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PREFACE

Xilinx, Inc. introduced the Field-Programmable Gate Array (FPGA) in 1984 as an advanced pro-
grammable logic device. It is now part of a multi-billion dollar market and FPGAs have made
their way into products as diverse as digital cameras, automobiles, and network switches that
drive the Internet. FPGAs have even flown to Mars (Ratter, 2004).

Almost since its inception, people have recognized the potential of using these devices to
build custom computing architectures, but to date the market is overwhelmingly “glue logic”
and prototyping. Nonetheless, advances in process technology have yielded modern FPGAs
with very large capacities and a wide range of features built into the chip. The confluence of
these features — which include multiple processors, large amounts of memory, hundreds of
multipliers, and high-speed I/O — have reached a critical mass: now more than ever, Platform
FPGAs are poised to realize a more prominent role in computing systems.

This ability to deploy sophisticated computing systems on a single FPGA device is likely to
make a significant impact on embedded computing systems. While small (indeed tiny) 8 and 16
bit computing systems are and will remain a very important segment of the embedded systems
market, trends over the last several years suggest that the use of standard, off-the-shelf 32-bit
processors for embedded systems is growing fast. These higher-end embedded systems come
with high levels of integration, often incorporating a significant portion of the system on a (fixed
and manufactured) chip. There are many benefits to this level of integration but one significant
drawback is that much of the system architecture is predetermined and may not be optimal
for the particular targeted application. The alternative, developing a system architecture on a
custom System-on-a-Chip (SoC), is too costly except for high volume (millions of units) prod-
ucts. When the application fits the resources provided, all is well. But oftentimes the application
does not fit and some of the integrated resources are wasted while additional discrete hardware
is required to make up the deficiency. With the Platform FPGA, engineers gain all of the advan-
tages of integration but retain the flexibility to engineer a balanced system architecture on a
per-application basis.

Armed with multiple kinds of buses, various direct communication links, bridges, I/O com-
ponents, and an assortment of other special-purpose Intellectual Property cores, Platform FPGA
designers can readily customize their system architecture. For example, with hundreds of dis-
tributed block RAMs, a designer can configure one large addressable memory, disperse the
RAM throughout the system as individual buffers, or design some combination of the two.
Application-specific functionality (i.e., custom hardware cores) can be designed and incor-
porated. Although Application-Specific Integrated Circuits (ASICs) will always outperform the
identical FPGA implementation, the FPGA solution avoids the expense, risk, and time-to-market
issues associated with manufacturing of an ASIC. The FPGA is a virtual blank slate giving the
engineer the ability to provision the resources to best fit the application after the manufacture,
test, and verification of the physical device. This flexibility increases efficiency of the system
solution and every discrete component saved reduces cost and increases reliability.

xi
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Of course, there is a price to be paid for this enormous degree of hardware flexibility. In
addition to compilers, debuggers, and other conventional software tools used for processor-
based embedded system development, the Platform FPGA designer has to be fluent in hardware
design and synthesis as well as system integration tools. Decisions that previously were largely
constrained by architecture choice — such as how to partition the application between hard-
ware and software — now have a much larger solution space. Beyond understanding the
characteristics of a particular processor’s system bus, the designer has to weigh the strengths
and weaknesses of multiple communication mechanisms. Balancing complex networks of
on-chip components presents a novel challenge for those used to working with predetermined
architectures.

In many ways, these challenges embody computer engineering. However, until the Platform
FPGA emerged, practical issues (such as the cost of building custom silicon solutions) made a
hands-on study prohibitively expensive. Students learned computer system architecture from
textbooks and conceptual models. The practical aspects of engineering custom computer sys-
tems from the ground up was typically the purview of a few specialists. Knowledge and practical
tools — such as how to create a Board Support Package for an embedded system — was typically
learned on the job.

The aim of this textbook is to introduce the reader to system development on a Platform
FPGA. The focus is on embedded systems but it also serves as a general guide to building custom
computing systems. The text describes the fundamental technology in terms of hardware, soft-
ware, and a set of principles to guide the development of Platform FPGA systems. The goal is to
show how to systematically and creatively apply these principles to construction of application-
specific embedded system architectures. There is a strong focus on using Free and Open Source
software to increase productivity.

The organization of each chapter in the book includes two parts. The white pages describe
concepts, principles, and general knowledge. The gray pages include a technical rendition of
the main issues of the chapter and show the concepts applied in practice. This includes step-
by-step details for a specific developer board and chain so that readers can carry out the same
steps on their own. Rather than try to demonstrate the concepts on a broad set of tools and
boards, the text uses a single set of tools (Xilinx Platform Studio, Linux, and GNU) throughout
and uses single developer board (Xilinx ML-510) for the examples. The belief is that a single
system, completely described, is more valuable to the reader than partial information about a
range of systems.

How to Read This Book
This book was designed to make it easy for a number of different readers to quickly find the
information they need. If you are an undergraduate with a software background who might not
have had a course in electronics, the white pages in chapter two start with a basic transistor
and describes how an FPGA — a solid state device — implements programmable hardware.
If you are a practicing engineer with experience in embedded systems but are new to FPGAs,
then reading just the blue pages will let you skip the theory and focus on the practical aspects
of building Linux-based systems on an FPGA. If you are a student in a senior design course,
the lectures probably focus on project management. You won’t find that material here but you
may find this text to be a handy practical guide to complete your project. On the other hand, if
you have a very specific project involving cutting-edge technology, then you may not find that
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particular topic covered in sufficient depth here. However, if you are looking to get started, need
a general overview of the concepts, and still want enough step-by-step details to implement a
real, working system this may prove to be the perfect text for you!

Note to Instructors
There are several roles this text may play in a typical computer curriculum. In many depart-
ments, a single embedded systems course is a technical elective offered to Seniors. The core
material is delivered within the context of a substantial, semester-long project. This text pro-
vides a suitable introduction to embedded systems and — because it provides all of the practical
material students need to carry-out their projects — the instructor has the freedom to introduce
select topics in class. For curricula with a focus area in embedded systems (offering multi-
ple technical electives), this text may be used to teach a course on reconfigurable computing.
Such a course would complement a comprehensive embedded systems course that gives a full
treatment of the area including small systems and an expanded description of real-time issues.
Finally, the IEEE-CS/ACM Joint Task Force on Computing Curricula (Ironman Draft) includes
as a basic computer engineering component a “culminating project.” This often manifests itself
in current curricula as a Senior Design or Capstone course. As such, the course draws together
subjects taught independently in the curriculum and helps bridge the students’ academic and
professional careers. FPGAs serve exceedingly well (and are often used) in such a course. Their
flexibility allows a wide range of potential projects and those projects necessarily encompass
both hardware and software components: the essence of computer engineering. For that rea-
son, many instructors may find this text to be an excellent resource for the students in their
culminating project.

Online Materials
Many of the commands, scripts, and URL links referenced in the text are included in the text.
However, for the reader’s convenience, the publisher maintains a Web site with all of these mate-
rials online including scripts too long to insert into the text. In addition to links pointing to the
latest version of the open source software used in the text, the Web site also archives the exact
(known to work) versions used in this text.

Reference
Ratter, D. (2004). FPGAs on Mars. Xcell Journal, Q3(50), 8–11.
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1
INTRODUCTION

em·bed — to make something an integral part of
Merriam-Webster Online

From smart phones to medical equipment, from microwaves
to antilock braking systems — modern embedded systems
projects develop computing machines that have become an
integral part of our society. To develop these products, com-
puter engineers employ a wide range of tools and technology
to assemble embedded systems from hardware and software
components. One component — the Field-Programmable Gate
Array (FPGA) — is becoming increasingly important. Informally,
an FPGA can be thought of as a “blank slate” on which any dig-
ital circuit can be configured (Figure 1.1). Moreover, the desired
functionality can be configured in the field — that is, after the
device has been manufactured, installed in a product, or, in some
cases, even after the product has been shipped to the consumer.
This makes the FPGA device fundamentally different from other
Integrated Circuit (IC) devices. In short, an FPGA provides pro-
grammable “hardware” to the embedded systems developer.

The role of FPGA devices has evolved over the years. Previ-
ously, the most common use of the technology was to replace a
handful of individual small- and medium-scale IC devices, such
as the ubiquitous 7400 series logic, with a single FPGA device.
With well-known improvements and refinements in semiconduc-
tor technology, the number of transistors per IC chip has increased
exponentially. This has been a boon for FPGA devices, which have
increased dramatically in both programmable logic capacity and
functional capability. By capacity, we are referring to the number
of equivalent logic gates available; by capability we are referring
to a variety of fixed, special-purpose blocks that have been intro-
duced, both of which are discussed in more detail throughout this
book.

As a result of this growth, modern FPGAs are able to support
processors, buses, memory controllers, and network interfaces, as

1
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Figure 1.1. A 10,000-meter
view of an FPGA; a blank slate
that can be configured to
implement digital circuits after
the chip has been fabricated.

D S
Q

Blank “slate” (when powered on) After configuration

well as a continually increasing number of common peripherals,
all on a single device. With the addition of a modern operating
system, such as Linux, these FPGAs begin to appear more like a
desktop PC in terms of functionality and capability, albeit on a
single IC chip. Furthermore, with Open Source operating systems
comes a plethora of Open Source software that can be leveraged
by FPGA based designs.

We use the term Platform FPGA to describe an FPGA device that
includes sufficient resources and functionality to host an entire
system on a single device. The distinction is somewhat arbitrary, as
there is no physical difference between a large FPGA device and a
Platform FPGA device. Rather it is a matter of perspective: how the
developer intends to use the device. We would say that an ordinary
FPGA is generally used as a peripheral and plays a supporting role
in a computing system. In contrast, a Platform FPGA has a central
role in the computing system.

Overall, FPGAs offer a great deal to the embedded systems
designer. Beyond simply reducing the numbers of chips, the Plat-
form FPGA offers an enormous degree of flexibility. As it turns
out, this flexibility is extremely valuable when designing systems
to meet the complex and demanding requirements of embedded
computing systems that are becoming so universal today. Often
it is this flexibility that makes FPGA technology more appealing
than traditional microprocessor-based solutions, Structured ASIC
solutions, or other System-on-a-Chip (SoC) solutions.

Along with its advantages, FPGA technology also comes with
a new set of challenges. Previously, one of the most important
questions for an embedded systems designer was the choice of
the processor. That choice usually dictated much of the remain-
ing architecture (or at least limited the range of design choices).
With Platform FPGAs, in order to fully utilize their capabilities and
cost savings, a much wider pool of system developers needs to
be able to combine computer engineering, programming, system
analysis, and technical skills.
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The aim of this book is to draw this necessary information
together into a single text so as to provide the reader with a solid and
complete foundation for building embedded systems on Platform
FPGAs. This includes the underlying engineering science needed
to make system-level decisions, as well as the practical skills nee-
ded to deploy an assembled hardware and software system.

The organization of this book reflects that twofold mission:
each chapter consists of a set of white pages followed by a set
of gray pages. The white pages emphasize the more theoreti-
cal concepts and slow-changing science. The gray pages provide
descriptions of state-of-the-art technology and emphasize practi-
cal solutions to common problems.

The specific learning objectives of this chapter are straightfor-
ward.

• We begin with an abstract view of a computing machine and
define an embedded system by distinguishing it from a general-
purpose computing system. Since we are using a Platform
FPGA device to develop application-specific, custom comput-
ing machines, it is important to revisit the traditional concepts
of hardware and software and, in particular, describe the two
very different compute models used by each.

• Next, we consider some of the specific challenges that embed-
ded systems designers face today. These include short prod-
uct lifetimes leading to tight project development schedules,
increased complexity, new requirements, and performance
metrics that often define the degree of success. The complex
interplay of these challenges presents one of the most impor-
tant problems facing the next generation of embedded systems.

• The white pages of this chapter end with a section describ-
ing Platform FPGA characteristics and why these devices are
well suited to meet these complex demands facing modern
embedded systems designers today.

In the gray pages, a practical example using a fictitious
scenario is presented; we briefly describe how to set up the
software tools needed throughout the book and show to how
to create the obligatory “Hello, World!” on a Platform FPGA
development board. Overall, the goals of this chapter are to
establish a solid motivation for using Platform FPGAs to build
embedded systems and to initiate the reader on how to use the
development tools.

1.1. Embedded Systems
In the simplest sense, an embedded system is a specialized
computing machine. A computing machine (or just computer) is
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Figure 1.2. An abstract view of a computing system.

frequently modeled as a system that includes inputs, outputs,
and a computation unit. The machine exists in some sort of
environment that provides the energy to propel the machine.
In addition to the manipulation of information, the computing
machine produces heat that is returned to the environment. This
organization is illustrated in Figure 1.2. (This very abstract figure
is fleshed out in the next chapter.)

When the machine is being used, it is said to be executing
and that period of time is called “run-time.” When the machine
is not executing, it is said to be “off-line.” The inputs, which come
from the environment, determine the outputs, which are conveyed
from the machine to the environment. The inputs and outputs are
often physical signals and as such are assigned meaning depend-
ing on the context of the problem, which is the point of building
computing machines: to solve problems.

The personal computer (or desktop) is a well-known example
of a computing machine but there are a multitude of others as
well. The slide rule and the abacus are old-fashioned mechani-
cal machines that were used to do arithmetic. These have since
been replaced by the electronic calculator, which is an electronic
computing machine.

1.1.1. Embedded and General-Purpose
Depending on how the computing machine is used, we classify it
as either embedded or general-purpose. An embedded computing
system (or simply an embedded system) is a computing machine
that is generally a component of some larger product and its pur-
pose is narrowly focused on supporting that product. In other
words, it is a computing machine dedicated to a specific purpose.
In terms of the abstract machine in Figure 1.2, the environment
of an embedded computing system is the product it is part of. The
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end user of the product typically does not directly interact with the
embedded system, or interacts with only a limited interface, such
as a remote control. Even though the computer may be capable
of more, the embedded system is typically restricted to perform a
limited role within the enclosing product, such as controlling the
behavior of the product.

There are numerous examples of embedded systems. They
are ubiquitous and have permeated most aspects of modern life:
from the assortment of consumer electronics (DVD players, MP3
players, game consoles) we interact with almost daily, to energy-
efficient refrigerators and hotel key-card activated door handles.
Even large, heavy earth-moving equipment typically has hundreds
of sensors and actuators connected to one or more embedded
systems.

In contrast, a general-purpose computing system is a product
itself and, as such, the end user directly interacts with it. Another
way to put it, the end user explicitly knows the product they are
buying is a computer. General-purpose systems are character-
ized by having relatively few, standardized inputs and outputs.
These include peripherals, such as keyboards, mice, network con-
nections, video monitors, and printers. Embedded systems often
have some of these standard peripherals as well, but also include
much more specialized ones. For example, an embedded system
might receive data from a wide range of special-purpose sensors
(accelerometers, temperature probes, magnetometers, push but-
ton contact switches, and more). It may signal output in a variety
of ways (lamps and LEDs, actuators, TTL electrical signals, LCD
displays, and so on). These types of inputs and outputs are not
typically found in general-purpose computers. Furthermore, how
the inputs and outputs are encoded may be device specific in an
embedded system. In contrast, general-purpose computers use
standard encodings. For example, the movement of a mouse is
typically transmitted using low-speed serial communication and
many manufacturers’ mice are interchangeable. Another example
is each key on a keyboard has fixed standard ASCII encoding. While
an embedded system may also use these standards, it is just as
likely that it will receive its input encoded in the form of a pulse
frequency. Both may look similar electrically but how meaning is
attached to the signals is very different.

Ultimately, such a precise definition of an embedded system
can be difficult to agree with depending on what an individual
considers a “larger product.” For example, is a handheld
computer an embedded system? If so, what is its enclosing
product? It is not used to control anything. Furthermore, the
computing system is exposed to the user: the user can download
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general-purpose applications. So by the criterion just described,
it is not an embedded system. A handheld computer shares
many characteristics of embedded systems. (For example, like an
embedded system, handhelds are very sensitive to size, weight,
and power constraints.) For this reason some might be inclined to
call it an embedded system. Now add a mobile phone application
to the system and most would agree that this is an embedded
system. With the addition of some specialized inputs and outputs,
a general-purpose system can be viewed as an embedded system.
So, the exact boundary between general-purpose and embedded
is not black and white but rather a spectrum.

General-purpose systems strive to strike a balance, compro-
mising performance in some areas in order to perform well over a
broad range of tasks. More to the point, general-purpose comput-
ers are engineered to make the common case fast. Since embed-
ded systems commonly have a more narrowly defined purpose,
designers have the benefit of more precise domain information.
This information can be used during the product development
to improve performance. Often, this can lead to very substantial
improvements.

For example, a general-purpose computer may be used to pro-
cess 50,000 frames of video from a home camcorder and then later
the same computer may need to handle spreadsheet calculations
while serving World Wide Web content. For a single user, this com-
puter has to handle these functions (and many others) reasonably
well. As long as other issues, such as energy use, are reasonable,
the user is happy. However, an embedded system designer might
know that their system will never need to do spreadsheet calcula-
tions and the engineer can exploit this knowledge to better utilize
the available resources.

Most computer courses target general-purpose computing
systems. Operating systems, programming languages, and com-
puter architecture are all taught with general-purpose comput-
ing machines in mind. That is appropriate because — embedded
or not — many of the principles are the same. However, given
the enormous presence of embedded computing systems in our
day-to-day lives, it is worthwhile to accentuate the unique char-
acteristics of embedded systems and focus a program of study on
those.

1.1.2. Hardware, Software, and FPGAs
One of the differences between general-purpose computing and
embedded computing is that embedded systems often require
special-purpose hardware and software. It is worthwhile to define
these terms before we proceed. Furthermore, Platform FPGAs
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begin to blur the distinction between hardware and software.
Before we get into the details of FPGA technology, though, let’s
revisit the definitions of hardware and software.

Hardware refers to the physical implementation of a comput-
ing machine. This is usually a collection of electronic circuits and
perhaps some mechanical components. Simply put, it is made
of matter and is tangible. For example, consider a computing
machine implemented as a combinational circuit of logic gates
(AND, OR, NOT) and assembled on a breadboard. The hardware
is visible and the design physically occupies space. Another char-
acteristic of hardware is that all of the components are active
concurrently. When inputs are varied, changes in the circuit prop-
agate through the machine in a predictable but not necessarily
synchronized manner.

Software, however, is information and as such does not man-
ifest itself in the physical world. Software is a specification that
describes the behavior of the machine. It is generally written in
a programming language (such as C, MATLAB, or Java) and this
representation of desired machine behavior is called a program.
While it is possible to print a program on paper, it is a representa-
tion of the program that exists in the physical world. The software
is information expressed on the printout and is inherently intan-
gible. (Note that a person who is composing software is called a
programmer and that the act is called programming.)

These traditional definitions of hardware and software have
served us well over the years, but with the advent of FPGAs and
other programmable logic devices in general, these definitions and
the distinction of what is hardware and what is software become
less clear.

1.1.3. Execution Models
One of the most challenging aspects of embedded systems design
is the fact that one has both hardware and software components in
the design. These have fundamentally different execution models,
which are highlighted.

Several programming paradigms exist for High-Level Langu-
ages (functional, object-oriented, etc.). However, at the machine
level, all commercial processors use an imperative, fetch-execute
model with an addressable memory. In software, this sequen-
tial execution model serializes the operations, eliminating any
explicit parallelism. As a result, operations are completed in order,
alleviating the software programmer from the arduous task of
synchronizing the execution of the program. In contrast, hard-
ware is naturally parallel and computer engineers must explic-
itly include synchronization in their design. This concept of
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sequential, implicitly ordered operations versus the unrestricted
compute model is especially important in FPGA designs and is a
topic that we will continue to address throughout this book.

A subtle point is that it is commonplace to refer to some com-
ponents of our Platform FPGA system as “hardware” when, in fact,
these components are written like software. That is, the compo-
nent is a specification of how the device is to be configured. The
real, physical hardware is the FPGA device itself. Thus, in place of
the conventional definition of hardware given earlier, we will dis-
tinguish hardware and software components of our system based
on their model of execution. Earlier we said that software is char-
acterized by a sequential execution model and that the hardware
execution model is distinctly nonsequential. In other words, soft-
ware will refer to specifications intended to be executed by a pro-
cessor, whereas hardware will refer to specifications intended to be
executed on the fabric of an FPGA and, on occasion, in a broader
sense, the physical components of the computing system. To make
this important distinction more concrete, consider the following
computation:

R0+R1+R2 → Acc

Assume that all four names are registers. The computation imple-
mented in the sequential model is illustrated in Figure 1.3. It shows
the traditional fetch-execute machine. The dashed box highlights
on the main mechanism. The ALU circuit is time-multiplexed to
perform each addition sequentially. A substantial part of the cir-
cuit is used to decode and control the time steps. This is commonly
referred to as the von Neumann stored-program compute model.
We will continue to refer to it as the sequential execution model. In
contrast, a nonsequential execution model can take a wide variety
of forms, but is clearly distinguished from sequential execution by
the absence of a general-purpose controller that sequences oper-
ations and the explicit time-multiplexing of named, fixed circuits.
A nonsequential execution implementation of this computation
is illustrated in Figure 1.4. This is generally known as a data-flow
model of execution, as it is the direct implementation of a data-
flow graph. (We use the broader sense of the term throughout this
book; the data-flow architectures studied in the 1980s and 1990s
incorporate more detail than this.)

In terms of how these two computing models work, consider
their operation over time. In Figure 1.5, time advances from top
to bottom. Each “slot” delineated by the dotted lines indicates
what happens during one clock cycle. It is important to note that
the speed of the two computing models cannot be compared by
counting the number of cycles — the clock frequencies for each
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are different. A typical FPGA clock period might be 5× to 10×
longer than a processor implemented in the same technology.
Also, modern processors typically operate on multiple instructions
simultaneously, which has become crucial to their performance.

With this understanding, we can say that software runs on
a processor where a processor is hardware that implements the
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Figure 1.5. A cycle-by-cycle
operation of sequential and
data-flow models.
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sequential execution model. Note that the terms Central Process-
ing Unit (CPU) and microprocessor are common synonyms for
processor. Hardware will be the specification that we use to con-
figure the FPGA and does not use the sequential execution model.

1.2. Design Challenges
Now that we have a better understanding of what an embedded
system is, it is worthwhile to understand a little bit about how
embedded systems projects work. This section discusses the life
cycle of a typical project, describes typical measures of embedded
system success, and closes with a summary of costs.

1.2.1. Design Life Cycle
There are many books on how to manage an engineering project.
Our goal in this section is simply to highlight a couple of terms
and describe the design life cycle of a project to provide context
for remaining sections. This life cycle, illustrated in Figure 1.6,
is sometimes referred to as the “waterfall model.” It is meant to
suggest that going upstream (i.e., returning to a previous stage
because of a bug or mistake in the design) is considerably more
challenging than going downstream.

Whether initiated by a marketing department or by the end
user, the first stage is called requirements. As the name suggests,
the step is to figure out what the product is required to do. Often
this will start as a very broad, abstract statement, and it is the
developer’s job to establish a concrete list of user measurable
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capabilities that, if met, the end user would agree the project was
a success.

The next stage in is called specifications. In contrast to require-
ments, specifications are usually written for the developer, not the
end user. Created from the requirements, they are used to judge
whether a particular piece of code or hardware is correct. Often
a specification comes from a particular requirement, but some
specifications may result as the combination of several require-
ments or as the result of preplanning the design of the product.
It is reasonable to develop a set of metrics at this stage that define
the correct behavior (in terms of implementation).

The design stage follows next. Usually a developer is contem-
plating a working design throughout all of the previous stages; this
is where the design is formalized. Formats, division of functional-
ity into modules, and algorithm selection are all part of this stage.
There are numerous methodologies for how to design software
and some include developing a prototype, whereas others call for
reiterating over specifications and requirements. Others espouse
coding a solution as fast as possible under the adage that “get
your first design finished as soon as possible because you always
throw out the first one.” For FPGA designs, a developer is typically
designing the physical components, electrical and mechanical, at
this stage as well.

The fourth stage — called integration (or in some method-
ologies, “testing”) — begins when the physical components
become available. All of the components are combined, and the
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functionality tests developed during the specification stage are
applied. For custom Printed Circuit Boards (PCBs), there is usually
an incremental process of (1) testing the electrical connectivity,
(2) applying low-voltage power and verifying the digital compo-
nents, (3) testing the high-voltage components (if any), and then
finally loading the software. The process is called “bringing up a
board,” and the idea is to minimize potential damage due to any
mistakes in the design or fabrication process. By testing incremen-
tally, it also helps locate the mistakes that inevitably will exists.

After integration, the product is generally ready to be delivered
(if it is a one-off custom design) or manufactured in mass. The final
stage, maintenance, begins once the product has left integration.
As the name suggests, it deals with fixing problems that were dis-
covered after the product begins to ship. For FPGA-based designs,
there is much that can be done in this stage because, after all, the
device is programmable in the field! More to come on that later.

An alternative view of the design and integration stages is
shown in Figure 1.7. The point of this illustration is to show the
hardware (top) and software (bottom) revisions of the designs.
Often, before software development can begin, some initial design
effort is needed to produce the first hardware (first silicon). This
can also be the time waiting for a development board to be fabri-
cated. Once the hardware arrives, the software development can
swing into full gear. Each arc represents another revision, where
the large area under the arc indicates a major revision and smaller
arcs represent minor revisions. A project may only have so much
time to revise hardware, so the relatively few major revisions are
shown. Software may be able to make many small revisions, espe-
cially toward the end of the design process.

1.2.2. Measures of Success
For the last several decades in the general-purpose computer
world, the top design consideration has been speed (rate of
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execution). Computing machines were compared based on how
fast they completed a task. In the embedded systems world, suc-
cess is a combination of requirements and performance metrics.
The requirements are capabilities that the system must meet to be
functionally correct. Metrics are measured on a continuum. Also,
an embedded systems design is, by definition, constrained by its
environment (i.e., the larger product it is part of). This necessarily
means that success is a multifaceted measure.

Clearly, the requirements and specifications guide the design
of an embedded system. The requirements will define capabili-
ties that must be met. Often there exist additional criteria (which
may or may not be explicitly provided) that help judge the success
of the product. We call these extra criteria performance metrics.
Metrics are generally measured on a scale, such as “faster is bet-
ter” or “lighter is better.” For example, a six-week battery life might
be a requirement but a product may also be judged by its battery
life metric. A product that typically runs for eight weeks between
charges is generally considered better than one that simply meets
its six-week requirement.

Of course, a developer does not want to blindly “over engineer”
a product because there are real costs associated with many deci-
sions. In order to make sensible decisions given a fixed amount
of resources, a developer needs quantifiable metrics as a guide.
There are a number of quantifiable metrics that embedded sys-
tems developers may use; three common metrics are considered
here: speed, energy, and packaging.

Speed
Throughout most computer-related undergraduate curricula, the
idea of speed is theoretical. That is to say an algorithm is evaluated
in terms of the number of time steps it takes to complete. Usu-
ally this is written in terms of the size of its input, n. This is a very
effective tool for comparing the relative merits of algorithms, but
for embedded systems, it is not as useful. Embedded systems, for
example, typically run until the power is turned off — so picking a
fixed n as an input is often impossible! Instead, it is more useful to
measure the speed of the individual components.

If the computing machine has a dedicated purpose, then the
speed may be characterized as a minimum speed requirement. In
this case, the speed can be thought of as a “cliff” function: if you are
heading toward a cliff, being able to stop in time is sufficient but
not stopping in time has dramatic consequences. For many dedi-
cated systems, there are limited benefits in exceeding the target
speed, but falling short of the target does not gradually degrade
the performance of the system.
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For scientific applications, the speed — that is, the rate of com-
putation — is usually the metric that trumps all others. Heat and
packaging are important; however, as long as the machine can be
physically built and the heat generated by the machine removed
is at a reasonable cost, then the key factor that distinguishes one
system from another is how fast it completes a given task. Like-
wise, for many business applications, reducing the amount of time
that an end user spends waiting for a result provides a competi-
tive edge over another machine. This is sometimes characterized
as “how fast the time piece goes away” in reference to a mouse
pointer icon that indicates the machine is working. In these and
other general-purpose cases, performance increases as the speed
of the machine increases. For such systems, an unbounded speed
requirement means that faster is better.

Unlike many general-purpose systems, embedded systems
incorporate both speed requirements. When the computing
machine is used for controlling the product and the speed is not
directly observable by the end user, then there is usually just a
minimum speed requirement. The machine just has to be “fast
enough” in order for the product to function correctly. If the end
user can observe the speed, then an unbounded speed require-
ment may be in effect. For example, suppose the task is to skip
forward to the next song in the playlist. An unbounded speed
requirement is reasonable here because if the target is two sec-
onds, then exceeding this results in a better end-user experience.
Faster response times can translate into a measurable advantage.
If the embedded system is designed to increase the energy effi-
ciency of a household appliance, then exceeding the minimum
speed actually degrades the overall performance (because a faster
system presumably consumes more energy).

Speed requirements are usually specified for each use case.
This often results in multiple tasks that, to some extent, share
resources in the system. Operating systems can be used to manage
those shared resources by creating a virtual environment for each
task and then time-multiplexing the tasks. Ordinary operating sys-
tems schedule these tasks in real time with an assumption that
the tasks have unbounded speed requirements. However, embed-
ded system applications often need a mechanism to relate tasks’
progress in their individual virtual times to the events in real time.
An operating system that provides these mechanisms is called a
real-time operating system.

Scheduling in real-time operating systems is challenging
because, for a variety of reasons, the amount of time a particular
task is going to take is not always known. Hence, before we leave
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the speed component of performance, it is worthwhile to note that
predictability is valuable. Predictability can improve the scheduler
of a real-time operating system, which allows us to more carefully
specify minimum speed requirements.

Energy and Power

All machines — whether they are mechanical or solid state — are
propelled by energy and it is hard to imagine any human activity
in our 21st-century society that does not consume energy. Twenty
years ago, small (slow) stationary computing machines (desktops)
did not consume much energy. Hence, power — the rate at which
energy is consumed — was a relatively insignificant issue. How-
ever, with rising energy prices and ever-faster microprocessors,
power has become a first-class design metric. Moreover, all of the
energy that goes toward computation is eventually converted into
heat. For low-power systems, the ambient environment may be
sufficient to dissipate the heat. As power consumption increases,
active thermal measures need to be taken, which further increases
the total power used by the system. In some very large high-end
computing installations today, 2 MWatts are required to power the
computing machine and 1 MWatt is needed to run the chillers! For
embedded systems, there are two energy-related components to
this issue. First is the total energy used to complete some task or
application. The second is power.

Total Energy
Many computing systems are application specific; that is, there is
a well-defined lifetime for the machine or there is a duty cycle.
Examples of the former might include disposable greeting cards
that play a musical tune when the card is opened or a wireless sen-
sor that is built into a bridge to take structural integrity measure-
ments. Examples of the latter include most rechargeable portable
devices — mobile phones, personal digital assistants, and so on.

In both cases, the computing system must include some energy
storage unit — a battery. The functional specification will proba-
bly be expressed in terms of time (i.e., a cell phone must operate
for two days between charges). Battery technology is improving;
however, it has not kept up with increased power demands of
general-purpose microprocessors. Further complicating this pic-
ture is the fact that batteries tend to be an expensive and physically
large component of the system. Consequently, for many projects
the range of battery capacities is relatively restricted and it is up to
the engineer to design the computational unit to fit a total energy
budget.
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For some applications, the total energy over the lifetime of the
product is all that matters, since operating system cost is propor-
tional to energy. If the product has a very short lifetime (imagine
a greeting card with a small battery-powered audible message)
or if the product is wired (like your desktop computer), then the
analysis ends there. Ultimately, most embedded systems don’t fall
into either of these situations and so managing the total energy
consumed is an important performance metric.

Power and Heat
While total capacity of a battery constrains the lifetime (or charge
cycle) of a computing system, there is another dimension to the
problem. Specifically, most energy storage units are limited in
terms of how quickly they can release their stored energy. In other
terms, energy may be available but the battery cannot meet the
power demands at a particular moment in time.

To make these ideas more concrete, a quick review of electrical
properties is in order. Starting with some power source, such as
a battery, there is a voltage difference between its two terminals.
This difference, measured in volts (v), is the potential energy that
will be dissipated in an electrical circuit connected to the battery.
A circuit provides a path for electricity to flow from one terminal to
the other, and the amount of electrical charge that flows is current,
measured in amps (i ). Depending on how the path from one termi-
nal to another is constructed, the circuit will limit the current. This
is the resistance r of the circuit. These three variables are related
by Ohm’s law, which is v = ir. Once the circuit is connected and
current flows, the circuit begins to convert the potential energy
of the battery into heat, which is the rate of energy consumption,
which we already know is power. Power (measured in Watts, p) is
a product of the change in voltage and current, that is, p = vi. (For
computing devices, this only is only part of the picture — without
taking switching into account this only measures the static power.)

The rate at which energy is consumed by the circuit is propor-
tional to the rate at which heat is released into the environment.
Passive thermal management techniques are limited in how fast
they can remove heat. If heat is not removed, then the tempera-
ture rises, which has a series of problems, including device failure
and discomfort for the end user, who may have the device on their
person. To keep the temperature low, we have to resort to remov-
ing the heat with active thermal management (fans and more
exotic techniques). These, of course, require power themselves,
complicate the design, and raise the cost.

To bring this discussion to the point: power is dictated by the
circuit technology we use and by how we organize our machine.
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While the total energy used is one factor, the rate of energy
consumption is much more significant because it affects so many
of our performance metrics, such as size and mass. Poor power
budgeting can raise the cost significantly.

Size and Packaging
Often size (and mass) is a requirement: the product has to fit within
some space or cannot weigh more than a certain amount, but once
met, they can also be metrics. For example, thinner mobile phones
and lighter earpieces are better. For embedded systems design,
size matters. If a designed circuit board is too large to fit in the
packaging, it may result in a redesign of the circuit or a reorder
of the packaging. Both are likely to be expensive mistakes. There-
fore, it is important to consider what packaging or size constraints
exist prior to circuit layout or fabrication. Clearly, these size and
packaging issues are easy to quantify, so we will not belabor it here.

1.2.3. Costs
The previous two subsections are, strictly speaking, performance
related. Cost is usually held in opposition to performance. An
implicit goal of nearly every engineering project is maximizing
performance while minimizing cost. Furthermore, cost constrains
all of the metrics discussed previously, thus cost fundamentally
limits the range of potential solutions. The cost of developing a
product and selling it includes development and Nonrecurring
Engineering (NRE) costs and then manufacturing and distributing
costs.

While the business aspects of bringing an embedded systems
product to market are better left to people schooled in business, it
is important for the developer to at least be aware of the business
aspects. In particular, there are two points we want to empha-
size. The first is related to delivery dates, market demand, and
how projects are financed. The second point is how technology —
especially Platform FPGAs — can be used to reduce development/
NRE costs and the risk of escalating development costs.

Costs Incurred

Personnel
Perhaps the most obvious cost to an engineer is the development
cost. These costs can be divided into two categories: direct and
indirect. Direct costs include things such as salaries and hourly
wages for employees developing the product, consumable materi-
als and supplies, and education costs. Special equipment needed
for development is also a direct cost.
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Indirect costs are sometimes called overhead and are basically
“the cost of doing business.” More precisely, overhead pays for
infrastructure. This cost is determined as a percentage of the direct
costs. Assuming the project is part of some bigger organization, the
project will be charged indirect costs based on what the institution
provides. For example, a research project housed in an educa-
tional institution might be charged anywhere from 40 to 100% of
the indirect costs. Typically, large industrial organizations charge
upward of 100 to 200% overhead. (That’s correct — if the direct
costs are $50,000, total budget might be $150,000!) The justifica-
tion for indirect cost depends on the type of institution as well.
Organizations charge indirect costs to cover building capital costs
and staff salaries.

It may not be immediately obvious why indirect cost is charged
as a percentage. Why not simply pay for all services directly?
The answer lies in the fact that most organizations have multi-
ple ongoing projects and it is inefficient to dedicate a resource
(such as an administrative assistant) to a single project. Moreover,
the demands on that resource are likely to vary over time. The
idea is that an active project would require more services, so it
generates more overhead for the organization. By treating expen-
ditures (direct costs) as a reasonable approximation of project
activity, different projects can be charged based on their approx-
imate demands on the infrastructure.

The general cost formula is:

TOTAL = DIRECT + RATE × (DIRECT − EQUIPMENT )

Because the cost of large equipment purchases would generally
skew the indirect costs, it is usually not included. For example, a
project with $100,000 direct costs (of which $25,000 is a special-
purpose milling machine) would be charged overhead on $75,000.

Nonrecurring Engineering Costs
After the product has been developed, there may be a prototype
or just a construction plan. The next step is manufacture, distribu-
tion, and marketing. While this is primarily a business concern, it is
important for an engineer to understand how products are manu-
factured, as the design decisions can have a significant impact on
these costs. Generally, these costs are divided into two compo-
nents. The first, NRE costs, are upfront charges that are required
to build the first unit. The second are material and labor charges,
which are basically the per-unit cost for some lot size.

Nonrecurring engineering costs are usually some sort of tool-
ing charge or one-time software development costs, for exam-
ple, the production of ASICs (Application-Specific Integrated
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Circuits). This process was originally designed to make inexpen-
sive product-specific integrated circuits widely available. The idea
is to keep many parts of the process identical, but leave some lay-
ers customizable by the designer. The customizable parts are used
to generate a mask that can be used to make silicon wafers quickly
and easily. Generating a mask is a steep NRE cost that is propor-
tional to the IC technology used. While individual IC devices might
cost less than $1 per unit to manufacture, the initial mask cost
might be over $250,000!

Finance and Consumer Demand

Most consumer electronic devices have an imaginary “consumer
demand curve.” This curve represents the total number of poten-
tial sales of a product over a period of time. Unlike older tech-
nology (such as hammers), consumer electronics change rapidly
and newer devices replace older devices (such as game consoles).
Whereas a consumer will use a hammer until it breaks, many con-
sumers will stop using a functional mobile phone and replace it
with a newer phone. Depending on when your product arrives
relative to the customer demand curve and how quickly it is
adopted dictate the total income derived from the product. We
adopt Vahid and Givargis’ model (Vahid & Givargis, 2002) and
extend it to explain how development delays hurt the potential
income but also bear significant costs that may not be immediately
obvious.

The on-time model is illustrated in Figure 1.8. Time is on the
x axis and the expected delivery date is at the origin. Everything
to the left is development, manufacture, and delivery. To the right
of the origin is after an on-time delivery. The y axis represents
an account balance — below the x axis, the project costs have
exceeded its income, above the x axis indicates that the project is
profitable. In an ideal world, the consumer demand curve begins
at the origin, will peak, and then asymptotically approach the x axis
again. (It is easiest to think of “demand” as the number of poten-
tial units sold per time period. If there are no discounts and all of
the costs are carefully accounted for, the number of units can be
translated in potential profit.)

With an on-time delivery, we can see that a certain amount
of monthly development costs will accrue between the start of
the project (point A) and the origin. Once the embedded sys-
tems product has been been completed, a factory is contracted
to produce a lot. This lot is then distributed to retailers at point
B. If the product has no competition (and we contracted for a big
enough lot), then the income will follow the consumer demand
curve and, at some point, our account balance comes out of the
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Figure 1.8. The importance of
time-to-market in terms of
break even and profitability.
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“red” and the project becomes profitable. What we want to learn
from this illustration is: what is the impact of delays during devel-
opment? Delays during development that change the delivery date
doubly hurt profitability. Suppose the actual delivery date is at
point C. We continue to incur monthly development costs, and
the consumer demand between points B and C is lost income that
will never be recovered. (Furthermore, the financing charge con-
tinues on the original development cost estimate plus the addi-
tional costs.) Thus, missing a deadline for a consumer electronic
device is not just delayed profits. In fact, it means that a dimin-
ished potential income will be available to recover a larger amount
of debt.

While this section could continue into a variety of different pro-
duct/project management and finance discussions, it is not the
intention of this book to dwell deeply into these topics. Likewise,
the brevity of the discussion is not to diminish the significance of
the role they play in embedded systems design. In short, embed-
ded systems design is a multifaceted endeavor and it is in the best
interest for the reader to become familiar with as many aspects
to the design process beyond the engineering solution. Mean-
while, this book will continue with a more engineering, science,
and technology focus of embedded systems design.

1.3. Platform FPGAs
As highlighted earlier, embedded systems designers have increas-
ingly turned to the use of FPGAs in their designs. While the remain-
der of this book addresses the specifics of “how” to use FPGAs, we
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first must explain “what” are and “why” use FPGAs. Before FPGAs
there were programmable logic devices (PLD). Early PLDs were
designed to implement arbitrary digital (combinational) logic cir-
cuits. They were implemented as ICs with an array of gates (invert-
ers, AND, and OR) and wires. Various mechanisms were used
to make connections between the wires and the gates. The key
feature of these devices was their ability to be configured after
the manufacture of the device. A single PLD package is able to
replace several packages of small-scale integrated circuits (such
as the 7400-series parts). Hardware engineers began using the
verb program to describe the process of setting the configuration.
Hardware engineers would typically figure out the settings, and
only the last step of transferring the configuration was the act of
programming the device.

The FPGA is an advancement on these earlier programmable
logic devices and is generally distinguished by two features. First,
the gates are no longer physically implemented, but rather the
logic is implemented with function generators and discrete mem-
ories. Second, most FPGAs use static RAM cells to hold the config-
uration information as opposed to more permanent ways of earlier
devices (such as antifuses). This allows the FPGA to be configured
and reconfigured after the device has been installed in a product.
That is, an FPGA can be reconfigured in the field.

Field-Programmable Gate Arrays permit an arbitrary digital cir-
cuit to be realized after the physical silicon chip has been manufac-
tured, tested, and installed. The digital circuit that is programmed
(or configured) into an FPGA is called a design. Design entry is
a generic term for creating a machine-readable representation of
the desired digital circuit. We will return to this in the next chap-
ter. A Hardware Description Language (an HDL) is a programming
language used to describe the behavior of hardware and is the
most common form of design entry today. Originally, HDLs were
only intended to simply describe hardware for documentation
purposes. Later, it was recognized that the HDL could be used
to simulate hardware for testing the design before implementing
it. Before long, engineers began to refer to the intangible HDL
design as hardware because everyone understood that eventually
it would be physically implemented. The definition of hardware
was further co-opted when HDLs began to be used as a synthe-
sis language. At this point, the common practice of referring to the
specification as hardware becomes misleading: in an FPGA those
gates described are never physically realized. The FPGA device is
the hardware, and programming it does not manifest any physical
change. (As shown in Chapter 2, the FPGA device is simply con-
structed to mimic the desired digital circuits.) Thus, even though
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the design is, strictly speaking, intangible like software and the
hardware is the physical FPGA device, the current convention is
to refer to the design as “hardware.” This broadens the definition
of hardware given earlier to include not only the tangible physi-
cal components of the computing system, but also the intangible
specifications that use a nonsequential execution model.

We are now ready to give a more refined definition of a Plat-
form FPGA. In 2002, Xilinx introduced the Virtex-II family of FPGA
devices. The Virtex-II Pro members of this family incorporated
one or more PowerPC processors as diffused intellectual property
(IP) cores, to be explained shortly. Coupled with other diffused
IP, such as RAM and high-speed transceivers, this meant that it
is possible to deploy a complete, fully functional computing sys-
tem on a single FPGA package. Moreover, with the large amount
of configurable resources on the die, standard and nonstandard
peripherals can be readily incorporated. Because it is configurable,
the resources can be used to efficiently implement application-
specific architectures. Naturally, this makes an excellent founda-
tion (or platform) upon which to build an embedded system. We
use Platform FPGA to designate an FPGA device that is deployed as
the central component of a computing system. Indeed we will see
that the presence of a diffused processor core is not always strictly
required: with large FPGAs, the processor can be implemented in
the reconfigurable resources of the FPGA.

It is useful to define some of these “hardware” components
more carefully now. First, we begin with an Intellectual Property
core. An IP core (or simply a core) refers to a hardware specification
that, depending on how it is expressed, can be used to either phys-
ically manufacture an integrated circuit or configure the resources
of an FPGA. For example, a pipelined multiplier could be packaged
as a core. A diffused core in an FPGA means that the hardware is
physically part of the silicon device and its functionality is realized
in transistors when the device is manufactured. Because it is, by
the traditional definition, truly hardware, it is more often called a
hard core. In fact, the term hard core has come to replace diffused
IP so much so that we will go forward with this text using hard core
in place of diffused IP core.

In contrast, a soft core is implemented in the reconfigurable
resources of an FPGA. Finally, some communities refer to cores
as either blocks or modules. A hard block is a core that has been
implemented in CMOS transistors, and a soft block is a core that
has been implemented in the function generators and memories
of an FPGA device. The design automation community often refers
to modules, and modules are always destined to be hard blocks on
an IC chip. Details regarding synthesis, mapping, and routing are
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covered in detail in Chapter 2 where the inner workings of an FPGA
are discussed in detail.

In summary, the Platform FPGA is simply an FPGA that an engi-
neer uses to deploy a custom computing system. Instead of its role
as a support device, it becomes the central compute device. In our
case, we will be using it to develop custom computing machines
for embedded systems designs. The rest of this book is spent cov-
ering details regarding Platform FPGAs and embedded systems
design; this section is meant to introduce and motivate their use
as an alternative to a microprocessor-based system.

Chapter in Review
The overall aim of this chapter was to set the stage for building
embedded systems with Platform FPGAs. To accomplish this, we
addressed three key questions.

• What is an embedded system?
• Why are embedded systems different?
• How do Platform FPGAs help?

We answered the first question by revisiting the concept of a
computing machine and then distinguishing an embedded com-
puting machine from a general-purpose computing machine. We
answered the next question by showing the complex constraints
that embedded systems impose on the developers. Finally, we gave
a quick overview of the characteristics of a Platform FPGA and
described how this technology can be useful to embedded systems
developers.

In the gray pages that follow, we present an embedded systems
scenario and contrast two approaches. We also describe the setup
and installation of a popular set of commercial tools and then do
a simple demonstration.
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Practical Expansion
Every chapter of this book is divided into two sections: white pages describe the science of the chapter’s topic and gray
pages focus on specific technology. The white pages contain information that has been true for twenty years and will
probably be true for the next decade. The gray pages (these pages) contain more details about state-of-the-art technology
and examples introduced by the white pages. The reader might ask, “why not put it at the end of the book?” In short,
the gray pages are specifically relevant to the material covered in each chapter, which covers practical exercises and
examples that, if placed at the end of the book, the reader may miss. While the white pages refer to the science that is
considered to be “timeless,” the gray pages contain specific details on software and hardware that do age with time and,
as is common with any technology, can become dated quickly. We have selected materials for these gray pages that are
toward the beginning of their shelf life, but it may be evident that these technologies are less relevant as the book ages.
However, the concepts of embedded systems development on an FPGA are far less vendor and hardware specific. Being
too abstract would leave the reader without any solid, tangible examples, just as covering every FPGA vendor and family
would result in far too much information for a reader to digest in a timely manner. Therefore, we have chosen the Xilinx
ML-510 development (Xilinx, Inc., 2009c) board for its available resources that an embedded systems designer may use
in their design. A photo of the ML-510 is shown in Figure 1.9. The reader is by no means required to purchase this board;
there are less expensive development boards with the same FPGA available. As a result, we will do our best to present
the material with an emphasis on FPGA generality and highlight what is ML-510 specific. Overall, the material we wish to
cover is more specific to FPGA design and should be applicable over a range of FPGAs.

Figure 1.9. A photo of the Xilinx ML-510 development board.
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Embedded Systems developers wear many hats. As Section 1.2 detailed, much more than just designing operational
hardware or functionally correct software goes into a successful project. So far in the white pages we have discussed
some of the benefits of Platform FPGAs, but the reader may still be asking “why use Platform FPGAs over commodity
off-the-shelf components?” So let us start these gray pages with an instructive end-to-end practical example to motivate
the use of Platform FPGAs. Then, we will discuss the technical details necessary to begin embedded systems design with
Platform FPGAs.

1.A. Spectrometer Example

First, the general scenario and key requirements are defined. Next, two designs are described — one based strictly on
commodity components and the other uses Platform FPGAs. This section concludes with a discussion of strengths and
weaknesses of each approach.

1.A.1. Scenario

Suppose a hospital is preparing to conduct a large study involving a large number of experiments and thousands of vol-
unteer subjects over a three-year period. This means every subject will make routine visits to the hospital to have various
specimens collected depending on the subject. In order for the study to be conclusive, subjects have a specific time frame
in which they have to report for various experiments.

Based on the large amount of data being collected and the risk of logistical mistakes corrupting the massive study,
the principal investigators have budgeted money for an automated information system. Over the three years it is probable
that new staff members will be hired and others will leave. As a result, the system needs to be simple enough to train
new employees quickly. Also, the subject’s experience needs to be pleasant and not take up much additional time. Once
at the hospital it is important that subjects are not frustrated by long lines. (Every subject that fails to complete the study
represents a loss of investment by the study; if enough subjects leave the study, the results of the whole study are at risk.)

Based on this, a systems analyst has designed a system where each volunteer carries an RFID tag with them while
at the hospital. Many of the experiments will be custom-built so that when a subject’s specimen is taken and analyzed,
the subject and data are automatically associated. The results are transmitted over the campus network back to a central
server. The study bears the cost of such an elaborate system because they are very interested in features that will allow
them to track their subjects and eliminate paperwork transcription errors.

For our Platform FPGA case study, we will focus on one experiment within this larger context. The project requires that
a specimen be taken and analyzed with a spectrograph. The embedded system needs to read the subject’s RFID tag and
process the spectrograph’s output to determine the presence of various particular chemical elements. Together with the
date and time, a database record is constructed and transmitted to the server. A minimal user interface is needed for the
professional collecting the specimen and for station diagnostics. This is the minimum functionality required, but as it is
anticipated that additional projects for this study are under consideration, it is worthwhile to spend some time designing
the system for reuse.

1.A.2. Two Solutions

Commodity Components Solution Many of the components needed for this station are available as commodity off-
the-shelf components, one easy solution is to buy a commodity desktop machine (monitor, main board, disk, keyboard/
mouse, network card, off-the-shelf OS). Spectrographs come in a wide variety of packages.The one we need comes in two
flavors — one is bare-bones hardware with an electrical interface and the other is hardware plus a built-in computer with
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preinstalled software. The hardware itself is not very expensive,but for many stand-alone lab users, the all-in-one solution
is well worth the price. Finally, a USB-based RFID wand, with ergonomic handle and software that makes recording an ID
“as easy as cutting and pasting,” can be purchased.

From this information, we could buy the RFID wand, all-in-one spectrograph, and the desktop computer with a network
interface. For this approach,what remains is simply a large software integration problem. The spectrographhas a graphical
user interface, but processed data can be exported to an ASCII file. This file can be transmitted over a serial port to the
desktop computer.

A graphical user interface on the desktop computer could have a window with database fields for the subject’s ID
(which can be pasted in with RFID wand), date, time, and a button that initiates a transfer of the data file exported by the
spectrograph. Our software application can then combine data and transmit it over the network. A short user’s manual
can be written for the staff person, explaining how to operate the spectrograph, how to export data, how to launch the
desktop application, and how to use the RFID wand to fill in the the subject ID’s field. We’ll call this the off-the-shelf
solution.

Platform FPGA Solution Alternatively, we might consider using a Platform FPGA approach. For a cost-effective solution
it will still be necessary to leverage off-the-shelf components; however, in this case, we will use simpler subsystems with
a higher degree of integration. At the heart of the system we have a Platform FPGA that can be purchased as part of an
evaluation or development board. (A custom-printed circuit board is possible, but the initial layout of the board may not
be cost-effective for a few boards. We’ll explore the relationship between the number of units and the cost in the next
chapter.) Interfaced to the FPGA is the bare-bones spectrometer device. Likewise, small RFID-printed circuit boards (about
the size of a quarter) can also be purchased. The interface of the spectrometer is fairly complex, requiring that a sequence
of digitally encoded amplitudes be correlated to known frequencies, and other electrical signals are used to control the
behavior of the device. The RFID has a simple RS-232 serial interface. A case, power supply, and an inexpensive two-line
LCD display round out our hardware needs.

Note that we do not need a monitor, a video adapter, or even a system disk. The programmable logic in the FPGA can be
used to build a custom hardware solution that will correlate frequencies coming from the spectrometers. Likewise, three
standard UART cores are easily instantiated in the FPGA’s programmable logic (one for the RFID, one for the LCD display,
and one that we’ll reserve for developmenttesting). A simple keyboard interface and a standard Ethernet network interface
can be realized in programmable logic as well. Because modern FPGAs have transceivers integrated, neither an external
MAC or a PHY chip are necessary — the whole network interface is on-chip. FPGA development boards typically use
flash to store the FPGA configuration and most allow the flash to store the OS and application as well. With this hardware,
the main tasks of the software are to (i) recognize the presence of a subject by their RFID, (ii) interact with the staff and
operate the spectrometer, and (iii) communicate with the central server over the network.

1.A.3. Discussion

Both solutions are reasonable approaches and both meet the functional requirements of the problem, but which one is
better? To answer this question, we will consider a number of factors, including quantitative measures (such as cost) and
qualitative measures (such as how well does it serve the customer’s goals). Indeed, we’ll see that this complex evaluation
is typical for embedded systems.

We begin with cost. Cost is the price of all of the hardware and intellectual property plus the development cost.
In accounting the total cost, we can discount solutions that provide components that realistically can be reused in the
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Commodity Costs

Desktop PC $400
Spectrometer Unit $2 500
RFID Wand $200
TOTAL $3 100

Platform FPGA Costs

FPGA, Flash, PCB $500
Bare Bones Spectrometer $500
RFID Device $100
TOTAL $1100

(a) (b)
Figure 1.10. (a) All-commodity parts solution and (b) custom FPGA solution.

future. No adjustment will be made for the learning experience (i.e., the benefit of learning a new technology that will
improve a future project). The hardware costs for each solution are shown in Figure 1.10. Even though commodity compo-
nents are much less expensive than custom components, the all-commodity solution uses more components. Furthermore,
packaging and application software associated with each subsystem contribute to the hardware cost of solution. Of
course, hardware is only one part of the total cost. The software/development costs for the solutions are heavily in
favor of the commodity solution. Rather than estimating an exact cost, we might simply compare ratios. Chances are
that for most software/applications programmers, the time it takes to learn and debug hardware development will eat
through the $2400. However, experienced computer engineers might break even if they can integrate the system in a
week.

There are two other factors that may be included in the cost. First is the risk of failure. Of the two solutions, the all-
commodity approach probably has a lower risk of failure, as each subsystemis already an independent entity. For example,
the all-in-one spectrograph and data it exports are warrantied. The only risk is in making sure it is calibrated properly. In
contrast, the hardware solution has more unknowns. Correlating frequencies in hardware is fairly straightforward in an
academic setting. However, measurements from physical devices can often have “messy” data with invalid samples and
skewed constants. These are normally corrected with software, but, if unanticipated, this can lead to longer development
times.

Now consider scalability. With the cost of the all-commodity solution over 2.5× greater, as the number of data collec-
tion stations grows, the Platform FPGA solution becomes the clear winner. Of course, a careful reader may point out that
these numbers are suspect and that a case could be made to argue that a commodity solution would be better. Our goal
with this example is to show how these two technologies can both be used to implement a viable solution. A reader famil-
iar with the commodity parts can begin to connect the dots between how a similar solution is constructed from Platform
FPGAs. We can then extend the solution to highlight some of the unique features the Platform FPGA can support, such as
reduced chip count and flexible scalability.

Of course this is only one specific scenario and it is impossible to make an argument that Platform FPGAs will always be
the practical solution. What is important is understanding that Platform FPGAs do provide much of the same functionality
as all-commodity solutions, but often at a reduced total cost. Therefore, it is important to consider the custom solution
when designing systems.

1.B. Introducing the Platform FPGA Tool Chain

With the practical example complete, it is time to shift our focus away from the theory and science of Platform FPGA devel-
opment and instead begin to understand the necessary technology behind developing embedded computing systems with
Platform FPGAs. This section exposes the reader to a number of graphical user interfaces, as well as their corresponding
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command line tools to generate complete Platform FPGA designs. The end goal of this first practical example is to build a
basic “hello world” system and run it on the FPGA. It may not be technically challenging, but there is something gratifying
about running a design on the hardware within the first chapter.

An important aside, this book focuses on the use of Linux for the development environment as well as the run-time
environment on the Platform FPGA. Our goal is not to force the reader to switch from their current development environment,
but to describe what the authors and many research institutions and companies have been or are beginning to use. (The
Xilinx tools are supported under Microsoft Windows, and we highlight any applications, tools, or commands that are
specific to Linux development.)

So we begin by using a graphical user interface that makes FPGA development exceedingly easy. Here we will look at
Xilinx Platform Studio, (Xilinx, Inc. 2009d) (or XPS for short). Other FPGA vendors have similar tools with slightly different
features and operating modes. XPS provides a multitude of wizards, tools, and premade design templates that greatly
simplify the initial design process. Our focus for this technical section is to begin to familiarize the reader with the tool
chain through a simple Platform FPGA design.

1.B.1. Getting Started with Xilinx Platform Studio

The first step is to acquire and install the Xilinx software package: Integrated Software Environment (ISE), (Xilinx, Inc.,
2009b). The ISE install should consist of at least the ISE Design Suite, Embedded Development Kit (EDK), (Xilinx, Inc.
2009a), Software Development Kit (SDK), and ChipScope Pro. We will be focusing our attention initially on the EDK and
SDK tools (which are part of the XPS tool chain). Many digital logic courses use ISE; therefore, we will spend less time dis-
cussing ISE until later chapters. ChipScope is a very useful hardware development tool that we will use in future chapters.
If you are installing the tools yourself on a Linux system, the directory structure shown in Figure 1.11 is a convenient way
to keep the multiple versions organized. (The directory /opt is often used to install packages that have a custom orga-
nization; i.e., they don’t follow the standard GNU package format and filesystem hierarchy standard discussed in the next
chapter.)

opt
xilinx

11.1
ISE
EDK
ChipScope
settings.sh

10.1
ISE

settings.sh

ml310
ml410
ml510

crosstool−ng
bin
power−pc−405−linux−gnu
power−pc−440−linux−gnu
settings.sh

EDK
ChipScope

boards

Figure 1.11. A directory structure for installing Xilinx ISE.
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As can be seen, under the directory /opt/xilinx there is a subdirectory for each version of the tools. At the time
of this writing, 11.1 is currently the latest release. (There have been minor updates available at the time of this writing,
which would make this release technically 11.4, but major release version number 11 is the important identifier.) In that
directory, there are two subdirectories:ISE and EDK. This is where the Integrated Software Environment and Embedded
Development Kit were installed (respectively). (Other tools, such as ChipScope and PlanAhead, can also be installed here.)

Now that the install locations have been identified, the second step is to update your user environment variables. This
depends on which of two families of command line shells you use. For GNU/Linux systems, most distributions default to
BASH, which is part of the Bourne-shell family of command line shells (others include the original Bourne shell sh as well
as Korn shell ksh and others). The second family of shells includes C shellcsh andtcsh. If you are working on a Solaris
Unix workstation, C shell is common.

There are several ways to determine which shell you are using, perhaps the easiest way is to type:

echo $SHELL

If the result is /bin/csh or /bin/tcsh, then you set your environment variables by typing:

source /opt/xilinx/11.1/ise/settings.csh
source/opt/xilinx/11.1/edk/settings.csh

Note that this only changes the current shell and will be lost when you logout.
For the rest of the book, we will use the syntax for the Bourne-shell family of command line shells and, specifically, we

will assume that the reader is using BASH. (If you use C shell, you’ll need to occasionally adjust the examples.) Assuming
that you are using BASH, then the commands are:

source /opt/xilinx/11.1/edk/settings.sh
source/opt/xilinx/11.1/ise/settings.sh

1.B.2. Using Xilinx Platform Studio

Now we are ready to launch the graphical user interface for XPS. Type xps at the command line shown in Figure 1.12 (or
navigate to the Xilinx Platform Studio icon in the Window’s Start Menu). A brief Xilinx splash screen is displayed before
the application starts and an initial dialog pops up (shown in Figure 1.13).

Base System Builder Wizard We will begin by creating a new project and using the Base System Builder (BSB) wizard
to create a basic template design for the Xilinx ML-510 development board. If you have a different board that is supported
by the BSB wizard, select it and then following the rest of these directions.

The BSB wizard’s welcome screen (Figure 1.14) allows you to either create a new design or load an existing BSB
configuration file. We will start with a new design.

% xps
Xilinx Platform Studio
Xilinx EDK 11.1 Build EDK_LS2.6
Copyright (c) 1995-2009 Xilinx, Inc. All rights reserved.

Launching XPS GUI...

Figure 1.12. Launching XPS from the command line.
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Figure 1.13. Initial XPS dialog.

Figure 1.14. The base system builder wizard’s welcome screen.
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Figure 1.15. The base system builder wizard’s board selection screen.

The BSB wizard’s board selection screen (Figure 1.15) allows you to select which development board you will be
designing for. This book uses the Xilinx Virtex 5 ML-510 Evaluation Platform.

The BSB wizard’s system configuration screen (Figure 1.16) allows you to select a single-processor or dual-processor
system. (Note: this option may not exist for all development boards.) For this first design we will select a single-processor
system.

The BSB wizard’s processor configuration screen (Figure 1.17) allows you to set the processor type and operating
frequency for the processor and bus. Most of the designs presented in these gray pages focus on using the embedded
PowerPC common in the Virtex series parts. The specific operating frequencies are less important for this initial design.

The BSB wizard’s peripheral configuration screen (Figure 1.18) allows you to add or remove peripherals to the design.
These are the basic peripherals that the particular development board supports. In this design, add only the RS232_Uart
(xps_uartlite) and the xps_bram_ctlr. The UART will be used to connect the printed output from the development board to
the control computer’s terminal. The block RAM (BRAM) controller is on-chip memory used to store the application that
will be written shortly.

The BSB wizard’s cache configuration screen (Figure 1.19) allows you to add/configure the PowerPC’s embedded cache.
At this time we will not add cache.
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Figure 1.16. The base system builder wizard’s system configuration screen.

Figure 1.17. The base system builder wizard’s processor configuration screen.
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Figure 1.18. The base system builder wizard’s peripheral configuration screen.

Figure 1.19. The base system builder wizard’s cache configuration screen.
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Figure 1.20. The base system builder wizard’s application configuration screen.

The BSB wizard’s application configuration screen (Figure 1.20) allows you to set the memory location for the Memory
Test application and Peripheral Test application that are standard with the Xilinx BSB wizard. We will be designing our
own application shortly so it is unnecessary to modify these configurations.

The BSB wizard’s summary screen (Figure 1.21) presents a summary of the design that has been created with the
wizard. It provides the designer with an opportunity to double-check that all configurations have been set correctly.

XPS Overview The BSB wizard simplifies the design process into a sequenceof button clicks, but now XPS can be used
to further customize the design. In this example we will hold off on the discussion of these customizations and instead
focus on the XPS application. Future chapters will explore more customized designs. Details of the software and hardware
flows appear in the next two chapters (respectively). It is worth noting that XPS does not do any of the actual work —
it provides a graphical front end to command line tools that do the actual assembly and synthesis. Throughout the book
we will cover these command line tools to provide the reader with a more thorough understanding of their role in FPGA
development.

By default, the XPS GUI has four main areas, which are highlighted in Figure 1.22. The menu bar and buttons span
across the top of the application. The menu system has every function that XPS can invoke, and the buttons are associated
with specific menu items. Thus the buttons can be seen as shortcuts to navigating the menus. In the middle and on the left
of the application screen is a tabbed project information area. This is where basic information about the current project is
stored, such as options, location of various configuration files, and the IP Catalog. The IP Catalog provides a list (organized
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Figure 1.21. The base system builder wizard’s summary screen.

Figure 1.22. XPS menus, buttons, project information, and console areas.

in a tree) of IP cores available to the designer. By right-clicking on a leaf in the tree, one can add an instance of the IP
core to their project. At the bottom of the application is the console output window. This window shows a filtered list of
all output generated by the command line applications invoked by XPS. The command line tools generate a large amount
of information while they process a design. One handy feature of this window is that by clicking on the “Errors” tab, only
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error messages are displayed. After a long run, this is a quick way to see what, if any, error messages appeared in the
copious output.

The fourth area is the system assembly window. This window allows the designer to connect and configure IP cores.
For example, by connecting a DDR RAM controller to the Processor Local Bus, the designer is, in effect, putting memory
on the bus. Double-clicking on an instance in the design will bring up an IP-specific configuration tool. For those familiar
with VHDL already, these configuration tools allow the designer to assign values to all of the generics and parameters in
the IP core.

Once all of the configuration changes have been made and the system is ready to be run through the toleration to
produce a configuration file (bitstream) for the FPGA, we can go ahead and synthesize the design. This is accomplished
through the Hardwaremenu. SelectGenerate Bi‘tstream to begin the synthesis process. This may take between
10 to 30 minutes depending on the speed of the computer running XPS. Once the bitstream has been generated, it is
now time to switch from hardware development to software development. The hardware design must be exported to the
software development kit (SDK). From the Project menu select Export Hardware Design to SDK.

Software Design Kit Overview The Xilinx Software Design Kit (SDK) is used to develop applications for the hardware
specified within XPS. Xilinx has stated that beginning with the release of the 12.1 tools the SDK will replace the appli-
cation’s tab within the XPS. Meaning, Xilinx will no longer support software development in the hardware environment
development kit. Abstracting the software development from the hardware development is important because, as men-
tioned earlier in this chapter, the distinction between hardware and software becomes less clear with FPGA development.
For developers more familiar with the Eclipse C/C++ Development Toolkit (CDT), the SDK should be a welcome improve-
ment for project management over the previous application process. This section aims to describe the SDK in sufficient
detail to generate a stand-alone software platform and a simple “hello world” application. In future chapters, more details
will be given regarding the specifics of the application developmentand among the stand-alone, xilkernel, and linux kernel
platforms. The SDK can be launched from the command line with the xps_sdk command.

The SDK will prompt you to select and import a workspace from a previous design. Browse to the workspace created
when you exported the design from XPS. (Note: this step can be skipped if the reader is continuing directly from the previous
section.) With the SDK open, a few steps need to be taken to create a software platform and an application. We have
chosen a simple stand-alone platform as we do not require any complex operating system support. All that is necessary
for our application is to print “hello world!”

The first step is to create a stand-alone software platform. A software platform consists of the necessary libraries
and drivers for the application to link to during compile time. The stand-alone software platform is the bottom layer of
the software stack and provides a single-threaded environment with support for input and output streams. We will take
advantage of the output (via print) support for the “hello world” example. This step can be accomplished in a variety of
ways, but we will use the Filemenu option and selectnew followed by software platform... A new software
platform project window opens, shown in Figure 1.23. Name the project “standalone_project” and set the platform type
to be “standalone,” as shown in Figure 1.24.

The second step is to create an application. The application will use the stand-alone software platform. To create
a new application, use the File menu option and select new followed by Managed Make C Application

Project, as seen in Figure 1.25. Under this project, the Makefile will be updated by the SDK. This is one of the default
options and requires the least amount of effort to maintain. Set the project name to “hello_world” and under Sample
Applications select Hello World, shown in Figure 1.26. This will create a simple C hello world program.
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Figure 1.23. A new software platform project window.

Figure 1.24. A software platform configuration window.
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Figure 1.25. A new software application window.

Figure 1.26. A new software configuration window.
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Figure 1.27. SDK GUI.

File Location

genace.tcl $XILINX_EDK/xmd/data/
download.bit xps_project_directory/implementation/
hello_world.elf sdk_workspace/hello_world/Debug/

Table 1.1 Files needed to generate ACE file.

To view the source code for the hello world application, expand the hello world arrow followed by the src arrow (as
shown in Figure 1.27). Changes made to the source code will automatically be compiled when the file is saved. Alternatively,
use the Project menu and select Build All to force a recompile.

Once the application has been created and compiles without errors it is time to download hardware and software to the
FPGA. This can be done in a variety of ways. The simplest is through the JTAG cable that may come with the development
board (or can be purchased separately). The ML-510 development board includes a CompactFlash card to program the
FPGA. We will create a Xilinx Advanced Configuration Environment (ACE) file. The ACE file is used on power-up to program
the FPGA (both the hardware bitstream and application). These details are discussed in future chapters; for now we will
focus on getting the design to run on the FPGA and “hello world” output.

To generate the ACE file you will need three files, located in the following directories, shown in Table 1.1.
Using the Xilinx Microprocessor Debugger (XMD), we will run the genace.tcl script to build the ACE file from the

download.bit and hello_world.elf files.

% xmd -tcl genace.tcl -jprog -hw download.bit \
-elf hello_world.elf -board ml510 -ace hello.ace
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Next, to copy the hello.ace file to the development board, pull the CompactFlash card out of the development board
(when the board is off!) and put it in any standard CompactFlash card reader connected to a computer. The directory
structure is:

xilinx.sys
xilinx

cf0
ace_loader.ace

cf1
pci_test.ace

hello.ace

cf7

Each cfn directory holds a configuration, and the development board comes with a Compact Flash with slots 6 and 7 free
for user designs. Simply remove any ACE file in the cf7 directory and copy the hello.ace into that directory on the
CompactFlash. Eject/unmount the CompactFlash card, and return the card to the development board.

Finally, connect the development board to a computer over an RS-232 serial line. On Linux machines, many people use
either minicom or kermit as a terminal emulator. Be sure to set the proper serial line and parameters (9600 baud, 8
bits, no parity, 1 stop bit). Start up the terminal emulator, turn on the developmentboard, and, after the power-on self-test,
type ’7’ (to boot the configuration in slot 7). The results are shown in Figure 1.28.

With the “Hello World” application running on the board, you have successfully completed your first Platform FPGA
project! We will rely on some of this basic knowledge going forward when we begin to assemble more complex hardware
cores and base systems. At this point, we recommend spending some time exploring these tools and becoming familiar
with many of their options and functions as possible.

ML510 ACE-loader
----------------
Enter Desired System ACE CF Configuration <0-7>.

0: ACE-loader.
1: Configuration 1.
2: Configuration 2
3: Configuration 3
4: Configuration 4
5: Configuration 5
6: Configuration 6
7: Configuration 7

Select <0-7>: Rebooting to System ACE Configuration Address 7...
Hello World!

Figure 1.28. Output displayed on terminal for the HelloWorld example.
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Exercises
P1.1. Name three consumer electronics products that have

embedded systems. Include a justification.
P1.2. Name three consumer electronics products that do not

contain embedded computer systems. (You may need to
consider very old products or products that are not
consumer electronics.)

P1.3. In addition to the explicit inputs and outputs of a
computing system, what is implicitly consumed and
produced by (electronic) computing machines?

P1.4. How is the specification phase of a project different from
the design phase?

P1.5. What is the difference between design and integration in
the waterfall model?

P1.6. Is “access to a wireless network” a capability or a perfor-
mance metric?

P1.7. Suppose two devices both have wireless access, but one is
faster? Is this a new capability?

P1.8. Device A uses a network standard that is 100 Mb/s and
device B uses a newer, revised standard that is 100 or 1000
Mb/s. Is this a capability or a functional improvement?

P1.9. Consider two solutions. One uses a 4-bit processor with a
clock frequency of 1000 MHz; the other is a 64-bit
processor with a clock rate of 100 MHz. Both are
executing an infinite loop of 64-bit ADD operations.
Contrast the two solutions in terms of:

• latency
• results/second
• energy
• development cost

P1.10. What is the advantage of using a standard — such as
ASCII, binary, and BCD — versus an application-specific
format?

P1.11. What is the disadvantage of using an application-specific
format versus using a standard such as an IEEE 754
floating-point format?

P1.12. Suppose the dynamic range of an instrument flying on a
satellite is −192 to +191 in discretized (integer) steps.
How many bits are needed to represent a sample from the
instrument?

P1.13. Assuming the same instrument just given: If a 32-bit
processor (with a 100-MHz 32-bit system bus) was used to
read data, one sample at a time, what is the peak
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theoretical bandwidth of the information moved from the
instrument to the processor?

P1.14. What is the bandwidth if multiple samples were buffered
on the instrument and multiple samples could be read
each time?

P1.15. What is the bandwidth if the bus was 64 bits?
P1.16. Suppose the NRE on the fabrication of an ASIC is $150,000

and the unit cost is $0.15. The unit cost of an FPGA is $15.
All other costs going into the product are equal. If the
anticipated demand is expected to be X units the first year
and will decay by 50% each subsequent year (X/2 units
the second, X/4 units the third, and so on), how many
units have to be sold the first year for the ASIC to be more
profitable than the FPGA?

P1.17. Explain the difference between hardware and software in
terms of a traditional processor-based system.

P1.18. How does the “hardware” of a Platform FPGA-based
system differ from the hardware of a traditional pro-
cessor-based system?

P1.19. What is the difference between a soft IP core and a hard IP
core in a Platform FPGA system?
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2
THE TARGET

“What is the use of a book,” thought Alice, “without pictures or
conversations?”

Lewis Carroll
Alice’s Adventures in Wonderland (1865)

The intention of this book is to show how to build embedded sys-
tems where the FPGA is the central computing device. The goal
is not to teach how to design and fabricate an FPGA or show how
to develop computer-aided design (CAD) tools for FPGA devices.
Nonetheless, to meet the complex performance metrics described
in the previous chapter, a good system designer has to understand
how the programmable logic devices are manufactured, their basic
electrical characteristics, and their general architectures. Unfortu-
nately, the 10,000-meter view of FPGA devices of the first chapter
is insufficient. Certain underlying details of FPGA technology are
needed to understand what the software tools are doing when they
transform a hardware description into a configuration. Although
high-level synthesis tools have made huge strides over the years,
basic knowledge of the target device almost always leads to more
efficient designs.

The learning objectives of this chapter include:

• a short review of CMOS transistors and their central role as the
building blocks of digital circuits.

• a brief discussion of programmable logic devices that have
paved the way for modern FPGAs.

• the specifics of the FPGA, their low-level components, and
those that are used to distinguish Platform FPGAs. This is a
more detailed description than found in Chapter 1.

• a brief overview of hardware description languages; a useful
tool to aid in complex digital circuit design.

• a description of the process of transforming a hardware
description of the desired circuit into a stream of bits suitable
to configure the FPGA device.

43
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The examples used throughout this chapter were purposely
chosen for their simplicity and brevity to help the reader quickly
establish (or refresh) a foundation of knowledge to build upon in
the remaining chapters.

2.1. CMOS Transistor
Because digital circuits, such as FPGAs, rely on CMOS transistors,
being aware of their construct and, more specifically, their func-
tionality can help aid the designer in making better overall design
decisions. For example, power consumption is emphasized within
this section to encourage readers to think about how their designs
will behave based on these CMOS principles. The long-term result
can be a more power-efficient design, a welcome addition to any
embedded systems designs.

The details we do include are related to what an FPGA devel-
oper needs to know to make design decisions. First we cover the
CMOS transistor. The intention is not to try to cover everything
related to electronic circuits or even transistors. In fact, we rely on
the reader already having taken at least one course in electronic
circuits. We try to cover transistors with enough detail to act as a
refresher or to help those less familiar with the material. As already
stated, we are not setting out to design FPGAs, we aim to use them,
and as such we should be familiar with their constructs. We then
cover the progression from transistors to the programmable logic
device, the precursor in many ways to the FPGA. Finally, we dwell
into great detail regarding FPGAs.

Transistors have several distinct modes that make them useful
in a variety of applications. However, here we simplify them to just
one role: a voltage-controlled switch. The most common transis-
tor in digital circuits is in the form of a Metal Oxide Semiconductor
Field Effect Transistor (MOSFET). The MOSFET is created from
two-dimensional regions in a slab of silicon substrate. The regions
are constructed to have either an excess of positive or an excess of
negative charge. A layer of silicon dioxide is placed over the sub-
strate to insulate it from a metal layer placed above the silicon
dioxide. An n-channel MOSFET transistor (or NMOS for short) is
illustrated in Figure 2.1 with (a) a cut-away view of the silicon sub-
strate and (b) the NMOS transistor’s schematic symbol. There are
three electrical terminals on this transistor: source, drain, and gate.

As silicon is a semiconductor, the gate can be used to con-
trol whether current flows from the drain to the source. For an
NMOS transistor, if the voltage difference between the gate and
the source is close to 0, then current is able to flow from the
drain to the source. But if the voltage difference is significant, say
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Figure 2.1. (a) An NMOS
transistor in silicon substrate
and (b) a schematic of an
NMOS transistor.
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Figure 2.2. An NMOS (a) NAND gate, (b) NOR gate, and (c) AND gate.

5 volts, then the transistor is in “cut-off ” mode. In cut-off mode
it behaves like an open switch and current cannot flow from the
drain to the source. Using schematic symbols, this circuit is shown
in Figure 2.3. Note that the input is a voltage on the gate and the
output is a voltage on the conductor connected to the drain.

With a low voltage producing current and a high voltage pro-
ducing no current, this can be considered a form of an inverter
(a Boolean NOT gate), and without much work the reader will rec-
ognize the NAND, NOR, and AND gates illustrated in Figure 2.2.
At first glance, we now have what is necessary to build digital
circuits from these basic gates. However, there are a number of
problems with these circuits. The most important is power con-
sumption. When the voltage drops over an electric component,
potential energy is converted into heat. So whenever the output
of Figure 2.3 is 0, current is flowing and the resistor is generating
heat. (To a small degree, the transistor is, too.) It turns out that this
use of power is unacceptable in practice.
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Figure 2.3. Schematic symbol of an NMOS inverter.

Figure 2.4. (a) A PMOS
transistor in silicon substrate
and (b) a schematic of a PMOS
transistor.
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To address the power problem we consider the opposite of the
n-channel transistor, the p-channel (or PMOS) transistor. PMOS
rearranges the areas on the substrate so that regions that had an
excess of negative charge now have an excess of positive charge
and vice versa, shown in Figure 2.4. However, the PMOS inverter
draws the most power when its output is high (because current is
flowing and there is a voltage drop over the resistor). The PMOS
unfortunately presents the same problem as the NMOS, only at the
opposite time.

We can get the best of both worlds if we combine a PMOS tran-
sistor with an NMOS transistor such that in the steady state, no
appreciable current is flowing. The Complementary MOS (CMOS)
transistor combines a simple CMOS NAND circuit and is illus-
trated in Figure 2.5. It also leads to an important rule of thumb:
the greatest amount of energy in a design is consumed when a
CMOS gate is changing state. In steady state, no (appreciable)
current is flowing. However, when the inputs start to change and
the MOSFET transistors have not completely switched on or off,
current flows and power is dissipated.
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Figure 2.5. A simple CMOS NAND circuit.

2.2. Programmable Logic Devices
The transistors described in the last section are fixed at manufac-
ture. The p- and n-type areas on the substrate, the silicon dioxide
insulator, and metal layer(s) are created from masks. Once the chip
is fabricated, those positions are fixed and, by extension, the tran-
sistor functionality is fixed, which leads to the question: how can
devices be built that can be configured after manufacture/fabrica-
tion? To answer this, we need to build up a structure that is capable
of implementing arbitrary combinational circuits, a storage cell
(memory), and a mechanism to connect these resources.

The first programmable logic devices were organized around
the sum-of-products formulation of a Boolean function. These
devices, called Programmable Logic Arrays (PLAs), had an array
of multi-input AND gates and an array of multi-input OR gates.
The organization is shown in Figure 2.6. (Typically, the inputs x,
y, and z would also be inverted, and, in this case, six-input AND
gates would be used.) To configure this device, all of the unwanted
inputs to the AND gates are broken and all of the unwanted inputs
to the OR gates are broken. However, for manufacturing reasons,
this approach fell out of favor. The PLA can be simplified by hard-
wiring some AND gate outputs to specific OR gates. This constrains
some inputs to use dedicated gates, but the PLA manufacturer
compensates for this by increasing the number of gates. The PLA
device is programmed by breaking unwanted connections at the
inputs to the AND and OR gates.
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Figure 2.6. PLA device
organization.
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Figure 2.7. Adding storage to a PLA logic cell.

To these PLA structures, several programmable logic compa-
nies have introduced memory elements, such as D-type flip-flops.
In this case they added a MUX and a D-Type Flip-Flop to the out-
put of the OR gates. Hence, the output of the function can either
be stored on a rising clock edge or the signal can bypass the flip-
flop as illustrated in Figure 2.7. Connected to the outputs of the OR
gates, this structure allows a designer to create state machines on
programmable logic devices.

The final intermediate step in the progression from PLAs to
FPGAs was the introduction of Complex Programmable Logic
Devices (CPLDs). These devices start with a PLA block (with a stor-
age element). These blocks are then replicated multiple times on
a single Integrated Chip. A configurable routing network allows
the different PLA blocks to be connected to one another and the
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Figure 2.8. Simple CPLD device organization example.

outside pins. (The routing network is similar to those found on an
FPGA, which is described next.)

