VHDL, pay close attention to the race conditions described below.

Read/Write Race Conditions

A read/write race condition happens when two concurrent blocks
attempt to read and write the same register in the same timestep. If
you look at the code in Sample 4-58, you will notice that the first
always block assigns the register count while the second one dis-
plays it. But both blocks execute at the rising edge of the clock.

The execution
order determines
the final result.

If you refer to Figure 4-6 and the section titled “Emulating Parallel-
ism on a Sequential Processor” on page 128, you will see that both
blocks are executed one after another, during the same timestep.
The order in which the blocks are executed is not deterministic.
Let’s assume that the current value of count is 10. If the first block
is executed first, the value of count is updated to 11. When the sec-
ond block is executed, the value 11 is displayed. However, if the
second block executes first, the value of 10 is displayed, the value
of count being incremented only when the first block executes later.

Writing Testbenches: Functional Verification of HDL Models 141

Behavioral Hardware Description Languages

Sample 4-58.
Example of a
read/write race
condition

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin

count = count + 1;
end

always @ (posedge clk)
begin

$write("Count is equal to %0d\n", count);
end

endmodule

Some read/write
race conditions
can be solved by
using non-block-
ing assignments.

This type of race condition can be easily solved by using a non-
blocking assignment, such as shown in Sample 4-59. Referring
again to Figure 4-6: when the first block executes, the non-blocking
assignment schedules the new value of 11, with a delay of zero, to
the next timestep. When the second block executes, the value of
count is still 10. The new value is assigned to count only when all
blocks executing at this timestep are executed, creating a delta
cycle.

Sample 4-59.
Avoiding a
read/write race
condition

module rw_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin

count <= count + 1;
end

always @ (posedge clk)
begin

$write(“Count is equal to %0d\n", count);
end

endmodule

142 Writing Testbenches: Functional Verification of HDL Models

Verilog Portability Issues

A more insidious read/write race condition can occur between
always or initial blocks and continuous assignments. Examine the
code in Sample 4-60 closely. What value of out will be displayed?

Sample 4-60.
A Verilog rid-
dle

module rw_race;

wire [7:0] out;
assign out = count + 1;

integer count;
initial
begin

count = 0;
$write("Out = %b\n", out);

end

endmodule

The answer is
“xxxxxxxx” or
“00000001”.

The answer depends on the simulator and the command line you are
using. Without using any command-line options, Verilog-XL says
that out is “xxxxxxxx”. VCS says that out is “00000001”. Why the
difference of opinion?

Verilog-XL does
not interrupt
blocks to execute
continuous assign-
ments.

The difference comes from their interpretation of the simulation
cycle. When the Initial block assigns a new value to count, Verilog-
XL schedules the execution of the continuous assignment for the
next timestep, since it is sensitive to count. The execution of the ini-
tial block is not interrupted and the value of out displayed is the one
it had after initialization, since the continuous assignment has not
yet been executed.

VCS does. VCS , on the other hand, executes the continuous assignment as
soon as count is assigned in the initial block. The execution of the
initial block is interrupted after the assignment to count while the
continuous assignment is executed. The execution of the initial
block resumes immediately afterward. The immediate propagation
of events through continuous assignments is one of the techniques
VCS implementers have used to speed-up simulation, unfortunately
at the price of incompatibility with Verilog-XL.

This type of race
condition cannot
be easily avoided.

Unfortunately, this type of error condition is not as easy to avoid or
eliminate as the one between two blocks. When writing behavioral
code, you must be careful about the timing between assignments to
registers in the right-hand side of a continuous assignment, and

Writing Testbenches: Functional Verification of HDL Models 143

Behavioral Hardware Description Languages

reading the wire driven by it. To make matters worse, the race con-
dition may involve non-zero delays as well as multiple continuous
assignment statements, such as in Sample 4-61. A read/write race
condition occurs if the delay between the time the right-hand side
of a continuous assignment is updated, and the time any wire on the
left-hand side is read, is equal to the propagation delay of all inter-
vening continuous assignments. Figure 4-12 illustrates the timing
of these race conditions.

module rw_race;

wire [7:0] out, tmp;
assign #1 out = tmp - 1;
assign #3 tmp = count + 1;

integer count;
initial
begin

count = 0;
#4;
// "out" will be 0 or x’s.
$write("Out = %b\n", out);

end

endmodule

Sample 4-61.
Another read/
write race con-
dition

Write/Write Race Conditions

A write/write race condition occurs when two always or initial
blocks write to the same register at the same timestep. If you look at
the code in Sample 4-62, you will notice that both always blocks
assign the register count and both blocks execute at the rising edge
of the clock.

The execution
order determines
the final result.

If you refer one more time to Figure 4-6 and the section titled
“Emulating Parallelism on a Sequential Processor” on page 128,
you will see that both blocks are executed one after another, during
the same timestep. Again, the order in which the blocks execute is

144 Writing Testbenches: Functional Verification of HDL Models

Verilog Portability Issues

Sample 4-62.
Example of a
write/write
race condition

module ww_race(clk);
input clk;

integer count;

always @ (posedge clk)
begin

count = count + 1;
end

always @ (posedge clk)
begin

count = count / 2;
end

endmodule

not deterministic. Let’s assume that the current value of count is 10.
If the first block is executed first, the value of count is updated to
11. When the second block is executed, the value of count is
updated to 5. However, if the second block executes first, the value
of count is updated to 5, then incremented to 6 when the first block
executes later.

module ww_race(clk) ;
input clk;

integer count;

always @ (posedge clk)
begin

count <= count + 1;
end

always @ (posedge clk)
begin

count <= count / 2;
end

endmodule

Sample 4-63.
Another exam-
ple of a write/
write race con-
dition

Non-blocking
assignments do not
solve the problem.

You might be tempted to use the same solution to eliminate the race
condition as was used to eliminate the read/write race condition, as
shown in Sample 4-63. Using non-blocking assignments simply
moves the write/write race condition from the register assignment
to the scheduling of the future value. If the first block executes first,

Writing Testbenches: Functional Verification of HDL Models 145

Behavioral Hardware Description Languages

the future value 11 is scheduled for the next timestep. When the
second block executes, the future value 5 is also scheduled for the
next timestep, overwriting the previously scheduled value of 11. If
the blocks execute in the opposite sequence, the scheduled value of
11 overwrites the previously scheduled value of 5.

Pop quiz! Why can’t you have a write/write race condition on a wire?5

Initialization Races

There is no initial-
ization phase in
Verilog.

The most frequent race conditions can be found at the beginning of
the simulation, when all blocks are executed for the first time.
Unlike VHDL, Verilog has no initialization phase. Everything is
initialized to ‘x’, then the simulation starts normally. It is a common
misconception that initial blocks are used to initialize variables. Ini-
tial blocks are identical to always blocks, except that they execute
only once, whereas always blocks execute forever, as if they were
stuck in an infinite loop.

Initial blocks are
not executed first.

When the simulation is started, the initial and always blocks are
executed one after another, in any order. The initial blocks are not
executed first - although doing so would not be illegal and some
simulators, such as Silos III, do just that. Most simulators, for no
other reason than to be compatible with Verilog-XL and legacy code
containing race conditions, first execute blocks in the same order as
they are specified in the file. But subsequent execution order is not
so deterministic.

When simulating the code in Sample 4-64 using an XL-compliant
simulator, the first always block would be executed and interrupted
immediately, waiting for the rising edge of the clock. The initial
block is executed next, assigning the new value of ‘1’ to the register
named clk, which was previously initialized to ‘x’. A transition
from ‘x’ to ‘1’ being considered a rising edge, the first always block
sees the event and is scheduled to be executed again at the next
timestep. However, since the last always block was not yet exe-
cuted, and thus is not waiting for the rising edge of the clock, it
does not see this edge. When the last block is finally executed, it is

5. Because wires are driven, not assigned. The value from each parallel
construct would contribute to the final logic value on the wire, without
overwriting the other.

146 Writing Testbenches: Functional Verification of HDL Models

Verilog Portability Issues

also immediately suspended, waiting for the next rising edge on clk.
An XL-compliant simulator would therefore execute the body of
the first always block, but not the second. However, that is not a
requirement. If a simulator chooses to execute the initial block first,
the body of neither block would execute at time 0.

module init_race;
reg clk;

always @ (posedge clk)
begin

$write("Block #1 at %t\n", $time);
end

initial clk = 1’bl;

always @ (posedge clk)
begin

$write("Block #3 at %t\n", $time);
end

endmodule

Sample 4-64.
Race condition
at simulation
startup

Guidelines for Avoiding Race Conditions

Race conditions can be avoided if you follow strict coding guide-
lines, effectively restricting the usage of Verilog to what is automat-
ically enforced by VHDL.

If a register is declared outside of the always or initial block,
assign to it using a non-blocking assignment. Reserve the block-
ing assignment for registers local to the block.

Assign to a register from a single always or initial block.

Use continuous assignments to drive inout pins only. Do not use
them to model internal combinatorial functions. Prefer sequen-
tial code instead.

Do not assign any value at time 0.

1.

2.

3.

4.

Events from Overwritten Scheduled Values

If a scheduled value is overwritten by another scheduled value, can
the original value cause an event? The answer to that question is

Writing Testbenches: Functional Verification of HDL Models 147

Behavioral Hardware Description Languages

left undefined by the Verilog standard. If you look at the code in
Sample 4-65, will anything be displayed at time 10?

Sample 4-65.
Overwriting
scheduled val-
ues in Verilog

module events;

reg stobe;

always @ (strobe)
begin

$write("Stobe is %b\n", strobe);
end

initial
begin

strobe = 1’b0;
strobe <= #10 1’bl;
strobe <= #10 1’b0;

end

endmodule

Overwriting a
scheduled value
may generate an
event.

Figure 4-13 shows the queue of scheduled future values for register
strobe just before the last statement of the initial block is about to
execute. After executing that last statement, and scheduling the new
value of ‘0’ after 10 time units in the future, what happens to the
previously scheduled value of ‘1’? Is it removed? Is it left there? If
so, which value will be assigned to strobe 10 time units from now?
Only ‘0’ (and thus not generating an event on strobe) or both in
zero-time (and generating an event)? The answer to this question is
simulator dependent. Avoid overwriting previously scheduled val-
ues using non-blocking assignments.

Disabled Scheduled Values

Disable state-
ments can be used
to control loops.

The disable statement is great for modeling reset conditions (see
“Modeling Reset” on page 276 for more details) or loop control to
emulate the behavior of VHDL’s next and exit statements. The code

148 Writing Testbenches: Functional Verification of HDL Models

Verilog Portability Issues

in Sample 4-66 shows how a loop can be controlled using the dis-
able statement.

module loop_control;

initial
begin

begin: exit_label
while (...) begin: next_label

// Force a new iteration
if (...) disable next_label;

// Break out of the loop
if (...) disable exit_label;

end // next_label
end // exit_label

end

endmodule

Sample 4-66.
Loop control
using the dis-
able state-
ment in Ver-
ilog

Sample 4-67.
Non-blocking
assignments
potentially
affected by a
disable state-
ment

module cpuif(...);

always
begin: if_logic

data <= #(Ta) read_val;
dtack <= #(Tack) 1’bl;
@ (negedge ale);
data <= #(Thold) 32’bz;
dtack <= #(Thold) 1’b0;

end

always wait (reset == 1’bl)
begin

disable if_logic;
wait (reset != 1’bl);

end
endmodule

Writing Testbenches: Functional Verification of HDL Models 149

. . .

...

...

...

...

...

...

Behavioral Hardware Description Languages

Non-blocking
assignment values
may be affected by
the disable state-
ment.

The Verilog standard does not specify what happens to still-pending
values that were scheduled using a non-blocking assignment within
a block that is disabled. Consider the code in Sample 4-67. When a
reset condition is detected, the always block modeling the CPU
interface is disabled to restart it from the beginning. What should
happen to the various values assigned to the CPU interface signals
data and dtack using non-blocking assignments, but that may not
have been assigned to the registers yet? Depending on the simulator
you are using, these values may be removed from the scheduled
value queue and never make it to the intended registers, or they may
remain unaffected by the disable statement. Avoid disabling a block
where non-blocking assignments are performed.

Output Arguments on Disabled Tasks

Output values may
not make it out of
disabled tasks.

Another area where the behavior of Verilog is left unspecified is the
value of output arguments in disabled tasks. Look at the code in
Sample 4-68. The read task has an output argument returning the
value that was read. Within the task, a disable statement is used to
abort its execution at the end of the read cycle. Because the entire
task was disabled, whether the value of rdat is copied out into the
register actual used to invoke the task is not specified in the Verilog
standard.

Sample 4-68.
Unspecified
behavior of
disabled tasks

task read;
input [7:0] radd;
output [7:0] rdat;

begin

if (valid) begin
rdat = data;
disable read;

end

end
endtask

initial
begin: test_procedure

reg [7:0] actual;

read(8’hF0, actual);

end

150 Writing Testbenches: Functional Verification of HDL Models

...

...

...

Verilog Portability Issues

Disable the inner
block instead of
the task.

In some simulators, the value of actual is updated with the value of
rdat, effectively completing the read cycle. In some others, the
value of actual remains unchanged, leaving the read cycle incom-
plete. This unspecified behavior can be easily avoided by disabling
the internal begin/end block inside the task instead of the task itself,
as shown in Sample 4-69.

Sample 4-69.
Avoiding
unspecified
behavior of
disabled tasks

task read;
input [7:0] radd;
output [7:0] rdat;

begin: read_cycle

if (valid) begin
rdat = data;
disable read_cycle;

end

end
endtask

Non-Reentrant Tasks

This is not an
unspecified behav-
ior.

Non-reentrant tasks are not really an unspecified behavior in Ver-
ilog. All simulators have non-reentrant tasks because every declara-
tion in a Verilog model is static. No declaration is dynamically
allocated upon invocation of a subprogram or entry into a block of
code. I decided to include it in this section because it is a relatively
common source of problems in Verilog models.

The same memory
space is used for
all invocations of a
task.

When you declare a task or a function, the memory space for its
arguments and all other locally declared registers is allocated at
compile time. There is a single location for the subprogram. The
memory is not allocated at runtime each time the task or function is
invoked. Every time a subprogram is invoked, the same memory
space is used. This does not cause problems in functions or in tasks
that do not include @, #, or wait statements. The local data space is
used in a single invocation. The memory space is no longer in use
by the time a second invocation is made. However, if a task con-
tains delay control statements, it may still be active when a second
invocation is made.

Writing Testbenches: Functional Verification of HDL Models 151

...

...

Behavioral Hardware Description Languages

A second invoca-
tion clobbers the
data space of an
active prior invo-
cation.

Examine the code in Sample 4-70. The task named write contains
delay control statements and is invoked from two different initial
blocks. In Figure 4-14(a), the content of the arguments, local to the
task, is shown after the invocation from the first initial block. While
this first invocation is waiting, the second initial block is executed
and invokes the write task again, setting its local arguments to the
values shown in Figure 4-14(b). When the first invocation resumes,
it continues its execution, using the arguments provided by the sec-
ond invocation: its data space was overwritten. It goes on to write
the value 8’h34 at address 8’h5A.

Sample 4-70.
Non-reentrant
task

task write;
input [7:0] wadd;
input [7:0] wdat;

begin
ad_dt <= wadd;
ale <= 1’bl;
rw <= 1’bl;
@ (posedge rdy) ;
ad_dt <= wdat;
ale <= 1’b0;
@ (negedge rdy);

end
endtask

initial write(8’h5A, 8’h00);
initial write(8’hAD, 8’h34);

Concurrent task
activations may
not be so obvious.

The concurrent invocation of the same task in Sample 4-70 is pretty
obvious. But most of the time, the conditions where a task is acti-
vated more than once are much more obscure. In a large verifica-
tion environment, with numerous tasks invoked under a complex
control structure, it is very easy to concurrently activate a task and
corrupt an entire testcase without you, or Verilog, being aware of it.

Use a semaphore
to detect concur-
rent task activa-
tion.

The best approach to avoid this fatal condition is to use a sema-
phore to detect concurrent activation, as shown in Sample 4-71.
The in_use register indicates whether or not the task is currently
activated. If the task is invoked while the in_use register is set to

152 Writing Testbenches: Functional Verification of HDL Models

Summary

‘1’, a concurrent invocation of the task is detected and the simula-
tion is terminated. Since the data space of the task was already cor-
rupted, there is no possibility of recovering from this error.
Terminating the simulation is the only option. The problem must be
fixed by retiming the access to the task to ensure that no concurrent
invocation takes place.

task write;
input [7:0] wadd;
input [7:0] wdat;

reg in_use;
begin

if (in_use === 1’b1) $stop;
in_use = 1’b1;

ad_dt <= wadd;
ale <= 1’b1;
rw <= 1’b1;
@ (posedge rdy);
ad_dt <= wdat;
ale <= 1’b0;
@ (negedge rdy);

in_use = 1’b0;
end
endtask

Sample 4-71.
Guarding non-
reentrant task
using a sema-
phore

Invest in guarding
tasks with delay
control statements.

Personally, I put a guard around any task I write that contains delay
control statements. This lets my model tell me immediately if I mis-
used it. I can immediately fix the problem, without having to diag-
nose a testbench failure back to a concurrent task activation. The
time invested in adding the simple semaphore is well worth it. If the
task I write is to be used by others, the message produced by the
concurrent activation detection specifically states that the error is
not in my task code, but in their use of it. This has saved me many
technical support calls.

SUMMARY

This chapter first presented the difference in approaching a synthe-
sizable model compared to a behavioral model. Behavioral model-
ling requires a greater degree of discipline because of the greater

Writing Testbenches: Functional Verification of HDL Models 153

Behavioral Hardware Description Languages

freedom. Powerful encapsulation techniques allow a behavioral
model to be structured to minimize maintenance. High-level data
abstractions simplify the writing of a model by creating data types
that are more natural to work with for a given transformation func-
tion.

This chapter also described how VHDL and Verilog are unique
from traditional programming languages and how they are simu-
lated. The simulation process introduces some peculiarities that a
good behavioral modeler must be aware of. Some of these peculiar-
ities can make Verilog models non-portables and have been
described in details.

154 Writing Testbenches: Functional Verification of HDL Models

CHAPTER 5 STIMULUS AND RESPONSE

The purpose of writing testbenches is to apply stimulus signals to a
design and observe the response. That response must then be com-
pared against the expected behavior.

This chapter
shows how to
apply stimulus
and observe
response.

The next chapter
shows how to
structure a test-
bench.

In this chapter, I show how to generate the stimulus signals. The
greatest challenge with stimulus is making sure they are an accurate
representation of the environment, not just a simple case. In this
chapter I also show how to observe response, and more importantly,
how to compare it against expected values. The final part of this
chapter covers techniques for communicating the predicted the out-
put to the monitors.

In the next chapter, I show how to best structure the stimulus gener-
ators and response monitors and the testcases that use them to mini-
mize maintenance, and increase reusability across testbenches. If
you prefer a top-down perspective, I recommend you start with the
next chapter then come back to this one.

SIMPLE STIMULUS

In this section, I explain how to generate deterministic waveforms.
Various techniques are developed to best generate stimulus signals.
I show how synchronized waveforms can be properly generated
and how to avoid underconstraining stimulus. I also demonstrate
how to encapsulate and package signal generation operations using
bus-functional models.

155Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Generating stimulus is the process of providing input signals to the
design under verification as shown in Figure 5-1. From the perspec-
tive of the stimulus generator, every input of the design is an output
of the generator.

Generating a Simple Waveform

Clock signals are
simple signals, but
must be generated
with care.

Because a clock signal has a very simple repetitive pattern, it is one
of the first and most fundamental signals to generate. It is also the
most critical signal to generate accurately. Many other signals use
the clock signal to synchronize themselves.

The behavioral code to generate a 50 percent duty-cycle 100MHz
clock signal is shown in Sample 5-1. To produce a more robust
clock generator, use explicit assignments of values ‘0’ and ‘1’.
Using a statement like “clk = ~clk” would depend on the
proper initialization of the clock signal to a value different than the
default values of 1'bx or 'U'. Assigning explicit values also provides
better control over the initial phase of the clock; you control
whether the clock is starting high or low.

Sample 5-1.
Generating a
50% duty-
cycle clock

reg clk;
parameter cycle = 10; // 100MHz clock
always
begin

#(cycle/2) ;
clk = 1’b0;
#(cycle/2) ;
clk = 1’b1;

end

Any deterministic
waveform is easy
to generate.

Waveforms with deterministic edge-to-edge relationships with an
easily identifiable period are also easy to generate. It is a simple
process of generating each edge in sequence, at the appropriate
time. For example, Figure 5-2 outlines an apparently complex

156 Writing Testbenches: Functional Verification of HDL Models

Simple Stimulus

waveform. However, Sample 5-2 shows that it is simple to gener-
ate.

Sample 5-2.
Generating a
deterministic
waveform

process
begin

S < = ’0’ ; wait for 20 ns;
S <= ’1’; wait for 10 ns;
S <= ’0’; wait for 10 ns;
S <= ’1’; wait for 20 ns;
S <= ’0’ ; wait for 50 ns;
S <= ’1’; wait for 10 ns;
S <= ’0’ ; wait for 20 ns;
S <= ’1’; wait for 10 ns;
S <= ’0’ ; wait for 20 ns;
S <= ’1’; wait for 40 ns;
S <= ’0’ ; wait for 20 ns;

...end process;

The Verilog time-
scale may affect
the timing of
edges.

When generating waveforms in Verilog, you must select the appro-
priate timescale and precision to properly place the edges at the cor-
rect offset in time. When using an expression, such as “cycle/2”,
to compute delays, you must make sure that integer operations do
not truncate a fractional part.

For example, the clock generated in Sample 5-3 produces a period
of 14 ns because of truncation. If the precision is not sufficient, the
delay values are rounded up or down, creating jitter on the edge
location. For example, the clock generated in Sample 5-4 produces
a period of 16 ns because of rounding. Only the signal generated in
Sample 5-5 produces a 50 percent duty-cycle clock signal with a
precise 15 ns period because the timescale offers the necessary pre-
cision for a 7.5 ns half-period.

Writing Testbenches: Functional Verification of HDL Models 157

...

Stimulus and Response

Sample 5-3.
Truncation
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;

reg clk;
parameter cycle = 15;
always
begin

#(cycle/2); // Integer division
clk = 1’b0;
#(cycle/2); // Integer division
clk = 1’b1;

end
endmodule

Sample 5-4.
Rounding
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;

reg clk;
parameter cycle = 15;
always
begin

#(cycle/2.0); // Real division
clk = 1’b0;
#(cycle/2.0); // Real division
clk = 1’b1;

end
endmodule

Sample 5-5.
Proper preci-
sion in stimu-
lus generation

‘timescale 1ns/100ps
module testbench;

reg clk;
parameter cycle = 15;
always
begin

#(cycle/2.0);
clk = 1’b0;
#(cycle/2.0);
clk = 1’b1;

end
endmodule

158 Writing Testbenches: Functional Verification of HDL Models

...

...

Simple Stimulus

Generating a Complex Waveform

Avoid generating
only a subset of
possible complex
waveforms.

A more complex waveform, with variations in the edge-to-edge
timing relationships, requires more effort to model properly. Care
must be taken not to overconstrain the waveform generation or to
limit it to a subset of its possible variations. For example, if you
generate the waveform illustrated in Figure 5-3 using the code in
Sample 5-6, you generate only one of the many possible waveforms
that meet the specification.

Sample 5-6.
Improperly
generating a
complex
waveform

process
begin

S < = ’0’; wait for (5 ns + 7 ns) / 2;
S <= ’1’; wait for (3 ns + 5 ns) / 2;

end process;

Use a random
number generator
to model uncer-
tainty.

To properly generate the complex waveform as specified, it is nec-
essary to model the uncertainty of the edge locations within the
minimum and maximum delay range. This can be easily accom-
plished by randomly generating a delay within the valid range. Ver-
ilog has a built-in system task to generate 32-bit random values
called $random. VHDL does not have a built-in random function,
but public-domain packages of varying complexity are available.1

The code in Sample 5-7 properly generates a non-deterministic
complex waveform.

Sample 5-7.
Properly gen-
erating a com-
plex waveform

process
begin

S <= ’0’ ;
wait for 5 ns + 2 ns * rnd_pkg.random;
S <= ’1’ ;
wait for 3 ns + 2 ns * rnd_pkg.random;

end process;

1. References to random number generation and linear-feedback shift reg-
ister packages can be found in the resources section of:

http://janick.bergeron.com/wtb

Writing Testbenches: Functional Verification of HDL Models 159

Stimulus and Response

A linear random
distribution may
not yield enough
interesting values.

To generate waveforms that are likely to stress the design under
verification, it may be necessary to make sure that there are many
instances of absolute minimum and absolute maximum values.
With the linear random distribution produced by common random
number generators, this is almost impossible to guarantee. You
have to modify the waveform generator to issue more edges at the
extremes of the valid range than would otherwise be produced by a
purely linear random delay generation. In Sample 5-8, a function is
used to skew the random distribution with 30 percent minimum
value, 30 percent maximum value, and 40 percent random linear
distribution within the valid range.

Sample 5-8.
Skewing the
linear random
distribution

process
function skewed_dist return real is

variable distribute: real;
begin

distribute := rnd_pkg.random;
if distribute < 0.3 then

return 0.0;
elsif distribute < 0.6 then

return 1.0;
else

return rnd_pkg.random;
end if;

end skewed_dist;
begin

S <= ’0 ’ ;
wait for 5 ns + 2 ns * skewed_dist;
S < = ’1’;
wait for 3 ns + 2 ns * skewed_dist;

end process;

Generating Synchronized Waveforms

Most waveforms
are not indepen-
dent.

Stimuli for a design are never composed of a single signal. Multiple
signals must be properly generated with respect to each other to
properly stimulate the design under verification. When generating
interrelated waveforms, you must be careful not to create race con-
ditions and to properly align edges both in real time and in delta
time.

Synchronized
waveforms must
be properly mod-
eled.

The first signal to be generated after the clock signal is the hard-
ware reset signal. These two signals must be properly synchronized
to correctly reset the design. The generation of the reset signal
should also reflect its synchronization with the clock signal. For

160 Writing Testbenches: Functional Verification of HDL Models

Simple Stimulus

example, consider the specification for a reset signal shown in
Figure 5-4. The code in Sample 5-9 shows how such a waveform is
frequently generated.

Sample 5-9.
Improperly
generating a
synchronized
waveform

always
begin

#50 clk = 1'b0;
#50 clk = 1'b1;

end

initial
begin

rst = 1’b0;
#150 rst = 1’b1;
#200 rst = 1’b0;

end

Race conditions
can be easily cre-
ated between syn-
chronized signals.

There are two problems with the way these two waveforms are gen-
erated in Sample 5-9. The first problem is functional: there is a race

condition between the clk and rst signals.2 At simulation time 150,
and again later at simulation time 350, both registers are assigned at
the same timestep. Because the blocking assignment is used for
both assignments, one of them is assigned first. A block sensitive to
the falling edge of clk may execute before or after rst is assigned.
From the perspective of that block, the specification shown in
Figure 5-4 could appear to be violated. The race condition can be
eliminated by using non-blocking assignments, as shown in Sample
5-10. Both clk and rst signals are assigned between timesteps, when
no blocks are executing. If the design under verification uses the
falling edge of clk as the active edge, rst is already - and reliably -
assigned.

2. I did not bring up race conditions in the section titled "Read/
Write Race Conditions" on page 141 just to conveniently forget
about them here. Just to keep you on your toes, you’ll see them
appear throughout this book.

161Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Sample 5-10.
Race-free gen-
eration of a
synchronized
waveform

always
begin

#50 clk <= 1’b0;
#50 clk <= 1’b1;

end

initial
begin

rst = 1’b0;
#150 rst <= 1’b1;
#200 rst <= 1’b0;

end

Lack of maintain-
ability can intro-
duce functional
errors.

The second problem, which is just as serious as the first one, is
maintainability of the description. You could argue that the first
problem is more serious, since it is functional. The entire simula-
tion can produce the wrong result under certain conditions. Main-
tainability has no such functional impact. Or has it? What if you
made a change as simple as changing the phase or frequency of the
clock. How would you know to also change the generation of the
reset signal to match the new clock waveform?

Conditions in real
life are different
than within the
confines of this
book.

In the context of Sample 5-10, with Figure 5-4 nearby, you would
probably adjust the generation of the rst signal. But outside this
book, in the real world, these two blocks could be separated by hun-
dreds of lines, or even be in different files. The specification is usu-
ally a document one inch thick, printed on both sides. The timing
diagram shown in Figure 5-4 could be buried in an anonymous
appendix, while the pressing requirements of changing the clock
frequency or phase was urgently stated in an email message. And
you were busy debugging this other testbench when you received
that pesky email message! Would you know to change the genera-
tion of the reset signal as well? I know I would not.

Model the syn-
chronization
within the genera-
tion.

Waiting for an apparently arbitrary delay can move out-of-sync
with respect to the delay of the clock generation. A much better
way of modeling synchronized waveforms is to include the syn-
chronization in the generation of the dependent signals, as shown in
Sample 5-11. The proper way to synchronize the rst signal with the
clk signal is for the generator to wait for the significant synchroniz-
ing event, whenever it may occur. The timing or phase of the clock
generator can now be modified, without affecting the proper gener-
ation of the rst waveform. From the perspective of a design, sensi-

162 Writing Testbenches: Functional Verification of HDL Models

Simple Stimulus

tive to the falling edge of clk, rst is reliably assigned one delta-cycle
after the clock edge.

Sample 5-11.
Proper genera-
tion of a syn-
chronized
waveform

always
begin

#50 clk <= 1’b0;
#50 clk <= 1’b1;

end

initial
begin

rst = 1’b0;
wait (clk !== 1'bx);
@ (negedge clk);
rst <= 1’b1;
@ (negedge clk);
@ (negedge clk);
rst <= 1’b0;

end

Synchronized
waveforms may be
generated from a
single block.

The maintainability argument can be taken one step further.
Remember the section “Parallel vs. Sequential” on page 132? The
sequence of the rst and clk waveforms is deterministic and can be
modeled using a single sequential statement block, as shown in
Sample 5-12. The synchronized portion of the rst and clk wave-
forms is generated first, then the remaining free-running clk wave-
form is generated. This generator differs from the one in Sample 5-
11: from the perspective of a design sensitive to the falling edge of
clk, rst has already been assigned.

initial
begin

// Apply reset for first 2 clock cycles
rst = 1’b0;
#50 clk <= 1’b0;
repeat (2) #50 clk <= ~clk;
rst <= 1’b1;
repeat (4) #50 clk <= ~clk;
rst <= 1’b0;

// Generate only the clock afterward
forever #50 clk <= ~clk;

end

Sample 5-12.
Sequential
generation of a
synchronized
waveform

163Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Delta delays are
functionally equiv-
alent to real
delays.

In the specification shown in Figure 5-4, the transition of rst is
aligned with a transition on clk. The various ways of generating
these two signals determined the sequence of these transitions,
whether they occurred at the same delta cycle, in different delta
cycles, or if their ordering was deterministic. Although delta-cycle
delays are considered zero-delays by the simulator, functionally
they have the same effect as real delays.

The next two sections, “Aligning Waveforms in Delta-Time” and
“Generating Synchronous Data Waveforms” discuss how signals
can be properly aligned or delayed to prevent unintentional func-
tional delays.

Aligning Waveforms in Delta-Time

Derived waveforms, such as the one shown in Figure 5-5, are
apparently easy to generate. A simple process, sensitive to the
proper edge of the original signal as shown in Sample 5-13, and
voila! Even the waveform viewer shows that it is right!

Sample 5-13.
Improperly
generating a
derived wave-
form

clk2_gen: process(clk)
begin

if clk = ’1’ then
clk2 <= not clk2;

end if;
end process clk2_gen;

Watch for delta
delays in derived
waveforms.

The problem is not visually apparent. Because of the simulation
cycle (See “The Simulation Cycle” on page 129), there is a delta
cycle between the rising edge of the base clock signal, and the tran-
sition on the derived clock signal, as shown in Figure 5-6. Any data
transferred from the base clock domain to the derived clock domain
goes through this additional delta cycle delay. In a zero-delay simu-
lation, such as a behavioral or RTL model, this additional delta-
cycle delay can have the same effect as an entire clock cycle delay.

164 Writing Testbenches: Functional Verification of HDL Models

Simple Stimulus

To maintain the relationship between the base and derived signals,
their respective edges must be aligned in delta time. The only way
to perform this task is to re-derive the base signal, as shown in Sam-
ple 5-14 and illustrated in Figure 5-7. The base signal is never used
by other processes. Instead, they must use the derived base signal.

derived_gen: process(clk)
begin

clk1 <= clk;
if clk = ’1’ then

clk2 <= not clk2;
end if;

end process derived_gen;

Sample 5-14.
Properly gen-
erating a
derived wave-
form

Generating Synchronous Data Waveforms

There is a race
condition between
the clock and data
signal.

Sample 5-10, Sample 5-11, and Sample 5-15 show how you could
generate a zero-delay synchronous data waveform. In Sample 5-11
and Sample 5-15, it is identical to the way flip-flops are inferred in
an RTL model. As illustrated in Figure 5-8, there is a delay between
the edge on the clock and the transition on data, but it is a single
delta cycle. In terms of simulation time, there is no delay. For RTL
models, this infinitesimal clock-to-Q delay is sufficient to properly
model the behavior of synchronous circuits. However, this assumes
that all clock edges are aligned in delta time (see “Aligning Wave-
forms in Delta-Time” on page 164). If you are generating both
clock and data signals from the outside of the model of the design
under verification, you have no way of ensuring that the total num-
ber of delta-cycle delays between the clock and the data is main-
tained, or at least be in favor of the data signal!

165Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Sample 5-15.
Zero-delay
generation of
synchronous
data

sync_data_gen: process(clk)
begin

if clk = ’0’ then
data <= ...;

end if;
end process sync_data_gen;

The clock may be
delayed more than
the data.

For many possible reasons, the clock signal may be delayed by
more delta cycles than its corresponding data signal. These delays
could be introduced by using different I/O pad models for the clock
and data pins. They could also be introduced by the clock distribu-
tion network, which does not exist on the data signal. If the clock
signal is delayed more than the data signal, even in zero-time as
shown in Figure 5-9, the effect is the same as removing an entire
clock cycle from the data path.

Interface specifications never specify zero-delay values. A physical
interface always has a real delay between the active edge of a clock
signal and its synchronous data. When generating synchronous
data, always provide a real delay between the active edge and the
transition on the data signal, as shown in Sample 5-16 and Sample
5-17.

Sample 5-16.
Non-zero-
delay genera-
tion of syn-
chronous data

sync_data_gen: process(clk)
begin

if clk = ’0’ then
data <= ... after 1 ns;

end if;
end process sync_data_gen;

166 Writing Testbenches: Functional Verification of HDL Models

Simple Stimulus

initial
begin

// Apply reset for first 2 clock cycles
rst = 1’b0;
#50 clk <= 1’b0;
repeat (2) #50 clk <= ~clk;
rst <= #1 1’b1;
repeat (4) #50 clk <= ~clk;
rst <= #1 1’b0;

// Generate only the clock afterward
forever #50 clk <= ~clk;

end

Sample 5-17.
Sequential
generation of a
delayed syn-
chronized data
waveform

Encapsulating Waveform Generation

The generation of
waveforms may
need to be
repeated during a
simulation.

There is a problem with the way the rst waveform is generated in
Sample 5-17. What if it were necessary to reset the device under
verification multiple times during the execution of a testbench?
One example would be to execute multiple testcases in a single
simulation. Another one is the “hardware reset” testcase which ver-
ifies that the reset operates properly. In that respect, the code in
Sample 5-11 is closer to an appropriate solution. The only thing that
needs to be changed is the use of the initial block. The initial block
runs only once and is eliminated from the simulation once com-
pleted. There is no way to have it execute again during a simula-
tion.

Encapsulate wave-
form generation in
a subprogram.

The proper mechanism to encapsulate statements that you may
need to repeat during a simulation is to use a task or a procedure as
shown in Sample 5-18. To repeat the waveform, simply call the
subprogram. To maintain the behavior of using an initial block to
automatically reset the device under verification at the beginning of
the simulation, simply call the task in an initial block. Pop quiz:
what is missing from the hw_reset task in Sample 5-18? The answer

can be found in this footnote.3

A subprogram can
be used to properly
apply vectors.

Another example of a synchronized waveform whose generation
can be encapsulated is the application of input vector data. As illus-

3. The task hw_reset contains delay control statements. It should contain a
semaphore to detect concurrent activation. You can read more about this
issue in “Non-Reentrant Tasks” on page 151.

Writing Testbenches: Functional Verification of HDL Models 167

Stimulus and Response

always
begin

#50 clk <= 1’b0;
#50 clk <= 1’b1;

end

task hw_reset;
begin

rst = 1’b0;
wait (clk !== 1’bx);
@ (negedge clk);
rst <= 1’b1;
@ (negedge clk);
@ (negedge clk);
rst <= 1’b0;

end
endtask
initial hw_reset;

Sample 5-18.
Encapsulating
the generation
of a synchro-
nized wave-
form

trated in Figure 5-10, vector data must be applied with a proper
setup and hold time - but no more - to meet the input timing con-
straints. Instead of repeating the synchronization for each vector, a
subprogram can be used for synchronization with the input clock. It
would also apply the vector data received as input argument. The
code in Sample 5-19 shows the implementation and use of a task
applying input vectors according to the specification in Figure 5-
10. Notice how the input is set to unknowns after the specified hold
time to stress the timing of the interface. Leaving the input to a con-
stant value would not detect cases where the device under verifica-
tion does not meet the maximum hold requirement.

