

SystemVerilog for Verification
A Guide to Learning the Testbench Language Features

Second Edition

Chris Spear

SystemVerilog
for Verification

A Guide to Learning the Testbench
Language Features

Second Edition

Chris Spear
Synopsys, Inc.
Marlboro, MA
USA

Library of Congress Control Number: 2008920031

ISBN 978-0-387-76529-7 e-ISBN 978-0-387-76530-3

Printed on acid-free paper.

©2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or heareafter developed is forbidden. The use in this publication of trade
names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken
as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of going to
press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

9 8 7 6 5 4 3 2 1

springer.com

This book is dedicated to my wonderful wife Laura,
whose patience during this project was invaluable,

and my children, Allie and Tyler, who kept me laughing.

Contents

List of Examples xiii
List of Figures xxv
List of Tables xxvii
Preface xxix
Acknowledgments xxxv

1. VERIFICATION GUIDELINES 1
1.1 The Verification Process 2
1.2 The Verification Methodology Manual 4
1.3 Basic Testbench Functionality 5
1.4 Directed Testing 5
1.5 Methodology Basics 7
1.6 Constrained-Random Stimulus 8
1.7 What Should You Randomize? 10
1.8 Functional Coverage 13
1.9 Testbench Components 14
1.10 Layered Testbench 15
1.11 Building a Layered Testbench 21
1.12 Simulation Environment Phases 22
1.13 Maximum Code Reuse 23
1.14 Testbench Performance 23
1.15 Conclusion 24

2. DATA TYPES 25
2.1 Built-In Data Types 25
2.2 Fixed-Size Arrays 28
2.3 Dynamic Arrays 34
2.4 Queues 36
2.5 Associative Arrays 38

Contentsviii

2.6 Linked Lists 40
2.7 Array Methods 41
2.8 Choosing a Storage Type 46
2.9 Creating New Types with typedef 48
2.10 Creating User-Defined Structures 50
2.11 Type conversion 52
2.12 Enumerated Types 55
2.13 Constants 59
2.14 Strings 59
2.15 Expression Width 60
2.16 Conclusion 61

3. PROCEDURAL STATEMENTS
AND ROUTINES 63

3.1 Procedural Statements 63
3.2 Tasks, Functions, and Void Functions 65
3.3 Task and Function Overview 65
3.4 Routine Arguments 66
3.5 Returning from a Routine 72
3.6 Local Data Storage 73
3.7 Time Values 75
3.8 Conclusion 77

4. CONNECTING THE TESTBENCH
AND DESIGN 79

4.1 Separating the Testbench and Design 80
4.2 The Interface Construct 82
4.3 Stimulus Timing 88
4.4 Interface Driving and Sampling 96
4.5 Connecting It All Together 103
4.6 Top-Level Scope 104
4.7 Program – Module Interactions 106
4.8 SystemVerilog Assertions 107
4.9 The Four-Port ATM Router 109
4.10 The ref Port Direction 117
4.11 The End of Simulation 118
4.12 Directed Test for the LC3 Fetch Block 118
4.13 Conclusion 124

5. BASIC OOP 125
5.1 Introduction 125
5.2 Think of Nouns, not Verbs 126
5.3 Your First Class 126

Contents ix

5.4 Where to Define a Class 127
5.5 OOP Terminology 128
5.6 Creating New Objects 129
5.7 Object Deallocation 132
5.8 Using Objects 134
5.9 Static Variables vs. Global Variables 134
5.10 Class Methods 138
5.11 Defining Methods Outside of the Class 139
5.12 Scoping Rules 141
5.13 Using One Class Inside Another 144
5.14 Understanding Dynamic Objects 147
5.15 Copying Objects 151
5.16 Public vs. Local 157
5.17 Straying Off Course 157
5.18 Building a Testbench 158
5.19 Conclusion 159

6. RANDOMIZATION 161
6.1 Introduction 161
6.2 What to Randomize 162
6.3 Randomization in SystemVerilog 165
6.4 Constraint Details 167
6.5 Solution Probabilities 178
6.6 Controlling Multiple Constraint Blocks 182
6.7 Valid Constraints 183
6.8 In-line Constraints 184
6.9 The pre_randomize and post_randomize Functions 185
6.10 Random Number Functions 187
6.11 Constraints Tips and Techniques 187
6.12 Common Randomization Problems 193
6.13 Iterative and Array Constraints 195
6.14 Atomic Stimulus Generation vs. Scenario Generation 204
6.15 Random Control 207
6.16 Random Number Generators 209
6.17 Random Device Configuration 213
6.18 Conclusion 216

7. THREADS AND INTERPROCESS COMMUNICATION 217
7.1 Working with Threads 218
7.2 Disabling Threads 228
7.3 Interprocess Communication 232
7.4 Events 233
7.5 Semaphores 238
7.6 Mailboxes 240

Contentsx

7.7 Building a Testbench with Threads and IPC 253
7.8 Conclusion 257

8. ADVANCED OOP AND TESTBENCH GUIDELINES 259
8.1 Introduction to Inheritance 260
8.2 Blueprint Pattern 265
8.3 Downcasting and Virtual Methods 270
8.4 Composition, Inheritance, and Alternatives 274
8.5 Copying an Object 279
8.6 Abstract Classes and Pure Virtual Methods 282
8.7 Callbacks 284
8.8 Parameterized Classes 290
8.9 Conclusion 293

9. FUNCTIONAL COVERAGE 295
9.1 Coverage Types 298
9.2 Functional Coverage Strategies 301
9.3 Simple Functional Coverage Example 303
9.4 Anatomy of a Cover Group 305
9.5 Triggering a Cover Group 307
9.6 Data Sampling 310
9.7 Cross Coverage 319
9.8 Generic Cover Groups 325
9.9 Coverage Options 327
9.10 Analyzing Coverage Data 329
9.11 Measuring Coverage Statistics During Simulation 331
9.12 Conclusion 332

10. ADVANCED INTERFACES 333
10.1 Virtual Interfaces with the ATM Router 334
10.2 Connecting to Multiple Design Configurations 342
10.3 Procedural Code in an Interface 347
10.4 Conclusion 350

11. A COMPLETE SYSTEMVERILOG
TESTBENCH 351

11.1 Design Blocks 351
11.2 Testbench Blocks 356
11.3 Alternate Tests 377
11.4 Conclusion 379

12. INTERFACING WITH C 381
12.1 Passing Simple Values 382

Contents xi

12.2 Connecting to a Simple C Routine 385
12.3 Connecting to C++ 393
12.4 Simple Array Sharing 398
12.5 Open arrays 400
12.6 Sharing Composite Types 404
12.7 Pure and Context Imported Methods 407
12.8 Communicating from C to SystemVerilog 407
12.9 Connecting Other Languages 418
12.10 Conclusion 419

References 421
Index 423

List of Code Samples xiii

List of Code Samples

Sample 1.1 Driving the APB pins 16
Sample 1.2 A task to drive the APB pins 17
Sample 1.3 Low-level Verilog test 17
Sample 1.4 Basic transactor code 21
Sample 2.1 Using the logic type 26
Sample 2.2 Signed data types 27
Sample 2.3 Checking for 4-state values 27
Sample 2.4 Declaring fixed-size arrays 28
Sample 2.5 Declaring and using multidimensional arrays 28
Sample 2.6 Unpacked array declarations 29
Sample 2.7 Initializing an array 29
Sample 2.8 Using arrays with for- and foreach-loops 30
Sample 2.9 Initialize and step through a multidimensional array 30
Sample 2.10 Output from printing multidimensional array values 30
Sample 2.11 Printing a multidimensional array 31
Sample 2.12 Output from printing multidimensional array values 31
Sample 2.13 Array copy and compare operations 32
Sample 2.14 Using word and bit subscripts together 32
Sample 2.15 Packed array declaration and usage 33
Sample 2.16 Declaration for a mixed packed/unpacked array 33
Sample 2.17 Using dynamic arrays 35
Sample 2.18 Using a dynamic array for an uncounted list 35
Sample 2.19 Queue operations 37
Sample 2.20 Queue operations 37
Sample 2.21 Declaring, initializing, and using associative arrays 39
Sample 2.22 Using an associative array with a string index 40
Sample 2.23 Creating the sum of an array 41
Sample 2.24 Picking a random element from an associative array 42
Sample 2.25 Array locator methods: min, max, unique 43
Sample 2.26 Array locator methods: find 43
Sample 2.27 Declaring the iterator argument 43

List of Code Samplesxiv

Sample 2.28 Array locator methods 44
Sample 2.29 Sorting an array 44
Sample 2.30 Sorting an array of structures 45
Sample 2.31 A scoreboard with array methods 45
Sample 2.32 User-defined type-macro in Verilog 49
Sample 2.33 User-defined type in SystemVerilog 49
Sample 2.34 Definition of uint 49
Sample 2.35 User-defined array type 50
Sample 2.36 Creating a single pixel type 50
Sample 2.37 The pixel struct 50
Sample 2.38 Initializing a struct 51
Sample 2.39 Using typedef to create a union 51
Sample 2.40 Packed structure 52
Sample 2.41 Converting between int and real with static cast 53
Sample 2.42 Basic streaming operator 53
Sample 2.43 Converting between queues with streaming operator 54
Sample 2.44 Converting between a structure and array with streaming operators 55
Sample 2.45 A simple enumerated type 55
Sample 2.46 Enumerated types 56
Sample 2.47 Specifying enumerated values 56
Sample 2.48 Incorrectly specifying enumerated values 57
Sample 2.49 Correctly specifying enumerated values 57
Sample 2.50 Stepping through all enumerated members 58
Sample 2.51 Assignments between integers and enumerated types 58
Sample 2.52 Declaring a const variable 59
Sample 2.53 String methods 60
Sample 2.54 Expression width depends on context 61
Sample 3.1 New procedural statements and operators 64
Sample 3.2 Using break and continue while reading a file 64
Sample 3.3 Void function for debug 65
Sample 3.4 Ignoring a function’s return value 65
Sample 3.5 Simple task without begin...end 66
Sample 3.6 Verilog-1995 routine arguments 66
Sample 3.7 C-style routine arguments 66
Sample 3.8 Verbose Verilog-style routine arguments 67
Sample 3.9 Routine arguments with sticky types 67
Sample 3.10 Passing arrays using ref and const 68
Sample 3.11 Using ref across threads 69
Sample 3.12 Function with default argument values 70
Sample 3.13 Using default argument values 70
Sample 3.14 Binding arguments by name 71
Sample 3.15 Original task header 71
Sample 3.16 Task header with additional array argument 71
Sample 3.17 Task header with additional array argument 71
Sample 3.18 Return in a task 72

List of Code Samples xv

Sample 3.19 Return in a function 72
Sample 3.20 Returning an array from a function with a typedef 73
Sample 3.21 Passing an array to a function as a ref argument 73
Sample 3.22 Specifying automatic storage in program blocks 74
Sample 3.23 Static initialization bug 75
Sample 3.24 Static initialization fix: use automatic 75
Sample 3.25 Static initialization fix: break apart declaration and initialization 75
Sample 3.26 Time literals and $timeformat 76
Sample 3.27 Time variables and rounding 77
Sample 4.1 Arbiter model using ports 81
Sample 4.2 Testbench using ports 82
Sample 4.3 Top-level netlist without an interface 82
Sample 4.4 Simple interface for arbiter 83
Sample 4.5 Arbiter using a simple interface 83
Sample 4.6 Testbench using a simple arbiter interface 84
Sample 4.7 Top module using a simple arbiter interface 84
Sample 4.8 Bad test module includes interface 85
Sample 4.9 Connecting an interface to a module that uses ports 85
Sample 4.10 Interface with modports 86
Sample 4.11 Arbiter model with interface using modports 86
Sample 4.12 Testbench with interface using modports 86
Sample 4.13 Arbiter model with interface using modports 87
Sample 4.14 Interface with a clocking block 90
Sample 4.15 Interface with a clocking block 91
Sample 4.16 Race condition between testbench and design 93
Sample 4.17 Testbench using interface with clocking block 95
Sample 4.18 Signal synchronization 97
Sample 4.19 Synchronous interface sample and drive from module 97
Sample 4.20 Testbench using interface with clocking block 98
Sample 4.21 Interface signal drive 99
Sample 4.22 Driving a synchronous interface 99
Sample 4.23 Interface signal drive 100
Sample 4.24 Bidirectional signals in a program and interface 101
Sample 4.25 Bad clock generator in program block 102
Sample 4.26 Good clock generator in module 103
Sample 4.27 Top module using a simple arbiter interface 103
Sample 4.28 Module with just port connections 103
Sample 4.29 Module with an interface 104
Sample 4.30 Top module connecting DUT and interface 104
Sample 4.31 Top-level scope for arbiter design 105
Sample 4.32 Cross-module references with $root 106
Sample 4.33 Checking a signal with an if-statement 107
Sample 4.34 Simple immediate assertion 107
Sample 4.35 Error from failed immediate assertion 107
Sample 4.36 Creating a custom error message in an immediate assertion 108

List of Code Samplesxvi

Sample 4.37 Error from failed immediate assertion 108
Sample 4.38 Creating a custom error message 108
Sample 4.39 Concurrent assertion to check for X/Z 109
Sample 4.40 ATM router model header without an interface 111
Sample 4.41 Top-level netlist without an interface 112
Sample 4.42 Verilog-1995 testbench using ports 113
Sample 4.43 Rx interface 115
Sample 4.44 Tx interface 115
Sample 4.45 ATM router model with interface using modports 116
Sample 4.46 Top-level netlist with interface 116
Sample 4.47 Testbench using an interface with a clocking block 117
Sample 4.48 A final block 118
Sample 4.49 Fetch block Verilog code 120
Sample 4.50 Fetch block interface 121
Sample 4.51 Fetch block directed test 122
Sample 4.52 Top level block for fetch testbench 124
Sample 5.1 Simple transaction class 127
Sample 5.2 Declaring and using a handle 129
Sample 5.3 Simple user-defined new() function 130
Sample 5.4 A new() function with arguments 130
Sample 5.5 Calling the right new() function 131
Sample 5.6 Allocating multiple objects 132
Sample 5.7 Creating multiple objects 133
Sample 5.8 Using variables and routines in an object 134
Sample 5.9 Class with a static variable 135
Sample 5.10 The class scope resolution operator 136
Sample 5.11 Static storage for a handle 137
Sample 5.12 Static method displays static variable 138
Sample 5.13 Routines in the class 139
Sample 5.14 Out-of-block method declarations 140
Sample 5.15 Out-of-body task missing class name 141
Sample 5.16 Name scope 142
Sample 5.17 Class uses wrong variable 143
Sample 5.18 Move class into package to find bug 143
Sample 5.19 Using this to refer to class variable 144
Sample 5.20 Statistics class declaration 145
Sample 5.21 Encapsulating the Statistics class 145
Sample 5.22 Using a typedef class statement 146
Sample 5.23 Passing objects 148
Sample 5.24 Bad transaction creator task, missing ref on handle 149
Sample 5.25 Good transaction creator task with ref on handle 149
Sample 5.26 Bad generator creates only one object 149
Sample 5.27 Good generator creates many objects 150
Sample 5.28 Using an array of handles 150
Sample 5.29 Copying a simple class with new 151

List of Code Samples xvii

Sample 5.30 Copying a complex class with new operator 152
Sample 5.31 Simple class with copy function 153
Sample 5.32 Using a copy function 153
Sample 5.33 Complex class with deep copy function 154
Sample 5.34 Statistics class declaration 154
Sample 5.35 Copying a complex class with new operator 155
Sample 5.36 Transaction class with pack and unpack functions 156
Sample 5.37 Using the pack and unpack functions 156
Sample 5.38 Basic Transactor 159
Sample 6.1 Simple random class 165
Sample 6.2 Constraint without random variables 167
Sample 6.3 Constrained-random class 168
Sample 6.4 Bad ordering constraint 168
Sample 6.5 Result from incorrect ordering constraint 169
Sample 6.6 Constrain variables to be in a fixed order 169
Sample 6.7 Weighted random distribution with dist 170
Sample 6.8 Dynamically changing distribution weights 170
Sample 6.9 Random sets of values 171
Sample 6.10 Specifying minimum and maximum range with $ 171
Sample 6.11 Inverted random set constraint 171
Sample 6.12 Random set constraint for an array 172
Sample 6.13 Equivalent set of constraints 172
Sample 6.14 Repeated values in inside constraint 173
Sample 6.15 Output from inside constraint operator and weighted array 173
Sample 6.16 Class to choose from an array of possible values 174
Sample 6.17 Choosing from an array of values 174
Sample 6.18 Using randc to choose array values in random order 175
Sample 6.19 Constraint block with implication operator 176
Sample 6.20 Constraint block with if-else operator 176
Sample 6.21 Bidirectional constraint 176
Sample 6.22 Expensive constraint with mod and unsized variable 177
Sample 6.23 Efficient constraint with bit extract 178
Sample 6.24 Class Unconstrained 178
Sample 6.25 Class with implication 179
Sample 6.26 Class with implication and constraint 180
Sample 6.27 Class with implication and solve...before 181
Sample 6.28 Using constraint_mode 183
Sample 6.29 Checking write length with a valid constraint 183
Sample 6.30 The randomize() with statement 184
Sample 6.31 Building a bathtub distribution 186
Sample 6.32 $urandom_range usage 187
Sample 6.33 Constraint with a variable bound 188
Sample 6.34 dist constraint with variable weights 188
Sample 6.35 rand_mode disables randomization of variables 189
Sample 6.36 Randomizing a subset of variables in a class 190

List of Code Samplesxviii

Sample 6.37 Using the implication constraint as a case statement 191
Sample 6.38 Turning constraints on and off with constraint_mode 191
Sample 6.39 Class with an external constraint 192
Sample 6.40 Program defining an external constraint 193
Sample 6.41 Signed variables cause randomization problems 194
Sample 6.42 Randomizing unsigned 32-bit variables 194
Sample 6.43 Randomizing unsigned 8-bit variables 194
Sample 6.44 Constraining dynamic array size 195
Sample 6.45 Random strobe pattern class 197
Sample 6.46 First attempt at sum constraint: bad_sum1 198
Sample 6.47 Program to try constraint with array sum 198
Sample 6.48 Output from bad_sum1 198
Sample 6.49 Second attempt at sum constraint: bad_sum2 198
Sample 6.50 Output from bad_sum2 199
Sample 6.51 Third attempt at sum constraint: bad_sum3 199
Sample 6.52 Output from bad_sum3 199
Sample 6.53 Fourth attempt at sum_constraint: bad_sum4 199
Sample 6.54 Output from bad_sum4 200
Sample 6.55 Simple foreach constraint: good_sum5 200
Sample 6.56 Output from good_sum5 200
Sample 6.57 Creating ascending array values with foreach 201
Sample 6.58 Creating unique array values with foreach 201
Sample 6.59 Creating unique array values with a randc helper class 202
Sample 6.60 Unique value generator 202
Sample 6.61 Class to generate a random array of unique values 203
Sample 6.62 Using the UniqueArray class 203
Sample 6.63 Constructing elements in a random array 204
Sample 6.64 Command generator using randsequence 205
Sample 6.65 Random control with randcase and $urandom_range 207
Sample 6.66 Equivalent constrained class 208
Sample 6.67 Creating a decision tree with randcase 209
Sample 6.68 Simple pseudorandom number generator 210
Sample 6.69 Test code before modification 212
Sample 6.70 Test code after modification 212
Sample 6.71 Ethernet switch configuration class 213
Sample 6.72 Building environment with random configuration 214
Sample 6.73 Simple test using random configuration 215
Sample 6.74 Simple test that overrides random configuration 215
Sample 7.1 Interaction of begin...end and fork...join 219
Sample 7.2 Output from begin...end and fork...join 220
Sample 7.3 Fork...join_none code 221
Sample 7.4 Fork...join_none output 221
Sample 7.5 Fork...join_any code 222
Sample 7.6 Output from fork...join_any 222
Sample 7.7 Generator / Driver class with a run task 223

List of Code Samples xix

Sample 7.8 Dynamic thread creation 224
Sample 7.9 Bad fork...join_none inside a loop 225
Sample 7.10 Execution of bad fork...join_none inside a loop 225
Sample 7.11 Automatic variables in a fork...join_none 226
Sample 7.12 Steps in executing automatic variable code 226
Sample 7.13 Automatic variables in a fork...join_none 227
Sample 7.14 Using wait fork to wait for child threads 227
Sample 7.15 Bug using shared program variable 228
Sample 7.16 Disabling a thread 229
Sample 7.17 Limiting the scope of a disable fork 230
Sample 7.18 Using disable label to stop threads 231
Sample 7.19 Using disable label to stop a task 232
Sample 7.20 Blocking on an event in Verilog 233
Sample 7.21 Output from blocking on an event 234
Sample 7.22 Waiting for an event 234
Sample 7.23 Output from waiting for an event 234
Sample 7.24 Waiting on event causes a zero delay loop 235
Sample 7.25 Waiting for an edge on an event 235
Sample 7.26 Passing an event into a constructor 236
Sample 7.27 Waiting for multiple threads with wait fork 237
Sample 7.28 Waiting for multiple threads by counting triggers 237
Sample 7.29 Waiting for multiple threads using a thread count 238
Sample 7.30 Semaphores controlling access to hardware resource 239
Sample 7.31 Bad generator creates only one object 241
Sample 7.32 Good generator creates many objects 242
Sample 7.33 Good driver receives transactions from mailbox 243
Sample 7.34 Exchanging objects using a mailbox: the Generator class 243
Sample 7.35 Exchanging objects using a mailbox: the Driver class 244
Sample 7.36 Exchanging objects using a mailbox: the program block 244
Sample 7.37 Bounded mailbox 245
Sample 7.38 Output from bounded mailbox 246
Sample 7.39 Producer–consumer without synchronization 247
Sample 7.40 Producer–consumer without synchronization output 248
Sample 7.41 Producer–consumer synchronized with bounded mailbox 249
Sample 7.42 Output from producer–consumer with bounded mailbox 249
Sample 7.43 Producer–consumer synchronized with an event 250
Sample 7.44 Producer–consumer synchronized with an event, continued 251
Sample 7.45 Output from producer–consumer with event 251
Sample 7.46 Producer–consumer synchronized with a mailbox 252
Sample 7.47 Output from producer–consumer with mailbox 253
Sample 7.48 Basic Transactor 254
Sample 7.49 Configuration class 255
Sample 7.50 Environment class 255
Sample 7.51 Basic test program 257
Sample 8.1 Base Transaction class 261

List of Code Samplesxx

Sample 8.2 Extended Transaction class 262
Sample 8.3 Constructor with argument in an extended class 263
Sample 8.4 Driver class 264
Sample 8.5 Generator class 265
Sample 8.6 Generator class using blueprint pattern 267
Sample 8.7 Environment class 268
Sample 8.8 Simple test program using environment defaults 268
Sample 8.9 Injecting an extended transaction into testbench 269
Sample 8.10 Using inheritance to add a constraint 270
Sample 8.11 Base and extended class 271
Sample 8.12 Copying extended handle to base handle 271
Sample 8.13 Copying a base handle to an extended handle 272
Sample 8.14 Using $cast to copy handles 272
Sample 8.15 Transaction and BadTr classes 273
Sample 8.16 Calling class methods 273
Sample 8.17 Building an Ethernet frame with composition 276
Sample 8.18 Building an Ethernet frame with inheritance 277
Sample 8.19 Building a flat Ethernet frame 278
Sample 8.20 Base transaction class with a virtual copy function 279
Sample 8.21 Extended transaction class with virtual copy method 279
Sample 8.22 Base transaction class with copy_data function 280
Sample 8.23 Extended transaction class with copy_data function 281
Sample 8.24 Base transaction class with copy function 281
Sample 8.25 Extended transaction class with new copy function 282
Sample 8.26 Abstract class with pure virtual methods 283
Sample 8.27 Transaction class extends abstract class 283
Sample 8.28 Bodies for Transaction methods 284
Sample 8.29 Base callback class 286
Sample 8.30 Driver class with callbacks 286
Sample 8.31 Test using a callback for error injection 287
Sample 8.32 Simple scoreboard for atomic transactions 288
Sample 8.33 Test using callback for scoreboard 289
Sample 8.34 Stack using the int type 290
Sample 8.35 Parameterized class for a stack 291
Sample 8.36 Using the parameterized stack class 291
Sample 8.37 Parameterized generator class using blueprint pattern 292
Sample 8.38 Simple testbench using parameterized generator class 292
Sample 9.1 Incomplete D-flip flop model missing a path 299
Sample 9.2 Functional coverage of a simple object 303
Sample 9.3 Coverage report for a simple object 304
Sample 9.4 Coverage report for a simple object, 100% coverage 305
Sample 9.5 Functional coverage inside a class 307
Sample 9.6 Test using functional coverage callback 308
Sample 9.7 Callback for functional coverage 309
Sample 9.8 Cover group with a trigger 309

List of Code Samples xxi

Sample 9.9 Module with SystemVerilog Assertion 309
Sample 9.10 Triggering a cover group with an SVA 310
Sample 9.11 Using auto_bin_max set to 2 311
Sample 9.12 Report with auto_bin_max set to 2 311
Sample 9.13 Using auto_bin_max for all cover points 312
Sample 9.14 Using an expression in a cover point 312
Sample 9.15 Defining bins for transaction length 313
Sample 9.16 Coverage report for transaction length 313
Sample 9.17 Specifying bin names 314
Sample 9.18 Report showing bin names 314
Sample 9.19 Specifying ranges with $ 315
Sample 9.20 Conditional coverage – disable during reset 315
Sample 9.21 Using stop and start functions 316
Sample 9.22 Functional coverage for an enumerated type 316
Sample 9.23 Coverage report with enumerated types 316
Sample 9.24 Specifying transitions for a cover point 317
Sample 9.25 Wildcard bins for a cover point 317
Sample 9.26 Cover point with ignore_bins 318
Sample 9.27 Cover point with auto_bin_max and ignore_bins 318
Sample 9.28 Cover point with illegal_bins 318
Sample 9.29 Basic cross coverage 320
Sample 9.30 Coverage summary report for basic cross coverage 320
Sample 9.31 Specifying cross coverage bin names 321
Sample 9.32 Cross coverage report with labeled bins 322
Sample 9.33 Excluding bins from cross coverage 322
Sample 9.34 Specifying cross coverage weight 323
Sample 9.35 Cross coverage with bin names 324
Sample 9.36 Cross coverage with binsof 325
Sample 9.37 Mimicking cross coverage with concatenation 325
Sample 9.38 Simple argument 326
Sample 9.39 Pass-by-reference 326
Sample 9.40 Specifying per-instance coverage 327
Sample 9.41 Specifying comments for a cover group 328
Sample 9.42 Specifying comments for a cover group instance 328
Sample 9.43 Report all bins including empty ones 329
Sample 9.44 Specifying the coverage goal 329
Sample 9.45 Original class for transaction length 330
Sample 9.46 solve...before constraint for transaction length 330
Sample 10.1 Rx interface with clocking block 334
Sample 10.2 Tx interface with clocking block 334
Sample 10.3 Testbench using physical interfaces 335
Sample 10.4 Top level module with array of interfaces 336
Sample 10.5 Testbench using virtual interfaces 337
Sample 10.6 Testbench using virtual interfaces 337
Sample 10.7 Driver class using virtual interfaces 338

List of Code Samplesxxii

Sample 10.8 Test harness using an interface in the port list 340
Sample 10.9 Test with an interface in the port list 340
Sample 10.10 Top module with a second interface in the test’s port list 340
Sample 10.11 Test with two interfaces in the port list 340
Sample 10.12 Test with virtual interface and XMR 341
Sample 10.13 Test harness without interfaces in the port list 341
Sample 10.14 Test harness with a second interface 341
Sample 10.15 Test with two virtual interfaces and XMRs 341
Sample 10.16 Interface for 8-bit counter 342
Sample 10.17 Counter model using X_if interface 343
Sample 10.18 Testbench using an array of virtual interfaces 343
Sample 10.19 Counter testbench using virtual interfaces 344
Sample 10.20 Driver class using virtual interfaces 345
Sample 10.21 Testbench using a typedef for virtual interfaces 346
Sample 10.22 Driver using a typedef for virtual interfaces 346
Sample 10.23 Testbench using an array of virtual interfaces 346
Sample 10.24 Testbench passing virtual interfaces with a port 347
Sample 10.25 Interface with tasks for parallel protocol 348
Sample 10.26 Interface with tasks for serial protocol 349
Sample 11.1 Top level module 353
Sample 11.2 Testbench program 354
Sample 11.3 CPU Management Interface 354
Sample 11.4 Utopia interface 355
Sample 11.5 Environment class header 356
Sample 11.6 Environment class methods 357
Sample 11.7 Callback class connects driver and scoreboard 360
Sample 11.8 Callback class connects monitor and scoreboard 360
Sample 11.9 Callback class connects the monitor and coverage 361
Sample 11.10 Environment configuration class 362
Sample 11.11 Cell configuration type 362
Sample 11.12 Configuration class methods 363
Sample 11.13 UNI cell format 363
Sample 11.14 NNI cell format 363
Sample 11.15 ATMCellType 364
Sample 11.16 UNI_cell definition 364
Sample 11.17 UNI_cell methods 365
Sample 11.18 UNI_generator class 368
Sample 11.19 driver class 368
Sample 11.20 Driver callback class 371
Sample 11.21 Monitor callback class 371
Sample 11.22 The Monitor class 371
Sample 11.23 The Scoreboard class 373
Sample 11.24 Functional coverage class 375
Sample 11.25 The CPU_driver class 376
Sample 11.26 Test with one cell 378

List of Code Samples xxiii

Sample 11.27 Test that drops cells using driver callback 379
Sample 12.1 SystemVerilog code calling C factorial routine 382
Sample 12.2 C factorial function 382
Sample 12.3 Changing the name of an imported function 383
Sample 12.4 Argument directions 383
Sample 12.5 C factorial routine with const argument 384
Sample 12.6 Importing a C math function 385
Sample 12.7 Counter method using a static variable 386
Sample 12.8 Testbench for an 7-bit counter with static storage 387
Sample 12.9 Counter method using instance storage 388
Sample 12.10 Testbench for an 7-bit counter with per-instance storage 389
Sample 12.11 Testbench for counter that checks for Z or X values 391
Sample 12.12 Counter method that checks for Z and X values 392
Sample 12.13 Counter class 393
Sample 12.14 Static methods and linkage 394
Sample 12.15 C++ counter communicating with methods 395
Sample 12.16 Static wrapper for C++ transaction level counter 396
Sample 12.17 Testbench for C++ model using methods 397
Sample 12.18 Testbench for C++ model using methods 398
Sample 12.19 C routine to compute Fibonacci series 398
Sample 12.20 Testbench for Fibonacci routine 399
Sample 12.21 C routine to compute Fibonacci series with 4-state array 399
Sample 12.22 Testbench for Fibonacci routine with 4-state array 399
Sample 12.23 Testbench code calling a C routine with an open array 400
Sample 12.24 C code using a basic open array 401
Sample 12.25 Testbench calling C code with multidimensional open array 402
Sample 12.26 C code with multidimensional open array 403
Sample 12.27 Testbench for packed open arrays 403
Sample 12.28 C code using packed open arrays 404
Sample 12.29 C code to share a structure 404
Sample 12.30 Testbench for sharing structure 405
Sample 12.31 Returning a string from C 406
Sample 12.32 Returning a string from a heap in C 406
Sample 12.33 Importing a pure function 407
Sample 12.34 Imported context tasks 407
Sample 12.35 Exporting a SystemVerilog function 408
Sample 12.36 Calling an exported SystemVerilog function from C 408
Sample 12.37 Output from simple export 408
Sample 12.38 SystemVerilog module for simple memory model 409
Sample 12.39 C code to read simple command file and call exported function 410
Sample 12.40 Command file for simple memory model 410
Sample 12.41 SystemVerilog module for memory model with exported tasks 411
Sample 12.42 C code to read command file and call exported function 411
Sample 12.43 Command file for simple memory model 412
Sample 12.44 Command file for exported methods with OOP memories 413

List of Code Samplesxxiv

Sample 12.45 SystemVerilog module with memory model class 413
Sample 12.46 C code to call exported tasks with OOP memory 414
Sample 12.47 Second module for simple export example 415
Sample 12.48 Output from simple example with two modules 416
Sample 12.49 C code getting and setting context 416
Sample 12.50 Modules calling methods that get and set context 417
Sample 12.51 Output from svSetScope code 418
Sample 12.52 SystemVerilog code calling C wrapper for Perl 418
Sample 12.53 C wrapper for Perl script 419
Sample 12.54 Perl script called from C and SystemVerilog 419

List of Figures

Figure 1.1 Directed test progress over time 6
Figure 1.2 Directed test coverage 6
Figure 1.3 Constrained-random test progress over time vs. directed testing 8
Figure 1.4 Constrained-random test coverage 9
Figure 1.5 Coverage convergence 9
Figure 1.6 Test progress with and without feedback 13
Figure 1.7 The testbench – design environment 15
Figure 1.8 Testbench components 15
Figure 1.9 Signal and command layers 18
Figure 1.10 Testbench with functional layer added 18
Figure 1.11 Testbench with scenario layer added 19
Figure 1.12 Full testbench with all layers 20
Figure 1.13 Connections for the driver 21
Figure 2.1 Unpacked array storage 29
Figure 2.2 Packed array layout 33
Figure 2.3 Packed array bit layout 34
Figure 2.4 Associative array 38
Figure 4.1 The testbench – design environment 79
Figure 4.2 Testbench – Arbiter without interfaces 81
Figure 4.3 An interface straddles two modules 83
Figure 4.4 Main regions inside a SystemVerilog time step 94
Figure 4.5 A clocking block synchronizes the DUT and testbench 96
Figure 4.6 Sampling a synchronous interface 98
Figure 4.7 Driving a synchronous interface 100
Figure 4.8 Testbench – ATM router diagram without interfaces 110
Figure 4.9 Testbench – router diagram with interfaces 114
Figure 4.10 LD3 Microcontroller fetch block 119
Figure 5.1 Handles and objects after allocating multiple objects 132
Figure 5.2 Static variables in a class 135
Figure 5.3 Contained objects 144
Figure 5.4 Handles and objects across methods 147

List of Figuresxxvi

Figure 5.5 Objects and handles before copy with the new operator 152
Figure 5.6 Objects and handles after copy with the new operator 152
Figure 5.7 Objects and handles after copy with the new operator 153
Figure 5.8 Objects and handles after deep copy 155
Figure 5.9 Layered testbench 158
Figure 6.1 Building a bathtub distribution 186
Figure 6.2 Random strobe waveforms 196
Figure 6.3 Sharing a single random generator 210
Figure 6.4 First generator uses additional values 211
Figure 6.5 Separate random generators per object 211
Figure 7.1 Testbench environment blocks 218
Figure 7.2 Fork...join blocks 219
Figure 7.3 Fork...join block 220
Figure 7.4 Fork...join block diagram 230
Figure 7.5 A mailbox connecting two transactors 241
Figure 7.6 A mailbox with multiple handles to one object 242
Figure 7.7 A mailbox with multiple handles to multiple objects 242
Figure 7.8 Layered testbench with environment 254
Figure 8.1 Simplified layered testbench 260
Figure 8.2 Base Transaction class diagram 261
Figure 8.3 Extended Transaction class diagram 262
Figure 8.4 Blueprint pattern generator 266
Figure 8.5 Blueprint generator with new pattern 266
Figure 8.6 Simplified extended transaction 271
Figure 8.7 Multiple inheritance problem 278
Figure 8.8 Callback flow 285
Figure 9.1 Coverage convergence 296
Figure 9.2 Coverage flow 297
Figure 9.3 Bug rate during a project 300
Figure 9.4 Coverage comparison 302
Figure 9.5 Uneven probability for transaction length 330
Figure 9.6 Even probability for transaction length with solve...before 330
Figure 10.1 Router and testbench with interfaces 336
Figure 11.1 The testbench – design environment 352
Figure 11.2 Block diagram for the squat design 352
Figure 12.1 Storage of a 40-bit 2-state variable 390
Figure 12.2 Storage of a 40-bit 4-state variable 391

List of Tables

Table 1. Book icons xxxiii
Table 4.1. Primary SystemVerilog scheduling regions 94
Table 6.1. Solutions for bidirectional constraint 177
Table 6.2. Solutions for Unconstrained class 178
Table 6.3. Solutions for Imp1 class 179
Table 6.4. Solutions for Imp2 class 180
Table 6.5. Solutions for solve x before y constraint 181
Table 6.6. Solutions for solve y before x constraint 181
Table 8.1. Comparing inheritance to composition 275
Table 12.1. Data types mapping between SystemVerilog and C 384
Table 12.2. 4-state bit encoding 390
Table 12.3. Open array query functions 401
Table 12.4. Open array locator functions 402

Preface

What is this book about?
This book is the first one you should read to learn the SystemVerilog verification

language constructs. It describes how the language works and includes many exam-
ples on how to build a basic coverage-driven, constrained-random layered testbench
using Object-Oriented Programming (OOP). The book has many guidelines on build-
ing testbenches, which help show why you want to use classes, randomization, and
functional coverage. Once you have learned the language, pick up some of the meth-
odology books listed in the References section for more information on building a
testbench.

Who should read this book?
If you create testbenches, you need this book. If you have only written tests using

Verilog or VHDL and want to learn SystemVerilog, this book shows you how to
move up to the new language features. Vera and Specman users can learn how one
language can be used for both design and verification. You may have tried to read the
SystemVerilog Language Reference Manual (LRM) but found it loaded with syntax
but no guidelines on which construct to choose.

I wrote this book because, like many of my customers, I spent much of my career
using procedural languages such as C and Verilog to write tests, and had to relearn
everything when OOP verification languages came along. I made all the typical mis-
takes, and wrote this book so that you won’t have to repeat them.

Before reading this book, you should be comfortable with Verilog-1995. Knowl-
edge of Verilog-2001, SystemVerilog design constructs, or SystemVerilog Assertions
is not required.

Prefacexxx

What is new in the second edition?
This new edition of SystemVerilog for Verification has many improvements over

the first edition that was published in 2006.

The anticipated 2008 version of the SystemVerilog Language Reference
Manual (LRM) has many changes, both large and small. This book tries to
include the latest relevant information.
Many readers asked me for more details on SystemVerilog concepts. Almost
all of these conversations have been incorporated into this book as expanded
explanations and code samples. Starting with Chap. 2, nearly every para-
graph and example has been rewritten, revised, or just tweaked. There are
over 50 new pages in the original ten chapters, and over 70 new examples. In
all, the new edition is almost 1/3 larger than the original.
You asked for more examples, especially large ones. This edition has a
directed testbench at the end of Chap. 4, and complete constrained random
testbench in Chap. 11.
Not all testbench code is written in SystemVerilog, and so I added Chap. 12
to show how to connect C and C++ code to SystemVerilog with the Direct
Programming Interface.
Most engineers read a book starting with the index, and so I doubled the
number of entries. We also love cross references, and so I have added more
so that you can read the book nonlinearly.
Lastly, a big thanks to all the readers who spotted mistakes in the first edi-
tion, from poor grammar to code that was obviously written on the morning
after a 18-hour flight from Asia to Boston. This edition has been checked
and reviewed many times over, but once again, all mistakes are mine.

Why was SystemVerilog created?
In the late 1990s, the Verilog Hardware Description Language (HDL) became the

most widely used language for describing hardware for simulation and synthesis.
However, the first two versions standardized by the IEEE (1364-1995 and 1364-
2001) had only simple constructs for creating tests. As design sizes outgrew the veri-
fication capabilities of the language, commercial Hardware Verification Languages
(HVL) such as OpenVera and e were created. Companies that did not want to pay for
these tools instead spent hundreds of man-years creating their own custom tools.

This productivity crisis (along with a similar one on the design side) led to the cre-
ation of Accellera, a consortium of EDA companies and users who wanted to create
the next generation of Verilog. The donation of the OpenVera language formed the
basis for the HVL features of SystemVerilog. Accellera’s goal was met in November
2005 with the adoption of the IEEE standard P1800-2005 for SystemVerilog, IEEE
(2005).

Preface xxxi

Importance of a unified language
Verification is generally viewed as a fundamentally different activity from design.

This split has led to the development of narrowly focused language for verification
and to the bifurcation of engineers into two largely independent disciplines. This spe-
cialization has created substantial bottlenecks in terms of communication between the
two groups. SystemVerilog addresses this issue with its capabilities for both camps.
Neither team has to give up any capabilities it needs to be successful, but the unifica-
tion of both syntax and semantics of design and verification tools improves
communication. For example, while a design engineer may not be able to write an
object-oriented testbench environment, it is fairly straightforward to read such a test
and understand what is happening, enabling both the design and verification engi-
neers to work together to identify and fix problems. Likewise, a designer understands
the inner workings of his or her block, and is the best person to write assertions about
it, but a verification engineer may have a broader view needed to create assertions
between blocks.

Another advantage of including the design, testbench, and assertion constructs in
a single language is that the testbench has easy access to all parts of the environment
without requiring specialized APIs. The value of an HVL is its ability to create high-
level, flexible tests, not its loop constructs or declaration style. SystemVerilog is
based on the Verilog constructs that engineers have used for decades.

Importance of methodology
There is a difference between learning the syntax of a language and learning how

to use a tool. This book focuses on techniques for verification using constrained-ran-
dom tests that use functional coverage to measure progress and direct the verification.
As the chapters unfold, language and methodology features are shown side by side.
For more on methodology, see Bergeron et al. (2006).

The most valuable benefit of SystemVerilog is that it allows the user to construct
reliable, repeatable verification environments, in a consistent syntax, that can be used
across multiple projects.

Comparing SystemVerilog and SystemC for high-level design
Now that SystemVerilog incorporates Object-Oriented Programming, dynamic

threads, and interprocess communication, it can be used for system design. When
talking about the applications for SystemVerilog, the IEEE standard mentions archi-
tectural modeling before design, assertions, and test. SystemC can also be used for
architectural modeling.

Prefacexxxii

There are several major differences between SystemC and SystemVerilog:

SystemVerilog provides one modeling language. You do not have to learn
C++ and the Standard Template Library to create your models.
SystemVerilog simplifies top–down design. You can create your system
models in SystemVerilog and then refine each block to the next lower level.
The original system-level models can be reused as reference models.
Software developers want a free or low-cost hardware simulator that is fast.
You can create high-performance transaction-level models in both SystemC
and SystemVerilog. SystemVerilog simulators require a license that a soft-
ware developer may not want to pay for. SystemC can be free, but only if all
your models are available in SystemC.

Overview of the book
The SystemVerilog language includes features for design, verification, assertions,

and more. This book focuses on the constructs used to verify a design. There are
many ways to solve a problem using SystemVerilog. This book explains the trade-
offs between alternative solutions.

Chapter 1, Verification Guidelines, presents verification techniques to serve as a
foundation for learning and using the SystemVerilog language. These guidelines
emphasize coverage-driven random testing in a layered testbench environment.

Chapter 2, Data Types, covers the new SystemVerilog data types such as arrays,
structures, enumerated types, and packed variables.

Chapter 3, Procedural Statements and Routines, shows the new procedural state-
ments and improvements for tasks and functions.

Chapter 4, Connecting the Testbench and Design, shows the new SystemVerilog
verification constructs, such as program blocks, interfaces, and clocking blocks, and
how they are used to build your testbench and connect it to the design under test.

Chapter 5, Basic OOP, is an introduction to Object-Oriented Programming,
explaining how to build classes, construct objects, and use handles.

Chapter 6, Randomization, shows you how to use SystemVerilog’s constrained-
random stimulus generation, including many techniques and examples.

Chapter 7, Threads and Interprocess Communication, shows how to create multi-
ple threads in your testbench, use interprocess communication to exchange data
between these threads and synchronize them.

Chapter 8, Advanced OOP and Testbench Guidelines, shows how to build a lay-
ered testbench with OOP so that the components can be shared by all tests.

Chapter 9, Functional Coverage, explains the different types of coverage and how
you can use functional coverage to measure your progress as you follow a verification
plan.

Preface

Chapter 10, Advanced Interfaces, shows how to use virtual interfaces to simplify
your testbench code, connect to multiple design configurations, and create interfaces
with procedural code so that your testbench and design can work at a higher level of
abstraction.

Chapter 11, A Complete SystemVerilog Testbench, shows a constrained random
testbench using the guidelines shown in Chap. 8. Several tests are shown to demon-
strate how you can easily extend the behavior of a testbench without editing the
original code, which always carries the risk of introducing new bugs.

Chapter 12, Interfacing with C, describes how to connect your C or C++ Code to
SystemVerilog using the Direct Programming Interface.

Icons used in this book

Final comments
If you would like more information on SystemVerilog and Verification, you can

find many resources at http://chris.spear.net/systemverilog

This site has the source code for many of the examples in this book. All of the
examples have been verified with Synopsys’ Chronologic VCS 2005.06, 2006.06,
and 2008.03. The SystemVerilog Language Reference Manual covers hundreds of
new features. I have concentrated on constructs useful for verification and imple-
mented in VCS. It is better to have verified examples than to show all language
features and thus risk having incorrect code. Speaking of mistakes, if you think you
have found a mistake, please check my web site for the Errata page. If you are the first
to find any mistake in a chapter, I will send you a free, autographed book.

CHRIS SPEAR
Synopsys, Inc.

chris@spear.net

Table 1. Book icons

Shows verification methodology to
guide your usage of SystemVerilog
testbench features

Shows common coding mistakes

xxxiii

Acknowledgments

Few books are the creation of a single person. I want to thank all the peo-
ple who spent countless hours helping me learn SystemVerilog and reviewing
the book that you now hold in your hand. I especially thank all the people at
Synopsys for their help, including all my patient managers.

A big thanks to Shalom Bresticker, James Chang, David Lee, Ronald
Mehler, Mike Mintz, Tim Pylant, Stuart Sutherland, and Tuan Tran, who
reviewed some very rough drafts and inspired many improvements. However,
the mistakes are all mine.

Janick Bergeron provided inspiration, innumerable verification tech-
niques, and top-quality reviews. Without his guidance, this book would not
exist.

Alex Potapov, Horia Toma, and the VCS R&D team always showed
patience with my questions and provided valuable insight on SystemVerilog
features.

Will Sherwood inspired me to become a verification engineer, and taught
me new ways to break things.

The following people pointed out mistakes in the first edition, and made
valuable suggestions on areas where the book could be improved: Dan Abate,
Steve Barrett, Mike Blake, Shalom Bresticker, John Brooks, Heath Chambers,
Keith Chan, Luke Chang, Haihui Chen, Gunther Clasen, Hashem Heidaragha,
Stefan Kruepe, Jimnan Kuo, Jim Lewis, Daguang Liu, Victor Lopez, Michael
Macheski, Chris Macionski, Mike Mintz, Thinh Ngo, John Nolan, Ben Raha-
rdja, Afroza Rahman, Chandrasekar Rajanayagam, Jonathan Schmidt,
Chandru Sippy, Dave Snogles, Tuan Tran, Robin van Malenhorst, Hugh
Walsh, Larry Widigen, and Chunlin Zhang.

Acknowledgementsxxxvi

Jenny Bagdigian made sure I dotted my t’s and crossed my i’s. See you at
Carnival!

United Airlines always had a quiet place to work and plenty of snacks.
“Chicken or pasta?”

Lastly, a big thanks to Jay Mcinerney for his brash pronoun usage.

All trademarks and copyrights are the property of their respective owners.

Chapter 1

Verification Guidelines

“Some believed we lacked the programming language to describe your perfect world...”
(The Matrix, 1999)

Imagine that you are given the job of building a house for someone. Where should
you begin? Do you start by choosing doors and windows, picking out paint and carpet
colors, or selecting bathroom fixtures? Of course not! First you must consider how
the owners will use the space, and their budget, so that you can decide what type of
house to build. Questions you should consider are Do they enjoy cooking and want a
high-end kitchen, or will they prefer watching movies in their home theater room and
eating takeout pizza? Do they want a home office or an extra bedroom? Or does their
budget limit them to a more modest house?

Before you start to learn details of the SystemVerilog language, you need to under-
stand how you plan to verify your particular design and how this influences the
testbench structure. Just as all houses have kitchens, bedrooms, and bathrooms, all
testbenches share some common structure of stimulus generation and response check-
ing. This chapter introduces a set of guidelines and coding styles for designing and
constructing a testbench that meets your particular needs. These techniques use some
of the same concepts that are shown in the Verification Methodology Manual for
SystemVerilog (VMM), Bergeron et al. (2006), but without the base classes.

The most important principle you can learn as a verification engineer is “Bugs are
good.” Don’t shy away from finding the next bug, do not hesitate to ring a bell each
time you uncover one, and furthermore, always keep track of each bug found. The
entire project team assumes there are bugs in the design, so that each bug found
before tape-out is one fewer that ends up in the customer’s hands. You need to be as

Chapter 1:Verification Guidelines2

devious as possible, twisting and torturing the design to extract all possible bugs now,
while they are still easy to fix. Don’t let the designers steal all the glory – without
your craft and cunning, the design might never work!

This book assumes you already know the Verilog language and want to learn the Sys-
temVerilog Hardware Verification Language (HVL). Some of the typical features of
an HVL that distinguish it from a Hardware Description Language such as Verilog or
VHDL are

Constrained-random stimulus generation
Functional coverage
Higher-level structures, especially object-oriented programming
Multithreading and interprocess communication
Support for HDL types such as Verilog’s 4-state values
Tight integration with event-simulator for control of the design

There are many other useful features, but these allow you to create testbenches at a
higher level of abstraction than you are able to achieve with an HDL or a program-
ming language such as C.

1.1 The Verification Process

What is the goal of verification? If you answered, “Finding bugs,” you are only partly
correct. The goal of hardware design is to create a device that performs a particular
task, such as a DVD player, network router, or radar signal processor, based on a
design specification. Your purpose as a verification engineer is to make sure the
device can accomplish that task successfully – that is, the design is an accurate repre-
sentation of the specification. Bugs are what you get when there is a discrepancy. The
behavior of the device when used outside of its original purpose is not your responsi-
bility, although you want to know where those boundaries lie.

The process of verification parallels the design creation process. A designer reads the
hardware specification for a block, interprets the human language description, and
creates the corresponding logic in a machine-readable form, usually RTL code. To do
this, he or she needs to understand the input format, the transformation function, and
the format of the output. There is always ambiguity in this interpretation, perhaps
because of ambiguities in the original document, missing details, or conflicting
descriptions. As a verification engineer, you must also read the hardware specifica-
tion, create the verification plan, and then follow it to build tests showing the RTL
code correctly implements the features.

By having more than one person perform the same interpretation, you have added
redundancy to the design process. As the verification engineer, your job is to read the

The Verification Process 3

same hardware specifications and make an independent assessment of what they
mean. Your tests then exercise the RTL to show that it matches your interpretation.

1.1.1 Testing at Different Levels

What types of bugs are lurking in the design? The easiest ones to detect are at the
block level, in modules created by a single person. Did the ALU correctly add two
numbers? Did every bus transaction successfully complete? Did all the packets make
it through a portion of a network switch? It is almost trivial to write directed tests to
find these bugs, as they are contained entirely within one block of the design.

After the block level, the next place to look for discrepancies is at boundaries between
blocks. Interesting problems arise when two or more designers read the same descrip-
tion yet have different interpretations. For a given protocol, what signals change and
when? The first designer builds a bus driver with one view of the specification, while
a second builds a receiver with a slightly different view. Your job is to find the dis-
puted areas of logic and maybe even help reconcile these two different views.

To simulate a single design block, you need to create tests that generate stimuli from
all the surrounding blocks – a difficult chore. The benefit is that these low-level simu-
lations run very fast. However, you may find bugs in both the design and testbench, as
the latter will have a great deal of code to provide stimuli from the missing blocks. As
you start to integrate design blocks, they can stimulate each other, reducing your
workload. These multiple block simulations may uncover more bugs, but they also
run slower.

At the highest level of the DUT, the entire system is tested, but the simulation perfor-
mance is greatly reduced. Your tests should strive to have all blocks performing
interesting activities concurrently. All I/O ports are active, processors are crunching
data, and caches are being refilled. With all this action, data alignment and timing
bugs are sure to occur.

At this level you are able to run sophisticated tests that have the DUT executing multi-
ple operations concurrently so that as many blocks as possible are active. What happens
if an MP3 player is playing music and the user tries to download new music from the
host computer? Then, during the download, the user presses several of the buttons on
the player? You know that when the real device is being used, someone is going to do
all this, and so why not try it out before it is built? This testing makes the difference
between a product that is seen as easy to use and one that repeatedly locks up.

Once you have verified that the DUT performs its designated functions correctly, you
need to see how it operates when there are errors. Can the design handle a partial
transaction, or one with corrupted data or control fields? Just trying to enumerate all
the possible problems is difficult, not to mention determining how the design should
recover from them. Error injection and handling can be the most challenging part of
verification.

Chapter 1:Verification Guidelines4

As the design abstraction gets higher, so does the verification challenge. You can
show that individual cells flow through the blocks of an ATM router correctly, but
what if there are streams of different priority? Which cell should be chosen next is not
always obvious at the highest level. You may have to analyze the statistics from thou-
sands of cells to see if the aggregate behavior is correct.

One last point, you can never prove there are no bugs left, and so you need to con-
stantly come up with new verification tactics.

1.1.2 The Verification Plan

The verification plan is closely tied to the hardware specification and contains a
description of what features need to be exercised and the techniques to be used. These
steps may include directed or random testing, assertions, HW/SW co-verification,
emulation, formal proofs, and use of verification IP. For a more complete discussion
on verification see Bergeron (2006).

1.2 The Verification Methodology Manual

This book in your hands draws heavily upon the VMM that has its roots in a method-
ology developed by Janick Bergeron and others at Qualis Design. They started with
industry-standard practices and refined them based on their experience on many
projects. VMM’s techniques were originally developed for use with the OpenVera
language and were extended in 2005 for SystemVerilog. VMM and its predecessor,
the Reference Verification Methodology for Vera, have been used successfully to ver-
ify a wide range of hardware designs, from networking devices to processors. This
book uses many of the same concepts.

This books serves as a user guide for the SystemVerilog language. It describes the
languages many constructs and provides guidelines for choosing the ones best suited to
your needs. If you are new to verification, have little experience with object-oriented
programming, or are unfamiliar with constrained-random tests, this book can show you
the right path to choose. Once you are familiar with them, you will find the VMM to be
an easy step up.

So why doesn’t this book teach you VMM? Like any advanced tool, VMM was
designed for use by an experienced user, and excels on difficult problems. Are you in
charge of verifying a 100 million-gate design with many communication protocols,
complex error handling, and a library of IP? If so, VMM is the right tool for the job.
However, if you are working on smaller modules, with a single protocol, you may not
need such a robust methodology. Just remember that your block is part of a larger sys-
tem; VMM-compliant code is reusable both during a project and on later designs.
Remember that the cost of verification goes beyond your immediate project.

Basic Testbench Functionality 5

The VMM has a set of base classes for data and environment, utilities for managing
log files and interprocess communication, and much more. This book is an introduc-
tion to SystemVerilog and shows the techniques and tricks that go into these classes
and utilities, giving you insight into their construction.

1.3 Basic Testbench Functionality

The purpose of a testbench is to determine the correctness of the design under test
(DUT). This is accomplished by the following steps.

Generate stimulus
Apply stimulus to the DUT
Capture the response
Check for correctness
Measure progress against the overall verification goals

Some steps are accomplished automatically by the testbench, while others are manu-
ally determined by you. The methodology you choose determines how the preceding
steps are carried out.

1.4 Directed Testing

Traditionally, when faced with the task of verifying the correctness of a design, you
probably used directed tests. Using this approach, you look at the hardware specifica-
tion and write a verification plan with a list of tests, each of which concentrated on a
set of related features. Armed with this plan, you write stimulus vectors that exercise
these features in the DUT. You then simulate the DUT with these vectors and manu-
ally review the resulting log files and waveforms to make sure the design does what
you expect. Once the test works correctly, you check it off in the verification plan and
move to the next one.

This incremental approach makes steady progress, which is always popular with man-
agers who want to see a project making headway. It also produces almost immediate
results, since little infrastructure is needed when you are guiding the creation of every
stimulus vector. Given ample time and staffing, directed testing is sufficient to verify
many designs.

Figure 1-1 shows how directed tests incrementally cover the features in the verifica-
tion plan. Each test is targeted at a very specific set of design elements. If you had
enough time, you could write all the tests needed for 100% coverage of the entire ver-
ification plan.

Chapter 1:Verification Guidelines6

Figure 1-1 Directed test progress over time

What if you do not have the necessary time or resources to carry out the directed test-
ing approach? As you can see, while you may always be making forward progress,
the slope remains the same. When the design complexity doubles, it takes twice as
long to complete or requires twice as many people to implement it. Neither of these
situations is desirable. You need a methodology that finds bugs faster in order to
reach the goal of 100% coverage.

Figure 1-2 Directed test coverage

Figure 1-2 shows the total design space and features that are covered by directed
testcases. In this space are many features, some of which have bugs. You need to write
tests that cover all the features and find the bugs.

Time

C
ov

er
ag

e

100%

Time

C
ov

er
ag

e

100%

Test

Feature

BugTestTest

Feature

Bug

Feature

Bug

Methodology Basics 7

1.5 Methodology Basics

This book uses the following principles.

Constrained-random stimulus
Functional coverage
Layered testbench using transactors
Common testbench for all tests
Test-specific code kept separate from testbench

All these principles are related. Random stimulus is crucial for exercising complex
designs. A directed test finds the bugs you expect to be in the design, whereas a ran-
dom test can find bugs you never anticipated. When using random stimulus, you need
functional coverage to measure verification progress. Furthermore, once you start
using automatically generated stimulus, you need an automated way to predict the
results – generally a scoreboard or reference model. Building the testbench infrastruc-
ture, including self-prediction, takes a significant amount of work. A layered
testbench helps you control the complexity by breaking the problem into manageable
pieces. Transactors provide a useful pattern for building these pieces. With appropri-
ate planning, you can build a testbench infrastructure that can be shared by all tests
and does not have to be continually modified. You just need to leave “hooks” where
the tests can perform certain actions such as shaping the stimulus and injecting distur-
bances. Conversely, code specific to a single test must be kept separate from the
testbench to prevent it from complicating the infrastructure.

Building this style of testbench takes longer than a traditional directed testbench –
especially the self-checking portions. As a result, there may be a significant delay
before the first test can be run. This gap can cause a manager to panic, and so make
this effort part of your schedule. In Figure 1-3, you can see the initial delay before the
first random test runs.

Chapter 1:Verification Guidelines8

Figure 1-3 Constrained-random test progress over time vs. directed testing

While this up-front work may seem daunting, the payback is high. Every random test
you create shares this common testbench, as opposed to directed tests where each is
written from scratch. Each random test contains a few dozen lines of code to constrain
the stimulus in a certain direction and cause any desired exceptions, such as creating a
protocol violation. The result is that your single constrained-random testbench is now
finding bugs faster than the many directed ones.

As the rate of discovery begins to drop off, you can create new random constraints to
explore new areas. The last few bugs may only be found with directed tests, but the
vast majority of bugs will be found with random tests.

1.6 Constrained-Random Stimulus

Although you want the simulator to generate the stimulus, you don’t want totally ran-
dom values. You use the SystemVerilog language to describe the format of the
stimulus (“address is 32-bits; opcode is ADD, SUB or STORE; length < 32 bytes”),
and the simulator picks values that meet the constraints. Constraining the random val-
ues to become relevant stimuli is covered in Chap. 6. These values are sent into the
design, and are also sent into a high-level model that predicts what the result should
be. The design’s actual output is compared with the predicted output.

Figure 1-4 shows the coverage for constrained-random tests over the total design
space. First, notice that a random test often covers a wider space than a directed one.
This extra coverage may overlap other tests, or may explore new areas that you did
not anticipate. If these new areas find a bug, you are in luck! If the new area is not
legal, you need to write more constraints to keep random generation from creating
illegal design functionality. Lastly, you may still have to write a few directed tests to
find cases not covered by any other constrained-random tests.

Time

C
ov

er
ag

e

100%

Random
Test

Directed
Test

Time

C
ov

er
ag

e

100%

Random
Test

Directed
Test

Constrained-Random Stimulus 9

Figure 1-4 Constrained-random test coverage

Figure 1-5 shows the paths to achieve complete coverage. Start at the upper left with
basic constrained-random tests. Run them with many different seeds. When you look
at the functional coverage reports, find the holes where there are gaps in the coverage.
Now you make minimal code changes, perhaps by using new constraints, or by inject-
ing errors or delays into the DUT. Spend most of your time in this outer loop, writing
directed tests for only the few features that are very unlikely to be reached by random
tests.

Figure 1-5 Coverage convergence

New area ?

Test
overlap

??Directed
testcase

New area ?

Test
overlap

??Directed
testcase

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

Chapter 1:Verification Guidelines10

1.7 What Should You Randomize?

When you think of randomizing the stimulus to a design, the first thing that you might
think of is the data fields. This stimulus is the easiest to create – just call $random().
The problem is that this gives a very low payback in terms of bugs found. The pri-
mary types of bugs found with random data are data path errors, perhaps with bit-
level mistakes. You need to find bugs in the control logic.

You need to think broadly about all design inputs, such as the following.

Device configuration
Environment configuration
Input data
Protocol exceptions
Errors and violations
Delays

These are discussed in Sections. 1.7.1 – 1.7.4.

1.7.1 Device and Environment Configuration

What is the most common reason why bugs are missed during testing of the RTL
design? Not enough different configurations are tried. Most tests just use the design
as it comes out of reset, or apply a fixed set of initialization vectors to put it into a
known state. This is like testing a PC’s operating system right after it has been
installed, but without any of the applications installed. Of course the performance is
fine, and there aren’t any crashes.

In a real world environment, the DUT’s configuration becomes more random the
longer it is in use. For example, I helped a company verify a time-division multi-
plexor switch that had 2000 input channels and 12 output channels. The verification
engineer said, “These channels could be mapped to various configurations on the
other side. Each input could be used as a single channel, or further divided into multi-
ple channels. The tricky part is that although a few standard ways of breaking it down
are used most of the time, any combination of breakdowns is legal, leaving a huge set
of possible customer configurations.”

To test this device, the engineer had to write several dozen lines of directed testbench
code to configure each channel. As a result, she was never able to try configurations
with more than a handful of channels. Together, we wrote a testbench that random-
ized the parameters for a single channel and then put this in a loop to configure all the
switch’s channels. Now she had confidence that her tests would uncover configuration-
related bugs that would have been missed before.

What Should You Randomize? 11

In the real world, your device operates in an environment containing other compo-
nents. When you are verifying the DUT, it is connected to a testbench that mimics this
environment. You should randomize the entire environment configuration, including
the length of the simulation, number of devices, and how they are configured. Of
course you need to create constraints to make sure the configuration is legal.

In another Synopsys customer example, a company created an I/O switch chip that
connected multiple PCI buses to an internal memory bus. At the start of simulation
they randomly chose the number of PCI buses (1–4), the number of devices on each
bus (1–8), and the parameters for each device (master or slave, CSR addresses, etc.).
They kept track of the tested combinations using functional coverage so that they
could be sure that they had covered almost every possible one.

Other environment parameters include test length, error injection rates, and delay
modes. See Bergeron (2006) for more examples.

1.7.2 Input Data

When you read about random stimulus, you probably thought of taking a transaction
such as a bus write or ATM cell and filling the data fields with random values. Actually,
this approach is fairly straightforward as long as you carefully prepare your transaction
classes as shown in Chaps. 5 and 8. You need to anticipate any layered protocols and
error injection, plus scoreboarding and functional coverage.

1.7.3 Protocol Exceptions, Errors, and Violations

There are few things more frustrating than when a device such as a PC or cell phone
locks up. Many times, the only cure is to shut it down and restart. Chances are that
deep inside the product there is a piece of logic that experienced some sort of error
condition from which it could not recover, and thus prevented the device from work-
ing correctly.

How can you prevent this from happening to the hardware you are building? If some-
thing can go wrong in the real hardware, you should try to simulate it. Look at all the
errors that can occur. What happens if a bus transaction does not complete? If an
invalid operation is encountered? Does the design specification state that two signals
are mutually exclusive? Drive them both and make sure the device continues to oper-
ate properly.

Just as you are trying to provoke the hardware with ill-formed commands, you should
also try to catch these occurrences. For example, recall those mutually exclusive sig-
nals. You should add checker code to look for these violations. Your code should at
least print a warning message when this occurs, and preferably generate an error and
wind down the test. It is frustrating to spend hours tracking back through code trying
to find the root of a malfunction, especially when you could have caught it close to
the source with a simple assertion. (See Vijayaraghavan and Ramanathan ‘2005’ for

Chapter 1:Verification Guidelines12

more guidelines on writing assertions in your testbench and design code.) Just make
sure that you can disable the code that stops simulation on error so that you can easily
test error handling.

1.7.4 Delays and Synchronization

How fast should your testbench send in stimulus? Always use constrained-random
delays to help catch protocol bugs. A test that uses the shortest delays runs the fastest,
but it won’t create all possible stimulus. You can create a testbench that talks to
another block at the fastest rate, but subtle bugs are often revealed when intermittent
delays are introduced.

A block may function correctly for all possible permutations of stimulus from a single
interface, but subtle errors may occur when transactions are flowing into multiple
inputs. Try to coordinate the various drivers so that they can communicate at different
timing rates. What if the inputs arrive at the fastest possible rate, but the output is
being throttled back to a slower rate? What if stimulus arrives at multiple inputs con-
currently? What if it is staggered with different delays? Use functional coverage,
which will be discussed in Chap. 9, to measure what combinations have been ran-
domly generated.

1.7.5 Parallel Random Testing

How should you run the tests? A directed test has a testbench that produces a unique
set of stimulus and response vectors. To change the stimulus, you need to change the
test. A random test consists of the testbench code plus a random seed. If you run the
same test 50 times, each time with a unique seed, you will get 50 different sets of
stimuli. Running with multiple seeds broadens the coverage of your test and leverages
your work.

You need to choose a unique seed for each simulation. Some people use the time of
day, but that can still cause duplicates. What if you are using a batch queuing system
across a CPU farm and tell it to start 10 jobs at midnight? Multiple jobs could start at
the same time but on different computers, and will thus get the same random seed and
run the same stimulus. You should blend in the processor name to the seed. If your
CPU farm includes multiprocessor machines, you could have two jobs start running at
midnight with the same seed, and so you should also throw in the process ID. Now all
jobs get unique seeds.

You need to plan how to organize your files to handle multiple simu-
lations. Each job creates a set of output files, such as log files and
functional coverage data. You can run each job in a different direc-
tory, or you can try to give a unique name to each file. The easiest
approach is to append the random seed value to the directory name.

Functional Coverage 13

1.8 Functional Coverage

Sections 1.6 and 1.7 showed how to create stimuli that can randomly walk through the
entire space of possible inputs. With this approach, your testbench visits some areas
often, but takes too long to reach all possible states. Unreachable states will never be
visited, even given unlimited simulation time. You need to measure what has been
verified in order to check off items in your verification plan.

The process of measuring and using functional coverage consists of several steps.
First, you add code to the testbench to monitor the stimulus going into the device, and
its reaction and response, to determine what functionality has been exercised. Run
several simulations, each with a different seed. Next, merge the results from these
simulations into a report. Lastly, you need to analyze the results and determine how to
create new stimulus to reach untested conditions and logic. Chapter 9 describes func-
tional coverage in SystemVerilog.

1.8.1 Feedback from Functional Coverage to Stimulus

A random test evolves using feedback. The initial test can be run with many different
seeds, thus creating many unique input sequences. Eventually the test, even with a
new seed, is less likely to generate stimulus that reaches areas of the design space. As
the functional coverage asymptotically approaches its limit, you need to change the
test to find new approaches to reach uncovered areas of the design. This is known as
“coverage-driven verification” and is shown in Figure 1-6.

Figure 1-6 Test progress with and without feedback

What if your testbench were smart enough to do this for you? In a previous job, I wrote
a test that generated every bus transaction for a processor, and additionally fired every
bus terminator (Success, Parity error, Retry) in every cycle. This was before HVLs,

Time

C
ov

er
ag

e

100%

Without
feedback

With
feedback

Time

C
ov

er
ag

e

100%

Without
feedback

With
feedback

Chapter 1:Verification Guidelines14

and so I wrote a long set of directed tests and spent days lining up the terminator code
to fire at just the right cycles. After much hand analysis I declared success – 100%
coverage. Then the processor’s timing changed slightly! Now I had to reanalyze the
test and change the stimuli.

A more productive testing strategy uses random transactions and terminators. The
longer you run it, the higher the coverage. As a bonus, the test can be made flexible
enough to create valid stimuli even if the design’s timing changed. You can accom-
plish this by adding a feedback loop that looks at the stimulus created so far
(generated all write cycles yet?) and then change the constraint weights (drop write
weight to zero). This improvement would greatly reduce the time needed to get to full
coverage, with little manual intervention.

This is not a typical situation, however, because of the trivial feedback from functional
coverage to the stimulus. In a real design, how should you change the stimulus to reach
a desired design state? This requires deep knowledge of the design and powerful for-
mal techniques. There are no easy answers, and so dynamic feedback is rarely used for
constrained-random stimulus. Instead, you need to manually analyze the functional
coverage reports and alter your random constraints.

Feedback is used in formal analysis tools such as Magellan (Synopsys, 2003). It ana-
lyzes a design to find all the unique, reachable states. It then runs a short simulation to
see how many states were visited. Lastly, it searches from the state machine to the
design inputs to calculate the stimulus needed to reach any remaining states, and then
Magellan applies this to the DUT.

1.9 Testbench Components

In simulation, the testbench wraps around the DUT, just as a hardware tester con-
nects to a physical chip, as shown in Figure 1-7. Both the testbench and tester
provide stimulus and capture responses. The difference between them is that your
testbench needs to work over a wide range of levels of abstraction, creating transac-
tions and sequences, which are eventually transformed into bit vectors. A tester just
works at the bit level.

Layered Testbench 15

Figure 1-7 The testbench – design environment

What goes into that testbench block? It is comprised of many bus functional models
(BFM), which you can think of as testbench components – to the DUT they look like
real components, but they are part of the testbench, not the RTL design. If the real
device connects to AMBA, USB, PCI, and SPI buses, you have to build equivalent
components in your testbench that can generate stimulus and check the response, as
shown in Figure 1-8. These are not detailed, synthesizable models, but instead high-
level transactors that obey the protocol, and execute more quickly. If you are proto-
typing using FPGAs or emulation, the BFMs do need to be synthesizable.

Figure 1-8 Testbench components

1.10 Layered Testbench

A key concept for any modern verification methodology is the layered testbench.
Although this process may seem to make the testbench more complex, it actually
helps to make your task easier by dividing the code into smaller pieces that can be
developed separately. Don’t try to write a single routine that can randomly generate
all types of stimulus, both legal and illegal, plus inject errors with a multilayer proto-
col. The routine quickly becomes complex and unmaintainable.

Testbench

Design
Under
Test

inputs outputs

Testbench

Design
Under
Test

inputs outputs

Testbench AMBA

SPI

Design
Under
Test

PCI

USBTestbench AMBA

SPI

Design
Under
Test

PCI

USB

Chapter 1:Verification Guidelines16

1.10.1 A Flat Testbench

When you first learned Verilog and started writing tests, they probably looked like the
low-level code in Sample 1.1, which does a simplified APB (AMBA Peripheral Bus)
Write. (VHDL users may have written similar code.)

Sample 1.1 Driving the APB pins

module test(PAddr, PWrite, PSel, PWData, PEnable, Rst, clk);
// Port declarations omitted...

 initial begin
 // Drive reset
 Rst <= 0;
 #100 Rst <= 1;

 // Drive the control bus
 @(posedge clk)
 PAddr <= 16Õh50;
 PWData <= 32Õh50;
 PWrite <= 1'b1;
 PSel <= 1'b1;

 // Toggle PEnable
 @(posedge clk)
 PEnable <= 1'b1;
 @(posedge clk)
 PEnable <= 1'b0;

 // Check the result
 if (top.mem.memory[16Õh50] == 32Õh50)
 $display("Success");
 else
 $display("Error, wrong value in memory");
 $finish;
 end
endmodule

After a few days of writing code like this, you probably realized that it is very repeti-
tive, and so you created tasks for common operations such as a bus write, as shown in
Sample1.2.

Layered Testbench 17

Sample 1.2 A task to drive the APB pins

task write(reg [15:0] addr, reg [31:0] data);
 // Drive Control bus
 @(posedge clk)
 PAddr <= addr;
 PWData <= data;
 PWrite <= 1'b1;
 PSel <= 1'b1;

 // Toggle Penable
 @(posedge clk)
 PEnable <= 1'b1;
 @(posedge clk)
 PEnable <= 1'b0;
endtask

Now your testbench became simpler, as shown in Sample 1.3

Sample 1.3 Low-level Verilog test

module test(PAddr,PWrite,PSel,PWData,PEnable,Rst,clk);
 // Port declarations omitted...

 // Tasks as shown in Sample 1.2

 initial begin
 reset(); // Reset the device
 write(16Õh50, 32Õh50); // Write data into memory

 // Check the result
 if (top.mem.memory[16Õh50] == 32Õh50)
 $display("Success");
 else
 $display("Error, wrong value in memory");
 $finish;
 end
endmodule

By taking the common actions (such as reset, bus reads, and writes) and putting them
in a routine, you became more efficient and made fewer mistakes. This creation of the
physical and command layers is the first step to a layered testbench.

1.10.2 The Signal and Command Layers

Figure 1-9 shows the lower layers of a testbench.

Chapter 1:Verification Guidelines18

Figure 1-9 Signal and command layers

At the bottom is the signal layer that contains the DUT and the signals that connect it
to the testbench.

The next higher level is the command layer. The DUT’s inputs are driven by the
driver that runs single commands, such as bus read or write. The DUT’s output drives
the monitor that takes signal transitions and groups them together into commands.
Assertions also cross the command/signal layer, as they look at individual signals but
look for changes across an entire command.

1.10.3 The Functional Layer

Figure 1-10 shows the testbench with the functional layer added, which feeds down
into the command layer. The agent block (called the transactor in the VMM) receives
higher-level transactions such as DMA read or write and breaks them into individual
commands. These commands are also sent to the scoreboard that predicts the results
of the transaction. The checker compares the commands from the monitor with those
in the scoreboard.

Figure 1-10 Testbench with functional layer added

DUT

AssertionsDriver MonitorCommand

Signal
DUT

AssertionsDriver MonitorCommand

Signal

DUT

AssertionsDriver Monitor

Scoreboard CheckerAgentFunctional

Signal

Command

DUT

AssertionsDriver Monitor

Scoreboard CheckerAgentFunctional

Signal

Command

Layered Testbench 19

1.10.4 The Scenario Layer

The functional layer is driven by the generator in the scenario layer, as shown in Fig-
ure 1-11. What is a scenario? Remember that your job as a verification engineer is to
make sure that this device accomplishes its intended task. An example device is an
MP3 player that can concurrently play music from its storage, download new music
from a host, and respond to input from the user, such as adjusting the volume and
track controls. Each of these operations is a scenario. Downloading a music file takes
several steps, such as control register reads and writes to set up the operation, multiple
DMA writes to transfer the song, and then another group of reads and writes. The sce-
nario layer of your testbench orchestrates all these steps with constrained-random
values for parameters such as track size and memory location.

Figure 1-11 Testbench with scenario layer added

The blocks in the testbench environment (inside the dashed line of Figure 1-11) are
written at the beginning of development. During the project they may evolve and you
may add functionality, but these blocks should not change for individual tests. This is
done by leaving “hooks” in the code so that a test can change the behavior of these
blocks without having to rewrite them. You create these hooks with factory patterns
(Section 8.2) and callbacks (Section 8.7).

1.10.5 The Test Layer and Functional Coverage

You are now at the top of the testbench, in the test layer, as shown in Figure 1-12.
Design bugs that occur between DUT blocks are harder to find as they involve multi-
ple people reading and interpreting multiple specifications.

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

Chapter 1:Verification Guidelines20

This top-level test is the conductor: he does not play any musical instrument, but
instead guides the efforts of others. The test contains the constraints to create the
stimulus.

Functional coverage measures the progress of all tests in fulfilling the verification
plan requirements. The functional coverage code changes through the project as the
various criteria complete. This code is constantly being modified, and thus it is not
part of the environment.

You can create a “directed test” in a constrained-random environment. Simply insert
a section of directed test code into the middle of a random sequence, or put the two
pieces of code in parallel. The directed code performs the work you want, but the ran-
dom “background noise” may cause an bug to become visible, perhaps in a block that
you never considered.

Figure 1-12 Full testbench with all layers

Do you need all these layers in your testbench? The answer depends on what your
DUT looks like. A complicated design requires a sophisticated testbench. You always
need the test layer. For a simple design, the scenario layer may be so simple that you
can merge it with the agent. When estimating the effort to test a design, don’t count
the number of gates; count the number of designers. Every time you add another per-
son to the team, you increase the chance of different interpretations of the
specifications.

You may need more layers. If your DUT has several protocol layers, each should get
its own layer in the testbench environment. For example, if you have TCP traffic that

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

Functional C
overage

Environment

Agent

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

Functional C
overage

Environment

Agent

Building a Layered Testbench 21

is wrapped in IP and sent in Ethernet packets, consider using three separate layers for
generation and checking. Better yet, use existing verification components.

One last note about Figure 1-12. It shows some of the possible connections between
blocks, but your testbench may have a different set. The test may need to reach down
to the driver layer to force physical errors. What has been described here is just guide-
lines – let your needs guide what you create.

1.11 Building a Layered Testbench

Now it is time to take the preceding figures and learn how to map the components into
SystemVerilog constructs.

1.11.1 Creating a Simple Driver

First, take a closer look at one of the blocks, the driver.

Figure 1-13 Connections for the driver

The driver shown in Figure 1-13 receives commands from the agent. The driver may
inject errors or add delays. It then breaks down the command into individual signal
changes such as bus requests and handshakes. The general term for such a testbench
block is a “transactor,” which, at its core, is a loop: Sample code for transactor is
shown in Sample 1.4.

Sample 1.4 Basic transactor code

task run();
 done = 0;
 while (!done) begin
 // Get the next transaction
 // Make transformations
 // Send out transactions
 end
endtask

DUT

Driver

Agent

DUT

Driver

Agent

Chapter 1:Verification Guidelines22

Chapter 5 presents basic OOP and how to create an object that includes the routines
and data for a transactor. Another example of a transactor is the agent. It might break
apart a complex transaction such as a DMA read into multiple bus commands. Also in
Chap. 5, you will see how to build an object that contains the data and routines that
make up a command. These objects are sent between transactors using SystemVerilog
mailboxes. In Chap. 7, you will learn about many ways to exchange data between the
different layers and to synchronize the transactors.

1.12 Simulation Environment Phases

Up until now you have been learning what parts make up the environment. When do
these parts execute? You want to clearly define the phases to coordinate the testbench
so that all the code for a project works together. The three primary phases are Build,
Run, and Wrap-up. Each is divided into smaller steps.

The Build phase is divided into the following steps:

Generate configuration: Randomize the configuration of the DUT and the
surrounding environment.
Build environment: Allocate and connect the testbench components based on
the configuration. A testbench component is one that only exists in the test-
bench, as opposed to physical components in the design that are built with
RTL code. For example, if the configuration chose three bus drivers, the test-
bench would allocate and initialize them in this step.
Reset the DUT.
Configure the DUT: Based on the generated configuration from the first step,
load the DUT command registers.

The Run phase is where the test actually runs. It has the following steps:

Start environment: Run the testbench components such as BFMs and stimu-
lus generators.
Run the test: Start the test and then wait for it to complete. It is easy to tell
when a directed test has completed, but doing so can be complex for a ran-
dom test. You can use the testbench layers as a guide. Starting from the top,
wait for a layer to drain all the inputs from the previous layer (if any), wait
for the current layer to become idle, and then wait for the next lower layer.
You should also use time-out checkers to ensure that the DUT or testbench
does not lock up.