2.3. Field-Programmable Gate Array
A modern FPGA consists of a 2-D array of programmable logic
blocks, fixed-function blocks, and routing resources implemented
in the CMOS technology. Along the perimeter of the FPGA are
special logic blocks connected to external package I/O pins. Logic
blocks consist of multiple logic cells, while logic cells contain func-
tion generators and storage elements. These general terms are
discussed in more detail throughout this chapter. In Section 2.A
specific details regarding the Xilinx Virtex 5 FPGA device con-
structs are given.

2.3.1. Function Generators
The programmable logic devices described thus far use actual
gates implemented with CMOS transistors directly in the silicon
to generate the desired functionality. FPGA devices are fundamen-
tally different in that they use function generators to implement
Boolean logic functionality rather than physical gates.

For example, suppose we want to implement the Boolean
function:

f(x, y, z) = xy + z ′

Using a 3-input function generator, we first create the eight-row
Boolean truth table for this function (as shown in Figure 2.9a).
For each input the truth table represents what the output of the
Boolean function will be. If each of the function’s output bits
were stored into individual static memory (such as SRAM) cells
and connected as inputs to an 8 × 1 multiplexer (MUX), the three
inputs (x,y,z) would be the select lines for the MUX. The result is
commonly what is known as a look-up table (LUT).
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Figure 2.9. Three-input
function generator in (a) truth
table and (b) look-up table form.
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We can draw the basic 3-input LUT circuit (Figure 2.9b) taking
care to label the inputs 0 through 7 and identify the most signifi-
cant select bit (MSB) and least significant select bit (LSB). The last
step is to assign x, y, and z to the select bits and fill in the SRAM
cells with the corresponding entries in the truth table. As drawn,
when x, y, and z are 0,0,0 then the bottom SRAM cell is selected, so
‘1’ is stored there. When x, y, and z are 0, 0, 1 the second from the
bottom SRAM cell is selected, so ‘0’ is stored there. This continues
through 1, 1, 1 where ‘1’ is stored at the top SRAM cell.

This example illustrates, at a basic level, the process of mapping
Boolean logic to FPGAs. Soon, we will discuss in more detail how
to map more meaningful logic to the FPGA fabric. One additional
important lesson to learn from this example is that unlike a digi-
tal circuit implemented within logic gates, the propagation delay
from a LUT is fixed. This means, regardless of the complexity of the
Boolean circuit, if it fits within a single LUT, the propagation delay
remains the same. This is also true for circuits spanning multiple
LUTs, but instead the delay depends on the number of LUTs and
additional circuitry necessary to implement the larger function.
More on that topic later.

To generalize the aforementioned example, the basic n-input
function generator consists of a 2n-to-1 multiplexer (MUX) and
2n SRAM (static random access memory) cells. By convention, a
3-LUT is a 3-input function generator. The 3-input structure is
shown for demonstration purposes, although 4-LUTs and 6-LUTs
are more common in today’s components.
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To implement a function with more inputs than would fit in a
single LUT, multiple LUTs are used. The function can be decom-
posed into subfunctions of a subset of the inputs, each subfunc-
tion is assigned to one LUT, and all of the LUTs are combined (via
routing resources) to form the whole function. There are some
dedicated routing resources to connect neighboring LUTs with
minimal delay to support low propagation delays.

An important observation is that SRAM cells are volatile; if
power is removed the value is lost. As a result, we need to learn how
to set the SRAM cell’s value. This process, called configuring (or
programming), could be handled by creating an address decoder
and sequentially writing the desired values into each cell. However,
the number of SRAM cells in a modern FPGA is enormous and
random access is rarely required. Instead, the configuration data
are streamed in bit by bit. The SRAM cells are chained together
such that, in programmode, the data out line of one SRAM cell is
connected to the data in line with another SRAM cell. If there are
n cells, then the configuration is shifted into place after n cycles.
Some FPGA devices also support wider, byte-by-byte transfers as
well to support parallel transfers for faster programming.

2.3.2. Storage Elements
While function generators provide the fundamental building block
for combinational circuits, additional components within the
FPGA provide a wealth of functionality. As in a PLA block, D-type
flip-flops are incorporated in the FPGA. The flip-flops can be used
in a variety of ways, the simplest being data storage. Typically,
the output of the function generator is connected to the flip-flop’s
input. Also, the flip-flop can be configured as a latch, operating on
the clock’s positive or negative level. When designing with FPGAs,
it is suggested to configure the storage elements to be D flip-flops
instead of latches. A latch being level-sensitive to the clock (or
enable) increases the difficulty to route clock signals within a spe-
cific timing requirement. For designs with tight timing constraints,
such as operating custom circuits at a high operating frequency
that span large portions of the FPGA, D flip-flops are more likely
to meet the timing constraints.

2.3.3. Logic Cells
By combining a look-up table and a D flip-flop the result is com-
monly what is referred to as a logic cell. Logic cells are really the
low-level building block upon which FPGA designs are built. Both
combinational and sequential logic can be built from within a logic
cell or a collection of logic cells. Many FPGA vendors will compare
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the capacity of an FPGA based on the number of logic cells (along
with other resources as well). In fact, when comparing designs,
it is no longer relevant to describe an FPGA circuit in terms of
“number of equivalent gates (or transistors).” This is because a sin-
gle LUT can represent very modest equations, which would only
require a few transistors to implement, or a very complex circuit
such as a RAM, which would require many hundreds of transis-
tors. While we have not described the mapping of larger circuits for
logic cells (a process that is now a software compilation problem),
we are able to identify, based on the number of logic cells, how
big or small a design is and whether it will fit within a given FPGA
chip.

2.3.4. Logic Blocks
While logic cells could be considered the basic building blocks for
FPGA designs, in actuality it is more common to group several logic
cells into a block and add special-purpose circuitry, such as an
adder/subtractor carry chain, into what is known as a logic block.
This allows a group of logic cells that are geographically close to
have quick communication paths, reducing propagation delays
and improving design implementations. For example, the Xilinx
Virtex 5 families put four logic cells in a slice. Two slices and carry-
logic form a Configurable Logic Block or CLB. Abstractly speaking,
logic blocks are what someone would see if they were to “look into”
an FPGA. The exact number of logic cells and other circuitry found
within a logic block is vendor specific; however, we are now able to
realize even larger digital circuits within the FPGA fabric.

Logic blocks are connected by a routing network to provide
support for more complex circuits in the FPGA fabric. The rout-
ing network consists of switch boxes. A switch box is used to route
between the inputs/outputs of a logic block to the general on-chip
routing network. The switch box is also responsible for passing sig-
nals from wire segment to wire segment. The wire segments can
be short (span a couple of logic blocks) or long (run the length of
the chip). Because circuits often span multiple logic blocks, the
carry chain allows direct connectivity between neighboring logic
blocks, bypassing the routing networking for potentially faster
implemented circuits.

Because competing vendors and devices often have different
routing networks, different special-purpose circuitry, and differ-
ent size function generators, it is difficult to come up with an exact
relationship for comparison. The comparison is further compli-
cated because it also depends on the actual circuit being imple-
mented. In Section 2.A the Xilinx Virtex 5 FPGA architecture is
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described in more detail to help the reader take advantage of its
resources when designing for embedded systems.

2.3.5. Input/Output Blocks
We augment our logic block array with Input/Output Blocks (IOBs)
that are on the perimeter of the chip. These IOBs connect the
logic block array and routing resources to the external pins on the
device. Each IOB can be used to implement various single-end sig-
naling standards, such as LVCMOS (2.5 V), LVTTL (3.3 V), and PCI
(3.3 V). IOBs can also support double data rate signaling used by
commodity static and dynamic random access memory. The IOBs
can be paired with adjacent IOBs for differential signaling, such as
LVDS.

Taken all together, the high-level structure of a simple FPGA
is seen in Figure 2.10. That is, an FPGA is a programmable logic
device that consists of a two-dimensional array of logic blocks
connected by a programmable routing network.

2.3.6. Special-Purpose Function Blocks
So far we have focused on internals of the FPGA’s configurable
(or programmable) logic. A large portion of the FPGA consists
of logic blocks and routing logic to connect the programmable
logic. However, as semiconductor technology advanced and more
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transistors became available, FPGA vendors recognized that they
could embed more than just configurable logic to each device.

Platform FPGAs combine programmable logic with additional
resources that are embedded into the fabric of the FPGA. A good
question to ask at this point is “why embed specific resources into
the FPGA fabric?” To answer this we must consider FPGA designs
compared to ASIC designs. An equivalent ASIC design is com-
monly considered to use fewer resources and consume less power
than an FPGA implementation. However, ASIC designs are not
only often found to be prohibitively expensive, the resources are
fixed at fabrication. Therefore, FPGA vendors have found a com-
promise with including some ASIC components among the config-
urable logic. The exact ASIC components are vendor specific, but
we will briefly cover in this section a few of the more commonly
seen components. The components range in complexity from
embedded memory and multipliers to embedded processors. The
following paragraphs introduce some of these components with
more detail to be found in Section 2.A and throughout the rest of
the book.

The block diagram of a Platform FPGA, seen in Figure 2.11,
shows the arrangement of these special-purpose function blocks
placed throughout the FPGA. Which function blocks are included
and their specific placement are determined by the physical
device; this illustration is meant to help the reader understand a
general construct of modern FPGAs. The logic blocks still occupy
a majority of the FPGA fabric in order to support a variety of com-
plex digital designs; however, the move to support special-purpose
blocks provides the designer with an ASIC implementation of the
block as well as removes the need to create a custom design for
the block. For example, a processor block could occupy a signifi-
cant portion of the FPGA if implemented in the logic resources.

Block RAM
Many designs require the use of some amount of on-chip mem-
ory. Using logic cells it is possible to build variable-sized memory
elements; however, as the amount of memory needed increases,
these resources are quickly consumed. The solution is to provide
a fixed amount of on-chip memory embedded into the FPGA fab-
ric called Block RAM (BRAM). The amount of memory depends
on the device; for example, the Xilinx Virtex 5 XC5VFX130T (on the
ML-510 developer board) contains 298 36 Kb BRAMs, for a total
storage capacity of 10,728 Kb. Local on-chip storage such as RAMs
and ROMs or buffers can be constructed from BRAMs. BRAMs
can be combined together to form larger (both in terms of data
width and depth) BRAMs. BRAMs are also dual-ported, allowing
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Figure 2.11. A high-level view
of a Platform FPGA.

for independent reads and writes from each port, including inde-
pendent clocks. This is especially useful as a simple clock-crossing
device, allowing one component to produce (write) data at a
different frequency as another component consuming (reading)
data.

Digital Signal Processing Blocks
To allow more complex designs, which may consist of either dig-
ital signal processing or just some assortment of multiplication,
addition, and subtraction, Digital Signal Processing Blocks (DSP)
have been added to many FPGA devices. As with the Block RAM,
it is possible to implement these components within the con-
figurable logic, yet it is more efficient in terms of performance,
and power consumption to embed multiple of these components
within the FPGA fabric. At a high level, the DSP blocks of a multi-
plier, accumulator, adder, and bitwise logical operations (such as
AND, OR, NOT, and NAND). It is possible to combine DSP blocks
to perform larger operations, such as single and double preci-
sion floating point addition, subtraction, multiplication, division,
and square root. The number of DSP blocks is device dependent;
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however, they are typically located near the BRAMs, which is use-
ful when implementing processing requiring input and/or output
buffers.

Processors

Arguably one of the more significant additions to the FPGA fab-
ric is a processor embedded within the FPGA fabric. For many
designs requiring a processor, often choosing an FPGA device with
an embedded processor (such as the FX series part for the Xilinx
Virtex 5) can simplify the design process greatly while reducing
resource usage and power consumption. The IBM PowerPC 405
and 440 processors are examples of two processors included in the
Xilinx Virtex 4 and 5 FX FPGAs, respectively. These are conven-
tional RISC processors that implement the PowerPC instruction
set. Both the PowerPC 405 and the 440 come with some embedded
system extensions but do not implement floating-point function
units in hardware. Each come with level 1 instruction and data
cache and a memory management unit (MMU) with a translation
look-aside buffer to support virtual memory. A variety of interfaces
exist to connect the processors to the FPGA programmable logic to
allow interaction with custom hardware cores.

Not all FPGAs come with a processor embedded into the FPGA
fabric. For these devices the processor must be implemented
within the FPGA fabric as a soft processor core. This text is not
affected adversely by the decision to include or remove processors
from within the FPGA fabric. Instead this book is aimed at pro-
viding the reader with the necessary skill set to use the available
resources as efficiently as possible to solve the given problem. It
would be unwise to ignore a discussion of hard processor cores
merely on speculation.

Digital Clock Manager
Most systems have a single external clock that produces a fixed
clock frequency. However, there are a number of reasons a designer
might want to have different logic cores operating at different
frequencies. A Digital Clock Manager (DCM) allows for different
clock periods to be generated from a single reference clock. You
could use logic to divide an existing clock signal down to gener-
ate a lower frequency clock — say 100 to 25 MHz. While possi-
ble, the correct design practice is to use a DCM to generate the
slower clock. The advantage of using a DCM is that the gener-
ated clocks will have lower jitter and a specified phase relationship.
Section 2.A gives more specific details on how to use DCMs in a
Xilinx design.
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Multi-Gigabit Transceivers

Over the last 20 years, digital I/O standards have varied between
serial and parallel interfaces. Serial interfaces time-multiplex the
bits of a data word over fewer conductors while parallel interfaces
signal all the bits simultaneously. While the parallel approach has
the apparent advantage of being faster (data are being transmit-
ted in parallel), this is not always the case in the presence of noise.
Many recent interfaces — including various switched Ethernet
standards, Universal Serial Bus (USB Implementers Forum (USB-
IF), 2010a,b), SerialATA (Grimsrud, Knut and Smith, Hubbert,
2003), FireWire (1394 Trade Association, 2010), and InfiniBand
(Futral, 2001) — are now using low-voltage differential pairs of
conductors. These standards use serial transmission and change
the way data are signaled to make the communication less sensi-
tive to electromagnetic noise.

High-Speed Serial Transceivers are devices that serialize and
deserialize parallel data over a serial channel. On the serial side,
they are capable of baud rates from 100 Mb/s to 11.0 Gb/s, which
means that they can be configured to support a number of dif-
ferent standards, including Fiber Channel, 10G Fiber Channel,
Gigabit Ethernet, and Infiniband. As with the other aforemen-
tioned FPGA blocks, the transceivers can be configured to work
together. For example, two transceivers can be used to effectively
double the bandwidth. This is called channel bonding (multilane
and trunking are common synonyms).

This initial overview does not encompass all of the available
resources on every FPGA device. It does provide a comprehen-
sive overview of the significant components often used in FPGA
designs. More details are forthcoming for these components and
their applicability and implementation within embedded systems
designs. For the interested reader, a more detailed explanation of
how to construct these basic FPGA elements from CMOS transis-
tors is presented in Chow et al. (1991) and Compton & Hauck
(2002).

2.4. Hardware Description Languages
Now that we know what is inside of an FPGA, the next step is to
learn how to “configure” them. We use a hardware description lan-
guage (HDL) as a high-level language to describe the circuit to be
implemented on the FPGA. Most courses in digital logic nowa-
days introduce HDLs in the context of designing digital circuits.
Unfortunately, some very popular HDLs were never intended to
be used as they are today. The origins of hardware description
languages were rooted in the need to document the behavior of
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hardware. Over time, it was recognized that the descriptions could
be used to simulate hardware circuits on a general-purpose pro-
cessor. This process of translating an HDL source into a form
suitable for a general-purpose processor to mimic the hardware
described is called simulation. Simulation has proven to be an
extremely useful tool for developing hardware and verifying the
functionality before physically manufacturing the hardware. It was
only later that people began to synthesize hardware, automatically
generating the logic configuration for the specified device from the
hardware description language.

Unfortunately, while simulation provided a rich set of con-
structs to help the designer test and analyze the design, many of
these constructs extend beyond what is physically implementable
within hardware (on the FPGA) or synthesize inefficiently into the
FPGA resources. As a result, only a subset of hardware descrip-
tion languages can be used to synthesize designs to hardware. The
objective of this section is to present two of the more popular hard-
ware description languages, VHDL and Verilog. It is arguable to
which is better suited for FPGA design; both are presented here for
completeness, but it is left to the readers to decide which (if any)
is best suited for their needs. We will focus on VHDL throughout
the remainder of this book as it becomes redundant to give two
examples, one in VHDL and one in Verilog, for every concept. That
being said, we will also focus within this section on synthesizable
HDL and how it maps to the previous section’s components.

2.4.1. VHDL
VHDL, which stands for VHSIC1 Hardware Description Language,
describes digital circuits. In simulation, VHDL source files are ana-
lyzed and a description of the behavior is expressed in the form
of a netlist. A netlist is a computer representation of a collection
of logic units and how they are to be connected. The logic units
are typically AND/OR/NOT gates or some set of primitives that
makes sense for the target (4-LUTs, for example). The behavior
of the circuit is exercised by providing a sequence of inputs. The
inputs, called test vectors, can be created manually or by writing a
program/script that generates them. The component that is gen-
erating test vectors and driving the device under test is typically
called a test bench.

Synthesizable VHDL

In VHDL, there are two major styles or forms of writing hard-
ware descriptions. Both styles are valid VHDL codes; however, they

1 Very high-speed integrated circuit.
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model hardware differently. This impacts synthesis, simulation,
and, in some cases, designer productivity. These forms are:

Structural/data flow circuits are described in terms of logic units
(either AND/OR/NOT gates or larger functional units such
as multipliers) and signals. Data flow is a type of structural
description that has syntactic support to make it easier to
express Boolean logic.

Behavioral circuits are described in an imperative (procedural)
language to describe how the outputs are related to the inputs
as a process.

A third style exists as a mix between both structural and behav-
ioral styles. For programmers familiar with sequential processors,
the behavioral form of VHDL seems natural. In this style, the
process being described is evaluated by “executing the program”
in the process block. For this reason, often complex hardware
can be expressed succinctly and quickly — increasing productiv-
ity. It also has the benefit that simulations of certain hardware
designs are much faster because the process block can be executed
directly. However, as the design becomes more complex, it is pos-
sible to write behavioral descriptions that cannot be synthesized.
Converting behavioral designs into netlists of logic units is called
High-Level Synthesis, referring to the fact that behavioral VHDL is
more abstract (or higher) than structural style.

In contrast, because the structural/data-flow style describes
logic units with known implementations, these VHDL codes
almost always synthesize. Also, assembling large systems (such
as Platform FPGAs) requires structural style at the top level as it
is combining large function units (processors, peripherals, etc.).
Also, it is worth noting that some structural codes do not synthe-
size well. An example of this is using a large RAM in a hardware
design. A RAM is not difficult to describe structurally because of
its simple, repetitive design. However, in simulation, this tends to
produce a large data structure, which needs to be traversed every
time a signal changes. In contrast, a behavioral model of RAM sim-
ulates quickly because it matches the processor’s architecture well.

VHDL Syntax
All components of a design expressed in VHDL consist of an
entity declaration followed by one or more declared architectures.
The entity declaration describes the component’s interface — its
inputs, outputs, and name. By analogy, it is a function prototype
in C or a class header file in C++.
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The architecture block, in contrast, provides an imple-
mentation of the interface. VHDL allows for more than one
implementation. Why? One reason is the simulation/synthesis
issue just mentioned. One architecture might be used for sim-
ulation and another for synthesis. A second reason is different
architectures might be needed for different targets (ASIC versus
FPGA).

Starting with an empty source file, the program usually begins
by including some standard library definitions. VHDL uses Ada’s
syntax for this by first stating a library’s name and then which mod-
ules from that library to use via the library and use keywords.
Next comes the entity declaration followed by one or more archi-
tecture blocks. The simplest way to learn this syntax is to study
some examples. Consider the 3-input, 2-output full adder circuit
in Listing 2.1.

The entity block says that the name of this component is
fadder and that it has five ports. A port can be an input (in), out-
put (out), or both (inout) to the component. In this example there
are three inputs and two outputs. The signals can be of any primi-
tive type defined by the VHDL language or a complex type. In our
example, we use a complex type that was defined by the library
“ieee” called std_logic. We use this to model a single Boolean
variable with the binary value of either ‘0’ or ‘1’.

The architecture block defines how the entity is to be imple-
mented. It has a name as well (imp_df) and, in this example, only
uses the data-flow style to describe how the outputs are related to
its inputs. The following are some initial notes regarding VHDL.
First, VHDL is not sensitive to case. The strings cin and CIN are
the same variable; begin and bEgIn are both legal ways of writing
the begin keyword. Second, the input and output ports can be

library ieee;
use ieee.std_logic_1164.all;

entity fadder is port (
a, b : in std_logic;
cin : in std_logic;
sum : out std_logic;
cout : out std_logic);

end fadder;

architecture beh of fadder is
begin
sum <= a xor b xor cin;
cout <= (a and b) or (b and cin) or (a and cin);

end beh;

Listing 2.1. A 1-bit full adder in VHDL.
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described on the same line likea, bhave been defined or they can
be placed on separate lines likecin. Inputs and outputs cannot be
specified on the same line. Also, ports of different types (even if
they are the same direction) cannot be specified on the same line.
Third, the name of the architecture (imp_df) is user specific and
does not have to follow any specific convention. Each subsequent
architecture for the same entity must have unique architecture
names. Finally, signal assignment is denoted by the <= operator.
This is often a cause for syntax errors for those more familiar with
C/C++ or Java syntax.

So how does the full adder map to hardware? With two out-
puts both depending on three inputs, two function generators are
needed. Depending on the FPGA device, this may be reduced to
a single LUT (if using 6-LUTs) or two LUTs. No D flip-flops are
needed as there is no clock source, so the circuit represents a
purely combinational circuit.

Now that we have built one component, we can use it to design
a slightly more sophisticated component. In Listing 2.2 a 2-bit full
adder is implemented. In this design, additional logic has been
added for academic purposes; this may not be the ideal implemen-
tation of such a component. We are using it to highlight a number
of VHDL-specific constructs.

library ieee;
use ieee.std_logic_1164.all;

entity fadder2bit is port (
a, b : in std_logic_vector(1 downto 0);
cin : in std_logic;
clk : in std_logic;
rst : in std_logic;
sum : out std_logic_vector(1 downto 0);
cout : out std_logic );

end fadder2bit;

architecture beh of fadder2bit is
-- 2-bit Register Declaration for A, B, Sum
signal a_reg, b_reg, sum_reg : std_logic_vector(1 downto 0);
-- 1-bit Register Declaration for Cin, Cout
signal cin_reg, cout_reg : std_logic;
-- 1-bit Internal signal to connect carry-out to carry-in
signal carry_tmp : std_logic;
-- 1-bit Full Adder Component Declaration
component fadder is
port (

a, b : in std_logic;
cin : in std_logic;
sum : out std_logic;
cout : out std_logic);

end component fadder;
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begin
-- VHDL Process to Register Inputs A, B and Cin
register_proc : process (clk) is
begin

if ((clk’event) and (clk = ’1’)) then
-- Synchronous Reset
if (rst = ’1’) then

-- Initialize Input Registers
a_reg <= "00";
b_reg <= "00";
cin_reg <= ’0’;
-- Initialize Outputs
sum <= "00";
cout <= ’0’;

else
-- Register Inputs
a_reg <= a;
b_reg <= b;
cin_reg <= cin;
-- Register Outputs
sum <= sum_reg;
cout <= cout_reg;

end if;
end if;

end process register_proc;
-- Instantiate Bit 1 of Full Adder
fa1 : fadder port map (

a => a_reg(1),
b => b_reg(1),
cin => carry_tmp,
sum => sum_reg(1),
cout => cout_reg );

-- Instantiate Bit 0 of Full Adder
fa0 : fadder port map (

a => a_reg(0),
b => b_reg(0),
cin => cin_reg,
sum => sum_reg(0),
cout => carry_tmp );

end beh;

Listing 2.2. A 2-bit full adder in VHDL.

In this example we have added clock and reset inputs and
changed a, b and sum from std_logic to std_logic_vector(1
downto 0), a 2-bit signal. Next, we add internal signals to reg-
ister the inputs and outputs. This is not a requirement, but it is
recommended to buffer these signals to meet tighter timing con-
straints as signals are passed from a top-level component down to
the low-level 1-bit full adder components. This is followed by the
fadder component declaration, which indicates which compo-
nents will be used within this design. Within the beh architecture,
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a VHDL process named register_proc is added. This process is
used to register the inputs and outputs on the rising edge of the
clock signal. This code infers all of the D flip-flops within the logic
cells. The reset signal rst is a synchronous reset, which is recom-
mended over asynchronous resets. This simplifies the reset logic
needed to route the asynchronous signal across the chip. Finally,
two 1-bit full adder component instances are included. Note that
the internal signal carry_tmp connects the carry-out from bit 0’s
full adder to the carry-in of bit 1’s full adder.

The resulting 2-bit full adder circuit consumes more resources
than the single bit full adder. By adding registers to the input and
outputs, we have extended the full adder’s resource count by eight
D flip-flops. Two flip-flops are needed for each input a, b and out-
put sum and one flip-flop is needed for the input cin and output
cout. Also, a third LUT is included for the carry-in/out logic.

The previous example was used to show the use of a VHDL pro-
cess statement to infer D flip-flops and how to instantiate other
VHDL components. It is not the intention of this book to teach
the reader all of the details of VHDL, as there are far better books
available for this purpose. Instead we are “priming the pump,” giv-
ing the reader some VHDL now to help get the process started.
Throughout the rest of the book, additional examples will be pro-
vided that are suited for specific embedded systems designs or
recommendations on how to write VHDL to correctly infer the
desired components that lead to more efficient designs. We con-
clude this VHDL subsection with one final example, a finite state
machine (FSM). A finite state machine can be used for a variety of
purposes, such as sequence generators and detectors, and is well
suited for embedded systems design.

In this example we use an FSM to perform 8-bit addition. This
is similar to what was done earlier except that we will add the con-
straint that the two operands are not guaranteed to be aligned.
That is, the operands may or may not arrive at the same time and
we must keep track of when both have arrived before adding the
results together. This may be due to single access to data memory
or data arriving from two different sources. Either way, the FSM
will wait for one of the operands to arrive, register it, and then wait
for the second operand to arrive, register it, and then add them
together. The primary goal of this example is to explain how to use
finite state machines in VHDL; there may be more effective ways
to implement this example, but we will leave those more elegant
solutions to the reader.

The FSM example in Listing 2.3 contains several new features
beyond the first two examples. The most significant is how to
use VHDL to describe a finite state machine. There are different
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-- Traditional Library and Packages used in a hardware core
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adderFSM is
generic (

C_DWIDTH : in natural := 8);
port (
a, b : in std_logic_vector(C_DWIDTH-1 downto 0);
a_we, b_we : in std_logic;
clk, rst : in std_logic;
result : out std_logic_vector(7 downto 0);
valid : out std_logic);

end adderFSM;

architecture beh of adderFSM is
-- 8-bit Register/Next Declaration for A and B
signal a_reg, b_reg : std_logic_vector(7 downto 0);
signal a_next, b_next : std_logic_vector(7 downto 0);
-- Finite State Machine Type Declaration
type FSM_TYPE is (wait_a_b, wait_a, wait_b, add_a_b);
-- Internal signals to represent the Current State (fsm_cs)
-- and the Next State (fsm_ns) of the state machine
signal fsm_cs : FSM_TYPE := wait_a_b;
signal fsm_ns : FSM_TYPE := wait_a_b;

begin
-- Finite State Machine Process to Register Signals
fsm_register_proc : process (clk) is
begin

-- Rising Edge Clock to infer Flip Flops
if ((clk’event) and (clk = ’1’)) then

-- Synchronous Reset / Return to Initial State
if (rst = ’1’) then

a_reg <= (others => ’0’);
b_reg <= (others => ’0’);
fsm_cs <= wait_a_b;

else
a_reg <= a_next;
b_reg <= b_next;
fsm_cs <= fsm_ns;

end if;
end if;

end process fsm_register_proc;

-- Finite State Machine Process for Combination Logic
fsm_logic_proc : process (fsm_cs, a, b, a_we, b_we, a_reg, b_reg) is
begin

-- Infer Flip-Flop rather than Latches
a_next <= a_reg;
b_next <= b_reg;
fsm_ns <= fsm_cs;
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case (fsm_cs) is
-- State 0: Wait for either A or B Input
-- denoted by a_we = ’1’ and/or b_we = ’1’
when wait_a_b =>

-- Clear Initial Context of Registers/Outputs
a_next <= (others => ’0’);
b_next <= (others => ’0’);
result <= (others => ’0’);
valid <= ’0’;
if ((a_we and b_we) = ’1’) then
a_next <= a;
b_next <= b;
fsm_ns <= add_a_b;

elsif (a_we = ’1’) then
a_next <= a;
fsm_ns <= wait_b;

elsif (b_we = ’1’) then
b_next <= b;
fsm_ns <= wait_a;

end if;

-- State 1: Wait for A Input
-- Being in this state means B already arrived
when wait_a =>

result <= (others => ’0’);
valid <= ’0’;
if (a_we = ’1’) then
a_next <= a;
fsm_ns <= add_a_b;

end if;

-- State 2: Wait for B Input
-- Being in this state means A already arrive
when wait_b =>

result <= (others => ’0’);
valid <= ’0’;
if (b_we = ’1’) then
b_next <= b;
fsm_ns <= add_a_b;

end if;

-- State 3: Perform Add Operation and return to wait_a_b
when add_a_b =>

result <= a_reg + b_reg;
valid <= ’1’;
fsm_ns <= wait_a_b;

end case;
end process fsm_logic_proc;

end beh;

Listing 2.3. A finite state machine example in VHDL.
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ways to go about describing the FSM, but we have chosen what
is considered a two-process finite state machine. There are also
one-process and three-process FSMs, but the two-process FSM is
arguably the most common. For those familiar with the traditional
two-process finite state machine, this particular implementation
may seem a little different. We present a variation on the popular
two-process FSM because we find it more efficient and effective for
the programmer. Specifically, we eliminate the redundant descrip-
tion of states in separate processes as it is a common place for
design errors. Before we get too far ahead of ourselves, let’s take
a step back for those less familiar with finite state machines in
VHDL.

To begin, a special VHDL signal type must be declared to differ-
entiate the states in the finite state machine. This is done by adding
the line:

type FSM_TYPE is (wait_a_b, wait_a, wait_b, add_a_b);

This line creates a new type (similar to a typedef or
enumerate in C), which contains four states: (wait_a_b,
wait_a, wait_b). Then, two signals are added of the type FSM_
TYPE and initialized to the first state wait_a_b called fsm_cs and
fsm_ns for the finite state machine’s current state and next state
indicators.

In addition to the state signals, we include additional regis-
ters for intermediate inputs. As was done with the second exam-
ple (2-bit adder), we will register specific signals to help alleviate
potential timing constraints, yielding higher operating frequencies
(clock rates) for the component. These two signals are a_reg and
b_reg, which have accompanying signals a_next and b_next.
These signals behave just like the current/next state registers and
will be used to hold the operands a and b inputs when they are
valid, denoted by a_we and b_we being asserted.

To help illustrate how the fsm_cs and fsm_ns signals are used,
consider Figure 2.12. A sequential circuit is built from both combi-
national logic and state registers. This is covered in an introductory
digital logic course; we expand on it a little to include registering
internal signals (a_reg, b_reg). Each clock cycle the state regis-
ter is updated based on the combination logic next state output.
In VHDL, this is done with one, two, or three processes. We are
using a two-process FSM to help differentiate the state register
and combinational logic. In the fsm_register_procprocess, the
state signal is registered.

In the fsm_logic_proc process, the combinational logic is
described, including state transitions and each state’s output.
Here, a VHDL case statement is used for the finite state machine.
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Figure 2.12. The VHDL process
with the corresponding
sequential digital circuit for
finite state machines.

The initial state is wait_a_b. The state transition is based on if the
input a and/or b arrive. There are three possible conditions: both
a and b arrive in unison, a arrives before b, or b arrives before a. If
a and b arrive at the same clock cycle the inputs are registered and
the FSM transitions to the add_a_b state. If a arrives before b, then
a is registered and the FSM transitions to the wait_b state. Like-
wise, if b arrives before a, b is registered and the FSM transitions
to the wait_a state. If neither a or b arrives, then the FSM stays in
this initial state.

In both thewait_aand thewait_bstates, we already know that
one of the two operands has already arrived and is registered so we
are just waiting for the opposite input. Once it arrives, we regis-
ter it and transition to the add_a_b state, where the two operands
are added and the output is set. The valid signal is used to notify
whatever component is dependent on the result output that is
now ready.

There are some important notes to address with this example.
First is the sensitivity list ; that is, the list of signals that a process
waits on for changes that cause the process to be re-evaluated.
In simulation, if a signal (say a_we) is omitted, then even if that
signal changes, it will not necessarily cause the process to be re-
evaluated. This can cause the system to behave differently from
what is expected or desired. In hardware the process is always run-
ning; hardware does not get invoked like a C function call. As a
result, the sensitivity list will be automatically generated by the
synthesis tools. Care must be taken by the designer when simulat-
ing the design, and sensitivity list omissions are often an example
of a design error that will cause simulation and synthesis results
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to not match. We say all of this because while we find simulation
extremely useful as both a design and a debug tool, the designer
must use simulation tools intelligently with the mindset of writing
synthesizable VHDL.

Clearly this was only intended to be an introduction to VHDL
for the reader. The examples chosen were picked to give the reader
a sampling of code to begin to play with when designing new com-
ponents. Often the hardest part of any language is getting past the
first hump of practical examples. For further VHDL reading we rec-
ommend Ashenden, Peter J. (2008). If you instead are interested in
seeing what else is commonly used, we present Verilog next.

2.4.2. Verilog
Another common hardware description language is Verilog.
Verilog has many similarities to VHDL, as both were originally
intended to describe hardware circuit designs. Verilog is consid-
ered to be less verbose than VHDL, often making it easier to use,
especially for designers more familiar with an imperative coding
style such as C++ or Java. As with VHDL, Verilog became more than
just a textual representation of a circuit. Designers used Verilog to
simulate circuits that eventually led to a subset of the language
supporting hardware synthesis. This section is written to provide
the reader with a sufficient set of examples to begin to learn Ver-
ilog. The examples are based on those presented in the VHDL
section, but with Verilog syntax. As was noted previously, this book
focuses primarily on VHDL, but the reader should take care to
familiarize themselves with both VHDL and Verilog, as they are
both used within industry and academia. As with VHDL, there is
a significant amount of resources already available for Verilog and
should the reader find Verilog to be the more comfortable HDL, we
encourage the reader to use Verilog. While this book may be more
VHDL centric in its examples, the underlying ideas and concepts
are applicable to both HDLs.

Synthesizable Verilog
In Verilog, there are three major styles or forms of writing hard-
ware descriptions. Both styles are valid VHDL codes; however, they
model hardware differently. This impacts synthesis, simulation,
and, in some cases, designer productivity. These forms are:

Gate-Level Modeling circuits are described in terms of logic units
such as AND/OR/NOT gates.

Structural circuits are described in terms of modules.
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module fadder(a, b, cin, sum, cout);
input a, b, cin;
output sum, cout;

assign sum = a ^ b ^ cin;
assign cout = (a & b) | (a & cin) | (b & cin);

endmodule

Listing 2.4. A 1-bit full adder in Verilog.

Behavioral circuits are described in an imperative (procedural)
language to describe how the outputs are related to the inputs.

Verilog Syntax

All components of a design expressed in Verilog consist of mod-
ules. Starting with an empty source file, the program usually begins
with the keyword module followed by the module’s name and
ports. The ports are then defined in terms of input and output
along with individual types, such as single bits or bit vectors.
Unlike VHDL, there are no explicit libraries to include at the begin-
ning of each file. For demonstration purposes, consider the same
1-bit full adder example presented in the VHDL section written in
Verilog, shown in Listing 2.4.

The module is named fadder, which has five ports. A port can
be an input, output, or both (inout) to the module. In this exam-
ple, there are three inputs and two outputs. The data type can be
a wire, register, integer, or constant. We will give specific examples
shortly. Each of the inputs and outputs in this example is a sin-
gle bit representing binary ‘1’ or ‘0’. One important note regarding
syntax is that Verilog is case sensitive and all keywords are lower-
case; that is, wire is a Verilog data type, whereas Wire is a unique
variable name.

Unlike VHDL, there is no formal distinction between the mod-
ule interface and the design’s logic. In the full adder example, the
keyword assign is used with combination circuit assignment. The
line

assign sum = a ^ b ^ cin

infers a three input xor gate with the output connected to the sum
output. The symbols &, |, ∧, ∼ represent bitwise and, or, xor,
not, respectively.

So how does the Verilog full adder map to hardware? Not sur-
prisingly, it maps to the same resources as VHDL implementation.
With such a simple example it is easy for the synthesis tool to infer
the same logic, correctly.
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Extending the Verilog 1-bit full adder to a 2-bit full adder as
was done with VHDL will provide additional Verilog constructs
and the conciseness of Verilog becomes more apparent. Listing 2.5
shows the 2-bit full adder example. The reg keyword is used for
register declarations, and the wire keyword is used for internal
combinational interconnects. The equivalent of a VHDL process
block is the alwaysblock. In this example, inputs and outputs are
registered to the input clock’s rising edge, inferring D flip-flops.
Two instances of the 1-bit fadder component follow, connecting
the inputs, outputs, and carry logic accordingly. The components

module fadder2bit(a, b, cin, clk, rst, sum, cout);
input [1:0] a, b;
input cin, clk, rst;
output [1:0] sum;
output cout;
// 2-bit Register declaration for A, B, Sum
reg [1:0] a_reg, b_reg, sum_reg;
// 1-bit Register declaration for cin_reg, cout_reg
reg cin_reg, cout_reg;
// 1-bit internal wires for carry-out
wire carry_tmp, cout_wire;
// 2-bit internal wire for sum
wire [1:0] sum_wire;

// Always Block to Register Inputs A, B, Cin
always @(posedge clk)
begin

if (rst == 1’b1) begin
a_reg = 2’b00;
b_reg = 2’b00;
cin_reg = 1’b0;
sum_reg = 2’b00;
cout_reg = 1’b0;

end else begin
a_reg = a;
b_reg = b;
cin_reg = cin;
sum_reg = sum_wire;
cout_reg = cout_wire;

end
end

// Instantiate Bit 1 of the 2-bit Adder
fadder fa1 (a_reg[1], b_reg[1], carry_tmp, sum_wire[1], cout_wire);
fadder fa0 (a_reg[0], b_reg[0], cin_reg, sum_wire[0], carry_tmp);

// Assign Output Signals
assign sum = sum_reg;
assign cout = cout_reg;

endmodule

Listing 2.5. A 2-bit full adder in Verilog.
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for bit 1 and bit 0 are named fa1 and fa0, respectively. Finally,
the module’s outputs (sum and cout) are assigned the registered
output values. The resulting circuit utilizes the same number of
resources as the VHDL version.

Finally, we present the finite state machine example in Verilog
in Listing 2.6. Here is where the biggest difference between

module adderFSM (a, b, a_we, b_we, clk, rst, result, valid);
// Input Ports
input [7:0] a, b;
input a_we, b_we, clk, rst;
// Output Ports
output [7:0] result;
output valid;
// Internal Registers
reg [7:0] a_reg, b_reg;
reg [7:0] a_next, b_next;
reg [1:0] fsm_cs;
reg [1:0] fsm_ns;
// Output Registers
reg [7:0] result;
reg valid;
// FSM State Encoding
parameter [1:0] wait_a_b=2’b00,wait_a=2’b01,wait_b=2’b10,add_a_b=2’b11;

// Initialize current state to wait_a_b state
initial begin

fsm_cs = 2’b00;
end

// Finite State Machine Register Always Block
always @(posedge clk)
begin

// Synchronous Reset
if (rst == 1’b1) begin

a_reg = 8’b00000000;
b_reg = 8’b00000000;
fsm_cs = wait_a_b;

end else begin
// Register current signal to next signals
a_reg = a_next;
b_reg = b_next;
fsm_cs = fsm_ns;

end
end

// Finite State Machine Combinational Logic Always Block
always @(fsm_cs or a or b or a_we or b_we or a_reg or b_reg)
begin

a_next = a_reg;
b_next = b_reg;
fsm_ns = fsm_cs;
// Finite State Machine
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case (fsm_cs)
// State 0: Wait for Inputs a and/or b
// register input and either go to do addition or
// transition to wait for other operand
wait_a_b : begin

// Initialize registers and set outputs to 0
a_next = 8’b00000000;
b_next = 8’b00000000;
result = 8’b00000000;
valid = 1’b0;
if ((a_we & b_we) == 1’b1) begin

a_next = a;
b_next = b;
fsm_ns = add_a_b;

end else if (a_we == 1’b1) begin
a_next = a;
fsm_ns = wait_b;

end else if (b_we == 1’b1) begin
b_next = b;
fsm_ns = wait_a;

end
end

// State 1: Wait for A Input
wait_a : begin

result = 8’b00000000;
valid = 1’b0;
if (a_we == 1’b1) begin

a_next = a;
fsm_ns = add_a_b;

end
end

// State 2: Wait for B Input
wait_b : begin

result = 8’b00000000;
valid = 1’b0;
if (b_we == 1’b1) begin

b_next = b;
fsm_ns = add_a_b;

end
end

// State 3: Perform Addition of a_reg + b_reg
add_a_b : begin

result = a_reg + b_reg;
valid = 1’b1;
fsm_ns = wait_a_b;

end
endcase

end
endmodule

Listing 2.6. A finite state machine example in Verilog.
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Verilog and VHDL can lie. It is possible to code FSMs similar to the
VHDL implementation or completely different. We have chosen
to closely match the two implementations, but we recommend
those with an interest in Verilog to purchase one of the many
Verilog HDL books available to learn the other possible implemen-
tations.

The most noticeable difference is the syntax; in fact, with this
implementation you could set both files side by side and see
an almost one-to-one mapping between the two languages. We
chose to continue to use a two-process (always block) finite state
machine and a case statement for its implementation. One differ-
ence is rather than using a type to define the FSM as was done in
VHDL, we use a parameter and encode each state.

The reader may notice that the Verilog section is shorter than
VHDL. This is not by chance. The authors favor VHDL, we make
no attempt to hide this fact. We do not fault Verilog; in actuality we
find Verilog a delightful language and offer the fact that we learned
VHDL first (and Ada) as our only definite reason for our tendency
toward VHDL. This section tried to provide some examples of Ver-
ilog that a reader can use with additional material to further pursue
Verilog as a hardware description language. For those interested
in a additional Verilog reading, we recommend Ashenden, Peter J.
(2007).

Regardless of the language choice, we strongly suggest the
reader take note of what is considered synthesizable HDL. When
creating components, take the time to synthesize each compo-
nent individually and understand how the component is being
mapped to hardware. This will give you a better understanding
of the resources needed by both the component and the final
design.

2.4.3. Other High-Level HDLs
While the majority of hardware engineers use either VHDL or
Verilog, there are other HDLs available. Because we are focusing
on VHDL, we will not go into specific details about these addi-
tional languages at this time. In an effort to increase produc-
tivity, SystemC (Open SystemC Initiative (OSCI), 2010), HandelC
(Agility, 2010), and Impulse (Impulse Accelerated Technologies,
2010) are a few of the attempts at building hardware and software
systems together by providing the designer a higher level lan-
guage to work in. Some are extensions to the C/C++ library, while
others use C-like syntax to provide a more programmer-friendly
environment. Some do provide designers with an alternative to
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the verification of a complete hardware/software system, which
can be carried out before further hardware/software partitioning.
Moreover, when translating existing algorithms into hardware-
implementable architecture, preserving the source programs in C
or C++ becomes possible with the support of an intelligent com-
piler, which may only involve a minor effort of code modifica-
tion. Overall, it is debatable whether these languages are mature
enough to support the desired goal of providing the design with the
ability to model large systems, which incorporate both hardware
components and software applications.

2.5. From HDL to Configuration Bitstream
So far in this chapter we have covered the internals of the FPGA,
along with hardware description languages that provide a mech-
anism to describe complex digital circuit designs. As mentioned
earlier, the process of converting an HDL into logic gates is called
synthesis and the result of this process is a netlist file. This section
describes how to convert a digital circuit to a netlist. Then, it
describes how to configure an FPGA device from the netlist. A
more detailed example of this process with vendor-specific tools
is provided in Section 2.A.

Let’s start with an example. Consider the Boolean function:

f(w, x, y, z) = w + x + yz

The schematic is shown in Figure 2.13. This circuit is easily
expressed in a netlist. Each of the gates (two OR gates and one
AND gate) becomes a “cell.” Each primitive cell will include the
type of gate, a name for this cell, and a set of ports. Ports will
have names and direction (input or output). Complex cells can be
formed by adding contents, which are instances of other cells and
nets. Nets describe how the cells are “wired up”; that is, which out-
put ports are connected to which input ports. Since complex cells
can include other complex cells, a netlist forms a hierarchy with
a single top-level cell encompassing all other cells. Ports on the
top-level cells are then associated with external pins on the FPGA
device.

There are many netlist formats and most are binary (i.e., not
human readable) but some, such as EDIF, use a simple syntax and
ASCII text to describe a cell hierarchy. EDIF (pronounced E-diff )
stands for Electronic Design Interchange Format and is a vendor-
neutral standard. Different tools use different file extensions. Some
use .edif but others have adopted various three-letter suffixes to
be compatible with DOS file name restrictions such as .edf and
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Figure 2.13. Schematic of a simple Boolean function.

(edif gates
(edifVersion 2 0 0)
(external UNISIMS

(cell LUT4
(cellType GENERIC)
(interface

(port I0
(direction INPUT)

)
(port I1
(direction INPUT)

)
(port I2
(direction INPUT)

)
(port I3
(direction INPUT)

)
(port O
(direction OUTPUT)

)
)

)
)

)

Figure 2.14. Portions of a Boolean function in EDIF.

.edn. To give the reader a flavor for its format, a stripped down
sample is shown in Figure 2.14. One last comment, the primitive
cells used in a netlist are not universal. They may be basic logic
gates (AND, OR, etc.) or they can be vendor-specific components
(like a TBUF) that a vendor’s back-end tool flow knows about.

The process we want to explain is how to go from a computer-
readable expression of a digital circuit to a sequence of bits suit-
able to configure an FPGA. Using the example described earlier,
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Figure 2.15. Example of a four-input function mapped to two 3-LUTs.

f(w, x, y, z), the first thing to recognize is that we have four inputs —
so f cannot be implemented in a single 3-LUT function genera-
tor. With only three select lines, an 8-to-1 MUX can only handle
three variables. The solution is to use two 3-LUTs and and the rout-
ing resources to connect them. For example, f can be decomposed
into two functions: f(w, x, y, z) = f2(w, f1(x, y, z)), where f1(x, y, z) =
x + yz and f2(w, t) = w + t. Now f1 and f2 can be used to configure
two 3-LUTs. The output of f1 is routed to the second input of f2.
This decomposition is illustrated graphically in Figure 2.15.

Note that G1 could be part of either 3-LUT — the result is the
same (two function generators are required). Also note that if a
3-LUT only has two inputs, then the third select line is connected
to ground and half of the SRAM entries are don’t cares.

The process of grouping gates and assigning functionality to
FPGA primitives is called mapping or MAP for short. The result of
mapping a netlist is another netlist. The difference is that the cells
of the input are generic Boolean gates; the cells of the output are
FPGA primitives (3-LUTs, Flip-Flops, TBUFs, etc.).

The next step in the back-end tool flow is to assign the FPGA
primitives in the netlist to specific blocks on a particular FPGA
device. This process is called placement. In our simple example,
f uses two 3-LUTs. During placement, the tools will decide which
two 3-LUTs to use and add that information to the netlist.

Because every 3-LUT is the same as every other 3-LUT, the real
challenge here is to place the cells relative to one another such
that routing the output of one 3-LUT to the next one has the low-
est propagation delay. Recall from Section 2.3 an output from the
logic block goes to a connect box. From the connect box, a pass
transistor decides where the signal propagates, which may be an
adjacent logic block or to a switch box. A pass transistor is able to
either propagate or block a signal by connecting the gate of the
transistor to an SRAM cell, allowing the transistor to control the
signals in a general-purpose circuit. If the signal goes to a switch
box, another pass transistor determines which wire segment to use
and so on to the next switch box and eventually to a connect box
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and a logic block. Every transistor and, to some extent, the length
of the wire segments used contribute to the propagation delay.
The longest propagation delay in the design will determine the
maximum clock frequency. The process of picking wire segments
and setting passing transistors is called routing.

If the project requires something like a 100-MHz clock fre-
quency, but the design has a propagation delay that limits the clock
to say 50 MHz, we say that the design does not meet timing. For
very large netlists that use a large fraction of the resources, it is
possible (and fairly common) that bad placement will use all of the
routing resources in one area of the chip, making it impossible to
connect all of the nets in the netlist. When this happens, we say the
design failed to route.

In either case — not meeting timing or failing routing — the
solution is to try a different placement to see if that produces less
congestion or shorter routes. In fact, because placement and rout-
ing are so tightly coupled, they are considered a single step and one
place-and-route tool (PAR). Early place-and-route algorithms did
things like (1) randomly place all of the cells and then (2) route each
signal sequentially. If a signal cannot be routed, throw away all the
routes and start with a different signal. If it appears routing is going
to always fail, throw out everything and randomly place all of the
cells again. The process continues until all of the signals are routed
or some threshold for giving up is met! Today, the tools are more
sophisticated but the specific algorithms are trade secrets that
vendors keep to themselves. The drawing in Figure 2.16 illustrates
the concepts of our running example after PAR. The SRAM cells are
organized in a 2-D array (additional logic not shown).

The final step is to convert this 2-D collection of SRAM cell set-
tings into a linear stream of bits. One can imagine all of the cells
arrayed into two dimensions. One column might be associated
with a column of 3-LUTs on the chip. All of the SRAM cells that
make up each 3-LUT would be stacked on top of each other. The
next column might have all of the SRAM cells used to configure the
connect and switch boxes. The next would be another column of
3-LUTs. All of these SRAM cells are connected vertically as shown
in Figure 2.17 to form a giant shift register. To set the SRAM cells,
the first column of data is shifted into place, followed by the next
column and so on. So the last step, called bitgen, takes a placed
and routed netlist and sets the SRAM cells of this large 2-D array
accordingly. Along with a header, each of the columns is written
out sequentially to a binary file called a bitstream.

Again, this is not exactly how any vendor configures an FPGA
but this illustrates enough details that a system designer needs
to know.
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Figure 2.16. Illustration of f (w, x, y, z) placed and routed.

Chapter in Review
This chapter covered a wide range of material, some of which may
be considered background reading or act as a refresher for the
reader. Our intention in this chapter was to emphasize material
that we believe the reader should be aware of and, if not, provide
enough detail to quickly catch the reader up to speed for the rest
of the book.

At the heart of the FPGA is the CMOS transistor. We are keenly
interested in this technology not because we are physically speci-
fying and implementing transistors in our designs, but because all
of the reconfigurable technology rests on top of it. Therefore, being
aware of its characteristics, such as power consumption, will ben-
efit the embedded systems designer. In addition to transistors, a
brief overview of programmable logic devices was given with the
intention to explain how FPGAs evolved into what they are today
and to possibly provide some insight into the direction FPGAs may
go in the future.

The cornerstone of this chapter was the discussion on FPGAs
and Platform FPGAs. In Chapter 1 we covered some details about
FPGAs, but here we dwelled into the specific constructs of the
device. Just as a painter must be familiar with the available colors,
so should the designer be familiar with the low-level components
of the device.
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Figure 2.17. Illustration of f (w, x, y, z) placed and routed.
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This led into hardware description languages where we dis-
cussed how to describe hardware in both VHDL and Verilog. This
was again meant to be a quick review or introduction to the lan-
guage, as the purpose of this book is not to teach the reader every-
thing about HDLs. Finally, we covered how to generate a bitstream
from the HDL so we can configure the FPGA and run our hardware
design on the actual device.
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Practical Expansion: The Target
This chapter’s white pages covered a wide range of material that is essential for designing systems with FPGAs. Throughout
the gray pages we provide more technical details with respect to Xilinx FPGAs, Xilinx tool chain, and VHDL. For some
readers, the white pages are sufficient to illustrate the point; however, we feel that practical examples with existing FPGA
devices are more often what solidifies the readers, understanding of the material.

Toward this end we use a single device from a family of FPGAs, the Xilinx Virtex 5 (XC5VFX130T-FF1768). The goal is
to learn the details of this device, build up a vocabulary of terms, explore several low-level ways of configuring an FPGA,
and cover the design process from concept to implementation to running system. From there, it is relatively easy to learn
a different device by comparing their features and functionality.

There are two more advantages to learning how to configure the low-level internal details of an FPGA. First, when
the need arises, it is possible for an engineer to forgo the high-level tools and build a device-specific, efficient hardware
module. (By analogy, most embedded systems are programmed in high-level languages but there are rare occasions that
call for subroutine to be written in assembly.) The second reason — and this is very important with state-of-the-art high-
level tools — is that oftentimes an engineer needs to understand how a small change in a high-level language may affect
the eventual implementation in an FPGA. That is, with today’s tools it is easy to break a working design by making a simple
change to a high-level construct that ends up requiring twice as many FPGA resources.

These gray pages begin with a more detailed view of the Xilinx Virtex 5 FX130 FPGA. This material is available from the
Xilinx Web site; however, aggregating the material is useful for someone new to the area or unfamiliar with how all of the
technical documents and details are related. Next, a more detailed overview of the Xilinx Integrated Software Environment
(ISE) tool chain is presented to help clarify each step in the FPGA configuration process. Finally, through the use of a few
Xilinx tools, a custom hardware core and components will be developed and downloaded to the board.

2.A. Xilinx Virtex 5

To start, the Xilinx Virtex 5 FPGA series consists of several related but different devices. The groups are denoted LX, SX,
TX, and FX. What do they all mean? In short, they refer to different mixes of configurable logic blocks and hard cores
on the device. The LX (and any variants such as LXT) refers to devices that have a large number of configurable logic
blocks relative to other hard cores on the device. The resources on the FPGA are more heavily allocated to configurable
logic than say a processor embedded into the FPGA fabric. The SX refers to signal processing series parts, allocating
more resources toward digital signal processing applications. The TX/HX refers to parts that have additional high-speed
serial transceivers for high bandwidth interconnection capacity. The FX refers to FPGAs that have one or more PowerPC’s
embedded into the FPGA fabric.

It is possible to build Platform FPGAs from devices that do not include a hard processor. In that case, one or more
soft processor cores can be used within the configurable logic. We focus on the FX series parts with two PowerPC 440
hard processor cores. The reason for this is because a majority of our embedded systems designs rely on at least a single
processor, using a hard processor is a better use of FPGA resources as it consumes less power, has a higher operating
frequency, and requires less physical space than an equivalent FPGA implementation.
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2.A.1. Look-Up Table

Xilinx refers to the function generators within the FPGA fabric as look-up tables (LUT). The Virtex 5 FPGAs are built from
6-input LUTs. The white pages refer to 3-input LUTs for demonstration purposes (an 8-row truth table/Boolean circuit
is much easier to represent than a 64-row truth table in a book); however, today’s devices include larger 4-LUTs and
6-LUTs.

In practice, using hardware description languages (HDL) to describe the digital circuit and then using synthesis tools
to map the textual description, an equivalent look-up function is more common than the designer defining the LUTs logic
itself. What is important as far as the designer is concerned is how to represent a circuit efficiently to utilize the available
resources. The 6-LUT on the Virtex 5 can be used either as a single 6-LUT or as two 5-LUTs as long as both 5-LUTs share
the same inputs. A designer can take advantage of this when building digital circuits by not including the unnecessary
inputs, which the synthesis tools may infer to a larger LUT. Figure 2.18 represents the block diagram of a 6-LUT. In the
event that all six inputs are used for the LUT, the bottom output O5 is not used.

2.A.2. Slice

In the white pages we presented the term logic cell to represent a look-up table and a storage element (D flip-flop). The
Virtex 5 combines four of these logic cells to create a slice, as is shown in a simple block diagram in Figure 2.19. With four
6-LUTs and D flip-flops contained within close proximity, it is possible to use these components to design more complex
circuits. In addition to Boolean logic, a slice can be used for arithmetic and RAMs/ROMs. Some slices are connected in
such a way that they can be used for data storage as distributed RAMs or shift registers. This is accomplishedby combining
multiple LUTs in the slice. The distributed RAM can be configured as single, dual, and, in some cases, quad ports providing
independent read-and-write access to the RAM. The depth of the RAMs varies based on the number of ports, but can
range from 32 to 256 1-bit elements. The distributed RAMs’ data width can be increased beyond 1-bit; however, there will
be a trade-off between the width and depth and the resource usage. For example, a 64 × 8 (64 8-bit elements) RAM is
implemented in nine LUTs (1-LUT per 64 × 1 RAM and an additional LUT for logic). However, a 64 × 32 extends beyond
an efficient use of the configurable resources and is moved into what will be discussed shortly, Block RAM (BRAM).

6-LUT

06

A6

A5
A4
A3
A2
A1

05

5-LUT

5-LUT

Figure 2.18. The Virtex 5 6-input LUT actually is built from two 5-input LUTs with the sixth input controlling a
mux between the two LUTs.
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Figure 2.19. A block diagram of a Virtex 5 logic slice with four 6-LUTs and four flip-flop/latch storage elements.

In addition to logic and memory, slices can be used as shift registers. A shift register is capable of delaying an input x
number of clock cycles. Using a single LUT, data can be delayed up to 32 clock cycles. Cascading all four LUTs in one slice,
the delay can increase to 128 clock cycles. This is useful for small buffers that would traditionally be implemented within
a more valuable resource, such as a Block RAM.

In all of these possible uses, a D flip-flop can be added to provide a synchronous read operation. With the additional
D flip-flop, a read will be subject to an additional latency of one clock cycle. This may or may not impact a design, but for
designs with high timing constraints, adding the synchronous operation can relax the constraint.

2.A.3. Configurable Logic Block

In the Virtex 5, a configurable logic block (CLB) contains two slices and the carry logic to connect neighbor slices. A CLB
is considered the highest level of abstraction for the FPGA’s configurable fabric. The two slices within the CLB are not
directly connected, instead they sit in what is considered separate slice columns. Each CLB is connected to a switch matrix,
providing configurable designs to span many CLBs. The switch matrix consists of long and short wires to provide more direct,
point-to-point connections between CLBs in close proximity. Figure 2.20 depicts the basic structure and interconnection of
CLBs, slices, and switch matrices.

2.A.4. Block RAM

Block RAM is dedicated random access memory grouped together in 36 Kbit blocks on Virtex 5 FGPAs. This is in addition
to the distributed RAM mentioned earlier. BRAM provides on-chip memory, which can be used as large look-up tables,
local storage, or data buffers (FIFOs). Each BRAM has two independent access ports (A and B) that only share data in the
memory cells. Clocks are relative to each port. Care must be taken when using BRAMs in dual-port mode where the two
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Figure 2.20. Virtex 5 CLB block diagram of the interconnection between each slice in the CLBs and their
connection to the switch matrix.

ports write to the same address at the same time instance. This will not cause any ill effects to the physical BRAM, but
effectively a race condition occurs between the two ports and it is nondeterministic which port’s data will be actually
stored in the memory cells. It is not difficult to design around this problem, but being aware of the problem before writing
any designs makes the problem all the easier.

BRAMs are configurable in the width and depth supported. Each 36-Kb BRAM can be configured as 32K × 1 (32,768 by
1 data bit), 16K × 2, 8K × 4, 4K × 9, 2K × 18, or 1K × 36 RAMs. The depth and width are related to produce a maximum
of 36-Kb. A BRAM can be combined with an adjacent BRAM to provide deeper or wider BRAMs.

Likewise, a BRAM can be split as two independent 18-Kb RAMs. Each 18-Kb RAM can be configured as a 16K × 1,
8K × 2, 4K × 4, 2K × 9, or 1K × 18. This provides the Virtex 5 FPGAs with an ability to utilize their resources more
efficiently.

One common use of BRAMs in FPGA designs is for FIFOs. FIFOs, or simply data queues, are primitives designers can
take advantage of, rather than building their own out of BRAM logic, reducing design and debugging time. Recently, FPGAs
have started to include FIFOs as separate components within the FPGA fabric. The Virtex 5 and 6 are two such devices,
although the physical limitations on the functionality may rule out their use in a design. We cover FIFO primitives in more
detail in Section 6.A. For now, we focus on the use of BRAMs for storage and large buffers within Platform FPGA designs.

2.A.5. DSP Slices

A common use for FPGAs is with digital signal processing (DSP). The need to perform operations in parallel and to customize
the operations based on the application has increased in the community of FPGA-based DSP designers. To improve the
performance, many FPGAs come with special DSP blocks. In the Virtex 5, the DSP slices are known as DSP48E (48-bit DSP
element) slices.

The DSP slices include a 25× 18 two’s complement multiplier, 48-bit accumulator (for multiply accumulate operations),
an adder/subtractor for pipelined operations, and bitwise logical operations. Embedding this functionality into the slice
provides a significant savings in FPGA resources, as implementing the equivalent resources in LUTs is quite expensive.

For applications needing filters, such as a comb and finite impulse response, to transforms, such as fast and discrete
Fourier, to CORDIC (coordinate rotational digital computer) algorithm, DSP slices are used when available. The Virtex 5
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Figure 2.21. Xilinx Select Input/Output buffer (IOB) tile for connections between FPGA fabric and the pad on
the FPGA device.

FX130T on the ML-510 contains 320 DSP slices. Compared to 20,480 regular slices, this seems like a disproportionate
amount, yet not all designs require the use of DSP slices.

For designs requiring a higher percentage of DSP slices, the Xilinx SX series FPGAs include more DSP resources. There
are tools, one of which we will introduce shortly, that help the designer quickly implement customized DSP components.
They are also useful for resource and performance approximation.

2.A.6. Select I/O

Interfacing off the FPGA is another important issue when designing for embedded systems. In most cases, there will be
a need to interface with some physical device(s). Depending on the number of I/O pins required, some devices are better
suited than others, but they are all built around Input/Output Blocks.

From Figure 2.21 each I/O tile spans two pads (which connect to physical pins). Each Pad connects to a single IOB, which
connects to the input and output logic. Xilinx uses the term Select I/O to refer to configurable inputs and outputs, which
support a variety of standard interfaces (LVCMOS, SSTL, LVDS, etc.). Select I/O also take advantage of Digitally Controlled
Impedance (DCI) to eliminate adding resistors close to the device pins, which are needed to avoid signal degradation. DCI
can adjust the input or output impedance to match the driving or receiving trace impedance. Some advantages include a
reduction in the number of parts, which simplifies the PCB routing effort. It also provides a way to correct for variations in
manufacturing, temperatures, and voltages.

2.A.7. High-Speed Serial Transceivers

Along with Select I/O, some FPGAs include additional high-speed transceivers (transmit/receive) to connect devices seri-
ally at low latency and high bandwidth. The transceivers are coupled within the FPGA fabric to provide direct access to
and from soft cores. Line rates are programmable from 100 Mb/s to 6.5 Gb/s. In the Virtex 5 series FPGAs, two types of



86 Chapter 2 THE TARGET

transceivers exist, RocketIO GTX and GTP. GTX transceivers are capable of a higher bandwidth, whereas GTP transceivers
are lower bandwidth and require less power. The number of transceivers varies from part to part. For example, the Virtex
5 FX130T includes 20 GTX transceivers. As with DSP slices and SX series FPGAs, there are applications that require a
higher percentage of transceivers to configurable logic. The TX (also known as TXT or HX) series FPGAs include these
additional transceivers. Both GTX and GTP transceivers are bidirectional, providing independent transmit and receive
at the same time.

The transceivers can support parallel data through use of the serialize/deseralize (SERDES) logic, which connects to
the input/output blocks. To support higher bandwidth needs, it is possible to bond the channels together. For example, two
transceivers operating at 5.0 Gb/s bonded together can offer 10.0 Gb/s bandwidth at the cost of the additional transceiver
resource. In high bandwidth-sensitive applications, the extra resource is a necessary expense.

Xilinx includes a customizable GTX/GTP wizard to expedite adding the transceiver logic to a design or specific compo-
nent. In short, it is possible to specify the data width (parallel data), frequency, and channelbonding needed by the design.
Design considerations are needed for systems with tight timing or resource constraints; however, much of the headache
typically associated with high-speed integration can be eliminated.

2.A.8. Clocks

In FPGA designs it is common to operate different cores at different frequencies. In traditional design, any clocks needed
would have to be generated off-chip and connected as input to the system. With FPGA designs it is possible to generate
a wide range of clock rates from a single (or a few) clock source(s). While it is easier to design systems with only a few
different clock rates, having the flexibility to incorporate clock rates after board fabrication is compelling to designers.
However, there are limitations on the number of clocks that can be generated and routed to various parts of the FPGA.
A number of clock regions exist on the FPGA (varying from 8 to 24 based on the Virtex 5 FPGAs), which support up to 10
clocks domains. The FPGA is split in half and on each half a clock region spans 20 CLB. The Virtex 5 FX130T has 20 clock
regions. Figure 2.22 is a simple example of the clock regions on the FPGA.

To help design, use, and manage these clocks, Xilinx uses digital clock managers (DCM). Generally speaking, a DCM
takes an input clock and can generate a customizable output clock. By specifying the multiply and divider values, the
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Figure 2.22. Clock regions on an FPGA span 20 CLBs vertically and half of the FPGA horizontally; the number
of clock regions varies by chip.
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frequency-synthesis output clock clkfx can generate a custom clock. Given an input clock clkin the equation:

clk fx = M/D ∗ clkin

is used to generate the output clock. However, the DCM provides more than just generating different clock rates. A DCM
is also capable of phase shifting the input clock by 90, 128, and 270 degrees. The DCM also provides a 2× the input clock
rate and can phase shift this input clock by 180 degrees. It is easy to see without going into more detail that DCMs are
a useful tool to generate the necessary clock(s) in FPGA designs. In short, meeting timing when designing with FPGAs
can be a difficult task unless design considerations for timing and clocks are included from the beginning of the design
process.

2.A.9. PowerPC 440

The Virtex 5 FX series FPGAs include one or two PowerPC 440 (Xilinx, Inc., 2009b) processors embedded within the
FPGA fabric. The PowerPC 440 is a RISC processor with an operating frequency of up to 550 MHz. It contains a seven-
stage pipeline with out-of-order execution capabilities. Included are data and instruction 32 KB, 64-way set associative
level 1 caches.

The PowerPC connects to a system bus known as the ProcessorLocal Bus (PLB), which is part of IBM’s CoreConnectIBM
(2009) suite of soft cores. The PLB supports 128-bit data transfers at user-define frequencies (in most cases, 200 MHz is
the upper limit, but more discussion on the PLB will come in Section 3.A). A example of the processor’s block diagram is
shown in Figure 2.23.

In addition to the PLB, the PowerPC 440 includes a crossbar switch. The switch is used to connect the processor
to a memory controller for a high bandwidth, low latency connection to off-chip memory. The switch also supports up
to four direct memory access (DMA) ports, enabling more efficient transfers to and from memory to soft compute cores
implemented within the FPGA fabric. We go into more detail regarding DMA in Chapter 4.
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Figure 2.23. PowerPC 440 processor block diagram showing the available interfaces between processor and
FPGA fabric.
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Another unique feature of the PowerPC is the auxiliary processing unit (APU). The APU connects to the fabric copro-
cessor bus (FCB) to support custom instructions implemented in the FPGA fabric. For example, a double precision floating
point unit (FPU) can be connected to the APU. Then, anytime the application needs to perform a floating point compu-
tation, the processor will offload the computation to hardware where the computation can be performed faster than a
software-emulated FPU.

The PowerPC will be at the heart of our initial Platform FPGA designs. The PowerPC provides us with a “comfortable”
environment (for those more familiar with C/C++ than HDLs) to begin to interact with the various components and, soon,
our own custom soft cores.

Overall, we mention these components not because a designer is forced to implement Boolean logic or distributed
RAMs at such a low level; ideally that is what the hardware description languages and synthesis tools are for. Instead, we
mention them to help clarify for the reader the flexibility available with FPGA designs and to illustrate a point. The designer
should not place too much dependency on low-level tools to create resource-efficient and high-performing designs. For
example, being able to identify when a design is better suited for BRAM FIFOs instead of LUTs and specifying that infor-
mation within the HDL context make the synthesis tool’s job easier. Finally, we mention these different components to
help a designer understand what their design is being mapped to. It is a gratifying feeling when a designer can look at a
synthesis report and understand where and why all of the resources are being used and, if necessary, modify their design
to take better advantage of the remaining resources.

2.B. Xilinx Integrated Software Environment
2.B.1. Overview of Commands

The Integrated Software Environment (ISE) contains a suite of commands that can turn FPGA designs described in hardware
description languages and netlists into bitstream configuration files. ISE is a comprehensive program and there are plenty
of tutorials and FAQs available. Instead, we aim to cover the underlying commands (Xilinx, Inc., 2009a) that are called by
the ISE GUI. For those more comfortable with the ISE GUI, it is hoped that this section will at least clarify what each step
is in the hardware synthesis process.

Xilinx Synthesis Tool At the core of the ISE tool chain is the Xilinx Synthesis Tool (Xilinx, Inc., 2009c) (XST). XST is
used to synthesize hardware description languages into a netlist. XST is not the only synthesis tool available; however, as
it is available within the ISE tool chain, it will be the synthesis tool used throughout this book.

To help in our understanding of how XST works, we begin by synthesizing the VHDL version of the 1-bit full adder. In
addition to the VHDL file, two files are needed to run XST in command line mode. These two files are the project file and
the synthesis script file. The project file specifies all of the HDL in the project to be synthesized. It is commonly named with
the extension .prj. In the full adder example, only one VHDL file exists so the project file simply contains:

vhdl work fadder.vhd

The three columns denote the HDL type, library name, and VHDL filename. The work library is the default library to use.
The XST synthesis script is commonly named with the extension .scr. This script contains parameters used by XST

during synthesis. It is possible to run XST without a script by entering each option on the command line; however, creating
a single script is the preferred method, as it reduces redundant typing of the long series of inputs at the command line. For
the full adder example, the synthesis script is shown in Figure 2.24.
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run
-ifn fadder.prj
-ofn fadder.ngc
-ofmt NGC
-top fadder
-opt_mode Speed
-opt_level 1
-iobuf NO
-p xc5vfx130t-ff1738

Figure 2.24. Example of a synthesis script for XST.

The run keyword will indicate to XST to execute synthesis with the following attributes. XST requires an input project
filename (ifn), which is the project file we mentioned earlier, containing the HDL to be synthesized. The output filename
(ofn) is the name the synthesized netlist will be given after successful synthesis. The output file format (ofmt) is set to
NGC, Xilinx’s proprietary netlist format.

Next is the top-level entity name (top) attribute, which in our full adder example isfadder. Two synthesis optimization
options follow, one that specifies whether XST should synthesize for speed (provide the highest operational frequency
possible) or area (pack the logic as tightly as possible). The second option is for the synthesis effort level. A trade-off
between synthesis effort and synthesis time is made; higher levels may provide more resource efficient or frequency
efficient designs at the expense of longer synthesis times. The iobuf attribute adds I/O Buffers to the top-level module. In
the full adder example, we choose not to insert I/O Buffers. The last attribute in this example is the FPGA part type (p).
Here we specify to synthesize for the Virtex 5 FX 130T FPGA.

Additional command line arguments can be added to the synthesis script file; however, for this first XST example these
are sufficient to produce a netlist. The final step is to run XST on the command line, passing the synthesis script file as an
input file.

xst -ifn fadder.scr

After XST completes, a report is written to a synthesis report file (srp). If there are any syntax errors, XST will report
approximately where in the file the line exists that failed synthesis. This is similar to compiling a C binary. Understanding
the report is an important tool for the designer when trying to identify resource consumption and timing analysis. Under
the Final Report heading, in Figure 2.26 is a list of the basic elements (BELS) needed to represent the digital circuit.
In our design, two 3-LUTs are needed for the two outputs, sum and carry-out, in the full adder.

Another important section in the synthesis report file is the device utilization summary section, in Figure 2.27. For
the specific FPGA device the number of slices, LUTs, flip-flops, BRAMs, and so on are listed, giving the designer an
approximation to the amount of resources the design requires.

The synthesis report also provides some rough timing information, in Figure 2.28. These numbers are not accurate
because they do not consider the actual placement of the circuit on the FPGA. It does provide an approximation to the
minimum period and maximum combination delay the circuit can obtain. Looking at the report, our full adder example was
purely combinational, there is no clock and as a result no minimum period. For larger designs when trying to meet timing,
the synthesis report can help identify which component is causing the timing error.
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=========================================================================
* Final Report *
=========================================================================
Final Results
Top Level Output File Name : fadder.ngc
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : no

Design Statistics
# IOs : 5

Cell Usage :
# BELS : 2
# LUT3 : 2
=========================================================================

Figure 2.25. XST synthesis final report section.

Device utilization summary:
---------------------------
Selected Device : 5vfx130tff1738-3

Slice Logic Utilization:
Number of Slice LUTs: 2 out of 81920 0%

Number used as Logic: 2 out of 81920 0%

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 2

Number with an unused Flip Flop: 2 out of 2 100%
Number with an unused LUT: 0 out of 2 0%
Number of fully used LUT-FF pairs: 0 out of 2 0%
Number of unique control sets: 0

IO Utilization:
Number of IOs: 5
Number of bonded IOBs: 0 out of 840 0%

Figure 2.26. XST synthesis report device summary section.

For large systems with many components and subcomponents, XST can be used to synthesize the entire design into
a single netlist or it can be used to synthesize individual components in a hierarchical fashion. Figure 2.25 depicts this
synthesis flow for a design. While each approach has their merits, the second approach is used more often as it pro-
vides more immediate and useful feedback for each component. This approach stems from the philosophy of bottom-up
design where components are created (typically in HDL) from the ground up. It is only natural to synthesize in the same
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Timing Summary:
---------------
Speed Grade: -3

Minimum period: No path found
Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 0.400ns

Figure 2.27. XST synthesis timing report.
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Figure 2.28. Synthesis flow.

fashion, generating intermediate netlists and producing individual synthesis reports. The designer can view these reports
to determine which of the components need to be redesigned in the event of resource or timing constraints.

For example, consider a design consisting of three components, a top-level component and two low-level components.
XST would be used to synthesize the top-level and two low-level components individually. The top-level component syn-
thesis would treat the two low-level components as black boxes. The immediate advantage of such an approach is
to minimize the number of times each component needs to be resynthesized. If one of the low-level components of HDL
is modified, only that low-level component requires being synthesized again, unless the modification changes the entity’s
generic or port list, forcing the top-level component to change its instantiation of the design. These are akin to how libraries
are in C/C++ during compile time.

Netlist Builder After XST is used to generate the system’s netlist(s), the next step is to combine the netlists and any
specific design constraints to produce a single netlist file. This is typically accomplished through the use of the following
two commands, NGCBuild and NGDBuild.

NGCBuild
If the designer has chosen to synthesize each component individually in a hierarchical manner, the next command needed
is called ngcbuild, which combines multiple netlist files into a single ngc netlist. NGCBuild opens the top-level netlist



92 Chapter 2 THE TARGET

and matches any subcomponents with existing netlists. NGCBuild does not produce errors or warning when one or more
subcomponent’s netlists are not found. In the previous example, the top-level component netlist may be combined with
one of its two subcomponents in the event that only one of the two components has been synthesized. NGCBuild can
be called again to combine the missing subcomponent netlist when it is available. This is similar to the component level
synthesis approach mentioned earlier in that a component’s netlist is constructed as its subcomponents become available.
An example of the NGCBuild command line execution is:

% ngcbuild input/system.ngc output/system.ngc -sd implementation

The input to NGCBuild is the top-level netlist (in this example it is input.ngc). The output netlist generated by NGCBuild
is the second parameter (output.ngc). The flag -sd specifies the search directory to look for any component’s netlist
to be combined to generate the output netlist.

NGDBuild
Once all of the components have been synthesized, ngdbuild is used to generate a Xilinx Native Generic Database
(NGD) file. The NGD file is used to map the logic contained within the netlist to the specific FPGA device. NGDBuild takes
a single NGC file (created by NGCBuild) and any device, netlist or user constraints file. User constraints would include
specific FPGA pins to be used for components such as RS232 UARTs and off-chip memory like DDR2 modules. NGDBuild
will produce errors during run time if any of the netlists are missing in the input NGC file or if there are unbound user
constraints. An example of NGDBuild is:

% ngdbuild -p xc5vfx130tff1738-2 -bm system.bmm -uc system.ucf system.ngc system.ngd

The command line flags used by NGDBuild are-p to specify which FPGA device to generate the ngd file for, -bm to specify
the block memory file, which is a listing of all of the BRAMs in the system, and -uc to specify the constraints file listing
all of the design’s constraints (timing, IO, IO Standards). The final input is the NGC file generated by NGCBuild. The single
output is the NGD file that will be passed on to Map, the next stage in the tool flow.

Map The Xilinx program MAP takes an NGD file and maps the logic to the specified FPGA device. MAP performs a
design rule check (DRC) to uncover physical or (if possible) logical errors in the design. After passing the DRC, the logic
described by the netlist is mapped to the FPGA device’s components (such as BRAM, IOBs, and LUTs). MAP also trims any
unused logic or netlists. Unlike synthesis, which can only trim internal signals if they are not used, MAP analyzes the entire
system to determine if any logic is unnecessary. As a result, after MAP completes, the resource utilization reported is a
more accurate representation than the synthesis report. We previously used the synthesis report’s resource utilization to
give us an approximate first-order estimation of the resources needed by the design; now we can rely upon MAP’s report.
When finished, MAP produces a Native Circuit Description (NCD) file, which can be used by the next tool to place and route
the design to the target FPGA. An example of MAP’s command line is:

% map -o system_map.ncd -pr b -ol high system.ngd system.pcf

The MAP flags are used to give the designer more control over what MAP placements are or are not run. Typically, a
designer will be able to use the default options; however, there are cases when a nearly fully occupied FPGA design may
require additional constants to MAP successfully. The -o flag sets the output file name; in this case the resulting NCD
file is named system_map.ncd. The -pr b option specifies to pack flip-flops and latches in both input and output
registers, while the -ol high flag is the overall effort level for the placement algorithm; high is used to achieve the best
placement at the expense of longer MAP run times. The input file, system.ngd, is the NGD file generated by NGDBuild.
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We already stated that system_map.ncd is the output from MAP, but in addition it is system.pcf, the physical
constraints file, which are constraints placed during the design creation.

Place and Route The Xilinx programPAR actually consists of two programs, Place and Route. These two programs are
commonly run in series, so Xilinx has combined them into a single command. PAR takes the NCD file generated by MAP
and runs both placement and routing algorithms to generate a routed NCD file. To begin, Place tries to assign components
into sites (LUTs, BRAMs, DSP48E slices, etc.) based on any specific constraints (i.e., use pin location P38 to output the
transmit (TX) line of the RS232 UART component) to maximize resource utilization while minimizing component distances
(which will make routing and meeting timing requirements easier). Placement occurs through multiple phases (passes) and
produces a placed NCD file.

After Place, Route is run to connect all of the signals for the components based on the timing constraints. Routing is
also a multiphase operation, resulting in a routed NCD file. After PAR completes, a timing analysis is performed to verify
that the design has met timing and, if not, produce a short log to help the designer identify and fix the errors. As the design
size and clock rates increase, timing becomes more constrained and difficult to meet. It is possible to run PAR with different
command line arguments in order to meet timing. PAR consumes the most time during the execution of all of the tools (as
the design increases). Identifying fast build computers to run PAR on will reduce the amount of “idle” time before a design
can be tested on the FPGA. An example of an PAR command line is:

% par -ol high system_map.ncd system.ncd system.pcf

PAR takes as input the NCD file and PCF files from MAP and generates an output system.ncd file, which is the placed
and routed native circuit description.

Figure 2.29 illustrates the flow from netlists to a fully placed and routed design. This flow picks up after the Figure 2.25
that is run for each component in the design. These flows are used to help picture the process from source files (HDL) to
just before generation of a bitstream, which is covered next.

Configuration Bitstream Generation The final command in generating a configuration file for the FPGA is calledbit-
gen. BitGen produces a configuration bitstream for the specific Xilinx FPGA device. The bitstream (.bit) file contains
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Figure 2.29. Netlist builder, map, and place-and-route.
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configuration information (proprietary to Xilinx), which is downloaded and stored into the SRAM cells of the FPGA device.
The concept of programming an FPGA is when the bitstream is downloaded to the FPGA, at which point the digital circuit
is realized on the FPGA fabric. An example of the BitGen command line is:

% bitgen -f bitgen.ut system.ncd system.bit

The BitGen command can take as input a parameters file (-f bitgen.ut), which can be used to specify configuration
information. The output system.bit is the configuration bitstream that can be used to “program” the FPGA.