168 Writing Testbenches: Functional Verification of HDL Models

Simple Stimulus

task apply_vector;
input [...] vector;

begin
inputs <= vector;
@(posedge clk);
#(Thold);
inputs <= ...’bx;
#(cycle - Thold - Tsetup);

end
endtask

initial
begin

hw_reset;
apply_vector(...);
apply_vector(...);

end

Sample 5-19.
Encapsulating
the applica-
tion of input
data vectors

Abstracting Waveform Generation

Vectors are diffi-
cult to write and
maintain.

Using synchronous test vectors to verify a design is rather cumber-
some. They are hard to interpret and difficult to correctly specify.
For example, using vectors to verify a synchronously resetable D
flip-flop with a 2-to-l multiplexer on the input, as shown in
Figure 5-11, could be stimulated using the vectors shown in Sample
5-20.

Use subprograms
to encapsulate
operations.

A synchronous reset

Load from input d0

Load from input d1

It would be easier if the operation accomplished by the vectors
were abstracted. The device under verification can only perform
three things:

Writing Testbenches: Functional Verification of HDL Models 169

...

Stimulus and Response

Sample 5-20.
Test vectors
for 2-to-l
input sync
reset D flip-
flop

initial
begin

// Vector: rst, d0, d1, sel
apply_vector(4’b1110);
apply_vector(4’b0100);
apply_vector(4’b1111);
apply_vector(4’b0011);
apply_vector(4’b0010);
apply_vector(4’b0011);
apply_vector(4’b1111);

end

Instead of providing vectors to repeatedly perform these operations,
why not provide subprograms that perform these operations? All
that will be left is to call the subprograms in the appropriate order,
with the appropriate data.

Try to apply the
worst possible
combination of
inputs.

The subprogram to perform the synchronous reset is very simple. It
needs to assert the rst input, then wait for the active edge of the
clock. But what about the other inputs? You could decide to leave
them unchanged, but is that the worst possible case? What if the
reset was not functional and the device loaded one of the inputs and
that input was set to ‘0’ ? It would be impossible to differentiate the
wrong behavior from the correct one. To create the worst possible
condition, both d0 and d1 inputs must be set to ‘1’. The sel input
can be set randomly, since either input selection should be function-
ally identical. An implementation of the sync_reset task is shown in
Sample 5-21.

Sample 5-21.
Abstracting
the sync reset
operation

task sync_reset;
begin

rst <= 1’b1;
d0 <= 1’b1;
d1 <= 1’b1;
sel <= $random;
@ (posedge clk);
#(Thold);
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

170 Writing Testbenches: Functional Verification of HDL Models

...

Simple Stimulus

Pass input values
as arguments to
the subprogram.

The second operation this design can perform is to load input d0.
The task to perform this operation is shown in Sample 5-22. Unlike
resetting the design, loading data can have different input values: it
can load either a ‘1’ or a ‘0’. The value of the input to load is passed
as an argument to the task. The worst condition is created when the
other input is set to the complement of the input value on d0. If the
device is not functioning properly and is loading from the wrong
input, then the result will be clearly wrong.

Sample 5-22.
Abstracting
the load d0
operation

task load_d0;
input data;

begin
rst <= 1’b0;
d0 <= data;
d1 <= ~data;
sel <= 1’b0;
@ (posedge clk);
#(Thold);
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

Stimulus gener-
ated with
abstracted opera-
tions is easier to
write and main-
tain.

The last operation this design can perform is to load input d1. The
task abstracting the operation to load from input d1 is similar to the
one shown in Sample 5-22. Once operation abstractions are avail-
able, providing the proper stimulus to the design under verification
is easy to write and understand. Compare the code in Sample 5-23
with the code of Sample 5-20. If the polarity of the rst input were
changed, which verification approach would be easiest to modify?

Sample 5-23.
Verifying the
design using
operation
abstractions

initial
begin

sync_reset;
load_d0(1’b1);
sync_reset;
load_d1(1’b1);
load_d0(1’b0);
load_d1(1’b1);
sync_reset;

end

Writing Testbenches: Functional Verification of HDL Models 171

...

Stimulus and Response

VERIFYING THE OUTPUT

Generating stimulus is only half of the job. Actually, it is more like
30 percent of the job. The other part, verifying that the output is as
expected, is much more time-consuming and error-prone. There are
various ways the output can be checked against expectations. They
have varying degrees of applicability and repeatability.

Visual Inspection of Response

Results can be
printed.

The most obvious method for verifying the output of a simulation is
to visually inspect the results. The visual display can be an ASCII
printout of the input and output values at specific points in time, as
shown in Sample 5-24.

Sample 5-24.
ASCII view of
simulation
results

r s
sddeqq

Time t01l b

0100 1110xx
0105 111001
0200 010001
0205 010010
0300 111110
0305 111101
0400 001101
0405 001110
0500 001010
0505 001010
0600 001110
0605 001110
0700 111110
0705 111101

Producing Simulation Results

To print simulation
results, you must
model the signal
sampling.

The specific points in time that are significant for a particular
design or testbench are always different. Which signals are signifi-
cant is also different and may change as the simulation progresses.
If you know which time points and signals are significant for deter-
mining the correctness of the simulation results, you have to be able
to model that knowledge. Producing the proper simulation results
involves modeling the behavior of the signal sampling.

172 Writing Testbenches: Functional Verification of HDL Models

...

Verifying the Output

Many sampling
techniques can be
used.

There are many sampling techniques, each as valid as the other. The
correct sampling technique depends on your needs and on what
makes the simulation results significant. Just as you have to decide
which input sequence is relevant for the functionality you are trying
to verify, you must also decide on the output sampling that is rele-
vant for determining the success or failure of the function under
verification.

You can sample at
regular intervals.

The simplest sampling technique is to sample the relevant signals at
a regular interval. The interval can be an absolute delay value, as
illustrated in Sample 5-25, or a reference signal such as the clock,
as illustrated in Sample 5-26.

Sample 5-25.
Sampling at a
delay interval

parameter INTERVAL = 10;
always
begin

#(INTERVAL);
$write(...);

end

Sample 5-26.
Sampling
based on a ref-
erence signal

process (clk)
variable L: line;

begin
if clk’event and clk = ’0’ then

write(L, ...);
writeline(output, L);

end if;
end process;

You can sample
based on a signal
changing value.

Another popular sampling technique is to sample a set of signals
whenever one of them changes. This is used to reduce the amount
of data produced during a simulation when signals do not change at
a constant interval.

To sample a set of signals, simply make a process or always block
sensitive to the signals whose changes are significant, as shown in
Sample 5-27. The set of signals displayed and monitored can be dif-
ferent. Verilog has a built-in task, called $monitor, to perform this
sampling when the set of display and monitored signals are identi-
cal.

An example of using the $monitor task is shown in Sample 5-28. Its
behavior is different from the VHDL sampling process shown in
Sample 5-27: changes in values of signals rst, d0, d1, sel, q, and qb

Writing Testbenches: Functional Verification of HDL Models 173

Stimulus and Response

cause the display of simulation results, whereas only changes in q
and qb trigger the sampling in the VHDL example. Note that Ver-
ilog simulations are limited to a single active $monitor task. Any
subsequent call to $monitor replaces the previous monitor.

process (q, qb)
variable L: line;

begin
write(L, rst & d0 & d1 & sel & q & qb) ;
writeline(output, L) ;

end process;

Sample 5-27.
Sampling
based on sig-
nal changes

initial
begin

$monitor("...", rst, d0, d1, sel, q, qb);
end

Sample 5-28.
Sampling
using the
$monitor task

Minimizing Sampling

To improve simu-
lation perfor-
mance, minimize
sampling.

The use of an output device on a computer slows down the execu-
tion of any program. Therefore, the production of simulation output
reduces the performance of the simulation. To maximize the speed
of a simulation, minimize the amount of simulation output pro-
duced during its execution.

In Verilog, an active $monitor task can be turned on and off by
using the $monitoron and $monitoroff tasks, respectively. If you are
using an explicit sampling always block or are using VHDL, you
should include sampling minimization techniques in your model, as
illustrated in Sample 5-29. A very efficient way of minimizing sam-
pling is to have the stimulus turn on the sampling when an interest-
ing section of the testcase is entered, as shown in Sample 5-30.

Visual Inspection of Waveforms

Results are better
viewed when plot-
ted over time.

Waveform displays usually provide a more intuitive visual repre-
sentation of simulation results. Figure 5-12 shows the same infor-
mation as Sample 5-24, but using a waveform view. The waveform
view has the advantage of providing a continuous display of many
values over the entire simulation time, not just at specific time
points as in a text view. Therefore, you need not specify or model a
particular sampling technique. The signals are continuously sam-

174 Writing Testbenches: Functional Verification of HDL Models

Verifying the Output

Sample 5-29.
Minimizing
sampling

process
begin

wait until <interesting_condition>;
sampling: loop

wait on q, qb;
write(l, rst & d0 & d1 & sel & q & qb);
writeline(output, l);
exit sampling

when not <interesting_condition>;
end loop sampling;

end process;

initial
begin

$monitor("...", rst, d0, d1, sel, q, qb);
$monitoroff;
sync_reset;
load_d0(1’b1);
sync_reset;
$monitoron;
load_d1(1’b1);
load_d0(1’b0);
load_d1(1’b1);
sync_reset;
$monitoroff;

end

Sample 5-30.
Controlling
the sampling
from the stim-
ulus

pled, usually into an efficient database format. Sampling for wave-
forms must be turned on explicitly. It is a tool-dependent process
that is different for each language and each tool.

Minimize the
number and dura-
tion of sampled
signals.

The default behavior is to sample all signals during the entire simu-
lation. The waveform sampling process consumes a significant por-
tion of the simulation resources. Reducing the number of signals

Writing Testbenches: Functional Verification of HDL Models 175

...

Stimulus and Response

sampled, or the duration of the sampling, increases the simulation
performance.

SELF-CHECKING TESTBENCHES

This section introduces a reliable and reproduceable technique for
output verification: testbenches that verify themselves. I discuss the
pros and cons of popular vector-based implementation techniques. I
show how to verify the simulation results at run-time by modelling
the expected response at the same time as the stimulus.

Visual inspection
is not acceptable.

The model of the D flip-flop with a 2-to-l input mux being verified
has a functional error. Can you identify it using either views of the
simulation results in Sample 5-24 or Figure 5-12? How long did it

take to diagnose the problem?4

This example was for a very simple design, over a very short period
of time, and for a very small number of signals. Imagine visually
inspecting simulation results spanning hundreds of thousands of
clock cycles, and involving hundreds of input and output signals.
Then imagine repeating this visual inspection for every testbench,
and every simulation of every testbench. The probability that you
will miss identifying an error is equal to one. You must automate
the process of comparing the simulation results against the
expected outputs.

Input and Output Vectors

Specify the
expected output
values for each
clock cycle.

The first step in automating output verification is to include the
expected output with the input stimulus for every clock cycle. The
vector application task in Sample 5-19 can be easily modified to
include the comparison of the output signals with the specified out-
put vector, as shown in Sample 5-31. The testcase becomes a series
of input/output test vectors, as shown in Sample 5-32.

Test vectors
require synchro-
nous interfaces.

The main problem with input and output test vectors (other than the
fact that they are very difficult to specify, maintain, and debug), is
that they require perfectly synchronous interfaces. If the design
under verification contains interfaces in different clock domains,

4. The logic value on input d0 is ignored and a ‘1’ is always loaded.

176 Writing Testbenches: Functional Verification of HDL Models

Self-Checking Testbenches

Sample 5-31.
Application of
input and veri-
fication of out-
put data vec-
tors

task apply_vector;
input [...] in_data;
input [...] out_data;

begin
inputs <= in_data;
@(posedge clk);
fork

begin
#(Thold);
inputs <= ...’bx;

end
begin

#(Td);
if (outputs !== out_data) ...;

end
#(cycle - Thold - Tsetup);

join
end
endtask

initial
begin

// In: rst, d0, d1, sel
// Out: q, qb
apply_vector(4’b1110, 2’b00)
apply_vector(4’b0100, 2’b10)
apply_vector(4’b1111, 2’b00)
apply_vector(4’b0011, 2’b10)
apply_vector(4’b0010, 2’b01)
apply_vector(4’b0011, 2’b10)
apply_vector(4’b1111, 2’b00)

end

Sample 5-32.
Input/output
test vectors for
2-to-l input
sync reset D
flip-flop

each requires its own test vector stream. If any interface contains
asynchronous signals, they have to be either externally synchro-
nized before vectors are applied, or treated as synchronous signals,
therefore under-constraining the verification.

Golden Vectors

A set of reference
simulation results
can be used.

The next step toward automation of the output verification is the
use of golden vectors. It is a simple extension of the manufacturing
test process where devices are physically subjected to a series of
qualifying test vectors. A set of reference output results, determined

Writing Testbenches: Functional Verification of HDL Models 177

...

Stimulus and Response

to be correct, are kept in a file or database. The simulation outputs
are captured in a similar format during a simulation. They are then
compared against the reference results. Golden vectors have an
advantage over input/output vectors because the expected output
values need not be specified in advance.

Text files can be
compared using

diff.

If the simulation results are kept in ASCII files, the simplest com-
parison process involves using the UNIX diff utility. The diff output
for the simulation results shown in Sample 5-24 is shown in Sample
5-33. You can appreciate how difficult the subsequent task of diag-
nosing the functional error will be.

Sample 5-33.
diff output of
comparing
ASCII view of
simulation
results

14c2
>0505 001010
>0600 001110

<0505 001001
<0600 001110

Waveforms can be
compared by a
specialized tool.

Waveform comparators can also be used. They are tools similar to
waveform viewers and are usually built into one. They compare
two sets of waveforms then highlight the differences on a graphical
display. The display of a waveform comparator might look some-
thing like the results illustrated in Figure 5-13. Identifying the prob-
lem is easier since you have access to the entire history of the
simulation in a single view.

178 Writing Testbenches: Functional Verification of HDL Models

...

Self-Checking Testbenches

Golden vectors
must still be visu-
ally inspected.

Golden vectors do
not adapt to
changes.

The main problem with golden simulation results is that they need
to be visually inspected to be determined as valid. This self-check-
ing technique only reduces the number of times a set of simulation
responses must be visually verified, not the need for visual inspec-
tion. The result from each testbench must still be manually con-
firmed as good.

Another problem: reference simulation results do not adapt to mod-
ifications in the design under verification that may only affect the
timing of the result, without affecting its functional correctness. For
example, an extra register may be added in the datapath of a design
to help meet timing constraints. All that was added was a pipeline
delay. The functionality was not modified. Only the latency was
increased. If that latency is irrelevant to the functional correctness
of the overall system, the reference vectors must be updated to
reflect that change.

Golden vectors
require a signifi-
cant maintenance
effort.

Reference simulation results must be visually inspected for every
testcase, and modified or regenerated whenever a change is made to
the design, each time requiring visual inspection. Using reference
vectors is a high-maintenance, low-efficiency self-checking strat-
egy. Verification vectors should be used only when a design must
be 100 percent backward compatible with an existing device, signal
for signal, clock cycle for clock cycle. In those circumstances, the
reference vectors never change and never require visual inspection
as they are golden by definition.

Separate the refer-
ence vectors along
clock domains.

Reference simulation results also work best with synchronous inter-
faces. If you have multiple interfaces in separate clock domains, it
is necessary to generate reference results for each domain in a sepa-
rate file. If a single file is used, the asynchronous relationship
between the clock domains may result in the samples from different
domains being written in a different order. The ordering difference
is not functionally relevant, but would be flagged as an error by the
comparison tool.

Run-Time Result Verification

Comparing simulation results against a reference set of vectors or
waveforms is a post-processing process. It is possible to verify the
correctness of the simulation results at runtime, in parallel with the
stimulus generation.

Writing Testbenches: Functional Verification of HDL Models 179

Stimulus and Response

You can use a ref-
erence model.

Using a reference model is a simple extension of the golden vector
technique. As illustrated in Figure 5-14, the reference model and
the design under verification are subjected to the same stimulus and
their output is constantly monitored and compared for discrepan-
cies.

In reality, a refer-
ence model never
works.

The reality of reference models is different. They rarely exist.
When they do, they are in a language that cannot be easily inte-
grated with either VHDL or Verilog. When they can be integrated,
they produce output with a different timing or accuracy, making the
output comparison impractical. When all of these obstacles are
overcome, they are often a burden on the simulation performance.
Using reference simulation results, as described in the previous sec-
tion, is probably a better alternative.

You can model the
expected response.

If you know what you are looking for when visually inspecting sim-
ulation results, you should be able to describe it also. It should be
part of the testcase specification. If the expected response can be
described, it can be modeled. If it can be modeled, it can be
included in the testbench. By including the expected response in the
testbench, it is able to determine automatically whether the testcase
succeeded or failed.

Focus on opera-
tions instead of
input and output
vectors.

In “Abstracting Waveform Generation” on page 169, subprograms
were used to apply stimulus to the design. These subprograms
abstracted the vectors into atomic operations that could be per-
formed on the design. Why not include the verification of the oper-
ation’s output as part of the subprogram? Instead of simply
applying inputs, then leaving the output verification to a separate
process, integrate both the stimulus and response checking into
complete operations. Performing the verification becomes a matter
of verifying that operations, individually and in sequence, are per-
formed appropriately.

For example, the task shown in Sample 5-21 can include the verifi-
cation that the flip-flop was properly reset as shown in Sample 5-

180 Writing Testbenches: Functional Verification of HDL Models

Self-Checking Testbenches

34. Similarly, the task used to apply the stimulus to load data from
the d0 input shown in Sample 5-22 can be modified to include the
verification of the output, as shown in Sample 5-35. The testcase
shown in Sample 5-23 now becomes entirely self-checking.

task sync_reset;
begin

rst <= 1’b1;
d0 <= 1’b1;
d1 <= 1’b1;
sel <= $random;
@ (posedge clk);
#(Thold);
if (q !== 1’b0 || qb !== 1’b1) ...
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

Sample 5-34.
Verifying the
sync reset
operation

Sample 5-35.
Verifying the
load d0 opera-
tion

task load_d0;
input data;

begin
rst <= 1’b0;
d0 <= data;
d1 <= ~data;
sel <= 1’b0;
@ (posedge clk);
#(Thold);
if (q !== data || qb !== ~data) ...
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

Make sure the out-
put is properly ver-
ified.

The problem with output verification is that you can’t identify a
functional discrepancy if you are not looking at it. Using an if state-
ment to verify the output in the middle of a stimulus process only
looks at the output value for a brief instant. That may be acceptable,
but it does not say anything about the stability of that output. For
example, the tasks in Sample 5-34 and Sample 5-35 only check the
value of the output at a single point. Figure 5-15 shows the com-
plete specification for the flip-flop. The verification sampling point
is shown as well.

Writing Testbenches: Functional Verification of HDL Models 181

Stimulus and Response

Make sure you
verify the output
over the entire sig-
nificant time
period.

To properly and completely verify the functionality of the design, it
is necessary to verify that the output is stable, except for the short
period after the rising edge of the clock. That could be easily veri-
fied using a static timing analysis tool and a set of suitable con-
straints to verify against. If you want to perform the verification in
Verilog or VHDL, the stability of the output cannot be easily veri-
fied in the same subprogram that applies the input. The input fol-
lows a deterministic data and timing sequence, whereas monitoring
stability requires that the testbench code be ready to react to any
unexpected changes. Instead, it is better to use a separate monitor
process, executing in parallel with the stimulus. The stimulus sub-
program can still check the value. The stability monitor, as shown
in Sample 5-36, simply verifies that the output remains stable,
whatever its value. In VHDL, the 'stable attribute was designed for
this type of application, as shown in Sample 5-37. The stability of
the output signal can be verified in the stimulus procedure, but it
requires prior knowledge of the clock period to perform the timing
check.

Sample 5-36.
Verifying the
stability of
flip-flop out-
puts

initial
begin

// wait for the first clock edge
@ (posedge clk);
forever begin

// Ignore changes for Td after clock edge
#(Td);
// Watch for a change before the next clk
fork: stability_mon

@ (q or qb) $write("...");
@ (posedge clk) disable stability_mon;

join
end

end

182 Writing Testbenches: Functional Verification of HDL Models

Complex Stimulus

Sample 5-37.
Verifying the
load d0 opera-
tion and out-
put stability

procedure load_d0(data: std_logic) is
begin

rst <= ’0’;
d0 <= data;
d1 <= not data;
sel <= ’0’;
wait until clk = ’1’;
assert q’stable(cycle - Td) and

qb’stable(cycle - Td);
wait for Thold;
rst <= ’X’;
d0 <= ’X’;
d1 <= ’X’;
sel <= ’X’ ;
assert q = data and qb = not data;
wait for cycle - Thold - Tsetup;

end load_d0;

COMPLEX STIMULUS

This section introduces more complex stimulus generation scenar-
ios through the use of bus-functional models. I start with non-deter-
ministic stimulus, where the stimulus or its timing depends on
answers from the device under verification. I also show how to
avoid wasting precious simulation cycles by getting caught in dead-
lock conditions. I explain how to generate asynchronous stimulus
and more complex protocols such as CPU cycles. Finally, I show
how to write configurable bus-functional models.

Generating inputs
may require coop-
erating with the
design.

Feedback Between Stimulus and Design

Without feedback,
verification can be
under-constrained.

Figure 5-16 shows the specification for a simple bus arbiter. If you
were to verify the design of the arbiter using test vectors applied at
every clock cycle, as described in “Input and Output Vectors” on
page 176, you would have to assume a specific delay between the
assertion of the req signal and the assertion of the grt signal. Any
delay value between one and five clock cycles would be function-
ally correct, but the only reliable choice is a delay of five cycles.

Writing Testbenches: Functional Verification of HDL Models 183

Applying stimulus to a clock or reset input is straightforward. You
are under complete control of the timing of the input signal. How-
ever, if the interface being driven contains handshaking or flow-
control signals, the generation of the stimulus requires cooperation
with the design under verification.

Stimulus and Response

Similarly, a delay of three clock cycles would have to be made for
the release portion of the verification. These choices, however,
severely under-constrain the verification. If you want to stress the
arbiter by issuing requests as fast as possible, you would want to
know when the request was granted and released, so it could be
reapplied as quickly as possible.

Stimulus genera-
tion can wait for
feedback before
proceeding.

If, instead of using input and output test vectors, you are using
encapsulated operations to verify the design, you can modify the
operation to wait for feedback from the design under verification
before proceeding. You should also include any timing and func-
tional verification in the feedback monitoring to ensure that the
design responds in an appropriate manner. Sample 5-38 shows the
bus_request operation procedure. It samples the grt signal at every
clock cycle, and immediately returns once it detects that the bus
was granted. With a similarly implemented bus_release procedure,
a testcase that stresses the arbiter under maximum load can be eas-
ily written, as shown in Sample 5-39.

Sample 5-38.
Verifying the
bus request
operation

procedure bus_request is
variable cycle_count: integer := 0;

begin
req <= ’1’;
wait until clk = ’1’;
while grt = ’0’ loop

wait until clk = ’1’;
cycle_count := cycle_count + 1;

end loop;
assert 1 <= cycle_count and cycle_count <= 5;

end bus_request;

Recovering from Deadlocks

A deadlock may
prevent the
testcase from run-
ning to comple-
tion.

There is a risk inherent to using feedback in generating stimulus:
the stimulus now depends on the proper operation of the design
under verification to complete. If the design does not provide the
feedback as expected, the stimulus generation may be halted, wait-
ing for a condition that will never occur. For example, consider the

184 Writing Testbenches: Functional Verification of HDL Models

Complex Stimulus

Sample 5-39.
Stressing the
bus arbiter.

test_sequence: process
procedure bus_request ...
procedure bus_release ...

begin
for I in 1 to 10 loop

bus_request;
bus_release;

end loop;
assert false severity failure;

end process test_sequence;

bus_request procedure in Sample 5-38. What happens if the grt sig-
nal is never asserted? The procedure remains stuck in the while
loop and never returns.

A deadlocked sim-
ulation appears to
be running cor-
rectly.

If this were to occur, the simulation would still be running, merrily
going around and around the while loop. The simulation time would
advance at each tick of the clock. The CPU usage of your worksta-
tion would show near 100 percent usage. The only symptom that
something is wrong would be that no messages are produced on the
simulation’s output log and the simulation runs for much longer
than usual. If you are watching the simulation run and expect regu-
lar messages to be produced during its execution, you would
quickly recognize that something is wrong and manually interrupt
it.

A deadlocked sim-
ulation wastes
regression runs.

But what if there is no one watching the simulation, such as during
a regression run? Regressions are large scale simulation runs where
all available testcases are executed. They are used to verify that the
functionality of the design under verification is still correct after
modifications. Because of the large number of testcases involved in
a regression, the process is automated to run unattended, usually
overnight and on many computers. If a design modification creates
a deadlock situation, all testcases scheduled to execute subse-
quently will never run, as the deadlocked testcase never terminates.
The opportunity of detecting other problems in the regression run is
wasted. It will be necessary to wait for another 24-hour period
before knowing if the new version of the design meets its functional
specification.

Eliminate the pos-
sibility of dead-
lock conditions.

When generating stimulus, you must make sure that there is no pos-
sibility of a deadlock condition. You must assume that the feedback
condition you are waiting for may never occur. If the feedback con-
dition fails to happen, you must then take appropriate action. It

Writing Testbenches: Functional Verification of HDL Models 185

Stimulus and Response

could include terminating the testcase, or jumping to the next por-
tion of the testcase that does not depend on the current operation, or
attempting to repeat the operation after some delay. Sample 5-38
was modified as shown in Sample 5-40 to avoid the deadlock con-
dition created if the arbiter failed and the grt signal was never
asserted.

Sample 5-40.
Avoiding
deadlock in
the bus request
operation

procedure bus_request is
variable cycle_count: integer := 0;

begin
reg <= ’1’ ;
wait until clk = ’1’ ;
while grt = ’0’ loop

wait until clk = ’1’;
cycle_count := cycle_count + 1;
assert cycle_count < 500

report "Arbiter is not working"
severity failure;

end loop;
assert 1 <= cycle_count and cycle_count <= 5;

end bus_request;

Sample 5-41.
Returning sta-
tus in the bus
request opera-
tion

procedure bus_request(good: out boolean) is
variable cycle_count: integer := 0;

begin
good := true;
req <= ’1’;
wait until clk = ’1’;
while grt = ’0’ loop

wait until clk = ’1’;
cycle_count := cycle_count + 1;
if cycle_count > 500 then

good := false;
return;

end if;
end loop;
assert 1 <= cycle_count and cycle_count <= 5;

end bus_request;

Operation subpro-
grams could return
status.

If a failure of the feedback condition is detected, terminating the
simulation on the spot, as shown in Sample 5-40, is easy to imple-
ment in each operation subprogram. If you want more flexibility in
handling a non-fatal error, you might want to let the testcase handle
the error recovery, instead of handling it inside the operation sub-
program. The subprogram must provide an indication of the status
of the operation’s completion back to the testcase. Sample 5-41

186 Writing Testbenches: Functional Verification of HDL Models

Complex Stimulus

shows the bus_request procedure that includes a good status flag
indicating whether the bus was granted or not. The testcase is then
free to attempt other bus request operations until it succeeds, as
shown in Sample 5-42. Notice how the testcase takes care of avoid-
ing its own deadlock condition if the bus request operation never
succeeds.

testcase: process
variable granted : boolean;
variable attempts: integer := 0;

begin

attempts := 0;
loop

bus_request(granted);
exit when granted;
attempts := attempts + 1;
assert attempts < 5

report "Bus was never granted"
severity failure;

end loop;

end process testcase;

Sample 5-42.
Handling fail-
ures in the
bus_request
procedure

Asynchronous Interfaces

Test vectors under-
constrain asyn-
chronous
interfaces.

Test vectors are inherently synchronous. The inputs are all applied
at the same time. The outputs are all verified at the same time. And
this process is repeated at regular intervals. Many interfaces,
although implemented using finite state machines and edge-trig-
gered flip-flops, are specified in an asynchronous fashion. The
implementer has arbitrarily chosen a clock to streamline the physi-
cal implementation of the interface. If that clock is not part of the
specification, it should not be part of the verification. For example,
Figure 5-17 shows an asynchronous specification for a bus arbiter.
Given a suitable clock frequency, the synchronous specification
shown in Figure 5-16 would be a suitable implementation.

187Writing Testbenches: Functional Verification of HDL Models

...

...

Stimulus and Response

Verify the syn-
chronous imple-
mentation against
the asynchronous
specification.

Even though a clock may be present in the implementation, if it is
not part of the specification, you cannot use it to generate stimulus
nor to verify the response. You would be verifying against a partic-
ular implementation, not the specification. For example, a VME
bus is asynchronous. The verification of a VME interface cannot
make use of the clock used to implement that interface. If a clock is
present, and the timing constraints make reference to clock edges,
then you must use it to generate stimulus and verify response. For
example, a PCI bus is synchronous. A verification of a PCI inter-
face must use the PCI system clock to verify any implementation.

Behavioral code
does not require a
clock like RTL
code.

Testbenches are written using behavioral code. Behavioral models
do not require a clock. Clocks are artifices of the implementation
methodology and are required only for RTL code. The bus request
phase of the asynchronous interface specified in Figure 5-17 can be
verified asynchronously with the bus_request procedure shown in
Sample 5-43 or Sample 5-44. Notice how neither model of the bus
request operation uses a clock for timing control. Also, notice how
the Verilog version, in Sample 5-44, uses the definitely non-synthe-
sizeable fork/join statement to wait for the rising edge of grt for a
maximum of 60 time units.

procedure bus_request(good: out boolean) is
begin

req <= ’1’;
wait until grt = ’1’ for 60 ns;
good := grt = ’1’;

end bus_request;

Sample 5-43.
Verifying the
asynchronous
bus request
operation in
VHDL

Sample 5-44.
Verifying the
asynchronous
bus request
operation in
Verilog

task bus_request;
output good;

begin
req = 1’b1;
fork: wait_for_grt

#60 disable wait_for_grt;
@ (posedge grt) disable wait_for_grt;

join
good = (grt == 1’b1);

end
endtask

Consider all possi-
ble failure modes.

There is one problem with the models of the bus request operation
in Sample 5-43 and Sample 5-44. What if the arbiter was function-

188 Writing Testbenches: Functional Verification of HDL Models

Complex Stimulus

ally incorrect and left the grt signal always asserted? Both models
would never see a rising edge on the grt signal. They would eventu-
ally exhaust their maximum waiting period then detect grt as
asserted, indicating a successful completion. To detect this possible
failure mode, the bus request operation must verify that the grt sig-
nal is not asserted prior to asserting the req signal, as shown in
Sample 5-45.

task bus_request;
output good;

begin: bus_reguest_task
if (grt == 1’b1) begin

good = 1’b0;
disable bus_request_task;

end
req = 1’b1;
fork: wait_for_grt

#60 disable wait_for_grt;
@ (posedge grt) disable wait_for_grt;

join
good = (grt == 1’b1);

end
endtask

Sample 5-45.
Verifying all
failure modes
in the asyn-
chronous bus
request opera-
tion

Were you paying
attention?

Pop quiz: The first disable statement in Sample 5-45 aborts the
bus_request task and returns control to the calling block of the
statement. Why does it disable the begin/end block inside the task

and not the task itself?5 And what is missing from all those task

implementations?6

CPU Operations

Encapsulated
operations are also
known as bus-
functional models.

Operations encapsulated using tasks or procedures can be very
complex. The examples shown earlier were very simple, and dealt
with only a few signals. Real life interfaces are more complex. But
they can be encapsulated just as easily. These operations may even

5.

6.

For the answer see “Output Arguments on Disabled Tasks” on
page 150.

They all include timing control statements. They should have a sema-
phore to detect concurrent activation. See “Non-Reentrant Tasks” on
page 151.

189Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

return values to be verified against expected values or modify the
stimulus sequence.

Test vectors “hard
code” a number of
wait states.

Figure 5-18 shows the specification for the read cycle for an Intel
386SX processor bus. Being a synchronous interface, it could be
verified using test vectors. However, you would have to assume a
specific number of wait cycles to sample the read data at the right
time.

Bus models can
adapt to a differ-
ent number of wait
states.

With behavioral models of the operation, you need not enforce a
particular number of wait states and adapt to any valid bus timing.
A model of the read operation can be found in Sample 5-46. The
wait states are introduced by the fourth wait statement. How many

failure modes are currently ignored by this model?7

Test vectors can-
not perform read-
modify-write oper-
ations.

In test vectors, the read value would have been specified as an
expected output value. If that value had been different from the one
specified, an error would have been detected. But what if you do
not know the entire value that will be read? All you want is to mod-
ify the configuration of some slave device by reading its current
configuration, modifying some bits, then writing the new configu-
ration. This simple process is impossible to accomplish with test
vectors blindly applied from a file to the inputs at every clock cycle.
In behavioral testbenches, you can use the value returned during a
read cycle, manipulate it, then use it in another operation. Sample
5-47 shows a portion of a testcase where the read_cycle procedure

7. Two: if clk = ’1’ and phi = ’2’ are never true and if ready is
never asserted.

190 Writing Testbenches: Functional Verification of HDL Models

Complex Stimulus

Sample 5-46.
Model for the
read cycle
operation

procedure read_cycle (
radd : in std_logic_vector(0 to 23);
rdat : out std_logic_vector(0 to 31);

signal clk : in std_logic;
signal phi : in one_or_two;
signal addr : out std_logic_vector(0 to 23);
signal ads : out std_logic;
signal rw : out std_logic;
signal ready: in std_logic;
signal data : inout std_logic_vector(0 to 31);

is
begin

wait on clk until clk = ’1’ and phi = 2;
addr <= radd after rnd_pkg.random * 4 ns;
ads <= ’0’ after rnd_pkg.random * 4 ns;
rw <= ’0’ after rnd_pkg.random * 4 ns;
wait until clk = ’1’;
wait until clk = ’1’;
ads <= ’1’ after rnd_pkg.random * 4 ns;
wait on clk until clk = ’1’ and phi = 2 and

ready = ’0’;
assert ready’stable(19 ns) and

data’stable(19 ns);
rdat := data;
wait for 4 ns;
assert ready = ’1’ and data = (others => ’Z’);

end read_cycle;

shown in Sample 5-46 and its corresponding write_cycle procedure
are used to perform a read-modify-write operation.

Sample 5-47.
Performing a
read-modify-
write opera-
tion

test_procedure: process
constant cfg_reg: std_logic_vector(0 to 23)

:= "0000000000000001100010110";
variable tmp: std_logic_vector(31 downto 0);

begin

i386sx_pkg.read_cycle(cfg_reg, tmp, ...);
tmp(13 downto 9) := "01101";
i386sx_pkg.write_cycle(cfg_reg, tmp, ...);

end process test_procedure;

Writing Testbenches: Functional Verification of HDL Models 191

...

...

Stimulus and Response

Configurable Operations

Interfaces can
have configurable
elements.

An interface specification may contain configuration options. For
example, the assertion level for a particular control signal may be
configurable to either high or low. Each option has a small impact
on the operation of the interface. Taken individually, you could cre-
ate a different task or procedure for each configuration. The prob-
lem would be relegated to the testcase in deciding which flavor of
the operation to invoke. You would also have to maintain several
nearly-identical models.

Simple config-
urable elements
become complex
when grouped.

Taken together, the number of possible configurations explodes fac-

torially.8 It would be impractical to provide a different procedure or
task for each possible configuration. It is much easier to include
configurability in the model of the operation, and make the current
configuration an additional parameter. An RS-232 interface, shown
in Figure 5-19, is the perfect example of a highly configurable
operation. Not only is the polarity of the parity bit configurable, but
also its presence, as well as the number of data bits transmitted.
And to top it all, because the interface is asynchronous, the duration
of each pulse is also configurable. Assuming eight possible baud
rates, five possible parities, seven or eight data bits, and one or two
stop bits, there are 160 possible combinations of these four config-
urable parameters.

Write a config-
urable operation
model.

Instead of writing 160 flavors of the same operation, it is much eas-
ier to model the configurablity itself, as shown in Sample 5-48. The
configuration parameter is assumed to be a record containing a field
for each of the four parameters. Since Verilog does not directly sup-
port record types, refer to “Records” on page 105 for the implemen-

8. Exponential growth follows a curve. Factorial growth follows a n!
curve, where n! = 1 x 2 x 3 x 4 x ... x (n-2) x (n-1) x n.

192 Writing Testbenches: Functional Verification of HDL Models

Complex Response

tation details. What important safety measure is missing from the

task in Sample 5-48?9

Sample 5-48.
Model for a
configurable
operation

‘define sec * 1000000000 // timescale dependent!
task rs232_tx;

input [7:0] data;
input ‘rs232_cfg_typ cfg;

time duration;
integer i;

begin
duration = (1 ‘sec) / cfg‘baud_rate;
tx = 1’b1;
#(duration);
for (i = cfg‘n_bits; i >= 0; i = i-1) begin

tx = data[i];
#(duration);

end
if (cfg‘parity != ‘none) begin

if (cfg‘n_bits == 7) data[7] = 1’b0;
case (cfg‘parity)
‘odd : tx = ~^data;
‘even : tx = ^data;
‘mark : tx = 1'b1;
‘space: tx = 1'b0;
endcase
#(duration);

end
tx = 1’b0;
repeat (cfg‘n_stops) #(duration);

end
endtask

COMPLEX RESPONSE

Output verification
must be auto-
mated.

We have already established that visual inspection is not a viable
option for verifying even a simple response. Complex responses are
definitely not verifiable using visual inspection of waveforms. The
process for verifying the output response must be automated.

9. The task contains timing control statements. It should contain a sema-
phore to detect concurrent activation. See “Non-Reentrant Tasks” on
page 151.

Writing Testbenches: Functional Verification of HDL Models 193

Verifying response is usually not as simple as checking the outputs
after each stimulus operation. In this section, I describe how com-
plex monitors are implemented using bus-functional models. I
show how to manage separate control threads to make a testbench
independent of the latency or delay within a design. I explain how
to design a series of output monitors to handle non-deterministic
responses as well as bi-directional interfaces.