Maximum Code Reuse 23

The Wrap-up phase has two steps:

Sweep: After the lowest layer completes, you need to wait for the final trans-
actions to drain out of the DUT.
Report: Once the DUT is idle, sweep the testbench for lost data. Sometimes
the scoreboard holds transactions that never came out, perhaps because they
were dropped by the DUT. Armed with this information, you can create the
final report on whether the test passed or failed. If it failed, be sure to delete
any functional coverage results, as they may not be correct.

As shown in Figure 1-12, the test starts the environment, which, in turn, runs each of
the steps. More details can be found in Chap. 8.

1.13 Maximum Code Reuse

To verify a complex device with hundreds of features, you have to write hundreds of
directed tests. If you use constrained-random stimulus, you will write far fewer tests.
Instead, the real work is put into constructing the testbench, which contains all the
lower testbench layers: scenario, functional, command, and signal. This testbench
code is used by all the tests, and so it remains generic.

These guidelines appear to recommend an overly complicated testbench, but remem-
ber that every line that you put into a testbench can eliminate a line in every single
test. If you know you will be creating a few dozen tests, there is a high payback in
making a more sophisticated testbench. Keep this in mind when you read Chap. 8.

1.14 Testbench Performance

If this is the first time you have seen this methodology, you probably have some
qualms about how it works compared to directed testing. A common objection is test-
bench performance. A directed test often simulates in less than a second, whereas
constrained-random tests will wander around through the state space for minutes or
even hours. The problem with this argument is that it ignores a real verification bot-
tleneck: the time required by you to create a test. You may be able to hand-craft a
directed test in a day, and debug it and manually verify the results by hand in another
day or two. The actual simulation run-time is dwarfed by the amount of time that you
personally invested.

There are several steps to creating a constrained-random test. The first and most sig-
nificant step is building the layered testbench, including the self-checking portion.
The benefit of this work is shared by all tests, and so it is well worth the effort. The
second step is creating the stimulus specific to a goal in the verification plan. You

Chapter 1:Verification Guidelines24

may be crafting random constraints, or devious ways of injecting errors or protocol
violations. Building one of these may take more time than making several directed
tests, but the payoff will be much higher. A constrained-random test that tries thou-
sands of different protocol variations is worth more than the handful of directed tests
that could have been created in the same amount of time.

The third step in constrained-random testing is functional coverage. This task starts
with the creation of a strong verification plan with clear goals that can be easily
measured. Next you need to create the SystemVerilog code that adds instrumenta-
tion to the environment and gathers the data. Finally, it is essential that you need to
analyze the results to determine if you have met the goals, and if not, how you
should modify the tests.

1.15 Conclusion

The continuous growth in complexity of electronic designs requires a modern, sys-
tematic, and automated approach to creating testbenches. The cost of fixing a bug
grows by tenfold as a project moves from each step of specification to RTL coding,
gate synthesis, fabrication, and finally into the user’s hands. Directed tests only test
one feature at a time and cannot create the complex stimulus and configurations that
the device would be subjected to in the real world. To produce robust designs, you
must use constrained-random stimulus combined with functional coverage to create
the widest possible range of stimulus.

Chapter 2

Data Types

SystemVerilog offers many improved data structures compared with Verilog. Some
of these were created for designers but are also useful for testbenches. In this chapter,
you will learn about the data structures most useful for verification.

SystemVerilog introduces new data types with the following benefits.

Two-state: better performance, reduced memory usage
Queues, dynamic and associative arrays: reduced memory usage, built-in
support for searching and sorting
Classes and structures: support for abstract data structures
Unions and packed structures: allow multiple views of the same data
Strings: built-in string support
Enumerated types: code is easier to write and understand

2.1 Built-In Data Types

Verilog-1995 has two basic data types: variables and nets, both which hold 4-state
values: 0, 1, Z, and X. RTL code uses variables to store combinational and sequential
values. Variables can be unsigned single or multi-bit (reg [7:0] m), signed 32-bit
variables (integer), unsigned 64-bit variables (time), and floating point numbers
(real). Variables can be grouped together into arrays that have a fixed size. All stor-
age is static, meaning that all variables are alive for the entire simulation and routines
cannot use a stack to hold arguments and local values. A net is used to connect parts

Chapter 2:Data Types26

of a design such as gate primitives and module instances. Nets come in many flavors,
but most designers use scalar and vector wires to connect together the ports of design
blocks.

SystemVerilog adds many new data types to help both hardware designers and verifi-
cation engineers.

2.1.1 The Logic Type

The one thing in Verilog that always leaves new users scratching their heads is the
difference between a reg and a wire. When driving a port, which should you use?
How about when you are connecting blocks? SystemVerilog improves the classic reg
data type so that it can be driven by continuous assignments, gates, and modules, in
addition to being a variable. It is given the synonym logic so that it does not look
like a register declaration. A logic signal can be used anywhere a net is used, except
that a logic variable cannot be driven by multiple structural drivers, such as when
you are modeling a bidirectional bus. In this case, the variable needs to be a net-type
such as wire so that SystemVerilog can resolve the multiple values to determine the
final value.

Sample 2.1 shows the SystemVerilog logic type.

Sample 2.1 Using the logic type

module logic_data_type(input logic rst_h);
 parameter CYCLE = 20;
 logic q, q_l, d, clk, rst_l;
 initial begin
 clk = 0; // Procedural assignment
 forever #(CYCLE/2) clk = ~clk;
 end

 assign rst_l = ~rst_h; // Continuous assignment
 not n1(q_l, q); // q_l is driven by gate
 my_dff d1(q, d, clk, rst_l); // q is driven by module

endmodule

You can use the logic type to find netlist bugs as this type can only
have a single driver. Rather than trying to choose between reg and
wire, declare all your signals as logic, and you’ll get a compilation
error if it has multiple drivers. Of course, any signal that you do want
to have multiple drivers, such as a bidirectional bus, should be
declared with a net type such as wire.

Built-In Data Types 27

2.1.2 2-State Data Types

SystemVerilog introduces several 2-state data types to improve simulator perfor-
mance and reduce memory usage, compared with variables declared as 4-state types.
The simplest type is the bit, which is always unsigned. There are four signed 2-state
types: byte, shortint, int, and longint as shown in Sample 2.2.

Sample 2.2 Signed data types

bit b; // 2-state, single-bit
bit [31:0] b32; // 2-state, 32-bit unsigned integer
int unsigned ui; // 2-state, 32-bit unsigned integer
int i; // 2-state, 32-bit signed integer
byte b8; // 2-state, 8-bit signed integer
shortint s; // 2-state, 16-bit signed integer
longint l; // 2-state, 64-bit signed integer
integer i4; // 4-state, 32-bit signed integer
time t; // 4-state, 64-bit unsigned integer
real r; // 2-state, double precision floating pt

You might be tempted to use types such as byte to replace more
verbose declarations such as logic [7:0]. Hardware designers
should be careful as these new types are signed variables, and so a
byte variable can only count up to 127, not the 255 you may
expect. (It has the range –128 to +127.) You could use byte

unsigned, but that is more verbose than just bit [7:0]. Signed variables can also
cause unexpected results with randomization, as discussed in Chap. 6.

Be careful connecting 2-state variables to the design under test, espe-
cially its outputs. If the hardware tries to drive an X or Z, these values
are converted to a 2-state value, and your testbench code may never
know. Don’t try to remember if they are converted to 0 or 1; instead,
always check for propagation of unknown values. Use the $isunk
nown() operator that returns 1 if any bit of the expression is X or Z,

as shown in Sample 2.3.

Sample 2.3 Checking for 4-state values

if ($isunknown(iport) == 1)
 $display("@%0t: 4-state value detected on iport %b",
 $time, iport);

The format %0t and the argument $time print the current simulation time, formatted
as specified with the $timeformat() routine. Time values are explored in more
detail in Section 3.7.

Chapter 2:Data Types28

2.2 Fixed-Size Arrays

SystemVerilog offers several flavors of arrays beyond the single-dimension, fixed-
size Verilog-1995 arrays. Many enhancements have been made to these classic
arrays.

2.2.1 Declaring and Initializing Fixed-Size Arrays

Verilog requires that the low and high array limits must be given in the declaration.
Since almost all arrays use a low index of 0, SystemVerilog lets you use the shortcut
of just giving the array size, which is similar to C’s style.

Sample 2.4 Declaring fixed-size arrays

int lo_hi[0:15]; // 16 ints [0]..[15]
int c_style[16]; // 16 ints [0]..[15]

You can create multidimensional fixed-size arrays by specifying the dimensions after
the variable name. Sample 2.5 creates several two-dimensional arrays of integers, 8
entries by 4, and sets the last entry to 1. Multidimensional arrays were introduced in
Verilog-2001, but the compact declaration style is new.

Sample 2.5 Declaring and using multidimensional arrays

int array2 [0:7][0:3]; // Verbose declaration
int array3 [8][4]; // Compact declaration
array2[7][3] = 1; // Set last array element

If your code accidently tries to read from an out-of-bounds address, SystemVerilog
will return the default value for the array element type. That just means that an array
of 4-state types, such as logic, will return X’s, whereas an array of 2-state types,
such as int or bit, will return 0. This applies for all array types – fixed, dynamic,
associative, or queue, and also if your address has an X or Z. An undriven net is Z.

Many SystemVerilog simulators store each element on a 32-bit word boundary. So a
byte, shortint, and int are all stored in a single word, whereas a longint is
stored in two words.

An unpacked array, such as the one shown in Sample 2.6, stores the values in the
lower portion of the word, whereas the upper bits are unused. The array of bytes,
b_unpack, is stored in three words, as shown in Figure 2-1.

Fixed-Size Arrays 29

Sample 2.6 Unpacked array declarations

bit [7:0] b_unpack[3]; // Unpacked

Figure 2-1 Unpacked array storage

Packed arrays are explained in Section 2.2.6.

Simulators generally store 4-state types such as logic and integer in two or more
consecutive words, using twice the storage as 2-state variables.

2.2.2 The Array Literal

Sample 2.7 shows how to initialize an array using an array literal, which is an apostro-
phe followed by the values in curly braces. (This is not the accent grave used for
compiler directives and macros.) You can set some or all elements at once. You are
able to replicate values by putting a count before the curly braces. Lastly, you might
specify a default value for any element that does not have an explicit value.

Sample 2.7 Initializing an array

int ascend[4] = Õ{0,1,2,3}; // Initialize 4 elements
int descend[5];

descend = Õ{4,3,2,1,0}; // Set 5 elements
descend[0:2] = Õ{5,6,7}; // Set first 3 elements
ascend = Õ{4{8}}; // Four values of 8
descend = Õ{9, 8, default:-1}; // {9, 8, -1, -1, -1}

2.2.3 Basic Array Operations – for and foreach

The most common way to manipulate an array is with a for- or foreach-loop. In
Sample 2.8, the variable i is declared local to the for-loop. The SystemVerilog
function $size returns the size of the array. In the foreach-loop, you specify the
array name and an index in square brackets, and SystemVerilog automatically steps
through all the elements of the array. The index variable is automatically declared for
you and is local to the loop.

b_unpack[1]

01234567

01234567

01234567
Unused space

b_unpack[2]

b_unpack[0]

b_unpack[1]

01234567 01234567

01234567 01234567

01234567 01234567
Unused space

b_unpack[2]

b_unpack[0]

Chapter 2:Data Types30

Sample 2.8 Using arrays with for- and foreach-loops

initial begin
 bit [31:0] src[5], dst[5];
 for (int i=0; i<$size(src); i++)
 src[i] = i;
 foreach (dst[j])
 dst[j] = src[j] * 2; // dst doubles src values
end

Note that in Sample 2.9, the syntax of the foreach-loop for multidimensional arrays
may not be what you expected! Instead of listing each subscript in separate square
brackets – [i][j] – they are combined with a comma – [i,j].

Sample 2.9 Initialize and step through a multidimensional array

int md[2][3] = Õ{Õ{0,1,2}, Õ{3,4,5}};
initial begin
 $display("Initial value:");
 foreach (md[i,j]) // Yes, this is the right syntax
 $display("md[%0d][%0d] = %0d", i, j, md[i][j]);

 $display("New value:");
 // Replicate last 3 values of 5
 md = Õ{Õ{9, 8, 7}, Õ{3{Õ5}}};
 foreach (md[i,j]) // Yes, this is the right syntax
 $display("md[%0d][%0d] = %0d", i, j, md[i][j]);
end

The output from Sample 2.9 is shown in Sample 2.10.

Sample 2.10 Output from printing multidimensional array values

Initial value:
md[0][0] = 0
md[0][1] = 1
md[0][2] = 2
md[1][0] = 3
md[1][1] = 4
md[1][2] = 5
New value:
md[0][0] = 9
md[0][1] = 8
md[0][2] = 7
md[1][0] = 5
md[1][1] = 5
md[1][2] = 5

You can omit some dimensions in the foreach-loop if you don’t need to step
through all of them. Sample 2.11 prints a two-dimensional array in a rectangle. It

Fixed-Size Arrays 31

steps through the first dimension in the outer loop, and then through the second
dimension in the inner loop.

Sample 2.11 Printing a multidimensional array

initial begin
 byte twoD[4][6];
 foreach(twoD[i,j])
 twoD[i][j] = i*10+j;

 foreach (twoD[i]) begin // Step through first dim.
 $write("%2d:", i);
 foreach(twoD[,j]) // Step through second
 $write("%3d", twoD[i][j]);
 $display;
 end
end

Sample 2.11 produces the following output.

Sample 2.12 Output from printing multidimensional array values

 0: 0 1 2 3 4 5
 1: 10 11 12 13 14 15
 2: 20 21 22 23 24 25
 3: 30 31 32 33 34 35

Lastly, a foreach-loop iterates using the ranges in the original declaration. The array
f[5] is equivalent to f[0:4], and a foreach(f[i]) is equivalent to for(int
i=0;i<=4; i++). With the array rev[6:2], the statement foreach(rev[i]) is
equivalent to for(int i=6; i>=2; i--).

2.2.4 Basic Array Operations – Copy and Compare

You can perform aggregate compare and copy of arrays without loops. (An aggregate
operation works on the entire array as opposed to working on just an individual ele-
ment.) Comparisons are limited to just equality and inequality. Sample 2.13 shows
several examples of compares. The ? : conditional operator is a mini if-statement. In
Sample 2.13, it is used to choose between two strings. The final compare uses an
array slice, src[1:4], which creates a temporary array with four elements.

Chapter 2:Data Types32

Sample 2.13 Array copy and compare operations

initial begin
 bit [31:0] src[5] = Õ{0,1,2,3,4},
 dst[5] = Õ{5,4,3,2,1};

 // Aggregate compare the two arrays
 if (src==dst)
 $display("src == dst");
 else
 $display("src != dst");

 // Aggregate copy all src values to dst
 dst = src;

 // Change just one element
 src[0] = 5;

 // Are all values equal (no!)
 $display("src %s dst", (src == dst) ? "==" : "!=");

 // Use array slice to compare elements 1-4

 // $display("src[1:4] %s dst [1:4]",
 src[1:4] == dst[1:4]) ? "==" : "!=");
end

You cannot perform aggregate arithmetic operations such as addition on arrays.
Instead, you can use loops. For logical operations such as xor, you have to either use
a loop or use packed arrays as described in Section 2.2.6.

2.2.5 Bit and Array Subscripts, Together at Last

A common annoyance in Verilog-1995 is that you cannot use array and bit subscripts
together. Verilog-2001 removes this restriction for fixed-size arrays. Sample 2.14
prints the first array element (binary 101), its lowest bit (1), and the next two higher
bits (binary 10).

Sample 2.14 Using word and bit subscripts together

initial begin
 bit [31:0] src[5] = Õ{5{5}};
 $displayb(src[0],, // Õb101 or Õd5
 src[0][0],, // Õb1
 src[0][2:1]); // Õb10
end

Although this change is not new to SystemVerilog, many users may not know about
this useful improvement in Verilog-2001.

Fixed-Size Arrays 33

2.2.6 Packed Arrays

For some data types, you may want both to access the entire value and also to divide it
into smaller elements. For example, you may have a 32-bit register that sometimes
you want to treat as four 8-bit values and at other times as a single, unsigned value. A
SystemVerilog packed array is treated as both an array and a single value. It is stored
as a contiguous set of bits with no unused space, unlike an unpacked array.

2.2.7 Packed Array Examples

The packed bit and array dimensions are specified as part of the type, before the vari-
able name. These dimensions must be specified in the [msb:lsb] format, not
[size]. Sample 2.15 shows the variable bytes, a packed array of four bytes that are
stored in a single 32-bit word as shown in Figure 2-2.

Sample 2.15 Packed array declaration and usage

bit [3:0] [7:0] bytes; // 4 bytes packed into 32-bits
bytes = 32ÕhCafe_Dada;
$displayh(bytes,, // Show all 32-bits
 bytes[3],, // Most significant byte "CA"
 bytes[3][7]); // Most significant bit "1"

Figure 2-2 Packed array layout

You can mix packed and unpacked dimensions. You may want to make an array that
represents a memory that can be accessed as bits, bytes, or longwords. In Sample
2.16, barray is an unpacked array of three packed elements.

Sample 2.16 Declaration for a mixed packed/unpacked array

bit [3:0] [7:0] barray [3]; // Packed: 3x32-bit
bit [31:0] lw = 32Õh0123_4567; // Word
bit [7:0] [3:0] nibbles; // Packed array of nibbles
barray[0] = lw;
barray[0][3] = 8Õh01;
barray[0][1][6] = 1Õb1;
nibbles = barray[0]; // Copy packed values

The variable bytes in Sample 2.15 is a packed array of four bytes that are stored in a
single word. barray is an array of three of these elements, which are stored in mem-
ory as shown in Figure 2-3.

bytes 01234567

bytes[3] bytes[1][6]

012345670123456701234567bytes 01234567 01234567

bytes[3] bytes[1][6]

01234567 0123456701234567 0123456701234567 01234567

Chapter 2:Data Types34

Figure 2-3 Packed array bit layout

With a single subscript, you get a word of data, barray[2]. With two subscripts, you
get a byte of data, barray[0][3]. With three subscripts, you can access a single bit,
barray[0][1][6]. Note that because one dimension is specified after the name,
barray[3], that dimension is unpacked, and so you always need to use at least one
subscript.

The last line of Sample 2.16 copies between two packed arrays. Since the underlying
values are just bits, you can copy even if the arrays have different dimensions.

2.2.8 Choosing Between Packed and Unpacked Arrays

Which should you choose – a packed or an unpacked array? A packed array is handy if
you need to convert to and from scalars. For example, you might need to reference a
memory as a byte or as a word. The barray in Figure 2-3 can handle this requirement.
Any array type can be packed, including dynamic arrays, queues, and associative
arrays, which are explained in Sections 2.3–2.5.

If you need to wait for a change in an array, you have to use a packed array. Perhaps
your testbench might need to wake up when a memory changes value, and so you
want to use the @ operator. This is however only legal with scalar values and packed
arrays. In Sample 2.16 you can block on the variable lw, and barray[0], but not the
entire array barray unless you expand it: @(barray[0] or barray[1] or

barray[2]).

2.3 Dynamic Arrays

The basic Verilog array type shown so far is known as a fixed-size array, as its size is
set at compile time. What if you do not know the size of the array until run-time? For
example, you may want to generate a random number of transactions at the start of
simulation. If you stored the transactions in an fixed-size array, it would have to be
large enough to hold the maximum number of transactions, but would typically hold
far fewer, thus wasting memory. SystemVerilog provides a dynamic array that can be
allocated and resized during simulation and so your simulation consumes a minimal
amount of memory.

A dynamic array is declared with empty word subscripts []. This means that you do
not specify the array size at compile time; instead, you give it at run-time. The array is

barray[1]

barray[2]

barray[0] 01234567

barray[0][3] barray[0][1][6]

012345670123456701234567

01234567012345670123456701234567

01234567012345670123456701234567

barray[1]

barray[2]

barray[0] 01234567 01234567

barray[0][3] barray[0][1][6]

01234567 0123456701234567 0123456701234567 01234567

01234567 0123456701234567 0123456701234567 0123456701234567 01234567

01234567 0123456701234567 0123456701234567 0123456701234567 01234567

Dynamic Arrays 35

initially empty, and so you must call the new[] constructor to allocate space, passing
in the number of entries in the square brackets. If you pass the name of an array to the
new[] constructor, the values are copied into the new elements, as shown in Sample
2.17.

Sample 2.17 Using dynamic arrays

int dyn[], d2[]; // Declare dynamic arrays

initial begin
 dyn = new[5]; // A: Allocate 5 elements
 foreach (dyn[j]) dyn[j] = j; // B: Initialize the elements
 d2 = dyn; // C: Copy a dynamic array
 d2[0] = 5; // D: Modify the copy
 $display(dyn[0],d2[0]); // E: See both values (0 & 5)
 dyn = new[20](dyn); // F: Allocate 20 ints & copy
 dyn = new[100]; // G: Allocate 100 new ints
 // Old values are lost
 dyn.delete(); // H: Delete all elements
end

In Sample 2.17, Line A calls new[5] to allocate 5 array elements. The dynamic array
dyn now holds 5 int’s. B sets the value of each element of the array to its index
value. Line C allocates another array and copies the contents of dyn into it. Lines D
and E show that the arrays dyn and d2 are separate. Line E allocates 20 new ele-
ments, and copies the existing 5 elements of dyn to the beginning of the array. Then
the old 5-element array is deallocated. The result is that dyn points to a 20-element
array. The last call to new[] allocates 100 elements, but the existing values are not
copied. The old 20-element array is deallocated. Finally, line H deletes the dyn array.

The $size function returns the size of an array. Dynamic arrays have several built-in
routines, such as delete and size.

If you want to declare a constant array of values but do not want to bother counting
the number of elements, use a dynamic array with an array literal. In Sample 2.18,
there are 9 masks for 8 bits, but you should let SystemVerilog count them, rather than
making a fixed-size array and accidently choosing the wrong size of 8.

Sample 2.18 Using a dynamic array for an uncounted list

bit [7:0] mask[] = Õ{8Õb0000_0000, 8Õb0000_0001,
 8Õb0000_0011, 8Õb0000_0111,
 8Õb0000_1111, 8Õb0001_1111,
 8Õb0011_1111, 8Õb0111_1111,
 8Õb1111_1111};

You can make assignments between fixed-size and dynamic arrays as long as they
have the same base type such as int. You can assign a dynamic array to a fixed array
as long as they have the same number of elements.

Chapter 2:Data Types36

When you copy a fixed-size array to a dynamic array, SystemVerilog calls the new[]
constructor to allocate space, and then copies the values.

2.4 Queues

SystemVerilog introduces a new data type, the queue, which combines the best of an
linked list and array. Like a linked list, you can add or remove elements anywhere in a
queue, without the performance hit of a dynamic array that has to allocate a new array
and copy the entire contents. Like an array, you can directly access any element with
an index, without linked list’s overhead of stepping through the preceding elements.

A queue is declared with word subscripts containing a dollar sign: [$]. The elements
of a queue are numbered from 0 to $. Sample 2.19 shows how you can add and
remove values from a queue using methods. Note that queue literals only have curly
braces, and are missing the initial apostrophe of array literals.

The SystemVerilog queue is similar to the Standard Template Library’s deque data
type. You create a queue by adding elements. SystemVerilog typically allocates extra
space so that you can quickly insert additional elements. If you add enough elements
that the queue runs out of that extra space, SystemVerilog automatically allocates
more. As a result, you can grow and shrink a queue without the performance penalty
of a dynamic array, and SystemVerilog keeps track of the free space for you. Note
that you never call the new[] constructor for a queue.

Queues 37

Sample 2.19 Queue operations

int j = 1,
 q2[$] = {3,4}, // Queue literals do not use Õ
 q[$] = {0,2,5}; // {0,2,5}

initial begin
 q.insert(1, j); // {0,1,2,5} Insert 1 before 2

 q.insert(3, q2); // {0,1,2,3,4,5} Insert queue in q1

 q.delete(1); // {0,2,3,4,5} Delete elem. #1

 // These operations are fast
 q.push_front(6); // {6,0,2,3,4,5} Insert at front
 j = q.pop_back; // {6,0,2,3,4} j = 5
 q.push_back(8); // {6,0,2,3,4,8} Insert at back
 j = q.pop_front; // {0,2,3,4,8} j = 6
 foreach (q[i])
 $display(q[i]); // Print entire queue
 q.delete(); // {} Delete entire queue
end

You can use word subscripts and concatenation instead of methods. As a shortcut, if
you put a $ on the left side of a range, such as [$:2], the $ stands for the minimum
value, [0:2]. A $ on the right side, as in [1:$], stands for the maximum value,
[1:2], in first line of the initial block of Sample 2.20.

Sample 2.20 Queue operations

int j = 1,
 q2[$] = {3,4}, // Queue literals do not use Õ
 q[$] = {0,2,5}; // {0,2,5}

initial begin // Result
 q = {q[0], j, q[1:$]}; // {0,1,2,5} Insert 1 before 2
 q = {q[0:2], q2, q[3:$]}; // {0,1,2,3,4,5} Insert queue in q
 q = {q[0], q[2:$]}; // {0,2,3,4,5} Delete elem. #1

 // These operations are fast
 q = {6, q}; // {6,0,2,3,4,5} Insert at front
 j = q[$]; // j = 5 Equivalent of
 q = q[0:$-1]; // {6,0,2,3,4} pop_back
 q = {q, 8}; // {6,0,2,3,4,8} Insert at back
 j = q[0]; // j = 6 Equivalent of
 q = q[1:$]; // {0,2,3,4,8} pop_front

 q = {}; // {} Delete entire queue
end

1Not all SystemVerilog simulators support inserting a queue with the insert() method.

Chapter 2:Data Types38

The queue elements are stored in contiguous locations, and so it is efficient to push
and pop elements from the front and back. This takes a fixed amount of time no mat-
ter how large the queue. Adding and deleting elements in the middle of a queue
requires shifting the existing data to make room. The time to do this grows linearly
with the size of the queue.

You can copy the contents of a fixed or dynamic array into a queue.

2.5 Associative Arrays

Dynamic arrays are good if you want to occasionally create a big array, but what if
you want something really large? Perhaps you are modeling a processor that has a
multi-gigabyte address range. During a typical test, the processor may only touch a
few hundred or thousand memory locations containing executable code and data, so
allocating and initializing gigabytes of storage is wasteful.

SystemVerilog offers associative arrays that store entries in a sparse matrix. This
means that while you can address a very large address space, SystemVerilog only
allocates memory for an element when you write to it. In the following picture, the
associative array holds the values 0:3, 42, 1,000, 4,521, and 200,000. The memory
used to store these is far less than would be needed to store a fixed or dynamic array
with 200,000 entries.

Figure 2-4 Associative array

An associative array can be stored by the simulator as a tree or hash table. This addi-
tional overhead is acceptable when you need to store arrays with widely separated
index values, such as packets indexed with 32-bit addresses or 64-bit data values.

An associative array is declared with a data type2 in square brackets, such as [int]
or [Packet]. Sample 2.21 shows declaring, initializing, and stepping through an
associative array.

2You can also declare an associative array with wildcard subscripts, as in wild[*]. However, this style is
not recommended as you are allowing subscripts of any data type. One of the many problems is with
foreach-loops – what type is the variable j in foreach(wild[j])?

0…..3 42 1000 4521 200,000

data

index 0…..3 42 1000 4521 200,000

data

index

Associative Arrays 39

Sample 2.21 Declaring, initializing, and using associative arrays

initial begin
 bit [63:0] assoc[int], idx = 1;

 // Initialize widely scattered values
 repeat (64) begin
 assoc[idx] = idx;
 idx = idx << 1;
 end

 // Step through all index values with foreach
 foreach (assoc[i])
 $display("assoc[%h] = %h", i, assoc[i]);

 // Step through all index values with functions
 if (assoc.first(idx))
 begin // Get first index
 do
 $display("assoc[%h]=%h", idx, assoc[idx]);
 while (assoc.next(idx)); // Get next index
 end

 // Find and delete the first element
 assoc.first(idx);
 assoc.delete(idx);
 $display("The array now has %0d elements", assoc.num);
end

Sample 2.21 has the associative array, assoc, with very scattered elements: 1, 2, 4, 8,
16, etc. A simple for-loop cannot step through them; you need to use a foreach-
loop. If you want finer control, you can use the first and next functions in a
do...while loop. These functions modify the index argument, and return 0 or 1
depending on whether any elements are left in the array.

Associative arrays can also be addressed with a string index, similar to Perl’s hash
arrays. Sample 2.22 reads a file with strings and builds the associative array switch
so that you can quickly map from a string value to a number. Strings are explained in
more detail in Section 2.14. You can use the function exists() to check if an ele-
ment exists, as shown in Sample 2.22. If you try to read an element that has not been
written, SystemVerilog returns the default value for the array type, such as 0 for 2-
state types, or X for 4-state types.

Chapter 2:Data Types40

Sample 2.22 Using an associative array with a string index

/*
Input file contains:
 42 min_address
 1492 max_address
*/

int switch[string], min_address, max_address;
initial begin
 int i, r, file;
 string s;
 file = $fopen("switch.txt", "r");
 while (! $feof(file)) begin
 r = $fscanf(file, "%d %s", i, s);
 switch[s] = i;
 end
 $fclose(file);

 // Get the min address, default is 0
 min_address = switch["min_address"];

 // Get the max address, default = 1000
 if (switch.exists("max_address"))
 max_address = switch["max_address"];
 else
 max_address = 1000;

 // Print all switches
 foreach (switch[s])
 $display("switch[Õ%sÕ]=%0d", s, switch[s]);
end

2.6 Linked Lists

SystemVerilog provides a linked list data-structure that is analogous to the STL
(Standard Template Library) List container. The container is defined as a parameter-
ized class, meaning that it can be customized to hold data of any type.

Now that you know there is a linked list in SystemVerilog, avoid using it. C++ pro-
grammers might be familiar with the STL version, but SystemVerilog’s queues are
more efficient and easier to use.

Array Methods 41

2.7 Array Methods

There are many array methods that you can use on any unpacked array types: fixed,
dynamic, queue, and associative. These routines can be as simple as giving the cur-
rent array size or as complex as sorting the elements. The parentheses are optional if
there are no arguments.

2.7.1 Array Reduction Methods

A basic array reduction method takes an array and reduces it to a single value, as
shown in Sample 2.23. The most common reduction method is sum, which adds
together all the values in an array. Be careful of SystemVerilog’s rules for handling
the width of operations. By default, if you add the values of a single-bit array, the
result is a single bit. However, if you use it in a 32-bit expression, store the result in a
32-bit variable, compare it to a 32-bit variable, or use the proper with expression.
SystemVerilog uses 32-bits when adding up the values. The with expression is
described in Section 2.7.2.

Sample 2.23 Creating the sum of an array

bit on[10]; // Array of single bits
int total;

initial begin
 foreach (on[i])
 on[i] = i; // on[i] gets 0 or 1

 // Print the single-bit sum
 $display("on.sum = %0d", on.sum); // on.sum = 1

 // Print the sum using 32-bit total
 $display("on.sum = %0d", on.sum + 32Õd0); // on.sum = 5

 // Sum the values using 32-bits as total is 32-bits
 total = on.sum;
 $display("total = %0d", total); // total = 5

 // Compare the sum to a 32-bit value
 if (on.sum >=32Õd5) // True
 $display("sum has 5 or more 1Õs");

 // Compute with 32-bit signed arithimetic
 $display("int sum=%0d", on.sum with (intÕ(item)));
 end

Other array reduction methods are product, and, or, and xor.

Chapter 2:Data Types42

SystemVerilog does not have a method specifically for choosing a random element
from an array, and so use the index $urandom_range(array.size()-1) for
queues and dynamic arrays, and $urandom_range($size(array)-1) for fixed
arrays, queues, dynamic, and associative arrays. See Section 6.10 for more informa-
tion on $urandom_range.

If you need to choose a random element from an associative array, you need to step
through the elements one by one as there is no direct way to access the Nth element.
Sample 2.24 shows how to pick a random element from an associative array indexed
by integers. If the array was indexed by a string, just change the type of idx to
string.

Sample 2.24 Picking a random element from an associative array

int aa[int], rand_idx, element, count;

element = $urandom_range(aa.size()-1);
foreach(aa[i])
 if (count++ == element) begin
 rand_idx = i; // Save the associative array index
 break; // and quit
 end

$display("%0d element aa[%0d] = %0d",
 element, rand_idx, aa[rand_idx]);

2.7.2 Array Locator Methods

What is the largest value in an array? Does an array contain a certain value? The array
locator methods find data in an unpacked array. These methods always return a
queue.

Sample 2.25 uses a fixed-size array, f[6], a dynamic array, d[], and a queue, q[$].
The min and max functions find the smallest and largest elements in an array. Note
that they return a queue, not a scalar as you might expect. These methods also work
for associative arrays. The unique method returns a queue of the unique values from
the array – duplicate values are not included.

Array Methods 43

Sample 2.25 Array locator methods: min, max, unique

int f[6] = Õ{1,6,2,6,8,6};
int d[] = Õ{2,4,6,8,10};
int q[$] = {1,3,5,7}, tq[$];

tq = q.min(); // {1}
tq = d.max(); // {10}
tq = f.unique(); // {1,6,2,8}

You could search through an array using a foreach-loop, but SystemVerilog can do
this in one operation with a locator method. The with expression tells SystemVerilog
how to perform the search, as shown in Sample 2.26.

Sample 2.26 Array locator methods: find

int d[] = Õ{9,1,8,3,4,4}, tq[$];

// Find all elements greater than 3
tq = d.find with (item > 3); // {9,8,4,4}
// Equivalent code
tq.delete();
foreach (d[i])
 if (d[i] > 3)
 tq.push_back(d[i]);

tq = d.find_index with (item > 3); // {0,2,4,5}
tq = d.find_first with (item > 99); // {} Ð none found
tq = d.find_first_index with (item==8); // {2} d[2]=8
tq = d.find_last with (item==4); // {4}
tq = d.find_last_index with (item==4); // {5} d[5]=4

In a with clause, the name item is called the iterator argument and represents a sin-
gle element of the array. You can specify your own name by putting it in the
argument list of the array method as shown in Sample 2.27.

Sample 2.27 Declaring the iterator argument

tq = d.find_first with (item==4); // These
tq = d.find_first() with (item==4); // are
tq = d.find_first(item) with (item==4); // all
tq = d.find_first(x) with (x==4); // equivalent

Sample 2.28 shows various ways to total up a subset of the values in the array. The
first total compares the item with 7. This relational returns a 1 (true) or 0 (false) and
multiplies this with the array. So the sum of {9,0,8,0,0,0} is 17. The second total is
computed using the ? : conditional operator.

Chapter 2:Data Types44

Sample 2.28 Array locator methods

int count, total, d[] = Õ{9,1,8,3,4,4};

count = d.sum with (item > 7); // 2: {9, 8}
total = d.sum with ((item > 7) * item); // 17= 9+8
count = d.sum with (item < 8); // 4: {1, 3, 4, 4}
total = d.sum with (item < 8 ? item : 0); // 12=1+3+4+4
count = d.sum with (item == 4); // 2: {4, 4}

When you combine an array reduction such as sum using the with clause, the results
may surprise you. In Sample 2.28, the sum operator totals the number of times that the
expression is true. For the first statement in Sample 2.28, there are two array elements
that are greater than 7 (9 and 8) and so count is set to 2.

The array locator methods that return an index, such as
find_index, return a queue of type int, not integer. Your
code may not compile if you use the wrong queue type with these
statements.

2.7.3 Array Sorting and Ordering

SystemVerilog has several methods for changing the order of elements in an array.
You can sort the elements, reverse their order, or shuffle the order as shown in Sam-
ple 2.29. Notice that these change the original array, unlike the array locator methods
in Section 2.7.2, which create a queue to hold the results.

Sample 2.29 Sorting an array

int d[] = Õ{9,1,8,3,4,4};
d.reverse(); // Õ{4,4,3,8,1,9}
d.sort(); // Õ{1,3,4,4,8,9}
d.rsort(); // Õ{9,8,4,4,3,1}
d.shuffle(); // Õ{9,4,3,8,1,4}

The reverse and shuffle methods have no with-clause, and so they work on the
entire array. Sample 2.30 shows how to sort a structure by sub-fields. Structures and
packed structures are explained in Section 2.10.

Array Methods 45

Sample 2.30 Sorting an array of structures

struct packed { byte red, green, blue; } c[];
initial begin
 c = new[100]; // Allocate 100 pixels
 foreach(c[i])
 c[i] = $urandom; // Fill with random values

 c.sort with (item.red); // sort using red only

 // sort by green value then blue
 c.sort(x) with ({x.green, x.blue});
end

2.7.4 Building a Scoreboard with Array Locator Methods

The array locator methods can be used to build a scoreboard. Sample 2.31 defines the
Packet structure, then creates a scoreboard made from a queue of these structures.
Section 2.9 describes how to create structures with typedef.

Sample 2.31 A scoreboard with array methods

typedef struct packed
 {bit [7:0] addr;
 bit [7:0] pr;
 bit [15:0] data; } Packet;

Packet scb[$];

function void check_addr(bit [7:0] addr);
 int intq[$];

 intq = scb.find_index() with (item.addr == addr);
 case (intq.size())
 0: $display("Addr %h not found in scoreboard", addr);
 1: scb.delete(intq[0]);
 default:
 $display("ERROR: Multiple hits for addr %h", addr);
 endcase
endfunction : check_addr

The check_addr() function in Sample 2.31 looks up an address in the scoreboard.
The find_index() method returns an int queue. If the queue is empty (size==0),
no match was found. If the queue has one member (size==1), a single match was
found, which the check_addr() function deletes. If the queue has multiple members
(size > 1), there are multiple packets in the scoreboard whose address matches the
requested one.

Chapter 2:Data Types46

A better choice for storing packet information is a class, which is described in
Chap. 5. You can read more about structures in Section 2.10.

2.8 Choosing a Storage Type

Here are some guidelines for choosing the right storage type based on flexibility,
memory usage, speed, and sorting. These are just rules of thumb, and results may vary
between simulators.

2.8.1 Flexibility

Use a fixed-size or dynamic array if it is accessed with consecutive positive integer
indices: 0, 1, 2, 3…. Choose a fixed-size array if the array size is known at compile
time, or choose a dynamic array if the size is not known until run-time. For example,
variable-size packets can easily be stored in a dynamic array. If you are writing rou-
tines to manipulate arrays, consider using just dynamic arrays, as one routine can
work with any size dynamic array as long as the element type (int, string, etc.)
matches. Likewise, you can pass a queue of any size into a routine as long as the ele-
ment type matches the queue argument. Associative arrays can also be passed
regardless of size. However, a routine with a fixed-size array argument only accepts
arrays of the specified length.

Choose associative arrays for nonstandard indices such as widely separated values
because of random values or addresses. Associative arrays can also be used to model
content-addressable memories.

Queues are a good way to store values when the number of elements grows and
shrinks a lot during simulation, such as a scoreboard that holds expected values.

2.8.2 Memory Usage

If you want to reduce the simulation memory usage, use 2-state elements. You should
choose data sizes that are multiples of 32 bits to avoid wasted space. Simulators usu-
ally store anything smaller in a 32-bit word. For example, an array of 1,024 bytes
wastes ¾ of the memory if the simulator puts each element in a 32-bit word. Packed
arrays can also help conserve memory.

For arrays that hold up to a thousand elements, the type of array that you choose does
not make a big difference in memory usage (unless there are many instances of these
arrays). For arrays with a thousand to a million active elements, fixed-size and
dynamic arrays are the most memory efficient. You may want to reconsider your
algorithms if you need arrays with more than a million active elements.

Queues are slightly less efficient to access than fixed-size or dynamic arrays because
of additional pointers. However, if your data set grows and shrinks often, and you

Choosing a Storage Type 47

store it in a dynamic memory, you will have to manually call new[] to allocate mem-
ory and copy. This is an expensive operation and would wipe out any gains from
using a dynamic memory.

Modeling memories larger than a few megabytes should be done with an associative
array. Note that each element in an associative array can take several times more
memory than a fixed-size or dynamic memory because of pointer overhead.

2.8.3 Speed

Choose your array type based on how many times it is accessed per clock cycle. For
only a few reads and writes, you could use any type, as the overhead is minor com-
pared with the DUT. As you use an array more often, its size and type matters.

Fixed-size and dynamic arrays are stored in contiguous memory, and so any element
can be found in the same amount of time, regardless of array size.

Queues have almost the same access time as a fixed-size or dynamic array for reads
and writes. The first and last elements can be pushed and popped with almost no over-
head. Inserting or removing elements in the middle requires many elements to be
shifted up or down to make room. If you need to insert new elements into a large
queue, your testbench may slow down, and so consider changing how you store new
elements.

When reading and writing associative arrays, the simulator must search for the ele-
ment in memory. The LRM does not specify how this is done, but popular ways are
hash tables and trees. These require more computation than other arrays, and there-
fore associative arrays are the slowest.

2.8.4 Sorting

Since SystemVerilog can sort any single-dimension array (fixed-size, dynamic, and
associative arrays plus queues), you should pick based on how often the values are
added to the array. If the values are received all at once, choose a fixed-size or
dynamic array so that you only have to allocate the array once. If the data slowly drib-
bles in, choose a queue, as adding new elements to the head or tail is very efficient.

If you have unique and noncontiguous values, such as Õ{1, 10, 11, 50}, you can
store them in an associative array by using them as an index. Using the routines
first, next, and prev, you can search an associative array for a value and find suc-
cessive values. Lists are doubly linked, and so you can find values both larger and
smaller than the current value. Both of these support removing a value. However, the
associative array is much faster in accessing any given element, given an index.

For example, you can use an associative array of bits to hold expected 32-bit values.
When the value is created, write to that location. When you need to see if a given

Chapter 2:Data Types48

value has been written, use the exists function. When done with an element, use
delete to remove it from the associative array.

2.8.5 Choosing the Best Data Structure

Here are some suggestions on choosing a data structure.

Network packets. Properties: fixed size, accessed sequentially. Use a fixed-
size or dynamic array for fixed- or variable-size packets.
Scoreboard of expected values. Properties: size not known until run-time,
accessed by value, and a constantly changing size. In general, use a queue, as
you are continually adding and deleting elements during simulation. If you
can give every transaction a fixed id, such as 1, 2, 3, …, you could use this as
an index into the queue. If your transaction is filled with random values, you
can just push them into a queue and search for unique values. If the score-
board may have hundreds of elements, and you are often inserting and delet-
ing them from the middle, an associative array may be faster.
Sorted structures. Use a queue if the data comes out in a predictable order,
or an associative array if the order is unspecified. If the scoreboard never
needs to be searched, just store the expected values in a mailbox, as shown
in Section 7.6.
Modeling very large memories, greater than a million entries. If you do not
need every location, use an associative array as a sparse memory. If you do
need every location, try a different approach where you do not need so much
live data. Still stuck? Be sure to use 2-state values packed into 32-bits.
Command names or opcodes from a file. Property: translate a string to a
fixed value. Read string from a file, and then look up the commands or
opcodes in an associative array using the command as a string index.

You can create an array of handles that point to objects, as shown in Chap. 5 on Basic
OOP.

2.9 Creating New Types with typedef

You can create new types using the typedef statement. For example, you may have
an ALU that can be configured at compile-time to use 8, 16, 24, or 32-bit operands. In
Verilog you would define a macro for the operand width and another for the type as
shown in Sample 2.32.

Creating New Types with typedef 49

Sample 2.32 User-defined type-macro in Verilog

// Old Verilog style
`define OPSIZE 8
`define OPREG reg [`OPSIZE-1:0]

`OPREG op_a, op_b;

You are not really creating a new type; you are just performing text substitution. In
SystemVerilog you create a new type with the following code. This book uses the
convention that user-defined types use the suffix “_t.”

Sample 2.33 User-defined type in SystemVerilog

// New SystemVerilog style
parameter OPSIZE = 8;
typedef reg [OPSIZE-1:0] opreg_t;

opreg_t op_a, op_b;

In general, SystemVerilog lets you copy between these basic types with no warning,
either extending or truncating values if there is a width mismatch.

Note that parameter and typedef statements can be put in a package so that they
can be shared across the design and testbench, as shown in Section 4.6.

One of the most useful types you can create is an unsigned, 2-state,
32-bit integer. Most values in a testbench are positive integers such as
field length or number of transactions received, and so having a
signed integer can cause problems. Put the definition of uint in a
package of common definitions so that it can be used anywhere in
your simulation.

Sample 2.34 Definition of uint

typedef bit [31:0] uint; // 32-bit unsigned 2-state
typedef int unsigned uint; // Equivalent definition

The syntax for defining a new array type is not obvious. You need to put the array
subscripts on the new name. Sample 2.35 creates a new type, fixed_array5, which
is a fixed array with 5 elements. It then declares an array of this type and initializes it.

Chapter 2:Data Types50

Sample 2.35 User-defined array type

typedef int fixed_array5[5];
fixed_array5 f5;

initial begin
 foreach (f5[i])
 f5[i] = i;
end

2.10 Creating User-Defined Structures

One of the biggest limitations of Verilog is the lack of data structures. In SystemVer-
ilog you can create a structure using the struct statement, similar to what is
available in C. However, a struct has just a subset of the functionality of a class,
and so use a class instead for your testbenches, as shown in Chap. 5. Just as a Verilog
module combines both data (signals) and code (always/initial blocks plus routines), a
class combines data and routines to make an entity that can be easily debugged and
reused. A struct just groups data fields together. Without the code that manipulates
the data, you are only creating half of the solution.

Since a struct is just a collection of data, it can be synthesized. If you want to model
a complex data type, such as a pixel, in your design code, put it in a struct. This can
also be passed through module ports. Eventually, when you want to generate con-
strained random data, look to classes.

2.10.1 Creating a struct and a New Type

You can combine several variables into a structure. Sample 2.36 creates a structure
called pixel that has three unsigned bytes for red, green, and blue.

Sample 2.36 Creating a single pixel type

struct {bit [7:0] r, g, b;} pixel;

The problem with the preceding declaration is that it creates a single pixel of this
type. To be able to share pixels using ports and routines, you should create a new type
instead, as shown in Sample 2.37.

Sample 2.37 The pixel struct

typedef struct {bit [7:0] r, g, b;} pixel_s;
pixel_s my_pixel;
Use the suffix “_s” when declaring a struct. This makes it easier to spot user-
defined types, simplifying the process of sharing and reusing code.

Creating User-Defined Structures 51

2.10.2 Initializing a Structure

You can assign multiple values to a struct just like an array, either in the declaration
or in a procedural assignment. Just surround the values with an apostrophe and
braces, as shown in Sample 2.38.

Sample 2.38 Initializing a struct

initial begin
 typedef struct {int a;
 byte b;
 shortint c;
 int d;} my_struct_s;
 my_struct_s st = '{32'haaaa_aaaad,
 8'hbb,
 16'hcccc,
 32'hdddd_dddd};

 $display("str = %x %x %x %x ", st.a, st.b, st.c, st.d);
end

2.10.3 Making a Union of Several Types

In hardware, the interpretation of a set of bits in a register may depend on the value of
other bits. For example, a processor instruction may have many layouts based on the
opcode. Immediate-mode operands might store a literal value in the operand field.
This value may be decoded differently for integer instructions than for floating point
instructions. Sample 2.39 stores both the integer i and the real f in the same location.

Sample 2.39 Using typedef to create a union

typedef union { int i; real f; } num_u;
num_u un;
un.f = 0.0; // set value in floating point format

Use the suffix “_u” when declaring a union.

Unions are useful when you frequently need to read and write a regis-
ter in several different formats. However, don’t go overboard,
especially just to save memory. Unions may help squeeze a few bytes
out of a structure, but at the expense of having to create and maintain
a more complicated data structure. Instead, make a flat class with a
discriminant variable, as shown in Section 8.4.4. This “kind” variable

indicates which type of transaction you have, and thus which fields to read, write, and
randomize. If you just need an array of values, plus all the bits, use a packed array as
described in Section 2.2.6

Chapter 2:Data Types52

2.10.4 Packed Structures

SystemVerilog allows you more control in how bits are laid out in memory by using
packed structures. A packed structure is stored as a contiguous set of bits with no
unused space. The struct for a pixel in Sample 2.37 used three values, and so it is
stored in three longwords, even though it only needs three bytes. You can specify that
it should be packed into the smallest possible space.

Sample 2.40 Packed structure

typedef struct packed {bit [7:0] r, g, b;} pixel_p_s;
pixel_p_s my_pixel;

Packed structures are used when the underlying bits represent a numerical value, or
when you are trying to reduce memory usage. For example, you could pack together
several bit-fields to make a single register. Or you might pack together the opcode
and operand fields to make a value that contains an entire processor instruction.

2.10.5 Choosing Between Packed and Unpacked Structures

When you are trying to choose between packed and unpacked structures, consider
how the structure is most commonly used, and the alignment of the elements. If you
plan on making aggregate operations on the structure, such as copying the entire
structure, a packed structure is more efficient. However, if your code accesses the
individual members more than the entire structure, use an unpacked structure. The
difference in performance is greater if the elements are not aligned on byte bound-
aries, have sizes that don’t match the typical byte, or have word instructions used by
processors. Reading and writing elements with odd sizes in a packed structure
requires expensive shift and mask operations.

2.11 Type Conversion

The proliferation of data types in SystemVerilog means that you will need to convert
between them. If the layout of the bits between the source and destination variables
are the same, such as an integer and enumerated type, cast between the two values. If
the bit layouts differ, such as an array of bytes and words, use the streaming operators
to rearrange the bits.

2.11.1 The Static Cast

The static cast operation converts between two types with no checking of values. You
specify the destination type, an apostrophe, and the expression to be converted as
shown in Sample 2.41. Note that Verilog has always implicitly converted between
types such as integer and real, and also between different width vectors.

Type Conversion 53

Sample 2.41 Converting between int and real with static cast

int i;
real r;

i = int '(10.0 - 0.1); // cast is optional
r = real'(42); // cast is optional

2.11.2 The Dynamic Cast

The dynamic cast, $cast, allows you to check for out-of-bounds values. See Section
2.12.3 for an explanation and example with enumerated types.

2.11.3 Streaming Operators

When used on the right side of an assignment, the streaming operators << and >> take
an expression, structure, or array, and packs it into a stream of bits. The >> operator
streams data from left to right while << streams from right to left, as shown in Sample
2.42. You can also give a slice size, which is used to break up the source before being
streamed. You can not assign the bit stream result directly to an unpacked array. Instead,
use the streaming operators on the left side of an assignment to unpack the bit stream
into an unpacked array.

Sample 2.42 Basic streaming operator

initial begin
 int h;
 bit [7:0] b, g[4], j[4] = '{8'ha, 8'hb, 8'hc, 8'hd};
 bit [7:0] q, r, s, t;

 h = { >> {j}}; // 0a0b0c0d - pack array into int
 h = { << {j}}; // b030d050 reverse bits
 h = { << byte {j}}; // 0d0c0b0a reverse bytes
 g = { << byte {j}}; // 0d, 0c, 0b, 0a unpack into array
 b = { << {8'b0011_0101}}; // 1010_1100 reverse bits
 b = { << 4 {8'b0011_0101}}; // 0101_0011 reverse nibble
 {>> {q, r, s, t}} = j; // Scatter j into bytes
 h = {>>{t, s, r, q}}; // Gather bytes into h
end

You could do the same operations with many concatenation operators, {}, but the
streaming operators are more compact and easier to read.

If you need to pack or unpack arrays, use the streaming operator to convert between
arrays of different element sizes. For instance, you can convert an array of bytes to an
array of words. You can use fixed size arrays, dynamic arrays, and queues. Sample 2.43
converts between queues, but would also work with dynamic arrays. Array elements are
automatically allocated as needed.

Chapter 2:Data Types54

Sample 2.43 Converting between queues with streaming operator

initial begin
 bit [15:0] wq[$] = {16'h1234, 16'h5678};
 bit [7:0] bq[$];

 // Convert word array to byte
 bq = { >> {wq}}; // 12 34 56 78

 // Convert byte array to words
 bq = {8'h98, 8'h76, 8'h54, 8'h32};
 wq = { >> {bq}}; // 9876 5432
end

A common mistake when streaming between arrays is mismatched
array subscripts. The word subscript [256] in an array declaration
is equivalent to [0:255], not [255:0]. Since many arrays are
declared with the word subscripts [high:low], streaming them to
an array with the subscript [size] would result in the elements

ending up in reverse order. Likewise, streaming an unpacked array declared as bit
[7:0] src[255:0] to the packed array declared as bit [7:0] [255:0] dst will
scramble the order of values. The correct declaration for a packed array of bytes is
bit [255:0] [7:0] dst.

You can also use the streaming operator to pack and unpack structures, such as an
ATM cell, into an array of bytes. In Sample 2.44, a structure is streamed into a
dynamic array of bytes, and then the byte array is streamed back into the structure.

Enumerated Types 55

Sample 2.44 Converting between a structure and array with streaming operators

initial begin
 typedef struct {int a;
 byte b;
 shortint c;
 int d;} my_struct_s;
 my_struct_s st = '{32'haaaa_aaaa,
 8'hbb,
 16'hcccc,
 32'hdddd_dddd};
 byte b[];

 // Covert from struct to byte array
 b = { >> {st}}; // {aa aa aa aa bb cc cc dd dd dd dd}

 // Convert from byte array to a struct
 b = '{8'h11, 8'h22, 8'h33, 8'h44, 8'h55, 8'h66, 8'h77,
 8'h88, 8'h99, 8'haa, 8'hbb};
 st = { >> {b}}; // st = 11223344, 55, 6677, 8899aabb
end

2.12 Enumerated Types

Before enumerated types, you have to use text macros. Their global scope is too
broad, and in most cases are visible in the debugger. An enumeration creates a strong
variable type that is limited to a set of specified names, such as the instruction
opcodes or state machine values. For example, the names ADD, MOVE, or ROTW
make your code easier to write and maintain than if you had used literals such as
8Õh01 or macros. Another alternative for defining constants is a parameter. These are
fine for individual values, but an enumerated type automatically gives a unique value
to every name in the list.

The simplest enumerated type declaration contains a list of constant names and one or
more variables as shown in Sample 2.45. This creates an anonymous enumerated
type, but it cannot be used for any other variables than the ones in this declaration.

Sample 2.45 A simple enumerated type

enum {RED, BLUE, GREEN} color;

In general you want to create a named enumerated type to easily declare multiple
variables, especially if these are used as routine arguments or module ports. You first
create the enumerated type, and then the variables of this type. You can get the string
representation of an enumerated variable with the built-in function name(), as shown
in Sample 2.46.

Chapter 2:Data Types56

Sample 2.46 Enumerated types

// Create data type for values 0, 1, 2
typedef enum {INIT, DECODE, IDLE} fsmstate_e;
fsmstate_e pstate, nstate; // declare typed variables

initial begin
 case (pstate)
 IDLE: nstate = INIT; // data assignment
 INIT: nstate = DECODE;
 default: nstate = IDLE;
 endcase
 $display("Next state is %s",
 nstate.name()); // Display symbolic state name
end

Use the suffix “_e” when declaring an enumerated type.

2.12.1 Defining Enumerated Values

The actual values default to integers starting at 0 and then increase. You can choose
your own enumerated values. The code in Sample 2.47 uses the default value of 0 for
INIT, then 2 for DECODE, and 3 for IDLE.

Sample 2.47 Specifying enumerated values

typedef enum {INIT, DECODE=2, IDLE} fsmtype_e;

Enumerated constants, such as INIT in Sample 2.47, follow the same scoping rules as
variables. Consequently, if you use the same name in several enumerated types (such
as INIT in different state machines), they have to be declared in different scopes such
as modules, program blocks, packages, routines, or classes.

An enumerated type is stored as int unless you specify otherwise.
Be careful when assigning values to enumerated constants, as the
default value of an int is 0. In Sample 2.48, position is initial-
ized to 0, which is not a legal ordinal_e variable. This behavior

is not a tool bug – it is how the language is specified. So always specify an enumer-
ated constant with the value of 0, as shown in Sample 2.49, just to catch the testbench
error.

Enumerated Types 57

Sample 2.48 Incorrectly specifying enumerated values

typedef enum {FIRST=1, SECOND, THIRD} ordinal_e;
ordinal_e position;

Sample 2.49 Correctly specifying enumerated values

typedef enum {BAD_O=0, FIRST=1, SECOND, THIRD} ordinal_e;
ordinal_e position;

2.12.2 Routines for Enumerated Types

SystemVerilog provides several functions for stepping through enumerated types.

first() returns the first member of the enumeration.
last() returns the last member of the enumeration.
next() returns the next element of the enumeration.
next(N) returns the N th next element.
prev() returns the previous element of the enumeration.
prev(N) returns the N th previous element.

The functions next and prev wrap around when they reach the beginning or end of
the enumeration.

Note that there is no easy way to write a for-loop that steps through all members of
an enumerated type if you use an enumerated loop variable. You get the starting
member with first and the next member with next. The problem is creating a com-
parison for the final iteration through the loop. If you use the test
current!=current.last, the loop ends before using the last value. If you use
current<=current.last, you get an infinite loop, as next never gives you a
value that is greater than the final value. This is similar to trying to make a for-loop
that steps through the values 0.3 with index declared as bit [1:0]. The loop will
never exit!

You can use a do...while loop to step through all the values, as shown in Sample 2.50.

Chapter 2:Data Types58

Sample 2.50 Stepping through all enumerated members

typedef enum {RED, BLUE, GREEN} color_e;
color_e color;
color = color.first;
do
 begin
 $display("Color = %0d/%s", color, color.name);
 color = color.next;
 end
while (color != color.first); // Done at wrap-around

2.12.3 Converting to and from Enumerated Types

The default type for an enumerated type is int (2-state). You can take the value of an
enumerated variable and assign it to a nonenumerated variable such as an int with a
simple assignment. SystemVerilog does not, however, let you store an integer value
in an enum without explicitly changing the type. Instead, it requires you to explicitly
cast the value to make you realize that you could be writing an out-of-bounds value.

Sample 2.51 Assignments between integers and enumerated types

typedef enum {RED, BLUE, GREEN} COLOR_E;
COLOR_E color, c2;
int c;

initial begin
 color = BLUE; // Set to known good value
 c = color; // Convert from enum to int (1)
 c++; // Increment int (2)
 if (!$cast(color, c)) // Cast int back to enum
 $display("Cast failed for c=%0d", c);
 $display("Color is %0d / %s", color, color.name);
 c++; // 3 is out-of-bounds for enum
 c2 = COLOR_EÕ(c); // No type checking
 $display("Color is %0d / %s", color, color.name);
 end

When called as a function as shown in Sample 2.51, $cast() tried to assign the right
value to the left variable. If the assignment succeeds, $cast() returns 1. If the
assignment fails because of an out-of-bounds value, no assignment is made and the
function returns 0. If you use $cast() as a task and the operation fails, SystemVerilog
prints an error.

You can also cast the value using the typeÕ(val) as shown in the example, but this
does not do any type checking, and so the result may be out-of-bounds. For example,

Constants 59

after the static cast in Sample 2.51, c2 has an out-of-bounds value. You should avoid
this style.

2.13 Constants

There are several types of constants in SystemVerilog. The classic Verilog way to
create a constant is with a text macro. On the plus side, macros have global scope and
can be used for bit field definitions and type definitions. On the negative side, macros
are global, so that they can cause conflicts if you just need a local constant. Lastly, a
macro requires the ` character so that it is recognized and expanded by the compiler.

In SystemVerilog, parameters can be declared in a package and so they can be used
across multiple modules. This approach can replace many Verilog macros that were
just being used as constants. You can use a typedef to replace those clunky macros.
The next choice is a parameter. A Verilog parameter was loosely typed and was
limited in scope to a single module. Verilog-2001 added typed parameters, but the
limited scope kept parameters from being widely used.

SystemVerilog also supports the const modifier that allows you to make a variable
that can be initialized in the declaration but not written by procedural code.

Sample 2.52 Declaring a const variable

initial begin
 const byte colon = ":";
 ...
end

In Sample 2.52, the value of colon is initialized when the initial block is entered.
In the next chapter, Sample 3.10 shows a const routine argument.

2.14 Strings

If you have ever tried to use a Verilog reg variable to hold a string of characters, your
suffering is over. The SystemVerilog string type holds variable-length strings. An
individual character is of type byte. The elements of a string of length N are num-
bered 0 to N-1. Note that, unlike C, there is no null character at the end of a string, and
any attempt to use the character “\0” is ignored. Memory for strings is dynamically
allocated, so you do not have to worry about running out of space to store the string.

Sample 2.53 shows various string operations. The function getc(N) returns the byte
at location N, while toupper returns an upper-case copy of the string and tolower
returns a lowercase copy. The curly braces {} are used for concatenation. The task
putc(M, C) writes a byte C into a string at location M, which must be between 0 and

Chapter 2:Data Types60

the length as given by len. The substr(start,end) function extracts characters
from location start to end.

Sample 2.53 String methods

string s;

initial begin
 s = "IEEE ";
 $display(s.getc(0)); // Display: 73 (ÔIÕ)
 $display(s.tolower()); // Display: ieee

 s.putc(s.len()-1, "-"); // change Õ Õ-> Õ-Õ
 s = {s, "P1800"}; // "IEEE-P1800"

 $display(s.substr(2, 5)); // Display: EE-P

 // Create temporary string, note format
 my_log_rtn($psprintf("%s %5d", s, 42));
end

task my_log(string message);
 // Print a message to a log
 $display("@%0t: %s", $time, message);
endtask

Note how useful dynamic strings can be. In other languages such as C, you have to
keep making temporary strings to hold the result from a function. In Sample 2.53, the
$psprintf() function is used instead of $sformat(), from Verilog-2001. This
new function returns a formatted temporary string that, as shown above, can be
passed directly to another routine. This saves you from having to declare a temporary
string and passing it between the formatting statement and the routine call.

2.15 Expression Width

A prime source for unexpected behavior in Verilog has been the width of expressions.
Sample 2.54 adds 1+1 using four different styles. Addition A uses two 1-bit variables,
and so with this precision 1+1=0. Addition B uses 8-bit precision because there is an
8-bit variable on the left side of the assignment. In this case, 1+1=2. Addition C uses a
dummy constant to force SystemVerilog to use 2-bit precision. Lastly, in addition D,
the first value is cast to be a 2-bit value with the cast operator, and so 1+1=2.

Conclusion 61

Sample 2.54 Expression width depends on context

bit [7:0] b8;
bit one = 1Õb1; // Single bit
$displayb(one + one); // A: 1+1 = 0

b8 = one + one; // B: 1+1 = 2
$displayb(b8);

$displayb(one + one + 2Õb0); // C: 1+1 = 2 with constant

$displayb(2Õ(one) + one); // D: 1+1 = 2 with cast

There are several tricks you can use to avoid this problem. First, avoid situations
where the overflow is lost, as in addition A. Use a temporary, such as b8, with the
desired width. Or, you can add another value to force the minimum precision, such as
2Õb0. Lastly, in SystemVerilog, you can cast one of the variables to the desired
precision.

2.16 Conclusion

SystemVerilog provides many new data types and structures so that you can create
high-level testbenches without having to worry about the bit-level representation.
Queues work well for creating scoreboards for which you constantly need to add and
remove data. Dynamic arrays allow you to choose the array size at run-time for maxi-
mum testbench flexibility. Associative arrays are used for sparse memories and some
scoreboards with a single index. Enumerated types make your code easier to read and
write by creating groups of named constants.

Don’t go off and create a procedural testbench with just these constructs. Explore the
OOP capabilities of SystemVerilog in Chap. 5 to learn how to design code at an even
higher level of abstraction, thus creating robust and reusable code.

Chapter 3

Procedural Statements
and Routines

As you verify your design, you need to write a great deal of code, most of which is in
tasks and functions. SystemVerilog introduces many incremental improvements to
make this easier by making the language look more like C, especially around argu-
ment passing. If you have a background in software engineering, these additions
should be very familiar.

3.1 Procedural Statements

SystemVerilog adopts many operators and statements from C and C++. You can
declare a loop variable inside a for-loop that then restricts the scope of the loop vari-
able and can prevent some coding bugs. The auto-increment ++ and auto-decrement -
- operators are available in both pre- and post-forms. If you have a label on a begin
or fork statement, you can put the same label on the matching end or join state-
ment. This makes it easier to match the start and finish of a block. You can also put a
label on other SystemVerilog end statements such as endmodule, endtask, end
function, and others that you will learn in this book. Sample 3.1 demonstrates some
of the new constructs.

Chapter 3:Procedural Statements and Routines64

Sample 3.1 New procedural statements and operators

initial
 begin : example
 integer array[10], sum, j;

 // Declare i in for statement
 for (int i=0; i<10; i++) // Increment i
 array[i] = i;

 // Add up values in the array
 sum = array[9];
 j=8;
 do // do...while loop
 sum += array[j]; // Accumulate
 while (j--); // Test if j=0
 $display("Sum=%4d", sum); // %4d - specify width
end : example // End label

Two new statements help with loops. First, if you are in a loop, but want to skip over
the rest of the statements and do the next iteration, use continue. If you want to
leave the loop immediately, use break.

The loop in Sample 3.2 reads commands from a file using the file I/O system tasks
that are part of Verilog-2001. If the command is just a blank line, the code does a
continue, skipping any further processing of the command. If the command is
“done,” the code does a break to terminate the loop.

Sample 3.2 Using break and continue while reading a file

initial begin
 bit [127:0] cmd;
 int file, c;

 file = $fopen("commands.txt", "r");
 while (!$feof(file)) begin
 c = $fscanf(file, "%s", cmd);
 case (cmd)
 "": continue; // Blank line - skip to loop end
 "done": break; // Done - leave loop
 ... // Process other commands here
 endcase // case(cmd)
 end
 $fclose(file);
end

Tasks, Functions, and Void Functions 65

3.2 Tasks, Functions, and Void Functions

Verilog makes a very clear differentiation between tasks and functions. The most
important difference is that a task can consume time, whereas a function cannot. A
function cannot have a delay, #100, a blocking statement such as @(posedge
clock) or wait(ready), or call a task. Additionally, a Verilog function must return
a value and the value must be used, as in an assignment statement.

SystemVerilog relaxes this rule a little in that a function can call a task, but only in a
thread spawned with the fork...join_none statement, which is described in Section
7.1.

If you have a SystemVerilog task that does not consume time, you
should make it a void function, which is a function that does not
return a value. Now it can be called from any task or function. For
maximum flexibility, any debug routine should be a void function
rather than a task so that it can be called from any task or function.
Sample 3.3 prints values from a state machine.

Sample 3.3 Void function for debug

function void print_state(...);
 $display("@%0t: state = %s", $time, cur_state.name());
endfunction

In SystemVerilog, if you want to call a function and ignore its return value, cast the
result to void, as shown in Sample 3.4. Some simulators, such as VCS, allow you to
ignore the return value without using the above void syntax.

Sample 3.4 Ignoring a function’s return value

voidÕ($fscanf(file, "%d", i));

3.3 Task and Function Overview

SystemVerilog makes several small improvements to tasks and functions to make
them look more like C or C++ routines. In general, a routine definition or call with no
arguments does not need the empty parentheses (). This book includes them for added
clarity.

Chapter 3:Procedural Statements and Routines66

3.3.1 Routine begin...end Removed

The first improvement you may notice in SystemVerilog routines is that begin...end
blocks are optional, while Verilog-1995 required them on all but single-line routines.
The task / endtask and function / endfunction keywords are enough to define
the routine boundaries, as show in Sample 3.5.

Sample 3.5 Simple task without begin...end

task multiple_lines;
 $display("First line");
 $display("Second line");
endtask : multiple_lines

3.4 Routine Arguments

Many of the SystemVerilog improvements for routines make it easier to declare argu-
ments and expand the ways you can pass values to and from a routine.

3.4.1 C-Style Routine Arguments

SystemVerilog and Verilog-2001 allow you to declare task and function arguments
more cleanly and with less repetition. The following Verilog task requires you to
declare some arguments twice: once for the direction, and once for the type, as shown
in Sample 3.6.

Sample 3.6 Verilog-1995 routine arguments

task mytask2;
 output [31:0] x;
 reg [31:0] x;
 input y;
 ...
endtask

With SystemVerilog, you can use the less verbose C-style, shown in Sample 3.7. Note
that you should use the universal input type of logic.

Sample 3.7 C-style routine arguments

task mytask1 (output logic [31:0] x,
 input logic y);
...
endtask

Routine Arguments 67

3.4.2 Argument Direction

You can take even more shortcuts with declaring routine arguments. The direction
and type default to “input logic” and are sticky, and so you don’t have to repeat these
for similar arguments. Sample 3.8 shows a routine header written using the Verilog-
1995 style and SystemVerilog data types.

Sample 3.8 Verbose Verilog-style routine arguments

task T3;
 input a, b;
 logic a, b;
 output [15:0] u, v;
 bit [15:0] u, v;
 ...
endtask

You could rewrite this as shown in Sample 3.9.

Sample 3.9 Routine arguments with sticky types

task T3(a, b, output bit [15:0] u, v);

The arguments a and b are input logic, 1-bit wide. The arguments u and v are 16-bit
output bit types. Now that you know this, don’t depend on the defaults, as your code
will be infested with subtle and hard to find bugs, as explained in Section 3.4.6. Always
declare the type and direction for every routine argument.

3.4.3 Advanced Argument Types

Verilog had a simple way to handle arguments: an input or inout was copied to a
local variable at the start of the routine, whereas an output or inout was copied
when the routine exited. No memories could be passed into a Verilog routine, except
scalarscan.

In SystemVerilog, you can specify that an argument is passed by reference, rather
than copying its value. This argument type, ref, has several benefits over input,
output, and inout. First, you can now pass an array into a routine.

Chapter 3:Procedural Statements and Routines68

Sample 3.10 Passing arrays using ref and const

function void print_checksum (const ref bit [31:0] a[]);
 bit [31:0] checksum = 0;
 for (int i=0; i<a.size(); i++)
 checksum ^= a[i];
 $display("The array checksum is %0d", checksum);
endfunction

SystemVerilog allows you to pass array arguments without the ref direction, but the
array is copied onto the stack, an expensive operation for all but the smallest arrays.

The SystemVerilog LRM states that ref arguments can only be used in routines with
automatic storage. If you specify the automatic attribute for programs and module,
all the routines inside are automatic. See Section 3.6 for more details on storage.

Sample 3.10 also shows the const modifier. As a result, the array a points to the
array in the routine call, but the contents of the array cannot be modified. If you try to
change the contents, the compiler prints an error.

Always use ref when passing arrays to a routine for best perfor-
mance. If you don’t want the routine to change the array values, use
the const ref type, which causes the compiler to check that your
routine does not modify the array.

The second benefit of ref arguments is that a task can modify a variable and is
instantly seen by the calling function. This is useful when you have several threads
executing concurrently and want a simple way to pass information. See Chap. 7 for
more details on using fork-join.

In Sample 3.11, the thread2 block in the initial block can access the data from mem-
ory as soon as bus.enable is asserted, even though the bus_read task does not
return until the bus transaction completes, which could be several cycles later. The
data argument is passed as ref, and as a result, the @data statement triggers as soon
as data changes in the task. If you had declared data as output, the @data state-
ment would not trigger until the end of the bus transaction.

Routine Arguments 69

Sample 3.11 Using ref across threads

task bus_read(input logic [31:0] addr,
 ref logic [31:0] data);

 // Request bus and drive address
 bus.request = 1Õb1;
 @(posedge bus.grant) bus.addr = addr;

 // Wait for data from memory
 @(posedge bus.enable) data = bus.data;

 // Release bus and wait for grant
 bus.request = 1Õb0;
 @(negedge bus.grant);
endtask

logic [31:0] addr, data;

initial
 fork
 bus_read(addr, data);
 thread2: begin
 @data; // Trigger on data change
 $display("Read %h from bus", data);
 end
 join

3.4.4 Default Value for an Argument

As your testbench grows in sophistication, you may want to add additional controls to
your code but not break existing code. For the function in Sample 3.10, you might
want to print a checksum of just the middle values of the array. However, you don’t
want to go back and rewrite every call to add extra arguments. In SystemVerilog you
can specify a default value that is used if you leave out an argument in the call. Sam-
ple 3.12 adds low and high arguments to the print_checksum function so that you
can print a checksum of a range of values.

Chapter 3:Procedural Statements and Routines70

Sample 3.12 Function with default argument values

function void print_checksum(ref bit [31:0] a[],
 input bit [31:0] low = 0,
 input int high = -1);
 bit [31:0] checksum = 0;

 if (high == -1 || high >= a.size())
 high = a.size()-1;

 for (int i=low; i<=high; i++)
 checksum += a[i];
 $display("The array checksum is %0d", sum);
endfunction

You can call this function in the following ways, as shown in Sample 3.13. Note that
the first call is compatible with both versions of the print_checksum routine.

Sample 3.13 Using default argument values

print_checksum(a); // Checksum a[0:size()-1] Ð default
print_checksum(a, 2, 4); // Checksum a[2:4]
print_checksum(a, 1); // Start at 1
print_checksum(a,, 2); // Checksum a[0:2]
print_checksum(); // Compile error: a has no default

Using a default value of –1 (or any out-of-range value) is a good way to see if the call
specified a value.

A Verilog for-loop always executes the initialization (int i=low), and test
(i<=high) before starting the loop. Thus, if you accidently passed a low value that
was larger than high or the array size, the for-loop would never execute the body.

3.4.5 Passing Arguments by Name

You may have noticed in the SystemVerilog LRM that the arguments to a task or
function are sometimes called “ports,” just like the connections for a module. If you
have a task or function with many arguments, some with default values, and you only
want to set a few of those arguments, you can specify a subset by specifying the name
of the routine argument with a port-like syntax, as shown in Sample 3.14.

Routine Arguments 71

Sample 3.14 Binding arguments by name

task many (input int a=1, b=2, c=3, d=4);
 $display("%0d %0d %0d %0d", a, b, c, d);
endtask

initial begin // a b c d
 many(6, 7, 8, 9); // 6 7 8 9 Specify all values
 many(); // 1 2 3 4 Use defaults
 many(.c(5)); // 1 2 5 4 Only specify c
 many(, 6, .d(8)); // 1 6 3 8 Mix styles
end

3.4.6 Common Coding Errors

The most common coding mistake that you are likely to make with
a routine is forgetting that the argument type is sticky with respect
to the previous argument, and that the default type for the first
argument is a single-bit input. Start with the simple task header in
Sample 3.15.

Sample 3.15 Original task header

task sticky(int a, b);

The two arguments are input integers. As you are writing the task, you realize that you
need access to an array, and so you add a new array argument, and use the ref type so
that it does not have to be copied. Your routine header now looks like Sample 3.16.

Sample 3.16 Task header with additional array argument

task sticky(ref int array[50],
 int a, b); // What direction are these?

What argument types are a and b? They take the direction of the previous argument
ref. Using ref for a simple variable such as an int is not usually needed, but you would
not get even a warning from the compiler, and thus would not realize that you were
using the wrong direction.

If any argument to your routine is something other than the default input type, specify
the direction for all arguments as shown in Sample 3.17.

Sample 3.17 Task header with additional array argument

task sticky(ref int array[50],
 input int a, b); // Be explicit

Chapter 3:Procedural Statements and Routines72

3.5 Returning from a Routine

Verilog had a primitive way to end a routine; after you executed the last statement in
a routine, it returned to the calling code. In addition, a function returned a value by
assigning that value to a variable with the same name as the function.

3.5.1 The Return Statement

SystemVerilog adds the return statement to make it easier for you to control the
flow in your routines. The task in Sample 3.18 needs to return early because of error
checking. Otherwise, it would have to put the rest of the task in an else clause,
which would cause more indentation and be more difficult to read.

Sample 3.18 Return in a task

task load_array(int len, ref int array[]);
 if (len <= 0) begin
 $display("Bad len");
 return;
 end

 // Code for the rest of the task
 ...
endtask

The return statement in Sample 3.19 can simplify your functions.

Sample 3.19 Return in a function

function bit transmit(...);
 // Send transaction
 ...
 return ~ifc.cb.error; // Return status: 0=error
endfunction

3.5.2 Returning an Array from a Function

Verilog routines could only return a simple value such as a bit, integer, or vector. If
you wanted to compute and return an array, there was no simple way. In SystemVer-
ilog, a function can return an array, using several techniques.

The first way is to define a type for the array, and then use that in the function decla-
ration. Sample 3.20 uses the array type from Sample 2.35, and creates a function to
initialize the array.

Local Data Storage 73

Sample 3.20 Returning an array from a function with a typedef

typedef int fixed_array5[5];
fixed_array5 f5;

function fixed_array5 init(int start);
 foreach (init[i])
 init[i] = i + start;
endfunction

initial begin
 f5 = init(5);
 foreach (f5[i])
 $display("f5[%0d] = %0d", i, f5[i]);
end

One problem with the preceding code is that the function init creates an array,
which is copied into the array f5. If the array was large, this could be a large perfor-
mance problem.

The alternative is to pass the routine by reference. The easiest way is to pass the array
into the function as a ref argument, as shown in Sample 3.21.

Sample 3.21 Passing an array to a function as a ref argument

function void init(ref int f[5], input int start);
 foreach (f[i])
 f[i] = i + start;
endfunction

int fa[5];
initial begin
 init(fa, 5);
 foreach (fa[i])
 $display("fa[%0d] = %0d", i, fa[i]);
end

The last way for a function to return an array is to wrap the array inside of a class, and
return a handle to an object. Chap. 5 describes classes, objects, and handles.

3.6 Local Data Storage

When Verilog was created in the 1980s, it was tightly tied to describing hardware. As
a result, all objects in the language were statically allocated. In particular, routine
arguments and local variables were stored in a fixed location, rather than pushing
them on a stack like other programming languages. Why try to model dynamic code
such as a recursive routine when there is no way to build this in silicon? However,

Chapter 3:Procedural Statements and Routines74

software engineers verifying the designs, who were used to the behavior of stack-
based languages such as C, were bitten by these subtle bugs, and were thus limited in
their ability to create complex testbenches with libraries of routines.

3.6.1 Automatic Storage

In Verilog-1995, if you tried to call a task from multiple places in your testbench, the
local variables shared common, static storage, and so the different threads stepped on
each other’s values. In Verilog-2001 you can specify that tasks, functions, and mod-
ules use automatic storage, which causes the simulator to use the stack for local
variables.

In SystemVerilog, routines still use static storage by default, for both
modules and program blocks. You should always make program
blocks (and their routines) use automatic storage by putting the
automatic keyword in the program statement. In Chap. 4 you will
learn about program blocks that hold the testbench code. Section 7.1.6
shows how automatic storage helps when you are creating multiple

threads.

Sample 3.22 shows a task to monitor when data are written into memory.

Sample 3.22 Specifying automatic storage in program blocks

program automatic test;
 task wait_for_mem(input [31:0] addr, expect_data,
 output success);
 while (bus.addr !== addr)
 @(bus.addr);
 success = (bus.data == expect_data);
 endtask
...
endprogram

You can call this task multiple times concurrently, as the addr and expect_data
arguments are stored separately for each call. Without the automatic modifier, if
you called wait_for_mem a second time while the first was still waiting, the second
call would overwrite the two arguments.

3.6.2 Variable Initialization

A similar problem occurs when you try to initialize a local vari-
able in a declaration, as it is actually initialized before the start of
simulation. The general solution is to avoid initializing a variable
in a declaration to anything other than a constant. Use a separate
assignment statement to give you better control over when initial-
ization is done.

Time Values 75

The task in Sample 3.23 looks at the bus after five cycles and then creates a local vari-
able and attempts to initialize it to the current value of the address bus.

Sample 3.23 Static initialization bug

program initialization; // Buggy version
 task check_bus;
 repeat (5) @(posedge clock);
 if (bus_cmd == ÔREAD) begin
 // When is local_addr initialized?
 logic [7:0] local_addr = addr<<2; // Bug
 $display("Local Addr = %h", local_addr);
 end
 endtask
endprogram

The bug is that the variable local_addr is statically allocated, and so it is actually
initialized at the start of simulation, not when the begin...end block is entered. Once
again, the solution is to declare the program as automatic as shown in Sample 3.24.