Additional commandscan be used during the synthesis and bitstream generation process;however, their uses are more
application specific. We will hold off on covering those designs until later chapters where their use is better understood.

These short sections have covered the process from synthesis to bitstream in an effort to better understand the entire
ISE flow and, when the need arises, to fix problems and to know where to look to identify the problems. Initially, it is easiest
to use the XPS GUI to create complex designs and then use the GUI to synthesize, map, place and route, and generate
the bitstream. However, as you gain more experience you may become more interested in the low-level commands that
are producing the various log and report files. Going forward we encourage you to at least look at the logs and reports
generated by these commands and then, if you are comfortable, try to execute these commands on your own.

2.C. Creating and Generating Custom IP

Up until now we have been laying a foundation of terms and technology, and with the addition of hardware description
languages we have begun to learn how to build upon this foundation. We have also covered the commandsused by Xilinx’s
ISE, which provides us with the tools to turn the HDL into a bitstream used to program the FPGA.

In addition to ISE, there are tools that can aid in the rapid developmentof components and cores. In this section two of
these tools will be presented along with a detailed example of how to use them to generate custom componentsand cores.

2.C.1. Xilinx Core Generator

Xilinx Core Generator (CoreGen) is a tool that designers can use to quickly create hardware components. These components
can range in complexity from FIFOs and math operators to DSP filters and transforms to network and memory controllers.
While CoreGen unfortunately does not generate every type of component, it does provide a sufficient number to help most
designers get their projects started. Earlier we mentioned FIFOs as being one of the more useful components, here we
show how to use CoreGen to quickly generate a customized FIFO.

To start, from the command line run the command coregen and create a new project, specifying which FPGA device
will be used when generating the FIFO. This is necessary because of the different FPGA devices and packages, and their
supporting FPGA resources. If you are using the Xilinx ML-510 development board, then you can specify the Virtex 5
xc5vfx130t-ff1738 part. Figure 2.30 shows the main CoreGen GUI with the FIFO Generator component selected, ready to
be run for the next step. The left half of the GUI is a list of the IP that can be generated with CoreGen. The upper right half
lists information and actions relevant to the selected IP component, while the lower right half is a console to show output
information, warnings, and errors. Now we are able to pick from a list of available components. Under the Memories &

Storage Elements category are CAMs, FIFOs, Memory Interface Generators, and RAMs and ROMS. For this example
we will select FIFOs and double click on FIFO Generator.

The first page of the FIFO Generator wizard, Figure 2.31, lets you specify the component name and FIFO implementation
type. We have named our componentfifo_comp and set it to be a Common Clock Block RAM implementation. From our
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Figure 2.30. Main Xilinx CoreGen GUI.

Figure 2.31. CoreGen’s FIFO Generator initial configuration page.
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Figure 2.32. CoreGen’s FIFO Generator read mode and FIFO options page.

previous discussions on RAM we can start to see how CoreGen gives us the ability to specify constraints (such as common
vs independent clocks) and we are able to see what type of memory options are supported.

In the second page (Figure 2.32) we can specify the read mode, port width, and depth of the FIFO. In a standard FIFO
read mode, when data are read from the FIFO via the read request (dequeue) signal, read data will be valid the next clock
cycle. The first-word fall-through FIFO eliminates the single cycle read latency by storing the head of the FIFO in a register.
Each subsequent read request pops the next element off the FIFO and stores it in the head register. These design decisions
are less important in this example, but for latency sensitive designs it can play an important role in the system. For now,
select the standard FIFO read mode.

At this point we can also specify the depth and width of the FIFO. Because we have selected a common clock BRAM,
the width and depth are fixed for both the write and the read sides of the FIFO. If we had selected an independent clock
implementation we could specify independent port parameters. For this example we use a write width of 32 bits and a
depth of 1024 data elements. Recall that the 1K × 32 configuration requires a single 36-Kb BRAM. CoreGen gives us the
ability to increase the depth without requiring us to write the HDL to cascade the BRAMs.

Figure 2.33 shows the third page, which provides the design with the ability to specify additional flags and handshaking
ports. Depending on the amount of control needed in the design, these ports may or may not need to be added. The valid
flag is a signal that will be assert high (‘1’) when valid data are on the dout port of the FIFO.

In the fourth page the initialization/reset options are set, as can be seen in Figure 2.34. Here it is possible to have
either a synchronous reset or an asynchronous reset and what the default output should be after a reset. An important



Chapter 2 THE TARGET 97

Figure 2.33. CoreGen’s FIFO Generator handshaking signals page.

Figure 2.34. CoreGen’s FIFO Generator initialization and programmability page.



98 Chapter 2 THE TARGET

Figure 2.35. CoreGen’s FIFO Generator data count page.

note, when a FIFO is reset, both empty and full flags will be asserted high, indicating data should not be read from
or written into the FIFO. Once the reset is complete, the full signal will be deasserted, indicating the FIFO is ready for
operation.

There is also an ability to add programmable full and empty flags. For data-flow purposes it might be important to
have high and low watermarks for the FIFOs. When the FIFO reaches a predetermined threshold, the programmable full
signal would be asserted high. Likewise a programmable empty signal can be used in the event a FIFO nears becoming
empty. These programmable thresholds provide user-defined values for the FIFO compared to the almost_full and
almost_empty signals, which are only asserted one data element before the respective signal is asserted.

Figure 2.35 shows page five of the FIFO generator, which provides the designer with the option to output a count of
the number of data elements in the FIFO at any given time. This may be useful under conditions when a design needs to
perform different operations based on the status of the FIFO.

The final page, Figure 2.36, provides a summary of the options taken by the designer and, most importantly, relays the
resources based on those configuration settings. In our example, we have a 1K × 32-bit FIFO, which results in a single 36K
BRAM being used.

At this point all that is left is to generate the FIFO. Once complete, a set of files are produced that provide simu-
lation HDL (.vhd), HDL component declaration and instantiation templates to be used within calling HDL (.vho), and the
proprietary Xilinx netlist file (.ngc), which will be used by the synthesis tools when the FIFO component is instantiated
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Figure 2.36. CoreGen’s FIFO Generator summary page.

by the top-level component. A README is also provided, which details the remaining files generated automatically by
CoreGen.

2.C.2. Create/Import Peripheral Wizard

In Section 1.A the Xilinx Platform Studio was introduced. With XPS we are given a rich set of GUI applications and wizards
to expedite the base system building design process. We have already been introduced to the base system builder wizard.
Using the Create/Import Peripheral (CIP) wizard we will generate a hardware core template. This template will give us the
ability to read and write into software addressable registers. In Section 1.A we augmented this hardware core to support
more functionality. In the meantime, we focus on the CIP wizard.

We can launch the CIP wizard from within the XPS GUI menu option:

Hardware → Create or Import Peripheral . . .

or by launching the wizard from the command line:

% createip

Once the wizard launches, you will walk through the following pages.
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Figure 2.37. Create/import peripheral wizard welcome page.

The first page of the wizard is a simple welcome screen, which explains that the core you will be creating will be for
an EDK CoreConnect-based project. In our case, this means we will be creating a core that will connect to the Processor
Local Bus.

The second page is the peripheral flow; here we have the ability to create a new core (based on a template) or import
and modify an existing peripheral. For now, we will continue with creating a template for a new peripheral.

The next page indicates where this project will be added, to an existing repository or directly into a project. Because
this is the first core that we have created, this can be added to the existing project that was created previously at the
beginning of this section. (Note: the path may differ based on where you saved your project.)

The fourth page lets us set the core’s name and version number. There are characters that are not allowed in the name,
the core contain any uppercase characters, start with a number or symbol, or end with a symbol. When naming the core,
if the text turns red it indicates an invalid core name. We will name our core my_test_core.

On the next page we specify which bus our core will be able to attach. The PLB allows the PowerPC to communicate
with our core. This will be the most common interface for PowerPC-based systems.
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Figure 2.38. Create/import peripheral wizard peripheral flow page.

Figure 2.39. Create/import peripheral wizard project page.
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Figure 2.40. Create/import peripheral wizard name and version page.

Figure 2.41. Create/import peripheral wizard bus interface page.
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Figure 2.42. Create/import peripheral wizard IPIF page.

On the sixth page we can specify what interface our core will have to the PLB. This is known as the IPIF (Intellectual
Property Interface). The PLB IPIF simplifies the number of signals and the complexity of the handshaking required to connect
a custom core to the PLB. Here we will only add User logic software registers, allowing the processor
to read and write to registers that will be created in our my_test_core. The registers provide a simple interface to
exchange data and control signals between the processor and our core.

The slave interface page provides the core with the ability to support burst and cache-line transfers and nonnative data
widths (beyond 32 bit). The PLB can support up to 128-bit transfers; however, the PowerPC is a 32-bit processor so for this
first example we will continue with the default 32 bits.

The next page lets us set the number of software-addressable registers within the core. When the wizard generates
the core’s template, these registers and all of the necessary read-and-write logic will be included. We begin with three
registers to help us demonstrate how to read and write to our core from the PowerPC.

The ninth page is the IP Interconnect (IPIC). These are the signals that our my_test_core’s user logic HDL will
interact with. The IPIF mentioned earlier is responsible for interfacing with the PLB and generating the appropriate IPIC
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Figure 2.43. Create/import peripheral wizard slave interface page.

signals. The IPIC signals are a much simpler set of bus interface signals, abstracting the complex bus signals away from
the designer. For now we will stick with the default IPIC signals. Signals beginning with Bus2IP are input ports to the
core from the PLB, and signals beginning with IP2Bus are output ports from the core to the PLB.

The next page provides an optional simulation support through use of a bus functional model (BFM). The BFM provides
a cycle accurate simulator of the PLB, aiding in the design process by providing a quick simulation test bench for the custom
core as if it were connected to the PLB. At this time we will skip the BFM; however, it will become very advantageous
to use simulation when designing as it provides a quicker and easier debugging method than debugging a custom core
running in hardware.

The next page explains the HDL structure of the created core. There will be two HDL files created, a top-level component
(in our case named my_test_core.vhd) and the User Logic (user_logic.vhd). The user logic will contain
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Figure 2.44. Create/import peripheral wizard slave registers page.

the initial HDL to provide the PowerPC access to the core. At this page we can also specify the user logic’s hardware
description language as Verilog instead of the default, which is VHDL.

Finally, the last page is the summary of the core that will be created. Once the IP core is generated we can look to see
how the core’s project directory is organized.

2.C.3. Hardware Core Project Directory

The create and import peripheral wizard generates a new hardware core’s project directory inside the pcores directory.
In our example we named the pcore my_test_core_v1_00_a. Within this directory are the subdirectories and files
shown in Figure 2.49.

Within the data directory are two files, my_test_core_v2_1_0.mpd, which is the Microprocessor Peripheral
Description (MPD), and my_test_core_v2_1_0.pao, which is the Peripheral Analysis Order (PAO). These files are
mentioned because in order to augment the hardware core, we will need to modify these files.
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Figure 2.45. Create/import peripheral wizard IPIC page.

Microprocessor Peripheral Description File The MPD file contains project options, bus interfaces, generics, and
ports for VHDl (or Verilog). Peripheral Options are used by the Xilinx EDK during Platform Generation (PlatGen), the stage
before synthesis, to set up the synthesis script for XST. Bus Interfacesare a list of bus standards available in the EDK, such
as the PLBV46 (Processor Local Bus v4.6). The bus interface is used to aggregate all of the bus signals (address, data, etc.)
together to make connectivity of components to buses in the EDK easier. For example:

BUS_INTERFACE BUS = SPLB, BUS_STD = PLBV46, BUS_TYPE = SLAVE

Generics/Parameters are equivalent to the generics and parameters in a VHDL entity or Verilog module. These are the
generics located in the top-level VHDL file in our hardware core, my_test_core.vhd. Assigning a default value in
the MPD file for a generic will overwrite the default value given in the VHDL file. By placing a generic in the MPD file, it
exposes the generic to the MHS file to be modified by the designer in the EDK. The parameters are specified with a name,
default value, data type, and additional parameters depending on the data type. For example,C_SPLB_DWIDTH:

PARAMETER C_SPLB_DWIDTH = 128, DT = INTEGER, BUS = SPLB, RANGE = (32, 64, 128)
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Figure 2.46. Create/import peripheral wizard simulation page.

The priority of setting a component’s generics is as follows:

1. set in the MHS File (highest priority)
2. set in the MPD File
3. set during instantiation of the component’s generic map
4. set as the default value in the entity’s generic listing

Ports, like generics, are used to connect the top-level entity to the rest of the system. In order to add an additional
port in the top-level entity in a hardware core, it must also be added to the MPD file so that it will be visible to the EDK.
The ports are specified with the port name, a default value (or connection to a bus interface), a direction, a vector size (if
necessary), and a bus connection (if necessary). For example,PLB_wrDBus is the write data bus for the hardware core
that is connected to the PLB.

PORT PLB_wrDBus = PLB_wrDBus, DIR = I, VEC = [0:(C_SPLB_DWIDTH-1)], BUS = SPLB
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Figure 2.47. Create/import peripheral wizard support page.

Peripheral Analysis Order File The PAO file contains a listing of all of the source HDL files, corresponding library,
HDL type, and their synthesis order for the hardware core. If you notice the last two files listed are:

lib my_test_core_v1_00_a user_logic vhdl
lib my_test_core_v1_00_a my_test_core vhdl

These are the two main HDL files of our hardware core. The user_logic.vhd file is where the specific hardware core
functionality will go. The my_test_core.vhd file is the top-level entity of the hardware core, hence it has the same
name as the hardware core. The user_logic component is instantiated within the my_test_core component.
For hardware cores connected to the Processor Local Bus (PLB), additional components may be instantiated within the
my_test_core.vhd file to help connect the hardware core to the PLB. These components are generally known as
the Intellectual Property Interface (IPIF), which coordinates the PLB signals to a simpler interface used
by the user_logic known as the Intellectual Property Interconnect (IPIC). The IPIC signals are the
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Figure 2.48. Create/import peripheral wizard summary page.
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my_test_core.vh d
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Figure 2.49. Xilinx hardware core’s pcore directory structure.



110 Chapter 2 THE TARGET

Bus2IP_ or IP2Bus_, which denote the direction of the signal as either from the bus to the hardware core (an input)
or from the hardware core to the bus (an output).

For now we will not modify the PAO file; however, if future hardware cores need to include additional HDL sources, the
PAO file is how to tell the Xilinx synthesis tools to synthesize these files as well. We will revisit the user_logic.vhd
file shortly to discuss modifying it to meet our design requirements.



Chapter 2 THE TARGET 111

Exercises
P2.1. If a designer exclusively used NMOS transistors in an

integrated circuit NAND gate, what requires the most
energy?

• maintaining a 0 on the output
• maintaining a 1 on the output
• transitioning from a 0 to 1 or a 1 to 0 on the output?

P2.2. If a designer used NMOS and PMOS transistors in a
CMOS NAND gate, what requires the most energy?

• maintaining a 0 on the output
• maintaining a 1 on the output
• transitioning from a 0 to 1 or a 1 to 0 on the output?

P2.3. How does a fused (or antifuse) programmable logic device
differ from an SRAM-based programmable logic device?

P2.4. What is the difference between using an array of AND and
OR gates in devices such as PLAs or PALs and function
generators in FPGA devices?

P2.5. How do the roles of SRAM cells and flip-flops differ in an
FPGA device?

P2.6. Given the Boolean function

f1(x, y, z) = xy + yz + xz

(a) draw the components of a 3-LUT, and
(b) show how the SRAM cells should be set.

Be sure to label all of the components including least
significant bit and most significant bit of the MUX select
lines and number its inputs.

P2.7. Given the Boolean function

f2(x, y, z) = x + yz

(a) draw the components of a 3-LUT, and
(b) show how the SRAM cells should be set.

Be sure to label all of the components including least
significant bit and most significant bit of the MUX select
lines and number its inputs.

P2.8. How many different functions can be generated by a
3-LUT function generator?

P2.9. Are there any 3-input Boolean functions that are too
complicated to be implemented in a 3-LUT?

P2.10. Can the function

f3(w, x, y, z) = xy + yz

be implemented in a 3-LUT? Explain.
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P2.11. Can the function

f4(w, x, y, z) = xw + xw′ + yz

be implemented in a 3-LUT? If so, how?
P2.12. Do CLBs and IOBs have flip-flops? Explain?
P2.13. How do CLBs and IOBs differ?
P2.14. Name three special-purpose cores found in Platform

FPGA devices.
P2.15. Design a VHDL component that will compute the “next

day of the week.” Include in the comments the binary
encoding for each day, “Monday,” “Tuesday,” and so on.

P2.16. Design a VHDL component that will repeatedly cycle
through the Red → Green → Yellow pattern that one
direction in a traffic intersection observes. The Green
phase should last for three cycles, the Red phase should
last for two cycles, and the Yellow should last for one
phase.

P2.17. After synthesis, what is the difference between the “.ngc”
file and the “.srp” file?

P2.18. In tool flow, what is the difference between the “.ngc”
netlist and the “.ngd” netlist?

P2.19. After the netlist is mapped to LUTs and FFs, why is the
PAR phase needed?
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3
SYSTEM DESIGN

It is a distinguishing mark of a very good name that the plant should
offer its hand to the name and the name should grasp the plant by
the hand. . .

Carolus Linnaeus
Preface to Critica Botanica (1737)

Thirty years ago, when people thought of embedded systems, they
primarily thought of custom computing machines built from elec-
tronic (discrete and integrated) circuits. In other words, most of
the value of the work was in the hardware and hardware design;
software was just some glue used to hold the finished product
together. Yet with miniaturization of hardware, increases in speed,
and increases in volume, commodity hardware has become very
inexpensive. So much so that only high-volume products can jus-
tify the cost of building elaborate custom hardware. Instead, in
many situations, it is best to leverage fast, inexpensive commod-
ity components to provide a semicustom computing platform. In
these situations, the final solution relies heavily on software to
provide the application-specific behavior. Consequently, software
development costs now often dominate the total product devel-
opment cost. This is true despite the fact that software is so easily
reproduced and reused from project to project.

Enter Platform FPGA devices. The embedded systems designer
has a blank slate and can implement custom computing hardware
almost as easily as software. The trade-off (there is always a trade-
off) is that while configuring an FPGA is easy, creating the initial
hardware design (from gates up) is not. For this reason, we do not
want to have to design every hardware project from the ground
up. Rather we want to leverage existing hardware cores and design
new cores for reuse. This means we have to know what cores are
already available, how these cores are typically used, how they per-
form, and how to build custom hardware cores that will be (ideally)
reusable.

115
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Another consequence of the shift from hardware to software
is that system designers also have to understand much more
about system software than the typical applications program-
mer, especially when designing for Platform FPGAs. Rather
than simply writing applications that execute in the safe con-
fines of a virtual address space found in a desktop system,
we need to understand enough about system software (device
drivers and operating system internals) to bridge the applica-
tion code to our custom hardware. It is also necessary to under-
stand what happens before the operating system begins along
with the idea of using one platform (a workstation) to develop
code for another platform (the embedded system). With com-
modity hardware, much of this complexity could be hidden
from the average embedded systems programmer because the
hardware vendor provided the tools and low-level system soft-
ware. Not so when the hardware and software are completely
programmable.

Therefore the aim of this chapter is to describe system design
on a Platform FPGA. First we must discuss the principles of
system design. Specifically, we address the metrics of quality
design and concepts such as abstraction, cohesion, and reuse.
Of course — as with many of the chapters in the text — whole
books could be (and have been) written about each of these
subsections. Our goal here is to provide enough of an intro-
duction to address Platform FPGA issues. With a better under-
standing of design principles, we next consider the hardware
design aspects, including how to leverage existing resources (base
systems, components, libraries, and applications). Finally, the
chapter concludes with the software aspects of system design.
This includes the concepts of cross-development tools, boot-
loaders, root filesystem, and operating systems for embedded
systems.

After completing the white pages of this chapter, the reader
will have an abstract understanding of several central ideas in
embedded systems design. Specifically:

• the principles of system design, including how to assem-
ble Platform FPGA systems to be used in embedded system
designs,

• the general classes of hardware components available to a Plat-
form FPGA designer (and how to create custom hardware),

• the software resources, conventions, and tools available to
develop the software components of an embedded system.

The gray pages of this chapter build on this knowledge with spe-
cific, detailed examples of these concepts in practice.
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3.1. Principles of System Design
To manage the complexity of designing large computing systems
we use a number of concepts. Abstraction, classification, and gen-
eralization are used to give meaning to components of a design.
Hierarchy, repetition, and rules for enumeration are used to add
meaning to assembled components. In this way, humans can
develop software programs with tens of millions of lines of code,
manage billion-dollar budgets, and develop multimillion gate
hardware designs. This section focuses on some of the principles
that guide good system design. This is far from an exact science
and at times it is very subjective. The best way to read this section
is to simply internalize the concepts, observe how they are applied
to simple examples, and then consciously make decisions when
you are building your own designs. In practice, it is difficult to
learn good design skills from a textbook. It comes from experi-
ence and learning from others. Our goal here is to try to accel-
erate that learning by setting the stage and providing a common
vocabulary.

3.1.1. Design Quality
To start we ask, what is “good” design? What is “bad” design? In
short, system designs can be judged by many criteria and these
criteria fall into one of two broad classes. External criteria are
characteristics of a design that an end user can observe. For exam-
ple, a malfunctioning design is often directly observable by the
user. If the person turns up the volume on a Digital Video Recorder
(DVR) and the volume goes down, then presence of the design
flaw is obvious. However, there are many internal criteria that we
also use to judge the quality of a design. These characteristics are
inherent in the structure or organization of the design, but not
necessarily directly observable by the user. For example, a user
may not be able to observe the coding style used in their DVR
but others (the manufacturer or a government procurement office)
may be very interested in the quality of the design because it
impacts the ability to fix and maintain the design. Clearly, some of
these qualities can be measured quantitatively but many are very
subjective.

A number of concepts and terms have been invented and rein-
vented in different domains and at different times. Hence, few
of the terms that follow have universally accepted definitions. So
when one author may use the term verification to casually mean
that a system works with a set of test data, another author might
call that validation (reserving that the term verification for designs
has been rigorously proved to be correct).
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The first set of terms is related to a system performing its
intended function. The term correctness usually means the system
has been (mathematically) shown to meet a formal specification.
This can be very time-consuming for the developer but, in some
cases, portions of the system must be formally verified (for exam-
ple, if a mistake in the embedded system would put a human life
at risk). Two other terms related to correctness are reliability and
resilience. (In some domains, resilience is known as robustness.)
The definition of reliability depends on whether it is applied to
the hardware or software of the system. Reliable hardware usually
means that the system behaves correctly in the presence of physi-
cal failures (such as memory corruption due to cosmic radiation).
This is accomplished by introducing redundant hardware so that
the error can be corrected “on the fly.” Reliable software usually
means that the system behaves correctly even though the formal
specification is incomplete. For example, a specification may inad-
vertently omit what to do if a disk drive fills to its capacity. A reliable
implementation might stop recording even though the specifica-
tion does not state it explicitly. Because most complete systems
are too large to formally specify every behavior, a reliable system
results in designers making correct assumptions throughout the
design. The last term, resilience (or robustness), is closely related
to reliability. However, whereas reliability focuses on detecting and
correcting corruptions, resilience accepts the fact that errors and
faults will occur and the design “works around” problems even
if it means working in a degraded fashion. In terms of software,
one can think of reliability as doing something reasonable even
though it wasn’t specified. In contrast, resilience is doing some-
thing reasonable even though this should never had happened.
Finally, there is dependability. This can be thought of as a spec-
trum, on one end is protection against natural phenomenon and
on the other end malicious attacks. A dependable system shields
the system from both. To help clarify the difference, consider the
following three scenarios.

Correctness Example
As an example of correctness, consider the following example.
Embedded systems are used in numerous medical systems and it
is absolutely critical that the machine does not have any human
errors in the design. This is usually accomplished by incorporating
additional safety interlocks and formally proving the correctness
of software-controlled, dangerous components. With the many
different interacting components, one would describe all valid
states mathematically and then prove that for all possible inputs,
the software will never enter an invalid state. (An invalid state
being defined as a state that couldharm the patient.)
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Reliability Example
For most applications, formally describing all valid states can be
enormously taxing (and itself error prone) so frequently design-
ers fall back on informal specifications. Informal specifications
often unintentionally omit direction for some situations. This can
occur, for example, when a product gets used in a perfectly rea-
sonable, but unexpected way. The specification might state that a
camera needs to work with USB 1.1, 1.2, or 2.0. Assuming future
versions of USB remain backwards compatible, a reliable design
would not stop working if it was plugged into a version 3.0 USB
hub. Likewise, if a Platform FPGA was intended to fly on a space-
craft, one would expect that the system will be more vulnerable
to cosmic radiation. A reliable (hardware) design might put Triple
Modular Redundancy on critical system hardware and periodically
check/update the configuration memory to detect corruption.

Resilience Example
Resilience and robustness are different from reliability. These
become very important in an embedded system because the com-
puting machines interact with the physical world and the phys-
ical world is not as orderly as simple discrete zeroes and ones.
For example, many sensors change as they age. Actuators are
often connected to mechanical machines that can wear out. A
resilient design behaves correctly even when something that is
not supposed to happen, happens. For example, a thermometer
connected to an embedded system may be expected to be in an
environment that will never exceed 100◦ Celsius. If, because the
sensor has become uncalibrated, the sensor begins to report tem-
peratures such as 101, 102, or 103, for example, then the system
should behave sensibly. A reliable system would try to fix the result
coming from the sensor; a resilient system might treat 103 the
same as 100 and continue.

In addition to these three system design characteristics, many
other terms are used to judge the quality of a system design. For
example, verifiability would be the degree to which parts of the
system can be formally verified, i.e., proven correct. The term
maintainability refers to the ability to fix problems that arose
from unspecified behavior, whereas repairability refers to fixing
situations where the behavior was specified but the implemen-
tation was incorrect. We tend to think of maintainability as the
ability to adapt a product over its lifetime (version 1 followed by
version 2 and so on). A repairable system design allows for easy
bug fixes — especially once the product is in the field (upgrading a
version 1 product to version 1.1). Along the lines of maintainability
is the idea of evolvability; the subtle difference is the changes
are due to new features (evolvability) versus previous changes
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to existing requirements (maintainability). Of course, portability
(a system design that can move to new hardware or software plat-
forms) and interoperability (a system design that works well with
other devices) are important measures of design quality as well.

By themselves, these “-ability” terms do not have quantities
associated with them. Nonetheless, being conscious of them dur-
ing the development of an embedded system can be constructive.
When the system developer needs to make a decision, these terms
provide a common vocabulary to discuss, document, and teach
design. For example, given two options, the system designer can
record their reasoning — i.e., this option will be more portable and
maintainable. This is critical in design reviews and helps teach less
experienced designers why a decision was made. Lacking a writ-
ten justification, a beginner might easily assume the decision was
arbitrary. Or worse, without a concise way of describing decisions,
the option not taken ends up not even being documented. The less
experienced designer might not even realize a decision was made.

3.1.2. Modules and Interfaces
As suggested earlier, we are not going to be able to build very large
systems by directly connecting millions of simple components.
Rather, we use simple components to build small systems and use
those systems to build bigger systems and so on. This is more com-
monly referred to as the bottom-up approach. We may also want
to consider the design from a top level and work our way down
defining each subcomponent in more detail, which is referred to
as the top-down approach. Of course, these approaches are widely
used in both hardware and software designs. (If one were to replace
the last few sentences with subroutine or function in place of com-
ponent, we could have just as easily been discussing the modular-
ity of software designs.) Overall, these two approaches, or design
philosophies, will be used throughout Platform FPGA design. The
next few subsections will dwell on these in more detail.

First, we will use the general concept of a module to mean any
self-contained collection of operations that has (1) a name, (2) an
interface (to be defined next), and (3) some functional description.
Note that a module could be hardware, software, or even some-
thing less concrete. However, for the moment, one can think of it
as a subroutine in software or a VHDL component. We will expand
on two key aspects interface and functional description, next.

There are two meanings to the term interface: usually one is
talking about a formal, syntactical description, but for system
design we have to also consider a broader definition. The term
formal interface is the module’s name and an enumeration of
its operations, including, for each operation, its inputs (if any),
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outputs (one or more), and name. It may also include any generic
compile-time parameters and type information for the inputs
and outputs. The general interface includes the formal interface
and any additional protocol or implied communication (through
shared, global memory, for example).

Broadly speaking, the formal interface is something that can be
inspected mechanically. So if two modules should interact, then
their interfaces must be compatible and a compiler or some other
automated process can check the modules’ interactions. However,
the general interface is not so carefully codified. Someone may
think “how a module is intended to be used” and this cannot, in
general, be checked automatically.

To make these concepts more clear, consider a pseudorandom
number generator. (For those not familiar with the pseudoran-
dom number generators, there are two main operations. The first
“seeds” the sequence by setting the first number in the sequence.
The second operation generates the next number in the sequence.)
The formal interface might include two operations and a name
drand48:

void srand48(long int seedval)
double drand48(void)

The general interface includes the way to use these operations;
for example, the function called srand48 is used in order to seed
the pseudorandom number generator and drand48 produces a
stream of random numbers. How to interact with the module is
part of its general interface, but is not formally expressed in a way
that, for example, a compiler could enforce.

Other cases of general interface occur when some of the inputs
or outputs of a module are stored somewhere in shared memory.
For instance, a direct memory access (DMA) module will have a
formal interface that includes starting addresses and lengths, but
its general interface also includes the fact that there are blocks of
data stored in RAM that will be referenced. To be more explicit, the
DMA engine transfers a block of data, but is ignorant of its internal
format.

A module can also include a functional description. The des-
cription can be implicit, by which we mean the name is so univer-
sal that by convention we simply understand what the function is.
For example, if a module is called a “Full Adder” (Figure 3.1), we do
not need to say any more because the functionality of a full adder
is well known.

The functional description can be informal, which means
its intended behavior is described in comments, exposition, or
narrative. This is a very common way of describing a module:
someone records the functionalityin a manual page or some
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Figure 3.1. Implicit module description of a full adder.

document or in the implementation as comments. For example,
when describing the full adder in narrative we could state:

The full adder component will add three bits together, X, Y and a
carry in bit. The addition will result in both sum and carry out
bits.

The functional description can also be formal where the
behavior is either described mathematically (in terms of sets and
functions) or otherwise codified, such as a C subroutine or a
behavioral description in VHDL, for example:

-- Assign the Sum output signal
S <= A xor B xor Ci;
-- Assign the Carry Out output signal
Co <= (A and B) or (A and Ci) or (B and Ci);

Graphically, a module is very simple to denote, it can be as
simple as just a box. If we wanted to be more specific, we can
give a module a name, which, using a relatively new standard,
is shown with a colon (:) followed by the name. In a design, we
might want to distinguish between a module (a component in
our toolbox) versus an instance (a component being used in a
design). Instances (formally defined later) are shown with the
module name underlined. Finally, we might want to have multi-
ple instances in our design. If there is no ambiguity, we simply
show multiple (underlined) boxes with the same module name,
as is seen in Figure 3.2(a). However, if we want to make the dis-
tinction clear or if we need to refer to specific instances, we can
give them names, illustrated in Figure 3.2(b). This is accomplished
by putting a unique, identifying name to the left of the colon and
module name.
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Figure 3.2. Two instances of a module system: (a) the default instance format and
(b) the id to give the instance a unique name.
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Figure 3.3. Four formally defined modules to generate a 4-bit full adder from 1-bit full adders.

Two more related terms are implementation and instance. An
implementation (of a module) is some realization of the mod-
ule’s intended functionality. Of course, a module may have more
than one implementation (just like in VHDL where an entity may
have more than one architecture). An instance is use of an imple-
mentation. In software, there is generally a one-to-one relation-
ship between an implementation and an instance because the
same instance is reused in time. However, in hardware it is com-
mon to use multiple copies of an implementation; each copy is
an instance. (The verb instantiate means “to make a copy of an
instance.”)

Graphically, we distinguish an instance from a simple module
by underlining the name in the box. If we want to highlight the
fact that there are multiple instances of the same object, we can
name the instances by labeling the module with an instance name,
colon, module name. For example, Figure 3.2 show two instances
of a module. Figure 3.3 is a simple example of four 1-bit full adders
being instantiated to produce a 4-bit full adder.

3.1.3. Abstraction and State
Now we are ready to define two major concepts in system design:
abstraction and state. These concepts are applied to the modules
of a system and are described here. The dictionary defines abstract
as an adjective to do with or existing in thought rather than mat-
ter (as in abstract art). The verb means to take out of, extract, or
remove; in short, to summarize. An abstraction is the act or an
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artifact of abstracting or taking away; an abstract or visionary idea.
Hence, a module is an abstraction of some functionality in a sys-
tem. We will talk about wanting to make good abstractions — and
we’ll discuss the mechanics shortly — but, first, let’s make sure we
understand abstraction.

A module is a good abstraction if its interface and description
provide some easily understood idea, but its implementation is
significantly more complex. In other words, a good abstraction
captures all of the salient features of an idea and cuts out all of the
details unimportant to realizing the idea.

Our goal in creating abstractions is to overcome the fact that
humans can only keep a relatively few number of things in our
short-term memory. Typically, psychologists will say that we man-
age seven items at a time. Individuals will vary but the idea of
keeping 100,000s of details on hand in short-term memory is not
feasible. So what a good abstraction does is create an uncluttered,
coherent picture of the module while shielding us from details that
are not immediately relevant. If it is a bad abstraction, it forces us
to think not about the module as a single entity, but rather makes
us think about how it is implemented. We will see that a good
abstraction is also important in reuse.

A great example of how a good abstraction can serve us comes
from a subway map. A map of the London subway was first pub-
lished in 1908. The map was rich in detail: it shows the exact route
that the trains take, it is drawn to scale, it shows when the train is
above ground, and it even shows rivers and other features.

However, take the perspective of a rider. If I walk up to the map,
what am I looking for? Most likely, I want to know what train I need
to get on. I am trying to get from point A to point B, and I need
to know quickly (before my train departs!) which train I need to
hop on. So information such as whether the train travels above
ground or below ground doesn’t matter to me. The number of turns
a train takes or whether it travels east-west for a while is irrelevant
to whether it gets me to point B.

In 1933, the London Underground map was changed. The new
map created a bit of stir because a number of people felt like it was
less informative. One might ask, what does it hurt to have extra
information? The answer is subtle: by abstracting away much of
the detail, the map could print the station names in a larger font.
By not being true to the relative distances and physical locations
of stations, the size of the map could be made smaller. Removing
physical features, such as rivers, allowed the train lines to be drawn
thicker. The results of these changes make the map much more
readable. Functionally trumps literal correctness.
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This is the goal of good abstraction: hide the details that do not
serve a purpose. If the primary function is to be able to walk up
to the map and make a fast decision about which train to get on,
then readability is the most important feature. All of the extra infor-
mation harms this function by distracting the user. So it is with
reusable components.

Next, we want to consider another key concept: state. Hardware
designers are very familiar with idea of state because it is explicit in
the design of sequential machines and we can point to the memory
devices (flip-flops) and say, “that’s where the state is stored.” How-
ever, in system design, it is a little less concrete because a module’s
state is stored in multiple places and in different kinds of memory
devices (flip-flops, static RAM, register files, . . . even off-chip).

Formally, state is a condition of memory. We say something
“has state” or is “stateful” if it has the ability to hold information
over time. So an abacus and blackboard both have state. A sine
wave does not have state. (Note: a sine wave is closely tied to the
sense of time and it does not hold information over time.) In gen-
eral, anything that is (strictly) functional does not have state. Most
handheld calculators nowadays have state (they can keep a run-
ning total, for example). However, it is possible to build a calculator
that does not have state.

Our interest in state has to do with identifying the state in a
module. In the mechanics of system design, we will need to sep-
arate functionalities into modules, and abstraction and state are
going to be major factors in how we derive a module. Because
state in a module is not as explicit, the designer needs to con-
sciously identify the states a module can be in and what operations
might change that state. In short, good abstraction and careful
management of state will lead to good modules and improve the
design.

3.1.4. Cohesion and Coupling
The concepts are abstraction and state; the measures are cohesion
and coupling. Cohesion is a way of measuring abstraction. If the
details inside of a module come together to implement an easily
understood function, then the module is said to have cohesion.

Coupling is a measure of how modules of a system are related
to one another. A system’s coupling is judged by the number of
and types of dependencies between modules. Explicit dependence
exists when one module communicates directly with another.
For example, if the output signal of module A is the input to
another module B, then we say that A and B depend on each other.
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In software, if A might invoke a function in module B, then we say
A depends on B (but B does not necessarily depend on A). The rule
for determining dependence is “if a change to module A requires a
designer to inspect module B (to see if the change impacts B), then
B depends on A.

However, and this is where state comes into play, dependence
is not always explicit. Two modules can be dependent in a number
of ways. If two modules share state, then there is dependence. For
example, if one module uses a large table in a Block RAM to keep
track of some number of events and another module will occa-
sionally inspect that table, the latter is dependent of the former.
If someone wants to make a change to the format of the table, that
change will impact the latter module. This is where explicitly iden-
tifying state becomes critical to the formation of modules within a
system.

Dependence can crop up in even more subtle ways. Two mod-
ules may not have any shared state and may not explicitly com-
municate via signals or subroutine calls but are dependent. For
example, they may be dependent because the system may rely on
them completing their tasks at the same time. Hence, the system
is coupled in time. Another more esoteric example might be in
an embedded system that has sensors and actuators. Two mod-
ules may not communicate directly, but if one module is changing
an actuator that another module senses, there may be a depen-
dence. Dependence in itself is not bad. Indeed, some dependence
is necessary between modules because, we assume, the modules
are designed to work together to form the system. What we are
interested in is the degree of coupling in the system — that is, the
number and type of dependencies.

In general, explicit dependencies that arise from formal inter-
faces are the best forms of dependence, and a system composed
of modules with a unidirectional sequence of dependencies will
generally lead to good quality designs. However, if there are many
implicit dependencies, circular dependencies (where one module
A depends on module B and B depends on module A), or large
numbers of dependencies, then chances are the design can be
improved.

One way of reducing coupling in a system is through encapsu-
lation. Encapsulation involves manipulating state and introducing
formal interfaces. The idea is to move state into a module and
make it exclusive (not shared). Often called “information hiding,”
it sounds overly secretive, but it is a very effective technique. One
consequence is that if one wants to change the module, then
there is much more freedom to do things like change the format
of the state without the risk of introducing a bug into another
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Figure 3.4. (a) Original design and (b) modified design with lower coupling.

module. If the module has good abstraction, then information hid-
ing also allows the module be reimplemented in isolation. All that
is necessary is to keep the interface the same.

Coupling is the result of dependencies between modules. Some
coupling is inevitable. What kind of system is composed of mod-
ules that do not interact at all? The goal here is to avoid coupling
when it is unnecessary. A number of techniques will manipu-
late the degree of coupling. For example, consider the two (very
simple) designs in Figure 3.4.

In the first design of Figure 3.4(a), the two inputs to the mod-
ule, x and y, are summed together in submodule A and the results
are passed to the submodules B and C. In the second design, the
summation is duplicated inside each of the submodules. In the
first design, we had two dependencies — submodule B depends
on submodule A and submodule C depends on submodule A. In
the second design there are no submodule dependencies, so we
have clearly reduced the coupling in the design.

What is the advantage? It may be hard to see the advantage in
this example because submodule A is so simple and is unlikely to
change. However, suppose submodule A was originally designed
to work only on unsigned numbers. Over time, it was determined
that submodule C also needed to be able to work with signed
numbers. So a designer that is looking at modifying submodule C
would necessarily have to change both C and A. However, if one
changes A, then one must consider the effect on submodule B. Per-
haps B will work fine with the change to A. However, the point is
that systems with a high degree of coupling have this cascading
effect where a simple change cannot be made in isolation. Rather,
coupling forces the designer to consider the whole module and
understand everything in order to ensure that a change does not
break something.
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There are two disadvantages to this change. One might argue
that we have traded an explicit measure of quality (design size) for
a subjective improvement in another measure of quality (main-
tainability). However, this change does not necessarily increase the
design size! In this case, it is entirely possible that submodule A’s
functionality will simply merge into the CLBs already allocated by
the submodules B and C. Hence, it is possible that there is no net
gain in CLBs allocated. Of course, this is not always true and one
has to weigh the costs — would the extra CLBs require a larger
FPGA?

A second disadvantage to duplicating submodules in order to
decrease coupling is that the designer now has to maintain the
same component in two places. So if a bug is discovered in sub-
module A, then it is fixed once in the first design. However, in
the alternative design, one has to fix the bug in both submodules
B and C. (A word from the trenches: one person’s bug might be
another person’s feature. So A may be performing in a way that
doesn’t match its description and B requires that it be fixed; how-
ever, module C may actually depend on the incorrect behavior to
work!)

Wrapping up this discussion, it should be clear that many fac-
tors go into applying the design principles described. As this exam-
ple shows, there are a number of trade-offs for even very simple
designs!

3.1.5. Designing for Reuse
In addition to improving design quality, another use of these
design principles is to make reusable components. With the
increasing complexity of designs, it is in our favor to construct
designs with the intention of their reuse. To get started, we must
first understand what is necessary to create and identify reusable
designs. One indicator is with high cohesion and low coupling,
which leads to reusable design components. Note the hidden costs
though:

• RCR — relative cost of reuse
• RCWR — relative cost of writing for reuse

Essentially, RCR says that you have to read the documentation and
understand how to use the module before you can reuse it and
RCWR says that someone has to put extra effort into designing
a module for others to reuse (Poulin et al., 1993). For example,
when writing a C program to copy data, say 32 bytes of data,
we could write our own for-loop to exactly copy the data. We
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could reuse this loop and possibly generalize it over time (copy
words versus bytes, a variable size, or forward versus backward). In
contrast, one could learn the “string.h” module in the standard C
library. This module provides a rich set of data movement opera-
tions. These include operations such as strcpy, strncpy, memcpy,
and memmove. The trade-off is learning how to use strcpy ver-
sus the time it takes to create your own copying function. In some
cases, it could be easier to generate your own in place of learn-
ing a potentially complex component. This would suggest that
the RCR of the module is fairly high and this discourages reuse.
Another cost associated with reuse is RCWR, which is the cost
associated with making your custom-created component fully
reusable.

One way of managing RCWR is to take an incremental
approach: design a specific component for the current design. If it
is needed again, copy-and-generalize it. Over several designs, add
the generality needed to make it a reusable component.

In VHDL, this can be done through introducing generics into
the design. Moreover, one point of doing custom computing
machines is to take advantage of specialization! So simply adding
generality without leaving the option of generating application-
specific versions through generics is counterproductive.

Refactoring is the task of looking at an existing design and
rearranging the groupings and hierarchy without changing its
functionality. Figure 3.4 illustrates refactoring. Often, it is done
to make reusable components. The common use of refactoring
is to improve some of the implicit and explicit quality measures
mentioned in subsection 3.1.1.

One final word about testing. The value of reusable compo-
nents is clear. But, of course, there is the danger that components
might be refactored and accidentally change their functionality.
Regression testing is used to prevent this. It usually is automated
and might be simulation driven (à la test benches) or it may be a
set of systems that wraps around the component and exercises its
functionality. (Multiple systems are needed because one wants to
also test all of the generics that are set at compile-time.)

3.2. Control Flow Graph
Throughout the text we use the idea of a software reference
design. There are many ways to represent a system — from formal
specifications to informal (but common) requirements, specifica-
tion, and design documents to modeling languages such as UML.
In addition to these representations, it is often common for a
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designer to build a rapid prototype — a piece of software that
functionally mimics the behavior of the whole system, even
hardware modules that have not been implemented yet. We refer
to this software prototype as the software reference design. The
major drawback of software reference design is the cost asso-
ciated with creating it but, as a specification of the system, it
has a number of advantages. The first is that it is generally a
complete specification. (If there is any question about how the
future system is to behave, one can observe how it behaves
in the reference design.) Another advantage is that it is exe-
cutable — a designer can gather valuable performance data from
running the software reference design with specific input data
sets. Finally, because the software reference design is computer
readable, the specification can be analyzed by existing software
tools.

Through the next several chapters we will assume that a soft-
ware reference design exists. Here we show how computation in
software reference design can be represented mathematically. The
next chapter uses this notation to help make decisions about what
parts of the system should be implemented in hardware versus
software.

We do this by borrowing some concepts from compiler tech-
nology — primarily the control flow graph. The control flow graph
summarizes all possible paths of program from start to finish in
a single, static data structure. Formally, a Control Flow Graph
(CFG) is graph G = (V, E) where the vertices (or nodes) V of the
graph are basic blocks and the directed edges indicate all pos-
sible paths that program could take at run time. A basic block
is a maximal sequence of sequential instructions with a Single
Entry and Single Exit (SESE) point. Figure 3.5 illustrates this def-
inition. The first group of instructions (A) is not a basic block
because it is not maximal — the first instruction (store word
with update) should be included. The second group of instruc-
tions (B) is a basic block. The last group (C) is not a basic block
because there are two places to enter the block (at the store
word instruction after the add immediate, or by branching to
label .L2).

An edge (b1, b2) in a control flow graph indicates that after exe-
cuting basic block b1 the processor may immediately proceed to
execute basic block b2. If the basic block ends with a conditional
branch, there are two edges leaving the basic block. If it does not
end with a branch or if the last instruction is an unconditional
branch, there will be a single edge out. Two special vertices in the
graph, called Entry and Exit, are always added to the set of basic
blocks. They designate the initial starting and stopping points,
respectively.
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stwu 1,-32(1)

stw 31,28(1)

mr 31,1

li 0,5

stw 0,8(31)

lwz 0,8(31)

cmpwi 7,0,4

bgt 7,.L2

lwz 9,8(31)

addi 0,9,1

stw 0,8(31)

.L2:

lwz 9,8(31)

addi 0,9,-1

stw 0,8(31)

lwz 11,0(1)

lwz 31,-4(11)

mr 1,11

blr

t:

Figure 3.5. Groups of instructions; (A) and (C) are not basic blocks, (B) is a basic
block.

Informally, a basic block sequence of instructions that we know,
by definition, will be executed as a unit. The edges in the CFG
show all the potential sequences in which these units are executed.
For example, the simple subroutine shown in Figure 3.6(a) has
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BB0:

BB1:

BB2:

BB3:

BB4:

func: stwu 1,-32(1)
stw 31,28(1)
mr 31,1
li 0,0
stw 0,12(31)
li 0,0
stw 0,8(31)
b .L2

.L3:  lwz 0,8(31)
rlwinm 0,0,0,31,31
cmpwi 7,0,0
bne 7,.L4

lwz 0,12(31)
lwz 9,8(31)
add 0,0,9
stw 0,12(31)

.L4:  lwz 9,12(31)
addi 0,9,1
stw 0,12(31)
lwz 9,8(31)
addi 0,9,1
stw 0,8(31)

.L2:  lwz 0,8(31)
cmpwi 7,0,9
ble 7,.L3

BB0:

BB4:

BB1:

BB3:

BB2:

i � i � 1 ;

for( j�0 ; 

if( j%2 �� 0 ) {

i � i + j ;

}

}}

i � 0 ;i  

  j�� ) {j�10 ;

Start

BB0

BB4

BB1 End

BB2

BB3

(b) (c)

(a)

Figure 3.6. Basic blocks in (a) C source code (b) translated to assembly (c) a control flow graph.

identified the basic blocks in a C program. In Figure 3.6(b), the C
program has been compiled to PowerPC assembler code and the
basic blocks have been identified. Finally, the control flow graph
is illustrated in Figure 3.6(c). Note that it is possible to identify the
basic blocks in a C file if one knows how the compiler emits assem-
bly code. Unless it is obvious, we use assembly code to illustrate
basic blocks.

Compiler researchers and developers use the control flow
graph in a number of ways. Often, graph algorithms applied to the
CFG will result in a set of properties that guide transformations
(optimizations) designed to improve the performance of the pro-
gram. When combined with data dependence (see Chapter 5) the
CFG can be used to determine what parts of the program can be
executed in parallel (and thus implemented spatially in hardware).
For now, our immediate need is to visualize the software reference
design. The next chapter uses the basic blocks as the atomic unit
that can be partitioned between hardware and software.
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3.3. Hardware Design
Thus far, the discussion of system design has been high level and
general. Next we turn toward hardware design and, very specifi-
cally, the hardware components available to the Platform FPGA
designer. We begin with a brief description about how these com-
mon architectural components evolved and then describe several
of the broad classes of hardware modules available. This section
ends with a general description of how the designer can expand
their toolbox with custom hardware modules.

3.3.1. Origins of Platform FPGA Designs
Simply put, designers rarely want to build an embedded system
from scratch. To be productive, an embedded systems designer
will typically begin with an existing architecture, remove the
unneeded components, and then add cores to meet the project
requirements. The processor-memory model, seen in Figure 3.7,
which is basic desktop PC architecture, has worked well as a start-
ing point. To begin, we briefly review some key computer architec-
ture components so we are able to understand and use them in our
Platform FPGA designs.

The introduction of the IBM Personal Computer (PC) in 1980
had an enormous impact on the practice of building computing
machines. The intent was to make a system that would appeal
to consumers and hobbyists alike; therefore, low-level details of
the system were readily available. This spurred third-party devel-
opment of peripherals and (probably unintentionally) compatible
machines from other manufacturers. As the speed of the micro-
processor, volume of machines, and competition increased, the
cost actually decreased. It became possible for manufacturers and
vendors to try different computer architecture designs. Ultimately,
the architecture that has evolved is what is common in today’s
desktop computers.

System bus

Processor Memory
controller

Figure 3.7. The fundamental process-memory model to be used as a base system
in Platform FPGA designs.
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System bus

Processor

Peripheral bus

Bridge

Memory
controller

Peripheral
A

Peripheral
B

Peripheral
X

Figure 3.8. The two bus process-memory model used to support parallel,
independent high-speed and low-speed communication.

Later computers use a two-bus system where the processor and
memory reside on a processor-specific system bus and the lower
speed peripherals (serial ports, printers, video monitor) reside on
a generic, standard peripheral bus. Figure 3.8 shows this arrange-
ment, which allows the system components to evolve rapidly in
terms of clock frequencies, voltages, and so on while maintain-
ing compatibility with the third-party peripherals, which do not
change as quickly.

Embedded computing architectures have not changed much
from this basic arrangement; in fact, this foundation has allowed
designers to focus on improving the individual components. The
bus model is arguably insufficient for certain application needs,
but it serves the needs of general applications well. This orga-
nization makes a good starting point for our designs with Plat-
form FPGAs. We can utilize the hard or soft processor core(s),
on-chip memory and off-chip memory controllers, and peripher-
als to support system input and output to build a base system that
resembles these computer organizations.
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Platform FPGAs have adopted these two basic processor-
memory model from the desktop computer architecture because
it provides an established framework that can be built upon for
custom designs. With the addition of existing components and
cores, more complex systems can be constructed, often within a
considerably shorter time frame than traditional embedded sys-
tems designs. In fact, in section 3.A you already assembled a sim-
ple Platform FPGA system when building the “hello world” FPGA
example. Within this section we aim to go into more detail on
what comprises a Platform FPGA base design (system). We use the
the basic computer organization processor-memory model and
expand on it to work up to a useful base system.

A valid question to ask at this point is “why create a generic base
system when we are using FPGAs?” FPGAs by their very nature are
programmable and application specific. In an ideal world where a
designer’s time could be infinitely spent on the project, there were
no deadlines, and money was no object, creating completely cus-
tom designs would make sense. Unfortunately, the ever-growing
demand for first-to-market solutions requires designs to be up and
running and brought to market quickly. FPGAs offer an additional
advantage of providing field programmability to the mix, allowing
a potentially less than ideal solution being initially offered, then
updated in later revisions.

3.3.2. Platform FPGA Components
Chapter 2 discussed the components that exist in an FPGA, such
as logic cells, blocks, and on-chip memory. While these compo-
nents are useful in all FPGA designs, they will be the building
blocks for much larger systems. With the ideas of modularity, cohe-
sion, and coupling of components and designs, we want to begin
to build base systems that can be used and reused as a starting
point for embedded systems design. We have already discussed
the strengths of this approach and introduced the prevalent orga-
nization with the processor-memory model. Because each design
is different, it is obvious that the design will require modifications,
but the processor is a good place to start.

Processor
Generally speaking, the processor offers the designer control and
a familiar design environment. Even if the final design will require
little or no involvement from the processor, its use within the
rapid prototyping or early development stages can help rapidly
evolve the design. For us, the processor is an obvious starting point
when describing and building a processor-memory model design.
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In a Platform FPGA, two types of processors can exist, hard and
soft core processors. Chapter 2 discussed the hard processor cores
in detail and even gave examples of PowerPC 440 integrated in the
FPGA fabric on the Xilinx Virtex 5 FX series FPGAs.

Other Platform FPGAs provide sufficient reconfigurable resou-
rces that a soft processor core can be implemented in the logic
blocks and surrounding resources of the FPGA. Soft processors
offer a great deal of flexibility, as they are by their very nature con-
figurable. Unlike hard processors, where functions have been fixed
since fabrication, incremental improvements to a soft processor
(such as the more recent addition of the memory management
unit to the Xilinx MicroBlaze processor) provide the designer with
a more flexible design approach.

While this could quickly turn into a long discussion on the
advantages and disadvantages of processors in hardware versus
software, we focus instead on the processor’s capabilities. For
instance, even the most basic processors, requiring a minimal
amount of resources (i.e., PicoBlaze), can operate in what is called
stand-alone mode, offering only the most basic functionality (such
as stdin/stdout). More advanced processors may include mem-
ory management units (MMU) to support more verbose operat-
ing systems (such as Linux). There are even processors that offer
coherency with shared memory between multiple processors to
create a multicore processor (similar to what exists in commodity
desktop PCs).

Overall, knowing the processor’s role in the application can
help dictate which processors can and cannot be used. For
instance, the PicoBlaze is well suited for more complex state
machines, but not for running Linux. Likewise, soft processors
may offer wider flexibility when migrating from one FPGA device
family to another (or even to a different FPGA vendor). Before
choosing which processor will be the cornerstone of the design,
consider the following questions:

• Does the FPGA include hard processors?
• Are there sufficient resources to implement a soft processor?
• What role will the processor play in your design?
• What type of software will be used on the processor?
• How much time will the processor be used versus hard cores?
• Are there future plans to using a different FPGA?

Some of these questions may be easier to answer than others, but
being able to address them before moving too far along the design
process is important. Chapter 4 helps address questions regard-
ing identifying suitable functions to be implemented in hardware
versus software. This chapter is more concerned with construc-
tion of the platform and augmenting it to meet the design’s needs.
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If the FPGA does include a hard processor core(s), the initial design
might be best suited to include its use rather than expend addi-
tional resources on a soft processor. If, however future generations
of the system will include different FPGAs, it might make more
sense to use a soft processor core that can be moved between
FPGAs with as little effort as possible. Vendors and developers
of soft cores should be able to provide enough information for a
design to determine if it is feasible to include in the chosen FPGA.

Memory
In order for the processor to do any useful work, memory must be
included to store operations and data. Different computer organi-
zations and memory hierarchies could be discussed at this point.
Whether the processor follows the Von Neumann or Harvard archi-
tecture or contains levels 1, 2, and 3 cache is arguably too low
level for embedded systems designers. Instead, we focus on the
following questions:

• What type of memory is available?
• Is there on-chip and/or off-chip memory?
• How much on-chip/off-chip memory is available?
• Is the memory volatile or nonvolatile?
• How does the processor interface with the memory?
• How does the system interface with memory?
• How do specific cores interface with memory?
• Is the memory being utilized efficiently?

As mentioned in Chapter 2, modern FPGAs include varying
amounts of on-chip memory (often referred to as block RAM).
The uses of this memory are wide and varied based on the appli-
cation. The memory can be included within a component, core,
or as part of the base system. The location of the memory dic-
tates its interface and accessibility. For example, say a custom core
includes a FIFO built from on-chip memory, it may have a stan-
dard FIFO interface (enqueue/dequeue), which only the custom
core can access, or it may be accessible to a processor as a way
of loading data into the custom core to be operated on (such as a
single precision floating point addition core). When designing sys-
tems with on-chip memory needs, it is important to identify how
it will be used within the system.

In the event the design requires more memory than is avail-
able on-chip, off-chip memory is required. There are many dif-
ferent forms of off-chip memory and knowing which type to use
is a difficult decision that goes beyond the scope of this chapter.
However, interfacing with the particular memory is important to
address now. A memory controller is required to handle memory
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transactions, requests for access to memory in order to read or
write data from a specific address. The memory controller is a
soft core that can be configured to meet the specific needs of the
memory it is interfacing with. For example, each DDR2 DIMM
has specific operational characteristics that require complex state
machines to interface with it. Fortunately, for the designer, many
of these memory controllers have already been designed with
generic parameters to allow for quick integration with different
memory manufacturers. Within FPGA designs it is possible to
include processor-centric memory access, where the processor
issues all requests on behalf of the system, or to include Direct
Memory Access (DMA), where cores within the system can request
memory directly.

For both on-chip and off-chip memory it is difficult to pro-
vide strict design rules, as they can be used in such a variety of
ways. However, utilizing them efficiently is of critical importance
because the rate at which memory is increasing lags behind the
processor (Wulf & McKee, 1995), and with the addition of mul-
tiple sources contending for a single resource, this demand for
memory only further exacerbates the problem. Chapter 6 covers
how to tackle memory bandwidth management questions more
efficiently. Of key importance is configuring the system to tightly
integrate the components needing low-latency access to mem-
ory and separating them from components that may not access
memory as frequently or at all.

Buses
Now that we have described the two main components in a
processor-memory model design, we must start to address the
various ways to connect them. The simplest approach (beyond a
strict point-to-point interface) is to provide a bus. The processor(s)
and memory controller(s) connect to the bus via a standard bus
interface. The bus interface is specific to the particular bus, but
at the simplest level consists of address, data, read/write requests,
and acknowledgment signals. The bus also includes a bus arbiter,
which controls access to the bus. When a core needs to commu-
nicate with another core on the bus, it issues its request for access
to the bus. Based on the current state of the bus, the arbiter will
either grant access or deny access, causing the core to reissue its
request. A core that can request access to the bus is considered
a bus master. Not all cores need to be bus masters; in fact, many
custom cores are created as bus slaves, which only respond to bus
transactions.

A bus on an FPGA is implemented within the configurable logic,
making it a soft core. For example, Xilinx uses IBM’s CoreConnect
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library of buses, arbiters, and bridges. More details regarding the
CoreConnect library are presented in section 3.A. Some important
design considerations need to be addressed when using buses.

• What cores will need to directly communicate?

• Do certain cores communicate more often than others?

• Do specific cores require a higher bandwidth between them?

• Can any cores function on a slower bus?

As mentioned earlier, it is common to find a two-bus system in
desktop computers. This is done to isolate the lower speed periph-
eral devices from higher speed devices (such as the processor and
memory). In system design, it may be advantageous to put certain
cores on one bus and others on a separate bus. By adding a bridge
between the two buses, it is possible for cores to still communicate,
although at the cost of additional latency.

System Bus
In multiple bus designs the bus with the highest bandwidth that
connects the processor, memory controller, and remaining high-
speed devices (such as a network controller) together is often
referred to as the system bus. Xilinx uses IBM CoreConnect’s Pro-
cessor Local Bus (PLB) as its equivalent system bus. When the
number of cores needing access to the bus is relatively small,
connecting all of the cores on a single bus is a logical, resource-
efficient decision. In Platform FPGA designs, the system bus is the
fundamental mechanism to communicate between the proces-
sor and custom hardware core. As the number of hardware cores
grows, a decision must be made as how to most efficiently support
these additional cores in combination with the already existing
system. One solution is to introduce a second bus.

Peripheral Bus
A second bus may be added to separate the design into different
domains. In some cases this is done for high-speed and low-speed
designs. In others, it may be to provide a subset of the cores with
a dedicated bandwidth for communication. In either event, addi-
tion of a second bus, often known as the peripheral bus, allows
two arbiters to control communication across the two buses. With
a single bus, if the processor was accessing data from the mem-
ory controller, any other cores needing to communicate would be
required to wait for the memory transaction to complete. In a two-
bus system, those cores could be migrated to the peripheral bus
and allowed to communicate in parallel.
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Bridges
In some cases it is necessary for a core on the system bus to
communicate with a core on the peripheral bus. This requires the
addition of a bridge. A bridge is a special core that resides on both
buses and propagates requests from one bus to another. A bridge
functions by interfacing as a bus master on one bus and a bus
slave on the other. The slave side responds to requests that must
be passed along to the other bus. The master side issues those
requests on behalf of the original sender. Sometimes only a sin-
gle bridge is required; if the peripheral bus only will respond to
requests from the system bus, a system-to-peripheral bridge is
required. However, if cores on the peripheral bus need access to
the system bus (say for access to the off-chip memory controller),
then a second bridge, a peripheral-to-system bridge, is required.
The common nomenclature for describing the interfaces of a bus
in terms of master side and slave side is as follows. The system-to-
peripheral bridge means that the bridge is a slave on the system
bus and a master on the peripheral bus. This may seem backward,
but the reason is quite simple. In order to communicate from the
system bus to cores on the peripheral bus, the bridge must respond
to system bus requests (making it a slave on the system bus) and
issue the request on the peripheral bus (making it a master on the
peripheral bus).

Peripherals
Now that we have established a mechanism to connect cores
together we should address some of the peripherals a system
designer may add to a design. When we talk about peripheral
cores, we usually are referring to hardware cores that interface to
peripheral devices, such as printers, GPS devices, and LCD dis-
plays. Peripherals themselves are traditionally the components
around the central processing unit. In our case, some peripherals
(such as a video graphics adapter) may be entirely implemented in
the FPGA, but often the peripheral is external to the FPGA and the
hardware core provides the interface.

In Chapter 7, we dedicate the whole chapter to interfacing with
the outside world. Here we simply mention common peripherals
found in Platform FPGA designs.

A number of high-speed communication cores have been
implemented as FPGA cores. There is a PCI Bridge and a PCI
Arbiter — the former is needed to connect the FPGA’s system bus
to an existing full-function PCI bus, whereas the latter includes
the logic to create a full-function PCI bus. A variety of Ethernet
cores are available for connecting the Platform FPGA to a (wired)
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Ethernet network. Likewise, a variety of USB cores provide support
for different versions and capabilities. Many of the older (low-
speed) communication cores have been implemented as well,
including UARTs, I2C, and SPI.

As part of the principles of system design, building cores for
reuse leads to the eventual accumulation of a library or reposi-
tory of cores. These cores may provide functionality that many
of the base systems need. For example, more and more cores are
requiring Internet access whether it be for debugging purposes or
to update an embedded system’s database; having a core that can
be integrated quickly into a design that has been tested previously
reduces design time significantly.

Building Base Systems
Enough talk, it is time to put these concepts together and build a
simple base system, consisting of a process, on-chip memory, off-
chip memory, and a UART for serial communication with a host
PC. We are being a little generic still in terms of the actual core, but
in section 3.A we will be more specific with respect to Xilinx FPGAs.
Still, we have a processor, two types of memory, and a UART.
We have yet to mention what would be used to connect these
components together because that is a little more application spe-
cific. In some cases it makes sense to separate the high-speed and
low-speed devices onto different buses.

In this example, there would be no immediate need for such
a separation. Remember that this is the base system from which
larger designs will be built. As a result we want to be flexible
enough in our design to allow custom cores to be added without
requiring significant changes to this base system. For that fact, we
will include both a system bus and a peripheral bus. Figure 3.9
depicts this initial base system. Notice that with the addition of
buses, we need to include a bridge. Because the UART is a slave
on the peripheral bus, there is no requirement for adding a second
bridge to allow it to master the system bus. If future designs require
this, we can go back and add the peripheral-to-system bridge.

While drawing boxes suffices for an academic approach, it is
insufficient for practical implementations. We would not build this
base system with schematic capture software because the number
of signals and wires to connect would be enormous. Instead, we
use hardware description languages. Using the bottom-up design
approach, we could create a single HDL file and instantiate each
of the components within it.

Not only do we need to connect all of the components
input/output signals, we need to connect the input/output signals
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Figure 3.9. Block diagram of the base system consisting of a processor, on-chip
and off-chip memory, and a UART.

that go off-chip. For example, the UART includes transmit and
receive pins that are routed off-chip to a RS232 IC to provide serial
communication between the FPGA and the outside world. This
requires additional constraints to be set to notify the synthesis tool
that a signal is to be routed to a specific pad and pin.

In practice, even this amount of work is inefficient. FPGA and
software tool vendors provide GUIs or wizards to help automate
this process. For the beginning designer, the tools are a great start-
ing point because they help the designer identify key components
and how they are connected. For the more experienced designer,
the tools and wizards may prove to be less useful.

3.3.3. Adding to Platform FPGA Systems
Now that we have a base system, let’s go ahead and add some
custom compute cores. Many embedded systems devices are now
including some form of network interface, whether it be wired
or wireless. For demonstration purposes, we will add a TCP/IP
10/100/1000 Mbit Ethernet network core. The network core will
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Figure 3.10. Block diagram of the base system with the additional cores:
networking, USB, and I2C.

provide us with access to the FPGA from anywhere in the globe via
a Web interface. Adding this core to the base system can be as sim-
ple as adding the instance to the top-level HDL file and updating
the pin constraints file. We will add the network core to the system
bus because as data are transferred to and from the FPGA, we will
use the off-chip memory as a temporary storage buffer. Figure 3.10
is the modified block diagram of this base system. In addition
to networking, we have also connected a USB and I2C interface
to the peripheral bus just to start to round out the theoretical
design.

The benefit of using the bus (or two-bus) within the design is it
allows the system to be modified (adding or removing cores) with
ease. As long as the new core has the same bus interface, typically a
standard such as the PLB that is published and widely available, a
systems designer just needs to connect up the signals. In the event
that the new core is a slave on the bus, the new core will need to
be assigned a unique address range from the system’s address map.
The address range is how other cores on the bus will communicate
with the new core.
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Address Space

From a hardware perspective, the “location” of data is straightfor-
ward and easily identifiable. Off-chip memory is physically located
outside of the FPGA’s packaging, typically as a separate memory
module or, more commonly, as a Dual In-line Memory Module
(DIMM). From a design perspective, accessing the memory is
nothing more than through the memory’s address space. Off-chip
memory may be addressable from the address range0x30000000–
0x3FFFFFFF, for a total of 256 MB of addressable data. Globally
addressable on-chip memory, located on the same bus as the off-
chip memory controller, may have an address range0xFFFF0000–
0xFFFFFFFF, for a total of 64 KB of addressable data. In Platform
FPGA designs it is possible to automatically generate these address
ranges or to set specific address ranges.

For on-chip memory that is only local to a compute core, the
address range is user defined and commonly word addressable
(instead of byte addressable). The address range is also important
for any compute cores that must communicate with the proces-
sor. We mention this information here because up until now we
have not interacted with a range of compute cores or memory.
Figure 3.11 shows that address map for the two-bus base system
mentioned previously. Each core that has an address range is at
least a slave on the bus. The processor is a bus master only and
therefore does not include an address range within the address
map.

In the two-bus system, the bridge acts as a middleman between
requests issued from the system bus to the peripheral bus. The
bridge must be assigned an address range that will span all of the
cores on the peripheral bus. If the bridge is given the incorrect
address range, requests may never make it to the peripheral bus
or to the destination hardware core.

3.3.4. Assembling Custom Compute Cores
In Chapter 2, hardware description languages were introduced
with a few examples to help the reader grasp some of the con-
cepts. We also covered how to use existing tools and wizards to
create components and custom core templates. Now it is time to
cover how to design and assemble custom compute cores. While
there is a large body of writing on how to design digital com-
puting systems, both manually and automatically, we look at the
process from a more systematic engineering approach. To start,
we want to answer the age-old question of “why build custom
compute cores?” Once answered we discuss design approaches,
consider design rules and guidelines, look at how to test and
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Figure 3.11. One possible address map for the theoretical two-bus system with
networking, USB, I2C, and UART.

debug hardware, and finally culminate with a functional custom
core.

Why Build Custom Cores?

We begin with the most important question, “why build custom
cores?” It is widely believed that hardware development is dif-
ficult and because there are more software professionals in the
workforce than there are hardware engineers, some might argue
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to use processors and build software. Furthermore, processors are
inexpensive and cost-effective, and processor manufacturers put
an enormous amount of design effort into a piece of hardware that
will ship many millions of units over its lifetime.

Often, the immediate response to the question “why design
hardware?” is “for performance” and by performance the speaker
typically means “speed.” This is true; however, there are other
compelling reasons to implement hardware as well. These include
computational efficiency and predictability. We’ll look at each
of these reasons in detail because it is important for a hard-
ware designer to know when a hardware solution is and is not
justified.

Advantage: Speed
Because custom hardware designs are often used to speed up
applications, some designers will occasionally make the mistake
of generalizing that “hardware is faster than software.” However,
the idea that hardware is faster than software is a fallacy. In fact,
if naively implemented, hardware is often slower than software.
Moreover, it is true that any hardware design implemented in an
FPGA will perform 5× to 10× slower (and consumes more area
on a chip) than the same circuit implemented directly in silicon
(using the equivalent process technology). If the design we hap-
pen to implement is similar to a processor, then we gain nothing
and lose much in speed (and area). So how does FPGA hardware
outperform a processor?

Practically speaking, there are two reasons why some FPGA
designs have a performance advantage plus a couple of minor
reasons. The first practical advantage is rooted in the execution
model. The sequential computing model of the standard von
Neumann processor creates an artificial barrier to performance by
expressing the task as a set of serial operations. With hardware, the
task’s inherent parallelism can be expressed directly. To compen-
sate for its inherently serial operation, modern processors commit
a significant portion of the hardware resources to extracting the
instruction-level parallelism to increase their speed, which we will
revisit shortly when we discuss efficiency. Although less significant
overall, another way that the execution model can impede perfor-
mance is in instruction processing. The processor model has to
commit resources to fetching, decoding, and dispatching instruc-
tions, all of which are functionality that is commonly part of the
hardware design. For some applications, memory bandwidth lim-
its the performance and part of the bandwidth is consumed by
instructions being fetched from memory. In hardware designs, the
instructions are implicitly part of the design.
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The second practical reason FPGAs have been able to outper-
form standard processors has to do with specialization. In general-
purpose processors, data paths and operation sizes are organized
around general requirements. This typically means 32- or 64-bit
buses and functional units. Thus, to multiply an integer by some
constant c requires a full-sized multiplier in a processor. How-
ever, if additional information about the application is known,
an FPGA-based implementation can be created with customized
function units to meet the exact needs of the application. For
example, a constant multiplier can be orders of magnitude faster
than a general-purpose multiplier.

Although, run-time reconfiguration is possible, it is currently
not in widespread use. Nonetheless, FPGAs can use this tech-
nique to outperform a general-purpose processor by using infor-
mation only available at run time to produce specialized circuits.
For example, a circuit that computes Triple-DES (an encryption
algorithm) can be several orders of magnitude faster if the key
is known in advance. This particular example has been demon-
strated elsewhere (Hennessy & Patterson, 2002). Unfortunately,
building run-time reconfigurable designs is a challenging, time-
consuming process. Until design tools and methodologies mature
and become easier to use, it is unlikely that this important source
of improved performance will become common. The final chapter
discusses run-time reconfiguration in more detail.

Advantage: Efficiency
Suppose a hardware implementation of task A takes exactly the
same amount of time to complete as the equivalent task executed
on a processor. We can assume that the software implementa-
tion is easier to develop. Is there any reason to build a hardware
implementation? The answer is yes when the hardware solution is
more efficient. By efficiency, what we are concerned with is how
to accomplish a fixed task with a variable amount of resources. By
resources, we could be talking about area on a chip, the number
of discrete chips, or the cost of the solution. While speed is a pre-
dominant reason to commit to a hardware design, efficiency is still
a valid reason. A hardware design plus a processor is often more
efficient than two processors.

For example, suppose we have a network interface that imple-
ments a standard protocol (such as TCP/IP over Ethernet). If we
needed to augment an existing computer (that is already loaded to
its capacity) to handle network events, then the two options might
include adding another processor dedicated to network traffic and
building a custom network interface that offloads the network
tasks. If both approaches meet the minimum criteria, then we
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say the more efficient solution is the one with a lower cost. If the
system is being deployed on a single chip, then the more efficient
solution is the one that uses less area.

Advantage: Predictability
While efficiency is an important consideration, it is often the case
that a processor is not being used to its full capacity. Thus, some-
one might argue that the processor can simply multitask in new
functionality. Even if this does not overload the processor, there
is another compelling reason to use a hardware implementation.
This case arises in embedded systems where timing constraints
are very important. When there are real-time demands on the sys-
tem, scheduling becomes important. Hardware designs have the
benefit of being very predictable, which in turn makes scheduling
easier.

So, there are cases when it makes sense to move a task to hard-
ware if it makes that task more predictable or if it makes scheduling
tasks on the processor easier. For real-time systems, where the
goal is to satisfy all of the constraints, predictability is often more
valuable than simply making the system faster.

Disadvantages
Perhaps the biggest disadvantage to building hardware solutions
is one already mentioned, the development effort required. Com-
pared to the numbers of professionals that can code software,
there is a small number of hardware designers. Moreover, most
people will assert that designing hardware is more difficult than
coding software. Certainly, for large designers, there are more
details that one has to attend to. So, unless there is a compelling
reason (in terms of the performance metrics from Chapter 1 or the
advantages just mentioned), then it may not be worth the extra
effort. A second disadvantage is the loss of generality. It is sim-
ply the nature of our modern world that product requirements
will evolve over time. The loss of generality has the potential of
negatively impacting the design over time.

In summary, Platform FPGAs offer speed, efficiency, and pre-
dictability advantages over software-only solutions — compelling
advantages for many emerging embedded computing system
projects. However, there is no universal answer to the question. As
a Platform FPGA designer, part of your task includes determining
when a simple microcontroller is appropriate.

Design Composition

In general, there are two ways of building digital computing
machines. The first is the one that has been traditionally cov-
ered in most sophomore-level digital logic courses, which begins
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with logic gates. The second, which is sometimes covered in later
courses, starts with higher level logic blocks from which complex
systems are composed.

In the first approach, the designer begins with requirements
that are translated into a specification (expressed in various
forms such as Boolean expressions, truth tables, and finite state
machines). From there, all of the various formal techniques are
used to reduce the number of states, minimize the Boolean func-
tions, and realize the machine in the fewest number of compo-
nents. When we say “built from gates” this is the approach we are
talking about.

In the second approach, the designer starts with logic blocks
that have a predetermined functionality — such as decoders,
n-to-1 multiplexers, and flip-flops. These components are selected
by the designer and are arranged creatively to meet the require-
ments. Logic gates may be used but their need is diminished by
the functionality provided by the other components. The second
approach is what we will focus on for the remainder of this book.
There are many reasons to use the first approach; however, for
practical designs utilizing millions of gates, maintaining the design
becomes a daunting task that is simplified by a more modular
design approach.

Generally speaking, there are three steps when designing mod-
ular custom cores. The first step is to identify the inputs and
outputs of the core. In some designs the inputs and outputs are
already set based on the functionality of the system. For example,
in a bus-based system the inputs and outputs are initially fixed
to at least the bus signals. Additional signals may be added based
on the design (i.e., connecting an interrupt signal from the core to
the processor). These signals may change through the design pro-
cess, but establishing a solid interface to a top-level component
will greatly assist in not only the component’s composition, but
aid in the design of any components that eventually will use this
core.

The second step is to identify the operations and compose a
data path, usually a collection of multistage computations (i.e., a
pipeline). Each component is designed with a particular function
in mind. The exact operations needed may not be as clear during
the beginning of the design phase, but determining the necessary
low-level functionality (or subcomponents) allows for the con-
struction of a data path. The data path represents the flow of data
through the component. Once the flow has been established it
becomes possible to construct a computation pipeline. A pipeline
in hardware contributes to the performance and efficiency of
the design. Capturing the stages of the pipeline may initially be
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difficult, but starting a design with the concept of supporting
pipeline operations makes the process much more manageable.

The third step is to develop a controlling circuit that sequences
the operations, usually a finite state machine. We often think of
hardware in terms of parallelism, that is, independent operations
that can be executed at the same time. Parallelism is one of the
keys to achieving speedup over processor-based designs. How-
ever, many designs still require computations in some sequential
flow. Consider a simple equation:

f(x, y, z) = x ∗ y + (4 ∗ z)

It is possible to build hardware to multiply x*y in parallel with the
multiplication of 4*z, but addition of the two results must wait
for completion of the multiplication. A finite state machine can
be used to control the computation by first performing the two
independent (parallel) multiplications and then performing the
addition.

Bottom-Up and Top-Down Design
Earlier we mentioned two design approaches, bottom up and
top down. In many FPGA designs, the bottom-up approach is
used when assembling systems, as described previously. This same
approach can be used for assembling custom compute cores. For
example, when using the structural HDL method, each compo-
nent is built by instantiating subcomponents. Before the top-level
design can be completed, each of the subcomponents must be
designed and tested. In this approach, modularity and designing
for reuse are very important.

In the bottom-up approach, each subcomponent can be treated
as a black box, where only inputs and outputs are known to the
designer. The underlying functionality may be represented in a
data sheet with definitions of latency, throughput, or expected
outputs. In fact, designs are often completed by more than one
person. As a result, each designer relies on a black box that will be
filled in later by another designer.

Alternatively, starting from the top-level design and working
down to low-level components is known as top-down design.
When designing custom compute cores, the designer would begin
with the core’s interface (inputs and outputs). This creates a black
box representation of the core. Once the interface is set, the
designer can begin to systematically decompose the design into its
subcomponents. This process is repeated for each subcomponent
until low-level components are identified to be simple enough
to design. The top-down approach does not necessarily associate
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with behavioral or structural HDL, but a designer may use more
behavioral HDL.

The end product of either a top-down or a bottom-up approach
should result in the same functionality. Internally, the design may
look drastically different, but the top-level interface and operation
should perform identically based on the specification.

Let’s work with an example to illustrate the different ways com-
ponents can be combined to form large modules. Consider the
simple system illustrated in Figure 3.12. The desired functionality
is to add four numbers together.

Beginning with a familiar approach, we consider the temporal
implementation shown in Figure 3.13. While this implementa-
tion may not be immediately comparable to a software solution,
consider how sequential addition is performed. In this solution,
four numbers (a, b, c, d) are connected to a multiplexer, which
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Figure 3.12. The top-level component to add four numbers.
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Figure 3.13. A temporal implementation.
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is controlled from a simple state machine. The state machine
increments from 0 to 3 to select each of the four inputs. The multi-
plexer feeds each input to the arithmetic logic unit (ALU), which is
set to add mode. The ALU stores the result in a register, and the
state machine increments the state bits s1 s0 to add the next
input. In this approach, the addition would take four additions:

1. regt0 = 0 + a
2. regt1 = regt0 + b
3. regt2 = regt1 + c
4. regt3 = regt2 + d

In a system were only one ALU and register exist, this would be
a sufficient minimal resource solution. Furthermore, augmenting
this design to add eight numbers instead of four would only require
a large multiplexer and addition state bit s2.

Clearly this is not the fastest approach. In terms of speed it is
desirable to perform as many independent operations in parallel
as possible. Unfortunately, there is a cost with parallel approaches,
that is, added resources. Using three ALUs we could perform
temp1 = a + b and temp2 = b + c in parallel and then add
temp1 + temp2. The trade-off between latency and resources is
ultimately at the hands of the designer, but it is wise to consider
both low latency and low resource utilization approaches early in
the design phase in case there is a need to switch between the two
in a later phase.

Spatial Composition
Most programmers are familiar with the typical sequential com-
position rules of a von Neumann compute model. The simplest
rule — two operations are sequenced — implies that there is a
thread of control where the second operation takes place after the
first computes its result. This is a degenerate case of spatial com-
position, which relaxes the strict ordering of operations. Hardware
designs are not limited to sequential execution (unless dictated by
the design). Thus, when a hardware designer specifies two opera-
tions, they will execute simultaneously unless the designer further
specifies an ordering. Figure 3.14 shows a spatial implementation
of the four adder example. In this case, the additions are pipelined
such that results are fed forward to the next adder.

The loose ordering of operations in time is both a boon and a
bane for Platform FPGA design. Concurrency is what gives system
designers speed, and control of timing is what gives system design-
ers predictability — both primary motivations for using hardware.
However, simply expressing timing relationships between opera-
tions is a challenge, let alone determining what the correct timing
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Figure 3.14. A spatial implementation.

relationships are. Consequently, this is a frequent source of system
design errors. Chapter 5 goes into more detail regarding spatial
design.