What is a Complex Response?

Latency and out-
put protocols cre-
ate complex
responses.

I define a complex response as something that cannot be verified in
the same process that generates the stimulus. A complex response
situation could be created simply because the validity of the output
cannot be verified at a single point in time. It could also be created
by a long (and potentially variable) delay between the stimulus and
the corresponding response. These types of responses cannot be
verified as part of the stimulus generation because the input
sequence would be interrupted while it waits for the corresponding
output value to appear. Interrupting the input sequence would pre-
vent stressing the design at the fastest possible input rate. Holding
the input sequence may even prevent the output from appearing or
violate the input protocol. A complex response must be verified
autonomously from the stimulus generation.

A simple design
can have a com-
plex response.

A Universal Asynchronous Receiver Transmitter (UART) is a per-
fect example of a simple design with a complex response. And not
only because the output operation is configurable. Figure 5-20
shows the block diagram of the transmit path. Because the RS-232
protocol is so much slower than today’s processor interfaces, wait-
ing for the output corresponding to the last CPU write cycle would
introduce huge gaps in the input stimulus, as shown in Figure 5-21.
The design would definitely not be verified under maximum input
stress conditions.

194 Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Complex Response

To stress the input of the design under maximum data rate condi-
tion, the testcase must decouple the input generation from the out-
put verification. The stimulus generation part would issue write
cycles as fast as it could, as long as the design can accept the data to
be transmitted. It would stop generating write cycles only when the
FIFO was full and the CPU interface signals that it can no longer
accept data. The output would be verified in parallel, checking that
the words that were sent to the design via the CPU interface were
properly received via the serial interface. Figure 5-22 shows the
timing of checking the output independently from generating the
input. Gaps in the input sequence are created by the design’s own
inability to sustain the input rate, not by a limitation of the verifica-
tion procedure.

Handling Unknown or Variable Latency

Test vectors can-
not deal with vari-
able latency.

When using test vectors, you have to assume a specific delay
between the input and its corresponding output. The delay is
expressed in terms of the number of clock cycles it takes for the
input value to be processed into its output value. This delay is
known as the latency of the design. Latency is usually a by-product
of the architecture of the design and is a side-effect of the pipelining
required to meet the register-to-register timing constraints. The spe-
cific latency of a design is normally known only toward the very
end of the RTL design process. A specific latency is rarely a design
requirement. If a specific latency is not a requirement, why enforce
one in the verification?

Writing Testbenches: Functional Verification of HDL Models 195

Stimulus and Response

Verify only the
characteristics that
define functional
correctness.

In the UART design from Figure 5-20, latency is introduced by the
CPU interface, the FIFO and the serial interface. Externally, it
translates into the internal delay shown in Figure 5-21 and
Figure 5-22. The latency of the UART design is functionally irrele-
vant. The functional correctness of the design is solely determined
by the data being transmitted, unmodified, in the same order in
which it was received by the CPU interface. Those are the only cri-
teria the testbench should be verifying. Any other limitations
imposed by the testbench would either limit the freedom of choice
for the RTL designer in implementing the design, or turn into a
maintenance problem for you, the testbench designer.

Stimulus and
response are
implemented using
different execu-
tion threads.

Verification of the output independently from the stimulus genera-
tion requires that each be implemented in separate execution
threads. Each must execute independently from the other, i.e., in
separate parallel constructs (processes in VHDL, always or initial
blocks and fork/join statements in Verilog). These execution threads
need to be synchronized at appropriate points. Synchronization is
required to notify the response checking thread that the stimulus
generation thread is entering a different phase of the test sequence.
It is also required when either thread has completed its duty for this
portion of the test sequence and the other thread can move on to the
next phase.

event sync;
initial
begin: stimulus

-> sync;

end

initial
begin: response

@ (sync);

end

Sample 5-49.
Using a named
event in Ver-
ilog

Synchronize
threads using fork/
join or named
events in Verilog
or signal activity
in VHDL.

In Verilog, implicit synchronization occurs when using the fork/join
statement. Explicit synchronization is implemented using the
named event, as illustrated in Sample 5-49. In VHDL, synchroniza-
tion is implemented using a toggling signal, as shown in Sample 5-
50. The actual value of the boolean signal is irrelevant. The infor-

196 Writing Testbenches: Functional Verification of HDL Models

...

...

...

...

Complex Response

mation is in the timing of the value-change. Alternatively, the
'transaction signal attribute can be used to synchronize a process
with the assignment of a value to a signal, as shown in Sample 5-
51. Pop quiz: why use the 'transaction attribute and not simply wait

for the event on the signal caused by the new value?10

Sample 5-50.
Using a tog-
gling boolean
in VHDL

architecture test of bench is
signal sync: boolean;

begin
stimulus: process
begin

sync <= not sync;

end process stimulus;

response: process
begin

wait on sync;

end process response;
end test;

architecture test of bench is
signal expect: integer;

begin
stimulus: process
begin

expect <= ...;

end process stimulus;

response: process
begin

wait on expect’transaction;

end process response;
end test;

Sample 5-51.
Using the
'transaction
attribute in
VHDL

10. Because the assignment of the same value, twice in a row, will not cause
an event on the signal. To synchronize to the assignment of any value
on a signal, you must be sensitive to any assignment, even of values that
do not cause an event. That’s what the 'transaction attribute identifies.

Writing Testbenches: Functional Verification of HDL Models 197

...

...

...

...

...

...

...

...

...

Stimulus and Response

Figure 5-23 shows the execution threads for the verification of the
UART transmit path. It also shows the synchronization points when
the testcase switches from loading a new configuration in the
UART to actively transmitting data, and vice-versa.

The Verilog implementation of the execution threads shown in
Figure 5-23 is detailed in Sample 5-52.

initial
begin

... // Init simulation

fork: config_phase
begin

... // Config
disable config_phase

end
begin

... // Check output remains idle
end

join

fork: data_phase
begin

... // Write data to send via CPU i/f
end
begin

... // Check data sent serially
end

join

... // Terminate simulation
end

Sample 5-52.
Implementing
execution
threads in Ver-
ilog

Controlling execu-
tion threads is sim-
plified by using
the fork/join state-
ment.

The implementation in VHDL is a little more complex. Since
VHDL lacks the fork/join statement, individual processes must be
used. A process must be selected as the “master” process. The mas-
ter process controls the synchronization of the various execution
threads in the testcase. The master process can be a separate process
whose sole function is to control the execution of the testcase. It

198 Writing Testbenches: Functional Verification of HDL Models

Complex Response

could also be one of the execution threads, usually one of the stimu-
lus generation threads. An emulation of the fork/join statement, as
shown in “Fork/Join Statement” on page 134, could be used. In
Sample 5-53, a simple synchronization scheme using a different
signal for each synchronization point is used.

Sample 5-53.
Implementing
execution
threads in
VHDL

architecture test of bench is
signal sync1, syn2, sync3, done: boolean;

begin
stimulus: process
begin

... -- Init simulation
sync1 <= not sync1;
... loop

... -- Config via CPU i/f
sync2 <= not sync2;
... -- Write data to send via CPU i/f;
-- Wait for data to be received
wait on sync3;

end loop;
done <= true;
wait;

end process stimulus;

response: process
begin

-- Wait until init is complete
wait on sync1;
loop

-- Check output is idle while config
wait until Tx /= ’0’ or

sync2’event or done;
if done then

-- Terminate simulation
assert FALSE severity FAILURE;

end if;
assert Tx = ’0’ . . . ;
... -- Verify data sent serially
sync3 <= not sync3;

end loop;
end process response;

end test;

Abstracting Output Operations

Output operations
can be encapsu-
lated.

Earlier in this chapter, we encapsulated input operations to abstract
the stimulus generation from individual signals and waveforms to

Writing Testbenches: Functional Verification of HDL Models 199

Stimulus and Response

generating sequences of operations. A similar abstraction can be
used for verifying the output. The repetitiveness of output signals is
taken care of and verified inside the subprograms. The output veri-
fication thread simply passes the expected output value to the mon-
itor subprogram.

Arguments include
expected value and
configuration
parameters.

The input operations takes as argument the specific value to use to
generate the stimulus. Conversely, the output operations, encapsu-
lated using tasks in Verilog, or procedures in VHDL, take as argu-
men the value expected to be produced by the design. If the format
or protocol of the output operation is configurable, its implementa-
tion should be configurable as well.

A perfect example is the operation to verify the serial output in a
UART transmit path, shown in Figure 5-20. It is as highly config-
urable as its input counterpart, detailed in Sample 5-48. The differ-
ence is that it compares the specified value with the one received,
and compares the received parity against its expected value based
on the received data and the configuration parameters. An imple-
mentation of the RS-232 receiver operation is detailed in Sample 5-
54. It assumes that the configuration is specified using a user-

Sample 5-54.
Implementa-
tion of the RS-
232 serial
receive opera-
tion

subtype byte is std_logic_vector(7 downto 0) ;
procedure recv(signal rx : in std_logic;

expect: in byte;
config: in rs232_cfg_typ)

is
variable period : time;
variable actual: byte := (others => ’0’);

begin
period := 1 sec / config.baud_rate;
wait until rx = ’1’; -- Wait for start bit
wait for period / 2; -- Sample mid-pulse
for I in config.n_bits downto 0 loop

wait for period;
actual (I) := rx; -- 7-8 data bits

end loop;
assert actual = expect; -- Compare
-- Parity bit?
if (config.parity /= no_parity) then

wait for period;
assert rx = parity(actual, config.parity);

end
wait for period; -- Stop bit
assert rx = ’0’;

end recv;

200 Writing Testbenches: Functional Verification of HDL Models

Complex Response

defined record type. A function to compute the parity of an array of
bits, based on a configurable parity value, is also assumed to exist.
This parity function could use the xor_reduce function available in
Synopsys’s std_logic_misc package.

Consider all possi-
ble failure modes.

The procedure shown in Sample 5-54 has some potential problems
and limitations. What if the output being monitored is dead and the
start bit is never received? This procedure will hang forever. It may
be a good idea to provide a maximum delay to wait for the start bit
via an additional argument, as shown in Sample 5-55, or to compute
a sensible maximum delay based on the baud rate. Notice how a
default argument value is used in the procedure definition to avoid
forcing the user to specify a value when it is not relevant, as shown
in Sample 5-56, or to avoid modifying existing code that was writ-
ten before the additional argument was added.

procedure recv(signal rx : in std_logic;
expect : in byte;
config : in rs232_cfg_typ:
timeout: in time

:= TIME'high)
is

begin

wait until rx = ’1’ for timeout;
assert rx = ’1’;

end recv;

Sample 5-55.
Providing an
optional time-
out for the RS-
232 serial
receive opera-
tion

process
begin

recv(rx, "01010101", cfg_9600_8N1, 100 ms);
recv(rx, "10101010", cfg_9600_8N1);

end process;

Sample 5-56.
Using the RS-
232 serial
receive opera-
tion

Do not arbitrarily
constrain the oper-
ation.

The width of pulses is not verified in the implementation of the RS-
232 receive operation in Sample 5-54. Should it? If you assume that
the procedure is used in a controlled, 100 percent digital environ-
ment, then verifying the pulse width might make sense. This proce-
dure could also be used in system-level verification, where the
serial signal was digitized from a noisy analog transmission line as

Writing Testbenches: Functional Verification of HDL Models 201

...

..

...

...

...

Stimulus and Response

illustrated in Figure 5-24. In that environment, the shape of the
pulse, although unambiguously carrying valid data, most likely
does not meet the rigid requirements of a clean waveform for a spe-
cific baud rate. Just as in real life, where modems fail to communi-
cate properly if their baud rates are not compatible, an improper
waveform shape is detected as invalid data being transmitted.

Generic Output Monitors

Verifying the value
in the output moni-
tor is too restric-
tive.

The output verification operation, as encapsulated in Sample 5-54,
has a very limited application. It can be only used to verify that the
output value matches a predefined expected value. Can you imag-

Sample 5-57.
Generic RS-
232 serial
receive opera-
tion

subtype byte is std_logic_vector(7 downto 0);
procedure recv(signal rx : in std_logic;

actual: out byte;
config: in rs232_cfg_typ)

is
variable period: time;
variable data : byte;

begin
period := 1 sec / config.baud_rate;
wait until rx = ’1’; -- Wait for start bit
wait for period / 2; -- Sample mid-pulse
data(7) := '0'; -- Handle 7 data bits
for I in config.n_bits downto 0 loop

wait for period;
data(I) := rx; -- 7-8 data bits

end loop;
-- Parity bit?
if (config.parity /= no_parity) then

wait for period;
assert rx = parity(data, config.parity);

end
wait for period; -- Stop bit
assert rx = ’0’;
actual := data;

end recv;

202 Writing Testbenches: Functional Verification of HDL Models

Complex Response

ine other possible uses? What if the output value can be any value
within a predetermined set or range? What if the output value is to
be ignored until a specific sequence of output values is seen? What
if the output value, once verified, needs to be fed back to the stimu-
lus generation? The usage possibilities are endless. It is not possi-
ble, a priori, to determine all of them nor to provide a single
interface that satisfies all of their needs.

Separate monitor-
ing from value
verification.

The most flexible implementation for an output operation monitor
is to simply return to the caller whatever output value was just
received. It will be up to a “higher authority” to determine if this
value is correct or not. The RS-232 receiver was modified in Sam-
ple 5-57 to return the byte received without verifying its correct-
ness. The parity, being independent of the correctness of the value
and fully contained within the RS-232 procotol, can still be verified
in the procedure.

Monitoring Multiple Possible Operations

The next opera-
tion on an output
interface may not
be predictable.

You may be in a situation where more than one type of operation
can happen on an output interface. Each would be valid and you
cannot predict which specific operation will come next. An exam-
ple would be a processor that executes instructions out of order.
You cannot predict (without detailed knowledge of the processor
architecture) whether a read or a write cycle will appear next on the
data memory interface. The functional validity is determined by the
proper access sequence to related data locations.

Sample 5-58.
Processor test
program

load A, R0
load B, R1
add R0, R1, R2
sto R2, X
load C, R3
add R0, R3, R4
sto R4, Y

Verify the
sequence of
related operations.

For example, consider the testcase composed of the instructions in
Sample 5-58. It has many possible execution orders. From the per-
spective of the data memory, the execution is valid if the conditions
listed below are true.

1.

2.

Location A is read before location X and Y are written.

Location B is read before location X is written.

Writing Testbenches: Functional Verification of HDL Models 203

Stimulus and Response

3.

4.

5.

Location C is read before location Y is written.

Location X must be written with the value A+B.

Location Y must be written with the value A+C.

These are the sufficient and necessary conditions for a proper exe-
cution of the test program. Verifying for a particular order of the
individual cycle overconstrains the testcase.

Write an operation
“dispatcher” task
or procedure.

How do you write an encapsulated output monitor when you do not
know what kind of operation comes next? You must first write a
monitor that identifies the next cycle after it has started. It verifies
the preamble to all operations on the output interface until it
becomes unique to a specific operation. It then returns any informa-
tion collected so far and identifies, to the testbench, which cycle is
currently underway. It is up to the testbench to then call the appro-
priate task or procedure to complete the verification of the opera-
tion.

Sample 5-59 shows the skeleton of a monitor task that identifies
whether the next operation for a CPU is a read or a write cycle.
Since the address has already been sampled by the time the decision
of the type of cycle was made, it is returned along with the current
cycle type. Sample 5-60 shows how this operation identification
task is used by the testbench to determine the next course of action.

Sample 5-59.
Monitoring
many possible
output opera-
tions

parameter READ_CYCLE = 0,
WRITE_CYCLE = 1;

time last_addr;
task next_cycle_is;

output cycle_kind;
output [23:0] address;

begin
@ (negedge ale);
address = addr;
cycle_kind =

(rw == 1’b1) ? READ_CYCLE : WRITE_CYCLE;
#(Tahold);
if ($time - last_addr < Tahold + Tasetup)

$write("Setup/Hold time viol, on addr\n");
end
endtask

always @ (addr) last_addr = $time;

204 Writing Testbenches: Functional Verification of HDL Models

Complex Response

Sample 5-60.
Handling
many possible
output opera-
tions

initial
begin: test_procedure

reg cycle_kind;
reg [23:0] addr;

next_cycle_is(cycle_kind, addr);
case (cycle_kind)
READ_CYCLE: read_cycle(addr);
WRITE_CYCLE: write_cycle(addr);
endcase

end

In this case, we assume the existence of two tasks, one for each pos-
sible operation, which completes the monitoring of the remainder
of the cycle currently under way.

Monitoring Bi-Directional Interfaces

Output interfaces
may need to reply
with “input” data.

We have already seen that input operations sometimes have to mon-
itor some signals from the design under verification. The same is
true for output monitor. Sometimes, they have to provide data back
as an answer to an “output” operation. This blurs the line between
stimulus and response. Isn’t a stimulus generation subprogram that
verifies the control or feedback signals from the design also doing
response checking? Isn’t a monitor subprogram that replies with
new data back to the design also doing stimulus generation?

Generation and
monitoring per-
tains to the ability
to initiate an oper-
ation.

The terms generator and monitor become meaningless if they are
attached to the direction of the signals being generated or moni-
tored. They regain their meaning if you attach them to the initiation
of operations. If a procedure or a task initiates the operation, it is a
stimulus generator. If the procedure or task sits there and waits for
an operation to be initiated by the design, then it is an output moni-
tor. The latter also includes ancilliary tasks to complete a cycle cur-
rently underway, as discussed in “Monitoring Multiple Possible
Operations” on page 203.

Bridges have bi-
directional output
interfaces.

The downstream master interface on a bus bridge is the perfect
example of a bi-directional “output” interface. The bridge is the
design under verification. An example, illustrated in Figure 5-25, is
a bridge between a proprietary on-chip bus and a PCI interface. The
cycles are initiated on the on-chip bus (upstream). If the address
falls within the bridge’s address space, it translates the cycle onto

Writing Testbenches: Functional Verification of HDL Models 205

...

Stimulus and Response

the PCI bus (downstream). This bridge allows master devices on
the on-chip bus to transparently access slave devices on the PCI
bus.

Using a memory to
test a CPU inter-
face can mask cer-
tain classes of
problems.

To verify this bridge, you would need an on-chip bus cycle genera-
tor and a PCI bus cycle monitor, as illustrated in Figure 5-26. Many
would be tempted to use a model of a memory (which, for PCI, are
readily available from model suppliers), instead of a PCI monitor.
The verification would be accomplished by writing a pattern in the
memory then reading it back. Using a memory would not catch sev-
eral types of problems masked by the readback operations.

For example, what if the bridge designer misreads the PCI specifi-
cation document and implements the address bus using little endian
instead of big endian? During the write cycle, address
0xDEADBEEF on the on-chip bus is translated to the physical
address 0xEFBEADDE on the PCI bus, writing the data in the
wrong memory location. The read cycle, used to verify that the
write cycle is correct, also translates address 0XDEADBEEF to
0xEFBEADDE and reads the data from the same, but invalid loca-
tion. The testbench does not have the necessary visibility to detect
the error.

Use a monitor that
detects the PCI
cycles and notifies
the testbench.

Using a generic PCI monitor to verify the output detects errors that
would be masked by using a write-readback process. The PCI mon-
itor task or procedure would watch the bus until it determined the
type of cycle being initiated by the bridge. To ease implementation,
this task or procedure usually continues to monitor the bus while
the cycles remain identical (i.e. for the entire address phase).
Assuming that the bridge’s implementation is limited to generating

206 Writing Testbenches: Functional Verification of HDL Models

Complex Response

Assuming that the bridge’s implementation is limited to generating
PCI memory read and write cycles, the monitor task or procedure
would then return, identifying the cycle as a memory read or write
and the address being read or written. The skeleton for a PCI bus
monitor is shown in Sample 5-61.

Sample 5-61.
Monitoring
many possible
PCI cycles

parameter MEM_RD = 0,
MEM_WR = 1;

task next_pci_cycle_is;
output cycle_kind;
ouptut [31:0] address;

begin
// Wait for the start of the cycle
@ (posedge pci_clk);
while (frame_n !== 1'b0) @ (posedge pci_clk);
// Sample command and address
case (cbe_n)
4’b0110: cycle_kind = MEM_RD;
4’b0111: cycle_kind = MEM_WR;
default: $write("Unexpected cycle type!\n");
endcase
address = ad;

end
endtask

You must be able
to verify different
possible answers
by the bus monitor.

The really interesting part comes next. In PCI, read and write cycles
can handle arbitrary length bursts of multiple data values in a single
cycle. A read cycle can read any number of consecutive bytes and a
write cycle can write any number of consecutive bytes. The PCI
master is under control of the length of the burst, but the number of
bytes involved in a cycle is not specified in the preamble. Data must
be read or written by the slave for as long as the master keeps read-
ing or writing them.

In a VHDL procedure, implementing a monitor for the write cycle,
you could use an access value to an array of bytes to return all of
the data values that were written during a burst. The instance of the
array object would be dynamically allocated with the proper con-
straints according to the number of bytes read. An example is
shown in Sample 5-62. But what about read cycles where the test-
bench cannot know, a priori, how many bytes will be read? And
what about Verilog which does not support arrays of bytes on inter-
faces, let alone unconstrained arrays?

Writing Testbenches: Functional Verification of HDL Models 207

Stimulus and Response

Sample 5-62.
Monitoring
burst write
cycles in
VHDL

subtype byte is std_logic_vector(7 downto 0);
type byte_array_typ is array(natural range <>)

of byte;
type burst_data_typ is access byte_array_typ;

procedure next_pci_cycle_is(...);

procedure pci_mem_write_cycle(
-- PCI bus interface as signal class formals
signal pci_clk: in std_locic;

-- Pointer to data values written during cycle
variable data_wr: out burst_data_typ);

A monitor can be
composed of sev-
eral tasks or proce-
dures that must be
appropriately
called by the test-
bench.

The PCI bus monitor has been implemented by slicing the PCI
cycles into at least two procedures: one to handle the generic pre-
amble and detect the type of cycle under way, the other intended to
handle the remainder of each cycle.

The solution to our dilemma is to slice the implementation of the
PCI bus monitor even further: use a procedure to handle each data
transfer and one to handle the cycle termination.

The data transfer procedure or task would have an input or output
argument for the data read or written, and an output argument to
indicate whether to continue with more data transfers or terminate
the cycle. Figure 5-27 illustrates how each procedure is sequenced,
under the control of the testbench, to form a complete PCI cycle. A
similar slicing strategy would be used in creating a PCI bus genera-
tor. The only exception being that the generator is now under the
control of the initiation of the cycle and its duration.

Provide the con-
trols at the proper
level of granular-
ity.

Slicing the implementation of the PCI cycle at the data transfer
level offers an additional opportunity. In PCI, both master and slave
can throttle the transfer rate by asserting the irdy_n and trdy_n sig-
nals, respectively, when they are ready to complete a transfer.

208 Writing Testbenches: Functional Verification of HDL Models

...

Complex Response

A procedure or a task implementing a single data transfer can have
an additional parameter specifying the number of clock cycles to
wait before asserting the trdy_n signal. Another could be used to
specify whether to force one of the target termination exception. It
can also report that a master-initiated exception occured during this
data transfer, such as a timeout, a system error, or a parity error.

The testbench would then be free to “generate” any number of pos-
sible answers to a PCI cycle. With the tasks outlined in Sample 5-
61 and Sample 5-63, the possibilities become endless! One of these
possibilities is shown in Sample 5-64.

Sample 5-63.
PCI data trans-
fer and termi-
nation tasks

// Target terminations
parameter NORMAL = 0,

RETRY = 1,
DISCONNECT = 2,
ABORT = 3;

// Output status
parameter TERMINATE = 0,

CONTINUE = 1,
INITIATOR_ABORT = 2,
PARITY_ERROR = 3,
SYS_ERROR = 4;

task pci_data_rd_xfer;
input [31:0] rd_data;
input [7:0] delay;
input [1:0] termination;
output [2:0] status;

endtask

task pci_data_wr_xfer;
output [31:0] wr_data;
input [7:0] delay;
input [1:0] termination;
output [2:0] status;

endtask

task pci_end_cycle;
output [2:0] status;

endtask

Writing Testbenches: Functional Verification of HDL Models 209

...

...

...

Stimulus and Response

Sample 5-64.
Monitoring a
complete PCI
cycle

initial
begin: test_procedure

fork
begin: on_chip_side

// Generate a long read cycle on the
// On-Chip bus side

end
begin: pci_side

reg kind;
reg [31:0] addr;
integer delay;
integer ok;

// Expect a read cycle on the PCI side
// at the proper address
next_pci_cycle_is(kind, addr);
if (kind != MEM_RD) ...
if (addr !=...) ...

// Send back 5 random data words
// with increasing delays in readiness
// then force a target abort on the 6th.
delay = 0;
repeat (5) begin

pci_data_rd_xfer($random, delay,
NORMAL, ok);

if (ok !== CONTINUE) ...
delay = delay + 1;

end
pci_data_rd_xfer($random, 0, ABORT, ok);

end
join

end

Using a monitor
simplifies the
testcase.

Using the generic PCI bus monitor also shortens the testcase com-
pared to using a memory. With the monitor, you have direct access
to all of the bus values. It is not necessary to write into the memory
for the entire range of address and data values, creating interesting
test patterns that highlight potential errors. With a monitor, only a
few addresses and data values are sufficient to verify that the bridge
properly translates them. It is also extremely difficult to control the
answers provided by the memory to test how the bridge reacts to
bus exceptions. These exception conditions become easy to setup
with a generic monitor designed to create them.

210 Writing Testbenches: Functional Verification of HDL Models

...

Predicting the Output

PREDICTING THE OUTPUT

The unstated assumption in implementing self-checking test-
benches is that you have detailed knowledge of the output to be
expected. Knowing exactly which output to expect and how it can
be verified to determine functional correctness is the most crucial
step in verification. In some cases, such as RAMs or ROMs, the
response is easy to determine. In others, such as a video compressor
or a speech synthesizer, the response is much more difficult to
define. This section examines various families of designs and show
how the expected response could be determined and communicated
to the output monitors.

Data Formatters

The expected out-
put equals the
input.

There is a class of designs where the input information is not trans-
formed, but simply reformated. Examples include UARTs, bridges,
and FIFOs. They have the simplest output prediction process. Since
the information is not modified, predicting the output is a simple
matter of knowing the sequence of input values.

Forwarding one
value at a time
under-constrains
the design.

Passing data values, one at a time, from the stimulus generator to
the response monitor, as illustrated in Figure 5-28, is usually not
appropriate. This limits the data rate to one every input and output
cycle and may not stress the design under worse conditions. Pipe-
lined designs cannot be verified using this stategy: input must be
continuously supplied while their corresponding response has not
yet appeared on the output.

A short data
sequence can be
implemented in a
global array.

If the input sequence is short and predetermined, using a global data
sequence table is the simplest approach. Both the input generator
and output monitor use the global table. The input generator applies
each value in sequence. The output monitor compares each output
value against the sequence of values in the global table. Figure 5-29

Writing Testbenches: Functional Verification of HDL Models 211

Stimulus and Response

illustrates the flow of information while Sample 5-65 shows an
implementation in VHDL.

Sample 5-65.
Implementa-
tion of a glo-
bal data
sequence table

architecture test of bench is
type std_lv_ary_typ is array(natural range <>)

of std_logic_vector(7 downto 0);
constant walking_ones: std_lv_ary_typ(1 to 8)

:= ("10000000",
"01000000",
"00100000",
"00010000",
"00001000",
"00000100",
"00000010",
"00000001");

begin
DUV: ...

stimulus: process
begin

for I in walking_ones'range loop
apply(walking_ones(I), ...);

end loop;
wait;

end process stimulus;

response: process
begin

for I in walking_ones'range loop
expect(walking_ones(I), ...);

end loop;
assert false severity failure;

end process response;
end test;

212 Writing Testbenches: Functional Verification of HDL Models

Predicting the Output

Long data
sequence can use a
FIFO between the
generator and
monitor.

Often the input sequence is long or computed on-the-fly. It is not
practical for hardcoding in a global constant. A FIFO can be used to
forward expected values from the stimulus generator to the output
monitor. The input generator puts each value in sequence in one end
of the FIFO. The output monitor compares each output value
against the sequence of values dequeued from the other end of the
FIFO. This strategy is a simple extension of the concept of forward-

Sample 5-66.
Implementa-
tion using a
FIFO to for-
ward data val-
ues

task put_fifo;

endtask

function [7:0] get_fifo;

endfunction

initial
begin: stimulus

reg [7:0] data;

repeat (...) begin
data = ...;
put_fifo(data);
apply(data);

end
end

initial
begin: response

reg [7:0] data;

repeat (...) begin
data = get_fifo(0);
expect(data);

end
$finish;

end

Writing Testbenches: Functional Verification of HDL Models 213

...

...

Stimulus and Response

ing a single value at a time. It is illustrated in Figure 5-30. Notice
how the architecture of the testbench is identical to the one illus-
trated in Figure 5-28. The code in Sample 5-66 shows the imple-
mentation structure in Verilog of a testbench using a FIFO. The
implementation of the FIFO itself is left as an exercise to the reader.

The stimulus and
response pro-
cesses can read the
same data file.

Sometimes, the data sequence is externally generated and supplied
to the testbench using a data file. A file can be read, concurrently,
by more than one process. Thus, the stimulus generator and
response monitor can both read the file, using it in a fashion similar
to a global array. The code in Sample 5-67 illustrates how this strat-
egy could be implemented in VHDL. The filename is assumed to be

Sample 5-67.
Implementa-
tion using an
external data
file

entity bench is
generic (datafile: string);

end bench;

architecture test of bench is
begin

DUV: ...

stimulus: process
file infile : text is in datafile;
variable L : line;
variable dat: std_logic_vector(7 downto 0);

begin
while not endfile(infile) loop

readline(infile, L);
read(L, dat);
apply(dat, ...);

end loop;
wait;

end process stimulus;

response: process
file infile : text is in datafile;
variable L : line;
variable dat: std_logic_vector(7 downto 0);

begin
while not endfile(infile) loop

readline(infile, L);
read(L, dat);
expect(dat, ...);

end loop;
assert false severity failure;

end process response;
end test;

214 Writing Testbenches: Functional Verification of HDL Models

Predicting the Output

passed to the testbench via the command line using a generic of
type string.

Packet Processors

Packets have
untouched data
fields.

This family of designs uses some of the input information for pro-
cessing, sometimes transforming it. But it leaves portions of the
input untouched and forwards it, intact, all the way through the
design to an output. Examples abound in the datacom industry.
They include Ethernet hubs, IP routers, ATM switches, and SONET
framers.

Use the untouched
fields to encode
the expected tran-
formation.

The portion of the data input that passes, untouched, through the
design under verification can be put to good use. It is often called
payload and the term packet or frame is often used to describe the
unit of data processed by the design. You must first determine,
through a proper testcase, that the payload information is indeed not
modified by the design. Subsequently, it can be used to describe the
expected output for this packet. For each packet received, the out-
put monitor uses the information in the payload to determine if it
was appropriately processed.

This simplifies the
testbench control
structure.

Figure 5-31 shows the structure of a testbench for a four-input and
four-output packet router. Notice how the output monitors are com-
pletely autonomous. This type of design usually lends itself to the
simplest testbench control structures, assuming that the output
monitors are sufficiently intelligent. The control of this type of test-
bench is simple because all the processing (stimulus and generation
of expected response) is performed in a single location: the stimu-
lus generator. Some minor orchestration between the generators
may be required in some testcases when it is necessary to synchro-
nize traffic patterns to create interesting scenarios.

215Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Include all neces-
sary information in
the payload to
determine func-
tional correctness.

The payload must contain all necessary information to determine if
a particular packet came out of the appropriate output, and with the
appropriate transformation of its control information.

For example, assume the success criteria is that the packets for a
given input stream be received in the proper order by the proper
output port. The payload should contain a unique stream identifier,
a sequence number, and an output port identifier, as shown in
Figure 5-32.

The output monitor needs to verify that the output identifier
matches its own identifer. It also needs to verify that the sequence
number is equal to the previously-received sequence number in that
stream plus one, as outlined in Sample 5-68. The Verilog records
are assumed to be implemented using the technique shown in
“Records” on page 105.

Sample 5-68.
Implementa-
tion using pay-
load informa-
tion to
determine
functional cor-
rectness

always
begin: monitor

reg ‘packet_typ pkt;

receive_packet(pkt);
// Packet is for this port?
if (pkt‘out_port_id !== my_id) ... ;
// Packet in correct sequence?
if (last_seq[pkt‘strm_id] + 1

!= pkt‘seq_num) ...;
// Reset sequence number
last_seq[pkt‘strm_id] = pkt‘seq_num;

end

Complex Transformations

The last family of designs processes and transforms the input data
completely and thoroughly. The expected output can be only deter-
mined by reproducing the transformation using alternative means.
This includes reversing the process where you determine which
input sequence to provide in order to produce a desired output.

216 Writing Testbenches: Functional Verification of HDL Models

Predicting the Output

Use a truly alterna-
tive computation
method.

When reproducing the transformation, to determine which output
value to expect, as illustrated in Figure 5-33, you must use a differ-
ent implementation of the transformation algorithm. For example,
you can use a reference C model. For a DSP implementation, you
could use floating-point expressions and the predefined real data
types to duplicate the processing that is performed using fixed-
point operators and data representation in the design.

Use a different
programming
model for the out-
put monitor.

If you are providing an input sequence to produce a specific output
pattern, use a different programming model for the output monitor.
The programming model for the design was chosen to ease imple-
mentation - or even to make it possible. Having almost no con-
straints in behavioral HDL models, you can choose a programming
model that is more natural, to express the expected output. Using a
different programming model also forces your mind to work in a
different way when specifying the input and output, creating an
alternative verification path.

Example: a wave-
form generator.

For example, you could be verifying a design that generates arbi-
trary digital waveforms. The input could specify, for each clock
cycle, the position of up to three rising or falling edges within the
clock period. Each transition is specified using two parameters. A
level bit indicates the final logic level after the transition and a 10-
bit offset value indicates the position of the transitions within the 10
ns clock period, with a resolution of 9.7 ps (or 10 ns / 1024).
Assuming that the waveform in Figure 5-34 represents an interest-
ing testcase, Figure 5-35 shows how it is sliced to create the input

Writing Testbenches: Functional Verification of HDL Models 217

Stimulus and Response

sequence and Sample 5-69 shows how the stimulus could be gener-
ated.

Sample 5-69.
Generating the
input for the
waveform
generator

initial
begin: stimulus

repeat (10) begin
apply(1’b0, $realtobits(0.0),

1’b1, $realtobits(1.0) ,
1’b0, $realtobits(9.0)) ;

apply(1’b1, $realtobits(0.0),
1’b0, $realtobits(1.0),
1’b1, $realtobits(9.0));

end
end

Choose a different
but reliable way of
representing the
output.

How should the output be represented? If we use a slicing method
similar to the input’s, it would not provide for an alternative pro-
gramming model. Furthermore, the implementation could miss
transitions or events between slices. The output waveform has no
relationship with the clock. Trying to specify the expected output
using clock-based slices would simply over-constrain the test. The
validity of the output waveform is entirely contained in the relative
position of the edges. So why not specify the expected output using

Sample 5-70.
Monitoring the
generated
waveform

monitor: process
begin

wait until wave = ’1’;
for I in 1 to 10 loop

wait on wave;
assert wave’delayed’last_event = 8 ns;
wait on wave;
assert wave’delayed’last_event = 1 ns;
wait on wave;
assert wave’delayed’last_event = 1 ns;

end loop;
assert false severity failure;

end process monitor;

218 Writing Testbenches: Functional Verification of HDL Models

Summary

an edge-to-edge specification? Assuming that the output is initial-
ized to a level of ‘0’, an implementation of the output monitor is
shown in Sample 5-70.

The 'delayed
attribute must be
used to look before
the wait statement.

The 'delayed signal attribute must be used, otherwise 'last_event
always returns 0 since the signal wave just had an event to resume
the execution of the previous wait statement. The 'delayed attribute
delays the wave signal by one delta cycle. The delayed wave signals
looks to the 'last_event attribute as if it were before the execution of
the wait statement. Notice how this monitor simply waits for the
first rising edge of the output monitor to anchor its edge-to-edge
relationships. This makes the monitor completely independent of
the latency and intrinsic delays in the design.

Do not enforce
unnecessary preci-
sion.

There is one problem with the verification of the delay between
edges in Sample 5-70. Each delay is compared to a precise value.
However, the design has a resolution of 9.7 ps. Each delay is valid
if it falls in the range of the ideal delay value plus or minus the res-
olution, as shown in Sample 5-71.

Sample 5-71.
Handling
uncertainty in
the generated
waveform

monitor: process
function near(val, ref: in time)

return boolean is
constant resolution: time := 9700 fs;

begin
return ref - resolution <= val and

val <= ref + resolution;
end near;

begin
wait until wave = ’1’;
for I in 1 to 10 loop

wait on wave;
assert near(wave’delayed’last_event, 8 ns);
wait on wave;
assert near(wave’delayed’last_event, 1 ns);
wait on wave;
assert near(wave’delayed’last_event, 1 ns) ;

end loop;
assert false severity failure;

end process monitor;

SUMMARY

In this chapter, I have described how to use bus-functional models
to generate stimulus and monitor response. The bus-functional

Writing Testbenches: Functional Verification of HDL Models 219

Stimulus and Response

models were used to translate between high-level data representa-
tions and physical implementation levels. They also abstracted the
interface operations, removing the testcases from the detailed
implementation of each physical interface. Some of these bus-func-
tional models can be very complex, depending on feed-back from
the device under verification to operate properly or having to sup-
ply handshake information back to the device.

This chapter, after highlighting the problems with visual inpection,
also described how to make each individual testbench completely
self-checking. The expected response must be embedded in the test-
bench at the same time as the stimulus. Various strategies for deter-
mining the expected response and communicating it to the output
monitors have been presented.