Sample 3.24 Static initialization fix: use automatic

program automatic initialization; // Bug solved
...
endprogram

Additionally, you can avoid this by never initializing a variable in the declaration, but
this is harder to remember, especially for C programmers. Sample 3.25 show the rec-
ommended style of separating the declaration and initialization.

Sample 3.25 Static initialization fix: break apart declaration and initialization

logic [7:0] local_addr
local_addr = addr << 2; // Bug

3.7 Time Values

SystemVerilog has several new constructs to allow you to unambiguously specify
time values in your system.

3.7.1 Time Units and Precision

When you rely on the Ôtimescale compiler directive, you must compile the files in
the proper order to be sure all the delays use the proper scale and precision. The
timeunit and timeprecision declarations eliminate this ambiguity by precisely
specifying the values for every module. Sample 3.26 shows these declarations. Note

Chapter 3:Procedural Statements and Routines76

that if you use these instead of Ôtimescale, you must put them in every module that
has a delay.

3.7.2 Time Literals

SystemVerilog allows you to unambiguously specify a time value plus units. Your
code can use delays such as 0.1ns or 20ps. Just remember to use timeunit and
timeprecision or Ôtimescale. You can make your code even more time aware
by using the classic Verilog $timeformat(), $time, and $realtime system tasks.
The four arguments to $timef ormat are the scaling factor (–9 for nanoseconds, –12 for
picoseconds), the number of digits to the right of the decimal point, a string to print
after the time value, and the minimum field width.

Sample 3.26 shows various delays and the result from printing the time when it is for-
matting by $timeformat() and the %t specifier.

Sample 3.26 Time literals and $timeformat

module timing;
 timeunit 1ns;
 timeprecision 1ps;
 initial begin
 $timeformat(-9, 3, "ns", 8);
 #1 $display("%t", $realtime); // 1.000ns
 #2ns $display("%t", $realtime); // 3.000ns
 #0.1ns $display("%t", $realtime); // 3.100ns
 #41ps $display("%tÓ, $realtime); // 3.141ns
 end
endmodule

3.7.3 Time and Variables

You can store time values in variables and use them in calculations and delays. The
values are scaled and rounded according to the current time scale and precision. Vari-
ables of type time cannot hold fractional delays as they are just 64-bit integers, and
so delays will be rounded. You should use real variables if this is a problem.

Sample 3.27 shows how real variables are able to retain accurate values and are only
rounded when used as a delay.

Conclusion 77

Sample 3.27 Time variables and rounding

Ôtimescale 1ps/1ps
module ps;
 initial begin
 real rdelay = 800fs; // Stored as 0.800
 time tdelay = 800fs; // Rounded to 1
 $timeformat(-15, 0, "fs", 5);
 #rdelay; // Delay rounded to 1ps
 $display("%t", rdelay); // "800fs"
 #tdelay; // Delay another 1ps
 $display("%t", tdelay); // "1000fs"
 end

endmodule

3.7.4 $time vs. $realtime

The system task $time returns an integer scaled to the time precision of the current
module, but missing any fractional units, while $realtime returns a real number
with the complete time value, including fractions. This book uses $time in the exam-
ples for brevity, but your testbenches may need to use $realtime.

3.8 Conclusion

The new SystemVerilog procedural constructs and task/function features make it eas-
ier for you to create testbenches by making the language look more like other
programming languages such as C/C++. As a bonus, SystemVerilog has additional
HDL constructs such as timing controls, simple thread control, and 4-state logic.

Chapter 4

Connecting the Testbench
and Design

There are several steps needed to verify a design: generate stimulus, capture
responses, determine correctness, and measure progress. However, first you need the
proper testbench, connected to the design as shown in Figure 4-1.

Your testbench wraps around the design, sending in stimulus and capturing the
design’s response. The testbench forms the “real world” around the design, mimick-
ing the entire environment. For example, a processor model needs to connect to
various buses and devices, which are modeled in the testbench as bus functional mod-
els. A networking device connects to multiple input and output data streams that are
modeled based on standard protocols. A video chip connects to buses that send in
commands, and then forms images that are written into memory models. The key con-
cept is that the testbench simulates everything not in the design under test.

Figure 4-1 The testbench – design environment

Testbench

Design
Under
Test

inputs outputs

Testbench

Design
Under
Test

inputs outputs

Chapter 4:Connecting the Testbench and Design80

Your testbench needs a higher-level way to communicate with the design than Ver-
ilog’s ports and the error-prone pages of connections. You need a robust way to
describe the timing so that synchronous signals are always driven and sampled at the
correct time and all interactions are free of the race conditions so common to Verilog
models.

4.1 Separating the Testbench and Design

In an ideal world, all projects have two separate groups: one to create the design and
one to verify it. In the real world, limited budgets may require you to wear both hats.
Each team has its own set of specialized skills, such as creating synthesizable RTL
code, or figuring out new ways to find bugs in the design. These two groups each read
the original design specification and make their own interpretations. The designer has
to create code that meets that specification, whereas your job as the verification engi-
neer is to create scenarios where the design does not match its description.

Likewise, your testbench code is in a separate block from design code. In classic Ver-
ilog, each goes in a separate module. However, using a module to hold the testbench
often causes timing problems around driving and sampling, and so SystemVerilog
introduces the program block to separate the testbench, both logically and temporally.
For more details, see Section 4.3.

As designs grow in complexity, the connections between the blocks increase. Two
RTL blocks may share dozens of signals, which must be listed in the correct order for
them to communicate properly. One mismatched or misplaced connection and the
design will not work. You can reduce errors by using the connect-by-name syntax,
but this more than doubles your typing burden. If it is a subtle error, such as swapping
pins that only toggle occasionally, you may not notice the problem for some time.
Worse yet is when you add a new signal between two blocks. You have to edit not
only the blocks to add the new port but also the higher-level netlists that wire up the
devices. Again, one wrong connection at any level and the design stops working. Or
worse, the system only fails intermittently!

The solution is the interface, the SystemVerilog construct that represents a bundle of
wires, with intelligence such as synchronization, and functional code. An interface
can be instantiated like a module but also connected to ports like a signal.

4.1.1 Communication Between the Testbench and DUT

The next few sections show a testbench connected to an arbiter, using individual sig-
nals and again using interfaces. Here is a diagram of the top level design including a
testbench, arbiter, clock generator, and the signals that connect them as shown in
Figure 4-2). This is a trivial design, and so you can concentrate on the SystemVerilog
concepts and not get bogged down in the design. At the end of the chapter, an ATM
router is shown.

Separating the Testbench and Design 81

Figure 4-2 Testbench – Arbiter without interfaces

4.1.2 Communication with Ports

The following code fragments show the elements of connecting an RTL block to a
testbench. First is the header for the arbiter model. This uses the Verilog-2001 style
port declarations, where the type and direction are in the header. Some code has been
left out for clarity.

As discussed in Section 2.1.1, SystemVerilog has expanded the classic reg type so
that you can use it like a wire to connect blocks. In recognition of its new capabili-
ties, the reg type has the new name of logic. The only place where you cannot use a
logic variable is a net with multiple structural drivers, where you must use a net
such as wire.

Sample 4.1 Arbiter model using ports

module arb_port (output logic [1:0] grant,
 input logic [1:0] request,
 input logic rst,
 input logic clk);
 ...
 always @(posedge clk or posedge rst) begin
 if (rst)
 grant <= 2'b00;
 else
 ...
 end
endmodule

The testbench is kept in a module to separate it from the design. Typically, it connects
to the design with ports.

Arbiter

Testbench

clk

grant[1:0]request[1:0]

rst Arbiter

Testbench

clk

grant[1:0]request[1:0]

rst

Chapter 4:Connecting the Testbench and Design82

Sample 4.2 Testbench using ports

module test (input logic [1:0] grant,
 output logic [1:0] request,
 output logic rst,
 input logic clk);

 initial begin
 @(posedge clk) request <= 2'b01;
 $display("@%0t: Drove req=01", $time);
 repeat (2) @(posedge clk);
 if (grant != 2'b01)
 $display("@%0t: a1: grant != 2'b01", $time);
 ...
 $finish;
 end
endmodule

The top netlist connects the testbench and DUT, and includes a simple clock
generator.

Sample 4.3 Top-level netlist without an interface

module top;
 logic [1:0] grant, request;
 bit clk, rst;
 always #5 clk = ~clk;

 arb_port a1 (grant, request, rst, clk); // Sample 4.1
 test t1 (grant, request, rst, clk); // Sample 4.2
endmodule

In Sample 4.3, the netlists are simple, but real designs with hundreds of pins require
pages of signal and port declarations. All these connections can be error prone. As a
signal moves through several layers of hierarchy, it has to be declared and connected
over and over. Worst of all, if you just want to add a new signal, it has to be declared
and connected in multiple files. SystemVerilog interfaces can help in each of these
cases.

4.2 The Interface Construct

Designs have become so complex that even the communication between blocks may
need to be separated out into separate entities. To model this, SystemVerilog uses the
interface construct that you can think of as an intelligent bundle of wires. They con-
tain the connectivity, synchronization, and optionally, the functionality of the
communication between two or more blocks. They connect design blocks and/or
testbenches.

The Interface Construct 83

Design-level interfaces are covered in Sutherland (2004). This book concentrates on
interfaces that connect design blocks and testbenches.

4.2.1 Using an Interface to Simplify Connections

The first improvement to the arbiter example is to bundle the wires together into an
interface. Figure 4-3 shows the testbench and arbiter, communicating using an inter-
face. Note how the interface extends into the two blocks, representing the drivers and
receivers that are functionally part of both the test and the DUT. The clock can be part
of the interface or a separate port.

Figure 4-3 An interface straddles two modules

The simplest interface is just a bundle of bidirectional signals. Use the logic data
type so that you can drive the signals from procedural statements.

Sample 4.4 Simple interface for arbiter

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic rst;
endinterface

Sample 4.5 is the device under test, the arbiter, that uses an interface instead of ports.

Sample 4.5 Arbiter using a simple interface

module arb (arb_if arbif);
 ...
 always @(posedge arbif.clk or posedge arbif.rst)
 begin
 if (arbif.rst)
 arbif.grant <= 2'b00;
 else
 arbif.grant <= next_grant;
 ...
 end
endmodule

Testbench ArbiterInterfaceTestbench ArbiterInterface

Chapter 4:Connecting the Testbench and Design84

The interface instance name, arbif in Sample 4.5, should be kept as
short as possible as you are going to type it a lot in the design and
testbench. You might even consider using a single character, a, as
long as this is not ambiguous. This book, with its small examples, has
short, but not telegraphic names.

Sample 4.6 shows the testbench. You refer to a signal in an interface by making a
hierarchical reference using the instance name arbif.request. Interface signals
should always be driven using nonblocking assignments. This is explained in more
detail in Section 4.4.3.

Sample 4.6 Testbench using a simple arbiter interface

module test (arb_if arbif);
 ...
 initial begin
 // reset code left out

 @(posedge arbif.clk);
 arbif.request <= 2'b01;
 $display("@%0t: Drove req=01", $time);
 repeat (2) @(posedge arbif.clk);
 if (arbif.grant != 2'b01)
 $display("@%0t: a1: grant != 2'b01", $time);

 $finish;
 end
endmodule : test

All these blocks are instantiated and connected in the top module.

Sample 4.7 Top module using a simple arbiter interface

module top;
 bit clk;
 always #5 clk = ~clk;

 arb_if arbif(clk); // From Sample 4.4
 arb a1 (arbif); // From Sample 4.5
 test t1(arbif); // From Sample 4.6
endmodule : top

You can see an immediate benefit, even on this small device: the connections become
cleaner and less prone to mistakes. If you wanted to put a new signal in an interface,
you would just have to add it to the interface definition and the modules that actually
used it. You would not have to change any module such as top that just pass the
interface through. This language feature greatly reduces the chance for wiring errors.

The Interface Construct 85

Make sure you declare your interfaces outside of modules and
program blocks. If you forget, expect all sorts of trouble. Some
compilers may not support defining an interface inside a module.
If allowed, the interface would be local to the module and thus not
visible to the rest of the design. Sample 4.8 shows the common

mistake of including the interface definition right after other include statements.

Sample 4.8 Bad test module includes interface

module bad_test(arb_if arbif);
Ôinclude "MyTest.sv" // Legal include
Ôinclude "arb_if.sv" // BAD:Interface hidden in module
...

4.2.2 Connecting Interfaces and Ports

If you have a Verilog-2001 legacy design with ports that cannot be changed to use an
interface, you can just connect the interface’s signals to the individual ports. Sample
4.9 connects the original arbiter from Sample 4.1 to the interface in Sample 4.4.

Sample 4.9 Connecting an interface to a module that uses ports

module top;
 bit clk;
 always #5 clk = ~clk;

 arb_if arbif(clk);
 arb_port a1 (.grant (arbif.grant), // .port (ifc.signal)
 .request (arbif.request),
 .rst (arbif.rst),
 .clk (arbif.clk));
 test t1(arbif);
endmodule : top

4.2.3 Grouping Signals in an Interface Using Modports

Sample 4.5 uses a point-to-point connection scheme with no signal directions in the
interface. The original netlists using ports had this information that the compiler uses
to check for wiring mistakes. The modport construct in an interface lets you group
signals and specify directions. The MONITOR modport allows you to connect a mon-
itor module.

Chapter 4:Connecting the Testbench and Design86

Sample 4.10 Interface with modports

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic rst;

 modport TEST (output request, rst,
 input grant, clk);

 modport DUT (input request, rst, clk,
 output grant);

 modport MONITOR (input request, grant, rst, clk);

endinterface

Here are the arbiter model and testbench, with the modport in their port connection
list. Note that you put the modport name, DUT or TEST, after the interface name,
arb_if. Other than the modport name, these are identical to the previous examples.

Sample 4.11 Arbiter model with interface using modports

module arb (arb_if.DUT arbif);
 ...
endmodule

Sample 4.12 Testbench with interface using modports

module test (arb_if.TEST arbif);
 ...
endmodule

The top model does not change from Sample 4.7, as modports are specified in the
module header, not when the module is instantiated.

Even though the code didn’t change much (except that the interface grew larger), this
interface more accurately represents the real design, especially the signal direction.

There are two ways to use these modport names in your design. You can specify them
in the program and modules that connect to the interface signals, or you can put them
in the top level module that passes the interface into the port list of the program and
modules. This book recommends the former, as the modport is an implementation
detail that should not clutter the top level module. However, you may want the flexi-
bility to instantiate a module more than once, with each instance connected to a
different modport, that is, a different subset of interface signals. In this case, you
would need to specify the modport when you instantiate the module, not in the
module.

The Interface Construct 87

4.2.4 Using Modports with a Bus Design

Not every signal needs to go in every interface. Consider a CPU – memory bus mod-
eled with an interface. The CPU is the bus master and drives a subset of the
signals, such as request, command, and address. The memory is a slave and
receives those signals and drives ready. Both master and slave drive data. The bus
arbiter only looks at request and grant, and ignores all other signals. So your inter-
face would have three modports for master, slave, and arbiter, plus an optional
monitor modport.

4.2.5 Creating an Interface Monitor

You can create a bus monitor using the MONITOR modport. The following is a trivial
monitor for the arbiter. For a real bus, you could decode the commands and print the
status: completed, failed, etc.

Sample 4.13 Arbiter model with interface using modports

module monitor (arb_if.MONITOR arbif);

 always @(posedge arbif.request[0]) begin
 $display("@%0t: request[0] asserted", $time);
 @(posedge arbif.grant[0]);
 $display("@%0t: grant[0] asserted", $time);
 end

 always @(posedge arbif.request[1]) begin
 $display("@%0t: request[1] asserted", $time);
 @(posedge arbif.grant[1]);
 $display("@%0t: grant[1] asserted", $time);
 end
endmodule

4.2.6 Interface Trade-Offs

An interface cannot contain module instances, only instances of other interfaces.
There are trade-offs in using interfaces with modports as compared with traditional
ports connected with signals.

The advantages to using an interface are as follows.

An interface is ideal for design reuse. When two blocks communicate with a
specified protocol using more than two signals, consider using an interface.

[Au3]

Chapter 4:Connecting the Testbench and Design88

If groups of signals are repeated over and over, as in a networking switch,
you should additionally use virtual interfaces, as described in Chap. 10.
The interface takes the jumble of signals that you declare over and over in
every module or program and puts it in a central location, reducing the possi-
bility of misconnecting signals.
To add a new signal, you just have to declare it once in the interface, not in
higher-level modules, once again reducing errors.
Modports allow a module to easily tap a subset of signals from an interface.
You can specify signal direction for additional checking.

The disadvantages of using an interface are as follows.

For point-to-point connections, interfaces with modports are almost as ver-
bose as using ports with lists of signals. Interfaces have the advantage that all
the declarations are still in one central location, reducing the chance for mak-
ing an error.
You must now use the interface name in addition to the signal name, possi-
bly making the modules more verbose.
If you are connecting two design blocks with a unique protocol that will not
be reused, interfaces may be more work than just wiring together the ports.
It is difficult to connect two different interfaces. A new interface (bus_if)
may contain all the signals of an existing one (arb_if), plus new signals
(address, data, etc.). You may have to break out the individual signals and
drive them appropriately.

4.2.7 More Information and Examples

The SystemVerilog LRM specifies many other ways for you to use interfaces. See
Sutherland (2004) for more examples of using interfaces for design.

4.3 Stimulus Timing

The timing between the testbench and the design must be carefully orchestrated. At a
cycle level, you need to drive and receive the synchronous signals at the proper time
in relation to the clock. Drive too late or sample too early, and your testbench is off a
cycle. Even within a single time slot (for example, everything that happens at time
100 ns), mixing design and testbench events can cause a race condition, such as when
a signal is both read and written at the same time. Do you read the old value, or the
one just written? In Verilog, nonblocking assignments help when a test module drives
the DUT, but the test could not always be sure it sampled the last value driven by the
design. SystemVerilog has several constructs to help you control the timing of the
communication.

Stimulus Timing 89

4.3.1 Controlling Timing of Synchronous Signals with a Clocking Block

An interface block uses a clocking block to specify the timing of synchronous signals
relative to the clocks. Any signal in a clocking block is now driven or sampled syn-
chronously, ensuring that your testbench interacts with the signals at the right time.
Clocking blocks are mainly used by testbenches but also allow you to create abstract
synchronous models.

An interface can contain multiple clocking blocks, one per clock domain, as there is
single clock expression in each block. Typical clock expressions are @(posedge
clk) for a single edge clock and @(clk) for a DDR (double data rate) clock.

You can specify a clock skew in the clocking block using the default statement, but
the default behavior is that input signals are sampled just before the design executes,
and the outputs are driven back into the design during the current time slot. The next
Section provides more details on the timing between the design and testbench.

Once you have defined a clocking block, your testbench can wait for the clocking
expression with @arbif.cb rather than having to spell out the exact clock and edge.
Now if you change the clock or edge in the clocking block, you do not have to change
your testbench.

Sample 4.14 is similar to Sample 4.10 except that the TEST modport now treats
request and grant as synchronous signals. The clocking block cb declares that the
signals are active on the positive edge of the clock. The signal directions are relative
to the modport where they are used. So request is an output in the TEST modport,
and grant is an input.

Chapter 4:Connecting the Testbench and Design90

Sample 4.14 Interface with a clocking block

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic rst;

 clocking cb @(posedge clk); // Declare cb
 output request;
 input grant;
 endclocking

 modport TEST (clocking cb, // Use cb
 output rst);

 modport DUT (input request, rst, output grant);
endinterface

// Trivial test, see Sample 4.20 for a better one
module test(arb_if.TEST arbif);
 initial begin
 arbif.cb.request <= 0;
 @arbif.cb;
 $display("@%0t: Grant = %b", $time, arbif.cb.grant);
 end
endmodule

4.3.2 Logic vs. Wire in an Interface

This book recommends declaring the signals in your interface as logic, while the
VMM has a rule that says to use a wire. The difference is ease-of-use vs. reusability.

If your testbench drives an asynchronous signal in an interface with a procedural
assignment, the signal must be a logic type. A wire can only be driven with a con-
tinuous assignment statement. Signals in a clocking block are always synchronous
and can be declared as logic or wire. Sample 4.15 shows how the logic signal can
be driven directly, whereas the wire requires additional code.

Stimulus Timing 91

Sample 4.15 Interface with a clocking block

interface asynch_if();
 logic l;
 wire w;

endinterface

module test(asynch_if ifc);
 logic local_wire;
 assign ifc.w <= local_wire;

 initial begin
 ifc.l <= 0; // Drive asych logic directly ...
 local_wire <= 1; // but drive wire through assign
 ...
 end
endmodule

Another reason to use logic for interface signals is that the compiler will give an
error if you unintentionally use multiple structural drivers.

The VMM takes a more long-term approach. Take the case where you have created
test code that works well on the current project and is later used in a new design.
What if your interface with all its logic signals is connected such that now a signal
has multiple structural drivers? The engineers will have to change that logic to a
wire, and, if the signal does not go through a clocking block, change the procedural
assignment statements. Now there are two versions of the interface, and existing tests
must be modified before they can be reused. Rewriting good code goes against the
VMM principles.

4.3.3 Timing Problems in Verilog

Your testbench needs to be separate from the design, not just logically but also tem-
porally. Consider how a hardware tester interacts with a chip for synchronous signals.
In a real hardware design, the DUT’s storage elements latch their inputs from the
tester at the active clock edge. These values propagate through the storage outputs,
and then the logic clouds to the inputs of the next storage elements. The time from the
input of the first storage to the next must be less than a clock cycle. So a hardware
tester needs to drive the chip’s input at the clock edge, and read the outputs just before
the following edge.

A testbench has to mimic this tester behavior. It should drive on or after the active
clock edge, and should sample as late as possible as allowed by the protocol timing
specification, just before the active clock edge.

If the DUT and testbench are made of Verilog modules only, this outcome is nearly
impossible to achieve. If the testbench drives the DUT at the clock edge, there could

Chapter 4:Connecting the Testbench and Design92

be race conditions. What if the clock propagates to some DUT inputs before the TB
stimulus, but is a little later to other inputs? From the outside, the clock edges all
arrive at the same simulation time, but in the design, some inputs get the value driven
during the last cycle, whereas other inputs get values from the current cycle.

One way around this problem is to add small delays to the system, such as #0. This
forces the thread of Verilog code to stop and be rescheduled after all other code.
Invariably though, a large design has several sections that all want to execute last.
Whose #0 wins out? It could vary from run to run and be unpredictable between sim-
ulators. Multiple threads using #0 delays cause indeterministic behavior. Avoid using
#0 as it will make your code unstable and not portable.

The next solution is to use a larger delay, #1. RTL code has no timing, other than
clock edges, and so one time unit after the clock, the logic has settled. However, what
if one module uses a time precision of 1 ns, whereas another used a resolution of just
10 ps? Does that #1 mean 1 ns, 10 ps, or something else? You want to drive as soon
as possible after the clock cycle with the active clock edge, but not during that time,
and before anything else can happen. Worse yet, your DUT may contain a mix of
RTL code with no delays and gate code with delays. Just as you should avoid using
#0, stay away from #1 delays to fix timing problems.

4.3.4 Testbench – Design Race Condition

Sample 4.16 shows a potential race condition between the testbench and design. The
race condition occurs when the test drives the start signal and then the other ports.
The memory is waiting on the start signal and could wake up immediately, whereas
the write, addr, and data signals still have their old values. You could delay all
these signals slightly by using nonblocking assignments, as recommended by Cum-
mings (2000), but remember that the testbench and the design are both using these
assignments. It is still possible to get a race condition between the testbench and
design.

Sampling the design outputs has a similar problem. You want to grab the values at the
last possible moment, just before the active clock edge. Perhaps you know the next
clock edge is at 100 ns. You can’t sample right at the clock edge at 100 ns, as some
design values may have already changed. You should sample at Tsetup just before
the clock edge.

Stimulus Timing 93

Sample 4.16 Race condition between testbench and design

module memory(input wire start, write,
 input wire [7:0] addr,
 inout wire [7:0] data);
 logic [7:0] mem[256];
 always @(posedge start) begin
 if (write)
 mem[addr] <= data;
 ...
 end
endmodule

module test(output logic start, write,
 output logic [7:0] addr, data);
 initial begin
 start = 0; // Initialize signals
 write = 0;
 #10; // Short delay
 addr = 8Õh42; // Start first command
 data = 8Õh5a;
 start = 1;
 write = 1;
 ...
 end
endmodule

4.3.5 The Program Block and Timing Regions

The root of the problem is the mixing of design and testbench events during the same
time slot, though even in pure RTL the same problem can happen11. What if there
were a way you could separate these events temporally, just as you separated the
code? At 100 ns, your testbench could sample the design outputs before the clock has
had a chance to change and any design activity has occurred. By definition, these val-
ues would be the last possible ones from the previous time slot. Then, after all the
design events are done, your testbench would start.

How does SystemVerilog know to schedule the testbench events separately from the
design events? In SystemVerilog, your testbench code is in a program block, which is
similar to a module in that it can contain code and variables and be instantiated in
other modules. However, a program cannot have any hierarchy such as instances of
modules, interfaces, or other programs.

A new division of the time slot was introduced in SystemVerilog as shown in Figure 4-
4. In Verilog, most events executed in the Active region. There are dozens of other
regions for nonblocking assignments, PLI execution, etc., but they can be ignored for

1Good coding guidelines such as proper use of nonblocking assignments can reduce these race conditions,
but improperly coded assignments have the habit of creeping in. Bugs happen, even in testbenches.

Chapter 4:Connecting the Testbench and Design94

the purposes of this book. See the LRM and Cummings and Salz (2006) for more details
on the SystemVerilog event regions.

Figure 4-4 Main regions inside a SystemVerilog time step

First to execute during a time slot is the Active region, where design events run.
These include your RTL and gate code plus the clock generator. The second region is
the Observed region, where assertions are evaluated. Following that is the Reactive
region where the testbench executes. Note that time does not strictly flow forwards –
events in the Observed and Reactive regions can trigger further design events in the
Active region in the current cycle. Lastly is the Postponed region, which samples sig-
nals at the end of the time slot, in the read-only period, after design activity has
completed as shown in Table 4-1.

Table 4-1 Primary SystemVerilog scheduling regions

Name Activity

Active Simulation of design code in modules

Observed Evaluation of SystemVerilog Assertions

Reactive Execution of testbench code in programs

Postponed Sampling design signals for testbench input

To next
time slot

From previous
time slot

Active
(design)

Observed
(assertions)

Reactive
(testbench)

Loop back
if more events

Postponed
(sample)

To next
time slot

From previous
time slot

Active
(design)

Observed
(assertions)

Reactive
(testbench)

Loop back
if more events

Postponed
(sample)

Stimulus Timing 95

Sample 4.17 shows part of the testbench code for the arbiter. Note that the statement
@arbif.cb waits for the active edge of the clocking block, @(posedge clk), as
shown in Sample 4.14.

Sample 4.17 Testbench using interface with clocking block

program automatic test (arb_if.TEST arbif);
 ...
 initial begin
 arbif.cb.request <= 2'b01;
 $display("@%0t: Drove req=01", $time);
 repeat (2) @arbif.cb;
 if (arbif.cb.grant != 2'b01)
 $display("@%0t: a1: grant != 2'b01", $time);
 end

endprogram : test

Section 4.4 explains more about the driving and sampling of interface signals.

Your test should be contained in a single program. You should use
OOP to build a dynamic, hierarchical testbench from objects instead
of modules. A simulation may have multiple program blocks if you
are using code from other people or combining several tests.

As discussed in Section 3.6.1, you should always declare your pro-
gram block as automatic so that it behaves more like the routines in
stack-based languages you may have worked with, such as C.

4.3.6 The End of Simulation

In Verilog, simulation continues while there are scheduled events, or until a $finish
is executed. SystemVerilog adds an additional way to end simulation. A program
block is treated as if it contains a test. If there is only a single program block, simula-
tion ends when you complete the last statement in every initial-block, as this is
considered the end of the test. Simulation ends even if there are threads still running
in the program or modules. As a result, you don’t have to shut down every monitor
and driver when a test is done.

If there are several program blocks, simulation ends when the last program completes.
This way simulation ends when the last test completes. You can terminate any pro-
gram block early by executing $exit. Of course you can still use $finish to end
simulation.

Chapter 4:Connecting the Testbench and Design96

4.3.7 Specifying Delays Between the Design and Testbench

The default timing of the clocking block is to sample inputs with a delay of #1step
and to drive the outputs with a delay of #0. The 1step delay specifies that signals are
sampled in the Postponed region of the previous time slot, before any design activity.
So you get the output values just before the clock changes. The testbench outputs are
synchronous by virtue of the clocking block, and so they flow directly into the design.
The program block, running in the Reactive region, retriggers the Active region dur-
ing the same time slot. If you have a design background, you can remember this by
imagining that the clocking block inserts a synchronizer between the design and test-
bench as shown in Figure 4-5.

Figure 4-5 A clocking block synchronizes the DUT and testbench

4.4 Interface Driving and Sampling

Your testbench needs to drive and sample signals from the design, primarily through
interfaces with clocking blocks. The next Section uses the arbiter interface from Sam-
ple 4.14 and the top-level module from Sample 4.9.

Asynchronous signals such as rst pass through the interface with no delays. The sig-
nals in the clocking block get synchronized as shown in the sections below.

4.4.1 Interface Synchronization

You can use the Verilog @ and wait constructs to synchronize with the signals in a
testbench. The following code does not do anything useful except to show the various
constructs.

Design
Under Test

Testbench

out
test
out d q

clk

test
inin Design

Under Test

Testbench

out
test
out d q

clk

d q

clk

test
inin

Interface Driving and Sampling 97

Sample 4.18 Signal synchronization

program automatic test(bus_if.TB bus);
 initial begin
 @bus.cb; // Continue on active edge
 // in clocking block
 repeat (3) @bus.cb; // Wait for 3 active edges
 @bus.cb.grant; // Continue on any edge
 @(posedge bus.cb.grant); // Continue on posedge
 @(negedge bus.cb.grant); // Continue on negedge
 wait (bus.cb.grant==1); // Wait for expression
 // No delay if already true
 @(posedge bus.cb.grant or
 negedge bus.rst); // Wait for several signals
 end
endprogram

4.4.2 Interface Signal Sample

When you read a signal from a clocking block, you get the sample from just before the
last clock edge, i.e., from the Postponed region. The following code shows a program
block that reads the synchronous grant signal from the DUT. The arb module drives
grant to 1 and 2 in the middle of a cycle, and then to 3 exactly at the clock edge.

Sample 4.19 Synchronous interface sample and drive from module

Ôtimescale 1ns/1ns
program test(arb_if.TEST arbif);
 initial begin
 $monitor("@%0t: grant=%h", $time, arbif.cb.grant);
 #50ns $display("End of test");
 end
endprogram

module arb(arb_if.DUT arbif);
 initial begin
 #7 arbif.grant = 1; // @ 7ns
 #10 arbif.grant = 2; // @ 17ns
 #8 arbif.grant = 3; // @ 25ns
 end
endmodule

The waveforms in Figure 4-6 show that in the program, arbif.cb.grant gets the
value from just before the clock edge. When the interface input changes right at a clock
edge, 25 ns, that value does not propagate to the testbench for another cycle, 35 ns.

Chapter 4:Connecting the Testbench and Design98

Figure 4-6 Sampling a synchronous interface

4.4.3 Interface Signal Drive

Here is an abbreviated version of the arbiter test program, which uses the arbiter inter-
face in Sample 4.14.

Sample 4.20 Testbench using interface with clocking block

program automatic test (arb_if.TEST arbif);

 initial begin
 arbif.cb.request <= 2'b01;
 $display("@%0t: Drove req=01", $time);
 repeat (2) @arbif.cb;
 if (arbif.cb.grant != 2'b01)
 $display("@%0t: grant != 2'b01", $time);
 end

endprogram : test

When using modports with clocking blocks, a synchronous inter-
face signal such as request must be prefixed with both the
interface name, arbif, and the clocking block name, cb. So in
Sample 4.20, arbif.cb.request is legal, but arbif.request
is not. This is the most common coding mistake with interfaces

and clocking blocks.

4.4.4 Driving Interface Signals Through a Clocking Block

You should always drive interface signals in a clocking block with a synchronous
drive using the <= operator.2 This is because the design signal does not change imme-
diately after your assignment – remember that your testbench executes in the Reactive
region while design code is in the Active region. If your testbench drives
arbif.cb.request at 100 ns, the same time as arbif.cb (which is @(posedge
clk) according to the clocking block), request changes in the design at 100 ns.

2Yes, this does look like a nonblocking assignment, but the LRM insists that this is something
different.

clk

DUT arb.grant

EST arbif.cb.grant

1X 2 3

X 2 31
15ns 25ns 35ns5ns

clk

DUT arb.grant

EST arbif.cb.grant

1X 2 3

X 2 31
15ns 25ns 35ns5ns

Interface Driving and Sampling 99

However, if your testbench tries to drive arbif.cb.request at time 101 ns,
between clock edges, the change does not propagate until the next clock edge. In this
way, your drives are always synchronous. In Sample 4.19, arbif.grant is driven by
a module and can use a blocking assignment.

If the testbench drives the synchronous interface signal at the active edge of the clock,
the value propagates immediately to the design. This is because the default output
delay is #0 for a clocking block. If the testbench drives the output just after the active
edge, the value is not seen in the design until the next active edge of the clock.

Sample 4.21 Interface signal drive

busif.cb.request <= 1; // Synchronous drive
busif.cb.cmd <= cmd_buf; // Synchronous drive

Sample 4.22 shows what happens if you drive a synchronous interface signal at vari-
ous points during a clock cycle. This uses the interface from Sample 4.14 and the top
module and clock generator from Sample 4.9.

Sample 4.22 Driving a synchronous interface

program test(arb_if.TEST arbif);
 initial begin
 # 7 arbif.cb.request <= 3; // @ 7ns
 #10 arbif.cb.request <= 2; // @ 17ns
 # 8 arbif.cb.request <= 1; // @ 25ns
 #15 finish;
 end
endprogram

module arb(arb_if.DUT arbif);
 initial
 $monitor("@%0t: req=%h", $time, arbif.request);
endmodule

Note that in Figure 4-7, the value 3, driven in the middle of the second cycle, is seen by the
DUT at the start of the third cycle. The value 2 is driven in the middle of the third cycle,
and is never seen by the DUT as the testbench drives a 1 at the end of the third cycle.

Chapter 4:Connecting the Testbench and Design100

Figure 4-7 Driving a synchronous interface

Driving clocking block signals asynchronously can lead to dropped values. Instead,
drive at the clock edge by using a cycle delay prefix on your drives, as shown in Sam-
ple 4.23.

Sample 4.23 Interface signal drive

##2 arbif.cb.request <= 0; // Wait 2 cycles then assign
##3; // Illegal - must be used with an assignment

If you want to wait for two clock cycles before driving a signal, you can either use
“repeat (2) @bus.cb;” or use the cycle delay ##2. This latter delay only works
as a prefix to a drive of a signal in a clocking block, as it needs to know which clock
to use for the delay. (##3; does work if you have a default clocking block for your
program or module, but this book only recommends putting a clocking block in an
interface.)

4.4.5 Bidirectional Signals in the Interface

In Verilog-1995, if you want to drive a bidirectional signal such as a port from proce-
dural code, you need a continuous assignment to connect the reg to the wire. In
SystemVerilog, synchronous bidirectional signals in interfaces are easier to use as the
continuous assignment is added for you. When you write to the net from a program,
SystemVerilog actually writes to a temporary variable that drives the net. Your pro-
gram reads directly from the wire, seeing the value that is resolved from all the
drivers. Design code in a module still uses the classic register plus continuous assign-
ment statement.

clk

TEST arb.cb.request

DUT arbif.request

3X 2 1

X 13
15ns 25ns 35ns5ns

1

clk

TEST arb.cb.request

DUT arbif.request

3X 2 1

X 13
15ns 25ns 35ns5ns

1

Interface Driving and Sampling 101

Sample 4.24 Bidirectional signals in a program and interface

interface master_if (input bit clk);
 wire [7:0] data; // Bidirectional signal

 clocking cb @(posedge clk);
 inout data;
 endclocking

 modport TEST (clocking cb);
endinterface

program test(master_if.TEST mif);

 initial begin
 mif.cb.data <= 'z; // Tri-state the bus
 @mif.cb;
 $displayh(mif.cb.data); // Read from the bus
 @mif.cb;
 mif.cb.data <= 7Õh5a; // Drive the bus
 @mif.cb;
 mif.cb.data <= 'z; // Release the bus
 end

endprogram

The SystemVerilog LRM is not clear on driving an asynchronous bidirectional signal
using an interface. Two possible solutions are to use a cross-module reference and
continuous assignment or to use a virtual interface as shown in Chap. 10.

4.4.6 Why are always Blocks Not Allowed in a Program?

In SystemVerilog, you can put initial blocks in a program, but not always blocks.
This may seem odd if you are used to Verilog modules, but there are several reasons.
SystemVerilog programs are closer to a program in C, with one (or more) entry
points, than Verilog’s many small blocks of concurrently executing hardware. In a
design, an always block might trigger on every positive edge of a clock from the
start of simulation. In contrast, a testbench has the steps of initialization, stimulate
and respond to the design, and then wrap up simulation. An always block that runs
continuously would not work.

When the last initial block completes in the program, simulation implicitly ends
just as if you had executed $finish. If you had an always block, it would never
stop, and so you would have to explicitly call $exit to signal that the program block
completed.

Chapter 4:Connecting the Testbench and Design102

But don’t despair. If you really need an always block, you can use initial for
ever to accomplish the same thing.

4.4.7 The Clock Generator

Now that you have seen the program block, you may wonder if the clock generator
should be in a module. The clock is more closely tied to the design than the testbench,
and so the clock generator should remain in a module. As you refine the design, you
create clock trees, and you have to carefully control the skews as the clocks enter the
system and propagate through the blocks.

The testbench is much less picky. It just wants a clock edge to know when to drive
and sample signals. Functional verification is concerned with providing the right val-
ues at the right cycle, not with fractional nanosecond delays and relative clock skews.

Sample 4.25 Bad clock generator in program block

program bad_generator (output bit clk, out_sig);
 initial
 forever #5 clk <= ~clk ;

 initial
 forever @(posedge clk)
 out_sig <= ~out_sig;
endprogram

 The program block is not the place to put a clock generator. Sample 4.25 tries to put
the generator in a program block but just causes a race condition. The clk and
out_sig signals both propagate from the Reactive region to the design in the Active
region and could cause a race condition depending on which one arrived first.

Avoid race conditions by always putting the clock generator in a
module. If you want to randomize the generator’s properties, create a
class with random variables for skew, frequency, and other character-
istics, as shown in Chap. 6. You can use this class in the generator
module, or in the testbench.

Sample 4.26 shows a good clock generator in a module. It deliberately avoids an edge
at time 0 to avoid race conditions. All clock edges are generated with a blocking
assignment so as to trigger events during the Active region. If you really need to gen-
erate a clock edge at time 0, use a nonblocking assignment to set the initial value so
all clock sensitive logic such as always blocks will have started before the clock
changes value.

Connecting It All Together 103

Sample 4.26 Good clock generator in module

module clock_generator (output bit clk);
 initial
 forever #5 clk = ~clk; // Generate edges after time 0
endmodule

Lastly, don’t try to verify the low-level timing with functional verifi-
cation. The testbenches described in this book check the behavior of
the DUT but not the timing, which is better done with a static timing
analysis tool.

4.5 Connecting It All Together

Now you have a design described in a module, a testbench in a program block, and
interfaces that connect them together. Here is the top-level module that instantiates
and connects all the pieces.

Sample 4.27 Top module using a simple arbiter interface

module top;
 bit clk;
 always #5 clk = ~clk;

 arb_if arbif(.*);
 arb a1 (.*);
 test t1(.*);
endmodule : top

This is almost identical to Sample 4.7. It uses a shortcut notation .* (implicit port
connection) that automatically connects module instance ports to signals at the cur-
rent level if they have the same name and data type.

4.5.1 An Interface in a Port List Must be Connected

SystemVerilog compiler won’t let you compile a single module or program that uses
an interface in the port list. Why not? After all, a module or program with ports made
of individual signals can be compiled without being instantiated, as shown in Sample
4.28.

Sample 4.28 Module with just port connections

module uses_a_port(inout bit not_connected);
 ...
endmodule

Chapter 4:Connecting the Testbench and Design104

The compiler creates wires and connects them to the dangling signals. However, a
module or program with an interface in its port list must be connected to an instance
of the interface.

Sample 4.29 Module with an interface

// This will not compile without interface declaration
module uses_an_interface(arb_ifc.DUT ifc);
 initial ifc.grant = 0;
endmodule

For Sample 4.29, the compiler is not able to build a complex interface with the neces-
sary modports. If you have a program block using clocking blocks in an interface, the
compiler has an even more difficult time. Even if you are just looking to wring out
syntax bugs, you must complete the connections. This can be done as shown in Sam-
ple 4.30.

Sample 4.30 Top module connecting DUT and interface

module top;
 bit clk;
 always #10 clk = !clk;

 arb_ifc ifc(clk); // Interface with clocking block
 uses_an_interface u1(ifc); // that is needed to compile this
endmodule

4.6 Top-Level Scope

Sometimes you need to create things in your simulation that are outside of a program
or module so that they are seen by all parts of the simulation. In Verilog, only macros
extend across module boundaries, and are often used for creating global constants.
SystemVerilog introduces the compilation unit, which is a group of source files that
are compiled together. The scope outside the boundaries of any module, macromod
ule, interface, program, package, or primitive is known as the compilation-
unit scope, also referred to as $unit. Anything such as a parameter defined in this
scope is similar to a global because it can be seen by all lower-level blocks. However,
it is not truly global as the parameter cannot be seen during compilation of other
files.

This leads to some confusion. Some tools, such as Synopsys VCS, compile all the
SystemVerilog code together, and so $unit is global. On the other hand, Synopsys
Design Compiler compiles a single module or group of modules at a time, and so
$unit may be just the contents of one or a few files. Tools from other vendors may
compile all files or just a subset at once. As a result, $unit is not portable.

Top-Level Scope 105

This book calls the scope outside blocks the “top-level scope.” You can define vari-
ables, parameters, data types, and even routines in this space. Sample 4.31 declares a
top-level parameter, TIMEOUT, that can be used anywhere in the hierarchy. This
example also has a const string that holds an error message. You can declare top-
level constants either way.

Sample 4.31 Top-level scope for arbiter design

// root.sv
`timescale 1ns/1ns
parameter int TIMEOUT = 1_000_000;
const string time_out_msg = "ERROR: Time out";
module top;
 test t1();
endmodule

program automatic test;
 ...
 initial begin
 #TIMEOUT;
 $display("%s", time_out_msg);
 $finish;
 end
endprogram

The instance name $root allows you to unambiguously refer to names in the system,
starting with the top-level scope. In this respect, $root is similar to “/” in the Unix
file system. For tools such as VCS that compile all files at once, $root and $unit
are equivalent. The name $root also solves an old Verilog problem. When your code
refers to a name in another module, such as i1.var, the compiler first looks in the
local scope, then looks up to the next higher scope, and so on until it reaches the top.
You may have wanted to use i1.var in the top module, but an instance named i1 in
an intermediate scope may have sidetracked the search, giving you the wrong vari-
able. You use $root to make unambiguous cross module references by specifying
the absolute path.

Sample 4.32 shows a program that is instantiated in a module that is explicitly instan-
tiated in the top-level scope. The program can use a relative or absolute reference to
the clk signal in the module. Note that if the module were implicitly instantiated, that
is, if you took out the line top t1();, the absolute reference in the program would
change to $root.top.clk. Use explicit instantiation of the top module if you plan
on making cross-module references. You may want to use a macro to hold the hierar-
chical path so that when the path changes, you only have to change one piece of code.

Chapter 4:Connecting the Testbench and Design106

Sample 4.32 Cross-module references with $root

`timescale 1ns/1ns
parameter TIMEOUT = 1_000_000;
top t1(); // Explicitly instantiate top-level module

module top;
 bit clk;
 test t1(.*);
endmodule

Ôdefine TOP $root.t1
program automatic test;
 ...
 initial begin
 // Absolute reference
 $display("clk=%b", $root.t1.clk);
 $display("clk=%b", ÔTOP.clk); // With macro

 // Relative reference
 $display("clk=%b", t1.clk);
 end
endprogram

4.7 Program – Module Interactions

The program block can read and write all signals in modules, and can call routines in
modules, but a module has no visibility into a program. This is because your test-
bench needs to see and control the design, but the design should not depend on
anything in the testbench.

A program can call a routine in a module to perform various actions.
The routine can set values on internal signals, also known as “back-
door load.” Next, because the current SystemVerilog standard does
not define how to force signals from a program block, you need to
write a task in the design to do the force, and then call it from the
program.

Lastly, it is a good practice for your testbench to use a function to get information
from the DUT. Reading signal values can work most of the time, but if the design
code changes, your testbench may interpret the values incorrectly. A function in the
module can encapsulate the communication between the two and make it easier for
your testbench to stay synchronized with the design.

SystemVerilog Assertions 107

4.8 SystemVerilog Assertions

You can create temporal assertions about signals in your design using SystemVerilog
Assertions (SVA). Assertions are instantiated similarly to other design blocks and are
active for the entire simulation. The simulator keeps track of what assertions have
triggered, and so you can gather functional coverage data on them.

4.8.1 Immediate Assertions

Your testbench procedural code can check the values of design signals and testbench
variables and take action if there is a problem. For example, if you have asserted the
bus request, you expect that grant will be asserted two cycles later. You could use an
if-statement.

Sample 4.33 Checking a signal with an if-statement

bus.cb.request <= 1;
repeat (2) @bus.cb;
if (bus.cb.grant != 2Õb01)
 $display("Error, grant != 1");
// rest of the test

An assertion is more compact than an if-statement. However, note that the logic is
reversed compared to the if-statement above. You want the expression inside the
parentheses to be true; otherwise, print an error.

Sample 4.34 Simple immediate assertion

bus.cb.request <= 1;
repeat (2) @bus.cb;
a1: assert (bus.cb.grant == 2Õb01);
// rest of the test

If the grant signal is asserted correctly, the test continues. If the signal does not have
the expected value, the simulator produces a message similar to the following.

Sample 4.35 Error from failed immediate assertion

"test.sv", 7: top.t1.a1: started at 55ns failed at 55ns
Offending '(bus.cb.grant == 2Õb1)Õ

This says that on line 7 of the file test.sv, the assertion top.t1.a1 started at 55 ns
to check the signal bus.cb.grant, but failed immediately.

Chapter 4:Connecting the Testbench and Design108

You may be tempted to use the full SystemVerilog Assertion syntax
to check an elaborate sequence over a range of time, but use carefully.
Assertions are declarative code, and execute very differently than the
surrounding procedural code. In just a few lines of assertions, you can
verify temporal relations; the equivalent procedural code would be far
more complicated and verbose.

4.8.2 Customizing the Assertion Actions

An immediate assertion has optional then- and else-clauses. If you want to augment
the default message, you can add your own.

Sample 4.36 Creating a custom error message in an immediate assertion

a1: assert (bus.cb.grant == 2Õb01)
else $error("Grant not asserted");

If grant does not have the expected value, you’ll see an error message.

Sample 4.37 Error from failed immediate assertion

 "test.sv", 7: top.t1.a1: started at 55ns failed at 55ns
Offending '(bus.cb.grant == 2Õb1)'
Error: "test.sv", 7: top.t1.a1: at time 55 ns
Grant not asserted

SystemVerilog has four functions to print messages: $info, $warning, $error, and
$fatal. These are allowed only inside an assertion, not in procedural code, though
future versions of SystemVerilog may allow this.

You can use the then-clause to record when an assertion completed successfully.

Sample 4.38 Creating a custom error message

a1: assert (bus.cb.grant == 2Õb01)
 grants_received++; // Another succesful result
else
 $error("Grant not asserted");

4.8.3 Concurrent Assertions

The other type of assertion is the concurrent assertion that you can think of as a small
model that runs continuously, checking the values of signals for the entire simulation.
You need to specify a sampling clock in the assertion. Here is a small assertion to
check that the arbiter request signal does not have X or Z values except during reset.

The Four-Port ATM Router 109

Sample 4.39 Concurrent assertion to check for X/Z

interface arb_if(input bit clk);
 logic [1:0] grant, request;
 logic rst;

 property request_2state;
 @(posedge clk) disable iff (rst)
 $isunknown(request) == 0; // Make sure no Z or X found
 endproperty
 assert_request_2state: assert property (request_2state);

endinterface

4.8.4 Exploring Assertions

There are many other uses for assertions. For example, you can put assertions in an
interface. Now your interface not only transmits signal values but also checks the
protocol.

This Section provides a brief introduction to SystemVerilog Assertions. For more
information, see Vijayaraghhavan and Ramanathan (2005) and Haque et al. (2006).

4.9 The Four-Port ATM Router

The arbiter example is a good introduction to interfaces, but real designs have more than
a single input and output. This Section discusses a four-port ATM (Asynchronous
Transfer Mode) router, shown in Figure 4-8.

Chapter 4:Connecting the Testbench and Design110

Figure 4-8 Testbench – ATM router diagram without interfaces

4.9.1 ATM Router with Ports

The following code fragments show the tangle of wires you would have to endure to
connect an RTL block to a testbench. First is the header for the ATM router model.
This uses the Verilog-1995 style port declarations, where the type and direction are
separate from the header.

The actual code for the router is crowded out by nearly a page of port declarations.

4x4
ATM

router

Testbench

Tx0

Tx1

Tx2

Tx3

Rx0

Rx1

Rx2

Rx3

4x4
ATM

router

Testbench

Tx0

Tx1

Tx2

Tx3

Rx0

Rx1

Rx2

Rx3

The Four-Port ATM Router 111

Sample 4.40 ATM router model header without an interface

module atm_router(
 // 4 x Level 1 Utopia ATM layer Rx Interfaces
 Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0, Rx_data_1, Rx_data_2, Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0, Rx_clav_1, Rx_clav_2, Rx_clav_3,

 // 4 x Level 1 Utopia ATM layer Tx Interfaces
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0, Tx_data_1, Tx_data_2, Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0, Tx_clav_1, Tx_clav_2, Tx_clav_3,

 // Miscellaneous control interfaces
 rst, clk);

// 4 x Level 1 Utopia Rx Interfaces
 output Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3;
 input [7:0] Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3;
 input Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3;
 output Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3;
 input Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3;

// 4 x Level 1 Utopia Tx Interfaces
 output Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3;
 output [7:0] Tx_data_0,Tx_data_1,Tx_data_2,Tx_data_3;
 output Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3;
 output Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3;
 input Tx_clav_0,Tx_clav_1,Tx_clav_2,Tx_clav_3;

// Miscellaneous control interfaces
 input rst, clk;

 ...3

endmodule

4.9.2 ATM Top-Level Netlist with Ports

Shown next is the top-level netlist.

3So what goes in the "..."? See Sutherland (2006) for more information and examples of using interfaces in
modules.

Chapter 4:Connecting the Testbench and Design112

Sample 4.41 Top-level netlist without an interface

module top;
 bit clk;
 always #5 clk = !clk;
 wire Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0, Rx_clav_1, Rx_clav_2, Rx_clav_3,
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0, Tx_clav_1, Tx_clav_2, Tx_clav_3, rst;

 wire [7:0] Rx_data_0, Rx_data_1, Rx_data_2, Rx_data_3,
 Tx_data_0, Tx_data_1, Tx_data_2, Tx_data_3;

 atm_router a1(Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3,
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0,Tx_data_1,Tx_data_2,Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0,Tx_clav_1,Tx_clav_2,Tx_clav_3,
 rst, clk);

 test t1 (Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3,
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0,Tx_data_1,Tx_data_2,Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0,Tx_clav_1,Tx_clav_2,Tx_clav_3,
 rst, clk);
endmodule

Sample 4.42 shows the top of the testbench module. Once again, note that the ports
and wires take up the majority of the netlist.

The Four-Port ATM Router 113

Sample 4.42 Verilog-1995 testbench using ports

module test(
 // 4 x Level 1 Utopia ATM layer Rx Interfaces
 Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3,
 Rx_data_0, Rx_data_1, Rx_data_2, Rx_data_3,
 Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3,
 Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3,
 Rx_clav_0, Rx_clav_1, Rx_clav_2, Rx_clav_3,

 // 4 x Level 1 Utopia ATM layer Tx Interfaces
 Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3,
 Tx_data_0, Tx_data_1, Tx_data_2, Tx_data_3,
 Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3,
 Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3,
 Tx_clav_0, Tx_clav_1, Tx_clav_2, Tx_clav_3,

 // Miscellaneous control interfaces
 rst, clk);

// 4 x Level 1 Utopia Rx Interfaces
 input Rx_clk_0, Rx_clk_1, Rx_clk_2, Rx_clk_3;
 output [7:0] Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3;
 reg [7:0] Rx_data_0,Rx_data_1,Rx_data_2,Rx_data_3;
 output Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3;
 reg Rx_soc_0, Rx_soc_1, Rx_soc_2, Rx_soc_3;
 input Rx_en_0, Rx_en_1, Rx_en_2, Rx_en_3;
 output Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3;
 reg Rx_clav_0,Rx_clav_1,Rx_clav_2,Rx_clav_3;

// 4 x Level 1 Utopia Tx Interfaces
 input Tx_clk_0, Tx_clk_1, Tx_clk_2, Tx_clk_3;
 input [7:0] Tx_data_0, Tx_data_1,Tx_data_2,Tx_data_3;
 input Tx_soc_0, Tx_soc_1, Tx_soc_2, Tx_soc_3;
 input Tx_en_0, Tx_en_1, Tx_en_2, Tx_en_3;
 output Tx_clav_0, Tx_clav_1,Tx_clav_2,Tx_clav_3;
 reg Tx_clav_0, Tx_clav_1,Tx_clav_2,Tx_clav_3;

// Miscellaneous control interfaces
 output rst;
 reg rst;
 input clk;

 initial begin
 // Reset the device
 rst <= 1;
 Rx_data_0 <= 0;
 ...
 end

Chapter 4:Connecting the Testbench and Design114

endmodule

You just saw three pages of code, and it was all just connectivity – no testbench, no
design! Interfaces provide a better way to organize all this information and eliminate
the repetitive parts that are so error prone.

4.9.3 Using Interfaces to Simplify Connections

Figure 4-9 shows the ATM router connected to the testbench, with the signals
grouped into interfaces.

Figure 4-9 Testbench – router diagram with interfaces

4.9.4 ATM Interfaces

Here are the Rx and Tx interfaces with modports and clocking blocks.

4x4 ATM
router

Testbench

Rx Tx

4x4 ATM
router

Testbench

Rx Tx

The Four-Port ATM Router 115

Sample 4.43 Rx interface

// Rx interface with modports and clocking block
interface Rx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, rclk;

 clocking cb @(posedge clk);
 output data, soc, clav; // Directions are relative
 input en; // to the testbench
 endclocking : cb

 modport DUT (output en, rclk,
 input data, soc, clav);

 modport TB (clocking cb);
endinterface : Rx_if

Sample 4.44 Tx interface

// Tx interface with modports and clocking block
interface Tx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, tclk;

 clocking cb @(posedge clk);
 input data, soc, en;
 output clav;
 endclocking : cb

 modport DUT (output data, soc, en, tclk,
 input clk, clav);

 modport TB (clocking cb);
endinterface : Tx_if

4.9.5 ATM Router Model Using an Interface

Here are the ATM router model and testbench, which need to specify the modport in
their port connection list. Note that you put the modport name after the interface
name, Rx_if.

Chapter 4:Connecting the Testbench and Design116

Sample 4.45 ATM router model with interface using modports

module atm_router(Rx_if.DUT Rx0, Rx1, Rx2, Rx3,
 Tx_if.DUT Tx0, Tx1, Tx2, Tx3,
 input logic clk, rst);
 ...
endmodule

4.9.6 ATM Top Level Netlist with Interfaces

The top netlist has shrunk considerably, along with the chances of making a mistake.

Sample 4.46 Top-level netlist with interface

module top;
 bit clk, rst;
 always #5 clk = !clk;

 Rx_if Rx0 (clk), Rx1 (clk), Rx2 (clk), Rx3 (clk);
 Tx_if Tx0 (clk), Tx1 (clk), Tx2 (clk), Tx3 (clk);

 atm_router a1 (Rx0, Rx1, Rx2, Rx3, // or just (.*)
 Tx0, Tx1, Tx2, Tx3, clk, rst);

 test t1 (Rx0, Rx1, Rx2, Rx3, // or just (.*)
 Tx0, Tx1, Tx2, Tx3, clk, rst);
endmodule : top

4.9.7 ATM Testbench with Interface

Sample 4.47 shows the part of the testbench that captures cells coming in from the TX
port of the router. Note that the interface names are hard-coded, and so you have to
duplicate the same code four times for the 4 × 4 ATM router. Chapter 10 shows how
to simplify the code by using virtual interfaces.

The Ref Port Direction 117

Sample 4.47 Testbench using an interface with a clocking block

program test(Rx_if.TB Rx0, Rx1, Rx2, Rx3,
 Tx_if.TB Tx0, Tx1, Tx2, Tx3,
 input logic clk, output logic rst);

 bit [7:0] bytes[ATM_CELL_SIZE];

 initial begin
 // Reset the device
 rst <= 1;
 Rx0.cb.data <= 0;
 ...
 receive_cell0();
 ...
 end

 task receive_cell0();
 @(Tx0.cb);
 Tx0.cb.clav <= 1; // Assert ready to receive
 wait (Tx0.cb.soc == 1); // Wait for Start of Cell

 for (int i=0; i<ATM_CELL_SIZE; i++) begin
 wait (Tx0.cb.en == 0); // Wait for enable
 @(Tx0.cb);

 bytes[i] = Tx0.cb.data;
 @(Tx0.cb);
 Tx0.cb.clav <= 0; // Deassert flow control
 end
 endtask : receive_cell0

endprogram : test

4.10 The Ref Port Direction

SystemVerilog introduces a new port direction: ref. You should be familiar with the
input, output, and inout directions. The last is for modeling bidirectional connec-
tions. If you drive a signal with multiple inout ports, SystemVerilog will calculate
the value of the signal by combining the values of all drivers, taking in to effect driver
strengths and Z values.

A ref port is a different beast. It is essentially a hierarchical reference to a variable
(never a net) so that the value of the variable is the one last assigned. If you connect a
variable to multiple ref ports, you may get race conditions as the port assignments
from multiple modules update the single variable.

Chapter 4:Connecting the Testbench and Design118

4.11 The End of Simulation

As described earlier in Section 4.4.6, simulation ends when the last initial block
ends in the program. What really happens is that when the last initial block com-
pletes, it implicitly calls $exit to signify that this program is done. When every
program has exited, an implicit call to $finish is done. Or, you can just call $finish
anytime you want to end the simulation.

However, simulation is not yet over. A module or program can have one or more
final blocks that contain code to be run just before the simulator terminates. This is
a great place to perform clean up tasks such as closing files, and printing a report of
the number of errors and warnings encountered. You cannot schedule any events, or
have any delays in a final block. Note that you do not have to worry about freeing
any memory that was allocated as this will be done automatically.

Sample 4.48 A final block

program test;
 int errors, warnings;

 initial begin
 ... // Main program activity
 end

 final
 $display("Test done with %0d errors and %0d warnings",
 errors, warnings);
endprogram

4.12 Directed Test for the LC3 Fetch Block

With what you have learned so far, you can create a simple test of a block of a larger
design. The rest of this chapter shows a directed test for a block of the LC3 microcontol-
ler. Later chapters show you how to create random tests, and tests structured using OOP.

The Little Computer 3 (LC3) is an assembly language for teaching the fundamentals
of programming to computer science and computer engineering students. The LC3
was developed by Yale N. Patt at the University of Texas at Austin and Sanjay J.
Patel at the University of Illinois at Urbana-Champaign in the second edition of their
textbook, Introduction to Computing Systems: From Bits and Gates to C and Beyond,
Patt and Patel (2003).

Dr. Xun Liu, Dr. Rhett Davis, and Dr. Paul Franzon of North Carolina State Univer-
sity have implemented the LC3 for ECE 406, “Design of Complex Digital Systems.”

Directed Test for the LC3 Fetch Block 119

You can download the design specification and the protected Verilog code from
http://chris.spear.net/systemverilog.

The LC3 implementation contains six blocks: fetch, execute, writeback,
memAccess, decode, and controller. It implements the following instructions:
ADD, AND, NOT, BR, JMP, LD, LDR, LDI, LSE, ST, STR, and STI.

Figure 4-10 LD3 Microcontroller fetch block

The fetch block in Figure 4-10 computes the addresses of instructions to fetch
from memory. It has the following inputs:

clock, reset: 1-bit
br_taken: 1-bit. Tells the fetch block that a control signal has been
encountered and thus npc is going to change from pc+1 to taddr (target
address) as computed by the instruction
taddr: 16-bits. The target instruction computed for a branch or jump
instruction.
state: 4-bits. The current state of the controller block, such as fetch,
decode, etc.

The fetch block has the following outputs:

rd: 1-bit. Tells the memory to perform a read. This signal is high impedance
(Z) during the states ReadMemory, WriteMemory, and IndirectAd

0

1

0

1

+

‘h3000

1

1

0

1

state != ReadMemory &&
state != WriteMemory &&

state != IndirectAddressRead

state ==
UpdatePC

br_taken

reset

clock

pc

taddr

state

npc

rd

PC_reg0

1

0

1

++

‘h3000

1

1

0

1

state != ReadMemory &&
state != WriteMemory &&

state != IndirectAddressRead

state ==
UpdatePC

br_taken

reset

clock

pc

taddr

state

npc

rd

PC_regPC_reg

Chapter 4:Connecting the Testbench and Design120

dressRead as the memAccess block drives the shared bus during these
cycles. During all other states, rd should be high.
pc: 16-bits. The current value of the program counter register, PC_reg, or
high impedance when rd is high impedance.
npc: 16-bits. Always PC_reg+1.

At the positive edge of clock, when br_taken is true, PC_reg is updated with
taddr, and with npc with br_taken is false. PC_reg is reset to 16’h3000. All sig-
nals are created on one clock cycle.

The Verilog code for the fetch block has input and output ports.

Sample 4.49 Fetch block Verilog code

module fetch(clock, reset, state, pc, npc, rd,
 taddr, br_taken);
 input clock, reset, br_taken;
 input [15:0] taddr;
 input [3:0] state;
 output [15:0] pc, npc; // current and next PC
 output rd;

// protected code omitted
endmodule

The test uses an interface with clocking blocks to ensure that signals are read and
sampled synchronously. There is a separate monitor modport so that the test can read
back the values that have been written.

Directed Test for the LC3 Fetch Block 121

Sample 4.50 Fetch block interface

interface fetch_ifc(input bit clock);
 logic reset, br_taken, rd;
 logic [15:0] taddr;
 cntrl_e state; // Defined in Sample 4.52
 logic [15:0] pc, npc; // current and next PC

 clocking cb @(posedge clock);
 input pc, npc, rd;
 output taddr, state, br_taken, reset;
 endclocking // cb

 modport TEST (clocking cb, output reset);

 modport DUT (
 input clock, reset, br_taken, taddr, state,
 output pc, npc, rd);

 // For monitoring DUT signals
 clocking cbm @(posedge clock);
 input pc, npc, rd, taddr, state, br_taken;
 endclocking // cbm
 modport MONITOR (clocking cbm);

endinterface // fetch_ifc

The directed test synchronously drives signals into the fetch block through the
interface.

Chapter 4:Connecting the Testbench and Design122

Sample 4.51 Fetch block directed test

program automatic test(fetch_ifc.TEST if_t,
 fetch_ifc.MONITOR if_m);

 initial begin
 cntrl_e cntrl;

 $timeformat(-9,0,"ns",5);
 $monitor("%t: pc=%h npc=%h rd=%b state=%s",
 $realtime, if_m.cbm.pc, if_m.cbm.npc,
 if_m.cbm.rd, if_m.cbm.state.name);

 $display("%t: Reset all signals", $realtime);
 if_t.reset <= 1;
 if_t.cb.taddr <= 16'hFFFC;
 if_t.cb.br_taken <= 0;
 if_t.cb.state <= CNTRL_UPDATE_PC;

 repeat (2) @if_t.cb;
 pc_post_reset: assert (if_t.cb.pc == 16'h3000);

 ##1 if_t.cb.reset <= 0; // Synchronously deassert reset

 @(if_t.cb);
 $display("\n%t: Test loading of target address",
 $realtime);
 if_t.cb.state <= CNTRL_UPDATE_PC;
 if_t.cb.br_taken <= 1;

 @(if_t.cb);
 @(if_t.cb);
 pc_br_taken: assert (if_t.cb.pc == 16'hFFFC);

 $display("%t: Did the PC rollover as expected?",
 $realtime);
 if_t.cb.br_taken <= 0;
 if_t.cb.state <= CNTRL_UPDATE_PC;
 repeat (5) @(if_t.cb);
 pc_rollover: assert (if_t.cb.pc == 16'h0000);

 $display("\n%t: Step through all the controller states",
 $realtime);
 for (int i=CNTRL_FETCH; i<=CNTRL_COMPUTE_MEM; i++)
 begin
 $cast(cntrl, i);
 if (cntrl == CNTRL_UPDATE_PC)
 continue;

Directed Test for the LC3 Fetch Block 123

 $display("%t: Try with controller state=%0d %s",
 $realtime, cntrl, cntrl.name);
 if_t.cb.br_taken <= 0;
 if_t.cb.state <= cntrl;
 repeat (2) @(if_t.cb);
 pc_no_load: assert (if_t.cb.pc == 16'h0001);
 end // for i

 $display("\n%t: Tristate on PC output", $realtime);
 if_t.cb.state <= CNTRL_READ_MEM;
 @(if_t.cb);
 pc_z_read_mem: assert (if_t.cb.pc === 16'hzzzz);

 if_t.cb.state <= CNTRL_IND_ADDR_RD;
 @(if_t.cb);
 pc_z_ind_addr_rd: assert (if_t.cb.pc === 16'hzzzz);

 if_t.cb.state <= CNTRL_WRITE_MEM;
 @(if_t.cb);
 pc_z_write_mem: assert (if_t.cb.pc === 16'hzzzz);
 end
endprogram // test

The top level block instantiates the fetch interface, the fetch block and the test. It
also defines the controller state enumerated type and so it can be used in both the test
and interface.

Chapter 4:Connecting the Testbench and Design124

Sample 4.52 Top level block for fetch testbench

`timescale 1ns/1ns

typedef enum {CNTRL_UPDATE_PC = 0,
 CNTRL_FETCH = 1,
 CNTRL_DECODE = 2,
 CNTRL_EXECUTE = 3,
 CNTRL_UPDATE_REGF = 4,
 CNTRL_COMPUTE_PC = 5,
 CNTRL_COMPUTE_MEM = 6,
 CNTRL_READ_MEM = 7,
 CNTRL_IND_ADDR_RD = 8,
 CNTRL_WRITE_MEM = 9} cntrl_e;

module top;
 bit clock;
 always #10 clock = ~clock;

 fetch_ifc fif(clock);
 test t1(fif, fif);
 fetch f1(clock, fif.reset, fif.state, fif.pc,
 fif.npc, fif.rd, fif.taddr, fif.br_taken);

endmodule // top

4.13 Conclusion

In this chapter you have learned how to use SystemVerilog’s interfaces to organize
the communication between design blocks and your testbench. With this design con-
struct, you can replace dozens of signal connections with a single interface, making
your code easier to maintain and improve, and reducing the number of wiring
mistakes.

SystemVerilog also introduces the program block to hold your testbench and to
reduce race conditions between the device under test and the testbench. With a clock-
ing block in an interface, your testbenches will drive and sample design signals
correctly relative to the clock.

Chapter 5

Basic OOP

5.1 Introduction

With procedural programming languages such as Verilog and C, there is a strong
division between data structures and the code that uses them. The declarations and
types of data are often in a different file than the algorithms that manipulate them. As
a result, it can be difficult to understand the functionality of a program, as the two
halves are separate.

Verilog users have it even worse than C users, as there are no structures in Verilog,
only bit vectors and arrays. If you wanted to store information about a bus transaction,
you would need multiple arrays: one for the address, one for the data, one for the
command, and more. Information about transaction N is spread across all the arrays.
Your code to create, transmit, and receive transactions is in a module that may or may
not be actually connected to the bus. Worst of all, the arrays are all static, and so if
your testbench only allocated 100 array entries, and the current test needed 101, you
would have to edit the source code to change the size and recompile. As a result, the
arrays are sized to hold the greatest conceivable number of transactions, but during a
normal test, most of that memory is wasted.

Object-Oriented Programming (OOP) lets you create complex data types and tie them
together with the routines that work with them. You can create testbenches and sys-
tem-level models at a more abstract level by calling routines to perform an action
rather than toggling bits. When you work with transactions instead of signal transi-
tions, you are more productive. As a bonus, your testbench is decoupled from the

Chapter 5:Basic OOP126

design details, making it more robust and easier to maintain and reuse on future
projects.

If you already are familiar with OOP, skim this chapter, as SystemVerilog follows
OOP guidelines fairly closely. Be sure to read Section 5.18 to learn how to build a
testbench. Chapter 8 presents advanced OOP concepts such as inheritance and more
testbench techniques; it should be read by everyone.

5.2 Think of Nouns, not Verbs

Grouping data and code together helps you in creating and maintaining large test-
benches. How should data and code be brought together? You can start by thinking of
how you would perform the testbench’s job.

The goal of a testbench is to apply stimulus to a design and then check the result to
see if it is correct. The data that flows into and out of the design is grouped together
into transactions. The best way to organize the testbench is around the transactions,
and the operations that you perform on them. In OOP, the transaction is the focus of
your testbench.

You can think of an analogy between cars and testbenches. When you get into a car,
you want to perform discrete actions, such as starting, moving forward, turning, stop-
ping, and listening to music while you drive. Early cars required detailed knowledge
about their internals to operate. You had to advance or retard the spark, open and
close the choke, keep an eye on the engine speed, and be aware of the traction of the
tires if you drove on a slippery surface such as a wet road. Today your interactions
with the car are at a high level. If you want to start a car, just turn the key in the igni-
tion, and you are done. Get the car moving by pressing the gas pedal; stop it with the
brakes. Are you driving on snow? Don’t worry: the anti-lock brakes help you stop
safely and in a straight line.

Your testbench should be structured the same way. Traditional testbenches were ori-
ented around the operations that had to happen: create a transaction, transmit it,
receive it, check it, and make a report. Instead, you should think about the structure of
the testbench, and what each part does. The generator creates transactions and passes
them to the next level. The driver talks with the design that responds with transactions
that are received by a monitor. The scoreboard checks these against the expected data.
You should divide your testbench into blocks, and then define how they
communicate.

5.3 Your First Class

A class encapsulates the data together with the routines that manipulate it. Sample 5.1
shows a class for a generic packet. The packet contains an address, a CRC, and an

Where to Define a Class 127

array of data values. There are two routines in the Transaction class: a function to
display the packet address, and another that computes the CRC (cyclic redundancy
check) of the data.

To make it easier to match the beginning and end of a named block,
you can put a label on the end of it. In Sample 5.1 these end labels
may look redundant, but in real code with many nested blocks, the
labels help you find the mate for a simple end or endtask, end
function, or endclass.

Sample 5.1 Simple transaction class

class Transaction;
 bit [31:0] addr, crc, data[8];

 function void display;
 $display("Transaction: %h", addr);
 endfunction : display

 function void calc_crc;
 crc = addr ^ data.xor;
 endfunction : calc_crc

endclass : Transaction

Every company has its own naming style. This book uses the follow-
ing convention: Class names start with a capital letter and avoid using
underscores, as in Transaction or Packet. Constants are all upper
case, as in CELL_SIZE, and variables are lower case, as in count or
trans_type. You are free to use whatever style you want.

5.4 Where to Define a Class

You can define a class in SystemVerilog in a program, module, package, or outside
of any of these. Classes can be used in programs and modules. This book only shows
classes that are used in a program block, as introduced in Chap. 4. Until then, think of
a program block as a module that holds your test code. The program holds a single
test and contains the objects that comprise the testbench, and the initial blocks to cre-
ate, initialize, and run the test.

When you start a project, you may want to store a single class per file. When the num-
ber of files gets too large, you can group a set of related classes and type definitions
into a SystemVerilog package. For instance, you might group together all SCSI/
ATA transactions into a single package. Now you can compile the package sepa-
rately from the rest of the system. Unrelated classes, such as those for transactions,
scoreboards, or different protocols, should remain in separate files.

Chapter 5:Basic OOP128

See the SystemVerilog LRM for more information on packages.

5.5 OOP Terminology

What separates you, an OOP novice, from an expert? The first thing is the words you
use. You already know some OOP concepts from working with Verilog. Here are
some OOP terms, definitions, and rough equivalents in Verilog-2001.

Class – a basic building block containing routines and variables. The ana-
logue in Verilog is a module.
Object – an instance of a class. In Verilog, you need to instantiate a module
to use it.
Handle – a pointer to an object. In Verilog, you use the name of an instance
when you refer to signals and methods from outside the module. An OOP
handle is like the address of the object, but is stored in a pointer that can only
refer to one type.
Property – a variable that holds data. In Verilog, this is a signal such as a reg-
ister or wire.
Method – the procedural code that manipulates variables, contained in tasks
and functions. Verilog modules have tasks and functions plus initial and
always blocks.
Prototype – the header of a routine that shows the name, type, and argument
list. The body of the routine contains the executable code.

This book uses the more traditional terms from Verilog of “variable” and “routine”
rather than OOP’s “property” and “method.” If you are comfortable with the OOP
terms, you can skim this chapter.

In Verilog you build complex designs by creating modules and instantiating them
hierarchically. In OOP you create classes and instantiate them (creating objects) to
create a similar hierarchy.

Here is an analogy to explain these OOP terms. Think of a class as the blueprint for a
house. This plan describes the structure of the house, but you cannot live in a blue-
print; you need to build the physical house. An object is the actual house. Just as one
set of blueprints can be used to build a whole subdivision of houses, a single class can
be used to build many objects. The house address is like a handle in that it uniquely
identifies your house. Inside your house you have things such as lights (on or off),
with switches to control them. A class has variables that hold values, and routines that
control the values. A class for the house might have many lights. A single call to
turn_on_porch_light() sets the light variable ON in a single house.

Creating New Objects 129

5.6 Creating New Objects

Both Verilog and OOP have the concept of instantiation, but there are some differ-
ences in the details. A Verilog module, such as a counter, is instantiated when you
compile your design. A SystemVerilog class, such as a network packet, is instantiated
at run-time when needed by the testbench. Verilog instances are static, as the hard-
ware does not change during simulation; only signal values change. Stimulus objects
are constantly being created and used to drive the DUT and check the results. Later,
the objects may be freed so that their memory can be used by new ones.1

The analogy between OOP and Verilog has a few other exceptions. The top-level
Verilog module is not usually explicitly instantiated. However, a SystemVerilog class
must be instantiated before it can be used. Next, a Verilog instance name only refers
to a single instance, whereas a SystemVerilog handle can refer to many objects,
though only one at a time.

5.6.1 No News is Good News

In Sample 5.2, tr is a handle that points to an object of type Transaction. You can
simplify this by just calling tr a Transaction handle.

Sample 5.2 Declaring and using a handle

Transaction tr; // Declare a handle
tr = new(); // Allocate a Transaction object

When you declare the handle tr, it is initialized to the special value null. Next, you
call the new() function to construct the Transaction object. new allocates space for
the Transaction, initializes the variables to their default value (0 for 2-state vari-
ables and X for 4-state ones), and returns the address where the object is stored. For
every class, SystemVerilog creates a default new to allocate and initialize an object.
See Section 5.6.2 for more details on this function.

5.6.2 Custom Constructor

Sometimes OOP terminology can make a simple concept seem complex. What does
“instantiation” mean? When you call new to instantiate an object, you are allocating a
new block of memory to store the variables for that object. For example, the Trans
action class has two 32-bit registers (addr and crc) and an array with eight values
(data), for a total of 10 longwords, or 40 bytes. So when you call new, SystemVerilog
allocates 40 bytes of storage. If you have used C, this step is similar to the malloc

1Back to the house analogy: the address is normally static, unless your house burns down,
causing you to construct a new one. And garbage collection is never automatic.

Chapter 5:Basic OOP130

function. (Note that SystemVerilog uses additional memory for 4-state variables and
housekeeping information such as the object’s type.)

The constructor does more than allocate memory; it also initializes the values. By
default, variables are set to their default values – 0 for 2-state variables and X for 4-
state. You can define your own new() function to set your own values. That is why
the new() function is also called the “constructor,” as it builds the object, just as your
house is constructed from wood and nails. Note that you should not give a return
value type as the constructor always returns a handle to an object of the same type as
the class.

Sample 5.3 Simple user-defined new() function

class Transaction;
 logic [31:0] addr, crc, data[8];

 function new();
 addr = 3;
 foreach (data[i])
 data[i] = 5;
 endfunction

endclass

Sample 5.3 sets addr and data to fixed values but leaves crc at its default value of
X. (SystemVerilog allocates the space for the object automatically.) You can use
arguments with default values to make a more flexible constructor, as shown in Sam-
ple 5.4. Now you can specify the value for addr and data when you call the
constructor, or use the default values.

Sample 5.4 A new() function with arguments

class Transaction;
 logic [31:0] addr, crc, data[8];

 function new(logic [31:0] a=3, d=5);
 addr = a;
 foreach (data[i])
 data[i] = d;
 endfunction
endclass

initial begin
 Transaction tr;
 tr = new(10); // data uses default of 5
end

How does SystemVerilog know which new() function to call? It looks at the type of
the handle on the left side of the assignment. In Sample 5.5, the call to new inside the

Creating New Objects 131

Driver constructor calls the new() function for Transaction, even though the one
for Driver is closer. Since tr is a Transaction handle, SystemVerilog does the
right thing and creates an object of type Transaction.

Sample 5.5 Calling the right new() function

class Transaction;
 ...
endclass : Transaction

class Driver;
 Transaction tr;
 function new(); // DriverÕs new function
 tr = new(); // Call the Transaction new function
 endfunction
endclass : Driver

5.6.3 Separating the Declaration and Construction

You should avoid declaring a handle and calling the constructor, new,
all in one statement. While this is legal syntax and less verbose, it can
create ordering problems, as the constructor is called before the first
procedural statement. You might need to initialize objects in a certain
order, but if you call new() in the declaration, you won’t have the
same control. Additionally, if you forget to use automatic storage,

the constructor is called at the start of simulation, not when the block is entered.

5.6.4 The Difference Between New() and New[]

You may have noticed that this new() function looks a lot like the new[] operator,
described in Section 2.3, used to set the size of dynamic arrays. They both allocate
memory and initialize values. The big difference is that the new() function is called
to construct a single object, whereas the new[] operator is building an array with
multiple elements. new() can take arguments for setting object values, whereas
new[] only takes a single value for the number of elements in the array.

5.6.5 Getting a Handle on Objects

New OOP users often confuse an object with its handle. The two
are very distinct. You declare a handle and construct an object.
Over the course of a simulation, a handle can point to many
objects. This is the dynamic nature of OOP and SystemVerilog.
Don’t get the handle confused with the object.

In Sample 5.6, t1 first points to one object, then another. Figure 5-1 shows the result-
ing handles and objects.

Chapter 5:Basic OOP132

Sample 5.6 Allocating multiple objects

Transaction t1, t2; // Declare two handles
t1 = new(); // Allocate first Transaction object
t2 = t1; // t1 & t2 point to it
t1 = new(); // Allocate second Transaction object

Figure 5-1 Handles and objects after allocating multiple objects

Why would you want to create objects dynamically? During a simulation you may
need to create hundreds or thousands of transactions. SystemVerilog lets you create
new ones automatically, when you need them. In Verilog, you would have to use a
fixed-size array large enough to hold the maximum number of transactions.