3.4. Software Design
Embedded system products have rapidly become more sophisti-
cated in recent years. In the past, software was simple, had a single
task, and played a relatively minor role compared to the design of
the hardware. If two tasks were needed, they were often kept inde-
pendent — logically and physically. As microcontrollers increased
in speed, embedded systems added system software to manage
multiple threads of control. This allowed a single microcontroller
to time-multiplex separate tasks. Nowadays, some embedded sys-
tem processors have memory management units, support virtual
memory, and are fast enough to support full, modern operating
systems. This has been a boon for users because it resulted in
an explosion of product features. With a full-featured operating
system, embedded systems designers can incorporate or adapt
large software applications that were originally written for general-
purpose desktop or server machines. This section aims to cover
the various background information to help embedded systems
designers understand and implement complex system software in
Platform FPGA-based systems. We cover specific design and tool
flows in section 3.A with the end result being running a complete
Linux system on the Xilinx ML-510 development board. Here we
address the concepts and definitions.
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3.4.1. System Software Options
Just as with hardware, an embedded systems designer has a wide
range of choices when it comes to system software. By system
software, we are referring to any software that assists the appli-
cation — usually by adding a software interface to access the hard-
ware. This ranges from a simple library of routines to a full-fledged
operating system that virtualizes the hardware for individual pro-
cesses.

In the simplest situations, almost no system software is needed
at all. In this case, the C start-up files (subroutines that the com-
piler/linker adds to every C program) are modified. At run time,
these subroutines execute before calling the main function of the
designer’s application. With no operating system, these initial sub-
routines are responsible for setting up the processor and periph-
erals. (There is a collection of files with names such as crt1.o,
crti.o, and gcrt1.o. The CRT part stands for C run time and,
depending on the compiler options, different variants of the start-
up files are used. Also, different processors will have different start-
up files and the names may vary as well.) Even if the processor has
a memory management unit, simple cases such as this execute the
application in “real” or “privileged” mode and no memory protec-
tion is used. This is called a standalone C program because it runs
without the support of any additional system software. In addi-
tion to being simple, an advantage of this approach is that there
is essentially no overhead.

For Platform FPGAs, this is often a first step when testing new
hardware cores because the C program typically has complete
access to the hardware, it is very simple to compile a small test
program, and there are fewer steps to test a live system. Often, this
solution produces a small enough executable that the entire soft-
ware system (application and system software) can fit within the
block RAMs of the Platform FPGA. Avoiding off-chip RAM can be a
significant advantage for some embedded systems. The disadvan-
tage, of course, is that it offers little to the developer. There is often
no protection against mistakes in the software. Perhaps the biggest
drawback today is that it is very difficult to take advantage of exist-
ing software that assumes a full C library and a workstation- or
server-type operating system. Examples of a stand-alone C system
include those provided by Xilinx’s Standalone Software Develop-
ment kit, µlibc-only, and newlib.

Sometimes additional functionality from the system software
is useful — such as supporting multiple threads — but the over-
head of a full-featured operating system is undesirable. Numerous
products and Open Source solutions are available that specifically
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target embedded systems to meet this need. They range from
simply adding timer interrupt service routine and the ability to
switch between different threads of control to full-featured oper-
ating systems that only lack a memory management unit. In some
cases, the system software is combined with the application when
the application is compiled.

One step up from “stand-alone” is a simple threading library.
This solution includes the ability to create, schedule, and destroy
multiple threads of control. The simplest of these just provide
library calls so that the developer does not have to manage con-
text switches and the program has to explicitly yield the processor.
More advanced threading libraries include preemption (a thread
does not have to explicitly yield the processor) and have the abil-
ity to schedule the frequency, priority, and deadlines of various
tasks. Examples of this include eCos, XilKernel, Nucleous, and
µC/OS-II — there are many others.

Somewhere between lightweight threading system services and
a full-fledged operating system is the µC Linux project. This
project grew out of the Linux 2.0 kernel and was intended to
provide support for processors that lacked a Memory Manage-
ment Unit (MMU). Without an MMU, there is no virtual memory.
This means that an operating system cannot create true processes
(since a process has its own virtual address space). So even though
µClinux does not support all of the usual Linux system calls (fork,
sbrk, for example) and any “process” can crash another process
by overwriting its memory, a large degree of compatibility is main-
tained.

Operating systems provide a number of services to an appli-
cation developer but they also have a cost. The obvious cost is
that they add overhead or, conversely, use hardware resources
(processor cycles, memory, power) that would otherwise be avail-
able to the application. There is also a cost associated with using
the system software. Often, embedded systems use OS software
that is different from what is found on a desktop or server. This
means that the developer has to learn new interfaces, conven-
tions, and what is or is not available. The type of services that
the system software can provide ranges from simply time-sharing
of the processor among multiple threads to simple protection of
resources to complete virtualization of the hardware platform.
A natural consequence of such a wide range of costs and benefits
is a spectrum of system software choices. Some of the advantages
and disadvantages of these choices are highlighted here.

At the far end of the spectrum, we have a full-featured operat-
ing system. These are the operating systems that one would find
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on desktop PCs, workstations, and servers. The chief disadvantage
of using an ordinary operating system in an embedded system is
that it requires a substantial overhead — the processor has to have
an MMU, the OS generally has a large memory footprint (almost
always requiring external RAM), and the operating system will
include a number of extra processes running concurrently with the
embedded application. Moreover, there are additional things that
a developer has to do. Most of the system software thus described
can run without a secondary storage subsystem (i.e., a filesystem).
However, most full-fledged operating systems need, at minimum,
a root filesystem. This doesn’t have to be in the form of a hard
drive but the developer has to create and store it somewhere on
the embedded system.

Until recently, it simply was not feasible to consider using a
full-fledged operating system in embedded systems because the
required resources far exceeded what was found in embedded sys-
tem hardware. However, with newer devices — such as Platform
FPGAs — it is possible and becoming more common. Having a
full-fledged operating system offers some enormous benefits to
the embedded systems developer. First, it breaks with the trend
thus far. A stand-alone C system is simple to work with. As we
added services, there was more and more burden put on the devel-
oper to know what is provided by the system software and how
to use it. With a full-featured OS, this is no longer an issue — it
is the OS most programmers are intimately familiar with. Second,
because it is the common OS, an enormous catalog of software
becomes available. As embedded systems become more ubiqui-
tous and connected to the Internet, they need to support more
interfaces and more communication protocols. With a full OS, it
becomes much much easier to leverage existing software.

3.4.2. Root Filesystem
UNIX and its variants (Linux, BSD, Solaris, and many, many oth-
ers) share the concept of a root filesystem. A filesystem is a data
structure implemented with a collection of equal-sized memory
blocks that provides the application with the capability of cre-
ating, reading, and writing variable-sized files. Most filesystems
provide the ability to organize the files hierarchically. In UNIX, files
and subdirectories are grouped in directories. That is, there is one
special directory called root that contains files and subdirecto-
ries; the subdirectories can contain files and other subdirectories.
The filesystem data structure is implemented most often on sec-
ondary, nonvolatile storage such as disk drives or, more recently,
solid-state drives. However, the underlying blocks of memory can
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be copied sequentially to other forms of memory, including RAM,
ROM, or even a file of another filesystem! When the filesystem is
being manipulated this way — being copied as sequential blocks of
memory — it is typically referred to as a filesystem image. When the
filesystem is being used (to manipulate files) it is called a mounted
filesystem.

The simplest embedded designs, such as stand-alone C sys-
tems, usually do not require a formal filesystem. Nonvolatile stor-
age is organized specifically to hold the application’s data and
often is customized for the problem at hand. However, as embed-
ded systems become more complex, they use full-featured operat-
ing systems. In the case of UNIX, it means that the designer must
create some initial filesystem called the root filesystem. Unlike
some operating systems that place all of their start-up code in a
single executable, the boot process for UNIX-like operating sys-
tems has the kernel interacting with the filesystem very early. In
some cases, the kernel is actually stored on the filesystem and the
bootloader (see later). After the kernel is running, it will look in
prescribed directories for start-up files, system configuration files,
and a special application called init, which is the first process
to run. The init process is then going to use configuration files
stored on the root filesystem to start other processes in the system
and finish booting from the system configuration files. What this
means is that the embedded systems designer has to how to create
a filesystem and how to populate it.

Later we talk about the specifics for Linux, but the universal
answer to the first question “where do we get started?” is that
we need to create a filesystem image. There are two main ways
of doing this. In both cases, one creates a subdirectory that will
become the root filesystem in the embedded system. This direc-
tory is populated with the files and subdirectories required for
the embedded system. This includes configuration files such as
what commands to run at start-up, required system and applica-
tion executables, kernel modules, and run-time libraries (shared
objects for dynamic linking). The first way is to create a filesys-
tem on a spare partition of a disk drive or use a loop-back device,
which allows you to treat a file as if it were a partition. Once the
filesystem is created, then you can mount the filesystem by sim-
ply copying your root filesystem to the newly mounted location.
The only significant drawback to this approach is that on most
operating systems, several of the steps require superuser privi-
leges. The alternative approach does not require root; instead it
uses a special-purpose application to generate a filesystem image
directly. Examples of this include genisoimage, genext2fs, and
mkfs.jffs2, which are programs that create a filesystem image



158 Chapter 3 SYSTEM DESIGN

for ISO9660/Joliet/HFS, Ext2, and JFFS2 filesystems. The first is
intended primarily for things such as CompactDisk storage, and
the latter works with Memory Technology Devices (MTD, i.e., flash
memory). The middle option works well for conventional disk
drives.

In both cases, the resulting filesystem image can be directly
written to some media (a drive partition on the embedded system,
an EEPROM, an MTD flash device) or combined with the operat-
ing system and loaded into RAM when booted. Since it is common
to copy a filesystem image to RAM and use it as the root filesystem,
the image is often called a “RAM Disk” and ‘ramdisk.image.gz’ is a
common file name for a compressed root filesystem image. Sev-
eral well-known distributions of GNU/Linux-based systems will
use a RAM Disk as the root filesystem. This allows a single ker-
nel to be first booted with the RAM Disk, then probe the hardware
and install the required kernel modules, and finally mount the
“real” root filesystem. This allows the system to finish booting
using the “real” root filesystem and the RAM Disk’s RAM is reused.
Because this use is so common, many places refer to it as the “ini-
tial ramdisk” or “initrd.” The name refers to how it is used but it is
no different from the filesystem images we create.

3.4.3. Cross-Development Tools
Regardless of which operating system choice, an embedded sys-
tems developer will need to compile one or more applications. As
it is often the case that the developer’s workstation has a different
processor and/or operating system, the designer will need to use
a different set of compiler tools to create an executable.

A compiler translates a High-Level Language (HLL) to efficient
assembly code. An assembler translates one-for-one mnemonic
instructions and assembler directives into machine code in an
object file format. A linker/loader combines multiple object files
and archives of object files (library files) into a single object file and
assigns memory addresses to all of the symbols in the object file.
A cross-compiler is a high-level language translator that runs on
one platform but produces executables for another platform. By
platform, we mean (1) a specific processor, (2) a C library, and (3)
an operating system. By default, most compilers now dynamically
link to a C library, so the version of the C library is important as
well as the specific version of the operating system. (In the case of
Standalone C systems, the platform is just the processor as there is
no operating system and any libraries are statically linked into the
executable.)
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Along with the cross-compiler, there is a matching set of “cross-
tools.” This includes what are typically called “bin tools,” which
is a reference to Unix object files and executable files (called
binaries) stored in subdirectories such as /bin and /usr/bin. Bin
tools include a cross-assembler, a cross-linker, and other tools
to read and manipulate object files. The debugger is typically
included in the cross-development tools as well.

3.4.4. Monitors and Bootloader
In the earliest days of microprocessor-based embedded systems,
simple 8-bit microprocessors migrated from hobby computers
and games into other commercial products (what we now call
embedded systems). Vendors of these microprocessors typically
made developer kits that included fabricated boards that high-
lighted the chips capabilities) and a Board Support Package
(BSP) that included compilers, power-on-self-test (POST) soft-
ware, libraries of Basic Input/Output System (BIOS) software, and
a built-in debugger. The POST did exactly what its name says and
often was executed before any other software simply to verify that
nothing had worn out since the last time the system was turned
on. POST software typically relied on the BIOS software to provide
functionality, such as “read a character from a UART” or “write a
disk sector.” Because the POST (and by extension the BIOS) had to
be stored in nonvolatile memory (ROM), this meant that embed-
ded systems designers could use those subroutines “for free.” That
is, by using the subroutines in the BIOS, the size of the embedded
application execution code size was kept small. The other software
component that was typically included was a simple debugger
called a monitor.

A monitor is a primitive type of a debugger. Modern debug-
gers typically run as a separate process (hence require an operat-
ing system), have access to the compiler’s symbol table, and give
the developer a rich, flexible interface. In contrast, a monitor is
interrupt-driven — either the processor is interrupted or the appli-
cation being debugged traps to the debugger. Also, a monitor usu-
ally only supports the most basic functionality — reading/writing
absolute addresses, setting breakpoints, and manipulating regis-
ters. Some were able to disassemble (convert machine code back
to assembly) but, again, they only showed absolute addresses
(not symbol names). Monitors typically had one functionality
not found in debuggers today — monitors support the trans-
fer of memory over the serial communication channel used to
interact. Because the communication channel usually transmit-
ted ASCII (seven significant bits per byte) and executables use all
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8 bits of a byte, blocks of memory were transmitted and encoded.
Two popular formats were common: Intel Hex files and Motorola
S-Records. Thus while developing the application, the designer
could typically start the monitor and then copy their application
to RAM. This helped shorten the test/debug their software.

We mention these historical notes because the vestiges of this
approach remain today. For example, the GNU debugger (or gdb)
is a popular debugger. It has a configuration where a small “gdb-
server” code is cross-compiled and its role is to interface to a
monitor. The gdbserver then uses a serial line to talk to the full
gdb client. The client, running on a workstation, has access to the
compiler’s symbol table, a graphical display, and a full-featured
operating system. This provides the developer with a rich user
interface in which to debug.

Modern systems have moved one step beyond. The modern
replacement of a monitor might be a JTAG interface.1 JTAG con-
trollers take over the processor and perform arbitrary read and
writes to any physical address, including main memory. This pro-
vides an alternative approach to the same end. In this case, the
debugger talks to an interface to the JTAG controller.

Likewise the POST/BIOS functionality has morphed into desk-
top PC’s BIOS software. This code begins right after the power
is turned on. There may be a little message “Press F10 for BIOS
Setup,” which gives the user a chance to change the main board’s
configuration. (Some computers say “CMOS Setup,” which is the
same thing — CMOS refers to a battery-backed memory that the
BIOS uses to store parameter parameters between power cycles.)
For some operating systems, it is critical that the BIOS puts the
computer and its peripherals into a known state. For others, such
as Linux, the early boot code assumes nothing and initializes the
hardware itself.

Partially concurrent with development of the PC, workstations
emerged with a slightly different approach. These machines used
a small software program called a bootloader (or sometimes called
PROM). In its earliest form, it was simply a program that read the
first sector of a hard drive (which contained a more advanced start-
up program) into main memory and then jumped/branched to the
first address of the loaded sector. This program then proceeded
to load the operating system. This multistage start-up sequence
was called booting the system, which is short for “boot strap.”
The name comes from the expression, “pulling yourself up by
your bootstraps” and was a way of addressing the question of

1 JTAG is an acronym for Joint Test Action Group. However, its use here and in practice is
so different from its intended purpose that we just refer to it as JTAG.
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“how do you start an operating system that exists on secondary
storage when there is no operating system to manage secondary
storage?” Well-known bootloaders from the past include Sparc
Improved Boot LOader (SILO), LInux LOader (LILO), and MIPS
PROM.

Bootloaders have emerged in the PC world as well. The BIOS
still runs first, then a bootloader is launched, and then the boot-
loader starts the operating system. Popular bootloaders today
include GRUB (GNU Project, 2007), U-Boot (Denk, 2007), and
RedBoot (eCos, 2004). Newer bootloaders are significantly more
sophisticated as well. A modern bootloader has the ability to com-
municate over various networking protocols, provide graphical
interfaces, and support booting multiple operating systems from
different media, as well as know how to read a disk sector from
secondary storage.

For embedded systems, the BIOS/monitor approach still domi-
nates very small (8-bit microcontrollers) and legacy systems while
the bootloader approach is gaining ground as full-featured oper-
ating systems become necessary to support widely used Internet
protocols.

Chapter in Review
This chapter focused on the principles of system design and the
hardware and software background necessary to be able to con-
struct embedded system designs on a Platform FPGA running with
a full-fledged operating system. In addition, we also emphasized
important design concepts to support the ability for base sys-
tems, custom hardware cores, and low-level components to be
reused within a system. From a hardware design point of view,
the processor-memory model plays a key role in the rapid assem-
bly and reuse of existing code. Likewise, by including Linux into
the software design, we can quickly incorporate an already well-
established code base that works well for both general-purpose
and embedded systems.

Certainly there has been much information presented, and
the reader may find that the gray pages of these chapters help
tie everything together with some practical examples. Because
we are still concerned with assembling base systems, we must
spend time understanding the additional tools, wizards, and GUIs
that can help expedite this process. Finally, in the last section
of the gray pages is a comprehensive Linux example, covering
everything necessary for acquiring, compiling, and running Linux
on an FPGA.
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Practical Expansion: System Design
The three major learning objectives for these gray pages are roughly grouped into the following categories: hardware
tools, software tools, and configuration tools. In the first section, the reader will learn more about the Xilinx-provided
components in the Embedded Development Kit and Xilinx Platform Studio (XPS), the tool used to assemble these hardware
components into systems. The second section is concerned with software aspects of such system. This includes everything
from building a customized cross-compiler from source code to compiling a Linux kernel and GNU operating system. The
last section describes the tools and different options for combining the hardware and software for a Platform FPGA system.

3.A. Platform FPGA Architecture Design

While the strengths of building custom computing machines lie in the ability to implement custom hardware cores, these
cores are often used in conjunction with typical computer organizations. This practical expansion describes how to assem-
ble simple processor-memory systems and then how to add customized cores to these systems. There are three main
concepts to be covered.

The first concept is to learn the predefined (Xilinx and third-party) cores provided by the Xilinx Embedded Development
Kit (EDK). Many of the system cores come from a collection of System-on-Chip cores called CoreConnect from IBM, Inc
(IBM, 2009). Some of the CoreConnect cores are not available for FPGA designs, and some have been reimplemented
so that they map well to an FPGA. Hence, some cores only support a subset of the original features found in the IBM
CoreConnect cores. Also, the interfaces may change slightly with each version of the Xilinx tools. So when trying to use
these cores, it is best to start with a quick look at the data sheets provided with the version of the tools you are using.

The second concept is to learn how to assemble systems from these cores. Xilinx provides a tool — Xilinx Platform
Studio (XPS) — that helps in this regard. We have already seen this approach in section 3.A with the Base System Builder
(BSB) wizard and the XPS tool. However, it is possible to start with a top-level VHDL file that names all of the components
and necessary signals and provides an architecture that instantiates all of the cores. But the number of signals, generics,
and ports on individual cores can make this approach tedious and error-prone.

The final concept is to learn how to customize and extend a base system. Again, this could be done by editing the
top-level VHDL file and other files directly, but it is usually easier to use the graphical user interface provided by XPS.
We end this section with a practical example, building a custom hardware core to perform single precision floating point
addition and run the design (and sample application) and the FPGA.

3.A.1. Xilinx EDK and IBM CoreConnect

The Xilinx EDK includes a large repository of prebuilt, customizable soft cores and wrappers that provide an interface for
instantiating hard cores. These cores range from UARTs to buses to memory controllers and even soft processorcores. IBM
CoreConnect adds to this repository by providing soft core versions of the already widely used buses, bridges, and arbiters
that have been configured for use with the Xilinx FPGA devices. Using these cores it is possible to build a processor-memory
system and then add custom cores to implement specific functionality.

Soft IP Cores To get a first-cut idea of what sort of peripherals are in a computer system, consider the back panel
of a standard PC. A standard desktop PC five years ago might have one or two serial ports, a mouse and keyboard con-
nector, a parallel port, a video port, an Ethernet port, and some audio jacks. In addition to these peripherals, there are
on-board peripherals that are unseen until the case is opened. This includes obvious peripherals (such as disk drives), as
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well as subtle peripherals, such as the temperature sensors and little read-only memories located on the DIMM memory
sticks.

First, we discuss the various backbone peripherals (processors, buses), next we discuss memory, and finally we finish
with a plethora of practical peripherals that might reasonably be implemented as cores in a Platform FPGA system. In the
peripherals section, we describe the characteristics of these components.

Processors The Virtex 5 FPGA can implement both hard core processors (PowerPC 440 (Xilinx, Inc., 2009a)) and a wide
range of soft processor cores, such as MicroBlaze, PicoBlaze, and OpenSPARC. The main difference between these pro-
cessor choices is their performance versus area trade-off. The PowerPC 440 is a 32-bit processor that implements the
PowerPC architecture and adds some features for embedded systems. The MicroBlaze (Xilinx, Inc., 2009c) soft processor
core is also a 32-bit processor, and current versions now support virtual memory, making it a desirable alternative to the
PowerPC. One benefit of the MicroBlaze is that it can have multiple instances, limited by the size of the device. Compared to
the PowerPC, which on the Virtex 5 it has zero, one, or two hard processor cores. The PicoBlaze (Xilinx, Inc., 2010) is a very
small 8-bit processor, which is appropriate for a number of control applications — especially those with large, complex
state machines. Depending on the number of states and transitions, a PicoBlaze can implement the same functionality
with fewer resources. However, it is unlikely that one will ever run a full-featured OS on one. The LEON Open Source
Sparc David Weaver (2008) processor is gaining more momentum as its implementation in FPGA configurable resources is
becoming more efficient.

Many other soft processors could be discussed here as well; however, for more rapid development the obvious proces-
sor to use is the PowerPC, as there are two hard PowerPC 440 cores on the chip used throughout the text to demonstrate
the book’s concepts. To use these cores, all that is needed is to instantiate a black box component, which will expose
the PowerPC signals to the design. The component is called ppc440 and, using EDK nomenclature, instances are named
ppc440_0 and ppc440_1.

Buses A system designer has a number of choices for buses. They include the PLB, LMB, OPB, FSL, DCR, and two kinds of
OCM! Why so many? Two reasons. Some of these buses are designed for very specific situations and provide the required
functionality with the minimal amount of resources. Second, each general-purpose bus provides different performance
characteristics, features, and resource requirements. It is up to the system designer to find the right bus structure to meet
performance goals given the fixed amount of resources available.

The Processor Local Bus (Xilinx, Inc., 2008, 2009d), or PLB, comes from the IBM CoreConnect library. The PLB is con-
sidered the system bus, connecting the processor (in our case the PowerPC 440) to high-speed peripherals such as off-chip
memory. It is a high-performance 128-bit data (32-bit address) bus designed to interface to the PowerPC 440 core. The PLB
offers the highest bandwidth of the other available buses from CoreConnect, along with other features, such as concurrent
reads and writes, address pipelining, fixed and variable burst, and cache fill features. Consequently, the resources needed
to implement master and/or slave interfaces to this bus can be high. Also, implementing a PLB interface is more complex,
as there are additional protocols to go along with the additional features.

The Local Memory Bus, or LMB, is a 32-bit bus specifically designed to be a system bus for the MicroBlaze (the Micro-
Blaze can also connect to the PLB). Unlike the PLB, it is designed to have only one master (the MicroBlaze) and one slave
(a memory controller). With these restrictions, many of the features of the PLB are unneeded. It has a reasonably high
bandwidth and requires a modest amount of resources.

A number of peripherals (such as serial ports or timers) require very little bandwidth and few features. The On-chip
Peripheral Bus, or OPB, is a 32-bit bus and is an excellent compromise between performance and resource requirements.
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It requires a moderate number of logic blocks, yet still offers a substantial amount of bandwidth. It is also has a simpler
protocol, which makes it an easier interface to implement in cores. It can be used with either PowerPC or MicroBlaze, and
a number of bridges allow a number of effective bus structures to be developed.

The Fast Simplex Link bus, or FSL bus, is a special-purposebus designed to push (or pull) a stream of data out of (or into)
a MicroBlaze. In essence, it is a first-in, first-out (FIFO) that directly ties the processor to a peripheral. It uses little in terms
of resources and by construction there is no bus contention. Because the FSL is essentially point-point, the bandwidth is
considerably high between the two components.

One of the key distinctions between the buses discussed thus far is how much bandwidth is needed. However, in
some cases, a peripheral core will need high bandwidth for some types of access and low bandwidth for others. A simple
response would be to use a high-bandwidth bus to share both kinds of access. However, mixing these two types of access
can quickly degrade the effective bandwidth of a high-performance bus. (By arbitrating for simple, one-byte transfer, low-
bandwidth access actually steals many productive cycles from a high-bandwidth bus.) The ideal solution is to use two
buses.

The Device Control Register bus (or DCR bus) is designed specifically to do this. It requires very little resources and, in
fact, is fairly limited in its functionality (only one master and only a 10-bit address bus). However, it allows a processor to
directly communicate small bits of information (such as configuration information) to a peripheral without interfering with
the effective bandwidth of a bus like the PLB.

Memory The last set of components that form the backbone of a typical computer organization is related to the memory
hierarchy. This includes off-chip memory and on-chip memory (formed from the BRAMs). On-chip memory is limited based
on the available resources; however, it provides high bandwidth and low latency access. This is not to be confused with
cache on a conventional CPU. Instead, this is more along the lines of local storage, requiring some control mechanism to
populate the memory and provide access to its contents. Off-chip memory is conventionally in the form of either static or
dynamic random access memory (SRAM or DRAM). Off-chip memory can provide a significantly greater storage capacity
while still providing high bandwidth and respectably low latency access.

On-chip RAM is, by default, built from the diffused Block RAM resources distributed throughout the Virtex family chips.
These RAMs are usually instantiated as a single core that allocates the proper number of BRAMs and associated decode
logic to match the controller’s data bus width and capacity (specified by the number of address lines). Using the tools,
when instantiating a BRAM core, an on-chip memory controller must also be instantiated to connect the BRAM to the bus.
It is also possible to create your own hardware core with an interface to the BRAM. Each BRAM core includes two ports for
dual read/write access, which can give a lot of flexibility to the designer with accessing memory. More of these memory
access concepts are discussed in Chapter 6.

The interface between off-chip memory and an on-chip bus is handled by a memory controller. The memory controller
is chosen to match a bus (typically PLB, OPB, or LMB) with various memory technologies. The variety of off-chip memory
technologies warrants some discussion because, in many ways, its importance in computer system design is growing.

More recently, systems using an external memory controller use the Multi-Ported Memory Controller (MPMC). The
MPMC provides one or more connection ports to off-chip memory, which means that two cores could be directly connected
to the MPMC and independently issue requests to and from memory. This is useful for components such as the processor,
which need frequent access to memory and also provide an additional benefit of alleviating the system bus (in our case
the common PLB) from all of the memory traffic. Which cores are connected is an important design consideration that we
will get into more in Chapter 6.
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Peripherals Finally, the group of cores one might find in an embedded system are the peripherals. These cores are
typically associated with the various sensors and actuators used in the enclosing product plus all of the basic cores used
to communicate with subcomponents in the basic computing system. Needless to say, the number and the variety of
peripherals that may appear in a Platform FPGA are immense. Moreover, newer technology is always emerging and some
older technology will mature and fall out of favor (but not completely). So at best, we can hope to characterize some of the
major players here and provide enough information to help a designer sort out which cores might serve them and which
ones have nothing to do with their project’s goals.

(Also, it is worth noting that devices is a synonymfor peripheral in CoreConnect terminology. Peripheral is predominant
in the Xilinx literature and appears in the IBM documentation, but “device” occasionally appears in some literature and
when it does, it usually means a peripheral core.)

To organize this large set of cores, we can begin by grouping them into categories by their function. Communication
(low-speed and high-speed) is associated with cores that interface to off-chip components (from PROMs to terminals
to other computer systems). Digital and Analog I/O also transmit information from the FPGA to external devices (and the
converse) but these tend to be less sophisticated. For example, a digital I/O line tends to be a TTL signal (either 0 or +5 volts)
whereas communication includes an encoding and semantics. There are also cores that are responsible for distributing and
controlling clock signals. Other specialized cores are responsible for managing interrupts, creating programmable timers,
and such. Of course, there are function units used to off-load processor computation. We briefly describe several possible
cores later. Note that many of the communication cores are detailed later in Chapter 7.

A number of low-speed communication cores are used. For many decades,the king of low-speed cores was the industry
standard RS-232C. A Universal Asynchronous Receiver/Transmitter (UART) core implements this standard and it typically
transmits 10- to 12-bit messages serially at a relatively slow rate. In a standard desktop PC, this is the COM1/COM2 port
that one used to connect to dial-up modems. In embedded systems, these cores are often used for debugging because
the PC’s port can be interfaced easily to a UART on the embedded system. In a Platform FPGA design, a UART is often
included for this very purpose. Other low-speed protocols include the Inter-Integrated Circuit (IIC or I2C), Serial Peripheral
Interface (SPI), and Dallas 1-wire. The subtle differences between these protocols and the cores that implement them are
explained later. Often the choice of one over another is dictated by a third-part sensor, display, or actuator that is to be
integrated into the embedded system. (Note Intelligent I/O, or I2O, is completely different and was designed to work with
PCI to off-load some I/O processing on hardware RAID cards, for example.)

High-speed communication protocols can be grouped into two broad categories: parallel and serial. The older protocols
used a relatively slow clock rate, high voltages, and wide parallel buses to increase bandwidth. As newer techniques, such
as Low-Voltage Differential Signaling (LVDS), became popular, newer high-speed serial protocols have become extremely
popular. The highest speed communication protocols today aggregate multiple high-speed serial paths, or lanes, into one
high-speed channel. (Again, details are covered later.)

Examples of parallel high-speed protocols include Small Computer System Interconnect (SCSI) and the Advanced
Technology Attachment (ATA) buses implemented by cores of the same name. The SCSI protocol used a parallel bus,
originally designed for high-speed peripherals (such as disk drives). The ATA protocol was specifically designed to talk to
disk drives, and the actual chip-to-chip protocol, called Integrated Drive Electronics or IDE, was ubiquitous for years in the
standard PC desktop. Both of these standards have been updated recently to have high-speed serial counterparts — iSCSI
and SATA. The Serial ATA (SATA) (Grimsrud, Knut, and Smith, Hubbert, 2003) protocol subsumes both ATA and IDE; to
distinguish SATA from the older parallel ATA/IDE protocol, the latter has been retroactively called PATA for Parallel ATA
(InterNational Committee for Information Technology Standards T13, 2010).
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Other well-known high-speed serial protocols include the Universal Serial Bus (USB) (USB Implementers Forum (USB-
IF), 2010a,b), which has almost completely replaced RS-232C (Electronics Industries Association, 1969) in commodity PC
hardware today, FireWire (IEEE 1394) (1394 Trade Association, 2010), InfiniBand (Futral, 2001), HyperTransport (Holden,
Brian, Anderson, Don, Trodden, Jay, and Daves, Maryanne, 2008; HyperTransport Consortium, 2010), and PCI Express (or
PCIe) (PCIIG, 2010),

Of special note is a number of networking protocols specifically designed to allow multiple, independent computing
systems to communicate. The Ethernet family of protocols is the most common of all of these and is the dominate protocol
for wired networks. Others, such as the Controller Area Network (CAN), are used in a number of embedded systems
situations.

3.A.2. Building Base Systems

Our goal is to assemble systems that can be reused through a variety of designs and easily expanded to meet each new
design need. Using the bottom-up approach to assemble the components in a piecewise fashion is a good starting point.
Instead of building up from the lowest levels, we focus more on a more course grain, compute core, granularity. These
were discussed briefly earlier, but now we will be more Xilinx and Virtex 5 specific.

Our key building blocks will be the PowerPC 440, PLB, and PLB BRAM (which is technically composed of a BRAM
component and a BRAM interface, which connects PLB requests to the BRAM). The PLB will act as the system bus to
connect the processor to the on-chip memory. We start with this base system because it provides us with the greatest
flexibility; however, it does seem to lack much functionality. Strictly speaking, if we are starting with just these components
we would not have a system clock or reset capability.

The ML-510 development board comes with an oscillator to provide a 100-MHz clock that can be used to drive additional
clocks through one or more DCMs. In Xilinx’s 11.x EDK tools, the DCMs are wrapped by a new component called the
clock_generator, which can generate up to 16 output clocks. If we wanted to operate the PowerPC 440 at 400 MHz
and the PLB at 200 MHz, we could instantiate the clock generator with the two additional clocks. This will be useful later
when interfacing with components running at nonstandard frequencies. The upper limit of the Virtex 5 FPGA fabric is 550
MHz and care should be taken when trying to operate large amounts of the fabric at high frequencies as it becomes difficult
to meet timing conditions and can produce greater amounts of heat. Finally, we want to include reset circuitry to allow
the system to be reset. A reset differs from a power cycle in that the reset does not requiring reprogramming the FPGA,
whereas the power cycle removes power from the fabric and the volatile memory cells lose their configuration. The EDK
provides an additional component known as proc_sys_reset. This component connects an external reset switch to
the system and can provide bus and peripheral component resets.

In addition to the component instantiations, we need to specify which pins on the FPGA are connected to the off-chip
oscillator (for the clock) and reset switch. If using a Xilinx development board (such as the Xilinx ML-510), this information
can be found from the board’s schematic documentation. Otherwise consult the vendor for the necessary documentation.
On the ML-510 the pin location for the system clock is L29 and the reset pin is J15. Using the user constraints file (UCF)
we can specify the pin constraints that will connect to the top-level system as I/O pins.

We would like to take a moment to reflect on what we have discussed. Some may wonder why we jump into building
a custom design when there is already a functional base system builder (BSB) wizard available. It is true, while we recom-
mend use of the wizard as a beginning tool, the earlier you understand what the tool is building, the quicker you will be
able to augment and even build your own custom designs. What we would like to do now is actually go into more detail
regarding the files produced by the BSB wizard and used by XPS.
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3.A.3. Augmenting Base Systems

The base system described so far lacks much functionality, at least that is visible by any I/O device. So writing a program
to print “hello world” would not print to a console because no such peripheral device exists yet. We can augment the
processor-memory base system to include a peripheral, a UART, to provide a serial console interface to the system. As
discussed earlier, we added the UART to the peripheral bus; however, current Xilinx tools focus less on the separation of
buses (system and peripheral) and instead rely on a higher bandwidth and lower latency system bus. It is still possible to
use a two bus system (and there are many reasons to do so), but for components that have low utilization like a UART,
adding them to the PLB does not impact the design negatively.

Because the UART is a slave on the bus, it requires an address range to which it will respond to bus requests. The
address range must be unique and not encompass any existing addresses for other cores. For the UART, we will give the
address range between0x84000000 and0x8400FFFF. Any requests crossing the bus between these addresses will
be responded to by the UART. In addition to the address range, we must also specify the transmit and receive pins that the
UART will connect to off-chip. These pins may be connectedto an RS232 chip on the developerboard. As with the clock and
reset pins, we must identify the pins for transmit and receive for the UART and connect them in the user constraints file.
The ML-510 developer board contains two RS232 chips (it is possible to add multiple UARTs; however, only two connect
to the standard DB9 serial port).

Net fpga_0_RS232_Uart_1_RX_pin LOC = T11 | IOSTANDARD=LVCMOS33;
Net fpga_0_RS232_Uart_1_TX_pin LOC = H9 | IOSTANDARD=LVCMOS33;

At this point we have constructed the base system that was created during section 3.A. Before we build and add our
own custom core we should take a brief moment to discuss some of the important Xilinx project files that can be used to
more quickly build, augment, and implement working systems.

3.A.4. XPS Project Files

The BSB wizard can quickly generate base systems using the processor-memory model. In fact, more than just the pro-
cessor, bus and memory can be added and modified with the BSB wizard. We can add peripherals such as UARTs, timers,
interrupt controller, and even I/O for components such as LEDs and LCD. We can also add networking interfaces and off-chip
memory interfaces. We encourage you to play around with the BSB wizard and to read the accompanying documentation
to understand what adding each peripheral or modifying each parameter does.

Upon completion of using the BSB wizard, a Xilinx Microprocessor Project is created. We would like to take some time
to identify the important project files that are quite useful when assembling and modifying a Platform FPGA system.

system.xmp Xilinx Microprocessor Project (XMP) file used for project management (it is recommended not to modify
this file directly).

system.mhs MicroprocessorHardware Specification (MHS) file used by Platform Generator (platgen) to assemble base
systems based on the configuration settings specified in this file. This file will be a common point of contact if you
prefer not to use the XPS GUI.

system.mss Microprocessor Software Specification (MSS) file used by Library Generator (libgen) to assemble the
operating system libraries and drivers.

system.ucf User Constraints File (UCF) located in the data directory, which specifies constraints for system. Here you
can set physical pin constraints, I/O standards, clock constraints, etc.
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The choices while using the BSB wizard customize each of these four files. Looking at the MHS file (from any standard
text editor or from within the XPS GUI) shows the I/O ports and each component within the base system. For example, the
PowerPC’s component instance is specified by:

## Anything beginning with the # symbol is a comment
## PowerPC 405 MHS Instance
BEGIN ppc440_virtex5
PARAMETER INSTANCE = ppc440_0
PARAMETER C_IDCR_BASEADDR = 0b0000000000
PARAMETER C_IDCR_HIGHADDR = 0b0011111111
PARAMETER C_SPLB0_NUM_MPLB_ADDR_RNG = 0
PARAMETER C_SPLB1_NUM_MPLB_ADDR_RNG = 0
PARAMETER HW_VER = 1.01.a
BUS_INTERFACE MPLB = plb_v46_0
BUS_INTERFACE JTAGPPC = ppc440_0_jtagppc_bus
BUS_INTERFACE RESETPPC = ppc_reset_bus
PORT CPMC440CLK = clk_400_0000MHzPLL0
PORT CPMINTERCONNECTCLK = clk_200_0000MHzPLL0
PORT CPMINTERCONNECTCLKNTO1 = net_vcc
PORT CPMMCCLK = clk_100_0000MHzPLL0_ADJUST
PORT CPMPPCMPLBCLK = clk_100_0000MHzPLL0_ADJUST
PORT CPMPPCS0PLBCLK = clk_100_0000MHzPLL0_ADJUST

END

Microprocessor Hardware Specification The MHS file can be used to quickly instantiate additional compute cores
(custom or from the Xilinx IP library repository) or modify parameters and ports. The parameters can be generally associated
with the generics of a VHDL entity while the ports are associated with the ports of the entity. The bus interface is a Xilinx
specification, which aggregates all of the associated bus signals into a single structure. For example, the PowerPC is
connected to the PLB as a bus master on the BUS_INTERFACE_MPLB. For cores connecting to the PLB via a slave
interface, bus addresses are set in the MHS file through base and high address parameters.

The MHS file is used by the Platform Generator (PlatGen) tool. This is one of the many underlying tools (or commands)
called by XPS. Generally speaking, PlatGen parses the MHS file and locates the HDL for each core to generate a top-level
component (often called system.vhd for VHDL based systems, located in the hdl directory). PlatGen invokes the HDL
synthesis of each of the cores, culminating with synthesis of the top-level entity. The system then continues through the
NGCBuild, NGDBuild, MAP, PAR, and BitGen flow discussed in section 3.A.

Microprocessor Software Specification The MSS file is used to specify parameters for the operating system,
included libraries, and drivers. Initially, the BSB wizard generates the MSS file with a stand-alone OS and specifies stan-
dard in/out to a UART (assuming one is provided). The MSS file also specifies which cross-compiler to use, for example,
powerpc-eabi-gcc. Each component may include a driver that specifies software drivers and libraries to be used to
interface with the component, if necessary. The MSS file is used by the Library Generator (LibGen) to create the software
platform for the embedded processor system.

User Constraints File The UCF is located in the data directory and specifies the pin location constraints, attributes,
timing constraints, and I/O standards, among many others. In embedded systems design it is common to include I/O in the
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design, whether to some display (LEDs or LCD) or some digital input (say from an analog-to-digital converter for a sensor).
For these designs the general-purpose I/O is typically fixed at manufacturing of the PCB layout, but a developer board may
include a variety of components to interface with, such as EEPROMs or temperature sensors. For our designs, we will need
to include at least the clock:

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;
Net fpga_0_clk_1_sys_clk_pin LOC = L29 | IOSTANDARD=LVCMOS25;

This initial introduction to these files is meant to help break the ice when it comes to working with Xilinx tools. Clearly,
Xilinx documentation is going to provide a wealth of information that this book cannot include. What is important is that
while beginning to use these tools, you spend the time to understand how all the files are used and interact.

3.A.5. Practical Example: Floating-Point Adder

To help tie all of these concepts together we will build a custom computing core to perform single precision addition:

F = A + B

We will use the available wizards and repository of cores already available to help expedite the build process. When
building the base system and hardware core template, we will rely on the readers to have familiarized themselves with
the material covered in the gray pages of Chapters 1 and 2.

The hardware core will use two input FIFOs to buffer the two operands (A and B) and one output FIFO to buffer the
result (F). The operands will be written into the FIFOs by the processor, but only when both operands are available and
when there is room in the result FIFO will the addition operation commence.

The FIFOs and single precision floating point adder will be generated through the Xilinx CoreGen GUI. We will then
modify the hardware core to use these new components and create a simple software application to test the hardware.
The goal of this example is to show how to integrate all of these tools, wizards, and components. We want to stress that
there are more efficient ways to perform floating point computation, one of which is to directly use the APU/FPU supplied
by Xilinx for the Virtex 5 FX130T designs.

3.A.6. Base System

Creating a base system through the base system builder wizard should be a fairly familiar process now. We will not show
all of the wizard options, choosing instead to list the necessary capabilities of the system. Reader may choose to add
more peripherals for their own testing, keeping in mind that the larger the system, the longer the tools will take to run and
generate a bitstream. The base system should include the following:

• PowerPC 440 - 400 MHz
• PLB - 100 MHz
• UART Lite
• On-Chip Memory - 64 KB

Adding off-chip memory (either via ppc440mc or mpmc) is optional; our application will be stored within on-chip memory,
but for further practice consider rebuilding the system to run out of off-chip memory once the on-chip memory system
works. (Note: If you choose to include off-chip memory, you will still need on-chip memory. The processor looks to address
0xFFFFFFFC during boot up before jumping to the beginning of the program, which may or may not reside in off-chip memory.)
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3.A.7. Create and Import Peripheral Wizard

Once the base system has been built, we will use the CIP wizard to generate a hardware core template. In the application’s
description we stated we would write operands A and B to the hardware core as well as retrieve result F from the hardware
core. From this description we know we need at least three slave registers (software addressable registers) within our
custom hardware core. The hardware core generated in section 3.A will suffice or you can choose to add additional registers
to provide status information regarding the floating point computation (such as ready for data, result ready, FIFOs empty,
and FIFOs full). Configure the hardware core by:

• naming the core my_test_core
• connecting the core to the PLB version 4.6
• checking User Logic Software Registers
• unchecking Include data phase timer
• setting the number of software addressable registers to 3
• accepting the remaining default options

After the template has been generated, we will create the FIFOs and the single precision floating point adder before
modifying the template.

3.A.8. Core Generator
Change directories into the newly created hardware core, which resides within the pcores directory of the XPS project.
Create a directory within the my_test_core called coregen.

% cd pcores/my_test_core_v1_00_a
% mkdir coregen

Launch the CoreGen wizard and create a new project within the coregen directory for the Virtex 5 FX130T FPGA (unless
you are targeting a different FPGA).

First we will generate a FIFO. Rather than generating three separate FIFOs (for each input and output) we will use one
FIFO, but instantiate it three times with our hardware core. We will then generate the single precision floating point adder.
This is followed by modifying the necessary project files for the hardware core to use the generated components. Finally,
we include the hardware core in the previously generated base system, add some test C code, and generate a bitstream
to test out the design.

Generate FIFO With the CoreGen project created, let’s begin by expanding the Memories & Storage Elementscategory.
Then expand the FIFOs subcategory and run the FIFO Generator.

Set the component name to fifo_32x1024

Because single precision addition uses 32 bits of data, we must generate our FIFO to use both 32-bit inputs and outputs.
Depending on how we want to clock the system, we can either use a common clock (where the read and write clocks are
the same) or independent read and write clocks to allow us to use the FIFO to cross the clock domains. For now, let’s use
a common clock. The depth of the FIFO will dictate the number of resources used. We will set the depth to 1024 elements
(again, with 32-bit data width) to use a single 36-Kb BRAM per each FIFO instance.

To support processor reading data from the result FIFO correctly, enable the First-Word Fall-Through read mode.
Without this each read will be off by one data due to the 1 clock cycle latency to read from a standard read mode FIFO.
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Finally, add the valid signal, which we will use to indicate when data are valid from the operand A and B FIFOs to
perform the calculation by the single precision floating point adder.

Generate Adder Next we generate the single precision floating point adder. Under the Math Functions category is the
Floating Point subcategory. Expand these and run the Floating-point Generator (Xilinx, Inc., 2009b). Set the component
name to sp_fp_adder.

Because we are only wanting to support addition, we will set the operation to Add. Because the Virtex 5 FX130T has
320 DSP slices, we can afford to use a few for this example. Select High Speed for the architecture optimizations and select
Full Usage to use DSP slices. Finally, select all of the handshaking signals: operation new data, operation read-for-data,
and ready.

We will use the handshaking signals along with the FIFO’s handshaking signals to coordinate the computation, making
sure not to process data unless both operands are valid and the resultant FIFO is not already full.

For this simple example only addition is supported; however, once complete the reader may wish to explore supporting
additional floating point computations. We will leave this experimentation up to the reader, but will offer one point to
consider. That is, how to select which operation the floating point unit is to perform.

3.A.9. User Logic
Now that we have generated the FIFOs and single precision floating point adder we have to modify the hardware core
to actually instantiate these cores. The template hardware core contains a file called user_logic.vhd within the
following directory:

pcores/my_test_core_v1_00_a/hdl/vhdl/user_logic.vhd

By default the user logic template supports reads and writes from software addressable registers, known as slave
registers in the template. We must add our logic to the generated template in order to support the single precision floating
point adder and FIFOs. If this is your first time creating and modifying a core generated by Xilinx Create and Import Peripheral
wizard, spend some time exploring the template and reading the supplied comments to get a feel for the template.

Once comfortable, we will add the following signal declarations beneath the existing signal declarations. For those
less familiar with VHDL, these signal declarations need to be inserted between the architecture and begin sections of the
user_logic.vhd file.

architecture IMP of user_logic is
-- Insert Signal and Component Declarations here

begin

These signals will be covered in more detail when they are instantiated within the design. For now, they are simply to be
used to connect up the CoreGen components.

-- Internal Signals for SP FP Adder Example
signal adder_re : std_logic;
signal slv_we_reg : std_logic_vector(0 to 3);
-- Operand A FIFO Signals
signal fifo_A_din : std_logic_vector(31 downto 0);
signal fifo_A_wr_en : std_logic;
signal fifo_A_rd_en : std_logic;
signal fifo_A_dout : std_logic_vector(31 downto 0);
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signal fifo_A_full : std_logic;
signal fifo_A_empty : std_logic;
signal fifo_A_valid : std_logic;
-- Operand B FIFO Signals
signal fifo_B_din : std_logic_vector(31 downto 0);
signal fifo_B_wr_en : std_logic;
signal fifo_B_rd_en : std_logic;
signal fifo_B_dout : std_logic_vector(31 downto 0);
signal fifo_B_full : std_logic;
signal fifo_B_empty : std_logic;
signal fifo_B_valid : std_logic;
-- Result F FIFO Signals
signal fifo_F_din : std_logic_vector(31 downto 0);
signal fifo_F_wr_en : std_logic;
signal fifo_F_rd_en : std_logic;
signal fifo_F_dout : std_logic_vector(31 downto 0);
signal fifo_F_full : std_logic;
signal fifo_F_empty : std_logic;
signal fifo_F_valid : std_logic;
-- Single Precision Floating Point Adder Signals
signal adder_a : std_logic_vector(31 downto 0);
signal adder_b : std_logic_vector(31 downto 0);
signal adder_result : std_logic_vector(31 downto 0);
signal adder_nd : std_logic;
signal adder_rfd : std_logic;
signal adder_rdy : std_logic;

Directly after these signals will come the component declarations. These are the FIFO and adder components generated
by CoreGen. These declarations can be found in each component’s corresponding .vho file located within the core-
gen directory created earlier. Even though we are using three instances of the FIFO, they all share the same component
(fifo_32x1024) declaration.

-- FIFO Component Declaration - 32 bits, 1024 Elements Deep
component fifo_32x1024

port (
clk : in std_logic;
rst : in std_logic;
din : in std_logic_vector(31 downto 0);
wr_en : in std_logic;
rd_en : in std_logic;
dout : out std_logic_vector(31 downto 0);
full : out std_logic;
empty : out std_logic;
valid : out std_logic);

end component;
-- Single Precision Floating Point Adder Component Declaration
component sp_fp_adder

port (
a : in std_logic_vector(31 downto 0);
b : in std_logic_vector(31 downto 0);
operation_nd : in std_logic;
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operation_rfd : out std_logic;
clk : in std_logic;
result : out std_logic_vector(31 downto 0);
rdy : out std_logic);

end component;

Now that we have declared all of the signals and components to be used within our system, we can go ahead and
instantiate each of the components. This code must go between the architecture’s begin and end keywords.

begin
-- Put signal and component instantiations here

end IMP;

Shortly we will explain how the intermediate signals connecting each component function.

-- FIFO A (Operand A) Component Instantiation
fifo_A_i : fifo_32x1024

port map (
clk => Bus2IP_Clk,
rst => Bus2IP_Reset,
din => fifo_A_din,
wr_en => fifo_A_wr_en,
rd_en => fifo_A_rd_en,
dout => fifo_A_dout,
full => fifo_A_full,
empty => fifo_A_empty,
valid => fifo_A_valid);

-- FIFO B (Operand B) Component Instantiation
fifo_B_i : fifo_32x1024

port map (
clk => Bus2IP_Clk,
rst => Bus2IP_Reset,
din => fifo_B_din,
wr_en => fifo_B_wr_en,
rd_en => fifo_B_rd_en,
dout => fifo_B_dout,
full => fifo_B_full,
empty => fifo_B_empty,
valid => fifo_B_valid);

-- FIFO F (Result) Component Instantiation
fifo_F_i : fifo_32x1024

port map (
clk => Bus2IP_Clk,
rst => Bus2IP_Reset,
din => fifo_F_din,
wr_en => fifo_F_wr_en,
rd_en => fifo_F_rd_en,
dout => fifo_F_dout,
full => fifo_F_full,
empty => fifo_F_empty,
valid => fifo_F_valid);

-- Single Precision Floating Point Adder Component Instantiation
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sp_fp_adder_i : sp_fp_adder
port map (

clk => Bus2IP_Clk,
a => adder_a,
b => adder_b,
operation_nd => adder_nd,
operation_rfd => adder_rfd,
result => adder_result,
rdy => adder_rdy);

With the components properly declared and instantiated we can begin to connect the intermediate signals that drive the
inputs to our components. For the FIFOs these signals consist of data input, write enable, and read enable. For the adder
these signals consist of operands A and B, and the new data operation.

FIFO A receives data from slave register 0. By this we mean when the processor writes data to the hardware core’s
base address with the offset of 0x00, data will then be written into FIFO A. Similarly, FIFO B receives data from slave
register 1, which is the hardware core’s base address with the offset of 0x04. When data are written to either of these
slave registers, there is a single clock cycle delay between when data arrive from the bus and when it is valid in the
register. To make sure we write the correct data into the FIFO, we must register the write select from the bus, using one
of our intermediate signals we declared, slv_we_reg. This is done by adding the following process:

SLAVE_WE_REG_PROC : process( Bus2IP_Clk ) is
begin

if Bus2IP_Clk’event and Bus2IP_Clk = ’1’ then
if Bus2IP_Reset = ’1’ then

slv_we_reg <= (others => ’0’);
else

slv_we_reg <= slv_reg_write_sel;
end if;

end if;
end process SLAVE_WE_REG_PROC;

Now we can drive the write enable signals for FIFO A and B, correctly storing the single precision operands A and B into
the corresponding FIFO.

-- FIFO A Signals
fifo_A_din <= slv_reg0;
fifo_A_wr_en <= slv_we_reg(0);
fifo_A_rd_en <= adder_re;
-- FIFO B Signals
fifo_B_din <= slv_reg1;
fifo_B_wr_en <= slv_we_reg(1);
fifo_B_rd_en <= adder_re;
-- FIFO F Signals
slv_reg2 <= fifo_F_dout;
fifo_F_rd_en <= Bus2IP_RdCE(2);
fifo_F_wr_en <= adder_rdy;
fifo_F_din <= adder_result;
-- FIFO A/B Read Enables
adder_re <= not(fifo_A_empty) and not(fifo_B_empty) and

not(fifo_F_full) and adder_rfd;
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-- Adder Signals
adder_a <= fifo_A_dout;
adder_b <= fifo_B_dout;
adder_nd <= fifo_A_valid and fifo_B_valid and not(fifo_F_full);

In addition to data and write enable signals, we are also driving the read-enable signals for FIFO A and FIFO B with the
same signal,adder_re. This signal is asserted when both the operands are valid, the single precision adder is ready for
data, and the resultant FIFO is not full. This condition assures that we do not consume data from FIFOs without the adder
being able to process it or the result FIFO being able to store it.

Output data from the adder are written as input data to the FIFO. When data are ready, this indicates there are valid
data to be written to the result FIFO. To support the processor reading data from the result FIFO, we connect the output
from FIFO F to the third slave register ( slv_reg_2) so that when the processor reads from the hardware core’s base
address with the offset 0x08, the result will be returned to the processor. In order to support writing to slv_reg_2 we
must comment out slv_reg_2 signal assignments in the SLAVE_REG_WRITE_PROC process. If we neglect this
step we will receive an error during synthesis stating a multisource on the register.

3.A.10. Modify Hardware Core Project Files
Now that we have the core logic in place we can go ahead and modify the hardware core’s project files to support the
generated CoreGen netlists. First, we must create a netlist directory to store these netlists and allow the Xilinx tools to
locate them during the NGCBuild process. Without these files we will be unable to generate a bitstream for testing.

% cd pcores/my_test_core_v1_00_a
% mkdir netlist
% cp coregen/fifo_32x1024.ngc netlist/fifo_32x1024.ngc
% cp coregen/sp_fp_adder.ngc netlist/sp_fp_adder.ngc

Once the netlists have been properly copied into the newly created netlist directory, we must change directories to the
data directory. Within the data directory we will create a new file with whatever text editor you are comfortable using
called:

my_test_core_v2_1_0.bbd

This is known as the Black Box Description (BBD) file. The BBD file is used to identify the black box netlists of a hardware
core. In our hardware core we have two black boxes, the FIFO and the single precision adder. To specify this within the
BBD file we must add the following:

FILES
fifo_32x1024.ngc, sp_fp_adder.ngc

Finally, we must modify the Microprocessor Description File (MPD) within the same data directory so that the BBD file
will be read and the netlists will be included in the final top-level netlist, generated by NGDBuild.

OPTION STYLE = MIX

This one line should go within the MPD file after the other peripheral OPTION flags. Forgetting this last step can result in
an error during NGDBuild because it will be unable to find the netlists for the black boxes.
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3.A.11. Connecting the Hardware Core to the Base System

Up until now the base system has remained unchanged because we have not yet connected the hardware core to the
system. Within XPS we must locate and add the my_test_core_v1_00_a to the base system. Under the IP Catalog
locate the Project Local Pcores category. Expanding this category should reveal a User category, which, when expanded,
should reveal the my_test_core hardware core. In the event the local pcores category does not exist, it may be necessary
to rescan the user repositories. This can be done through the

Project -> Rescan User Repositories menu option.

To add the hardware core to the base system, simply double-click (or right click and select Add IP). The hardware core
should appear with the System Assembly View window within XPS.

Initially, the hardware core will be added to the design, but without a connection to any bus. In this project there
is a single PLB, so we will expand the my_test_core_0 instance and set the SPLB to plb_v46_0 instance. This
establishes the connection between the new hardware core and the existing base system. There is one last step needed
to allow the processor to communicate with the hardware core: generate an address range for the hardware core. By
selecting the Address tab within the System Assembly View window we can click on the Generate Addresses button to
generate an address for our hardware core. Depending on the system (and version of the tools you are using) this may
generate a similar address:

Instance Base Name Base Address High Address Size Bus Interface
my_test_core_0 C_BASEADDR 0xC8200000 0x82C0FFFF 64 K SPLB

Now we have a base system that is ready to be synthesized and tested. The final step is to synthesize the whole design
and generate a bitstream. Select the

Hardware -> Generate Bitstream menu option.

The synthesis time depends on the build machine (and the additional peripherals added to the design), but should complete
within approximately 5–15 minutes.

3.A.12. Testing the System

After the system synthesizes successfully, we must export the project to the software development kit (SDK). Following
the direction we specified during section 3.A, make sure to launch the SDK after exporting the design. First we must create
a new Software Platform:

• Project Name: standalone_platform

• Processor: ppc440_0 (ppc440_virtex5)

• Platform Type: standalone

Next, create a new Managed Make C Application Project :

• Project Name: adder_app

• Software Platform: standalone_platform

• Project Location: Use Default Location for Project

• Sample Applications: Empty Application
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Once the empty application is generated we will need to add a new source file to the application. This can be done by right
clicking on the adder_app and selecting New followed by clicking Source File. Name the source file app.c. To this source
file we will add the following application.

#include <stdio.h>
#include ‘‘xparameters.h’’

// The Base Address of Custom Hardware Core
#define HW_BASEADDR XPAR_MY_TEST_CORE_0_BASEADDR

// A structure to make accessing the Slave Registers easier
typedef struct{

float op_a; // Operand A - Slave Register 0
float op_b; // Operand B - Slave Register 1
float result; // Result F - Slave Register 2

}hw_reg;

int main() {
// A pointer to the hardware core’s slave registers
// the address offsets are already handled by the struct
volatile hw_reg *hw_core = (hw_reg*)(HW_BASEADDR);
printf(‘‘Single Precision Application Test\n’’);
printf(‘‘Writing to Operand A\n’’);
hw_core->op_a = (float)123.45;
printf(‘‘Writing to Operand B\n’’);
hw_core->op_b = (float)678.90;
printf(‘‘Reading Results F\n’’);
printf(‘‘%f = %f + %f\n’’, hw_core->result, hw_core->op_a, hw_core->op_b);
printf(‘‘Test Complete\n!’’);

return 0;
}

In this simple example we are writing a single set of operands A and B to the hardware core and reading the result back.
Because we have FIFOs, we add a for-loop to populate multiple operands and read multiple results, but we will leave
that exercise to the reader.

Programming the FPGA within the SDK In section 3.A we generated an ACE file to program the FPGA. Alternatively,
we could use a JTAG to program the device without needing to generate the ACE file. This process is only applicable for
those who purchased a JTAG with the ml510 development board (or have a JTAG for their FPGA). Otherwise, follow the
directions specified in section 3.A to create another ACE file.

Once the FPGA has been turned on and the terminal is opened to display output from the UART, we can use the SDK
to program the FPGA’s bitstream. To do this, select the

Tools -> Program FPGA menu option.

A new window will open to let you specify the bit and bmm files. Browse to the project’s working directory’s implementation
directory, select the .bit and _bd.bmm files, and then select Save and Program. The FPGA will be programmed with
the hardware bitstream, but the application will not yet be loaded into the on-chip memory.
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Single Precision Application Test
Writing to Operand A
Writing to Operand B
Reading Results F
802.350037 = 123.449997 + 678.900024
Test Complete

Figure 3.15. Output for Single Precision test running on the Xilinx ML510 development board.

To load the program we need to right click on the adder_app and select the

Run As -> Run on Hardware menu option.

The application will be downloaded to the FPGA and the application will start running. If the terminal is open and configured
to the correct baud rate you should see the output shown in Figure 3.15.

3.B. Embedded GNU/Linux System

Perhaps the greatest barrier to using free and open software in embedded systems is the learning curve. Over the next few
chapters this text will introduce the bare minimum required to get started, including the tools and steps required to create
a GNU/Linux-based system on a Platform FPGA. This section starts with the basic organization of a GNU/Linux filesystem,
explains configuration and build tools, describes how to create a cross-compiler, builds a root filesystem, cross-compiles
an application, and creates a cross-compiled kernel. That is a lot for one section but, fortunately, there are many
supplemental resources available on the World Wide Web.

Specifically, we start with the organization of the UNIX filesystem, describe the two main configuration tools in use,
and then how to build a cross-development environment. We then use these tools we just built to cross-compile Linux,
build a root filesystem, and add a “Hello World!” application.

3.B.1. Organization of Unix Filesystem

If we are going to use a full-featured operating system, such as Linux, the first thing we have to concern ourselves with is
the organization of the root filesystem. We need to decide where the required configuration files, system binaries (such as
init), shared libraries, and application binaries will be located. We could put everything in the root directory, but as the
number of files and supporting software packages increase, this becomes unwieldy. Likewise, we could come up with a
completely novel scheme of directories and subdirectories — but again, this approach usually offers few advantageswhile
potentially introducing considerable confusion. Instead, it makes sense to learn the conventional places to put things. Over
the years a common hierarchy of directories has evolved and the Filesystem Hierarchy Standard (FHS) documents these
de facto conventions. Using the convention minimizes the amount of configuration choices and reduces the chance of
making a mistake. It is also much easier to ask for help from a colleague or the Internet if everything is where it normally is!

The first convention to follow is how to layout the directories and subdirectories of the root filesystem. (A detailed
description of the entire tree for Linux can be found at www.pathname.com/fhs/.) A subset required for a medium-
sized embedded system is described here. At the root, there are typically 15 directories. The directories bin, sbin,
lib, and dev are used to hold general-purpose binaries, system binaries, shared/static library files, and device files,
respectively. (Device files are used to provide applications with access to peripherals — we’ll revisit them in the next
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chapter.) The etc directory is used to store configuration files that generally don’t change frequently; the var directory is
used to store run-time generated files that applications use to store state information or record events (such as log files).
The directory boot is used by the bootloader to store configuration information about the different ways a system can be
booted; embedded systems typically only use this directory during development since, in the field, the system only boots in
one configuration. The home (or sometimes called users) directory has the home directories of all users except the super-
user, root. The user root’s home directory is just root. The sys and proc are special directories used for accessing
kernel information, which are discussed later. The directories opt and mnt are for convenience — some developers
install “optional” software in the former and the latter is a convenient place to mount new, temporary filesystems. The
directory tmp should be obvious.

The remaining directory typically found in the root is calledusr. Pronounced user, this directory has several subdirec-
tories that may seem redundant:bin, sbin, and lib. Why two binary directories (/bin and /usr/bin)? There are
two practical reasons. In the past, larger systems periodically checked a filesystem for inconsistencies but because one
can’t do a thorough check on a mounted filesystem, the system was booted without usr and a filesystem check could be
performed. After the check, the root filesystem was extended by mounting the usr directory. Thus /bin and /sbin
have the bare minimum to boot a system. The /usr/bin and other directories in /usr contain everything else needed
to run the system.

Fortunately, one doesn’t have to memorize these things. In practice, there are a number of simple shell scripts that
create a template root filesystem(the book’s Web site has one and its usage is explained shortly). Also, many Open Source
packages already know the standard and automatically configure themselves to install in the proper locations. A typical
layout is shown in Figure 3.16.

3.B.2. Configuration Software and Tools

There are two popular configuration tools used with Open Source software today. The first is often referred to as the
“autotools” or “configure script” approach. The former name refers to a set of tools (autoconf, automake, and libtool) used
to create a set of Makefiles and a configure script. The latter name refers to the output of running the tools. In either
case, these software tools are used by package developers to make their software portable and easy to install. The second
major configuration technology is called a “menuconfig” system. This software was introduced to replace a slow question-
answer system that was originally used to configure the Linux kernel. Since then, it has been adopted by several other
packages. In addition to these configuration tools, a handful of other software tools are useful for collecting and managing
software packages.

GNU Release Process Most GNU software and many (non-GNU) open source packages come with a configure
script. This script, among other things, prepares the software to be compiled and installed. UNIX and UNIX-like systems
have a long and interesting history. As a result, different libraries of subroutines have evolved over time. There have been
“best practices” that have emerged, peaked, and are now rarely employed. This has led to great diversity in terms of
what features and subroutines might be available. The autoconf part of autotools was intended to interrogate the local
system and then provide system configuration information to the application. Although many of the portability issues of the
past have been resolved, the tools continue to be extremely useful in cross-compiling and installing application files. (Éric
Lévénez has an interesting Web page that summarizes how 100+ different versions of Unix have influenced each other,
http://www.levenez.com/unix/.)
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Figure 3.16. Typical bare-bones layout of FHS root filesystem.
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The general process of installing a GNU package is:

1. Acquire the software (nowadays, this means downloading from the Internet) and unpack the software (uncompress
and untar).

2. Go into the subdirectory created by unpacking and type:

./configure

3. Assuming that there were no incompatibilities that could not be worked around, the next step is to build the software
package:

make

4. An optional step is to type “make check” — this will run regression tests and does a quick sanity check before the
software is installed on your system

5. Assuming the software has compiled correctly and passed the optional regression check, the last step is to install the
software. This is accomplished with

make install

This will not just copy the executables into the proper locations but also creates configuration files and anything else
required to run the application.

By default, most software packages will install in a directory called /usr/local. This directory mirrors the /usr
directory (in the sense that there is a /usr/local/bin, /usr/local/lib, /usr/local/include, etc.) and
indicates that this is locally installed software that didn’t ship with the workstation.

However, the location is very easy to change.Mostconfigure scripts allow the user to specify a prefix that changes
the install location. For example, the command:

./configure --prefix=/usr

will set up the software so that after it has been compiled, binaries will be installed in /usr/bin. In addition to
—prefix there is another set of several options that let you further customize the specific directories that various types
of files are installed. Most GNU packages have the option of adding arguments to the command that direct how the
application is to be compiled and how it should behave.

Later it will become necessary to build the root filesystem in a subdirectory of another filesystem. Simply changing
the —prefix option will not always work because some applications use the prefix to compile absolute paths inside the
application. So instead of saying something like

./configure --prefix=/home/rsass/build/rootfs/usr

...

make install

one can use an environment variable, DESTDIR, to point at the subdirectory that will be the root filesystem in the
embedded system. It is used on the make install command as shown below.

./configure --prefix=/usr

...

make DESTDIR=/home/rsass/build/rootfs install
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Some of the most important of these configuration options (at least for embedded systems) are the options that
direct how to cross-compile the application. These are --host, --build, and --target. Often in embedded
systems, the “host” is the workstation where development and debugging take place and the “target” is the embed-
ded system that is being developed. However, in GNU terminology, the terms host and target are used differently.
So, for the moment, completely forget about target and we will just talk about the host machine and the build
machine.

In GNU terminology, host refers to the machine that will ultimately execute the application. The configure script will
assume the host is the machine the script is being run on, but in our case, the host is the processor and C library on our
embedded system. So the host refers to what kind of binary executables we want to produce. Because these binaries will
likely be dynamically linked to a library, the version of the C library is important as well. To tell the configure script to
assume a different host, you use the –host argument. In GNU terminology, build refers to the machine we are going
to use to compile the application. (Obviously, there has to be a cross-compiler on the build machine that knows how to
produce the host’s executables.) Often, the configure can guess the build machine by assuming it is the one that ran the
configure script. So this is only strictly necessary when the person installing the software knows they are going to run
“make” on another machine. To tell to configure that the package will be compiled on a machine, one uses the --build
argument. (We will return to the --target option at the end of this discussion.)

These three configure options take a single argument called a machine triple. A machine triple is a string that uses
hyphens to specify a machine’s vendor, CPU model, and operating system. For example, sparc-sun-solaris indi-
cates that the machine was manufactured by Sun, Inc., that the instruction set of the processor is SPARC, and that the OS
is Solaris. This is in contrast to sun-sparc-sunos, which is the same hardware except that it is running the SunOS
version of UNIX instead of Solaris. And, like a lot of things, it complicated. For example, if part of the machine triple is
implied or is generic (therefore not relevant to configuring), then it can be omitted. For example, sparc-solaris is a
legal abbreviation because the vendor is implied. Further complicating the situation is that some parts of the triple need
more detail. So, for example, we will be using the PowerPC in the Virtex 5 for many of the examples, but the PowerPC has
many variants designed for different roles. The PowerPC 604 was intended for desktops and workstations, while the Pow-
erPC 405 and PowerPC 440 are for embedded systems. To indicate the model, powerpc-405 or powerpc-440 could
be used in the slot for the CPU (making the machine triple look like it has four components!). Similarly, many operating
systems need to be clarified. For example, in common parlance, people refer to a popular open source operating system
as “Linux.” However, it is important to the configure script to know more. What most people mean by “Linux” is referred
to more properly as linux-gnu. That is, the operating system kernel is Linux but the C library and the rest of the oper-
ating system come from GNU. In contrast, mach-gnu and hurd-gnu refer to the same library and OS utilities but are
different OS kernels. So the machine triple for one of the authors’ laptops is i686-pc-linux-gnu. The vendor has
been omitted, the processor is i686-pc, and the operating system is linux-gnu. Likewise, the hard procesor core
found on the Virtex 5 is powerpc-440-linux-gnu. The hard procesor core found on the Virtex 4 is powerpc-
405-linux-gnu. Thus, to configure a software package to be compiled an Intel desktop for the embedded PowerPC
in a Virtex 5, one might use the following command.

Thus, to configure a software package to be compiled an Intel desktop for the embedded PowerPC in a Virtex 5, one
might use the following command

./configure --prefix=/usr --build=i686-pc-linux-gnu--host=powerpc-440-linux-gnu
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Machine Triple Type of Machine

i686-pc-linux-gnu 32-bit Intel processor Linux Distribution
x86_64-unknown-linux-gnu 64-bit Intel processor Linux Distribution
sparc-sun-solaris2.9 SPARC processor on Sun Inc. hardware running solaris
mips-sgi-irix6 MIPS processor on SGI Inc. hardware running Irix

Table 3.1 Various machine triples.

This will tell the software package that ultimately this system is going to be transferred to a PowerPC running
GNU/Linux and that the cross-development tools to use have the prefix powerpc-440-linux-gnu-. For example,
the name of the C compiler would be powerpc-440-linux-gnu-gcc.

What about --target? Well some applications are designed to use object files either as an input (a linker/loader)
or as an output (an assembler). This introduces a third machine possibility: the package can be configured to be compiled
on one machine (the build machine), executed on another (the host machine), and manipulate the object files of a third
machine (the target machine). So, one might compile an assembler where the build and host machine are i686-pc-
linux-gnu but the target is powerpc-440-linux-gnu. This would be a cross-assembler — it is an executable
runs on Intel x86 machine but it takes PowerPC mnemonics and produce PowerPC object files. Clear? If not, you can use
this rule of thumb: if the package has nothing to do with manipulating a machine’s object files then the --target option
is unneeded.

Menuconfig For software, such as Web server or an XML parser, the number of configure/install options is relatively
small (less than 50). However, for other software that is highly configurable (such as Crosstool-NG) it is unwieldy to specify
these on a command line. Moreover, it is difficult to keep track of a specific configuration. To handle this better, the
Menuconfig system was developed. The most common version is a Curses-based application that presents the person
installing the software with a menu of choices. In the case of the Linux kernel, every choice has three options: Yes, No,
or Module (indicated by a [*], [ ], and [M], respectively). Yes means that the option should be compiled into the
kernel. No means that the option should not be compiled and no support for incorporating the option at run-time should
be included. The Module option indicates that the option should be compiled separately from the kernel and provisions
made so that the option can be inserted and removed at run-time. Device drivers are often compiled as modules. There is
no reason to have every device driver in the kernel when a system is booted because there are several hundred devices
supported by Linux but any one system is only going to have a handful of devices installed. If a USB thumb drive is plugged
in at run-time, the appropriate modules are inserted dynamically and the system can start using the device immediately.

These related options are grouped together into menus and then related menus are grouped to form submenus of the
main menu in a hierarchy.

The program is accessed by unpacking the software and typing:

make menuconfig

If the system being configured is going to be cross-compiled, it is a good habit to specify the architecture and cross-
compiler. (For some applications that use menuconfig, this doesn’t matter, but for others it does.) So, for example, to
configure the Linux kernel for the Virtex 5’s hard processor, one would type

make ARCH=powerpc CROSS_COMPILE=powerpc-440-linux-gnu- menuconfig



184 Chapter 3 SYSTEM DESIGN

The ARCH environment variable tells menuconfig to ask questions specific to building PowerPC kernels. The
CROSS_COMPILE environment variable tells menuconfig the prefix of cross-developmenttools. Note the trailing hyphen
after the machine triple; this string is the prefix of cross-development tools so the hyphen is required. In other words, this
is a prefix of a command, not a machine triple.

The input to menuconfig is one or more Kconfig files that have all of the configuration options to present to the
person compiling the software. The output is a .config file. Both are plain ASCII files that are human-readable. The
.config file has one option per line in the form of:

CT_GMP_MPFR=y

or

CT_GMP_MPFR=m

or

# CT_GMP_MPFR is not set

for “compile into the kernel,” “compile as a module,” and “don’t compile,” respectively.
This means that one can save a configuration by simply copying the .config file to another place (or name). It also

means that one can quickly determine the differences between two configurations with the utilities such as diff. The
Linux kernel has several architecture-specific default configurations included. The command

make ARCH=powerpc CROSS_COMPILE=powerpc-440-linux-gnu-44x/virtex5_defconfig

will create a default .config that is a reasonable starting point for the Xilinx ML-510 boards.
Note that if you create a .configmanually (by copying it from somewhere, for example), you still need to run through

the menuconfig system at least once or by typing

make ARCH=powerpc CROSS_COMPILE=powerpc-440-linux-gnu- oldconfig

3.B.3. Cross-Development Tools and Libraries

The traditional Board Support Package found in microcontroller-based embedded systems is relatively unchanging and
works well for other embedded system platforms because it can rely on a number of fixed characteristics. Either the
processor has a floating point unit or it doesn’t. Either there is RAM at a particular place in the address map or not. When
there is variability in a traditional microcontroller-based system, it is fairly limited. Not so for Platform FPGAs! Although
the hard processor core on the Virtex 5 FX device is fixed (a PowerPC 440) it is not the only processor option. In addition
to the MicroBlaze that comes with XPS, there are a range of soft processor cores as SPARC and MIPS implementations.
Furthermore, even the hard processor cores found on FPGAs can be customized. Thus, in addition to building hardware
and creating the embedded system application, a Platform FPGA designer often has to build the cross-development tools
and system software as well. Here we describe the steps used to build a GNU Compiler Collection (GCC) tool chain for
the PowerPC 440 found on the Virtex 5 FX device. We assume that an FPU is not present. Only two changes are needed to
build the tool chain for the Virtex 4’s PowerPC 405.

There are four (or five if you want a debugger) major software packages central to building a cross-development envi-
ronment. The first is called the binutils package. The binutils package includes a number of primitive utilities to create and
manipulate binaries. This includes an assembler, a linker/loader, and a collection of utilities that operate on object files.
The next package is the C library, which provides a collection of standard subroutines for C (and other languages). The C
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compiler needs to have a C library available when it is compiled, this presents an interesting chicken-and-egg problem.
Because most of the C library is written in C, it needs a cross-compiler to compile it. The solution is a multistage build
where a minimal C compiler is created to cross-compile the library, which is then used to compile the full C (and other
languages) cross-compiler(s). It is also worth noting that several C library options are available. The newlib C library is the
simplest and often used in embedded systems without an operating system. There is the GNU C Library (GLIBC), which is
a full-featured library. Recently, there is a fork of the GLIBC project called Embedded GNU C Library (EGLIBC), which is the
one we’ll use here. The fourth essential software package is the Linux kernel. We are not going to cross-compile the Linux
kernel at this point, but the compiler and the C library need to know what system calls are available, as well as the value
of certain constants in the kernel’s header files. These interfaces are illustrated in Figure 3.17, and the interdependencies
among the last three components are shown in Figure 3.18. What is needed are kernel headers, which can be extracted
without building the entire kernel yet.

So the high-level view of the process is as follows. Get the kernel headers, build the binutils for the PowerPC 440,
build a static, minimal cross compiler, get Embedded GLIBC headers, recompile GCC, rebuild the full C library, and then
build the full C compiler (and other languages) using the the “full” C library. Then we use our newly built cross-compiler to
finish building binaries for the embedded system. Note that GCC 4.3 now requires two additional libraries: GMP and
MPFR, which are libraries that implement arbitrary precision data types and multiprecision floating-point operations,
respectively.

Downloading and Installing Crosstool-NG This process is long, laborious, and error-prone. A wonderful script called
crosstool.sh created by Dan Kegel (see http://www.kegel.com/crosstool/) has automated this pro-
cedure for a variety of processors and software versions. For years, it served the authors of this text well. However, as

Application

Kernel

Libc

Figure 3.17. Interface relations.

Kernel

Libc Compiler

Figure 3.18. Dependencies between tools.
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of this writing the latest vesion is 0.43 and that version is very out of date. GCC and GLIBC have evolved substantially
since version is 0.43 of crosstool was released. Moreover, GCC’s adoption of GMP and MPFR means that the script cannot
compile the latest versions.

Inspired by Kegel’s work, Yann Morin developed his own script to accomplish the same thing, automate the building of
a cross-development tool chain. Kegel used a collection of data files with environment variables to manage the different
processors and versions. Yann added a menuconfig-like interface. His system, called crosstool-NG, is invoked with
the command

% ct-ng

and can be found athttp://ymorin.is-a-geek.org/projects/crosstool. An interesting, but perfectly
appropriate approach employed by Yann is to use a ./configure script to check that the host system has the required
versions of the system tools needed to configure and compile the tool chains. This project is very active at the time of
publication and it is the tool we currently use. We specifically recommend the following setup. Starting with the /opt
directory that we used to install the Xilinx tools in Chapter 1, we install the ct-ng command and software tools needed
compile the GCC tool chains in the directory /opt/crosstool-ng. Next we use crosstool-NG to build different ver-
sions of the tool chain. For example, we might have one version that uses a software library to emulate the PowerPC’s
floating point operations and another version that assumes an floating-point unit has been synthesized. The directories
might look as follows.

/opt/crosstool-ng/powerpc-440-linux-gnu
/opt/crosstool-ng/powerpc-440-fpu-linux-gnu

(Those directories contain the cross-compilers and cross-compiled libraries created by crosstool-ng.) Finally, we add a
script /opt/crosstool-ng/bin to help create FHS compliant root filesystems and a settings.sh that, when
sourced, will setup the user’s PATH and MANPATH environment variables.

The first step is to download, configure, and install crosstool-ng. This may require downloading the latest version of
some of the autotools because a few well-known Linux distributions have not yet upgraded to the required version. (If
crosstool-NG passes the configure stage, then you can skip the steps related to autoconf, automake, and lzma given later.)
We also install genext2fs at this time — it will be needed when we build a root filesystem image in section 3.B.5. This
package can be found at http://sourceforge.net/projects/genext2fs/files/. The detailed step-by-
step proceedure is given on the books Web page. The last step is to add two scripts that can be found on the book’s Web
site. The settings.sh script that we use also incorporates the path of a default cross-compiler and is illustrated in
in Figure 3.19. The mkfhs.sh script creates a FHS compliant directory and populates it with some simple configuration
files. This script can be copied into/opt/crosstool-ng/bin as well.

This is a one-time process and the tools installed thus far will let us create multiple tool chains and will support multiple
projects. To build a simple PowerPC 440 cross-compiler suitable for the hard processor core on the ML-510’s Virtex 5 chip,
one would create a working directory and then run the ct-ng command. We will start with a PowerPC 405 configuration
and then modify it for the 440. The general steps are

1. Create a default configuration with the command

ct-ng powerpc-405-linux-gnu

2. Edit the configuration with menuconfig

ct-ng menuconfig
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#!/bin/sh
CROSSTOOL=/opt/crosstool-ng
export CROSSTOOL
# default toolchain (can be overriden on command line)
MT=${1:-powerpc-440-linux-gnu}
# generic rootfs scripts and ct-ng itself
# note we have to be first to get our version of autotools
PATH=${CROSSTOOL}/bin:${PATH}
# then add a specific tool chain
CROSSTOOL=${CROSSTOOL}/${MT}
PATH=${PATH}:${CROSSTOOL}/bin
export PATH
MANPATH=${MANPATH}:${CROSSTOOL}/share/man

Figure 3.19. The settings.sh to set up environment.

and then under the “Paths and misc options” menu change the prefix to be /opt/crosstool-ng/

${CT_TARGET}. Also change “Emit assembly” and “Tune” options under “Target options” menu from 405 to 440.
Change the “Tuple’s vendor string” to 440 on the “Toolchain options” menu. And then, last, change the “C Library”
from GLIBC to EGLIBC.

3. The last step is to build the cross-compiler tool chain with the commmand

ct-ng build

On an older desktop with a DSL modem, the process took 325 minutes to download and compile everything! A reason-
ably fast machine, with all of the software already downloaded, takes around 120 minutes. Detailed instructions with
screenshots are on the book’s Web site.

Now that we have a cross-development tool chain, we are ready to write an application. To do this, we need to cross-
compile an operating system, create a root filesystem, and cross-compile the application. We describe these remaining
steps next.