220 Writing Testbenches: Functional Verification of HDL Models

ARCHlTECTING
TESTBENCHES

CHAPTER 6

A testbench need not be a monolithic block. Although Figure 1-1
shows the testbench as a big thing that surrounds the design under
verification, it need not be implemented that way. The design is
also shown in a single block and it is surely not implemented as a
single unit. Why should the testbench by any different?

In Chapter 5, we focused on the generation and monitoring of the
low-level signals going into and coming out of the device under
verification. I showed how to abstract them into operations using
bus-functional models. Each were implemented using a procedure
or a task. The emphasis was on the stimulus and response of inter-
faces and the need for managing separate execution threads. If you
prefer a bottom-up approach to writing testbenches, I suggest you
start with the previous chapter.

This chapter concentrates on implementing the many testbenches
that were identified in your verification plan. I show how to best
structure the stimulus generators and response monitors to mini-
mize maintenance, facilitate implementing a large number of test-
benches, and promote the reusability of verification components.

The previous
chapter was
about low-level
testbench com-
ponents.

This chapter
focuses on the
structure of the
testbench.

REUSABLE VERIFICATION COMPONENTS

This section describes how to plan the architecture of testbenches.
The goal is to maximize the amount of verification code reused
across testbenches to minimize the development effort. The test-

Writing Testbenches: Functional Verification of HDL Models 221

Architecting Testbenches

module testbench;

reg rst, d0, d1, sel, clk;
wire q, qb;

muxed_ff duv(d0, d1, sel, q, qb, clk, rst);

parameter cycle = 100,
Tsetup = 15,
Thold = 5;

always
begin

#(cycle/2) clk = 1’b0;
#(cycle/2) clk = 1’bl;

end

task sync_reset;

endtask

task load_d0;
input data;

begin
rst <= 1’b0;
d0 <= data;
dl <= ~data;
sel <= 1’b0;
@ (posedge clk);
#(Thold);
if (q !== data || qb !== ~data) ...
{rst, d0, d1, sel} <= 4'bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

task load_d1;

endtask

initial
begin: test_sequence

sync_reset;
load_d0(1’b1);

$finish;
end
endmodule

Sample 6-1.
Implementing
the muxed
flip-flop test-
bench in Ver-
ilog

222 Writing Testbenches: Functional Verification of HDL Models

...

...

...

Reusable Verification Components

architecture test of bench is
signal rst, d0, d1, sel, q, qb: std_logic;
signal clk: std_logic := ’0’;
component muxed_ff

end component;
constant cycle : time := 100 ns;
constant Tsetup: time := 15 ns;
constant Thold : time := 5 ns;

begin
duv: muxed_ff port map(d0, d1, sel, q, qb,

clk, rst);

clock_generator: clk <= not clk after cycle/2;

test_procedure: process
procedure sync_reset is

end sync_reset;

procedure load_d0(data: in std_logic) is
begin

rst <= ’0’ ;
d0 <= data;
d1 <= not data;
sel <= ’0’ ;
wait until clk = ’1’;
wait for Thold;
assert q == data and qb = not data;
rst <= ’X’;
d0 <= ’X’;
d1 <= ’X’;
sel <= ’X’;
wait for cycle - Thold - Tsetup;

end load_d0;

procedure load_d1(data: in std_logic) is

end load_d1;
begin

sync_reset;
load_d0(’1’);

assert FALSE severity FAILURE;
end process test_procedure;

end test;

Sample 6-2.
Implementing
the muxed
flip-flop test-
bench in
VHDL

Writing Testbenches: Functional Verification of HDL Models 223

...

...

...

...

Writing Testbenches: Functional Verification of HDL Models224

All of the testbenches have to interface, through an instantiation, to
the same design under verification. It is safe to assume that they all
require the use of the same bus-functional models used to generate
stimulus and to monitor response. These bus-functional models
could be reused by all testbenches implemented for this design. If
the interfaces being exercised or monitored by these bus-functional
models have common interfaces found on other designs, they could
even be reused by all testbenches for these other designs.

Instead of a monolithic block, the testbenches should be structured
with a low-level layer of reusable bus-functional models. This low-
level layer is common to all testbenches for the design under verifi-
cation and called the test harness. Each testcase would be imple-
mented on top of these bus-functional models, as illustrated in
Figure 6-1. The testcase and the harness together form a testbench.

Use a low-level
layer of reusable
bus models.

The bus-func-
tional models can
be used by many
testbenches.

With the suprograms located in the testbench module or process,
they can be used by the initial and always blocks or processes
implementing the testcase. The subprograms are simple to imple-
ment because the signals going to the device under verification can
be driven directly through assignments to globally visible signals.
Similarly, the outputs coming out of the device can be directly sam-
pled as they too are globally visible.

Global access to
signals declared at
the module or
architecture level
was allowed.

Bus-functional
models were
assumed to be in
the same process
or module as the
testbench.

In the previous chapter, stimulus generation and response checking
were performed by abstracting operations using procedures or
tasks. It was implied that these subprograms were implemented in
the same process or module as the test sequence using them. Sam-
ple 6-1 shows where the task load_d0, first introduced in Sample 5-
22, would have to be implemented in a Verilog testbench. Sample
6-2 shows the equivalent VHDL implementation.

benches are divided into two major components: the reusable test
harness, and the testcase-specific code.

Architecting Testbenches

Reusable Verification Components

Insert reusable
mid-level utility
routines as
required.

Many testbenches share some common functionality or need for
interaction with the device under verification. Once the low-level
features are verified, the repetitive nature of communicating with
the device under verification can also be abstracted into higher-
level utility routines. For example, low-level read and write opera-
tions to send and receive individual bytes can be encapsulated by
utility routines to send and receive fixed-length packets. These, in
turn, can be encapsulated in a higher-level utility routine to
exchange variable-length messages with guaranteed error-free
delivery.

The testcase can
operate at the
required level of
abstraction.

A testcase verifying the low-level read and write operations would
interface directly with the low-level bus-functional model, as
shown in Figure 6-1. But once these basic operations are demon-
strated to function properly, testbenches dealing with higher-level
functions can use the higher-level utility routines, as shown in
Figure 6-2.

Procedural Interface

Define a proce-
dural interface to
the bus-functional
model and utility
routines.

For these verification components to be reusable by many test-
benches, you must define a procedural interface independent of
their detailed implementation. A procedural interface simply means
that all the functionality of these components is accessed through

Writing Testbenches: Functional Verification of HDL Models 225

Architecting Testbenches

procedures or tasks, never through global variables or signals. It is
similar to providing tasks or procedures to encapsulate operations.
This gives flexibility in implementing or modifying the bus-func-
tional models and utility routines without affecting the testcases
that use them.

Provide flexibility
through thin lay-
ers.

The verification components need to be flexible enough to provide
the required functionality for all testbenches that use them. It is bet-
ter to provide this flexibility by layering utility routines on top of
general purpose lower-level routines and bus-functional models.
This approach creates layers of procedural interfaces. The low-level
layer provides detailed control whereas the higher-level provides
greater abstraction. Do not attempt to implement all functionality in
a single level. It would unduly complicate the implementation of
the bus-functional models and increase the risk of introducing a
functional failure.

Preserve the pro-
cedural interfaces.

By stimulating and monitoring a design through procedural inter-
faces, it removes the testcase from knowing the low-level details of
the physical interfaces on the design. If the procedural interface is
well-designed and can support different physical implementations,
the physical interface of a design can be modified without having to
modify any testbenches.

For example, a processor interface could be changed from a VME
bus to a X86 bus. All that needs to be modified is the implementa-
tion of the CPU bus-functional model. If the procedural interface to
the CPU bus-functional model is not modified, none of the test-
benches need to be modified.

Another example would be changing a data transmission protocol
from parallel to serial. As long as the testcases can still send bytes,
they need not be aware of the change. Once you have defined a pro-
cedural interface, document it and hesitate to change it.

Development Process

Introduce flexibil-
ity as required.

When developing the low-level bus-functional models and the util-
ity routines, do not attempt to write the ultimate verification com-
ponent that includes every possible configuration option and
operating mode. Use the verification plan to determine the func-
tionality that is ultimately required. Architect the implementation of
the verification component to provide this functionality, but imple-

Writing Testbenches: Functional Verification of HDL Models226

Writing Testbenches: Functional Verification of HDL Models 227

Move the testcase
control into a
higher-level of
hierarchy.

The implementation of reusable verification components in Verilog
is relatively simple. Leave the portions of the testbench that are the
same for all testbenches in the level of hierarchy immediately sur-
rounding the design under verification and move the control struc-
ture unique to each testcase into a higher level of hierarchy.

Creating another
testcase simply
requires changing
the control block.

In Sample 6-1, the entire testbench is implemented in a single level
of hierarchy. If you were to write another testcase for the muxed
flip-flop design using the same bus-functional models, you would
have to replicate everything, except for the initial block that con-
trols the testcase. The different testcases would be implemented by
providing different control blocks. Everything else would remain
the same. But replication is not reuse. It creates additional physical
copies that have to be maintained. If you had to write fifty test-
benches, you would have to maintain fifty copies of the same bus-
functional models.

This section evolves an implementation of the test harness and test-
bench architecture. Starting with a monolithic testbench, the imple-
mentation is refined into layers of bus-functional models, utility
packages, and testcases, with well-defined procedural interfaces.
The goal is to obtain a flexible implemention strategy promoting
the reusability of verification components. This strategy can be
used in most Verilog-based verification projects.

VERILOG IMPLEMENTATION

This incremental approach minimizes your development effort: you
won’t develop functionality that turns out not to be needed. You
also minimize your debugging effort, as you are building on func-
tionality that has already been verified and debugged with actual
testbenches. This approach also allows the development of the veri-
fication infrastructure to parallel the development of the test-
benches, removing it from the critical path.

Incremental devel-
opment maxi-
mizes the
verification effi-
ciency.

ment incrementally. Start with the basic functions that are required
by the basic testbenches. As testbenches progress toward exercising
more complex functions, develop the required supporting functions
by adding configurability to the bus-functional models or creating
utility routines. As the verification infrastructure grows, the proce-
dural interfaces are maintained to avoid breaking testbenches
already completed.

Verilog Implementation

Architecting Testbenches

Instead of invoking the bus-functional models directly, they are
invoked using a hierarchical name. The level of hierarchy contain-
ing the reusable verification components, called the test harness,
provides the procedural interface to the design under verification.

Figure 6-3 illustrates the difference in testbench structure. Figure 6-
3(a) shows the original, non-reusable structure, while Figure 6-3(b)
shows the same testbench using the reusable test harness structure.
Sample 6-3 shows the implementation of the testcase shown earlier
in Sample 6-1, using a reusable test harness. Notice how the tasks
are now invoked using a hierarchical name.

The test harness
includes every-
thing needed to
operate the design.

The test harness should be self-contained and provide all signals
necessary to properly operate the design under verification. In addi-
tion to all the low-level bus-functional models, it should include the
clock and reset generators. The reset generator should be encapsu-
lated in a task. This lets testcases trigger the reset operation at will,
if required.

Packaging Bus-Functional Models

Bus-functional
models can be
reused between
harnesses.

The structure shown in Figure 6-3 lets the test harness be reused
between many testcases on the same design under verification. But
it does not help the reusability of bus-functional models between
test harnesses for different designs.

Writing Testbenches: Functional Verification of HDL Models228

Writing Testbenches: Functional Verification of HDL Models 229

All the tasks providing a complete bus-functional model for a given
interface should be packaged to make them easy to reuse between
test harnesses. For example, all of the tasks encapsulating the oper-

module testcase;

harness th();

initial
begin: test_sequence

th.sync_reset;
th.load_d0(1’b1);

$finish;
end
endmodule

module harness;

reg rst, d0, d1, sel, clk;
wire q, qb;

muxed_ff duv(d0, d1, sel, q, qb, clk, rst);

parameter cycle = 100,
Tsetup = 15,
Thold = 5;

always
begin

#(cycle/2) clk = 1’b0;
#(cycle/2) = 1’b1;

end

task sync_reset;

endtask

task load_d0;
input data;

begin

end
endtask

task load_d1;

endtask
endmodule

Sample 6-3.
Using a reus-
able test har-
ness in Verilog

Verilog Implementation

...

...

...

...

Architecting Testbenches

ations of a PCI bus should be packaged into a single PCI bus-func-
tional model package to facilitate their reuse. Some of these tasks
have been shown in Sample 5-61 and Sample 5-63.

Package a bus-
functional model
in its own level of
hierarchy.

We made the test harness reusable by isolating it from its testcases
in its own level of hierarchy. The testcases using the test harness
simply have to instantiate it and use its procedural interface through
hierarchical calls to use it. A similar strategy can be used to make
bus-functional models reusable. All of the tasks encapsulating the
operations are located in a module, creating a self-contained bus-
functional model. For more details, see “Encapsulating Useful Sub-
programs” on page 94.

The signals driven or monitored by the tasks are passed to the bus-
functional model through pins. The bus-functional model is instan-
tiated in the test harness and its pins are properly connected to the
design under verification. The tasks in the bus-functional model
provide its procedural interface. They are called by the testcase
using hierarchical names through the test harness.

The procedural
interface is
accessed hierarchi-
cally and the phys-
ical interface is
accessed through
pins.

230 Writing Testbenches: Functional Verification of HDL Models

Verilog Implementation

Figure 6-4(b) shows a functionally equivalent harness using a prop-
erly packaged bus-functional model. Sample 6-4 shows the skele-
ton Verilog code implementing an Intel 386SX bus-functional
model, while Sample 6-5 and Sample 6-6 show how it can be used
by the test harness and testcase, respectively.

module i386sx(clk, addr, ads, rw, ready, data);
input clk;
output [23:0] addr;
output ads ;
output rw;
input ready;
inout [15:0] data;

reg [23:0] addr;

reg [15:0] data_o;
assign data = data_o;

initial
begin

ads = 1’b1;
data_o = 16’hZZZZ;

end

task read;

endtask

task write;

endtask
endraodule

Sample 6-4.
Packaged bus-
functional
model for a
i386SX

Utility Packages

Mid-level utility
routines are pack-
aged in separate
modules.

The utility routines that provide additional levels of abstraction to
the testcases are also composed of a series of tasks and functions.
They can be encapsulated in separate modules, using hierarchical
names to access the lower-level procedural interfaces. The utility
routines they provide would also be called using a hierarchical
name.

Utility packages
are never instanti-
ated.

Because there is no wire or register connectivity involved between
a utility package and the lower-level procedural interfaces, they
need not be instantiated. They form additional simulation top-level

231Writing Testbenches: Functional Verification of HDL Models

...

...

...

232 Writing Testbenches: Functional Verification of HDL Models

modules, running in parallel with the testbench and the design
under verification. They can access the tasks and functions in the
test harness using absolute hierarchical names.

module harness;

reg clk;
wire [23:0] addr;

wire [15:0] data;

i386sx cpu(clk, addr, ads, rw, ready, data);
design dut(clk, addr, ads, rw, ready, data, ...);

always
begin

#50 clk = 1’b0;
#50 clk = 1’b1;

end

task reset
begin

disable cpu.read;
disable cpu.write;

end
endtask

endmodule

module testcase;

harness th();

initial
begin: test_procedure

reg [15:0] val;

th.reset;
th.cpu.read(24’h00_FFFF, val);
val[0] = 1’b1;
th.cpu.write(24’h00_FFFF, val);

end
endmodule

Sample 6-6.
Testcase using
the packaged
i386SX bus-
functional
model

Sample 6-5.
Test harness
using the
packaged
i386SX bus-
functional
model

Architecting Testbenches

...

...

Verilog Implementation

Their own functions and tasks are also called using absolute hierar-
chical names. Sample 6-7 shows the implementation of a simple
utility routine to send a fixed-length 64-byte packet, 16 bits at a
time, via the i386SX bus using the Intel 386SX bus-functional
model shown in Sample 6-4 and used in the test harness shown in
Sample 6-5. Notice how an absolute hierarchical name is used to
access the write task in the CPU bus-functional model in the har-
ness in the testcase.

module packet;

task send;
input [64*8:1] pkt;
reg [15:0] word;
integer i;

begin
for (i = 0 ; i < 3 2 ; i = i + 1) begin

word = pkt[16:1];
testcase.th.cpu.write(24’hl0_0000 + i,

word);
pkt = pkt >> 16;

end
end
endmodule

Sample 6-7.
Utility pack-
age on test
harness using
packaged
i386SX bus-
functional
model

The harness is not
intantiated either.

If the test harness is instantiated by the top-level testcase module, as
shown in Sample 6-6, the name of the testcase module is part of any
absolute hierarchical name. You can standardize on using a single
predefined module name for all testcase modules and restrict them
to a single level of hierarchy, with the test harness instantiated
under a predefined instance name.

A better alternative is to leave the test harness uninstantiated, form-
ing its own simulation top-level module. The testcases would sim-
ply use absolute hierarchical names instead of the relative
hierarchical names to access tasks and functions in the test harness.

Sample 6-8 shows the testcase previously shown in Sample 6-6, but
using absolute hierarchical names into an uninstantiated test har-
ness. It also uses the packaged utility routine modified in Sample 6-
9 to use the uninstantiated test harness. Figure 6-5 shows the struc-
ture of the simulation model, with the multiple top-levels.

Writing Testbenches: Functional Verification of HDL Models 233

234 Writing Testbenches: Functional Verification of HDL Models

Sample 6-9.
Utility pack-
age on unin-
stantiated test
harness

module testcase;

initial
begin: test_procedure

reg [15:0] val;
reg [64:8:1] msg;

harness.reset;
harness.cpu.read(24’h00_FFFF, val);
val[0] = 1’b1;
harness.cpu.write(24’h00_FFFF, val);

packet.send(msg);
end
endmodule

module packet;

task send;
input [64*8:1] pkt;
reg [15:0] word;
integer i;

begin
for (i = 0; i < 32; i = i + 1) begin

word = pkt[16:1];
harness.cpu.write(24’h10_0000 + i, word);
pkt = pkt » 16;

end
end
endmodule

Sample 6-8.
Testcase using
uninstantiated
test harness

Architecting Testbenches

...

Verilog Implementation

Additional top-
levels are added to
the command line.

It is very easy to create a Verilog simulation with multiple top-level
modules. They are included in the simulation by simply adding
their filename or module name to the simulation command. If you
are using a simulator that compiles and elaborates the simulation
structure in a single command, such as Verilog-XL or VCS, simply
specify the additional filenames that compose the other top-levels.
Assuming that the files involved in creating the structure shown in
Figure 6-5, are named testcase.v, packet.v, harness.v, i386sx.v, and
design.v, the command to use with Verilog-XL to simulate them
would be:

% verilog testcase.v packet.v harness.v \
i386sx.v design.v

For a simulation tool with separate compilation and elaboration
phases, such as ModelSim, all of the required top-level modules
must be identified to the simulation command:

% vlog testcase.v packet.v harness.v \
i386sx.v design.v

% vsim testcase packet harness

As shown in Sample 6-10, the simulator displays the names of all
the top-level modules in the simulation, and simulates them seam-
lessly, as one big model.

Sample 6-10.
Simulator dis-
playing top-
level modules

The top-level modules are:
harness
testcase
packet

Simulation begins ...

Instantiating utility
packages is too
restrictive.

You might be tempted to require that all packages be instantiated
one on top of each other. Lower-level utility package would instan-
tiate the test harness, and higher-level packages would instantiate
the lower-level packages. The structure of the testbench would thus
follow the structure of the packages and only relative hierarchical
names would be used. Unfortunately, the reverse would be occur-
ing: the packages would be forced into following the structure of
the testbench.

Writing Testbenches: Functional Verification of HDL Models 235

...

...

Architecting Testbenches

Follow a logical
structure.

Requiring that every utility package be instantiated restricts their
structure to a single hierarchical line. The test harness encapsulates
the design and its surrounding bus-functional models into a single
module. From that point on, only one module can be layered on top
of it. It is not possible to create a tree in the hierarchy where all the
branches terminate in the test harness.

Figure 6-6(a) shows the only possible structure allowed by instanti-
ating all packages according to their abstraction layer. It is impossi-
ble to create the logical structure shown in Figure 6-6(b). The latter
can be implemented using uninstantiated packages and absolute
hierarchical names.

Avoid cross-refer-
ences in utility
routines.

Because the utility packages are implemented in uninstantiated
modules, they create a flat structure of globally visible procedural
interfaces. The models do not enforce that they are used in a strictly
layered fashion. It is possible - and tempting - to write utility pack-
ages that cross-reference themselves.

Sample 6-11 illustrates an example of cross-references, where
packages use routines from each other. Cross-references make two
packages inter-dependent. It is not possible to debug and verify one
separately from the other. It also makes the packages more difficult

Writing Testbenches: Functional Verification of HDL Models236

This section evolves an implementation of the test harness and test-
bench architecture. Starting with a monolithic testbench, the imple-
mentation is refined into client/server bus-functional models,
access and utility packages, and testcases. The goal is to obtain a
flexible implemention strategy promoting the reusability of verifi-

237Writing Testbenches: Functional Verification of HDL Models

VHDL IMPLEMENTATION

module syslog;

task note;
input [80*8:1] msg;

$write("NOTE: %0s\n", msg);
endtask

task terminate;
begin

$write("Simulation terminated normally\n";
watchdog.shutdown;
$finish;

end
endtask

endmodule

module watchdog;
task shutdown;
begin

syslog.note("Watchdog shutting down...");

end
endtask
endmodule

Sample 6-11.
Packages with
cross-refer-
ences

When designing utility packages, stick to a strict set of layers.
Packages can access utility routines in lower layers or within them-
selves, but never in a sibling package at the same level of abstrac-
tion. If a need for cross-references arises, question your design of
the package set, or consider merging both packages into a single
one.

to reuse as they might have to be decoupled to be fitted into a dif-
ferent simulation environment.

VHDL Implementation

...

Architecting Testbenches

cation components. This strategy can be used in most VHDL-based
verification projects.

Creating another
testcase simply
requires changing
the control block.

In Sample 6-2, the entire testbench is implemented in a single level
of hierarchy. If you were to write another testcase for the muxed
flip-flop design using the same bus-functional models, you would
have to replicate everything, except for the body of the process that
controls the testcase. The different testcases would be implemented
by providing different sequential statements. Everything else would
remain the same, including the procedures in the process declara-
tive region. But replication is not reuse. It creates additional physi-
cal copies that have to be maintained. If you had to write fifty
testbenches, you would have to maintain fifty copies of the same
bus-functional models.

Packaging Bus-Functional Procedures

Bus-functional
models can be
located in a pack-
age to be reused.

One of the first steps to reducing the maintenance requirement is to
move the bus-functional procedures from the process declarative
regions to a package. These procedures can be used outside of the
package by each testbench that requires them.

Sample 6-12.
Bus-func-
tional proce-
dures for an
i386SX

Writing Testbenches: Functional Verification of HDL Models238

package i386sx is

subtype add_typ is std_logic_vector(23 downto 0);
subtype dat_typ is std_logic_vector(15 downto 0);

procedure read(raddr: in add_typ;
rdata: out dat_typ;

signal clk : in std_logic;
signal addr : out add_type;
signal ads : out std_logic;
signal rw : out std_logic;
signal ready : in std_logic;
signal data : inout dat_typ);

procedure write(waddr: in add_typ;
wdata: in dat_typ;

signal clk : in std_logic;
signal addr : out add_type;
signal ads : out std_logic;
signal rw : out std_logic;
signal ready : in std_logic;
signal data : inout dat_typ);

end i386sx;

VHDL Implementation

They require sig-
nal-class argu-
ments.

However, bus-functional procedures, once moved into a package,
require that all driven and monitored signals be passed as signal-
class arguments (see “Encapsulating Bus-Functional Models” on
page 97 and Sample 4-16 on page 98). Sample 6-12 shows the
package declaration of bus-functional model procedures for the
Intel 386SX processor. Notice how all the signals for the processor
bus are required as signal-class arguments in each procedure.

Bus-functional
model procedures
are cumbersome to
use.

Sample 6-13 shows a process using the procedures declared in the
package shown in Sample 6-12. They are very cumbersome to use
as all the signals involved in the transaction must be passed to the
bus-functional procedure. Furthermore, there would still be a lot of
duplication across multiple testbenches. Each would have to
declare all interface signals, instantiate the component for the
design under verification, and properly connect the ports of the
component to the interface signals. With today’s ASIC and FPGA
packages, the number of interface signals that need to be declared,
then mapped, can easily number in the hundreds. If the interface of
the design were to change, even minimally, all testbenches would
need to be modified.

Sample 6-13.
Using bus-
functional pro-
cedures

use work.i386sx.all;
architecture test of bench is

signal clk : std_logic;
signal addr : add_type;
signal ads : std_logic;
signal rw : std_logic;
signal ready: std_logic;
signal data : dat_typ;

begin

duv: design port map (..., clk, addr, ads,
rw, ready, data, ...);

testcase: process
variable data: dat_typ;

begin

read(some_address, data,
clk, addr, ads, rw, ready, data);

write(some_other_address, some_data,
clk, addr, ads, rw, ready, data);

end process testcase;
end test;

Writing Testbenches: Functional Verification of HDL Models 239

Use an intermedi-
ate level of hierar-
chy to encapsulate
the test harness.

Figure 6-7(a) illustrates the structure of the testbench shown in
Sample 6-13. The read and write procedures are shown in their
invocation context, not their declaration context. Whether you use
bus-functional procedures declared in the process declarative
region, or in a package, the testbench structure remains the same.
This is because the signal drivers are associated with the calling
process.

Figure 6-7(b) illustrates how the same testbench can be structured
to take advantage of the replicated functionality in multiple test-

Writing Testbenches: Functional Verification of HDL Models240

Declaration of the component

Declaration of the interface signals

Instantiation of the design under verification

Mapping of interface signals to the ports of the design

Mapping of interface signals to the signal-class arguments of
bus-functional procedures.

To reduce the amount of duplicated information from testbench to
testbench, you must factor out their common elements into a single
structure that they will share. The common elements in all test-
benches for a single design are:

The test harness
contains declara-
tions and function-
ality common to
all testbenches.

Creating a Test Harness

Architecting Testbenches

VHDL Implementation

benches. The replicated functionality is located in a lower-level
architecture, called a test harness. The testcase drives the design
under verification by instructing processes in the test harness to
perform various operations.

A process in the
harness owns the
bus-functional
procedures.

Because the signals that interface to the design under verification
are local to the test harness, the bus-functional procedures must be
called by a local process. The bus-functional procedures use the
drivers associated with that local process. The testcase control pro-
cess must instruct the local process, through control signals, to per-
form the appropriate cycle and return any relevant information.

This local process is often call a server process, while the testbench
control process is called a client process. The control signals have
to be visible to both the client and server processes, located in a dif-
ferent architecture. This can be accomplished in two ways:

Passing them as ports on the test harness entity

Making them global signals in a package.

Sample 6-14.
Client/server
control pack-
age

package i386sx is

type do_typ is (read, write);

subtype add_typ is std_logic_vector(15 downto 0) ;
subtype dat_typ is std_logic_vector(15 downto 0) ;

type to_srv_typ is record
do : do_typ ;
addr: add_type;
data: dat_typ;

end record;

type frm_srv_typ is record
data: dat_typ;

end record;

signal to_srv : to_srv_typ;
signal frm_srv: frm_srv_typ;

end i386sx;

Since a package is required to contain their type definitions, the lat-
ter does not require additional library units. Furthermore, using glo-
bal signals eliminates the need for each testbench architecture to

241Writing Testbenches: Functional Verification of HDL Models

242 Writing Testbenches: Functional Verification of HDL Models

Records are used
to implement the
control signals.

User-defined record types are used for the client/server control sig-
nals. Even if the record contains a single element, such as the
frm_srv_typ record in Sample 6-14. A record is used to minimize
maintenance if the control protocol between the client and the
server needs to be modified. Fields can be removed, added or mod-
ified without affecting the type declaration of the control signals

Use 'transaction to
synchronize opera-
tions.

Notice how the server process is sensitive to transactions on the
to_srv control signal. This way, it is triggered after every assign-
ment to the control signal, whether they are the same or not. Had
the process been sensitive to events on to_srv, the second of two
consecutive identical operations, as shown in Sample 6-16, would
be missed.

use work.i386sx.all;
architecture test of bench is

signal clk : std_logic;
signal addr : add_type;
signal ads : std_logic;
signal rw : std_logic;
signal ready: std_logic;
signal data : dat_typ);

begin

duv: design port map (, clk, addr, ads,
rw, ready, data,);

i386sx_server: process
variable data: dat_typ;

begin
wait on to_srv’transaction;
if to_srv.do = read then

read(to_srv.addr, data,
clk, addr, ads, rw, ready, data);

elsif to_srv.do = write then
write(to_srv.addr, to_srv.data,

clk, addr, ads, rw, ready, data);
end if;
frm_srv.data <= data;

end process i386sx_server;
end test;

Sample 6-15.
Server pro-
cess in test
harness

declare them, then mapping them to the ports of the test harness.
Sample 6-14 shows an implementation of the client/server control
package for controlling the i386SX bus-functional procedures. The
server process is in the test harness shown in Sample 6-15.

Architecting Testbenches

Writing Testbenches: Functional Verification of HDL Models 243

use work.i386sx.all;
architecture test of bench is
begin

i386sx_client: process
variable data: dat_typ;

begin

-- Perform a read
to_srv.do <= read;
to_srv.addr <= ...;
wait on frm_srv'transaction;
data := frm_srv.data;

-- Perform a write
to_srv.do <= write;
to_srv.addr <= ...;
to_srv.data <= ...;
wait on frm_srv'transaction;

end process i386sx_client;
end test;

Sample 6-17.
Client process
controlling the
server in test
harness

Sample 6-17 shows a client process accessing the services provided
by the i386SX server process in the test harness shown in Sample
6-15. Notice how the client process waits for a transaction on the
return signal to detect the end of the operation. This behavior
detects the end of an operation that produces the same result as the
previous one. If the client process had been sensitive to events on
the return frm_srv signal, the end of the operation could have been
detected only if it produced a different result from the previous one.

The client must
properly operate
(he control signals
to the server pro-
cess.

Abstracting the Client/Server Protocol

themselves, minimizing the impact on clients and server processes
using them.

Sample 6-16.
Performing
two identical
operations
back-to-back

VHDL Implementation

to_srv <= (do => write,
addr => (others => ’1’),
data => (others => ’0.’));

wait on frm_srv.data’transaction;
to_srv <= (do => write,

addr => (others => ’1’),
data => (others => ’0’));

...

...

...

Architecting Testbenches

Encapsulate the
client/server oper-
ations in proce-
dures.

Defining a communication procotol on signals between the client
and the server processes does not seem to accomplish anything.
Instead of having to deal with a physical interface documented in
the design specification, we have to deal with an arbitrary protocol
with no specification. Just as the operation on the physical interface
can be encapsulated, the operations between the client and server
can also be encapsulated in procedures. This encapsulation removes
the client process from knowing the details of the protocol with the
server. The protocol can be modified without affecting the testcases
using it through the procedures encapsulating the operations.

Sample 6-18.
Client/server
access pack-
age

package i386sx is

type do_typ is (read, write);

subtype add_typ is std_logic_vector(15 downto 0);
subtype dat_typ is std_logic_vector (15 downto 0);

type to_srv_typ is record
do : do_typ;
addr: add_type;
data: dat_typ;

end record;

type frm_srv is record
data: dat_typ;

end record;

procedure read(addr : in add_typ;
data : out dat_typ;

signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ);

procedure write(addr : in add_typ;
data : in dat_typ;

signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ);

signal to_srv : to_srv_typ;
signal frm_srv: frm_srv_typ;

end i386sx;

Put the server
access procedure
in the control
package.

The server access procedures should be located in the package con-
taining the type definition and signal declarations. Their implemen-
tation is closely tied to these control signals and should be located
with them. Sample 6-18 shows how the read and write access pro-

Writing Testbenches: Functional Verification of HDL Models244

Writing Testbenches: Functional Verification of HDL Models 245

Second, no matter how many signals are involved in the physical
interface, you need only pass two signals to the bus-functional
access procedures. the testcases are completely removed from the
physical interface of the design under verification. Pins can be
added or removed and polarities can be modified without affecting
the existing testcases.

Testbenches are
now removed from
the physical
details.

First, the testcase need not declare all of the interface signals to the
design under verification, nor instantiate and connect the design.
These signals can number in the high hundreds, so a significant
amount of work duplication has been eliminated.

The testcase must still pass signals to and from the bus-functional
access procedures. So, what has been gained from the starting point
shown in Sample 6-13? The answer is: a lot.

use work.i386sx.all;
architecture test of bench is
begin

i386sx_client: process
variable data: dat_typ;

begin

-- Perform a read
read(..., data, to_srv, frm_srv);

-- Perform a write
write(..., ..., to_srv, frm_srv);

end process i386sx_client;
end test;

Sample 6-19.
Client process
using server
access proce-
dures

The client processes are now free from knowing the details of the
protocol between the client and the server. To perform an operation,
they simply need to use the appropriate access procedure. The pair
of control signals to and from the server must be passed to the
access procedure to be properly driven and monitored. Sample 6-19
shows how the client process, originally shown in Sample 6-17, is
now oblivious to the client/server procotol.

Client processes
use the server
access procedures.

cedures would be added to the package previously shown in Sam-
ple 6-14.

VHDL Implementation

...

...

...

246 Writing Testbenches: Functional Verification of HDL Models

The identifier collision problem can be eliminated by using quali-
fied names when using access procedures. Sample 6-20 shows a
testbench using qualified names to access the read procedure out of
the i386sx package. Notice how the use statement for the package
does not specify “.all” to make all of the identifiers it contains visi-
ble.

In a test harness for a real design, there may be a dozen server pro-
cesses, each with their own access package and procedures. A real-
life client process, creating a complex testcase, uses all of them. It
may be difficult to ensure that all identifiers are unique across all
access packages. In fact, making identifier uniqueness a require-
ment would place an undue burden on the authoring and reusability
of these packages.

Use qualified
names for access
procedures.

Inserting a resolution function between the client and the server
also introduces an additional level of complexity. It can make
debugging the client/server protocol and the testcases that use it
more tedious. It also makes it possible to have separate processes
drive the control signal to the server process. Because that signal is
now resolved, no error would be generated because of the multiple
driver. Without proper interlocking of the parallel requests to the
server, this would create a situation similar to Verilog’s non-reen-
trant tasks.

But the risks out-
weigh the benefits.

If you want to simplify the usage of the access procedures and the
syntax of the client processes, a single resolved control signal can
be used between the client and server processes. Instead of having
to pass two signals to every server access procedures, only one sig-
nal needs to be passed. The price is additional development effort
for the server access package - but since it is done only once for the
entire design, it may be worth it.

You could use a
single resolved
control signal.

Using two control signals, one to send control information and syn-
chronization to the server, and vice-versa is the simplest solution.
The alternative is to use a single signal, where both client and
server processes each have a driver. A resolution function would be
required, including a mechanism for differentiating between the
value driven from the server and the one driven from the client.

Use separate unre-
solved to and from
control signals.

Managing Control Signals

Architecting Testbenches

VHDL Implementation

Sample 6-20.
Client process
using quali-
fied identifiers

use work.i386sx;
architecture test of bench is
begin

i386sx_client: process
variable data: i386sx.dat_typ;

begin

-- Perform a read
i386sx.read(..., data, i386sx.to_srv,

i386sx.frm_srv);

end i386sx_client;
end test;

Multiple Server Instances

Provide an array of
control signals for
multiple instances
of the same server
processes.

Designs often have multiple instances of identical interfaces. For
example, a packet switch design would have multiple packet input
and output ports, all using the same physical protocol. Each can be
stimulated or monitored using separate server processes using the
same bus-functional procedures. The clients needs to have a way to
identify which server process instance they want to operate on to
perform operations on the proper interface on the design.

Using an array of control signals, one pair for each server, meets
this requirement. Sample 6-21 shows the access package containing
an array of control signals, while Sample 6-22 shows one instance
of a server process.

Sample 6-21.
Array of cli-
ent/server con-
trol signals for
multiple serv-
ers

package i386sx is

type to_srv_ary_typ is array(integer range <>)
of to_srv_typ;

type frm_srv_ary_typ is array(integer range <>)
of frm_srv_typ;

signal to_srv : to_srv_ary_typ (0 to 7);
signal frm_srv : frm_srv_ary_typ(0 to 7);

end i386sx;

Writing Testbenches: Functional Verification of HDL Models 247

...

...

...

248 Writing Testbenches: Functional Verification of HDL Models

use work.rs232.all;
architecture test of bench is

signal tx: std_logic_vector(0 to 7);

begin

duv: design port map(tx0 => tx(0),
tx1 => tx(1), ...);

servers: for I in tx’range generate
process

variable data: dat_typ;
begin

wait on to_srv(I)’transaction;
receive(data,tx(I));
frm_srv(I).rdat <= data;

end process;
end generate servers;

end test;

Sample 6-23.
Generating
multiple
instances of a
server process

If the physical signals for the multiple instances of a port are prop-
erly declared using arrays, a far-generate statement can be used to
automatically replicate the server process. Sample 6-23 illustrates
this.

You may be able to
use the far-gener-
ate statement.

use work.i386SX.all;
architecture test of bench is

begin

i386sx_server: process
variable data: dat_typ;

begin
wait on to_srv(3)’ transaction;
if to_srv(3).do = read then

read(to_srv(3).addr, data, ...);
elsif to_srv(3).do = write then

write(to_srv(3).addr, to_srv(3).wdat,
...);

end if;
frm_srv(3).rdat <= (others => ’X’);

end process i386sx_server;
end test;

Sample 6-22.
One instance
of server pro-
cess using an
array of con-
trol signals

Architecting Testbenches

...

...