Note that this dynamic creation of objects is different from anything else offered
before in the Verilog language. An instance of a Verilog module and its name are
bound together statically during compilation. Even with automatic variables, which
come and go during simulation, the name and storage are always tied together.

An analogy for handles is people who are attending a conference. Each person is sim-
ilar to an object. When you arrive, a badge is “constructed” by writing your name on
it. This badge is a handle that can be used by the organizers to keep track of each per-
son. When you take a seat for the lecture, space is allocated. You may have multiple
badges for attendee, presenter, or organizer. When you leave the conference, your
badge may be reused by writing a new name on it, just as a handle can point to differ-
ent objects through assignment. Lastly, if you lose your badge and there is nothing to
identify you, you will be asked to leave. The space you take, your seat, is reclaimed
for use by someone else.

5.7 Object Deallocation

Now you know how to create an object – but how do you get rid of it? For example,
your testbench creates and sends thousands of transactions such as transactions into
your DUT. Once you know the transaction completed successfully, and you gather
statistics, you don’t need to keep it around. You should reclaim the memory; other-
wise, a long simulation might run out of memory, or at least run more and more
slowly.

Garbage collection is the process of automatically freeing objects that are no longer
referenced. One way SystemVerilog can tell if an object is no longer being used is by

First
Transaction
object

t2Second
Transaction
object

t1 First
Transaction
object

t2Second
Transaction
object

t1

Object Deallocation 133

keeping track of the number of handles that point to it. When the last handle no longer
references an object, SystemVerilog releases the memory for it.2

Sample 5.7 Creating multiple objects

Transaction t; // Create a handle
t = new(); // Allocate a new Transaction
t = new(); // Allocate a second one, free the first
t = null; // Deallocate the second

The second line in Sample 5.7 calls new() to construct an object and store the address
in the handle t. The next call to new() constructs a second object and stores its
address in t, overwriting the previous value. Since there are no handles pointing to
the first object, SystemVerilog can deallocate it. The object may be deleted immedi-
ately, or wait a short wait. The last line explicitly clears the handle so that now the
second object can be deallocated.

If you are familiar with C++, these concepts of objects and handles might look famil-
iar, but there are some important differences. A SystemVerilog can handle only point
to objects of one type, and so they are called “type-safe.” In C, a typical void pointer
is only an address in memory, and you can set it to any value or modify it with opera-
tors such as pre-increment. You cannot be sure that a pointer really is valid. A C++
typed pointer is much safer, but you may be tempted by C’s flexibility. SystemVer-
ilog does not allow any modification of a handle or using a handle of one type to refer
to an object of another type. (SystemVerilog’s OOP specification is closer to Java
than C++.)

Secondly, since SystemVerilog performs automatic garbage collection when no more
handles refer to an object, you can be sure your code always uses valid handles. In C /
C++, a pointer can refer to an object that no longer exists. Garbage collection in those
languages is manual, and so your code can suffer from “memory leaks” when you forget
to deallocate objects.

SystemVerilog cannot garbage collect an object that is still referenced
somewhere by a handle. For example, if you keep objects in a linked
list, SystemVerilog cannot deallocate the objects until you manually
clear all handles by setting them to null. If an object contains a rou-
tine that forks off a thread, the object is not deallocated while the
thread is running. Likewise, any objects that are used by a spawned

thread may not be deallocated until the thread terminates. See Chap. 7 for more infor-
mation on threads.

2The actual algorithm to find unused objects varies between simulators. This section describes
reference counting, which is the easiest to understand.

Chapter 5:Basic OOP134

5.8 Using Objects

Now that you have allocated an object, how do you use it? Going back to the Verilog
module analogy, you can refer to variables and routines in an object with the “.”
notation as shown in Sample 5.8.

Sample 5.8 Using variables and routines in an object

Transaction t; // Declare a handle to a Transaction
t = new(); // Construct a Transaction object
t.addr = 32Õh42; // Set the value of a variable
t.display(); // Call a routine

In strict OOP, the only access to variables in an object should be through its public
methods such as get() and put(). This is because accessing variables directly lim-
its your ability to change the underlying implementation in the future. If a better (or
simply different) algorithm comes along in the future, you may not be able to adopt it
because you would also need to modify all of the references to the variables.

The problem with this methodology is that it was written for large
software applications with lifetimes of a decade or more. With dozens
of programmers making modifications, stability is paramount. How-
ever, you are creating a testbench, where the goal is maximum control
of all variables to generate the widest range of stimulus values. One
of the ways to accomplish this is with constrained-random stimulus

generation, which cannot be done if a variable is hidden behind a screen of methods.
While the get() and put() methods are fine for compilers, GUIs, and APIs, you
should stick with public variables that can be directly accessed anywhere in your
testbench.

5.9 Static Variables vs. Global Variables

Every object has its own local variables that are not shared with any other object. If
you have two Transaction objects, each has its own addr, crc, and data vari-
ables. Sometimes though, you need a variable that is shared by all objects of a certain
type. For example, you might want to keep a running count of the number of transac-
tions that have been created. Without OOP, you would probably create a global
variable. Then you would have a global variable that is used by one small piece of
code, but is visible to the entire testbench. This “pollutes” the global name space and
makes variables visible to everyone, even if you want to keep them local.

Static Variables vs. Global Variables 135

5.9.1 A Simple Static Variable

In SystemVerilog you can create a static variable inside a class. This variable is
shared amongst all instances of the class, but its scope is limited to the class. In Sam-
ple 5.9, the static variable count holds the number of objects created so far. It is
initialized to 0 in the declaration because there are no transactions at the beginning of
the simulation. Each time a new object is constructed, it is tagged with a unique value,
and count is incremented.

Sample 5.9 Class with a static variable

class Transaction;
 static int count = 0; // Number of objects created
 int id; // Unique instance ID
 function new();
 id = count++; // Set ID, bump count
 endfunction
endclass

Transaction t1, t2;
initial begin
 t1 = new(); // 1st instance, id=0, count=1
 t2 = new(); // 2nd instance, id=1, count=2
 $display("Second id=%d, count=%d", t2.id, t2.count);
end

In Sample 5.9, there is only one copy of the static variable count, regardless of how
many Transaction objects are created. You can think that count is stored with the
class and not the object. The variable id is not static, and so every Transaction has
its own copy, as shown in Figure 5-2. Now you don’t need to make a global variable
for the count.

Figure 5-2 Static variables in a class

Using the ID field is a good way to track objects as they flow through
a design. When debugging a testbench, you often need a unique
value. SystemVerilog does not let you print the address of an object,
but you can make an ID field. Whenever you are tempted to make a
global variable, consider making a class-level static variable. A class
should be self-contained, with as few outside references as possible.

class Transaction;
static int count = 0;
int id;

endclass

id: 0
count

id: 1
count

class Transaction;
static int count = 0;
int id;

endclass

id: 0
count

id: 1
count

Chapter 5:Basic OOP136

5.9.2 Accessing Static Variables Through the Class Name

Sample 5.9 showed how you can reference a static variable using a handle. You don’t
need a handle; you could use the class name followed by ::, the class scope resolu-
tion operator as shown in Sample 5.10

Sample 5.10 The class scope resolution operator

class Transaction;
 static int count = 0; // Number of objects created
 ...
endclass

initial begin
 run_test();
 $display("%d transaction were created",
 Transaction::count); // Reference static w/o handle
end

5.9.3 Initializing Static Variables

A static variable is usually initialized in the declaration. You can’t easily initialize it
in the class constructor, as this is called for every single new object. You would need
another static variable to act as a flag, indicating whether the original variable had
been initialized. If you have a more elaborate initialization, you could use an initial
block. Just make sure the static variables are initialized before the first object is
constructed.

5.9.4 Static Methods

Another use for a static variable is when every instance of a class needs information
from a single object. For example, a transaction class may refer to a configuration
object for a mode bit. If you have a nonstatic handle in the Transaction class, every
object will have its own copy, wasting space. Sample 5.11 shows how to use a static
variable instead.

Static Variables vs. Global Variables 137

Sample 5.11 Static storage for a handle

class Transaction;
 static Config cfg; // A handle with static storage
 MODE_E mode;

 function new();
 mode = cfg.mode;
 endfunction
endclass

Config cfg;
initial begin
 cfg = new(MODE_ON);
 Transaction::cfg = cfg;
 ...
end

As you employ more static variables, the code to manipulate them may grow into a
full fledged routine. In SystemVerilog, you can create a static method inside a class
that can read and write static variables, even before the first instance has been created.

Sample 5.12 has a simple static function to display the values of the static variables.
SystemVerilog does not allow a static method to read or write nonstatic variables,
such as id. You can understand this restriction based on the code below. When the
function display_statics is called at the end of the example, no Transaction
objects have been constructed, and so no storage has been created for id variables.

Chapter 5:Basic OOP138

Sample 5.12 Static method displays static variable

class Transaction;
 static Config cfg;
 static int count = 0;
 int id;

 // Static method to display static variables.
 static function void display_statics();
 $display(ÒTransaction cfg.mode=%s, count=%0dÓ,
 cfg.mode.name(), count);
 endfunction
endclass

Config cfg;
initial begin
 cfg = new(MODE_ON);
 Transaction::cfg = cfg;
 Transaction::display_statics(); // Static method call
 end

5.10 Class Methods

A method in a class is just a task or function defined inside the scope of the class.
Sample 5.13 defines display() methods for the Transaction and PCI_Tran.
SystemVerilog calls the correct one, based on the handle type.

Defining Methods Outside of the Class 139

Sample 5.13 Routines in the class

class Transaction;
 bit [31:0] addr, crc, data[8];
 function void display();
 $display("@%0t: TR addr=%h, crc=%h", $time, addr, crc);
 $write("\tdata[0-7]=");
 foreach (data[i]) $write(data[i]);
 $display();
 endfunction
endclass

class PCI_Tran;
 bit [31:0] addr, data; // Use realistic names
 function void display();
 $display("@%0t: PCI: addr=%h, data=%h", $time, addr, data);
 endfunction
endclass

Transaction t;
PCI_Tran pc;

initial begin
 t = new(); // Construct a Transaction
 t.display(); // Display a Transaction
 pc = new(); // Construct a PCI transaction
 pc.display(); // Display a PCI Transaction
end

A method in a class uses automatic storage by default, and so you don’t have to worry
about remembering the automatic modifier.

5.11 Defining Methods Outside of the Class

A good rule of thumb is you should limit a piece of code to one
“page” to keep it understandable. You may be familiar with this rule
for routines, but it also applies to classes. If you can see everything in
a class on the screen at one time, you can more easily understand it.

However, if each method takes a page, how can the whole class fit on a page? In Sys-
temVerilog you can break a method into the prototype (method name and arguments)
inside the class, and the body (the procedural code) that goes after the class.

Here is how you create out-of-block declarations. Copy the first line of the method,
with the name and arguments, and add the extern keyword at the beginning. Now
take the entire method and move it after the class body, and add the class name and

Chapter 5:Basic OOP140

two colons (:: the scope operator) before the method name. The above classes could
be defined as follows.

Sample 5.14 Out-of-block method declarations

class Transaction;
 bit [31:0] addr, crc, data[8];
 extern function void display();
endclass

function void Transaction::display();
 $display("@%0t: Transaction addr=%h, crc=%h",
 $time, addr, crc);
 $write("\tdata[0-7]=");
 foreach (data[i]) $write(data[i]);
 $display();
endfunction

class PCI_Tran;
 bit [31:0] addr, data; // Use realistic names
 extern function void display();
endclass

function void PCI_Tran::display();
 $display("@%0t: PCI: addr=%h, data=%h",
 $time, addr, data);
endfunction

A common coding mistake is when the method prototype does not
match the one in the body. SystemVerilog requires that the proto-
type be identical to the out-of-block method declaration, except for
the class name and scope operator. Additionally, some OOP com-
pilers (g++ and VCS) prohibit you from specifying the default

argument values in both the prototype and the body. Since default argument values
are important to code that calls a method, not to its implementation, they should only
be present in class declaration.

Another common mistake is to leave out the class name when you
declare the method outside of the class. As a result, it is defined at
the next higher scope (probably the program or package scope), and
the compiler gives an error when the task tries to access class-level
variables and methods. This is shown in Sample 5.15.

Scoping Rules 141

Sample 5.15 Out-of-body task missing class name

class Broken;
 int id;
 extern function void display;
endclass

function void display; // Missing Broken::
 $display("Broken: id=%0d", id); // Error, id not found
endfunction

5.12 Scoping Rules

When writing your testbench, you need to create and refer to many variables. System-
Verilog follows the same basic rules as Verilog, with a few helpful improvements.

A scope is a block of code such as a module, program, task, function, class, or begin-
end block. The for and foreach-loops automatically create a block so that an index
variable can be declared or created local to the scope of the loop.

You can define new variables in a block. New in SystemVerilog is the ability to
declare a variable in an unnamed begin–end block, as shown in the for-loops that
declare the index variable.

A name can be relative to the current scope or absolute starting with $root. For a rel-
ative name, SystemVerilog looks up the list of scopes until it finds a match. If you
want to be unambiguous, use $root at the start of a name.3

Sample 5.16 uses the same name in several scopes. Note that in real code, you would
use more meaningful names! The name limit is used for a global variable, a pro-
gram variable, a class variable, a task variable, and a local variable in an initial block.
The latter is in an unnamed block, and so the label created is tool dependent.

3These examples were tested with VCS 2006.06. The MTI Questa simulator uses $unit instead of $root. See
Section 4.6 for more information on these two constructs.

Chapter 5:Basic OOP142

Sample 5.16 Name scope

int limit; // $root.limit

program automatic p;
 int limit; // $root.p.limit

 class Foo;
 int limit, array[]; // $root.p.Foo.limit

 // $root.p.Foo.print.limit
 function void print (int limit);
 for (int i=0; i<limit; i++)
 $display("%m: array[%0d]=%0d", i, array[i]);
 endfunction
 endclass

 initial begin
 int limit = $root.limit; // **see note above
 Foo bar;

 bar = new();
 bar.array = new[limit];
 bar.print (limit);
 end
endprogram

For testbenches, you can declare variables in the program or in the initial block.
If a variable is only used inside a single initial block, such as a counter, you should
declare it there to avoid possible name conflicts with other blocks. Note that if you
declare a variable in an unnamed block, such as the initial in Sample 5.16, there is
no hierarchical name that works consistently across all tools.

Declare your classes outside of any program or module in a pack
age. This approach can be shared by all the testbenches, and you can
declare temporary variables at the innermost possible level. This style
also eliminates a common bug that happens when you forget to
declare a variable inside a class. SystemVerilog looks for that vari-
able in higher scopes.

If a block uses an undeclared variable, and another variable with
that name happens to be declared in the program block, the class
uses it instead, with no warning. In Sample 5.17, the function
Bad::display did not declare the loop variable i, and so System-
Verilog uses the program level i instead. Calling the function
changes the value of test.i, probably not what you want!

Scoping Rules 143

Sample 5.17 Class uses wrong variable

program test;
 int i; // Program-level variable

 class Bad;
 logic [31:0] data[];

 // Calling this function changes the program variable
 function void display;
 // Forgot to declare i in next statement
 for (i=0; i<data.size(); i++)
 $display("data[%0d]=%x", i, data[i]);
 endfunction
 endclass
endprogram

If you move the class into a package, the class cannot see the program-level variables,
and thus won’t use them unintentionally.

Sample 5.18 Move class into package to find bug

package Mistake;
 class Bad;
 logic [31:0] data[];

 // Will not compile because of undeclared i
 function void display;
 for (i = 0; i<data.size(); i++)
 $display("data[%0d]=%x", i, data[i]);
 endfunction
 endclass
endpackage

program test;
 int i; // Program-level variable
 import Mistake::*;
 ...
endprogram

5.12.1 What is this?

When you use a variable name, SystemVerilog looks in the current scope for it, and
then in the parent scopes until the variable is found. This is the same algorithm used by
Verilog. What if you are deep inside a class and want to unambiguously refer to a class-
level object? This style code is most commonly used in constructors, where the pro-
grammer uses the same name for a class variable and an argument.4 In Sample 5.19, the

4Some people think this makes the code easier to read; others think it is a shortcut by a lazy programmer.

Chapter 5:Basic OOP144

keyword “this” removes the ambiguity to let SystemVerilog know that you are assign-
ing the local variable, oname, to the class variable, oname.

Sample 5.19 Using this to refer to class variable

class Scoping;
 string oname;

 function new(string oname);
 this.oname = oname; // class oname = local oname
 endfunction

endclass

5.13 Using One Class Inside Another

A class can contain an instance of another class, using a handle to an object. This is
just like Verilog’s concept of instantiating a module inside another module to build up
the design hierarchy. Common reasons for using containment are reuse and control-
ling complexity.

For example, every one of your transactions may have a statistics block, with times-
tamps on when the transaction started and ended, and information about all
transactions, as shown in Figure 5-3.

Figure 5-3 Contained objects

Sample 5.20 shows the Statistics class.

class Transaction;
bit [31:0] addr, crc, data[8];
Statistics stats;

endclass class Statistics;
time startT, stopT;
static int ntrans = 0;
static time total_elapsed_time;

endclass

class Transaction;
bit [31:0] addr, crc, data[8];
Statistics stats;

endclass class Statistics;
time startT, stopT;
static int ntrans = 0;
static time total_elapsed_time;

endclass

Using One Class Inside Another 145

Sample 5.20 Statistics class declaration

class Statistics;
 time startT, stopT; // Transaction times
 static int ntrans = 0; // Transaction count
 static time total_elapsed_time = 0;

 function time how_long;
 how_long = stopT Ð startT;
 ntrans++;
 total_elapsed_time += how_long;
 endfunction

 function void start;
 startT = $time;
 endfunction
endclass

Now you can use this class inside another.

Sample 5.21 Encapsulating the Statistics class

class Transaction;
 bit [31:0] addr, crc, data[8];
 Statistics stats; // Statistics handle

 function new();
 stats = new(); // Make instance of stats
 endfunction

 task create_packet();
 // Fill packet with data
 stats.start();
 // Transmit packet
 endtask
endclass

The outermost class, Transaction, can refer to things in the Statistics class
using the usual hierarchical syntax, such as stats.startT.

Remember to instantiate the object; otherwise, the handle stats is null and the call
to start fails. This is best done in the constructor of the outer class, Transaction.

As your classes become larger, they may become hard to manage. When your vari-
able declarations and method prototypes grow larger than a page, you should see if
there is a logical grouping of items in the class so that it can be split into several
smaller ones.

This is also a potential sign that it’s time to refactor your code, i.e., split it into several
smaller, related classes. See Chap. 8 for more details on class inheritance. Look at

Chapter 5:Basic OOP146

what you’re trying to do in the class. Is there something you could move into one or
more base classes, i.e., decompose a single class into a class hierarchy? A classic indi-
cation is similar code appearing at various places in the class. You need to factor that
code out into a function in the current class, one of the current class’s parent classes,
or both.

5.13.1 How Big or Small Should My Class Be?

Just as you may want to split up classes that are too big, you should
also have a lower limit on how small a class should be. A class with
just one or two members makes the code harder to understand as it
adds an extra layer of hierarchy and forces you to constantly jump
back and forth between the parent class and all the children to under-
stand what it does. In addition, look at how often it is used. If a small

class is only instantiated once, you might want to merge it into the parent class.

One Synopsys customer put each transaction variable into its own class for fine con-
trol of randomization. The transaction had a separate object for the address, CRC,
data, etc. In the end, this approach only made the class hierarchy more complex. On
the next project they flattened the hierarchy.

See Section 8.4 for more ideas on partitioning classes.

5.13.2 Compilation Order Issue

Sometimes you need to compile a class that includes another class that is not yet
defined. The declaration of the handle causes an error, as the compiler does not recog-
nize the new type. Declare the class name with a typedef statement, as shown
below.

Sample 5.22 Using a typedef class statement

typedef class Statistics; // Define a lower level class

class Transaction;
 Statistics stats; // Use Statistics class
 ...
endclass

class Statistics; // Define Statistics class
 ...
endclass

Understanding Dynamic Objects 147

5.14 Understanding Dynamic Objects

In a statically allocated language such as Verilog, every piece of data usually has a
variable associated with it. For example, there may be a wire called grant, the inte-
ger count, and a module instance i1. In OOP, there is not the same one-to-one
correspondence. There can be many objects, but only a few named handles. A test-
bench may allocate a thousand transaction objects during a simulation, but may only
have a few handles to manipulate them. This situation takes some getting used to if
you have only written Verilog code.

In reality, there is a handle pointing to every object. Some handles may be stored in
arrays or queues, or in another object, like a linked list. For objects stored in a mail-
box, the handle is in an internal SystemVerilog structure. See Section 7.6 for more
information on mailboxes.

5.14.1 Passing Objects to Methods

What happens when you pass an object into a method? Perhaps the method only
needs to read the values in the object, such as transmit above. Or, your method may
modify the object, like a method to create a packet. Either way, when you call the
method, you pass a handle to the object, not the object itself.

Figure 5-4 Handles and objects across methods

In Figure 5-4, the generator task has just called transmit. There are two handles,
generator.t and transmit.t, that both refer to the same object.

When you call a method with a scalar variable (not an array or object) and use the ref
argument keyword, SystemVerilog passes the address of the scalar, and so the method
can modify it. If you don’t use ref, SystemVerilog copies the scalar’s value into the
argument variable, and so any changes to the argument don’t affect the original value.

Transaction

task generator;
Transaction t;
t = new;
transmit(t);

endtask

task transmit(Transaction t);
…

endtask

Transaction

task generator;
Transaction t;
t = new;
transmit(t);

endtask

task transmit(Transaction t);
…

endtask

Chapter 5:Basic OOP148

Sample 5.23 Passing objects

// Transmit a packet onto a 32-bit bus
task transmit(Transaction t);
 CBbus.rx_data <= t.data;
 t.stats.startT = $time;
 ...
endtask

Transaction t;
initial begin
 t = new(); // Allocate the object
 t.addr = 42; // Initialize values
 transmit(t); // Pass object to task
end

In Sample 5.23, the initial block allocates a Transaction object and calls the
transmit task with the handle that points to the object. Using this handle, trans
mit can read and write values in the object. However, if transmit tries to modify
the handle, the result won’t be seen in the initial block, as the t argument was not
declared as ref.

A method can modify an object, even if the handle argument does
not have a ref modifier. This frequently causes confusion for new
users, as they mix up the handle with the object. As shown above,
transmit can write a timestamp into the object without changing

the value of t. If you don’t want an object modified in a method, pass a copy of it so
that the original object is untouched. See Section 5.15 for more on copying objects.

5.14.2 Modifying a Handle in a Task

A common coding mistake is to forget to use ref on method argu-
ments that you want to modify, especially handles. In Sample 5.24,
the argument tr is not declared as ref, and so any change to it is
not be seen by the calling code. The argument tr has the default
direction of input.

Understanding Dynamic Objects 149

Sample 5.24 Bad transaction creator task, missing ref on handle

function void create(Transaction tr); // Bug, missing ref
 tr = new();
 tr.addr = 42;
 // Initialize other fields
 ...
endfunction

Transaction t;
initial begin
 create(t); // Create a transaction
 $display(t.addr); // Fails because t=null
 end

Even though create modified the argument tr, the handle t in the calling block
remains null. You need to declare the argument tr as ref.

Sample 5.25 Good transaction creator task with ref on handle

function void create(ref Transaction tr);
 ...
endtask

5.14.3 Modifying Objects in Flight

A very common mistake is forgetting to create a new object for
each transaction in the testbench. In Sample 5.26, the
generate_bad task creates a Transaction object with random
values, and transmits it into the design over several cycles.

Sample 5.26 Bad generator creates only one object

task generator_bad(int n);
 Transaction t;
 t = new(); // Create one new object
 repeat (n) begin
 t.addr = $random(); // Initialize variables
 $display("Sending addr=%h", t.addr);
 transmit(t); // Send it into the DUT
 end
endtask

What are the symptoms of this mistake? The code above creates only one Transac
tion, and so every time through the loop, generator_bad changes the object at the
same time it is being transmitted. When you run this, the $display shows many
addr values, but all transmitted Transaction objects have the same value of addr.
The bug occurs when transmit spawns off a thread that takes several cycles to send

Chapter 5:Basic OOP150

the transaction, and so the values in the object are re-randomized in the middle of
transmission. If your transmit task makes a copy of the object, you can recycle the
same object over and over. This bug can also happen with mailboxes as show in
Sample 7.31.

To avoid this bug, you need to create a new Transaction during each pass through
the loop.

Sample 5.27 Good generator creates many objects

task generator_good(int n);
 Transaction t;
 repeat (n) begin
 t = new(); // Create one new object
 t.addr = $random(); // Initialize variables
 $display("Sending addr=%h", t.addr);
 transmit(t); // Send it into the DUT
 end
endtask

5.14.4 Arrays of Handles

As you write testbenches, you need to be able to store and reference many objects.
You can make arrays of handles, each of which refers to an object. Sample 5.28
shows storing ten bus transactions in an array.

Sample 5.28 Using an array of handles

task generator();
 Transaction tarray[10];
 foreach (tarray[i])
 begin
 tarray[i] = new(); // Construct each object
 transmit(tarray[i]);
 end
endtask

The array tarray is made of handles, not objects. So you need to construct each
object in the array before using it, just as you would for a normal handle. There is no
way to call new on an entire array of handles.

There is no such thing as an “array of objects,” though you may use this term as a
shorthand for an array of handles that points to objects. You should keep in mind that
some of these handles may not point to an object, or that multiple handles could point
to a single object.

Copying Objects 151

5.15 Copying Objects

You may want to make a copy of an object to keep a method from modifying the origi-
nal, or in a generator to preserve the constraints. You can either use the simple, built-in
copy available with new operator or you can write your own for more complex classes.
See Section 8.2 for more reasons why you should make a copy method.

5.15.1 Copying an Object with the new Operator

Copying an object with the new operator is easy and reliable. Memory for the new
object is allocated and all variables from the existing object are copied. However any
new() function that you may have defined is not called.

Sample 5.29 Copying a simple class with new

class Transaction;
 bit [31:0] addr, crc, data[8];
endclass

Transaction src, dst;
initial begin
 src = new(); // Create first object
 dst = new src; // Make a copy with new operator
 end

This is a shallow copy, similar to a photocopy of the original, blindly transcribing val-
ues from source to destination. If the class contains a handle to another class, only the
handle’s value is copied by the new operator, not the lower level one. In Sample 5.30,
the Transaction class contains a handle to the Statistics class, originally
shown in Sample 5.20.

Chapter 5:Basic OOP152

Sample 5.30 Copying a complex class with new operator

class Transaction;
 bit [31:0] addr, crc, data[8];
 static int count = 0;
 int id;
 Statistics stats; // Handle points to Statistics object

 function new();
 stats = new(); // Construct a new Statistics obecjt
 id = count++;
 endfunction
endclass

Transaction src, dst;
initial begin
 src = new(); // Create a Transaction object
 src.stats.startT = 42; // Results in Figure 5-5
 dst = new src; // Copy src to dst with new operator
 // Results in Figure 5-6
 dst.stats.startT = 96; // Changes stats for dst & src
 $display(src.stats.startT); // Ò96Ó, see Figure 5-7
 end

The initial block creates the first Transaction object and modifies a variable in
the contained object Statistics., as shown in Figure 5-5.

Figure 5-5 Objects and handles before copy with the new operator

When you use the new operator to make a copy, the Transaction object is copied,
but not the Statistics one. This is because the new operator does not call your
own new() function. Instead, the values of variables and handles are copied. So now
both Transaction objects have the same id as shown in Figure 5-6.

Figure 5-6 Objects and handles after copy with the new operator

id=0
stats

dst

src
startT=42

id=0
stats

dst

src
startT=42

id=0
stats

dst

src
startT=42

id=0
stats

id=0
stats

dst

src
startT=42

id=0
stats

Copying Objects 153

Worse yet, both Transaction objects point to the same Statistics object and
so modifying startT with the src handle affects what is seen with the dst handle.

Figure 5-7 Objects and handles after copy with the new operator

5.15.2 Writing Your Own Simple Copy Function

If you have a simple class that does not contain any references to other classes, writ-
ing a copy function is easy.

Sample 5.31 Simple class with copy function

class Transaction;
 bit [31:0] addr, crc, data[8]; // No Statistic handle

 function Transaction copy();
 copy = new(); // Construct destination
 copy.addr = addr; // Fill in data values
 copy.crc = crc;
 copy.data = data; // Array copy
 endfunction
endclass

Sample 5.32 Using a copy function

Transaction src, dst;
initial begin
 src = new(); // Create first object
 dst = src.copy(); // Make a copy of the object
end

5.15.3 Writing a Deep Copy Function

For nontrivial classes, you should always create your own copy function. You can
make it a deep copy by calling the copy functions of all the contained objects. Your
own copy function makes sure all your user fields (such as an ID) remain consistent.
The downside of making your own copy function is that you need to keep it up to

id=0
stats

dst

src
startT=96

id=0
stats

id=0
stats

dst

src
startT=96

id=0
stats

Chapter 5:Basic OOP154

date as you add new variables – forget one and you could spend hours debugging to
find the missing value.5

Sample 5.33 Complex class with deep copy function

class Transaction;
 bit [31:0] addr, crc, data[8];
 Statistics stats; // Handle points to Statistics object
 static int count = 0;
 int id;

 function new();
 stats = new();
 id = count++;
 endfunction

 function Transaction copy();
 copy = new(); // Construct destination object
 copy.addr = addr; // Fill in data values
 copy.crc = crc;
 copy.data = data;
 copy.stats = stats.copy(); // Call Statistics::copy
 endfunction
endclass

The new() constructor is called by copy and so every object gets a unique id. Add a
copy() method for the Statistics class, and every other class in the hierarchy.

Sample 5.34 Statistics class declaration

class Statistics;
 time startT, stopT; // Transaction times
 ... // See Sample 5.20 for rest of class
 function Statistics copy();
 copy = new();
 copy.startT = startT
 copy.stopT = stopT;
 endfunction
endclass

Now when you make a copy of the Transaction object, it will have its own Sta
tistics object as shown in Sample 5.35.

5Perhaps the version of SystemVerilog may include a deep object copy. However, this still does just a copy,
and so your constructor (new function) won’t be called, and fields such as ID will not be updated.

Copying Objects 155

Sample 5.35 Copying a complex class with new operator

Transaction src, dst;
initial begin
 src = new(); // Create first object
 src.stats.startT = 42; // Set start time
 dst = new src; // Copy src to dst with deep copy
 dst.stats.startT = 96; // Changes stats for dst only
 $display(src.stats.startT); // Ò42Ó, See Figure 5-8
 end

Figure 5-8 Objects and handles after deep copy

5.15.4 Packing Objects to and from Arrays Using Streaming Operators

Some protocols, such as ATM, transmit control and data values one byte at a time.
Before you send out a transaction, you need to pack together the variables in the
object to a byte array. Likewise, after receiving a string of bytes, you need to unpack
them back into a transaction object. For both of these functions, use the streaming
operators, as originally shown in Section 2.11.3.

You can’t just stream the entire object as this would gather all properties, including
both data and also meta-data such as timestamps and self-checking information that
you may not want packed. You need to write your own pack function that only uses
the properties that you choose.

id=0
stats

dst

src

startT=96
id=1
stats

startT=42
id=0
stats

dst

src

startT=96
id=1
stats

startT=42

Chapter 5:Basic OOP156

Sample 5.36 Transaction class with pack and unpack functions

class Transaction;
 bit [31:0] addr, crc, data[8]; // Real data
 static int count = 0; // Meta-data does not
 int id; // get packed

 function new();
 id = count++;
 endfunction

 function void display();
 $write("Tr: id=%0d, addr=%x, crc=%x", id, addr, crc);
 foreach(data[i]) $write(" %x", data[i]);
 $display;
 endfunction

 function void pack(ref byte bytes[40]);
 bytes = { >> {addr, crc, data}};
 endfunction

 function Transaction unpack(ref byte bytes[40]);
 { >> {addr, crc, data}} = bytes;
 endfunction
endclass : Transaction

Sample 5.37 Using the pack and unpack functions

Transaction tr, tr2;
byte b[40]; // addr + crc + data = 40 bytes

initial begin
 tr = new();
 tr.addr = 32'ha0a0a0a0; // Fill object with values
 tr.crc = '1;
 foreach (tr.data[i])
 tr.data[i] = i;

 tr.pack(b); // Pack object into byte array
 $write("Pack results: ");
 foreach (b[i])
 $write("%h", b[i]);
 $display;

 tr2 = new();
 tr2.unpack(b);
 tr2.display();
end

Public vs. Local 157

5.16 Public vs. Local

The core concept of OOP is encapsulating data and related methods into a class. Vari-
ables are kept local to the class by default to keep one class from poking around inside
another. A class provides a set of accessor methods to access and modify the data.
This would also allow you to change the implementation without needing to let the
users of the class know. For instance, a graphics package could change its internal
representation from Cartesian coordinates to polar as long as the user interface (acces-
sor methods) have the same functionality.

Consider the Transaction class that has a payload and a CRC so that the hardware
can detect errors. In conventional OOP, you would make a method to set the payload
and also set the CRC so that they would stay synchronized. Thus your objects would
always be filled with correct values.

However, testbenches are not like other programs, such as a web browser or word
processor. A testbench needs to create errors. You want to have a bad CRC so that
you can test how the hardware reacts to errors.

OOP languages such as C++ and Java allow you to specify the visibility of variables
and methods. By default, everything in a class is local unless labeled otherwise.

In SystemVerilog, everything is public unless labeled local or pro
tected. You should stick with this default so that you have the
greatest control over the operation of the DUT, which is more impor-
tant than long-term software stability. For example, making the CRC
visible allows you to easily inject errors into the DUT. If the CRC
was local, you would have to write extra code to bypass the data-

hiding mechanisms, resulting in a larger and more complex testbench.

5.17 Straying Off Course

As a new OOP student, you may be tempted to skip the extra thought needed to group
items into a class, and just store data in a few variables. Avoid the temptation! A basic
DUT monitor samples several values from an interface. Don’t just store them in some
integers and pass them to the next stage. This saves you a few minutes at first, but
eventually you need to group these values together to form a complete transaction.
Several of these transactions may need to be grouped to create a higher-level transac-
tion such as a DMA transfer. Instead, immediately put those interface values into a
transaction class. Now you can store related information (port number, receive time)
along with the data, and easily pass this object to the rest of your testbench.

Chapter 5:Basic OOP158

5.18 Building a Testbench

You are closer to creating a simple testbench from classes. Here is the diagram from
Chap. 1. Obviously, the transactions in Figure 5-9 are objects, but each block is repre-
sented as a class also.

Figure 5-9 Layered testbench

The Generator, Agent, Driver, Monitor, Checker, and Scoreboard are all
classes, modeled as transactors (described below). They are instantiated inside the
Environment class. For simplicity, the test is at the top of the hierarchy, as is the pro-
gram that instantiates the Environment class. The Functional coverage definitions can
be put inside or outside the Environment class.

A transactor is made of a simple loop that receives a transaction object from a previ-
ous block, makes some transformations, and sends it to the following one. Some, such
as the Generator, have no upstream block, and so this transactor constructs and ran-
domizes every transaction, while others, such as the Driver, receive a transaction
and send it into the DUT as signal transitions.

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

Fu
nc

tio
na

l C
ov

er
ag

e

Environment

Agent

DUT

AssertionsDriver Monitor

Test

Scoreboard Checker

Generator

Fu
nc

tio
na

l C
ov

er
ag

e

Environment

Agent

Conclusion 159

Sample 5.38 Basic Transactor

class Transactor; // Generic class
 Transaction tr;

 task run();
 forever begin
 // Get transaction from upstream block
 ...
 // Do some processing
 ...
 // Send it to downstream block
 ...
 end
 endtask

endclass

How do you exchange transactions between blocks? With procedural code you could
have one object call the next, or you could use a data structure such as a FIFO to hold
transactions in flight between blocks. In Chap. 7, you will learn how to use mail-
boxes, which are FIFOs with the ability to stall a thread until a new value is added.

5.19 Conclusion

Using Object-Oriented Programming is a big step, especially if your first computer
language was Verilog. The payoff is that your testbenches are more modular and thus
easier to develop, debug, and reuse.

Have patience – your first OOP testbench may look more like Verilog with a few
classes added. As you get the hang of this new way of thinking, you begin to create
and manipulate classes for both transactions and the transactors in the testbench that
manipulate them.

In Chap. 8 you will learn more OOP techniques and so your test can change the
behavior of the underlying testbench without having to change any of the existing
code.

Chapter 6

Randomization

6.1 Introduction

As designs grow larger, it becomes more difficult to create a complete set of stimuli
needed to check their functionality. You can write a directed test case to check a cer-
tain set of features, but you cannot write enough directed test cases when the number
of features keeps doubling on each project. Worse yet, the interactions between all
these features are the source for the most devious bugs and are the least likely to be
caught by going through a laundry list of features.

The solution is to create test cases automatically using constrained-random tests
(CRT). A directed test finds the bugs you think are there, but a CRT finds bugs you
never thought about, by using random stimulus. You restrict the test scenarios to
those that are both valid and of interest by using constraints.

Creating a CRT environment takes more work than creating one for directed tests.
A simple directed test just applies stimulus, and then you manually check the result.
These results are captured as a golden log file and compared with future simulations
to see whether the test passes or fails. A CRT environment needs not only to create
the stimulus but also to predict the result, using a reference model, transfer function,
or other techniques. However, once this environment is in place, you can run hun-
dreds of tests without having to hand-check the results, thereby improving your
productivity. This trade-off of test-authoring time (your work) for CPU time (machine
work) is what makes CRT so valuable.

Chapter 6:Randomization162

A CRT is made of two parts: the test code that uses a stream of random values to cre-
ate input to the DUT, and a seed to the pseudo-random number generator (PRNG),
shown in Section 6.16.1. You can make a CRT behave differently just by using a new
seed. This feature allows you to leverage each test so that each is the functional equiv-
alent of many directed tests, just by changing seeds. You are able to create more
equivalent tests using these techniques than with directed testing.

You may feel that these random tests are like throwing darts. How do you know when
you have covered all aspects of the design? The stimulus space is too large to generate
every possible input by using for-loops, and so you need to generate a useful subset.
In Chap. 9 you will learn how to measure verification progress by using functional
coverage.

There are many ways to use randomization, and this chapter gives a wide range of
examples. It highlights the most useful techniques, but you should choose what works
best for you.

6.2 What to Randomize

When you think of randomizing the stimulus to a design, the first thing you may think
of are the data fields. These are the easiest to create – just call $random. The problem
is that this approach has a very low payback in terms of bugs found: you only find
data-path bugs, perhaps with bit-level mistakes. The test is still inherently directed.
The challenging bugs are in the control logic. As a result, you need to randomize all
decision points in your DUT. Wherever control paths diverge, randomization increases
the probability that you’ll take a different path in each test case.

You need to think broadly about all design input such as the following:

Device configuration
Environment configuration
Primary input data
Encapsulated input data
Protocol exceptions
Delays
Transaction status
Errors and violations

6.2.1 Device Configuration

What is the most common reason why bugs are missed during testing of the RTL
design? Not enough different configurations have been tried! Most tests just use the
design as it comes out of reset, or apply a fixed set of initialization vectors to put it

What to Randomize 163

into a known state. This is like testing a PC’s operating system right after it has been
installed, and without any applications; of course the performance is fine, and there
are no crashes.

Over time, in a real world environment, the DUT’s configuration becomes more and
more random. For example, a verification engineer had to verify a time-division mul-
tiplexor switch that had 600 input channels and 12 output channels. When the device
was installed in the end-customer’s system, channels would be allocated and deallo-
cated over and over. At any point in time, there would be little correlation between
adjacent channels. In other words, the configuration would seem random.

To test this device, the verification engineer had to write several dozen lines of Tcl
code to configure each channel. As a result, she was never able to try configurations
with more than a handful of channels enabled. Using a CRT methodology, she wrote
a testbench that randomized the parameters for a single channel, and then put this in a
loop to configure the whole device. Now she had confidence that her tests would
uncover bugs that previously would have been missed.

6.2.2 Environment Configuration

The device that you are designing operates in an environment containing other
devices. When you are verifying the DUT, it is connected to a testbench that mimics
this environment. You should randomize the entire environment, including the num-
ber of objects and how they are configured.

Another company was creating an I/O switch chip that connected multiple PCI buses
to an internal memory bus. At the start of simulation the customer used randomization
to choose the number of PCI buses (1–4), the number of devices on each bus (1–8),
and the parameters for each device (master or slave, CSR addresses, etc.). Even
though there were many possible combinations, this company knew all had been
covered.

6.2.3 Primary Input Data

This is what you probably thought of first when you read about random stimulus: take
a transaction such as a bus write or ATM cell and fill it with some random values.
How hard can that be? Actually it is fairly straightforward as long as you carefully
prepare your transaction classes. You should anticipate any layered protocols and
error injection.

6.2.4 Encapsulated Input Data

Many devices process multiple layers of stimulus. For example, a device may cre-
ate TCP traffic that is then encoded in the IP protocol, and finally sent out inside
Ethernet packets. Each level has its own control fields that can be randomized to try
new combinations. So you are randomizing the data and the layers that surround it.

Chapter 6:Randomization164

You need to write constraints that create valid control fields but that also allow
injecting errors.

6.2.5 Protocol Exceptions, Errors, and Violations

Anything that can go wrong, will, eventually. The most challenging part of design
and verification is how to handle errors in the system. You need to anticipate all the
cases where things can go wrong, inject them into the system, and make sure the
design handles them gracefully, without locking up or going into an illegal state. A
good verification engineer tests the behavior of the design to the edge of the func-
tional specification and sometimes even beyond.

When two devices communicate, what happens if the transfer stops partway through?
Can your testbench simulate these breaks? If there are error detection and correction
fields, you must make sure all combinations are tried.

The random component of these errors is that your testbench should be able to send
functionally correct stimuli and then, with the flip of a configuration bit, start inject-
ing random types of errors at random intervals.

6.2.6 Delays

Many communication protocols specify ranges of delays. The bus grant comes one to
three cycles after request. Data from the memory is valid in the fourth to tenth bus
cycle. However, many directed tests, optimized for the fastest simulation, use the
shortest latency, except for that one test that only tries various delays. Your testbench
should always use random, legal delays during every test to try to find that (hope-
fully) one combination that exposes a design bug.

Below the cycle level, some designs are sensitive to clock jitter. By sliding the clock
edges back and forth by small amounts, you can make sure your design is not overly
sensitive to small changes in the clock cycle.

The clock generator should be in a module outside the testbench so that it creates
events in the Active region along with other design events. However, the generator
should have parameters such as frequency and offset that can be set by the testbench
during the configuration phase.

(Note that you are looking for functional errors, not timing errors. Your testbench
should not try to violate setup and hold requirements. These are better validated using
timing analysis tools.)

Randomization in SystemVerilog 165

6.3 Randomization in SystemVerilog

The random stimulus generation in SystemVerilog is most useful when used with
OOP. You first create a class to hold a group of related random variables, and then
have the random-solver fill them with random values. You can create constraints to
limit the random values to legal values, or to test-specific features.

Note that you can randomize individual variables, but this case is the least interesting.
True constrained-random stimuli is created at the transaction level, not one value at a time.

6.3.1 Simple Class with Random Variables

Sample 6.1 shows a packet class with random variables and constraints, plus test-
bench code that constructs and randomizes a packet.

Sample 6.1 Simple random class

class Packet;
 // The random variables
 rand bit [31:0] src, dst, data[8];
 randc bit [7:0] kind;
 // Limit the values for src
 constraint c {src > 10;
 src < 15;}
endclass

Packet p;
initial begin
 p = new();// Create a packet
 assert (p.randomize())
 else $fatal(0, "Packet::randomize failed");
 transmit(p);
end

This class has four random variables. The first three use the rand modifier, so that
every time you randomize the class, the variables are assigned a value. Think of roll-
ing dice: each roll could be a new value or repeat the current one. The kind variable
is randc, which means random cyclic, so that the random solver does not repeat a
random value until every possible value has been assigned. Think of dealing cards
from a deck: you deal out every card in the deck in random order, then shuffle the
deck, and deal out the cards in a different order. Note that the cyclic pattern is for a
single variable. A randc array with eight elements has eight different patterns.

A constraint is just a set of relational expressions that must be true for the chosen
value of the variables. In this example, the src variable must be greater than 10 and
less than 15. Note that the constraint expression is grouped using curly braces: {}.
This is because this code is declarative, not procedural, which uses begin...end.

Chapter 6:Randomization166

The randomize() function returns 0 if a problem is found with the constraints. The
procedural assertion is used to check the result, as shown in Section 4.8. This example
uses a $fatal to stop simulation, but the rest of the book leaves out this extra code.
You need to find the tool-specific switches to force the assertion to terminate simula-
tion. This book uses assert to test the result from randomize(), but you may want
to test the result, call your special routine that prints any useful information and then
gracefully shut down the simulation.

You should not randomize an object in the class constructor. Your test
may need to turn constraints on or off, change weights, or even add
new constraints before randomization. The constructor is for
initializing the object’s variables, and if you called randomize() at this
early stage, you might end up throwing away the results.

All variables in your classes should be random and public. This gives
your test the maximum control over the DUT’s stimulus and control.
You can always turn off a random variable, as show in Section 6.11.2.
If you forget to make a variable random, you must edit the environ-
ment, which you want to avoid.

6.3.2 Checking the Result from Randomization

The randomize() function assigns random values to any variable in
the class that has been labeled as rand or randc, and also makes sure
that all active constraints are obeyed. Randomization can fail if your
code has conflicting constraints (see next section), and so you should
always check the status. If you don’t check, the variables may get
unexpected values, causing your simulation to fail.

Sample 6.1 checks the status from randomize() by using a procedural assertion. If
randomization succeeds, the function returns 1. If it fails, randomize() returns 0.
The assertion checks the result and prints an error if there was a failure. You should
set your simulator’s switches to terminate when an error is found. Alternatively, you
might want to call a special routine to end simulation, after doing some housekeeping
chores like printing a summary report.

6.3.3 The Constraint Solver

The process of solving constraint expressions is handled by the SystemVerilog constraint
solver. The solver chooses values that satisfy the constraints. The values come from Sys-
temVerilog’s PRNG, which is started with an initial seed. If you give a SystemVerilog
simulator the same seed and the same testbench, it always produces the same results.

The solver is specific to the simulation vendor, and a constrained-random test may
not give the same results when run on different simulators, or even on different ver-
sions of the same tool. The SystemVerilog standard specifies the meaning of the
expressions, and the legal values that are created, but does not detail the precise order

Constraint Details 167

in which the solver should operate. See Section 6.16 for more details on random num-
ber generators.

6.3.4 What can be Randomized?

SystemVerilog allows you to randomize integral variables, that is, variables that con-
tain a simple set of bits. This includes 2-state and 4-state types, though randomization
only works with 2-state values. You can have integers, bit vectors, etc. You cannot
have a random string, or refer to a handle in a constraint.1

6.4 Constraint Details

Useful stimulus is more than just random values – there are relationships between the
variables. Otherwise, it may take too long to generate interesting stimulus values, or
the stimulus might contain illegal values. You define these interactions in SystemVer-
ilog using constraint blocks that contain one or more constraint expressions.
SystemVerilog chooses random values so that the expressions are true.

At least one variable in each expression should be random, either
rand or randc. The following class fails when randomized, unless
age happens to be in the right range. The solution is to add the mod-
ifier rand or randc before age.

Sample 6.2 Constraint without random variables

class Child;
 bit [31:0] age; // Error Ð should be rand or randc
 constraint c_teenager {age > 12;
 age < 20;}
endclass

The randomize() function tries to assign new values to random variables and to
make sure all constraints are satisfied. In Sample 6.2, since there are no random vari-
ables, randomize() just checks the value of son to see if it is in the bounds
specified by the constraint c_teenager. Unless the variable happens to fall in the
range of 13:19, randomize() fails. While you can use a constraint to check that a
nonrandom variable has a valid value, use an assert or if-statement instead. It is
much easier to debug your procedural checker code than read through an error mes-
sage from the random solver.

1As of late 2007, the IEEE SystemVerilog committee is still working on specifying how to randomize real
variables. The issue is that the solver may not be able to solve a constraint such as one_third == 0.333 as the
fraction 1/3 cannot be represented precisely as a real number.

Chapter 6:Randomization168

6.4.1 Constraint Introduction

Sample 6.3 shows a simple class with random variables and constraints. The specific
constructs are explained in the following sections.

Sample 6.3 Constrained-random class

class Stim;
 const bit [31:0] CONGEST_ADDR = 42;
 typedef enum {READ, WRITE, CONTROL} stim_e;
 randc stim_e kind; // Enumerated var
 rand bit [31:0] len, src, dst;
 bit congestion_test;

 constraint c_stim {
 len < 1000;
 len > 0;
 if (congestion_test) {
 dst inside {[CONGEST_ADDR-100:CONGEST_ADDR+100]};
 src == CONGEST_ADDR;
 }
 else
 src inside {0, [2:10], [100:107]};
 }
endclass

6.4.2 Simple Expressions

Sample 6.3 showed a constraint block with several expressions. The first two control
the values for the len variable. As you can see, a variable can be used in multiple
expressions.

There can be a maximum of only one relational operator (<, <=,
==, >=, or >) in an expression. Sample 6.4 incorrectly tries to gen-
erate three variables in a fixed order.

Sample 6.4 Bad ordering constraint

class order;
 rand bit [7:0] lo, med, hi;
 constraint bad {lo < med < hi;} // Gotcha!
endclass

Constraint Details 169

Sample 6.5 Result from incorrect ordering constraint

lo = 20, med = 224, hi = 164
lo = 114, med = 39, hi = 189
lo = 186, med = 148, hi = 161
lo = 214, med = 223, hi = 201

Sample 6.5 shows the results, which are not what was intended. The constraint bad in
Sample 6.4 is broken down into multiple binary relational expressions, going from
left to right: ((lo < med) < hi). First, the expression (lo < med) is evaluated,
which gives 0 or 1. Then hi is constrained to be greater than the result. The variables
lo and med are randomized but not constrained. The correct constraint is shown in
Sample 6.6. For more examples, see Sutherland and Mills (2007).

Sample 6.6 Constrain variables to be in a fixed order

class order;
 rand bit [15:0] lo, med, hi;
 constraint good {lo < med; // Only use binary constraints
 med < hi;}
endclass

6.4.3 Equivalence Expressions

The most common mistake with constraints is trying to make an
assignment in a constraint block, but it can only contain expres-
sions. Instead, use the equivalence operator to set a random
variable to a value, e.g., len==42. You can build complex rela-

tionships between one or more random variables, such as len == header.addr_mode
* 4 + payload.size().

6.4.4 Weighted Distributions

The dist operator allows you to create weighted distributions so that some values are
chosen more often than others. The dist operator takes a list of values and weights,
separated by the := or the :/ operator. The values and weights can be constants or
variables. The values can be a single value or a range such as [lo:hi]. The weights
are not percentages and do not have to add up to 100. The := operator specifies that
the weight is the same for every specified value in the range, whereas the :/ operator
specifies that the weight is to be equally divided between all the values.

Chapter 6:Randomization170

Sample 6.7 Weighted random distribution with dist

rand int src, dst;
constraint c_dist {
 src dist {0:=40, [1:3]:=60};
 // src = 0, weight = 40/220
 // src = 1, weight = 60/220
 // src = 2, weight = 60/220
 // src = 3, weight = 60/220

 dst dist {0:/40, [1:3]:/60};
 // dst = 0, weight = 40/100
 // dst = 1, weight = 20/100
 // dst = 2, weight = 20/100
 // dst = 3, weight = 20/100
}

In Sample 6.7, src gets the value 0, 1, 2, or 3. The weight of 0 is 40, whereas, 1, 2,
and 3 each have the weight of 60, for a total of 220. The probability of choosing 0 is
40/220, and the probability of choosing 1, 2, or 3 is 60/220 each.

Next, dst gets the value 0, 1, 2, or 3. The weight of 0 is 40, whereas 1, 2, and 3 share
a total weight of 60, for a total of 100. The probability of choosing 0 is 40/100, and
the probability of choosing 1, 2, or 3 is only 20/100 each.

Once again, the values and weights can be constants or variables. You can use vari-
able weights to change distributions on the fly or even to eliminate choices by setting
the weight to zero, as shown in Sample 6.8.

Sample 6.8 Dynamically changing distribution weights

// Bus operation, byte, word, or longword
class BusOp;
 // Operand length
 typedef enum {BYTE, WORD, LWRD } length_e;
 rand length_e len;

 // Weights for dist constraint
 bit [31:0] w_byte=1, w_word=3, w_lwrd=5;

 constraint c_len {
 len dist {BYTE := w_byte, // Choose a random
 WORD := w_word, // length using
 LWRD := w_lwrd}; // variable weights
 }
endclass

In Sample 6.8, the len enumerated variable has three values. With the default weight-
ing values, longword lengths are chosen more often, as w_lwrd has the largest value.

Constraint Details 171

Don’t worry, you can change the weights on the fly during simulation to get a differ-
ent distribution.

6.4.5 Set Membership and the Inside Operator

You can create sets of values with the inside operator. The SystemVerilog solver
chooses between the values in the set with equal probability, unless you have other
constraints on the variable. As always, you can use variables in the sets.

Sample 6.9 Random sets of values

rand int c; // Random variable
int lo, hi; // Non-random variables used as limits
constraint c_range {
 c inside {[lo:hi]}; // lo <= c && c <= hi
}

In Sample 6.9, SystemVerilog uses the values for lo and hi to determine the range of
possible values. You can use this to parameterize your constraints so that the test-
bench can alter the behavior of the stimulus generator without rewriting the
constraints. Note that if lo > hi, an empty set is formed, and the constraint fails.

You can use $ as a shortcut for the minimum and maximum values for a range, as
shown in Sample 6.10. This is helpful when you are building constraints for variables
with different ranges.

Sample 6.10 Specifying minimum and maximum range with $

rand bit [6:0] b; // 0 <= b <= 127
rand bit [5:0] e; // 0 <= e <= 63
constraint c_range {
 b inside {[$:4], [20:$}; // 0 <= b <= 4 || 20 <= b <= 127
 e inside {[$:4], [20:$}; // 0 <= e <= 4 || 20 <= e <= 63
}

If you want any value, as long as it is not inside a set, invert the constraint with the
NOT operator: !

Sample 6.11 Inverted random set constraint

constraint c_range {
 !(c inside {[lo:hi]}); // c < lo or c > hi
}

6.4.6 Using an Array in a Set

You can choose from a set of values by storing them in an array.

Chapter 6:Randomization172

Sample 6.12 Random set constraint for an array

rand int f;
int fib[5] = Õ{1,2,3,5,8};
constraint c_fibonacci {
 f inside fib;
}

This is expanded into the following set of constraints:

Sample 6.13 Equivalent set of constraints

constraint c_fibonacci {
 (f == fib[0]) || // f==1
 (f == fib[1]) || // f==2
 (f == fib[2]) || // f==3
 (f == fib[3]) || // f==5
 (f == fib[4]); // f==8
}

All values in the set are chosen equally, even if they appear multiple times. You can
also think of the inside constraint as being turned into a foreach constraint, as
explained in Section 6.13.4.

Sample 6.14 chooses values using an inside constraint with repeated value, and also
prints a histogram of the chosen values and so you can see that they are chosen
equally.

Constraint Details 173

Sample 6.14 Repeated values in inside constraint

class Weighted;
 rand int val;
 int array[] = '{1,1,2,3,5,8,8,8,8,8};
 constraint c {val inside array;}
endclass

Weighted w;
initial begin
 int count[9], maxx[$];
 w = new();

 repeat (2000) begin
 assert(w.randomize());
 count[w.val]++; // Count the number of hits
 end

 maxx = count.max(); // Get largest value in count

 // Print histogram of count
 foreach(count[i])
 if (count[i]) begin
 $write("count[%0d]=%5d ", i, count[i]);
 repeat (count[i]*40/maxx[0]) $write("*");
 $display;
 end
end

Sample 6.15 Output from inside constraint operator and weighted array

count[1]= 3941 ***************************************
count[2]= 4038 **
count[3]= 3978 ***************************************
count[5]= 4027 ***************************************
count[8]= 4016 ***************************************

The right way to build a weighted distribution is with the dist operator as shown in
Section 6.4.4.

Examples 6.16 and 6.17 choose a day of the week from a list of enumerated values.
You can change the list of choices on the fly. If you make choice a randc variable,
the simulator tries every possible value before repeating.

Chapter 6:Randomization174

Sample 6.16 Class to choose from an array of possible values

class Days;
 typedef enum {SUN, MON, TUE, WED,
 THU, FRI, SAT} days_e;
 days_e choices[$];
 rand days_e choice;
 constraint cday {choice inside choices;}
endclass

Sample 6.17 Choosing from an array of values

initial begin
 Days days;
 days = new();

 days.choices = {Days::SUN, Days::SAT};
 assert (days.randomize());
 $display("Random weekend day %s\n", days.choice.name);

 days.choices = {Days::MON, Days::TUE, Days::WED,
 Days::THU, Days::FRI};
 assert (days.randomize());
 $display("Random week day %s", days.choice.name);
end

The name() function returns a string with the name of an enumerated value.

If you want to dynamically add or remove values from a set, think twice before using
the inside operator because of its performance. For example, perhaps you have a set
of values that you want to choose just once. You could use inside to choose values
from a queue, and delete them to slowly shrink the queue. This requires the solver to
solve N constraints, where N is the number of elements left in the queue. Instead, use
a randc variable that points into an array of choices. Choosing a randc value takes a
short, constant time, whereas solving a large number of constraints is more expensive,
especially if your array has more than a few dozen elements.

Constraint Details 175

Sample 6.18 Using randc to choose array values in random order

class RandcInside;
 int array[]; // Values to choose
 randc bit [15:0] index; // Index into array

 function new(input int a[]); // Construct & initialize
 array = a;
 endfunction

 function int pick; // Return most recent pick
 return array[index];
 endfunction

 constraint c_size {index < array.size();}
endclass

 initial begin
 RandcInside ri;

 ri = new(Õ{1,3,5,7,9,11,13});
 repeat (ri.array.size()) begin
 assert(ri.randomize());
 $display("Picked %2d [%0d]", ri.pick(), ri.index);
 end
 end

Note that constraints and routines can be mixed in any order.

6.4.7 Conditional Constraints

Normally, all constraint expressions are active in a block. What if you want to have an
expression active only some of the time? For example, a bus supports byte, word, and
longword reads, but only longword writes. SystemVerilog supports two implication
operators, -> and if-else.

When you are choosing from a list of expressions, such as an enumerated type, the
implication operator, ->, lets you create a case-like block. The parentheses around the
expression are not required, but do make the code easier to read.

Chapter 6:Randomization176

Sample 6.19 Constraint block with implication operator

class BusOp;
 ...
 constraint c_io {
 (io_space_mode) ->
 addr[31] == 1Õb1;
 }

If you have a true-false expression, the if-else operator may be better.

Sample 6.20 Constraint block with if-else operator

class BusOp;
 ...
 constraint c_len_rw {
 if (op == READ)
 len inside {[BYTE:LWRD]};
 else
 len == LWRD;
 }

In constraint blocks, you use curly braces, { }, to group multiple expressions. The
begin...end keywords are for procedural code.

6.4.8 Bidirectional Constraints

By now you may have realized that constraint blocks are not procedural code, execut-
ing from top to bottom. They are declarative code, all active at the same time. If you
constrain a variable with the inside operator with the set [10:50] and have another
expression that constrains the variable to be greater than 20, SystemVerilog solves
both constraints simultaneously and only chooses values between 21 and 50.

SystemVerilog constraints are bidirectional, which means that the constraints on all
random variables are solved concurrently. Adding or removing a constraint on any
one variable affects the value chosen for all variables that are related directly or indi-
rectly. Consider the constraint in Sample 6.21.

Sample 6.21 Bidirectional constraint

rand logic [15:0] r, s, t;
constraint c_bidir {
 r < t;
 s == r;
 t < 30;
 s > 25;
}

Constraint Details 177

The SystemVerilog solver looks at all four constraints simultaneously. The variable r
has to be less than t, which has to be less than 30. However, r is also constrained to
be equal to s, which is greater than 25. Even though there is no direct constraint on
the lower value of t, the constraint on s restricts the choices. Table 6-1 shows the
possible values for these three variables.

Even the conditional constraints such as -> and if...else, which can look like a pro-
cedural if-else statement, are bidirectional. For example, the constraint {(a==1) -
> (b==0)} is equivalent to {!(a == 1) || b == 0;}. The solver picks values for
the variables that meet this constraint, and does not first check if a==1, then force
b==0. In fact, if you add the additional constraint {b==1;}, the solver will set a to 0.

6.4.9 Choose the Right Arithmetic Operator to Boost Efficiency

Simple arithmetic operators such as addition and subtraction, bit extracts, and shifts
are handled very efficiently by the solver in a constraint. However, multiplication,
division, and modulo are very expensive with 32-bit values. Remember that any con-
stant without an explicit size, such as 42, is treated as a 32-bit value.

If you want to generate random addresses that are near a page boundary, where a page
is 4096 bytes, you could write the following code, but the solver may take a long time
to find suitable values for addr.

Sample 6.22 Expensive constraint with mod and unsized variable

rand bit [31:0] addr;
constraint slow_near_page_boundary {
 addr % 4096 inside {[0:20], [4075:4095]};
}

Many constants in hardware are powers of 2, and so take advantage of this by using
bit extraction rather than division and modulo. Likewise, multiplication by a power of
two can be replaced by a shift.

Table 6-1 Solutions for bidirectional constraint

Solution r s t

A 26 26 27

B 26 26 28

C 26 26 29

D 27 27 28

E 27 27 29

F 28 28 29

Chapter 6:Randomization178

Sample 6.23 Efficient constraint with bit extract

rand bit [31:0] addr;
constraint near_page_boundry {
 addr[11:0] inside {[0:20], [4075:4095]};
}

6.5 Solution Probabilities

Whenever you deal with random values, you need to understand the probability of the
outcome. SystemVerilog does not guarantee the exact solution found by the random
constraint solver, but you can influence the distribution. Any time you work with ran-
dom numbers, you have to look at thousands or millions of values to average out the
noise. Changing the tool version or random seed can cause different results. Some sim-
ulators, such as Synopsys VCS, have multiple solvers to allow you to trade memory
usage vs. performance.

6.5.1 Unconstrained

Start with two variables with no constraints.

Sample 6.24 Class Unconstrained

class Unconstrained;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
endclass

There are eight possible solutions, as shown in Table 6-2. Since there are no con-
straints, each has the same probability. You have to run thousands of randomizations
to see the actual results that approach the listed probabilities.2

Table 6-2 Solutions for Unconstrained class

Solution x y Probability

A 0 0 1/8

B 0 1 1/8

C 0 2 1/8

D 0 3 1/8

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

2The tables were generated with Synopsys VCS 2005.06 using the run-time switch
+ntb_solver_mode=1.

Solution Probabilities 179

6.5.2 Implication

In Sample 6.25, the value of y depends on the value of x. This is indicated with the
implication operator in the following constraint. This example and the rest in this sec-
tion also behave in the way same with the if implication operator.

Sample 6.25 Class with implication

class Imp1;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
 constraint c_xy {
 (x==0) -> y==0;
 }
endclass

Here are the possible solutions and probability. You can see that the random solver
recognizes that there are eight combinations of x and y, but all the solutions where
x==0 (A–D) have been merged together (Table 6-3).

Table 6-3 Solutions for Imp1 class

Solution x y Probability

A 0 0 1/2

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Chapter 6:Randomization180

6.5.3 Implication and Bidirectional Constraints

Note that the implication operator says that when x==0, y is forced to 0, but when
y==0, there is no constraint on x. However, implication is bidirectional in that if y
were forced to a nonzero value, x would have to be 1. Sample 6.26 has the constraint
y>0, and so x can never be 0 (Table 6-4).

Sample 6.26 Class with implication and constraint

class Imp2;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
 constraint c_xy {
 y > 0;
 (x==0) -> y==0;
 }
endclass

6.5.4 Guiding Distribution with solve...before

You can guide the SystemVerilog solver using the “solve...before” constraint as
seen in Sample 6.27.

Table 6-4 Solutions for Imp2 class

Solution x y Probability

A 0 0 0

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 0

F 1 1 1/3

G 1 2 1/3

H 1 3 1/3

Solution Probabilities 181

Sample 6.27 Class with implication and solve...before

class SolveBefore;
 rand bit x; // 0 or 1
 rand bit [1:0] y; // 0, 1, 2, or 3
 constraint c_xy {
 (x==0) -> y==0;
 solve x before y;
 }
endclass

The solve...before constraint does not change the solution space, just the probability
of the results. The solver chooses values of x (0, 1) with equal probability. In 1,000 calls
to randomize(), x is 0 about 500 times, and 1 about 500 times. When x is 0, y must be
0. When x is 1, y can be 0, 1, 2, or 3 with equal probability (Table 6-5).

However, if you use the constraint solve y before x, you get a very different dis-
tribution (Table 6-6).

Table 6-5 Solutions for solve x before y constraint

Solution x y Probability

A 0 0 1/2

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/8

G 1 2 1/8

H 1 3 1/8

Table 6-6 Solutions for solve y before x constraint

Solution x y Probability

A 0 0 1/8

B 0 1 0

C 0 2 0

D 0 3 0

E 1 0 1/8

F 1 1 1/4

G 1 2 1/4

H 1 3 1/4

Chapter 6:Randomization182

Only use solve...before if you are dissatisfied with how often
some values occur. Excessive use can slow the constraint solver
and make your constraints difficult for others to understand.

6.6 Controlling Multiple Constraint Blocks

A class can contain multiple constraint blocks. One might make sure you have a valid
transaction, as described in Section 6.7, but you might need to disable this when test-
ing the DUT’s error handling. Or you might want to have a separate constraint for
each test. Perhaps one constraint would restrict the data length to create small transac-
tions (great for testing congestion), whereas another would make long transactions.

At run-time, you can use the built-in constraint_mode() routine to turn con-
straints on and off. You can control a single constraint with
handle.constraint.constraint_mode(). To control all constraints in an
object, use handle.constraint_mode(), as shown in Sample 6.28.

Valid Constraints 183

Sample 6.28 Using constraint_mode

class Packet;
 rand int length;
 constraint c_short {length inside {[1:32]}; }
 constraint c_long {length inside {[1000:1023]}; }
endclass

Packet p;
initial begin
 p = new();

 // Create a long packet by disabling short constraint
 p.c_short.constraint_mode(0);
 assert (p.randomize());

 transmit(p);

 // Create a short packet by disabling all constraints
 // then enabling only the short constraint
 p.constraint_mode(0);
 p.c_short.constraint_mode(1);
 assert (p.randomize());
 transmit(p);
end

6.7 Valid Constraints

A good randomization technique is to create several constraints to ensure the correct-
ness of your random stimulus, known as “valid constraints.” For example, a bus read–
modify–write command might only be allowed for a longword data length.

Sample 6.29 Checking write length with a valid constraint

class Transaction;
 rand enum {BYTE, WORD, LWRD, QWRD} length;
 rand enum {READ, WRITE, RMW, INTR} opc;

 constraint valid_RMW_LWRD {
 (opc == RMW) -> length == LWRD;
 }
endclass

Now you know the bus transaction obeys the rule. Later, if you want to violate the
rule, use constraint_mode to turn off this one constraint. You should have a

Chapter 6:Randomization184

naming convention to make these constraints stand out, such as using the prefix
valid as shown above.

6.8 In-line Constraints

As you write more tests, you can end up with many constraints. They can interact
with each other in unexpected ways, and the extra code to enable and disable them
adds to the test complexity. Additionally, constantly adding and editing constraints to
a class could cause problems in a team environment.

Many tests only randomize objects at one place in the code. SystemVerilog allows
you to add an extra constraint using randomize() with. This is equivalent to add-
ing an extra constraint to any existing ones in effect. Sample 6.30 shows a base class
with constraints, then two randomize() with statements.

Sample 6.30 The randomize() with statement

class Transaction;
 rand bit [31:0] addr, data;
 constraint c1 {addr inside{[0:100],[1000:2000]};}
endclass

Transaction t;

initial begin
 t = new();

 // addr is 50-100, 1000-1500, data < 10
 assert(t.randomize() with {addr >= 50; addr <= 1500;
 data < 10;});

 driveBus(t);

 // force addr to a specific value, data > 10
 assert(t.randomize() with {addr == 2000; data > 10;});

 driveBus(t);
 end

The extra constraints are added to the existing ones in effect. Use constraint_mode
if you need to disable a conflicting constraint. Note that inside the with{} statement,
SystemVerilog uses the scope of the class. That is why Sample 6.30 used just addr,
not t.addr.

The pre_randomize and post_randomize Functions 185

A common mistake is to surround your in-line constraints with
parenthesis instead of curly braces {}. Just remember that con-
straint blocks use curly braces, and so your in-line constraint must
use them too. Braces are for declarative code.

6.9 The pre_randomize and post_randomize Functions

Sometimes you need to perform an action immediately before every randomize()
call or immediately afterwards. For example, you may want to set some nonrandom
class variables (such as limits or weights) before randomization starts, or you may
need to calculate the error correction bits for random data.

SystemVerilog lets you do this with two special void functions, pre_randomize and
post_randomize. Section 3.2 showed that a void function does not return a value,
but, because it is not a task, does not consume time. If you want to call a debug rou-
tine from pre_randomize or post_randomize, it must be a function.

6.9.1 Building a Bathtub Distribution

For some applications, you want a nonlinear random distribution. For instance, small
and large packets are more likely to find a design bug such as buffer overflow than
medium-sized packets. So you want a bathtub shaped distribution; high on both ends,
and low in the middle. You could build an elaborate dist constraint, but it might
require lots of tweaking to get the shape you want. Verilog has several functions for
nonlinear distribution such as $dist_exponential but none for a bathtub. The
graph in Figure 6.1 shows how you can combine two exponential curves to make a
bathtub curve. The pre_randomize method in Sample 6.31 calculates a point on an
exponential curve, and then randomly chooses to put this on the left curve, or right.
As you pick points on either the left and right curves, you gradually build a distribu-
tion of the combined values.

Chapter 6:Randomization186

Figure 6-1 Building a bathtub distribution

Sample 6.31 Building a bathtub distribution

class Bathtub;
 int value; // Random variable with bathtub dist
 int WIDTH = 50, DEPTH=4, seed=1;

 function void pre_randomize();
 // Calculate an exponental curve
 value = $dist_exponential(seed, DEPTH);
 if (value > WIDTH) value = WIDTH;

 // Randomly put this point on the left or right curve
 if ($urandom_range(1))
 value = WIDTH - value;
 endfunction

endclass

Every time this object is randomized, the variable value gets updated. Across many
randomizations, you will see the desired nonlinear distribution. Since the variable is
calculated procedurally, not through the random constraint solver, it does not need the
rand modifier.

6.9.2 Note on Void Functions

The functions pre_randomize and post_randomize can only call
other functions, not tasks that could consume time. After all, you can-
not have a delay in the middle of a call to randomize(). When you
are debugging a randomization problem, you can call your display
routines if you planned ahead and made them void functions.

Left
Exponential

Right
Exponential

Sum is a
bathtub

Pr
ob

ab
ili

ty

Values WIDTH0

Left
Exponential

Right
Exponential

Sum is a
bathtub

Pr
ob

ab
ili

ty

Values WIDTH0

Random Number Functions 187

6.10 Random Number Functions

You can use all the Verilog-1995 distribution functions, plus several that are new for
SystemVerilog. Consult a statistics book for more details on the “dist” functions.
Some of the useful functions include the following.

$random() – Flat distribution, returning signed 32-bit random
$urandom() – Flat distribution, returning unsigned 32-bit random
$urandom_range() – Flat distribution over a range
$dist_exponential() – Exponential decay, as shown in Figure 6-1
$dist_normal() – Bell-shaped distribution
$dist_poisson() – Bell-shaped distribution
$dist_uniform() – Flat distribution

The $urandom_range() function takes two arguments, an optional low value, and a
high value.

Sample 6.32 $urandom_range usage

a = $urandom_range(3, 10); // Pick a value from 3 to 10
a = $urandom_range(10, 3); // Pick a value from 3 to 10
b = $urandom_range(5); // Pick a value from 0 to 5

6.11 Constraints Tips and Techniques

How can you create CRT that can be easily modified? There are several tricks you
can use. The most general technique is to use OOP to extend the original class as
described in Sections 6.11.8 and 8.2.4, but this also requires more planning. So, first
learn some simple techniques, but keep an open mind.

6.11.1 Constraints with Variables

Most constraint examples in this book use constants to make them more readable. In
Sample 6.33, size is randomized over a range that uses a variable for the upper
bound.

Chapter 6:Randomization188

Sample 6.33 Constraint with a variable bound

class bounds;
 rand int size;
 int max_size = 100;
 constraint c_size {
 size inside {[1:max_size]};
 }
endclass

By default, this class creates random sizes between 1 and 100, but by changing the
variable max_size, you can vary the upper limit.

You can use variables in the dist constraint to turn on and off values and ranges. In
Sample 6.34, each bus command has a different weight variable.

Sample 6.34 dist constraint with variable weights

typedef enum (READ8, READ16, READ32) read_e;
class ReadCommands;
 rand read_e read_cmd;
 int read8_wt=1, read16_wt=1, read32_wt=1;
 constraint c_read {
 read_cmd dist {READ8 := read8_wt,
 READ16 := read16_wt,
 READ32 := read32_wt};
 }
endclass

By default, this constraint produces each command with equal probability. If you
want to have a greater number of READ8 commands, increase the read8_wt weight
variable. Most importantly, you can turn off generation of some commands by drop-
ping their weight to 0.

6.11.2 Using Nonrandom Values

If you have a set of constraints that produces stimulus that is almost what you want,
but not quite, you could call randomize(), and then set a variable to the value you
want – you don’t have to use the random one. However, your stimulus values may not
be correct according to the constraints you created to check validity.

If there are just a few variables that you want to override, use rand_mode to make
them nonrandom.

Constraints Tips and Techniques 189

Sample 6.35 rand_mode disables randomization of variables

// Packet with variable length payload
class Packet;
 rand bit [7:0] length, payload[];
 constraint c_valid {length > 0;
 payload.size() == length;}

 function void display(string msg);
 $display("\n%s", msg);
 $write("Packet len=%0d, payload size=%0d, bytes = ",
 length, payload.size());
 for(int i=0; (i<4 && i<payload.size()); i++)
 $write(" %0d", payload[i]);
 $display;
 endfunction
endclass

Packet p;
initial begin
 p = new();

 // Randomize all variables
 assert (p.randomize());
 p.display("Simple randomize");

 p.length.rand_mode(0); // Make length nonrandom,
 p.length = 42; // set it to a constant value
 assert (p.randomize()); // then randomize the payload
 p.display("Randomize with rand_mode");
end

In Sample 6.35, the packet size is stored in the random variable length. The first half
of the test randomizes both the length variable and the contents of the payload
dynamic array. The second half calls rand_mode to make length a nonrandom vari-
able, sets it to 42, and then calls randomize(). The constraint sets the payload size
at the constant 42, but the array is still filled with random values.

6.11.3 Checking Values Using Constraints

If you randomize an object and then modify some variables, you can check that the
object is still valid by checking if all constraints are still obeyed. Call handle.ran
domize(null) and SystemVerilog treats all variables as nonrandom (“state
variables”) and just ensures that all constraints are satisfied.

Chapter 6:Randomization190

6.11.4 Randomizing Individual Variables

Suppose you want to randomize a few variables inside a class. You can call random
ize() with the subset of variables. Only those variables passed in the argument list
will be randomized; the rest will be treated as state variables and not randomized. All
constraints remain in effect. In Sample 6.36, the first call to randomize() only
changes the values of two rand variables med and hi. The second call only changes
the value of med, whereas hi retains its previous value. Surprisingly, you can pass a
nonrandom variable, as shown in the last call, and low is given a random value, as
long as it obeys the constraint.

Sample 6.36 Randomizing a subset of variables in a class

class Rising;
 byte low; // Not random
 rand byte med, hi; // Random variable
 constraint up
 { low < med; med < hi; } // See Section 6.4.2
endclass

initial begin
 Rising r;
 r = new();
 r.randomize(); // Randomize med, hi; low untouched
 r.randomize(med); // Randomize only med
 r.randomize(low); // Randomize only low
end

This trick of only randomizing a subset of the variables is not commonly used in real
testbenches as you are restricting the randomness of your stimulus. You want your
testbench to explore the full range of legal values, not just a few corners.

6.11.5 Turn Constraints Off and On

A simple testbench may use a data class with just a few constraints. What if you
want to have two tests with very different flavors of data? You could use the impli-
cation operators (-> or if-else) to build a single, elaborate constraint controlled
by nonrandom variables.

Constraints Tips and Techniques 191

Sample 6.37 Using the implication constraint as a case statement

class Instruction;
 typedef enum {NOP, HALT, CLR, NOT} opcode_e;
 rand opcode_e opcode;
 bit [1:0] n_operands;
 ...
 constraint c_operands {
 if (n_operands == 0)
 opcode == NOP || opcode == HALT;
 else if (n_operands == 1)
 opcode == CLR || opcode == NOT;
 ...
 }
endclass

You can see that having one large constraint can quickly get out of control as you add
further expressions for each operand, addressing modes, etc. A more modular
approach is to use a separate constraint for each flavor of instruction, and then disable
all but the one you need, as shown in Sample 6.38.

Sample 6.38 Turning constraints on and off with constraint_mode

class Instruction;
 rand opcode_e opcode;
 É
 constraint c_no_operands {
 opcode == NOP || opcode == HALT;}
 constraint c_one_operand {
 opcode == CLR || opcode == NOT;}
endclass

Instruction instr;
initial begin
 instr = new();

 // Generate an instruction with no operands
 instr.constraint_mode(0); // Turn off all constraints
 instr.c_no_operands.constraint_mode(1);
 assert (instr.randomize());

 // Generate an instruction with one operand
 instr.constraint_mode(0); // Turn off all constraints
 instr.c_one_operand.constraint_mode(1);
 assert (instr.randomize());
 end

Chapter 6:Randomization192

While many small constraints may give you more flexibility, the process of turning
them on and off is more complex. For example, when you turn off all constraints that
create data, you are also disabling all the ones that check the data’s validity.

6.11.6 Specifying a Constraint in a Test Using In-Line Constraints

If you keep adding constraints to a class, it becomes hard to manage and control.
Soon, everyone is checking out the same file from your source control system. Many
times a constraint is only used by a single test, and so why have it visible to every
test? One way to localize the effects of a constraint is to use in-line constraints, ran
domize() with, shown in Section 6.8. This works well if your new constraint is
additive to the default constraints. If you follow the recommendations in Section 6.7
to create “valid constraints,” you can quickly constrain valid sequences. For error
injection, you can disable any constraint that conflicts with what you are trying to do.
For example, if a test needs to inject a particular flavor of corrupted data, it would
first turn off the particular validity constraint that checks for that error.

There are several tradeoffs with using in-line constraints. The first is that now your
constraints are in multiple locations. If you add a new constraint to the original class,
it may conflict with the in-line constraint. The second is that it can be very hard for
you to reuse an in-line constraint across multiple tests. By definition, an in-line con-
straint only exists in one piece of code. You could put it in a routine in a separate file
and then call it as needed. At that point it has become nearly the same as an external
constraint.

6.11.7 Specifying a Constraint in a Test with External Constraints

The body of a constraint does not have to be defined within the class, just as a routine
body can be defined externally, as shown in Section 5.11. Your data class could be
defined in one file, with one empty constraint. Then each test could define its own
version of this constraint to generate its own flavors of stimulus.

Sample 6.39 Class with an external constraint

// packet.sv
class Packet;
 rand bit [7:0] length;
 rand bit [7:0] payload[];
 constraint c_valid {length > 0;
 payload.size() == length;}
 constraint c_external;
endclass

Common Randomization Problems 193

Sample 6.40 Program defining an external constraint

// test.sv
program test;
 constraint Packet::c_external {length == 1;}
 ...
endprogram

External constraints have several advantages over in-line constraints. They can be put
in a file and thus reused between tests. An external constraint applies to all instances
of the class, whereas an in-line constraint only affects the single call to random
ize(). Consequently, an external constraint provides a primitive way to change a
class without having to learn advanced OOP techniques. Keep in mind that with this
technique, you can only add constraints, not alter existing ones, and you need to
define the external constraint prototype in the original class.