3.B.4. Cross-Compiling Linux

If you know how to compile a Linux kernel, cross-compiling Linux is simple. However, compiling the Linux kernel can be
intimidating to people that are new at it becausethere are an enormous number of options and many of the choices assume
a significant knowledge of commodity desktop hardware and its history. While many of the hardware cores described earlier
(such as the 16550 UART) have Linux device drivers that support it directly, there are others that do not. Obviously, any
custom hardware cores that you develop for a project won’t have a Linux device driver for it!

The easiest way to get started and manage this complexity is to (1) rely on a Xilinx-maintained Linux repository that
has Xilinx device drivers added to the kernel and (2) start with a known-to-work configuration and modify it. Fortunately,
the 2.6 kernel series has a number of “default config” options that we can use.

Preparation Before compiling Linux for the first time, there are a few things we need to do. The most important is to
determine how to make Linux aware of our hardware design — including what hardware cores are included, how they are
configured, and where they are located in the memory map. Also, as we begin to add more components to our Linux-based
FPGA hardware, we describe some ways to organize these components.
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In older versions of XPS and the Linux kernel, the common way of making device (hardware core) information from XPS
available to the Linux kernel was by passing around an xparameters.h file. This file was generated by XPS as part of
a Software Platform Settings option. By copying this file into the appropriate place in the Linux kernel’s source, the critical
information could be determined at compile-time. This information is only relevant for existing projects that use the “ppc”
architecture in the Linux kernel.

In 2009, maintainers of the “ppc” architecture (which was mostly used for embedded systems) switched to using the
architecture “powerpc.” With this change, the way of communicating information about the hardware design in XPS to
Linux changed as well. Instead of having an xparameters.h file at compile time, Linux uses a device tree file at
boot. This approach allows the same compiled kernel to be used with multiple hardware designs — the designer simply
configures the bootloader to pass a device tree to the kernel at boot. Alternatively, one can combine device tree information
with the kernel at compile-time if one doesn’t have a bootloader that supports device tree files.

With version 11.4 of the XPS, it is necessary to add device tree support to XPS. Linux (and closely related tools) uses a
source code management system called ‘git.’ We won’t go into the details of git but the commands are relatively simple.

After installing XPS, one needs to download the device tree generator from Xilinx following the instructions listed on
the book’s Web page.

Before downloading Linux, it is worthwhile to think a little bit about how to organize the growing number of components
in a project. One way is illustrated in Figure 3.20. We create the hardware first in an hw directory, next we cross-compile
Linux in a directory created by the git command, in the next section we’ll create the software that goes on the root
filesystem, and then we finally combine the hardware and software together into an ACE file.

project

ace

hw
system.mhs
system.mss
system.xmp

linux-2.6-xlnx
Makefile
.config
arch

powerpc
boot
configs
platformssw

downloads
rootfs

myapps

busybox
packages

Figure 3.20. Typical directory structure of a project.
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Building the Hardware Base System We can quickly generate a hardware base system with the Base System Builder
wizard from within XPS. Unlike the base systems generated previously, we must include a few additional components to
support Linux. We will continue to use the Xilinx ML510 with the Virtex 5 FX130T FPGA. Create the base system described
in Table 3.2.

In this base system we are preparing to support a Linux system running out of 512 MB of DDR2 memory, with Ethernet
support, an RS232 UART interface running at 9600 baud, and and optional LCD display. We include 64 KB of BRAM for
testing purposes. It is not necessary for future designs to include this much memory, although it is necessary to include
some BRAM to boot up the initial system. The IIC EEPROM will be used in a future design in section 3.A.

BSB Wizard Page BSB Settings

Board Selection Xilinx Virtex 5 ML510 Evaluation Platform Revision C
System Configuration Single-Processor System
Processor Configuration 400 MHz PowerPC processor with 100 MHz Bus
Peripherals refer to Figure 3.21

Table 3.2 Base System Builder wizard options for a Linux base system.

Figure 3.21. Peripherals needed for the “hello world” Linux system on the Xilinx ML510 development board.
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Next we must Export Hardware Design to SDK, which will synthesize and generate the system’s bitstream along with
creating the SDK project and launching the SDK.

From within the SDK we must generate a new Board Support Package project. We can name this project
linux_bsp. Set the Board Support Package Type to device-tree. If this option is not available, be sure to download
and install the device tree generator as instructed in Section 3.B.4.

Under the Board Support Package Settings window, change the field “bootargs” for the console from

console=ttyS0 root=/dev/ram

to

console=ttyUL0 root=/dev/ram

which specifies that we will be using the UART lite.
Now a xilinx.dts file should exist in your SDK Project’s directory under the following path:

% SDK/SDK_Workspace/linux_bsp/ppc440_0/libsrc/device-tree_v0_00_x

Remember this location as we will return to this file shortly when compiling Linux.

Compiling the Kernel To get the most recent update of the Xilinx-maintained kernel from the Xilinx GIT repository.
Detailed directions are available online as well from the book’s Web site.

Once the Linux kernel has been downloaded, we must configure it with a default Virtex 5 configuration. This is done to
save us time navigating though the various menuconfig options. Change directories into the linux-2.6-xlnxdirectory
and run the following make command

% cd linux-2.6-xlnx
% make ARCH=powerpc 44x/virtext5_defconfig

This copies the arch/powerpc/virtex5_defconfig configuration file in place of the .config file. Next we
must copy our xilinx.dts file from our SDK directory to the DTS directory within the arch/powerpc/boot/dts
directory. The DTS file specifies the components, their physical addresses, and other information pertaining to our hardware
base system. When compiling Linux, the DTS file will provide the necessary information such that the system will be
capable to correctly interface with our hardware.

With the DTS file in place and the default Linux configuration set for our PowerPC 440-based system, we can run
menuconfig to set the “Default RAM Disk Size” to 16384. (This is found under the Block Device submenu under the Device
Drivers menu.)

Now all that is left is to compile the Linux kernel.

% make ARCH=powerpc CROSS_COMPILE=powerpc-440-linux-gnu- simpleImage.xilinx

At this point we have a compiled Linux kernel that is configured to run with our specific hardware base system. Of
course, a system with just a Linux kernel does not provide us with much. In fact, we will need to build the root filesystem
before we will be able to boot the kernel on the Xilinx ML510 development board.

3.B.5. Building a Root Filesystem

Once we have the hardware, a cross-development tool chain, and a compiled kernel, the next step is to build a root
filesystem. There are several reasonable options. If our FPGA board has a (removable) secondary storage device and the
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kernel has been configured for its interface, then we can use a partition on that filesystem to be our root filesystem. For
example, many Xilinx FPGA boards have a CompactFlash drive that the SysACE (which programs the FPGA at power on)
device uses to read stored bitstreams. Because the SysACE device only looks at the first partition, a Linux system can use
another partition on the drive as a root filesystem. A second option is to use NFS — a Network File System protocol that
allows a Linux system to mount a filesystem over a network (such as Ethernet). Of course, both of these options require
that the proper kernel modules be compiled into the kernel. The NFS approach also requires that a DHCP and NFS servers
be set up. Probably the easiest solution is to begin with is to build a RAMDISK image and include it with the kernel. Once
this is mastered, switching to NFS for development work is generally faster. Having the root filesystem in flash makes the
most sense when shipping the product.

One tells the Linux kernel where the root filesystem is by passing a command line argument to it. Table 3.3 shows the
three options.

So a RAMDISK-based Linux system with the console on a UART Lite device (with a baud rate 115,200) would have the
Linux command line

console=ttyUL0,115200 root=/dev/root

set during the kernel configuration, as we have already done.
Once we have a kernel, the next step is to create the root filesystem.
There are five basic steps to creating a root filesystem. The script we previously installed, mkfhs.sh (for “make

filesystem hierarchy standard”), does three of them. You have to do one manually. Then genext2fs does the last step.
Specifically, the first thing is to create the sw directory in your project directory. In that directory run the

script mkfhs. (If you sourced the settings.sh file in /opt/crosstool-ng, then this script will bin your path
and the environment setup.)

The script is too long to include verbatim here but is available on the Web site. After checking to see that you don’t
already have a rootfs created and that environment is correct, the first thing that it does is populate a directory,
rootfs, with every dynamically linked library (shared object) that is used by the cross-development tools. Then it goes
through and removes all of general computing system libraries and files to save space on our embedded systems root
filesystem. Then it strips the debugging information from the shared objects — we assume that no one will want to debug
the C library on an embedded system! The last thing it does is unpack a bunch of typical configuration files – the bare
minimum required to boot a system.

Next we need to add system binaries to our root filesystem. That is, add the usual Linux command line applica-
tions such as /bin/ls and the command line shell. It is possible to build the entire root filesystem from scratch;
in fact, there are many suitable Web sites to explain all of the details. One in particular that we find very useful is
http://www.linuxfromscratch.org.

Location Kernel Parameters (examples)

RAMDISK root=/dev/ram
NFS root=/dev/nfs nfsroot=192.168.1.101:/export/rootfs/n01 ip=dhcp
CompactFlash root=/dev/xsa1

Table 3.3 Command line arguments to specify the location of the root file system.
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Alternatively, we quickly generate a root filesystem with the help of another package.BusyBox can be used to generate
a majority of the binaries needed to boot and operate a Linux-based system on an FPGA,http://www.busybox.net.
In you decide to use BusyBox (which is recommended for those relatively new to filesystems)we have detailed instructions
on the book’s Web site on how to download, configure, and cross-compile Busybox.

In addition to the system binaries, this is when you add any kernel modules you have developed and your embed-
ded application to the root filesystem. For this demonstration, we can just use the familiar “Hello, World!” program. If
the program is in a file named hello_world.c, then we can cross-compile the application with powerpc-440-
linux-gnu-gcc.

% powerpc-440-linux-gnu-gcc -o hello_world_440 hello_world.c

Even though the build machine cross-compiled the application, it will not be able to execute the newly cross-compiled
application hello_world_440.

% ./hello_world_440
-bash: ./hello_world_440: cannot execute binary file

Instead, the executable must be copied into the root filesystem generated earlier. For convenience,copy the executable
to the rootfs/root directory.

The last step is to create a filesystem image. This converts the subdirectory rootfs into a single file that is block-
for-block identical to what would be found on the partition of a disk drive. One popular way of accomplishing this is to
create an empty file and use the mount command with the loop back option. However, this requires root privileges and
small mistakes as root can have catastrophic effects. A safer approach is to use the genext2fs command we installed
earlier. Genext2fs was written by Xavier Bestel and allows a nonroot user to create an ext2 filesystem image from a
directory and a device file. (The device file also allows the nonroot user the ability to change the owner of a file, set
permissions, etc.)

After the root filesystem image is created, it is copied to the arch/powerpc/boot directory in Linux kernel. With
the filesystem image in place, we can now combine Linux kernel previously created with our root filesystem using the
command

% make ARCH=powerpc CROSS_COMPILE=powerpc-440-linux-gnu- simpleImage.initrd.xilinx

Note that “initrd” stands for “initial ramdisk.” Ramdisk is another term for the filesystem image and some general purpose
Linux distributions use an initial ramdisk to load required kernel modules before accessing the disk drives.

The command generates the file simpleImage.initrd.xilinx.elf in the arch/powerpc/boot direc-
tory. At this point, we have all of the software for our embedded system in a single file. The last step is to combine
this ELF file with the hardware’s download.bit bitstream file. This is accomplished with the xmd command and the
genace.tcl script. One follows the same proceedure that was previously described in section 1.B.

3.B.6. Booting Linux on the ML510

Finally, we can copy the ACE file to the CompactFlash for our development board and boot the system. Linux will begin to
boot with its output being displayed through the UART to a terminal program, such as minicom, as seen in Figure 3.22. The
boot process should take less than a minute, depending on the configuration options selected. Once booted, the user can
login with the default root login (which does not require a password).
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(none) login: root

Greetings from Linux on the ML510 Development Board!

% pwd
/root
% cd /
% ls
bin home lost+found proc sys var
dev lib mnt root tmp etc linuxrc
opt sbin usr

Figure 3.22. Booting Linux on the Xilinx ML510.

Once logged in, the user can explore the Linux filesystem hierarchy and test the “Hello, World!” program that we added
to our filesystem. Return to the /root subdirectory and the ls should show the hello_world_440 executable in
the /root directory. You can test it with this command.

% ./hello_world_440
Hello World!

At this point, we have all of the rudimentary skills to develop application-specific Board Support Packages complete
with cross-development tools and custom root filesystems. Next we can begin to look at more sophisticated applications
and begin to develop simple kernel modules to interact with our hardware.
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Exercises
P3.1. Which of the following is more abstract?

• o = a · s′ + b · s
• a 2MUX with a, b, and a select line

Why?
P3.2. Name specific examples that will make a design less

cohesive.
P3.3. Decoupling may lead to duplicate hardware. From a

system perspective, why is this a positive characteristic?
P3.4. If reusing software means that the developer doesn’t have

to write it, why do we say the reuse has a cost associated
with it? Who pays that cost?

P3.5. What is the difference between an instance and an
implementation? How is each denoted in UML?

P3.6. Consider a large combinational circuit that consists of five
XORs, five ANDs, and five inverters. A proposed design
divides this circuit into three modules: one module has all
of the XORs gates, another has the AND gates, and a third
has the inverters. Comment on the quality of this design.

P3.7. Suppose we have been asked to design a portable MP3
player. Draw a Use-Case diagram to identify the major
functionalities of the system.

P3.8. How does a stand-alone C program that outputs “Hello,
World!” differ from one running on a Linux-based system?
Be sure to consider the compiler, the resulting executable,
the operating mode of the processor, and run-time
support provided.

P3.9. Does one need to create a root filesystem for a stand-
alone C program? Is it required for a Linux-based system?

P3.10. How does a cross-compiler differ from a native compiler?
Does one need both? Will a developer ever need more
than one cross-compiler?

P3.11. Does the choice of the C library impact the choice of the
operating system kernel? Does the C library impact the
choice of a cross-compiler?

P3.12. What is the difference between a monitor and a boot-
loader? What does a monitor provide that is not found in a
bootloader? What does a bootloader provide that is not
found in a monitor?

P3.13. What is the address map? What makes the address map
more dynamic in Platform FPGA design compared to a
traditional microcontroller?

P3.14. What are the three components of a GNU machine triple?
When can the triple appear with less than three
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components? Why do some appear to have more than
three components?

P3.15. What are the typical steps involved in installing a
standard GNU software package on a root filesystem?

P3.16. What is the difference between the directories /bin and
/usr/bin?

P3.17. What is the output of the genext2fs command?
P3.18. What are the major differences between menuconfig./

configure techniques for configuring software? Contrast
what is done automatically for the developer and the
number of options.

P3.19. Name three ways to mount a root filesystem. What are the
advantages of each?
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4
PARTITIONING

There is always a point where a certain effect is the greatest,
while on either side of this point it gradually diminishes. [Law of
Diminishing Returns]

Thomas R. Malthus
The Corn Laws

The decomposition of a software reference design into two com-
ponents — the portion to be realized in hardware and the portion
that will run as software on the processor — is the essence of the
partitioning problem.

For systems based on Platform FPGAs, partitioning is a sub-
set of the more general problem addressed by hardware/software
codesign. In codesign, hardware refers to the broader definition
of hardware (physical, nonsequential, and possibly analog com-
ponents) and, as such, involves assigning components of the
application to a wide variety of devices with a wildly varying set
of characteristics. Some may also be analog devices, which are
unlikely to be specified in software. With the advent of System-
on-a-Chip (SoC) technology, many of these components are likely
to be integrated on a single chip, but some may be discrete parts.

With the hardware/software codesign problem, the system
designer must contend with issues such as interfacing continu-
ous and discrete signals and electrical characteristics that are gen-
erally the purview of electrical engineers. Thus, hardware/software
codesign is a very different (and much larger) problem than the
partitioning of an application for a single, Platform FPGA. While
some of the techniques described in this chapter may also be use-
ful in hardware/software codesign, it is important that readers are
aware that a complete treatment of codesign is beyond the scope
of this chapter.

The learning objectives of this chapter are to:

• Understand the principles behind partitioning through the use
of profiling and how to analyze performance while avoiding
common profiling pitfalls.

197



198 Chapter 4 PARTITIONING

• Build a formal mathematical formulation of the partitioning
problem and provide a heuristic for maximizing the perfor-
mance metric.

• Address issues associated with interfacing the hardware and
software components of a decomposed software reference
design.

• Focus on several pragmatic concerns not accounted for in the
formal description of the problem.

Also note that this chapter only considers the static decomposi-
tion of a software reference design — dynamically decomposing a
program is a research issue.

4.1. Overview of Partitioning Problem
To begin, let’s consider an application as a set of instructions orga-
nized as a collection of control flow graphs that specify the order
of execution. The idea of partitioning is the grouping of specific
sets of instructions in an application and then mapping those
groups to either hardware or software. The groups assigned to
software are executed sequentially (on a processor), while those
mapped to hardware are implemented as custom combinational
or sequential circuits and are realized in the configurable logic
resources of the FPGA. If the application is a fully functioning
software reference design, the result of partitioning is known as
decomposition.

A number of factors help guide partitioning decisions. These
include the expected performance gains (due to moving software
into hardware), the resources used in the hardware implemen-
tation, how often that portion of the application is used, and —
perhaps most importantly — how much communication overhead
the decomposition introduces. Other pragmatic issues surface as
well, including how difficult it is to implement a particular set of
operations in hardware. In an ideal world, the groupings, map-
ping, and translation of instruction groups to hardware would
happen automatically. However, state-of-the-art techniques are
largely manual, with a handful of analytical and empirical tools to
assist us.

We define a feature as a connected cluster of instructions
from the application’s software reference design suitable for a
hardware implementation. (We think of the hardware implemen-
tation as being an additional, application-specific architectural
feature. Hence the name.) For the moment, we will leave suit-
able imprecisely defined to mean “the system designer antici-
pates that a hardware implementation will prove advantageous.”
For now we can think of a feature as a subroutine from the
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software reference design. However, to achieve good partition-
ings, we generally have to examine groupings that may be bigger
than or smaller than the subroutines defined by the program-
mer. In practice, a feature can vary from a few instructions to a
“kernel” of nested loops to a whole software module consisting
of multiple subroutines. Because feature size affects performance
directly and indirectly, the decision of whether to implement a
feature in hardware depends on its improvement to the over-
all system performance and the resources it uses relative to the
other candidate features. If determined to be worthwhile, then
the feature’s hardware implementation augments the hardware
architecture.

To provide some context for what we are trying to do here, let’s
consider a motivating example. The graph illustrated in Figure 4.1
depicts the execution of a JPEG2000 encoder application (Adams,
2007). From the main subroutine, we can see that 11% of the time
is spent reading the source image and 89% of the time is doing
the encoding. Encoding is not a single subroutine but rather a
score of subroutines. If communication were free and hardware
resources limitless, one would simply move everything into hard-
ware. Given that neither is true, we have to determine which sub-
routines (or parts of subroutines) will have the biggest impact on
some performance metric.

Profiling
The graph illustrated in Figure 4.1 was created by profiling the soft-
ware reference design. To profile an application means to collect
run-time information on an application during execution. With
profiling, the software reference design is executed with repre-
sentative input and the time spent in various parts of the appli-
cation is measured. Profiling can be accomplished in a number
of ways. Although it has been around for decades, it remains an
area of active research as to optimize sequential program execu-
tion at run time. Here, we assume the simplest technique that
profiles an application by periodically interrupting the program
and sampling the program counter. A histogram is used to count
how often a program is interrupted at a particular address in the
application. From histogram data, an approximate fraction of total
execution time spent in various parts of the application can be
computed.

The Unix tool gprof is a good example of a sample-based tech-
nique. The default granularity for gprof is subroutines but it can
also be configured to approximate the fraction of time spent in
various basic blocks. Its output includes a flat profile of the per-
centage of time spent in each subroutine and a dynamic call graph
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Figure 4.1. An encoding JPEG2000 image.

that indicates which subroutines were invoked. (We’ll cover the
practical details of using this tool in the gray pages of this chapter.)

Performance Analysis
Amdahl’s law, which is well known in computer architecture,
applies the law of diminishing returns to the usefulness of a single
architecture feature. In short, it is written

Speedupoverall = 1

(1 − Fractionenhanced)+ Fractionenhanced
Speedupenhanced

and it articulates the limits of the overall improvement to an appli-
cation that a single enhancement can make on the execution time.



Chapter 4 PARTITIONING 201

By generalizing this to include all potential enhancements and an
arbitrary performance metric, we can characterize the limits of a
collection of enhancements. If these enhancements are hardware
features and we can anticipate the required resources potential
gain for each feature, then we can develop a model that will guide
the partitioning process.

Amdahl’s law is not suitable because:

• It addresses a single enhancement and doesn’t help us select a
subset from a collection of potential features.

• It focuses solely on execution time — we generalize to any
performance metric.

• It does not address resources required.
• It does not address communication costs.

In Practice
Of course, the model is only as good as the data used to drive
it. Sample-based profiling requires representative input and is an
approximation of time spent. Without implementing all potential
features in hardware, it can be difficult to anticipate the resources
required. Often, we can analytically determine how many clock
cycles a hardware feature will take and we can calculate a metric,
such as speedup. However, in general, it is impossible to know
when an arbitrary process will complete. Rather than provide
an automated solution, the analytical solution simply provides a
framework to guide a system designer to a creative solution.

4.2. Analytical Solution to Partitioning
This section mathematically formulates the problem of group-
ing instructions into features and then mapping those features to
either hardware or software. The final task — converting the fea-
tures into FPGA implementations — is included throughout this
book. Presently, the most common way of performing this transla-
tion is to manually design the core with an HDL using the software
reference design as a specification. Many vendors have recently
announced tools that are intended to automatically synthesize
HDL cores from high-level languages; however, as of this writing
their suitability for our purpose and effectiveness have not been
established.

Many practical issues impact the actual performance of a sys-
tem. Not all of these issues can be incorporated into an analytical
model — so, at best, we can only expect a mathematical solution
will produce an approximate answer to the partitioning prob-
lem. Moreover, many of the inputs to our model are estimates or
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approximations themselves, which further degrades the fidelity of
our results. So why bother? By first solving the partitioning prob-
lem “on paper,” so to speak, we get a partitioning that is close to
optimal. From there, it is up to the designer to be artful in their use
of guidelines and engineering expertise to refine the solution. In
the end it is more efficient to use a combination of mathematical
and ad hoc techniques to find an optimal solution than to simply
rely on an engineer’s intuition.

As mentioned earlier, performance is a complex metric. How-
ever, to simplify the presentation in this section, we focus on just
one facet of performance, improving the rate of execution (or
speedup) over an all-software solution. Specifically, the goal of this
section is to find a partitioning of the system to maximize the
speedup. Our choice of speedup is motivated by the fact that it
has the most fully developed set of empirical tools and, despite the
comments of Chapter 1, it is the primary goal of many designs.

The approach taken here requires that some measurements
be taken from the software reference design (application) and
that certain characteristics of the potential hardware implemen-
tation(s) are known. Some of this information can be derived from
analysis of the source prior to execution, but often a good deal
must come from executing test runs and profiling the application.
The principles for performance metrics other than speedup are
similar.

4.2.1. Basic Definitions
In Chapter 3, we modeled a subroutine of a software reference
design as a Control Flow Graph (CFG). This notation will be used
again to represent the flow between basic blocks of a subroutine. In
addition, this chapter extends that notation to include a Call Graph
(CG), which consists of a set of CFGs (one per subroutine)

C = {C0, C1, . . . , Cn−1}
where Ci = (Bi, Fi) is the CFG of subroutine i. The application’s
(static) CG is then written

A = (C,L)

where L ⊆ C × C. Two subroutines are related (Ci, Cj) ∈ L if it can
be determined at compile time that subroutine i has the potential
to invoke subroutine j.

It is assumed that the basic blocks of every subroutine are dis-
joint: that is, every basic block in the application belongs to exactly
one CFG. Moreover, it is assumed that a root node for the CG is
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implicit (i.e., one subroutine is distinguished at the start of exe-
cution). These are reasonable assumptions because, in practice,
they are a natural artifact of how object files are created, stored,
and executed.

On a practical note, not all executables can be expressed in
this model. Certainly, system calls disrupt the control flow graph
in unanticipated (and unrepresented) ways. Signal handling and
interrupts are not represented. Some switch statements (i.e., case
statements) are implemented as computed jumps. Thus, it may
not be possible to determine all of the edges, Fi, in a given sub-
routine’s Control Flow Graph, Ci, before execution. Finally, the
object-oriented paradigm relies on run-time linkages to invoke
virtual methods. By design, this paradigm prevents us from know-
ing all of the edges before execution. For now, we assume that the
model is complete enough to express a software reference design
and we will return to these practical issues in the next section.

A second practical note: we chose basic blocks because, to date,
empirical evidence suggests that there is not enough parallelism
at the basic block level to warrant attention at a finer grain level.
If this changes in the future, it is relatively simple to recast the
problem in terms of instructions (or smaller) computation units.
However, gathering performance data on units less than a basic
block may present a practical problem.

A common misconception is that a formal definition of par-
titioning only applies to the separation of an application into its
hardware and software components. That is, the partition contains
exactly two subsets. However, to make the problem more tractable,
it is common to group operations into features first (a partition
with a much larger number of subsets) and then map those fea-
tures to either hardware or software. Assuming that the features
are reasonably well clustered, then the decomposition of an appli-
cation into hardware and software components can be driven by
comparing the performance gains of features against one another.

First, let’s formally define a partition. (We use this definition
again in Chapter 5.) A partition S = {S0, S1, . . .} of some universal
set U is a set of subsets of U such that

⋃
S∈S

S = U (4.1)

∀S, S′ ∈ S | S ∩ S′ = ∅ (4.2)

and

∀S ∈ S · S �= ∅ (4.3)
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In prose, Equation 4.1 says that every element of U is a member of
at least one subset S ∈ S. Equations 4.2 and 4.3 say that the subsets
S ∈ S are pair-wise disjoint and not empty. In other words, every
element of our universe U ends up in exactly one of the subsets of
S and none of the subsets are empty.

For example, consider the set of English vowels, U = {a, e, i, o,
u, y}. One partition Xa of U is

Xa = {{a, e, i, o, u}, {y}}
Figure 4.2 illustrates Xa graphically. Another example is

Xb = {{a}, {e}, {i}, {o}, {u}, {y}}.

However,

Xc = {{a}, {e}, {i}, {o}} and Xd = {{a, e, i}, {i, o, u, y}, {}}
are not partitions because Xc violates Equation 4.1 and Xd violates
both Equation 4.2 and Equation 4.3.

We can also apply this to an application A. If we assume our
universe is the set of all of the basic blocks from every subroutine,

U =
⋃
C∈C

V(C)

then the subroutines partition U. We will call this an application’s
natural partition where

S =

⎧⎪⎨
⎪⎩{b0, b1, . . . , bi}︸ ︷︷ ︸

subroutine C0

, {bi, bi+1, . . . , }︸ ︷︷ ︸
subroutine C1

, · · · {bj, bj+1, . . . , }︸ ︷︷ ︸
subroutine Cn−1

⎫⎪⎬
⎪⎭

Our task will be to reorganize the partition of basic blocks (and
then map each subset to either hardware or software). We are

Xa

X1

y

X0

a

o u

e
i

Figure 4.2. Xa illustrated graphically.
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free to create new (nonempty) subsets, remove subsets, and move
basic blocks around until we have a new partition. The result is a
new A′ = (C′ ,L′) inferred from the reorganized partition X ′. The
second step is to map each subset of X to either hardware or
software:

X ′ =

⎧⎪⎨
⎪⎩{bj, bj+1, . . . , }{bk , bk+1, . . . , } · · ·︸ ︷︷ ︸

software

{b0, b1, . . . , bi}{bi, bi+1, . . . , } · · ·︸ ︷︷ ︸
hardware

⎫⎪⎬
⎪⎭

4.2.2. Expected Performance Gain
As we know, performance is not just a single number. However, to
explain how performance can be used to guide partitioning, we
choose a single metric — execution rate. This is partially motivated
by the fact that the performance gain is relatively easy to measure
and because, of all the metrics commonly used, speedup is often
the most important one.

In the software world, performance is modeled all the time.
The idea of complexity (order) analysis — that O(n) is better than
O(n2) — is widely understood and serves as an implicit guide when
programmers everywhere compare algorithms. Unfortunately, the
hardware world lacks that kind of general guide. Moreover, per-
formance gain for the application may reside in the accumulation
of many small gains that would be lost in a direct application of
complexity theory.

Therefore, we use profiling information to collect the total exe-
cution time as well as the fraction of that time spent in each sub-
routine. The product is the approximate amount of time needed
to execute that portion of the application in software and we use it
as the time we expect it will take in future execution runs. We use
s(i) to represent the expected execution time of one invocation of
the subroutine (basic block) i. It is an approximation for a num-
ber of reasons, not the least is that it depends on the input data
set for many applications. However, there are also sampling errors
that may impact performance. (Again, we refer to Section 4.4 for
practical ways of improving the accuracy of s(i).)

Next we need to approximate the time that an equivalent imple-
mentation in hardware would take. In the case of a basic block,
this is often much more precise. Without control flow (which, by
construction, a basic block does not have), a synthesis tool can
give a fairly accurate approximation of propagation time. Or, if
the feature is pipelined, the number of stages is more precisely
known. If the feature includes control flow but does not contain
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any loops, the longest path can be used as a conservative esti-
mate. Features with a variable number of iterations through a loop
present the biggest obstacle to finding an approximate hardware
time. In this case, implementation and profiling with the hard-
ware feature may be the only resort. Regardless, we assume that a
suitable approximation h(i) for the hardware execution time exists.

Finally, the interface between software and hardware requires
time and that cost needs to be accounted for as well. We can
approximate this cost by approximating the total amount of state
that needs to be transferred (if instantaneous transfer is used)
or the setup and latency cost (if continuous transfer is used). In
either case, it is represented by m(i) for feature i ∈ H. (More on the
specifics of implementing and calculating communication cost
between hardware and software is presented in Section 4.3).

Execution rate is the speed at which a computing system com-
pletes an application, and in a Platform FPGA system we look
to hardware for improvement in the execution rate. This gain,
which compares a hardware and software solution against a purely
software solutions, is typically measured as speedup. We use γ to
represent performance gain — whether the metric is speedup or
otherwise — and this will allow us to compare different features
against one another to determine the best partitioning. (Conse-
quently, any subset of basic blocks that does not yield a per-
formance gain can be generally excluded from consideration. In
other words, only subsets of basic blocks for which γ > 1.0 are
considered candidate features.)

In general, we do not measure execution rate but rather the exe-
cution time, which is the inverse. So when considering whether
a particular set of basic blocks should be mapped to hardware or
software, we are interested in the gain in speedup, or

γ = hardware speed
software speed

=
1

hardware time
1

software time

= software time
hardware time

More specifically, we are interested in the performance gains of
individual features, so we define γ(i), i ∈ C

γ (i) = s(i)
h(i)+ m(i)

(4.4)

where h(i) and s(i) are the execution times of a hardware and soft-
ware implementation of feature i. The function m(i) is the time
it takes to synchronize affected, trapped state, that is, the time
it takes to marshal data between processor and reconfigurable
fabric.
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Let’s assume for the moment that we just use this single feature
in our design. How much faster is the application? This depends on
both the performance gain of the feature and how frequently it is
used in software reference design. We can get this fraction of time
spent in a particular feature, f(i), from the profile information. The
overall speedup of the application will be:

� =
[(

1 − f(i)
) + f(i)

γ (i)

]−1

(4.5)

(Note the inversions again; we are moving between execution
time and rates of execution to keep the sense of “performance
gain.”)

From this equation, we can observe that increasing the hard-
ware speed of a single feature has less and less impact on the per-
formance of the application as its frequency decreases. To increase
the overall system performance of the application, we also want to
look at another dimension: augmenting the system with multiple
features that will increase the performance of individual compo-
nents as well as increase the aggregate fraction of time spent in
hardware. Recognizing this, we want to compute the speedup of
multiple features in hardware. In other words, we want to evalu-
ate the system gain of a set of features D where each member of
the set contributes to the system performance based on the frac-
tion of time spent in that feature. To estimate the performance of
a partition, we can add features and rearrange the terms to get the
overall expected performance gain,

�(D) =
[

1 +
∑
i∈D

(
f(i)
γ (i)

− f(i)
)]−1

(4.6)

One might recognize Equation 4.6 as the the Law of Diminish-
ing Returns first put forth by Thomas Malthus in the 16th century
and Equation 4.5 is simply Amdahl’s law that we stated at the
beginning of the chapter.

4.2.3. Resource Considerations
Following Equation 4.6 reductio ad absurdum, one would attempt
to continue to add features so that

∑
i fi approaches one. In other

words, implement everything in hardware to maximize perfor-
mance! Ignoring development costs (a very real constraint), there
is a deeper issue of limited resources. On an FPGA, there are a
finite number of resources available to implement hardware cir-
cuits. These resource are limited and most realistic applications
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will far exceed the resources available. Thus, given a large num-
ber of features, designers are often forced to limit the number of
features implemented in hardware based on those that make the
most impact.

One way of approximating resources is to count the number of
logic cells required by each feature. So a chip will have a scalar
value rFPGA that represents the total number of logic cells avail-
able (after the required cores have been instantiated). Then r(i) can
be used to represent how many logic cells each feature i requires.
A simple relationship, ∑

i∈D
r(i) < rFPGA

constrains how largeD can grow.
However, we know that modern devices are heterogeneous.

A typical Platform FPGA has multiple types of resources: logic cells
of course, but also on-chip memory, DSP blocks, DCMs, MGTs, and
so on. A vector,

	rFPGA =

⎛
⎜⎜⎝

r0
r1
· · ·

rn−1

⎞
⎟⎟⎠

is a better representation.
For example, the Virtex 5 (XC5VFX130T) has (this is not a

comprehensive list, just a subset of all of the available types of
resources):

	rFPGA =

⎛
⎜⎜⎝

11, 240
298
320
20

⎞
⎟⎟⎠ where

r0 is the number of CLBs
r1 is the number of BRAMs

r2 is the number of DSP Slices
r3 is the number of GTX Transceivers

We also promote the resource requirements function to a vector
where 	r(i) represents the resources required by the feature i. Our
new resource constraint equation is very similar:∑

i∈D
	r(i) < 	rFPGA (4.7)

where D is the set of features included in the design.
Unfortunately, this model is somewhat idealistic as well. It does

not take into account the fact that allocating some resources (such
as BRAMs) may interfere with other resources (such as multi-
pliers). Moreover, performance estimates are often based on the
assumption that the resources allocated are in close proximity
to one another. That is to say that routing resources are not an
integral part of this model.
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4.2.4. Analytical Approach
We now have the mathematical tools needed to describe the fun-
damental problem of partitioning. We first formally describe the
problem in terms of the variables just defined and then describe
an algorithm that finds an approximate solution.

Problem Statement
The basic idea is to find a partition of all of the basic blocks of the
application and then separate those sets into hardware and soft-
ware. Formally, we are looking for a partition P of all the basic
blocks U of the application:

U =
⋃
C∈C

V(C)

A subset, C ⊆ U, where C is the vertices of the call graph A =
(C, L) of the software reference design, is called the candidate
set and contains all of the potential architectural features, that
is, the subsets of U that are expected to improve system perfor-
mance if implemented in the reconfigurable fabric. Due to limited
resources, we need to further refine this to a subset D ⊆ C that
maximizes our performance metric,

�(D) is maximized, and∑
i∈D

	r(i) < 	rFPGA

Algorithmically, one could approach this problem by find-
ing all partitions of U, synthesizing and profiling each parti-
tion, and then quantitatively evaluating every �. However, a sim-
ple application might have anywhere from 10,000 basic blocks
to upward of 107. This means that the number of partitions to
evaluate is approximately 2107

! Clearly, a brute-force approach is
intractable. However, when one considers the fact that most of
the inputs are estimates, the idea of relying on a heuristic is not
disagreeable.

Heuristic
The partitioning problem is essentially a matter of indirectly
manipulating the parameters f(i) and γ (i) by rearranging the
partitioning X . Then we select elements of X that meet our
resource constraints and maximize our overall system performa-
nce �.

A heuristic that can be applied informally is to start with the
natural partition provided by the software reference design. That
is, we use the subroutines of the original application.
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We use our profiling tools to determine the fraction of time
spent in each subroutine. Then, by listing the subroutines in
decreasing fractions of time, we focus on those subroutines with
a large f. We rely on our experience in developing hardware cores
to estimate the γ — the performance expected from a hardware
implementation — and we have a system gain estimate for each
subroutine.

Next, we want to iteratively manipulate the partition X =
{X0, X1, . . .} by creating new basic block subsets, merging subsets,
and moving basic blocks from subset to subset. The basic idea is to
look for changes that will either increase the fraction f or increase
γ of a potential feature.

Fraction of Execution Time
The way to increase the fraction of time spent in a subroutine is
by making the feature larger. This can be accomplished by initially
looking for relationships in the call graph or (after the partition has
been manipulated) by looking for relationships in the control flow
graph that bridge subsets.

For example, suppose an application spends 0.5% of its time
f(i) = 0.005 in subroutine A and 0.025% in subroutines B and C.
The fraction of time spent in A can be doubled by merging A, B, and
C. (In software terms, functions B and C are inlined.) Of course,
merging does not come without a price. First, it (usually) increases
the number of resources used. This has the potential of negatively
impacting system performance by displacing other features or
simply becoming too large to fit on the chip. Second, as explained
later, increasing the size of the subset may decrease speedup —
again negatively impacting the overall system performance.

Performance Gain
To increase the performance gain of a feature, γ (i), one needs to
look at the control flow graph of the feature and evaluate whether
a change will make it more sequential or more parallel. Often-
times, algorithms that are inherently sequential (due to the flow or
control dependences between the operations) perform better on
a processor (because processors do not have the overhead of con-
figuration transistors and because they have been carefully engi-
neered for these circumstances). Simply adding basic blocks may
have the undesirable effect of increasing the sequential behavior
of the feature, lowering its γ . Conversely, making a feature smaller
has the potential of increasing its performance gain.

In terms of the application, this means taking a subroutine X
and breaking it into two subroutines X − X ′ and X ′ where sub-
routine X − X ′ invokes X ′. If X ′ extracts the parts of X that can be
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improved in hardware and leaves the sequential parts in X − X ′,
then the γ of X ′ will be higher than the γ of the original X. Most
likely, it will require fewer hardware resources as well.

To see how this works in practice, consider a subroutine that
takes 93% of the execution time and provides a performance gain
of γ = 2. As is, this would provide the application with a perfor-
mance gain of � = 1.869. However, if part of the original subrou-
tine can be extracted (and its parallelism increased), then it is
entirely possible that the performance gain could go up by a factor
of 10, γ = 20, while its fraction of execution time decreases to 83%.
This partitioning gives us an overall system speedup of � = 4.739.
Ahmdal’s law teaches us to always try to increase the fraction of
time spent in the “enhanced” portion of the code. However, as this
example shows that, when limited, fungible resources are part of
the equation, it is not always better.

It is also important to note that any change to the subset may
affect performance by increasing or decreasing the marshaling
costs. That is, merging two subsets could dramatically increase the
performance gain because less data have to be explicitly commu-
nicated between the processor and the feature. However, the exact
opposite effect is possible as well. Moving basic blocks from one
subset to another may result in a larger affected state.

Thus, in summary, the general heuristic works by examining
the CG and CFGs of the application and then making incremental
changes to the subset of the partition. Changes are guided by:

• trying to increase the fraction of time spent in a subroutine
while not dramatically increasing resources or decreasing per-
formance; and

• trying to increase the performance without substantially reduc-
ing the fraction of time spent in a subroutine

4.3. Communication
When a single application is partitioned into hardware and soft-
ware components, it is necessary for those components to com-
municate. It is now important to discuss a number of issues
related to communicating state across partition boundaries and
the mechanism for transferring control between hardware and
software.

Consider an application consisting of several subroutines. One
particular subroutine might involve many simple bit manipu-
lations such as the error-correcting code shown in Listing 4.1.
It is reasonable to expect that a hardware implementation of
this subroutine will substantially outperform the best software
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class HammingCheck {
public static byte hammingCheck(byte d, byte check) {

int my_check;
byte err_loc;
my_check=(((d>>7)^(d>>6)^(d>>4)^(d>>3)^(d>>1))&1) |

((((d>>7)^(d>>5)^(d>>4)^(d>>2)^(d>>1))&1)<<1) |
((((d>>5)^(d>>5)^(d>>4)^(d>>0))&1)<<2) |
((((d>>3)^(d>>2)^(d>>1)^(d>>0))&1)<<3);

err_loc=(byte)(check^(byte)my_check);
switch(err_loc) {

case 0:
//No error
break ;

case 1: case 2: case 4: case 8:
//Error in parity bit (data OK)
break ;

case 3:
return((byte)(d^0x80));

case 5:
return((byte)(d^0x40));

case 6:
return((byte)(d^0x20));

case 7:
return((byte)(d^0x20));

case 9:
return((byte)(d^0x8));

case 10:
return((byte)(d^0x4));

case 11:
return((byte)(d^0x2));

case 12:
return((byte)(d^0x1));

}
return(d);

}
}

Listing 4.1. A simple error-correcting subroutine.

implementation and require relatively few FPGA resources. Hence,
the subroutine hammingCheck is identified as a potential feature
and its hardware implementation becomes a candidate for inclu-
sion in the final system. However, we stress candidate because
again, at this point, even though it may improve the system, we
have a limited number of resources and it may not be part of the
most beneficial decomposition.

Assuming that we have implemented this feature in hardware,
the key question of this section is: how does this feature and
processor interact? The set of rules that govern this interaction
is called the interface; it is described in Chapter 2. Standard
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interfaces abound — such as how to pass arguments on the stack
or the format of a network packet — and, most likely, readers have
never considered defining their own low-level hardware interface.
However, with Platform FPGAs, it is up to the designer to either
choose a predetermined interface or design a new one for each
feature. Often, this decision is crucial: the interface can make or
break the performance advantages of using FPGAs.

Adding a feature to the system requires that the processor and
the feature maintain a consistent view of the application’s data.
Collectively, all of the application’s storage (variables, registers,
and condition codes, as well as I/O device configuration and FPGA
configuration) at any specific moment in time is called its state.
This is similar to the concept of “the context of a process” in mul-
titasking operating systems. However, when multitasking in the
single processor world, the same hardware is time-multiplexed so
that an application’s state is generally accessible all of the time.
Similar to the case where a collection of independent processors
need additional mechanisms to keep state consistent, so do inde-
pendent components in our Platform FPGA-based system. This
issue is more complicated for features implemented in Platform
FPGAs because (i) the embedded processors are not designed for
use in multiprocessor systems, (ii) features have limited ability
to directly access state inside the processor, and (iii) the nature
of hardware design distributes state throughout the whole fea-
ture (instead of keeping it in centralized, named registers). Thus,
interfacing is what allows a feature and the processor to commu-
nicate changes in state and is necessary to keep an application’s
data consistent. In developing the software reference design, a
programmer is not likely to think about these issues. The specifi-
cation uses a sequential model, which may or may not express any
concurrency and a single memory hierarchy is assumed. However,
if consistency is not explicitly maintained by the designer’s inter-
face between a feature and a processor, then the resulting system
risks producing incorrect results. To reiterate the importance of the
interface: every component of the system may work properly by
itself but if the interface fails, the system as a whole may fail.

As a concrete example, consider the example in Listing 4.1
again. The interface could be as simple as transferring two bytes
to the hardware core, signaling the core to start, and then waiting
for the result. This highlights the two main issues of the interface:

• How is the feature invoked?
• How is the transfer of state handled?

The former is the subject of subsection 4.3.1 and the latter is the
subject of subsection 4.3.2.
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4.3.1. Invocation/Coordination
In a sequential computing model, the most common form of invo-
cation is the subroutine call. The linkage usually takes the form
of saving the return address and then branching to the address
of the subroutine. Because the traditional (single) processor only
maintains one thread of control, the caller is viewed as temporarily
yielding control, which is returned when the subroutine finishes.
Alternatively, the multithreaded programming model augments
this invocation mechanism. Individual threads of control can
invoke subroutines but also have the ability to fork a new thread
of control and different threads communicate through a variety of
well-known mechanisms (semaphores, monitors, etc.)

These two software concepts can be extended to hardware in
terms of a coordination policy. Hardware is different from soft-
ware in that there is no thread of control: generally, hardware is
controlled by some state machine that is always “on”. However,
most state machines have some sort of “idle” state and transfer of
control can be thought of as leaving and entering the idle state.
So the idea of transferring control is conceptual — the real issue
is coordination. In general, there are three common approaches
to coordinating hardware and software components. The dom-
inant approach is the coprocessor model; however, the multi-
threaded and network-on-chip models are gaining acceptance.
Each is described next.

Coprocessor Model
The coprocessor model (also known as a go/done model or cli-
ent/server model) is similar to traditional subroutine call linkage.
In this model, the hardware sits in an idle state, waiting to provide
a service to the processor. The processor signals for the feature to
begin and then waits for a result from the feature. These signals
are often called go and done (which give rise to one name for this
model).

To implement the go/done model, every feature is designed to
have an idle state. In the go/done model, every hardware com-
ponent has an idle state where it is, in essence, off. That is, the
designer treats the hardware like a sequential model and there
is a time-ordered transfer of control. It has a go signal that can
be implemented as a single I/O line or as part of a more compli-
cated interface (such as a FIFO). The general protocol is for the
processor to signal to the hardware to begin. The current (oper-
ating system) process blocks itself. When finished, the hardware
component signals “done,” which unblocks the invoking process.
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The hardware goes back into the idle state, waiting for another
go signal. A variation on this model has the hardware component
interfaced to other hardware components or external I/O. In this
case, the component may be concurrently gathering statistics
or serving autonomous functions independent of the processor.
(For example, the component may be counting external electri-
cal pulses over a period of time to compute the frequency. The
go/done interface is only used when the processor needs to know
what current frequency is.)

An important consideration in the go/done model is how to
handle the time while the feature is operating. There is a range of
ways to handle it based on how long it is expected that the fea-
ture will take to complete and system overheads (such as a bus
transaction or an operating system call).

Fixed Timing
For small features that take a fixed, short amount of time to com-
plete, the most efficient mechanism is for the processor to sim-
ply do an appropriate number of “no-op” instructions and then
retrieve the results (perhaps checking that done was actually sig-
naled). Oftentimes, the hardware is so fast that by the time the
state has been communicated, the hardware has results for the
processor.

Spin-Lock
When the amount of time a feature runs is unknown, mechanisms
such as a spin-lock can be used. The processor uses a loop to
repeatedly check some condition, indicating hardware has com-
pleted its computation. This is also known as polling hardware
for its results. However, checking the condition frequently (com-
monly implemented as a “done” signal) may have the unintended
consequence of slowing the feature by taking bus cycles away, for
example.

// Simple y = m*x + b Example
invoke_hw(m, x, b);
while(!done) {

done = check_done_signal();
}
y = retrieve_results();

Blocking
The traditional way of handling this situation is to treat the feature
like an I/O device. The “done” signal can be routed as an inter-
rupt to the processor. Then the feature can transfer the inputs to
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Software Hardware

Software

Hardware Interrupt Instantiation

Go/doneSubroutine
call

Transfer from:

Transfer to:

Figure 4.3. Transfer of control between hardware and software.

the feature and then tell the OS to deschedule it until the feature
completes.

// Simple y = m*x + b Example
invoke_hw(m, x, b);
yield();
y = retrieve_results();

One limitation of the coprocessor model is that it provides an
asymmetrical mechanism. Figure 4.3 shows the four combina-
tions how software and hardware may transfer control. The shaded
lower half of the figure shows transfer-of-control mechanisms that
are not always supported.

Special Solution to Coprocessor Model
Transferring state from hardware to software is often impracti-
cal. One way of identifying candidate features is described here.
By ordering the methods first, the algorithm focuses on the most
likely locations for feature extraction.

A (static) call graph G = (V, E ) of the application is constructed.
Recursion is detected by finding the strongly connected compo-
nents of G and removed from consideration. For example, print
and list in Figure 4.4 form a strongly connected component
and are marked with an ∗. Next, the remaining vertices of G are
assigned an ordinal by the rule,

ord(u) =
⎧⎨
⎩

0 if node u is a leaf

max
(u,v)∈E(G)

{
ord(v)

}
+ 1 otherwise

In other words, every node is labeled with the maximum inte-
ger distance from a leaf. For example, sar is 2 rather than 1 in
Figure 4.4.

Multithreaded Model
Increasingly, the multithreaded model has emerged as an impor-
tant programming model. In systems with multiple processors, an
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Figure 4.4. Example call graph.

operating system can manage multiple threads of control (opera-
ting within the same process context) to improve performance. In
other situations, such as graphical user interfaces, the model has
proved to be a productive programming one.

In the threading model, the true parallel nature of the hardware
is acknowledged and the designer recognizes that the processor
and hardware components are both running continuously. Coor-
dination of these components is handled by the communication
primitives that have been developed for concurrent processes:
semaphores, messages, and a shared resource such as RAM. In this
case, every hardware component is considered to be running as a
parallel thread. A set of system-wide semaphores are used to keep
hardware and software threads consistent. Instead of sitting in an
“off” state, hardware conceptually sits in a blocked state waiting on
a semaphore or for a message.

Network-on-Chip Model
Again, borrowing from the multiprocessor world, researchers are
beginning to investigate a completely distributed state and rely on
a message-passing to explicitly transfer state (subsection 4.3.2). In
this model, coordination is implicit with the transfer of state. How-
ever, because this assumes that software reference design has been
constructed with explicit message-passing commands, we do not
consider it in an embedded systems textbook. Nonetheless, we
have seen that high-performance computing techniques continue
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to filter down to the embedded systems, so it may be important in
the future.

4.3.2. Transfer of State
Historically, maintaining consistent state across discrete FPGA
devices and processors has been especially challenging. This is
because each FPGA device had its own independent memory hier-
archy, state is widely distributed in the design, and there is a wide
variety of interconnects between FPGAs and processors (from slow
I/O peripheral buses to high-speed crossbar switches). This is
true with Platform FPGAs as well. (Although due to integration, it
is possible to share more of the memory hierarchy.) This means
less state has to be transferred and there are a greater variety of
mechanisms available.

To explain these mechanisms, we define two concepts: affected
state and trapped state. These concepts help us decide which
parts of the application state need to be explicitly communicated
between processor and feature.

Affected State
One of the first questions to ask is “What data need to be kept con-
sistent?” For example, software compilers generate a large number
of temporary variables that are used to hold intermediate values,
and these values are often kept in registers (although they can be
“spilled” into main memory). However, after serving their purpose
as intermediate values, these data no longer contribute meaning-
fully to the state — only the final computation matters. Hence,
some state is independent by construction and there is no need to
transfer it. Other portions of state are simply not relevant to every
computation; that is, not every portion of the application refers to
every data value used. If we exclude these parts of the application
state, what remains is the affected state. More precisely, we can
define affected state as application data, during a transfer of con-
trol, that has the potential of being either read or written by either
the feature or the processor. In other words, the affected state is
the state we need to keep consistent.

For example, consider the (contrived) subroutine translate
(a) in Figure 4.5 and a corresponding hardware implementation
(b). This feature affects four int values in the application’s state.
This includes the values stored in x, m, and b, as well as the
return value of the function. For most processors, the compiler
would have generated a temporary variable (call it t1) to hold the
product m × x to be stored in the general-purpose register of the
processor. In hardware, this value would be expressed on a bus
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(b)(a)

int trans(int x, int m, int b) {
 int y ;
 y = m*x + b ;
 return y ;
} 

x

m

b

y

�

�

Figure 4.5. Translate.

(b)(a)

extern int m, b ;
int trans_and_inc ( int &x ) {
 int y;
 y � m*x � b ;
 x��  ;
 return y ;
} 

x

m

b

y

x'

�

�4
�

Figure 4.6. Translate and increment.

of signals between the multiplier and the adder (with the possi-
bility of a register inserted). These values (corresponding to t1
and y in the software) are part of the state but are not necessary
to maintain consistent state. Consequently the interface does not
have to accommodate them.

The subroutine translate might leave the false impression
that the arguments and return values are the only parts of state
affected by the subroutine. In functional programming languages
this is true — it is called referential transparency — and it allows
functions to be evaluated in local context with no global state
to worry about. However, the dominant programming paradigm
for embedded systems is imperative. In the imperative paradigm,
identifying state can be much more difficult. (Indeed, for a
wide range of reasons — from high-performance computing to
computer security — identifying affected state is a major chal-
lenge.) Consider the subroutine1 of Figure 4.6 and the correspond-
ing visual representation of state. Ignoring the presence of a cache,
this example shows that part of the state resides in main memory.
Because C handles arrays by reference and permits pointers to be
used to freely access all of a process’s state, there are numerous
ways for a single subroutine to affect the global state.

1 We are using a C++ shortcut here; alternatively int *x and (*x) could be substituted
for int &x and x in the body.
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Trapped State
Unfortunately, the affected state can be quite large (especially
if arrays, complex data structures, or pointers are involved).
However, when part of the memory hierarchy is shared, not all data
have to be explicitly transferred. For example, if all of the affected
state currently resides in primary storage (RAM) and both proces-
sor and features have access to this part of the memory hierarchy,
then there is no reason to explicitly transfer data.

However, modern processor designs are built with significant
memory caches that can capture part of the state without updat-
ing primary storage. Compilers naturally take full advantage of
the processor’s register set to hold state. Likewise, a hardware
implementation typically embeds data throughout the design; reg-
isters and flip-flops hold intermediate values between clock cycles
inside the design.

The state of an application is stored in several parts of a sys-
tem. In the processor core alone, application data might reside in
a general-purpose register, a cache, or (if an MMU is present and
enabled) in a translation look-aside buffer. Outside the processor,
application state might exist in on-chip Block RAM, in a subsys-
tem buffer, or in external RAM. In order for a feature to implement
part of the application, it will need to interact with part of the
state. Sometimes this is accomplished easily because the state is
in a common location (such as a common memory hierarchy).
However, if that state is in a register or in the processor’s cache,
it is usually not accessible to units outside the processor. We call
this trapped state and it has to be explicitly transmitted across
the interface. (The symmetric situation exists as well. Features are
not required to be stateless — some of the application’s data may
reside in a feature’s internal registers and that too would have to
be communicated across the interface.) Figure 4.7 illustrates two
places where state can be trapped.

This gives us a general idea of state, but before we begin to
formalize the transfer-of-state problem, it is worth interjecting
a brief discussion of pointers and the challenges faced in deter-
mining affected state. Often pointers are a source of frustration.
They often confound automated translation techniques because
the translator cannot tell if two pointers might refer to some loca-
tion. Pointers also have the reputation of frustrating humans trying
to analyze a piece of code (either to debug or to extend it). In both
cases, it is a matter of intent — what did the original programmer
wish to accomplish? In our situation, we can partially sidestep the
intent problem without declaring pointers off limits because the
sole purpose of a software reference design is to express intent.
Pointers tend to obfuscate when used to improve performance
in a clever way. But that effort is misspent in a reference design.
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Figure 4.7. Two examples of where state can be trapped (a) traditional and
(b) Platform FPGA.

So, while theoretically it is impossible to determine exactly what
the affected state is, we will assume that in practice it is feasi-
ble because we have access to the original intent. Applying these
manual techniques to “dusty deck” codes (older software that is
still in use) may require more effort.

Transfer-of-State Problem
Affected state that is trapped needs to be explicitly communicated.
This is done by a process called marshaling. Marshaling groups
elements of the application’s affected state into logical records that
are explicitly transferred. If we assume that the processor has con-
trol initially, there are up to four different kinds of records that may
be used. The first two kinds are used to transfer an initial set of
elements to the feature (Type-I, for initial) and a final set of ele-
ments back to the processor (Type-F, for final). These transfers take
place when the feature is loaded and unloaded. Because all of the
systems described are statically configured, these records are typi-
cally transferred at the very beginning of the application and when
the application exits. The other two kinds of marshal records are
used repeatedly — one when the feature is invoked (Type-CI, for
copy-in), and the other when it completes (Type-CO, for copy-out).

For example, consider an MPEG encoder core. A matrix of
quantization parameters is typically specified once for an entire



222 Chapter 4 PARTITIONING

x b y xm

Figure 4.8. Type-CI and Type-CO marshal records.

application and those values do not change. Rather than transfer
that state every time the encoder is invoked, those values can be
transferred once at the beginning. For an example, consider the
subroutine described previously in Figure 4.6(a). The Type-CI and
Type-CO marshal records are shown in Figure 4.8. As an example
of a Type-F record, suppose a core implemented in the config-
urable logic accumulates a value in a global variable (it may be
statistics about its operation or samples it was given). A typical
use of a Type-F record would be to read that variable after the last
invocation.

A translation process may be incorporated with marshaling. For
example, floating-point numbers in the processor may be con-
verted to fixed point when transferred to a feature. More compli-
cated transformations, such as converting a linked list into a linear
array of values are often appropriate. The grouping of elements is
logical because the assembly does not strictly mean that elements
are copied to a continuous location of memory. For small trans-
fers, this is often simple and efficient. However, for many high-
performance and multimedia applications, this is impractical. We
describe a variety of techniques later.

The simplest way to transfer state is to copy the entire record,
stop the processor until the feature completes, and then trans-
fer the entire record back. This is considered a push, as the caller
transmits data before transferring control. Alternatively, if a trans-
fer record already exists and is in a known location in memory, then
the caller can transfer control and the callee pulls data. One practi-
cal caveat: if the processor writes data to RAM and there is a cache,
it has to also flush the cache.

For example, suppose the core is designed to find one element
in an array. Depending on the algorithm, but under most circum-
stances, only a fraction of the array will be needed to complete
the operation. Transferring the whole array when invoked is an
expensive and unneeded operation.

Although simple, an instantaneous transfer of state is not
always efficient or feasible. For example, oftentimes the size of
the potential affected state is large but the actual data used are
small. In this case, the data access pattern is random and the logi-
cal transfer record is large, but actual data are small. In this case, it
is better for the interface to service the feature continuously. This
occurs when both the logical record and the actual data record are
large. If a large portion of data is expected to be used, then it makes
sense to develop a regular access pattern that transmits data
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continuously. In such a scheme, the feature begins working on part
of the transfer record while data are in transit.

In general, the choice of instantaneous versus continuous
transfer is determined by the goal of the feature. Instantaneous
is used when the feature is designed to reduce the latency of the
task and the transfer record is small. Alternatively, continuous
is used when the feature is designed to increase the through-
put and latency reduction is not possible or not enough to meet
performance targets.

Continuous transfer usually involves setting up DMA transfers
and the incorporation of FIFO buffers. As such, it can increase the
area and sometimes increase the latency. However, for many mul-
timedia, signal processing, and scientific applications, throughput
is the most important criterion.

One more fact is important with respect to transferring state.
Often the best implementation in hardware uses a different format
of data or possibly a different data structure. Translation is often an
integral part of marshaling data.

Now that we understand the fundamental concepts of com-
munication — coordination and state — we can take a formal
approach to solving the partitioning problem. Armed with a
detailed understanding of how to interface hardware and software
components, we are now ready to tackle the partitioning problem
directly.

4.4. Practical Issues
As mentioned at the beginning of Section 4.2, a mathematical
model is suitable for getting us “in the ballpark.” However, there
are numerous practical caveats and pitfalls that can confound
the analytical approach. In general, experience and a few rule-
of-thumb-type guidelines aid the system designer. This section
highlights a number of these issues not addressed by the formal
analytical solution.

4.4.1. Profiling Issues
A not-so-subtle assumption with analytical formulation is that it
uses profile information to approximate the fraction of time that
an application spends in a subroutine or basic block. However, a
number of situations could generate misleading results.

Data-Dependent Execution
Some applications are stable in the sense that the fraction of time
spent in each subroutine does not change substantially when the
input is changed. However, for a number of applications — espe-
cially when the size of the input data set is changing or when the
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application responds to external events — a single data set will not
be representative. In these cases, it is likely that the importance of
various subroutines (based on their fraction of execution time) will
change with respect to one another.

To detect this situation automatically is difficult. It requires the
system designer to understand the fundamental operation of the
application. For example, with applications that use many dense-
matrix algorithms, the designer can analyze the complexity of
various routines (i.e., “big-Oh” notation). For example, it may be
the case, for small data sets, that two subroutines may take a sim-
ilar fraction of time, but as the n increases, a O(n3) subroutine
will take an increasingly larger fraction of time relative to a O(n2)

subroutine. Harder to analyze, but no less important, are applica-
tions that depend on external events. An example of this might be
a handheld device: for some users, the phone will be the dominant
mode, whereas for others Internet access might be the dominant
mode.

There are a number of ways to address these types of situa-
tions. One is to manually analyze the algorithms and understand
the basic operation of the application. Another important tool is
to collect profiling information based on a number of different
(size and usage) data sets. A third is to try to separate the applica-
tion, perhaps along module boundaries, and profile each module
independently.

Correlated Behavior
Another subtle issue arises in some applications that explicitly
use timed events. That is, many profilers implicitly assume that
the application will make steady, asynchronous progress toward
a solution. However, some applications are written to specifi-
cally incorporate time (such as event-loop and real-time systems).
Because many profiling systems use an interval timer to sample
the program counter, they rely on the application to be statisti-
cally uncorrelated to the timer. However, if the application is also
executing operations in a regular, periodic fashion, then this is
not true and profiling results may mislead the designer. For exam-
ple, if events in the application are regular (occuring every 10 ms)
and the samples are regular (the program counter sampled every
10 ms), then the profiler will not provide a statistically accurate
description of the system. It could either over- or underrepresent a
periodic event at the expense of other components in the software
reference design.
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Phased Behavior
It is well known that applications exhibit phased behavior: over
the entirety of their execution, control moves between clusters
of related operations. In other words, the execution of an appli-
cation exhibits locality. Indeed, this characteristic, quantified by
Denning & Kahn (1975), is commonly exploited in the design of
computing systems. However, because of this, it may be difficult
for the designer to identify important features from the summary
numbers reported by a profiler.

As an example, consider an application that has three routines,
A, B, and C. Assume each account for 33% of the execution time,
each has the possibility of being sped up by 50%, and the routines
are ordered such that A runs to completion before B begins and
B completes before C begins. If there is only room for one rou-
tine in the FPGA resources, then the maximum speedup for the
system is 12%. However, if the phased behavior is recognized by
the system design, then there are options. One is to look at com-
monalities among the three cores and try to find commonality. A
second approach is to time-multiplex the hardware. No automated
approaches exist to do this, but the last chapter of this book dis-
cusses how to perform run-time reconfiguration to “share” certain
hardware resources.

I/O Effects
Unforunately, most profilers do not account for I/O. This means
that if the application spends a lot of time waiting for external
events (such as network activity, reading/writing to disk, or waiting
for user input), then improving the performance of computation-
ally intense parts of the application may not yield the expected
overall system performance gain.

For example, suppose an application consists of three subrou-
tines — A, B, and C — and it takes 75 seconds to run. The profiler
may report that 80% of the execution time is spent in subroutine C;
however, that does not mean subroutine C takes 60 seconds! Why?
Another useful utility time will help explain. Running the same
application results in an output shown in Figure 4.9.

% time ./simple
real 1m14.991s
user 0m21.959s
sys 0m0.523s
Figure 4.9. Time utility output.
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Note that the “wall clock” (“real”) time is 75 seconds but the user
time is only 22 seconds and the system time is 0.5 second. The user
and system times represent how much time is actually spent inside
of the application (in “user space”), and how much time is spent
in the operating system (“kernel space”), respectively. Where’s the
missing ≈ 52 seconds? This is time that the application spent wait-
ing on some external event. If the application is waiting for a user
keystroke, that time is not counted against the user or system
time — even though it does contribute to the overall wall clock
time. Thus, a better estimate of the time spent in subroutine would
be 80% of 22 seconds (17 seconds). Also any performance impro-
vements gained from subroutine C will only improve 17 seconds
of the total 75 seconds — not the original estimate of 60 seconds!
So, while most profilers exclude I/O time and focus on just the
computation time, the analytical formulation presented earlier
implicitly assumes that we are trying to improve the computation
rate of a compute-bound process.

Number of Calls
gprof and other profilers will also keep track of how often sub-
routines are called. It is important to note how often a subrou-
tine is called because it can cause the profile information to vary
wildly between runs. For example, it is common for applications
to handle “special cases” differently. For example,

if( delta_t>MAX_SWING ) {
dim_display() ;

} else {
compute_accel() ;
update_display() ;

}

This code might be used to hide results when certain condi-
tions suggest that data are not useful. Depending on data used
to profile the software reference design, it may turn out that
compute_accel() is only called once and has a small fraction of
execution time. However, in practice, one would expect that the
else-part of this code is the dominant path. The number of calls
is a major clue to the engineer that perhaps the data set is not
describing the behavior of the system accurately.

4.4.2. Data Structures
Software reference designs naturally reflect a bias toward soft-
ware implementations. This is understandable, as programming is
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(appropriately) taught within the context of an ordinary sequential
computing model. With such a model, the difference between

while( i!=NULL ) {
proc(i) ;
i = i->next ;

}

and

while( i<n ) {
proc(x[i]) ;
i = i + 1 ;

}

is negligible: both take O(n) steps. However, with hardware, the
latter is much more desirable. At minimum, a large prefetch win-
dow is possible. However, as we will learn in the next chapter, if
we can determine that, in the various iterations of the loop, each
proc(x[i]) is independent, then we could potentially improve
the design through pipelining or regular parallelism so that the
execution time approaches O(1) steps.

What this example shows is another flaw in the analytical
model of the previous section. The software reference design
serves extremely well as a specification. However, if we simply
profile the execution of the reference design, we do not capture
the implementation benefits. Because these benefits come from
algorithmic changes, it seems unlikely that automated techniques
will reveal these advantages. Consequently, it falls on the system
designer to understand both the software algorithm implemented
in the reference design and how it might be reimplemented in
hardware.

There are several places where common software structures
can be rearranged to yield better hardware designs. For exam-
ple, look for data structures that use pointers (linked lists, trees,
etc.) and determine if they can be implemented “flat” struc-
tures (such as vectors and arrays). Flat structures produce reg-
ular memory accesses that can subsequently be prefetched or
pipelined. Another place to look for performance gains is in bit
widths. Software programmers generally assume a fixed, standard
bit width even though they only use a few bits of information.
This is because processors are slow at extracting arbitrary bits
from a standard word. However, hardware excels at managing
arbitrary bit widths. Finally, software has fixed data paths and
(relatively) low bandwidth between components. When possible,
consider leveraging the large bandwidth provided by the FPGA’s
programmable interconnect.
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4.4.3. Manipulate Feature Size
The simplest change involves breaking up subroutines into
smaller subroutines. This has the effect of isolating computation-
ally intensive parts of the subroutine (making the hardware feature
smaller and easier to implement).

Alternatively, there are times when aggregating subroutines is
needed. For example, if two subroutines each account for 25%
of the application’s time, then they are strong candidates for
hardware. However, if implemented individually, each invocation
incurs the cost of interfacing. If these three subroutines are related
(for example, one is also invoked after the other), then combin-
ing them into a single subroutine saves the cost of invocation. This
happens frequently because ordinarily software programmers will
break up subroutines to make the code more maintainable and the
run-time cost of a subroutine is completely negligible. However,
the cost of interfacing is not always negligible and it is worth the
designer’s effort to investigate the situation.

Other changes are more substantial. Often the hardware imple-
mentation has a significant performance gain because it is better
and has application-specific data formats. To make software more
efficient in these nonstandard data formats, programmers will
frequently employ data structures that do not map well to hard-
ware. Thus, it is worth looking at the intent and considering replac-
ing data structures to better exploit the hardware.

Chapter in Review
The aim of this chapter was to give readers a better understand-
ing of the principles behind partitioning a software design into a
more efficient and, if possible, faster hardware implementation.
One technique introduced was profiling. We will actually see this
tool more in Section 4.A; however, it provides a good indicator
to what part(s) of the application may map well to a hardware
implementation. Analytically, we built a mathematical formula of
the partitioning problem and built a heuristic to maximize the
performance.
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Practical Expansion: Partitioning
In these gray pages, there are two main learning objectives. First, we describe a few of the practical issues of using profiling
and the tool gprof. Then we build on the basic Linux system described in the previous chapter to add kernel modules.

4.A. Profiling with Gprof

As mentioned in the white pages, one can get a statistical approximation of how much time a program spends in a subrou-
tine relative to the overall execution time. In this section, we will look at how to use one specific profiler, demonstrate its
use for a few applications, and then describe some more advanced tools for analyzing the behavior of a software reference
design. Specifically, we will look at an application profiler and a system-wide profiler.

One of the easiest tools to use is the profiler that comes with GCC, called gprof (Graham et al., 1982). Gprof gathers
three pieces of information during program execution: the number of times a subroutine is called, the execution time spent
in each subroutine, and the dynamic call graph. (The static call graph described earlier in the white pages includes an edge
between two vertices if there is the potential for one subroutine to call another. The dynamic call graph is a subset of
vertices — excluding edges if a particular subroutine call was not invoked during execution.)

The first step in anlyzing a software reference design is to run it without gprof using the time command. (Time is
a stand-alone application but is also built into some command line shells.) For example,

time sort -r /usr/share/dict/words > /dev/null

returns

real 0m0.657s
user 0m0.624s
sys 0m0.012s

What this means is that it took the sort command 0.657 second (wall clock time) to reverse the list of words in a dictionary
file. Of the wall clock time, 95% of the time (0.624 second) was spent in the user’s program and 5% was spent outside
the user space (either blocked on I/O or executing kernel code). In contrast, if we run

time cat /usr/share/dict/words > /dev/null

the output is

real 0m0.009s
user 0m0.000s
sys 0m0.008s

In this case, most of the time was spent outside of the user application. What is the difference here? In the case of sort,
the application has a fair amount of work to do — sorting a bunch of strings, which is substantial compared to the I/O
(moving data from the disk to the application). Computationally, the cat command is extremely simple — most of its time
is literally spent alternating between the read system call and the write system call.

There are two immediate implications of this information. If the software reference design spends a substantial port
of time in the operating systems (waiting on I/O, doing an intense number of system calls), then profiling the applica-
tion as it is may be worthless. That is, looking for hardware accelerators in an application that is I/O-bound (instead of
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compute-bound) won’t yield any speedup. Second, the issue may be that, in the rapid prototyping stage, I/O was used to
substitute for an instrument in the embedded system. For example, radar data may be the primary input to the system but
the radar is not connected to the development machine running the software reference design. To simulate the radar, real
data can be collected and stored in a data file. In this case, the software reference design is artificially I/O-bound and it
may be possible to tweak the program to better represent its behavior in the embedded system. (A third possibility is that
the application will be I/O-bound in the final embedded system. If this is the case, then this analysis tells the designer to
shift emphasis from the computation to how the data is delivered. See Chapter 6 for more about managing bandwidth.)

Assuming the basic timing analysis suggests that the application is compute-bound, the next step is to profile the
application. This is straightforward with GNU Compiler Collection — it will work even on the cross-developmenttools. (Of
course, to get useful results can be a little more challenging; see next section.) There are three basic steps:

1. Add -pg to the CFLAGS environment variable. With a typical GNU package, this can be accomplished when the
package is configured

./configure CFLAGS=-pg

Two potential snags to watch out for: (1) watch for the final link command — if the Makefile calls the ld command
directly, you must include the -pg option to that command as well! AddLDFLAGS=-pg to the configure command
will do this. (2) If there was a default CFLAGS in the configure (-g or -O2 are common) this overrides the existing
options rather than augments them.

2. Run your application with inputs that are representative of what the embedded system will experience. The only catch
here is that you have to have write priviledges in the current working directory at the end of the application. As long
as the application exits normally, the there will be a gmon.out file with your profiling data. Note that gmon.out
is overwritten every time you run the application.

3. The program gprof command interprets this data and produces two reports on the standard output. The command
looks like this:

gprof -b myprog > myprog.stats

The -b option suppresses a long summary of the different comments. You may want this initially but after using gprof
for a while, this option gives you just the data. (This command, as written, assumes that myprog and gmon.out
files are in the current working directory.)

The output consists of two tables. The first table is a “flat profile.” The second shows the dynamic call graph. To
understand what a developer can learn from these tables, let’s look at a several examples.

The first example comes from an implementation of an encryption/decryption standard called AES. This was compiled
with the -pg option. Then the application was used to encrypt a 217MB CompactDisk image. The output from the profiler
was gmon.out, and the gprof command, shown below, was used to convert the data file into a human-readable file.

gprof -b aespipe > data.stats

The first table from data.stats is shown in Figure 4.10. This is either very good news or disappointing news! It is
clear from the flat profile that 8.12 seconds of the 8.65 seconds that the program ran was spent inside of one routine,
aes_encrypt! If the AES routine was part of a bigger project, then this clearly identifies the routine to implement in
hardware. However, if you were trying to partition AES on its own, then the single routine is all you have and none of the
mathematical analysis of the white pages will help you.
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Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
93.87 8.12 8.12 14145726 0.00 0.00 aes_encrypt
5.55 8.60 0.48 27629 0.02 0.31 doEncryptCBC
0.29 8.62 0.03 1 25.00 25.00 aes_set_key
0.29 8.65 0.03 aes_decrypt
0.00 8.65 0.00 55282 0.00 0.00 rd_wr_retry
0.00 8.65 0.00 93 0.00 0.00 sha512_write
0.00 8.65 0.00 1 0.00 0.00 getPass
0.00 8.65 0.00 1 0.00 0.00 get_FD_pass
0.00 8.65 0.00 1 0.00 0.00 sGetPass
0.00 8.65 0.00 1 0.00 0.00 sha512_final
0.00 8.65 0.00 1 0.00 0.00 sha512_hash_buffer
0.00 8.65 0.00 1 0.00 0.00 sha512_init
0.00 8.65 0.00 1 0.00 0.00 sha512_transform

Figure 4.10. AES flat profile.

Let’s look at another example. The Finite-Difference Time-Domain (FDTD) application simulates the propagation of an
electromagnetic wave through some medium. For example, it might be used to simulate signals on the traces of a printed
circuit board. After running it with profiling turned on we get the flat profile shown in Figure 4.11. One thing to notice is
that six routines get called 20 times. This suggests that these routines are part of the main loop that iterates 20 times —
in this case, it was the number of time steps simulated. It also tells you that these routines are the major procedures in the
application. In this case, we probably also want to look at the dynamic call graph. Besides simply knowing where the time
is spent, we would also like to know the invocation patterns to make sure we don’t spend all of our time marshaling data
back and forth. We use a tool called Gprof2dot and the GraphViz package to convert the second table into a dynamic
call graph. The resulting graph is shown in Figure 4.12.

The last example, shown in Figure 4.13, presents an interesting case. It converts a PNM format image into a PGX
format image. (PGX is a nonstandard format used by the JPEG2000 Verification Model software.) It is interesting to note
that 53% of the time is spent decoding the PNM image. If we were to speed up the JPEG2000 encoding side, the best
possible speedup would be ×2.1 and that’s assuming no communication cost and nearly instantaneous execution time in
hardware!

We wrap up this discussion with a few final hints about profiling and related software tools. There is an art to profiling
that involves figuring out what to profile. For example, sometimes it makes sense to profile a large subsystem in isolation.
Most embedded systems would us JPEG2000 as a library, but in order to profile it, we needed a simple application that
reads, converts, and writes a single image. Had the entire system been profiled together, a single subroutine may not
have been so easy to spot. This was appropriate because we envisioned it being used with a camera that was continously
producing data. In another application, it might not be appropriate.

Another issue that one might see with gprof is the presence of a mysterious function called mcount. This is the
function that gets linked in when the application is compiled with -pg and it is used to keep track of how many times a
subroutine is called. It is very short, so if it takes a large fraction of the run time, that suggests that the application is doing
lots of subroutine calls and that the subroutines are short.
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Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
16.97 2.42 2.42 20 121.02 121.02 amp1
16.83 4.82 2.40 20 120.02 120.02 amp2
16.41 7.16 2.34 20 117.02 117.02 far2
11.01 8.73 1.57 20 78.51 78.51 amp3
10.94 10.29 1.56 20 78.01 78.01 far3
10.66 11.81 1.52 20 76.01 76.01 far1
4.70 12.48 0.67 2920 0.23 0.23 h_inner13
2.88 12.89 0.41 1920 0.21 0.21 e_inner13
2.52 13.25 0.36 1 360.05 360.05 grid
1.82 13.51 0.26 1 260.04 260.04 tstep
1.19 13.68 0.17 778 0.22 0.22 asuby
1.05 13.83 0.15 2 75.01 75.01 initial
0.98 13.97 0.14 2 70.01 250.04 SYMMLQ
0.56 14.05 0.08 2334 0.03 0.03 DAXPY
0.42 14.11 0.06 1560 0.04 0.04 DDOT
0.42 14.17 0.06 1 60.01 60.01 free_space
0.35 14.22 0.05 1556 0.03 0.03 DCOPY
0.14 14.24 0.02 10 2.00 2.00 Je1
0.07 14.25 0.01 10 1.00 1.00 Jm1
0.07 14.26 0.01 1 10.00 10.00 rectangle
0.00 14.26 0.00 40 0.00 0.00 wave
0.00 14.26 0.00 1 0.00 0.00 tst_params

Figure 4.11. Finite-Difference Time-Domain simulation.

Using compiler optimizations requires some special attention as well. On one hand, if the application requires a certain
level of optimization (-O3, for example) then one should profile it with optimizations turned on. However, the -O3 will
automatically inline small subroutines — a change that will obviously distort the results.

Although we have focused on gprof, an Open Source profiler, there are others. Both AMD and Intel offer profilers
that are especially well suited to their processors. AMD’s product is called CodeAnalyst and can be found at this Web
site: http://developer.amd.com/cpu/CodeAnalyst. Intel’s product is called VTune and can be found at
http://software/intelcom/en-us/intel-vtune. Two other Open Source profilers are calledoprofile
and Tprof. Part of the oprofile package is integrated with the Linux kernel and offers the ability to dynamically start
and stop profiling. Another nice feature of oprofile is that the application does not have to be recompiled. Tprof is part
of the Performance Inspector collection of tools (http://perfinsp.sourceforge.net/ ) and has the ability to
run in two modes. Its time-based sampling is similar to gprof (periodically the process is interrupted). The second mode
is event-based sampling. In this mode, the sampling interval is determined by how often a specific event occurs. Events
that are counted could be cache misses, branches taken, or instructions retired. Increasingly, commercial processors are
including counter registers throughout the processor and it seems likely that more event-based profiling will become an
important tool to understanding the behavior of applications.
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Figure 4.12. Finite-Difference Time-Domain dynamic call graph.

Finally, it is worth mentioning two very useful tools. A Python script called Gprof2dot (http://code.google
.com/p/jrfonseca/wiki/Gprof2Dot ) converts the output of gprof into a graph language called Dot.
GraphViz (www.graphviz.org ) reads a graph expressed in Dots and renders it visually in various graphics formats.
These tools were used to create the figures in this section.

4.B. Linux Kernel
4.B.1. Kernel Modules

There are two ways of extending the functionality of the the Linux kernel. The first is known as the “in-tree” approach.
In this case, you get a copy of the kernel, pick a directory in the source code, and begin adding code to existing files or
creating new files. The second approach is called “out-of-tree” and as the name suggests, you create new files in a new
directory outside of the Linux source directory. The major difference is that with out-of-tree development, one must learn
the interface and develop the extension as a kernel module.

It is slightly counterintuitive but the latter approach is usually preferable for first-time Linux developers. Regardless of
which approach is used, one still has to learn the kernel build system and usually it will be necessary to learn the kernel
module interface anyway. So the disadvantages are few but the big advantage is that an out-of-tree kernel module can be
compiled and recompiled on its own. This makes testing easier. When the internal state of the Linux kernel is not corrupted
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Figure 4.13. JPEG2000 example.

by a bug, then it is possible to remove the kernel module, fix the source and recompile it, and then insert it again into the
running system. Not having to reboot the system every time to fix small mistakes is much faster.

To use the kernel build system in the out-of-tree approach, one has to create a simple Makefile. The generic Makefile
illustrated in Listing 4.2 is similar to the Makefile described in Corbet et al. (2005): the variable LINUX points to
where the Linux source tree is and DRIVER_NAME is the name of the source file. In addition, we include the ARCH and
CROSS_COMPILE to cross-compile the kernel.
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L IN U X = . . / . . / l i n u x −2.6− x l n x
DRIVER_NAME = h e l l o . c

# I f K E R N E L R E L E A S E i s d e f i n e d , we ’ v e b e e n i n v o k e d f r o m t h e
# k e r n e l b u i l d s y s t e m a n d c a n u s e i t s l a n g u a g e .
i f n e q ( $ ( K E R N E L R E L E A S E ) , )

o b j −m : = $ ( DRIVER_NAME ) . o

# O t h e r w i s e we we re c a l l e d d i r e c t l y f r o m t h e command
# l i n e ; i n v o k e t h e k e r n e l b u i l d s y s t e m .
e l s e

K E R N E L D I R ? = $ ( L IN U X )
PWD : = $ ( s h e l l pwd )

d e f a u l t :
$ ( MAKE ) −C $ ( K E R N E L D I R ) M= $ ( PWD ) ARCH = p o w e r p c \

C R O S S _ CO MPIL E= p o w e r p c −440− l i n u x −gnu− m o d u l e s
e n d i f

c l e a n :
rm − r f ∗ . k o ∗ . o ∗~ m o d u l e s . o r d e r Mo d u le . s y m v e r s \

∗ . mod . c . t m p _ v e r s i o n s

Listing 4.2. A simple kernel Makefile.