VHDL Implementation

If you are discouraged by the amount of work required to imple-
ment a VHDL test harness and access packages, remember that it
will be the most leveraged verification code. It will be used by all
testbenches so investing in implementing a test harness that is easy
to use returns the additional effort many times. Testbench genera-
tion tools, such as Quickbench by Chronology, can automate the
generation of the test harness from a graphical specification of the
timing diagrams describing the interface operations.

Testbench genera-
tion tools can help
in creating the test
harness and access
packages.

Utility Packages

The utility routines that provide additional levels of abstraction to
the testcases are also composed of a series of procedures. They can
be encapsulated in separate packages using the lower-level access
packages. Sample 6-24 shows the implementation of a simple util-
ity routine to send a fixed-length 64-byte packet, 16 bits at a time,
via thei386SX bus using the Intel 386SX access package shown in
Sample 6-18. Sample 6-25 shows a testcase using the utility pack-
age defined in Sample 6-24.

Utility routines are
packaged in sepa-
rately.

Sample 6-24.
Utility pack-
age using
i386SX bus-
functional
model access
package

use work.i386sx.all;
package packet is

type packet_typ is array(integer range <>)
of std_logic_vector(15 downto 0);

procedure send(pkt : in packet_typ;
signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ);

end packet;

package body packet is

procedure send(pkt : in packet_typ;
signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ)

is
begin

for I in pkt’range loop
write(..., pkt(I), to_srv, frm_srv);

end loop;
end send;
end packet;

Writing Testbenches: Functional Verification of HDL Models 249

250 Writing Testbenches: Functional Verification of HDL Models

Protocols may
require more data
than is relevant for
the testcase.

Imagine a protocol on a physical interface that requires data to be
continuously flowing. This procotol would obviously include a
“data not valid” indication.

Autonomous Stimulus

The packaged bus-functional models can now contain processes
and always or initial blocks. These concurrent behavioral descrip-
tions can perform a variety of tasks such as safety checks, data gen-
eration, or collecting responses for later retrieval. Instead of
requiring constant attention by the testcase control process, these
packaged bus-functional models could instead be configured to
autonomously generate data according to configurable parameters.
They could also be configured to monitor output response, looking
for unusual patterns or specific data, and notifying the testbenches
only when exceptions occur.

Packaged bus-
functional models
create an opportu-
nity.

Once the bus-functional procedures are moved in a module or con-
trolled by an entity/architecture independent from the testcase, it
creates an opportunity to move the tedious housekeeping tasks
associated with using these bus-functional models along with them.

This section explains how properly packaged bus-functional mod-
els can become active entities. They can remove the testcase from
the tedious task of generating background or random data, or per-
forming detailed response checking.

AUTONOMOUS GENERATION AND MONITORING

use work.i386sx;
use work.packet;
architecture test of bench is
begin

testcase: process
variable pkt: packet_typ(0 to 31);

begin

-- Send a packet on i386 i/f
packet.send(pkt, i386SX.to_srv,

i386SX.frm_srv);

end process testcase;
end test;

Sample 6-25.
Testcase using
utility proce-
dure

Architecting Testbenches

...

...

Writing Testbenches: Functional Verification of HDL Models 251

Sample 6-26 shows an implementation of a blocking send_cell pro-
cedure in Verilog, while Sample 6-27 and Sample 6-28 show a non-
blocking implementation in VHDL. Both blocking or non-blocking

It could also provide blocking or non-blocking implementations. In
a blocking implementation, the send_cell procedure would return
only when the cell was transmitted. In a non-blocking implementa-
tion, the send_cell procedure would return immediately, queueing
the cell for future transmission.

The send_cell procedure, contrary to previous implementations,
would not immediately cause a cell to be sent on the physical inter-
face and return once it has been transmitted. Instead, it would syn-
chronize with the process transmitting dummy cells to have the
relevant cell inserted in the data stream at the appropriate point.

The access proce-
dures would inter-
face with a
transmission pro-
cess.

Figure 6-8 shows such an interface, where ATM cells are constantly
flowing, aligned with a cell boundary marker. If this interface were
to be stimulated using procedures only, the testcase would have to
implement a control structure to continuously call the send_cell
procedure not to violate the protocol. Most of the time, an invalid or
predefined cell would be sent. But under further control by the
testcase, a valid cell, relevant to the testcase, would be appropri-
ately inserted. This control structure will likely have to be repeated
in all testbenches generating input for that interface.

Autonomous Generation and Monitoring

252 Writing Testbenches: Functional Verification of HDL Models

package body atm_gen is

procedure send_ce11(cell: in atm_cell;
signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ)

is
to_srv.cell <= cell;
wait on frm_srv’transaction;

end send_cell;

end atm_gen;

Sample 6-27.
Non-blocking
access proce-
dure

module atm_src(...);

task xmit_cell;
input [...] cell;

begin

end
endtask

reg blocked;
task send_cell;

input [...] cell;
begin

blocked = 1’bl;
wait blocked === 1’b0;

end
endtask

reg [...] dummy_cell;
always
begin

if (blocked === 1’bl) begin
xmit_cell(send_cell.cell);
blocked = 1’b0;

end else begin
xmit_cell(dummy_cell);

end
end
endmodule

Sample 6-26.
Blocking
access proce-
dure in bus-
functional
model

implementations could be provided and selected using an additional
argument to the procedure.

Architecting Testbenches

Writing Testbenches: Functional Verification of HDL Models 253

Sample 6-29 shows the implementation of the i386SX bus-func-
tional model from Sample 6-4 modified to randomly generate read
and write cycles at random intervals within a specified address

It is a small step from automatically repeating the same stimulus to
generating random stimulus. Instead of applying invalid or pre-
defined data values or sequences, the packaged bus model can con-
tain an algorithm to generate random data, in a random sequence, at
random intervals.

The content of
generated data can
be random.

Random Stimulus

use work.atm_gen.all;
architecture test of bench is

subtype queue_idx is integer range 0 to 99;
type atm_cell_array is array(queue_idx)

of atm_cell;
signal cell_queue: atm_cell_array;
signal tail : queue_idx;

begin

non_block_srv: process
begin

wait on to_srv’transaction;
cell_queue(tail) <= to_srv.cell;
tail <= (tail + 1) rem cell_queue’length;
frm_srv.done <= not frm_srv.done;

end process non_block_srv;

apply_cell: process
variable head: queue_idx;

begin
if head = tail then

wait until head /= tail;
end if;

head := (head + 1) rem cell_queue’length;
end process apply_cell;

end test;

Sample 6-28.
Server pro-
cesses sup-
porting non-
blocking
access proce-
dure

Autonomous Generation and Monitoring

Architecting Testbenches

range. The always block could be easily modified to be interrupted
by requests from the testcase to issue a specific read or write cycle
on demand.

Sample 6-29.
Bus-func-
tional model
for a i386SX
generating
random cycles

module i386sx(...);

task read;

endtask

task write;

endtask

always
begin: random_generator

reg [23:0] addr;
reg [15:0] data;

// Random interval (0-255)
#($random » 24);

// Random even address
addr[23:21] = 3’b000;
addr[20: 1] = $random;
addr[0] = 1’b0;

// Random read or write
if ($random % 2) begin

// Write random data
write(addr, $random);

end else begin
// Read from random address
read(addr, data);

end
end
endmodule

Autonomous gen-
erators can help
compute the
expected response.

If the autonomous generators are given enough information, they
may be able to help in the output verification. For example, the
strategy used to verify the packet router illustrated in Figure 5-31
requires that a description of the destination be written in the pay-
load of each packet using the format illustrated in Figure 5-32. The
header and filler information could be randomly generated, but the
description of the expected destination is a function of the ran-
domly generated header.

Writing Testbenches: Functional Verification of HDL Models254

Writing Testbenches: Functional Verification of HDL Models 255

In Chapter 5, we differentiated between a generator and a monitor
based on who is in control of the timing. If the testbench controls
when and if an operation occurs, then a generator is used. If the
design under verification controls the timing and if an operation

Monitors must
always be listen-
ing.

Autonomous Monitoring

If the design is supposed to detect errors in the interface protocol,
you must be able to generate errors to ensure that they are properly
detected. An autonomous stimulus generator could randomly gen-
erate errors. It could also have a procedural interface to inject spe-
cific errors at specific points in time. Sample 6-31 shows the
generator from Sample 6-30 modified to corrupt the CRC on one
percent of the packets. To make sure they are properly dropped, the
sequence number is not incremented for corrupted packets.

Generators can be
configured to
inject errors.

Injecting Errors

always
begin: monitor

reg ‘packet_typ pkt;

// Generate the header
pkt‘src_addr = my_id;
pkt‘dst_addr = $random;
// Which port does this packet goes to?
pkt‘out_port_id = rt_table[pkt‘dst_addr];
// Next in a random stream
pkt‘strm_id = {$random, my_id};
pkt‘seq_num = seq_num[pkt‘strm_id];
// Fill the payload
pkt‘filler = $random;
pkt‘crc = computer_crc(pkt);
// Send the packet
send_pkt(pkt);

seq_num[pkt‘strm_id] =
seq_num[pkt‘strm_id] + 1;

end

Sample 6-30.
Random gen-
erator helping
to verify out-
put

Similarly, the CRC is computed based on the randomly generated
payload and the destination descriptor. Sample 6-30 shows how
such a generator could be implemented. The procedural interface
(not shown) would be used to start and stop the generator, as well as
filling the routing information in rt_table.

Autonomous Generation and Monitoring

256 Writing Testbenches: Functional Verification of HDL Models

Usage errors can
be detected.

The role of a testbench is to detect as many errors as possible. Even
from within the testbench itself. As the author of the test harness,
your responsibility is not only to detect errors coming from the

Figure 6-9 illustrates the timing of the behavior required by the test-
bench. The monitoring bus-functional procedures must be continu-
ously called, with zero-delay between the time they return and the
time they are called back. If there are gaps between invocation of
the monitoring procedures, as shown in Figure 6-10, some valid
output may be missed.

occurs, then a monitor is used. In the latter situation, the testbench
must be continuously listening to potential operations. Otherwise,
activity on the output signals can be missed.

always
begin: monitor

pkt‘crc = computer_crc(pkt);

// Randomly corrupt the CRC for 1% of cells
if ($random %100 == 0) begin

pkt‘seq_num = $random;
pkt‘crc = pkt‘crc ^ (l<<($random % 8));

end else begin
seq_num[pkt‘strm_id] =

seq_num[pkt‘strm_id] + 1;
end

// Send the packet
send_pkt(pkt);

end

Sample 6-31.
Randomly
injecting
errors

Architecting Testbenches

Writing Testbenches: Functional Verification of HDL Models 257

The testcase then is free to introduce delays between the calls to the
procedure that retrieves the next response. This procedure returns
immediately if a previously received response is available in the
queue. It may also block waiting for the next response if the queue
is empty. A non-blocking option may be provided, along with a
mechanism for reporting that no responses were available. Sample
6-33 shows how the server process for an RS-232 monitor returns
responses from a queue implemented using an array. Sample 6-34
shows how the actual monitoring is performed in another process

Having to continuously call the output monitoring procedures can
be cumbersome for the testcase. If the exact timing of output opera-
tions is not significant, only their relative order and data carried, the
response can be autonomously monitored at all times. The data car-
ried by each operation and an optional description of the operation
are queued for later reception by the testcase.

Response can be
collected for later
retrieval.

process
begin

loop
-- Wait for testcase or serial Tx
wait on to_srv’transaction, Tx;
exit when not Tx’event;
assert FALSE

report "Missed activity on Tx"
severity ERROR;

end loop;
-- Wait for the serial Tx to start
wait on Tx;

end process;

Sample 6-32.
Detecting
usage errors in
a RS-232
monitor.

An autonomous output monitor can verify that the monitoring pro-
cedures are properly used. If activity is noticed on the output inter-
face and the testcase is not actively listening, an error is reported.
Sample 6-32 shows how an RS-232 monitor can be modified to
detect if a serial transmission is started by the design before the
testcase is ready to receive it.

design under verification, but also to detect errors coming from the
testcase. If an unexpected output operation goes unnoticed because
the testcase was busy checking the response from the previous
cycle, it creates a crack that a bad design can slip through.

Autonomous Generation and Monitoring

Architecting Testbenches

that then puts the received data into the queue. Queues can be
implemented using lists, as shown in “Lists” on page 115.

Sample 6-33.
Server pro-
cess in an
autonomous
RS-232 moni-
tor.

process
begin

wait on to_srv’transaction;
-- Is queue empty?
if pop = push then

wait on push;
end if;
frm_srv.data <= queue(pop);
pop <= (pop + 1) rem queue’length;

end process;

process
begin

wait until Tx = ’1’;

— Is the queue full?
assert (push+1) rem queue’length /= pop;
queue(push) <= data;
push <= (push + 1) rem queue’length;

end process;

Sample 6-34.
Monitor pro-
cess in an
autonomous
RS-232 moni-
tor.

Autonomous Error Detection

In “Packet Processors” on page 215, I described a verification strat-
egy where the data sent through a design carried the information
necessary to determine if the response was correct. Autonomous
monitors can use this information to detect functional errors. Sam-
ple 5-68 shows an example of a self-checking autonomous monitor.
The procedural interface of these monitors could provide configu-
ration options to define the signature to look for in the received data
stream.

Data may contain
a description of the
expected response.

INPUT AND OUTPUT PATHS

Each testcase must provide different stimulus and expect different
responses. These differences are created by configuring the test har-
ness in various ways and in providing difference data sequences.
This section describes how data can be obtained from external files.
It also shows how to properly configure reusable verification com-

258 Writing Testbenches: Functional Verification of HDL Models

Writing Testbenches: Functional Verification of HDL Models 259

VHDL is capable of reading any text file, albeit in a very primitive
fashion, using the general-purpose routines in the textio package. In
Verilog, you can only read files of binary or hexadecimal values
into a memory, using the $readmemb and $readmemh system tasks
respectively. This requires that the external data representation first
be compiled into binary or hexadecimal values before being read
into a Verilog testbench. The testbench then interprets the numeric
codes back into data or instructions.

Verilog and VHDL
have file-input
capabilities.

A testcase can be implemented to read data to be applied to, or be
expected from, the design under verification from external files.
The external files can provide software instructions, a sequence of
packets, video images, or sampled data from a previous design. It is
a common strategy when the expected response is provided by an
external C model, such as is illustrated in Figure 6-11. Programma-
ble testbenches have an advantage: they do not need to be recom-
piled to execute a new testcase. When compilation or initialization
times become critical factors, such as when SDF back-annotation is
involved (see “SDF Back-Annotation” on page 305), they offer a
technical solution to minimizing the number of time a model is
compiled or initialized.

Testbenches can
be programmed
through external
files.

Throughout this chapter, there is no mention of the source of data
applied as stimulus to the design under verification. Neither is there
any mention of the source of expected response for the monitors. In
most cases, the stimulus data and the expected response are speci-
fied in the verification plan and are hardcoded in the testcase. From
the testcase, they are applied or received using bus-functional mod-
els in the test harness.

Data was assumed
to be hardcoded in
each testcase.

Programmable Testbenches

ponents and how to ensure that simulation results are not clobbered
by using unique output file names.

Input and Output Paths

Architecting Testbenches

Verilog’s built-in file input tasks read the entire file into a memory.
If the file contains large amount of sequential data, a large memory
is required, consuming a significant portion of the available com-
puting resources. Using a PLI function to read data in a sequential
fashion is a better strategy. Only the required information is kept in
memory during the simulation, improving performance. A link to
an implementation of a scanf-like PLI task can be found in the
resources section of:

http://janick.bergeron.com/wtb

Configuration Files

Configuration
should be con-
trolled by the
testcase.

With the flexibility that packaged bus-functional models offer, they
also offer the possibility of making testbenches difficult to under-
stand or manage. Each bus-functional model should be self-con-
tained, controlled through its procedural interface only. The
functionality and implications of a testcase can be understood only
by examining the top-level testcase control description. All of the
non-default configuration settings originate from that single point.

Avoid using exter-
nal configuration
files.

The more files required to make a testcase complete, the more com-
plicated the management task to reproduce a particular configura-
tion. The complexity of file management grows exponentially with
the number of files. External files should only be used for large data
sequences, either for stimulus or comparison. Short files containing
configuration information should be eliminated in favor of specify-
ing the configuration in the testcase itself. Sample 6-35 shows an
example of improper configuration using an external file. The ran-
dom number generator should be seeded by the testcase control,
using the task shown in Sample 6-36.

initial
begin: init_seed

integer seed[0:0];

$readmemh("seed.in", seed);
$random(seed[0]);

end

Sample 6-35.
Improper con-
figuration
using an exter-
nal file.

Writing Testbenches: Functional Verification of HDL Models260

Writing Testbenches: Functional Verification of HDL Models 261

This problem is typically encountered when generating waveform
trace files. By default, the trace information goes to a file with a

There is another problem with using hardcoded pathnames. If mul-
tiple simulations must be run concurrently, a hardcoded filename
creates collisions between two simulations. Each simulation tries to
produce output to the same file, or read data from the same file.
Each simulation must be able to run without conflicting with each
other. Therefore, the filenames used for each testcase must be
unique.

Make sure filena-
mes are unique.

Concurrent Simulations

Sample 6-38.
User-speci-
fied filename
in Verilog

task data_from_file;
input [8*32:1] name;

$readmemh(name, mem);
endtask

Sample 6-37.
User-speci-
fied filename
in VHDL.

procedure data_from_file(name: in string) is
file fp: text is in name;

begin

end data_from_file;

If you must use a file for reading input stimulus or data to compare
against, do not hardcode the name of the file that must be used to
provide this information in the bus-functional model. If a hard-
coded pathname is used, it is not obvious, from the testcase control,
that a file is used. If a filename must be specified through a proce-
dural interface, it is immediately apparent that a file is used to exe-
cute a testcase. Sample 6-37 shows how a filename can be specified
through a procedural interface in VHDL using the string type. The
same flexibility can be provided in Verilog by simply allocating 8
bits per characters in a task input argument. Sample 6-38 shows an
example and the section titled “Output File Management” on
page 309 has more details.

Make filenames
configurable.

task seed;
input [31:0] init;

$random(init);
endtask

Sample 6-36.
Configuration
using a proce-
dural inter-
face.

Input and Output Paths

Architecting Testbenches

generic name, such as verilog.dump for VCD dump files. To guar-
antee that each testcase uses a different file, provide a user-speci-
fied filename that includes the name of the testcase. Sample 6-39
shows how a string parameter containing the testcase name in Ver-
ilog can be concatenated to a string literal to create a full filename.
In VHDL, the concatenation operator would be used between two
string expressions, as shown in Sample 6-40.

parameter testcase = "...";

initial
begin

$dumpfile({testcase, ".dump"});
$dumpvars;

end

Sample 6-39.
Generating
unique filena-
mes in Ver-
ilog.

architecture test of bench is
constant testcase: string = "...";

begin
process
begin

read_from_file(testcase & ".dat");

end process;
end test;

Sample 6-40.
Generating
unique filena-
mes in VHDL.

Compile-Time Configuration

Avoid using com-
pile-time configu-
ration of bus-
functional models.

When a language offers a preprocessor, it is often used as the mech-
anism for configuring source code. A different configuration
requires a recompilation of the source code using a different header
file. With most Verilog simulators always recompiling the source
code before each simulation, it is a technique that appears efficient
and is easy to use. This technique should be discouraged to mini-
mize the compilation requirements in compiled simulators or lan-
guages. It also makes managing a testcase more complicated as an
additional file, separate from the testcase control, must be managed
and kept up-to-date. Furthermore, it may be impossible to ensure
the uniqueness of the header file name for each testcase configured
by the preprocessor. Using compile-time configuration may make it
impossible to run concurrent compiled simulations.

Writing Testbenches: Functional Verification of HDL Models262

Verifying Configurable Designs

Mostcompile-time
configurations are
not modified for a
specific testcase.

To minimize the number of files used in a testbench, a single com-
pile-time configuration file is usually used. It contains the defini-
tions for all configurable preprocessor symbols in the test harness.
The majority of them have identical values from testcase to
testcase, with only a few taking different testcase-specific values.
Instead, providing a default value for the configuration parameters
that do not need a specific value for a given testcase would avoid
the needless duplication of information. Sample 6-41 shows an
example of configuring the maximum time-out value of a watchdog
timer using an external header file (shown in Sample 6-42) which
defines the appropriate preprocessor definitions. Sample 6-43
shows how to provide the same configurability through a proce-
dural interface. A sensible default value is provided that can be
used by most testcases, requiring no specific configuration instruc-
tions.

Sample 6-41.
Compile-time
configuration.

module watchdog;
‘include "defs.vh"

integer count;
initial count = 0;
always @ (posedge clk)
begin

count = count + 1;
if (count > ‘TIMEOUT) ...

end
endmodule

‘define TIMEOUT 1000000
‘define CLK_PERIOD 100
‘define MAX_LENGTH 500
‘define DUMPFILE "testcase.dump"

Sample 6-42.
Compile-time
configuration
definition.

Plan your configu-
ration mechanism.

If different configurations must be verified with similar stimulus
and response, consider architecting your testcase to facilitate its
configuration from within the testbench. The next section should
provides some useful techniques.

VERIFYING CONFIGURABLE DESIGNS

This section describes how to verify two kinds of design config-
urability: soft and hard.

Writing Testbenches: Functional Verification of HDL Models 263

264 Writing Testbenches: Functional Verification of HDL Models

The second kind of configurability is hard configuration. It is so
fundamental to the functional nature of the design, that it cannot be
modified during normal operations. For example, whether a PCI
interface operates at 33 or 66 MHz is a hard configuration. So is the
width and depth of a FIFO, or the number of master devices on an
on-chip bus. Hard configuration parameters are constant for the
duration of the simulation and often affect the testbench as well as
the design under verification. A testbench must be properly
designed to support hard configuration in a reproduceable fashion.

Hard configuration
cannot be changed
once simulation
starts.

There are two kinds of design configurability. The first is soft con-
figurability. A soft configuration is performed through a program-
mable interface and can be changed during the operation of the
design. Examples of soft configurations include the offsets for the
almost-full and almost-empty flags on a FIFO, the baud rate of a
UART, or the routing table in a packet router. Because it can be
modified during the normal operation of a design, soft configura-
tion parameters are usually verified by changing them in a testcase.
Soft configuration is implicitely covered by the verification pro-
cess.

Soft configuration
can be changed by
a testcase.

module watchdog;

integer count, max;
initial
begin

count = 0;
max = 32’h7FFF_FFFF;

end

task timeout;
input [31:0] val;

max = val;
endtask

always @ (posedge clk)
begin

count = count + 1;
if (count > max) ...

end
endmodule

Sample 6-43.
Equivalent
procedural
configuration.

Architecting Testbenches

Writing Testbenches: Functional Verification of HDL Models 265

Sample 6-44 shows the interface of a memory model with config-
urable numbers of address and data bits. To use this model in a
board or system under verification, the AWIDTH and DWIDTH
parameters must be properly configured. Sample 6-45 shows both
methods available in Verilog (I prefer the first one because it is self-
documenting and robust to changes in parameter declarations.)
Sample 6-46 shows how to map generics in VHDL. Notice how the
configurability of the system-level model is propagated to the
memory model.

In VHDL, this is accomplished using the generic map construct in
an instantiation or configuration statement. In Verilog, it is done
using the defparam statement or the #() construct in an instantiation
statement.

Generics and
parameters are part
of a component
interface.

If a testbench component is configurable using generics or parame-
ters, they become part of its interface. Whenever a configurable
component is used, the value of the generics or parameters must be
specified, if they must differ from their default values.

Parameters and
generics can con-
figure almost any-
thing.

Generics and parameters were designed to create configurable
models. They offer the capability to configure almost any declara-
tion in a VHDL or Verilog testbench. You can use them to define
the width of a data value, the length of an array, or the period of the
clock signal. In VHDL, they can even be used to determine the
number of instantiated devices using a generate statement. Wher-
ever a constant literal value is used in a testbench, it can be replaced
with a reference to a generic or a parameter.

If a design can be made configurable, so can a testbench. The con-
figuration of the testbench must be consistent with the configura-
tion of the design. Using a configuration technique similar to the
one used by the design can help ensure this consistency. Using
generics or parameters to configure the testbench and the design
allows the configuration defined at the top-level to be propagated
down the hierarchy, from the testcase control, through the test har-
ness, and into the design under verification.

Configure the test-
bench to match the
design.

Configurable Testbenches

Verifying Configurable Designs

266 Writing Testbenches: Functional Verification of HDL Models

Each configurable testbench component has generics and parame-
ters, defined by the higher-level module or architecture that instan-
tiates them. Eventually, the top-level of the testbench is reached.
The top-level module or entity in a design has no pins or ports, but

Top-level mod-
ules and entities
can have generics
or parameters.

Top Level Generics and Parameters

entity system is
generic (ASIZE: natural := 10;

DSIZE: natural := 16) ;
port (...);

end system;

use work.blocks.all;
architecture version1 of system is
signal data: std_logic_vector(DSIZE-1 downto 0) ;
signal addr: std_logic_vector(ASIZE-1 downto 0);
signal rw, cs: std_logic;

begin
M0: memory generic map (DWIDTH => DSIZE,

AWIDTH => ASIZE)
port map (data, addr, rw, cs);

end version1;

Sample 6-46.
Using a con-
figurable
model in
VHDL.

module system(...)
parameter ASIZE = 10,

DSIZE = 16;
wire [DSIZE-1:0] data;
reg [ASIZE-1: 0] addr;
reg rw, cs0, cs1;

memory m0(data, addr, rw, cs0) ;
defparam m0.AWIDTH = ASIZE,

m0.DWIDTH = DSIZE;
memory #(DSIZE, ASIZE) m1(data, addr, rw, cs1);
endmodule

Sample 6-45.
Using a con-
figurable
model in Ver-
ilog.

Sample 6-44.
Configurable
memory
model.

module memory(data, addr, rw, cs);
parameter DWIDTH = 1,

AWIDTH = 1;
inout [DWIDTH-1:0] data;
input [AWIDTH-1:0] addr;
input rw;
input cs;

endmodule

Architecting Testbenches

Writing Testbenches: Functional Verification of HDL Models 267

Use an additional
level of hierarchy
and configuration
unit in VHDL.

In VHDL, the configuration unit does not allow setting top-level
generics. To be able to set them, an additional level of hierarchy
must be added. As Sample 6-49 shows, it is very simple and not
specific to any testbenches since no ports or signals need to be

module fifo_tb_config_0;
defparam fifo_tb.WIDTH = 32,

fifo_tb.DEPTH = 16;
endmodule

Sample 6-48.
Configuration
module for
FIFO test-
bench.

Use a defparam
module in Verilog.

In Verilog, the top-level parameters can be set using a defparam
statement and absolute hierarchical names. A configuration would
be a module containing only a defparam statement, simulated as an
additional top-level module. Sample 6-48 shows how the testbench
shown in Sample 6-47 can be configured using a configuration
module.

By definition, the top-level is not instantiated anywhere. It is the
very top level of the simulation. How can its parameters or generics
be set? Some simulation tools allow the setting of top-level gener-
ics or parameters via the command line. However, a command line
cannot be archived. How then can a specific configuration be repro-
duced later or by someone else? Wrapping the command line into a
script is one solution. But it may not be portable to a different simu-
lator that does not offer setting top-level parameters or generics via
the command line.

Top-level generics
or parameters need
to be defined.

module fifo_tb;
parameter WIDTH = 1,

DEPTH = 1;

endmodule

Sample 6-47.
Configurable
top-level of a
FIFO test-
bench.

For example, Sample 6-47 shows the top-level module declaration
for a testbench to verify a FIFO with a configurable width and
depth. Notice how the module does not have any pins, but does
have parameters.

it can have parameters or generics. The top-level of a testbench can
be configured using the same mechanisms as the lower-level com-
ponents.

Verifying Configurable Designs

268 Writing Testbenches: Functional Verification of HDL Models

This chapter focused on the implementation of testbenches for a
device under verification. It described an architecture that promotes
reusing verification components. The portion of the testbenches
that is common between all testcases is structured into a test har-
ness. Each testcase is then implemented on top of the test harness,
using a procedural interface to apply stimulus to and monitor
response from the device under verification. Although external data
files can be used, the configuration of bus-functional models by
each testcases should be limited to using the available procedural
interfaces.

SUMMARY

configuration conf_0 of config is
for toplevel

for tb use entity work.fifo_tb(a)
port map(WIDTH = 32,

DEPTH = 16);
end for;

end for;
end conf_0;

Sample 6-50.
Configuration
unit for FIFO
testbench.

Sample 6-49.
Additional
level of hierar-
chy to set top-
level generics.

entity config is
end config;
architecture toplevel of config is

component testbench
end component;

begin
tb: testbench;

end toplevel;

mapped. The configuration unit can then be used to configure the
generics of the testbench top-level, as shown in Sample 6-50.

Architecting Testbenches

CHAPTER 7 SIMULATION
MANAGEMENT

Simulation must
be managed.

In “Revision Control” on page 47, I described how tools can help
manage the source code generated by the design team. In “Issue
Tracking” on page 52, I described how issues and bugs can be
tracked to ensure they are resolved. In this chapter, I address the
simulation management issues. We see how to efficiently debug
your testbenches using behavioral models. Often overlooked, but
important topics, such as terminating your simulation, reporting
error, and determining success or failure are covered. We also dis-
cuss configuration management: how do you know you are simulat-
ing what you think you are simulating?

BEHAVIORAL MODELS

This section desmonstrates how behavioral models can benefit a
design project. These benefits can only be realized if the model is
written with the proper perspective. This section also shows how to
properly model exceptions and explains how to demonstrate a
behavioral model to be equivalent to an RTL model.

Testbenches
need a model to
be debugged.

You have decided which testcases are needed to functionally verify
a design. Your best verification engineers are developing the test
harness. Other engineers are working on writing testbenches or
specifying utility packages. A couple of basic testcases, using only
low-level functionality in the test harness, are already complete.
Hardware design engineers are furiously working on the RTL
model, but it will not be available for several weeks. Meanwhile,

Writing Testbenches: Functional Verification of HDL Models 269

Simulation Management

the test harness and testbenches continue to be written. When all
will be said and done, the amount of code written for the verifica-
tion will surpass the amount of RTL code. You are looking at writ-
ing thousands of lines of code without being able to debug them.

Behavorial mod-
els are used to
debug testbenches.

What if someone walked up to you and offered you a model, avail-
able about at the same time as the first testcases, that runs one hun-
dred times faster than the RTL model and that looks and feels just
like the real thing? You could start debugging your test harness and
testcases even before the RTL is ready. Because this model simu-
lates faster, the debug cycles would be shorter. By the time the RTL
is available to simulate, you’d probably have most of your testcases
implemented and debugged. The design schedule could be short-
ened and the verification would no longer be squarely on the criti-
cal path. Sound too good to be true? I’m offering exactly such a
model: it is called a behavioral model.

Behavioral versus Synthesizable Models

Behavioral mod-
els are not synthe-
sizable.

Many books, companies, and individuals used the term “behav-
ioral” to describe a synthesizable model. This book uses the term
differently. A model that can be automatically translated into a
gate-level implementation by a synthesis tool, such as Synopsys’
Design Compiler, is called Register-Transfer-Level or RTL model.
It may also be called a synthesizable model. This book uses the
term behavioral model to identify models that describe the black-
box functionality of a design. The Virtual Socket Interface Alliance
uses the term functional model.

Behavioral code is
not just for test-
benches.

In “Behavioral versus RTL Thinking” on page 83, I described the
characteristics of behavioral code compared with synthesizable
code. Using behavioral descriptions for testbenches is easily
acceptable by most design engineers. After all, the testbench will
never be implemented in hardware so they never give any thought
as to how they would go about it. Their mind hasn’t been influ-
enced by an implementation architecture or a synthesizable descrip-
tion of the testbench’s functionality. They are still open to
describing this functionality using behavioral code.

270 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

Writing a behav-
ioral model
requires a differ-
ent mindset than
RTL.

Writing a truly behavioral model of a design requires a greater men-
tal leap. You may have already started to think of a design’s func-
tionality in terms of state machines, datapaths, operators, memory
interfaces, and other implementation details. This mindset can be
created simply because the functional specification document was
written with these implementation details in mind. To write a
proper behavioral model, you have to focus on the functionality, not
the implementation. If the implementation starts to color your
thinking, you’ll simply write what I call an “RTL+ +” model.

Example of Behavioral Modeling

“RTL++” models
may be synthesiz-
able using behav-
ioral synthesis.

For example, consider the specification in Sample 7-1. How would
you write a behavioral description of this functionality? Most write
something similar to the description shown in Sample 7-2. This
description is clearly not synthesizable using logic synthesis tools.
However, it happens to be synthesizable using behavioral synthesis
tools such as Synopsys’ Behavioral Compiler. The design is behav-
iorally synthesizable because the description was tainted by the
specification: there is an implicit state machine and everything hap-
pens at the active edge of the clock.

Sample 7-1.
Specification
of a debounce
circuit

The debounce circuit samples the input at every clock cycle. The
debounced version of the input changes state only when eight
consecutive samples of the input have the same polarity.

Sample 7-2.
“RTL++”
description of
debounce cir-
cuit

reg debounced;
always @ (posedge clk)
begin: debounce

if (bouncing != debounced) begin
repeat (7) begin

@ (posedge clk) ;
if (bouncing == debounced)

disable debounce;
end
debounced <= bouncing;

end
end

Writing Testbenches: Functional Verification of HDL Models 271

Simulation Management

A behavioral
model cannot be
refined into a syn-
thesizable model.

The objective of a behavioral model is to faithfully represent the
functionality of a design, in a way that is easy to write and simulate.
The behavioral model is designed to help verification, and indi-
rectly, the implementation. When properly written, it cannot be
refined into a synthesizable model.

For example, what is the functionality of the debounce circuitry
specified in Sample 7-1? It prevents pulses on the primary input,
narrower than 8 clock periods, from making it to the debounced
output. It is similar to a buffer with a significant inertial delay. This
behavior can be modeled using a single statement in both Verilog
and VHDL, as shown in Sample 7-3 and Sample 7-4. They use the
inertial delay model built in each language. If required, please refer
to a suitable Verilog or VHDL reference book1 for a detailed
description of inertial delays.

assign #(8*cycle) debounced = bouncing;
Sample 7-3.
Behavioral
description of
debounce cir-
cuitry in Ver-
ilog

Sample 7-4.
Behavioral
description of
debounce cir-
cuitry in
VHDL

debounce: debounced <= bouncing after 8 * cycle;

Delays cannot be
synthesized.

The descriptions in Sample 7-3 and Sample 7-4 are far from being
synthesizable. It is not possible to synthesize a specific inertial
delay. The other limitation of these descriptions is the need to know
the clock period. It could be specified using a constant, a generic,
or a parameter, but the behavioral model would not adjust to differ-
ent clock periods as the real implementation would. If this is an
important requirement, the clock period could be determined at run-
time by sampling two consecutive edges. Sample 7-5 shows how
this could be performed. Notice how the clock cycle is measured

1. Titles have been suggested in the Preface on page xix.

272 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

only once to improve simulation performance. It is unlikely that the
clock period will change significantly during a simulation. Comput-
ing the clock period at every clock cycle would simply consume
simulation resources without accomplishing additional work.

architecture beh of debounce is
signal cycle: time := 8 * 10 ns;

begin
process

variable stamp: time;
begin

wait until clk = ’1’;
stamp := now;
wait until clk = ’1’;
cycle <= now - stamp;
wait;

end process;

debounced <= bouncing after 8 * cycle;
end beh;

Sample 7-5.
Measuring the
clock period in
the debounce
circuitry

Characteristics of a Behavioral Model

They are parti-
tioned for mainte-
nance.

A behavioral model is partitioned differently from a synthesizable
model. The latter is partitioned to help the synthesis process. Parti-
tioning is decided along implementation lines, producing a design
with several instances arranged in a wide and shallow structure.

Behavioral models are partitioned according to the whim of the
author. It tends to be partitioned according to main functional
boundaries to avoid maintaining one large file, or to allow more
than one author to write it. Duplication of function in a model, such
as many interfaces of the same type, is also implemented using
multiple instances of a single description. Behavioral models tend
to have very few instances creating a narrow and shallow structure
of large blocks.

They do not use a
clock.

A clock signal is an implementation artifice for synchronous design
methodologies. They are functionally irrelevant. A behavioral
model does not change state synchronously with a clock. Instead, it
uses many different synchronization mechanisms. While an RTL
model continuously recomputes and updates the value of inferred
registers, a behavioral model performs computations only when
necessary.

Writing Testbenches: Functional Verification of HDL Models 273

Simulation Management

Consider the RTL model in Sample 4-3 on page 86: The process
labelled SEQ is executed every time the clock changes. The signal
named STATE is assigned at every rising edge of the clock signal,
regardless of the value of NEXT_STATE.

The equivalent behavioral model in Sample 4-4 on page 86, on the
other hand, does not even use the clock. Instead, it acts on the only
functionally significant event: the change in ACK. It changes the
only functionally significant state, the state of the REQ ouput.

A clock would only be used when data needs to be sampled or pro-
duced synchronously with a clock signal. Examples of synchronous
interfaces include the PCI bus, or the Utopia ATM interface. The
clock signals for synchronous interfaces are usually externally gen-
erated and are not used any further by the behavioral model.

They do not use
FSMs.

Synthesizable models are littered with Finite State Machines. They
are the primary synchronous design mechanism for implementing
control algorithms. When writing software using a language like
C++, you would not consciously implement it as a series of cooper-
ating Finite State Machines. The language does not lend itself very
well to that.

Instead, the control algorithm and the data transformations would
be part of the control flow of the program. Its state would depend
on the current values of the variables and the location of the state-
ment under execution in the program sequence.