Like in-line constraints, external constraints can cause problems, as the constraints
are spread across multiple files.

A final consideration is what happens when the body for an external constraint is
never defined. The SystemVerilog LRM does not currently specify what should hap-
pen in this case. Before you build a testbench with many external constraints, find out
how your simulator handles missing definitions. Is this an error that prevents simula-
tion, just a warning, or no message at all?

6.11.8 Extending a Class

In Chap. 8, you will learn how to extend a class. With this technique, you can take a
testbench that uses a given class, and swap in an extended class that has additional or
redefined constraints, routines, and variables. See Sample 8.10 for a typical testbench.
Note that if you define a constraint in an extended class with the same name as one in
the base class, the extended constraint replaces the base one.

Learning OOP techniques requires a little more study, but the flexibility of this new
approach repays with great rewards.

6.12 Common Randomization Problems

You may be comfortable with procedural code, but writing constraints and under-
standing random distributions requires a new way of thinking. Here are some issues
you may encounter when trying to create random stimulus.

Chapter 6:Randomization194

6.12.1 Use Signed Variables with Care

When creating a testbench, you may be tempted to use the int, byte, or other signed
types for counters and other simple variables. Don’t use them in random constraints
unless you really want signed values. What values are produced when the class in
Sample 6.41 is randomized? It has two random variables and wants to make the sum
of them 64.

Sample 6.41 Signed variables cause randomization problems

class SignedVars;
 rand byte pkt1_len, pk2_len;
 constraint total_len {
 pkt1_len + pk2_len == 64;
 }
endclass

Obviously, you could get pairs of values such as (32, 32) and (2, 62). Additionally,
you could see (–63, 127), as this is a legitimate solution of the equation, even though
it may not be what you wanted. To avoid meaningless values such as negative
lengths, use only unsigned random variables, as shown in Sample 6.42.

Sample 6.42 Randomizing unsigned 32-bit variables

class Vars32;
 rand bit [31:0] pkt1_len, pk2_len; // unsigned type
 constraint total_len {
 pkt1_len + pk2_len == 64;
 }
endclass

Even this version causes problems, as large values of pkt1_len and pkt2_len, such
as 32Õh80000040 and 32Õh80000000, wrap around when added together and give
32Õd64 or 32Õh40. You might think of adding another pair of constraints to restrict
the values of these two variables, but the best approach is to make them only as wide
as needed, and to avoid using 32-bit variables in constraints. In Sample 6.43, the sum
of two 8-bit variables is compared to a 9-bit value.

Sample 6.43 Randomizing unsigned 8-bit variables

class Vars8;
 rand bit [7:0] pkt1_len, pkt2_len; // 8-bits wide
 constraint total_len {
 pkt1_len + pkt2_len == 9Õd64; // 9-bit sum
 }
endclass

Iterative and Array Constraints 195

6.12.2 Solver Performance Tips

Each constraint solver has its strengths and weaknesses, but there are some guidelines
that you can follow to improve the speed of your simulations with constrained ran-
dom variables.

Avoid expensive operators such as division, multiplication, and modulus (%). If you
need to divide or multiply a variable by a power of 2, use the right and left shift oper-
ators. A modulus operation with a power of 2 can be replaced with boolean AND with
a mask. If you need to use one of these operators, you may get better performance if
you can use variables less than 32-bits wide.

6.13 Iterative and Array Constraints

The constraints presented so far allow you to specify limits on scalar variables. What
if you want to randomize an array? The foreach constraint and several array func-
tions let you shape the distribution of the values.

Using the foreach constraint creates many constraints that can
slow down simulation. A good solver can quickly solve hundreds
of constraints but may slow down with thousands. Especially slow
are nested foreach constraints, as they produce N 2 constraints for
an array of size N. See Section 6.13.5 for an algorithm that used
randc variables instead of nested foreach.

6.13.1 Array Size

The easiest array constraint to understand is the size() function. You are specifying
the number of elements in a dynamic array or queue.

Sample 6.44 Constraining dynamic array size

class dyn_size;
 rand logic [31:0] d[];
 constraint d_size {d.size() inside {[1:10]}; }
endclass

Using the inside constraint lets you set a lower and upper boundary on the array
size. In many cases you may not want an empty array, that is, size==0. Remember to
specify an upper limit; otherwise, you can end up with thousands or millions of ele-
ments, which can cause the random solver to take an excessive amount of time.

Chapter 6:Randomization196

6.13.2 Sum of Elements

You can send a random array of data into a design, but you can also use it to control
the flow. Perhaps you have an interface that has to transfer four data words. The
words can be sent consecutively or over many cycles. A strobe signal tells when the
data signal is valid. Figure 6-2 shows some legitimate strobe patterns, sending four
values over ten cycles.

Figure 6-2 Random strobe waveforms

You can create these patterns using a random array. Constrain it to have four bits
enabled out of the entire range using the sum() function.

Iterative and Array Constraints 197

Sample 6.45 Random strobe pattern class

parameter MAX_TRANSFER_LEN = 10;

class StrobePat;
 rand bit strobe[MAX_TRANSFER_LEN];
 constraint c_set_four { strobe.sum() == 4Õh4; }
endclass

initial begin
 StrobePat sp;
 int count = 0; // Index into data array

 sp = new();
 assert (sp.randomize());

 foreach (sp.strobe[i]) begin
 @bus.cb;
 bus.cb.strobe <= sp.strobe[i];
 // If strobe is enabled, drive out next data word
 if (sp.strobe[i])
 bus.cb.data <= data[count++];
 end
end

As you remember from Chap. 2, the sum of an array of single-bit elements would nor-
mally be a single bit, e.g., 0 or 1. Sample 6.45 compares strobe.sum() to a 4-bit
value (4Õh4), and so the sum is calculated with 4-bit precision. The example uses 4-
bit precision to store the maximum number of elements, which is 10.

6.13.3 Issues with Array Constraints

The sum() function looks simple but can cause several problems because of Ver-
ilog’s arithmetic rules. Start with a simple problem. You want to generate from one to
eight transactions, such that the total length of all of them is less than 1,024 bytes.
Sample 6.46 shows a first attempt. The len field is a byte in the original transaction.

Chapter 6:Randomization198

Sample 6.46 First attempt at sum constraint: bad_sum1

class bad_sum1;
 rand byte len[];
 constraint c_len {len.sum < 1024;
 len.size() inside {[1:8]};}
 function void display();
 $write("sum=%4d, val=", len.sum);
 foreach(len[i]) $write("%4d ", len[i]);
 $display;
 endfunction
endclass

Sample 6.47 Program to try constraint with array sum

program automatic test;
 bad_sum1 c;
 initial begin
 c = new();
 repeat (10) begin
 assert (c.randomize());
 c.display();
 end
 end
endprogram

Sample 6.48 Output from bad_sum1

sum= 81, val= 62 -20 39
sum= 39, val= -27 67 1 76 -97 -58 77
sum= 38, val= 60 -22
sum= 72, val=-120 29 123 102 -41 -21
sum= -53, val= -58 -85-115 112-101 -62

This generates some smaller lengths, but the sum is sometimes negative and is always
less than 127 – definitely not what you wanted! Try again, this time with an unsigned
field. (The display function is unchanged.)

Sample 6.49 Second attempt at sum constraint: bad_sum2

class bad_sum2;
 rand bit [7:0] len[]; // 8 bits
 constraint c_len {len.sum < 1024;
 len.size() inside {[1:8]};}
endclass

Iterative and Array Constraints 199

Sample 6.50 Output from bad_sum2

sum= 79, val= 88 100 246 2 14 228 169
sum= 120, val= 74 75 141 86
sum= 39, val= 39
sum= 193, val= 31 156 172 33 57
sum= 173, val= 59 150 25 101 138 212

Sample 6.50 has a subtle problem: the sum of all transaction lengths is always less
than 256, even though you constrained the array sum to be less than 1,024. The prob-
lem here is that in Verilog, the sum of many 8-bit values is computed using an 8-bit
result. Bump the len field up to 32 bits using the uint type from Chap. 2.

Sample 6.51 Third attempt at sum constraint: bad_sum3

class bad_sum3;
 rand uint len[]; // 32 bits
 constraint c_len {len.sum < 1024;
 len.size() inside {[1:8]};}
endclass

Sample 6.52 Output from bad_sum3

sum= 245, val=1348956995 3748256598 985546882 2507174362
sum= 600, val=2072193829 315191491 484497976 3050698208
 2300168220 3988671456 3998079060 970369544
sum= 17, val=1924767007 3550820640 4149215303 3260098955
sum= 440, val=3192781444 624830067 1300652226 4072252356
 3694386235
sum= 864, val=3561488468 733479692

Wow – what happened here? This is similar to the signed problem in Section 6.12.1,
in that the sum of two very large numbers can wrap around to a small number. You
need to limit the size based on the comparison in the constraint.

Sample 6.53 Fourth attempt at sum_constraint: bad_sum4

class bad_sum4;
 rand bit [9:0] len[]; // 10 bits
 constraint c_len {len.sum < 1024;
 len.size() inside {[1:8]};}
endclass

Chapter 6:Randomization200

Sample 6.54 Output from bad_sum4

sum= 989, val= 787 202
sum=1021, val= 564 76 132 235 0 8 6
sum= 872, val= 624 101 136 11
sum= 978, val= 890 88
sum= 905, val= 663 242

This does not work either, as the individual len fields are more than 8 bits, and so the
len values are often greater than 255. You need to specify that each len field is
between 1 and 255, but use a 10-bit field so that they sum correctly. This requires
constraining every element of the array.

6.13.4 Constraining Individual Array and Queue Elements

SystemVerilog lets you constrain individual elements of an array using foreach.
While you might be able to write constraints for a fixed-size array by listing every
element, the foreach style is more compact. The only practical way to constrain a
dynamic array or queue is with foreach.

Sample 6.55 Simple foreach constraint: good_sum5

class good_sum5;
 rand uint len[];
 constraint c_len {foreach (len[i])
 len[i] inside {[1:255]};
 len.sum < 1024;
 len.size() inside {[1:8]};}
endclass

Sample 6.56 Output from good_sum5

sum=1011, val= 83 249 197 187 152 95 40 8
sum=1012, val= 213 252 213 44 196 20 20 54
sum= 370, val= 118 76 176
sum= 976, val= 233 187 44 157 201 81 73
sum= 412, val= 172 167 73

The addition of the constraint for individual elements fixed the example. Note that the
len array can be 10 or more bits wide, but must be unsigned.

You can specify constraints between array elements as long as you are careful about
the endpoints. The following class creates an ascending list of values by comparing
each element to the previous, except for the first.

Iterative and Array Constraints 201

Sample 6.57 Creating ascending array values with foreach

class Ascend;
 rand uint d[10];
 constraint c {
 foreach (d[i]) // For every element
 if (i>0) // except the first
 d[i] > d[i-1]; // compare with previous element
 }
endclass

How complex can these constraints become? Constraints have been written to solve
Einstein’s problem (a logic puzzle with five people, each with five separate
attributes), the Eight Queens problem (place eight queens on a chess board so that
none can capture each other), and even Sudoku.

The 2005 LRM requires a foreach constraint to only have a simple
array name, not hierarchical reference. Thus you cannot use a
foreach constraint in one class to constrain an array in subclass.

6.13.5 Generating an Array of Unique Values

How can you create an array of random unique values? If you try to make a randc
array, each array element will be randomized independently, and so you are almost
certain to get repeated values.

You may be tempted to use a constraint solver to compare every element with every
other with nested foreach-loops as shown in Sample 6.58. This creates over 4,000
individual constraints, which could slow down simulation.

Sample 6.58 Creating unique array values with foreach

class UniqueSlow;
 rand bit [7:0] ua[64];
 constraint c {
 foreach (ua[i]) // For every element
 foreach (ua[j])
 if (i != j) // except the diagonals
 ua[i] != ua[j]; // compare to other elements
 }
endclass

Instead, you should use procedural code with a helper class containing a randc vari-
able so that you can randomize the same variable over and over.

Chapter 6:Randomization202

Sample 6.59 Creating unique array values with a randc helper class

class randc8;
 randc bit [7:0] val;
endclass

class LittleUniqueArray;
 bit [7:0] ua [64]; // Array of unique values

 function void pre_randomize;
 randc8 rc8;
 rc8 = new();
 foreach (ua[i]) begin
 assert(rc8.randomize());
 ua[i] = rc8.val;
 end
 endfunction
endclass

Next is a more general solution. For example, you may need to assign ID numbers to
N bus drivers, which are in the range of 0 to MAX-1 where MAX >=N.

Sample 6.60 Unique value generator

// Create unique random values in a range 0:max-1
class RandcRange;
 randc bit [15:0] value;
 int max_value; // Maximum possible value

 function new(int max_value = 10);
 this.max_value = max_value;
 endfunction

 constraint c_max_value {value < max_value;}
endclass

Iterative and Array Constraints 203

Sample 6.61 Class to generate a random array of unique values

class UniqueArray;
 int max_array_size, max_value;
 rand bit [7:0] a[]; // Array of unique values
 constraint c_size {a.size() inside {[1:max_array_size]};}

 function new(int max_array_size=2, max_value=2);
 this.max_array_size = max_array_size;
 // If max_value is smaller than array size,
 // array could have duplicates, so adjust max_value
 if (max_value < max_array_size)
 this.max_value = max_array_size;
 else
 this.max_value = max_value;
 endfunction

 // Array a[] allocated in randomize(), fill w/unique vals
 function void post_randomize;
 RandcRange rr;
 rr = new(max_value);
 foreach (a[i]) begin
 assert (rr.randomize());
 a[i] = rr.value;
 end
 endfunction

 function void display();
 $write("Size: %3d:", a.size());
 foreach (a[i]) $write("%4d", a[i]);
 $display;
 endfunction
endclass

Here is a program that uses the UniqueArray class.

Sample 6.62 Using the UniqueArray class

program automatic test;
 UniqueArray ua;
 initial begin
 ua = new(50); // Array size = 50

 repeat (10) begin
 assert(ua.randomize()); // Create random array
 ua.display(); // Display values
 end
 end
endprogram

Chapter 6:Randomization204

6.13.6 Randomizing an Array of Handles

If you need to create multiple random objects, you might create a random array of
handles. Unlike an array of integers, you need to allocate all the elements before ran-
domization as the random solver never constructs objects. If you have a dynamic
array, allocate the maximum number of elements you may need, and then use a con-
straint to resize the array. A dynamic array of handles can remain the same size or
shrink during randomization, but it can never increase in size.

Sample 6.63 Constructing elements in a random array

parameter MAX_SIZE = 10;

class RandStuff;
 rand int value;
endclass

class RandArray;
 rand RandStuff array[]; // DonÕt forget rand!

 constraint c {array.size() inside {[1:MAX_SIZE]}; }

 function new();
 array = new[MAX_SIZE]; // Allocate maximum size
 foreach (array[i])
 array[i] = new();
 endfunction;
endclass

RandArray ra;
initial begin
 ra = new(); // Construct array and all objects
 assert(ra.randomize()); // Randomize and maybe shrink array
 foreach (ra.array[i])
 $display(ra.array[i].value);
end

See Section 5.14.4 for more on arrays of handles.

6.14 Atomic Stimulus Generation vs. Scenario Generation

Up until now, you have seen atomic random transactions. You have learned how to
make a single random bus transaction, a single network packet, or a single processor
instruction. This is a good start; however, your job is to verify that the design works
with real-world stimuli. A bus may have long sequences of transactions such as DMA
transfers or cache fills. Network traffic consists of extended sequences of packets as

Atomic Stimulus Generation vs. Scenario Generation 205

you simultaneously read e-mail, browse a web page, and download music from the
net, all in parallel. Processors have deep pipelines that are filled with the code for rou-
tine calls, for-loops, and interrupt handlers. Generating transactions one at a time is
unlikely to mimic any of these scenarios.

6.14.1 An Atomic Generator with History

The easiest way to create a stream of related transactions is to have an atomic genera-
tor base some of its random values on ones from previous transactions. The class
might constrain a bus transaction to repeat the previous command, such as a write,
80% of the time, and also use the previous destination address plus an increment. You
can use the post_randomize function to make a copy of the generated transaction
for use by the next call to randomize().

This scheme works well for smaller cases but gets into trouble when you need infor-
mation about the entire sequence ahead of time. For example, the DUT may need to
know the length of a sequence of network transactions before it starts.

6.14.2 Randsequence

The next way to generate a sequence of transactions is by using the randsequence
construct in SystemVerilog. With randsequence, you describe the grammar of the
transaction, using a syntax similar to BNF (Backus-Naur Form).

Sample 6.64 Command generator using randsequence

initial begin
 for (int i=0; i<15; i++) begin
 randsequence (stream)
 stream : cfg_read := 1 |
 io_read := 2 |
 mem_read := 5;
 cfg_read : { cfg_read_task; } |
 { cfg_read_task; } cfg_read;
 mem_read : { mem_read_task; } |
 { mem_read_task; } mem_read;
 io_read : { io_read_task; } |
 { io_read_task; } io_read;
 endsequence
 end // for
end

task cfg_read_task;
 ...
endtask

Chapter 6:Randomization206

Sample 6.64 generates a sequence called stream. A stream can be either
cfg_read, io_read, or mem_read. The random sequence engine randomly picks
one. The cfg_read label has a weight of 1, io_read has twice the weight and so is
twice as likely to be chosen as cfg_read. The label mem_read is most likely to be
chosen, with a weight of 5.

A cfg_read can be either a single call to the cfg_read_task, or a call to the task
followed by another cfg_read. As a result, the task is always called at least once,
and possibly many times.

One big advantage of randsequence is that it is procedural code and you can debug
it by stepping though the execution, or adding $display statements. When you call
randomize() for an object, it either all works or all fails, but you can’t see the steps
taken to get to a result.

There are several problems with using randsequence. The code to generate the
sequence is separate and a very different style from the classes with data and con-
straints used by the sequence. So if you use both randomize() and randsequence,
you have to master two different forms of randomization. More seriously, if you want
to modify a sequence, perhaps to add a new branch or action, you have to modify the
original sequence code. You can’t just make an extension. As you will see in Chap. 8,
you can extend a class to add new code, data, and constraints without having to edit
the original class.

6.14.3 Random Array of Objects

The last form of generating random sequences is to randomize an entire array of
objects. You can create constraints that refer to the previous and next objects in the
array, and the SystemVerilog solver solves all constraints simultaneously. Since the
entire sequence is generated at once, you can then extract information such as the
total number of transactions or a checksum of all data values before the first transac-
tion is sent. Alternatively, you can build a sequence for a DMA transfer that is
constrained to be exactly 1,024 bytes, and let the solver pick the right number of
transactions to reach that goal.

6.14.4 Combining Sequences

You can combine multiple sequences together to make a more realistic flow of trans-
actions. For example, for a network device, you could make one sequence that
resembles downloading e-mail, a second that is viewing a web page, and a third that is
entering single characters into web-based form.The techniques to combine these
flows is beyond the scope of this book, but you can learn more from the VMM, as
described in Bergeron et al. (2005).

Random Control 207

6.15 Random Control

At this point you may be thinking that this process is a great way to create long
streams of random input into your design. Or you may think that this is a lot of work
if all you want to do is occasionally to make a random decision in your code. You
may prefer a set of procedural statements that you can step through using a debugger.

6.15.1 Introduction to randcase

You can use randcase to make a weighted choice between several actions, without
having to create a class and instance. Sample 6.65 chooses one of the three branches
based on the weight. SystemVerilog adds up the weights (1+8+1 = 10), chooses a
value in this range, and then picks the appropriate branch. The branches are not order
dependent, the weights can be variables, and they do not have to add up to 100%.

Sample 6.65 Random control with randcase and $urandom_range

initial begin
 int len;
 randcase
 1: len = $urandom_range(0, 2); // 10%: 0, 1, or 2
 8: len = $urandom_range(3, 5); // 80%: 3, 4, or 5
 1: len = $urandom_range(6, 7); // 10%: 6 or 7
 endcase
 $display("len=%0d", len);
 end

The $urandom_range function returns a random number in the specified range. You
can specify the arguments as (low, high) or (high, low). If you use just a single argu-
ment, SystemVerilog treats it as (0, high).

You can write Sample 6.65 using a class and the randomize() function. For this
small case, the OOP version is a little larger. However, if this were part of a larger
class, the constraint would be more compact than the equivalent randcase
statement.

Chapter 6:Randomization208

Sample 6.66 Equivalent constrained class

class LenDist;
 rand int len;
 constraint c
 {len dist {[0:2] := 1, [3:5] := 8, [6:7] := 1}; }
endclass

LenDist lenD;

initial begin
 lenD = new();
 assert (lenD.randomize());
 $display("Chose len=%0d", lenD.len);
 end

Code using randcase is more difficult to override and modify than random con-
straints. The only way to modify the random results is to rewrite the code or use
variable weights.

Be careful using randcase, as it does not leave any tracks behind. For example, you
could use it to decide whether or not to inject an error in a transaction. The problem is
that the downstream transactors and scoreboard need to know of this choice. The best
way to inform them would be to use a variable in the transaction or environment.
However, if you are going to create a variable that is part of these classes, you could
have made it a random variable and used constraints to change its behavior in differ-
ent tests.

6.15.2 Building a Decision Tree with randcase

You can use randcase when you need to create a decision tree. Sample 6.67 has just
two levels of procedural code, but you can see how it can be extended to use more.

Random Number Generators 209

Sample 6.67 Creating a decision tree with randcase

initial begin
 // Level 1
 randcase
 one_write_wt: do_one_write();
 one_read_wt: do_one_read();
 seq_write_wt: do_seq_write();
 seq_read_wt: do_seq_read();
 endcase
 end

// Level 2
task do_one_write;
 randcase
 mem_write_wt: do_mem_write();
 io_write_wt: do_io_write();
 cfg_write_wt: do_cfg_write();
 endcase
endtask

task do_one_read;
 randcase
 mem_read_wt: do_mem_read();
 io_read_wt: do_io_read();
 cfg_read_wt: do_cfg_read();
 endcase
endtask

6.16 Random Number Generators

How random is SystemVerilog? On the one hand, your testbench depends on an
uncorrelated stream of random values to create stimulus patterns that go beyond any
directed test. On the other hand, you need to repeat the patterns over and over during
debug of a particular test, even if the design and testbench make minor changes.

6.16.1 Pseudorandom Number Generators

Verilog uses a simple PRNG that you could access with the $random function. The
generator has an internal state that you can set by providing a seed to $random. All
IEEE-1364-compliant Verilog simulators use the same algorithm to calculate values.

Sample 6.68 shows a simple PRNG, not the one used by SystemVerilog. The PRNG
has a 32-bit state. To calculate the next random value, square the state to produce a
64-bit value, take the middle 32 bits, then add the original value.

Chapter 6:Randomization210

Sample 6.68 Simple pseudorandom number generator

reg [31:0] state = 32Õh12345678;
function logic [31:0] my_random;
 logic [63:0] s64;
 s64 = state * state;
 state = (s64 >> 16) + state;
 my_random = state;
endfunction

You can see how this simple code produces a stream of values that seem random, but
can be repeated by using the same seed value. SystemVerilog calls its PRNG to gen-
erate a new value for randomize() and randcase.

6.16.2 Random Stability – Multiple Generators

Verilog has a single PRNG that is used for the entire simulation. What would happen
if SystemVerilog kept this approach? Testbenches often have several stimulus gener-
ators running in parallel, creating data for the design under test. If two streams share
the same PRNG, they each get a subset of the random values.

Figure 6-3 Sharing a single random generator

In Figure 6-3, there are two stimulus generators and a single PRNG producing values
a, b, c, etc. Gen2 has two random objects, and so during every cycle, it uses twice as
many random values as Gen1. A problem can occur when one of the classes changes.
Gen1 gets an additional random variable, and so consumes two random values every
time it is called.

class Gen1;
Transaction tr;

forever @(int1.cb)
tr.randomize()

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();
endclass

a
d
g

b,c
e,f
h,i

PRNG

class Gen1;
Transaction tr;

forever @(int1.cb)
tr.randomize()

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();
endclass

a
d
g

b,c
e,f
h,i

PRNG

Random Number Generators 211

Figure 6-4 First generator uses additional values

This approach changes the values used not only by Gen1 but also by Gen2 (Figure 6-4).

In SystemVerilog, there is a separate PRNG for every object and thread. Changes to
one object don’t affect the random values seen by others (Figure 6-5).

Figure 6-5 Separate random generators per object

6.16.3 Random Stability and Hierarchical Seeding

In SystemVerilog, every object and thread has its own PRNG and unique seed. When
a new object or thread is started, its PRNG is seeded from its parent’s PRNG. Thus a
single seed specified at the start of simulation can create many streams of random
stimulus, each distinct.

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
e,f
i,j

c,d
g,h
k,l

PRNG

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
e,f
i,j

c,d
g,h
k,l

PRNG

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
c,d
e,f

m,n
o,p
q,r

PRNG 1 PRNG 2

class Gen1;
Transaction tra, trb;

forever @(int1.cb)
tra.randomize();
trb.randomize();

endclass

class Gen2;
Transaction tr1, tr2;

forever @(int2.cb)
tr1.randomize();
tr2.randomize();

endclass

a,b
c,d
e,f

m,n
o,p
q,r

PRNG 1 PRNG 2

Chapter 6:Randomization212

When you are debugging a testbench, you add, delete, and move code. Even with ran-
dom stability, your changes may cause the testbench to generate different random
values. This can be very frustrating if you are in the middle of debugging a DUT fail-
ure, and the testbench no longer creates the same stimulus. You can minimize the
effect of code modifications by adding any new objects or threads after existing ones.
Sample 6.69 shows a routine from testbench that constructs objects, and runs them in
parallel threads.

Sample 6.69 Test code before modification

function void build();
 pci_gen gen0, gen1;
 gen0 = new();
 gen1 = new();
 fork
 gen0.run();
 gen1.run();
 join
endfunction : build

Sample 6.70 adds a new generator, and runs it in a new thread. The new object is con-
structed after the existing ones, and the new thread is spawned after the old ones.

Sample 6.70 Test code after modification

function void build();
 pci_gen gen0, gen1;
 atm_gen agen; // New ATM generator
 gen0 = new();
 gen1 = new();
 new_gen = new(); // Construct new object after old ones

 fork
 gen0.run();
 gen1.run();
 new_gen.run(); // Spawn new thread after old ones
 join
endfunction : build

Of course as new code is added, you may not be able to keep the random streams the
same as the old ones, but you might be able to postpone the undesirable side effects
from these changes.

Random Device Configuration 213

6.17 Random Device Configuration

An important part of your DUT to test is the configuration of both the
internal DUT settings and the system that surrounds it. As described
in Section 6.2.1, your tests should randomize the environment so that
you can be confident it has been tested in as many modes as possible.

Sample 6.71 shows how to create a random testbench configuration
and modify its results as needed at the test level. The eth_cfg class describes the
configuration for a 4-port Ethernet switch. It is instantiated in an environment class,
which in turn is used in the test. The test overrides one of the configuration values,
enabling all 4 ports.

Sample 6.71 Ethernet switch configuration class

class eth_cfg;
 rand bit [3:0] in_use; // Ports used in test
 rand bit [47:0] mac_addr[4]; // MAC addresses
 rand bit [3:0] is_100; // 100mb mode
 rand uint run_for_n_frames; // # frames in test

 // Force some addr bits when running in unicast mode
 constraint local_unicast {
 foreach (mac_addr[i])
 mac_addr[i][41:40] == 2'b00;
 }

 constraint reasonable { // Limit test length
 run_for_n_frames inside {[1:100]};
 }
endclass : eth_cfg

The configuration class is used in the Environment class during several phases. The
configuration is constructed in the Environment constructor, but not randomized
until the gen_cfg phase. This allows you to turn constraints on and off before ran
domize() is called. Afterwards, you can override the generated values before the
build phase creates the virtual components around the DUT.

Chapter 6:Randomization214

Sample 6.72 Building environment with random configuration

class Environment;
 eth_cfg cfg;
 eth_src gen[4];
 eth_mii drv[4];

 function new();
 cfg = new(); // Construct the cfg
 endfunction

 function void gen_cfg;
 assert(cfg.randomize()); // Randomize the cfg
 endfunction

 // Use random configuration to build the environment
 function void build();
 foreach (gen[i])
 if (cfg.in_use[i]) begin
 gen[i] = new();
 drv[i] = new();
 if (cfg.is_100[i])
 drv[i].set_speed(100);
 end
 endfunction

 task run();
 foreach (gen[i])
 if (cfg.in_use[i]) begin
 // Start the testbench transactors
 gen[i].run();
 ...
 end
 endtask

 task wrap_up();
 // Not currently used
 endtask
endclass : Environment

The definitions of classes such as eth_src and eth_mii are not shown.

Now you have all the components to build a test, which is described in a program
block. The test instantiates the environment class and then runs each step.

Random Device Configuration 215

Sample 6.73 Simple test using random configuration

program test;
 Environment env;

 initial begin
 env = new(); // Construct environment
 env.gen_cfg; // Create random configuration
 env.build(); // Build the testbench environment
 env.run(); // Run the test
 env.wrap_up(); // Clean up after test & report
 end
endprogram

You may want to override the random configuration, perhaps to reach a corner case.
The following test randomizes the configuration class and then enables all the ports.

Sample 6.74 Simple test that overrides random configuration

program test;
 Environment env;

 initial begin
 env = new(); // Construct environment
 env.gen_cfg; // Create random configuration

 // Override random in-use Ð turn all 4 ports on
 env.cfg.in_use = 4Õb1111;

 env.build(); // Build the testbench environment
 env.run(); // Run the test
 env.wrap_up(); // Clean up after test & report
 end
endprogram

Notice how in Sample 6.72 all generators were constructed, but
only a few were run, depending on the random configuration. If you
only constructed the generators that are in use, you would have to
surround any reference to gen[i] with a test of in_use[i], other-

wise your testbench would crash when it tried to refer to the nonexistent generator.
The extra memory taken up by these generators that are not used is a small price to
pay for a more stable testbench.

Chapter 6:Randomization216

6.18 Conclusion

CRTs are the only practical way to generate the stimulus needed to verify a complex
design. SystemVerilog offers many ways to create a random stimulus and this chapter
presents many of the alternatives.

A test needs to be flexible, allowing you either to use the values generated by default
or to constrain or override the values so that you can reach your goals. Always plan
ahead when creating your testbench by leaving sufficient “hooks” so that you can
steer the testbench from the test without modifying existing code.

Chapter 7

Threads and Interprocess
Communication

In real hardware, the sequential logic is activated on clock edges, whereas combina-
tional logic is constantly changing when any inputs change. All this parallel activity is
simulated in Verilog RTL using initial and always blocks, plus the occasional
gate and continuous assignment statement. To stimulate and check these blocks, your
testbench uses many threads of execution, all running in parallel. Most blocks in your
testbench environment are modeled with a transactor and run in their own thread.

The SystemVerilog scheduler is the traffic cop that chooses which thread runs next.
You can use the techniques in this chapter to control the threads and thus your
testbench.

Each of these threads communicates with its neighbors. In Figure 7-1, the generator
passes the stimulus to the agent. The environment class needs to know when the gen-
erator completes and then tell the rest of the testbench threads to terminate. This is
done with interprocess communication (IPC) constructs such as the standard Verilog
events, event control and wait statements, and the SystemVerilog mailboxes and
semaphores.1

1The SystemVerilog LRM uses “thread” and “process” interchangeably. The term “process” is most com-
monly associated with Unix processes, in which each contains a program running in its own memory space.
Threads are lightweight processes that may share common code and memory, and consume far fewer re-
sources than a typical process. This book uses the term “thread.” However, “interprocess communication”
is such a common term that it is used in this book.

Chapter 7:Threads and Interprocess Communication218

Figure 7-1 Testbench environment blocks

7.1 Working with Threads

While all the thread constructs can be used in both modules and program blocks, your
testbenches belong to program blocks. As a result, your code always starts with ini
tial blocks that start executing at time 0. You cannot put an always block in a
program. However, you can easily get around this by using a forever loop in an
initial block.

Classic Verilog has two ways of grouping statements – with a begin...end or
fork...join. Statements in a begin...end run sequentially, whereas those in a
fork...join execute in parallel. The latter is very limited in that all statements inside
the fork...join have to finish before the rest of the block can continue. As a result, it
is rare for Verilog testbenches to use this feature.

SystemVerilog introduces two new ways to create threads – with the
fork...join_none and fork...join_any statements, shown in Figure 7-2.

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Working with Threads 219

Figure 7-2 Fork...join blocks

Your testbench communicates, synchronizes, and controls these threads with existing
constructs such as events, @ event control, the wait and disable statements, plus
new language elements such as semaphores and mailboxes.

7.1.1 Using fork...join and begin...end

Sample 7.1 has a fork...join parallel block with an enclosed begin...end sequential
block, and shows the difference between the two.

Sample 7.1 Interaction of begin...end and fork...join

initial begin
 $display("@%0t: start fork...join example", $time);
 #10 $display("@%0t: sequential after #10", $time);
 fork
 $display("@%0t: parallel start", $time);
 #50 $display("@%0t: parallel after #50", $time);
 #10 $display("@%0t: parallel after #10", $time);
 begin
 #30 $display("@%0t: sequential after #30", $time);
 #10 $display("@%0t: sequential after #10", $time);
 end
 join
 $display("@%0t: after join", $time);
 #80 $display("@%0t: finish after #80", $time);
end

join_any join_nonejoin

forkfork fork

join_any join_nonejoin

forkfork fork

Chapter 7:Threads and Interprocess Communication220

Figure 7-3 Fork...join block

Note in the output below that code in the fork...join executes in parallel, and so
statements with shorter delays execute before those with longer delays. As shown in
Sample 7.2, the fork...join completes after the last statement, which starts with
#50.

Sample 7.2 Output from begin...end and fork...join

@0: start fork...join example
@10: sequential after #10
@10: parallel start
@20: parallel after #10
@40: sequential after #30
@50: sequential after #10
@60: parallel after #50
@60: after join
@140: finish after #80

7.1.2 Spawning Threads with fork...join_none

A fork...join_none block schedules each statement in the block, but execution con-
tinues in the parent thread. Sample 7.3 is identical to Sample 7.1 except that the join
has been converted to join_none.

initial
$display
#10 $display
fork
.
join
$display
#80 $display

$display

#30 $display
#10 $display

#50 $display

#10 $display

Parent
Child
threads

initial
$display
#10 $display
fork
.
join
$display
#80 $display

$display

#30 $display
#10 $display

#50 $display

#10 $display

Parent
Child
threads

Working with Threads 221

Sample 7.3 Fork...join_none code

initial begin
 $display("@%0t: start fork...join_none example", $time);
 #10 $display("@%0t: sequential after #10", $time);
 fork
 $display("@%0t: parallel start", $time);
 #50 $display("@%0t: parallel after #50", $time);
 #10 $display("@%0t: parallel after #10", $time);
 begin
 #30 $display("@%0t: sequential after #30", $time);
 #10 $display("@%0t: sequential after #10", $time);
 end
 join_none
 $display("@%0t: after join_none", $time);
 #80 $display("@%0t: finish after #80", $time);
end

The diagram for this block is similar to Figure 7-3. Note that the statement after the
join_none block executes before any statement inside the fork...join_none.

Sample 7.4 Fork...join_none output

@0: start fork...join_none example
@10: sequential after #10
@10: after join_none
@10: parallel start
@20: parallel after #10
@40: sequential after #30
@50: sequential after #10
@60: parallel after #50
@90: finish after #80

7.1.3 Synchronizing Threads with fork...join_any

A fork...join_any block schedules each statement in the block. Then, when the first
statement completes, execution continues in the parent thread. All other remaining
threads continue. Sample 7.5 is identical to the previous examples, except that the
join has been converted to join_any.

Chapter 7:Threads and Interprocess Communication222

Sample 7.5 Fork...join_any code

initial begin
 $display("@%0t: start fork...join_any example", $time);
 #10 $display("@%0t: sequential after #10", $time);
 fork
 $display("@%0t: parallel start", $time);
 #50 $display("@%0t: parallel after #50", $time);
 #10 $display("@%0t: parallel after #10", $time);
 begin
 #30 $display("@%0t: sequential after #30", $time);
 #10 $display("@%0t: sequential after #10", $time);
 end
 join_any
 $display("@%0t: after join_any", $time);
 #80 $display("@%0t: finish after #80", $time);
end

Note in Sample 7.6, the statement $display("after join_any") completes after
the first statement in the parallel block.

Sample 7.6 Output from fork...join_any

@0: start fork...join_any example
@10: sequential after #10
@10: parallel start
@10: after join_any
@20: parallel after #10
@40: sequential after #30
@50: sequential after #10
@60: parallel after #50
@90: finish after #80

7.1.4 Creating Threads in a Class

You can use a fork...join_none to start a thread, such as the code for a random
transactor generator. Sample 7.7 shows a generator/driver class with a run task that
creates N packets. The full testbench has classes for the driver, monitor, checker, and
more, all with transactors that need to run in parallel.

Working with Threads 223

Sample 7.7 Generator / Driver class with a run task

class Gen_drive;

 // Transactor that creates N packets
 task run(int n);
 Packet p;

 fork
 repeat (n) begin
 p = new();
 assert(p.randomize());
 transmit(p);
 end
 join_none // Use fork-join_none so run() does not block
 endtask

 task transmit(input Packet p);
 ...
 endtask
endclass

Gen_drive gen;

initial begin
 gen = new();
 gen.run(10);
 // Start the checker, monitor, and other threads
 ...
end

There are several points you should notice with Sample 7.7. First, the
transactor is not started in the new() function. The constructor should
just initialize values, not start any threads. Separating the constructor
from the code that does the real work allows you to change any vari-
ables before you start executing the code in the object. This allows
you to inject errors, modify the defaults, and alter the behavior of the

object.

Next, the run task starts a thread in a fork...join_none block. The thread is an
implementation detail of the transactor and should be spawned there, not in the parent
class.

7.1.5 Dynamic Threads

Verilog’s threads are very predictable. You can read the source code and count the
initial, always, and fork...join blocks to know how many threads were in a

Chapter 7:Threads and Interprocess Communication224

module. SystemVerilog lets you create threads dynamically, and does not require you
to wait for them to finish.

In Sample 7.8, the testbench generates random transactions and sends them to a DUT
that stores them for some predetermined time, and then returns them. The testbench
has to wait for the transaction to complete, but does not want to stop the generator.

Sample 7.8 Dynamic thread creation

program automatic test(bus_ifc.TB bus);
 // Code for interface not shown
 task check_trans(Transaction tr);
 fork
 begin
 wait (bus.cb.addr == tr.addr);
 $display("@%0t: Addr match %d", $time, tr.addr);
 end
 join_none
 endtask

 Transaction tr;

 initial begin
 repeat (10) begin
 // Create a random transaction
 tr = new();
 assert(tr.randomize());

 // Send transaction into the DUT
 transmit(tr); // Task not shown

 // Wait for reply from DUT
 check_trans(tr);
 end
 #100; // Wait for final transaction to complete
 end
endprogram

When the check_trans task is called, it spawns off a thread to watch the bus for the
matching transaction address. During a normal simulation, many of these threads run
concurrently. In this simple example, the thread just prints a message, but you could
add more elaborate controls.

7.1.6 Automatic Variables in Threads

A common but subtle bug occurs when you have a loop that spawns
threads and you don’t save variable values before the next iteration.
Sample 7.8 only works in a program or module with automatic

Working with Threads 225

storage. If check_trans used static storage, each thread would share the same vari-
able tr, and so later calls would overwrite the value set by earlier ones. Likewise, if
the example had the fork...join_none inside the repeat loop, it would try to match
incoming transactions using tr, but its value would change the next time through the
loop. Always use automatic variables to hold values in concurrent threads.

Sample 7.9 has a fork...join_none inside a for-loop. SystemVerilog schedules the
threads inside a fork...join_none, but they are not executed until after the original
code blocks, here because of the #0 delay. So Sample 7.9 prints “3 3 3,” which are
the values of the index variable j when the loop terminates.

Sample 7.9 Bad fork...join_none inside a loop

program no_auto;
 initial begin
 for (int j=0; j<3; j++)
 fork
 $write(j); // Bug Ð prints final value of index
 join_none
 #0 $display("\n");
 end
endprogram

Sample 7.10 Execution of bad fork...join_none inside a loop

j Statement
0 for (j=0; ...
0 Spawn $write(j) [thread 0]
1 j++ j=1
1 Spawn $write(j) [thread 1]
2 j++ j=2
2 Spawn $write(j) [thread 2]
3 j++ j=3
3 join_none
3 #0
3 $write(j) [thread 0: j=3]
3 $write(j) [thread 1: j=3]
3 $write(j) [thread 2: j=3]
3 $display(Ò\nÓ)

The #0 delay blocks the current thread and reschedules it to start later during the cur-
rent time slot. In Sample 7.10, the delay makes the current thread run after the threads
spawned in the fork...join_none statement. This delay is useful for blocking a
thread, but you should be careful, as excessive use causes race conditions and unex-
pected results.

You should use automatic variables inside a fork...join statement to save a copy
of a variable, as shown in Sample 7.11.

Chapter 7:Threads and Interprocess Communication226

Sample 7.11 Automatic variables in a fork...join_none

initial begin
 for (int j=0; j<3; j++)
 fork
 automatic int k = j; // Make copy of index
 $write(k); // Print copy
 join_none
 #0 $display;
end

The fork...join_none block is split into two parts. The automatic variable decla-
ration with initialization runs in the thread inside the for-loop. During each loop, a
copy of k is created and set to the current value of j. Then the body of the
fork...join_none ($write) is scheduled, including a copy of k. After the loop fin-
ishes, #0 blocks the current thread, and so the three threads run, printing the value of
their copy of k. When the threads complete, and there is nothing else left during the
current time-slot region, SystemVerilog advances to the next statement and the
$display executes.

Sample 7.12 traces the code and variables from Sample 7.11. The three copies of the
automatic variable k are called k0, k1, and k2.

Sample 7.12 Steps in executing automatic variable code

j k0 k1 k2 Statement
0 for (j=0; ...
0 0 Create k0, spawn $write(k) [thread 0]
1 0 j++
1 0 1 Create k1, spawn $write(k) [thread 1]
2 0 1 j++
2 0 1 2 Create k2, spawn $write(k) [thread 2]
3 0 1 2 j<3
3 0 1 2 join_none
3 0 1 2 #0
3 0 1 2 $write(k0) [thread 0]
3 0 1 2 $write(k1) [thread 1]
3 0 1 2 $write(k2) [thread 2]
3 0 1 2 $display(Ò\nÓ)

The good news is that you do not have to use the automatic keyword in the declara-
tion if this code is in a program or module that uses automatic storage. If you are
using the guideline in Section 3.6.1, you are already covered. All you need to remem-
ber is to make a copy of the loop variable.

Another way to write Sample 7.11 is to declare the automatic variable outside of the
fork...join_none. Sample 7.13 works inside a program with automatic storage.

Working with Threads 227

Sample 7.13 Automatic variables in a fork...join_none

program automatic bug_free;
 initial begin
 for (int j=0; j<3; j++) begin
 int k = j; // Make copy of index
 fork
 $write(k); // Print copy
 join_none
 end
 #0 $display;
 end
endprogram

7.1.7 Waiting for all Spawned Threads

In SystemVerilog, when all the initial blocks in the program are done, the simula-
tor exits. Sample 7.14 shows how you can spawn many threads, which might still be
running. Use the wait fork statement to wait for all child threads.

Sample 7.14 Using wait fork to wait for child threads

task run_threads;
 ... // Create some transactions
 fork
 check_trans(tr1); // Spawn first thread
 check_trans(tr2); // Spawn second thread
 check_trans(tr3); // Spawn third thread
 join_none
 ... // Do some other work

 // Now wait for the above threads to complete
 wait fork;
endtask

7.1.8 Sharing Variables Across Threads

Inside a class’s routines, you can use local variables, class vari-
ables, or variables defined in the program. If you forget to declare a
variable, SystemVerilog looks up the higher scopes until it finds a
match. This can cause subtle bugs if two parts of the code are unin-

tentionally sharing the same variable, perhaps because you forgot to declare it in the
innermost scope.

For example, if you like to use the index variable, i, be careful that two different
threads of your testbench don’t concurrently modify this variable by each using it in a

Chapter 7:Threads and Interprocess Communication228

for-loop. Or you may forget to declare a local variable in a class, such as Buggy,
shown below. If your program block declares a global i, the class just uses the global
instead of the local that you intended. You might not even notice this unless two parts
of the program try to modify the shared variable at the same time.

Sample 7.15 Bug using shared program variable

program bug;

 class Buggy;
 int data[10];
 task transmit;
 fork
 for (i=0; i<10; i++) // i is not declared here
 send(data[i]);
 join_none
 endtask
 endclass

 int i; // Program-level i, shared
 Buggy b;
 event receive;

 initial begin
 b = new();
 for (i=0; i<10; i++) // i is not declared here
 b.data[i] = i;
 b.transmit();

 for (i=0; i<10; i++) // i is not declared here
 @(receive) $display(b.data[i]);
 end
endprogram

The solution is to declare all your variables in the smallest scope that encloses all uses
of the variable. In Sample 7.15, declare the index variables inside the for-loops, not
at the program or scope level. Better yet, use the foreach statement whenever
possible.

7.2 Disabling Threads

Just as you need to create threads in the testbench, you also need to stop them. The
Verilog disable statement works on SystemVerilog threads.

Disabling Threads 229

7.2.1 Disabling a Single Thread

Here is the check_trans task, this time using a fork...join_any plus a disable
to create a watch with a time-out. In this case, you are disabling a label to precisely
specify the block to stop.

The task and outermost fork...join_none are identical to Sample 7.8. This version
has two threads inside a fork...join_any such that the simple wait statement is
done in parallel with a delayed display. If the correct bus address comes back quickly
enough, the wait construct completes, the join_any executes, and then the dis
able kills off the remaining thread. However, if the bus address does not get the right
value before the TIME_OUT delay completes, the error message is printed, the
join_any executes, and the disable kills the thread with the wait.

Sample 7.16 Disabling a thread

parameter TIME_OUT = 1000;

task check_trans(Transaction tr);
 fork

 begin
 // Wait for response, or some maximum delay
 fork : timeout_block
 begin
 wait (bus.cb.addr == tr.addr);
 $display("@%0t: Addr match %d", $time, tr.addr);
 end
 #TIME_OUT $display("@%0t: Error: timeout", $time);
 join_any
 disable timeout_block;
 end

 join_none
endtask

7.2.2 Disabling Multiple Threads

Sample 7.16 used the classic Verilog disable statement to stop the threads in a
named block. SystemVerilog introduces the disable fork statement so that you
can stop all child threads that have been spawned from the current thread.

Watch out, as you might unintentionally stop too many threads,
such as those created from task calls. You should always surround
the target code with a fork...join to limit the scope of a disable
fork statement. Sample 7.17 has an additional begin...end block

inside the fork...join to make the statements sequential.

Chapter 7:Threads and Interprocess Communication230

The following sections show how you can asynchronously disable multiple threads.
This can cause unexpected behavior, and so you should watch out for side effects
when a thread is stopped midstream. You may instead want to design your algorithm
to check for interrupts at stable points, and then gracefully give up its resources.

The next few examples use the check_trans task from Sample 7.16. You can just
think of this task as doing a #TIME_OUT.

Sample 7.17 Limiting the scope of a disable fork

initial begin
 check_trans(tr0); // Thread 0

 // Create a thread to limit scope of disable
 fork // Thread 1
 begin
 check_trans(tr1); // Thread 2
 fork // Thread 3
 check_trans(tr2); // Thread 4
 join

 // Stop threads 1-4, but leave 0 alone
 #(TIME_OUT/2) disable fork;
 end
 join
end

Figure 7-4 Fork...join block diagram

The code calls check_trans that starts thread 0. Next a fork...join creates thread
1. Inside this thread, one is spawned by the check_trans task and one by the inner-
most fork...join, which spawns thread 4 by calling the task (Figure 7-4). After a
delay, a disable fork stops thread 1 and all its children, 2–4. Thread 0 is outside
the fork...join block that has the disable, and so it is unaffected.

Sample 7.18 is the more robust version of Sample 7.17, with disable with a label
that explicitly names the threads that you want to stop.

initial begin
check_trans(tr0)
fork
...
join
end

thread 1
check_trans(tr1)
fork
...
join
#TIME_OUT/2

disable fork

thread 0
thread 2

thread 3
check_trans(tr2)

thread 4

initial begin
check_trans(tr0)
fork
...
join
end

thread 1
check_trans(tr1)
fork
...
join
#TIME_OUT/2

disable fork

thread 0
thread 2

thread 3
check_trans(tr2)

thread 4

Disabling Threads 231

Sample 7.18 Using disable label to stop threads

initial begin
 check_trans(tr0); // Thread 0
 fork // Thread 1
 begin : threads_inner
 check_trans(tr1); // Thread 2
 check_trans(tr2); // Thread 3
 end

 // Stop threads 2 & 3, but leave 0 alone
 #(TIME_OUT/2) disable threads_inner;
 join
end

7.2.3 Disable a Task that was Called Multiple Times

Be careful when you disable a block from inside that block – you might end up stopping
more than you expected. As expected, if you disable a task from inside the task, it is like
a return statement, but it also kills all threads started by the task. If the task has been
called from multiple threads, disabling one will disable them all.

In Sample 7.19, the wait_for_time_out task is called three times, spawning three
threads. In addition, thread 0 also disables the task after #2. When you run this code,
you will see the three threads starting, but none finishes, because of the disable in
thread 0.

Chapter 7:Threads and Interprocess Communication232

Sample 7.19 Using disable label to stop a task

task wait_for_time_out(int id);
 if (id == 0)
 fork
 begin
 #2;
 $display("@%0t: disable wait_for_time_out", $time);
 disable wait_for_time_out;
 end
 join_none

 fork : just_a_little
 begin
 $display("@%0t: %m: %0d entering thread", $time, id);
 #TIME_OUT;
 $display("@%0t: %m: %0d done", $time, id);
 end
 join_none
endtask

initial begin
 wait_for_time_out(0); // Spawn thread 0
 wait_for_time_out(1); // Spawn thread 1
 wait_for_time_out(2); // Spawn thread 2
 #(TIME_OUT*2) $display("@%0t: All done", $time);
end

7.3 Interprocess Communication

All these threads in your testbench need to synchronize and exchange data. At the
most basic level, one thread waits for another, such as the environment object waiting
for the generator to complete. Multiple threads might try to access a single resource
such as bus in the DUT, and so the testbench needs to ensure that one and only one
thread is granted access. At the highest level, threads need to exchange data such as
transaction objects that are passed from the generator to the agent. All of this data
exchange and control synchronization is called IPC, which is done in SystemVerilog
with events, semaphores, and mailboxes. These are described in the remainder of this
chapter.

Events 233

7.4 Events

A Verilog event synchronizes threads. It is similar to a phone, where one person waits
for a call from another person. In Verilog a thread waits for an event with the @ oper-
ator. This operator is edge sensitive, and so it always blocks, waiting for the event to
change. Another thread triggers the event with the -> operator, unblocking the first
thread.

SystemVerilog enhances the Verilog event in several ways. An event is now a handle
to a synchronization object that can be passed around to routines. This feature allows
you to share events across objects without having to make the events global. The most
common way is to pass the event into the constructor for an object.

There is always the possibility of a race condition in Verilog where one thread blocks
on an event at the same time another triggers it. If the triggering thread executes
before the blocking thread, the trigger is missed. SystemVerilog introduces the trig
gered() method that lets you check whether an event has been triggered, including
during the current time-slot. A thread can wait on this function instead of blocking
with the @ operator.

7.4.1 Blocking on the Edge of an Event

When you run Sample 7.20, one initial block starts, triggers its event, and then blocks
on the other event, as shown in the output in Sample 7.21. The second block starts,
triggers its event (waking up the first), and then blocks on the first event. However,
the second thread locks up because it missed the first event, as it is a zero-width pulse.

Sample 7.20 Blocking on an event in Verilog

event e1, e2;
initial begin
 $display("@%0t: 1: before trigger", $time);
 -> e1;
 @e2;
 $display("@%0t: 1: after trigger", $time);
end

initial begin
 $display("@%0t: 2: before trigger", $time);
 -> e2;
 @e1;
 $display("@%0t: 2: after trigger", $time);
 end

Chapter 7:Threads and Interprocess Communication234

Sample 7.21 Output from blocking on an event

@0: 1: before trigger
@0: 2: before trigger
@0: 1: after trigger

7.4.2 Waiting for an Event Trigger

Instead of the edge-sensitive block @e1, use the level-sensitive wait(e1.trig
gered()). This does not block if the event has been triggered during this time step.
Otherwise, it waits until the event is triggered.

Sample 7.22 Waiting for an event

event e1, e2;

initial begin
 $display("@%0t: 1: before trigger", $time);
 -> e1;
 wait (e2.triggered());
 $display("@%0t: 1: after trigger", $time);
end

initial begin
 $display("@%0t: 2: before trigger", $time);
 -> e2;
 wait (e1.triggered());
 $display("@%0t: 2: after trigger", $time);
end

When you run Sample 7.22, one initial block starts, triggers its event, and then blocks
on the other event. The second block starts, triggers its event (waking up the first) and
then blocks on the first event, producing the output in Sample 7.23.

Sample 7.23 Output from waiting for an event

@0: 1: before trigger
@0: 2: before trigger
@0: 1: after trigger
@0: 2: after trigger

Several of these examples have race conditions and may not execute exactly the same
on every simulator. For example, the output in Sample 7.23 assumes that when the
second block triggers e2, execution jumps back to the first block. It would also be
legal for the second block to trigger e2, wait on e1, and display a message before
control is returned back to the first block.

Events 235

7.4.3 Using Events in a Loop

You can synchronize two threads with an event, but use caution.

If you use wait(handshake.triggered()) in a loop, be sure to
advance the time before waiting again. Otherwise your code will go
into a zero delay loop as the wait continues over and over again on
a single event trigger. Sample 7.24 incorrectly uses a level-sensitive

blocking statement for notification that a transaction is ready.

Sample 7.24 Waiting on event causes a zero delay loop

forever begin
 // This is a zero delay loop!
 wait(handshake.triggered());
 $display("Received next event");
 process_in_zero_time();
end

Just as you learned to always put a delay inside an always blocks, you need to put a
delay in a transaction process loop. The edge-sensitive delay statement in Sample
7.25 continues once and only once per event trigger.

Sample 7.25 Waiting for an edge on an event

forever begin
 // This prevents a zero delay loop!
 @handshake;
 $display(ÒReceived next eventÓ);
 process_in_zero_time();
end

You should avoid events if you need to send multiple notifications in a single time
slot, and look at other IPC methods with built-in queuing such as semaphores and
mailboxes, discussed later in this chapter.

7.4.4 Passing Events

As described above, an event in SystemVerilog can be passed as an argument to a
routine. In Sample 7.26, an event is used by a transactor to signal when it has
completed.

Chapter 7:Threads and Interprocess Communication236

Sample 7.26 Passing an event into a constructor

class Generator;
 event done;
 function new (event done); // Pass event from TB
 this.done = done;
 endfunction

 task run();
 fork
 begin
 ... // Create transactions
 -> done; // Tell the test we are done
 end
 join_none
 endtask
endclass

program automatic test;
 event gen_done;
 Generator gen;

 initial begin
 gen = new(gen_done); // Instantiate testbench
 gen.run(); // Run transactor
 wait(gen_done.triggered()); // Wait for finish
 end
endprogram

7.4.5 Waiting for Multiple Events

In Sample 7.26, you had a single generator that fired a single event. What if your test-
bench environment class must wait for multiple child processes to finish, such as N
generators? The easiest way is to use wait fork, which waits for all child processes
to end. The problem is that this also waits for all the transactors, drivers, and any
other threads that were spawned by the environment. You need to be more selective.
You still want to use events to synchronize between the parent and child threads.

You could use a for-loop in the parent to wait for each event, but that would only
work if thread 0 finished before thread 1, which finished before thread 2, etc. If the
threads finish out of order, you could be waiting for an event that triggered many
cycles ago.

The solution is to make a new thread and then spawn children from there that each
block on an event for each generator, as shown in Sample 7.27. Now you can do a
wait fork because you are being more selective.

Events 237

Sample 7.27 Waiting for multiple threads with wait fork

event done[N_GENERATORS];

initial begin
 foreach (gen[i]) begin
 gen[i] = new(); // Create N generators
 gen[i].run(done[i]); // Start them running
 end

 // Wait for all gen to finish by waiting for each event
 foreach (gen[i])
 fork
 automatic int k = i;
 wait (done[k].triggered());
 join_none

 wait fork; // Wait for all those triggers to finish
end

Another way to solve this problem is to keep track of the number of events that have
triggered, as shown in Sample 7.28.

Sample 7.28 Waiting for multiple threads by counting triggers

event done[N_GENERATORS];
int done_count;

initial begin
 foreach (gen[i]) begin
 gen[i] = new(); // Create N generators
 gen[i].run(done[i]); // Start them running
 end

 // Wait for all generators to finish
 foreach (gen[i])
 fork
 automatic int k = i;
 begin
 wait (done[k].triggered());
 done_count++;
 end
 join_none
 wait (done_count==N_GENERATORS); // Wait for triggers

end

That was slightly less complicated. Why not get rid of all the events and just wait on a
count of the number of running generators? This count can be a static variable in the

Chapter 7:Threads and Interprocess Communication238

Generator class. Note that most of the thread manipulation code has been replaced
with a single wait construct.

The last block in Sample 7.29 waits for the count using the class scope resolution
operator, ::. You could have used any handle, such as gen[0], but that would be less
direct.

Sample 7.29 Waiting for multiple threads using a thread count

class Generator;
 static int thread_count = 0;

 task run();
 thread_count++; // Start another thread
 fork
 begin
 // Do the real work in here
 // And when done, decrement the thread count
 thread_count--;
 end
 join_none
 endtask
endclass

Generator gen[N_GENERATORS];

initial begin
 // Create N generators
 foreach (gen[i])
 gen[i] = new();

 // Start them running
 foreach (gen[i])
 gen[i].run();

 // Wait for all the generators to complete
 wait (Generator::thread_count == 0);
end

7.5 Semaphores

A semaphore allows you to control access to a resource. Imagine that you and your
spouse share a car. Obviously, only one person can drive it at a time. You can manage
this situation by agreeing that whoever has the key can drive it. When you are done
with the car, you give up the car so that the other person can use it. The key is the
semaphore that makes sure only one person has access to the car. In operating system

Semaphores 239

terminology, this is known as “mutually exclusive access,” and so a semaphore is
known as a “mutex” and is used to control access to a resource.

Semaphores can be used in a testbench when you have a resource, such as a bus, that
may have multiple requestors from inside the testbench but, as part of the physical
design, can only have one driver. In SystemVerilog, a thread that requests a key when
one is not available always blocks. Multiple blocking threads are queued in FIFO
order.

7.5.1 Semaphore Operations

There are three basic operations for a semaphore. You create a semaphore with one or
more keys using the new method, get one or more keys with get, and return one or
more keys with put. If you want to try to get a semaphore, but not block, use the
try_get() function. It returns 1 if there are enough keys, and 0 if there are insuffi-
cient keys, as shown in Sample 7.30.

Sample 7.30 Semaphores controlling access to hardware resource

program automatic test(bus_ifc.TB bus);
 semaphore sem; // Create a semaphore
 initial begin
 sem = new(1); // Allocate with 1 key
 fork
 sequencer(); // Spawn two threads that both
 sequencer(); // do bus transactions
 join
 end

 task sequencer;
 repeat($urandom%10) // Random wait, 0-9 cycles
 @bus.cb;
 sendTrans(); // Execute the transaction
 endtask

 task sendTrans;
 sem.get(1); // Get the key to the bus
 @bus.cb; // Drive signals onto bus
 bus.cb.addr <= t.addr;
 ...
 sem.put(1); // Put it back when done
 endtask
endprogram

Chapter 7:Threads and Interprocess Communication240

7.5.2 Semaphores with Multiple Keys

There are two things you should watch out for with semaphores. First, you can put
more keys back than you took out. Suddenly you may have two keys but only one car!
Secondly, be very careful if your testbench needs to get and put multiple keys. Per-
haps you have one key left, and a thread requests two, causing it to block. Now a
second thread requests a single semaphore – what should happen? In SystemVerilog,
the second request, get(1), sneaks ahead of the earlier get(2), bypassing the FIFO
ordering.

If you are mixing different-sized requests, you can always write your own class. That
way you can be very clear on who gets priority.

7.6 Mailboxes

How do you pass information between two threads? Perhaps your generator needs to
create many transactions and pass them to a driver. You might be tempted to just have
the generator thread call a task in the driver. If you do that, the generator needs to
know the hierarchical path to the driver task, making your code less reusable. Addi-
tionally, this style forces the generator to run at the same speed as the driver, which
can cause synchronization problems if one generator needs to control multiple drivers.

Think of your generator and driver as transactors that are autonomous
objects that communicate through a channel. Each object gets a trans-
action from an upstream object (or creates it, as in the case of a
generator), does some processing, and then passes it to a downstream
object. The channel must allow its driver and receiver to operate
asynchronously. You may be tempted to just use a shared array or

queue, but it can be difficult to create code that reads, writes, and blocks between
threads.

The solution is a SystemVerilog mailbox. From a hardware point of view, the easiest
way to think about a mailbox is that it is just a FIFO, with a source and sink. The
source puts data into the mailbox, and the sink gets values from the mailbox. Mail-
boxes can have a maximum size or can be unlimited. When the source thread tries to
put a value into a sized mailbox that is full, it blocks until the value is removed. Like-
wise, if a sink thread tries to remove a value from a mailbox that is empty, it blocks
until a value is put into the mailbox. Figure 7.5 shows a mailbox connecting a generator
and driver.

Mailboxes 241

Figure 7-5 A mailbox connecting two transactors

A mailbox is an object and thus has to be instantiated by calling the new function.
This takes an optional size argument to limit the number of entries in the mailbox. If
the size is 0 or not specified, the mailbox is unbounded and can hold an unlimited
number of entries.

You put data into a mailbox with the put task, and remove it with the get task. A
put can block if the mailbox is full and a get blocks if it is empty. The peek task
gets a copy of the data in the mailbox but does not remove it.

The data can be a single value, such as an integer, or logic of any size.
You can put a handle into a mailbox, not an object. By default, a mail-
box does not have a type, and so you can put any mix of data into it.
Don’t do it! Stick to one data type per mailbox.

A classic bug, shown in Sample 7.31, is a loop that randomizes
objects and puts them in a mailbox, but the object is constructed
only once, outside the loop. Since there is only one object, it is ran-
domized over and over. Figure 7-6 shows all the handles pointing to

a single object. A mailbox only holds handles, not objects, and so you end up with a
mailbox containing multiple handles that all point to the single object. The code that
gets the handles from the mailbox just sees the last set of random values.

Sample 7.31 Bad generator creates only one object

task generator_bad(int n, mailbox mbx);
 Transaction t;
 t = new(); // Create just one transaction
 repeat (n) begin
 assert(t.randomize()); // Randomize variables
 $display("GEN: Sending addr=%h", t.addr);
 mbx.put(t); // Send transaction to driver
 end
endtask

generator driver
mailbox

generator driver
mailbox

Chapter 7:Threads and Interprocess Communication242

Figure 7-6 A mailbox with multiple handles to one object

The solution, shown in Sample 7.32, is to make sure your loop has all three steps of
constructing the object, randomizing it, and putting it in the mailbox. This bug is so
common that it is also mentioned in Section 5.14.3.

Sample 7.32 Good generator creates many objects

task generator_good(int n, mailbox mbx);
 Transaction t;
 repeat (n) begin
 t = new(); // Create a new transaction
 assert(t.randomize()); // Randomize variables
 $display("GEN: Sending addr=%h", t.addr);
 mbx.put(t); // Send transaction to driver
 end
endtask

The result, shown in Figure 7-7, is that every handle points to a unique object. This
type of generator is known as the Blueprint Pattern and is described in Section 8.2.

Figure 7-7 A mailbox with multiple handles to multiple objects

Sample 7.33 shows the driver that waits for transactions from the generator.

All handles refer
to the same object
All handles refer

to the same object

Mailboxes 243

Sample 7.33 Good driver receives transactions from mailbox

task driver(mailbox mbx);
 Transaction t;
 forever begin
 mbx.get(t); // Get transacton from mailbox
 $display("DRV: Received addr=%h", t.addr);
 // Drive transaction into DUT
 end
endtask

If you don’t want your code to block when accessing the mailbox, use the
try_get() and try_peek() functions. If they are successful, they return a nonzero
value; otherwise, they return 0. These are more reliable than the num function, as the
number of entries can change between when you measure it and when you next access
the mailbox.

7.6.1 Mailbox in a Testbench

Sample 7.34–7.36 show a Generator and Driver exchanging transactions using a mail-
box, and the top-level program. Note that the two classes need to be defined inside the
program block so that they will see the definition of the bus interface.

Sample 7.34 Exchanging objects using a mailbox: the Generator class

class Generator;
 Transaction tr;
 mailbox mbx;

 function new(mailbox mbx);
 this.mbx = mbx;
 endfunction

 task run(int count);
 repeat (count) begin
 tr = new();
 assert(tr.randomize);
 mbx.put(tr); // Send out transaction
 end
 endtask

endclass

Sample 7.35 shows the matching driver class.

Chapter 7:Threads and Interprocess Communication244

Sample 7.35 Exchanging objects using a mailbox: the Driver class

class Driver;
 Transaction tr;
 mailbox mbx;

 function new(mailbox mbx);
 this.mbx = mbx;
 endfunction

 task run(int count);
 repeat (count) begin
 mbx.get(tr); // Fetch next transaction
 @(posedge bus.cb.ack);
 bus.cb.kind <= tr.kind;
 ...
 end
 endtask
endclass

Sample 7.36 Exchanging objects using a mailbox: the program block

program automatic mailbox_example(bus_if.TB bus, ...);
Ôinclude "transaction.sv"
Ôinclude "generator.sv"
Ôinclude "driver.sv"

 mailbox mbx; // Mailbox connecting gen & drv
 Generator gen;
 Driver drv;
 int count;

 initial begin
 count = $urandom_range(50);
 mbx = new(); // Construct the mailbox
 gen = new(mbx); // Construct the generator
 drv = new(mbx); // Construct the driver
 fork
 gen.run(count); // Spawn the generator
 drv.run(count); // Spawn the driver
 join // Wait for both to finish
 end
endprogram

Mailboxes 245

7.6.2 Bounded Mailboxes

By default, mailboxes are similar to an unlimited FIFO – a producer can put any num-
ber of objects into a mailbox before the consumer gets the objects out. However, you
may want the two threads to operate in lockstep so that the producer blocks until the
consumer is done with the object.

You can specify a maximum size for the mailbox when you construct it. The default
mailbox size is 0, which creates an unbounded mailbox. Any size greater than 0 cre-
ates a bounded mailbox. If you attempt to put more objects than this limit, put blocks
until you get an object from the mailbox, creating a vacancy.

Sample 7.37 Bounded mailbox

Ôtimescale 1ns/1ns
program automatic bounded;
 mailbox mbx;

 initial begin
 mbx = new(1); // Mailbox size = 1
 fork

 // Producer thread
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 $display("Producer: after put(%0d)", i);
 end

 // Consumer thread
 repeat(4) begin
 int j;
 #1ns mbx.get(j);
 $display("Consumer: after get(%0d)", j);
 end

 join
 end
endprogram

Sample 7.37 creates the smallest possible mailbox, which can hold a single message.
The Producer thread tries to put three messages (integers) in the mailbox, and the
Consumer thread slowly gets messages every 1 ns. As Sample 7.38 shows, the first
put succeeds, and then the Producer tries put(2), which blocks. The Consumer
wakes up, gets a message 1 from the mailbox, and so now the Producer can finish put-
ting the message 2.

Chapter 7:Threads and Interprocess Communication246

Sample 7.38 Output from bounded mailbox

Producer: before put(1)
Producer: after put(1)
Producer: before put(2)
Consumer: after get(1)
Producer: after put(2)
Producer: before put(3)
Consumer: after get(2)
Producer: after put(3)
Consumer: after get(3)

The bounded mailbox acts as a buffer between the two processes. You can see how
the Producer generates the next value before the Consumer reads the current value.

7.6.3 Unsynchronized Threads Communicating with a Mailbox

In many cases, two threads that are connected by a mailbox should
run in lockstep, so that the producer does not get ahead of the con-
sumer. The benefit of this approach is that your entire chain of
stimulus generation now runs in lock step. The highest level generator
only completes when the last low level transaction completes trans-
mission. Now your testbench can tell precisely when all stimulus has

been sent. In another example, if your generator gets ahead of the driver, and you are
gathering functional coverage on the generator, you might record that some transac-
tions were tested, even if the test stopped prematurely. So even though a mailbox
allows you to decouple the two sides, you may still want to keep them synchronized.

If you want two threads to run in lockstep, you need a handshake in addition to the
mailbox. In Sample 7.39, the Producer and Consumer are now classes that exchange
integers using a mailbox, with no explicit synchronization between the two objects.
As a result, as shown in Sample 7.40, the producer runs to completion before the
consumer even starts.

Mailboxes 247

Sample 7.39 Producer–consumer without synchronization

program automatic unsynchronized;

 mailbox mbx;

 class Producer;
 task run();
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 end
 endtask
 endclass

 class Consumer;
 task run();
 int i;
 repeat (3) begin
 mbx.get(i); // Get integer from mbx
 $display("Consumer: after get(%0d)", i);
 end
 endtask
 endclass

 Producer p;
 Consumer c;

initial begin
 // Construct mailbox, producer, consumer
 mbx = new(); // Unbounded
 p = new();
 c = new();

 // Run the producer and consumer in parallel
 fork
 p.run();
 c.run();
 join
 end
endprogram

Sample 7.39 has no synchronization and so the Producer puts all three integers into
the mailbox before the Consumer can get the first one. This is because a thread con-
tinues running until there is a blocking statement, and the Producer has none. The
Consumer thread blocks on the first call to mbx.get.

Chapter 7:Threads and Interprocess Communication248

Sample 7.40 Producer–consumer without synchronization output

Producer: before put(1)
Producer: before put(2)
Producer: before put(3)
Consumer: after get(1)
Consumer: after get(2)
Consumer: after get(3)

This example has a race condition, and so on some simulators, the consumer could
activate earlier. The result is still the same as the values are determined by the pro-
ducer, not by how quickly the consumer sees them.

7.6.4 Synchronized Threads Using a Bounded Mailbox and a Peek

In a synchronized testbench, the Producer and Consumer operate in lock step. This
way, you can tell when the input stimuli is complete by waiting for any of the threads.
If the threads operate unsynchronized, you need to add extra code to detect when the
last transaction is applied to the DUT.

To synchronize two threads, the Producer creates and puts a transaction into a mail-
box, and then blocks until the Consumer finishes with it. This is done by having the
Consumer remove the transaction from the mailbox only when it is finally done with
it, not when the transaction is first detected.

Sample 7.41 show the first attempt to synchronize two threads, this time with a
bounded mailbox. The Consumer uses the built-in mailbox method peek() to look at
the data in the mailbox without removing. When the Consumer is done processing the
data, it removes the data with get(). This frees up the Producer to generate a new
value. If the Consumer loop started with a get() instead of the peek(), the transac-
tion would be immediately removed from the mailbox, and so the Producer could
wake up before the Consumer finished with the transaction.

Mailboxes 249

Sample 7.41 Producer–consumer synchronized with bounded mailbox

program automatic synch_peek;
// Uses Producer from Sample 7.39

 mailbox mbx;

 class Consumer;
 task run();
 int i;
 repeat (3) begin
 mbx.peek(i); // Peek integer from mbx
 $display("Consumer: after get(%0d)", i);
 mbx.get(i); // Remove from mbx
 end
 endtask
 endclass

 initial begin
 // Construct mailbox, producer, consumer
 mbx = new(1); // Bounded mailbox - limit 1!
 p = new();
 c = new();

 // Run the producer and consumer in parallel
 fork
 p.run();
 c.run();
 join
 end
endprogram

Sample 7.42 Output from producer–consumer with bounded mailbox

Producer: before put(1)
Producer: before put(2)
Consumer: after get(1)
Consumer: after get(2)
Producer: before put(3)
Consumer: after get(3)

You can see that the Producer and Consumer are in lockstep, but the Producer is still
one transaction ahead of the Consumer. This is because a bounded mailbox with
size=1 only blocks when you try to do a put of the second transaction.2

2This behavior is different from the VMM channel. If you set a channel’s full level to 1, the very first call
to put() places the transaction in the channel, but does not return until the transaction is removed.

Chapter 7:Threads and Interprocess Communication250

7.6.5 Synchronized Threads Using a Mailbox and Event

You may want the two threads to use a handshake so that the Producer does not get
ahead of the Consumer. The Consumer already blocks, waiting for the Producer using
a mailbox. The Producer needs to block, waiting for the Consumer to finish the trans-
action. This is done by adding a blocking statement to the Producer such as an event,
a semaphore, or a second mailbox.

Sample 7.43 uses an event to block the Producer after it puts data in the mailbox. The
Consumer triggers the event after it consumes the data.

If you use wait(handshake.triggered()) in a loop, be sure to
advance the time before waiting again, as previously shown in Sec-
tion 7.4.3. This wait blocks only once in a given time slot, and so
you need move into another. Sample 7.43 uses the edge-sensitive

blocking statement @handshake instead to ensure that the Producer stops after send-
ing the transaction. The edge-sensitive statement works multiple times in a time slot
but may have ordering problems if the trigger and block happen in the same time slot.

Sample 7.43 Producer–consumer synchronized with an event

program automatic mbx_evt;

 event handshake;

 class Producer;
 task run;
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 @handshake;
 $display("Producer: after put(%0d)", i);
 end
 endtask
 endclass

 // Continued in Sample 7.44

Mailboxes 251

Sample 7.44 Producer–consumer synchronized with an event, continued

 class Consumer;
 task run;
 int i;
 repeat (3) begin
 mbx.get(i);
 $display("Consumer: after get(%0d)", i);
 ->handshake;
 end
 endtask
 endclass

 initial begin
 p = new();
 c = new();

 // Run the producer and consumer in parallel
 fork
 p.run();
 c.run();
 join
 end
endprogram

Now the Producer does not advance until the Consumer triggers the event, as shown
in Sample 7.45.

Sample 7.45 Output from producer–consumer with event

Producer: before put(1)
Consumer: after get(1)
Producer: after put(1)
Producer: before put(2)
Consumer: after get(2)
Producer: after put(2)
Producer: before put(3)
Consumer: after get(3)
Producer: after put(3)

You can see that the Producer and Consumer are successfully running in lockstep by
the fact that the Producer never produces a new value until after the old one is read by
the Consumer.

7.6.6 Synchronized Threads Using Two Mailboxes

Another way to synchronize the two threads is to use a second mailbox that sends a
completion message from the Consumer back to the Producer, as shown in Sample
7.46.

Chapter 7:Threads and Interprocess Communication252

Sample 7.46 Producer–consumer synchronized with a mailbox

program automatic mbx_mbx2;
 mailbox mbx, rtn;
 class Producer;
 task run();
 int k;
 for (int i=1; i<4; i++) begin
 $display("Producer: before put(%0d)", i);
 mbx.put(i);
 rtn.get(k);
 $display("Producer: after get(%0d)", k);
 end
 endtask
 endclass

 class Consumer;
 task run();
 int i;
 repeat (3) begin
 $display("Consumer: before get");
 mbx.get(i);
 $display("Consumer: after get(%0d)", i);
 rtn.put(-i);
 end
 endtask
 endclass

 initial begin
 p = new();
 c = new();

 // Run the producer and consumer in parallel
 fork
 p.run();
 c.run();
 join
 end
endprogram

The return message in the rtn mailbox is just a negative version of the original inte-
ger. You could use any value, but this one can be checked against the original for
debugging purposes.

Building a Testbench with Threads and IPC 253

Sample 7.47 Output from producer–consumer with mailbox

Producer: before put(1)
Consumer: before get
Consumer: after get(1)
Consumer: before get
Producer: after get(-1)
Producer: before put(2)
Consumer: after get(2)
Consumer: before get
Producer: after get(-2)
Producer: before put(3)
Consumer: after get(3)
Producer: after get(-3)

You can see from Sample 7.47 that the Producer and Consumer are successfully run-
ning in lockstep.

7.6.7 Other Synchronization Techniques

You can also complete the handshake by blocking on a variable or a semaphore. An
event is the simplest construct, followed by blocking on a variable. A semaphore is
comparable to using a second mailbox, but no information is exchanged. SystemVer-
ilog’s bounded mailbox just does not work as well as these other techniques, as there
is no way to block the producer when it puts the first transaction in. Sample 7.42
shows that the Producer is always one transaction ahead of the Consumer.

7.7 Building a Testbench with Threads and IPC

Way back in Section 1.10 you learned about layered testbenches. Figure 7-8 shows
the relationship between the different parts. Now that you know how to use threads
and IPC, you can construct a basic testbench with transactors.

Chapter 7:Threads and Interprocess Communication254

Figure 7-8 Layered testbench with environment

7.7.1 Basic Transactor

Sample 7.48 is the agent that sits between the Generator and the Driver.

Sample 7.48 Basic Transactor

class Agent;

 mailbox gen2agt, agt2drv;
 Transaction tr;

 function new(mailbox gen2agt, agt2drv);
 this.gen2agt = gen2agt;
 this.agt2drv = agt2drv;
 endfunction

 task run();
 forever begin
 gen2agt.get(tr); // Get transaction from upstream block
 ... // Do some processing
 agt2drv.put(tr); // Send it to downstream block
 end
 endtask

 task wrap_up(); // Empty for now
 endtask

endclass

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

DUT

AssertionsDriver Monitor

Scoreboard Checker

Generator Environment

Agent

Scenario

Signal

Command

Functional

Building a Testbench with Threads and IPC 255

7.7.2 Configuration Class

The configuration class allows you to randomize the configuration of your system for
every simulation. Sample 7.49 has just one variable and a basic constraint.

Sample 7.49 Configuration class

class Config;
 bit [31:0] run_for_n_trans;
 constraint reasonable
 {run_for_n_trans inside {[1:1000]};
 }
endclass

7.7.3 Environment class

The Environment class, shown as a dashed line in Figure 7-8, holds the Generator,
Agent, Driver, Monitor, Checker, Scoreboard, and Config objects, and the mailboxes
between them. Sample 7.50 shows a basic Environment class.

Sample 7.50 Environment class

class Environment;

 Generator gen;
 Agent agt;
 Driver drv;
 Monitor mon;
 Checker chk;
 Scoreboard scb;
 Config cfg;
 mailbox gen2agt, agt2drv, mon2chk;

 extern function new();
 extern function void gen_cfg();
 extern function void build();
 extern task run();
 extern task wrap_up();
endclass

function Environment::new();
 cfg = new();
endfunction

function void Environment::gen_cfg;
 assert(cfg.randomize);
endfunction

Chapter 7:Threads and Interprocess Communication256

function void Environment::build();
 // Initialize mailboxes
 gen2agt = new();
 agt2drv = new();
 mon2chk = new();

 // Initialize transactors
 gen = new(gen2agt);
 agt = new(gen2agt, agt2drv);
 drv = new(agt2drv);
 mon = new(mon2chk);
 chk = new(mon2chk);
 scb = new();
endfunction

task Environment::run();
 fork
 gen.run(cfg.run_for_n_trans);
 agt.run();
 drv.run();
 mon.run();
 chk.run();
 scb.run(cfg.run_for_n_trans);
 join
endtask

task Environment::wrap_up();
 fork
 gen.wrap_up();
 agt.wrap_up();
 drv.wrap_up();
 mon.wrap_up();
 chk.wrap_up();
 scb.wrap_up();
 join
endtask

Chapter 8 shows more details on how to build these classes.