The minimum components of a kernel module are shown in Listing 4.3. After including the header files, there are four
preprocessor macros used to put identifying information into the kernel module’s object file. Next comes two subroutine —
one is invoked when the kernel module is inserted, the other when the kernel module is removed. The kernel module does
not use a reserved function name (like main in C) to identify the init and exit functions of a kernel module. Instead,
the developer chooses them and tells the kernel with the last two preprocessor macros.

# i n c l u d e < l i n u x / m o d u l e . h >
# i n c l u d e < l i n u x / k e r n e l . h > /∗ N e e d e d f o r K E R N _ A LE RT ∗/
# i n c l u d e < l i n u x / e r r n o . h >

MODULE_AUTHOR ( " R o n S a s s < r s a s s @ u n c c . edu > " ) ;
MO D U L E _ D E S C RIP T IO N ( " S i m p l e Demo " ) ;
MO D U L E _S UP POR TE D_ DEV ICE ( " ( n o n e ) " ) ;
MO D U L E _L ICEN SE ( " G P L " ) ;
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ i n s e r t / r e m o v e k e r n e l m o d u l e r o u t i n e s
∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗
∗ C a l l e d when m o d u l e i s i n s e r t e d i n t o k e r n e l
∗/

s t a t i c i n t _ _ i n i t m y c o r e _ i n i t ( v o i d ) {

p r i n t k ( K E R N _ A LE RT " H e l l o , W o r l d ! \ n " ) ;

r e t u r n 0 ;
}

/∗∗
∗ c a l l e d when m o d u l e i s r e m o v e d f r o m k e r n e l
∗/

s t a t i c v o i d _ _ e x i t m y c o r e _ c l e a n u p ( v o i d ) {

p r i n t k ( KERN_DEBUG " G o o d b y e , c r u e l w o r l d ! \ n " ) ;

}

m o d u l e _ i n i t ( m y c o r e _ i n i t ) ;
m o d u l e _ e x i t ( m y c o r e _ c l e a n u p ) ;

Listing 4.3. A simple “Hello, World!” kernel module.

At this point, if one wanted to test their kernel module, one would create a base hardware system and compile a
Linux kernel for this hardware. Then one uses the Makefile here to compile the hello.c into a “kernel object” called
kernel.ko. This file is copied to the root filesystem before a filesystem image is created. Then you follow the steps
described in the last chapter to create an ACE file or download the bitstream and kernel.

Once the system is booted, the developer can log in on the console and use the commands insmod ./hello.ko

to insert a kernel module. The command rmmod hello removes it. (Note: In the former, the argument is a file name;
the argument to rmmod is the name of a module.)

4.B.2. Address Spaces

One of the advantages of using a full-featured operating system is that each process gets its own address space. One of
the disadvantages is that every process gets its own address space. In exchange for isolating software faults, it means
we have to manage multiple address spaces in our kernel modules. This includes (at minimum) the physical address space
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(with respect to the system bus), the kernel’s address space, and the current running process’s (virtual) address space. The
minimum one needs to know about moving data from one space to another in a device driver are these six routines:

1. request_mem_region(PHY_ADDR,LEN,"mycore") / release_mem_region(PHY_ADDR,LEN,
"mycore")

2. ioremap_nocache(PHY_ADDR,LEN) / iounmap_nocache(PHY_ADDR,LEN)
3. copy_from_user(KER_ADDR,USER_ADDR,LEN)

4. copy_from_user(USER_ADDR,KER_ADDR,LEN)

The first pair of routines (1) mainly serve to catch misconfiguration errors. They simply alert the kernel that there is a
range of physical addresses that this kernel module “knows” about and is claiming exclusive access to. (The third parameter
gives a short text description of what is at that memory location.) If the two versions of a kernel module are accidentally
installed twice, the second one will get an error when it requests the same memory range — this mechanism gives us a
chance to catch that common mistake.

Requesting a range of physical addresses does not mean that the kernel has access to them. Even the kernel’s memory
references are translated by the MMU into physical addresses. Consequently, we have to set up the MMU to translate our
physical addresses into the kernel’s address space. Fortunately, the kernel provides ioremap_nocache to do this for
us. (Whenever we are using physical addresses to communicate with an FPGA core, we want to be absolutely sure that
the cache is turned off in that address range.)

The last two operations also protect a kernel module developer from a large degree of complexity. When the kernel is
interacting with an application, the application will pass data through the system call interface. If that data is an addresss,
then the kernel module will see it as a virtual address in the user process’s address space. Any local variables in the kernel
module will be in the kernel’s address space. These two routines make it easy and efficient to move data between these
two, distinct address spaces.

If the hardware device that you are trying to access was interfaced to the bus using the Add/Import Peripheral wizard,
then the control registers are all going to be adjacent and start from some base physical address. Often the easiest way
to keep track of the locations is to use a structure, such as the one below, and a pointer.

typedef struct {
volatile unsigned int reg0 ;
volatile unsigned int reg1 ;
volatile unsigned int reg2 ;
volatile unsigned int reg3 ;
volatile unsigned int reg4 ;
volatile unsigned int reg5 ;
volatile unsigned int reg6 ;

} mask_regs_t ;

mask_regs_t *regs ;

Then, assuming base and len are set to the base physical address and length of the memory region, the regs
pointer can be set with

regs = (mask_regs_t *)ioremap_nocache(base,len) ;
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To write a 0x00000001 to the third registers, one would write

regs->reg2 = 0x000000001 ;

Dynamic memory allocation in the kernel is common. However, special care has to be taken because there are signifi-
cant performance issues when the kernel is responsible depending on how the memory is allocated. For small, infrequent
allocations — such as module insertion — then kmalloc is very similar to the C library’s mmaloc. For frequent or large
memory allocations, there are several mechanisms, and that is beyond the scope of this section.

4.B.3. Application View

Once the application has been partitioned and some parts now exist as hardware implementations, there needs to be
some mechanism for the software and hardware to communicate. Since the application has no way of directly addressing
the hardware’s physical address and it cannot update its own MMU page tables, it must rely on an operating system.
This functionality is typically provided in the device driver associated with the core. Thus, it is up to the designer to either
provide a device driver or find a generic one that is suitable.

Before returning to creating a kernel module to implement a device driver, let’s review how the application can interact
with a (char) device driver.

There are two main ways that an application communicates with a kernel (and indirectly with the hardware core).
The first is a streaming interface that is appropriate for transferring large data sets or continuous transfers. The second
approach is appropriate for small transfers when latency is critical or the transfer is occasional. (There is a third approach
that we won’t cover here, which is appropriate if the hardware core resembles a block-oriented storage device — such as
a disk drive.)

The first approach uses the open, read, write, and close system calls. Open takes an arbitrary file name and
creates a file descriptor. In our case, we are going to pass a special file called a device node. This file is created with the
mknod (or with genextfs2) and, by convention, goes in the /dev directory. For example,

ls -l /dev/ttyS0
crw-rw-rw- 1 root uucp 4, 64 Oct 19 11:14 /dev/ttyS0

shows a very common device file. The first character on the line indicates that this is a char device driver (versus a normal
file which has -). Notice the numbers “4, 64” where the size of the file is normally found. These are the major and minor
device numbers (respectively). This means that the device node was created with the following command.

mknod /dev/ttyS0 c 4 64

The first argument is the name of the file, the second is whether it is a char or block device (we will only discuss char
devices), and the last two arguments are the device numbers. The device numbers are used to connect a device file (and
the application) to a specific device driver.

In a general-purpose system, there is a protocol for dynamically allocating device numbers that involves a separate
process. This is necessary because the total number of hardware devices is growing and there are a fixed number of
device numbers. However, in an embedded system we can safely assume we know all of the hardware that will be
in our system, so we can make a static assignment and use an operating system call that may disappear in the future
(see below).
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The way an application accesses the kernel device driver is through this device node, for example,

char buff[100] ;

fd = open("/dev/mycore",O_RDWR) ;
// fill buff with some data to be sent to the core
write(fd,buff,100) ;
close(fd)

The operating system will do a number of security checks and then transfer control to a subroutine in the device
driver associated with /dev/mycore (typically called mycore_write). The difference between PIO and DMA is
howmycore_write processesbuff. If the device driver programmatically writes each 32-bit of word of buff to the
hardware core, that is PIO. The alternative is for the device driver to copy entire contents of buff to a block of kernel
memory and then set up a DMA engine (a dedicated piece of hardware used to transfer the data across the bus, independent
of the processor). The former is fast and simple, while the latter frees up the processor for other tasks. However, DMA
requires a significant amount of setup and an interrupt to indicate when the transfer is complete. Thus, for small amounts
of data (hundreds of words), PIO makes sense. For long transfers (large buffers of thousands of words), DMA can improve
overall system performance.

A third I/O option available on Unix-based systems, such as Linux, is called memory-mapped I/O. This mode works by
having the device driver manipulate the application’s MMU page tables so the application can read or write to its virtual
memory, and the MMU maps those addresses to the core’s physical address, effectively bypassing a system call to the
operating system. An example of this mode is shown below.

char *buff ;

fd = open("/dev/mycore",O_RDWR) ;
buff = (char *)mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0) ;
// fill buff with something for the core
munmap(buff,4096) ;
close(fd)

Note that the application doesn’t allocate any space for the buffer; the mmap system call simply creates a new virtual
page for the application. The arguments to mmap are straightforward. (The reason we use 4096 is simply to emphasize
that mmap will map the whole page.) An application can request 100 bytes (as before) but it will get a whole page.

4.B.4. Char Device Driver

In general, the main way of interacting with the Linux kernel is through a registration process that involves passing a data
structure with function pointers. In the case of a “char” device driver, this is called the file operations structure and it
loosely corresponds to the system calls that the application makes. A simple file operations structure might have four to
seven entries. The first entry identifies the device driver; the rest correspond to functions in the device driver. The idea is
that whenever a kernel needs some device driver-specific functionality, it calls one of these functions and the device driver
is expected to complete the operation.
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Our goal here is not to detail all of the function arguments and required functionality. That would simply be repeating
what is widely available in books and on the World Wide Web. Rather, our goal here is to highlight the functions that are
relevant to an embedded systems developer. To provide a framework, consider the following file_operations structure.

static struct file_operations fops = {
.owner = THIS_MODULE,
.open = mycore_open,
.read = mycore_read,
.write = mycore_write,
.mmap = mycore_mmap,
.llseek = mycore_llseek,
.release = mycore_release,

};

The first field, .owner, is boilerplate — you always include it to identify the device driver to the kernel. The open
and release fields roughly correspond to the application’sopen and close system calls. The major difference occurs
when more than one process might be simultaneously using the device driver. The open file operation is called every time
a new process invokes the open system call. The release file operation is called when the last process invokes the
close system call.

The read andwrite file operations are analogs of the system calls by the same names;llseek corresponds to the
lseek system call. In short, read is a request from the kernel to move data from the developer’s hardware core to an
application’s memory buffer and write is a request to move data from an application’s memory buffer to the hardware
device. Both file operations provide a virtual memory address and a length. However, these is the application’s virtual
memory address (not a kernel address), so one has to use the copy_from_user and copy_to_user functions to
access the application’s buffer. When the hardware is accessed with a char device driver, the kernel treats it like a large
sequential file and keeps track of the current position in that stream as an offset from the beginning of the stream. The
application can explicitly changethe current offset with thelseek system call and thellseek file operation is called to
let the device driver know. In all of these file operations, the device driver can reject the request, causing the application to
receive an error. If the device driver does not need to do anything — for example, when the application invokeslseek—
then that file operation field can be omitted from the stream.

The last file operation, mmap, is often very useful if the application and hardware communicate in small (one- or two-
word) transactions. Instead of the device driver acting as an intermediary for every transaction, the application issues the
mmap system call to request that the hardware’s physical address region be mapped to the application’s virtual address
space. Fortunately, Linux does most of the work — it sets up the MMU page table, checks permissions, and allocates
a free range of pages in the application’s virtual memory space. However, the Linux kernal does not know the physical
address of mycore, so it calls mycore_mmap to complete the job. It passes the usual file pointer argument and a
vm_area_struct that has the application’s virtual memory page table information. Our job is simply to finish setting
up the MMU with the core’s base address. This is accomplished with a call to remap_page_range as shown below.

static int mycore_mmap ( struct file *filp, struct vm_area_struct *vma ){
int rc = 0 ;
...
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vma->vm_flags |= VM_RESERVED;
if( remap_page_range(vma->vm_start, base,

vma->vm_end-vma->vm_start,
vma->vm_page_prot) ) {

rc = -EAGAIN;
}
return rc ;

}

Most of the information (start of virtual address page, length, page protections) has already been taken care of; we simply
provide a base physical address.

One important detail to note: here we use remap_page_range, which updates an application’s page table. With
PIO or DMA, the device driver often uses the ioremap subroutine call. The difference is that ioremap updates the
kernel’s page tables, that is, it maps the kernel’s virtual address space to the core’s physical address space. Useioremap
when you want to make the core visible to the device driver; use remap_page_range when you want to make the
core visible to an application.

4.B.5. Summary

A complete example of a simple adder core, a memory-mapped device driver, and an application that uses the core is on
the book’s world wide Web site. Using this adder core example (with two inputs and one output), a simple test was set up
that invoked the core 6 million times and the rate (transactions/second) measured. The results are shown in Figure 4.14.
For simple cores with a handful of arguments, it is clear that the MM is the most efficient mode of transfer. However, for
more complex cores — especially ones that include the continuous transfer for state — more complex device drivers are
needed. For an example of this, see the RCADE device driver, also on the book’s world wide Web site.
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Figure 4.14. Performance of various transfer methods.
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Exercises
P4.1. Suppose an application was profiled and it was discovered

that the do_work function accounted for 50% of the
execution time. If do_workwas implemented in hardware,
what is the largest speedup one could expect for the
codesigned system?

P4.2. Consider the following snippet of a C program.

int x ;
int y ;
int div ( int m , int n ) {

if( n==2 ) y = m>>1 ;
else if( n==4 ) y = m>>2 ;
else y = m/n ;
return y ;

}
void sub1 ( int a, int b ) {

int t1, t2 ;
t1 = a-b ;
t2 = a+b ;
x = div(t1,t2) ;

}

(a) If div was determined to be a feature implemented in
hardware, what is the affected, trapped state when it is
invoked?

(b) Suppose div was merged into sub1 and together,
implemented in as a hardware feature. Does it change
the affected, trapped state?

P4.3. Consider subroutine fmul below.

float fmul ( float a, float b ) {
return a*b ;

}

Give a practical explanation of why fmul might not be
considered a candidate feature.

P4.4. Suppose subroutine crc below is a candidate feature,

int crc ( int input ) {
return .... ;

}

Name three quantitative reasons it may not end up
mapped to hardware.

P4.5. A software reference design has one main loop that takes
600 seconds to complete. The loop was executed on the
target processor and each subroutine was timed. Table 4.1
shows this data. Each subroutine is called once and s(i) is
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i s(i ) h(i ) m(i ) r(i )

work 250 25 5 [ 500 20 20 ]T

gen 100 50 1 [ 200 0 10 ]T

smooth 100 35 10 [ 100 0 0 ]T

pack 100 10 5 [ 100 10 0 ]T

Table 4.1 Profile information for item 5.

the time it takes in seconds. The time to perform the
same functions in hardware and the marshaling costs (in
seconds) are also shown in the table. The resource usage of
CLBs, BRAMs, and DSP blocks are also shown.

(a) Calculate the expected performance gains, γ (i), and
rank the subroutines.

(b) If all four subroutines are implemented in hardware,
what is the overall expected improvement in speed, �?

(c) Ignoring routing concerns and assuming the target
device has

rFPGA =
⎛
⎝ 600

20
20

⎞
⎠

resources, what hardware/software partition yields

the maximum speedup?

P4.6. Suppose a scientific application was profiled using gprof.
The data for the top fifteen functions was collected and is
shown in Table 4.2. (You may want to consult with gprof
manual page to answer these questions.)

(a) Approximately how long did this application run?
(b) What is the difference between “self ms/call” and

“total ms/call”? If these numbers are identical, what
does this suggest?

(c) Suppose amp1 can be implemented in deeply
pipelined core that takes 220 clock cycles to complete.
It takes an additional 40 clock cycles to copy the data
in and another 40 clock cycles to copy the data out. If
the frequency is 100 MHz, what is the expected gain if
amp1 is implemented in hardware?

(d) Suppose the same hardware function can be used to
accelerate amp1, amp2, and amp3? What would be the
overall expected system gain?
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% Cumulative Self Self Total
Time seconds seconds Calls ms/call ms/call Name

16.97 2.42 2.42 20 121.02 121.02 amp1
16.83 4.82 2.40 20 120.02 120.02 amp2
16.41 7.16 2.34 20 117.02 117.02 far2
11.01 8.73 1.57 20 78.51 78.51 amp3
10.94 10.29 1.56 20 78.01 78.01 far3
10.66 11.81 1.52 20 76.01 76.01 far1

4.70 12.48 0.67 2920 0.23 0.23 h_inner13
2.88 12.89 0.41 1920 0.21 0.21 e_inner13
2.52 13.25 0.36 1 360.05 360.05 grid
1.82 13.51 0.26 1 260.04 260.04 tstep
1.19 13.68 0.17 778 0.22 0.22 asuby
1.05 13.83 0.15 2 75.01 75.01 initial
0.98 13.97 0.14 2 70.01 250.04 SYMMLQ
0.56 14.05 0.08 2334 0.03 0.03 DAXPY
0.42 14.11 0.06 1560 0.04 0.04 DDOT

Table 4.2 Flat profile information for item 6.

P4.7. Subroutine C consumes 85% of the execution time of
an application. However, an engineer refactored the
application so that a portion of subroutine C is moved into
a new subroutine, C1 and then subroutine C calls C1. In
this arrangement, subroutine, C1 accounts for only 80% of
the execution time. C1 is mapped to hardware. How does a
change like this impact expected system gain?

P4.8. Suppose the performance metric of interest was to cost
savings so long as a minimum execution rate was met.

(a) How does this effect the formal framework presented
in Section 5.2?

(b) Does this change γ and �?
(c) Describe a heuristic to replace the one described in

this chapter to maximize this performance metric (i.e.
minimize cost).

P4.9. Suppose the performance metric of interest was energy
consumption.

(a) What information is relevant at profiling to build a
performance gain metric?

(b) Rework the performance gain metrics γ and � with
this information.

(c) Will the heuristic described in this chapter be
appropriate?
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5
SPATIAL DESIGN

Things which are equal to the same thing are equal to each other.
Euclid

Elements of Geometry

So far we have concentrated on designs with a single thread of
control. That is, each instruction or operation is executed fully
prior to execution of the next. This chapter introduces the idea
of spatial parallelism, which allows for multiple threads of con-
trol. In computer science terms, this is more generally known as
concurrency. Here, we use spatial to highlight the fact that in
our hardware designs, the multiple threads of control are actu-
ally able to operate simultaneously. This is in contrast to early
forms of concurrency/parallelism where multiple threads were
time-multiplexed on a single control unit.

Although concurrency has been around since the very first elec-
tronic computing machines, the general perception is that man-
aging, debugging, and maintaining multiple threads of control are
significantly more difficult than doing the same with one thread.
Thus, for years many researchers in the computing community
have strived to avoid implementing explicitly parallel designs.
However, in exchange for the extra effort, explicitly parallel solu-
tions offer a much larger design space. This larger design space
provides us more opportunities to meet the complex performance
metrics of a modern embedded system.

For the unfamiliar, parallelism is an easy concept to grasp.
Consider performing a search over a large array of numbers. Com-
puter scientists may perform one of a variety of search algorithms.
The simplest is a linear search, comparing against each element
in the array until the number is found or the end of the array
has been reached. Unfortunately, the simplest solution often does
not yield the best performance, and in this case a linear search
results in O (n). A more sophisticated approach is binary search,
which relies on the fundamental concept of divide and conquer.
In a recursive implementation, a binary search splits the search
space in half repeatedly until the number is found. On a sequential

247
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processor this would require sequential comparisons, resulting in
a worst-case O (log (n)) performance.

In hardware, a sequential implementation using a single com-
parator would also result in a worst-case performance of O (n). By
implementing a similar binary search algorithm in hardware the
performance increases to O (log(n)); however, by increasing the
number of comparisons occurring at the same time (in parallel)
this performance can be improved significantly by replicating the
logic to implement a fully parallel search implementation. This
solution, however, comes at the expense of additional resources.
Consider a situation where there are sufficient resources to per-
form all of the necessary comparisons in parallel. In this case we
would be able to improve the performance to O (1). While it may
not always be feasible to implement such a large number of paral-
lel operations, it is worth considering how to design systems that
are able to take advantage of the exceptional parallelism available
within FPGAs.

The learning objectives of this chapter are quite straightfor-
ward:

• We begin with an overview of the principles and terms related to
parallelism to give readers a firm understanding of the concepts
that will be applied throughout this chapter.

• Next, we use these principles to help in our understanding
of what to look for when trying to find parallelism in soft-
ware reference design that is typically expressed as a sequential
algorithm.

• Finally, we look at practical methods to implement parallel
designs on Platform FPGAs and common issues that can arise
if design considerations are not met.

5.1. Principles of Parallelism
The terms parallel and serial originated with electrical terms used
to describe the organization of electrical components. For exam-
ple, two resistors, R1 and R2, can be arranged in series or in
parallel, as illustrated in Figures 5.1(a) and 5.1(b), respectively.
However, this analogy is slightly broken. Electrically, both com-
ponents in these figures are actively contributing to the system
behavior, which is the output characteristics of the circuit, at all
times. However, when describing serial computation, the opera-
tions are often broken up into individual instructions, which may
share the same physical components of the system. It is more
accurate to describe serial computation as sequential computa-
tion. Therefore, the terms sequential and parallel can be defined
as follows.
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R1 R2

R1

R2

(b)(a)
Figure 5.1. Resistors in (a) series and (b) parallel.

Sequential: The same components are resused over time and the
results are the accumulation of a sequence of operations.

Parallel: Multiple instances of components are used and some
operations may happen concurrently.

The advantage of sequential implementations is that they effi-
ciently use hardware resources, whereas parallelism can be used to
reduce the time to completion of a task at the expense of additional
hardware.

To make these concepts clear, consider a task T that is com-
posed of a set of eight subtasks {t0, t1, . . . , t7}. Executed sequen-
tially on a single component, task T takes 8� to complete. This is
illustrated in Figure 5.2(a). In contrast, these eight subtasks could
be assigned to four units as illustrated in Figure 5.2(b), and it
only takes 3� to complete task T. The obvious savings here is that
the application completes 2.1× faster; however, it requires 4× the
resources.

A good question to ask at this point is: “Why not move t7 to
unit 3 in time slot [1�, 2�]? Then the application will complete
4× faster. The answer lies in how the application is specified. If
the programmer who developed the application assumed that it
would be executed sequentially (ti is executed before ti+1 — per-
haps because ti+1 uses a result from ti) then any parallel execution
of T ’s subtasks must respect this ordering. This highlights the
fundamental issue of this chapter: Given a sequential software ref-
erence design, our job is to discover the parallelism and implement
a suitable execution structure.

5.1.1. Granularity
Consider our task T and its set of subtasks {ti} again. If T is
our software reference design, we must first determine how to
define the substasks. Fine-grain parallelism means that subtasks
ti are relatively small, maybe the equivalent of a few instructions.
Coarse-grain parallelism refers to relatively large subtasks, such as
an entire subroutine.
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Figure 5.2. Executing task T (a) sequentially and (b) in parallel.

Often, natural boundaries based on the expression of the refer-
ence design are used. For example, we think of an application con-
sisting of modules and packages, packages consisting of classes,
classes consisting of subroutines or methods, and so on down to
processor instructions consisting of n-bit arithmetic operations.
These have common names based on how large the subtasks are.

Bit-Level Parallelism
If given that task T operates on scalar values (integers, real num-
bers, etc.) then the scalar will have some bit pattern to represent
specific values. For example, if we are using large integers (±2 bil-
lion) we would typically use a 32-bit two’s complement notation.
Bit-Level Parallelism (BLP) would break the 32-bit scalar into fields
(subsets of the 32-bit representation) and then organize parallel



Chapter 5 SPATIAL DESIGN 251

subtasks (ti) to work on each field in parallel. The advantage of
bit-level parallelism is that it tends to be independent of the appli-
cation and one parallel implementation can be used over and over
in many general-purpose applications. The disadvantage is that
the number of bits in the scalar tends to limit the parallelism.

Instruction-Level Parallelism
The ubiquitous general-purpose processor today has an instruc-
tion set architecture (ISA) that defines the various operations
available to it. In Instruction-Level Parallelism (ILP) the task T is
typically a program and the subtasks ti are the individual instruc-
tions. A large body of work in computer architecture describes
different techniques for detecting this parallelism. The advantage
is that the programmer can develop sequential codes and then
the software/hardware system performance increases. This term
is reserved for parallelism found in single threads of control.

Iteration-Level Parallelism
Also known as Data-Level Parallelism (DLP), this granularity is
similar to bit-level parallelism except that instead of scalars, data
are vectors, and instead of a single operation, the subtask might
be a sequence of instructions. For example, the mathematical
operation called inner product takes two vectors and produces a
scalar,

c =
∑

i

ai × bi

If written as a loop in a sequential language,

c = 0 ;
for( i=0 ; i<N ; i++ ) {

c = c + a[i]*b[i] ;
}

each iteration of the loop happens one after the other. However, as
shown later in this chapter, some of the iterations can overlap and
be executed in parallel.

Thread-Level Parallelism
In iteration-level parallelism, each subtask is performing the same
sequence of instructions on separate datum in a vector. Thread-
Level Parallelism (TLP) is different from the previous three in that
the programmer specifies the parallelism explicitly in multiple
threads. Each subtask is a thread and does not necessarily perform
the same sequence of instructions.

All of these terms are generally applied to parallelism found in
software implementations. We adopt the terms here because many
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embedded systems designs start as software reference designs.
Also, they effectively convey a sense of “size” or complexity that
mirrors a hardware implementation. Granularity is not a precise
measure but serves to help teams communicate the intent. A hard-
ware engineer may strive to achieve a level of parallelism based on
the software reference design’s expressible granularity.

5.1.2. Degree of Parallelism
Another important concept, which is not always treated precisely
but is useful nonetheless, is a software design’s degree of paral-
lelism. Degree of parallelism (DOP) can refer to (i) the number
of concurrent operations at a single moment of time, (ii) a time-
varying function over the entire application, or (iii) the average of
a time-varying function over some task T, which may not include
the entire application. For example, the degree of parallelism for
some software reference design is illustrated in Figure 5.3. From
the diagram, we can see that the maximum DOP is 6, which occurs
between time 5–7. We can also see that the average DOP is 3. We
calculate the average DOP as the area under the curve. What this
tells us is that, if these are iteration-level subtasks, having more
than six cores would be overkill. Likewise, if hardware resources
were scarce, having four cores instead of six would achieve 78% of
the performance with 66% of the resources.

5.1.3. Spatial Organizations
In the early 1970s, Flynn proposed a taxonomy for describing com-
puter organizations (Flynn, 1972). Although his taxonomy was
intended for large multichip computers, it turns out that the same
taxonomy can be useful for characterizing parallel computation

Figure 5.3. Illustration of the
degree of parallelism of a
fictitious application.
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in a Platform FPGA-embedded system. His taxonomy is organized
around two axes that describe a stream(s) of instructions in one
dimension and a stream(s) of data in the other. Each dimension
has two cases, single stream or multiple streams, which leads to
four cases:

Single Instruction Stream, Single Data Stream (SISD) archi-
tecture is the single-core, von Neumann-style processor model
used in many general-purpose computers. In this situation, a
single processing unit consumes a single sequence (stream) of
data.

Single Instruction Stream, Multiple Data Stream (SIMD) archi-
tecture uses simple Processing Elements (PEs) that are all
performing instructions from a single instruction stream in
lock step. Early implementations of this type of architecture
used a single instruction decode circuit that broadcasted
control signals to all of the PEs. Associated with each PE is
an independent local memory hierarchy. Because each PE’s
memory is separate, there are, in effect, multiple data streams
being processed simultaneously.

Multiple Instruction Stream, Single Data Stream (MISD) archi-
tecture breaks up a single stream of instructions (or sub-
instructions) into independent operations that can be executed
in parallel. These independent streams of instructions are then
assigned to separate processors, and a single stream of data is
passed from processor to processor via explicit communica-
tion channels.

Multiple Instruction Stream, Multiple Data Stream (MIMD) is
what most computer engineers think of first when they think
of a parallel computer: multiple independent processors, each
with its own memory and own instructions. The processors
might communicate via some shared memory hierarchy or
via explicit communication channels. Either way, it is char-
acterized by multiple independent processors and multiple
independent blocks of memory.

This two-dimensional taxonomy is designed to classify hard-
ware organization. It has served its purpose well, even though
at times various cases have appeared to be no longer commer-
cially viable, only to then see the model arise again in a differ-
ent context. For example, there was a great deal of excitement
about SIMD machines built with custom IC chips a couple of
decades ago. However, the industry faltered when it became clear
that MIMD architectures built from Commodity Off-The-Shelf
(COTS) components were much less expensive. But, since then,
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SIMD concepts have returned — finding their way into special
instruction sets added to commodity processors and Graphical
Processor Units (GPU) used in video cards.

Other names for specific cases in Flynn’s taxonomy have sur-
faced. For example, the original conception of MISD was that the
processors operate in lock step, that is, data flow along (fixed)
communication channels in a prescribed, synchronized pattern.
Others have dubbed this organization as “systolic architectures”
because it resembled blood flowing along arteries and veins.

Likewise, the principle of SIMD is echoed in the vector pro-
cessing unit of vector processors and in pipelined processors.
Although not implemented with processing elements and dis-
tributed memory, vector processing units are built to exploit the
fact that the same operation is applied to many data elements. This
includes direct memory access to main memory and operations
that are deeply pipelined. Likewise, it bears a striking resemblance
to stream processors that have emerged more recently. We expand
on this later on in the chapter.

A separate issue from the hardware organization is the pro-
gramming model. For example, even though MIMD hardware
could execute separate instruction streams, it is possible to repli-
cate the same instruction stream on every processor. This pro-
gramming model, called Single Program Multiple Data (SPMD) (or
data parallel programming), has proven to be a productive way to
write scalable parallel applications.

Arguably the biggest difference between vector and stream pro-
cessors is in the programming model — how involved the pro-
grammer is in setting up and controlling the parallelism. In vector
processors, the programmer just had to follow a handful of guide-
lines and the compiler was primarily responsible for detecting
and implementing vector instructions. In stream processors, the
programmer is usually tasked with explicitly identifying “kernels”
in their code — each which has its own local memory and will
ultimately be mapped to an independent processor.

In the case of building custom-embedded systems designs for
Platform FPGAs, we have the luxury and responsibility of building
any parallel architecture we want. Likewise, we are also respon-
sible for coming up with the application to use our architec-
ture! To help readers understand the options and trade-offs, we
next describe some of the common organizations in a little more
detail.

Vector and Pipelined Parallelism

Suppose we have a task T that can be divided into a set of sub-
tasks {t0, t1, . . . , tn−1} where T might be some operation such as
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t0 t1 tn21

T

Figure 5.4. Pipeline parallelism.

“multiply two integers x × y.” In cases where the subtasks are
sequential steps, each subtask can be assigned to a processing
station, or hardware core. Visually, this is shown in Figure 5.4.

If we assume that each task buffers its outputs with a register
and clocks this core at � = maxt∈T {delay(t)}, then it takes n cycles
to produce a result. However, the design T can accept a new input
every cycle. If we assume a sequence of inputs I that produces a
sequence of outputs O = 〈o0, o1, . . . om−1〉, then T ’s throughput is
the number of outputs per cycle or

m
m + n

Assuming that the number of subtasks is fixed and is much less
than the desired number of results n � m, then we observe that
the throughput approaches 1 as m → ∞.

Often in embedded systems, we focus specifically on the
throughput of hardware cores because the number of inputs is
large. Although we do not always think of embedded systems
as devices that move large vectors of inputs around, it is very com-
mon for these systems to continuously sample their environment.
This produces a sequence of inputs I — even though data may not
be stored permanently in primary or secondary storage.

How is this related to parallelism? By starting a new opera-
tion before the last one completes, we are effectively overlapping
consecutive operations of T. The time-space diagram shown in
Figure 5.5 illustrates this for four subtasks. Time advances along
the x axis in � increments, and the activity of the subtasks is shown
along the y axis. If n � m, then it can be seen that — for a larger
percentage of the processing time — the degree of parallelism is
the number of subtasks. If the time to complete task T sequentially
is ≈ 4 × �, then we can see that the degree of parallelism translates
into a speedup of the core.

Control Parallelism

Control parallelism, also known as irregular or ad hoc parallelism,
examines a single stream of instructions to find operations that
can be performed across multiple components in parallel. In some
cases, this can be done automatically. More often, though, it is
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Figure 5.5. Time-space diagram of pipeline parallelism with threads in the idle (I),
active (A), or communication I/O bound (C/Comm) state.

up to the designer to block and identify the operations that may
be performed simultaneously. Control parallelism is more clearly
visible in implementations from hardware description languages.
VHDL, for example, can specify explicit components to operate on
each individual task. We will discuss HDL implementations more
in the last section of this chapter.

Pipelining can be used at any granularity from bits up to com-
plex modules. Likewise, control parallelism can be utilized at dif-
ferent granularity as well. To understand this form, we look at
sequences of simple algebraic assignments, that is, imperative
programs with no conditional branches or loops. Consider the
following program that computes the roots of the polynomial
ax 2 + bx + c with the quadratic formula:

x0, x1 = −b ±√
b 2 − 4ac

2a

The sequential code would be:

(s1) descr = sqrt(b*b-4*a*c)
(s2) denom = 2*a
(s3) x0 = (-b+descr)/denom
(s4) x1 = (-b-descr)/denom

The inputs to our entity will be a, b, and c. The outputs will be x0
and x1.

The basic idea behind control parallelism is that some of the
statements used to compute x0 and x1 can be performed simul-
taneously while still producing the correct answer. So, for exam-
ple, the instructions s1 and s2 can operate in parallel, but s3 and
s4 cannot begin until the first two finish. However, once s1 and
s2 have finished, then the last two can be performed separately.
Assuming that each phase of these two steps takes one clock cycle,
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this formulation of the solution would have a constant degree of
parallelism of two. Graphically, this is illustrated in Figure 5.6.

However, this becomes more interesting if we change the gran-
ularity from statements to operations. The basic operations that
we’ll use are ×, ±, +, −, and √ . For the moment, let’s just con-
sider the last few operations to compute x0 and x1 assuming
that we have signals that have computed the discriminate and
denominator. Figure 5.7 illustrates this control parallelism.

Two important considerations arise from these examples. The
first is timing. Earlier we assumed that every statement took one
clock cycle. However, chances are that the square root operation

x0a

b

c

�b�descr
denom

(s3)

�b �descr
denom

(s4)
x1

2*a

(s2)
denom

sqrt(b*b-4*a*c)

(s1)
descr

Figure 5.6. Control parallelism found in a quadratic formula (statement
granularity).
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Figure 5.7. Control parallelism found in a quadratic formula (operation granularity).
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will take more time than calculating the denominator. Also, we just
waved our hands to arrange these blocks because, as humans, we
can see the relationships in this very simple equation. We will need
a much more formal way of working with these relationships —
especially when we introduce loops and conditionals. The issue
of timing in pipelines is so important that the entire next chapter
addresses it. We formalize the relationships between operations
later in this chapter.

Data (Regular) Parallelism

Unfortunately, ad hoc parallelism is not very scalable. If a design
is created today that has been divided up by operations or by
statements, the division may not be sensible for the next gener-
ation of components. For example, dividing the operations based
on the amount of available on-chip memory may restrict future
designs when more on-chip memory resources are available, caus-
ing a redesign of the system.

Data parallelism focuses on organizing the parallel threads of
control around a regular data structure, such as an array, and
loops. In this model, if each iteration of a loop operating on an ele-
ment of an array is independent, then it is easy to divide up the
array among the available resources. In the event that the design
is migrated to a larger chip with more resources, the array can be
again divided by the available resources. All that is required is the
circuitry to implement the additional components. This is much
more feasible than redesigning the entire system.

5.2. Identifying Parallelism
The problem of finding parallelism is made more difficult because
the ubiquitous imperative programming model is so closely asso-
ciated with the sequential compute model of a typical processor.
While the problem itself may have a large degree of parallelism,
the software reference design may not. We can visualize our job
as first moving from a sequential specification to a higher level of
abstraction before translating to a more concrete parallel imple-
mentation as shown in Figure 5.8. We must mention that nothing
here is guaranteed to find the maximum parallelism in a software
reference design. To do that would require us to be able to infer a
programmer’s intent — a seemingly impossible to solve problem.

5.2.1. Ordering
Given that we start with a software reference design, our problem
is to detect the parallelism in a sequentially specified application.
We do this by looking for general patterns in the application that
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Figure 5.8. Implementing parallelism from a software reference design.

map to certain forms of parallelism. Once the parallelism has been
discovered, then we can decide how to make use of it by building
the appropriate execution structures in the FPGA fabric. We will
start with the assumption of simple sequential tasks with no con-
ditionals or loops. After formalizing the concepts we will extend
our notion to conditionals and then loops.

Let’s return to the idea of a single task T composed of a sequence
of n subtasks 〈t0, t1, . . . , tn−1〉. We say that the subtasks are totally
ordered because we start ti before ti+1, for all i. However, we
know from the discussion of irregular parallelism that this order
is unnecessarily restrictive. We define a legal order of subtasks to
be an ordering that produces the same results as total order T for
all inputs. For example,

a = (x+y) ; // (s1)
b = (x-y) ; // (s2)
r = a/b ; // (s3)

We could divide this into

T = 〈s1, s2, s3〉
and (without proof) it should be clear that T and T ′

T ′ = 〈s2, s1, s3〉
are both legal orderings.
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Indeed, we observed earlier in the discussion of irregular paral-
lelism that s1 and s2 can be executed in parallel. This idea of

• “s1 has to complete before s3” and

• “s2 has to complete before s3”

but no specific order is imposed for s1 and s2 is the idea of a partial
order.

Therefore, the goal of finding parallelism is to take a software
reference design, usually written in an imperative language, and
find a legal partial order from the expressed total order.

5.2.2. Dependence
If we treat the elements of a sequence T as a set of substasks, then
we can define a relation R on the set T. That is, R ⊆ T × T. If, in
English, we say:

(ti, tj) ∈ R if subtask ti comes before subtask tj

then the total order would be

(ti, tj) ∈ Rtot if i < j

Rtot as written is transitive, but one could reduce the number of
ordered pairs and keep the total order by expressing it this way:

(∀0 ≤ i < n |(ti, ti+1))

What we really want is a precedence relation that is not defined
by the sequence of operations in the sequential software reference
design. What we want is something like:

(ti, tj) ∈ R if subtask ti must complete before subtask tj

But what does “must complete before” mean? This means that
task ti produces some result that must be communicated to task
tj before tj completes.1 For imperative programs, these results are
communicated through state, which is essentially the register file
and primary memory (RAM) of a processor. Further refining our
precedence relation, we might say

(ti, tj) ∈ R if subtask ti writes a value that subtask tj reads

Thus, the last thing we need to do to formalize this problem is to
define two sets for every subtask:

OUT (ti) the values that ti writes
IN (ti) the values that ti reads

1 We say “completes” because there may be sub-subtasks in tj and this allows for some
overlap of ti and tj.
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Now we can formally write the (true) dependence relation,

(ti, tj) ∈ D if OUT (ti)∩ IN (tj) �= ∅ (5.1)

In English, one would say that “tj depends on ti.”
Note that the definition talks about values that a subtask does

not need, for example, the memory location of a variable. Imper-
ative programs complicate the matter because they frequently
reuse memory locations. An equivalent program to an earlier
example would be:

a = (x+y) ; // (s4)
r = a ; // (s5)
a = (x-y) ; // (s6)
r = r/b ; // (s7)

In this case, s7 rewrites the location of variable r. So the value
that s5 writes only exists for a period of time. This means that
there is another ordering restriction in this code — we cannot exe-
cute s7 before s5 for two reasons. First, if s5 was executed after
s7, the value of r that s7 wrote would be lost. Second, we have a
(true) dependence in that the s7 IN set includes r, which is in the
s5 OUT set. This example introduces the concepts of output and
antidependence. As written, s4 is output dependent on s6, as s5
has to complete before a can be overwritten. Similarly, the value
stored in a has to be used by s5 before s6 executes, which is called
antidependence. However, the key here is “overwrite.” Human and
automatic processes can be used to avoid this problem with rela-
tively little overhead. It comes down to renaming variables rather
than reusing the variables. In fact, there is a very common compiler
intermediate representation called Static Single Assignment (SSA).
By construction, SSA avoids output and antidependence (Cytron
et al., 1991). Thus, we will ignore these “false” dependencies and
focus on the “true” dependencies defined in Equation 5.1.

Often a hardware designer does not have to formally construct
the IN and OUT sets and graphically render the dependence rela-
tion. However, academically it is useful to make the concepts con-
crete. Returning to the first program example (s1 − s3), we can
tabularize the IN and OUT sets as shown in Table 5.1.

subtask t IN (t) OUT (t)

s1 a = (x+y); {x, y} {a}
s2 b = (x-y); {x, y} {b}
s3 r = a/b; {a, b} {r}

Table 5.1 Subtasks and their IN and OUT sets.
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The OUT sets in these cases are all single variables because of our
choice of granularity. Of course coarser units or certain operations
(divide, for example) will produce larger sets.

Although a brute-force exhaustive enumeration approach is
not necessary, or advisable, in practice we can do this for three sub-
tasks. That is, we need to compute OUT (ti)∩ IN (tj) for all i and j
(except when i = j, as it does not make sense that a subtask would
be dependent on itself).

s1 OUT s2 OUT s3 OUT
s1 IN OUT (s2)∩ IN (s1) = {} OUT (s2)∩ IN (s1) = {}
s2 IN OUT (s1)∩ IN (s2) = {} OUT (t3)∩ IN (t2) = {}
s3 IN OUT (s1)∩ IN (s3) = {a} OUT (s2)∩ IN (s3) = {b}

Thus, dependence relation is all of the nonempty sets:

D = {(s1, s3), (s2, s3)}
which is illustrated graphically in Figure 5.9.

Note how the dependence relation, when expressed graphi-
cally, relates to hardware design. Computation is organized spa-
tially, and dependence relation indicates the communication. One
can easily envision creating a VHDL entity, where the inputs and
outputs are ports. A structural VHDL architecture would instanti-
ate each of the computations.

To extend this model to include conditional statements is rel-
atively straightforward. In an if/then/else statement, as shown in
Figure 5.10, the conditional is simply an expression that pro-
duces a value. The first subtask in the then group of statements
depends on this value, and the first subtask in the else group of
statements depends on this value. Graphically, we can use the
hardware notion of a multiplexer with the condition determining
which values to propagate. A while-loop, shown in Figure 5.11,
shows a single implementation of the loop body as a block dia-
gram. The while-loop is similar to an if/then/else statement in
that they both evaluate a condition and execute code based on
the condition; a while loop presents a greater chance for paral-
lelism due to loop unrolling. The if/then/else simply multiplexes

s1

s2

s3

x

y

r

Figure 5.9. Graphic illustration of dependence relation D.
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Figure 5.10. Graphic illustration of if/then/else.

while ( C(i) ) {
 S(i)
}

S1

S(i) RC

Figure 5.11. Graphic illustration of a while loop.

between the two parallel code bodies and unless the if-then-
else is executed many times, there may not be any significant
gains in performance to implement the design in hardware. The
while loop, however, can actually be represented, as it is done in
Figure 5.12. Now truly parallel implementations can be executed
for a significant performance gain.

Induction variables are integer or floating-point variables that
are incremented or decremented the same amount for each for-
loop iteration. Recognizing their relationship to the loop control
variables often lifts data dependence restrictions and permits fur-
ther optimization, as shown in the following example:

for ( i=0; i<n; i++ ) {
a[j] = b[k];
j++;
k+=2;

}
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Figure 5.12. Unrolling of a while
loop.

while ( C(i+0) or C(i+1) or C(i+2) ) {
 if ( C(i+0) )
  S(i+0)
  if ( C(i+1) )
   S(i+1)
    if ( C(i+2) )
      S(i+2)
 i = i+2
}

while ( C(i) ) {
 S(i)
 i = i+1
}

becomes

_Kii2 = k;
_Kii1 = j;
for ( i = 0; i<n; i++ ) {

a[_Kii1+i] = b[_Kii2+i*2];
}

5.2.3. Uniform Dependence Vectors
The preceding definition of dependence works very well for
stretches of sequential code with possible conditionals. While
the dependence relation can be used on iterative control struc-
tures (like for-loops) as well, that notation usually doesn’t provide
enough information to really exploit spatial parallelism. For loops,
designers usually look at dependence vectors. Dependence vec-
tors start by treating the body of the loop(s) as a point in space.
The bounds of the loop(s) define a boundary in space. For exam-
ple, the singly nested loop here has points on a line, as illustrated
in Figure 5.13.

for( i=0 ; i<10 ; i++ ) {
a[i] = c * x[i] ;

}

Note that the first point is on the origin and that each of the 10
iterations are marked with a point i = 1, i = 2, and so on up to i =9.
Each point on the line represents the computation

a[i] = c * x[i] ;

If there were multiple statements in the body of the loop, there
would still be just a single point.

A more complicated example that uses the (unconventional
for C) bounds starting at 1 is shown here:

for( j=1 ; j<=3 ; j++ ) {
for( i=i ; i<=(j+5) ; i++ ) {

c = x[j][j] ; // (s1)
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Figure 5.13. Singly nested loop iteration space.
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Figure 5.14. Doubly nested loop iteration space.

a[i][j] = x[i][j]/c ; // (s2)
}

}

In this example, there are three rows and five columns. How-
ever, because the inner i loop bounds are not constants (but rather
expressions of the outer loop j ), the iteration space is not rectan-
gular, as Figure 5.14 illustrates. Also notice that inside the body
that s2 depends on statement s1. This dependence is repeated in
every iteration but it doesn’t impact the execution of independent
iterations. This is called loop-independent dependence and it is
perfectly reasonable to use early formulation. However, consider
this third example:

sum = 0 ;
for( i=0 ; i<10 ; i++ ) {

sum = sum + x[i] ; // (s3)
}
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Figure 5.15. Loop-carried dependence.

In this case, statement s3 depends on itself — but in a differ-
ent iteration. This is where the iteration space becomes helpful.
We highlight this relation between iterations with arrows, as shown
in Figure 5.15. Note that the axis has been removed to make the
dependence arrows clear. To distinguish this kind of dependence
from the earlier description, we call this loop-carried dependence.

Now, iteration i = 1 depends on iteration i = 0, iteration i = 2
depends on iteration i = 1, iteration i = 3 depends on iteration
i = 2, and so on. These are regular, uniform relations that can be
generalized to iteration i + 1 depending on iteration i. In terms of
arrows, we illustrate this as i → (i + 1) for all i within the bounds
of space.

Singly nested loops are a rich source of parallelism. However,
nested loops quickly magnify the degree of parallelism limited only
by the loop-carried dependencies. If the dependencies are uni-
form, this can be summarized with distance vectors. Consider the
following example:

for i=1 to 3
for j=1 to 5

x[i] = x[i] + samp[i][j]

This results in an iteration space with the dependence vectors
illustrated in Figure 5.16. Notice opportunities for parallelism. If
one looks at just the rows, there is the opportunity for pipeline
parallelism. If one looks at the columns, there is unsynchronized
parallelism. The 12 (uniform) dependence vectors in this iteration
space can be summarized with the distance vector (1, 0). This is
because iteration ( j + 1, i ) depends on iteration ( j, i ) — taking the
point-by-point difference leaves (1, 0). If one had a triply nested
loop, then the distance vectors would have three components (one
for each dimension).

5.3. Spatial Parallelism with Platform FPGAs
As Chapter 2 has shown, unlike traditional microprocessors, Plat-
form FPGAs offer a wide variety of configurable logic resources
that can be used in parallel, extending the computing power
beyond the conventional ALU-centric processor. Platform FPGAs
also offer the ability to reduce the number of integrated circuits
needed in a design by migrating the logic onto the FPGA. This
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Figure 5.16. Doubly nested loop iteration space with dependencies.

section looks more closely at how to exploit the inherent par-
allelism within the FPGA. We also highlight some of the issues
commonly associated with parallel implementations. Chapters 6
and 7 focus on addressing these issues more specifically.

Let’s begin with an example of the differences between a micro-
processor (single-core sequential processor) and a Platform FPGA
with respect to parallel processing. A microprocessor may use
interrupts and timers to switch between sampling input data
(maybe a temperature sensor or antenna signal). In many cases
the interval between samples is sufficiently large to allow a sin-
gle controller to switch between each input, acquire a sample, and
perform the necessary computations based on the inputs. How-
ever, as timing constraints become more tightly coupled, a single
controller may not suffice. An FPGA provides the capability to not
only interface with a multitude of external devices, but to perform
intermediate (an often more complex) computations. These com-
putations are able to occur in parallel and at a higher sampling
frequency than conventional microprocessors (we use frequency
here in terms of how often input data are sampled, not necessarily
operating frequency of the computation or hardware component).
Then, when you consider that input signals may be computed
on by different function units (i.e., different filter cores for DSP),
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the processing capabilities of an FPGA begin to overshadow a
microprocessor.

5.3.1. Parallelism within FPGA Hardware Cores
Chapter 3 presented two types of design approaches, bottom-up
and top-down. We will start with a top-down approach to exploit-
ing parallelism within FPGA components (hardware cores). We
specifically chose to start here because we can rely on the prin-
ciples presented at the beginning of this chapter when identifying
and implementing portions of the design in hardware.

Using hardware description languages, we can begin to learn
how to express parallelism within a hardware core. For less famil-
iar readers, here is where we must begin to break away from the
strictly sequential coding mentality and instead focus on the HDL’s
inherent nature to describe parallelism. When writing C code, a
designer may start with an algorithm or pseudocode to express
the flow of the operation at hand. This results in the sequencing of
operations, which are fed into the processor. Now we must think
less of this sequential structure and more about “What needs to
happen now?” That is, how can we best organize the system to
perform operations in parallel?

In the top-down approach we identify which operations can
occur in parallel without specifying how the operations will be
implemented. This is not to say that implementation does not
matter; however, it does provide us with a clearer picture of what
operations should be occurring. For example, if we are giving an
if-then-else statement, we could design a circuit that will operate
on both the if code and the else code in parallel and use the if
condition to select between the two outputs. This was discussed
earlier in the chapter, but as an initial example of parallelizing code
with a hardware core, it may be one of the easier concepts to grasp
and implement.

Consider another example: if we are given a for-loop, which
iterates 10× over a portion of code, without knowing the specifics
of how to implement each portion of code, we could consider
beginning the design by instantiating 10 cores to operate in par-
allel. This works when the computation in each iteration does
not contain loop-carried dependencies, but it does provide us
with a general example of how to conceptualize and implement
for-loop in parallel.

Unfortunately, it may not always be as easy as instantiating
multiple copies of the same hardware core. As with loop-carried
dependencies, the loops (and resulting hardware cores) now must
pass the dependencies between iterations. Consider a previous
example again:
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sum = 0 ;
for( i=0 ; i<10 ; i++ ) {

sum = sum + x[i] ; // (s3)
}

The previous approach of instantiating 10 hardware cores to per-
form the internal loop computation will not work due to the
dependency on sum, which is the result of past iteration additions.
Instead we need to parallelize the operation in a hierarchical fash-
ion. By overlapping parallel add operations, we can perform half
of the addition operations in parallel, then with three more addi-
tions we have our result. So, compared to sequential implemen-
tation, which requires 10 sequential add operations, this parallel
implementation requires four operations for a speedup of 2.5×.

While these examples are simplistic in nature, they are use-
ful when analyzing an application to determine its feasibility to
be implemented in hardware. They also showcase that while we
might not be able to always parallelize every line of code, we can
assemble the computation to perform as many parallel opera-
tions as possible to achieve speedups in the design. If the designer
can think about the computation in terms of what can be occur-
ring concurrently, then the ability to exploit parallelism within the
system becomes less difficult.

Turning our attention to VHDL, parallelism is expressed in a
variety of manners. First, within the architecture section of a
design, code not within a process block operates concurrently.
This may include portions of the circuit that consist of combina-
tional logic. The comparator shown in Listing 5.1 performs three
operations in parallel to identify equality, greater than, and less
than relations between two inputs, A and B.

This first example is used to emphasize that each operation is
occurring at the same time, continuously. That is, if the inputs A
or B change, the outputs will change based on the new inputs.
Moreover, unlike with sequential code, there is no need to “invoke”
hardware as some subroutine or function call outputs. The fact
that hardware is always running may be a tricky concept to grasp

architecture BEH of comparator is
begin

-- Less Than Comparison
LT <= ’1’ when (A < B) else ’0’;
-- Greater Than Comparison
GT <= ’1’ when (A > B) else ’0’;
-- Equality Comparison
EQ <= ’1’ when (A = B) else ’0’;

end BEH;

Listing 5.1. An 8-bit magnitude comparator in VHDL.
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architecture BEH of comparator is
begin
-- Infer D Flip-Flops
register_proc : process (clk) is
begin
-- If there is a change in the clk signal and
-- that change is from a 0 to a 1 (a rising edge)
if ((clk’event) and (clk = ’1’)) then
-- Register the value of my_signal_next
my_signal <= my_signal_next;

end if;
end process register_proc;

end BEH;

Listing 5.2. Inferring D flip-flop with process block in VHDL.

at first, but it will finally afford your designs the freedom to perform
operations in a more tightly integrated manner.

Now, with the addition of a processblock, we can more explic-
itly state the portions of code that are running in parallel. On first
inspection, a process block does not immediately indicate that
there is any additional functionality associated with it. However,
with behavioral HDL, we are able to take advantage of a richer set
of operations in a more convenient way. For starters, Listing 5.2
illustrates how to use process blocks to infer the use of D flip-
flops to improve the design’s timing requirements. Synchronous
and asynchronous resets can be included through the addition
of another if statement. It is recommended (specifically for Xil-
inx FPGA parts) to try to avoid using asynchronous reset signals
because it requires the reset signal to be routed across the chip,
which may impact the ability of the design to meet the timing
requirements. Listing 5.3 is an example of a synchronous process,
and Listing 5.4 is an example of an asynchronous process. These
simple concepts are important when beginning to design more
complex systems.

Obviously, not every line of code can run in parallel, and in
those cases we must be able to support sequential operations.
This can be accomplished through simple handshaking signals
indicating when one operation has completed prior to enabling
the next operation to continue. This is similar to the go/done
model presented in Chapter 4. Instead of using it to transfer con-
trol from software to hardware, we can use it within a compo-
nent (or between components). We have already seen some of
these handshaking signals in Section 3.A when discussing the
single-precision floating-point adder design. The handshaking
can vary in form, but we will consider it from a producer/con-
sumer perspective. A producer is generating data and a consumer
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architecture BEH of comparator is
begin
-- Infer D Flip-Flops
register_proc : process (clk) is
begin
-- If there is a change in the clk signal and
-- that change is from a 0 to a 1 (a rising edge)
if ((clk’event) and (clk = ’1’)) then
if (rst = ’1’) then
-- Reset (Synchronous)
my_signal <= ’0’;

else
-- Register the value of my_signal_next
my_signal <= my_signal_next;

end if;
end if;

end process register_proc;
end BEH;

Listing 5.3. Inferring D flip-flop with synchronous reset process block in VHDL.

architecture BEH of comparator is
begin

-- Infer D Flip-Flops
register_proc : process (clk, rst) is
begin

if (rst = ’1’) then
-- Reset (Asynchronous)
my_signal <= ’0’;

elsif ((clk’event) and (clk = ’1’)) then
-- Register the value of my_signal_next
my_signal <= my_signal_next;

end if;
end process register_proc;

end BEH;

Listing 5.4. Inferring D flip-flop with asynchronous reset process block in VHDL.

is operating on newly generated data (in the adder example,
the producers are the input FIFOs and the consumer is the
single-precision floating-point adder). The consumer must indi-
cate when it is ready for data, rfd, and the producer indicates
when new data are valid, nd.

This of course is not the only way to implement handshaking.
As stated earlier, a variation of the go/done model allows us to
begin to sequence each portion of code and use a signal (perhaps
done) to indicate when computation of that portion of code is
complete. In strictly sequential operations, the done signal would
activate the next portion of code to run. A good designer may
realize that within each operation, there may be parts that can
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run concurrently with the preceding operation. This leads to the
best-case scenario where all of the computation can be done in
parallel, which is ideal but very unlikely. If this event should arise,
the done signal would not need to be set.

Alternatively, sequential operations can be controlled through
the use of finite state machines (FSM) where each state may rep-
resent one or more instructions (or operation). In this case the
sequential execution is encoded in the state transitions. State
machines are a very useful tool within hardware designs to help
with coordinating concurrent operations and, when necessary,
providing sequencing capabilities. As mentioned in Chapter 4, a
state machine may consist of idle, running, and done states. Note:
we do not imply that FSMs only consist of these states, or always
have to include these states; instead we use these states to indicate
three common conditions occurring within state machines. In the
idle state, the FSM waits for some condition (perhaps the go sig-
nal) before proceeding to the running state where the operation
is executed. Upon completion, the FSM may signal any number of
dependent components via a done signal, as was discussed earlier.
Clearly, the running state can be expanded to include more than
just one state; however, the state machine is never in more than
one state at a time.

For example, a very simple multiply-accumulate (MAcc) opera-
tion must perform a multiplication followed by an addition, which
accumulates the results of all of the multiplies. Before the addi-
tion can proceed, it must wait for the multiplication’s result. Once
the go signal is received the FSM will perform the multiplication
in the mult_a_b state; then, in the next clock cycle, the FSM will
perform the addition in theaccumulatestate. We should note that
this is not the preferred implementation of a MAcc; it is used here
for demonstration purposes.

This leads into the next point of discussions, which is pipelin-
ing. Often designs contain some computation sequence. In the
previous example the MAcc sequence consisted of a multiply fol-
lowed by an addition. We used a state machine to sequence the
multiplication and addition; however, by doing so we have fixed
the computation rate to two clock cycles per input (assuming that
each operation can be computed in one clock cycle). If our design
contains 500 pairs of inputs (A × B) to multiply and accumulate,
the final result would be valid after 1000 clock cycles.

To improve the performance we introduce pipelining into the
design. We modify the design by turning each state in the state
machine into individual process blocks (or separate components).
We denote this by using squares to represent process blocks/
components in our diagram instead of circles, which represent
states in the finite state machine.
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Let’s focus just on the multiply and accumulate portion of the
system. We still assume that both the multiplier and the adder
require the same amount of time to perform their computation
(Chapter 6 addresses pipeline balancing). The multiplier receives
its input and produces an output to the adder. The latency of
the first result is two clock cycles; however, unlike the sequential
implementation, which requires 1000 clock cycles for 500 inputs,
the pipeline approach is able to perform the same operations in
502 clock cycles, for ≈2× speedup.

Implementing pipelined systems may be easier than sequen-
tial finite state machines because a designer may chain together
components to build complex operations. This chain can be (if it is
not already) pipelined with the addition of registers between each
component. Granted, there may be more work if each component
internally is not pipelined, but if a designer is aware of the con-
struction of the system from a top-down design view, pipelining
the internal components is as simple as was discussed previously.

5.3.2. Parallelism within FPGA Designs
Now that we have covered how to convey parallelism within hard-
ware core designs, we will look at how to construct systems to
achieve parallelism within FPGA designs. Because each applica-
tion is different, we can only speak in general terms of how to
build parallel FPGA designs. We will revisit previous design rules
and consider how they apply to the system as a whole rather than
within a component or hardware core.

From the beginning of this book we have emphasized that,
strictly speaking, there is no difference between an FPGA and a
Platform FPGA. We use the term platform to indicate that the FPGA
is used as more than simple glue logic or to interface general-
purpose processors with many I/O signals. FPGAs are to be used
as a foundation to build designs upon. In this case, the FPGA is
performing the computations rather than propagating the signals
to/from the processor.

Strictly speaking, the most straightforward method to perform-
ing parallel computation is to add multiple instances of the same
hardware core. At the top level, each instance is a hardware core
that would connect to a system bus or the same interconnect as the
original hardware core. This is explicit parallelism; there are physi-
cally more components running in parallel. However, in order to
take advantage of this new compute power, we must divide the
data set among the compute cores.

At a finer granularity we can replicate multiple instances of a
component within a single hardware core. The difference in this
approach is that the parallelism is typically being achieved over a
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more tightly controlled section of the system. This can simplify the
interaction between a processor and the hardware core, but it can
also create a bottleneck in the event that each component needs
to gain access to the system bus or other shared resources through
a common interface.

Top-down design allows us conceptualize the overall flow of the
program. It provides us with a way to group together parallelizable
code (such as was done for the for-loop example). We use process
blocks to explicitly state the operations occurring in parallel. From
an abstract view we can consider process blocks to be instances of
subcomponents performing the specific computation. Therefore,
we can mix and match designs that contain process blocks and
component instantiations because they are fundamentally doing
the same thing. That is, they are adding additional circuitry to
provide parallel computation.

Now we can more concretely explain why modular design and
designing for reuse are so important. Rather than replicate the
same code within one large design (say, with multiple process
blocks), we can instantiate a component multiple times. If a com-
ponent is used frequently within the design, it stands to reason that
future designs can reuse that component.

Chapter in Review
This chapter covered material relating to spatial design and paral-
lelism within Platform FPGA systems. Understanding and express-
ing parallelism in various levels of granularity help set the stage
for how to identify potential parallelism within a design. Then we
discussed some of the common practices of implementing spa-
tial parallelism in a Platform FPGA. Describing parallelism within
an FPGA design can be an easy task when first building a design.
A hardware core that needs to perform a certain amount of com-
putation can quickly be replicated and the explicit parallelism
identified.

Section 5.A discusses some techniques associated with VHDL
to more efficiently generate parallelism within a hardware core. We
also describe various debugging tools, such as ModelSim and Xil-
inx ChipScope, to help designers track down and fix bugs quickly.
These topics are covered within this chapter because up until now
we have not focused heavily on moving functionality into custom
compute cores within the FPGA. Because our focus has begun to
shift toward utilizing the FPGA’s resources for more than just a
processor-memory model, a discussion of these debugging tools
is warranted.
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Practical Expansion: Spatial Design

5.A. Useful VHDL Topics for Spatial Design

Chapter 2 covered some basic HDL notation to help act as a catalyst to learning a particular HDL. This was done because
when learning a new language, it helps to have a few references. Of course, we wholeheartedly agree that there are far
better textbooks available for learning a particular HDL.

What we aim to do in this section is to cover some of the slightly more advanced topics that can be useful with spatial
parallel designs and with Platform FPGAs. We should also mention that it is not our goal within this section to specifically
talk about how to achieve faster clock rates, reduce resource utilization, or increase throughput. Those concepts have
already been discussed (and will continue to be discussed) throughout the remainder of this book. What we are interested
in is how to describe large designs with less code and to increase the ability to reuse code. Our focus will remain with
VHDL, although many of these concepts will carry over to Verilog or other HDLs.

5.A.1. Constants and Generics

On first inspection, constants and generics may not appear to be directly related to parallel design principles. We will see
that their use directly applies to scalable designs by providing a convenientmechanism to change various parameters from
top-level components. For example, rather than setting a fixed data width when declaring a signal, we can use a constant
or generic to set the width:

-- Using a Fixed data width can lead to scalability problems
signal incorrect_way : std_logic_vector(31 downto 0);
-- We strongly suggest using constants/generics whenever possible
signal suggested_way : std_logic_vector(C_DATA_WIDTH-1 downto 0);

Constants are used to avoid “magic numbers” in the design. So, how do constants differ from generics? Constants can be
defined within a component or within a package that is used by one or more components. Generics, however, are passed
through the system’s hierarchy. We want to avoid using constants within a single VHDL file whenever possible and try
either to use generics or to use packages.

During the entity declaration the generics and ports are specified. The generics are assigned a default value, which is
used when its instantiating component does not specify a value.

entity adderFSM is
generic (

-- Data Width of the Operands and Result
C_DATA_WIDTH : natural := 32);

port (
a, b : in std_logic_vector(C_DATA_WIDTH-1 downto 0);
a_we, b_we : in std_logic;
clk, rst : in std_logic;
result : out std_logic_vector(C_DATA_WIDTH-1 downto 0);
valid : out std_logic);

end adderFSM;
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In some cases it may be necessary to share a constant/generic between more than one component. Rather than passing
the generic between every component, using a package can be more convenient. An example of using a package define
some constants is

package test_package is
constant C_DATA_WIDTH : natural := 32;
constant C_ADDR_WIDTH : natural := 32;
constant C_BYTE_WIDTH : natural := 8;
constant C_NUM_BYTES : natural := C_DATA_WIDTH/C_BYTE_WIDTH;

end test_package;

To use this package, all a hardware core must do is include it along with the other libraries and packages needed at the
beginning of the file.

-- Traditional Library and Packages used in a hardware core
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-- Included our new package with Data, Address, and Byte constants
use work.test_package.all;

-- Entity that inputs data and outputs bytes
entity byteSerializer is port (

data_in : in std_logic_vector(C_DATA_WIDTH-1 downto 0);
data_in_we : in std_logic;
byte_data_out : out std_logic_vector(C_BYTE_WIDTH-1 downto 0);
byte_data_out_we : out std_logic);

end byteSerializer;

How to best use constants, generics, and packages depends greatly on the design and the designer, but our suggestion is
to plan for reusability and scalability. Soon we will see how generics can aid in the rapid generation of multiple instances
of a component.

5.A.2. User-Defined Types

Similar to packages, user-defined types give us additional flexibility, such as grouping related signals together. The three
examples we wish to quickly address are types and subtypes, record types, and user array types.

Types and Subtypes It has already been shown that types are used for declaring finite state machine state names rather
than having to use some form of binary encoding:

type FSM_TYPE is (wait_a_b, wait_a, wait_b, add_a_b);

Subtypes are a convenient way to further simplify declaring signals of a specific type. We would use the new subtype
in place of the type it is declaring. For example, we declare DATA_TYPE so that we can use it everywhere we would
normally use std_logic_vector(DATA_WIDTH-1 downto 0).
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subtype DATA_TYPE is std_logic_vector(DATA_WIDTH-1 downto 0);

-- Without Subtype
signal old_way : std_logic_vector(DATA_WIDTH-1 downto 0);

-- With Subtype
signal new_way : DATA_TYPE;

Now, not only can we type less when declaring a signal, but if we decide later on we need all of the DATA_TYPE signals
to be of a different type, we can change the subtype declaration instead of searching through all of the code and replacing
each individual signal declaration.

Record Types Along with types, we can create our own record types. These are similar to structs in C. Records can be
used to group like signals together, making it easier to pass the group of signals between components or to create registers
containing multiple data elements. For example, instead of port-mapping every signal, we could create a single record:

type locallink_if is
record

data : DATA_TYPE; -- from our subtype example
sof_n : std_logic;
eof_n : std_logic;
src_rdy_n : std_logic;
dst_rdy_n : std_logic;

end record;

-- Declare a signal of the record type
signal locallink_tx_port : locallink_if;

-- Accessing each element in the record
tx_data <= locallink_tx_port.data;
tx_sof_n <= locallink_tx_port.sof_n;

User Array Types Arrays in VHDL are a useful tool, especially when designing large systems with multiple instances of
each component, such as those found in spatial parallelism designs. For example,

-- Declare an array of locallink_if records
type RECORD_ARRAY_TYPE is array (15 downto 0) of locallink_if;
-- Declare a signal of the array type to be used in the system
signal my_record_array : RECORD_ARRAY_TYPE;

We have now created an array of 16 elements, where each element is of the previously defined record type,
locallink_if. Using array indexing, we can retrieve a specific element within the array just as we would do with
arrays in C/C++.

Let’s say, instead of 16 elements, we want to be able to define a variable sized array that can be set during the
declaration of the signal rather than having to create two different arrays. In order to support these different array sizes
we must change how we specify the array range. Previously, we had set the array range to

array (15 downto 0)
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We would now replace this with our variable range described by

array (integer range <>)

The entire declaration now looks like

type RECORD_ARRAY_TYPE is array (integer range <>) of locallink_if;
-- Declare a 16 element array
signal my_record_array_16 : RECORD_ARRAY_TYPE(15 downto 0);
-- Declare a 32 element array
signal my_record_array_32 : RECORD_ARRAY_TYPE(32 downto 0);

As you can see with only a single array type we can create arrays with a different number of elements, but where
each element has the same type.

5.A.3. Generate Statements

The generate statement is one of the most useful tools when creating generic, scalable, and reusable designs. Specif-
ically, we use generate statements to explicitly state parallelism of a design when needing multiple instances of
the same component. For this example we will use a doubly nested generate statement to create a two-dimensional
array of multiply-accumulate units, which can be used for matrix-matrix multiplication. This actually will generate
C_NUM_ROWS×C_NUM_COLS of the macc_component.

-----------------------------------------------------------------------------
-- Multiply Accumulate Units Generate Statement
-----------------------------------------------------------------------------
MACC_ARRAY_COL_GEN: for i in 0 to (C_NUM_COLS-1) generate

MACC_ARRAY_ROW_GEN: for j in 0 to (C_NUM_ROWS-1) generate
macc_i_j : macc_component

port map(
clk => clk,
rst => rst,
-- Row and Column Data Input to MAcc Array
col_data => col_data_array(i),
row_data => row_data_array(j),
row_valid => row_valid(i),
col_valid => col_valid(i),
-- Results Output
macc_result => macc_data_array(i)(j)),

end generate MACC_ARRAY_ROW_GEN;
end generate MACC_ARRAY_COL_GEN;

Unlike a C/C++ instance of a for-loop where the code is evaluated sequentially during the program’s execution, these
for generate statements will result in multiple copies of the component being instantiated in the design. As a result, we
are left with a more scalable design. In fact, if we include generics to be able to specify the number of rows and columns of
multiply-accumulate units to generate, we can scale the design to maximize the amount of resources to yield the greatest
performance.

If you notice, both the clock (clk) and the reset (rst) signals are common among all of the component instances. The
row and column arrays are indexed by the for generate to connect the corresponding multiply-accumulate component.
The result is fed out of each multiply-accumulate component to a two-dimensional array (macc_data_array).
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We can also use generate statements to include or exclude code or components. Using the if generate statement,
we can check a Boolean condition to determine whether a segment of code or an instance of a component will be included
in the design, for example, if we had an entity with a generic to allow a user to include or exclude debugging circuitry (we
will cover how the Xilinx ChipScope debugging tools work in the next section). Based on the value of the generic we may
want to include or exclude debugging.

entity byteSerializer is
generic (

USE_CHIPSCOPE : boolean := false);
port (

data_in : in std_logic_vector(C_DATA_WIDTH-1 downto 0);
data_in_we : in std_logic;
...

Within the architecture section of the byteSerializer code we can generate the ChipScope components based on
the USE_CHIPSCOPE generic boolean value.

CHIPSCOPE_GEN : if (USE_CHIPSCOPE) generate
icon_i: chipscope_icon
port map (

CONTROL0 => ila_control
);

ila_i: chipscope_ila
port map (
CONTROL => ila_control,
CLK => Bus2IP_Clk,
TRIG0 => slv_reg0,
TRIG1 => slv_reg1,
TRIG2 => slv_reg2,
TRIG3 => slv_reg3(0 to 7)
);

end generate CHIPSCOPE_GEN;

5.A.4. Design Constraints

We saw in Section 3.A how design constraints such as voltage standards and location can be applied using the UCF
file. Using attributes in VHDL, we can also apply similar design constraints. We can also specify things such as FSM
encoding and how the embedded multipliers and Block RAMs are inferred. This is especially useful in large designs that
use generate statements. VHDL attributes are applied to signals, instances, or architectures. The biggest advantage of
using VHDL attributes over applying all of the design constraints in a UCF file is that the designer specifying the attributes
uses the names in the HDL design, whereas names in a UCF file refer to signal and instance names after the design has
been through the map stage.

The constraint from Section 5.A:

Net fpga_0_clk_1_sys_clk_pin LOC = L29 | IOSTANDARD=LVCMOS25;

could be applied at the top level HDL file of the project with the following code.
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architecture struct of top is
-- Defining the LOC attribute to be of type string
attribute LOC : string;
-- IOSTANDARD attribute is also of type string
attribute IOSTANDARD : string;

-- Applying the newly defined attributes to the clock pin
attribute LOC of fpga_0_clk_1_sys_clk_pin : label is "L29";
attribute IOSTANDARD of fpga_0_clk_1_sys_clk_pin : label is "LVCMOS25"

One useful constraint is to tell XST how to handle multipliers in a design. This code will tell XST to use pipelined block
multipliers in every instance of the macc_component.

attribute MULT_STYLE : string;
attribute MULT_STYLE of macc_component : component is "pipe_block";

For more details of the allowable attributes, refer to Xilinx, Inc. (2009c).

5.B. Debugging Platform FPGA Designs

Although debugging hardware is not directly related to spatial designs, oftentimes spatial designs grow large and addi-
tional debugging techniques can be helpful. Using Platform FPGAs with a processor and Linux, we have the ability to use
the Gnu Debugger (gdb). Unfortunately, gdb does not help us much when we have a bug in the hardware design. Over the
course of this section we discuss some of the methods and tools that can be used to assist the designer in tracking down
and fixing problems in their hardware designs.

5.B.1. Simulation

Typically, a designer will simulate the whole design (or portions of the design) before ever generating a bitstream and
running it on the FPGA. The simulation can offer a tremendous amount of information regarding the functionality of the
system. For complex designs, this is useful in testing all aspects of the design comprehensively and limiting the number
of synthesis runs.

Through simulation we can test our design with a variety of input stimuli and analyze the generated output waveform
for each signal in the design. Initially, viewing the simulation waveform may be a bit overwhelming, especially when
testing designs with hundreds and thousands of signals, but once the designer becomes familiar with the simulation tool
(such as ModelSim), a design can be put through its paces all before ever being run on the FPGA.

A fallacy that often exists in writing HDL is “if it works in simulation, it will work on the FPGA.” While this may be
true for some designs, it is because the designer is making sure the system will behave in simulation just as if it were
running on the FPGA. Without planning ahead, a quickly rushed design may look fully functional in simulation, but behave
differently on the FPGA.

We recommend that you follow a modular hierarchical design approach when designing complex systems. By this we
mean building a design from the bottom-up, testing each component thoroughly before moving on to the next level of
the design. Once all the components are connected together, a final system-level simulation would involve checking for
unexpected outputs due to component inter-dependencies.
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=========================================================================
* HDL Analysis *
=========================================================================
Analyzing Entity <adderFSM> in library <work> (Architecture <beh>).
WARNING:Xst:819 - ‘‘adderFSM.vhd’’ line 44: One or more signals
are missing in the process sensitivity list. To enable synthesis of
FPGA/CPLD hardware, XST will assume that all necessary signals are
present in the sensitivity list. Please note that the result of the
synthesis may differ from the initial design specification.
The missing signals are:

<b_reg>, <a_we>

Figure 5.17. HDL Analysis section of the XST synthesis report.

If a simulation test bench exists for the system (or device) that is malfunctioning, we can set up the same input stimuli
and observe how the device is functioning. Two possibilities now exist: (1) the simulation matches the malfunctioning
hardware or (2) the simulation runs correctly.

In the event that the simulation is also incorrect, the designer must identify where within the design the error exists.
Because the simulation waveform can present all of the signals in the design, the designer has the ability to verify the
functionality during each clock cycle. This can be accomplished through use of the assert command in VHDL. Assert
checks a condition and, if it fails, displays a message to the simulation tool for the user to view.

Unfortunately, the more likely case is that the simulation will not match the hardware’s functionality and instead show
the correct, expected output. This stems from the fact that the simulation tool and the synthesis (and corresponding netlist
builder, MAP, and PAR) tools can analyze the design differently.

To help curb these simulation versus synthesis problems we cover some of the more common, yet difficult to track
down, differences between the two. Our goal here is not to cover every type of problem, but to help readers become more
familiar with some of the issues at hand.

Sensitivity List In VHDL a process must have all of the signals that will cause the process to be re-evaluated in its
sensitivity list. This includes any inputs into a process which may be used for signal assignmentor even condition checking.
In simulation, a missing signal in the sensitivity list means even though a particular signal’s value changes elsewhere in
the design, it will not necessarily force this process to be re-evaluated. The designer may actually want the simulation’s
functionality; however, the synthesis tools (especially the Xilinx Synthesis Tool) will identify the missing signal(s) from the
sensitivity list and assume the signal should exist in the sensitivity list. From the HDL Analysis section of the XST synthesis
report, this is reported as a warning, as seen in Figure 5.17.

One approach to combating this problem is to combine the synthesis and simulation processes together. By this we
mean while designing each component in the system, the designer should not only simulate the design, but also run the
synthesis tool and look for warnings such as the one previously listed. This can be done using the Xilinx Synthesis Tool (xst)
for synthesis, either through ISE directly or from the command line scripts presented in Section 2.B.1. While this may seem
like a lot of work, if the end goal of the design is to run in hardware, it only makes sense to build the design incrementally
and test both its functionality in simulation and check for warnings and errors in the synthesis report.

Latches versus Flip-Flops Chapter 2 discussed some of the differences between latches and flip-flops in a design.
We encouraged readers to use flip-flops in the design in place of latches. A latch can be unintentionally inferred as a



282 Chapter 5 SPATIAL DESIGN

result of excluding the assignment of a signal in all branches of the process, as in theelse case of an if-then-else
statement. For example:

if (a_we = ’1’) then
result <= a_reg + b_reg;
valid <= ’1’;
fsm_ns <= done;

else
-- Missing result assignment HERE
valid <= ’0’;
fsm_ns <= wait_for_a;

end if;

Here, because the result signal is only assigned a value in the if case, an 8-bit latch will be generated. In simulation
the effect may not be noticeable because if a signal is not assigned a value, the simulation tool usually assumes the signal
stays the same. In hardware this is not the same as generating a latch. If you recall, a latch is sensitive to the positive
(or negative) level of the clock, which means at anytime during that level if the value changes, the latch is updated. This
leads to tighter timing constraints and could result in setup/hold violations. This problem can arise if the designer is less
familiar with the synthesis tools and more familiar with simulation. Bad habits formed when learning HDLs where only
simulation is used can be a cause for headaches later on in the design process. An example of the warning generated
during synthesis where a latch is generated is shown in Figure 5.18

The obvious approach to avoid inferring latches is to include the signal assignment in all of the branches. For pro-
grammability and readability this is the recommended approach. Another option is to assign default values to the signal
outside of the branches, which will force the signal to a default value. For example, we will assign the missing signals
outside of the if-statement.

-- Default assignment
result <= (others => ’0’);
valid <= ’0’;
-- If true, overwirte result/valid signals
if (a_we = ’1’) then

result <= a_reg + b_reg;
valid <= ’1’;
fsm_ns <= done;

else
fsm_ns <= wait_for_a;

end if;

Inferring Components Similar to differences between latches and flip-flops, the simulation and synthesis tools can
differ greatly in how the two infer a component. This case does not arise very often, as a designer will typically instantiate
a component to be used in the design. The most common reason for there to be problems is if there are differences between
the simulation version of a component and its generated netlist.

An example is when inferring a Block RAM. The designer may think the HDL will cause the synthesis to infer a BRAM
and code the interface accordingly. When simulating the design, the inferred BRAM will behave as the designer intends.
However, when the design is synthesized it is possible that the way the BRAM is trying to be inferred does not actually
result in the use of a BRAM. In fact, it could be inferred as straight flip-flops, a distributed RAM, a shift register, or a variety



Chapter 5 SPATIAL DESIGN 283

=========================================================================
* HDL Synthesis *
=========================================================================
WARNING:Xst:737 - Found 8-bit latch for signal <result>. Latches may
be generated from incomplete case or if statements. We do not
recommend the use of latches in FPGA/CPLD designs, as they may lead to
timing problems.
INFO:Xst:2371 - HDL ADVISOR - Logic functions respectively driving the
data and gate enable inputs of this latch share common terms. This
situation will potentially lead to setup/hold violations and, as a
result, to simulation problems. This situation may come from an
incomplete case statement (all selector values are not covered). You
should carefully review if it was in your intentions to describe such
a latch.
Figure 5.18. HDL Synthesis section of the XST synthesis report showing generated latches warning.