Behavioral models follow a similar strategy. Consider the example
in Sample 4-3 on page 86. The state of the RTL model is deter-
mined by the value of the state register and the current input values.
The same code is executed over and over. On the other hand, the
state of the behavioral model shown in Sample 4-4 on page 86
depends only on which wait statement is currently being executed.

Data can remain at
a high-level of
abstraction.

The skills of the hardware engineer reside in mapping a complex
functionality into the very primitive resources available in hard-
ware. Everything must be implemented using a binary value, with a
small number of bits, and reduced to integer arithmetic. A behav-
ioral model can make use of the high-level data types provided by
the language, such as floating-point numbers, records, and multi-
dimensional arrays. The section titled “Data Abstraction” on

274 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

page 100 illustrates many examples of using high-level data
abstraction instead of representations suitable for implementation.

Data structures are
designed for ease-
of-use, not imple-
mentation.

In a synthesizable model, the format of the data structures are orga-
nized to make implementation possible. For example, imagine a
routing table in a packet router is logically composed of 256-bit
records with various fields. The router is specified to support 1024
possible routes and the table is maintained by an external processor
through a 16-bit wide interface.

The physical implementation of the routing table is likely to use a
16-bit RAM with 16k locations. Whenever the routing engine per-
forms a table look-up, it has to read a block of sixteen words to
build the entire 256-bit routing record.

If the table maintenance via the CPU interface has a much lower
frequency than packet routing, a behavioral model would instead
optimize the data structure for the table look-up and routing opera-
tion. The routing table would be implemented using an array of
records with 1024 locations. It would also probably use a sparse
array implementation to minimize memory usage as well. The table
would look the same from the CPU’s perspective, with each 16-bit
access being performed at the right offset within the record identi-
fied by the upper 10 bits of addresses. Sample 7-6 shows a Verilog
implementation of the CPU access into the routing table of the
behavioral model.

Sample 7-6.
Mapping a
narrow access
in a wide data
structure

reg [255:0] table [0:1023];

always
begin: cpu_access

reg [255:0] entry;

entry = table[addr[13:4]];
if (read) data = entry >> addr[3:0];
else begin

for (i = 0; i < 16; i = i + 1) begin
entry[addr[3:0]*16+i] = data[i];

end
end

end

Writing Testbenches: Functional Verification of HDL Models 275

Simulation Management

Their interfaces
are implemented
using bus-func-
tional models.

The testbench is a behavioral model of the environment. To make
implementation more efficient, Chapters 5 and 6 explained how
bus-functional models are used and located in a testcase-indepen-
dent test harness. The bus-functional models abstract data from the
physical level to a functional level where they are simpler to pro-
cess using behavioral code.

The same strategy can be used when writing a behavioral model.
Bus-functional models are used for each interface around the
periphery of the model. Data is transformed behaviorally and
moved from bus-functional model to bus-functional model accord-
ing to the function of the device. And as Figure 7-1 shows, you will
likely be able to reuse the bus-functional models written for the
testbench in your behavioral model.

Modeling Reset

Reset is part of the
RTL coding style.

Modeling exceptions can take of lot of time and introduce a lot of
intricacies in an otherwise simple algorithm description. When
writing a synthesizable description, modeling the effect of reset on
the state elements is defined in the supported coding style. For
example, Sample 7-7 shows how an asychronous reset is modeled
to reset a Finite State Machine. Resetting an entire RTL model is
accomplished by having each process infer a register included in
the logic to handle the reset exception.

Sample 7-7.
Modeling an
asynchronous
reset in RTL

process (clk, rst)
begin

if rst = ’1’ then
state <= IDLE;

elsif clk’event and clk = ’1’ then
case state is

end case;
end if;

end process;

276 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

Behavioral mod-
els must reset vari-
ables and execu-
tion points.

As described in the previous section, the state of a behavioral model
is not just composed of the values of the variables. It also includes
the location of the statement currently being executed in the
sequence of statements describing each process. To reset a behav-
ioral model, you need not just reset the content of the variables. You
must also reset the execution to a specific statement, usually at the
top of the process. For example, resetting the process shown in
Sample 7-8 would require resetting the variables and signal drivers
to their initial values, as well as restarting the execution of the pro-
cess at the top.

Sample 7-8.
Behavioral
process have
to be reset

process
variable count: integer := 0;

begin
strobe <= ’0’;
wait until go;
while (go) loop

count := count + 1;
wait on sync;

end loop;
strobe <= ’1’;
wait for 10 ns;
strobe <= ’0’;
wait until ack = ’1’;
count := 0;

end process;

In VHDL, check
for exceptions in
all wait statements.

Processes in VHDL can be affected by other processes only
through signals. For a process to be reset, it has to monitor a reset
signal, then take the appropriate action once reset is detected. A sin-
gle reset signal of type boolean is sufficient. It would be set to true
by a reset control process whenever a valid reset condition from
any number of sources - such has a hardware, power-up or software
reset - is detected.

Using a boolean type avoids any misunderstanding about the active
level of reset. The activity level of a signal, either high or low, is an
implementation detail that we need not concern ourselves with
internally. Sample 7-9 shows the process from Sample 7-8 with
reset detection and handling. Pretty ugly and unmaintainable if you
ask me. An otherwise straightforward sequential description gets
turned into a complex network of nested if statements.

Writing Testbenches: Functional Verification of HDL Models 277

Simulation Management

Sample 7-9.
Behavioral
process with
reset detec-
tion and han-
dling.

process
variable count: integer := 0;

begin
strobe <= ’0’;
wait until go or reset;
if not reset then

while (go and not reset) loop
count := count + 1;
wait until sync’event or reset;

end loop;
if not reset then

strobe <= ’1’;
wait until reset for 10 ns;
if not reset then

strobe <= ’ 0’;
wait until ack = ’1’ or reset;

end if;
end if;

end if;
count := 0;

end process;

In VHDL, embed
the process body
in a loop state-
ment.

In VHDL, the best way to reduce the clutter of nested control flow
statements is to embed the body of the process into an infinite loop,
as shown in Sample 7-10. The loop iterates during normal opera-
tions but is exited whenever a reset condition is detected. The
implicit loop around the process statement takes the execution of
the process back to the top where the initialization code is located.
Sample 7-11 shows the resetable process shown in Sample 7-9 with
this new control structure. Each wait statement must still detect the
reset condition, but the sequential description of the algorithm
remains almost untouched.

Sample 7-10.
Structure of a
behavioral
process with
reset detec-
tion and han-
dling

process
begin

-- Initialization
main: loop

-- Body of process

exit main when reset;

end loop main;
end process;

278 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

Sample 7-11.
A structured
behavioral
process with
reset detec-
tion and han-
dling

process
variable count: integer;

begin
main: loop

count := 0;
strobe <= ’0’;
wait until go or reset;
exit main when reset;
while (go) loop

count := count + 1;
wait until sync’event or reset;
exit main when reset;

end loop;
strobe <= ’1’;
wait until reset for 10 ns;
exit main when reset;
strobe <= ’0’;
wait until ack = ’1’ or reset;
exit main when reset;

end loop main;
end process;

In Verilog, disable
all the blocks.

Resetting a behavioral model in Verilog is much more elegant and
easy. When an exception is detected, all you need to do it disable all
the blocks in the model using the disable statement. The always
blocks restart their execution from the top.

Replace initial
blocks with always
blocks.

Only the initial blocks present a difficulty. Since they only run once
in a simulation, they cannot be disabled since they are no longer
active. If they are still active, disabling them would simply make
them inactive immediately. To include initial blocks in the reset
handler, simply replace them with always blocks with an infinite
wait statement at the bottom. Sample 7-12 shows an original Ver-
ilog behavioral model. Sample 7-13 shows the same model, this
time with the proper handling of reset exceptions using the disable
statement.

Encapsulate the
disable statements
in a task.

It is good practice to encapsulate all disable statements into a single
task to perform a reset of a Verilog behavioral model. Multiple reset
sources and exception detection can call this task to perform the
reset operation. It also reduces maintenance to a single location
when always blocks are added or removed. The reset task can also
be called using a hierarchical name when a higher-level module in a
complex behavioral model needs to reset all its lower-level compo-
nents. This is more efficient than having to assert a reset signal

Writing Testbenches: Functional Verification of HDL Models 279

Simulation Management

Sample 7-12.
Behavioral
model in Ver-
ilog

initial count = 0;
always
begin

strobe <= 1’b0;
wait (go);
while (go) begin

count = count + 1;
@ sync;

end
strobe <= 1’b1;
#10;
strobe <= 1’b0;
wait (ack);

end

Sample 7-13.
Behavioral
model with
reset detec-
tion and han-
dling

always
begin: init

count = 0;
wait (0);

end

always
begin: main

strobe <= 1’b0;
wait (go);
while (go) begin

count = count + 1;
@ sync;

end
strobe <= 1’b1;
#10;
strobe <= 1’b0;
wait (ack);

end

always
begin

// Detect reset exception

disable init;
disable main;

end

which is broadcasted through the pins of all interfaces in the model.
Sample 7-14 shows the reset handler of Sample 7-13 modified to
use a task to disable all of the blocks.

280 Writing Testbenches: Functional Verification of HDL Models

...

Behavioral Models

Sample 7-14.
Encapsulating
the disable
statements in a
task

task reset;
begin

disable init;
disable main;

end
endtask

always
begin

// Detect reset exception

reset;
end

Writing Good Behavioral Models

Many attempts to
write behavioral
models fail.

I have seen and heard of many projects where the use of behavioral
models was attempted, but without producing much benefit over
RTL models. Often, the behavioral model was abandoned in favor
of the RTL model as soon as the latter became available. The
behavioral model failed to exhibit any the benefits outlined in “The
Benefits of Behavioral Models” on page 286.

Writing a good
behavioral model
requires special-
ized skills.

Further investigation into those failed attempts usually reveals that
the behavioral model was written by experienced hardware design-
ers. Unfortunately, their valuable skills were not appropriate to
writing good behavioral models. Their level of thinking was still
too close to the implementation and they had difficulty thinking in
terms of higher levels of abstraction. Very often, there was the
implicit intent of refining the behavioral model into a synthesizable
model. This is a fatal mistake as it is conducive to low-level think-
ing, yielding not a behavioral model, but an “RTL++” model.

Focus on the rele-
vant functional
details.

All the techniques illustrated in this chapter, as well as in Chapter 4,
can be used and still yield a poor behavioral model. A good behav-
ioral model focuses on the details that are functionally relevant and
not on implementation artifices. For example, the latency of a
design - the number of clock cycles necessary for an input to be
transformed into an output - is usually not functionally relevant. If
you insist on writing a model that is clock-cycle accurate with the
actual implementation, you may be spending a lot of effort and add-
ing a lot of complexity for a characteristic that is not functionally
relevant.

Writing Testbenches: Functional Verification of HDL Models 281

Simulation Management

At first glance,
latency seems a
significant charac-
teristic.

To many, saying that latency may not be a relevant functional detail
and should not be modeled sounds like a recipe for disaster. But if
you take a step back from your design, ignoring its implementation
details, does it really matter whether a particular output comes
exactly N cycles after the corresponding input was sampled? As
long as the order of these outputs is the same, is the time at which
they come out significant?

Consider the speech synthesizer design illustrated in Figure 3-4 on
page 78. To produce audible speech, coefficients must be modified
at regular intervals to produce the different sequences of sounds
that compose normal speech.

For example, to say “cat”, the coefficients would be modified to
create the sequence of sounds “k”, “a”, “a”, “a”, “t”, “t”. From
these coefficients, a digitized sound waveform should come out at a
8kHz sample rate. The delay between the time the coefficients are
set and the corresponding sound is synthesized is irrelevant, as long
as it is under the limit of perception by the user. A similar argument
can be made for packet routers: it does not really matter how long it
takes for packets to transit through a routing node, as long as they
eventually come out in the same order.

In some cases,
latency is signifi-
cant.

The only time where a detail like latency is significant is when the
design under verification does not have complete visibility over a
system-level “unit of work”. A unit of work is the smallest amount
of data than can be processed by the system: an atomic operation.
For example, a packet router’s unit of work is an entire packet. In a
speech synthesizer, it is a vocal sound. In a hardware tester, it is a
complete vector with input and expected output values. If the
design under verification only processes a portion of the unit of
work, it is important that the latencies in the reconvergent paths are
identical so the unit of work gets properly reassembled.

For example, the input formatter in a hardware tester, as illustrated
in Figure 7-2, only processes the input value. For the corresponding
expected output value to be checked at the proper time, it must have

the exact same latency as the Expect Delay design.2 In a packet
router, as illustrated in Figure 7-3, if the packet is dismembered to

2. Actually, since the latter is easier to design, its latency is made to match
that of the input formatter, whatever that it may be.

282 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

be routed by different switching node, each node must have an
identical latency for the packet to be properly put back together. If
you mix behavioral and RTL models in a system-level verification,
and each has a different latency, the system-level simulation would
become a very effective packet scrambler!

Do not let the test-
bench dictate what
is functionally rel-
evant.

The reason most often cited for making a behavioral model clock-
cycle accurate with the implementation is to be able to pass the
same cycle-oriented testbenches. If the testbenches enforce a spe-
cific latency, they are verifying a specific implementation, not a

specification.3 I hope I have successfully explained how to write
testbenches that are independent of the latency of the design under
verification in Chapters 5 and 6. If your testbenches do not expect a
specific latency, then you need not model it.

Details relevant at
the system-level
can be back-anno-
tated.

An implementation detail, such as latency, may not be relevant to
the functionality of the stand-alone design under verification. How-
ever, it may be critical for the proper operation of the system-level
design. If that is the case, such as the example designs shown in
Figure 7-2 and Figure 7-3, the behavioral model may still be mod-
eled as if the latency was not important and perform its transforma-

3. Unless of course a specific latency is required, in which case it should
be specified in the specification document. And if something is speci-
fied, it should be modeled and verified.

Writing Testbenches: Functional Verification of HDL Models 283

Simulation Management

tion in zero-time. At appropriate points in the input or output paths,
programmable delay pipelines can be introduced so the exact
latency of the implementation can be back-annotated into the
behavioral model. The behavioral model would then model the
functionality of the synthesizable model at a clock-accurate level.
Sample 7-15 shows a configurable delay pipeline to adjust the
latency of a behavioral model.

Sample 7-15.
Configurable
delay pipeline

process (clk)
constant delay: natural := 1;
type pipeline_typ is array (integer range <>)

of data_typ;
variable pipeline: pipeline_typ(1 to delay);

begin
if clk = ’1’ then

actual_ouput <= pipeline(delay);
pipeline := output &

pipeline(l to delay - 1);
end if;

end process;

Specify the func-
tionality, not the
implementation.

Another big obstacle to writing good and efficient behavioral mod-
els is the level of the specification for the design. If it is written at a
very low level, it becomes difficult to abstract significant function-
ality and discard irrelevant implementation details. I once had to
write a behavioral model for a customer whose functional specifi-
cation was done using technology-independent schematics using a
general-purpose drawing tool. Each block was specified indepen-
dently with no description of the overall functionality. Not only did
it make the job of writing RTL code that met timing requirements
difficult, it made writing a high-level behavioral model impossible.
After 10 weeks, I had a model that was barely faster than the RTL
model. But after those 10 weeks, I was able to piece the entire
design together in my mind and understand the intended functional-
ity. I scrapped the first model and rewrote it entirely in under two
weeks. That newer model outperformed the RTL model. Had the
specification been written at an appropriate level in the first place, a
more effective behavioral model could have been written from the
start.

284 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

Behavioral Models Are Faster

They are faster to
write.

As shown in “Behavioral versus RTL Thinking” on page 83, a
behavioral model is much faster to write simply because the func-
tionality is described using significantly fewer statements than an
RTL model. Furthermore, they do not need to meet physical timing
or other implementation constraints. They are written with the sole
purpose to describe the functionality of a design.

They are faster to
debug.

The fewer statements, the fewer bugs. Bugs are easier to identify
because of the simpler descriptions. The code is written based on a
functional description. It is not cluttered by directives aimed at a
synthesis tool, or twisted to be synthesized into specific hardware
structures. They also tend to use fewer parallel constructs, instead
preferring large sequential descriptions in a few processes. Sequen-
tial code is much easier to debug than parallel code, since it does
not involve synchronization or data exchange intricacies.

They are faster to
simulate.

Less code used to describe a function should naturally simulate
faster. But the greatest contributor to the increase in simulation
speed of a behavioral model over a synthesizable model is the syn-
thesizable subset itself. Look at all the processes and always blocks
used to infer registers. Each and every one of them is sensitive to
the clock. If you remember the discussion on event-driven simula-
tion in “The HDL Parallel Engine” on page 125, you know that this
causes all of these processes to be scheduled for execution after
each event on the clock signal, whether their state changes or not.

In a typical ASIC, activity levels are below 40 percent. This means
that over 60 percent of the processes are evaluated for no reason. A
behavioral model only executes when there is useful work to be
done. The load it puts on the simulator is much lower. In the small
example illustrated in “Contrasting the Approaches” on page 85,
the activity in the behavioral model is estimated to be 20 times
lower than in the equivalent RTL model.

They are faster to
bring to “market”.

Being faster to write and debug, a behavioral model takes signifi-
cantly less time to develop to a level where it can be used in a sys-
tem-level model. With behavioral models, you are able to start
system-level simulations sooner. Because they also simulate faster,
you are able to run more of them, on less expensive hardware.

Writing Testbenches: Functional Verification of HDL Models 285

Simulation Management

The Cost of Behavioral Models

Behavioral mod-
els require addi-
tional authoring
effort.

Someone has to write these behavioral models. If you use your
existing resources, it means that the coding of the RTL model will
be delayed. If you do not want to affect the schedule of the synthe-
sizable model, you will have to hire additional resources to write
the behavioral model. Being a completely separate model, it is a
task that is easy to parallelize with the synthesis effort. And writing
a behavioral model is not as costly as writing an RTL model. A
behavioral model, sufficient to start simulating and debugging the
testbenches, should not take more than two person-weeks to pro-
duce. A complete model with all of the functionality of the design
under verification should not take more than five percent of the
effort required to write an equivalent RTL model.

The maintenance
requires addi-
tional efforts.

When was the last time you were involved in a design project
where the functional specification did not change? Whenever a
functional or architectural change is made, the behavioral model
needs to be modified. Often, these modifications are dictated by the
RTL model because the technology cannot implement the original
design and still meet timing requirements. Some of these imple-
mentation-driven changes can be planned for and made easy to
modify, such as the latency. More significant changes may require
rewriting a significant portion of the behavioral model. Toward the
end of a project, when schedule pressure is at its greatest, it often
leads to the decision of abandoning the behavioral model in favor

of focusing on the RTL.4 However, most of the modifications to an
RTL model are made to meet timing goals and do not affect the
functionality of the design, and thus should not require modifica-
tion of the behavioral model.

The Benefits of Behavioral Models

Audit of the speci-
fication.

Most specification reviews I have attended focus on high-level
functions and on the spelling and grammatical errors in the docu-
ment. The missing functional details were often left to be discov-
ered during RTL coding. Decisions regarding these functional
details were then usually made according to the ease of implemen-

4. An error in my opinion. See the next section titled “The Benefits of
Behavioral Models”.

286 Writing Testbenches: Functional Verification of HDL Models

Behavioral Models

tation. There is nothing like writing a model to make you thor-
oughly read a specification document.

For example, after you’ve coded a particular function that occurs
under some condition, you’ve come to the else part of the if state-
ment. What should be done when the condition does not occur?
Flip, flip, flip through the specification document. Not a word.
You’ve just found a case of incomplete specification! Since you are
writing the behavioral model faster than the RTL model, you’ll
reach that section of the specification earlier than the RTL design-
ers. By the time the RTL model incorporates this functionality, it
will have been specified. A similar process occurs with inconsisten-
cies in the specification. When the RTL is written, there are fewer
problems in the specification, and thus takes less time to write.

Development and
debug of test-
benches in paral-
lel with the RTL
coding.

Testbenches are implemented using code, just as RTL models are. If
the RTL model requires debugging, so do the testbenches. And
since the testbenches now account for over 60 percent of the code
volume, they require more debugging than the RTL. Since a behav-
ioral model is available much earlier than the RTL code, you are
able to debug the testbenches earlier as well. You are effectively
debugging the behavioral model and the testbenches while the RTL
is being written. And because the behavioral model simulates faster
than the RTL model, the testbenches take less time to debug.

Once the RTL is completed, you will have a whole series of
debugged testbenches. Whenever an error is detected, it will likely
be due to of an error in the RTL model. If you decide to abandon the
maintenance of the behavioral model after the RTL is available,
debugging the testbenches (which will also need to be modified
whenever the RTL is significantly modified) will take much longer.
It is important to maintain the behavioral model to keep reaping its
benefits for the entire duration of the project.

System verifica-
tion can start ear-
lier.

Figure 7-4 shows a design process that uses behavioral models for
developing the testbenches and the functional verification of the
system. Figure 7-5 shows a comparative timeline for a design and
verification process with and without behavioral models. The
design process is somewhat shortened by using a behavioral model
because the testbenches are already debbugged. But the greatest
saving comes from system verification. The behavioral model is
available sooner than the RTL model, so functional verification can
start much earlier. Because a behavioral model is much smaller and

Writing Testbenches: Functional Verification of HDL Models 287

Simulation Management

simulates more efficiently than the equivalent RTL model, you are
able to create models of larger systems, execute longer testcases,
and run on ordinary hardware platform configurations. If the behav-
ioral model is demonstrated to be equivalent to the RTL model, the
latter never needs to be brought into the system-level verification.
For systems incorporating very large ASICs, a behavioral model
may be that which makes system verification even possible.

It can be used as
an evaluation and
integration tool by
your customers.

If your design is to be available as reusable intellectual property or
a chipset, a behavioral model can be a powerful marketing tool.
Since it only describes functionality, not implementation, and is far
from being synthesizable, it should not convey intellectual property

information.5 A customer could start using the behavioral model
while the legal issues with licensing the RTL model are being
resolved. The system-level models could be used as application
notes. The behavioral model could be used to start the integration of
your design into your customer’s design. Since reusing intellectual
property is about time-to-market, a behavioral model can be an
effective tool to help your customers improve the odds that they
will reach their market window.

5. Unless the intellectual property is in the function itself, such as a DSP
algorithm.

288 Writing Testbenches: Functional Verification of HDL Models

Pass or Fail?

Demonstrating Equivalence

The RTL and
behavioral models
must be equiva-
lent.

The greatest benefit from creating a behavioral model comes from
system verification. To use it instead of the RTL model in a simula-
tion or as a marketing tool, you have to demonstrate that both are an
equivalent representation of the design. I use the term “demon-
strate” because I do not think it will ever be possible to mathemati-
cally prove that they are equivalent.

Equivalence checking can prove that a RTL model is equivalent to
a gate-level model or to another RTL model because they are struc-
turally very similar. A properly-written behavioral model would use
a completely different modeling approach that would be very diffi-
cult to mathematically correlate with the equivalent RTL model.

Demonstrate
equivalence by
using the same test
suite.

The only way to demonstrate that the behavioral and the RTL mod-
els are equivalent is to verify both of them using the same test suite.
If both models pass the same testcases, from a system-level per-
spective, it should not matter which one you are using. For a
testcase to be executable on both models, it must not depend on a
specific implementation. Based on the testcase taxonomy described
in “Functional Verification Approaches” on page 11, only black-
and grey-box testcases can be used to demonstrate equivalence.
Both are executed through the same physical interface. Both do not
depend on a particular implementation of the design under verifica-
tion. The grey-box testcases may not be very relevant to the behav-
ioral model as they are designed to test a particular implemenation-
specific feature in the RTL model, but should nonetheless execute
succesfully.

PASS OR FAIL?

This section describes how the ultimate failure or success of a self-
checking testbench is determined.

The absence of
error is not a suffi-
cient condition.

The goal of a testbench is to determine if the design under verifica-
tion passes or fails a testcase. But how do you determine if the
design passed the testcase? Is it by the absence of error messages?
What if the testcase never ran at all? It could be caused by a lack of
licenses, or a run-time error such as running out of memory or
experiencing a power failure, or a simple syntax error in your

Writing Testbenches: Functional Verification of HDL Models 289

Simulation Management

source code. You need positive proof that the testcase successfuly
ran to completion.

Produce and look
for a termination
message.

Do not rely on a time bomb to terminate your testcase. Nor should
you attempt to have the simulation terminate by itself through event
starvation. Each testcase should be intentionally terminated. Upon
termination, it should produce a message that the simulation was
terminated normally. If that message is not present, you must
assume that the testcase did not run to completion and failed. To
terminate a simulation from within the testbench, use the $finish
statement in Verilog, or the assert statement in VHDL. Sample 7-16
and Sample 7-17 illustrate their respective use.

Sample 7-16.
Terminating a
Verilog simu-
lation

initial
begin: test_procedure

$write("Simulation terminated normally\n");
$finish;

end

Sample 7-17.
Terminating a
VHDL simula-
tion

test_procedure: process
begin

assert false
report "Simulation terminated normally"
severity failure;

end process test_procedure;

An error in the
testbench could
prevent error
detection.

What if there is a functional problem in your testbench? That error
could prevent the testbench from detecting any errors at all. This
would clearly be a false-positive situation. You should always
ensure that your testbench is functionally correct as part of your
testcases. Error detection can be verified by deliberately injecting
errors in the design under verification. These errors can be intro-
duced by simply misconfiguring the design for the expected output.
For example, a UART could be configured with the wrong parity
setting to verify that the output monitor detects the bad parity.

Use errors as a
valid response.

Once you decide to inject an error into your design, how should you
handle it? You might want to configure your monitor to expect that
error and produce a message if it does not see the erroneous condi-
tion. I consider this option risky. It increases the complexity of the
output monitor, as it may be very difficult to time the detection of
the error accurately. But, more importantly, it still does not provide

290 Writing Testbenches: Functional Verification of HDL Models

Pass or Fail?

positive proof that your monitor detects the error. Instead, let the
error message be produced during simulation. To distinguish this
intentional - and mandatory - error, generate a message that an error
condition is expected. For error messages that are expected, pro-
duce a different label to easily distinguish them from real errors.

Bracket regions
where error mes-
sages are expected.

Having error messages be part of the success criteria also involves
risks. What if the error message you expected to receive was not
produced and another unexpected one was issued instead? Unless
you were intimately familiar with the workings of the testcase and
read all error messages, you would not be able to differentiate this
functional failure from a successful testcase execution. To prevent
the misinterpretation of errors as expected ones, bracket the regions
where errors are expected with messages stating the expectations.
Sample 7-18 shows a portion of a simulation output. Notice how
the region where two error messages were expected is bracketed by
expectation messages. This region should be as narrow as possible.
Notice also how the label for the error messages is different if the
error is expected or not.

Sample 7-18.
Bracketing
exected errors
in a simulation

EXPECT : 2 errors
NOTE : ...

(error) : ...
(error) : ...
EXPECT : 0 errors
•••

ERROR : ...

Provide consistent
error message for-
mats.

The success or failure of a testcase would be determined by the
presence of the specified number of error messages within the
expected regions. The final pass or fail judgment could be made by
a script parsing the simulation output log file, counting the unex-
pected or missing errors. To facilitate the implementation of such a
script, use a consistent error format. This is best accomplished by
using a message log package that produces consistent headers, as
shown in Sample 7-19.

Keep track of suc-
cess or failure in
the log package.

By using a single message log package as shown in Sample 7-20, it
is possible for the simulation to keep track of its own success or
failure by comparing the number of errors encountered against the
expectation. By including a simulation termination function, the

291Writing Testbenches: Functional Verification of HDL Models

...

...

Simulation Management

Sample 7-19.
Simulation log
package

module log;

integer expected;
task expect;

input [31:0] n;
$write("EXPECT: %0d errors\n", n) ;
expected = n;

endtask

task error;
if (expected > 0) begin

$write("(error): ");
expected = expected - 1;

end
else $write(" ERROR : ");

endtask

endmodule

final pass or fail indication can be determined by the simulation,
without using a script to parse the output log. Such a package is
easy to implement in Verilog, but requires shared variables in
VHDL, a VHDL-93 feature.

Using a script to
parse the simula-
tion output log is
still a good idea.

Using a message log package is not sufficient to determine if a
testcase is successful. Other errors could have been generated
before the simulation started. The log package can only count error
messages during simulation, not before or after. You still need to
confirm the presence of the termination message to verify that the
testcase was properly executed in its entirety. The output log pars-
ing script can also detect the presence of errors or warnings issued
by the simulation management tools, linting tools, syntax errors,
elaboration warnings, and other possible error conditions not visi-
ble to the simulation. You can find a link to a configurable output
log parser script in the resources section of:

http://janick.bergeron.com/wtb.

MANAGING SIMULATIONS

Are you simulat-
ing the right
model?

You’ve defined your verification task through a verification plan.
You have a test harness with many bus-functional models and util-
ity packages. Several testcases using that test harness have been
written and you can choose between the RTL and behavioral model

292 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

Sample 7-20.
Determining
pass or fail in
the simulation
log package

module log;

reg fail;
initial fail = 0;
integer expected;

task expect;
input [31:0] n;

begin
if (expected) begin

$write("*FAIL*: %0d missed errors\n",
expect);

fail = 1;
end
$write("EXPECT: %0d errors\n", n) ;
expected = n;

end
endtask

task error;
end

if (expected > 0) begin
$write("(error): ");
expected = expected - 1;

end
else begin

$write(" ERROR : ") ;
fail = 1;

end
end
endtask

task terminate;
begin

$write("Simulation %0sED\n",
(fail) ? "FAIL" : "PASS");

$finish;
end
endtask

endmodule

to simulate them. How do you bring all of these components
together in a single simulation? How can you reproduce a simula-
tion? And more importantly, how do you make sure that what you
simulate is what will be built?

Writing Testbenches: Functional Verification of HDL Models 293

Simulation Management

Configuration Management

A configuration is
the set of models
used in a simula-
tion.

Configuration management is different from source management.
Source management, as described in “Revision Control” on
page 47, deals with changes to source files and the set of source
files making up a particular release. Configuration management
deals with the particular set of models you decide to use in a partic-
ular simulation. For a specific design, a single configuration would
be composed of a specific testcase, the test harness used by that
testcase, and the model of the design to be exercised by the test-
bench. In a system-level simulation, the configuration would also
include that particular mix of models used to populate the system
model.

It must be easy to
specify a particular
configuration.

The only information required to define a particular configuration
is the identity of the testcase, the test harness, and the model of the
design under verification. The problem is that each configuration
component is potentially composed of several source files and
design units. Many individuals contribute to the creation of these
source files and design units. Their number and names may change
throughout the project. It is not realistic to expect every engineer
who needs to run a simulation to know exactly what makes up a
particular component of the desired simulation. Just as bus-func-
tional models abstract the data from the physical implementation
level, configuration management abstracts the details of the struc-
ture of a model and the files that describe it.

Use a script to cre-
ate a configura-
tion.

The most efficient way to abstract the configuration details from the
user is to provide a script that expands a testcase name and an
abstraction level for the design under verification into their respec-
tive simulation components. It is very likely that different scripts
have to be used for different design. To simplify the user interface
and minimize the amount of repeated information, they infer path-
names and expect particular setup files specific to each design.

For example, Sample 7-21 shows the command line of a script
named sim_design used to simulate a configuration composed of
the testcase named “basic_tx” on the behavioral model. It is fol-
lowed by a configuration composed of the testcase named
“overflow_rx” on the RTL model.

294 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

% sim_design -b basic_tx
% sim_design -r overflow_rxSample 7-21.

Configuration
script com-
mand line

Verilog Configuration Management

There are many
ways of specify-
ing files.

There are five different ways to include a source file into a Verilog
simulation:

1.

2.

3.

4.

5.

Specify the filename on the command line.
Specify the name of a file containing a list of filenames, using
the -f option.
Specify a directory to search for files likely to contain the defi-
nition of a missing module, using the -y option. The files used in
the simulation depend on the +libext command-line option.
Specify the name of a file that may contain the definition of
missing modules, using the -v option.
Include a source file inside another using the ` include directive.
The actual file included in the simulation depends on the
+incdir command-line option.

Use the -f option. Of all the mechanisms for specifying input source files in Verilog,
only the -f option can be source-controlled and reliably reproduced.
Depending on command-line options and search orders is not reli-
able and makes reproducing a configuration difficult. It may also
breakdown if conflicts arise when a model is integrated in another
environment where directory, file and module names conflict. The
file-of-filenames, or manifest file, becomes an integral part of the
source code. It is maintained by the author as files are renamed,
added, or removed. It removes the user from knowing exactly
which files make up a particular model, harness or testcase. All the
user needs to know is the name and location of the desired manifest
file. Verilog does the rest.

Specify all
required com-
mand-line options.

A manifest file is not limited to containing filenames. It can contain
any command-line option. A manifest file should include all com-
mand-line options required by a model. For example, gate-level
models use the -y or -v option to locate and load the required mod-
ules for the gate models. Specifying all required files, including the
model for all the gates used would be impractical. A gate-level

295Writing Testbenches: Functional Verification of HDL Models

Simulation Management

model can use several dozen different gates. The set of gates can
also differ from synthesis run to synthesis run.

Sample 7-22 shows a manifest file for a gate-level model composed
of three files. The models for the gates are located in a directory
called “ ../gates/lib/tech” . The gate-level models require that the
“FAMILY_08” symbol be defined.

Sample 7-22.
Command-line
options in a
manifest file

top.v
fifo.v
ram.v
+define+FAMILY_08
-y ../gates/lib/tech
+libext+.v

Manifest files can
be hierarchical.

Since manifest files can contain any command-line option, they can
contain -f options. If a model is composed of independently config-
ured units, such as a system model, the lower-level units can be
included by including their manifest files in the manifest file of the
higher-level design. Similarly, a testcase manifest file would
include the manifest file for the required test harness in its own
manifest file, using the -f option.

For example, Sample 7-23 shows the manifest file for the testcase
illustrated in Figure 6-5 on page 234, while Sample 7-24 shows the
manifest file for the harness.

Sample 7-23.
Hierarchical
manifest file
for testcase

testcase.v
packet.v
+define+BEH_PLL
-f harness.mft

Sample 7-24.
Manifest file
for test har-
ness

harness.v
i386sx.v

Select the design
under verification
using its manifest
file.

In Sample 7-24, the harness did not refer to or include the manifest
file for the design under verification. This would have limited the
execution of the testcase to a single configuration of the design
under verification. Instead, the configuration to be verified by the
selected testcase and test harness is specified separately. During the

296 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

elaboration phase of the Verilog model, the design is associated
with the instantiation in the harness, as long as the module and pin
names match. Sample 7-25 shows how the testcase would be exe-
cuted on the behavioral model of a design, then on the RTL model.
Each model is assumed to be located in a different directory.

Sample 7-25.
Specifying a
testcase and
design config-
uration

% verilog -f tests/testcase.mft -f beh/design.mft
% verilog -f tests/testcase.mft -f rt1/design.mft

Use relative path-
names.

Manifest files should be written to work under different locations in
a file system. Often, different computers on the same network see
the same files under a different mount point. If absolute pathnames
are specified, every computer has to have the file system mounted
at the exact same location. It may not always be possible, especially
if a model is to be used by another business entity with a different
computer administration policy. The manifest file shown in Sample
7-26 will not be portable to a different file system. The one shown
in Sample 7-27, which uses relative pathnames, will be useable
regardless of the mount point of the file system.

Sample 7-26.
Absolute path-
names in man-
ifest files

/net/raid/proj/titan/tests/testcase.v
/net/raid/proj/titan/utils/packet.v
+define+BEH_PLL
-f /net/raid/proj/titan/harness/harness.mft

Sample 7-27.
Relative path-
names in man-
ifest files

tests/testcase.v
utils/packet.v
+define+BEH_PLL
-f harness/harness.mft

Relative path-
names may need
correction.

The advantage of absolute pathnames is that they do not imply or
require a specific working directory. Relative pathnames in mani-
fest files are interpreted as-is by Verilog. The actual location of the
file depends on the current working directory where the simulation
is invoked. For example, Sample 7-28 shows the absolute path-
names of the files loaded by Verilog using the manifest file shown
in Sample 7-27 if the working directory is “ /home/joe/titan” . Com-

Writing Testbenches: Functional Verification of HDL Models 297

Simulation Management

pare with Sample 7-29, which shows the assumed pathnames if the
working directory was set to “ /home/joe” . Only one of them pro-
duces the desired simulation.

Sample 7-28.
Assumed path-
names from a
working direc-
tory

% verilog -f tests/testcase.mft

/home/joe/titan/tests/testcase.v
/home/joe/titan/utils/packet.v
+define+BEH_PLL
-f /home/joe/titan/harness/harness.mft

Sample 7-29.
Assumed path-
names from a
different
working direc-
tory

% verilog -f titan/tests/testcase.mft

/home/joe/tests/testcase.v
/home/joe/utils/packet.v
+define+BEH_PLL
-f /home/joe/harness/harness.mft

The -F option is a
good start toward a
solution.

The -F option, similar to the -f option, is not supported by all Ver-
ilog tools. But it provides a useful mechanism of overcoming the
dependence of relative filenames on the current working directory.
If a manifest file is specified using the -F option instead of -f, the
relative pathnames in the manifest file are prepended with the path
to the manifest file.

For example, the manifest file for a behavioral model shown in
Sample 7-30 is used to configure a simulation from two different
working directories in Sample 7-31. In both cases, the correct files
are assumed by Verilog. However, the -F option does not work well
when the relative pathnames contain directories or command-line
options that include relative pathnames in their arguments.