7.7.4 Test Program

Sample 7.51 shows the main test, which is in a program block.

Conclusion 257

Sample 7.51 Basic test program

program automatic test;

 Environment env;

 initial begin
 env = new();
 env.gen_cfg();
 env.build();
 env.run();
 env.wrap_up();
 end
endprogram

7.8 Conclusion

Your design is modeled as many independent blocks running in parallel, and
so your testbench must also generate multiple stimulus streams and check the
responses using parallel threads. These are organized into a layered testbench,
orchestrated by the top-level environment. SystemVerilog introduces powerful
constructs such as fork...join_none and fork...join_any for dynamically
creating new threads, in addition to the standard fork...join. These threads
communicate and synchronize using events, semaphores, mailboxes, and the
classic @ event control and wait statements. Lastly, the disable command is
used to terminate threads.

These threads and the related control constructs complement the dynamic
nature of OOP. As objects are created and destroyed, they can run in
independent threads, allowing you to build a powerful and flexible testbench
environment.

Chapter 8

Advanced OOP and Testbench
Guidelines

How would you create a complex class for a bus transaction that also performs error
injection and has variable delays? The first approach is to put everything in a large,
flat class. This approach is simple to build and easy to understand (all the code is right
there in one class), but can be slow to develop and debug. Additionally, such a large
class is a maintenance burden, as anyone who wants to make a new transaction
behavior has to edit the same file. Just as you would never create a complex RTL
design using just one Verilog module, you should break classes down into smaller,
reusable blocks.

The next choice is composition. As you learned in Chap. 5, you can instantiate one
class inside another, just as you instantiate modules inside another, building up a hier-
archical testbench. You write and debug your classes from the top down or bottom up,
always looking for natural partitions when deciding what variables and methods go
into the various classes. A pixel could be partitioned into its color and coordinate. A
packet might be divided into header and payload. You might break an instruction into
opcode and operands. See Section 8.4 for guidelines on partitioning.

Sometimes it is difficult to divide the functionality into separate parts. Take the exam-
ple of a bus transaction with error injection. When you write the original class for the
transaction, you may not think of all the possible error cases. Ideally, you would
like to make a class for a good transaction, and later add different error injectors. The
transaction may have data fields and an error-checking CRC field generated from the
data. One form of error injection is corruption of the CRC field. If you use composition,

Chapter 8:Advanced OOP and Testbench Guidelines260

you need separate classes for a good transaction, and an error transaction. Testbench
code that used good objects would have to be rewritten to process the new error
objects. What you need is a class that resembles the original class but adds a few new
variables and methods. This result is accomplished through inheritance.

Inheritance allows a new class to be derived from an existing one in order to share its
variables and routines. The original class is known as the base or super class. The new
one, since it extends the capability of the base class, is called the extended class.
Inheritance provides reusability by adding features, such as error injection, to an
existing class, the basic transaction, without modifying the base class.

The real power of OOP is that it gives you the ability to take an existing class, such as
a transaction, and selectively change parts of its behavior by replacing routines, but
without having to change the surrounding infrastructure. With some planning, you
can create a testbench solid enough to send basic transactions, but able to accommo-
date any extensions needed by the test.

8.1 Introduction to Inheritance

Figure 8-1 shows a simple testbench. A generator creates a transaction, randomizes it,
and sends it to the driver. The rest of the testbench is left out.

Figure 8-1 Simplified layered testbench

8.1.1 Base Transaction

The base transaction class has variables for the source and destination addresses,
eight data words, and a CRC for error checking, plus routines for displaying the con-
tents and calculating the CRC. The calc_crc function is tagged as virtual so that
it can be redefined if needed, as shown in the next section. Virtual routines are
explained in more detail later in this chapter.

DUT

Driver

Test

Environment
Generator

DUT

Driver

Test

Environment
Generator

Introduction to Inheritance 261

Sample 8.1 Base Transaction class

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Random variables
 bit [31:0] crc; // Calculated variable

 virtual function void calc_crc;
 crc = src ^ dst ^ data.xor;
 endfunction

 virtual function void display(input string prefix="");
 $display("%sTr: src=%h, dst=%h, crc=%h",
 prefix, src, dst, crc);
 endfunction
endclass

Figure 8-2 shows both the variables and routines for the class.

Figure 8-2 Base Transaction class diagram

8.1.2 Extending the Transaction Class

Suppose you have a testbench that sends good transactions through the DUT and now
want to inject errors. Take an existing transaction class and extend it to create a new
class. If you follow the guidelines from Chap. 1, you would want to make as few code
changes as possible to your existing testbench. So how can you reuse the existing
Transaction class? This is done by declaring the new class, BadTr, as an extension
of the current class. Transaction is called the base class, whereas BadTr is known
as the extended class (Figure 8-3).

Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()

Chapter 8:Advanced OOP and Testbench Guidelines262

Sample 8.2 Extended Transaction class

class BadTr extends Transaction;
 rand bit bad_crc;

 virtual function void calc_crc;
 super.calc_crc(); // Compute good CRC
 if (bad_crc) crc = ~crc; // Corrupt the CRC bits
 endfunction

 virtual function void display(input string prefix="");
 $write("%sBadTr: bad_crc=%b, ", prefix, bad_crc);
 super.display();
 endfunction

endclass : BadTr

Note that in Sample 8.2, the variable crc is used without a hierarchical identifier. The
BadTr class can see all the variables from the original Transaction plus its own
variables such as bad_crc. The calc_crc function in the extended class calls
calc_crc in the base class using the super prefix. You can call one level up, but
going across multiple levels such as super.super.new is not allowed in System-
Verilog. Not to mention that this style, since it reaches across multiple levels, violates
the rules of encapsulation by reaching across multiple boundaries.

Figure 8-3 Extended Transaction class diagram

Always declare routines inside a class as virtual so that they can be
redefined in an extended class. This applies to all tasks and functions,
except the new function, which is called when the object is con-
structed, and so there is no way to extend it. SystemVerilog always
calls the new function based on the handle’s type.

bad_crcBadTr calc_crc()

Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()

display()

bad_crcBadTr calc_crc()

Transaction src data[0]

dst

crc data[7]

display()data[1]

calc_crc()

display()

Introduction to Inheritance 263

8.1.3 More OOP Terminology

Here is a quick glossary of terms. As explained in Chap. 5, the OOP term for a vari-
able in a class is “property,” and a task or function is called a “method.” When you
extend a class, the original class (such as Transaction) is called the parent class
or super class. The extended class (BadTr) is known as the derived class or sub
class. A base class is one that is not derived from any other class. The “prototype”
for a routine is just the first line that shows the argument list and return type, if any.
The prototype is used when you move the body of the routine outside the class, but
is needed to describe how the routine communicated with others, as shown in Sec-
tion 5.11.

8.1.4 Constructors in Extended Classes

When you start extending classes, there is one rule about constructors (new function)
to keep in mind. If your base class constructor has any arguments, the constructor in
the extended class must have a constructor and must call the base’s constructor on its
first line.

Sample 8.3 Constructor with argument in an extended class

class Base1;
 int var;
 function new(input int var); // Has argument
 this.var = var;
 endfunction
endclass

class Extended extends Base1;
 function new(input int var); // Needs argument
 super.new(var); // Must be first line of new
 // Other constructor actions
 endfunction
endclass

8.1.5 Driver Class

The following driver class receives transactions from the generator and drives them
into the DUT.

Chapter 8:Advanced OOP and Testbench Guidelines264

Sample 8.4 Driver class

class Driver;
 mailbox gen2drv;

 function new(input mailbox gen2drv);
 this.gen2drv = gen2drv;
 endfunction

 task main;
 Transaction tr; // Handle to a Transaction object or
 // an class derived from Transaction
 forever begin
 gen2drv.get(tr); // Get transaction from generator
 tr.calc_crc(); // Process the transation
 @ifc.cb.src = tr.src; // Send transaction
 ...
 end
 endtask
endclass

This class stimulates the DUT with Transaction objects. OOP rules say that if you
have a handle of the base type (Transaction), it can also point to an object of an
extended type (BadTr). This is because the handle tr can only reference the variables
src, dst, crc, and data, and the routine calc_crc. So you can send BadTr objects
into the driver without changing it.

See Chaps. 10 and 11 for examples of fully functional drivers with advanced features
such as virtual interfaces and callbacks.

When the driver calls tr.calc_crc, which one will be called, the one in Transac
tion or BadTr? Since calc_crc was declared as a virtual method in Samples 8.1
and 8.2, SystemVerilog chooses the proper method based on the type of object stored
in tr. If the object is of type Transaction, SystemVerilog calls the task Transac
tion::calc_crc. If it is of type BadTr, SystemVerilog calls BadTr::calc_crc.

8.1.6 Simple Generator Class

The generator for this testbench creates a random transaction and puts it in the mail-
box to the driver. The following example shows how you might create the class from
what you have learned so far. Note that this avoids a very common testbench bug by
constructing a new transaction object every pass through the loop instead of just once
outside. This bug is discussed in more detail in Section 7.6 on mailboxes.

Blueprint Pattern 265

Sample 8.5 Generator class

// Generator class that uses Transaction objects
// First attempt... too limited
class Generator;
 mailbox gen2drv;
 Transaction tr;

 function new(input mailbox gen2drv);
 this.gen2drv = gen2drv; // this-> class-level var
 endfunction

 task run();
 forever begin
 tr = new(); // Construct transaction
 assert(tr.randomize()); // Randomize it
 gen2drv.put(tr); // Send to driver
 end
 endtask
endclass

There is a problem with this generator. The run task constructs a transaction and
immediately randomizes it. This means that the transaction uses whatever constraints
are turned on by default. The only way you can change this would be to edit the
Transaction class, which goes against the verification guidelines presented in this
book. Worse yet, the generator only uses Transaction objects – there is no way to
use an extended object such as BadTr. The fix is to separate the construction of tr
from its randomization as shown below in Section 8.2.

As you build data-oriented classes such as network and bus transactions, you will see
that they have common properties (id) and methods (display). Control-oriented
classes such as the Generator and Driver classes also have a common structure.
You can enforce this by having both of them the extensions of a base Transactor
class, with virtual methods for run and wrap_up. The VMM has an extensive set of
base classes for transactors, data, and much more.

8.2 Blueprint Pattern

A useful OOP technique is the “blueprint pattern.” If you have a
machine to make signs, you don’t need to know the shape of every
possible sign in advance. You just need a stamping machine and then
change the die to cut different shapes. Likewise, when you want to
build a transactor generator, you don’t have to know how to build
every type of transaction; you just need to be able to stamp new ones

that are similar to a given transaction.

Chapter 8:Advanced OOP and Testbench Guidelines266

Instead of constructing and then immediately using an object, as in Sample 8.5, con-
struct a blueprint object (the cutting die), and then modify its constraints, or even
replace it with an extended object. Now when you randomize this blueprint, it will
have the random values that you want. Make a copy of this object and send the copy
to the downstream transactor.

Figure 8-4 Blueprint pattern generator

The beauty of this technique is that if you change the blueprint object, your generator
creates a different-type object. Using the sign analogy, you change the cutting die
from a square to a triangle to make Yield signs.

Figure 8-5 Blueprint generator with new pattern

The blueprint is the “hook” that allows you to change the behavior of the generator
class without having to change its code. You need to make a copy method that can
make a copy of the blueprint to transmit, so that the original blueprint object is kept
around for the next pass through the loop (Figure 8-5).

Sample 8.6 shows the generator class using the blueprint pattern. The important thing
to notice is that the blueprint object is constructed in one place (the new function) and
used in another (the run task). Previous coding guidelines said to separate the decla-
ration and construction; similarly, you need to separate the construction and
randomization of the blueprint object.

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Generator
BlueprintBlueprint

(from test)(from test)
CopyCopy

GeneratedGenerated
streamstream

Blueprint Pattern 267

Sample 8.6 Generator class using blueprint pattern

class Generator;
 mailbox gen2drv;
 Transaction blueprint;

 function new(input mailbox gen2drv);
 this.gen2drv = gen2drv;
 blueprint = new();
 endfunction

 task run();
 Transaction tr;
 forever begin
 assert(blueprint.randomize);
 tr = blueprint.copy(); // * see below
 gen2drv.put(tr); // Send to driver
 end
 endtask
endclass

The copy method is discussed in Section 8.5. For now, remember that you must add
it to the Transaction and BadTr classes. Sample 8.37 shows an advanced generator
using templates.

8.2.1 The Environment Class

Chapter 1 discussed the three phases of execution: Build, Run, and Wrap-up. Sample
8.7 shows the environment class that instantiates all the testbench components, and
runs these three phases.

Chapter 8:Advanced OOP and Testbench Guidelines268

Sample 8.7 Environment class

// Testbench environment class
class Environment;
 Generator gen;
 Driver drv;
 mailbox gen2drv;

 function void build(); // Build the environment by
 gen2drv = new(); // constructing the mailbox,
 gen = new(gen2drv); // generator,
 drv = new(gen2drv); // and driver
 endfunction

 task run();
 fork
 gen.run();
 drv.run();
 join_none
 endtask

 task wrap_up();
 // Empty for now - call scoreboard for report
 endtask

endclass

8.2.2 A Simple Testbench

The test is contained in the top-level program. The basic test just lets the environment
run with all the defaults.

Sample 8.8 Simple test program using environment defaults

program automatic test;

 Environment env;
 initial begin
 env = new(); // Construct the environment
 env.build(); // Build testbench objects
 env.run(); // Run the test
 env.wrap_up; // Clean up afterwards
 end
endprogram

Blueprint Pattern 269

8.2.3 Using the Extended Transaction Class

To inject an error, you need to change the blueprint object from a
Transaction object to a BadTr. You do this between the build and
run phases in the environment. The top-level testbench runs each
phase of the environment and changes the blueprint. Note how all the
references to BadTr are in this one file, and so you don’t have to
change the Environment or Generator classes. You want to

restrict the scope of where BadTr is used, and so a standalone begin...end block is
used in the middle of the initial block. This makes a visually distinctive block of
code. You can take a shortcut and construct the extended class in the declaration.

Sample 8.9 Injecting an extended transaction into testbench

program automatic test;

 Environment env;
 initial begin
 env = new();
 env.build(); // Construct generator, etc.

 begin
 BadTr bad = new(); // Replace blueprint with
 env.gen.blueprint = bad; // the "bad" one
 end

 env.run(); // Run the test with BadTr
 env.wrap_up(); // Clean up afterwards
 end
endprogram

8.2.4 Changing Random Constraints with an Extended Class

In Chap. 6, you learned how to generate constrained random data.
Most of your tests are going to need to further constrain the data,
which is best done with inheritance. In Sample 8.10, the original
Transaction class is extended to include a new constraint that keeps
the destination address in the range of ±100 of the source address.

Chapter 8:Advanced OOP and Testbench Guidelines270

Sample 8.10 Using inheritance to add a constraint

class Nearby extends Transaction;
 constraint c_nearby {
 dst inside {[src-100:src+100]};
 }
endclass

program automatic test;
 Environment env;
 initial begin
 env = new();
 env.build(); // Construct generator, etc.

 begin
 Nearby nb = new(); // Create a new blueprint
 env.gen.blueprint = nb; // Replace the blueprint
 end

 env.run(); // Run the test with Nearby
 env.wrap_up(); // Clean up afterwards
 end
endprogram

Note that if you define a constraint in an extended class with the same name as one in
the base class, the extended constraint replaces the base one. This allows you to
change the behavior of existing constraints.

8.3 Downcasting and Virtual Methods

As you start to use inheritance to extend the functionality of classes, you need a few
OOP techniques to control the objects and their functionality. In particular, a handle
can refer to an object for a certain class, or any extended class. So what happens when
a base handle points to an extended object? What happens when you call a method
that exists in both the base and extended classes? This section explains what happens
using several examples.

8.3.1 Downcasting with $cast

Downcasting or conversion is the act of casting a pointer to a base class to one to a
derived class. Consider the base class and extended class in Sample 8.11 and Figure
8-6.

Downcasting and Virtual Methods 271

Sample 8.11 Base and extended class

class Transaction;
 rand bit [31:0] src;
 virtual function void display(input string prefix="");
 $display("%sTransaction: src=%0d", prefix, src);
 endfunction
endclass

class BadTr extends Transaction;
 bit bad_crc;
 virtual function void display(input string prefix="");
 $display("%sBadTr: bad_crc=%b", prefix, bad_crc);
 super.display(prefix);
 endfunction
endclass

Transaction tr;
BadTr bad, bad2;

Figure 8-6 Simplified extended transaction

You can assign an extended handle to a base handle, and no special code is needed, as
shown in Sample 8.12.

Sample 8.12 Copying extended handle to base handle

Transaction tr;
BadTr bad;
bad = new(); // Construct BadTr extended object
tr = bad; // Base handle points to extended obj
$display(tr.src); // Display base variable
tr.display; // Calls BadTr::display

When a class is extended, all the base class variables and methods are included, and
so the integer src exists in the extended object. The assignment on the second line is
permitted, as any reference using the base handle tr is valid, such as tr.src and
tr.display.

What if you try going in the opposite direction, copying a base object into an
extended handle, as shown in Sample 8.13? This fails because the base object is miss-
ing properties that only exist in the extended class, such as bad_crc. The

srcTransaction

bad_crcBadTr display()

display()srcTransaction

bad_crcBadTr display()

display()

Chapter 8:Advanced OOP and Testbench Guidelines272

SystemVerilog compiler does a static check of the handle types and will not compile
the second line.

Sample 8.13 Copying a base handle to an extended handle

tr = new(); // Construct base object
bad = tr; // ERROR: WILL NOT COMPILE
$display(bad.bad_crc); // bad_crc is not in base object

It is not always illegal to assign a base handle to an extended handle. It is allowed
when the base handle actually points to an extended object. The $cast routine checks
the type of object referenced by the handles, not just the handle. If the source object is
the same type as the destination, or a class extended from the destination’s class, you
can copy the address of the extended object from the base handle, tr, into the
extended handle, bad2.

Sample 8.14 Using $cast to copy handles

bad = new(); // Construct BadTr extended object
tr = bad; // Base handle points to extended obj

// Check the object type & copy. Simulation error if mismatch
// If successful, bad2 points to the object referenced by tr
$cast(bad2, tr);

// Check for type mismatch, no simulation error
if(!$cast(bad2, tr))
 $display("cannot assign tr to bad2");

$display(bad2.bad_crc); // bad_crc exists in original obj

When you use $cast as a task, SystemVerilog checks the type of the source object at
run-time and gives an error if it is not compatible with the destination. When you use
$cast as a function, SystemVerilog still checks the type, but no longer prints an error
if there is a mismatch. The $cast function returns zero when the types are incompat-
ible, and non-zero for compatible types.

8.3.2 Virtual Methods

By now you should be comfortable using handles with extended classes. What hap-
pens if you try to call a routine using one of these handles?

Downcasting and Virtual Methods 273

Sample 8.15 Transaction and BadTr classes

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function void calc_crc(); // XOR all fields
 crc = src ^ dst ^ data.xor;
 endfunction
endclass : Transaction

class BadTr extends Transaction;
 rand bit bad_crc;
 virtual function void calc_crc();
 super.calc_crc(); // Compute good CRC
 if (bad_crc) crc = ~crc; // Corrupt the CRC bits
 endfunction
endclass : BadTr

Here is a block of code that uses handles of different types.

Sample 8.16 Calling class methods

Transaction tr;
BadTr bad;

initial begin
 tr = new();
 tr.calc_crc(); // Calls Transaction::calc_crc

 bad = new();
 bad.calc_crc(); // Calls BadTr::calc_crc

 tr = bad; // Base handle points to ext obj
 tr.calc_crc(); // Calls BadTr::calc_crc
end

To decide which virtual method to call, SystemVerilog uses the object’s type, not the
handle’s type. In the last statement of Sample 8.16, tr points to an extended object
(BadTr) and so BadTr::calc_crc is called.

 If you left out the virtual modifier on calc_crc, SystemVerilog would use the
type of the handle tr (Transaction), not the object. That last statement would call
Transaction::calc_crc – probably not what you wanted.

The OOP term for multiple routines sharing a common name is “polymorphism.” It
solves a problem similar to what computer architects faced when trying to make a
processor that could address a large address space but had only a small amount of
physical memory. They created the concept of virtual memory, where the code and
data for a program could reside in memory or on a disk. At compile time, the program

Chapter 8:Advanced OOP and Testbench Guidelines274

didn’t know where its parts resided – that was all taken care of by the hardware plus
operating system at run-time. A virtual address could be mapped to some RAM chips,
or the swap file on the disk. Programmers no longer needed to worry about this virtual
memory mapping when they wrote code – they just knew that the processor would
find the code and data at run-time. See also Denning (2005).

8.3.3 Signatures

There is one downside to using virtual methods – once you define one, all extended
classes that define the same virtual routine must use the same “signature,” i.e., the
same number and type of arguments. You cannot add or remove an argument in an
extended virtual routine. This just means you need to plan ahead.

There is a good reason that SystemVerilog and other OOP languages require that a
virtual method must have the same signature as the one in the parent (or grandparent).
If you were able to add an additional argument, or turn a task into a function, poly-
morphism would no longer work. Your code needs to be able to call a virtual method
with the assurance that a method in a derived class will have the same interface.

8.4 Composition, Inheritance, and Alternatives

As you build up your testbench, you have to decide how to group related variables
and routines together into classes. In Chap. 5, you learned how to build basic classes
and include one class inside another. Previously in this chapter, you saw the basics of
inheritance. This section shows you how to decide between the two styles, and also
shows an alternative.

8.4.1 Deciding Between Composition and Inheritance

How should you tie together two related classes? Composition uses a “has-a” rela-
tionship. A packet has a header and a body. Inheritance uses an “is-a” relationship. A
BadTr is a Transaction, just with more information. Table 8-1 is a quick guide,
with more details.

Composition, Inheritance, and Alternatives 275

1. Are there several small classes that you want to combine into a larger class?
For example, you may have a data class and header class and now want to
make a packet class. SystemVerilog does not support multiple inheritance,
where one class derives from several classes at once. Instead you have to use
composition. Alternatively, you could extend one of the classes to be the
new class, and manually add the information from the others.

2. In Sample 8.15, the Transaction and BadTr classes are both bus transac-
tions that are created in a generator and driven into the DUT. Thus inherit-
ance makes sense.

3. The lower-level information such as src, dst, and data must always be
present for the Driver to send a transaction.

4. In Sample 8.15, the new BadTr class has a new field bad_crc and the
extended calc_crc function. The Generator class just transmits a
transaction and does not care about the additional information. If you
use composition to create the error bus transaction, the Generator
class would have to be rewritten to handle the new type.

If two objects seem to be related by both “is-a” and “has-a,” you may need to break
them down into smaller components.

8.4.2 Problems with Composition

The classical OOP approach to building a class hierarchy partitions functionality into
small blocks that are easy to understand. However, testbenches are not standard soft-
ware development projects, as was discussed in Section 5.16 on public vs. local
attributes. Concepts such as information hiding (using local variables) conflict with

Table 8-1 Comparing inheritance to composition

Question Inheritance Composition

Do you need to group multiple subclasses
together? (SystemVerilog does not support mul-
tiple inheritance)

No Yes

Does the higher-level class represent objects at a
similar level of abstraction?

Yes No

Is the lower-level information always present or
required?

Yes No

Does the additional data need to remain attached
to the original class while it is being processed
by pre-existing code?

Yes No

Chapter 8:Advanced OOP and Testbench Guidelines276

building a testbench that needs maximum visibility and controllability. Similarly,
dividing a transaction into smaller pieces may cause more problems than it solves.

When you are creating a class to represent a transaction, you may want to partition it
to keep the code more manageable. For example, you may have an Ethernet MAC
frame and your testbench uses two flavors, normal (II) and Virtual LAN (VLAN).
Using composition, you could create a basic cell EthMacFrame with all the common
fields such as da and sa and a discriminant variable, kind, to indicate the type.
There is a second class to hold the VLAN information, which is included in
EthMacFrame.

Sample 8.17 Building an Ethernet frame with composition

// Not recommended
class EthMacFrame;
 typedef enum {II, IEEE} kind_e;
 rand kind_e kind;
 rand bit [47:0] da, sa;
 rand bit [15:0] len;

 ...
 rand Vlan vlan_h;
endclass

class Vlan;
 rand bit [15:0] vlan;
endclass

There are several problems with composition. First, it adds an extra layer of hierar-
chy, and so you have to constantly add an extra name to every reference. The VLAN
information is called eth_h.vlan_h.vlan. If you start adding more layers, the hier-
archical names become a burden.

A more subtle issue occurs when you want to instantiate and randomize the hierarchy
of classes. What does the EthMacFrame constructor create? Since kind is random,
you don’t know whether to construct a Vlan object when new is called. When you
randomize the class, the constraints set variables in both the EthMacFrame and Vlan
objects based on the random kind field. You have a circular dependency in that ran-
domization only works on objects that have been instantiated, but you can’t
instantiate these objects until kind has been chosen.

The only solution to the construction and randomization problems is to always instan-
tiate all objects in EthMacFrame::new. However, if you are always using all
alternatives, why divide the Ethernet cell into two different classes?

Composition, Inheritance, and Alternatives 277

8.4.3 Problems with Inheritance

Inheritance can solve some of these issues. Variables in the extended classes can be
referenced without the extra hierarchy as in eth_h.vlan. You don’t need a discrimi-
nant, but you may find it easier to have one variable to test rather than doing type-
checking.

Sample 8.18 Building an Ethernet frame with inheritance

// Not recommended
class EthMacFrame;
 typedef enum {II, IEEE} kind_e;
 rand kind_e kind;
 rand bit [47:0] da, sa;
 rand bit [15:0] len;
 ...
endclass

class Vlan extends EthMacFrame;
 rand bit [15:0] vlan;
endclass

On the downside, a set of classes that use inheritance always requires more effort to
design, build, and debug than a set of classes without inheritance. Your code must use
$cast whenever you have an assignment from a base handle to an extended. Build-
ing a set of virtual methods can be challenging, as they all have to have the same
prototype. If you need an extra argument, you need to go back and edit the entire set,
and possibly the routine calls too.

There are also problems with randomization. How do you make a constraint that ran-
domly chooses between the two kinds of frame and sets the proper variables? You
can’t put a constraint in EthMacFrame that references the vlan field.

The final issue is with multiple inheritance. In Figure 8-7, you can see how the VLAN
frame is derived from a normal MAC frame. The problem is that these different stan-
dards reconverged. SystemVerilog does not support multiple inheritance, and so you
could not create the VLAN/Snap/Control frame through inheritance.

Chapter 8:Advanced OOP and Testbench Guidelines278

Figure 8-7 Multiple inheritance problem

8.4.4 A Real-World Alternative

If composition leads to large hierarchies, but inheritance requires extra code and plan-
ning to deal with all the different classes, and both have difficult construction and
randomization, what can you do? You can instead make a single, flat class that has all
the variables and routines. This approach leads to a very large class, but it handles all
the variants cleanly. You have to use the discriminant variable often to tell which
variables are valid, as shown in Sample 8.19. It contains several conditional con-
straints, which apply in different cases, depending on the value of kind.

Sample 8.19 Building a flat Ethernet frame

class eth_mac_frame;
 typedef enum {II, IEEE} kind_e;
 rand kind_e kind;
 rand bit [47:0] da, sa;
 rand bit [15:0] len, vlan;
 ...
 constraint eth_mac_frame_II {
 if (kind == II) {
 data.size() inside {[46:1500]};
 len == data.size();
 }}
 constraint eth_mac_frame_ieee {
 if (kind == IEEE) {
 data.size() inside {[46:1500]};
 len < 1522;
 }}
endclass

Ethernet MAC Frame

Ethernet IIc FrameEthernet VLAN Frame Ethernet Control Frame

Ethernet Snap Frame

Ethernet VLAN Snap Control Frame

Ethernet MAC Frame

Ethernet IIc FrameEthernet VLAN Frame Ethernet Control Frame

Ethernet Snap Frame

Ethernet VLAN Snap Control Frame

Copying an Object 279

Regardless of how you build your classes, you should define the typical behavior and
constraints in the class, and then use inheritance to inject new behavior at the test
level.

8.5 Copying an Object

In Sample 8.6, the generator first randomized, and then copied the blueprint to make a
new transaction. Take a closer look at the copy function in Sample 8.20.

Sample 8.20 Base transaction class with a virtual copy function

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function Transaction copy();
 copy = new();
 copy.src = src; // Copy data fields
 copy.dst = dst;
 copy.data = data;
 copy.crc = crc;
 endfunction
endclass

When you extend the Transaction class to make the class BadTr, the copy func-
tion still has to return a Transaction object. This is because the extended virtual
function must match the base Transaction::copy, including all arguments and
return type, as shown in Sample 8.21

Sample 8.21 Extended transaction class with virtual copy method

class BadTr extends Transaction;
 rand bit bad_crc;

 virtual function Transaction copy();
 BadTr bad;
 bad = new();
 bad.src = src; // Copy data fields
 bad.dst = dst;
 bad.data = data;
 bad.crc = crc;
 bad.bad_crc = bad_crc;
 return bad;
 endfunction

endclass : BadTr

Chapter 8:Advanced OOP and Testbench Guidelines280

8.5.1 The copy_data method

One optimization is to break the copy function in two, creating a separate function,
copy_data. Now each class is responsible for copying its local data. This makes the
copy function more robust and reusable. Here is the function for the base class.

Sample 8.22 Base transaction class with copy_data function

class Transaction;
 rand bit [31:0] src, dst, data[8]; // Variables
 bit [31:0] crc;

 virtual function void copy_data(input Transaction tr);
 tr.src = src; // Copy the data fields
 tr.dst = dst;
 tr.data = data;
 tr.crc = crc;
 endfunction

 virtual function Transaction copy();
 copy = new();
 copy_data(copy);
 endfunction
endclass

In the extended class, the copy_data method is a little more complicated. Since it
extends the original copy_data, it must have a single argument, a Transaction
handle. The method can use this handle when calling Transaction::copy_data,
but when copy_data needs to copy bad_crc, it needs a BadTr handle, and so it has
to first cast the base handle to the extended type, as shown in Sample 8.23.

Copying an Object 281

Sample 8.23 Extended transaction class with copy_data function

class BadTr extends Transaction;
 rand bit bad_crc;

 virtual function void copy_data(input Transaction tr);
 BadTr bad;
 super.copy_data(tr); // Copy base data
 $cast(bad, tr); // Cast base handle to extÕd
 bad.bad_crc = bad_crc; // Copy extended data
 endfunction

 virtual function Transaction copy();
 BadTr bad;
 bad = new(); // Construct BadTr
 copy_data(bad); // Copy data fields
 return bad;
 endfunction
endclass : BadTr

8.5.2 Specifying a Destination for Copy

The existing copy routine always constructs a new object. An improvement for copy
is to specify the location where the copy should be put. This technique is useful when
you want to reuse an existing object, and not allocate a new one.

Sample 8.24 Base transaction class with copy function

class Transaction;

 virtual function Transaction copy(Transaction to=null);
 if (to == null)
 copy = new();// Construct new object
 else
 copy = to; // or use exisiting
 copy_data(copy);
 endfunction

 // Uses copy_data() method from Sample 8.22
endclass

The only difference is the additional argument to specify the destination, and the code
to test that a destination object was passed to this routine. If nothing was passed (the
default), construct a new object, or else use the existing one.

Since you have added a new argument to a virtual method in the base class, you will
have to add it to the same method in the extended classes, such as BadTr.

Chapter 8:Advanced OOP and Testbench Guidelines282

Sample 8.25 Extended transaction class with new copy function

class BadTr;

 virtual function Transaction copy(Transaction to=null);
 BadTr bad;
 if (to == null)
 bad = new(); // Create a new object
 else
 assert($cast(bad, to)); // Reuse existing one
 copy_data(bad); // Copy data fields
 return bad;
 endfunction

endclass : BadTr

8.6 Abstract Classes and Pure Virtual Methods

By now you have seen classes with methods to perform common operations such as
copying and displaying. One goal of verification is to create code that can be shared
across multiple projects. If you can get your company to agree on common set of
methods, it is easier to reuse code.

OOP languages such as SystemVerilog have two constructs to allow you to build a
shareable base class. The first are an abstract class, which is a class that can be
extended, but not instantiated directly. It is defined with the virtual keyword. Sec-
ond are pure virtual methods, which are a prototype without a body. A class extended
from an abstract class can only be instantiated if all virtual methods have bodies. The
pure keyword specifies that a method declaration is a prototype, and not just an empty
virtual method. Lastly, you can only declare pure virtual methods in an abstract class.
You can declare non-pure methods in an abstract class. Note that the LRM allows you
to define a virtual method without a body - you can call it but it just immediately
returns.

Sample 8.26 shows an abstract class, BaseTr, which is a base class for transactions. It
starts with some useful properties such as id and count. The constructor makes sure
every instance has a unique ID. Next are pure virtual methods to compare, copy, and
display the object.

Abstract Classes and Pure Virtual Methods 283

Sample 8.26 Abstract class with pure virtual methods

virtual class BaseTr;
 static int count; // Number of instance created
 int id; // Unique transaction id

 function new();
 id = count++; // Give each object a unique ID
 endfunction

 pure virtual function bit compare(input BaseTr to);
 pure virtual function BaseTr copy(input BaseTr to=null);
 pure virtual function void display(input string prefix="");

endclass : BaseTr

You can declare handles of type BaseTr, but you cannot construct objects of this
type. You need to extend the class and provide implementations for all the pure vir-
tual methods.

Sample 8.27 shows the definition of the Transaction class, which has been
extended from BaseTr. Since Transaction has bodies for all the pure virtual meth-
ods, you can use it in your testbench.

Sample 8.27 Transaction class extends abstract class

class Transaction extends BaseTr;
 rand bit [31:0] src, dst, crc, data[8];

 extern virtual function bit compare(input BaseTr to);
 extern virtual function BaseTr copy(input BaseTr to=null);
 extern virtual function void copy_data
 (input Transaction copy);
 extern virtual function void display (input string prefix="");
 extern function new();
endclass

Chapter 8:Advanced OOP and Testbench Guidelines284

Sample 8.28 Bodies for Transaction methods

function bit Transaction::compare(input BaseTr to);
 Transaction tr;
 assert($cast(tr, to)); // Check if ÕtoÕ is correct type
 return ((this.src == tr.src) &&
 (this.dst == tr.dst) &&
 (this.crc == tr.crc) &&
 (this.data == tr.data));
endfunction : compare

function BaseTr Transaction::copy(input BaseTr to=null);
 Transaction cp;
 if (to == null) cp = new();
 else $cast(cp, to);
 copy_data(cp);
 return cp;
 endfunction

function void Transaction::copy_data(Transaction copy);
 copy.src = src; // Copy the data fields
 copy.dst = dst;
 copy.data = data;
 copy.crc = crc;
endfunction

function void Transaction::display(string prefix="");
 $display("%sTransaction %0d src=%h, dst=%x, crc=%x",
 prefix, id, src, dst, crc);
endfunction : display;

function Transaction::new();
 super.new();
endfunction : new

Abstract classes and pure virtual methods let you build testbenches that have a com-
mon look and feel. This allows any engineer to read your code and quickly
understand the structure.

8.7 Callbacks

One of the main guidelines of this book is to create a single verification environment
that you can use for all tests with no changes. The key requirement is that this test-

Callbacks 285

bench must provide a “hook,” where the test program can inject new code without
modifying the original classes. Your driver may want to do the following.

Inject errors
Drop the transaction
Delay the transaction
Synchronize this transaction with others
Put the transaction in the scoreboard
Gather functional coverage data

Rather than trying to anticipate every possible error, delay, or disturbance in the flow
of transactions, the driver just needs to “call back” a routine that is defined in the top-
level test. The beauty of this technique is that the callback1 routine can be defined dif-
ferently in every test. As a result, the test can add new functionality to the driver using
callbacks without editing the Driver class.

Figure 8-8 Callback flow

In Figure 8-8, the Driver::run task loops forever with a call to a transmit task.
Before sending the transaction, run calls the pretransmit callback, if any. After send-
ing the transaction, it calls the postcallback task, if any. By default, there are no
callbacks, and so run just calls transmit.

You could make Driver::run a virtual method and then override its behavior in an
extended class, perhaps MyDriver::run. The drawback to this is that you might
have to duplicate all the original method’s code in the new method if you are injecting
new behavior. Now if you made a change in the base class, you would have to
remember to propagate it to all the extended classes. Additionally, you can inject a
callback without modifying the code that constructed the original object.

1This callback technique is not related to Verilog PLI callbacks or SVA callbacks.

task Driver::run;
forever begin

...
<pre_callback>
transmit(tr);
<post_callback>
...

end
endtask

task pre_callback;
...

endtask

task post_callback;
...

endtask

task Driver::run;
forever begin

...
<pre_callback>
transmit(tr);
<post_callback>
...

end
endtask

task pre_callback;
...

endtask

task post_callback;
...

endtask

Chapter 8:Advanced OOP and Testbench Guidelines286

8.7.1 Creating a Callback

A callback task is created in the top-level test and called from the driver, the lowest
level of the environment. However, the driver does not have to have any knowledge
of the test – it just has to use a generic class that the test can extend. The driver uses a
queue to hold the callback objects, which allows you to add multiple objects. The
base callback class is an abstract class that must be extended before being used.

Sample 8.29 Base callback class

virtual class Driver_cbs; // Driver callbacks
 virtual task pre_tx(ref Transaction tr, ref bit drop);
 // By default, callback does nothing
 endtask

 virtual task post_tx(ref Transaction tr);
 // By default, callback does nothing
 endtask
endclass

Sample 8.30 Driver class with callbacks

class Driver;
 Driver_cbs cbs[$];

 task run();
 bit drop;
 Transaction tr;

 forever begin
 drop = 0;
 agt2drv.get(tr);
 foreach (cbs[i]) cbs[i].pre_tx(tr, drop);
 if (!drop) continue;

 transmit(tr);

 foreach (cbs[i]) cbs[i].post_tx(tr);
 end
 endtask
endclass

Note that while Driver_cbs is an abstract class, pre_tx and post_tx are not pure
virtual methods. This is because a typical callback uses only one of them. If a class
has even one pure virtual method with an implementation, OOP rules won’t allow
you to instantiate it.

Callbacks 287

8.7.2 Using a Callback to Inject Disturbances

A common use for a callback is to inject some disturbance such as causing an error or
delay. The following testbench randomly drops packets using a callback object. Call-
backs can also be used to send data to the scoreboard or to gather functional coverage
values. Note that you can use push_back() or push_front() depending on the
order in which you want these to be called. For example, you probably want the
scoreboard called after any tasks that may delay, corrupt, or drop a transaction. Only
gather coverage after a transaction has been successfully transmitted.

Sample 8.31 Test using a callback for error injection

class Driver_cbs_drop extends Driver_cbs;

 virtual task pre_tx(ref Transaction tr, ref bit drop);
 // Randomly drop 1 out of every 100 transactions
 drop = ($urandom_range(0,99) == 0);
 endtask

endclass

program automatic test;

 Environment env;

 initial begin
 env = new();
 env.gen_cfg();
 env.build();

 begin // Create error injection callback
 Driver_cbs_drop dcd = new();
 env.drv.cbs.push_back(dcd); // Put into driverÕs Q
 end

 env.run();
 env.wrap_up();
 end

endprogram

8.7.3 A Quick Introduction to Scoreboards

The design of your scoreboard depends on the design under test. A DUT that pro-
cesses atomic transactions such as packets may have a scoreboard that contains a
transform function to turn the input transactions into expected values, a memory to

Chapter 8:Advanced OOP and Testbench Guidelines288

hold these values, and a compare routine. A processor design needs a reference model
to predict the expected output, and the comparison between expected and actual val-
ues may happen at the end of simulation.

Sample 8.32 shows a simple scoreboard that stores transactions in a queue of
expected values. The first method saves an expected transaction, and the second tries
to find an expected transaction that matches an actual one that was received by the
testbench. Note that when you search through a queue, you can get 0 matches (trans-
action not found), 1 match (ideal case), or multiple matches (you need to do a more
sophisticated match).

Sample 8.32 Simple scoreboard for atomic transactions

class Scoreboard;
 Transaction scb[$]; // Store expected trÕs in queue

 function void save_expect(input Transaction tr);
 scb.push_back(tr);
 endfunction

 function void compare_actual(input Transaction tr);
 int q[$];

 q = scb.find_index(x) with (x.src == tr.src);
 case (q.size())
 0: $display("No match found");
 1: scb.delete(q[0]);
 default:
 $display("Error, multiple matches found!");
 endcase
 endfunction : compare_actual
endclass : Scoreboard

8.7.4 Connecting to the Scoreboard with a Callback

The following testbench creates its own extension of the driver’s callback class and
adds a reference to the driver’s callback queue. Note that the scoreboard callback
needs a handle to the scoreboard and so it can call the method to save the expected
transaction. This example does not show the monitor side, which will need its own
callback to send the actual transaction to the scoreboard for comparison.

Callbacks 289

Sample 8.33 Test using callback for scoreboard

class Driver_cbs_scoreboard extends Driver_cbs;
 Scoreboard scb;

 virtual task pre_tx(ref Transaction tr, ref bit drop);
 // Put transaction in the scoreboard
 scb.save_expected(tr);
 endtask

 function new(input Scoreboard scb);
 this.scb = scb;
 endfunction
endclass

program automatic test;

 Environment env;

 initial begin
 env = new();
 env.gen_cfg();
 env.build();

 begin // Create scoreboard callback
 Driver_cbs_scoreboard dcs = new(env.scb);
 env.drv.cbs.push_back(dcs); // Put into driverÕs Q
 end

 env.run();
 env.wrap_up();
 end

endprogram

Always use callbacks for scoreboards and functional coverage. The monitor transac-
tor can use a callback to compare received transactions with expected ones. The
monitor callback is also the perfect place to gather functional coverage on transac-
tions that are actually sent by the DUT.

You may have thought of putting the scoreboard or functional coverage group in a
transactor, and connect it to the testbench using a mailbox. This is a poor solution for
several reasons. These testbench components are almost always passive and asyn-
chronous, and so they only wake up when the testbench has data for them, plus they
never pass information to a downstream transactor. Thus a transactor that has to mon-
itor multiple mailboxes concurrently is an overly complex solution. Additionally, you
may sample data from several points in your testbench, but a transactor is designed

Chapter 8:Advanced OOP and Testbench Guidelines290

for a single source. Instead, put methods in your scoreboard and coverage classes to
gather data, and connect them to the testbench with callbacks.

8.7.5 Using a Callback to Debug a Transactor

If a transactor with callbacks is not working as expected, you can use an additional
callback to debug it. You can start by adding a callback to display the transaction. If
there are multiple instances of the transactor, display the hierarchical path, using
$display(“%m”). Then put debug code before and after the other callbacks to locate
the one that is causing the problem. Even for debug, you have to avoid making
changes to the testbench environment.

8.8 Parameterized Classes

As you become more comfortable with classes, you may notice that a data structure
that performs a set of actions, such as a stack or generator, only works on a single data
type. This sections shows how you can define a single class that works with multiple
data types.

8.8.1 A Simple Stack

A common data structure is a stack, which has push and pop methods to store and
retrieve data. Sample 8.34 shows a simple stack that works with integers.

Sample 8.34 Stack using the int type

class IntStack;
 local int stack[100]; // Holds data values
 local int top;

 function void push(input int i); // Push value on top
 stack[++top] = i;
 endfunction : push

 function int pop(); // Remove value from top
 return stack[top--];
 endfunction

endclass : IntStack

The problem with this stack is that it only works with integers. If you want to make a
stack for real numbers, you would have to copy the class, and change the data type
from int to real. This quickly leads to a proliferation of classes, which can become
a maintenance problem if you ever want to add new operations such as traversing or
printing the stack contents.

Parameterized Classes 291

In SystemVerilog you can add a data type parameter to a class and then specify a type
when you declare handles to that class. This is similar to, but more powerful than, a
parameterized module, where you can specify a value such as bus width when it is
instantiated. SystemVerilog’s parameterized classes are similar to templates in C++.

Sample 8.35 is a parameterized class for a stack. Notice how the type T is defined on
the first line with a default type of int.

Sample 8.35 Parameterized class for a stack

class Stack #(type T=int);
 local T stack[100]; // Holds data values
 local int top;

 function void push(input T i); // Push new value on top
 stack[++top] = i;
 endfunction : push

 function T pop(); // Remove value from top
 return stack[top--];
 endfunction

endclass : Stack

Sample 8.36 creates a stack for real numbers, and writes and reads values.

Sample 8.36 Using the parameterized stack class

initial begin
 Stack #(real) rStack; // Create a real stack

 rStack = new();
 for(int i=0; i<5; i++)
 rStack.push(i*2.0); // Push values onto stack

 for(int i=0; i<5; i++)
 $display("%f ",
 rStack.pop()); // Pop values off stack
end

Atomic generators are a great example of a class that can be parameterized. Once you
have defined the class for one, the same structure works for any data type. Sample
8.37 takes the atomic generator from Sample 8.6 and adds a parameter so that you can
generate any random object. The generator should be part of a package of verification
classes. It needs to specify a the default type, and so it uses BaseTr from Sample
8.26, as this abstract class should also be part of the verification package.

Chapter 8:Advanced OOP and Testbench Guidelines292

Sample 8.37 Parameterized generator class using blueprint pattern

class Generator #(type T=BaseTr);
 mailbox gen2drv;
 T blueprint; // Blueprint object

 function new(input mailbox gen2drv);
 this.gen2drv = gen2drv;
 blueprint = new(); // Create default
 endfunction

 task run();
 T tr;
 forever begin
 assert(blueprint.randomize); // Randomize object
 tr = blueprint.copy(); // Make a copy
 gen2drv.put(tr); // Send to driver
 end
 endtask
endclass

Using the Transaction class from Samples 8.27 and 8.28 and the generator on this
page, you can build a simple testbench. It starts the generator and prints the first five
transactions, using the mailbox synchronization shown in Sample 7.41.

Sample 8.38 Simple testbench using parameterized generator class

program automatic test;

 initial begin
 Generator #(Transaction) gen;
 mailbox gen2drv;
 gen2drv = new(1);
 gen = new(gen2drv);

 fork
 gen.run();

 repeat (5) begin
 Transaction tr;
 gen2drv.peek(tr); // Get next transaction
 tr.display();
 gen2drv.get(tr); // Remove transaction
 end

 join_any

 end
endprogram // test

Conclusion 293

8.8.2 Parameterized Class Suggestions

When creating parameterized classes, you should start with a nonparameterized class,
debug it thoroughly, and then add parameters. This separation reduces your debug
effort.

Macros are an alternative to parameterized classes. For example, you could define a
macro for the generator and pass it the transaction data type. Macros are harder to
debug than parameterized classes.

If you need to define several related classes that all share the same transaction type,
you could use parameterized classes or a single large macro. In the end, how you
define your classes is not as important as what goes into them.

A common set of virtual methods in your transaction class help you when creating
parameterized classes. The Generator class uses the copy method, knowing that it
always has the same signature. Likewise, the display method allows you to easily
debug transactions as they flow through your testbench components.

8.9 Conclusion

The software concept of inheritance, where new functionality is added to an existing
class, parallels the hardware practice of extending the design’s features for each gen-
eration, while still maintaining backwards compatibility.

For example, you can upgrade your PC by adding a larger capacity disk. As long as it
uses the same interface as the old one, you do not have to replace any other part of the
system, yet the overall functionality is improved.

Likewise, you can create a new test by “upgrading” the existing driver class to inject
errors. If you use an existing callback in the driver, you do not have to change any of
the testbench infrastructure.

You need to plan ahead if you want use these OOP techniques. By using virtual rou-
tines and providing sufficient callback points, your test can modify the behavior of
the testbench without changing its code. The result is a robust testbench that does not
need to anticipate every type of disturbance (error-injection, delays, synchronization)
that you may want as long as you leave a hook where the test can inject its own
behavior.

The testbench is more complex than what you have previously constructed, but there
is a payback in that the tests become smaller and easier to write. The testbench does
the hard work of sending stimulus and checking responses, and so the test only has to
make small tweaks to cause specialized behavior. An extra few lines of testbench
code might replace code that would have to be repeated in every single test.

Chapter 8:Advanced OOP and Testbench Guidelines294

Lastly, OOP techniques improve your productivity by allowing you to reuse classes.
For example, a parameterized class for a stack that operates on any other class, rather
than a single type, saves you from having to create duplicate code.

Chapter 9

Functional Coverage

As designs become more complex, the only effective way to verify them thoroughly
is with constrained-random testing (CRT). This approach elevates you above the
tedium of writing individual directed tests, one for each feature in the design. How-
ever, if your testbench is taking a random walk through the space of all design states,
how do you know if you have reached your destination? Whether you are using ran-
dom or directed stimulus, you can gauge progress using coverage.

Functional coverage is a measure of which design features have been exercised by the
tests. Start with the design specification and create a verification plan with a detailed
list of what to test and how. For example, if your design connects to a bus, your tests
need to exercise all the possible interactions between the design and bus, including
relevant design states, delays, and error modes. The verification plan is a map to show
you where to go. For more information on creating a verification plan, see Bergeron
(2006).

Use a feedback loop to analyze the coverage results and decide on which actions to
take in order to converge on 100% coverage (Figure 9-1). Your first choice is to run
existing tests with more seeds; the second is to build new constraints. Resort to creat-
ing directed tests only if absolutely necessary.

Chapter 9:Functional Coverage296

Figure 9-1 Coverage convergence

Back when you exclusively wrote directed tests, the verification planning was lim-
ited. If the design specification listed 100 features, all you had to do was write 100
tests. Coverage was implicit in the tests – the “register move” test moved all combina-
tions of registers back and forth. Measuring progress was easy: if you had completed
50 tests, you were halfway done. This chapter uses “explicit” and “implicit” to
describe how coverage is specified. Explicit coverage is described directly in the test
environment using SystemVerilog features. Implicit coverage is implied by a test –
when the “register move” directed test passes, you have hopefully covered all register
transactions.

With CRT, you are freed from hand crafting every line of input stimulus, but now you
need to write code that tracks the effectiveness of the test with respect to the verifica-
tion plan. You are still more productive, as you are working at a higher level of
abstraction. You have moved from tweaking individual bits to describing the interest-
ing design states. Reaching for 100% functional coverage forces you to think more
about what you want to observe and how you can direct the design into those states.

Gathering Coverage Data You can run the same random testbench over and over,
simply by changing the random seed, to generate new stimulus. Each individual sim-
ulation generates a database of functional coverage information, the trail of footprints
from the random walk. You can then merge all this information together to measure
your overall progress using functional coverage (Figure 9-2).

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

Constrained
random tests

Functional
Coverage

Many runs,
different seeds

Many runs,
different seeds

Identify
holes

Identify
holes

Add
constraints

Add
constraints

Minimal code
modifications

Directed
testcase

297

Figure 9-2 Coverage flow

You then analyze the coverage data to decide how to modify your tests. If the cover-
age levels are steadily growing, you may just need to run existing tests with new
random seeds, or even just run longer tests. If the coverage growth has started to slow,
you can add additional constraints to generate more “interesting” stimuli. When you
reach a plateau, some parts of the design are not being exercised, and so you need to
create more tests. Lastly, when your functional coverage values near 100%, check the
bug rate. If bugs are still being found, you may not be measuring true coverage for
some areas of your design. Don’t be in too big of a rush to reach 100% coverage,
which just shows that you looked for bugs in all the usual places. While you are trying
to verify your design, take many random walks through the stimulus space; this can
create many unanticipated combinations.1

Each simulation vendor has its own format for storing coverage data and as well as its
own analysis tools. You need to perform the following actions with those tools.

Run a test with multiple seeds. For a given set of constraints (and coverage
groups), compile the testbench and design into a single executeable. Now
you need to run this constraint set over and over with different random seeds.
You can use the Unix system clock as a seed, but be careful, as your batch
system may start multiple jobs simultaneously. These jobs may run on dif-
ferent servers or may start on a single server with multiple processors.
Check for pass/fail. Functional coverage information is only valid for a suc-
cessful simulation. When a simulation fails because there is a design bug, the
coverage information must be discarded. The coverage data measures how
many items in the verification plan are complete, and this plan is based on
the design specification. If the design does not match the specification, the
coverage values are useless. Some verification teams periodically measure

1Thanks to Hans van der Schoot, SJ SNUG, 2007

Design
Specification

Verification
Plan

Coverage
Database

No Yes

Debug
Coverage
Analysis

Design Tests

Pass?

Design
Specification

Verification
Plan

Coverage
Database

No Yes

Debug
Coverage
Analysis

Design Tests

Pass?

Chapter 9:Functional Coverage298

all functional coverage from scratch so that it reflects the current state of the
design.
Analyze coverage across multiple runs. You need to measure how successful
each constraint set is, over time. If you are not yet getting 100% coverage for
the areas that are targeted by the constraints, but the amount is still growing,
run more seeds. If the coverage level has plateaued, with no recent progress,
it is time to modify the constraints. Only if you think that reaching the last
few test cases for one particular section may take too long for constrained-
random simulation should you consider writing a directed test. Even then,
continue to use random stimulus for the other sections of the design, in case
this “background noise” finds a bug.

9.1 Coverage Types

Coverage is a generic term for measuring progress to complete design verification.
Your simulations slowly paint the canvas of the design, as you try to cover all of the
legal combinations. The coverage tools gather information during a simulation and
then postprocess it to produce a coverage report. You can use this report to look for
coverage holes and then modify existing tests or create new ones to fill the holes. This
iterative process continues until you are satisfied with the coverage level.

9.1.1 Code Coverage

The easiest way to measure verification progress is with code coverage. Here you are
measuring how many lines of code have been executed (line coverage), which paths
through the code and expressions have been executed (path coverage), which single-
bit variables have had the values 0 or 1 (toggle coverage), and which states and transi-
tions in a state machine have been visited (FSM coverage). You don’t have to write
any extra HDL code. The tool instruments your design automatically by analyzing the
source code and adding hidden code to gather statistics. You then run all your tests,
and the code coverage tool creates a database.

Many simulators include a code coverage tool. A postprocessing tool converts the
database into a readable form. The end result is a measure of how much your tests
exercise the design code. Note that you are primarily concerned with analyzing the
design code, not the testbench. Untested design code could conceal a hardware bug,
or may be just redundant code.

Code coverage measures how thoroughly your tests exercised the “implementation”
of the design specification, and not the verification plan. Just because your tests have
reached 100% code coverage, your job is not done. What if you made a mistake that
your test didn’t catch? Worse yet, what if your implementation is missing a feature?
The following module is for a D-flip flop. Can you see the mistake?

Coverage Types 299

Sample 9.1 Incomplete D-flip flop model missing a path

module dff(output logic q, q_l,
 input logic clk, d, reset_l);

 always @(posedge clk or negedge reset_l) begin
 q <= d;
 q_l <= !d;
 end
endmodule

The reset logic was accidently left out. A code coverage tool would report that every
line had been exercised, yet the model was not implemented correctly.

9.1.2 Functional Coverage

The goal of verification is to ensure that a design behaves correctly in its real environ-
ment, be that an MP3 player, network router, or cell phone. The design specification
details how the device should operate, whereas the verification plan lists how that
functionality is to be stimulated, verified, and measured. When you gather measure-
ments on what functions were covered, you are performing “design” coverage. For
example, the verification plan for a D-flip flop would mention not only its data stor-
age but also how it resets to a known state. Until your test checks both these design
features, you will not have 100% functional coverage.

Functional coverage is tied to the design intent and is sometimes called “specification
coverage,” while code coverage measures the design implementation. Consider what
happens if a block of code is missing from the design. Code coverage cannot catch
this mistake, but functional coverage can.

9.1.3 Bug Rate

An indirect way to measure coverage is to look at the rate at which fresh bugs are
found. You should keep track of how many bugs you found each week, over the life
of a project. At the start, you may find many bugs through inspection as you create the
testbench. As you read the design spec, you may find inconsistencies, which hope-
fully are fixed before the RTL is written. Once the testbench is up and running, a
torrent of bugs is found as you check each module in the system. The bug rate drops,
hopefully to zero, as the design nears tape-out. However, you are not yet done. Every
time the rate sags, it is time to find different ways to create corner cases.

Chapter 9:Functional Coverage300

Figure 9-3 Bug rate during a project

The bug rate can vary per week based on many factors such as project phases, recent
design changes, blocks being integrated, personnel changes, and even vacation sched-
ules. Unexpected changes in the rate could signal a potential problem. As shown in
Figure 9-3, it is not uncommon to keep finding bugs even after tape-out, and even
after the design ships to customers.

9.1.4 Assertion Coverage

Assertions are pieces of declarative code that check the relationships between design
signals, either once or over a period of time. These can be simulated along with the
design and testbench, or proven by formal tools. Sometimes you can write the equiva-
lent check using SystemVerilog procedural code, but many assertions are more easily
expressed using SystemVerilog Assertions (SVA).

Assertions can have local variables and perform simple data checking. If you need to
check a more complex protocol, such as determining whether a packet successfully
went through a router, procedural code is often better suited for the job. There is a
large overlap between sequences that are coded procedurally or using SVA. See Vija-
yaraghavan and Ramanadhan (2005), Cohen et al. (2005), and Chaps. 3 and 7 in the
VMM book, Bergeron et al. (2005) for more information on SVA.

The most familiar assertions look for errors such as two signals that should be mutu-
ally exclusive or a request that was never followed by a grant. These error checks
should stop the simulation as soon as they detect a problem. Assertions can also check
arbitration algorithms, FIFOs, and other hardware. These are coded with the assert
property statement.

Some assertions might look for interesting signal values or design states, such as a
successful bus transaction. These are coded with the cover property statement.
You can measure how often these assertions are triggered during a test by using asser-
tion coverage. A cover property observes sequences of signals, whereas a cover group
(described below) samples data values and transactions during the simulation. These
two constructs overlap in that a cover group can trigger when a sequence completes.
Additionally, a sequence can collect information that can be used by a cover group.

B
ug

s/
w

ee
k

Time

Tape-out

Integration
New DUT code

Design
review

New verif.
engineer

B
ug

s/
w

ee
k

Time

Tape-out

Integration
New DUT code

Design
review

New verif.
engineer

Functional Coverage Strategies 301

9.2 Functional Coverage Strategies

Before you write the first line of test code, you need to anticipate what are the key
design features, corner cases, and possible failure modes. This is how you write your
verification plan. Don’t think in terms of data values only; instead, think about what
information is encoded in the design. The plan should spell out the significant design
states.

9.2.1 Gather Information, Not Data

A classic example is a FIFO. How can you be sure you have thoroughly tested a 1 K
FIFO memory? You could measure the values in the read and write indices, but there
are over a million possible combinations. Even if you were able to simulate that many
cycles, you would not want to read the coverage report.

At a more abstract level, a FIFO can hold from 0 to N–1 possible values. So what if
you just compare the read and write indices to measure how full or empty the FIFO
is? You would still have 1 K coverage values. If your testbench pushed 100 entries
into the FIFO, then pushed in 100 more, do you really need to know if the FIFO ever
had 150 values? Not as long as you can successfully read out all values.

The corner cases for a FIFO are Full and Empty. If you can make the FIFO go from
Empty (the state after reset) through Full and back down to Empty, you have covered
all the levels in between. Other interesting states involve the indices as they pass
between all 1’s and all 0’s. A coverage report for these cases is easy to understand.

You may have noticed that the interesting states are independent of the FIFO size.
Once again, look at the information, not the data values.

Design signals with a large range (more than a few dozen possible values) should be
broken down into smaller ranges, plus corner cases. For example, your DUT may
have a 32-bit address bus, but you certainly don’t need to collect 4 billion samples.
Check for natural divisions such as memory and IO space. For a counter, pick a few
interesting values, and always try to rollover counter values from all 1’s back to 0.

9.2.2 Only Measure What You Are Going to Use

Gathering functional coverage data can be expensive, and so only measure what you
will analyze and use to improve your tests. Your simulations may run slower as the
simulator monitors signals for functional coverage, but this approach has lower over-
head than gathering waveform traces and measuring code coverage. Once a
simulation completes, the database is saved to disk. With multiple testcases and mul-
tiple seeds, you can fill disk drives with functional coverage data and reports. But if
you never look at the final coverage reports, don’t perform the initial measurements.

Chapter 9:Functional Coverage302

There are several ways to control cover data: at compilation, instantiation, or trigger-
ing. You could use switches provided by the simulation vendor, conditional
compilation, or suppression of the gathering of coverage data. The last of these is less
desirable because the postprocessing report is filled with sections with 0% coverage,
making it harder to find the few enabled ones.

9.2.3 Measuring Completeness

Like your kids in the backseat on a family vacation, your manager constantly asks
you, “Are we there yet?” How can you tell if you have fully tested a design? You
need to look at all coverage measurements and consider the bug rate to see if you have
reached your destination.

At the start of a project, both code and functional coverage are low. As you develop
tests, run them over and over with different random seeds until you no longer see
increasing values of functional coverage. Create additional constraints and tests to
explore new areas. Save test/seed combinations that give high coverage, so that you
can use them in regression testing (Figure 9-4).

Figure 9-4 Coverage comparison

What if the functional coverage is high but the code coverage is low? Your tests are
not exercising the full design, perhaps from an inadequate verification plan. It may be
time to go back to the hardware specifications and update your verification plan. Then
you need to add more functional coverage points to locate untested functionality.

A more difficult situation is high code coverage but low functional coverage. Even
though your testbench is giving the design a good workout, you are unable to put it in
all the interesting states. First, see if the design implements all the specified function-
ality. If the functionality is there, but your tests can’t reach it, you might need a
formal verification tool that can extract the design’s states and create appropriate
stimulus.

Fu
nc

tio
na

l C
ov

er
ag

e

Code Coverage

Start of
project

Need more FC
points, including

corner casesH
ig

h
Lo

w

Low High

Is design complete?
Perhaps try
formal tools

Good coverage:
check bug rate

Fu
nc

tio
na

l C
ov

er
ag

e

Code Coverage

Start of
project

Need more FC
points, including

corner casesH
ig

h
Lo

w

Low High

Is design complete?
Perhaps try
formal tools

Good coverage:
check bug rate

Simple Functional Coverage Example 303

The goal is both high code and functional coverage. However, don’t plan your vaca-
tion yet. What is the trend of the bug rate? Are significant bugs still popping up?
Worse yet, are they being found deliberately, or did your testbench happen to stumble
across a particular combination of states that no one had anticipated? On the other
hand, a low bug rate may mean that your existing strategies have run out of steam,
and you should look into different approaches. Try different approaches such as new
combinations of design blocks and error generators.

9.3 Simple Functional Coverage Example

To measure functional coverage, you begin with the verification plan and write an
executable version of it for simulation. In your SystemVerilog testbench, sample the
values of variables and expressions. These sample locations are known as cover
points. Multiple cover points that are sampled at the same time (such as when a trans-
action completes) are placed together in a cover group.

Sample 9.2 has a transaction that comes in eight flavors. The testbench generates the
port variable randomly, and the verification plan requires that every value be tried.

Sample 9.2 Functional coverage of a simple object

program automatic test(busifc.TB ifc);

 class Transaction;
 rand bit [31:0] data;
 rand bit [2:0] port; // Eight port numbers
 endclass

 covergroup CovPort;
 coverpoint tr.port; // Measure coverage
 endgroup

 initial begin
 Transaction tr;
 CovPort ck;
 ck = new(); // Instantiate group
 tr = new();
 repeat (32) begin // Run a few cycles
 assert(tr.randomize); // Create a transaction
 ifc.cb.port <= tr.port; // and transmit
 ifc.cb.data <= tr.data; // onto interface
 ck.sample(); // Gather coverage
 @ifc.cb; // Wait a cycle
 end
 end
endprogram

Chapter 9:Functional Coverage304

Sample 9.2 creates a random transaction and drives it out to an interface. The test-
bench samples the value of the port field using the CovPort cover group. Eight
possible values, 32 random transactions – did your testbench generate them all? Here
is part of a coverage report from VCS.

Sample 9.3 Coverage report for a simple object

Coverpoint Coverage report
CoverageGroup: CovPort
 Coverpoint: tr.port
Summary
 Coverage: 87.50
 Goal: 100
 Number of Expected auto-bins: 8
 Number of User Defined Bins: 0
 Number of Automatically Generated Bins: 7
 Number of User Defined Transitions: 0

 Automatically Generated Bins

 Bin # hits at least
 ================================
 auto[1] 7 1
 auto[2] 7 1
 auto[3] 1 1
 auto[4] 5 1
 auto[5] 4 1
 auto[6] 2 1
 auto[7] 6 1
 ================================

As you can see, the testbench generated the values 1, 2, 3, 4, 5, 6, and 7, but never
generated a port of 0. The at least column specifies how many hits are needed
before a bin is considered covered. See Section 9.9.3 for the at_least option.

To improve your functional coverage, the easiest strategy is to just
run more simulation cycles, or to try new random seeds. Look at the
coverage report for items with two or more hits. Chances are that you
just need to make the simulation run longer or to try new seed values.
If a cover point had zero or one hit, you probably have to try a new
strategy, as the testbench is not creating the proper stimulus. For this

example, the very next random transaction (#33) has a port value of 0, giving 100%
coverage.

Anatomy of a Cover Group 305

Sample 9.4 Coverage report for a simple object, 100% coverage

Coverpoint Coverage report
CoverageGroup: CovPort
 Coverpoint: tr.port
Summary
 Coverage: 100
 Goal: 100
 Number of Expected auto-bins: 8
 Number of User Defined Bins: 0
 Number of Automatically Generated Bins: 8
 Number of User Defined Transitions: 0

 Automatically Generated Bins

 Bin # hits at least
 ================================
 auto[0] 1 1
 auto[1] 7 1
 auto[2] 7 1
 auto[3] 1 1
 auto[4] 5 1
 auto[5] 4 1
 auto[6] 2 1
 auto[7] 6 1
 ================================

9.4 Anatomy of a Cover Group

A cover group is similar to a class – you define it once and then instantiate it one or
more times. It contains cover points, options, formal arguments, and an optional trig-
ger. A cover group encompasses one or more data points, all of which are sampled at
the same time.

You should create very clear cover group names that explicitly indicate what you are
measuring and, if possible, reference to the verification plan. The name
Parity_Errors_In_Hexaword_Cache_Fills may seem verbose, but when you
are trying to read a coverage report that has dozens of cover groups, you will appreci-
ate the extra detail. You can also use the comment option for additional descriptive
information, as shown in Section 9.9.2.

A cover group can be defined in a class or at the program or module level. It can sam-
ple any visible variable such as program/module variables, signals from an interface,
or any signal in the design (using a hierarchical reference). A cover group inside a
class can sample variables in that class, as well as data values from embedded classes.

Chapter 9:Functional Coverage306

Don’t define the cover group in a data class, such as a transaction, as
doing so can cause additional overhead when gathering coverage
data. Imagine you are trying to track how many beers were consumed
by patrons in a pub. Would you try to follow every bottle as it flowed
from the loading dock, over the bar, and into each person? No, instead
you could just have each patron check off the type and number of

beers consumed, as shown in van der Schoot and Bergeron (2006).

 In SystemVerilog, you should define cover groups at the appropriate level of abstrac-
tion. This level can be at the boundary between your testbench and the design, in the
transactors that read and write data, in the environment configuration class, or wher-
ever is needed. The sampling of any transaction must wait until it is actually received
by the DUT. If you inject an error in the middle of a transaction, causing it to be
aborted in transmission, you need to change how you treat it for functional coverage.
You need to use a different cover point that has been created just for error handling.

A class can contain multiple cover groups. This approach allows you to have separate
groups that can be enabled and disabled as needed. Additionally, each group may
have a separate trigger, allowing you to gather data from many sources.

A cover group must be instantiated for it to collect data. If you for-
get, no error message about null handles is printed at run-time, but
the coverage report will not contain any mention of the cover
group. This rule applies for cover groups defined either inside or
outside of classes.

9.4.1 Defining a Cover Group in a Class

A cover group can be defined in a program, module, or class. In all cases, you must
explicitly instantiate it to start sampling. If the cover group is defined in a class, you
do not make a separate name when you instance it; you just use the original cover
group name.

Sample 9.5 is very similar to the first example of this chapter except that it embeds a
cover group in a transactor class, and thus does not need a separate instance name.

Triggering a Cover Group 307

Sample 9.5 Functional coverage inside a class

class Transactor;
 Transaction tr;
 mailbox mbx_in;
 covergroup CovPort;
 coverpoint tr.port;
 endgroup

 function new(mailbox mbx_in);
 CovPort = new(); // Instantiate covergroup
 this.mbx_in = mbx_in;
 endfunction

 task main;
 forever begin
 tr = mbx_in.get; // Get next transaction
 ifc.cb.port <= tr.port; // Send into DUT
 ifc.cb.data <= tr.data;
 CovPort.sample(); // Gather coverage
 end
 endtask

endclass

9.5 Triggering a Cover Group

The two major parts of functional coverage are the sampled data values and the time
when they are sampled. When new values are ready (such as when a transaction has
completed), your testbench triggers the cover group. This can be done directly with
the sample function, as shown in Sample 9.5, or by using a blocking expression in
the covergroup definition. The blocking expression can use a wait or @ to block on
signals or events.

Use sample if you want to explicitly trigger coverage from procedural code, if there
is no existing signal or event that tells when to sample, or if there are multiple
instances of a cover group that trigger separately.

Use the blocking statement in the covergroup declaration if you want to tap into
existing events or signals to trigger coverage.

9.5.1 Sampling Using a Callback

One of the better ways to integrate functional coverage into your testbench is to use
callbacks, as originally shown in Section 8.7. This technique allows you to build a
flexible testbench without restricting when coverage is collected. You can decide for

Chapter 9:Functional Coverage308

every point in the verification plan where and when values are sampled. And if you
need an extra “hook” in the environment for a callback, you can always add one in an
unobtrusive manner, as a callback only “fires” when the test registers a callback
object. You can create many separate callbacks for each cover group, with little over-
head. As explained in Section 8.7.4, callbacks are superior to using a mailbox to
connect the testbench to the coverage objects. You might need multiple mailboxes to
collect transactions from different points in your testbench. A mailbox requires a
transactor to receive transactions, and multiple mailboxes cause you to juggle multi-
ple threads. Instead of an active transactor, use a passive callback.

Sample 8.30 shows a driver class that has two callback points, before and after the
transaction is transmitted. Sample 8.29 shows the base callback class, and Sample
8.31 has a test with an extended callback class that sends data to a scoreboard. Make
your own extension, Driver_cbs_coverage, of the base callback class,
Driver_cbs, to call the sample task for your cover group in post_tx. Push an
instance of the coverage callback class into the driver’s callback queue, and your cov-
erage code triggers the cover group at the right time. The following two examples
define and use the callback Driver_cbs_coverage.

Sample 9.6 Test using functional coverage callback

program automatic test;
 Environment env;

 initial begin
 Driver_cbs_coverage dcc;

 env = new();
 env.gen_cfg();
 env.build();

 // Create and register the coverage callback
 dcc = new();
 env.drv.cbs.push_back(dcc); // Put into driverÕs Q

 env.run();
 env.wrap_up();
 end

endprogram

Triggering a Cover Group 309

Sample 9.7 Callback for functional coverage

class Driver_cbs_coverage extends Driver_cbs;
 covergroup CovPort;
 ...
 endgroup

 virtual task post_tx(Transaction tr);
 CovPort.sample(); // Sample coverage values
 endtask
endclass

9.5.2 Cover Group With an Event Trigger

In Sample 9.8, the cover group CovPort is sampled when the testbench triggers the
trans_ready event.

Sample 9.8 Cover group with a trigger

event trans_ready;
covergroup CovPort @(trans_ready);
 coverpoint ifc.cb.port; // Measure coverage
endgroup

The advantage of using an event over calling the sample method directly is that you
may be able to use an existing event such as one triggered by an assertion, as shown
in Sample 9.10.

9.5.3 Triggering on a SystemVerilog Assertion

If you already have an SVA that looks for useful events like a complete transaction,
you can add an event trigger to wake up the cover group.

Sample 9.9 Module with SystemVerilog Assertion

module mem(simple_bus sb);
 bit [7:0] data, addr;
 event write_event;

 cover property
 (@(posedge sb.clock) sb.write_ena==1)
 -> write_event;
endmodule

Chapter 9:Functional Coverage310

Sample 9.10 Triggering a cover group with an SVA

program automatic test(simple_bus sb);

 covergroup Write_cg @($root.top.m1.write_event);
 coverpoint $root.top.m1.data;
 coverpoint $root.top.m1.addr;
 endgroup

 Write_cg wcg;

 initial begin
 wcg = new();
 // Apply stimulus here
 sb.write_ena <= 1;
 ...
 #10000 $finish;
 end
endprogram

9.6 Data Sampling

How is coverage information gathered? When you specify a variable or expression in
a cover point, SystemVerilog creates a number of “bins” to record how many times
each value has been seen. These bins are the basic units of measurement for func-
tional coverage. If you sample a one-bit variable, a maximum of two bins are created.
You can imagine that SystemVerilog drops a token in one or the other bin every time
the cover group is triggered. At the end of each simulation, a database is created with
all bins that have a token in them. You then run an analysis tool that reads all data-
bases and generates a report with the coverage for each part of the design and for the
total coverage.

9.6.1 Individual Bins and Total Coverage

To calculate the coverage for a point, you first have to determine the total number of
possible values, also known as the domain. There may be one value per bin or multi-
ple values. Coverage is the number of sampled values divided by the number of bins
in the domain.

A cover point that is a 3-bit variable has the domain 0:7 and is normally divided into
eight bins. If, during simulation, values belonging to seven bins are sampled, the
report will show 7/8 or 87.5% coverage for this point. All these points are combined
to show the coverage for the entire group, and then all the groups are combined to
give a coverage percentage for all the simulation databases.

Data Sampling 311

This is the status for a single simulation. You need to track coverage over time. Look
for trends so that you can see where to run more simulations or add new constraints or
tests. Now you can better predict when verification of the design will be completed.

9.6.2 Creating Bins Automatically

As you saw in the report in Sample 9.3, SystemVerilog automatically creates bins for
cover points. It looks at the domain of the sampled expression to determine the range
of possible values. For an expression that is N bits wide, there are 2N possible values.
For the 3-bit variable port, there are 8 possible values. The range of an enumerated
type is shown in Section 9.6.8. The domain for enumerated data types is the number
of named values. You can also explicitly define bins as shown in Section 9.6.5.

9.6.3 Limiting the Number of Automatic Bins Created

The cover group option auto_bin_max specifies the maximum number of bins to
automatically create, with a default of 64 bins. If the domain of values in the cover
point variable or expression is greater than this option, SystemVerilog divides the
range into auto_bin_max bins. For example, a 16-bit variable has 65,536 possible
values, and so each of the 64 bins covers 1,024 values.

In reality, you may find this approach impractical, as it is very difficult to find the
needle of missing coverage in a haystack of auto-generated bins. Lowering this limit
to 8 or 16, or better yet, explicitly define the bins as shown in Section 9.6.5.

The following code takes the chapter’s first example and adds a cover point option
that sets auto_bin_max to two bins. The sampled variable is still port, which is
three bits wide, for a domain of eight possible values. The first bin holds the lower
half of the range, 0–3, and the other hold the upper values, 4–7.

Sample 9.11 Using auto_bin_max set to 2

covergroup CovPort;
 coverpoint tr.port
 { options.auto_bin_max = 2; } // Divide into 2 bins
endgroup

The coverage report from VCS shows the two bins. This simulation achieved 100%
coverage because the eight port values were mapped to two bins. Since both bins
have sampled values, your coverage is 100%.

Sample 9.12 Report with auto_bin_max set to 2

Bin # hits at least
==================================
auto[0:3] 15 1
auto[4:7] 17 1

Chapter 9:Functional Coverage312

Sample 9.11 used auto_bin_max as an option for the cover point only. You can also
use it as an option for the entire group.

Sample 9.13 Using auto_bin_max for all cover points

covergroup CovPort;
 options.auto_bin_max = 2; // Affects port & data
 coverpoint tr.port;
 coverpoint tr.data;
endgroup

9.6.4 Sampling Expressions

You can sample expressions, but always check the coverage report to be sure you are
getting the values you expect. You may have to adjust the width of the computed
expression, as shown in Section 2.15. For example, sampling a 3-bit header length
(0:7) plus a 4-bit payload length (0:15) creates only 24 or 16 bins, which may not be
enough if your transactions can actually be 0:23 bytes long.

Sample 9.14 Using an expression in a cover point

class Transaction;
 rand bit [2:0] hdr_len; // range: 0:7
 rand bit [3:0] payload_len; // range: 0:15
 rand bit [3:0] kind; // range: 0:15
 ...
endclass

Transaction tr;

covergroup CovLen;
 len16: coverpoint (tr.hdr_len + tr.payload_len);
 len32: coverpoint (tr.hdr_len + tr.payload_len + 5Õb0);
endgroup

Sample 9.14 has a cover group that samples the total transaction length. The cover
point has a label to make it easier to read the coverage report. Also, the expression has
an additional dummy constant so that the transaction length is computed with 5-bit
precision, for a maximum of 32 auto-generated bins.

A quick run with 200 transactions showed that the len16 had 100% coverage, but
this is across only 16 bins. The cover point len32 had 68% coverage across 32 bins.
Neither of these cover points are correct, as the maximum length has a domain of 0:22
(0+0:7+15). The auto-generated bins just don’t work, as the maximum length is not a
power of 2.

Data Sampling 313

9.6.5 User-Defined Bins Find a Bug

Automatically generated bins are okay for anonymous data values, such as counter
values, addresses, or values that are a power of 2. For other values, you should explic-
itly name the bins to improve accuracy and ease coverage report analysis.
SystemVerilog automatically creates bin names for enumerated types, but for other
variables you need to give names to the interesting states. The easiest way to specify
bins is with the [] syntax, as shown in Sample 9.15.

Sample 9.15 Defining bins for transaction length

covergroup CovLen;
 len: coverpoint (tr.hdr_len + tr.payload_len + 5Õb0)
 {bins len[] = {[0:23]}; }
endgroup

After sampling 2,000 random transactions, the group has 95.83% coverage. A quick
look at the report shows the problem – the length of 23 (17 hex) was never seen. The
longest header is 7, and the longest payload is 15, for a total of 22, not 23! If you
change to the bins declaration to use 0:22, the coverage jumps to 100%. The user-
defined bins found a bug in the test.

Sample 9.16 Coverage report for transaction length

Bin # hits at least
============================
len_00 13 1
len_01 36 1
len_02 51 1
len_03 60 1
len_04 72 1
len_05 88 1
len_06 127 1
len_07 122 1
len_08 133 1
len_09 138 1
len_0a 115 1
len_0b 128 1
len_0c 125 1
len_0d 111 1
len_0e 115 1
len_0f 134 1
len_10 107 1
len_11 102 1
len_12 70 1
len_13 65 1
len_14 39 1
len_15 30 1
len_16 19 1

Chapter 9:Functional Coverage314

len_17 0 1
============================

9.6.6 Naming the Cover Point Bins

Sample 9.17 samples a 4-bit variable, kind, that has 16 possible values. The first bin
is called zero and counts the number of times that kind is 0 when sampled. The next
four values, 1–3 and 5, are all grouped into a single bin, lo. The upper eight values,
8–15, are kept in separate bins, hi_8, hi_9, hi_a, hi_b, hi_c, hi_d, hi_e, and
hi_f. Note how $ in the hi bin expression is used as a shorthand notation for the
largest value for the sampled variable. Lastly, misc holds all values that were not pre-
viously chosen: 4, 6, and 7.

Sample 9.17 Specifying bin names

covergroup CovKind;
 coverpoint tr.kind {
 bins zero = {0}; // 1 bin for kind==0
 bins lo = {[1:3], 5}; // 1 bin for values 1:3, 5
 bins hi[] = {[8:$]}; // 8 separate bins: 8...15
 bins misc = default; // 1 bin for all the rest
 } // No semicolon
endgroup // CoverKind

Note that the additional information about the coverpoint is grouped using curly
braces: {}. This is because the bin specification is declarative code, not procedural
code that would be grouped with begin...end. Lastly, the final curly brace is NOT
followed by a semicolon, just as an end never is.