=========================================================================
* HDL Synthesis *
=========================================================================
INFO:Xst:738 - HDL ADVISOR - 32736 flip-flops were inferred for signal
<memory_example>. You may be trying to describe a RAM in a way that is
incompatible with block and distributed RAM resources available on
Xilinx devices, or with a specific template that is not
supported. Please review the Xilinx resources documentation and the
XST user manual for coding guidelines. Taking advantage of RAM
resources will lead to improved device usage and reduced synthesis
time.
Figure 5.19. HDL Synthesis section of the XST synthesis report showing inferred warning.

of other components. This does not necessarily produce an error in the synthesis flow, but it can produce a message in the
synthesis report, as seen in Figure 5.19.

Ultimately, many of these simulation versus synthesis problems exist due to differences between simulation and syn-
thesis tools. As designers, we can help reduce the problems by being aware of the end goal, that is, will the design be
purely a simulation model or will the design run on a particular FPGA device? Because we are interested in running our
design at some point on the FPGA, it stands to reason that we should invest extra time and energy to make sure we
are writing good quality, synthesizable HDL and checking throughout the design process for any indications that errors or
problems will arise when the design is run on the FPGA.

5.B.2. Software Addressable Registers

When using a Platform FPGA with a processor, it may be possible to do some debugging through software addressable
registers. By this we mean reading and writing to a hardware core’s address space to set and retrieve status information.
Far more limiting than a simulation model, it does provide a simple way to check the status of the system quickly. What
this amounts to is the ability to record the signals in registers and read them back in software, like how we use the print
statement when debugging software.
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A quick example is a system with eight FIFOs. A status register can be added to report on each FIFO’s full status. If the
system unexpectedly halts, this status register can be read to determine which of the FIFOs is full, which would provide
insight to the designer as to where the problem or bug exists in the system.

fifo_full_status_reg <= fifo_0_full & fifo_1_full & fifo_2_full &
fifo_3_full & fifo_4_full & fifo_5_full &
fifo_6_full & fifo_7_full;

We have seen software-addressable registers already in Section 3.A where a template hardware core was created
with three software addressable registers (slv_regX). Adding a few additional software registers can make for easier
debugging. In the case of state machines, it may be useful for the processor to check the current state:

with fsm_cs select
fsm_status_reg <= "00" when wait_a_b,

"01" when wait_a,
"10" when wait_b,
"11" when add_a_b,
"ZZ" when others;

Of course, there are some drawbacks to using software registers as a form of debugging.First off, software accessible
registers can only capture the signal’s value at certain time points. Continuous recording and reporting back to the proces-
sor is not feasible. Second,each status signal (or any probing signals) must be added to the addressableregister space. In a
32-bit address space, this may not be of much consequence, but it is something to be aware of. Third, each status register
may consume additional resources, adding to the total size of the component. Fourth, checking the status registers repeat-
edly can introduce unwanted noise in the system, occupying the processor and bus, and preventing the actual system to
run at full capacity. In fact, it is possible that the software status register’s introduction to the system could impact the
system to either hide the problem or introduce new problems. Finally, if the designer identifies additional signals to be
included in a status register, the whole design needs to be resynthesized, which can be a costly price to pay for debugging
the system.

5.B.3. Xilinx ChipScope

What we really want when debugging a hardware system is a way to view the values of each signal as if we had an
oscilloscope hooked to the FPGA circuit. By this we do not mean connecting an oscilloscope to the actual pins of the FPGA;
what we mean is to actually probe the FPGA fabric, where the design is implemented. A variety of tools exist for this
purpose, one of which is included within the Xilinx ISE tool chain.

The ChipScope Pro Analyzer Tool from Xilinx is a set of software tools designed to help analyze and debug an FPGA
system. The basic principle is to use on-chip memory (BRAM) to store samples of signals over the course of a predetermined
amount of time using one or more trigger conditions to start the sampling process. Then, through a host PC, we can connect
to the on-chip memory and retrieve stored data to be displayed back to the designer as waveforms similar to a simulation
waveform.

The goal of this section is to cover how ChipScope can be included into an existing hardware core. We also cover how
to interface with the ChipScope controller through the host PC using a JTAG programmer. The result is a powerful tool
that enables a designer to probe and identify malfunctions in the circuit design in far less time than with other software
register-based solutions.
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Integrated Controller and Analyzer At the heart of the ChipScope system is an integrated controller (ICON) component
that is instantiated within the hardware core under test (Xilinx, Inc., 2009a). Think of the ICON as the on-chip equivalent
of an oscilloscope’s interface to the probes.

The integrated logic analyzer (ILA) is the equivalent of a traditional logic analyzer’s probes (Xilinx, Inc., 2009b). The
ILA buffers multiple signals for playback later by the ChipScope application running on the host PC. We discuss how to
generate both the ICON and ILA components through the use of the Xilinx CoreGen tool. This process is similar to how we
generated FIFOs and the single precision floating-point unit.

The integrated controller is used to connect one or more integrated logic analyzers to the host PC application through the
JTAG programmer. Up to 15 ILAs can be connected through a single ICON component. Currently, only one ICON is supported
per hardware design. To generate the ICON component, launch CoreGen and create a new project for the specific FPGA
device; in our case it is the Xilinx Virtex 5 FX130T.

Generating the ICON Expand the Debug & Verification directory to expose the ChipScope Pro directory. Expanding the
ChipScope Pro directory, we will see a list of ChipScope components that can be generated, including the ICON and ILA.
Select the ICON to run the ICON generator wizard, shown in Figure 5.20. Only a few sets of options exist for the user
to configure the ICON. For now we will set the number of control ports to one (1) to support a single ILA connection.
The ICON can support up to 15 separate connections. The reason for so many connections is due to the limitation the
ILAs have on the number of signals they can sample. We will discuss this limitation more shortly. For now generate the
chipscope_icon component.

The integrated logic analyzer is used to sample a specific number of signals over a predetermined sample period. Each
ILA is limited to at most 16 ports, with each port width being limited to 256 bits. The sample depth is adjustable based
on the FPGA device (which is based on the BRAM construction). With the Virtex 5 the sample data depth starts at 1024
and increases by a factor of two from there. That being said, the ILA quickly consume BRAM resources. If you have a
design that is BRAM limited, adding ChipScope can be a tricky adventure. To generate the ILA, launch CoreGen, if it is not
already open.

Generating the ILA As with the ICON, we will expand both the Debug & Verification directory and the ChipScope
Pro directory. Select the ILA to run the ILA generator wizard, shown in Figure 5.21. Leaving the component name as
chipscope_ila, let’s add four trigger ports; three of them will be 32 bits wide and the last will be 8 bits wide.
Leave the sample depth at 1024 to minimize the number of BRAMs used. Figure 5.22 shows the configuration for trigger
port 1, which we said would have a trigger port width of 32 bits. Set the remaining three trigger ports and generate the
chipscope_ila component.

Modify Hardware Core for ICON and ILA After the ICON and ILA have been generated we should see that two
netlists have been generated (along with a collection of other files, some of which are discussed shortly). Referring back
to Section 2.A, we must insert the chipscope_icon.ngc and chipscope_ila.ngc netlists into the hardware
core’s project directory. To recap the steps, perform the following:

1. Create the netlist directory (if one does not already exist)
2. Copy the ICON and ILA netlists to the directory
3. Create the Black Box Description (BBD) file in the data directory
4. Modify the Microprocessor Description (MPD) file
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Figure 5.20. Xilinx CoreGen ICON generator wizard setup page.

Once that is complete we must declare and instantiate the components within the hardware core. For example, if using
a Xilinx-generated template hardware core, we must modify the user_logic.vhd file. First, insert the declarations
for the ICON, ILA control signal, and ILA component. The ILA control signal is an internal signal that will connect the control
port of the ICON to the control port of the ILA.

-- ChipScope ICON Declaration
component chipscope_icon
PORT (

CONTROL0 : inout std_logic_vector(35 downto 0));
end component;

-- ChipScope ILA Control Signal
signal ila_control : std_logic_vector(35 downto 0);

-- ChipScope ILA Declaration
component chipscope_ila
PORT (

CONTROL : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0);
CLK : IN STD_LOGIC;
TRIG0 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
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Figure 5.21. Xilinx CoreGen ILA generator wizard setup page.

TRIG1 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
TRIG2 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
TRIG3 : IN STD_LOGIC_VECTOR(7 DOWNTO 0));

end component;

Upon declaring the components and signals we can instantiate both the ICON and the ILA. During instantiation of the
ILA, we must set the trigger ports to sample each specific signal. In this sample we will be sampling slave registers 0, 1,
2, and 3 (although we will only sample 8 bits of slave register 3). Then all that is left is to synthesize the design and run
the ChipScope Pro Analyzer, which we will cover next.

icon_i: chipscope_icon
port map (

CONTROL0 => ila_control
);

ila_i: chipscope_ila
port map (
CONTROL => ila_control,
CLK => Bus2IP_Clk,
TRIG0 => slv_reg0,
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Figure 5.22. Xilinx CoreGen ILA generator wizard trigger port setup page.

TRIG1 => slv_reg1,
TRIG2 => slv_reg2,
TRIG3 => slv_reg3(0 to 7)
);

ChipScope Pro Analyzer On the host PC connected to the FPGA via the JTAG programmer, we must launch the Xilinx
ChipScope Pro Analyzer. ChipScope is an application that connectsto the integrated controller (ICON) of the design running
on the FPGA. Once connected, the user can view waveforms from each of the integrated logic analyzers (ILA). The user can
also configure how and when each ILA will begin to record data, which is known as setting trigger conditions.

To get started, launch the ChipScope Pro Application. In Linux, this is done by

% analyzer.sh

Once the application finishes loading, the user must connect the FPGA by Opening the Cable by clicking the button
highlighted in Figure 5.23. This requires the JTAG to be connected and the FPGA to be powered on.

Figure 5.24 shows the message box that is displayed when the JTAG connects to the FPGA.
Now that the JTAG is connected, we have a few options. If the design has not already been loaded (through an ACE

file, through iMPACT, XMD, or the SDK), we have the option to download a new bitstream to the FPGA. To do this click the
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Click to connect to FPGA via JTAGClick to connect to FPGA via JTAG

Figure 5.23. Xilinx ChipScope Analyzer Pro main GUI with “Open Cable” button identified.

Figure 5.24. Xilinx ChipScope Analyzer Pro JTAG device chain display window.

Device -> DEV1:MyDevice (XC5FX130T)... -> Configure ... menu option.

The device may differ if you are not using the Xilinx Virtex 5 FX130T FPGA. Select the download.bit to be used to
program the FPGA. Downloading the bitstream can take a few seconds to a few minutes depending on the JTAG being
used. After the download completes, any application initialized into the bitstream’s BRAMs will automatically run.

Because the application automatically runs, we might not be able to get the waveform ready to capture data we want
right away. We will discuss shortly how we are able to circumvent this problem by using a few lines of C before our actual
application runs. The trick we employ is to prompt the user to “Press ENTER” when ChipScope has been set up to capture
data when the trigger condition equation is matched. This is done by adding the getchar function to the C application
before running the rest of the application.

int main() {
/* Declare and Variables for application */
char c;
printf(‘‘Press ENTER when ChipScope has been Triggered\n’’);
c = getchar();
printf(‘‘Program will now start running\n’’);
/* Rest of the Program will follow */

Then, when the program downloads, the user will see the output on the terminal, as seen in Figure 5.25.
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Press ENTER when ChipScope has been Triggered

Program will now start running

Figure 5.25. Program output with inserted code to prompt user to trigger ChipScope.

Figure 5.26. Xilinx ChipScope Analyzer Pro JTAG device chain display window.

And, after pressing enter, the application will run as normal. This gives the person testing the design ample time to set up
the rest of ChipScope’s parameters.

Returning back to the ChipScope Pro Analyzer application, we want to familiarize ourselves with the main layout so
that we can quickly become productive with the tool. Figure 5.26 shows the console output window, waveform window,
and trigger condition setup window. Also shown are the three key buttons used primarily through the debugging process.
The first is the arm trigger button, which looks like a VCR/DVD play button. The second is the disarm trigger button, which
looks like a VCR/DVD stop button. Finally, there is the T!, for trigger immediately. This means the ILA will begin to record
its samples immediately, not waiting for a trigger condition to be met, which can be used when debugging a system and
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none of the trigger conditions are met. In this case the trigger immediately button can give the designer a look at signals
to identify which state the system is in and maybe help explain why none of the trigger conditions were met.

Initially, the waveform and trigger conditions will not be set up when the project is opened. To start, you will need
to import the generated ChipScope Description file (CDC), which is located with the custom hardware core (in the core’s
coregen directory if you are following our instructions). To import this file, simply click the

File -> Import menu option

followed by navigating to the CDC file and importing it to ILA unit 0.
Once imported, the waveform can be updated to include the new signal names. These will still be default signal names,

such as TRIG0 and TRIG1, but they can be renamed by hand to their correct names. These new signals can be dragged
and dropped to the waveform, similar to how it can be done using ModelSim.

Finally, we must set up one or more trigger condition equations so that when we trigger our ILA, it actually runs. To
do this, expand ILA unit 0. Select Trigger Setup, which will open the trigger setup window. We will now set the condition
that must be met in order for our ILA to begin recording data and eventually transmitting that data back to the ChipScope
Analyzer application. Depending on which signal you want to trigger on, set the value and the function accordingly. You
may want to set the ILA to trigger when data are written into the hardware core. Once this is set, we can arm the trigger
and run the application from the terminal.

Before we end our discussion of ChipScope, let us add a few comments regarding common points of confusion. You
cannot arm the trigger and then download a new bitstream. This is for the obvious reason that when you arm the trigger,
you are telling the on-chip integrated controller when the ILA should begin recording. However, if you redownload the
bitstream, it will effectively erase all of that information stored in the ICON and rewrite the entire FPGA configuration.
Second, in order to arm the trigger, the trigger setup window must be open; however, the window can be minimized. You
may notice if you close the window that the options to arm, disarm, and immediately trigger disappear until you reopen
the trigger setup window. Finally, within the trigger setup window is an option to set the Capture Window. This sets how
much data should be captured before the trigger condition occurs. If set to 1, as it is by default, only 1 sample will be stored
prior to the trigger condition being met. If the value is set to 100, then 100 samples will be stored before and 924 samples
will be stored after. This is a very useful debugging tool to help explore what the values of signals are shortly before the
condition is met.

ChipScope is a tool that requires hands-on practice in order to get more comfortable. There are plenty of tutorials and
user guides to read and learn more. Certainly, for experienced readers this is not the only way to implement the ICON
and ILAs in the design. It is also possible to include them directly through the XPS GUI. We have opted to cover the direct
inclusion method because it provides the programmer with a more direct method to debug signals in the system. We
encourage readers to also investigate how to insert the ICON and ILAs directly though the XPS GUI.
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Exercises
P5.1. Describe the differences between bit-level parallelism and

instruction-level parallelism.
P5.2. Which granularity type is best suited for a Platform FPGA

implementation? Why?
P5.3. Given the following dependence relation, generate the

exhaustive enumeration approach.

subtask t IN(t) OUT(t)

s1 a = (x+y); {x, y} {a}
s2 b = (x-y); {x, y} {b}
s3 r = a/b; {a, b} {r}

P5.4. Draw the degree of parallelism figure for the following
short function:

Time 0 4 threads running concurrently
Time 1 4 threads running concurrently
Time 2 2 threads running concurrently
Time 3 1 threads running concurrently
Time 4 5 threads running concurrently
Time 5 6 threads running concurrently

P5.5. From the degree of parallelism, identify the (a) maximum
DOP and (b) average DOP.

P5.6. Given that 50% of the resources are available, meaning
only three cores exist, what performance can be expected
with this limitation?

P5.7. Replace the following entity description with generic
constants.

entity test_core is
port (

a_input : in std_logic_vector(31 downto 0);
b_input : in std_logic_vector(15 downto 0);
a_be : in std_logic_vector(3 downto 0);
b_be : in std_logic_vector(1 downto 0);
clk, rst : in std_logic;
result : out std_logic_vector(31 downto 0);
valid : out std_logic);

end test_core;

P5.8. Using a generate statement, instantiate eight copies of the
test_core component.

P5.9. Using CoreGen, generate the ICON and ILA to probe all of
the signals in the test_core component.
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6
MANAGING BANDWIDTH

Computation Is Cheap, Bandwidth Is Everything
RCS Lab Mantra

Perhaps the most fundamental issue in building an FPGA comput-
ing system is managing the flow of data through the system. The
computational resources in Platform FPGAs are enormous and,
as we have seen in the previous chapter, specific algorithms often
have plentiful parallelism, especially if there is a computation that
is specialized and relatively small. In this case it is very easy to
instantiate a large number of those function units on a single chip.
However, without considering the rates at which various function
units consume and produce data, it is very likely that any poten-
tial performance gains may be lost because the function units are
idle, waiting to receive their inputs or transmit their results. Perfor-
mance issues include both rate of computation and power because
an idle function unit is still using static power. There is also a cor-
rectness issue for some real-time systems as well. It is often the
case that data are arriving from an instrument at a fixed rate —
failing to process data in time is frequently considered a fault.

In this chapter the learning objects are related to examining
bandwidth issues in a custom computing system.

• Starting out, Section 6.1 looks at the problem of balancing
bandwidth, that is, to maximize throughput in a spatial design
with the minimum amount of resources.

• Then, considering the target is a Platform FPGA, we spend time
discussing the various methods used to access memory, both
on-chip and off-chip, along with managing bandwidth when
dealing with streaming data from instruments off-chip.

• Finally, we close this chapter with a discussion of portabil-
ity and scaling with respect to a system’s performance in
Section 6.3. As semiconductor technology advances, system
designers are provided more configurable resources to take
advantage of. The issue now is not one of “how do I add more
function units?” but rather “how do I scale the bandwidth of the
interconnection network?”

295
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6.1. Balancing Bandwidth
Let’s begin with a motivating example. Suppose we have a simple
computation, f = xy (x − 1), that we need to apply repeatedly to
a large number of sequential inputs. A simple spatial design of
locally communicating function units is shown in Figure 6.1.

In order to maximize the frequency of the design, it is likely that
the multipliers chosen for this design will be pipelined, and for this
example it is assumed that these multipliers will have four levels of
pipelining. We will also assume that the x − 1 unit completes in a
single-cycle operation.

Now let’s analyze the timing in this example. At t = 0, the inputs
x and y are present at the inputs of modules A and B. At t = 1,
x − 1 has been computed and the result is present at the input
of module C. However, the product x ∗ y is still being computed,
so we have to stall the computation. A stall occurs in two cases:
(1) whenever a computation unit has some, but not all, of its inputs
or (2) when it does not have the ability to store its output, that is,
the unit is prevented from proceeding because it is waiting on one
or more inputs or waiting to store a result. Thus, module B is stalled
as well because it has to hold its result until module C uses it. These
units continue to stall until t = 4, at which point module A pro-
duces its product, which then allows module C to consume both
data and — for exactly one cycle — all three units can proceed
in parallel. (Module C is operating on the first two x and y val-
ues while modules A and B begin operating on the next two x and
y values.)

Clearly, this pattern is going to repeat and modules B and C
will stall again until t = 8. This is shown graphically in Figure 6.2.
So if we have n number of x and y inputs, the network will
take 4n cycles to compute all of the results. This is undesirable

Figure 6.1. A simple network
used to compute xy (x − 1).
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Figure 6.2. Illustration of the stalls example.
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Figure 6.3. High-throughput
network to compute xy (x − 1).

because one-quarter of our module cycles are spent waiting for
data!1

Even though FPGA resources have been allocated to these units,
they are not contributing to the solution when they are idle. More-
over, they are continuously consuming static power — even if
the transistors are not changing values. Finally, the throughput
(one result every four cycles) is not much better than a time-
multiplexed solution and probably slower than a general-purpose
processor (which will have a faster clock frequency). What we aim
for is a throughput of one result every cycle.

Readers may already recognize the solution to this problem. By
adding a four-stage FIFO or buffer into the network, we can make
this computation produce a new result every cycle after t > 4.
There is more than one place to insert these buffers, but Figure 6.3
shows three buffers following the results of module B. The intro-
duction of buffers so that a network of computations does not stall
is known as pipeline balancing. Chapter 5 discussed pipelining,
both in terms of between compute cores and within individual
computations. Implicit is the problem of how to best balance the

1 This would be half of the cycles if the second multiplier was in fact a fast one-cycle unit.
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pipeline. This problem is further complicated when dealing with
larger systems that span multiple compute cores operating at dif-
ferent frequencies. Through the rest of this chapter we aim to
address these problems with respect to Platform FPGA designs.

6.1.1. Kahn Process Network
In the previous stalls example, we built our network of computa-
tional components in a style known as a Kahn Process Network
(KPN) (Kahn, 1974). In a KPN, one or more processes are com-
municating through FIFOs, with blocking reads and nonblocking
writes. By this we mean it is assumed that the system is designed
to support writing into a FIFO without the FIFO becoming full and
losing data. Graphically, a KPN resembles a conventional stream-
ing architecture where the source writes to the destination, as
seen in Figure 6.4. Here, each node (circle) represents a process
and each edge (A, B, F ) between the nodes is a unidirectional
communication channel.

The network, which is represented as a directed graph, is also
called a data-flow graph. As part of the example, we mentioned
that the operation only begins when all of its inputs are available
and there is a place for it to write its output. This requirement is
called the data-flow firing rule. A short finite state machine, as
seen in Figure 6.5, can be implemented to support the data-flow
firing rule.

We already implemented a Kahn process network in Section 3.A
when we built the single precision floating-point adder. In that
example, before processing data (performing the addition), we had
to wait until not only both operands arrived into their FIFOs, but
that result FIFO was ready to receive the added result and the
adder was ready for new inputs as well. Had we not checked the

SP FP
adder

Operand A
producer

Result
consumer

Operand B
producer

A

B

F

Figure 6.4. Kahn process network diagram of a simple single precision
floating-point system.
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Figure 6.5. Wait/compute states of Kahn process network finite state machine.

status of result FIFO it would have been feasible for the system to
have lost data between the inputs and the results by allowing the
adder to consume data from the input FIFOs, but not being able to
store the results.

An additional feature found in our single precision addition
system is the ability to check the status of each FIFO, whether they
were full or empty, in parallel to the FIFO read and write opera-
tions. This is in contrast to a conventional software implementa-
tion where the status of the FIFO would first need to be read prior
to any operations occurring. As a result, in a software implemen-
tation, these sequential operations can add extra latency to the
system. Through the explicit parallelism with FPGAs we can begin
to see and understand the effects that something as simple as
independent FIFO operations have on the efficiency of the system.

While the Kahn process network supports the unidirectional
flow of data from a source to a final destination, it does not offer
any mechanism to provide feedback between compute processes.
The requirement of “unbound” FIFOs between processes makes
for challenging designs in systems where FIFOs are a fixed resource
that cannot be reallocated, that is, with FPGAs, when the Block
RAM has been allocated as a FIFO and the design is synthesized
and mapped to the device, that memory is fixed to that pro-
cess. Instead, we will see that Platform FPGA designs can quickly
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incorporate the Kahn process network with fixed on-chip memory
resources by including feedback between the compute cores. This
approach is discussed within both Section 6.A and Chapter 7.

6.1.2. Synchronous Design
In a systolic data-flow implementation, every operation shares the
same clock and data are injected into the network every clock
cycle. If we can determine at design time that all data will arrive at
the inputs at the right time (as was done in the second implemen-
tation of the network in the example), then we can avoid checking
the data-flow firing rules and we get maximum throughput. More-
over, the FIFOs used in the example can be replaced with a smaller
chain of buffers. This is called a synchronous design.

6.1.3. Asynchronous Design
In contrast, the asynchronous design strategy uses simple finite
state machines to read inputs, drive the computation, and write
the outputs. This requires additional resources, but has the bene-
fit that there is no global clock, so the design can be partitioned
across different clock domains. If the buffers are added as in the
second implementation example, then it too has the benefit of
getting maximum throughput.

In both synchronous and asynchronous cases, we have
assumed that each operation takes a fixed number of clock cycles.
However, the model can be extended to also include variable-
length latency operations by using the maximum latency (to
always get maximum throughput). The asynchronous design can
use the most frequent latency to usually get maximum throughput.

The key to both of these design strategies is that FIFOs have
the correct minimum depth. However, we do not want to waste
resources — especially memory resources that are relatively scarce
on an FPGA device. So the key to this problem is to find the mini-
mum number of buffers needed to maximize throughput. The
next section investigates how to best utilize the bandwidth of the
FPGA in terms of on-chip communication, off-chip memory, and
streaming instrument inputs.

6.2. Platform FPGA Bandwidth Techniques
As with the partitioning problem in Chapter 4, the analytical solu-
tion is most useful as a general guide to solving the problem rather
than an automatic tool. Unfortunately, just as before, practical
issues complicate the clean mathematical analysis. This section
considers two places where these techniques can be applied
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and then considers some practical issues. First, we will look at
integrating designs with on-chip and off-chip memory. A variety of
memory types and interfaces exist and understanding when each
is applicable is important to Platform FPGA designs.

Then, we will consider data streaming into the FPGA from some
instrument. For practical embedded systems designs the “instru-
ment” may be a sensor (such as temperature or accelerometer),
some digitally converted signal (say from an antenna or radar), or
even low-speed devices such as keyboards and mice. In some cases
the instrument may need to use off-chip memory as a buffer or
as intermediate storage, so while these two sections are presented
individually, designs may require that the two functionalities be
combined together. Clearly, we cannot discuss every type of instru-
ment; for brevity we focus our attention on high-speed devices,
which cause tighter constraints in FPGA designs.

6.2.1. On-Chip and Off-Chip Memory
Most embedded systems will require some amount of on-chip
and/or off-chip memory (RAM) because many modern systems
are data-intensive. This often means that the designer has to pay
some attention to the memory subsystem. As mentioned earlier,
the FPGA fabric does not include embedded caches found with
modern processors.2 As a result, the designer must be aware of the
system’s memory requirements in order to implement a suitable
interface to memory so as to not create a memory bottleneck.

Memory requirements differ between software and hardware
designs. In software there is less of an emphasis on where data are
stored so long as they are quickly available to the processor when
they are needed. When writing an application, the programmer
does not typically specify in which type of memory (disk, Flash,
RAM, registers) data should reside. Instead, more conventional
memory hierarchy, depicted in Figure 6.6, is used. This is the typi-
cal hierarchy covered in computer organization textbooks. The x
axis refers to capacity and the y axis refers to access time. Non-
volatile storage such as hard drives provide greater capacity, but
at the cost of performance. Access times are typically in the mil-
lisecond range. Volatile storage such as off-chip memory provides
less storage than disk, but typically at least an order of magni-
tude faster access times. Cache and registers occupy the peak,
providing small but fast access. We mention this because unlike
programmers targeting general-purpose processors, who are able
to exploit caches and the system’s memory hierarchy, Platform

2 Some hard processors may include cache, such as the Xilinx PowerPC 440, although
this cache is not accessible by the rest of the FPGA.
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Disk
(non-volatile storage)
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Figure 6.6. Traditional memory hierarchy comparing storage capacity to access
times.
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Figure 6.7. FPGA compute core’s memory hierarchy with local/remote storage in
place of cache.

FPGA designers must either construct custom caches or rely upon
a modified memory hierarchy.

From a custom compute core’s perspective, we modify the
drawing of the memory hierarchy for Platform FPGAs by removing
the cache and replacing it with user-controlled local and remote
on-chip memory (storage), as shown in Figure 6.7. On-chip mem-
ory is considered local storage when the memory resides within a
custom compute core, maybe as Block RAM. Remote storage is still
on-chip memory, except that it does not reside within the compute
core. An example of this is on-chip memory that is connected to a
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bus, accessible to any core through a bus transaction. There is a
fine line between local and remote storage. In fact, the locality is
relative to the accessing core. If compute core A needed to read
data from compute core B’s local memory, we would say that A’s
remote memory is B’s local memory.

Figure 6.8 shows the various memory locations from a com-
pute core’s perspective. Here, the register’s values are valid to the
compute core immediately for read or write access. Local storage
access is short, within a few clock cycles, whereas remote storage
is longer, within a few tens of clock cycles. In the example the com-
pute core would need to traverse the bus in order to retrieve remote
storage data. Finally, we show the off-chip memory controller to
provide access to off-chip memory. Access times to off-chip mem-
ory range in the tens to hundreds of clock cycles since the request
travels off-chip.

While physically there is a difference between cache and on-
chip local/remote storage, the concept of moving frequently used
data closer to the computation unit remains the same. The dif-
ference is the controlling mechanism. For caches, sophisticated
controllers support various data replacement policies, such as

Compute core
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Register n
.  .  . Local

storage
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Off-chip memory
controller
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Printed Circuit Board

Remote
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Figure 6.8. Various memory locations with respect to an FPGA’s compute core with access times increasing
from registers, to local storage, to remote storage, and finally to off-chip memory.
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direct-mapped, set associative, and least recently used. In Plat-
form FPGA designs we are left to implement our own controller.
This may seem like a lot of additional work, but keep in mind many
custom compute cores most likely do not follow conventional
memory access patterns or protocols, so creating custom con-
trollers may actually be necessary to achieve higher computation
rates.

Unlike most software programmers, hardware designers must
be aware of the physical location of data to be processed. We must
know whether data are in registers ready to be computed upon,
in on-chip memory requiring reads through a standard interface
such as a Block RAM, or in off-chip memory requiring additional
logic (and time) to retrieve data. In each of these cases, the mecha-
nism to access data may differ. Consider reading data from a regis-
ter; data are always able to be accessed (and modified), typically
within a single clock cycle. The designer references the register by
name rather than by address. In contrast, consider how to access
data from an on-chip memory, such as Block RAM. When using
on-chip memories, we must include a set of handshaking signals.
These signals may consist of address, data in, data out, read enable,
and write enable. In this case, the memory is located within the
compute core. This allows for fast access from the compute core,
but can limit access by other compute cores. This is similar to a
nonshared level 1 cache in terms of accessibility. Read and write
access times are typically within one to two clock cycles.

The Block RAM can also be connected to the bus to provide
more compute cores access to the memory. This comes at a cost
of traversing the bus. The memory is still on-chip, but the inter-
face to access the memory changes to a bus request. We mention
this case because it more closely models one implementation for
interfacing with off-chip memory, namely through a bus. However,
for off-chip memory, instead of a simple bus interface to translate
bus requests into Block RAM requests, additional logic is required
to correctly signal the physical off-chip memory component.

Off-Chip Memory Controllers

The additional logic is in the form of a memory controller. In Plat-
form FPGA designs, memory controllers reside on-chip as a soft
core that interfaces between off-chip memory and the compute
cores. The memory controller is responsible for turning mem-
ory requests into signals sent off-chip, freeing the designer from
adding this signaling complexity into every compute core need-
ing access to off-chip memory and, if multiple cores need off-chip
access, having to multiplex between the requests ourselves.
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Because the memory controller is a soft core, it is possible to
construct different interfaces to both off-chip memory and on-
chip compute cores. For example, in Figure 6.9, the memory con-
troller is connected directly to the processor. Alternatively, the
memory controller could be connected to a shared bus to allow
other cores to access off-chip memory, as seen in Figure 6.10. Simi-
larly, some memory controllers can provide direct access to more
than one component; Figure 6.11 shows both the processor and
the compute core interfacing to the memory controller directly.

A conventional system may use a bus-based memory controller
to provide the greatest flexibility in the design, allowing any mas-
ter on the bus to read or write to off-chip memory. In Platform
FPGA designs this type of access may suffice for many compo-
nents, but providing a custom compute core with the ability to

BUS

Off-chip
memory

controller
Processor

Compute
core

Figure 6.9. The processor is connected directly to the memory controller.

BUS

Off-chip
memory

controller
Processor

Compute
core

Figure 6.10. The memory controller is connected to a shared bus to support
requests by any core on the bus.
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Figure 6.11. The processor and compute core are connected directly to the
memory controller.

access memory directly can yield significant performance advan-
tages that are otherwise unrealizable in traditional microproces-
sor designs. We discuss how memory accesses differ with these
physical implementations shortly.

Memory Types

Up until now we have ignored the type of off-chip memory we have
chosen to interface with. When purchasing development boards,
vendors often populate the boards with one or more types of
memory. These may include DDR SDRAM, DDR2 SDRAM, SRAM,
Flash memory, EEPROM, etc. For those less familiar with these
memories, you may be thinking of how they differ. For exam-
ple, SDRAM versus SRAM differ in terms of latency, capacity, and
maybe most noticeably cost (SRAM costs are significantly greater
than SDRAM). SDRAM versus Flash memory differs in terms of
long-term volatile versus nonvolatile storage and access time. With
such a wide variety of memory, we must familiarize ourselves with
the different memory controllers. This task may seem daunting,
and for designers who are required to build a memory controller
from scratch, it can be. However, in many cases, memory con-
trollers have already been designed that can be instantiated from a
repository/library of soft cores. This is one of the strongest benefits
when designing with Platform FPGAs, using commodity off-the-
shelf components (in our case hardware cores) whenever possible
in a design.

When starting a design, it is common to begin with a develop-
ment board that may contain various necessary and unnecessary
peripherals. Vendors typically supplement these development
boards with a repository of IP cores, which allows systems to
be assembled rapidly. Within these repositories exist different
memory controllers that can be instantiated within the design
to provide access to the development board’s off-chip memory.
Ultimately, a design will move away from the development board
to a custom design, which may mean a different type (or capacity)
of memory.
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Fortunately, with some adjustments and modifications to the
generics of the memory controller hardware core, different mem-
ory can be used [for example, using error correcting code (ECC)
logic if the SDRAM DIMM supports it or not]. The goal of this
section is not to teach you how to build a memory controller from
scratch, but to understand how the different memory controller
interfaces can affect a design. Specifically, we are interested in the
memory access associated with these different interfaces. This is
a shift from traditional processors where all of the computation
is done by the processor, so one type of memory access may be
all that is necessary. In Platform FPGA designs we can incorporate
many different memory access types to support lower resource uti-
lization, lower latency, or higher bandwidth memory requirements
when needed. Moreover, we can provide some compute cores with
high bandwidth access to memory while limiting memory access
to other cores.

Memory Access

How the memory controllers are connected and used can have a
dramatic effect on the system, even if a highly efficient memory
controller and type of memory is used. It is up to the designer
to understand how to connect the memory controller in order to
meet the memory bandwidth needs. In Platform FPGA terms, the
important trade-off is resource utilization.

Programmable I/O
For starters, the processor can handle transfers between mem-
ory and compute cores. With programmable I/O the processor
performs requests on behalf of the compute core. This approach
uses a limited amount of resources. The requirement is that each
compute core be located on the same bus as the processor. The
processor can read data from memory and write it to the com-
pute core, or the processor can read data from the compute core
and write it to memory. In this situation, the processor plays the
central communication role. As a result, the processor may end
up performing less computation while performing these memory
transactions on behalf of the compute cores.

The effect is less noticeable as the amount of computation
performed in the FPGA fabric increases, reducing the amount of
computation being performed by the processor. In practice, there
are a variety of ways to pass data among the processor, memory,
and compute core. From the processor’s perspective, both mem-
ory and the compute core are slaves on the system bus with a fixed
address range.
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#include <stdio.h>

#define MEMORY_BASEADDR 0x10000000
#define HWCORE_BASEADDR 0x40000000

int main() {
int *mem_ptr = (int *)(MEMORY_BASEADDR);
int *core_ptr = (int *)(HWCORE_BASEADDR);
int i;

// Transfer Data from Memory to the HW Core
for(i=0; i<128; i++) {

*core_ptr = mem_ptr[i];
}

}

Listing 6.1. Processor performing programmable I/O, reading data from off-chip
memory and writing to a custom compute core.

A software approach, such as C/C++, could involve pointers
where the processor would access data stored in off-chip mem-
ory and then pass it to the compute core. We can also use pointers
to provide array-indexed access to off-chip memory. Figure 6.9
depicts the system design used to connect the processor, mem-
ory, and compute core to allow data to be transferred from off-chip
memory to a custom compute core.

Listing 6.1 provides a simple example of a stand-alone C appli-
cation to read data from off-chip memory and transfer it to a
compute core. We assume that the address space of the off-chip
memory controller begins at address 0x10000000 and that the
compute core begins at address 0x40000000. The functionality of
the compute core is irrelevant for this example; just assume that
writing data to its base address is how the processor interfaces with
the compute core. Accessing memory as an array, mem_ptr[i],
reduces the complexity associated with pointers. In this case,
because both pointers were defined as type int (and we assume
the processor is a 32-bit processor), incrementing the pointer
results in reading from and writing to the next 32-bit data word.

DMA Controller
As a simple solution to the memory transfer problem, the proces-
sor doing the work may be acceptable; however, it is certainly not
efficient. The time the processor spends reading and writing data
is time that could be spent performing other computations. Most
modern processors circumvent this problem by introducing Direct
Memory Access (DMA) to perform memory transactions in place
of the processor. There are variations on the implementation, but
the basic idea is that the processor issues a request to the DMA
controller, which then performs the memory transaction. This
frees the processor to perform other computations while the DMA
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controller is operating. This works by allowing the DMA controller
to act as both a bus slave and a bus master. As a slave, the DMA
controller responds to requests from the processor (or any other
bus master) to set up a memory transaction. Then, as a master,
the DMA controller arbitrates for the bus and communicates with
the memory controller to complete the memory transaction. The
order of communication depends on the direction of the trans-
fer (memory read versus memory write), so it is possible to issue
a read from a compute core and write data to off-chip memory.
To set up the transaction, the DMA controller needs at least the
following information: source address, destination address, and
transfer length. The source address is where data should be read
from, the destination address is where data are to be written to,
and the transfer length is the number of bytes in the transfer.
Figure 6.12 is a block diagram representation of a simple system,
including a processor, DMA controller, memory controller, and
compute core.

Bus-Based DMA Interface
While the DMA controller may add an improvement in perfor-
mance by reducing the overall involvement by the processor,
there are still drawbacks. In the programmable I/O implementa-
tion the processor’s compute capacity is degraded when it per-
forms the memory transactions on behalf of the compute core.
Recalling the example (Listing 6.1) where during the for-loop
the processor is acting as a middleman between memory and
the compute core, we can free the processor from much of this
responsibility by adding a DMA controller to perform the bulk
of the work for each memory transaction. This approach is an
improvement, but the processor is still involved and data must still
be passed between the DMA controller and the compute core.

Processor

Compute
core

BUS

Off-chip
memory

controller

Central
DMA

controller

Source address
Destination address

Transfer length

Control registers:

Figure 6.12. Central DMA
controller to offload memory
transactions from the
processor.
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We can improve this further by giving each compute core the
ability to issue transactions to memory independently. This is still
considered DMA, but instead of a centralized DMA controller per-
forming transactions, each compute core can independently issue
its own read or write transactions to the memory controller. With
a bus connecting the compute cores and memory controller, the
arbiter for the bus becomes the communication controller, man-
aging requests for bus access to issue memory transactions. The
memory controller still only sees a single transaction at a time
(note that some memory controllers can handle more than a single
transaction at a time).

To support DMA within a custom compute core, additional
logic must be added to the core’s interface. Typically, a core can
be viewed as a bus slave, responding to requests from other cores
on the bus. The example of programmable I/O where the proces-
sor writes data to the compute core is an example of this interface.
A slave device cannot issue requests on the bus; in order to do so
we must make the device a bus master. It is possible for a core to be
a slave, a master, or both a slave and a master.Although, practically
speaking, a core is usually only a bus slave or both a bus slave and
a master. The processor is one of the few bus master-only cores.

That being said, for DMA support we only need a bus master,
but we will include a bus slave to allow the processor and other
compute cores to still communicate with the core. Because the
bus interface depends on the actual bus used in the design, the
specifics of the finite state machine needed to incorporate a bus
master into a custom compute core will be covered in Section 6.A.
From a hardware core’s perspective, a master transaction involves
asserting the request to the bus arbiter, waiting for the arbiter to
grant bus access, and waiting for the request to complete.

We mention bus master information because the memory con-
troller is viewed as a slave on the bus. Once the memory controller
responds to the bus transaction, the next core can issue its mem-
ory request across the bus. This approach alleviates the processor
from performing memory transactions on behalf of compute cores
and can improve performance by allowing a transaction to only
traverse the bus once (previously, the processor would fetch data
and then pass data to the compute core, requiring two trips across
the bus). Requests to the memory controller are still performed
sequentially by the bus, but any core that can be granted access
to the bus can issue requests.

Direct Connect DMA Interface
In some situations it may not be necessary for every core to access
off-chip memory. While we could create bus masters and bus
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slaves accordingly, a larger question should be addressed, namely,
why not directly connect compute cores to the memory con-
troller? This approach avoids contention for the bus, especially
from other cores that need the bus but do not need access to
the memory controller. Overall, this results in lower latency and
higher bandwidth transactions to memory. A direct connect to
the memory controller does require additional resources, both for
the compute core and the memory controller. Some vendors sup-
ply memory controllers with multiple access ports (Xilinx offers
a multiport memory controller, MPMC). Section 6.A presents one
custom direct connect interface for the Xilinx MPMC known as the
Native Port Interface.

By circumventing the bus, memory transactions no longer need
to arbitrate for the bus, which reduces latency. In designs that
require low latency, this may be the only way to meet the tim-
ing requirements. In some designs, only a few compute cores may
need direct access to memory, and under these conditions is it fea-
sible to directly connect the cores to the memory controller. As the
number of cores needing access to memory increases, using a bus-
based DMA interface is more appropriate, as each direct connect
DMA interface requires resources that would normally be shared
by a bus implementation.

One mechanism used to hide latency to off-chip memory is
double buffering. Double buffering refers to requests that are
made while the previous request is still in transit. This allows the
memory controller to begin responding to the second request
while the first request finishes. During read requests from mem-
ory, using double buffering can result in a best-case effective zero
latency access for all requests after the first request.

Memory Bandwidth
When implementing designs we must be aware of the memory
requirements before building the system. One important consid-
eration mentioned earlier in this chapter is bandwidth. Bandwidth
can be calculated based on the operating frequency and data
width. For example, a bus operating at 100 MHz over 64-bit data
words offers:

bandwidth = (100 × 106/sec)× 64 bits = 6400 Mbits/sec

Calculating the bandwidth requirements of a compute core can
help identify what type of memory controller and interconnect is
suitable for the design.

In addition to raw bandwidth, we must consider setup times
and latency. When a compute core initiates a transfer, depending
on the interconnect, the request may need to wait to be granted
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Figure 6.13. Burst transfer of
four 32-bit sequential data
words from off-chip memory to
a compute core.
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access to master the bus, wait for the memory controller to com-
plete its current transaction, or wait for data to be returned. To
improve this latency would require a more directly connected
interface to memory and/or operating the memory controller at
a higher frequency, allowing it to perform more operations in the
same time period.

Alternatively, a core may issue burst transfers. A burst transfer
allows the compute core to issue a single request to the memory
controller to read or write multiple sequential data, as depicted in
Figure 6.13. This reduces the number of total memory transactions
needed by allowing a single transaction to span more than a single
data word and can save a significant amount of time when trans-
ferring large amounts of data. In a burst transfer the latency for the
first datum is still the same, but each datum after the first arrives
in a pipelined fashion, one datum per clock cycle. For example, a
burst transfer of four 32-bit sequential data words would take the
initial latency time for the first word, denoted as tlatency, plus three
clock cycles for the remaining three words:

ttotal = tlatency + 3t

There are, unfortunately, two limitations to burst transfers.
The first is data must be in a contiguous memory region.
A burst transfer consists of a base address and a burst length.
Data are transferred starting from the base address up to the burst
length. The second is that the length may be limited by an upper
bound, requiring multiple burst transactions for such large request
lengths. As of this writing, Xilinx imposes a 16-word upper bound
on memory requests across a bus and through a direct connect to
off-chip memory.

To summarize, what we are trying to emphasize is that unlike
traditional microprocessors, Platform FPGAs provide a flexibil-
ity to solve complex bandwidth needs. The flexibility sometimes
comes at a price, often in terms of resources or programmability.
Understanding when and how to chose the right combination is a
responsibility the system designer must not take lightly.
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6.2.2. Streaming Instrument Data
So far we have focused on interfacing with on/off-chip memory,
but many embedded systems designers often face situations
where the system must incorporate an application-specific
instrument. An exotic example is a system with a number of sci-
ence instruments flying on a satellite circling the Earth. These
instruments are usually “dumb” in that they incorporate very lit-
tle control and often have very little storage. Once turned on, they
begin generating data at a fixed rate. It is up to the computing sys-
tem to process this data and transmit it to the receiving station
within a specific time frame (in this case, when the satellite is
over the receiving station on earth). Unlike the off-chip memory
problem where the consequence of a poor memory hierarchy is
bad performance, the consequence of not being ready to accept
data from an instrument is lost data. Data can be lost in two ways:
if the device cannot process data arriving from the instruments
fast enough or if the device cannot transmit the computed results
back, to earth in this example, within the requisite amount of time.

There are plenty of less exotic examples as well. Embedded
video cameras and other embedded systems sensors have similar
characteristics. Data arrive at some fixed rate and must be pro-
cessed, otherwise they may be lost. For commercial components,
failure to do so results in loss of sales and unsatisfied customers.

These examples essentially break down to bandwidth issues:
can the FPGA perform the necessary computation in the specified
time period and, if not, how can we buffer data so as to not lose
it? This is the focus of this section, how to support high bandwidth
instruments. Chapter 7 explores a variety of interconnects that can
be used to interface with external devices. In this chapter it is all
about bandwidth, how to plan for it, and how to use it. We also are
interested in using on-chip and off-chip memory intelligently for
short-term storage when the need arises to buffer data.

Many instruments may have a fixed sample rate, say, every
10 milliseconds, and the device must operate on new data. The
designer can calculate the exact amount of time allotted to pro-
cessing data and work to design a compute core accordingly. As
the sample rate increases, the amount of time to process data
decreases unless the designer prepares the system to be pipelined
as described in the previous chapter.

Traditionally, we have considered pipelines as a mechanism to
achieve higher overall throughput in general-purpose computers.
Here we use them not only to achieve high throughput, but to
alleviate the tight timing constraints that may be placed on a
designer with a high sampling rate. The requirement on pipelin-
ing is that the sampling rate (arrival rate of new data) be less
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than or equal to the slowest stage in the pipeline. Even still, this
requirement can be circumvented if each stage is pipelined as well;
however, at this point it becomes a granularity debate as to what
is a stage in the pipeline. With the use of pipelines we can view the
flow of data from the instrument through each compute core and
finally to its destination as a stream. FPGAs can efficiently handle
multiple streams in parallel at very high frequencies, which is what
has attracted so many designers away from microprocessors.

When working with more than a single instrument or input,
we must now pay attention to the additional complexities. At the
beginning of this chapter we spoke about balancing bandwidth
with the use of buffers. By knowing the input rate for the instru-
ments, we can calculate the size and depth of the buffers needed to
balance the computation. In addition to using on-chip memories
as buffers, these memories can be used to cross clock domains.

One challenging aspect of embedded systems design is deal-
ing with different clock domains. This problem may be further
complicated when including instruments with different operat-
ing frequencies. Using on-chip memory as FIFOs, certain vendors
support dual port access to the memory, which enables different
read and write clocks (and, in some cases, data widths). Using
these buffers with different read and write clocks, a designer can
solve two problems with one component, buffering and clock
domain crossing. With Platform FPGA designs, this also results
in the use of fewer resources than implementing both a buffer
and clock logic individually. Here we are able to take advantage
of the physical construct of the FPGA and the on-chip memory
(i.e., Block RAM), which have both capabilities built into the FPGA
fabric.

Where real issues begin to arise is when a compute unit cannot
process data fast enough and on-chip memory does not provide
sufficient storage space. In this event, it is necessary to use off-chip
memory as a larger intermediate buffer. Fortunately, we can incor-
porate the information presented in the previous section to help
solve this problem. By calculating the bandwidth requirement we
can determine which memory controller and interconnect are
appropriate.

Let’s consider three cases where off-chip memory buffer can be
useful. These three cases are actually general enough to be applica-
ble for large on-chip memory storage as well, but we present them
here for consistency sake. A compute core requiring memory as a
buffer may need to:

• store input data arriving faster than can be computed
• retrieve data when it can be computed
• store the computed results
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Another unique capability FPGAs provide over commodity
processors is the ability to gather data without introducing any
instrumentation effect in the computation. Let’s say we want to
construct a histogram of data arriving from an off-chip source,
as seen in Figure 6.14. We can build a second component to per-
form a histogram calculation based on the input to be processed
by the compute core. Unlike a microprocessor design where the
histogram computation would require part of the processor’s time
(slowing down the computation), a parallel histogram hardware
core can perform its computation without disturbing the system.
In this example, we may also be able to achieve a higher preci-
sion in our histogram, as we could sample the input at a higher
frequency than a processor, which may not be able to sample and
compute quickly enough before the next input arrives.

Inserting data probes into a system can provide a significant
amount of insight into the operation and functionality of the
design. Often, this information is collected during the research and
development stages of the design; however, in some applications
these data may prove to be a valuable resource for debugging or
improving future designs. These probes can be created to mon-
itor a variety of components, with each running independently.
Depending on the functionality, these probes may require addi-
tional resources, such as on-chip or access to off-chip memory,
and so must be planned for accordingly.

FPGAs have already been shown to be useful in a variety of
applications with one or more instruments, but often the FPGA’s
role is as some glue logic to aggregate all of the instrument signals
for the processor. Instead, we emphasize that using the FPGA to do
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Figure 6.14. Streaming I/O compute core plus parallel data acquisition (histogram)
core.
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more computation can be of great benefit. To support computa-
tion, it may be necessary to introduce buffers, which may be small
on-chip memories or large off-chip RAMs. With the application
dictating the buffering needs, the designer must carefully con-
sider the system’s bandwidth in order to obtain significant gains in
performances. These gains are not necessarily over a conventional
processor; in fact, the gains may be finer resolution in the compu-
tation, more power-efficient designs, or the collection of run-time
data that will spawn new and even better designs.

6.2.3. Practical Issues
Perhaps the biggest issue for FPGA-based implementations is the
cost to instantiate a FIFO or a buffer. In CMOS transistors, the
number of transistors used to instantiate a buffer and FIFO is dif-
ferent. For FPGAs, they are often just different configurations of
the same resource. Second, the number of transistors in CMOS is
directly proportional to the number of stages in the buffer. The
cost model for FPGAs is much more complicated. If the buffer has
one stage, the tools will probably instantiate a flip-flop. If there
are between two and 16, most likely the tools will use shift regis-
ters (SLR16), which essentially cost a function generator and no
data storage. For a deeper buffer, the tools might instantiate a few
SLR16s but, more likely, would configure an on-chip memory as
either distributed RAM or Block RAM. A consequence of this is
that the placement of the buffers matters a lot in an FPGA system.
A design that uses many of the BRAM resources might want to dis-
tribute many small buffers throughout the network rather than use
one BRAM near the sink. Of course, the analytical formulation just
presented does not account for these subtle cost issues.

An associated issue to allocating and placing these memories
is how to connect them while still meeting the specified tim-
ing requirements. The reliance on advancements in place-and-
route technology has aided the designer in meeting more complex
design requirements, but there are often timing constraints that
the tools cannot resolve. The designer must identify where the
longest delay occurs in the design and either introduce a buffer
(maybe with the addition of a flip-flop) or, if possible, hand place
and route a portion of the design. Hand routing designs is a more
advanced topic than we wish to explore within this chapter and
because our focus thus far has been on bandwidth, we should con-
sider the constraint from the perspective of solving a bandwidth
issue. The introduction of a buffer may require a change to the
other buffers in the system in order to compensate for the added
delay.
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6.3. Scalable Designs
Consider a designer who spends a significant amount of time
designing a hardware core to be used in a Platform FPGA-based
embedded systems design. The designer has carefully partitioned
the design, identified, and implemented spatial parallelism based
on a specific FPGA device, such as the Xilinx FX130T FPGA. In
many embedded systems, once the design has satisfied its require-
ments and the product is shipped, the designer may switch to
maintenance mode to support any unforeseen bugs in the system.
This follows the product development life cycle from Chapter 1.

We now want to shift our focus away from simple maintenance
and instead turn our attention to scalability. With each new gener-
ation of FPGA devices the amount of available resources increases.
When going from one generation to the next, the number of
logic blocks, logic elements, and block memories might double.
New resources, such as single/double precision floating-point
units may appear. And, the number of available general-purpose
I/O pins may increase. While these advancements provide the
designer with more capacity, capability, and flexibility, it often
raises an important question: “How do we modify our design to
take advantage of these additional resources?” Simply increasing
the number of compute cores may have adverse effects on the
system unless careful consideration is made.

6.3.1. Scalability Constraints
At the same time we want to consider how to create a design to be
as scalable as possible and to utilize the current FPGA’s resources
most efficiently. Consider a designer who builds a compute core
that utilizes 20% of the FPGA resources. If the design allows for
multiple instances of that compute core to be included, we could
conceivably instantiate five cores and use 100% of the resources.
These calculations are rather straightforward, requiring little math
in the computation.

Number of Cores = Available Resources/(Resources/Core)

Practically speaking, this simple formula helps set the upper
bound on the actual number of compute cores obtainable on
the device. This does not tell the whole story, as we must further
analyze the compute core to determine if the system will be sat-
urated past a certain number of cores. In essence we want to
find the sweet spot between maximum resource utilization and
performance. Arguably, one of the most important scalability
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constraints is bandwidth. Can we sustain the necessary bandwidth
— whether to/from a central processor, between each compute
core, or to/from memory — as we increase the number of cores?
Simply put, these three components, the processor bus, and mem-
ory are at the heart of Platform FPGA design. To see any significant
performance gains when scaling the design, we must be consider-
ate of their bandwidth’s impact on the system.

Processor’s Perspective
Let’s start by looking at scalability from the processor’s perspec-
tive. As we add more compute cores we may be also adding more
work for the processor, such as managing each additional core.
Of course this analysis is application specific, but the overarching
goal of scalable designs is to achieve greater performance, which
may be in terms of computation, power consumption, or any num-
ber of metrics. To do this with Platform FPGAs we want to offload
the application’s compute-intensive sections that would normally
run sequentially on the processor and instead run them in parallel
in hardware. Any resulting responsibilities the processor is left with
to control these additional hardware cores is a necessary trade-off
for the potential parallelism and performance gains.

We consider the “bandwidth” from the processor’s perspec-
tive as the amount of “attention” the processor is able to provide
a compute core. This vague description is intended to focus the
discussion less on data being transferred between the processor
and compute core and more specifically on the time the proces-
sor is able to interact with the core. We could also consider this to
be time spent by the processor to perform some sort of “control”
of the hardware core rather than time spent performing its own
computations.

To draw on an analogy, imagine a parent feeding a child. The
parent feeds the child one spoon at a time until the food is gone
and the job is done. The spoon represents the fixed bandwidth
between the processor (the parent) and the compute core (the
child). The total attention needed is how long it takes to finish the
task. Now if we add a second child, the parent is still able to feed
each child one spoonful at a time, but the total time to feed both
children increases or each child receives only half of the parent’s
attention. In scalable designs we want to identify the amount of
attention a compute core needs and scale the design to not exceed
the processor’s capacity.

Processor to Core Bandwidth = Available Bandwidth to one Core
Number of Cores
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Compute Core’s Perspective

Next, let’s consider scalability from the compute core’s perspec-
tive. The compute core may need to communicate with other cores
that may be similar to the processor case we just covered. However,
unlike the processor that can only communicate with one core at
a time, each compute core can issue requests to any other com-
pute core, presenting a larger constraint on the interconnecting
resource, which we referred to earlier as a bus. As we add more
compute cores to this bus, we run the risk of saturating that shared
resource. The bus has a fixed upper bound on its bandwidth, which
is the operating frequency multiplied by the data width:

Bus Bandwidth = Bus Frequency × Bus Data Width

To calculate the effect of adding additional compute cores onto
the bus, we need to take into account what each core’s bus band-
width needs are. To do this we can follow the same formula for the
bus bandwidths, but include the core’s bus utilization as well.

Core Bus Bandwidth = Core Frequency × Bus Data Width × (% of Utilization)

Here we assume that the core can operate at a different fre-
quency than the bus, but must interface with the bus at a fixed
data width. The reason is while a core could issue requests at half
of the frequency of the bus, each request requires the entire data
width of the bus. (Note: it is possible for more sophisticated buses
to circumvent this restriction, and we leave those specific imple-
mentation details to our readers.) To calculate the required bus
bandwidth we can sum up each core’s bus bandwidth. The bus
saturates when the required bus bandwidth is greater than the
available bus bandwidth.

We can also consider alternative interconnects, such as a cross-
bar switch, to connect the cores. A crossbar switch allows more
than one core to communicate with another core in parallel. This
increases the overall bandwidth of the interconnect at the cost of
additional resources. The additional resources stem from allowing
multiple connections to be made in parallel. You could think of this
almost as adding additional buses between all of the cores so that if
one is busy, the core could use a different bus. Figure 6.15 shows a
four-port crossbar switch with bidirectional channels. Each output
port is connected to a four-input multiplexer, totaling in four four-
port multiplexers. The multiplexer’s select lines are driven by some
external controller that decides which input ports are connected to
which output ports.
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Figure 6.15. A four-port crossbar switch and its internal representation based on
multiplexers.

Now when we consider scalability, we do so in terms of the size
of the interconnect as well as bandwidth. As we increase the size,
we increase the number of cores that can connect and communi-
cate in parallel. If we double the number of connections from four
to eight, we are doubling the number of cores that can communi-
cate in parallel, from four to eight. This results in a 2× increase in
total bandwidth. Of course, this also doubles the number of mul-
tiplexers, which the designer must take into account when scaling
the system.

Memory Perspective
Finally, we consider the more classical bandwidth constraint of
memory. This includes both on-chip and off-chip memory. We
are able to sustain a higher on-chip bandwidth with Platform
FPGAs, as we can distribute the memory throughout the system
and allow parallel access to the memory. With off-chip memory we
have a fixed resource, such as the memory controller and I/O pins
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connecting the physical memory module. To calculate the avail-
able memory bandwidth we consider the operating frequency and
data width of the memory controller. We are limited to the mem-
ory controller because even if the memory module is capable of
faster access or higher bandwidth, the bottleneck is at the memory
controller where data are then distributed across the FPGA.

Memory Bandwidth = Frequency × Data Width

Furthermore, we must consider how the memory controller is
connected to each component. For scalable designs, a bus allows
for the memory controller to be shared more equally between each
of the compute cores. While this solution to the scalability prob-
lem may appear to be simple on the surface, a bottleneck can be
created if the bus bandwidth is less than the memory bandwidth.

The type of memory also plays an important role in the band-
width problem. A designer needs to consider how the type of
memory will affect the system and understand where the potential
bottlenecks can occur. As the saying goes, “the chain is as strong as
its weakest link,” and the slowest component in the system is the
weakest link. When purchasing fast SRAM, the performance can
be quickly negated by a slow memory controller, slow system bus,
or slow compute core. Reducing the number of intermediate steps
between memory and the compute core can be beneficial, but at
the cost of limiting access to the rest of the system.

6.3.2. Scalability Solutions
Now that we have identified some of the scalability constraints, we
want to investigate potential solutions. In some cases these solu-
tions are very specific to only a subset of applications, whereas in
other cases these solutions may increase the resource utilization
beyond an acceptable level. Our goal is not to solve every problem,
but to get readers thinking of novel solutions by being exposed to
some of the simpler solutions.

Overcoming Processor Limitations

The processor’s computation and control trade-off are where the
processor will either perform computation at the expense of idle
hardware cores or perform hardware core control at the expense
of computation. In the first few chapters of this book we have been
less hardware accelerator focused and more processor-memory
focused. That is, use the FPGA as a platform to reduce the num-
ber of chips needed for embedded systems design, but still have a
more traditional processor-centric compute model. Moreover, in
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this model the processor is performing a majority of the compu-
tation, sampling inputs and calculating results. In the latter half of
this book we are shying away from a processor-centric compute
model by considering the processor to act more as a controller of
computation performed within the FPGA fabric. We started with
partitioning an application and assembling custom compute cores
to run in hardware. Then, to increase performance we looked at
spatial parallelism of hardware designs.

By moving more of the computation into hardware, we can free
up more time for the processor to spend controlling the applica-
tion flow rather than performing computation. To help alleviate
some of the processor’s burdens, we use direct memory access to
allow hardware cores to retrieve memory. For applications with
instruments streaming data into the FPGA, we can perform as
much computation within hardware before interrupting the pro-
cessor. We use these interrupts instead of polling to reduce bus
traffic, letting the hardware core tell the processor when its com-
putation is complete, rather than having the processor check its
status continuously.

When considering how to improve the performance of a Plat-
form FPGA-based system from the processor’s perspective, we
want to:

• move more of the application’s computation into hardware
• allow hardware cores to independently access memory through

DMA
• use interrupts instead of polling to communicate with the

processor

Overcoming Bus Bandwidth Limitations

To improve the bus bandwidth the common approaches are to
improve the two contributing factors to the bandwidth calcula-
tion, that is, the operating frequency and data width of the bus.
By doubling the frequency or the data width, the bus bandwidth
is doubled. Running the bus at a higher frequency forces each
core connecting to the bus to interface at that same frequency
(it is possible using clock domain crossing logic to have the bus
interface operate at one frequency and the core operate at a differ-
ent frequency). Likewise, increasing the data width increases the
required resources to implement the wider bus.

Alternatively, to satisfy the bus bandwidth requirement, it may
be possible to partition the design into multiple buses. This
depends on the communication patterns of the cores on the buses;
however, it can be a viable solution to the bus bandwidth limi-
tation. It is also possible to bridge each of the buses together to
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provide access to cores on other buses at the cost of additional
latency through the bridges.

By partitioning the buses, what we are actually trying to accom-
plish is segregating cores that need to communicate with each
other on a single bus. These cores may not need to communicate
with every other core in the system, so by moving them onto
a separate bus, we can improve the total bus bandwidth across
each bus.

In a scalable design where the same hardware core is replicated
numerous times, the separate bus approach may not be suitable.
This is especially true if the core being replicated only commu-
nicates with the processor and off-chip memory. In these cases,
it may be possible to replicate the logic within a hardware core
and share a single interface to the bus. The result is a larger sig-
nal hardware core but potentially more efficient bus utilization,
as the hardware core itself will need to prioritize and arbitrate
requests rather than the arbiter. Requests within the hardware
core can also be grouped together to form a more efficient burst
transaction.

Using burst transfers whenever possible can result in an
improvement in the utilization of the bus by transmitting more
data over the course of fewer requests. Because the bus arbiter will
see fewer requests being issued by each of the cores, the arbiter
is able to spend less time arbitrating over the requests and spend
more time granting access to the bus. The hardware cores will also
benefit by receiving (or sending) data at a higher bandwidth.

Therefore, a quick recap on the proposed solutions to improve
bus bandwidth limitations includes:

• increasing operating frequency of the bus
• increasing data width of the bus
• segmenting the bus into smaller, more localized buses
• using burst transfers to communicate more efficiently

Overcoming Memory Bandwidth Limitation

This chapter has already covered many ways to overcome the
memory bandwidth limitation. Initially, this chapter focused on
bandwidth in general, which is a core concern for any design.
The shift to off-chip memory bandwidth is due to the processor-
memory model and contention for memory bandwidth with the
increasing number of custom hardware cores. A bus provides a
simple mechanism to access the shared resource, off-chip mem-
ory. Unfortunately, the bus may be inadvertently degrading per-
formance by sharing on-chip communication — say between two
hardware cores — with off-chip memory requests. When the bus is
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granted for on-chip communication, the memory controller may
sit idle, waiting for the next request.

Giving priority to memory requests can alleviate some of these
idle times by allowing the request to be issued to the memory
controller. Then while the request is being fulfilled, the bus can
be used for on-chip communication, until data are ready to be
transmitted back to the hardware core. Of course, balancing the
requests can be challenging and the result could have a negative
impact on on-chip communication.

A more ideal solution may be to separate on-chip communica-
tion from off-chip memory requests. At the expense of additional
logic, a hardware core can be responding to an on-chip request
through one interface (such as a bus) while issuing an off-chip
memory request through a separate interface. If a core has a direct
connection to the memory controller, then the memory band-
width is not restricted to the bus bandwidth, and requests do not
need to wait for another core’s transaction to complete before
being issued.

Finally, by using double buffering we can hide the latency of
subsequent requests by overlapping requests with the transmis-
sion of data. We already mentioned this approach earlier, but it
is important to emphasize the role double buffering can play in
improving memory utilization.

In summary, how memory is accessed can have a significant
effect on the performance of the system. When designing with
bandwidth in mind to achieve high performance efficiently we
must:

• provide support for direct memory access
• separate interfaces for on-chip and off-chip communication
• use double buffering of requests whenever possible

Chapter in Review
This chapter’s focus has been on bandwidth, a critical consid-
eration when designing systems for Platform FPGAs. Beginning
with the problem of balancing bandwidth, we investigated meth-
ods and techniques such as the Kahn Process Network to max-
imize performance with a minimum amount of resources. This
was followed by a thorough discussion of on-chip and off-chip
memory, including interfaces and controllers, the differences
in memory access, and performance. With embedded systems,
streaming instruments play a large role in the final product;
therefore, we also spent time discussing various methods to
efficiently support complex on-chip communication bandwidth
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requirements. Finally, we discussed designs from a portability
and scalability perspective. Our interests are motivated by the
ever-advancing semiconductor technology in hopes of reusing
existing hardware components and scaling systems to yield greater
functionality on future FPGA devices.

In the gray pages that follow, we further investigate these
bandwidth questions with respect to the Xilinx Virtex 5 FPGA.
We consider bandwidth in terms of on-chip memory access from
FIFOs and BRAMs along with off-chip memory access. Included
in these gray pages are examples to help readers implement the
various memory interfaces in their own design. The final demon-
stration covers the Xilinx Native Port Interface (NPI) integration
into a custom compute core to provide efficient, high bandwidth
transfers to and from off-chip memory.
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Practical Expansion: Managing Bandwidth
Practically speaking, there are a number of ways to integrate memory into a design. What we aim to do in these gray pages
is highlight some of the more common methods to incorporate memory in a design. By memory we mean both on-chip and
off-chip memory. We also look at memory as being a buffer, perhaps only a few elements deep to balance a computation,
and as a storage space, such as off-chip memory.

How memory is accessed in Platform FPGA designs is an important design concept. We will look at on-chip memory
access, such as FIFOs and RAM, as well as off-chip memory. With off-chip memory we have a variety of choices to consider
when accessing memory. These choices can have a dramatic impact on the performance and resource utilization of the
system.

6.A. On-Chip Memory Access

Including on-chip memory is almost essential for bandwidth-sensitive designs. More important than simply using on-chip
memory is using it efficiently. In designing systems for scalability, a poorly allocated resource such as memory can severely
limit the scalability of the system. We would not want to waste an entire BRAM as a buffer if we only needed a single
register. Of course there are designers who may only be familiar with a single solution, so every problem that looks
similar will be solved the same way. We want to present a few more options to try to emphasize the importance of using
resources efficiently to solve the problem. We cover two ways to use on-chip memory, in the form of FIFOs and random
access memory.

6.A.1. FIFOs

A FIFO, or queue, is useful as a buffer to capture data as it arrives from the producer and to allow the consumer to
retrieve data, in order, at its convenience. We have already shown one way to use on-chip memory in the form of FIFOs in
Section 3.A. Using CoreGen we can quickly configure and generate a FIFO to be used in our system; however, it is necessary
to understand some of the configuration options to best utilize the available resources in the design.

The CoreGen FIFO Generator wizard presents a number of choices as to how a FIFO will be implemented in the
FPGA fabric. The choices include Block RAM, distributed RAM, a shift register(s), and built-in FIFO(s) if supported by the
device. These different memory types offer different features and, as a result, different reasons for choosing one over
another.

FIFO Memory Types Block RAM is the most efficient use of FPGA resources when needing to store large amounts
of data in on-chip memory and can support different read and write clock rates and data widths. BRAMs can be use-
ful when needing to aggregate two 32-bit inputs into a single 64-bit output or supporting crossing a clock domain by
writing data into the FIFO at one frequency and reading data out at a different frequency. Depending on the FPGA
device, the storage capacity of one BRAM can vary. The Virtex 5 BRAM can store up to 36 K bits of data per BRAM,
which can be configured as a 1-bit wide and 32,768 deep RAM to a 36-bit wide and 1024 deep RAM. The summary
page of the FIFO Generator wizard estimates the number of BRAMs required to support the specified data width and
depth.
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Distributed RAM uses LUTs from the memory slices (SLICEM) to create a synchronous RAM. Not all slices in an FPGA
can be used for distributed RAM because not all slices are of type SLICEM. Due to the limitation on resources, distributed
RAMs are recommended for use when the width and depth of the FIFO are smaller than a single BRAM, although the exact
trade-off between when to use a BRAM and when to use distributed RAM depends on the FPGA. Distributed RAM can also
be used when a design requires more storage space than is available in BRAM. This requires that memory slice resources
are available. Distributed RAM can be used with different read and write widths, but unlike with BRAM, the same clock
must be used for both read and write ports.

Shift registers are also implemented in memory slices. A shift register FIFO does not support independent read and
write clocks or data widths. The shift register is more resource efficient than distributed RAM for small FIFOs with depths
less than 32 elements. Shift register FIFOs are well suited for these small buffers for helping balance on-chip computation
bandwidth.

Virtex 4, 5, and 6 devices also support built-in FIFOs in place of using Block RAM. The built-in FIFOs are embedded
within the FPGA fabric like BRAM, however, with a fixed purpose. These FIFOs can support independent read and write
clocks, but have fixed data widths of 4, 9, 18, and 36 bits.

FIFO Configuration Options Once the memory type has been selected, there are configuration options that can be
set to provide additional support to the FIFO. The first choice is the read mode; it can be either standard FIFO or first-
word fall-through FIFO. In standard read mode when the FIFO is not empty, issuing a read from the FIFO will produce
valid data the next clock cycle, that is, a one clock cycle read latency. In first-word fall-through the head of the FIFO is
driven to the data_out port of the FIFO so as to provide the ability to peek at the first element without being required to
dequeue the element. The added advantage with this read mode is that the read latency is reduced to zero clock cycles,
as data are valid the same clock cycle the read enable is asserted. However, not all memory types support first-word
fall-through.

Data read and write width and depths can also be set depending on the memory type. The FIFO Generator provides
guidance as to what width and depths are supported based on the memory type selected. Along with data there are optional
flags and handshaking signals that can be included in the generated FIFO. These include FIFO status indicators, such as
almost full or almost empty . Both almost full and almost empty signals are asserted when they are one data element from
the FIFO being full or empty, respectively. A common use for these signals is for flow control, to pause writing data into
the FIFO or to pause reading data out of the FIFO.

Handshaking signals between read and write ports of the FIFO can make integration of the FIFO into a design easier. In
addition to the default read and write enable signals are optional signals, data valid and write acknowledge . Data valid
is asserted when read data are valid on the data output port, and write acknowledge is asserted after data have been
written into the FIFO. There are also options to count data in the FIFO and output the count value as a port. The specific
use of the counter is application specific, but it can save the designer time by directly including it within the FIFO instead
of writing HDL or instantiating a separate counter component.

To clarify, it is possible to instantiate your own FIFO based on any of the memory types mentioned previously without
the use of the Xilinx CoreGen tool. FIFOs can be inferred by the synthesis tool based on the written HDL, or precisely
specified by instantiating the exact memory primitive. These more advanced methods can result in more efficient designs,
in terms of both resources and performance. We encourage readers to become comfortable and familiar with the supplied
tools while at the same time trying to understand which primitives are being instantiated by the wizard.
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6.A.2. Block RAM

As mentioned earlier, BRAM is a useful resource when needing to store data on-chip and implementing FIFOs with varying
read and write data widths and clock rates. In addition to being used as FIFOs, BRAMs can be used as either an on-chip
RAM or ROM. Implementing an on-chip RAM or ROM does not require use of a BRAM.

In fact, just as with FIFOs there are trade-offs to implementing a RAM or ROM in different types of memory. The
type of memory can be specified in three ways. First, using HDL the specific memory primitive can be instantiated along
with supporting HDL to include handshaking signals not directly included within the primitive. Second, writing HDL to let
the synthesis tool infer the type of memory, which can make the decision process for the designer easier, alleviates the
sometimes difficult task of selecting one type of memory over another. The disadvantage of this approach is that it requires
the designer to write the HDL in a way the synthesis tool can correctly infer the correct memory type. In this case, ugly HDL
can often lead to inefficient resource utilization. The last common way to select the type of memory to be used is through
the Xilinx CoreGen tool. We have already used CoreGen to configure the FIFOs, so using CoreGen to generate RAMs and
ROMs should be relatively straightforward.

CoreGen allows us to generate RAMs and ROMs from either Block RAM or distributed RAM. With the Virtex 5 the
distributed RAM is limited to a maximum depth of 65,536 data words and a maximum data width of 1024 bits, depending
on the architecture. The depth must also be a multiple of 16 words. However, BRAMs can be combined to create upwards
of megabytes of on-chip storage. The limitation is based on the number of available BRAMs on-chip. BRAMs are more
resource and power efficient than distributed RAMs as well. On Virtex 5 designs (and Virtex 6) the BRAMs can be configured
as a single 36K BRAM or as two independent 18 K BRAMs.

In addition to physical memory, there are choices between the different interface types. These include whether the
RAM/ROM is a single port or dual port memory. A single port consists of one address, data, and read/write enable
ports. This is useful for lookup tables or when a single controller is reading or writing to memory. Dual port memory
can be either a simple or a true dual port memory. In a simple dual port memory, port A is write only and port
B is read only. This is most useful when sharing data from a source to a destination. In the event that both ports
need to have read and write access, a true dual port memory is required. CoreGen also supports initializing memory
through a memory coefficient (COE) file. When the bitstream is programmed to the FPGA, these data are loaded into
the on-chip RAM. For lookup tables, this feature is very useful to avoid the need to add additional circuitry to initialize
the memory.

6.A.3. LocalLink Interface

As seen with both FIFO and BRAM interfaces, accessing memory can vary depending on the application’s needs. One
important interface to briefly cover is not necessarily associated with on-chip memory, but more so with data trans-
mission and communication. LocalLink is a unidirectional point-to-point interface standard created by Xilinx and is
being used in an increasing number of Xilinx IP Cores. Data are transferred synchronously in packets (called frames)
from a source to a destination. Both the source and the destination have flow control, allowing each to pause trans-
mission of data in the event there are no new data to send or the destination is unable to receive and process
new data.

The standard (shown in Table 6.1) consists of a set of required signals; any signal ending with _n is negative logic
where ’0’ is asserted and ’1’ is deasserted:
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LocalLink Signals Signal Description

CLK Synchronous clock signal
RST_N Reset signal aborts frame
DATA Data transmitted from source to destination
SRC_RDY_N Source is ready to transfer data
DST_RDY_N Destination is ready to receive data
SOF_N Start of frame indicator for first byte of frame
EOF_N End of frame indicator for last byte of frame

Table 6.1 Xilinx LocalLink Signals.

A transfer is initiated by the source by asserting the signals src_rdy_n and sof_n along with the first data word in
the transfer. When the destination is ready to receive data it will assertdst_rdy_n. Only when both src_rdy_n and
dst_rdy_n are asserted are data valid to the destination and should the source start to assert the next data word. Data
are transferred in frames, with the start-of-frame and end-of-frame signals used as indicators to the beginning and end of
the frame of data. The start-of-frame and end-of-frame signals should only be asserted during the transmission of the first
and last byte of the frame, respectively.

In order to add a LocalLink interface to an existing hardware core we must add these signals to the entity description.
Because LocalLink is unidirectional, if a hardware core is only sending data to a destination or only receiving data from a
source, a single instance of the LocalLink ports is needed. In some cases there is a need for a hardware core to communicate
either bidirectionally or receive data from a source and produce data to another destination. Under this circumstance, both
transmit and receive LocalLink ports are needed. Keep in mind the directionality of the ports, that is, a source will transmit
(output) data, start-of-frame, end-of-frame, and source ready signals, whereas the receiver will input these signals.

To help illustrate this point we will show how to add the LocalLink interface ports to an existing hardware core via
the Microprocessor Description file. We will assume that the hardware core has two LocalLink ports, a transmit port and
a receive port. Using the Xilinx bus standard XIL_LL_DMA to create bus interfaces, we must specify the transmit port
as an initiator and the receive port as a target . In the Xilinx Platform Studio these two types result in a point-to-point bus
that is similar to how the PLB Block RAM controller connects to the Block RAM component.

BUS_INTERFACE BUS = TX_LLINK0, BUS_STD = XIL_LL_DMA, BUS_TYPE = INITIATOR
BUS_INTERFACE BUS = RX_LLINK0, BUS_STD = XIL_LL_DMA, BUS_TYPE = TARGET

Connecting the LocalLink ports to the bus becomes fairly straightforward. The LocalLink bus standard connects transmit
(source) ports to receive (destination) ports. As a result, the transmit ports for the hardware core are connected by default
to the transmit ports of the LocalLink transmit bus. However, the receive ports are also connected to the transmit ports,
but for the receive bus. This effectively crosses the transmit and receive signals to allow the receive port to input data that
is output from the transmit port.

## LocalLink Transmit Port
PORT ll_tx_data = LL_Tx_Data, DIR = O, BUS = TX_LLINK0, VEC = [31:0]
PORT ll_tx_sof_n = LL_Tx_SOF_n, DIR = O, BUS = TX_LLINK0
PORT ll_tx_eof_n = LL_Tx_EOF_n, DIR = O, BUS = TX_LLINK0
PORT ll_tx_src_rdy_n = LL_Tx_SrcRdy_n, DIR = O, BUS = TX_LLINK0
PORT ll_tx_dst_rdy_n = LL_Tx_DstRdy_n, DIR = I, BUS = TX_LLINK0, INITIALVAL = VCC
# LocalLink Receive Port
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PORT ll_rx_data = LL_Tx_Data, DIR = I, BUS = RX_LLINK0, INITIALVAL = GND, VEC = [31:0]
PORT ll_rx_sof_n = LL_Tx_SOF_n, DIR = I, BUS = RX_LLINK0, INITIALVAL = VCC
PORT ll_rx_eof_n = LL_Tx_EOF_n, DIR = I, BUS = RX_LLINK0, INITIALVAL = VCC
PORT ll_rx_src_rdy_n = LL_Tx_SrcRdy_n, DIR = I, BUS = RX_LLINK0, INITIALVAL = VCC
PORT ll_rx_dst_rdy_n = LL_Tx_DstRdy_n, DIR = O, BUS = RX_LLINK0

The LocalLink interface will be addressed shortly when we discuss a specific bus master implementation, although
the LocalLink port is not connected through the MPD file because the bus master uses the LocalLink between components
within the custom hardware core. The MPD file is used more directly in Chapter 7 when we implement interface components
off of the FPGA.

6.B. Off-Chip Memory Access

Accessing memory can be critical in a design and knowing how the memory can be accessed is an important design
consideration. Throughout this section we aim to cover more specific details regarding various ways to access memory as
well as different ways to interface with memory. Because memory bandwidth can be a precious commodity in systems
design, being aware of the different memory access choices as a designer can affect the performance of the system.

6.B.1. Programmable I/O

The white pages presented a short C-code snippet that reads data from main memory and writes it to the compute core.
Programmable I/O arguably provides the simplest interface between a hardware core and memory while requiring the least
physical resources. This of course is at the expense of performance. The application may dictate how memory should be
accessed. We only address the topic so as to alert readers to alternative solutions to accessing memory.

A specific Xilinx implementation for programmable I/O does not differ from the C-code already presented in
Chapter 6’s white pages. The requirement that both the memory controller and the hardware core are addressable by the
processor means that both are slaves on a bus that the processor is a master on. It is possible that the memory controller
and hardware core reside on two different buses, as long as the processor has access to both buses.

Because the objective of this chapter is to discuss different memory access methods, we focus our attention on these
alternative approaches.

6.B.2. Central DMA Controller

An improvement on the performance of programmable I/O, where the processor performs the entire request, is to use a
DMA controller. Xilinx provides a Central DMA Controller [Xilinx, Inc., 2009f] as a core in its EDK IP Core Repository. The
processor issues a DMA request to the controller, which in turn handles the DMA transaction on behalf of the processor.
The DMA controller can support:

• processor initiated read from memory and write to hardware core
• processor initiated read from hardware core and write to memory
• hardware core initiated read from memory and write to hardware core
• hardware core initiated read from hardware core and write to memory
• hardware core to hardware core transfers
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It is important to understand that memory in the term “direct memory access” does not necessarily mean off-chip memory.
In fact, transfers between the hardware core’s on-chip memory are also possible. We will discuss in more detail how a
hardware core can initiate a request to the DMA controller shortly.