Sample 7-32 shows how the relative pathnames in a manifest file
are interpreted when specifying directories. The -F option was a
good idea, but its implementation leaves a lot to be desired. Fur-
thermore, at the time this book was written, the -F option did not
work hierarchically.

design.v
fifo.v
ram.v

Sample 7-30.
Manifest file
with relative
pathnames

298 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

Sample 7-31.
Assumed path-
names using
the -F option

% verilog -F titan/beh/design.mft

titan/beh/design.v
titan/beh/fifo.v
titan/beh/ram.v

% cd titan
% verilog -F beh/design.mft

beh/design.v
beh/fifo.v
beh/ram.v

Sample 7-32.
Assumed path-
names using
the -F option
with hierarchi-
cal pathnames

% verilog -F titan/tests/testcase.mft

/home/joe/titan/tests/tests/testease.v
/home/joe/titan/tests/utils/packet.v
+define+BEH_PLL
-f /home/joe/harness/harness.mft

Use a script to
parse the manifest
files.

The -F option is a good idea and its implementation can be fixed by
using a script to parse the manifest file and correct any relative
pathnames. Any relative pathname would be interpreted as relative
to the location of the manifest file, not the current working direc-
tory. That way, manifest files can be used, unmodified, from any
location in the file system.

Sample 7-33 shows how the manifest file in Sample 7-34 would be
interpreted using the manifest parsing script.

You will find an PERL implementation of the manifest parse script
in the resources section of:

http://janick.bergeron.com/wtb

Any relative pathname is corrected: filenames, as well as arguments
to the -f, -F, -y, -v, and +incdir options. The script can also allow
pathnames containing environment variables. Identifying writeable
files would be a useful feature of the manifest parsing script. It
would indicate files that are potentially different from the version in
the source control system.

Filter out files
included multiple
time.

Since manifest files are written independently from each other, they
could include the same source file twice. For example, two different

Writing Testbenches: Functional Verification of HDL Models 299

Simulation Management

Sample 7-33.
Assumed path-
names using a
manifest pars-
ing script

% mverilog -F titan/tests/testcase.mft

titan/tests/testcase.v
titan/tests/../utils/packet.v
+define+BEH_PLL
-f titan/tests/../harness/harness.mft

% cd titan/utils
% mverilog -F ../tests/testcase.mft

../tests/testcase.v

../tests/../utils/packet.v
+define+BEH_PLL
-F ../tests/../harness/harness.mft

Sample 7-34.
Manifest file
with names
relative to the
manifest file

testcase.v
../utils/packet.v
-F ../harness/harness.mft

units in a design, each with their own manifest file, could include
the source files for a shared component.

Sample 7-35 shows two such manifest files. Both include the file
named “ fifo.v” in the shared directory. The manifest parse script
should filter out multiple references to the same file. Otherwise,
Verilog will abort with an error because of a module being defined
more than once.

Sample 7-35.
Multiple file
reference in
different mani-
fest files

master/master.mft:

master.v
../shared/fifo.v

slave/slave.mft:

slave.v
../shared/fifo.v

Manifest files need
to work differ-
ently with some
compiled simula-
tors.

Using manifest files for Verilog configuration works properly when
using a simulator that compiles the source files before every simu-
lation. It also works with compiled simulators with incremental
compilation, such as VCS with the -R option, if they look at all the
source files to determine if any source file needs recompilation.

300 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

Others, such as ModelSim or the simv binary produced by VCS,
have separate compilation and simulation phases.

The manifest files deal with compile-time as well as run-time
options. If the simulation and compilation phases are separated, the
manifest files need to be split into compilation and simulation man-
ifest files. The split between run-time and compile-time options
may be different for each compiled simulator and could be automat-
ically handled by the manifest front-end script.

Compiled simula-
tions are discon-
nected from the
source files.

Using compiled simulation creates a disconnect between the source
file and the simulation of the compiled files. What if the source file
has changed? How do you make sure that what you are simulating
is the proper version of the source files? Configuration manage-
ment techniques for compiled simulations are outlined in the next
section. As all VHDL simulators are compiled simulators, the man-
agement of VHDL models must deal with this problem. To elimi-
nate this difficulty and provide a familar interface to experienced
Verilog-XL users, all compiled Verilog simulators provide an inter-
preted-like mode where all the source files are recompiled every
time and simulated immediately.

VHDL Configuration Management

You may not be
simulating what
you thought was
compiled.

All VHDL simulators are compiled simulators. During compilation,
the individual source files are compiled into libraries and translated
to object code. During elaboration, a top-level unit is selected and,
using the configuration information, a hierarchical model is built by
recursively connecting entities and architectures into component
instances. The elaborated model is then simulated. A separate com-
mand (sometimes two) is used to trigger the compilation and the
elaboration. This creates a potential disconnect between the source
files and what is ultimately simulated. How do you know that the
source files located in your directory are the ones you are simulat-
ing?

Use makefiles. The most effective way to assure a compiled simulation is up-to-
date is to use makefiles. Makefiles, and the associated make pro-
gram, were created in the mid-seventies to maintain software pro-
grams and make sure that the compiled code was always up-to-date.

Makefiles contain dependency rules describing relationships
between files. If a file is found to be older than a file it depends on,

Writing Testbenches: Functional Verification of HDL Models 301

Simulation Management

it is brought up to date using a user-defined command. Nowadays,

it is not necessary to know the frustrating syntax6 . of Makefiles. All
VHDL and compiled Verilog toolsets can generate a Makefile from
a compiled model. Third-party utilities, such as VMK, can also
automatically generate Makefiles from VHDL or Verilog source
code.

Use make to
invoke the simula-
tion.

To ensure that a simulation is always up-to-date, do not invoke the
simulator manually. Some source files might have changed and you
would be simulating an out-of-date model. Instead, use the make
command to invoke the simulator. The program ensures that any
source files that have changed since the last compilation are recom-
piled, in the correct order. There should be a target for each testcase
available for simulation. The name of the target depends on the tool
used to generate the Makefile. Sample 7-36 shows how to invoke
make using a specific target.

Sample 7-36.
Invoking make

% make basic_tx
% make overflow_rx

The model should
report the name
and version of
files.

For additional confidence and a positive confirmation of the files
and version of the files simulated in a compiled model, you should
have each architecture report the name and revision number of the
file that contained it during compilation. Sample 7-37 shows how to
use a concurrent assert statement and RCS keywords to perform
this task. All of the assert statements are executed at the beginning
of the simulation, displaying the filename and revision information.
Because they are not sensitive to any signals, they do not execute
again. Unfortunately, it is not possible to have packages report their
source file name and version numbers. A compiled Verilog model
could use a $write statement and an initial block to accomplish the
same thing, as shown in Sample 7-38.

Use configuration
units to define the
possible configu-
rations of the
design.

VHDL supports the concept of model configuration using configu-
ration units. Configuration declarations are like assembly instruc-
tions for a simulation model. They specify which entity and which
architecture of that entity should be used for each component

6. I personally would like to have a little chat with whomever picked the
TAB character as a significant control character!

302 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

Sample 7-37.
VHDL model
reporting its
filename and
revision

architecture beh of design is

begin
assert false

report "Configuration: $Header$"
severity note;

end beh;

Sample 7-38.
Verilog model
reporting its
filename and
revision

module design(...);

initial $write ("Configuration: $Header$\n");

endmodule

instantiation.7 The author of a model should provide a configura-
tion unit that specifies how to assemble the model in question. The
configuration unit becomes an integral part of the source of the
model.

For example, as shown in Sample 7-39, there should be a configu-
ration for building the behavioral model of a design, as well as a
configuration for building the RTL model of a design, as shown in
Sample 7-40. There should also be a configuration for building a
model of a board.

Sample 7-39.
Configuration
for a behav-
ioral model

configuration beh_design of design is
for beh -- architecture of "design"

end for;
end beh_design;

Sample 7-40.
Configuration
for an RTL
model

configuration rtl_design of design is
for rtl -- architecture of "design"

end for;
end rtl_design;

7. For more information on VHDL configuration, see page 273 of VHDL
Coding Styles and Methodologies, 2nd edition, by Ben Cohen (Kluwer
Academic Publisher)

Writing Testbenches: Functional Verification of HDL Models 303

Simulation Management

Use configuration
units for each
testcase and test
harness.

There should also be a configuration unit to specify the configura-
tion of the test harness. An example is shown in Sample 7-41. Each
testcase would also be configured using a configuration unit. The
configuration of the testcase should include the configuration of
test harness. Sample 7-42 shows an example of a testcase configu-
ration unit.

Sample 7-41.
Configuration
for a test har-
ness

configuration main of harness is
for main -- architecture of "harness"

for cpu:cpu_server use ...
end for;

end for; -- architecture "main"
end main;

Sample 7-42.
Configuration
for a testcase

library harness;
configuration testcase of bench is
for testcase -- architecture of "bench"

for th:harness use configuration harness.main;
end for; -- configuration "main"

end for; -- architecture "testcase"
end testcase;

Generate the final
configuration to
select the design.

If you examine the configuration for the test harness and the
testcase, you will notice it does not include a configuration specifi-
cation for the design under verification. Default configuration can-
not be used because you want the ability to change which model
you want to simulate using a specific testcase. Once a model is
compiled, the default configuration is already selected.

You could write a different configuration unit for each possible
combination of testcase and design under verification. This would
duplicate a lot of information and would be cumbersome to main-
tain should the structure of the testcase or harness be modified. It is
easier to generate the final testcase configuration to include the
configuration specification to the desired design.

Provide a configu-
ration unit tem-
plate.

The simulation script could parse the VHDL source files to auto-
matically generate a configuration unit. However, it is best to pro-
vide a testcase configuration template to the script, with a clearly
identifiable placeholder for the configuration specification for the
design under verification. Sample 7-43 shows the testcase configu-
ration unit modified to include a placeholder to be expanded by the
simulation script. Using the template, the simulation script only

304 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

needs to replace the placeholder with a reference to the desired
design configuration, as shown in Sample 7-44. Notice how the
final configuration unit is able to configure a component instantia-
tion in an architecture that was previously configured in its own
configuration unit. The generated configuration unit is compiled
every time before each simulation.

Sample 7-43.
Configuration
template for a
test harness

library harness;
configuration testcase of bench is
for testcase -- architecture of "bench"

for th:harness use configuration harness.main;
for main -- architecture inside cfg "main"

for duv:design
use <design>;

end for;
end for; -- architecture "main"
end for; -- configuration "main"

end for; -- architecture "testcase"
end testcase;

Sample 7-44.
Expanded con-
figuration tem-
plate for a test
harness

library beh_lib;
library harness;
configuration testcase of bench is
for testcase -- architecture of "bench"

for th:harness use configuration harness.main;
for main -- architecture inside cfg "main"

for duv:design
use configuration beh_lib.beh_design;

end for;
end for; -- architecture "main"
end for; -- configuration "main"

end for; -- architecture "testcase"
end testcase;

SDF Back-Annotation

SDF file are used
to model accurate
delays.

In a gate-level model, each gate is modeled using delays estimated
from average output load conditions. However, in a real gate-level
netlist, each gate is subject to different output loads: they drive dif-
ferent numbers of inputs, and the length of the wires connecting the
output of the gate to the driven inputs are different. Each contrib-
utes to the load on the output of the gate, producing different loads
for different instances of the same gate.

Writing Testbenches: Functional Verification of HDL Models 305

Simulation Management

To be more accurate, gate-level simulations are back-annotated
with delay values calculated from the physical netlist or the layout
geometries. These more-accurate delay values are stored in a Stan-
dard Delay File. The SDF file is read by the simulator and each
delay value replaces the average delay estimate for each instance.
Thus, each gate instance can have a different delay value. The delay
between an output pin and each of its driven input pins can also be
different.

SDF annotation
can take a long
time.

Gate-level netlists can contain a few million gates and several mil-
lion pin-to-pin nets or connections. Each must be annotated with a
new delay value. This process can be very time-consuming and
should be minimized whenever possible. If you have to recompile
your model for each testcase, you have to perform the back-annota-
tion each time as well.

Use compiled
back-annotation
whenever possible.

Compiled simulators usually offer compile-time back-annotation of
a gate-level model. In that mode, the back-annotation of the delay
values is performed once at compile time. Different testcases can be
configured to run on the design in separate simulations without
requiring that the back-annotation process be repeated.

Concatenate
testcases to mini-
mize back-annota-
tion.

If you must use simulation-time back-annotation, you should mini-
mize the time spent back-annotating the gate-level model of the
design under verification. This can only be accomplished by mini-
mizing the number of times the simulation is invoked. To invoke
the simulation only once for multiple testcases, you need to concat-
enate each testcase into a single module or process that executes
each in sequence.

Use a single proce-
dure or task to
control each
testcase.

You still want each testcase to be written separately, and the ability
to simulate them independently during development or when SDF
back-annotation is not required. It is simple to concatenate each
testcase into a sequence, if each testcase is encapsulated in a single
task or procedure. To simulate a particular testcase, you simply
have to call the task or procedure that encapsulates it. The testcases
are concatenated by creating a sequence of task or procedure calls
in a sequencing process.

In Verilog, add an
initial block to
execute the
testcase stand-
alone.

Sample 7-45 shows the Verilog testcase, originally shown in Sam-
ple 6-8 on page 234, encapsulated in a task. To execute this testcase
in stand-alone mode, an initial block calls the task, if the simulation
is invoked with the +standalone user-defined simulation-time

306 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

option. To execute this testcase in stand-alone mode, presumably to
debug a problem, you would compile only this testcase with the
harness and the design under verification, as shown in Sample 7-46.

Sample 7-45.
Verilog
testcase encap-
sulated in a
task

module testcase;

task testcase;
reg [15:0] val;
reg [64*8:1] msg;

begin
harness.reset;
harness.cpu.read(24’h00_FFFF, val);
val[0] = 1’b1;
harness.cpu.write(24’h00_FFFF, val);

packet.send(msg);
end
endtask

initial
begin

if ($test$plusargs("standalone")) begin
testcase;
syslog.terminate;

end
end
endmodule

Sample 7-46.
Command-line
for standa-
alone simula-
tion

% mverilog -F tests/testcase.mft \
-F beh/design.mft
+standalone

Control the
sequence of
testcases using
user-defined
options.

The sequence of testcases is created in a separate module. It con-
tains an initial block that can invoke all known testcases. To control
which testcases are run and which ones are not, each task call is
embedded in an if statement which tests for a user-defined com-
mand-line option. That way, you might run only a subset of
testcases instead of all of them. Sample 7-47 shows the structure of
the testcase sequencer module. To run a set of testcases, you simply
have to specify the name of the desired testcases as a user-defined
command-line option. To run all testcases, simply use the
+all_testcases user-defined option. Sample 7-48 shows an example

307Writing Testbenches: Functional Verification of HDL Models

Simulation Management

of each usage with a VCS compiled simulation. Notice how it was
not necessary to recompile the model to execute different testcases.

Sample 7-47.
Sequencer
module for
simulating
multiple
testcases

module sequencer;
initial
begin: sequence

reg all;

all = $test$plusargs("all_testcases");

if (all || $test$plusargs("testcase1") begin
testcase1.testcase1;

end
if (all || $test$plusargs("testcase2") begin

testcase2.testcase2;
end

syslog.terminate;
end
endmodule

Sample 7-48.
Sequencing
different
testcases

% vcs -F tests/all.mft -F gate/design.mft \
-F phy/sdf.mft

% ./simv +testcase3 +testcase7
% ./simv +all_testcases

In VHDL, pass all
client/server con-
trol signals to the
encapsulating pro-
cedure.

Encapsulating the testcase in a VHDL procedure requires that all
client/server control signals be passed through the procedure inter-
face as signal-class arguments. This could be avoided if the proce-
dure was declared in the same process where it will be used. This
would require that all testcases, now encapsulated in procedures, be
written in a single process declarative region. However, if you want
to write and simulate each testcase independently, they will have to
be located in packages, thus requiring the signal-class arguments.
Sample 7-49 shows the testcase originally shown in Sample 6-19
on page 245 encapsulated in a procedure in a package.

Control the
sequence of
testcases using
top-level generics.

The sequence of testcases is implemented in a process in the archi-
tecture instantiating the test harness. The process can invoke all
known testcases. To control which testcases are run and which ones
are not, each procedure call is embedded in an if statement checking
if a top-level generic has been defined. That way, you might run
only a subset of testcases instead of all of them.

308 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

Sample 7-49.
Encapsulated
client testcase

use work.i386SX;
package body testcase is

procedure do_testcase(
signal to_srv : out i3868x.to_srv_typ;
signal frm_srv: in i386SX.frm_srv_typ)

is
variable data: data_typ;

begin

-- Perform a read
i386sx.read(..., data, to_srv, frm_srv);

-- Perform a write
i386SX.write(..., ..., to_srv, frm_srv);

end do_testcase;
end testcase;

Sample 7-50 shows the structure of the testcase sequencer architec-
ture. To run a set of testcases, you have to override the default value
of the top-level generic corresponding to the desired testcase. The
type of the top-level generics is integer because some VHDL simu-
lators may not support user-defined or enumerated types when set-
ting a generic from the command line. To run all testcases, simply
override the value of the all_testcases top-level generic. Sample 7-
51 shows how to select different testcase sequences by setting the
top-level generics on the simulation command line under Model-
Sim.

Output File Management

Simulations pro-
duce output files.

A simulation usually creates at least one output file. For example,
Verilog-XL simulations generate a copy of the output messages in a
file named “verilog.log” by default. Another frequently produced
output file is the file containing the signal trace information for a
waveform viewer. These output files are valuable. They are used to
determine if the simulation was successful. They should be saved
after each simulation run and parsed or post processed to determine
success or failure.

Multiple simula-
tions can clobber
each other’s files.

When you run only one simulation at a time, you can save them by
renaming them after the completion of the simulation. That way,
you can keep a history of testcases that were run on the design
under verification. However, if you run multiple simulations in par-

Writing Testbenches: Functional Verification of HDL Models 309

Simulation Management

Sample 7-50.
Sequencer
architecture
for simulating
multiple
testcases

entity sequencer;
generic (all_testcases: natural := 0;

testcase1 : natural := 0;
testcase2 : natural := 0; ...);

end sequencer;

use work.testcase1;
use work.testcase2;

use work.i386sx;

architecture test of sequencer is
begin

duv: design;

run:process
begin

if all_testcases + testcase1 > 0 then
testcasel.do_testcase1(i386sx.to_srv,

i386sx.frm_srv);
end if;
if all_testcases + testcase2 > 0 then

testcase2.do_testcase2(i386sx.to_srv,
i386SX.frm_srv);

end if;

assert false
report "Simulation completed"
severity failure;

end process run;
end test;

Sample 7-51.
Sequencing
different
testcases

% vsim -Gtestcase3=1 -Gtestcase7=1 sequencer
% vsim -Gall_testcases=1 sequencer

allel, usually on different machines, the output files from one simu-
lation can clobber those of another. If you rely on default or
hardcoded filenames, you will not be able to run simulations in par-
allel. You must be able to name files differently for different
testcases.

310 Writing Testbenches: Functional Verification of HDL Models

Managing Simulations

Specify output
filenames on the
command line in
your simulation
run script.

A few default output filenames can be changed from the command
line. For example, the -l option in Verilog can be used to change the
name of the output log file. In “Configuration Management” on
page 294, I recommended that you use a script to help manage the
configuration of a simulation. That same script can also manage the
naming of the output files according to the name of the testcase.
Sample 7-52 shows how a PERL script can use the name of the
testcase specified on the command line to rename the output log file
in a Verilog simulation. Notice how it uses the manifest file parse
script called mverilog to invoke the simulation with the proper set
of files.

Sample 7-52.
Simulation run
script

require "getopts.pl";
&usage if &getopts("hr") || $opt_h || !@ARGV;

sub usage {
print <<USAGE;

Usage: $0 [-r] {testcase}
-r Use the RTL model instead of behavioral

USAGE
exit (1);

}

$design = ($opt_r) ? "rtl" : "beh";
$prefix = "mverilog -F $design/design.mft ";

foreach $test (@ARGV) {
$command = "$prefix -F tests/$test.mft";
$command .= " -1 logs/$test.log";
system($command);

}

In VHDL, use a
string type con-
stant and generic.

Not all filenames can be renamed from the command line. In
VHDL, all file objects are named from within the VHDL model. To
make the filenames unique for each testcase, provide the name of
the current testcase to the test harness to create unique filenames. In
the testcase itself, you must be careful to use the testcase name to
generate filenames as well. The simplest way is to have each
testcase contain a constant defined as the (unique) testcase name.
The value of that constant would be used to generate filenames and
passed to the test harness via a generic. Sample 7-53 shows an
example. Notice how the string concatenation operator is used to
generate a unique filename in the file declarations.

311Writing Testbenches: Functional Verification of HDL Models

Simulation Management

Sample 7-53.
Generating
unique file
names in
VHDL

architecture test of bench is
constant name: string := "testcase";
component harness

generic (name: string);
end component;

begin

th: harness generic map (name);

process
file results: text is out name & ".out";

begin

end process;
end test;

In Verilog, use a
parameter.

A similar technique can be used in Verilog. You simply use a
parameter instead of the constant and pass the testcase name to the
test harness as a parameter association. Strings in Verilog are sim-
ply bit vectors with eight bits per character. They can be concate-
nated using the usual concatenation operator to create unique
filenames. Sample 7-54 shows an example.

Sample 7-54.
Generating
unique file
names in Ver-
ilog

module testbench is
parameter name = "testcase";

harness #(name) th ();

initial
begin

integer results;
results = $fopen({name, ".out"});

end
endmodule

REGRESSION

A regression
ensures backward
compatibility.

A regression suite ensures that modifications to the design remain
backward compatible with previously verified functionality. Many
times, a change in the design made to fix a problem detected by a
testcase, will break functionality that was previously verified. Once
a testbench is written and debugged to simulate successfully, you
must make sure that it continues to be succesful throughout the
duration of the design project.

312 Writing Testbenches: Functional Verification of HDL Models

Regression

Running Regressions

Regressions are
run at regular
intervals.

Testbenches may
have a fast mode
to speed-up regres-
sions.

Sample 7-55.
Implementing
a fast mode in
a Verilog test-
bench

Use a script to run
regressions.

As individual self-checking testbenches are completed, they are
added to a master list of testcases included in the regression simula-
tion. This regression simulation is run at regular intervals, usually
nightly. As the number of testcases in the regression suite grows, it
may not be possible to complete a full regression simulation over-
night. Testcases can then be classified into two groups: one group is
run every night, while the second group is only included in regres-
sions run over a week end.

Another approach is to provide a fast mode to testcases where only
a subset of the functionality is verified during overnight regression
simulations. The full functionality would be verified only during
invidual simulations or regression simulations over a week end. In
Verilog, the fast mode could be turned on using a user-defined com-
mand-line option, as shown in Sample 7-55. In VHDL, it could be
turned on using a top-level generic, as shown in Sample 7-56.

% verilog ... +fastmode

module testcase;

initial
begin

// Repeat only 4 times in fast mode
repeat (($test$plusarg("+fastmode"))?4:256)

begin

end
syslog.terminate;

end
endmodule

A regression script could invoke each testcase in the regression test
suite using the simulation configuration script used to invoke indi-
vidual simulations, as discussed in “Configuration Management”
on page 294. If the number and duration of testcases in the regres-
sion suite make it impossible to run a regression simulation in the
allotted time, you will want to consider parallel simulations. If you
do, it is necessary that testbenches be designed to produce results
independently from each other, as discussed in “Output File Man-
agement” on page 309. Parallel simulations can be managed using
readily available utilities, such as pmake, Load Balancer, or LSF.

Writing Testbenches: Functional Verification of HDL Models 313

...

...

Simulation Management

Sample 7-56.
Implementing
a fast mode in
a VHDL test-
bench

entity bench is
generic (fast_mode: integer := 0);

end bench;

architecture test of bench is
begin

process
variable repeat: integer := 256;

begin
-- Repeat only 4 times in fast mode
if fast_mode /= 0 then

repeat := 4;
end if;
for I in 1 to repeat loop

end loop;
assert false

report "Simulation completed"
severity failure;

end process;
end test;

Regression Management

Check out a fresh
view with local
copies.

Not all source files are suitable for regression runs. If you are using
your revision control system properly, you should be checking in
files at times convenient for you, not convenient for the regression
run. The latest version of a file might contain code that was not
tested at all or that might even have syntax errors. You do not want
to waste a regression simulation on files that were not properly
debugged. Before running a regression, you should check-out a
complete view of the source control database, populated with local
copies whose revisions are tagged as being suitable for regression
testing. This tag is applied by verification and design engineers
once they have confidence in the basic functionality of the code and
are ready to submit that particular revision of the testcase or the
design to regression. Sample 7-57 shows how to tag a particular
revision of a file, then check-out the particular revision of a file
associated with a tag in RCS. More advanced revision control sys-
tems allow tagging and checking-out entire file systems.

Put a timebomb in
all simulations.

One of the greatest killers of regression simulations, second only to
the infinite loop, is the simulation that never terminates. A simula-
tion will run forever if a condition you are waiting for never occurs.
The clock generator keeps the simulation alive by continuously

314 Writing Testbenches: Functional Verification of HDL Models

Regression

Sample 7-57.
Tagging and
retrieving a
particular revi-
sion of a file

% rcs -rl.6 -nregress: design.vhd

% co -rregress *.vhd

generating events. Time advances until the maximum value is
reached, which, in modern simulators using 64-bit time values, will
take a long time! To prevent a testcase from hanging a regression
simulation, include a timebomb in all simulations. This timebomb
should go off after a delay long enough to allow the normal opera-
tions of the testcase to complete without interruption. Sample 7-58
shows a timebomb, used with a concurrent procedure call in Sam-
ple 7-59. The procedure could be modified to include a signal argu-
ment that, when triggered with an event, would reset the fuse.

Sample 7-58.
Timebomb
procedure

package body bomb_pkg is

procedure timebomb(constant fuse: in time) is
begin

wait for fuse;
assert false

report "Boom!"
severity failure;

end timebomb;

end bomb_pkg;

use work.bomb_pkg.all;
architecture test of bench is
begin

bomb: timebomb(fuse => 12 ms);

test_procedure: process
begin

end process test_procedure;
end test;

Sample 7-59.
Using the
timebomb pro-
cedure

Do not rely on a
timebomb for nor-
mal termination.

The timebomb should only be used to prevent run-away simula-
tions from running forever. It should not be used to terminate a
testcase under normal conditions. It would be impossible to distin-
guish between a successful completion of the testcase and a dead-
lock condition. Furthermore, the timebomb would require fine

Writing Testbenches: Functional Verification of HDL Models 315

Simulation Management

tuning everytime the testbench or design is modified to avoid the
testcase from being prematurely interrupted or wasting simulation
cycles by running for too long.

Automatically
generate a report
after each regres-
sion run.

Once the regression simulation is completed, the success or failure
of each testcase in the regression suite should be checked using the
output log scan script (see “Pass or Fail?” on page 289.) The results
are then summarized into a single regression report outlining which
particular testcase was successful or failed. It is a good idea to have
the regression script mail the report to all the engineers in the
design team to ensure that the design remains backward compatible
at all times. This report should also be the first item on the agenda
in any design team meeting.

SUMMARY

This chapter described how behavioral models can be used to accel-
erate the verification of a design project by improving simulation
performance and parallelizing the verification effort. Behavioral
models let system-level verification start sooner and be performed
using regular tools and hardware platforms. To obtain all of these
benefits from behavioral models, they must be written using skills
and approaches different from RTL models.

This chapter showed how to manage simulations: from determining
success or failure to configuration management to regression simu-
lation. It is recommended that the output of simulation runs be
parsed to determine if the response was as expected. The use of a
configuration script is also recommended to remove the verification
engineers from the details of a model structure and composition.

316 Writing Testbenches: Functional Verification of HDL Models

APPENDIX A CODING GUIDELINES

317Writing Testbenches: Functional Verification of HDL Models

There have been many sets of coding guidelines published for hard-
ware description languages, but they have historically focused on
the synthesizable subset and the target hardware structures. Writing
testbenches involves writing a lot of code and also requires coding
guidelines. These guidelines are designed to enhance code main-
tainability and readability, as well as to prevent common or obscure
mistakes.

Guidelines are
structured from
the generic to
the specific.

Define guide-
lines as a group,
then follow
them.

The guidelines presented here are reproduced with permission from
the Reuse Methodology Field Guide from Qualis Design Corpora-
tion (http : //www.qualis . com).They are organized from the
general to the specific. They start with general coding guidelines
that should be used in any language. They are followed by guide-
lines specific to hardware description languages. Verilog and
VHDL-specific guidelines follow after that. Note: a guideline
applicable to a more specific context can contradict and supersede a
more general guideline.

Coding guidelines have no functional benefits. Their primary con-
tribution is toward creating a readable and maintainable design.
Having common design guidelines makes code familiar to anyone
familiar with the implied style, regardless of who wrote it. The pri-
mary obstacle to coding guidelines are personal preferences. It is
important that the obstacle be recognized for what it is: personal
taste. There is no intrinsic value to a particular set of guidelines.
The value is in the fact that these guidelines are shared by the entire

Coding Guidelines

group. If even one individual does not follow them, the entire group
is diminished.

DIRECTORY STRUCTURE

Use an identical directory structure for every project.

Using a common directory structure makes it easier to locate design
components and to write scripts that are portable from one engi-
neer's environment to another. Reusable components that were
designed using a similar structure will be more easily inserted into a
new project.

Example project-level structure:

.../bin/ Project-wide scripts/commands
doc/ System-level specification documents
SoCs/ Data for SoCs/ASICs/FPGA designs
boards/ Data for board designs
systems/ Data for system designs
mech/ Data for mechanical designs
shared/ Data for shared components

At the project level, there are directories that contain data for all
design components for the project. Components shared, unmodi-
fied, among SoC/ASIC/FPGA, board, and system designs are
located in a separate directory to indicate that they impact more
than a single design. At the project level, shared components are
usually verification and interface models.

Some “system” designs may not have a physical correspondence
and may be a collection of other designs (SoCs, ASICs, FPGAs,
and boards) artifically connected together to verify a subset of the
system-level functionality.

Each design in the project has a similar structure. Example of a
design structure for an SoC:

SoCs/name/ Data for ASIC named "name"
doc/ Specification documents
bin/ Scripts specific to this design
beh/ Behavioral model

318 Writing Testbenches: Functional Verification of HDL Models

Directory Structure

rtl/ Synthesizable model
syn/ Synthesis scripts & logs
phy/ Physical model and SDF data
verif/ Verif suite and simulation logs

SoCs/shared/ Data for shared ASIC components

Components shared, unmodified, between SoC designs are located
in a separate directory to indicate that they impact more than a sin-
gle design. At the SoC level, shared components include processor
cores, soft and hard IP, and internally reused blocks.

Use relative pathnames.

Using absolute pathnames requires that future use of a component
or a design be installed at the same location. Absolute pathnames
also require that all workstations involved in the design have the
design structure mounted at the same point in their file systems.
The name used may no longer be meaningful and the proper mount
point may not be available.

If full pathnames are required, use preprocessing or environment
variables.

Put a Makefile with a default 'all' target in every source directory.

Makefiles facilitate the compilation, maintenance, and installation
of a design or model. With a Makefile the user need not know how
to build or compile a design to invoke “make all”. Top-level make-
files should invoke make on lower level directories.

Example “all” makefile rule:

all: subdirs ...

SUBDIRS = ...
subdirs:

for subdir in $(SUBDIRS); do \
(cd $$subdir; make); \

done

Writing Testbenches: Functional Verification of HDL Models 319

Coding Guidelines

VHDL Specific

Locate the directories containing the libraries as subdirectories of the source
directories.

It is a good idea to name a library according to the VHDL toolset it
corresponds to. This naming convention makes it possible to use
more than one VHDL toolset on the same source installation.

Example:

.../SoC/name/beh/

work.nc/ NC library
work.msim/ ModelSim library
work.vss/ VSS library

rtl/
work.nc/ NC library
work.msim/ ModelSim library
work.vss/ VSS library

Create a file that lists all required libraries (other than WORK) and lists the full
relative path name to the directory containing the source files for that library.

Having this file makes it easier to locate all source files required by
a design or a portion of a design. This file can also be processed by
a script that automatically generates the VHDL toolset library map
file, which associates logical library names and container directo-
ries.

Verilog Specific

Create a file that lists all required source files and command-line options for
simulating the design in every directory that contains a Verilog description of a
design (or sub-design).

The file, called a manifest file, is used with the -f option when
invoking the Verilog simulator. Using a front-end script, such the
one described in “Verilog Configuration Management” on
page 295, lets relative pathnames work reguardless of current
working directory where the simulation is invoked. Manifest files
with front-end scripts make configuration management more porta-
ble. A front-end script can also handles the case where a file is

320 Writing Testbenches: Functional Verification of HDL Models

General Coding Guidelines

included more than once in a simulation through separate refer-
ences in different manifest files.

To include a sub-design in a higher-level design, include the manifest file for
the sub-design using the -f option in the higher-level manifest file.

This structure effectively creates hierarchical manifest files.

Specify files loaded using the `include directive using a complete relative
pathname.

Requiring the use of a +incdir option on the Verilog command line
makes it impossible to determine, from the source code only, which
files are required to completely describe a model. The exact com-
mand line used is also required to reproduce any problems. If a
complete relative pathname is specified, it becomes easy to locate
all files required to make up a complete model.

GENERAL CODING GUIDELINES

These guidelines are intended to be used for any programming or
scripting language. Additional guidelines for HDL and language-
specific descriptions can be found in the section titled “HDL Cod-
ing Guidelines” on page 336.

Comments

Put the following information into a header comment for each source file:
copyright notice, brief description, revision number, original author name and
contact data, and current author name and contact data.

Example (PERL script under RCS):

#! /usr/local/bin/perl
#
(c) Copyright 1999, Qualis Design Corporation
All rights reserved.
#
This file contains proprietary and confidential
information. The content or any derivative work
can only be used by or distributed to licensed
users or owners.
#
Description:

Writing Testbenches: Functional Verification of HDL Models 321

Coding Guidelines

This script parses the output of a set of
simulation log files and produces a
regression report.
#
Original author: John Q. Doe <jdoe@qualis.com>
Current author : Jane D. Hall <jhall@qualis.com>
Revision : $Revision$
#

Use a trailer comment describing revision history for each source file.

The revision history should be maintained automatically by the
source management software. Because these can become quite
lengthy, put revision history at the bottom of the file. This location
eliminates the need to wade through dozens of lines before seeing
the actual code.

Example (shell script under RCS):

#
History:
#
Log
#

Use comments to describe the intent or functionality of the code, not its
behavior.

Comments should be written with the target audience in mind: a
junior engineer who knows the language, but is not familiar with
the design, and must maintain and modify the design without the
benefit of the original designer’s help.

Example of a useless comment (C):

/* Increment i */
i++;

Example of a useful comment (C):

/
* Move the read pointer to the next input element
*/
i++;

322 Writing Testbenches: Functional Verification of HDL Models

General Coding Guidelines

Preface each major section with a comment describing what it does, why it
exists, how it works, and assumptions on the environment.

A major section could be a process in VHDL, an always block in
Verilog, a function in C or a long sequence of code in any language.

It should be possible to understand how a piece of code works by
looking at the comments only and by stripping out the source code
itself. Ideally, the source stripped of comments should be just as
understandable.

Describe each input and output of subprograms in individual comments.

Describe the purpose, expected valid range, and effects of each
input and output of all subprograms or other coding unit supported
by the language. Whenever possible, show a typical usage.

Example (PERL):

#
Subroutine to locate all files matching a given
pattern under a given directory path
#
sub scandir { # Returns array of filenames

local($dir, # Dir to recursively scan (str)
$pattern) # Filename pattern (regexp str)
= @_;

}

Delete bad code; do not comment-out bad code.

Commented-out code begs to be reintroduced. Use a proper revi-
sion control system to maintain a track record of changes.

Layout

Use a minimum of three spaces for each identation level.

An indentation that is too narrow (such as 2), does not allow for
easily identifying nested scopes. An identation level that is too wide
(such as 8), quickly causes the source code to reach the right mar-
gin.

Writing Testbenches: Functional Verification of HDL Models 323

Coding Guidelines

Write only one statement per line.

The human eye is trained to look for sequences in a top-down fash-
ion, not down-and-sideways. This layout also gives a better oppor-
tunity for comments.

Example of poor code layout (PERL):

$| = 1; print "Continue (y/n) ? [y] ";
$ans = <STDIN>; last if $ans =~ m/^\s*[nN]/;|

Example of good code layout (PERL):

Prompt the user...
$| = 1;
print "Continue (y/n) ? [y] ";

Read the answer
$ans = <STDIN>;

Get out if answer started with a "n" or "N"
last if $ans =~ m/^\s*[nN]/;

Limit line length to 72 characters. If you must break a line, break it at a conve-
nient location with the continuation statement and align the line properly within
the context of the first token.

Printing devices are still limited to 80 characters in width. If a
fixed-width font is used, most text windows are configured to dis-
play up to 80 characters on each line. Relying on the automatic line
wrapping of the display device may yield unpredictable results and
unreadable code.

Example of poor code layout (Verilog):

#10
expect = $realtobits((coefficient * datum)

+ 0.5);

324 Writing Testbenches: Functional Verification of HDL Models

General Coding Guidelines

Example of good code layout (Verilog):

#10 expect = $realtobits((coefficient * datum)
+ 0.5);

Use a tabular layout for lexical elements in consecutive declarations, with a
single declaration per line.

A tabular layout makes it easier to quickly scan the list of declara-
tions, identifying their types, classes, initial values, etc... If you use
a single declaration per line, it is easier to locate a particular decla-
ration. A tabular layout also facilitates adding and removing a dec-
laration.

Example of poor declaration layout (VHDL):

signal counta, countb: integer;
signal c: real := 0.0;
signal sum: signed(0 to 31);
signal z: unsigned(6 downto 0);

Example of good declaration layout (VHDL):

signal counta: integer;
signal countb: integer;
signal c : real := 0.0;
signal sum : signed (0 to 31);
signal z : unsigned (6 downto 0);

If supported by the language, use named associations when calling subpro-
grams or instantiating subunits. Use a tabular layout for lexical elements in
consecutive associations, with a single association per line.