Now you can easily see which bins have no hits – hi_8 in this case.

Sample 9.18 Report showing bin names

Bin # hits at least
=============================
hi_8 0 1
hi_9 5 1
hi_a 3 1
hi_b 4 1
hi_c 2 1
hi_d 2 1
hi_e 9 1
hi_f 4 1
lo 16 1
misc 15 1
zero 1 1

Data Sampling 315

When you define the bins, you are restricting the values used for coverage to those
that are interesting to you. SystemVerilog no longer automatically creates bins, and it
ignores values that do not fall into a predefined bin. More importantly, only the bins
you create are used to calculate functional coverage. You get 100% coverage only as
long as you get a hit in every specified bin.

Values that do not fall into any specified bin are ignored. This rule is
useful if the sampled value, such as transaction length, is not a power
of 2. In general, if you are specifying bins, always use the default
bin specifier to catch values that you may have forgotten.

In Sample 9.17, the range for hi uses a dollar sign ($) on the right side to specify the
upper value. This is a very useful shortcut – now you can let the compiler calculate
the limits for a range. You can use the dollar sign on the left side of a range to specify
the lower limit. In Sample 9.19, the $ in the range for bin neg represents the negative
number furthest from zero: 32’h8000_0000, or –2,147,483,648, whereas the $ in bin
pos represents the largest signed positive value, 32’h7FFF_FFFF, or 2,147,483,647.

Sample 9.19 Specifying ranges with $

int i;
covergroup range_cover;
 coverpoint i {
 bins neg = {[$:-1]}; // Negative values
 bins zero = {0}; // Zero
 bins pos = {[1:$]}; // Positive values
 }
endgroup

9.6.7 Conditional Coverage

You can use the iff keyword to add a condition to a cover point. The most common
reason for doing so is to turn off coverage during reset so that stray triggers are
ignored. Sample 9.20 gathers only values of port when reset is 0, where reset is
active-high.

Sample 9.20 Conditional coverage – disable during reset

covergroup CoverPort;
 // DonÕt gather coverage when reset==1
 coverpoint port iff (!bus_if.reset);
endgroup

Alternately, you can use the start and stop functions to control individual
instances of cover groups.

Chapter 9:Functional Coverage316

Sample 9.21 Using stop and start functions

initial begin
 CovPort ck = new(); // Instantiate cover group

 // Reset sequence stops collection of coverage data
 #1ns ck.stop();
 bus_if.reset = 1;

 #100ns bus_if.reset = 0; // End of reset
 ck.start();
 ...
end

9.6.8 Creating Bins for Enumerated Types

For enumerated types, SystemVerilog creates a bin for each value.

Sample 9.22 Functional coverage for an enumerated type

typedef enum {INIT, DECODE, IDLE} fsmstate_e;
fsmstate_e pstate, nstate; // declare typed variables
covergroup cg_fsm;
 coverpoint pstate;
endgroup

Here is part of the coverage report from VCS, showing the bins for the enumerated
types.

Sample 9.23 Coverage report with enumerated types

Bin # hits at least
==================================
auto_DECODE 11 1
auto_IDLE 11 1
auto_INIT 10 1
==================================

If you want to group multiple values into a single bin, you have to define your own
bins. Any bins outside the enumerated values are ignored unless you define a bin with
the default specifier. When you gather coverage on enumerated types,
auto_bin_max does not apply.

Data Sampling 317

9.6.9 Transition Coverage

You can specify state transitions for a cover point. In this way, you can tell not only
what interesting values were seen but also the sequences. For example, you can check
if port ever went from 0 to 1, 2, or 3.

Sample 9.24 Specifying transitions for a cover point

covergroup CoverPort;
 coverpoint port {
 bins t1 = (0 => 1), (0 => 2), (0 => 3);
 }
endgroup

You can quickly specify multiple transitions using ranges. The expression (1,2 =>
3,4) creates the four transitions (1=>3), (1=>4), (2=>3), and (2=>4).

You can specify transitions of any length. Note that you have to sample once for each
state in the transition. So (0 => 1 => 2) is different from (0 => 1 => 1 => 2)
or (0 => 1 => 1 => 1 => 2). If you need to repeat values, as in the last sequence,
you can use the shorthand form:(0 => 1[*3] => 2). To repeat the value 1 for 3, 4,
or 5 times, use 1[*3:5].

9.6.10 Wildcard States and Transitions

You use the wildcard keyword to create multiple states and transitions. Any X, Z, or
? in the expression is treated as a wildcard for 0 or 1. The following creates a cover
point with a bin for even values and one for odd.

Sample 9.25 Wildcard bins for a cover point

bit [2:0] port;
covergroup CoverPort;
 coverpoint port {
 wildcard bins even = {3Õb??0};
 wildcard bins odd = {3Õb??1};
 }
endgroup

9.6.11 Ignoring Values

With some cover points, you never get all possible values. For instance, a 3-bit variable
may be used to store just six values, 0–5. If you use automatic bin creation, you never
get beyond 75% coverage. There are two ways to solve this problem. You can explicitly
define the bins that you want to cover as shows in Section 9.6.5. Alternatively, you can
let SystemVerilog automatically create bins, and then use ignore_bins to tell which
values to exclude from functional coverage calculation.

Chapter 9:Functional Coverage318

Sample 9.26 Cover point with ignore_bins

bit [2:0] low_ports_0_5; // Only uses values 0-5
covergroup CoverPort;
 coverpoint low_ports_0_5 {
 ignore_bins hi = {[6,7]}; // Ignore upper 2 bins
 }
endgroup

The original range of low_ports_0_5, a three-bit variable is 0:7. The ignore_bins
excludes the last two bins, which reduces the range to 0:5. So total coverage for this
group is the number of bins with samples, divided by the total number of bins, which
is 5 in this case.

Sample 9.27 Cover point with auto_bin_max and ignore_bins

bit [2:0] low_ports_0_5; // Only uses values 0-5
covergroup CoverPort;
 coverpoint low_ports_0_5 {
 options.auto_bin_max = 4; // 0:1, 2:3, 4:5, 6:7
 ignore_bins hi = {[6,7]}; // Ignore upper 2 values
 }
endgroup

If you define bins either explicitly or by using the auto_bin_max option, and then
ignore them, the ignored bins do not contribute to the calculation of coverage. In
Sample 9.27, four bins are initially created using the auto_bin_max option: 0:1, 2:3,
4:5, and 6:7. However, then the uppermost bin is eliminated by ignore_bins, and so
in the end only three bins are created. This cover point can have coverage of 0%,
33%, 66%, or 100%

9.6.12 Illegal Bins

Some sampled values not only should be ignored but also should cause an error if
they are seen. This is best done in the testbench’s monitor code, but can also be done
by labeling a bin with illegal_bins. Use illegal_bins to catch states that were
missed by the test’s error checking. This also double-checks the accuracy of your bin
creation: if an illegal value is found by the cover group, it is a problem either with the
testbench or with your bin definitions.

Sample 9.28 Cover point with illegal_bins

bit [2:0] low_ports_0_5; // Only uses values 0-5
covergroup CoverPort;
 coverpoint low_ports_0_5 {
 illegal_bins hi = {[6,7]}; // Give error if seen
 }
endgroup

Cross Coverage 319

9.6.13 State Machine Coverage

You should have noticed that if a cover group is used on a state machine, you can use
bins to list the specific states, and transitions for the arcs. However, this does not
mean you should use SystemVerilog’s functional coverage to measure state machine
coverage. You would have to extract the states and arcs manually. Even if you did this
correctly the first time, you might miss future changes to the design code. Instead, use
a code coverage tool that extracts the state register, states, and arcs automatically,
saving you from possible mistakes.

However, an automatic tool extracts the information exactly as coded, mistakes and
all. You may want to monitor small, critical state machines manually using functional
coverage.

9.7 Cross Coverage

A cover point records the observed values of a single variable or expression. You may
want to know not only what bus transactions occurred but also what errors happened
during those transactions, and their source and destination. For this you need cross
coverage that measures what values were seen for two or more cover points at the
same time. Note that when you measure cross coverage of a variable with N values,
and of another with M values, SystemVerilog needs NxM cross bins to store all the
combinations.

9.7.1 Basic Cross Coverage Example

Previous examples have measured coverage of the transaction kind, and port number,
but what about the two combined? Did you try every kind of transaction into every
port? The cross construct in SystemVerilog records the combined values of two or
more cover points in a group. The cross statement takes only cover points or a sim-
ple variable name. If you want to use expressions, hierarchical names or variables in
an object such as handle.variable, you must first specify the expression in a cov
erpoint with a label and then use the label in the cross statement.

Sample 9.29 creates cover points for tr.kind and tr.port. Then the two points are
crossed to show all combinations. SystemVerilog creates a total of 128 (8 × 16) bins.
Even a simple cross can result in a very large number of bins.

Chapter 9:Functional Coverage320

Sample 9.29 Basic cross coverage

class Transaction;
 rand bit [3:0] kind;
 rand bit [2:0] port;
endclass

Transaction tr;

covergroup CovPort;
 kind: coverpoint tr.kind; // Create cover point kind
 port: coverpoint tr.port; // Create cover point port
 cross kind, port; // Cross kind and port
endgroup

A random testbench created 200 transactions and produced the coverage report in
Sample 9.30. Note that even though all possible kind and port values were gener-
ated, about 1/8 of the cross combinations were not seen.

Sample 9.30 Coverage summary report for basic cross coverage

Cumulative report for Transaction::CovPort
Summary:
 Coverage: 95.83
 Goal: 100

Coverpoint Coverage Goal Weight
==
kind 100.00 100 1
port 100.00 100 1
==
Cross Coverage Goal Weight
==
Transaction::CovPort 87.50 100 1

Cross Coverage report
CoverageGroup: Transaction::CovPort
 Cross: Transaction::CovPort
Summary
 Coverage: 87.50
 Goal: 100
 Coverpoints Crossed: kind port
 Number of Expected Cross Bins: 128
 Number of User Defined Cross Bins: 0
 Number of Automatically Generated Cross Bins: 112

Cross Coverage 321

 Automatically Generated Cross Bins

 kind port # hits at least
 ==
 auto[0] auto[0] 1 1
 auto[0] auto[1] 4 1
 auto[0] auto[2] 3 1
 auto[0] auto[5] 1 1
...

9.7.2 Labeling Cross Coverage Bins

If you want more readable cross coverage bin names, you can label the individual
cover point bins, and SystemVerilog will use these names when creating the cross
bins.

Sample 9.31 Specifying cross coverage bin names

covergroup CovPortKind;
 port: coverpoint tr.port
 {bins port[] = {[0:$]};
 }
 kind: coverpoint tr.kind
 {bins zero = {0}; // 1 bin for kind==0
 bins lo = {[1:3]}; // 1 bin for values 1:3
 bins hi[] = {[8:$]}; // 8 separate bins
 bins misc = default; // 1 bin for all the rest
 }
 cross kind, port;
endgroup

If you define bins that contain multiple values, the coverage statistics change. In the
report below, the number of bins has dropped from 128 to 88. This is because kind
has 11 bins: zero, lo, hi_8, hi_9, hi_a, hi_b, hi_c, hi_d, hi_e, hi_f, and
misc. The percentage of coverage jumped from 87.5% to 90.91% because any single
value in the lo bin, such as 2, allows that bin to be marked as covered, even if the
other values, 0 or 3, are not seen.

Chapter 9:Functional Coverage322

Sample 9.32 Cross coverage report with labeled bins

Summary
 Coverage: 90.91
 Number of Coverpoints Crossed: 2
 Coverpoints Crossed: kind port
 Number of Expected Cross Bins: 88
 Number of Automatically Generated Cross Bins: 80
 Automatically Generated Cross Bins

 port kind # hits at least
 ==
 port_0 hi_8 3 1
 port_0 hi_a 1 1
 port_0 hi_b 4 1
 port_0 hi_c 4 1
 port_0 hi_d 4 1
 port_0 hi_e 1 1
 port_0 lo 7 1
 port_0 misc 6 1
 port_0 zero 1 1
 port_1 hi_8 3 1
...

9.7.3 Excluding Cross Coverage Bins

To reduce the number of bins, use ignore_bins. With cross coverage, you specify
the cover point with binsof and the set of values with intersect so that a single
ignore_bins construct can sweep out many individual bins.

Sample 9.33 Excluding bins from cross coverage

covergroup Covport;
 port: coverpoint tr.port
 {bins port[] = {[0:$]};
 }
 kind: coverpoint tr.kind {
 bins zero = {0}; // 1 bin for kind==0
 bins lo = {[1:3]}; // 1 bin for values 1:3
 bins hi[] = {[8:$]}; // 8 separate bins
 bins misc = default; // 1 bin for all the rest
 }
 cross kind, port {
 ignore_bins hi = binsof(port) intersect {7};
 ignore_bins md = binsof(port) intersect {0} &&
 binsof(kind) intersect {[9:11]};
 ignore_bins lo = binsof(kind.lo);
 }
endgroup

Cross Coverage 323

The first ignore_bins just excludes bins where port is 7 and any value of kind.
Since kind is a 4-bit value, this statement excludes 16 bins. The second
ignore_bins is more selective, ignoring bins where port is 0 and kind is 9, 10, or
11, for a total of 3 bins.

The ignore_bins can use the bins defined in the individual cover points. The
ignore_bins lo uses bin names to exclude kind.lo that is 1, 2, or 3. The bins
must be names defined at compile-time, such as zero and lo. The bins hi_8, hi_9,
hi_a,... hi_f, and any automatically generated bins do not have names that can be
used at compile-time in other statements such as ignore_bins; these names are cre-
ated at run-time or during the report generation.

Note that binsof uses parentheses (), while intersect specifies a range and there-
fore uses curly braces {}.

9.7.4 Excluding Cover Points From the Total Coverage Metric

The total coverage for a group is based on all simple cover points and cross coverage.
If you are only sampling a variable or expression in a coverpoint to be used in a
cross statement, you should set its weight to 0 so that it does not contribute to the
total coverage.

Sample 9.34 Specifying cross coverage weight

covergroup CovPort;
 kind: coverpoint tr.kind
 {bins zero = {0};
 bins lo = {[1:3]};
 bins hi[] = {[8:$]};
 bins misc = default;
 option.weight = 5; // Count in total
 }
 port: coverpoint tr.port
 {bins port[] = {[0:$]};
 option.weight = 0; // DonÕt count towards total
 }
 cross kind, port
 {option.weight = 10;} // Give cross extra weight
endgroup

9.7.5 Merging Data From Multiple Domains

One problem with cross coverage is that you may need to sample values from differ-
ent timing domains. You might want to know if your processor ever received an
interrupt in the middle of a cache fill. The interrupt hardware is separate from and
may use different clocks than the cache hardware, making it difficult to know when to

Chapter 9:Functional Coverage324

trigger the cover group. On the other hand, you want to make sure you have tested this
case, as a previous design had a bug of this very sort.

The solution is to create a timing domain separate from the cache or interrupt hard-
ware. Make copies of the signals into temporary variables and then sample them in a
new coverage group that measures the cross coverage.

9.7.6 Cross Coverage Alternatives

As your cross coverage definition becomes more elaborate, you may spend consider-
able time specifying which bins should be used and which should be ignored. You
may have two random bits, a and b with three interesting states, {a==0, b==0},
{a==1, b==0}, and {b==1}.

Sample 9.35 shows how you can name bins in the cover points and then gather cross
coverage using those bins.

Sample 9.35 Cross coverage with bin names

class Transaction;
 rand bit a, b;
endclass

covergroup CrossBinNames;
 a: coverpoint tr.a
 { bins a0 = {0};
 bins a1 = {1};
 option.weight=0;} // DonÕt count this coverpoint
 b: coverpoint tr.b
 { bins b0 = {0};
 bins b1 = {1};
 option.weight=0;} // DonÕt count this coverpoint
 ab: cross a, b
 { bins a0b0 = binsof(a.a0) && binsof(b.b0);
 bins a1b0 = binsof(a.a1) && binsof(b.b0);
 bins b1 = binsof(b.b1); }
endgroup

Sample 9.36 gathers the same cross coverage, but now uses binsof to specify the
cross coverage values.

Generic Cover Groups 325

Sample 9.36 Cross coverage with binsof

class Transaction;
 rand bit a, b;
endclass

covergroup CrossBinsofIntersect;
 a: coverpoint tr.a
 { option.weight=0; } // DonÕt count this coverpoint
 b: coverpoint tr.b
 { option.weight=0; } // DonÕt count this coverpoint
 ab: cross a, b
 { bins a0b0 = binsof(a) intersect {0} &&
 binsof(b) intersect {0};
 bins a1b0 = binsof(a) intersect {1} &&
 binsof(b) intersect {0};
 bins b1 = binsof(b) intersect {1}; }
endgroup

Alternatively, you can make a cover point that samples a concatenation of values.
Then you only have to define bins using the less complex cover point syntax.

Sample 9.37 Mimicking cross coverage with concatenation

covergroup CrossManual;
 ab: coverpoint {tr.a, tr.b}
 { bins a0b0 = {2'b00};
 bins a1b0 = {2'b10};
 wildcard bins b1 = {2'b?1};
 }
endgroup

Use the style in Sample 9.35 if you already have bins defined for the individual cover
points and want to use them to build the cross coverage bins. Use Sample 9.36 if you
need to build cross coverage bins but have no predefined cover point bins. Use
Sample 9.37 if you want the tersest format.

9.8 Generic Cover Groups

As you start writing cover groups, you will find that some are very close to one
another. SystemVerilog allows you to create a generic cover group so that you can
specify a few unique details when you instantiate it. SystemVerilog does not allow
you to pass the cover group trigger argument into an instance. As a workaround, you
can put a coverage group into a class and pass the trigger into the constructor.

Chapter 9:Functional Coverage326

9.8.1 Pass Cover Group Arguments by Value

Sample 9.38 shows a cover group that uses an argument to split the range into two
halves. Just pass the midpoint value to the cover groups’ new function.

Sample 9.38 Simple argument

bit [2:0] port; // Values: 0:7

covergroup CoverPort (int mid);
 coverpoint port
 {bins lo = {[0:mid-1]};
 bins hi = {[mid:$]};
 }
endgroup

CoverPort cp;
initial
 cp = new(5); // lo=0:4, hi=5:7

9.8.2 Pass Cover Group Arguments by Reference

You can specify a variable to be sampled with pass-by-reference. Here you want the
cover group to sample the value during the entire simulation, not just to use the value
when the constructor is called.

Sample 9.39 Pass-by-reference

bit [2:0] port_a, port_b;

covergroup CoverPort (ref bit [2:0] port, input int mid);
 coverpoint port {
 bins lo = {[0:mid-1]};
 bins hi = {[mid:$]};
 }
endgroup

CoverPort cpa, cpb;
initial
 begin
 cpa = new(port_a, 4); // port_a, lo=0:3, hi=4:7
 cpb = new(port_b, 2); // port_b, lo=0:1, hi=2:7
 end

Coverage Options 327

Like a task or function, the arguments to a cover group have a sticky
direction. In Sample 9.39, if you forgot the input direction, the mid
argument will have the direction ref. The example would not com-
pile because you cannot pass a constant (4 or 2) into a ref argument.2

9.9 Coverage Options

You can specify additional information in the cover group using options. There are
two flavors of options: instance options that apply to a specific cover group instance
and type options that apply to all instances of the cover group, and are analogous to
static data members of classes. Options can be placed in the cover group so that they
apply to all cover points in the group, or they can be put inside a single cover point for
finer control. You have already seen the auto_bin_max and weight options. Here
are several more.

9.9.1 Per-Instance Coverage

If your testbench instantiates a coverage group multiple times, by default SystemVer-
ilog groups together all the coverage data from all the instances. However, if you have
several generators, each creating very different streams of transactions, you will need
to see separate reports. For example, one generator may be creating long transactions
while another makes short ones. The cover group in Sample 9.40 can be instantiated
in each separate generator. It keeps track of coverage for each instance, and has a
unique comment string with the hierarchical path to the cover group instance.

Sample 9.40 Specifying per-instance coverage

covergroup CoverLength;
 coverpoint tr.length;
 option.per_instance = 1;
 // Use hierarchical path in comment
 option.comment = $psprintf("%m");
endgroup

The per-instance option can only be given in the cover group, not in the cover point or
cross point.

9.9.2 Cover Group Comment

You can add a comment into coverage reports to make them easier to analyze. A com-
ment could be as simple as the section number from the verification plan to tags used

2The P1800-2005 LRM has a similar example showing that the direction is NOT sticky, but this is a mistake
and will be corrected in the next version. Can you find another mistake in that LRM example?

Chapter 9:Functional Coverage328

by a report parser to automatically extract relevant information from the sea of data. If
you have a cover group that is only instantiated once, use the type option as shown in
Sample 9.41.

Sample 9.41 Specifying comments for a cover group

covergroup CoverPort;
 type_option.comment = "Section 3.2.14 Port numbers";
 coverpoint port;
endgroup

However, if you have multiple instances, you can give each a separate comment, as
long as you also use the per-instance option.

Sample 9.42 Specifying comments for a cover group instance

covergroup CoverPort(int lo,hi, string comment);
 option.comment = comment;
 option.per_instance = 1;
 coverpoint port
 {bins range = {[lo:hi]};
 }
endgroup
...
CoverPort cp_lo = new(0,3, "Low port numbers");
CoverPort cp_hi = new(4,7, "High port numbers");

9.9.3 Coverage Threshold

You may not have sufficient visibility into the design to gather robust coverage infor-
mation. Suppose you are verifying that a DMA state machine can handle bus errors.
You don’t have access to its current state, but you know the range of cycles that are
needed for a transfer. So if you repeatedly cause errors during that range, you have
probably covered all the states. So you could set option.at_least to 8 or more to
specify that after 8 hits on a bin, you are confident that you have exercised that com-
bination Figure 9-6.

If you define option.at_least at the cover group level, it applies to all cover
points. If you define it inside a point, it only applies to that single point.

However, as Sample 9.2 showed, even after 32 attempts, the random kind variable
still did not hit all possible values. So only use at_least if there is no direct way to
measure coverage.

9.9.4 Printing the Empty Bins

By default, the coverage report shows only the bins with samples. Your job is to ver-
ify all that is listed in the verification plan, and so you are actually more interested in

Analyzing Coverage Data 329

the bins without samples. Use the option cross_num_print_missing to tell the
simulation and report tools to show you all bins, especially the ones with no hits. Set
it to a large value, as shown in Sample 9.43, but no larger than you are willing to read.

Sample 9.43 Report all bins including empty ones

covergroup CovPort;
 kind: coverpoint tr.kind;
 port: coverpoint tr.port
 cross kind, port;
 option.cross_num_print_missing = 1_000;
endgroup

9.9.5 Coverage Goal

The goal for a cover group or point is the level at which the group or point is consid-
ered fully covered. The default is 100% coverage. If you set this level below 100%,
you are requesting less than complete coverage, which is probably not desirable. This
option affects only the coverage report.

Sample 9.44 Specifying the coverage goal

covergroup CoverPort;
 coverpoint port;
 option.goal = 90; // Settle for partial coverage
endgroup

9.10 Analyzing Coverage Data

In general, assume you need more seeds and fewer constraints. After all, it is easier to
run more tests than to construct new constraints. If you are not careful, new con-
straints can easily restrict the search space.

If your cover point has only zero or one sample, your constraints are probably not tar-
geting these areas at all. You need to add constraints that “pull” the solver into new
areas. In Sample 9.15, the transaction length had an uneven distribution. This situa-
tion is similar to the distribution seen when you roll two dice and look at the total
value.

Chapter 9:Functional Coverage330

Sample 9.45 Original class for transaction length

class Transaction;
 rand bit [2:0] hdr_len;
 rand bit [3:0] payload_len;
 rand bit [4:0] len;
 constraint length {len == hdr_len + payload_len; }
endclass

The problem with this class is that len is not evenly weighted (Figure 9-5).

Figure 9-5 Uneven probability for transaction length

If you want to make the total length be evenly distributed, use a solve...before con-
straint (Figure 9-6).

Sample 9.46 solve...before constraint for transaction length

constraint length {len == hdr_len + payload_len;
 solve len before hdr_len, payload_len; }

Figure 9-6 Even probability for transaction length with solve...before

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25
Transaction length

C
ou

nt

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25
Transaction length

C
ou

nt

Measuring Coverage Statistics During Simulation 331

The normal alternative to solve...before is the dist constraint. However, this does
not work, as len is also being constrained by the sum of the two lengths.

9.11 Measuring Coverage Statistics During Simulation

You can query the level of functional coverage on the fly during simulation. This
allows you to check whether you have reached your coverage goals, and possibly to
control a random test.

At the global level, you can get the total coverage of all cover groups with
$get_coverage, which returns a real number between 0 and 100. This system task
looks across all cover groups.

 You can narrow down your measurements with the get_coverage() and
get_inst_coverage() methods. The first function works with both cover group
names and instances to give coverage across all instances of a cover group, for exam-
ple, CoverGroup::get_coverage() or cgInst.get_coverage(). The second
function returns coverage for a specific cover group instance, for example
cgInst.get_inst_coverage(). You need to specify option.per_instance=1
if you want to gather perinstance coverage.

The most practical use for these functions is to monitor coverage over a long test. If
the coverage level does not advance after a given number of transactions or cycles,
the test should stop. Hopefully, another seed or test will increase the coverage.

While it would be nice to have a test that can perform some sophisticated actions
based on functional coverage results, it is very hard to write this sort of test. Each test
+ random seed pair may uncover new functionality, but it may take many runs to
reach a goal. If a test finds that it has not reached 100% coverage, what should it do?
Run for more cycles? How many more? Should it change the stimulus being gener-
ated? How can you correlate a change in the input with the level of functional
coverage? The one reliable thing to change is the random seed, which you should
only do once per simulation. Otherwise, how can you reproduce a design bug if the
stimulus depends on multiple random seeds?

You can query the functional coverage statistics if you want to create your own cover-
age database. Verification teams have built their own SQL databases that are fed
functional coverage data from simulation. This setup allows them greater control over
the data, but requires a lot of work outside of creating tests.

Some formal verification tools can extract the state of a design and then create input
stimulus to reach all possible states. Don’t try to duplicate this in your testbench!

Chapter 9:Functional Coverage332

9.12 Conclusion

When you switch from writing directed tests, hand-crafting every bit of stimulus, to
CRT, you might worry that the tests are no longer under your command. By measur-
ing coverage, especially functional coverage, you regain control by knowing what
features have been tested.

Using functional coverage requires a detailed verification plan and much time creat-
ing the cover groups, analyzing the results, and modifying tests to create the proper
stimulus. This may seem like a lot of work, but is less effort than would be required to
write the equivalent directed tests. Additionally, the time spent in gathering coverage
helps you better track your progress in verifying your design.

Chapter 10

Advanced Interfaces

In Chap. 4 you learned how to connect the design and testbench with interfaces.
These physical interfaces represent real signals, similar to the wires that connected
ports in Verilog-1995. A testbench uses these interfaces by statically connecting to
them through ports. However, for many designs, the testbench needs to connect
dynamically to the design.

For example, in a network switch, a single driver class may connect to many interfaces,
one for each input channel of the DUT. You wouldn’t want to write a unique driver for
each channel – instead you want to write a generic driver, instantiate it N times, and
have it connected to each of the N physical interfaces. You can do this in SystemVerilog
by using a virtual interface, which is merely a handle or pointer to a physical interface.1

You may need to write a testbench that attaches to several different configurations of
your design. In another example, a chip may have multiple configurations. In one, the
pins might drive a USB bus, whereas in another the same pins may drive a I2C serial
bus. Once again, you can use a virtual interface so that you can decide at run-time
which drivers to run in your testbench.

A SystemVerilog interface is more than just signals – you can put executable code
inside. This might include routines to read and write to the interface, initial and
always blocks that run code inside the interface, and assertions to constantly check
the status of the signals. However, do not put testbench code in an interface. Program
blocks have been created expressly for building a testbench, including scheduling
their execution in the Reactive region, as described in the SystemVerilog LRM.

1A better name for a virtual interface would be a “ref interface.”

Chapter 10:Advanced Interfaces334

Many of the examples in this chapter can be downloaded from the author’s web site:
http://chris.spear.net/systemverilog

10.1 Virtual Interfaces with the ATM Router

The most common use for a virtual interface is to allow objects in a testbench to refer
to items in a replicated interface using a generic handle rather than the actual name.
Virtual interfaces are the only mechanism that can bridge the dynamic world of
objects with the static world of modules and interfaces.

10.1.1 The Testbench with Just Physical Interfaces

Chap. 4 showed how to build an interface to connect a 4 × 4 ATM router to a test-
bench. Samples 10.1 and 10.2 show the ATM interfaces for the receive and transmit
directions.

Sample 10.1 Rx interface with clocking block

// Rx interface with modports and clocking block
interface Rx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, rclk;

 clocking cb @(posedge clk);
 output data, soc, clav; // Directions are relative
 input en; // to the testbench
 endclocking : cb

 modport TB (clocking cb);

 modport DUT (output en, rclk,
 input data, soc, clav);
endinterface : Rx_if

Sample 10.2 Tx interface with clocking block

// Tx interface with modports and clocking block
interface Tx_if (input logic clk);
 logic [7:0] data;
 logic soc, en, clav, tclk;

 clocking cb @(posedge clk);
 input data, soc, en;
 output clav;
 endclocking : cb

Virtual Interfaces with the ATM Router 335

 modport TB (clocking cb);

 modport DUT (output data, soc, en, tclk,
 input clav);
endinterface : Tx_if

These interfaces can be used in a program block shown in Sample 10.3. This proce-
dural code is hard coded with interface names such as Rx0 and Tx0.

Sample 10.3 Testbench using physical interfaces

program automatic test(Rx_if.TB Rx0, Rx1, Rx2, Rx3,
 Tx_if.TB Tx0, Tx1, Tx2, Tx3,
 input logic clk, output logic rst);

 bit [7:0] bytes[`ATM_SIZE];

 initial begin
 // Reset the device
 rst <= 1;
 Rx0.cb.data <= 0;
 ...
 receive_cell0;
 ...
 end

 task receive_cell0;
 @(Tx0.cb);
 Tx0.cb.clav <= 1; // Assert ready to receive
 wait (Tx0.cb.soc == 1); // Wait for Start of Cell

 for (int i=0; i<`ATM_SIZE; i++) begin
 wait (Tx0.cb.en == 0); // Wait for enable
 @(Tx0.cb);

 bytes[i] = Tx0.cb.data;
 @(Tx0.cb);
 Tx0.cb.clav <= 0; // Deassert flow control
 end
 endtask

endprogram

Figure 10-1 shows the testbench communicating with the design through interfaces.

Chapter 10:Advanced Interfaces336

Figure 10-1 Router and testbench with interfaces

 The top level module must connect an array of interfaces to work with the testbench
in Sample 10.6. The module in Sample 10.4 instantiates an array of interfaces, and
passes this array to the testbench. Since the DUT was written with four RX and four
TX interfaces, you need to pass the individual interface array elements into the DUT
instance.

Sample 10.4 Top level module with array of interfaces

module top;
 logic clk, rst;

 Rx_if Rx[4] (clk);
 Tx_if Tx[4] (clk);

 test t1 (Rx, Tx, rst);
 atm_router a1 (Rx[0], Rx[1], Rx[2], Rx[3],
 Tx[0], Tx[1], Tx[2], Tx[3],
 clk, rst);

 initial begin
 clk = 0;
 forever #20 clk = !clk;
 end
endmodule : top

10.1.2 Testbench with Virtual Interfaces

A good OOP technique is to create a class that uses a handle to reference an object,
rather than a hard-coded object name. In this case, you can make a single Driver class
and a single Monitor class, have them operate on a handle to the data, and then pass in
the handle at run-time.

4x4 ATM
router

Testbench

Rx Tx m0

m2
m3

m1
d0

d2
d3

d1

top

4x4 ATM
router

Testbench

Rx Tx m0

m2
m3

m1
d0

d2
d3

d1

top

Virtual Interfaces with the ATM Router 337

The program block in Sample 10.5 still passed the 4 Rx and 4 Tx interfaces as ports,
as in Sample 10.3, but it creates an array of virtual interfaces, vRx and vTx. These can
now be passed into the constructors for the drivers and monitors.

Sample 10.5 Testbench using virtual interfaces

program automatic test(Rx_if.TB Rx0, Rx1, Rx2, Rx3,
 Tx_if.TB Tx0, Tx1, Tx2, Tx3,
 output logic rst);

 Driver drv[4];
 Monitor mon[4];
 Scoreboard scb[4];

 virtual Rx_if.TB vRx[4] = Õ{Rx0, Rx1, Rx2, Rx3};
 virtual Tx_if.TB vTx[4] = Õ{Tx0, Tx1, Tx2, Tx3};

 initial begin
 foreach (scb[i]) begin
 scb[i] = new(i);
 drv[i] = new(scb[i].exp_mbx, i, vRx[i]);
 mon[i] = new(scb[i].rcv_mbx, i, vTx[i]);
 end
 ...
 end
endprogram

You can also skip the virtual interface array variables, and make an array in the port
list. These interfaces can be passed into the constructors as shown in the test in Sam-
ple 10.6.

Sample 10.6 Testbench using virtual interfaces

program automatic test(Rx_if.TB Rx[4], Tx_if.TB Tx[4],
 output logic rst);

...
 initial begin
 foreach (scb[i]) begin
 scb[i] = new(i);
 drv[i] = new(scb[i].exp_mbx, i, Rx[i]);
 mon[i] = new(scb[i].rcv_mbx, i, Tx[i]);
 end
 ...
 end
endprogram

The driver class in Sample 10.7 looks similar to the code in Sample 10.3, except it
uses the virtual interface name Rx instead of the physical interface Rx0.

Chapter 10:Advanced Interfaces338

Sample 10.7 Driver class using virtual interfaces

class Driver;
 int stream_id;
 bit done = 0;
 mailbox exp_mbx;
 virtual Rx_if.TB Rx;

 function new(input mailbox exp_mbx,
 input int stream_id,
 input virtual Rx_if.TB Rx);
 this.exp_mbx = exp_mbx;
 this.stream_id = stream_id;
 this.Rx = Rx;
 endfunction

 task run(input int ncells, input event driver_done);
 ATM_Cell ac;

 fork // Spawn this as a separate thread
 begin
 // Initialize output signals
 Rx.cb.clav <= 0;
 Rx.cb.soc <= 0;
 @Rx.cb;

 // Drive cells until the last one is sent
 repeat (ncells) begin
 ac = new
 assert(ac.randomize);
 if (ac.eot_cell) break; // End transmission
 drive_cell(ac);
 end

 $display("@%0t: Driver::run Driver[%0d] is done",
 $time, stream_id);
 -> driver_done;
 end
 join_none
 endtask : run

 task drive_cell(input ATM_Cell ac);
 bit [7:0] bytes[];

 #ac.delay;
 ac.byte_pack(bytes);

 $display("@%0t: Driver::drive_cell(%0d) vci=%h",
 $time, stream_id, ac.vci);

Virtual Interfaces with the ATM Router 339

 // Wait to start on a new cycle
 @Rx.cb;
 Rx.cb.clav <= 1; // Assert ready to xfr
 do
 @Rx.cb;
 while (Rx.cb.en != 0) // Wait for enable low

 Rx.cb.soc <= 1; // Start of cell
 Rx.cb.data <= bytes[0]; // Drive first byte
 @Rx.cb;
 Rx.cb.soc <= 0; // Start of cell done
 Rx.cb.data <= bytes[1]; // Drive first byte

 for (int i=2; i<`ATM_SIZE; i++) begin
 @Rx.cb;
 Rx.cb.data <= bytes[i];
 end

 @Rx.cb;
 Rx.cb.soc <= 1'bz; // Tristate SOC at end
 Rx.cb.clav <= 0;
 Rx.cb.data <= 8'bz; // Clear data lines
 $display("@%0t: Driver::drive_cell(%0d) finish",
 $time, stream_id);

 // Send cell to scoreboard
 exp_mbx.put(ac);

 endtask : drive_cell_t

endclass : Driver

10.1.3 Connecting the Testbench to an Interface in Port List

This book shows tests that connect to the DUT with interfaces in the port list. This
style is comfortable to Verilog users who have always connected modules using sig-
nals in ports. Sample 10.8 is the top level module, also known as a test harness, which
connects the DUT and test using an interface in the port list.

Chapter 10:Advanced Interfaces340

Sample 10.8 Test harness using an interface in the port list

module top;
 bus_ifc bus(); // Instantiate the interface
 test t1(bus); // Pass to test through port list
 dut d1(bus); // Pass to DUT through port list
 ...
endmodule

Sample 10.9 shows the program block with an interface in the port list.

Sample 10.9 Test with an interface in the port list

program automatic test(bus_ifc bus);
 initial $display(bus.data); // Use an interface signal
endprogram

What happens if you add a new interface to your design? The test harness in Sample
10.10 declares the new bus and put it in the port lists.

Sample 10.10 Top module with a second interface in the test’s port list

module top;
 bus_ifc bus(); // Instantiate the interface
 new_ifc newb(); // and a new one
 test t1(bus, newb); // Test with two interfaces
 dut d1(bus, newb); // DUT with two interfaces
 ...
endmodule

Now you have to change the test in Sample 10.9 to include another interface in the
port list, giving the test in Sample 10.11.

Sample 10.11 Test with two interfaces in the port list

program automatic test(bus_ifc bus, new_ifc newb);
 initial $display(bus.data); // Use an interface signal
endprogram

Adding a new interface to your design means you need to edit all existing tests so that
they can plug into the test harness. How can you avoid this extra work? Avoid port
connections!

10.1.4 Connecting the Test to an Interface with an XMR

Your test needs to connect to the physical interface in the harness, and so use a cross
module reference (XMR) and a virtual interface in the program block as shown in
Sample 10.12. You must use a virtual interface so that you can assign it the physical
interface in the top level module.

Virtual Interfaces with the ATM Router 341

Sample 10.12 Test with virtual interface and XMR

program automatic test();
 virtual bus_ifc bus = top.bus; // Cross module reference
 initial $display(bus.data); // Use an interface signal
endprogram

The program connects to the test harness shown in Sample 10.13.

Sample 10.13 Test harness without interfaces in the port list

module top;
 bus_ifc bus(); // Instantiate the interface
 test t1(); // DonÕt use port list for test
 dut d1(bus); // Still use port list for DUT
 ...
endmodule

This approach is recommended by methodologies such as the VMM to make your test
code more reusable. If you add a new interface to your design, as shown in Sample
10.14, the test harness changes, but existing tests don’t have to change.

Sample 10.14 Test harness with a second interface

module top;
 bus_ifc bus(); // Instantiate the interface
 new_ifc newb(); // and a new one
 test t1(); // Instantiaton remains the same
 dut d1(bus, newb);
 ...
endmodule

The harness in Sample 10.14 works with the test in Sample 10.12 that does not know
about the new interface, as well as the test in Sample 10.15 that does.

Sample 10.15 Test with two virtual interfaces and XMRs

program automatic test();
 virtual bus_ifc bus = top.bus;
 virtual new_ifc newb = top.newb

 initial begin
 $display(bus.data); // Use existing interface
 $display(newb.addr); // and new one
 end
endprogram

Chapter 10:Advanced Interfaces342

Some methodologies have a rule that makes the connection between
tests and harnesses slightly more complicated than with traditional
ports, but means you don’t have to modify existing tests, even if the
design changes. The examples in this book use the simple style of
interfaces in the port lists, but you should decide if test reuse is impor-
tant enough to change your coding style.

10.2 Connecting to Multiple Design Configurations

A common challenge to verifying a design is that it may have several configurations.
You could make a separate testbench for each configuration, but this could lead to a
combinatorial explosion as you explore every alternative. Instead, you can use virtual
interfaces to dynamically connect to the optional interfaces.

10.2.1 A Mesh Design

Sample 10.16 is built of a simple replicated component, an 8-bit counter. This resem-
bles a DUT that has a device such as a network chip or processor that is instantiated
repeatedly in a mesh configuration. The key idea is that the top-level netlist creates an
array of interfaces and counters. Now the testbench can connect its array of virtual
interfaces to the physical ones.

Sample 10.16 shows the code for the counter’s interface, X_if. It has a $strobe in
an always block to print the signal values.

Sample 10.16 Interface for 8-bit counter

interface X_if (input logic clk);
 logic [7:0] din, dout;
 logic reset_l, load;

 clocking cb @(posedge clk);
 output din, load;
 input dout;
 endclocking

 always @cb
 $strobe("@%0t: %m: out=%0d, in=%0d, ld=%0d, r=%0d",
 $time, dout, din, load, reset_l);

 modport DUT (input clk, din, reset_l, load,
 output dout);

 modport TB (clocking cb, output reset_l);
endinterface

Connecting to Multiple Design Configurations 343

The simple counter is shown in Sample 10.17.

Sample 10.17 Counter model using X_if interface

// Simple 8-bit counter with load and active-low reset
module dut(X_if.DUT xi);
 logic [7:0] count;
 assign xi.dout = count;

 always @(posedge xi.clk or negedge xi.reset_l)
 begin
 if (!xi.reset_l) count <= 0;
 else if (xi.load) count <= xi.din;
 else count <= count+1;
 end
endmodule

The top-level netlist in Sample 10.18 uses a generate statement to instantiate NUM_XI
interfaces and counters, but only one testbench.

Sample 10.18 Testbench using an array of virtual interfaces

parameter NUM_XI = 2; // Number of design instances

module top;
 // Clock generator
 bit clk;
 initial begin
 clk <= '0;
 forever #20 clk = ~clk;
 end

 // Instantiate N interfaces
 X_if xi[NUM_XI] (clk);

 // Instantiate the testbench
 test tb();

 // Generate N DUT instances
 generate
 for (genvar i=0; i<NUM_XI; i++)
 begin : dut_blk
 dut d (xi[i]);
 end
 endgenerate

endmodule : top

Chapter 10:Advanced Interfaces344

In Sample 10.19, the key line in the testbench is where the local virtual interface
array, vxi, is assigned to point to the array of physical interfaces in the top module,
top.xi. (Note that this example takes some shortcuts compared to the recommenda-
tions in Chap. 8. To simplify Sample 10.18, the environment class has been merged
with the test, whereas the generator, agent, and driver layers have been compressed
into the driver.)

The testbench assumes there is at least one counter and thus at least one X interface. If
your design could have zero counters, you would have to use a dynamic array to hold
the virtual interfaces, as a fixed-size array cannot have a size of zero.

Sample 10.19 Counter testbench using virtual interfaces

program automatic test;

 virtual X_if.TB vxi[NUM_XI]; // Virtual interface array
 Driver driver[];

 initial begin
 // Connect local virtual interface to top
 vxi = top.xi;

 // Create N drivers
 driver = new[NUM_XI];
 foreach (driver[i])
 driver[i] = new(vxi[i], i);

 foreach (driver[i]) begin
 int j = i
 fork
 begin
 driver[j].reset();
 driver[j].load_op();
 end
 join_none

 repeat (10) @(vxi[0].cb);
 end

endprogram

Of course in this simple example, you could just pass the interface directly into the
Driver’s constructor, rather than make a separate variable.

In Sample 10.20, the Driver class uses a single virtual interface to drive and sample
signals from the counter.

Connecting to Multiple Design Configurations 345

Sample 10.20 Driver class using virtual interfaces

class Driver;
 virtual X_if xi;
 int id;

 function new(input virtual X_if.TB xi, input int id);
 this.xi = xi;
 this.id = id;
 endfunction

 task reset();
 $display("@%0t: %m: Start reset [%0d]",
 $time, id);
 // Reset the device
 xi.reset_l <= 1;
 xi.cb.load <= 0;
 xi.cb.din <= 0;
 @(xi.cb) xi.reset_l <= 0;
 @(xi.cb) xi.reset_l <= 1;
 $display("@%0t: %m: End reset [%0d]",
 $time, id);
 endtask : reset

 task load_op();
 $display("@%0t: %m: Start load [%0d]",
 $time, id);
 ##1 xi.cb.load <= 1;
 xi.cb.din <= id + 10;

 ##1 xi.cb.load <= 0;
 repeat (5) @(xi.cb);
 $display("@%0t: %m: End load [%0d]",
 $time, id);
 endtask : load_op

endclass : Driver

10.2.2 Using typedefs with Virtual Interfaces

You can reduce the amount of typing, and ensure you always use the correct modport
by replacing “virtual X_if.TB” with a typedef, as shown in Samples 10.21 and
10.22 of the testbench and driver.

Chapter 10:Advanced Interfaces346

Sample 10.21 Testbench using a typedef for virtual interfaces

typedef virtual X_if.TB vx_if;

program automatic test;
 vx_if vxi[NUM_XI]; // Virtual interface array
 Driver driver[];
 ...
endprogram

Sample 10.22 Driver using a typedef for virtual interfaces

class Driver;
 vx_if xi;
 int id;

 function new(input vx_if xi, input int id);
 this.xi = xi;
 this.id = id;
 endfunction
 ...
endclass : Driver

10.2.3 Passing Virtual Interface Array Using a Port

The previous examples passed the array of virtual interfaces using a cross module ref-
erence (XMR). An alternative is to pass the array in a port. Since the array in the top
netlist is static and so only needs to be referenced once, the XMR style makes more
sense than using a port that normally is used to pass changing values.

Sample 10.23 uses a global parameter to define the number of X interfaces. Here is a
snippet of the top netlist.

Sample 10.23 Testbench using an array of virtual interfaces

parameter NUM_XI = 2; // Number of instances

module top;
 // Instantiate N interfaces
 X_if xi [NUM_XI] (clk);

 ...
 // Instantiate the testbench
 test tb(xi);

endmodule : top

Procedural Code in an Interface 347

The testbench that uses the virtual interfaces is shown in Sample 10.24. It creates an
array of virtual interfaces so that it can pass them into the constructor for the driver
class, or just pass the interface directly from the port.

Sample 10.24 Testbench passing virtual interfaces with a port

program automatic test(X_if xi [NUM_XI]);

 Driver driver[];
 virtual X_if vxi[NUM_XI];

 initial begin
 // Connect the local virtual interfaces to the top
 if (NUM_XI <= 0) $finish;

 driver = new[NUM_XI];
 vxi = xi; // Assign the interface array

 for (int i=0; i<NUM_XI; i++) begin
 driver[i] = new(vxi[i], i);
 driver[i].reset;
 end
 ...
 end

endprogram

10.3 Procedural Code in an Interface

Just as a class contains both variables and routines, an interface can contain code such
as routines, assertions, and initial and always blocks. Recall that an interface
includes the signals and functionality of the communication between two blocks. So
the interface block for a bus can contain the signals and also routines to perform com-
mands such as a read or write. The inner workings of these routines are hidden from
the external blocks, allowing you to defer the actual implementation. Access to these
routines is controlled using the modport statement, just as with signals. A task or
function is imported into a modport so that it is then visible to any block that uses the
modport.

These routines can be used by both the design and the testbench. This approach
ensures that both are using the same protocol, eliminating a common source of test-
bench bugs. However, not all synthesis tools can handle routines in an assertion.

You can verify a protocol with assertions in an interface. An assertion can check
for illegal combinations, such as protocol violations and unknown values. These
can display state information and stop simulation immediately so that you can eas-
ily debug the problem. An assertion can also fire when good transactions occur.

Chapter 10:Advanced Interfaces348

Functional coverage code will use this type of assertion to trigger the gathering of
coverage information.

10.3.1 Interface with Parallel Protocol

When creating your system, you may not know whether to choose a parallel or serial
protocol. The interface in Sample 10.25 has two tasks, initiatorSend and targe
tRcv, that send a transaction between two blocks using the interface signals. It sends
the address and data in parallel across two 8-bit buses.

Sample 10.25 Interface with tasks for parallel protocol

interface simple_if(input logic clk);
 logic [7:0] addr;
 logic [7:0] data;
 bus_cmd_e cmd;
 modport TARGET
 (input addr, cmd, data,
 import task targetRcv (output bus_cmd_e c,
 logic [7:0] a, d));
 modport INITIATOR
 (output addr, cmd, data,
 import task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d)
);

 // Parallel send
 task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d);
 @(posedge clk);
 cmd <= c;
 addr <= a;
 data <= d;
 endtask

 // Parallel receive
 task targetRcv(output bus_cmd_e c, logic [7:0] a, d);
 @(posedge clk);
 a = addr;
 d = data;
 c = cmd;
 endtask
endinterface: simple_if

Procedural Code in an Interface 349

10.3.2 Interface with Serial Protocol

The interface in Sample 10.26 implements a serial interface for sending and receiving
the address and data values. It has the same interface and routine names as Sample
10.25, and so you can swap between the two without having to change any design or
testbench code.

Sample 10.26 Interface with tasks for serial protocol

interface simple_if(input logic clk);
 logic addr;
 logic data;
 logic start = 0;
 bus_cmd_e cmd;

 modport TARGET(input addr, cmd, data,
 import task targetRcv (output bus_cmd_e c,
 logic [7:0] a, d));
 modport INITIATOR(output addr, cmd, data,
 import task initiatorSend(input bus_cmd_e c,
 logic [7:0] a, d));

 // Serial send
 task initiatorSend(input bus_cmd_e c, logic [7:0] a, d);
 @(posedge clk);
 start <= 1;
 cmd <= c;
 foreach (a[i]) begin
 addr <= a[i];
 data <= d[i];
 @(posedge clk);
 start <= 0;
 end
 cmd <= IDLE;
 endtask

 // Serial receive
 task targetRcv(output bus_cmd_e c, logic [7:0] a, d);
 @(posedge start);
 c = cmd;
 foreach (a[i]) begin
 @(posedge clk);
 a[i] = addr;
 d[i] = data;
 end
 endtask

endinterface: simple_if

Chapter 10:Advanced Interfaces350

10.3.3 Limitations of Interface Code

Tasks in interfaces are fine for RTL, where the functionality is strictly defined. How-
ever, these tasks are a poor choice for any type of verification IP. Interfaces and their
code cannot be extended, overloaded, or dynamically instantiated based on configura-
tion. An interface cannot have private data. Any code for verification needs maximum
flexibility and configurability, and so should go in classes that run in a program block.

10.4 Conclusion

The interface construct in SystemVerilog provides a powerful technique to group
together the connectivity, timing, and functionality for the communication between
blocks. In this chapter you saw how you can create a single testbench that connects to
many different design configurations containing multiple interfaces. Your signal layer
code can connect to a variable number of physical interfaces at run-time with virtual
interfaces. Additionally, an interface can have routines that drives the signals and
assertions to check the protocol, but put the test in a program block, not an interface.

In many ways, an interface can resemble a class with pointers, encapsulation, and
abstraction. This lets you create an interface to model your system at a higher level
than Verilog’s traditional ports and wires. Just remember to keep the testbench in the
program block.

Chapter 11

A Complete SystemVerilog
Testbench

This chapter applies the many concepts you have learned about SystemVerilog fea-
tures to verify a design. The testbench creates constrained random stimulus, and
gathers functional coverage. It is structured according to the guidelines from Chap. 8
and so you can inject new behavior without modifying the lower-level blocks.

The design is an ATM switch that was shown in Sutherland et al. (2006), who based
his SystemVerilog description on an example from Janick Bergeron’s Verification
Guild. Sutherland took the original Verilog design and used SystemVerilog design
features to create a switch that can be configured from 4 × 4 to 16 × 16. The testbench
in the original example creates ATM cells using $urandom, overwrites certain fields
with ID values, sends them through the device, and then checks that the same values
were received.

The entire example, with the testbench and ATM switch, is available for download at
http://chris.spear.net/systemverilog. This chapter shows just the test-
bench code.

11.1 Design Blocks

The overall connection between the design and testbench, shown in Figure 11-1,
follows the pattern shown in Chap. 4.

Chapter 11:A Complete SystemVerilog Testbench352

Figure 11-1 The testbench – design environment

The top level of the design is called squat, as shown in Figure 11-2. The module has
1..N Utopia Rx interfaces that are sending UNI-formatted cells. Inside the DUT, cells
are stored, converted to NNI format, and forwarded to the Tx interfaces. The forward-
ing is done according to a lookup table that is addressed with the VPI field of the
incoming cell. The table is programmed through the management interface.

Figure 11-2 Block diagram for the squat design

The top level module in Sample 11.1 defines arrays of interfaces for the Rx and Tx
ports.

Testbench

Design
Under
Test

inputs outputs

Testbench

Design
Under
Test

inputs outputs

Rx
Utopia

Rx
Utopia

Rewrite
Cell

Tx
Utopia

Tx
Utopia

Register
File

Mgmt
I/F

Rx
Utopia

Rx
Utopia

Rewrite
Cell

Tx
Utopia

Tx
Utopia

Register
File

Mgmt
I/F

Design Blocks 353

Sample 11.1 Top level module

`timescale 1ns/1ns
`define TxPorts 4 // set number of transmit ports
`define RxPorts 4 // set number of receive ports

module top;
 parameter int NumRx = `RxPorts;
 parameter int NumTx = `TxPorts;

 logic rst, clk;
 // System Clock and Reset
 initial begin
 rst = 0; clk = 0;
 #5ns rst = 1;
 #5ns clk = 1;
 #5ns rst = 0; clk = 0;
 forever
 #5ns clk = ~clk;
 end

 Utopia Rx[0:NumRx-1] ();// NumRx x Level 1 Utopia Rx Interface
 Utopia Tx[0:NumTx-1] ();// NumTx x Level 1 Utopia Tx Interface
 cpu_ifc mif(); // Utopia management interface
 squat #(NumRx, NumTx) squat(Rx, Tx, mif, rst, clk); // DUT
 test #(NumRx, NumTx) t1(Rx, Tx, mif, rst, clk); // Test
endmodule : top

The testbench program in Sample 11.2 passes the interfaces and signals through the
port list. See Section 10.1.4 for a discussion on posts vs. cross module references. The
actual testbench code is in the Environment class. The program steps through the
phases of the environment.

Chapter 11:A Complete SystemVerilog Testbench354

Sample 11.2 Testbench program

program automatic test
 #(parameter int NumRx = 4, parameter int NumTx = 4)
 (Utopia.TB_Rx Rx[0:NumRx-1],
 Utopia.TB_Tx Tx[0:NumTx-1],
 cpu_ifc.Test mif,
 input logic rst, clk);

`include "environment.sv"
 Environment env;

 initial begin
 env = new(Rx, Tx, NumRx, NumTx, mif);
 env.gen_cfg();
 env.build();
 env.run();
 env.wrap_up();
 end
endprogram // test

The testbench loads control information into the ATM switch through the Manage-
ment interface, also known as the CPU interface, shown in Sample 11.3. In this
chapter’s examples, the interface is only used to load the lookup table that maps VPI
to forwarding masks.

Sample 11.3 CPU Management Interface

interface cpu_ifc;
 logic BusMode, Sel, Rd_DS, Wr_RW, Rdy_Dtack;
 logic [11:0] Addr;
 CellCfgType DataIn, DataOut; // Defined in Sample 11.11

 modport Peripheral
 (input BusMode, Addr, Sel, DataIn, Rd_DS, Wr_RW,
 output DataOut, Rdy_Dtack);

 modport Test
 (output BusMode, Addr, Sel, DataIn, Rd_DS, Wr_RW,
 input DataOut, Rdy_Dtack);

endinterface : cpu_ifc

typedef virtual cpu_ifc.Test vCPU_T;

Sample 11.4 shows the Utopia interface, which is used by the testbench to communi-
cate with the squat design by transmitting and receiving ATM cells. The interface has
clocking blocks for the transmit and receive paths, and modports for the design and
testbench connections to the interface.

Design Blocks 355

Sample 11.4 Utopia interface

interface Utopia;
 parameter int IfWidth = 8;

 logic [IfWidth-1:0] data;
 bit clk_in, clk_out;
 bit soc, en, clav, valid, ready, reset, selected;

 ATMCellType ATMcell; // union of structures for ATM cells

 modport TopReceive (
 input data, soc, clav,
 output clk_in, reset, ready, clk_out, en, ATMcell, valid);

 modport TopTransmit (
 input clav,
 inout selected,
 output clk_in, clk_out, ATMcell, data, soc, en, valid,
reset, ready);

 modport CoreReceive (
 input clk_in, data, soc, clav, ready, reset,
 output clk_out, en, ATMcell, valid);

 modport CoreTransmit (
 input clk_in, clav, ATMcell, valid, reset,
 output clk_out, data, soc, en, ready);

 clocking cbr @(negedge clk_out);
 input clk_in, clk_out, ATMcell, valid, reset, en, ready;
 output data, soc, clav;
 endclocking : cbr
 modport TB_Rx (clocking cbr);

 clocking cbt @(negedge clk_out);
 input clk_out, clk_in, ATMcell, soc, en, valid,
 reset, data, ready;
 output clav;
 endclocking : cbt
 modport TB_Tx (clocking cbt);

endinterface

typedef virtual Utopia vUtopia;
typedef virtual Utopia.TB_Rx vUtopiaRx;
typedef virtual Utopia.TB_Tx vUtopiaTx;

Chapter 11:A Complete SystemVerilog Testbench356

11.2 Testbench Blocks

The environment class, as shown in Section 8.2.1, is the scaffolding that supports the
testbench structure. Inside this class lies the blocks of your layered testbench, such as
generators, drivers, monitors, and scoreboard. The environment also controls the
sequencing of the four testbench steps: generate a random configuration, build the
testbench environment, run the test and wait for it to complete, and a wrap-up phase
to shut down the system and generate reports.

Sample 11.5 Environment class header

class Environment;
 UNI_generator gen[];
 mailbox gen2drv[];
 event drv2gen[];
 Driver drv[];
 Monitor mon[];
 Config cfg;
 Scoreboard scb;
 Coverage cov;
 virtual Utopia.TB_Rx Rx[];
 virtual Utopia.TB_Tx Tx[];
 int numRx, numTx;
 vCPU_T mif;
 CPU_driver cpu;

 extern function new(input vUtopiaRx Rx[],
 input vUtopiaTx Tx[],
 input int numRx, numTx,
 input vCPU_T mif);
 extern virtual function void gen_cfg();
 extern virtual function void build();
 extern virtual task run();
 extern virtual function void wrap_up();

endclass : Environment

With the $test$plusargs() system task, the Environment class constructor in
Sample 11.6 looks for the VCS switch +ntb_random_seed, which sets the random
seed for the simulation. The system task $value$plusargs() extracts the value
from the switch. Your simulator may have a different way to set the seed. It is impor-
tant to print the seed in the log file so that if the test fails, you can run it again with the
same value.

Testbench Blocks 357

Sample 11.6 Environment class methods

//---
// Construct an environment instance
function Environment::new(input vUtopiaRx Rx[],
 input vUtopiaTx Tx[],
 input int numRx, numTx,
 input vCPU_T mif);
 this.Rx = new[Rx.size()];
 foreach (Rx[i]) this.Rx[i] = Rx[i];
 this.Tx = new[Tx.size()];
 foreach (Tx[i]) this.Tx[i] = Tx[i];
 this.numRx = numRx;
 this.numTx = numTx;
 this.mif = mif;
 cfg = new(NumRx,NumTx);

 if ($test$plusargs("ntb_random_seed")) begin
 int seed;
 $value$plusargs("ntb_random_seed=%d", seed);
 $display("Simulation run with random seed=%0d", seed);
 end
 else
 $display("Simulation run with default random seed");
endfunction : new

//---
// Randomize the configuration descriptor
function void Environment::gen_cfg();
 assert(cfg.randomize());
 cfg.display();
endfunction : gen_cfg

//---
// Build the environment objects for this test
// Note that objects are built for every channel,
// even if they are not used. This reduces null handle bugs.
function void Environment::build();
 cpu = new(mif, cfg);
 gen = new[numRx];
 drv = new[numRx];
 gen2drv = new[numRx];
 drv2gen = new[numRx];
 scb = new(cfg);
 cov = new();

 // Build generators
 foreach(gen[i]) begin
 gen2drv[i] = new();

Chapter 11:A Complete SystemVerilog Testbench358

 gen[i] = new(gen2drv[i], drv2gen[i],
 cfg.cells_per_chan[i], i);
 drv[i] = new(gen2drv[i], drv2gen[i], Rx[i], i);
 end

 // Build monitors
 mon = new[numTx];
 foreach (mon[i])
 mon[i] = new(Tx[i], i);

 // Connect scoreboard to drivers & monitors with callbacks
 begin
 Scb_Driver_cbs sdc = new(scb);
 Scb_Monitor_cbs smc = new(scb);
 foreach (drv[i]) drv[i].cbsq.push_back(sdc);
 foreach (mon[i]) mon[i].cbsq.push_back(smc);
 end

 // Connect coverage to monitor with callbacks
 begin
 Cov_Monitor_cbs smc = new(cov);
 foreach (mon[i])
 mon[i].cbsq.push_back(smc);
 end
endfunction : build

//---
// Start the transactors: generators, drivers, monitors
// Channels that are not in use don't get started
task Environment::run();
 int num_gen_running;

 // The CPU interface initializes before anyone else
 cpu.run();

 num_gen_running = numRx;

 // For each input RX channel, start generator and driver
 foreach(gen[i]) begin
 int j=i; // Automatic var holds index in spawned threads
 fork
 begin
 if (cfg.in_use_Rx[j])
 gen[j].run(); // Wait for generator to finish
 num_gen_running--;// Decrement driver count
 end
 if (cfg.in_use_Rx[j]) drv[j].run();
 join_none
 end

Testbench Blocks 359

 // For each output TX channel, start monitor
 foreach(mon[i]) begin
 int j=i; // Automatic var holds index in spawned threads
 fork
 mon[j].run();
 join_none
 end

 // Wait for all generators to finish, or time-out
 fork : timeout_block
 wait (num_gen_running == 0);
 begin
 repeat (1_000_000) @(Rx[0].cbr);
 $display("@%0t: %m ERROR: Generator timeout ", $time);
 cfg.nErrors++;
 end
 join_any
 disable timeout_block;

 // Wait for the data to flow through switch, into monitors,
 // and scoreboards
 repeat (1_000) @(Rx[0].cbr);
endtask : run

//---
// Post-run cleanup / reporting
function void Environment::wrap_up();
 $display("@%0t: End of sim, %0d errors, %0d warnings",
 $time, cfg.nErrors, cfg.nWarnings);
 scb.wrap_up;
endfunction : wrap_up

The method Environment::build in Sample 11.6 connects the scoreboard to the
driver and monitor with the callback class, which is shown in Sample 11.7,
Scb_Driver_cbs. This class sends the expected values to the scoreboard. The base
driver callback class, Driver_cbs, is shown in Sample 11.20.

Chapter 11:A Complete SystemVerilog Testbench360

Sample 11.7 Callback class connects driver and scoreboard

class Scb_Driver_cbs extends Driver_cbs;
 Scoreboard scb;

 function new(input Scoreboard scb);
 this.scb = scb;
 endfunction : new

 // Send received cell to scoreboard
 virtual task post_tx(input Driver drv,
 input UNI_cell cell);
 scb.save_expected(cell);
 endtask : post_tx
endclass : Scb_Driver_cbs

The callback class in Sample 11.8, Scb_Monitor_cbs, connects the monitor with
the scoreboard. The base monitor callback class, Monitor_cbs, is shown in Sample
11.21.

Sample 11.8 Callback class connects monitor and scoreboard

class Scb_Monitor_cbs extends Monitor_cbs;
 Scoreboard scb;

 function new(input Scoreboard scb);
 this.scb = scb;
 endfunction : new

 // Send received cell to scoreboard
 virtual task post_rx(input Monitor mon,
 input NNI_cell cell);
 scb.check_actual(cell, mon.PortID);
 endtask : post_rx
endclass : Scb_Monitor_cbs

The environment connects the monitor to the coverage class with the final callback
class, Cov_Monitor_cbs, shown in Sample 11.9.

Testbench Blocks 361

Sample 11.9 Callback class connects the monitor and coverage

class Cov_Monitor_cbs extends Monitor_cbs;
 Coverage cov;

 function new(input Coverage cov);
 this.cov = cov;
 endfunction : new

 // Send received cell to coverage
 virtual task post_rx(input Monitor mon,
 input NNI_cell cell);
 CellCfgType CellCfg = top.squat.lut.read(cell.VPI);
 cov.sample(mon.PortID, CellCfg.FWD);
 endtask : post_rx
endclass : Cov_Monitor_cbs

The random configuration class header is shown in Sample 11.10. It starts with
nCells, a random value for the total number of cells that flow through the system.
The constraint c_nCells_valid ensures the number of cells is valid by being
greater than zero, whereas c_nCells_reasonable limits the test to a reasonable
size, 1,000 cells. You can disable or override this if you want longer tests.

Next is a dynamic bit array, in_use_Rx, to specify which Rx channels into the
switch are active. This is used in Sample 11.6 in the run method so that only active
channels run.

The array cells_per_chan is used to randomly divide the total number of cells
across the active channels. The constraint zero_unused_channels sets the number
of cells to zero for inactive channels. To help the solver, the active channel mask is
solved before dividing up the cells between channels. Otherwise, a channel would be
inactive only if the number of cells assigned to it was zero, which is very unlikely.

Chapter 11:A Complete SystemVerilog Testbench362

Sample 11.10 Environment configuration class

class Config;
 int nErrors, nWarnings; // Number of errors, warnings
 bit [31:0] numRx, numTx; // Copy of parameters

 rand bit [31:0] nCells; // Total cells
 constraint c_nCells_valid
 {nCells > 0; }
 constraint c_nCells_reasonable
 {nCells < 1000; }

 rand bit in_use_Rx[]; // Input / output channel enabled
 constraint c_in_use_valid
 {in_use_Rx.sum > 0; } // At least one RX is enabled

 rand bit [31:0] cells_per_chan[];
 constraint c_sum_ncells_sum // Split cells over all channels
 {cells_per_chan.sum == nCells;} // Total number of cells

 // Set the cell count to zero for any channel not in use
 constraint zero_unused_channels
 {foreach (cells_per_chan[i])
 {
 // Needed for even dist of in_use
 solve in_use_Rx[i] before cells_per_chan[i];
 if (in_use_Rx[i])
 cells_per_chan[i] inside {[1:nCells]};
 else cells_per_chan[i] == 0;
 }
 }

 extern function new(input bit [31:0] numRx, numTx);
 extern virtual function void display(input string prefix="");
endclass : Config

The cell rewriting and forwarding configuration type is shown in Sample 11.11.

Sample 11.11 Cell configuration type

typedef struct packed {
 bit [`TxPorts-1:0] FWD;
 bit [11:0] VPI;
} CellCfgType;

The methods for the configuration class are shown in Sample 11.12

Testbench Blocks 363

Sample 11.12 Configuration class methods

function Config::new(input bit [31:0] numRx, numTx);
 this.numRx = numRx;
 in_use_Rx = new[numRx];
 this.numTx = numTx;
 cells_per_chan = new[numRx];
endfunction : new

function void Config::display(input string prefix);
 $write("%sConfig: numRx=%0d, numRx=%0d, nCells=%0d (",
 prefix, numRx, numRx, nCells);
 foreach (cells_per_chan[i])
 $write("%0d ", cells_per_chan[i]);
 $write("), enabled RX: ", prefix);
 foreach (in_use_Rx[i]) if (in_use_Rx[i]) $write("%0d ", i);
 $display;
 endfunction : display

The ATM switch accepts UNI-formatted cells and sends out NNI formatted cells.
These cells are sent through both an OOP testbench and a structural design, and so
they are defined using typedef. The major difference between the two formats is
that the UNI’s GFC and VPI field are merged into the NNI’s VPI. The definitions in
Sample 11.13 through 11.11 from Sutherland et al. (2006).

Sample 11.13 UNI cell format

typedef struct packed {
 bit [3:0] GFC;
 bit [7:0] VPI;
 bit [15:0] VCI;
 bit CLP;
 bit [2:0] PT;
 bit [7:0] HEC;
 bit [0:47] [7:0] Payload;
} uniType;

Sample 11.14 NNI cell format

typedef struct packed {
 bit [11:0] VPI;
 bit [15:0] VCI;
 bit CLP;
 bit [2:0] PT;
 bit [7:0] HEC;
 bit [0:47] [7:0] Payload;
} nniType;

Chapter 11:A Complete SystemVerilog Testbench364

The UNI and NNI cells are merged with a byte memory to form a universal type,
shown in Sample 11.15.

Sample 11.15 ATMCellType

typedef union packed {
 uniType uni;
 nniType nni;
 bit [0:52] [7:0] Mem;
} ATMCellType;

The testbench generates constrained random ATM cells, shown in Sample 11.16, that
are extended from the BaseTr class, defined in Sample 8.26

Sample 11.16 UNI_cell definition

class UNI_cell extends BaseTr;
 // Physical fields
 rand bit [3:0] GFC;
 rand bit [7:0] VPI;
 rand bit [15:0] VCI;
 rand bit CLP;
 rand bit [2:0] PT;
 bit [7:0] HEC;
 rand bit [0:47] [7:0] Payload;

 // Meta-data fields
 static bit [7:0] syndrome[0:255];
 static bit syndrome_not_generated = 1;

 extern function new();
 extern function void post_randomize();
 extern virtual function bit compare(input BaseTr to);
 extern virtual function void display(input string prefix="");
 extern virtual function void copy_data(input UNI_cell copy);
 extern virtual function BaseTr copy(input BaseTr to=null);
 extern virtual function void pack(output ATMCellType to);
 extern virtual function void unpack(input ATMCellType from);
 extern function NNI_cell to_NNI();
 extern function void generate_syndrome();
 extern function bit [7:0] hec (bit [31:0] hdr);
endclass : UNI_cell

Sample 11.17 shows the methods for the UNI cell.

Testbench Blocks 365

Sample 11.17 UNI_cell methods

function UNI_cell::new();
 if (syndrome_not_generated)
 generate_syndrome();
endfunction : new

// Compute the HEC value after all other data has been chosen
function void UNI_cell::post_randomize();
 HEC = hec({GFC, VPI, VCI, CLP, PT});
endfunction : post_randomize

// Compare this cell with another
// This could be improved by telling what field mismatched
function bit UNI_cell::compare(input BaseTr to);
 UNI_cell cell;
 $cast(cell, to);
 if (this.GFC != cell.GFC) return 0;
 if (this.VPI != cell.VPI) return 0;
 if (this.VCI != cell.VCI) return 0;
 if (this.CLP != cell.CLP) return 0;
 if (this.PT != cell.PT) return 0;
 if (this.HEC != cell.HEC) return 0;
 if (this.Payload != cell.Payload) return 0;
 return 1;
endfunction : compare

// Print a ÒprettyÓ version of this object
function void UNI_cell::display(input string prefix);
 ATMCellType p;

 $display("%sUNI id:%0d GFC=%x, VPI=%x, VCI=%x, CLP=%b, PT=%x,
HEC=%x, Payload[0]=%x",
 prefix, id, GFC, VPI, VCI, CLP, PT, HEC, Payload[0]);
 this.pack(p);
 $write("%s", prefix);
 foreach (p.Mem[i]) $write("%x ", p.Mem[i]);
 $display;
endfunction : display

// Copy the data fields of this cell
function void UNI_cell::copy_data(input UNI_cell copy);
 copy.GFC = this.GFC;
 copy.VPI = this.VPI;
 copy.VCI = this.VCI;

Chapter 11:A Complete SystemVerilog Testbench366

 copy.CLP = this.CLP;
 copy.PT = this.PT;
 copy.HEC = this.HEC;
 copy.Payload = this.Payload;
endfunction : copy_data

// Make a copy of this object
function BaseTr UNI_cell::copy(input BaseTr to);
 UNI_cell dst;
 if (to == null) dst = new();
 else $cast(dst, to);
 copy_data(dst);
 return dst;
endfunction : copy

// Pack this objectÕs properties into a byte array
function void UNI_cell::pack(output ATMCellType to);
 to.uni.GFC = this.GFC;
 to.uni.VPI = this.VPI;
 to.uni.VCI = this.VCI;
 to.uni.CLP = this.CLP;
 to.uni.PT = this.PT;
 to.uni.HEC = this.HEC;
 to.uni.Payload = this.Payload;
endfunction : pack

// Unpack a byte array into this object
function void UNI_cell::unpack(input ATMCellType from);
 this.GFC = from.uni.GFC;
 this.VPI = from.uni.VPI;
 this.VCI = from.uni.VCI;
 this.CLP = from.uni.CLP;
 this.PT = from.uni.PT;
 this.HEC = from.uni.HEC;
 this.Payload = from.uni.Payload;
endfunction : unpack

// Generate a NNI cell from an UNI cell - used in scoreboard
function NNI_cell UNI_cell::to_NNI();
 NNI_cell copy;
 copy = new();
 copy.VPI = this.VPI; // NNI has wider VPI
 copy.VCI = this.VCI;
 copy.CLP = this.CLP;
 copy.PT = this.PT;

Testbench Blocks 367

 copy.HEC = this.HEC;
 copy.Payload = this.Payload;
 return copy;
endfunction : to_NNI

// Generate the syndrome array, which is used to compute HEC
function void UNI_cell::generate_syndrome();
 bit [7:0] sndrm;
 for (int i = 0; i < 256; i = i + 1) begin
 sndrm = i;
 repeat (8) begin
 if (sndrm[7] === 1'b1)
 sndrm = (sndrm << 1) ^ 8'h07;
 else
 sndrm = sndrm << 1;
 end
 syndrome[i] = sndrm;
 end
 syndrome_not_generated = 0;
endfunction : generate_syndrome

// Compute the HEC value for this object
function bit [7:0] UNI_cell::hec (bit [31:0] hdr);
 hec = 8'h00;
 repeat (4) begin
 hec = syndrome[hec ^ hdr[31:24]];
 hdr = hdr << 8;
 end
 hec = hec ^ 8'h55;
endfunction : hec

The NNI_cell class is almost identical to UNI_cell, except that it does not have a
GFC field, or a method to convert to a UNI_cell.

Sample 11.18 shows the UNI cells random atomic generator, as originally shown in
Section 8.2. The generator randomizes the blueprint instance of the UNI cell, and then
sends out a copy of the cell to the driver.

Chapter 11:A Complete SystemVerilog Testbench368

Sample 11.18 UNI_generator class

class UNI_generator;
 UNI_cell blueprint; // Blueprint for generator
 mailbox gen2drv; // Mailbox to driver for cells
 event drv2gen; // Event from driver when done with cell
 int nCells; // Num cells for this generator to create
 int PortID; // Which Rx port are we generating?

 function new(input mailbox gen2drv,
 input event drv2gen,
 input int nCells, PortID);
 this.gen2drv = gen2drv;
 this.drv2gen = drv2gen;
 this.nCells = nCells;
 this.PortID = PortID;
 blueprint = new();
 endfunction : new

 task run();
 UNI_cell cell;
 repeat (nCells) begin
 assert(blueprint.randomize());
 $cast(cell, blueprint.copy());
 cell.display($psprintf("@%0t: Gen%0d: ", $time, PortID));
 gen2drv.put(cell);
 @drv2gen;// Wait for driver to finish with it
 end
 endtask : run

endclass : UNI_generator

Sample 11.19 shows the Driver class that sends UNI cells into the ATM switch. This
class uses the driver callbacks in Sample 11.20. Note that there is a circular relation-
ship here. The Driver class has a queue of Driver_cbs objects, and the pre_tx()
and post_tx() methods in Driver_cbs are passed Driver objects. When you
compile the two classes, you may need either typedef class Driver, before the
Driver_cbs class definition, or typedef class Driver_cbs, before the
Driver class definition.

Sample 11.19 driver class

typedef class Driver_cbs;

class Driver;

 mailbox gen2drv; // For cells sent from generator
 event drv2gen; // Tell generator when I am done with cell
 vUtopiaRx Rx; // Virtual ifc for transmitting cells

Testbench Blocks 369

 Driver_cbs cbsq[$]; // Queue of callback objects
 int PortID;

 extern function new(input mailbox gen2drv,
 input event drv2gen,
 input vUtopiaRx Rx,
 input int PortID);
 extern task run();
 extern task send (input UNI_cell cell);

endclass : Driver

// new(): Construct a driver object
function Driver::new(input mailbox gen2drv,
 input event drv2gen,
 input vUtopiaRx Rx,
 input int PortID);
 this.gen2drv = gen2drv;
 this.drv2gen = drv2gen;
 this.Rx = Rx;
 this.PortID = PortID;
endfunction : new

// run(): Run the driver.
// Get transaction from generator, send into DUT
task Driver::run();
 UNI_cell cell;
 bit drop = 0;

 // Initialize ports
 Rx.cbr.data <= 0;
 Rx.cbr.soc <= 0;
 Rx.cbr.clav <= 0;

 forever begin
 // Read the cell at the front of the mailbox
 gen2drv.peek(cell);
 begin: Tx
 // Pre-transmit callbacks
 foreach (cbsq[i]) begin
 cbsq[i].pre_tx(this, cell, drop);
 if (drop) disable Tx; // Don't transmit this cell
 end

 cell.display($psprintf("@%0t: Drv%0d: ", $time, PortID));
 send(cell);

Chapter 11:A Complete SystemVerilog Testbench370

 // Post-transmit callbacks
 foreach (cbsq[i])
 cbsq[i].post_tx(this, cell);
 end : Tx

 gen2drv.get(cell); // Remove cell from the mailbox
 ->drv2gen; // Tell the generator we are done with this cell
 end
endtask : run

// send(): Send a cell into the DUT
task Driver::send(input UNI_cell cell);
 ATMCellType Pkt;

 cell.pack(Pkt);
 $write("Sending cell: ");
 foreach (Pkt.Mem[i])
 $write("%x ", Pkt.Mem[i]); $display;

 // Iterate thru bytes of cell
 @(Rx.cbr);
 Rx.cbr.clav <= 1;
 for (int i=0; i<=52; i++) begin
 // If not enabled, loop
 while (Rx.cbr.en === 1'b1) @(Rx.cbr);

 // Assert Start Of Cell, assert enable, send byte 0 (i==0)
 Rx.cbr.soc <= (i == 0);
 Rx.cbr.data <= Pkt.Mem[i];
 @(Rx.cbr);
 end
 Rx.cbr.soc <= 'z;
 Rx.cbr.data <= 8'bx;
 Rx.cbr.clav <= 0;
endtask

Sample 11.20 shows the driver callback class, which has simple callbacks that are
called before and after a cell is transmitted. This class has empty tasks, which are used
by default. A testcase can extend this class to inject new behavior in the driver with-
out having to change any code in the driver

Testbench Blocks 371

Sample 11.20 Driver callback class

typedef class Driver;

class Driver_cbs;
 virtual task pre_tx(input Driver drv,
 input UNI_cell cell,
 inout bit drop);
 endtask : pre_tx

 virtual task post_tx(input Driver drv,
 input UNI_cell cell);
 endtask : post_tx
endclass : Driver_cbs

The Monitor class has a very simple callback, with just one task that is called after a
cell is received.

Sample 11.21 Monitor callback class

typedef class Monitor;

class Monitor_cbs;
 virtual task post_rx(input Monitor drv,
 input NNI_cell cell);
 endtask : post_rx
endclass : Monitor_cbs

Sample 11.22 shows the Monitor class. Like the Driver class, this uses a typedef
to break the circular compile dependency with Monitor_cbs.

Sample 11.22 The Monitor class

typedef class Monitor_cbs;

class Monitor;

 vUtopiaTx Tx; // Virtual interface with output of DUT
 Monitor_cbs cbsq[$]; // Queue of callback objects
 int PortID;

 extern function new(input vUtopiaTx Tx, input int PortID);
 extern task run();
 extern task receive (output NNI_cell cell);
endclass : Monitor

// new(): construct an object
function Monitor::new(input vUtopiaTx Tx, input int PortID);
 this.Tx = Tx;

Chapter 11:A Complete SystemVerilog Testbench372

 this.PortID = PortID;
endfunction : new

// run(): Run the monitor
task Monitor::run();
 NNI_cell cell;

 forever begin
 receive(cell);
 foreach (cbsq[i])
 cbsq[i].post_rx(this, cell); // Post-receive callback
 end
endtask : run

// receive(): Read cell from the DUT, pack into a NNI cell
task Monitor::receive(output NNI_cell cell);
 ATMCellType Pkt;

 Tx.cbt.clav <= 1;
 while (Tx.cbt.soc !== 1'b1 && Tx.cbt.en !== 1'b0)
 @(Tx.cbt);
 for (int i=0; i<=52; i++) begin
 // If not enabled, loop
 while (Tx.cbt.en !== 1'b0) @(Tx.cbt);

 Pkt.Mem[i] = Tx.cbt.data;
 @(Tx.cbt);
 end

 Tx.cbt.clav <= 0;

 cell = new();
 cell.unpack(Pkt);
 cell.display($psprintf("@%0t: Mon%0d: ", $time, PortID));
endtask : receive

The scoreboard gets expected cells from the driver through the function
save_expected, and the cells actually received by the monitor with the function
check_actual. The function save_expected() is called from the callback
Scb_Driver_cbs::post_tx(), shown in Sample 11.7. The function
check_actual() is called from Scb_Monitor_cbs::post_rx() in Sample 11.8.

Testbench Blocks 373

Sample 11.23 The Scoreboard class

class Expect_cells;
 NNI_cell q[$];
 int iexpect, iactual;
endclass : Expect_cells

class Scoreboard;
 Config cfg;
 Expect_cells expect_cells[];
 NNI_cell cellq[$];
 int iexpect, iactual;

 extern function new(Config cfg);
 extern virtual function void wrap_up();
 extern function void save_expected(UNI_cell ucell);
 extern function void check_actual(input NNI_cell cell,
 input int portn);
 extern function void display(string prefix="");
endclass : Scoreboard

function Scoreboard::new(Config cfg);
 this.cfg = cfg;
 expect_cells = new[NumTx];
 foreach (expect_cells[i])
 expect_cells[i] = new();
endfunction : Scoreboard

function void Scoreboard::save_expected(UNI_cell ucell);
 NNI_cell ncell = ucell.to_NNI;
 CellCfgType CellCfg = top.squat.lut.read(ncell.VPI);

 $display("@%0t: Scb save: VPI=%0x, Forward=%b",
 $time, ncell.VPI, CellCfg.FWD);
 ncell.display($psprintf("@%0t: Scb save: ", $time));

 // Find all Tx ports where this cell will be forwarded
 for (int i=0; i<NumTx; i++)
 if (CellCfg.FWD[i]) begin
 expect_cells[i].q.push_back(ncell); // Save cell in this q
 expect_cells[i].iexpect++;
 iexpect++;
 end
endfunction : save_expected

Chapter 11:A Complete SystemVerilog Testbench374

function void Scoreboard::check_actual(input NNI_cell cell,
 input int portn);
 NNI_cell match;
 int match_idx;

 cell.display($psprintf("@%0t: Scb check: ", $time));

 if (expect_cells[portn].q.size() == 0) begin
 $display("@%0t: ERROR: %m cell not found, SCB TX%0d empty",
 $time, portn);
 cell.display("Not Found: ");
 cfg.nErrors++;
 return;
 end

 expect_cells[portn].iactual++;
 iactual++;

 foreach (expect_cells[portn].q[i]) begin
 if (expect_cells[portn].q[i].compare(cell)) begin
 $display("@%0t: Match found for cell", $time);
 expect_cells[portn].q.delete(i);
 return;
 end
 end

 $display("@%0t: ERROR: %m cell not found", $time);
 cell.display("Not Found: ");
 cfg.nErrors++;
endfunction : check_actual

// Print end of simulation report
function void Scoreboard::wrap_up();
 $display("@%0t: %m %0d expected cells, %0d actual cells rcvd",
 $time, iexpect, iactual);

 // Look for leftover cells
 foreach (expect_cells[i]) begin
 if (expect_cells[i].q.size()) begin
 $display("@%0t: %m cells remain in SCB Tx[%0d] at end of test",
 $time, i);
 this.display("Unclaimed: ");
 cfg.nErrors++;
 end
 end
endfunction : wrap_up

Testbench Blocks 375

// Print the contents of the scoreboard, mainly for debugging
function void Scoreboard::display(string prefix);
 $display("@%0t: %m so far %0d expected cells, %0d actual
rcvd", $time, iexpect, iactual);
 foreach (expect_cells[i]) begin
 $display("Tx[%0d]: exp=%0d, act=%0d",
 i, expect_cells[i].iexpect, expect_cells[i].iactual);
 foreach (expect_cells[i].q[j])
 expect_cells[i].q[j].display(
 $psprintf("%sScoreboard: Tx%0d: ", prefix, i));
 end
endfunction : display

Sample 11.24 shows the class used to gather functional coverage. Since the coverage
only looks at data in a single class, the cover group is defined and instantiated inside
the Coverage class. The data values are read by the class’s sample() method, then
the cover group’s sample()method is called to record the values.

Sample 11.24 Functional coverage class

class Coverage;
 bit [1:0] src;
 bit [NumTx-1:0] fwd;

 covergroup CG_Forward;
 coverpoint src
 {bins src[] = {[0:3]};
 option.weight = 0;}
 coverpoint fwd
 {bins fwd[] = {[1:15]}; // Ignore fwd==0
 option.weight = 0;}
 cross src, fwd;
 endgroup : CG_Forward

 function new;
 CG_Forward = new; // Instantiate the covergroup
 endfunction : new

 // Sample input data
 function void sample(input bit [1:0] src,
 input bit [NumTx-1:0] fwd);
 $display("@%0t: Coverage: src=%d. FWD=%b", $time, src, fwd);
 this.src = src;
 this.fwd = fwd;
 CG_Forward.sample();
 endfunction : sample
endclass : Coverage

Chapter 11:A Complete SystemVerilog Testbench376

Sample 11.25 shows the CPU_driver class that contains the methods to drive the
CPU interface.

Sample 11.25 The CPU_driver class

class CPU_driver;
 vCPU_T mif;
 CellCfgType lookup [255:0]; // copy of look-up table
 Config cfg;
 bit [NumTx-1:0] fwd;

 extern function new(vCPU_T mif, Config cfg);
 extern task Initialize_Host ();
 extern task HostWrite (int a, CellCfgType d); // configure
 extern task HostRead (int a, output CellCfgType d);
 extern task run();
endclass : CPU_driver

function CPU_driver::new(vCPU_T mif, Config cfg);
 this.mif = mif;
 this.cfg = cfg;
endfunction : new

task CPU_driver::Initialize_Host ();
 mif.BusMode <= 1;
 mif.Addr <= 0;
 mif.DataIn <= 0;
 mif.Sel <= 1;
 mif.Rd_DS <= 1;
 mif.Wr_RW <= 1;
endtask : Initialize_Host

task CPU_driver::HostWrite (int a, CellCfgType d); // configure
 #10 mif.Addr <= a; mif.DataIn <= d; mif.Sel <= 0;
 #10 mif.Wr_RW <= 0;
 while (mif.Rdy_Dtack!==0) #10;
 #10 mif.Wr_RW <= 1; mif.Sel <= 1;
 while (mif.Rdy_Dtack==0) #10;
endtask : HostWrite

task CPU_driver::HostRead (int a, output CellCfgType d);
 #10 mif.Addr <= a; mif.Sel <= 0;
 #10 mif.Rd_DS <= 0;
 while (mif.Rdy_Dtack!==0) #10;
 #10 d = mif.DataOut; mif.Rd_DS <= 1; mif.Sel <= 1;

Alternate Tests 377

 while (mif.Rdy_Dtack==0) #10;
endtask : HostRead

task CPU_driver::run();
 CellCfgType CellFwd;
 Initialize_Host();

 // Configure through Host interface
 repeat (10) @(negedge clk);
 $write("Memory: Loading ... ");
 for (int i=0; i<=255; i++) begin
 CellFwd.FWD = $urandom();
`ifdef FWDALL
 CellFwd.FWD = '1
`endif
 CellFwd.VPI = i;
 HostWrite(i, CellFwd);
 lookup[i] = CellFwd;
 end

 // Verify memory
 $write("Verifying ...");
 for (int i=0; i<=255; i++) begin
 HostRead(i, CellFwd);
 if (lookup[i] != CellFwd) begin
 $display("FATAL, Mem Loc 0x%x contains 0x%x, expected 0x%x",
 i, lookup[i], CellFwd);
 $finish;
 end
 end
 $display("Verified");

endtask : run

11.3 Alternate Tests

The simplest test program is shown in Sample 11.2 and runs with very few con-
straints. During verification, you will be creating many tests, depending on the major
functionality to be tested. Each test can then be run with different seeds.

11.3.1 Your First Test - Just One Cell

The first test you run should probably have just one cell, such as the test in Sample
11.26. You can add a new constraint to the Config class by extending it, and then

Chapter 11:A Complete SystemVerilog Testbench378

injecting a new object into the environment before randomization. Once this test
works, you can try two cells, and then unconstrain the number of cells to run longer
sequences.

Sample 11.26 Test with one cell

program automatic test
 #(parameter int NumRx = 4, parameter int NumTx = 4)
 (Utopia.TB_Rx Rx[0:NumRx-1],
 Utopia.TB_Tx Tx[0:NumTx-1],
 cpu_ifc.Test mif,
 input logic rst, clk);

`include "environment.sv"
 Environment env;

class Config_1_cell extends Config;
 constraint one_cells {nCells == 1; }

 function new(input int NumRx,NumTx);
 super.new(NumRx,NumTx);
 endfunction : new
endclass : Config_1_cells

 initial begin
 env = new(Rx, Tx, NumRx, NumTx, mif);

 begin // Just simulate for 1 cell
 Config_1_cells c1 = new(NumRx,NumTx);
 env.cfg = c1;
 end

 env.gen_cfg(); // Config will have just 1 cell
 env.build();
 env.run();
 env.wrap_up();
 end

endprogram // test

11.3.2 Randomly Drop Cells

The next test you may run creates errors by occasionally dropping cells, as shown
in Sample 11.27. You need to make a callback for the driver that sets the drop bit.
Then, in the test, inject this new functionality after the driver class has been con-
structed during the build phase.

Conclusion 379

Sample 11.27 Test that drops cells using driver callback

program automatic test
 #(parameter int NumRx = 4, parameter int NumTx = 4)
 (Utopia.TB_Rx Rx[0:NumRx-1],
 Utopia.TB_Tx Tx[0:NumTx-1],
 cpu_ifc.Test mif,
 input logic rst, clk);

`include "environment.sv"
 Environment env;

class Driver_cbs_drop extends Driver_cbs;
 virtual task pre_tx(input ATM_cell cell, ref bit drop);
 // Randomly drop 1 out of every 100 transactions
 drop = ($urandom_range(0,99) == 0);
 endtask
 endclass

 initial begin
 env = new(Rx, Tx, NumRx, NumTx, mif);
 env.gen_cfg();
 env.build();

 begin // Create error injection callback
 Driver_cbs_drop dcd = new();
 env.drv.cbs.push_back(dcd); // Put into driver's Q
 end

 env.run();
 env.wrap_up();
 end

endprogram // test

11.4 Conclusion

This chapter shows how you can build a layered testbench, following the guidelines
in this book. You can then create new tests by just modifying a single file and inject-
ing new behavior, utilizing the hooks such as callbacks and multiple environment
phases.

The testbench was able to get to 100% functional coverage of the ATM switch, at
least for the basic cover group. You can use this example to explore more about Sys-
temVerilog testbenches.

Chapter 12

Interfacing with C

In Verilog, you can communicate with C routines using the Programming Language
Interface. With the three generations of the PLI (TF, ACC, and VPI routines), you can
create delay calculators, connect and synchronize multiple simulators, and add debug
tools such as waveform displays. However, the PLI’s greatest strength is also its
greatest weakness. If you just want to connect a simple C routine using the PLI, you
need to write dozens of lines of code, and understand many different concepts such as
synchronizing with multiple simulation phases, call frames, and instance pointers.
Additionally, the PLI adds overhead to your simulation as it copies data between the
Verilog and C domains, in order to protect Verilog data structures from corruption.

SystemVerilog introduces the Direct Programming Interface (DPI), an easier way to
interface with C, C++, or any other foreign language. Once you declare or “import”
the C routine with the import statement, you can call it as if it were any SystemVer-
ilog routine. Additionally, your C code can call SystemVerilog routines. With the DPI
you can connect C code that reads stimulus, contains a reference model, or just
extends SystemVerilog with new functionality.

If you have a SystemC model that does not consume time, and that you want to con-
nect to SystemVerilog, you can use the DPI. SystemC models with time-consuming
methods are best connected with the utilities built into your favorite simulator.

The first half of this chapter is data-centric and shows how you can pass different data
types between SystemVerilog and C. The second half is control centric, showing how
you can pass control back and forth between SystemVerilog and C.

Chapter 12:Interfacing with C382

12.1 Passing Simple Values

The first few examples in this chapter show you how to pass integral values between
SystemVerilog and C, and the mechanics of how to declare routines and their argu-
ments on both sides. Later sections show how to pass arrays and structures.

12.1.1 Passing Integer and Real Values

The most basic data type that you can pass between SystemVerilog and C is an int,
the 2-state, 32-bit type. Sample 12.1 shows the SystemVerilog code that calls a C fac-
torial routine, shown in Sample 12.2.

Sample 12.1 SystemVerilog code calling C factorial routine

import "DPI-C" function int factorial(input int i);

program automatic test;
 initial begin
 for (int i=1; i<=10; i++)
 $display("%0d! = %0d", i, factorial(i));
 end
endprogram

The import statement declares that SystemVerilog routine factorial is imple-
mented in a foreign language such as C or C++. The modifier “ DPI-C” specifies that
this is a DPI routine, and the rest of the statement describes the routine arguments.

 Sample 12.1 passes 32-bit signed values using the SystemVerilog int data type that
maps directly to the C int type1. The C function in Sample 12.2 takes an integer as
an input and so the DPI passes the argument by value.

Sample 12.2 C factorial function

int factorial(int i) {
 if (i<=1) return 1;
 else return i*factorial(i-1);
}

12.1.2 The Import Declaration

The import declaration defines the prototype of the C task or function, but using
SystemVerilog types. A C function with a return value is mapped to a SystemVerilog
function. A void C function can be mapped to a SystemVerilog task or void function.

1The SystemVerilog int is always 32 bits, which the width of an int in C is operating system dependant.

Passing Simple Values 383

If the name of the C function conflicts with a SystemVerilog name, you can import it
with a new name in the SystemVerilog space. In Sample 12.3, the C function test is
given the SystemVerilog name my_test. The C function expect is mapped to the
SystemVerilog name fexpect, as the name expect is a reserved keyword in Sys-
temVerilog. The name expect becomes a global symbol, used to link with the C
code, whereas fexpect is a local SystemVerilog symbol. You cannot overload a rou-
tine, for example by importing expect once with a real argument and once with an
int.

Sample 12.3 Changing the name of an imported function

program automatic test;

 // Change name of C function "test" to "my_test"
 import "DPI-C" test = function void my_test();
 initial my_test();

 // C function has same name as keyword, change it
 import "DPI-C" \expect = function int fexpect();
 ...
 if (actual != fexpect()) $display("ERROR");
 ...
endprogram

You can import routines anywhere in your SystemVerilog code where you can declare a
routine including inside programs, modules, interfaces, packages, and $unit, the com-
pilation-unit space. The imported routine will be local to the declaration space in which
it is declared. If you need to call an imported method in several locations in your code,
put the import statement in a package which you import where it is needed. Any
changes to the import statements are localized to the package.

12.1.3 Argument Directions

Imported C routines can have zero or more arguments. By default the argument direc-
tion is input (data goes from SystemVerilog to C), but can also be output and
inout. The direction ref is not supported. A function can return a simple value such
as an integer or real number, or have no return value if you make it void.

Sample 12.4 Argument directions

import "DPI-C" function int addmul (input int a, b,
 s output int sum,
import "DPI-C" function void stop_model();

You can reduce bugs in your C code by declaring any input arguments as const and
so the C compiler will give an error for any write to an input.

Chapter 12:Interfacing with C384

Sample 12.5 C factorial routine with const argument

int factorial(const int i) {
 if (i<=1) return 1;
 else return i*factorial(i-1);
}

12.1.4 Argument Types

Each variable that is passed through the DPI has two matching definitions: one for the
SystemVerilog side, and one for the C side. It is your responsibility to use compatible
types. The SystemVerilog simulator cannot compare the types as it is unable to read
the C code. (The VCS simulator produces vc_hdrs.h with the C header for any rou-
tine that you have imported. You can use this file as a guide to matching the types.)

Table 12-1 shows the data type mapping between SystemVerilog and the inputs and outputs
of C routines. The C structures are defined in the include file svdpi.h. Arrays mapping is
discussed in Sections 12.4 and 12.5, and structures are discussed in Section 12.6.

Table 12-1 Data types mapping between SystemVerilog and C

SystemVerilog C (input) C (output)

byte char char*

shortint short int short int*

int int int*

longint long long int long int*

shortreal float float*

real double double*

string const char* char**

string[N] const char** char**

bit svBit or
unsigned char

svBit* or
unsigned char

logic, reg svLogic or
unsigned char

svLogic* or
unsigned char*

bit[N:0] const svBitVecVal* svBitVecVal*

reg[N:0]
logic[N:0]

const svLogicVecVal* svLogicVecVal*

open array[] const svOpenArrayHandle svOpenArrayHandle

chandle const void* void*

Connecting to a Simple C Routine 385

Note that some mappings are not exact. For example, a bit in Sys-
temVerilog maps to svBit in C, which ultimately maps to
unsigned char in the svdpi.h include file. As a result, you
could write illegal values into the upper bits.

The LRM limits imported function results “small values,” which include void, byte,
shortint, int, longint, real, shortreal, chandle, and string, plus single
bit values of type bit and logic. A function cannot return a vector such as bit
[6:0] as this would require returning a pointer to a svBitVecVal structure.

12.1.5 Importing a Math Library Routine

Sample 12.6 shows how you can call many functions in the C math library directly,
without a C wrapper, thereby reducing the amount of code that you need to write. The
Verilog real type maps to a C double.

Sample 12.6 Importing a C math function

import "DPI-C" function real sin(input real r);
...
initial $display("sin(0)=%f", sin(0.0));

12.2 Connecting to a Simple C Routine

Your C code might contain a simulation model, such as a processor, that is instanti-
ated side by side with Verilog models. Or your code could be a reference model that
is compared to a Verilog model at the transaction or cycle level. Much of this chapter
shows an 7-bit counter written in C or C++. Though very simple, the counter has the
same parts as a complex model, with inputs, outputs, storage of internal values
between calls, and the need to support multiple instances.

12.2.1 A Counter with Static Storage

Sample 12.7 shows the C code for a 7-bit counter, using a static variable to hold the
count value.

Chapter 12:Interfacing with C386

Sample 12.7 Counter method using a static variable

#include <svdpi.h>

void counter7(svBitVecVal *o,
 const svBitVecVal *i,
 const svBit reset,
 const svBit load) {
 static unsigned char count = 0; // Static count storage

 if (reset) count = 0; // Reset
 else if (load) count = *i; // Load value
 else count++; // Count
 count &= 0x7f; // Mask upper bit

 *o = count;
}

The reset and load signals are 2-state single bit signals, and so they are passed as
svBit, which reduces to unsigned char. The input i is 2-state, and 7 bits wide, and
is passed as svBitVecVal. Notice that it is passed as a const pointer, which means
the underlying value can change, but you cannot change the value of the pointer, such
as making it point to another value. Likewise, the reset and load inputs are also
marked as const. In this example, the 7-bit counter value is stored in a char, and so
you have to mask off the upper bit.

The file svdpi.h contains the definitions for SystemVerilog DPI structures and
methods. The C code examples in the rest of this chapter leave off the #include
statements, unless they are important to the discussion.

Sample 12.8 shows a SystemVerilog program that imports and calls the C function
for the 7-bit counter.

Connecting to a Simple C Routine 387

Sample 12.8 Testbench for an 7-bit counter with static storage

import "DPI-C" function void counter7(output bit [6:0] out,
 input bit [6:0] in,
 input bit reset, load);

program automatic counter;
 bit [6:0] out, in;
 bit reset, load;

 initial begin
 $monitor("SV: out=%3d, in=%3d, reset=%0d, load=%0d\n",
 out, in,reset, load);
 reset = 0;
 load = 0;
 in = 126;
 out = 42;
 counter7(out, in, reset, load); // Apply default values

 #10 reset = 1;
 counter7(out, in, reset, load); // Apply reset
 ...
 end
endprogram

12.2.2 The Chandle Data Type

The chandle data type allows you to store a C or C++ pointer in your SystemVerilog
code. A chandle variable is wide enough to hold a pointer on the machine where the
code was compiled, i.e. 32- or 64-bits.

The counter in Sample 12.7 works well as long as it is the only one in the design. The
counter value is stored in a static, and so when you instantiate a second counter, it will
overwrite the value. If you need more than one instance of a C mode, the C code
needs to store its variables somewhere other than a static variable. A better way is to
allocate storage, and pass a handle to it, along with the input and output signals val-
ues. Sample 12.9 shows a counter that stores the 7-bit count in the structure c7. This
is overkill for a simple counter, but if you are creating a model for a larger device, you
can build from this example.

Chapter 12:Interfacing with C388

Sample 12.9 Counter method using instance storage

#include <svdpi.h>
#include <malloc.h>
#include <veriuser.h>

typedef struct { // Structure to hold counter value
 unsigned char cnt;
} c7;

// Construct a counter structure
void* counter7_new() {
 c7* c = (c7*) malloc(sizeof(c7));
 c->cnt = 0;
 return c;
}

// Run the counter for one cycle
void counter7(c7 *inst,
 svBitVecVal* count,
 const svBitVecVal* i,
 const svBit reset,
 const svBit load) {

 if (reset) inst->cnt = 0; // Reset
 else if (load) inst->cnt = *i; // Load value
 else inst->cnt++; // Count
 inst->cnt &= 0x7f; // Mask upper bit

 *count = inst->cnt; // Write to output
 io_printf("C: count=%d, i=%d, reset=%d, load=%d\n",
 *count, *i, reset, load);
}

There is a new method, counter7_new, to construct the counter instance. This
returns a chandle that must be passed into the call to counter7.

The C code uses the PLI task io_printf to display debug messages. The routine is
useful when you are debugging C and SystemVerilog code side-by-side as it writes to
the same outputs as $display, including the simulator’s log file. The routine is
defined in veriuser.h.

The testbench for this counter differs from the static one in several ways. First, the
counter must be constructed before it can be used. Next, the counter is called on a
clock edge, rather than calling it in-line with the stimulus. For simplicity, the counter
is invoked when the clock goes high, and stimulus is applied when the clock goes
low, to avoid any race conditions.

Connecting to a Simple C Routine 389

Sample 12.10 Testbench for an 7-bit counter with per-instance storage

import "DPI-C" function chandle counter7_new();
import "DPI-C" function void counter7
 (input chandle inst,
 output bit [6:0] out,
 input bit [6:0] in,
 input bit reset, load);

program automatic test;

 // Test two instances of the counter
 initial begin
 bit [6:0] o1, o2, i1, i2;
 bit reset, load, clk1;
 chandle inst1, inst2; // Points to storage in C

 inst1 = counter7_new();
 inst2 = counter7_new();
 fork
 forever #10 clk1 = ~clk1;
 forever @(posedge clk1) begin
 counter7(inst1, o1, i1, reset, load);
 counter7(inst2, o2, i2, reset, load);
 end
 join_none

 reset = 0;
 load = 0;
 i1 = 120;
 i2 = 10;

 @(negedge clk1);
 load = 1;

 @(negedge clk1);
 load = 0;
 ...
 end
endprogram

12.2.3 Representation of Packed Values

The string “DPI-C”2 specifies that you are using the canonical representation of
packed values. This representation stores a SystemVerilog variable as a C array of one

2Earlier versions of the LRM used “DPI” but this is now obsolete and should not be used.

Chapter 12:Interfacing with C390

or more elements. A 2-state variable is stored using the type svBitVecVal. A 2-state
array is stored with multiple elements of this type.

Figure 12-1 Storage of a 40-bit 2-state variable

For performance reasons. the SystemVerilog simulator may not mask the upper bits
after calling a DPI routine, and so the SystemVerilog variable could be corrupted.
Make sure your C code treats these values properly.

If you need to convert between bits and words, use the macro
SV_PACKED_DATA_NELEMS. For example, to convert 40 bits to two 32-bit words (as
seen in Figure 12-1), use SV_PACKED_DATA_NELEMS(40).

12.2.4 4-State Values

Each 4-state bit in SystemVerilog is stored in the simulator using two bits known as
aval and bval3, as shown in Table 12-2

A single bit 4-state variable, such as logic f, is stored in an unsigned byte, with the
aval bit stored in the least significant bit, and the bval in the next higher bit. So the
value 1’b0 is seen as 0× 0 in C, 1’b1 is 0× 1, 1’bz is 0× 2, and 1’bx is 0× 3.

A 4-state vector such as logic [31:0] lword is stored using pairs of 32 bits,
svLogicVecVal, which contains the aval and bval bits. The 32-bit variable lword
is stored in a single svLogicVecVal. Variables wider than 32-bits are stored in mul-
tiple svLogicVecVal elements, with the first element containing the 32 least
significant bits, and the next element containing the next 32 bits, up to the most sig-
nificant bits. A 40-bit logic variable is stored as one svLogicVecVal for the least
significant 32 bits, and a second for the upper 8 bits (Figure 12-2). The unused 24-bits
in this upper value are undetermined, and you are responsible for masking or extend-

Table 12-2 4-state bit encoding

4-State value aval bval

0 0 0

1 1 0

Z 0 1

X 1 1

3Note that the P1800-2005 LRM has the wrong definitions for vpi_vecval. Instead of a, and b, they should
be aval and bval, just like the PLI/VPI. The 2008 version of the LRM has the proper definitions.

39:31Unused

31:0

39:31Unused

31:0

Connecting to a Simple C Routine 391

ing the sign bit, as needed. The svLogicVecVal type is equivalent to
s_vpi_vecval, which is used to represent 4-state types such as logic in the VPI
(Verilog Programming Interface).

Figure 12-2 Storage of a 40-bit 4-state variable

Beware of arguments declared without bit subscripts or those
declared with a single bit. An argument declared as input logic
a is stored in an unsigned char. The argument input logic
[0:0] b is svLogicVecVal, even though it contains only a single
bit.

Sample 12.11 shows the import statements for a 4-state counter.

Sample 12.11 Testbench for counter that checks for Z or X values

import "DPI-C" function chandle counter7_new();
import "DPI-C" function void counter7
 (input chandle inst,
 output logic [6:0] out,
 input logic [6:0] in,
 input logic reset, load);

The counter previously shown in Sample 12.9 assumes all the inputs are 2-state. Sam-
ple 12.12 extends this code to check for Z and X values on reset, load, and i. The
actual count is still kept as a 2-state value.

bval 39:31Unused

bval 31:0

aval 31:0

aval 39:31Unused

bval 39:31Unused

bval 31:0

aval 31:0

aval 39:31Unused

Chapter 12:Interfacing with C392

Sample 12.12 Counter method that checks for Z and X values

// 4-state replacement for counter7 from Sample 12.9
void counter7(c7 *inst,
 svLogicVecVal* count,
 const svLogicVecVal* i,
 const svLogic reset,
 const svLogic load) {

 if (reset & 0x2) { // Check just the bval bit of scalar
 io_printf("Error: Z or X detected on reset\n\n");
 return;
 }
 if (load & 0x2) { // Check just the bval bit of scalar
 io_printf("Error: Z or X detected on load\n\n");
 return;
 }
 if (i->bval) { // Check just the bval bits of 7-bit vector
 io_printf("Error: Z or X detected on i\n\n");
 return;
 }

 if (reset) inst->cnt = 0; // Reset
 else if (load) inst->cnt = i->aval; // Load value
 else inst->cnt++; // Count
 inst->cnt &= 0x7f; // Mask upper bit

 count->aval = inst->cnt; // Write to output
 count->bval = 0;
}

If you want to force the simulation to terminate cleanly because of a condition found
in an imported method, you can call the VPI method vpi_control(vpiFinish,
0). This method and constant are defined in the include file vpi_user.h. The value
vpiFinish tells the simulator to execute a $finish after your imported method
returns.

12.2.5 Converting from 2-State to 4-State

If you have a DPI application that works with 2-state types and you want to convert it
to work with 4-state types, follow the following guidelines.

On the SystemVerilog side, change the import declaration from using 2-state types
such as bit and int to 4-state types such as logic and integer. Make sure you are
using 4-state variables in the function call.

On the C side, switch the argument declarations from svBitVecVal to svLog
icVecVal. Any reference to the arguments will have to use the .aval suffix to

Connecting to C++ 393

correctly access the data. When you read from a 4-state variable, check the bval bits
to see if there are any Z or X values. When you write to a 4-state variable, clear the
bval bits unless you need to write Z or X values.

12.3 Connecting to C++

You can use the DPI to connect routines written in C or C++ to SystemVerilog. There
are several ways your C++ code can communicate using the DPI, depending on your
model’s level of abstraction.

12.3.1 The Counter in C++

Sample 12.13 shows a C++ class for the 7-bit counter, with 2-state inputs. It connects
to the SystemVerilog testbench in Sample 12.10 and the C++ wrapper code in Sample
12.14.

Sample 12.13 Counter class

class Counter7 {
public:
 Counter7();
 void counter7_signal(svBitVecVal* count,
 const svBitVecVal* i,
 const svBit reset,
 const svBit load);
private:
 unsigned char cnt;
};

Counter7::Counter7() {
 cnt = 0; // Initialize counter
}

void Counter7::counter7_signal(svBitVecVal* count,
 const svBitVecVal* i,
 const svBit reset,
 const svBit load) {
 if (reset) cnt = 0; // Reset
 else if (load) cnt = *i; // Load
 else cnt++; // Count
 cnt &= 0x7F; // Mask upper bit
 *count = cnt;
}

Chapter 12:Interfacing with C394

12.3.2 Static Methods

The DPI can only call a static C or C++ method, that is, one that is known at link time.
As a result, your SystemVerilog code cannot call a C++ method in an object as the
object does not exist when the linker runs.

The solution, as shown in Sample 12.14, is to create static methods that can commu-
nicate with the C++ dynamic objects and methods. The first method, counter7_new,
constructs an object for the counter and returns a handle to the object. The second
static method, counter7, calls the C++ method that performs the counter logic,
using the object handle.

Sample 12.14 Static methods and linkage

extern "C" void* counter7_new()
{
 return new Counter7;
}

// Call a counter instance, passing the signal values
extern "C" void counter7(void* inst,
 svBitVecVal* count,
 const svBitVecVal* i,
 const svBit reset,
 const svBit load)
{
 Counter7 *c7 = (Counter7 *) inst;
 c7->counter7_signal(count, i, reset, load);
}

The extern “C” code tells the C++ compiler that the external information sent to the
linker should use C calling conventions and not perform name mangling. You can put
this before each method that is called by SystemVerilog, or put extern “C” { ...
} around a set of methods.

From the testbench point of view, the C++ counter looks the same as the counter that
stored the value in per-instance storage, shown in Sample 12.9, and so you can use the
same testbench, Sample 12.10, for both.

12.3.3 Communicating with a Transaction Level C++ Model

The previous C/C++ code examples were low-level models that communicated with
the SystemVerilog at the signal level. This is not efficient; for example, the counter is
called every clock cycle, even if the data or control inputs have not changed. When
you create models for complex devices such as processors and networking devices,
communicate with them at the transaction level for faster simulations.

Connecting to C++ 395

The C++ counter model in Sample 12.15 has a transaction-level interface, communi-
cating with methods instead of signals and a clock.

Sample 12.15 C++ counter communicating with methods

class Counter7 {
public:
 Counter7();
 void count();
 void load(const svBitVecVal* i);
 void reset();
 int get();
private:
 unsigned char cnt;
};

Counter7::Counter7() { // Initialize counter
 cnt = 0;
}

void Counter7::count() { // Increment counter
 cnt = cnt + 1;
 cnt &= 0x7F; // Mask upper bit
}

void Counter7::load(const svBitVecVal* i) {
 cnt = *i;
 cnt &= 0x7F; // Mask upper bit
}

void Counter7::reset() {
 cnt = 0;
}

// Get the counter value in a pointer to a svBitVecVal
int Counter7::get() {
 return cnt;
}

The dynamic C++ methods such as reset, load, and count are wrapped in static
methods that use the object handle, passed from SystemVerilog, as shown in Sample
12.16.

Chapter 12:Interfacing with C396

Sample 12.16 Static wrapper for C++ transaction level counter

#ifdef __cplusplus
extern "C" {
#endif

void* counter7_new() {
 return new Counter7;
}

void counter7_count(void* inst){
 Counter7 *c7 = (Counter7 *) inst;
 c7->count();
}

void counter7_load(void* inst, const svBitVecVal* i) {
 Counter7 *c7 = (Counter7 *) inst;
 c7->load(i);
}

void counter7_reset(void* inst) {
 Counter7 *c7 = (Counter7 *) inst;
 c7->reset();
}

int counter7_get(void* inst) {
 Counter7 *c7 = (Counter7 *) inst;
 return c7->get();
}

#ifdef __cplusplus
}
#endif

The OOP interface for the transaction level counter is carried up to the testbench.
Sample 12.17 has the SystemVerilog import statements and a class to wrap the C++
object. This allows you to hide the C++ handle inside the class. Note that the get()
function returns an int (32-bit, signed) rather than bit [6:0], as the latter would
require returning a pointer to a svBitVecVal, as shown in Table 12-1. An imported
function can not return a pointer, only return a small value such as void, byte,
shortint, int, longint, real, shortreal, chandle, and string, plus single
bit values of type bit and logic.

Connecting to C++ 397

Sample 12.17 Testbench for C++ model using methods

import "DPI-C" function chandle counter7_new();
import "DPI-C" function void counter7_count(input chandle inst);
import "DPI-C" function void counter7_load(input chandle inst,
 input bit [6:0] i);
import "DPI-C" function void counter7_reset(input chandle inst);
import "DPI-C" function int counter7_get(input chandle inst);

// Wrap the counter interface with a class
// to hide the C++ instance handle
class Counter7;
 chandle inst;

 function new;
 inst = counter7_new();
 endfunction

 function void count();
 counter7_count(inst);
 endfunction

 function void load(bit [6:0] val);
 counter7_load(inst, val);
 endfunction

 function void reset();
 counter7_reset(inst);
 endfunction

 function bit [6:0] get();
 return counter7_get(inst);
 endfunction

endclass : Counter7

Chapter 12:Interfacing with C398

Sample 12.18 Testbench for C++ model using methods

program automatic counter;
 Counter7 c1;

 initial begin
 c1 = new;

 c1.reset();
 $display("SV: Post reset: counter1=%0d", c1.get());

 c1.load(126);
 if (c1.get() != 126) $display("Error in load");

 c1.count(); // count = 127
 c1.count(); // count = 0
 if (c1.get() != 0) $display("Error in rollover");
 end

endprogram

12.4 Simple Array Sharing

So far you have seen examples of passing scalar and vectors between SystemVerilog
and C. A typical C model might read an array of values, perform some computation,
and return another array with the results.

12.4.1 Single Dimension Arrays – 2-State

Sample 12.19 shows a routine that computes the first 20 values in the Fibonacci
series. It is called by the SystemVerilog code in Sample 12.20.

Sample 12.19 C routine to compute Fibonacci series

void fib(svBitVecVal data[20]) {
 int i;
 data[0] = 1;
 data[1] = 1;
 for (i=2; i<20; i++)
 data[i] = data[i-1] + data[i-2];
}

Simple Array Sharing 399

Sample 12.20 Testbench for Fibonacci routine

import "DPI-C" function void fib
 (output bit [31:0] data[20]);

program automatic test;
 bit [31:0] data[20];

 initial begin
 fib(data);
 foreach (data[i]) $display(i,,data[i]);
 end
endprogram

Notice that the array of Fibonacci values is allocated and stored in SystemVerilog,
even though it is calculated in C. There is no way to allocate an array in C and refer-
ence it in SystemVerilog.

12.4.2 Single Dimension Arrays – 4-State

Sample 12.21 shows the Fibonacci C routine for a 4-state array.

Sample 12.21 C routine to compute Fibonacci series with 4-state array

void fib(svLogicVecVal data[20]) {
 int i;
 data[0].aval = 1; // Write to both aval
 data[0].bval = 0; // and bval
 data[1].aval = 1;
 data[1].bval = 0;
 for (i=2; i<20; i++) {
 data[i].aval = data[i-1].aval + data[i-2].aval;
 data[i].bval = 0; // DonÕt forget to clear bval
 }
}

Sample 12.22 Testbench for Fibonacci routine with 4-state array

import "DPI-C" function void fib(output logic [31:0] data[20]);

program automatic test;
 logic [31:0] data[20];

 initial begin
 fib(data);
 foreach (data[i]) $display(i,,data[i]);
 end
endprogram

Chapter 12:Interfacing with C400

Section 12.2.5 describes how to convert a 2-state application to 4-state.

12.5 Open arrays

When sharing arrays between SystemVerilog and C, you have two options. For the
fastest simulations, you can reverse-engineer the layout of the elements in System-
Verilog, and write your C code to use this mapping. This approach is fragile, meaning
that you will have to rewrite and debug your C code if any of the array sizes change.
A more robust approach is to use “open arrays,” and their associated SystemVerilog
routines to manipulate them. These allow you to write generic C routines that can
operate on any size array.

12.5.1 Basic Open Array

Samples 12.23 and 12.24 show how to pass a simple array between SystemVerilog
and C with open arrays. Use the empty square brackets [] in the SystemVerilog
import statement to specify that you are passing an open array.

Sample 12.23 Testbench code calling a C routine with an open array

import "DPI-C" function void fib_oa(output bit [31:0] data[]);

program automatic test;
 bit [31:0] data[20], r;

 initial begin
 fib_oa(data);
 foreach (data[i])
 $display(i,,data[i]);
 end
endprogram

Your C code references the open array with a handle of type svOpenArrayHandle.
This points to a structure with information about the array such as the declared word
range. You can locate the actual array elements with calls such as svGetArrayPtr.

Open arrays 401

Sample 12.24 C code using a basic open array

void fib_oa(const svOpenArrayHandle data_oa) {
 int i, *data;
 data = (int *) svGetArrayPtr(data_oa);
 data[0] = 1;
 data[1] = 1;
 for (i=2; i<=20; i++)
 data[i] = data[i-1] + data[i-2];
}

12.5.2 Open Array Methods

There are many DPI methods to access their contents and ranges, as defined in
svdpi.h. These only work with open array handles declared as svOpenArrayHan
dle, not with pointers such as svBitVecVal or svLogicVecVal. The following
methods give you information about the size of an open array.

In Table 12-3, the variable h is a svOpenArrayHandle and d is an int.

Table 12-3 Open array query functions

Function Description

int svLeft(h, d) Left bound for dimension d

int svRight(h, d) Right bound for dimension d

int svLow(h, d) Low bound for dimension d

int svHigh(h, d) High bound for dimension d

int svIncrement(h, d) 1 if left >= right, and –1 if left < right

int svSize(h, d) Number of elements in dimension d: svHigh–svLow+1

int svDimension(h) Number of dimensions in open array

int svSizeOfArray(h) Total size of array in bytes

Chapter 12:Interfacing with C402

The following functions return the locations of the C storage for the entire array or a
single element (Table 12-4).

12.5.3 Passing Unsized Open Arrays

In Sample 12.24, the C code assumed that the array had five elements, numbered 0.4.
Sample 12.25 calls C code with a 2-dimensional array. The C code uses the svLow
and svHigh methods to find the array ranges, which, in this example, don’t follow
the usual 0..size-1.

Sample 12.25 Testbench calling C code with multidimensional open array

import "DPI-C" function void mydisplay(inout int h[][]);

program automatic test;
 int a[6:1][8:3]; // Note word ranges are high:low
 initial begin
 foreach (a[i,j]) a[i][j] = i+j;
 mydisplay(a);
 foreach (a[i,j]) $display("V: a[%0d][%0d] = %0d",
 i, j, a[i][j]);
 end
endprogram

This calls the C code in Sample 12.26 that reads the array using the open array meth-
ods. The method svLow(handle, dimension) returns the lowest index number for
the specified dimension. So svLow(h, 1) returns 1 for the array declared with the
range [6:1]. Likewise, svHigh(h, 1) returns 6. You should use svLow and svHigh
with C for-loops.

The methods svLeft and svRight return the left and right index from the array dec-
laration, 6 and 1 respectively for the range [6:1]. At the center of Sample 12.26, the
call svGetArrElemPtr2 returns a pointer to an element in a two dimensional array.

Table 12-4 Open array locator functions

Function Returns pointer to:

void *svGetArrayPtr(h) Storage for the entire array

void *svGetArrElemPtr(h, i1, ...) An element in the array

void *svGetArrElemPtr1(h, i1) An element in a 1-D array

void *svGetArrElemPtr2(h, i1, i2) An element in a 2-D array

void *svGetArrElemPtr3(h, i1, i2, i3) An element in a 3-D array

Open arrays 403

Sample 12.26 C code with multidimensional open array

void mydisplay(const svOpenArrayHandle h) {
 int i, j;
 int lo1 = svLow(h, 1);
 int hi1 = svHigh(h, 1);
 int lo2 = svLow(h, 2);
 int hi2 = svHigh(h, 2);
 for (i=lo1; i<=hi1; i++) {
 for (j=lo2; j<=hi2; j++) {
 int *a = (int*) svGetArrElemPtr2(h, i, j);
 io_printf("C: a[%d][%d] = %d\n", i, j, *a);
 *a = i * j;
 }
 }
}

12.5.4 Packed Open Arrays in DPI

An open array in the DPI is treated as having a single packed dimension and one or
more unpacked dimensions. You can pass an array with multiple packed dimensions,
as long as they pack into an element that is the same size as a single element of the
formal argument. For example, if you have the formal argument bit[63:0] b64[]
in the import statement, you could pass in the actual argument bit

[1:0][0:3][6:-1] bpack [9:1].

Sample 12.27 Testbench for packed open arrays

import "DPI-C" function void view_pack(input bit [63:0] b64[]);

program automatic test;
 bit [1:0][0:3][6:-1] bpack[9:1];

 initial begin
 foreach(bpack[i]) bpack[i] = i;
 bpack[2] = 64'h12345678_90abcdef;

 $display("SV: bpack[2]=%h", bpack[2]); // 64 bits
 $display("SV: bpack[2][0]=%h", bpack[2][0]); // 32 bits
 $display("SV: bpack[2][0][0]=%h", bpack[2][0][0]); // 8 bits

 view_pack(bpack);
 end
endprogram : test

Chapter 12:Interfacing with C404

Sample 12.28 C code using packed open arrays

void view_pack(const svOpenArrayHandle h) {
 int i;

 for (i=svLow(h,1); i<svHigh(h,1); i++)
 io_printf("C: b64[%d]=%llx\n",
 i, *(long long int *)svGetArrElemPtr1(h, i));
}

Notice that the C code in Sample 12.28 prints a 64-bit value using %llx, and casts the
result from svGetArrayElemPtr1 to long long int.

12.6 Sharing Composite Types

By this point you may wonder how to pass objects between SystemVerilog and C.
The layout of class properties does not match between the two languages, and so you
cannot share objects directly. Instead, you must create similar structures on each side,
plus pack and unpack methods to convert between the two formats. Once you have all
this in place, you can share composite types.

12.6.1 Passing Structures Between SystemVerilog and C

The following example shares a simple structure for a pixel made of three bytes
packed into a word. Sample 12.29 shows the C structure. Notice that C treats a char
as signed variable, which can give you unexpected results, and so the structure marks
the char as unsigned. The bytes are in reverse order from the SystemVerilog because
this code was written for a Intel × 86 processor that is little-endian, which means that
the least significant byte is stored at a lower address than the most significant. A Sun
SPARC is big endian, and so the bytes are stored in the same order as in SystemVer-
ilog: r, b, g.

Sample 12.29 C code to share a structure

typedef struct {
 unsigned char b, g, r; // x86 big-endian
//unsigned char r, g, b; // SPARC format
} *p_rgb;

void invert(p_rgb rgb) {
 rgb->r = ~rgb->r; // Invert the color values
 rgb->g = ~rgb->g;
 rgb->b = ~rgb->b;
 io_printf("C: Invert rgb=%02x,%02x,%02x\n",
 rgb->r, rgb->g, rgb->b);
}

Sharing Composite Types 405

The SystemVerilog testbench has a packed struct that holds a single pixel, and class
to encapsulate the pixel operations. The RGB_T struct is packed and so SystemVerilog
will store the bytes in consecutive locations. Without the packed modifier, each 8-bit
value would be stored in a separate word.

Sample 12.30 Testbench for sharing structure

typedef struct packed { bit [7:0] r, g, b; } RGB_T;
import "DPI-C" function void invert(inout RGB_T pstruct);

program automatic test;

class RGB;
 rand bit [7:0] r, g, b;
 function void display(string prefix="");
 $display("%sRGB=%x,%x,%x", prefix, r, g, b);
 endfunction : display

 // Pack the class properties into a struct
 function RGB_T pack();
 pack.r = r; pack.g = g; pack.b = b;
 endfunction : pack

 // Unpack a struct into the class properties
 function void unpack(RGB_T pstruct);
 r = pstruct.r; g = pstruct.g; b = pstruct.b;
 endfunction : unpack
endclass : RGB

 initial begin
 RGB pixel;
 RGB_T pstruct;

 pixel = new;
 repeat (5) begin
 assert(pixel.randomize()); // Create random pixel
 pixel.display("\nSV: before "); // Print it
 pstruct = pixel.pack(); // Convert to a struct
 invert(pstruct); // Call C to invert bits
 pixel.unpack(pstruct); // Unpack struct to class
 pixel.display("SV: after "); // Print it
 end
 end
endprogram

Chapter 12:Interfacing with C406

12.6.2 Passing Strings Between SystemVerilog and C

Using the DPI, you can pass strings from C back to SystemVerilog. You might need
to pass a string for the symbolic value of a structure, or get a string representing the
internal state of your C code for debug.

The easiest way to pass a string from C to SystemVerilog is for your C function to
return a pointer to a static string. The string must be declared as static in C, and not
as a local string. Nonstatic variables are stored on the stack and are reclaimed when
the function returns.

Sample 12.31 Returning a string from C

char *print(p_rgb rgb) {
 static char s[12];
 sprintf(s, "%02x,%02x,%02x", rgb->r, rgb->g, rgb->b);
 return s;
}

A danger with static storage is that multiple concurrent calls could end up sharing
storage. For example, a SystemVerilog $display statement that is printing several
pixels might call the above print method multiple times. Depending on how the
SystemVerilog compiler orders these calls, later calls to print() could overwrite
results from earlier calls, unless the SystemVerilog compiler makes a copy of the
string. Note that a call to an imported method can never be interrupted by the System-
Verilog scheduler. Sample 12.32 stores the strings in a heap to support concurrent
calls.

Sample 12.32 Returning a string from a heap in C

#define PRINT_SIZE 12
#define MAX_CALLS 16
#define HEAP_SIZE PRINT_SIZE * MAX_CALLS

char *print(p_rgb rgb) {
 static char print_heap[HEAP_SIZE + PRINT_SIZE];
 char *s;
 static int heap_idx = 0;
 int nchars;

 s = &print_heap[heap_idx];
 nchars = sprintf(s, "%02x,%02x,%02x",
 rgb->r, rgb->g, rgb->b);
 heap_idx += nchars + 1; // DonÕt forget null!
 if (heap_idx > HEAP_SIZE)
 heap_idx = 0;
 return s;
}

Pure and Context Imported Methods 407

12.7 Pure and Context Imported Methods

Imported methods are classified as pure, context, or generic. A pure function cal-
culates its output strictly based on its inputs, with no outside interactions.
Specifically, a pure function does not access any global or static variables, perform
any file operations, or interact with anything outside the function such as the operat-
ing system, processes, shared memory, sockets, etc. The SystemVerilog compiler
may optimize away calls to a pure function if the result is not needed, or replace the
call with the results from a previous call with the same arguments. The factorial
function in Sample 12.5, and the sin function in 12.6 are both pure functions as their
result is only based on their inputs.

Sample 12.33 Importing a pure function

import "DPI-C" pure function int factorial(input int i);
import "DPI-C" pure function real sin(input real in);

An imported method may need to know the context of where it is called so that it can
call a PLI TF, ACC, or VPI methods, or a SystemVerilog task that has been exported.
Use the context attribute for these methods.

Sample 12.34 Imported context tasks

import "DPI-C" context task call_sv(bit 31:0] data);

An imported method may use global storage, and so it is not pure, but might not have
any PLI references, and so it does not need the overhead of a context method. Suth-
erland (2004) uses the term “generic” for these methods as the SystemVerilog LRM
does not have a specific name. By default, an imported method is generic, as are
many of the examples in this chapter.

There is overhead invoking a context imported method as the simulator needs to
record the calling context, and so only declare a method as context if needed. On
the other hand, if a generic imported method calls an exported task or a PLI method
that accesses SystemVerilog data objects, the simulator could crash.

A context-aware PLI method is one that needs to know where it was called from so
that it can access information relative to that location.

12.8 Communicating from C to SystemVerilog

The examples so far have shown you how to call C code from your SystemVerilog
models. The DPI also allows you to call SystemVerilog methods from C code. The

Chapter 12:Interfacing with C408

SystemVerilog method can be a simple task to record the result from an operation in
C, or a time-consuming task representing part of a hardware model.

12.8.1 A Simple Exported Method

Sample 12.35 shows a module that imports a context function, and exports a System-
Verilog function.

Sample 12.35 Exporting a SystemVerilog function

module block;
 import "DPI-C" context function void c_display();
 export "DPI-C" function sv_display; // No type or args

 initial c_display();

 function void sv_display();
 $display("SV: block");
 endfunction
endmodule : block

The export declaration in Sample 12.35 looks naked because the
LRM forbids putting a return value declaration or any arguments.
You can’t even give the usual empty parentheses. This information
in the export declaration would duplicate the information in the

function declaration at the end of the module and could thus become out of sync if
you ever changed the function.

Sample 12.36 shows the C code that calls the exported function.

Sample 12.36 Calling an exported SystemVerilog function from C

extern void sv_display();

void c_display() {
 io_printf("C: c_display\n");
 sv_display();
}

This example prints the line from the C code, followed by the $display output from
the SystemVerilog, as shown in Sample 12.37.

Sample 12.37 Output from simple export

C: c_display
SV: block

Communicating from C to SystemVerilog 409

12.8.2 C Function Calling SystemVerilog Function

While the majority of your testbench should be in SystemVerilog, you may have leg-
acy testbenches in C or other languages, or applications that you want to reuse. This
section creates a SystemVerilog memory model that is stimulated by C code that
reads transactions from an external file.

The first version of the memory, shown in Samples 12.38 and 12.39, uses only func-
tions, and so everything runs with no elapsed time. The SystemVerilog code calls the
C method read_file that opens a file. The only command in the file sets the mem-
ory size, and so the C code calls an exported function.

Sample 12.38 SystemVerilog module for simple memory model

module memory;
 import "DPI-C" function read_file(string fname);
 export "DPI-C" function mem_build; // No type or args

 initial
 read_file("mem.dat");

 int mem[];

 function mem_build(input int size);
 mem = new[size]; // Allocate dynamic memory elements
 endfunction

endmodule : memory

Notice that in Sample 12.38, the export statement does not have any arguments as
this information is already in the function declaration.

The C code in Sample 12.39 opens the file, reads a command, and calls the exported
function. Error checking has been removed for compactness.

Chapter 12:Interfacing with C410

Sample 12.39 C code to read simple command file and call exported function

extern void mem_build(int);

int read_file(char *fname){
 int cmd;
 FILE *file;

 file = fopen(fname, "r");
 while (!feof(file)) {
 cmd = fgetc(file);
 switch (cmd)
 {
 case 'M': {
 int hi;
 fscanf(file, "%d %d ", &hi);
 mem_build(hi);
 break;
 }
 }
 }
 fclose(file);
}

The command file is trivial, with one command to construct a memory with 100
elements.

Sample 12.40 Command file for simple memory model

M 100

12.8.3 C Task Calling SystemVerilog Task

A real memory model has operations such as read and write that consume time, and
thus must be modeled with tasks.

Sample 12.41 shows the SystemVerilog code for the second version of the memory
model. It has several improvements compared to Sample 12.38. There are two new
tasks, mem_read and mem_write, which respectively take 20 ns and 10 ns to com-
plete. The imported method read_file is now a task as it is calling other tasks. You
may remember that only a task can call another task. The import statement now
specifies that read_file is a context method, as the simulator needs to create a sep-
arate stack when it is called.

Communicating from C to SystemVerilog 411

Sample 12.41 SystemVerilog module for memory model with exported tasks

module memory;
 import "DPI-C" context task read_file(string fname);
 export "DPI-C" task mem_read;
 export "DPI-C" task mem_write;
 export "DPI-C" function mem_build;

 initial read_file("mem.dat");

 int mem[];

 function mem_build(input int size);
 mem = new[size];
 endfunction

 task mem_read(input int addr, output int data);
 #20 data = mem[addr];
 endtask

 task mem_write(input int addr, input int data);
 #10 mem[addr] = data;
 endtask
endmodule : memory

The C code in Sample 12.42 primarily expands the case statement that decodes
commands.

Sample 12.42 C code to read command file and call exported function

extern void mem_read(int, int*);
extern void mem_write(int, int);
extern void mem_build(int);

int read_file(char *fname) {
 int cmd;
 FILE *file;

 file = fopen(fname, "r");
 while (!feof(file)) {
 cmd = fgetc(file);
 switch (cmd) {
 case 'M': {
 int hi;
 fscanf(file, "%d %d ", &hi);
 mem_build(hi);
 break;
 }

Chapter 12:Interfacing with C412

 case 'R': {
 int addr, data, exp;
 fscanf(file, "%c %d %d ", &cmd, &addr, &data);
 mem_read(addr, &exp);
 if (data != exp)
 io_printf("C: Data=%d, exp=%d\n", data, exp);
 break;
 }

 case 'W': {
 int addr, data;
 fscanf(file, "%c %d %d ", &cmd, &addr, &data);
 mem_write(addr, data);
 break;
 }
 }
 }
 fclose(file);
}

The command file has new commands that write two locations, and then reads back
one of them, and includes the expected value.

Sample 12.43 Command file for simple memory model

M 100
W 12 34
W 99 8
R 12 34

12.8.4 Calling Methods in Objects

You can export SystemVerilog methods, except for those defined inside a class. This
restriction is similar to the restriction of importing static C methods, as shown in Sec-
tion 12.3.2, as objects do not exist when SystemVerilog elaborates your code. The
solution is to pass a reference to the object between the SystemVerilog and C code.
However, unlike a C pointer, a SystemVerilog handle cannot be passed through the
DPI. You can instead have an array of handles, and pass the array index between the
two languages.

The following examples build on the previous versions of the memory. The System-
Verilog code in Sample 12.45 has a class that encapsulates the memory. Now you can
have multiple memories, each in a separate object. The command file in Sample
12.44 creates two memories, M0, and M1. Then it performs several writes to initial-
ized locations in both memories, and lastly tries to read back the values. Notice that
location 12 is used for both memories.

Communicating from C to SystemVerilog 413

Sample 12.44 Command file for exported methods with OOP memories

M0 1000
M1 2000
W0 12 34
W1 12 88
W0 99 18
R1 22 44
R0 12 34
R1 12 88

The SystemVerilog code constructs a new object for every M command in the file. The
exported function mem_build calls the Memory constructor. It then stores the handle
to the Memory object in a SystemVerilog queue, and returns the queue index to the C
code. The handles are stored in a queue so that you can dynamically add new memo-
ries. The exported tasks mem_read and mem_write now have an additional
argument, the index of the memory handle in the queue.

Sample 12.45 SystemVerilog module with memory model class

module memory;
 import "DPI-C" context task read_file(string fname);
 export "DPI-C" task mem_read;
 export "DPI-C" task mem_write;
 export "DPI-C" function mem_build;

 initial read_file("mem.dat"); // Call C code to read file

 class Memory;
 int mem[];

 function new(input int size);
 mem = new[size];
 endfunction

 task mem_read(input int addr, output int data);
 #20 data = mem[addr];
 endtask

 task mem_write(input int addr, input int data);
 #10 mem[addr] = data;
 endtask : mem_write
 endclass : Memory

 Memory memq[$]; // Queue of Memory objects

 // Construct a new memory instance & push on the queue
 function int mem_build(input int size);

Chapter 12:Interfacing with C414

 Memory m;
 m = new(size);
 memq.push_back(m);
 return memq.size()-1;
 endfunction

 task mem_read(input int idx addr, output int data);
 memq[idx].mem_read(addr, data);
 endtask

 task mem_write(input int idx, addr, input int data);
 memq[idx].mem_write(addr, data);
 endtask

endmodule : memory

Sample 12.46 C code to call exported tasks with OOP memory

extern void mem_read(int, int, int*);
extern void mem_write(int, int, int);
extern int mem_build(int);

int read_file(char *fname) {
 int cmd, idx;
 FILE *file;

 file = fopen(fname, "r");
 while (!feof(file)) {
 cmd = fgetc(file);
 fscanf(file, "%d", &idx);
 switch (cmd)
 {
 case 'M': {
 int hi, qidx;
 fscanf(file, "%d %d ", &hi);
 qidx = mem_build(hi);
 break;
 }

 case 'R': {
 int addr, data, exp;
 fscanf(file, "%c %d %d ", &cmd, &addr, &data);
 mem_read(idx, addr, &expected);
 if (data != expected)
 io_printf("C: Data=%d, exp=%d\n", data, exp);
 break;
 }

Communicating from C to SystemVerilog 415

 case 'W': {
 int addr, data;
 fscanf(file, "%c %d %d ", &cmd, &addr, &data);
 mem_write(idx, addr, data);
 break;
 }
 }
 }
 fclose(file);
}

12.8.5 The Meaning of Context

The context of an imported method is the location where it was defined, such as
$unit, module, program, or package scope, just like a normal SystemVerilog
method. If you import a method in two different scopes, the corresponding C code
executes in the context of where the import statement occurred. This is similar to
defining a SystemVerilog run() task in each of two separate modules. Each task
accesses variables in its own module, with no ambiguity.

If you add a second module to Sample 12.35 that imports the same C code and
exports its own function, the C method will call different SystemVerilog methods,
depending on the context of the import and export statements.

Sample 12.47 Second module for simple export example

module top;
 import "DPI-C" context function void c_display();
 export "DPI-C" function sv_display;

 block b1();
 initial c_display();

 function void sv_display();
 $display("SV: top");
 endfunction
endmodule : top

module block;
 import "DPI-C" context function void c_display();
 export "DPI-C" function sv_display;

 initial c_display();

 function void sv_display();
 $display("SV: block");

Chapter 12:Interfacing with C416

 endfunction
endmodule : block

The output shows that one C method calls two separate SystemVerilog methods,
depending on where the C method was called.

Sample 12.48 Output from simple example with two modules

C: c_display
SV: block
C: c_display
SV: top

12.8.6 Setting the Scope for an Imported Method

Just as your SystemVerilog code can call a method in the local scope, an imported C
method can call a method outside its default context. Use the method svGetScope to
get a handle to the current scope, and then use that handle in a call to svSetScope to
make the C code think it is inside another context. Sample 12.49 shows the C code for
two methods. The first, save_my_scope(), saves the scope of where it was called
from the SystemVerilog side. The second method, c_display(), sets its scope to the
saved one, prints a message, then calls your function, sv_display().

Sample 12.49 C code getting and setting context

extern void sv_display();
svScope my_scope;

void save_my_scope() {
 my_scope = svGetScope();
}

void c_display() {
 // Print the current scope
 io_printf("\nC: c_display called from scope %s\n",
 svGetNameFromScope(svGetScope()));

 // Set a new scope
 svSetScope(my_scope);
 io_printf("C: calling %s.sv_display\n",
 svGetNameFromScope(svGetScope()));
 sv_display();
}

The C code calls svGetNameFromScope() that returns a string of the current scope.
The scope is printed twice, once with the scope where the C code was first called
from, and again with the scope that was previously saved. The routine svGetScope

Communicating from C to SystemVerilog 417

FromName() takes a string with a SystemVerilog scope and returns a pointer to a
svScope handle that can be used with svSetScope().

In the SystemVerilog code in Sample 12.50, the first module, block, calls a C
method that saves the context. When the module top calls c_display(), the
method sets scope back to block, and so it calls the sv_display() method in the
block module, not the top module.

Sample 12.50 Modules calling methods that get and set context

module block;
 import "DPI-C" context function void c_display();
 import "DPI-C" context function void save_my_scope();
 export "DPI-C" function sv_display;

 function void sv_display();
 $display("SV: %m");
 endfunction : sv_display

 initial begin
 save_my_scope();
 c_display();
 end

endmodule : block

module top;
 import "DPI-C" context function void c_display();
 export "DPI-C" function sv_display;

 function void sv_display();
 $display("SV: %m");
 endfunction : sv_display

 block b1();

 initial #1 c_display();

endmodule : top

This produces the output shown in Sample 12.51.

Chapter 12:Interfacing with C418

Sample 12.51 Output from svSetScope code

C: c_display called from top.b1
C: Calling top.b1.sv_display
SV: top.b1.sv_display

C: c_display called from top
C: Calling top.b1.sv_display
SV: top.b1.sv_display

You could use this concept of scope to allow a C model to know where it was instan-
tiated from, and differentiate each instance. For example, a memory model may be
instantiated several times, and needs to allocate unique storage for every instance.

12.9 Connecting Other Languages

This chapter has shown the DPI working with C and C++. With a little work, you can
connect other languages. The easiest way is to call the Verilog $system() task. If
you need the return value from the return value from the command, use the Unix
system() function and the WEXITSTATUS macro. The SystemVerilog code in Sam-
ple 12.52 calls a C wrapper for system().

Sample 12.52 SystemVerilog code calling C wrapper for Perl

import "DPI-C" function int call_perl(string s);

program automatic perl_test;
 int ret_val;
 string script;

 initial begin
 if (!$test$plusargs("script")) begin
 $display("No +script switch found");
 $finish;
 end
 $value$plusargs("script=%s", script);
 $display("SV: Running '%0s'", script);
 ret_val = call_perl(script);
 $display("SV: Perl script returned %0d", ret_val);
 end
endprogram : perl_test

Sample 12.53 is the C wrapper that calls system() and translates the return value.

Conclusion 419

Sample 12.53 C wrapper for Perl script

#include "vc_hdrs.h"
#include <stdlib.h>
#include <wait.h>

int call_perl(const char* command) {
 int result = system(command);
 return WEXITSTATUS(result);
}

Sample 12.54 is a Perl script that prints a message and returns a value.

Sample 12.54 Perl script called from C and SystemVerilog

#!/usr/local/bin/perl
print "Perl: Hello world!\n" ;
exit (3)

12.10 Conclusion

The DPI allows you to call C routines as if they are just another SystemVerilog rou-
tine, passing SystemVerilog types directly into C. This has less overhead than the
PLI, which builds argument lists, and always has to keep track of the calling context,
not to mention the complexity of having up to four C routines for every system task.

Additionally, with the DPI, your C code can call SystemVerilog routines, allowing
external applications to control simulation. With the PLI you would need trigger vari-
ables and more argument lists, and you have to worry about subtle bugs from multiple
calls to time-consuming tasks.

The most difficult part of the DPI is mapping SystemVerilog types to C, especially if
you have structures and classes that are shared between the two languages. If you can
master this problem, you can connect almost any application to SystemVerilog.

References

Bergeron, Janick. Writing Testbenches Using SystemVerilog. Norwell, MA:
Springer, 2006

Bergeron, Janick; Cerny, Eduard; Hunter, Alan; and Nightingale, Andrew. Verifi-
cation Methodology Manual for SystemVerilog. Norwell, MA: Springer, 2005

Cohen, Ben; Venkataramanan, Srinivasan; and Kumari, Ajeetha. SystemVerilog
Assertions Handbook for Formal and Dynamic Verification: VhdlCohen Publishing,
2005

Cummings, Cliff; Nonblocking Assignments in Verilog Synthesis, Coding Styles
That Kill! San Jose, CA: Synopsys User Group, 2000

Cummings, Cliff; and Salz, Arturo. SystemVerilog Event Regions, Race Avoid-
ance & Guidelines, Synopsys User Group, Boston, CA, 2006

Denning, Peter. The Locality Principle, Communications of the ACM, 48(7), July
2005, pp. 19–24

Haque, Faisal, Michelson, Jonathan. The Art of Verification with SystemVerilog
Assertions. Verification Central, 2006

References422

IEEE. IEEE Standard for SystemVerilog – Unified Hardware Design, Specifica-
tion, and Verification Language. New York: IEEE, 2005 (a.k.a. SystemVerilog
Language Reference Manual, or LRM.)

IEEE. IEEE Standard Verilog Hardware Design, Description Language. New
York: IEEE, 2001

Patt, Yale N.; and Patel, Sanjay J. Introduction to Computing Systems: From Bits
and Gates to C and Beyond. New York City, NY: McGraw Hill, 2003

Sutherland, Stuart. Integrating SystemC Models with Verilog and SystemVerilog
Using the SystemVerilog Direct Programing Interface. Europe; Synopsys User Group,
2004

Sutherland, Stuart; Davidmann, Simon; Flake, Peter; and Moorby, Phil. System-
Verilog for Design: A Guide to Using SystemVerilog for Hardware Design and
Modeling. Norwell, MA: Springer, 2006

Sutherland, Stuart; and Mills, Don. Verilog and SystemVerilog Gotchas. Norwell,
MA: Springer, 2007

Synopsys, Inc. Hybrid RTL Formal Verification Ensures Early Detection of Cor-
ner-Case Bugs, http://synopsys.com/products/magellan/magellan_wp.html, 2003

van der Schoot, Hans; and Bergeron, Janick Transaction-Level Functional Cover-
age in SystemVerilog. San Jose, CA: DVCon, 2006

Vijayaraghavan, Srikanth, and Ramanathan, Meyyappan. A Practical Guide for
SystemVerilog Assertions. Norwell, MA: Springer, 2005

Wachowski, Andy; and Wachowski, Larry. The Matrix. Hollywood, CA: Warner
Brothers Studios, 1999

Index

Symbols
! 171
cycle delay 100, 122, 345
$ 37, 171, 314–315
$cast 58, 270, 272, 277
$dist_exponential 187
$dist_normal 187
$dist_poisson 187
$dist_uniform 187
$error 108
$exit 95, 101, 118
$fatal 108, 165–166
$fclose 64
$feof 40, 64
$finish 95, 101, 118, 392
$fopen 40, 64
$fscanf 40, 64–65
$get_coverage 331
$info 108
$isunknown 27, 109
$psprintf 60, 327
$random 187
$realtime 76–77
$root 105, 141–142
$sformat 60
$size 29–30, 35, 42
$strobe 342
$system 418
$test$plusargs 356–357, 418
$time 27, 76–77
$timeformat 27, 76–77
$unit 104–105, 141, 383, 415
$urandom 187

$urandom_range 42, 187
$value$plusargs 356–357, 418
$warning 108
%0t 27
%m 327
%t 76
+= 64, 70, 145
+ntb_random_seed 356
:: 136, 238
<< 53
>> 53–55, 156
? : operator 31, 43
[$] 36
[*] 38
[] 34
^= 68
`define 49

Numerics
2-state types 27, 130, 382, 386, 390, 392
4-state types 27, 130, 390–392

A
abstract class 282–284, 286
Accellera xxx
accumulate operator 64
Active region 93–94, 96, 98, 102
Agent class 158
always block 218
always blocks in programs 101
anonymous enumerated type 55
arguments

SystemVerilog for Verification424

default value 69–70
sticky 67
task and function 66
type 67

array
assignment 35
associative 38–40, 42, 47
compare 31
constraint 195
copy 31
dynamic 34–35, 38, 42, 46–47
fixed-size 28, 35, 38, 42, 46–47
handle 150
linked list 40
literal 29, 36
locator methods 42
methods 41
multidimensional 28, 30–31
packed 33–34
queue 36, 38, 46
reduction methods 41
unpacked 29, 34

assertion
concurrent 108
coverage 300
immediate 107–108
procedural 166

associative array 38–40, 42, 47
at_least option 304, 328
ATM router 109–112, 114–116
atomic stimulus generation 204
auto_bin_max 311–312, 318
auto_bin_max option 327
automatic 68, 74–75, 95, 131–132, 139,

225–226
in threads 224

aval 390, 392

B
backdoor load 106
Backus-Naur Form 205
base class 263
BaseTr 282, 292
begin...end 66, 218

optional in tasks and functions 66
Bergeron, Janick xxxv, 4, 351, 421
bidirectional constraints 176–177
bidirectional signal 100

binsof 322–325
bit data type 27, 385, 396
bit streaming

see streaming operator 53
blueprint pattern 265
BNF 205
bounded mailbox 245–246
break 64
bval 390, 392
byte data type 27, 384–385, 396

C
calc_crc method 261–262, 273
callback

coverage 307
creation 286
inject distrubance 284
scoreboard 288
usage 287

cast 52, 58, 61, 65, 270, 277
$cast 53, 272, 280
function return value 65

Cerny, Eduard 421
chandle data type 385, 387–389, 396
char 384
Checker class 158
class 126, 128
class constructor 129
class scope resolution operator 136, 238
clock generator 102
clocking block 89–91, 95, 100–101, 114–

115
Cohen, Ben 421
comment

covergroup 327
comment option 305, 327–328
compilation unit 104
composition 259, 274–276, 278
concatenation

string 59
concurrent assertion 108
conditional operator 31, 43
Config class 255
const type 59, 68, 105, 168
constrained 8
constrained-random test 8–9, 161, 187,

295
constraint

Index 425

array 195
block 165
dist 169–170, 173, 188, 331
in extended class 270
inside 168, 171–174, 176–178, 195

constraint_mode 182–184, 191
constructor 129, 131, 263, 282
containment 144
context 410–411
continue 64
copy

deep 153
method 153–154, 266–267, 279–

280, 282
object 151, 279
shallow 153

copy_data method 280–282
covergroup

comment 327
generic 325–326
option 327
sample 303, 307–308
trigger 307

coverpoint 303–304, 306–307, 309–329
CRC 127
cross coverage 319–325
cross module reference 105, 340–341,

346
cross_num_print_missing option 329
CRT 161, 187, 295
Cummings, Cliff 92, 94, 421
cyclic random 165
cyclic redundancy check 127

D
data type

bit 27
byte 27
int 27
integer 25
logic 26
longint 27
real 25
reg 25–26
shortint 27
time 25
wire 26

DDR 89

deallocation 132
decrement 63
default statement 89
default value 69–70

2-state and 4-state 130
delete method 35, 37, 39, 48
derived class 263
Direct Programming Interface 381
disable 219, 228–232
disable fork 229–230
disable label 230–232
display method 139–140, 261–262, 271
dist constraint 169–170, 173, 188, 331
do...while loop 39, 57, 64
domain 310
double data rate clock 89
double data type 384–385
downcasting 270
DPI 381
DPI-C 382, 389
Driver class 158
dynamic array 34–35, 38, 42, 46–47
dynamic threads 223–224

E
enumerated types 55
enumerated values 56
enumeration 55
Environment class 158
event 233–237, 253
event triggered 233–237, 250
exists 39–40, 48
expression width 60
extended class 263
extern

see external routine declaration 139
external constraint 192–193
external routine declaration 139–141,

255, 283

F
file I/O 64
final block 118
find_first method 43
find_index method 43–44
find_last method 43
find_last_index method 43
first 39

SystemVerilog for Verification426

first method 39, 47, 57–58
fixed-size array 28, 35, 38, 42, 46–47
float data type 384
for loop 29–30, 39, 57, 63
force design signals 106
foreach constraint 195, 200–201, 362
foreach loop 29–30, 35, 37, 40
fork...join 218–219
fork...join_any 218, 221–222
fork...join_none 218, 220–223, 226–227
four-state types 27

see 4-state types 27
function 65

arguments 66
functional coverage 422

using callbacks 289

G
garbage collection 132
Generator class 158, 222–223, 236, 238,

243, 265, 267, 292
get_coverage 331
get_inst_coverage 331
getc method 59–60
goal option 329

H
handle 128–129

array 150
Haque, Faisal 421
Hardware Description Language xxx
Hardware Verification Language xxx, 2
HDL xxx
histogram 172–173
hook 266, 285
HVL xxx–xxxi, 2, 14

I
iff 109, 315
ignore_bins 317–318, 322–323
illegal_bins 318
immediate assertion 107–108
implicit port connection 103
import 382
increment 63
inheritance 260, 274
initialization in declaration 74

in-line constraint 192
inout

argument type 67
port type 117

input
argument type 67
port type 117

insert queue 37
inside 168, 171
inside constraint 168, 171–174, 176–178,

195
instantiate 129
int data type 27, 384–385, 396
integer data type 25, 27, 51
interface 83, 90, 104, 339

connecting to port 85
procedural code 347
virtual 333–334, 336–338, 341–347

interprocess communication xxxi, 2, 217,
232, 253

intersect 322–323, 325
io_printf 388, 403
IPC

see interprocess communication 217
iterator argument 43

L
last method 57
LC3 microcontoller 118
linked list 40
local 157, 290–291
logic data type 26–27, 90, 385, 396
long long int 404
longint data type 27, 384–385, 396
LRM 98
LRM SystemVerilog 47, 70, 94, 101, 128,

193, 217, 333, 421

M
macro 48
macromodule 104
Magellan 422
mailbox 240, 246, 251–253

bounded 245–246
unbounded 245

makes Jack a dull boy xxxiii
malloc 129
max method 42

Index 427

method 128, 263
virtual 272–274, 279–281, 283

min method 42
modport 85, 114
module 127
Monitor class 158
multidimensional array 28, 30–31

N
name function 55, 174
new

constructor 129–131
copying objects 151

new function 130
new[] operator 35, 131
next method 39, 47, 57
nonblocking assignment 84, 88, 92–93,

98, 421
null 129, 133, 189
num method 39

O
object 128–129

copy 151, 279
deallocation 132
instantiation 129

Object-Oriented Programming
see OOP 125

Observed region 94
OOP 125–126

terminology 128, 263
OOP analogy

badge 132
car 126
house 128

open array 400
Open arrays 400
OpenVera xxx
option

at_least 304, 328
auto_bin_max 327
comment 305, 327–328
cross_num_print_missing 329
goal 329
per_instance 327–328, 331
weight 323–325, 327

options.auto_bin_max 311–312, 318
or method 41

output
argument type 67
port type 117

P
pack 155–156, 404–405
package 49, 59, 104, 127
packed array 33–34
parameter 49, 59, 104
parameterized class 290
parent class 263
Patt, Yale 422
per_instance option 327–328, 331
Perl hash array 39
physical interfaces 333
PLI 381, 388
polymorphism 273–274
pop_back 37
port

connecting to interface 85
post_randomize 185–186, 203, 205
post-decrement 63
post-increment 63
Postponed 94, 96–97
pre_randomize 185–186
pre-decrement 63
pre-increment 63
prev method 47, 57
primitive 104
PRNG 162, 166, 209–211
procedural assertion 166
process 217
product method 41
program 74, 95, 104, 127, 227, 257
program blocks

single vs. multiple 95
property 128, 263
prototype 128, 263, 282
pseudo-random number generator 162,

166, 209–210
public 157
pure

imported method 407
virtual method 282–284, 286

push_back method 43
push_front 37
putc method 60

SystemVerilog for Verification428

Q
queue 36, 38, 42, 46

literal 36–37

R
rand 165
rand_mode 188–189
randc 165, 174, 195, 201
randcase 207–208
random real 167
random seed 12–13, 162, 166, 209, 211
random stability 210–212
randomize function 166–167
randomize() with 184, 192
randomize(null) 189
randsequence 205
Reactive region 94, 96, 98
real data type 25, 27, 51, 76, 167, 384–

385, 396
ref 383

argument type 70
port type 117

reference counting 133
reg data type 25–26
return 72
routine arguments 66
run method 265, 267–268

S
s_vpi_vecval 391
sample method 303, 307–308
scenario generation 204
scoreboard 18, 45–46, 158, 285, 287–289

using callbacks 285
semaphore 238–240, 253
shortint data type 27, 384–385, 396
shortreal data type 384–385, 396
signature 274
sine function 385, 407
size function 35, 187, 195
solve...before 180–182, 330–331, 362
sparse matrix 38
start method 315
state variables 189–190
static

method 136–138
storage 74
variable 135–137

stop method 315
streaming operator 53–54, 155–156
string concatenation 59
string data type 59–60, 384–385, 396
struct 50–52, 55
sub class 263
substr method 60
sum method 41, 44, 196
super class 263
Sutherland, Stuart 351, 422
SV_PACKED_DATA_NELEMS 390
SVA 109, 300, 421–422
svBit 384–386, 388, 393–394
svBitVecVal 384–386, 390, 392, 401
svDimension 401
svdpi.h 384, 386, 388, 401
svGetArrayElemPtr1 404
svGetArrayPtr 400–402
svGetArrElemPtr 402
svGetArrElemPtr1 402
svGetArrElemPtr2 402–403
svGetArrElemPtr3 402
svGetNameFromScope 416
svGetScope 416
svGetScopeFromName 416
svHigh 401–403
svIncrement 401
svLeft 401–402
svLogic 384, 392
svLogicVecVal 384, 390–392, 401
svLow 401–403
svOpenArrayHandle 400–401, 403–404
svRight 401–402
svScope 416
svSetScope 416
svSize 401
svSizeOfArray 401
synchronous drive 98
system() 418
SystemC 381
SystemVerilog Assertion 109, 300, 309,

421–422

T
task 65

arguments 66
template - see parameterized class
The Matrix 1, 422

Index 429

this 143–144
thread 217
time data type 25, 27, 76
time literals 76
timeprecision 75–76
timescale 75–77, 105–106
timeunit 75–76
tolower method 59
toupper method 59–60
transactor 158
transition coverage 317
triggered 235
triggered method 233–237, 250
two-state types

see 2-state types 27
typedef 48

array 50, 73
class 146
enum 56
struct 50–52, 55
union 51
virtual interface 345

U
uint user-defined type 49, 199
unbounded mailbox 245
union 51
unique method 43
unpack 155–156, 404–405
unpacked array 28–29, 33–34
unsigned 27, 49, 187, 194, 200

V
van der Schoot, Hans 422
vc_hdrs.h 384
Verification Methodology Manual for Sys-

temVerilog
see VMM 1

Verilog Programming Interface 391
Verilog-1995 xxix–xxx, 25, 28, 32, 66–

67, 74, 110, 187, 333
Verilog-2001 xxix–xxx, 28, 32, 59–60,

64, 66, 74, 81, 85, 422
veriuser.h 388
virtual

class - see abstract class
interface 333–334, 336–338, 341–

347

memory 273
method 272–274, 279–281, 283

virtual method 264, 273
VMM 1, 4–5, 18, 90, 206, 265, 300, 341,

421
void data type 65, 385, 396
void function 65, 186
VPI 381, 391
vpi_control 392
vpiFinish 392

W
wait 219, 224, 229, 238, 257
wait fork 227
weight option 323–325, 327
which 232
wildcard 317, 325
wire data type 26, 90
wrap_up method 268

X
XMR 340–341, 346
xor method 41

	Cover
	System Verilog for Verification: A Guide to Learning the Testbench Language Features, Second Ed
	Copyright
	Contents
	List of Code Samples
	List of Figures
	List of Tables
	Preface
	Acknowledgments

	1 Verification Guidelines
	2 Data Types
	3 Procedural Statements and Routines
	4 Connecting the Testbench and Design
	5 Basic OOP
	6 Randomization
	7 Threads and Interprocess Communication
	8 Advanced OOP and Testbench Guidelines
	9 Functional Coverage
	10 Advanced Interfaces
	11 A Complete SystemVerilog Testbench
	12 Interfacing with C
	References
	Index