Using named associations is more robust than using port order.
Named associations do not require any change when the argument
list of a subprogram or subunit is modified or reordered. Further-
more, named associations provide for self-documenting code as it is
unnecessary to refer to another section of the program to identify
what value is being passed to which argument. A tabular layout
makes it easier to quickly scan the list of arguments being passed to
a subprogram. If you use one named association per line, it is easier

Writing Testbenches: Functional Verification of HDL Models 325

Coding Guidelines

to locate a particular association. A tabular layout also facilitates
adding and removing arguments.

Example of poor association layout (Verilog):

fifo in_buffer(voice_sample_retimed,
valid_voice_sample, overflow, ,
voice_sample, 1'bl, clk_8kHz,
clk_20MHz);

Example of good association layout (Verilog):

fifo in_buffer(.data_in (voice_sample),
.valid_in (1'bl),
.clk_in (clk_8kHz),
.data_out (voice_sample_retimed),
.valid_out (valid_voice_sample),
.clk_out (clk_20MHz),
.full (overflow),
.empty ());

Syntax

Do not use abbreviations.

Some languages, particularly scripting languages, allow using an
abbreviated syntax, usually as long as the identifiers are unique pre-
fixes. Long form and command names are self-documenting and
provide a more consistent syntax than various abbreviations. If
additional commands are later added to the language, abbreviations
that used to be unique may now conflict with the new commands
and require modification to remain compatible with the newer ver-
sions.

Example of poor command syntax (DC-shell):

re -f verilog design.v

Example of good command syntax (DC-shell):

read -format verilog design.v

326 Writing Testbenches: Functional Verification of HDL Models

General Coding Guidelines

Encapsulate repeatedly used operations or statements in subprograms.

By using subprograms, maintainance is reduced significantly. Code
only needs to be commented once and bugs only need to be fixed
once. It also reduces code volume.

Example of poor expression usage (Verilog):

// sign-extend both operands from 8 to 16 bits
operand1 = {{8 {ls_byte[7]}}, ls_byte);
operand2 = {{8 {ms_byte[7]}}, ms_byte};

Example of proper use of subprogram (Verilog):

// sign-extend an 8-bit value to a 16-bit value
function [15:0] sign_extend;

input [7:0] value;
sign_extend = {{8 {value[7]}}, value};

endfunction

//= sign-extend both operands from 8 to 16 bits
operand1 = sign_extend(ls_byte);
operand2 = sign_extend(ms_byte);

Use a maximum of 50 consecutive sequential statements in any statement
block.

Too many statements in a block create many different possible
paths. This makes it difficult to grasp all of the possible implica-
tions. It may be difficult to use a code coverage tool with a large
statement block. A large block may be broken down using subpro-
grams.

Use no more than three nesting levels of control-flow statements.

Understanding the possible paths through several levels of control
flow becomes exponentially difficult. Too many levels of decision-
making may be an indication of a poor choice in processing
sequence or algorithm. Break up complex decision structures into
separate subprograms.

Example of poor control-flow structure (C):

if (a == 1 && b == 0) {
switch (val) {

Writing Testbenches: Functional Verification of HDL Models 327

Coding Guidelines

4:
5: while (!done) {

if (val % 2) {
odd = 1;
if (choice == val) {

for (j = 0; j < val; j++) {
select[j] = 1;

}
done = 1;

}
} else {

odd = 0;
}

}
break;

0: for (i = 0; i < 7; i++) {
select[j] = 0;

}
break;

default:
z = 0;

}
}

Example of good control-flow structure (C):

void
process_selection(int val)
{

odd = 0;
while (!done) {

if (val % 2) {
odd = 1;

}
if (odd && choice == val) {

for (j = 0; j < val; j++) {
select[j] = 1;

}
done = 1;

}
}

}

if (a == 1 && b == 0) {

328 Writing Testbenches: Functional Verification of HDL Models

Naming Guidelines

switch (val) {
0: for (i = 0; i < 7; i++) {

select[j] = 0;
}
break;

4:
5: process_selection(val);

break;
default:

z = 0;

}
}

Debugging

Include a mechanism to automatically exclude all debug statements.

Debug information should be excluded by default and should be
enabled automatically via a control file or command line options.
Do not comment out debug statements and then uncomment them
when debugging. This requires significant editing. When available,
use a preprocessor to achieve better runtime performance.

Example of poor debug statement exclusion (Verilog):

// $write("Address = %h, Data = %d\n",
// address, data);

Example of proper debug statement exclusion (Verilog):

`ifdef DEBUG
$write("Address = %h, Data = %d\n",

address, data);
`endif

NAMING GUIDELINES

These guidelines suggest how to select names for various user-
defined objects and declarations. Additional restrictions on naming
can be introduced by more specific requirements.

Writing Testbenches: Functional Verification of HDL Models 329

Coding Guidelines

Capitalization

Use lowercase letters for all user-defined identifiers.

Using lowercase letters reduces fatigue and stress from constantly
holding down the Shift key. Reserve uppercase letters for identifiers
representing special functions.

Do not rely on case mix for uniqueness of user-defined identifiers.

The source code may eventually be processed by a case-insensitive
tool. The identifiers would then lose their uniqueness. Use naming
to differentiate identifiers.

Example of bad choice for identifier (C):

typedef struct RGB {
char red;
char green;
char blue;

} RGB;

main () {
RGB rgb;

}

Example of better choice for identifier (C):

typedef struct rgb_struct {
char red;
char green;
char blue;

} rgb_typ;

main () {
rgb_typ rgb;

}

330 Writing Testbenches: Functional Verification of HDL Models

Naming Guidelines

In a case-insensitive language, do not rely on case mix for adding semantic to
identifiers.

Instead of using the case of identifiers to document variable types,
use naming (prefix, suffix) to self-document identifiers. Consistent
case usage for a given identifier cannot be enforced by the compiler
and therefore may end up being used incorrectly.

Example of poor choice of identifier (VHDL):

package Pci is
type command is (MEM, IO, CONFIG);
procedure readCycle(ADDRESS: in ...;

data: out ...);
end Pci;

Example of proper choice of indentifier (VHDL):

package pci_pkg is
type command_typ is (MEM, IO, CONFIG);
proceedure read_cycle(address_in: in ...;

data_out: out ...);
end pci_pkg;

Use suffixes to semantically differentiate related identifiers.

The suffix could indicate object kind, such as: type, constant, sig-
nal, variable, flip-flop, etc... or the suffix could indicate pipeline
processing stage or clock domains.

Use uppercase letters for constant identifiers (run-time or compile-time).

The case differentiates between a symbolic literal value and a vari-
able.

Example (Verilog):

module block(...);

‘define DEBUG
parameter WIDTH = 4;

endmodule

Writing Testbenches: Functional Verification of HDL Models 331

Coding Guidelines

Separate words using an underscore; do not separate words by mixing upper-
case and lowercase letters

It can be difficult to read variables that use case to separate word
boundaries. Using spacing between words is more natural. In a
case-insensitive language or if the code is processed through a case-
insensitive tool, the case convention cannot be enforced by the
compiler.

Example of poor word separation (C):

readIndexInTable = 0;

Example of proper word separation (C):

read_index_in_table = 0;

Identifiers

Do not use reserved words of popular languages or languages used in the
design process as user-defined identifiers.

Not using reserved words as identifiers avoids having to rename an
object to a synthetic, often meaningless, name when translating or
generating a design into another language. Popular languages to
consider are C, C++, Verilog, VHDL, PERL, VERA, and e.

Use meaningful names for user-defined identifiers and use a minimum of five
characters.

Avoid acronyms or meaningless names. Using at least five charac-
ters increases the likelyhood of using full words.

Example of poor identifier naming (VHDL):

if e = '1' then
c := c + 1;

end if ;

332 Writing Testbenches: Functional Verification of HDL Models

Naming Guidelines

Example of good identifier naming (VHDL):

if enable = '1' then
count := count + 1;

end if;

Name objects according to function or purpose; avoid naming objects accord-
ing to type or implementation.

This naming convention produces more meaningful names and
automatically differentiates between similar objects with different
purposes.

Example of poor identifier naming (Verilog):

count8 <= count8 + 8'h01;

Example of good identifier naming (Verilog):

addr_count <= addr_count + 8'h01;

Do not use identifiers that are overloaded or hidden by identical declarations
in a different scope.

If the same identifier is reused in different scopes, it may become
difficult to understand which object is being referred to.

Example of identifier overloading (Verilog):

reg [7:0] address;

begin: decode
integer address;

address = 0;

end

Writing Testbenches: Functional Verification of HDL Models 333

Coding Guidelines

Example of good identifier naming (Verilog):

reg [7:0] address;

begin: decode
integer decoded_address;

decoded_address = 0;

end

Constants

Use symbolic constants instead of “magic” hard-coded numeric values.

Numeric values have no meaning in and of themselves. Symbolic
constants add meaning and are easier to change globally. This is
especially true if several constants have an identical value but a dif-
ferent meaning. If the language does not support symbolic con-
stants, use a preprocessor or a variable appropriately named.

Example of poor constant usage (C):

int table[256];

for (i = 0; i <= 255; i++) ...

Example of good constant usage (C):

#define TABLE_LENGTH 256

int table[TABLE_LENGTH];

for (i = 0; i < TABLE_LENGTH; i++) ...

HDL Specific

Number multi-bit objects using the range N:0.

Using this numbering range avoids accidental truncation of the top
bits when assigned to a smaller object (Verilog). This convention

334 Writing Testbenches: Functional Verification of HDL Models

Naming Guidelines

also provides for a consistent way of accessing bits from a given
direction. If the object carries an integer value, the bit number rep-
resents the power-of-2 for which this bit corresponds.

Example (Verilog):

parameter width = 16;

reg [7:0] byte;
reg [31:0] dword;
reg [width–1:0] data;

Example (VHDL):

generic(width: integer := 16);

variable byte : unsigned (7 downto 0);
variable dword: unsigned (31 downto 0);
variable data : unsigned (width-1 downto 0);

Do not specify a bit range when referring to a complete vector.

If the range of a vector is modified, all references would need to be
changed to reflect the new size of the vector. Using bit ranges
implicitly means that you are referring to a subset of a vector. If you
want to refer to the entire vector, do not specify a bit range.

Example of poor vector reference (VHDL):

signal count: unsigned(15 downto 0);

count(15 downto 0) <= count(15 downto 0) + 1;
carry <= count(15);

Example of proper vector reference (VHDL):

signal count: unsigned(15 downto 0);

count <= count + 1;
carry <= count(count’left);

Writing Testbenches: Functional Verification of HDL Models 335

Coding Guidelines

Preserve names across hierarchical boundaries.

Preserving names across hierarchical boundaries facilitates tracing
signals up and down a complex design hierarchy. This naming con-
vention is not applicable when a unit is instantiated more than once,
or when the unit was not originally designed within the context of
the current design.

Filenames

Use filename extensions that indicate the content of the file.

Tools often switch to the proper language-sensitive function based
on the filename extension. Use a postfix on the filename itself if
different (but related) contents in the same language are provided.
Using postfixes with identical root names causes all related files to
show up next to each other when looking up the content of a direc-
tory.

Example of poor file naming (Verilog):

design.vt Testbench
design.vb Behavioral model
design.vr RTL model
design.vg Gate–level model

Example of good file naming (Verilog):

design_tb.v Testbench
design_beh.v Behavioral model
design_rtl.v RTL model
design_gate.v Gate–level model

HDL CODING GUIDELINES

The following guidelines are specific to HDL descriptions. These
guidelines are presented in addition to the guidelines outlined for
general coding and naming. Additional guidelines will be needed
when describing a design to be synthesized.

336 Writing Testbenches: Functional Verification of HDL Models

HDL Coding Guidelines

Structure

Use a single compilation unit in a file.

A file should contain a single module (Verilog), or a single entity,
architecture, package, package body, or configuration (VHDL).
This structure facilitates locating various model components. For
VHDL, it further reduces the amount of recompilation that may be
required.

Layout

Declare ports and arguments in logical order according to purpose or func-
tionality; do not declare ports and arguments according to direction.

Group port declarations that belong to the same interface. Grouping
port declarations facilitates locating and changing them to a new
interface. Do not order declarations output first, data input second,
and control signals last because it scatters related declarations.

Lay out code for maximum readability and maintainability.

Saving a few lines or characters does not save money. Saving 1
character on a $200 1G disk saves 0.00005 cents. However, saving
1 minute of an engineer's (or your own) time trying to understand
your code saves between $.50 and $1.

VHDL Specific

Label all processes, concurrent statements and loops.

Labeling makes referring to a particular construct much easier. If a
particular construct is not named, some features in debugging tools
may not be available. Labeling also provides for an additional
opportunity to document the code.

Example of a named loop:

scan_bits_lp: for i in data'range loop

exit scan_bits_lp when data(i) = 'X';
end loop scan_bits_lp;

Writing Testbenches: Functional Verification of HDL Models 337

...

Coding Guidelines

Example of a named process:

clock_generator: process
begin

wait for 50 ns;
CLK <= not CLK;

end process clock_generator;

Label closing “end” keywords.

The “begin” and “end” keywords may be separated by hundreds of
lines. Labeling matching “end” keywords facilitates recognizing
the end of a particular construct. If the VHDL-87 syntax does not
support a labeled “end” keyword, add the label using a comment.

Example:

component FIFO
generic (...);
port (...);

end component; –– FIFO

Use inline range constraints instead of subtypes.

Because type and subtype names are not syntactically different,
using too many subtypes makes it hard to remember what type
remains compatible with what other type.

Example of subtype constraints:

subtype address_styp is
std_logic_vector (15 downto 0);

subtype count_styp is
integer range 15 downto 0;

signal address: address_styp;
signal count : count_styp;

338 Writing Testbenches: Functional Verification of HDL Models

HDL Coding Guidelines

Example of inline range constraints:

signal address: std_logic_vector (15 downto 0);
signal count : integer range 0 to 15;

Do not use ports of mode “buffer” and “linkage”.

Buffer ports have special requirements when instantiated in a
higher level unit. Use an “out” port instead. If internal feedback is
required, use an internal feedback signal. I am still not sure what
linkage ports were designed for. Coolant fluid?

Example using an internal feedback signal:

port(was_buffer_mode: out std_logic);

signal was_buffer_mode_int: std_logic;

was_buffer_mode <= was_buffer_mode_int;

Do not use blocks with ports and generics.

Ports and generics on blocks can be used to rename signals and
constants already visible, thus creating a second name for an object.
Using ports and generics on blocks reduces maintainability. Use
blocks only when a local declarative region is required (e.g. to con-
figure instantiations in a generate statement or declare an interme-
diate signal).

Do not use guarded expressions, signals and assignments, driver disconnect
and signal kinds “bus” and “register”.

These features are scheduled to be removed from the language. Fur-
thermore, they are used so little that tools may be unreliable when
using them.

Use the logical library name “WORK” when referring to units in the same
library.

Using this logical name makes it possible for a design to be moved
or copied into another library with a different name without requir-
ing any modifications. It also eliminates the need for a particular
library name to hold the design.

Writing Testbenches: Functional Verification of HDL Models 339

Coding Guidelines

Using “WORK” is similar to using the relative directory name “.”
whereas using the actual library name is similar to using a full path-
name. The former is portable to a different environment. The latter
is not.

Verilog Specific

Start every module with a `resetall directive.

Compiler directives remain active across file boundaries. A module
inherits the directives defined in earlier files. This may create com-
pilation-order dependencies in your model. Using the `resetall
directive ensures that your module is not affected by previously-
defined compiler directives and will be properly self-contained.

Make sure your module name is unique.

Module names are global to the compilation and may interfere with
other module names in the same simulation. Use a prefix that is
unique to your verification environment or your design to make
sure the module name you choose will be unique.

Example of poor module naming:

module cpuif(...);

endmodule

Example of proper module naming:

module xyz_cpuif(...);

endmodule

Avoid using ̀ define symbols.

`define symbols are global to the compilation and may interfere
with other symbols defined in another source file. For constant val-
ues, use parameters. If `define symbols must be used, undefine
them by using `undef when they are no longer needed.

340 Writing Testbenches: Functional Verification of HDL Models

...

...

HDL Coding Guidelines

Example of poor style using ̀ define symbols:

‘define CYCLE 100
‘define ns * 1
always
begin

#(‘CYCLE/2 ‘ns);
clk = ~clk;

end

Example of good style avoiding `define symbols:

parameter CYCLE = 100;
‘define ns * 1
always
begin

#(CYCLE/2 ‘ns);
clk = ~clk;

end
‘undef ns

Use a non-blocking assignment for registers used outside the always or initial
block where the register was assigned.

Using non-blocking assignments prevent race conditions between
blocks that read the current value of the reg and the block that
updates the reg value. This assignment guarantees that simulation
results will be the same across Verilog simulators or with different
command-line options.

Example of coding creating race conditions:

always @ (s)
begin

if (s) q = q + 1;
end

always @ (s)
begin

$write("Q = %b\n", q);
end

Writing Testbenches: Functional Verification of HDL Models 341

Coding Guidelines

Example of good portable code:

always @ (s)
begin

if (s) q <= q + 1;
end

always @ (s)
begin

$write("Q = %b\n", q);
end

Assign regs from a single always or initial block.

Assigning regs from a single block prevents race conditions
between blocks that may be setting a reg to different values at the
same time. This assignment convention guarantees that simulation
results will be the same across Verilog simulators or with different
command-line options.

Example of coding that creates race conditions:

always @ (s)
begin

if (s) q <= 1;
end

always @ (r)
begin

if (r) q <= 0;
end

Example of good portable code:

always @ (s or r)
begin

if (s) q <= 1;
else if (r) q <= 0;

end

342 Writing Testbenches: Functional Verification of HDL Models

HDL Coding Guidelines

Do not disable tasks with output or inout arguments.

The return value of output or inout arguments of a task that is dis-
abled is not specified in the Verilog standard. Disable the inner
begin/end block instead of disabling tasks with ouput or inout argu-
ments. This guarantees that simulation results will be the same
across Verilog simulators or with different command-line options.

Example of coding with unspecified behavior:

task cpu_read;
output [15:0] rdat;

begin

if (data_rdy) begin
rdat = data;
disable cpu_read;

end

end
endtask

Example of good portable code:

task cpu_read;
output [15:0] rdat;

begin: do_read

if (data_rdy) begin
rdat = data;
disable do_read;

end

end
endtask

Do not disable blocks containing non-blocking assignments with delays.

What happens to pending non-blocking assignments performed in a
disabled block is not specified in the Verilog standard. Not dis-
abling this type of block guarantees that simulation results will be
the same across Verilog simulators or with different command-line
options.

Writing Testbenches: Functional Verification of HDL Models 343

...

...

...

...

Coding Guidelines

Example of coding with unspecified behavior:

begin: drive
addr <= #10 16'hZZZZ;

end

always @ (rst)
begin

if (rst) disable drive;
end

Do not read a wire after updating a register in the right-hand side of a continu-
ous assignment, after a delay equal to the delay of the continuous assign-
ment.

The Verilog standard does not specify the order of execution when
the right-hand side of a continuous assignment is updated. The con-
tinuous assignment may be evaluated at the same time as the
assignment, or in the next delta cycle.

If you read the driven wire after a delay equal to the delay of the
continuous assignment, a race condition will occur. The wire may
or may not have been updated.

Example creating a race condition:

assign qb = ~q;
assign #5 qq = q;
initial
begin

q = 1’b0;
$write("Qb = %b\n", qb) ;
#5;
$write("QQ = %b\n", qq);

end

Do not use the bitwise operators in a boolean context.

Bitwise operators are for operating on bits. Boolean operators are
for operating on boolean values. They are not always interchange-
able and may yield different results. Use the bitwise operators to

344 Writing Testbenches: Functional Verification of HDL Models

...

HDL Coding Guidelines

indicate that you are operating on bits, not for making a decision
based on the value of particular bits.

Some code coverage tools cannot interpret a bitwise operator as a
logical operator and will not provide coverage on the various com-
ponents of the conditions that caused the execution to take a partic-
ular branch.

Example of poor use of bitwise operator:

reg [3:0] BYTE;
reg VALID
if (BYTE & VALID) begin

end

Example of good use of boolean operator:

reg [3:0] BYTE;
reg VALID
if (BYTE != 4’b0000 && VALID) begin

end

Writing Testbenches: Functional Verification of HDL Models 345

...

...

This Page Intentionally Left Blank

AFTERWORDS

This book should have given you the necessary skills to plan,
implement and manage a best-in-class verification process. The
methodologies and techniques will need to be tuned to your specific
requirements. Think of this book as providing you with a set of
Lego blocks. It is now up to you to put them together to build the
infrastructure you envision.

Training classes
are available.

If you would like to attend a formal training class covering the tech-
niques presented in this book, I recommend the language and meth-

odology classes1 offered by Qualis Design Corporation
(www. qualis. com). Just like this book, they focus on the meth-
odology and how to implement it efficiently, not the tools. These
classes are taught by professional engineering consultants (some-
times by myself) who spend most of their time applying these tech-
niques on leading-edge designs. They draw on their extensive
industry experience to answer any question you may have on verifi-
cation, adapting the techniques to your circumstances, often going
beyond the content of the class material.

Join the on-line
verification
guild.

Send me email at janick@bergeron. com and ask to be added
to the verification guild mailing list. It is a moderated on-line forum
to discuss verification-related issues. Verification languages, behav-
ioral modeling, testbench structures, detailed syntax of a waveform

1. Of course I am going to recommend them: I wrote the bulk of these
classes myself!

Writing Testbenches: Functional Verification of HDL Models 347

Afterwords

data trace command, scripts, PERL, makefiles, hardware emulation
are some of the topics discussed on the list. It is also a forum for
debating the content of this book as well as future books, papers
and articles on verification. This list is to verification what John

Cooley’s esnug2 is to synthesis.

Tell me where I
erred.

Despite the best effort of several reviewers and many read-
throughs, there are errors in this book. From simple grammatical
errors in the text, to syntax errors in the code samples, to functional
bugs in the algorithms. I maintain a list of errors that were found in
this edition of the book in the errata section at:

http://janick.bergeron.com/wtb

If you find an error that is not listed, please let me know via email.
They will be corrected in the next edition.

2. John can be reached at jcooley@world. std. com.

348 Writing Testbenches: Functional Verification of HDL Models

A
Abstraction

granularity for verification 70
Abstraction of data 100–125

files 121
lists 115
multi-dimensional arrays 112
using records for packets or frames 105
verifying DSP designs 101

Arrays 112
faking in Verilog 113
generic implementation in Verilog 114
multi-dimensional 112

ASIC verification 67
Assigning values 137
Automation

eliminating human error 6
when to use 3

B
Behavioral HDLs 83–153

behavioral model benefits 85
behavioral-thinking example 85
code structure 92–99
costs for optimizing 88
data abstraction 100–125
improving maintainability 91
parallelism 125–140
portability of Verilog 140–153

race conditions
avoiding 147
initialization 146
read/write 141
write/write 144

RTL-thinking example 85
Behavioral models 269–289

benefits of 85, 286
characteristics of 273
compared to RTL models 270
cost of 286
encapsulating

bus-functional models 97
subprograms 94
technique 93

equivalence with RTL models 289
example of 271
modeling reset in 276
speed of 285
writing good models 281

Black-box verification 12
Board-level verification 68
Bus-functional models

client/server processes 241
abstracting procotol 243

managing client/server control
signals 246

multiple server instances 247
packaging for reuse

in Verilog 228

Writing Testbenches: Functional Verification of HDL Models 349

INDEX

Index

in VHDL 238
packaging in Verilog 99
packaging in VHDL 98
using qualified names 246

C
Capitalization

naming guidelines 330
Code coverage 40–46

and testbench generators 11, 46
code-related metrics 57
expression coverage 45
path coverage 44
statement coverage 42
usefulness 45

Code reviews 28
Coding guidelines 317–345
Comments

guidelines 321
quality of 91

Component-level features 73
Concurrency

definition of 125
misuse of 132
problems with 127
with fork/join statement 134

Connectivity
definition of 125

Constants
naming guidelines 334

Co-simulators 34
Costs for optimizing 88
Cycle-based simulation 31

D
Data abstraction 100–125

arrays 112
faking records in Verilog 107
files 121
lists 115
real values 101
records 105

Delta cycles 130
Driving values 138

E
Encapsulating

bus-functional models 97
subprograms 94
technique 93

Equivalence checking 8
Error types 74
Event-driven simulation 29
Expression coverage 45

F
False negative 18
False positive 18
File-driven testbenches 259
Filenames

guidelines 336
Files 121

external configuration 260
external input 259
name uniqueness 261

fork/join statement 134
Formal verification 7

equivalence checking 8
model checking 9

FPGA verification 67
Functional verification

black-box 12
grey-box 13
purpose of 10
white-box 13

G
Generics

top-level 266
Grey-box verification 13
Guidelines

capitalization 330
code layout 323
code syntax 326
comments 321
constants 334
debugging 329
directory structure 318–321
filenames 336
general coding 321–329
HDL code layout 337
HDL code structure 337

350 Writing Testbenches: Functional Verification of HDL Models

HDL coding 336–345
HDL specific naming 334
identifiers 332
naming 329–336
Verilog specific 340
VHDL specific 337

H
Hardware modelers 37

I
Identifiers

naming guidelines 332
Issue tracking 52–57

computerized system 55
grapevine system 53
Post-it system 54
procedural system 55

L
Linked lists 117
Linting tools 22–28

code reviews 28
limitations of 23
with Verilog 25
with VHDL 26

Lists 115
in Verilog 119

M
Maintaining code

commenting 91
optimizing 88

Metrics 57–60
code-related metrics 57
interpreting 59
quality-related metrics 58

Model checking 9

N
Naming

capitalization guidelines 330
constants 334
filenames 336
guidelines 329–336
HDL specific guidelines 334

identifiers 332

0
Output, predicting 211–219

complex transformations 216
data formatters 211
packet processors 215
using external C program 259

P
Packaging bus-functional models

in Verilog 99
in VHDL 98

Parallelism 125–140
concurrency problems 127
driving vs assigning 137
emulating 128
implementation differences 126
misuse of concurrency 132
simulation cycle 129

Parameters
setting top-level parameters

in Verilog 267
in VHDL 267

top-level 266
Path coverage 44
Poka-yoka 6
Portability of Verilog

non-reentrant tasks 151
race conditions

avoiding 147
initialization 146
read/write 141
write/write 144

using disable statement 148
using ouput arguments 150

Procedural interface
verification components 225

Profiling 46
Programmable testbenches 259

R
Race conditions

avoiding 147
initialization 146
read/write 141

Writing Testbenches: Functional Verification of HDL Models 351

Index

read/write and synchronized
waveforms 161

write/write 144
Random verification 71
Real numbers

fixed-point representation 104
limitations in Verilog 102

Reconvergence model 4–5
Records 105

faking in Verilog 107
variant records 111

Redundancy 6, 81
Regression 185

management 314
running 313

Regression testing
for reusable components 67

Resolution functions 136
Response

autonomous error detection 258
autonomous monitoring 255
verifying 70

Response, complex 193–210
abstracting ouput operations 199
definition of 194
generic output monitors 202
handling latency 195
monitoring bi-directional

interfaces 205
monitoring multiple operations 203

Response, verifying 172–176
inspecting response visually 172
inspecting waveforms visually 174
minimizing sampling 174
sampling output 172

Reuse
and verification 16–17
level of verification 64
packaging bus-functional models

in Verilog 228
in VHDL 238

reusable verification components 221–
227

trust 16
utility packages

in Verilog 231
in VHDL 249

verification of components 66

Revision control 47–52
configuration management 50
working with releases 51

S
Scan-based testing 14
SDF back-annotation 305
Simulation cycle 129
Simulation management 269–316

configuration management 292–312
configuration management in

verilog 295
configuration management in

VHDL 301
determining success or failure 289–292
output files 309
regression 312–316
SDF back-annotation 305

Simulators 28–35
co-simulators 34
cycle-based simulation 31
event-driven simulation 29
single-kernel 35
stimulus and response 29

Sparse memory model 117
damem PLI package 119
using a linked list in VHDL 117

Statement coverage 42
Stimulus

autonomous 250
injecting errors 255
random 253

Stimulus, complex 183–193
asynchronous interfaces 187
configurable operations 192
CPU operations 189
deadlocks 184
feedback between stimulus and

design 183
Stimulus, simple 155–171

abstracting waveform generation 169
aligning waveforms 164
encapsulating waveforms 167
generating

complex waveforms 159
simple waveforms 156
synchronized waveforms 160
synchronous data waveforms 165

352 Writing Testbenches: Functional Verification of HDL Models

Structure
Coding guidelines for 337

System-level features 73
System-level verification 68

T
Test harness 224

in Verilog 228
in VHDL 240
multiple bus-functional server

instances 247
Testbench generators

and code coverage 11, 46
Testbenches

and formal verification 7
configurable 265
generators 11
grouping by testcases 79–81
verifying 80

Testbenches, architecting 221–268
abstracting client/server protocol 243
autonomous error detection 258
autonomous generation and

monitoring 250–258
autonomous monitoring 255
autonomous stimulus 250
compile-time configuration 262
concurrent simulations 261
configurable testbenches 265
configuration files 260
file-driven testbenches 259
in Verilog 227–237
in VHDL 237–249
injecting errors 255
inputs and outputs 258–263
managing client/server control

signals 246
multiple server instances 247
packaging bus-functional models

in Verilog 228
in VHDL 238

programmable testbenches 259
random stimulus 253
test harness in VHDL 240
utility packages in Verilog 231
utility packages in VHDL 249
verifying configurable designs 263–

268

Testbenches, self-checking 176–182
golden vectors 177
input and output vectors 176
run-time verification 179

Testcases
grouping by code coverage metrics 76
grouping by feature 76
grouping into testbenches 79–81

Testing
and verification 13–16
scan-based 14

Third-party models 36–38
hardware modelers 37

Time
definition of 125

Top-level generics 266
Top-level parameters 266
Type I error 18
Type II error 18

U
Unit-level verification 65

V
Verification

and design reuse 16–17
and testing 13–16
ASIC and FPGA 67
black-box verification 12
board-level 68
checking result of transformation 4
components 221–227
cost 17
definition of 1
designing for 16
formal verification 7
functional verification 10, 11–13
grey box verification 13
importance of 2–4
improving accuracy of 6, 81
need for specifying 62
plan 61–81
purpose of 4
random strategy for 71
reducing human error 5
reusable components 66, 221–227
strategies for 69–72
system-level verification 68

Writing Testbenches: Functional Verification of HDL Models 353

Index

testbenches, verifying 80
tools 21–60
types of mistakes 17
unit-level verification 65
white-box verification 13
with reconvergence model 4–5

Verification components
development process 226–227
in Verilog 227–237
in VHDL 237–249
procedural interface 225

Verification languages 46–47
Verification plan

component-level features 73
definition of 63
design for verification 77
error types 74
grouping features into testcases 76
grouping testcases into testbenches 79–

81
identifying features 72–75
levels of verification 64–69
prioritizing features 75
role of 62–81
strategies for verification 69–72
system-level features 73
verifying testbenches 80

Verification strategies 69–72
random verification 71
verifying the response 70

Verification tools 21–60
code coverage 40–46
issue tracking 52–57
linting 22–28
metrics 57–60
revision control 47–52
simulators 28–35
third-party models 36–38
verification languages 46–47
waveform comparators 39
waveform viewers 38–40

Verilog
coding guidelines 340
configuration management

guidelines 320
recommended textbook xix
vs VHDL xx–xxi

VHDL
coding guidelines 337

recommended textbook xix
vs Verilog xx–xxi

W
Waveform comparators 39
Waveform viewers 38–40

limitations of 39
Waveforms

abstracting generation 169
aligning 164
encapsulating 167
generating

complex waveforms 159
simple 156
synchronized waveforms 160
synchronous data waveforms 165

White-box verification 13

354 Writing Testbenches: Functional Verification of HDL Models

	Writing Testbenches: Functional Verification of HDL Models
	Copyright
	Table of Contents
	About the Cover
	Foreword
	Preface
	Ch1 What is Verification?
	What is Testbench?
	Importance of Verification
	Reconvergence Model
	Human Factor
	Automation
	Poka-Yoka
	Redundancy

	What is being Verified?
	Formal Verification
	Equivalence Checking
	Model Checking
	Functional Verification
	Testbench Generation

	Functional Verification Approaches
	Black-Box Verification
	White-Box Verification
	Grey-Box Verification

	Testing vs Verification
	Scan-Based Testing
	Design for Verification

	Verification & Design Reuse
	Reuse is about Trust
	Verification for Reuse

	Cost of Verification
	Summary

	Ch2 Verification Tools
	Linting Tools
	Limitations of Linting Tools
	Linting Verilog Source Code
	Linting VHDL Source Code
	Code Reviews

	Simulators
	Stimulus & Response
	Event-Driven Simulation
	Cycle-Based Simulation
	Co-Simulators

	Third-Party Models
	Hardware Modelers

	Waveform Viewers
	Code Coverage
	Statement Coverage
	Path Coverage
	Expression Coverage
	What does 100% Coverage Mean?

	Verification Language
	Revision Control
	Software Engineering Experience
	Configuration Management
	Working with Releases

	Issue Tracking
	What is an Issue?
	Grapevine System
	Post-it System
	Procedural System
	Computerized System

	Metrics
	Code-Related Metrics
	Quality-Related Metrics
	Interpreting Metrics

	Summary

	Ch3 Verification Plan
	Role of Verification Plan
	Specifying Verification
	Defining First-Time Success

	Levels of Verification
	Unit-Level Verification
	Reusable Components Verification
	ASIC & FPGA Verification
	System-Level Verification
	Board-Level Verification

	Verification Strategies
	Verifying Response
	Random Verification

	From Specification to Features
	Component-Level Features
	System-Level Features
	Error Types to Look for

	From Features to Testcases
	Prioritize
	Group into Testcases
	Design for Verification

	From Testcases to Testbenches
	Verifying Testbenches

	Summary

	Ch4 Behavioral Hardware Description Languages
	Behavioral vs RTL Thinking
	Contrasting Approaches

	You Gotta Have Style!
	Question of Discipline
	Optimize Right Thing
	Good Comments Improve Maintainability

	Structure of Behavioral Code
	Encapsulation Hides Implementation Details
	Encapsulating Useful Subprograms
	Encapsulating Bus-Functional Models

	Data Abstraction
	Real Values
	Records
	Multi-Dimensional Arrays
	Lists
	Files
	Interfacing High-Level Data Types

	HDL Parallel Engine
	Connectivity, Time & Concurrency
	Connectivity, Time & Concurrency in HDLs
	Problems with Concurrency
	Emulating Parallelism on Sequential Processor
	Simulation Cycle
	Parallel vs Sequential
	Fork/Join Statement
	Difference between Driving & Assigning

	Verilog Portability Issues
	Read/Write Race Conditions
	Write/Write Race Conditions
	Initialization Races
	Guidelines for Avoiding Race Conditions
	Events from Overwritten Scheduled Values
	Disabled Scheduled Values
	Output Arguments on Disabled Tasks
	Non-Reentrant Tasks

	Summary

	Ch5 Stimulus & Response
	Simple Stimulus
	Generating Simple Waveform
	Generating Complex Waveform
	Generating Synchronized Waveforms
	Aligning Waveforms in Delta-Time
	Generating Synchronous Data Waveforms
	Encapsulating Waveform Generation
	Abstracting Waveform Generation

	Verifying Output
	Visual Inspection of Response
	Producing Simulation Results
	Minimizing Sampling
	Visual Inspection of Waveforms

	Self-Checking Testbenches
	Input & Output Vectors
	Golden Vectors
	Run-Time Result Verification

	Complex Stimulus
	Feedback between Stimulus & Design
	Recovering from Deadlocks
	Asynchronous Interfaces
	CPU Operations
	Configurable Operations

	Complex Response
	What is Complex Response?
	Handling Unknown or Variable Latency
	Abstracting Output Operations
	Generic Output Monitors
	Monitoring Multiple Possible Operations
	Monitoring Bi-Directional Interfaces

	Predicting Output
	Data Formatters
	Packet Processors
	Complex Transformations

	Summary

	Ch6 Architecting Testbenches
	Reusable Verification Components
	Procedural Interface
	Development Process

	Verilog Implementation
	Packaging Bus-Functional Models
	Utility Packages

	VHDL Implementation
	Packaging Bus-Functional Procedures
	Creating a Test Harness
	Abstracting Client/Server Protocol
	Managing Control Signals
	Multiple Server Instances
	Utility Packages

	Autonomous Generation & Monitoring
	Autonomous Stimulus
	Random Stimulus
	Injecting Errors
	Autonomous Monitoring
	Autonomous Error Detection

	Input & Output Paths
	Programmable Testbenches
	Configuration Files
	Concurrent Simulations
	Compile-Time Configuration

	Verifying Configurable Designs
	Configurable Testbenches
	Top Level Generics & Parameters

	Summary

	Ch7 Simulation Management
	Behavioral Models
	Behavioral vs Synthesizable Models
	Example of Behavioral Modeling
	Characteristics of Behavioral Model
	Modeling Reset
	Writing Good Behavioral Models
	Behavioral Models are Faster
	Cost of Behavioral Models
	Benefits of Behavioral Models
	Demonstrating Equivalence

	Pass or Fail?
	Managing Simulations
	Configuration Management
	Verilog Configuration Management
	VHDL Configuration Management
	SDF Back-Annotation
	Output File Management

	Regression
	Running Regressions
	Regression Management

	Summary

	AppA Coding Guidelines
	Directory Structure
	VHDL Specific
	Verilog Specific

	General Coding Guidelines
	Comments
	Syntax
	Debugging

	Naming Guidelines
	Capitalization
	Identifiers
	Constants
	HDL Specific
	Filenames

	HDL Coding Guidelines
	Structure
	Layout
	VHDL Specific
	Verilog Specific

	Afterwords
	Index