For now, we will focus on how the central DMA controller works and, more specifically, will learn how to initiate a
DMA request. Start by adding the central DMA controller to a previously created base system. The central DMA controller
includes both a master and a slave bus interface. The slave interface is for receiving DMA requests, for example, from the
processor. The master interface is used to issue an actual memory request to the memory controller or compute core.

The central DMA controller consists of a set of control registers used to set up the DMA request. In C, we can create
a structure to access these registers more easily.

typedef struct{
unsigned int rst_reg; // Reset Register
unsigned int dmac_reg; // DMA Control Register
unsigned int sa_reg; // Source Address Register
unsigned int da_reg; // Destination Address Register
unsigned int len_reg; // Length Register
unsigned int dmas_reg; // DMA Status Register
unsigned int isr; // Interrupt Service Register
unsigned int ier; // Interrupt Enable Register

}cdma_regs;

To set up a DMA request, the processor will need to write into the source address register, destination address register,
and, finally, the length register. The source address register is where the central DMA controller will read data from. The
destination address is where read data will be written to. The length register contains the number of bytes to read from the
source. The length register should always be written last because writing to it triggers the central DMA controller to begin
the DMA request. Once the processor writes the length register it can either poll the DMA status register to determine
when the request has completed or, if interrupts are used it can wait until the interrupt occurs to indicate the transaction
has finished. In either case, the processor is free to perform any computation in parallel with the DMA transaction as long
as the computation does not alter the contents of memory that is part of the DMA request until the transaction completes.
We include a short C-code example here:

int main() {
// Central DMA Registers
volatile cdma_regs *cdma_core = (cdma_regs*)(CDMA_BASEADDR);
// Hardware Core Register(s) - Can be any interface
volatile hw_regs *hw_core = (hw_regs*)(HWCORE_BASEADDR);
// Data located in memory to be read by DMA Controller
volatile unsigned int data[TEST_SIZE];
int i;

// Write Data into Memory
for(i=0;i<TEST_SIZE;i++) {

data[i] = i;
}
// Set DMA Source Addresses
cdma_core->sa_reg = (unsigned int) &data[0];
printf("Source Reg = 0x%08x\n", cdma_core->sa_reg);
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// Set DMA Destination Addresses
cdma_core->da_reg = (unsigned int) &hw_core->slv_reg0;
printf("Dest Reg = 0x%08x\n", cdma_core->da_reg);

// Set DMA Length Register & Start DMA Transfer
cdma_core->len_reg = TEST_SIZE * sizeof(int);
printf("Length Reg = 0x%08x\n", cdma_core->len_reg);

// Perform Parallel Computation - if any

// Verify Results - Read from Slave Register
printf("slv_reg0 = 0x%08x\n", hw_core->slv_reg0);

printf("Test Complete\n");
}

In order to receive burst transactions from the DMA controller, the hardware core must be set to support burst and cache-
line transfers. This can be done when creating the hardware core through the Create and Import Peripheral Wizard that is
part of the Xilinx EDK. Without this support, only single transfers can be made to the core.

The central DMA controller is a useful tool in offloading memory requests from the processor. The example just given
illustrates this by transferring data from memory to a slave register on a hardware core. The final printf statement
should reveal the contents of slv_reg0 to be the last element transmitted from memory. Because each application’s
need differs, we assume that writing to this single port is sufficient.

6.B.3. Bus Master

Adding bus master capability to a hardware core can further improve performance by allowing the core to issue its own
memory requests rather than relying on the processor and DMA controller. It is still possible to integrate a bus master
hardware core with the central DMA controller; however, it would be more efficient for the hardware core to directly issue
memory requests to the memory controller rather than have the DMA controller act as a middleman. This is due to the fact
that the DMA controller requires at least three separate bus transfers to set the source, destination, and length registers,
whereas the bus master can issue a single request to the memory controller.

Because each bus implementation differs, we will continue to use the Processor Local Bus (PLB) for our demonstra-
tions. Starting with the Xilinx Create and Import Peripheral Wizard, refer back to Section 2.A; we can add bus master support
with an additional check box, “User Logic Master.” This will generate a template for a master interface on the PLB. To better
understand how the master works, we will look at the new interface signals and logic added to the user_logic.vhd
file.

Bus Master Signals The Xilinx IP Interconnect (IPIC) (listing in Table 6.2) is used to help reduce the number of signals
the hardware core needs to interface with when issuing requests across the PLB. The hardware core can be a bus slave,
bus master, or both a slave and a master. Because we have covered a bus slave already, we will focus our attention on
the master signals, which are denoted by _Mst in the signal name. Signals beginning with IP2Bus_ indicate an output
signal from the entity to the bus. Signals beginning with Bus2IP_ indicate an input signal coming from the bus into the
entity. Signals ending with _n indicate negative logic signals.

From these lists we can see there are more than just input and output signals. In fact, there are two other groups of
signals. The first group contains the LocalLink signals, which follow the LocalLink specification for transmitting data to and
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IPIC Signals Signal Description

Bus2IP_Mst_CmdAck Bus Command Acknowledgment
Bus2IP_Mst_Cmplt Bus Transfer Complete
Bus2IP_Mst_Error Bus Error
Bus2IP_yMst_Rearbitrate Bus Rearbitrate
Bus2IP_yMst_Cmd_Timeout Bus Command Timeout
IP2Bus_MstRd_Req Issue a Master Read Request
IP2Bus_yMstWr_Req Issue a Master Write Request
IP2Bus_yMst_Addr Address to Read or Write Data
IP2Bus_Mst_BE Write Data Byte Enable
IP2Bus_Mst_yLength Number of Bytes for Request
IP2Bus_Mst_yType Transfer Type
IP2Bus_Mst_Lock Lock Bus during Transaction
IP2Bus_Mst_Reset Issue a Bus Reset
Bus2IP_yMstRd_d LocalLink Read Data
Bus2IP_yMstRd_rem LocalLink Read Data Remainder
Bus2IP_MstRd_ysof_n LocalLink Read Start of Frame
Bus2IP_MstRd_eof_n LocalLink Read End of Frame
Bus2IP_MstRd_src_yrdy_n LocalLink Read Source Ready
Bus2IP_yMstRd_src_dsc_n LocalLink Read Source Discontinue
IP2Bus_MstRd_ydst_rdy_yn LocalLink Read Destination Ready
IP2Bus_MstRd_ydst_dsc_n LocalLink Read Destination Discontinue
IP2Bus_MstWr_d LocalLink Write Data
IP2Bus_yMstWr_rem LocalLink Write Data Remainder
IP2Bus_yMstWr_sof_n LocalLink Write Start of Frame
IP2Bus_MstWr_eof_yn LocalLink Write End of Frame
IP2Bus_MstWr_ysrc_rdy_n LocalLink Write Source Ready
IP2Bus_MstWr_src_ydsc_n LocalLink Write Source Discontinue
xBus2IP_yMstWr_dst_rdy_n LocalLink Write Destination Ready
Bus2IP_MstWr_dst_dsc_n LocalLink Write Destination Discontinue

Table 6.2 Xilinx IPIC signals for PLB master.

from the hardware core. Because LocalLink is a unidirectional specification and we want to support bidirectional transfers,
read and write transfers, there are two sets of LocalLink signals in the master interface.

The second group contains the bus control signals. As with the LocalLink signals there are two directions: input from
the bus and output from the hardware core. On the bus side are command acknowledgment, transfer complete, error,
arbitrate, and command timeout signals. These signals are used to relay bus information to the hardware core. If the bus
needs the hardware core to reissue a request, it will assert the bus rearbitrate signal. On the hardware core side are read
request, write request, address, data byte enable, length, type, lock, and reset signals. The hardware core asserts these
signals to indicate a read request from a specific address and, if the request is a burst request, the length of the transfer.
These are considered the control signals for the bus transaction.
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Bus Master Logic Now that we have a better idea of what the bus master interface signals are, we will look at the
master logic within the user_logic.vhd file. The template provided by Xilinx includes three finite state machines for
the bus master. One state machine is for the LocalLink read requests. The second state machine is for the LocalLink write
requests. The third state machine acts as a controller over the bus requests and read and write state machines.

Xilinx also provides a set of master registers to allow simple testing with a software application. Because each appli-
cation may differ in how the bus master is driven (by a software application, by a custom finite state machine, etc.), we
will instead focus on the three finite state machines and allow readers to experiment with alternative interfaces to the
master control registers. Comments generated by the Xilinx wizard provide a helpful starting point for software-based
master requests. In our experience, once the three state machines are understood, augmenting them to meet the needs of
the design is trivial.

For those familiar with the earlier version of the Xilinx EDK software, the tools prior to version 10.1 did not include a
LocalLink interface. The older master interface relied on the instantiation of a bus slave with the bus master to support
transfers to and from the hardware core. Since version 10.1, this has been replaced with the LocalLink interface. Now the
hardware core does not need to instantiate a bus slave if only a bus master is required, resulting in fewer resources being
used whenever possible.

Control Finite State Machine We have briefly discussed a finite state machine for the bus master, which interacts
with the bus control signals and the read and write finite state machines. For more details regarding the control finite state
machine, see Figure 6.16.

The CMD_IDLE state waits for either a read or a write request (this can be from the master control register provided by
the template or a custom finite state machine). Once a read or write request has been issued, the corresponding LocalLink
finite state machine is started and then transitions into the CMD_RUN state.

To indicate that the request has been received by the bus interface, the Bus2IP_Mst_CmdAck (command acknowl-
edgment) signal is asserted. This also notifies the control finite state machine to deassert the bus request signals because
the request is in transit and keeping the signals asserted risks issuing a second identical request. In the event a timeout
or error occurs, the control finite state machine should respond based on the requirements of the system. The template
asserts status signals to be read by the software application. This may suffice for your application or more logic may be
necessary to support reissuing the request.

When the command acknowledgment signal is asserted it may be asserted with the Bus2IP_Mst_Cmplt

(command complete) signal. The command complete signal indicates that all requested data have been transferred to
or from the hardware core. If both signals are asserted at the same time, the control finite state machine should transi-
tion to the CMD_DONE state. Under some circumstances the command acknowledgment signal is asserted without the
command complete, in which case the control finite state machine can deassert the request signals, but must wait for the
command complete signal. This is done in the CMD_WAIT_FOR_DATA state. Finally, the CMD_DONE state returns to
the CMD_IDLE state to wait for the next request.

Read Request Finite State Machine The read request finite state machine controls read requests where data are
read from a core on the bus and returned to the hardware core via the read LocalLink interface signals. Because data
are being delivered to the hardware core there are only a few signals to interact with. The read request is triggered by
the control finite state machine, so until a read request is asserted the default state is the LLRD_IDLE state. Once a
request is asserted the read request finite state machine transitions to the LLRD_GO state. In this state, when both the
Bus2IP_MstRd_src_rdy_n (source ready) and the IP2Bus_MstRd_dst_rdy_n (destination ready) signals
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Figure 6.16. Bus master control finite state machine.

are asserted, data are flowing from the source to the destination. The hardware core can pause the transfer by deasserting
the IP2Bus_MstRd_dst_rdy_n signal. This can be useful in streaming applications where data arrive after they
can be processed or data are written into a FIFO for internal buffering and the buffer becomes full. The read request
completes when the Bus2IP_MstRd_eof_n (end-of-frame) signal is asserted, meaning that the last word in the
transfer has arrived. The read request finite state machine returns to the LLRD_IDLE state waiting for the next read
request. Figure 6.17 illustrates the LocalLink read request finite state machine.

Write Request Finite State Machine The write request finite state machine controls write requests where data are
written from the hardware core to another core on the bus via the write LocalLink interface signals. Similar to the read
request finite state machine, the write request finite state machine waits in the LLWR_IDLE state until a write request
is issued. If burst transfers are supported, allowing more than a single word of data to be transmitted per each transaction,
then the next state can be either LLWR_BURST_INIT or LLWR_SNGL_INIT, indicating a burst or single transaction.

During a single word write transaction the write request finite state machine must wait until both the destination
and the source are ready, as indicated by the Bus2IP_MstWr_dst_rdy_n and IP2Bus_MstWr_src_rdy_n
signals. At this time both the IP2Bus_MstWr_sof_n and the IP2Bus_MstWr_eof_n signals must be asserted
as well to signify that the LocalLink transfer is a single word. The write request finite state machine can then return to the
LLWR_IDLE to wait for the next write request.
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Figure 6.17. Bus master read request finite state machine.

Conversely, a burst write transaction requires the write finite state machine to issue multiple words of data to the
destination core. The transfer length is identified by IP2Bus_MstWr_Length. A burst transfer must still adhere to
the requirement that a valid transfer requires both source and destination ready signals to be asserted. The start-of-frame
signal must be asserted during the transfer of the first word in the burst, while the end-of-frame signal must be asserted
during the transfer of the last word. A counter can be used to help keep track of the amount of data left to be transferred
in the burst transaction. A last state LLWR_BURST_LAST_BEAT is used to assert the end of frame accordingly. When
the transfer completes, the write finite state machine returns to the LLWR_IDLE to wait for the next write request.
Figure 6.18 illustrates the LocalLink write request finite state machine.

Adding bus master support to a hardware core can enhance the functionality of the hardware core greatly, allowing it
to act much more independently than when just a bus slave. Not all applications may require this functionality; however,
understanding how it is implemented is a useful design tool.

6.B.4. Native Port Interface

When hardware cores need high bandwidth and low latency transfers to off-chip memory, Xilinx provides a custom interface
to their Multi-Ported Memory Controller (MPMC) known as the Native Port Interface (NPI). This is different than a bus
master in that it is a direct connect interface to the memory controller instead of a connection to a shared bus. Because
the interface is not shared it does not require arbitration, allowing for lower latency transfers. Also, due to the direct
connection, the hardware core can receive data at the memory controller’s operating frequency, which can be higher than
the bus operating frequency, providing a higher bandwidth.

Unlike the bus master, Xilinx does not directly support NPI integration into a hardware core through generated tem-
plates. This may change in future releases of the tools, but as of now the designer is required to make some modifications
to a hardware core needing the NPI. Also, the NPI does not follow the LocalLink standard. If there is a need to use the
LocalLink interconnect, the MPMC already supports the LocalLink directory through the SDMA port. However, the LocalLink
interface is limited to a maximum data width of 32 bits. With NPI we can operate at 64-bit widths for 2× the bandwidth.
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Figure 6.18. Bus master write request finite state machine.

NPI Signals First we must discuss the signals used by the native port interface, shown in Table 6.3. These signals will
need to be added to the hardware core’s entity port listing. The interface consists of three groups of signals. The first group
contains the request and control signals: clock, reset, address, address request, address acknowledgment, read-not-write,
size, read-modify-write, and initialize done. The second group contains the write FIFO signals, which transfer data out to
the MPMC. The last group contains the read FIFO signals, which bring in data from the MPMC.
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NPI Signals Direction Signal Description

XIL_NPI_CLK IN Clock
XIL_NPI_RST IN Reset
XIL_NPI_Addr OUT 32-bit Address
XIL_NPI_AddrReq OUT Address Request
XIL_NPI_AddrAck IN Address Request Acknowledgment
XIL_NPI_RNW OUT Request Type Request
XIL_NPI_Size OUT Request Size (Burst or Single)
XIL_NPI_RdModWr OUT Read Modify Write
XIL_NPI_InitDone IN Memory Initialization Done
XIL_NPI_WrFIFO_Data OUT 64-bit Data Output
XIL_NPI_WrFIFO_BE OUT 8-bit Data Output Byte Enable
XIL_NPI_WrFIFO_Push OUT Data Output Write Enable
XIL_NPI_WrFIFO_Empty IN Data Output FIFO Empty
XIL_NPI_WrFIFO_AlmostFull IN Data Output FIFO Almost Full
XIL_NPI_WrFIFO_Flush OUT Data Output FIFO Flush (Reset)
XIL_NPI_RdFIFO_Data IN 64-bit Data Input
XIL_NPI_RdFIFO_Pop OUT Data Input Read Enable
XIL_NPI_RdFIFO_RdWdAddr IN 4-bit Read Write Address
XIL_NPI_RdFIFO_Empty IN Data Input FIFO Empty
XIL_NPI_RdFIFO_Flush OUT Data Input FIFO Flush (Reset)
XIL_NPI_RdFIFO_Latency IN 2-bit Read FIFO Latency Indicator

Table 6.3 Xilinx Native Port Interface signals.

The clock signal must be the same clock connected to the MPMC. We will discuss how to connect this clock along with
connecting the hardware core to the MPMC shortly. The read and write FIFOs exist physically within the MPMC. The NPI
signals interact with these FIFOs. It is not necessary to instantiate separate read and write FIFOs within your hardware
core, except when required by the design.

NPI Little Endian The native port interface and multi-port memory controller data are little endian,which may be in con-
flict with the application running on the Xilinx PowerPC (which can interface with memory as big endian). As a result, it may
be necessaryto do an endian swap when reading data from and writing data to memory. This can be accomplished through
byte aligning, which simply flips the bytes from one endian to the other.

INPUT_ENDIAN_SWAP_PROC : process ( NPI_RdFIFO_Data ) is
begin

data_from_mem(0 to 7) <= NPI_RdFIFO_Data(7 downto 0);
data_from_mem(8 to 15) <= NPI_RdFIFO_Data(15 downto 8);
data_from_mem(16 to 23) <= NPI_RdFIFO_Data(23 downto 16);
data_from_mem(24 to 31) <= NPI_RdFIFO_Data(31 downto 24);
data_from_mem(32 to 39) <= NPI_RdFIFO_Data(39 downto 32);
data_from_mem(40 to 47) <= NPI_RdFIFO_Data(47 downto 40);
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data_from_mem(48 to 55) <= NPI_RdFIFO_Data(55 downto 48);
data_from_mem(56 to 63) <= NPI_RdFIFO_Data(63 downto 56);

end process INPUT_ENDIAN_SWAP_PROC;

NPI Data Transfers The NPI request transfer size (length) is set with XIL_NPI_Size, which encodes the number of
bytes to read or write in a 4-bit signal. The smallest transfer consists of a data word, while the largest is fixed to 16 words.
This is the same limitation set on the bus master for a single transaction, except with the bus master the length signal
specifies the number of bytes to transfer. Because we are using the NPI to transfer 64-bit data words (8 byte), the smallest
transfer is 8 Bytes and the largest is 128 Bytes. Table 6.4 lists the encoding for XIL_NPI_Size necessary to transfer
the specific number of bytes. It is possible to transfer less than 8 Bytes through the use of the XIL_NPI_WrFIFO_BE
(byte enable) signal along with the XIL_NPI_RdModWr (read-modify-write) signal. We will discuss how to accomplish
this shortly.

With burst transfers, the latency of the first word is the longest, then every consecutive word thereafter arrives one
clock cycle after the previous word. As mentioned in Section 6.2, we can improve the performance through the use of
double buffering . This is more useful for read requests, which are covered in the next section.

One additional constraint NPI imposes on burst transfers is on the address (XIL_NPI_Addr), which must be aligned
to the transfer size. That is, each address must be on the boundary of the transfer length. For a single word transfer
the address must end with 0x0 or 0x8, meaning aligned to the 8-Byte boundary. For a double word transfer the address
must end with 0x0 or a multiple of 0x10 and so forth up to the 128-Byte boundary, requiring the address to end in 0x00
or 0x80.

NPI Logic Because each hardware core may need to interact with the NPI differently, for brevity, we will just cover the
logic necessary to instantiate the NPI. Whether the design calls for integrating the NPI into a Xilinx-generated hardware
core on the PLB or another custom core, this NPI instantiation information is targeted toward how to use the NPI. Adding
higher levels of control (as is done with the bus master template via the software addressable master control register) is
left to the individual implementation of the design.

To begin, add the NPI signals to the entity list of the hardware core being designed. Be sure to match the direction and
bit vector widths accordingly (if there is no indication of the width, assume 1 bit). After we discuss the necessary logic
required to implement the NPI, we will explain how to modify the MPD file and connect the NPI to the MPMC within Xilinx
Platform Studio.

As with the bus master, we will use three finite state machines to perform memory transactions with NPI. The control
finite state machine will be used to issue requests to the memory controller. The read request finite state machine will

XIL_NPI_Size Bytes Transferred

0000 8
0001 16
0010 32
0011 64
0100 128

Table 6.4 Native Port Interface data transfer size encoding.
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handle receiving data from the memory controller. The write request finite state machine will handle writing data to the
memory controller. We divide the NPI logic into these three functionalities in order to support parallel transactions. While
it is not possible to issue a read and a write request at the exact same time, it is possible to issue one request and, once
acknowledged, issue a second request. Depending on the application, this may or may not be necessary; however, with
the desired goal of designing a high bandwidth interface to memory, supporting as many parallel operations as possible
will help us achieve our goal.

Control Finite State Machine Unlike the bus master control finite state machine where only one read or write request
can be in process at a time, we have implemented the NPI control finite state machine to support nearly parallel transfers
of read and write requests. We say nearly because we are not able to support the starting two requests concurrently. We
can issue one request directly followed by a second request (while the first request is still being processed). To support this
functionality we have moved much of the read and write control logic to the read and write request finite state machines,
respectively. The result is a simpler two state control finite state machine, as seen in Figure 6.19.

The control finite state machine waits in the CMD_IDLE state until a request is issued by either the read or the write
request finite state machine. When a request is received, the control finite state machine passes the request on to the
MPMC. The request signals include the address, type (read or write request), and transfer size.

The control finite state machine transitions to the CMD_ACK state, waiting for the XIL_NPI_AddrAck signal.
The address acknowledgment indicates that the MPMC has received the request and is beginning to process the request.
During this same clock cycle the NPI control finite state machine must deassert the request signals and return to the
CMD_IDLE state so as to not unintentionally issue a second identical request.

In the event that both a read and a write request signal are received by the control finite state machine at the same
time, a priority is set to issue read requests before write requests to support designs needing low-latency reads from

CMD_IDLE

CMD_ACK

RdReq & WrReq

RdReq || WrReqXIL_NPI_AddrAck

XIL_NPI_AddrAck

Figure 6.19. Native Port Interface control finite state machine.
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memory and to avoid stalls in the computation. Of course the two requests are still able to be issued nearly in parallel
since once request will still be in process while the other request can be made.

Read Request Finite State Machine The read request finite state machine waits for a request from some external
component (or controlling mechanism). We have specifically chosen not to build the issuing read request logic into these
examples because it is very application specific. As with the bus master, it is possible to include a control register to
trigger read and write requests or design any number of custom components. Instead we focus our efforts on the finite
state machines needed to interact with the native port interface and multiport memory controller. Because we have moved
the request logic out of the control finite state machine and into both read and write request finite state machines, we
need to begin by explaining how these state machines are integrated.

The read request finite state machine (Figure 6.20) waits in the RD_IDLE state until it receives a start signal to issue
a read request. Once the request is received the read request finite state machine transitions to the RD_ISSUE_REQ
state, where it passes the request to the control finite state machine. The control finite state machine is actually where
the requests are issued to the MPMC. The read request finite state machine waits in this state until the request has been
acknowledged by the MPMC, indicating that data will be returned shortly to the NPI. Once the acknowledgment is received,
the state machine transitions to the RD_WAIT_FOR_DATA state.

The data’s arrival to the NPI is indicated through deassertion of the XIL_NPI_RdFIFO_Empty signal. Data are
buffered in a read FIFO (RdFIFO) within the MPMC to allow the NPI to read data at its convenience through the use of
XIL_NPI_RdFIFO_Pop. There is a read latency associated with the RdFIFO. It is a fixed latency (although the requests
can be pipelined), which is denoted by XIL_NPI_RdFIFO_Latency. The latency depends on the parameters of the
MPMC and because it is not possible to pass parameters between independent cores, it must be issued as a signal. This
2-bit signal is also necessary because there is no data valid signal to indicate when data from the FIFO are valid. If the
latency is two clock cycles, then when the XIL_NPI_RdFIFO_Pop is first asserted to retrieve data (assuming the
RdFIFO is not empty) the first data will be valid after two clock cycles.

The transfer is finished when the XIL_NPI_RdFIFO_Empty signal is asserted. Therefore, the read request finite
state machine transitions to RD_DONE to signify that the transfer is done, followed by transitioning back to the RD_IDLE
state to wait for the next request.

To achieve a high bandwidth, consecutive read requests can be issued to the MPMC, as long as the RdFIFO does
not become full, which poses a risk of losing data. With each transaction being limited to a maximum of 128 Bytes, any
larger transfers must be split into multiple smaller transfers no larger than 128 Bytes each. These transfers can be chained
together and issued one after the other.

Write Request Finite State Machine The write finite state machine (Figure 6.21) operates similarly to the read finite
state machine in that it waits in the WR_IDLE state for a start signal to trigger a write request. Unlike a read request,
which waits for data to arrive in the RdFIFO, a write request must first store data into the Write FIFO (WrFIFO) and then
issue the request to the MPMC. The reason is that the MPMC assumes when it receives a write request that all data to
be transferred are already stored in the WrFIFO.

In the event of a single transfer the write request finite state machine must issue a single word transfer, done in
the WR_SNGL state. This requires asserting the XIL_NPI_RdModWr (read-modify-write) signal. Working with the
XIL_NPI_WrFIFO_BE (byte enable) signal, if writing less than 8 Bytes, data must be read from memory and then
modified and written back. The read-modify-write signal must be asserted with the address and address request signals
after data have been written to the WrFIFO.
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Figure 6.20. Native Port Interface read request finite state machine.

If the transfer is a burst request, data need to be written first to the WrFIFO followed by issuing the write request. This
is done in the WR_BURST state. The address must also be aligned to the transfer size to avoid unpredictable performance
(such as writing to the wrong address range). The size of the burst is specified by the XIL_NPI_Size signal. If a request
does not fit within these burst sizes, it must be split into smaller requests. For example, writing a total of 88 Bytes would
require a burst of 64 Bytes plus 16 Bytes plus a final transfer of 8 Bytes. This problem is further complicated by the need
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Figure 6.21. Native Port Interface write request finite state machine.

to align the address on the data boundary. A simple write request finite state machine can ignore these requests and pass
the requirement on to the component issuing the requests (which could be the processor or some other compute core).
A more complicated solution would involve the write request finite state machine managing these requirements. For now
we rely on the request to be aligned properly.
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Regardless of the transfer type, the next state, WR_WAIT_FOR_ACK, waits until the MPMC acknowledges the
request. Once the acknowledgment is received the write request finite state machine deasserts the request and transitions
to the WR_DONE state, signaling that the transfer has finished, and returns to the WR_IDLE state.

NPI Microprocessor Peripheral Description After the NPI logic has been written and tested in simulation, it is time
to modify the microprocessor peripheral description (MPD) file. We do this to support connectivity between the hardware
core and MPMC in Xilinx Platform Studio. We start with the bus interface, which indicates that the NPI signals are part of
the XIL_NPI bus standard.

## Bus Interfaces
BUS_INTERFACE BUS = XIL_NPI, BUS_TYPE = INITIATOR, BUS_STD = XIL_NPI

Now all of the NPI ports can be added and associated with XIL_NPI bus. These are all of the necessary NPI ports that are
listed in the hardware core entity description. The default assignment is used to connect each signal to the corresponding
bus signal. If left unassigned, the signal will be unconnected during PlatGen, potentially resulting in a synthesis error.

## Ports
PORT XIL_NPI_Addr = "Addr", DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = XIL_NPI
PORT XIL_NPI_AddrReq = "AddrReq", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_AddrAck = "AddrAck", DIR = I, BUS = XIL_NPI
PORT XIL_NPI_RNW = "RNW", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_Size = "Size", DIR = O, VEC = [3:0], BUS = XIL_NPI
PORT XIL_NPI_WrFIFO_Data = "WrFIFO_Data", DIR = O, VEC = [63:0], ENDIAN = LITTLE, BUS = XIL_NPI
PORT XIL_NPI_WrFIFO_BE = "WrFIFO_BE", DIR = O, VEC = [7:0], ENDIAN = LITTLE, BUS = XIL_NPI
PORT XIL_NPI_WrFIFO_Push = "WrFIFO_Push", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_RdFIFO_Data = "RdFIFO_Data", DIR = I, VEC = [63:0], ENDIAN = LITTLE, BUS = XIL_NPI
PORT XIL_NPI_RdFIFO_Pop = "RdFIFO_Pop", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_RdFIFO_RdWdAddr = "RdFIFO_RdWdAddr", DIR = I, VEC = [3:0], ENDIAN = LITTLE, BUS = XIL_NPI
PORT XIL_NPI_WrFIFO_Empty = "WrFIFO_Empty", DIR = I, BUS = XIL_NPI
PORT XIL_NPI_WrFIFO_AlmostFull = "WrFIFO_AlmostFull", DIR = I, BUS = XIL_NPI
PORT XIL_NPI_WrFIFO_Flush = "WrFIFO_Flush", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_RdFIFO_Empty = "RdFIFO_Empty", DIR = I, BUS = XIL_NPI
PORT XIL_NPI_RdFIFO_Flush = "RdFIFO_Flush", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_RdFIFO_Latency = "RdFIFO_Latency", DIR = I, VEC = [1:0], BUS = XIL_NPI
PORT XIL_NPI_RdModWr = "RdModWr", DIR = O, BUS = XIL_NPI
PORT XIL_NPI_InitDone = "InitDone", DIR = I, BUS = XIL_NPI
PORT XIL_NPI_Clk = "Clk", DIR = I, BUS = XIL_NPI
PORT XIL_NPI_Rst = "Rst", DIR = I, BUS = XIL_NPI

Xilinx Project Modifications With all of the modifications to the HDL and MPD file it is now possible to connect
the hardware core to the MPMC in the Xilinx Platform Studio. To do this the MPMC must first be modified to include an
additional port of type NPI .

From within XPS, under the System Assembly View, select the MPMC (by default the instance name is
DDR2_SDRAM_DIMM0 for ML-510 base systems) and choose Configure IP .

The MPMC supports up to eight ports. The default configuration is for Port 0 to be configured as PLBV46. What this
means is that Port 0 can be connected as a slave to a single instance of the Processor Local Bus. We need to add a second
port of type NPI. Once set, our MPMC will resemble Figure 6.22.

Close the MPMC configuration window and expand MPMC interfaces to see SPLB0 connected to plb_v46_0 and
MPMC_PIM1 listed as No Connection . Selecting the drop-down menu, we can change the connection to the NPI bus of
the hardware core.



Chapter 6 MANAGING BANDWIDTH 345

Figure 6.22. Xilinx Multi-Port Memory Controller configured with two ports: PLB and NPI.

An important note regarding ML-510 designs: by default the Base System Builder wizard sets the memory controller
for DIMM0 to the PPC440 Memory Controller. This is not the same as the Multi-Port Memory Controller. With this memory
controller you will not be able to add additional ports, such as the Native Port Interface.

As is evident by the amount of material covered within this section, there are a wide variety of ways to not only
implement memory, but access memory as well. It is hoped that these examples act as a catalyst to explore and develop
efficient memory access interfaces within your designs. Whether implementing the simpler programmable I/O interface,
using a central DMA controller, or supporting memory access from within the hardware core, it is necessary to recognize
the trade-offs between resources and performance.
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Exercises
P6.1. Considering Figure 6.1, if the amount of time to perform a

multplication was reduced by a factor of 2, draw the
corresponding system, including any necessary buffers to
maintain a pipeline balance.

P6.2. Draw the interface between two components where one is
producing data and the second is consuming data. Be sure
to follow the Kahn Process Network model.

P6.3. Describe the similarities and differences between
synchronous and asynchronous design.

P6.4. Draw the interface for a FIFO. Compare this interface to
that of a BRAM.

P6.5. Write the VHDL that will instantiate a BRAM and function
like a FIFO. Include in this design a mechanism to report to
the user the number of elements currently stored in the
FIFO.

P6.6. Write an application that will use the Central DMA
controller to read 512 Bytes of data from DDR2 and write it
to a hardware core. Assume data are stored at 0x0123000
and must be written to 0xB001000.

P6.7. Compare the performance of a system that is operating in
CMDA mode with that of a system running as a bus master
that is able to access memory on its own.

P6.8. Implement a Native Port Interface design that will support
direct memory access reads and writes to the MPMC
without the aid of the processor.
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7
OUTSIDE WORLD

The Network Is the ComputerTM

(company slogan)
Sun Microsystems, Inc.

Some have predicted that computers will “disappear” in the future.
This is not some neo-Luddite forecast but rather the suggestion
that computers will continue to shrink in size and increase in num-
ber such that all of our computing functions will be ubiquitous and
pervasive. That is, they will disappear into our everyday articles.
The idea is that there will be many embedded computing systems
distributed throughout things such as our clothes, entertainment
devices, home appliances, packaging, public infrastructure, and so
on — making the need for conventional, general-purpose comput-
ers moot. The strength of these small devices, however, will not be
in their individual ability but rather in their collective functionality.
Hence, these small systems will need to communicate with many
kinds of devices and via a variety of networking protocols.

Until recently, embedded systems designers were often forced
to use very light weight, custom codes and protocols because hard-
ware capabilities of the target machine were limited. Today, more
capable hardware allows the embedded systems programmer to
use much more sophisticated protocols, such as the Universal
Serial Bus (USB) and even the Internet Protocol (IP) that underlies
the World Wide Web. Indeed, standard protocols such as HTTP and
free software such as Linux and a Web server such as Apache are
becoming increasingly important for even the simplest electronic
devices.

There are several compelling reasons to use these standards.
First, using existing protocols means that a custom protocol does
not need to be created. Furthermore, using existing protocols often
means that reference software already exists — which, if it can
be reused, can save a considerable amount of development cost.
Indeed, the cost savings include the initial investment in develop-
ing the software for the embedded system, future improvements,
and the client software used to communicate with the embedded
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system. For example, consider a power distribution unit (PDU) in a
server rack containing an embedded Web server. If this is the case,
then a system administrator only needs a Web browser to control
power to her servers. In general, building an embedded system
that uses standard protocols whenever possible increases inter-
operability in the new era of ubiquitous, persuasive embedded
systems.

Of course, computer networking is itself a huge subject and
multivolume books have been written about it — there is no way
one chapter can provide a comprehensive treatment. However,
we can survey the basic technologies starting with the low-speed
serial technology and protocols that emerged in the 1970s and
have been common in embedded systems up to the latest high-
speed technologies and sophisticated protocols used in high-end
systems today. Rather than be comprehensive, the goals of this
chapter are to enumerate the different technologies and protocols,
discuss the common use cases, and provide references to more
detailed information.

7.1. Point-to-Point Communication
A decade ago, a subset of the RS-232 serial communication stan-
dard was the de facto mechanism to connect embedded systems
to other computing devices [Electronics Industries Association,
1969]. It was often used for debugging during development and
user configuration in the field. This asynchronous serial commu-
nication protocol required three wires — transmit, receive, and a
common ground. It was simple and the IC device that implements
the protocol (a UART — a Universal Asynchronous Receiver/
Transmitter) was inexpensive.

RS-232 interfaces have been almost completely replaced with
Universal Serial Bus (USB) [USB Implementers Forum (USB-IF),
2010a,b] interfaces in modern consumer electronics because USB
offers higher speeds, more capabilities, and a smaller physical
form factor than RS-232. Unfortunately, with these advantages
comes considerable complexity in terms of hardware and soft-
ware. Using USB on a client device usually requires either buying
a controller chip or integrating a USB controller into the FPGA
fabric. However, the biggest disadvantage for using USB on edu-
cational embedded systems projects is the drivers needed on the
host PC. Given that all modern operating systems include the nec-
essary drivers and terminal emulation software for RS-232-like
terminal devices and the examples presented in this book only
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require terminal access to the embedded system, there is no need
for the extra overhead of USB.

7.1.1. RS-232
Among existing embedded systems, the most common serial com-
munication protocol in use is RS-232. This standard has evolved
significantly over time and is the “COMx” port that used to be stan-
dard on desktop PCs in the 1980s and 1990s. It began as a protocol
to connect dumb terminals (Data Terminal Equipment or DTE) to
acoustic modems (Data Communication Equipment or DCE). The
standard was not developed for peers to communicate but rather
there is a specific orientation. To attach two DTEs together one
has to use a “null” modem that effectively cancels two DCEs by
interchanging the transmit and receive lines (i.e., the transmit of
one end is connected to the receive of the other and vice versa).
Along with these two lines, a common ground is also required. The
standard goes on to define many more pins but most embedded
systems only use this subset. (Sometimes hardware flow control is
used as well and that includes two more wires.)

The basic hardware component to support the RS-232 is called
a UART — a Universal Asynchronous Receiver/Transmitter. This
device is essentially a parallel-to-serial shift register. The protocol
involves the transmission of a series of spaces and marks, which
represent 0 and 1, respectively. The protocol defines voltages that
range from +25 to −25 V with a voltage between +3 and +25 V
representing a space and −3 to −25 V representing a mark. Note
that this is drastically different from the 0 to 5 V that is common in
Transistor-Transistor Logic (TTL) so often line drivers (a separate
IC) have to be used to convert TTL signals to RS-232 signals.

Because there is no common clock between the two devices,
a receiver does not know when a message may begin. The proto-
col specifies that the transmitter holds a space (say, +15 V) until it
is ready to transmit a word. The transmitter then sends one mark
(to signal that a message is coming) followed by data followed
by an optional parity bit. The protocol specifies that the message
must be terminated by one or two stop bits, which are spaces. At
this point the transmitter holds a space on the line until the next
message is ready to be transmitted.

The biggest issue one has to deal with when using RS-232 is that
all of the options have to be agreed upon from the beginning. Both
sides have to be configured in advance to know the baud rate; how
many data bits are in a message; if odd, even, or no parity encoding
is used; and how many stop bits to expect. This set of parameters is
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often abbreviated in a format such as 9600 8N1, which represents
one of the most common RS-232 parameter sets: 9600 baud with 8
data bits, no parity bit, and 1 stop bit.

Newer protocols such as USB include negotiation on things
such as signal rates so that the fastest transfer rate that both the
host and the client can support is used.

7.1.2. Other Low-Speed Communication
Between RS-232 and USB in terms of complexity, a number of sim-
ple protocols are used to connect components within an embed-
ded system. Two common examples of these are Interintegrated
Circuit (abbreviated IIC or I2C) and Serial Peripheral Interface
(SPI). Both of these protocols share the concept that one device
is the master (or host) and that there are one or more slaves (or
peripherals).

The I2C technology was developed by Philips Semiconductor,
and the complete bus specification is availableon the Web [Philips
Semiconductor, Inc., 2009]. I2C uses two wires: serial data and
serial clock. SPI uses four wires: chip select, serial clock, data in,
and data out. Both are commonly used to interface temperature
or voltage sensors in embedded systems. While there are some
trade-offs of which the low-speed communication protocol is bet-
ter in terms of power usage and physical space, the decision to use
one protocol over the other is typically driven only by what slave
devices you need to connect in this embedded system. If the best
analog-to-digital converter for your project uses an SPI protocol,
then you should include an SPI master in your system.

This also leads to one significant advantage of using an FPGA
for an embedded system over off-the-shelf microprocessors. If the
project requires an I2C, an SPI, two UARTs, Ethernet, and other
interfaces, it is very easy to add these components to an FPGA-
based design. However, if you were to use an off-the-shelf micro-
controller, it may be difficult to find a chip with exactly the right
number and kind of interfaces required.

7.2. Internetworking Communication
7.2.1. Concepts
As just mentioned, the range of technologies and protocols that
encompass what is called “computer networking” is enormous.
Within the field, individuals often specialize into very different
subfields, ranging from Web application programming to Internet
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router specialists. Also contributing to the large knowledge base
is the fact that different technologies can be mixed and matched.
For example, when people think Ethernet, many assume TCP/IP.
However, other protocols run over (and co-exist with TCP/IP)
on an Ethernet network. Furthermore, TCP/IP can also be used
on local area networks other than just Ethernet. This section
focuses specifically on the Internet Protocol (IP) and the most
common higher level protocols that use Transmission Control Pro-
tocol (TCP). The chief distinction is that IP provides a technology-
independent packet-based mechanism to send information,
whereas TCP is used to deliver an in-order stream of information
from one host to another. The other sometimes used compo-
nent of this family is UDP, which provides a TCP-like application
interface but is oriented around packet-based communication.

The Internet Protocol was designed to span multiple computer
networks, all of which may have different characteristics (in terms
of reliability, speed, and technical specifications). To manage this
complexity and to maximize the reuse software, the networking
functionality is often divided into layers (and the collection of
layers is called a network protocol stack). Figure 7.1 shows the
network protocol stack for a typical TCP/IP system.

In networking terms, a single machine is called a host and we
assume that there are two applications running on two hosts that
wish to communicate. If the two hosts are directly connected to
one another, then all the layers of the protocol stack are probably
overkill. However, very often it is the case that the two hosts are not
directly connected and so intermediate devices are needed to relay
information. Figure 7.2 shows two hosts, A and B, that are commu-
nicating through an intermediate device. If the two hosts are on
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Figure 7.1. A network protocol
stack.
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Figure 7.2. Two hosts
communicating with TCP/IP.
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the same network, the intermediate device is called a switch (or, in
some cases, a bridge). If the communication is across two different
technologies, or two different networks, the intermediate device is
called a router. Finally, a gateway is a router that generally con-
nects a network to the rest of the Internet. (If the address of a host
is known but its location is not, the usual behavior is to send the
packet to a gateway device that forwards it on.)

The network protocol stack is organized by functionality. The
lowest level — the physical layer — is responsible for generating a
real-world, physical signal. It might use a line driver to create phys-
ical voltages (such as +15 and −15 V, as is the case of RS-232) or a
transceiver to pulse light into a fiber-optic cable. The components
that create these signals are often designated PHY (pronounced fy
and rhymes with pie) and these components may be part of a Plat-
form FPGA (as is the case with the multi-gigabit transceivers on a
Virtex 5) or a separate integrated circuit. The PHY does not know
anything about data, its format, or timing. Its sole job is to translate
a computer’s digital signals to the analog world.

At this layer, direction is important so the transmitters (denoted
TX) are usually distinguished from the receivers (RX). Also, be-
cause it is so closely associated with the physical world, these com-
ponents are almost exclusively physical, analog components. The
receiver and transmitter together are collectively known as the
network interface.

As Figure 7.1 suggests, it is not uncommon to have multiple
network interfaces. Indeed, many devices today might support
multiple network interfaces. For example, unique devices such as
Earth-orbiting satellites typically have at least one network inter-
face to communicate with ground stations and may have another
one to talk with the satellite’s payload, typically an instrument
of some sort. A more down-to-earth example would be a mod-
ern mobile phone. It typically will have one network interface
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to talk with a cell tower. But increasingly, phones have a second
Bluetooth interface that is used for short-range wireless connec-
tions between the phone and a headset.

Before we leave the lowest layer, it is worthwhile to make men-
tion of network topology. The network topology is nothing more
than the underlying point-to-point relationship between each
host on the network, which — as any reader who has made it this
far into the book recognizes — can be modeled as a graph. Pre-
viously, most topologies are regular, which means that from the
point of view of any vertex in the graph, the relative positions of
every other vertex in the network are the same. However, this reg-
ularity is an artifact of the way we have built networks for the last
50 years. That is, engineers have imposed a structure to make the
system manageable. As we lurch toward ubiquitous, embedded
computing, this regularity breaks down. For example, with mobile
phones the network is now extended by many little “one-hop”
links over a Bluetooth connect. Likewise, the space-based example
of the previous paragraph can be extended to an emerging com-
mercial technology of launching nanosatellites. These satellites
are typical low mass — which makes them easy to launch — but
limit what kind of instruments can fly as payload. So one current
proposal suggests that we launch constellations of these satellites
that work together. Because their exact, relative position is diffi-
cult to maneuver, they naturally form ad hoc networks where the
edges cannot be determined before the satellites are in orbit. Deal-
ing with the network that arises from circumstances is handled
at a high layer but it occurs because we have multiple network
interfaces.

Onward! We have what is known as the (data) link layer. In
Figure 7.1, the link layer is depicted as being closely integrated
with the physical layer. This is because some technologies (such
as the early versions of Ethernet) in essence required that it be
implemented in hardware. This layer had the responsibility of not
only communicating with the physical layer, but also observing
the physical layer for anomalies or errors. For example, the ear-
liest versions of Ethernet relied upon a common media — a coax
cable — as a shared resource for communication. The purpose of
the link layer is to allow two directly connected hosts to communi-
cate. It manages a link between two hosts in terms of checking for
transmission errors and flow control.

Often the link layer is divided into upper and lower halves. The
lower half — called the Media Access Controller (or MAC) — is
responsible for talking to the PHY. In modern versions of the Eth-
ernet standard, several well-defined interfaces exist between the
MAC and the PHY. The original MII is TTL/CMOS (0 to +5.5 V)
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signals and was common in 10/100 (FastEthernet) networks. GMII
and RGMII were introduced for Gigabit Ethernet because addi-
tional bandwidth was required (RGMII is a variation that uses half
the number of data lines but transfers data on both rising and
falling edges of the clock). Most recently is Serial Gigabit Media
Independent Interface or SGMII, which uses high-speed serial
transceivers style of communication between the lower half of the
link layer and the PHY. Details of these protocols are not critical
to the Platform FPGA designer, but one has to be aware of them
because often the MAC is implemented in the FPGA and PHY is
off-chip so one has to match the right protocol to the off-chip
hardware. Logical Link Control (LLC) is the upper half of the link
layer. It is responsible for flow control between two nodes in the
network.

Above the link layer is the network layer. The purpose of this
layer is to provide connectivity beyond two directly connected
hosts. For example, in Figure 7.1, there are three network devices.
In order for A to communicate with C, A transmits packets to B via
the link layer. Those packets are passed to the network layer, which
makes decisions about how to advance the packet toward its des-
tination. Often this means retransmission through the link layer
to another device. The most common network layer is the Inter-
net Protocol (the IP in TCP/IP). This standard includes the usual
data packet plus control packets used to manage the network. At
this layer, communication can bridge different physical commu-
nication channels. For example, a packet can arrive over a link
layer that interfaces to a serial communication channel and for-
ward the packet to a link layer that interfaces to Ethernet. Novel’s
IPX is another example of a network layer protocol.

However, applications usually do not interface with the net-
work layer directly. In the Open Source Interface (OSI) model,
there are several layers in between the application and the network
layerISO/IEC JTC1 (1984). However, the best known approach is
the Internet Protocol and it has one layer — the transportation
layer. There are multiple interfaces to the transport layer asso-
ciated with IP. The most common is the Transportation Control
Protocol or TCP. This protocol provides an error-free end-to-end
stream service. That is, data are written to the stream on one
end and arrive (in order) at the other end. These data may have
been broken up into packets, fragmented, reassembled, dupli-
cated, and traversed different routes along the way but the network
layer hides all of that and provides a reliable data path for the
application. Another network layer interface is the User Datagram
Protocol (UDP). This provides unreliable, packet-based commu-
nication between applications. It uses the Internet Protocol, and
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while a user datagram will always be delivered intact, it may have
been fragmented and reassembled en route. As mentioned, this is
an unreliable service and some datagrams might not be delivered
without notice to the application.

7.2.2. Application Interface
Application access to the network layer is most often through the
Berkeley socket interface. Our goal is not to provide a comprehen-
sive guide here, rather it is to provide enough information about
a basic server and client to jump start any project that needs a
custom protocol. Also, a basic knowledge of how an Internet appli-
cation works will help demystify existing applications and their
configuration files.

The simplest Internet application is a TCP/IP client/server. The
basic idea is that the client will initiate contact with a server by
referring to the service’s IP address and a port number. Because
a port is associated with no more than one server on a specific
machine, this provides a unique address for a server. Not every
machine will associate the same port number with same server,
but most common servers have a conventional port number. For
example, an HTTP server is usually found on port 80, a secure shell
server uses 22 by default, and so on. Sometimes the port will be
explicitly changed to avoid unwanted, automated probes of a sys-
tem. A file /etc/services documents (potential) services on a
specific host and a library call getservbyname allows a program
search for a port associated with a service on the local machine.
By using the socket interface described next, the operating system
on the client’s machine and the operating system on the server’s
machine set up a two-way communication. The network protocol
stack described previously provides an error-free stream- (versus
packet-) based communication channel.

The programming interface uses file descriptors, just like many
of the system calls we are already familiar with (open/read/write).
However, one can use the C library call freopen to get an fprintf
or fscanf style interface.

A typical application-specific server application will ordinarily
start during the boot process. It generally does not require root
privileges unless it uses a port below 1024.1 The server’s first task
is to request a specific port from the OS and configure it. This is
accomplished with the socket, bind, and listen system calls.
The way they are typically used is illustrated in Listing 7.1. The

1 This was a weak form of security employed when there were just a handful of Inter-
net hosts and the administrators of hosts could be trusted but not necessarily individual
users. Now it is simply a legacy requirement.
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int sockfd ;
struct sockaddr_in serv_addr ;
int n ;

/* create file descriptor */
sockfd = socket(AF_INET, SOCK_STREAM, 0) ;
if( sockfd < 0 )

error("ERROR opening socket") ;

/* clear address, then set family (Internet),
and port, specify client IP address that can
connect (any), and inform OS */

bzero((char *) &serv_addr, sizeof(serv_addr)) ;
serv_addr.sin_family = AF_INET ;
serv_addr.sin_port = htons(portno) ;
serv_addr.sin_addr.s_addr = INADDR_ANY ;
if( bind(sockfd,(struct sockaddr *)&serv_addr,

sizeof(serv_addr)) < 0 )
error("ERROR on binding") ;

/* set queue length */
listen(sockfd,5) ;

Listing 7.1. Setting up a server.

first system call (socket) creates a file descriptor to manage client
connections to the server. The next two, bind and listen, tell the
operating system what port the server would like to be associated
with (bind) and sets a queue length (listen). In this example, five
clients can line up to access the server before the OS immediately
rejects client requests. (We will explain the htons call shortly.)

The next step is for the server to wait for a client connection.
This is typically performed inside of an endless loop. Listing 7.2
illustrates the basic algorithm. The accept system call will block
the server process until some client has initiated a connection.
The first argument is the file descriptor that was just configured
and a structure to hold the client’s address. The return value is a
new file descriptor that is used for communication with this client.
(The sockfd can then be used again in another accept system
call.) When communication with the client has finished, the file
descriptor is closed and the communication channel is formally
torn down.

Listing 7.3 shows the client application also uses the socket
system call to create a socket file descriptor. Unlike the server, this
is the only file descriptor needed to communicate with the server.
To get initiate communication with the server, the client (1) creates
the socket and gets the server IP address with a gethostbyname
library call, which is copied to the socket address structure. The
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int newsockfd, clilen;
struct sockaddr_in cli_addr;

while( 1 ) {
clilen = sizeof(cli_addr) ;
newsockfd = accept(sockfd,(struct sockaddr *)&cli_addr,&clilen) ;
if (newsockfd < 0)

error("ERROR on accept") ;
do_work(newsockfd) ;
close(newsockfd) ;

}

Listing 7.2. Main server loop.

struct sockaddr_in serv_addr;
struct hostent *server;

sockfd = socket(AF_INET,SOCK_STREAM,0) ;
server = gethostbyname(hostname) ;
bzero((char *)&serv_addr,sizeof(serv_addr)) ;
serv_addr.sin_family = AF_INET ;
bcopy((char *)server->h_addr,

(char *)&serv_addr.sin_addr.s_addr,
server->h_length);

serv_addr.sin_port = htons(portno) ;
connect(sockfd,(struct sockaddr *)&serv_addr,

sizeof(serv_addr)) ;

Listing 7.3. Client application.

last step is to call the connect system call, which will set up the
communication channel. On return, thesockfdfile descriptor can
be used to read and write to the server.

In the host and client, we use a library call, htons, which han-
dles the byte order of an integer. The name is short for host to
network (16-bit integer). Likewise, there is an htonl, which is short
for host to network (32-bit integer). When the host machine uses
the same byte ordering as the network standard, these functions
do nothing. If they differ, the subroutines reverse the byte order.
There is also an ntohs and ntohl used for converting network
standard to host byte ordering of integers, if needed.

An important variant of the client/server application described
here is a UNIX dæmon. In this system, the client operates exactly
the same. What is different is how the server is started. As
described previously, we assume the server was started when
the machine was booted. This is perfectly appropriate for an
application-specific embedded system. However, for many UNIX-
based machines, we do not want to start a server for every single
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service that the host might have a server for. This led to “super
server,” which is a single application whose job is to set up a
socket for a set of servers (essentially doing the steps illustrated
in Listing 7.1). When a client appears on any of the ports that the
super server is watching, the super server accepts the connect and
then starts the real server with the communication socket as the
standard input/output. In doing so, the server process only uses
system resources when there is a client requesting a connection.
It is easy to build a server that, based on a command line argu-
ment, will start either as a dæmon or as an ordinary server. There
are multiple implementations of the “super server.” The original
was called inetd (Internet dæmon super server). The package
xinetd is a popular variation. Busybox also has a simple imple-
mentation as well. We mention this because both styles of server
are common. Also, it is worth pointing out the difference between
the /etc/inetd.conf and the /etc/inittab. The latter is for
starting processes at boot; the former launches Internet servers on
demand.

Once a communication channel is established, any data can
be streamed across this channel. Even though binary data can
be transmitted, older protocols were often 7-bit ASCII based and
organized around “lines” that were terminated with a newline.
Newer protocols tend to use a syntax similar to extended Mark-
up Language (XML). For very simple protocols, the former can
be easy to parse (read line by line from the file descriptor). For
more complex, structured data, XML works very well but usually
requires additional software to parse the format. Regardless, any
data sent over a communication channel using Berkeley sockets
as described here are plaintext. That is, data are not encrypted
and it is very easy for an anonymous, third party to view these
data. In some cases, such as public Web sites, there is no need for
privacy but if there is any sensitive information that needs to be
transmitted, encryption is essential.

On a final note, very often a custom protocol is not needed.
There are a number of well-defined protocols with open source
software available that will support many of the common tasks.
Moreover, they often have the benefit of using encrypted trans-
mission or at least offer an encrypted variant. We review the most
common ones for embedded systems next.

7.2.3. Higher Level Protocols
By itself, the IP protocol stack is convenient but does not provide
much more than connectivity for an embedded system. However,
on top of these protocols (most often over TCP but sometimes
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UDP), several higher level protocols have evolved. Many of these
protocols were not formally standardized but interoperability was
achieved through an informal “request for comment” (RFC) memo
and the sharing of source code. Often the first software implemen-
tation became the reference code. The low-level details of these
protocols are beyond the scope of this chapter. What is impor-
tant for the embedded systems designer is to know what protocols
exist, their high-level characteristics, and what is required to use
them. Hence, we want to spend a little bit of time surveying the
protocols found most often in embedded systems.

Telnet

One of the earliest protocols developed using TCP/IP is called
telnet. It was proposed in RFC15 in 1969 and then extended over
time; it was one of the first standards adopted by the Internet
Engineering Task Force (IETF), which formalized the RFC pro-
cess. Telnet uses TCP/IP to provide an (insecure) bidirectional
stream between a client and a telnet server (or dæmon) running
on the embedded device. This server can either ask for authen-
tication (username/password) or simply start a command line
based configuration or diagnostic application. This protocol uses
port 23 on a standard UNIX implementation and has been largely
replaced by Secure Shell (ssh and sshd) for workstations and
servers because telnet passes all data (including usernames and
passwords) unencrypted over the network. However, for embed-
ded systems — where a password might not be needed — this is a
great, lightweight protocol. For this reason, it is often the first pro-
tocol implemented in a “network-ready” embedded system. For
example, adding an Ethernet interface to a printer makes it a “net-
work printer.” Now that the printer is on the network, one could
use telnet to check toner levels, manually set the network configu-
ration, etc. Again, it must be stressed that telnet should not be used
for sensitive data.

The telnet server is implemented as Internet dæmon. On an
embedded Linux project, the first step is to make sure the network
interface has been configured. This is usually done when the sys-
tem is booted (see next section). Next, we need to tell the network
super server to watch for connections to this service. Most sample
inetd configuration files have this required line commented out.
Simply edit /etc/inetd.conf, find the line below, and remove
the leading pound sign.

#telnet stream tcp nowait root /usr/sbin/telnetd telnetd -i
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If a client tries to connect to port 23, the inetdprocess will accept
the connection and then start the “real” telnetd.

World Wide Web

The World Wide Web (WWW) evolved out a sequence of efforts
in the late 1980s and early 1990s to make scientific (and other)
data publicly accessible. Much earlier Internet efforts resulted in
the File Transfer Protocol (FTP), which, like telnet, was a sim-
ple, insecure mechanism used to transfer files from one host to
another over TCP/IP. With the addition of no-password accounts,
this allowed the transmission of raw data but there was no
imposed structure to these data. The consumer of these data had
to know the file name and directory organization conventions
used by the producer. What the World Wide Web did was intro-
duce a server protocol, Hyper-Text Transfer Protocol or HTTP, that
transmitted files to a file in the Hyper-Text Mark-up Language or
HTML. The HTML files included display as well as references to
non-HTML data files. This allowed a client to not just copy or dis-
play the raw data but present it to the user. This quickly led to
innovations that allowed the server to interact with a user client.
The “client” for World Wide Web servers is commonly known as a
Web browser.

This technology is a great boon for embedded systems devel-
opers. Custom protocols — whether over a direct communication
link such as RS-232 or the Internet — mean that the embedded
systems designer has to develop both the server (running on the
embedded system) and the client. This puts the designer in the
untenable position of either supporting the client on multiple
potential hosts or limiting the embedded systems potential mar-
ket. With HTTP and HTML, the designer simply has to follow the
prevailing standards and their embedded system works with any
Web browser.

There are a number of Web server implementations. Per-
haps the most common is Apache. It is a vast project that has
spawned a number of supporting projects. It is feasible to
cross-compile Apache and run it on a Platform FPGA design.
However, there have been numerous implementations that run
the gamut from purely academic exercises to implementations
carefully designed to run on limited resource-embedded sys-
tems. Often, embedded systems do not have the resources to
support a full Apache server. There are many lightweight servers
such as lighttpd, http://www.lighttpd.net/, and thttpd,
http://www.acme.com/software/thttpd/, that may be more
appropriate for an embedded system. Also check with your FPGA
vendor for servers that are already included with their tools.
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Simple Network Management Protocol

Perhaps the next most important network protocol for embedded
systems is the Simple Network Management Protocol (SNMP). It is
also unique because it is one of the few common protocols based
on the UDP (packet-based versus TCP’s stream based) transport
layer.

The protocol was originally developed to interrogate and man-
age autonomous network devices such as routers and switches.
For example, one might want to know the number of packets sent
and received on a particular switch port or the device as a whole.
Alternatively, one might want to know what speed a port autone-
gotiated to when a host was connected. SNMP allows an admin-
istrator to do this through a client over IP. It includes a “call back”
mechanism whereby the network device can inform the adminis-
trator that some event has occurred. It turns out that the design
was general enough to support a wide range of equipment, and a
number of different network-ready devices use the protocol. For
example, one can monitor the current flowing through a Power
Distribution Unit using SNMP.

Network File System
The Network File System (NFS) protocol has been used for more
than two decades to make a remote filesystem (running on a
server) appear like a local filesystem. To use this protocol requires
a certain degree of trust between the server and the client. As such,
it is generally not useful for embedded systems in the field.

However, it can be extremely useful during development. The
end product might be limited in the amount or speed of secondary
storage. Having the system under test on a network and configured
to mount a home directory or the root filesystem from a server in
the lab is a huge benefit. Once the operating system is configured
and stable, the embedded system can be left running continu-
ously. On a workstation, the application work can be repeatedly
cross-compiled and tested without (manually) copying the exe-
cutable between workstation and embedded system. Moreover, it
allows the filesystem to grow arbitrarily large while under develop-
ment. Then, when everything is working, it can be cleaned up to fit
the space constraints of the embedded system’s native filesystem.

Network Time Protocol

One of the servers that the DHCP protocol can provide is a Network
Time Protocol (NTP) server. (The DHCP protocol is used to set
up an embedded system on an unknown network; it is described
next.) This server (along with an array of public servers on the
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Internet) gives the embedded system an opportunity to determine
the time automatically. In the 1970s and 1980s, Video Cassette
Recorders (VCRs) all across the world endlessly flashed 00:00 for
the time. No matter how simple the interface — it was difficult to
get users to set the time, let alone reset it after power was lost! But
there are many situations when knowing the time is a very useful
thing for an embedded system. Compiling an NTP client that gets
the time (and periodically checks it for consistency) is a valuable
software feature.

Secure Socket Layer
To make plaintext network traffic secure, there is the Secure Socket
Layer (SSL). With SSL, a client and server connect via a hand-
shaking protocol to configure the secure connection. This is done
through the exchange of shared public keys and certificates, which
are used to generate a session key. Once connected, the client
and server can communicate securely through the encoding and
decoding of the encrypted data based on the session key. Open
source library implementations, such as OpenSSL, can provide an
encryption layer between the application and the transport layers.
OpenSSL is maintained by a large community of developer vol-
unteers and is based on the SSLeay library. Because OpenSSL is
open source, its use requires acceptance of the dual license, which
covers both conditions of the OpenSSL License and the original
SSLeay license.

7.2.4. Operating System Configuration
Most of the time, an embedded system will want to bring up a
network interface (i.e., configure and activate it) when the system
boots and bring it down (deconfigure) during an orderly shut-
down of the system. Traditionally, this has been accomplished
with two commands: ifconfig and route. The first configures a
network interface and requires one argument followed by one or
more options. The second command updates the kernel’s network
routing table. However, to do so means that the embedded sys-
tems developer has to know in advance what network the device
will be on, the assigned IP address, a gateway to the rest of the
Internet, etc. So, in practice, these commands are handy during
development but in the field, high-level protocols (such as DHCP
described later) are needed.

Generally, these commands are being phased out. As network-
ing has become more complex, two programs (called ip and tc)
have evolved to handle that complexity, advanced routing, and
traffic shaping. The ip command, which comes as part of the
iproute2 package, can do everything that ipconfigcan and more.
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The interface also directly supports a number of network config-
urations that didn’t exist when ifconfig was written. If you don’t
want to install the whole iproute2 package, Busybox provides an
ip command that makes porting start up scripts from desktop
machines a little easier.

The Dynamic Host Configuration Protocol (DHCP) and BOOTP
protocols allow a deconfigured network interface to broadcast a
request for information about its network parameters. These pro-
tocols rely on a server existing somewhere on the network that
watches for such broadcast messages. With Ethernet networks,
every network interface has a MAC address, also known as its
hardware address. Ethernet equipment providers acquire blocks of
these addresses and each product receives a unique address. Based
on the server configuration and the hardware address found in the
broadcast Ethernet packet, the server can (1) assign an IP address,
(2) chooseto assign an address from a pool of availableaddresses, or
(3) ignore the request. The information that the server can provide
can be as simple as the IP address (and length of time, after which
it has to broadcast another request). But it can also provide other
useful network information, such as a netmask and a gateway host
to the Internet. It also usually provides the IP address of other useful
servers: a domain name server, a network time server, and so on.

Nowadays, DHCP is a requirement for embedded systems.
Without it, the end user would have to know and be able to enter
the network information. In the case of embedded systems des-
tined for a home network, end users might not have any idea
how their home router works. (They just followed the three-step
setup and it “just worked.”) In the case of mobile devices, the end
user might not know anything about the coffee shop’s network. In
both cases, the DHCP server exists — it’s just up to the embedded
system to use it.

Finally, it is worth mentioning the ifupdown package. It
provides two commands — ifup and ifdown — that read a
/etc/network/interfaces configuration file. It still uses the
primative (ifconfig and route) commands but has three advan-
tages: (1) if there are multiple interfaces, all of the information
about how to set up the network is collected into one configuration
file, (2) it integrates nicely with dynamic changes — like someone
plugging in a USB wireless network interface, and (3) the package
“knows” about many of these low-level networking systems.

Chapter in Review
Two decades ago, relatively few embedded systems had net-
working or communication requirements. Simple serial protocols
were sufficient for configuration and sharing of data. Nowadays,
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embedded systems often have multiple network interfaces and,
out of market necessity, have to support a rich set of complex
high-level protocols. With Open Source implementations avail-
able, embedded systems designers do not have to understand the
details of these protocols. However, designers do have to under-
stand how the pieces fit together and when it is appropriate to
use existing software. The goal of this chapter was to provide an
overview of this enormous topic. First, we discussed a few of the
common point-to-point serial communication protocols such as
RS-232 and I2C. Next, we described the Internet Protocol and the
role of various protocol layers. If an application needs a custom
protocol, an IP server needs to be developed. A bare bones sim-
ple server was presented. Finally, several existing protocols and
commands used to configure the network were presented.
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Practical Expansion: Outside World
Communication off-chip can be a big part of embedded systems design. FPGAs have shown their capabilities for years as
being a significantplayer in integrating off-chip communications.However, until more recently, the role FPGA played in the
communication has been somewhat limited. As designers shift their focus away from the glue-logic support to platform
support of FPGAs, there comes increasing support for off-chip communication. These practical pages discuss two such
types of off-chip communication. First is high-speed communication in the form of Xilinx RocketIO through the use of high-
speed serial transceivers. The second topic focuses on low-speed communication with the use of an integrated I2C bus
within a system. These two examples are meant to highlight the similarities and differences in high-speed and low-speed
designs.

7.A. High-Speed Serial Communication

More recently, FPGA vendors have started to include high-speed serial transceivers on the FPGA as diffused IP. These
transceivers allow FPGAs to interface directly with emerging communication standards such as PCI-Express, Serial ATA,
InfiniBand, and 10 Gigabit Ethernet. Serial interfaces require fewer traces on a PCB, which has allowed smaller and more
dense PCB layouts. However, the serial traces have to be designed with tightly controlled impedences for the transceivers
to operate correctly. There is extra complexity on the FPGA logic side of the transceiver, as the components have many
more configuration settings than a typical I/O pad.

7.A.1. RocketIO

The Xilinx Virtex series of FPGAs from the Virtex-II Pro through the Virtex-6 have included some form of RocketIO high-
speed serial transceiver. These transceivers have maximum data rates of 3.125 Gbps on the Virtex-II Pro to 11 Gbps on
some Virtex-6 FPGAs. Typical devices have between 8 and 24 of these full-duplex transceivers on a chip, which can be used
to connect several high-speed devices or to create custom networks of FPGAs. While it is possible to directly instantiate the
transceiver primitive in a design, Xilinx recommends using the Coregen utility to abstract the complexities of the transceiver
and provide the user with a simpler data link layer interface.

7.A.2. Aurora Example

Aurora is a data link layer protocol provided by Xilinx. It provides the user with a simple stream or frame-based interface to
send and receive data. Aurora can also be used to bond several transceivers together to make a single higher bandwidth
link. Aurora is able to handle transceiver-specific operations such as inserting clock-correction sequences into the data
stream.

As an example, consider connecting two ML-510 development boards via their Personality Module (PM) interface
present on each board. Eight of the 24 GTX RocketIO transceivers on the FPGA are connected to the PM interface. We can
use these eight transceivers — each transmitting and receiving data at 5.0 Gbps — to achieve 40 Gbps of bandwidth in
each direction, a total of 80 Gbps of bandwidth between the two FPGAs.

To achieve this, launch the CoreGen wizard. Start a new project and select the xc5vfx130t-2ff1738 FPGA. Generate an
Aurora 8B10B core (found under Communication & Networking — Serial Interfaces) to have eight lanes, with each
lane being 4 bytes wide. We will use the 250-MHz SGMII reference clock. Select the streaming interface to reduce the
complexity of the logic needed to send data between the two boards. Note that framing is a convenient way to represent
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Figure 7.3. Aurora configuration.

packets from a network layer but streaming is better for simple data-flow style applications. The first page of the coregen
wizard is shown in Figure 7.3.

The second page of the wizard lets the user select which GTX transceivers to use for the eight lanes of the aurora
channel. From the ML-510 schematic you can determine that the transceivers connected to the personality modules are
GTX_X0Y3 through GTX_X0Y6 (each GTX tile contains two transceivers). Map the lanes to transceivers as shown in
Figure 7.4. Coregen will generate an entire system design that uses this aurora core. The top level of this example project
can be found in:

component_name_example_design.vhd

The following sections describe the important components of this example project.

7.A.3. LocalLink Interface

The Aurora component uses the LocalLink interface as described in Section 6.A.3 to send and receive data from the user
logic — in this case a simple data generator and error detector. As we selected the streaming interface the start-of-frame
and end-of-frame LocalLink signals are not used. Also notice that in this example the data signal is 256 bits wide instead
of the standard 32.

7.A.4. Clock Correction

It is common in serial communication to only send data between the transmitter and the receiver, not a copy of the clock. In
low-speed communication such as RS232, both sides agree on a data rate and generate their own internal reference clocks.
However, in high-speed serial communication it is more common for the receiver to infer the reference clock from data by
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Figure 7.4. Lane to transceiver mapping.

examining transitions on the data line itself. This system works well, except if long periods go by without a transition; the
receiver’s inferred clock can drift from the transmitters.

We use two methods to handle this problem. First we use data encoding like 8B10B, which takes 8 bits of data from
the user and encodes it as 10 bits with more transitions to send across the wire. Second, we periodically stop sending user
data and insert a clock correction sequence with many transitions to make it easy for the receiver to infer the correct clock.
Xilinx recommends sending these clock correction sequencesat every 10,000 clock cycles. The cc_manager component
in the example design handles the insertion of these sequences.

7.A.5. Error Testing

When debugging a communication system like this it is very useful to have a component that generates a stream of data
along with a second component that receives that data and checks for errors. Xilinx has provided these components in the
example design: frame_gen and frame_check. These components use a 16-bit linear feedback shift register with
an XNOR feedback to generate a pseudo-random data sequence to be transmitted and received.

7.A.6. Loopback

This example may be infeasible to build and test on a student’s budget. It would require two ML-510 development boards
and a custom PCB that would connect the two personality module connectors with controlled impedance transmission
lines between the transceivers on each board. However, you can test this on just one ML-510 without a custom PCB by
using the loopback feature of the transceivers. The transceivers have two internal loopback paths, either before or after
the final output driver, to allow testing on a single FPGA. You can set the loopback_i signal in the example design to
any nonzero value to use these loopback paths instead of requiring a second ML-510.
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7.B. Low-Speed Communication

While the first section focused on high-speed serial communication, the focus in this section is to support a popular
low-speed communication protocol, namely I2C. We use the I2C bus to read and write to a connected EEPROM that is
physically located on the Xilinx ML510 development board. Once we have the ability to interact with this device, it will
become academic to interface with other devices on the I2C bus.

7.B.1. Generating the Hardware Base System

Using the Base System Builder wizard from within XPS we can quickly generate a hardware base system for the Xilinx
ML510 with the Virtex 5 FX130T FPGA. Create the following base system:

Board Selection Xilinx Virtex 5 ML510 Evaluation Platform Revision C
System Configuration Single-Processor System
Processor Configuration 400-MHz PowerPC processor with 100-MHz Bus
Peripherals refer to Figure 7.5

With this short example we do not need to include every peripheral in the system. This will save us greatly on our
build times, allowing us to try different implementations without spending a lot of time sitting idle by the computer.

Figure 7.5. Peripherals needed for the I2C EEPROM example on the Xilinx ML510 development board.
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Selecting the I2C EEPROM peripheral in the base system builder wizard will instantiate and instance the Xilinx component
IIC_EEPROM. Because the wizard has already instantiated the component, we will walk through the Xilinx XPS project
files to highlight the changes that would have been made had we needed to add the I2C component to the project without
the aid of the wizard.

User Constraints File We begin with the user constraints file located within the project directory:

% <XPS_PROJECT>/data/system.ucf

Looking at the schematic for the ML510 development board we can see that the I2C bus consists of two pins, SDA and
SCL, for the data and clock lines, respectively. On the ML510 development board this EEPROM is connected to the I2C
bus while the I2C bus connects to the FPGA via pins K8 and L7. We can specify through the user constraints file that SDA
will connect to K8 and SCL will connect to L7.

Net fpga_0_IIC_EEPROM_Sda_pin LOC=K8 | IOSTANDARD=LVCMOS33;
Net fpga_0_IIC_EEPROM_Scl_pin LOC=L7 | IOSTANDARD=LVCMOS33;

Microprocessor Hardware Specification File In order for the system to interface with the SDA and SCL pins of the
I2C bus that have been set in the user constraints file, we must first specify at the top of the MHS file the pin connections
and directions. This will allow us to use these pins to connect to the I2C component shortly.

PORT fpga_0_IIC_EEPROM_Sda_pin = fpga_0_IIC_EEPROM_Sda_pin, DIR = IO
PORT fpga_0_IIC_EEPROM_Scl_pin = fpga_0_IIC_EEPROM_Scl_pin, DIR = IO

Now we are able instantiate our component. In the MHS file this is done with the following syntax:

BEGIN xps_iic
PARAMETER INSTANCE = IIC_EEPROM
PARAMETER C_IIC_FREQ = 100000
PARAMETER C_TEN_BIT_ADR = 0
PARAMETER HW_VER = 2.02.a
PARAMETER C_BASEADDR = 0x81600000
PARAMETER C_HIGHADDR = 0x8160ffff
BUS_INTERFACE SPLB = plb_v46_0
PORT Sda = fpga_0_IIC_EEPROM_Sda_pin
PORT Scl = fpga_0_IIC_EEPROM_Scl_pin

END

A few points can be made from this declaration. First off is the address map of the component. We are connecting this
device to the same PLB that the PowerPC is connected to. Reading and writing from this address range (0x81600000–
0x810ffff) provide us with the ability to read and write effectively to the EEPROM. That is, the I2C EEPROM component
acts as a bridge between the system on-chip and the external world. The second point to make is that the two pins,
SDA and SCL, are connected from this component through the top-level MHS pin declarations defined previously and
finally connected to the user constraints file pin declarations. This same strategy can be employed for connecting external
components to the FPGA.
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Microprocessor Software Specification File Finally, we need to specify within the MSS the software libraries that
support our interfacing with the I2C component. This is necessary to allow the SDK to generate the necessary address
space and supporting interface that we will discuss shortly.

BEGIN DRIVER
PARAMETER DRIVER_NAME = iic
PARAMETER DRIVER_VER = 1.16.a
PARAMETER HW_INSTANCE = IIC_EEPROM

END

Next we must Export Hardware Design to SDK, which will synthesize and generate the system’s bitstream along with
creating the SDK project and launching the SDK.

I2C Software Application Once the SDK launches we must generate a new software platform. Because we are not
including Linux in this example, we can generate a simple standalone software platform. We will also need to generate
a new C application using this stand-alone software platform.

Within our C application we must include a set of libraries to support interfacing with the I2C bus.

#include <stdio.h>
#include <string.h>
#include "sleep.h"
#include "xbasic_types.h"
#include "xparameters.h"
#include "xiic.h"
#include "xiic_l.h"
#include "xgpio_l.h"
#include "xtime_l.h"

Next, we can set some C #define values for more human readable code and try to eliminate any magic numbers in
our code.

#define START_ADDR 1024
#define END_ADDR 2047
#define IIC_BASEADDR XPAR_IIC_EEPROM_BASEADDR
#define IIC_SIZE (END_ADDR-START_ADDR+1)
#define IIC_ADDR 0xA0
#define IIC_DELAY 5000 /* useconds */

At this point we can use a struct to set up what will be the contents of the EEPROM. Initially, the EEPROM will be
empty; however, we can write new contents based on the storage needs of the device. In this example we will set some
board information that could be used later to identify the board, say, during a boot procedure.

typedef struct iic_eeprom_struct {
/* Generally used parameters */
/* 0x000 to 0x010 Plain text ID of which board */
char which_board[17];
/* 0x011 to 0x015 Plain text Board Rev (A, B, C, etc) */
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char board_rev[5];
/* 0x016 to 0x01A Plain text minor board rev (001, 002, etc) */
char minor_board_rev[5];
/* 0x01B to 0x02E Plain text which FPGA is on the board (main FPGA if multiple) */
char which_FPGA[19];
/* 0x02F to 0x037 Plain text Serial Number of board */
char board_sn[9];
/* 0x038 to 0x044 Plain text MAC Address for this board */
char board_mac_id[13];
/* 0x045 to 0x050 Plain text last date that tests were run (DD-MMM-YYYY) */
char last_test_date[12];
/* 0x051 to 0x05C Plain text Manufacture Date (DD-MMM-YYYY) */
char manufacture_date[12];
/* 0x05D to 0x06D Plain text Manufacture ID (Name) */
char manufacture_id[17];
/* 0x06E to 0x080 Plain text set to ’Xilinx Virtex-X Based MLxxx’ (?19?) */
char tested_before[19];

}iic_eeprom_struct;

Next, we will want to set some function prototypes to support easier read and write access to the I2C bus.

/* Function Prototypes */
/* For IIC Read / Write */
static void send(Xuint32 addr, Xint8 *data, Xuint32 len);
static void receive(Xuint32 addr, Xint8 *data, Xuint32 len);

Finally, we can write the actual main function that will read and set the values of the EEPROM on the I2C bus.

int main() {
char *eeprom_ptr;
iic_eeprom_struct *eeprom;

/* Pointer to the base of the EEPROM Struct */
eeprom_ptr = (char*)eeprom;

/* Read EEPROM for all current contents */
receive(START_ADDR, eeprom_ptr, IIC_SIZE);

/* Print out contents of EEPROM */
printf("Board ID: \n", eeprom->which_board);
printf("Board Rev: \n", eeprom->board_rev);
printf("Minor Board Rev: \n", eeprom->minor_board_rev);
printf("Which FPGA: \n", eeprom->which_FPGA);
printf("Board SN: \n", eeprom->board_sn);
printf("Board MAC ID: \n", eeprom->board_mac_id);
printf("Last Test Date: \n", eeprom->last_test_data);
printf("Manufacture Date: \n", eeprom->manufacture_date);
printf("Manufacture ID: \n", eeprom->manufacture_id);
printf("Test Before: \n", eeprom->test_before);

/* Write new contents to EEPROM Structure */
eeprom->last_test_data = "01-JAN-2010";
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/* Write out all contents to EEPROM */
send(START_ADDR, eeprom_ptr, IIC_SIZE);

printf("Program Complete\n");
return 0;

}

In order to support both reading and writing across the I2C, we must include the read and write subroutines.

/***************************************************************
** function: send
** purpose: Write data across I2C
** input: addr - Address to Write on I2C buss
** data - Data to be written to address (addr)
** len - length of data to be written
**************************************************************/

static void send(Xuint32 addr, Xint8 *data, Xuint32 len) {
Xint8 sendBuf[34];
Xuint32 pos, wlen;
Xuint32 ret;

wlen = 32;
for (pos=0; pos < len; pos+=32) {

if ((len - pos) < 32)
wlen = len-pos;

sendBuf[0] = (Xint8) ((addr+pos) >> 8);
sendBuf[1] = (Xint8) (addr+pos);
memcpy(&sendBuf[2], &data[pos], wlen);
ret = XIic_Send(IIC_BASEADDR, IIC_ADDR>>1, sendBuf, wlen+2, XIIC_STOP);
usleep(IIC_DELAY);

}
}

/***************************************************************
** function: receive
** purpose: Read from EEPROM
** input: address (addr), data pointer (data) and length (len)
** output: Data read from EEPROM stored at data pointer address
**************************************************************/

static void receive(Xuint32 addr, Xint8 *data, Xuint32 len) {
Xint8 address[2];
Xuint32 ret;

address[0] = (Xint8) (addr >> 8);
address[1] = (Xint8) addr;
ret = XIic_Send(IIC_BASEADDR, IIC_ADDR>>1, address, 2, XIIC_STOP);
ret = XIic_Recv(IIC_BASEADDR, IIC_ADDR>>1, data, len, XIIC_STOP);

}
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7.B.2. Testing the Design

Now all that is necessary is to save and program the application to the FPGA. This can be done by either creating the
ACE file as we did in Section 1.A or through the SDK and a JTAG as was done in Section 3.A. If this is the first time the
program runs, the EEPROM may not be initialized to any values. If that is the case you will need to write more than simply
the last_test_data value. Of course, you are not limited to this information. In fact, you can program the contents
you would like to the EEPROM. Because the EEPROM is nonvolatile, when the FPGA loses power and reboots the contents
will remain in the memory. As stated earlier, this can be very helpful when designing systems.
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Exercises
P7.1. Contrast RS-232 and USB in terms of end-user experience

and in terms of design complexity.
P7.2. How does a TCP/IP server differ from a UNIX dæmon?
P7.3. How is the physical layer different from the rest of the

layers in the protocol stack?
P7.4. What does the link layer do?
P7.5. What does the network layer do?
P7.6. Why does a TCP/IP server use two socket file descriptors

instead of one?
P7.7. What helps determine whether to use I2C versus SPI?
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GLOSSARY

abstraction is the act or an instance of abstracting or taking away; an abstract or visionary idea

application layer the network layer closest to the user’s application

basic block is a maximal sequence of sequential instructions with a Single Entry and Single Exit
(SESE) point

bitgen the process after routing which takes a placed and routed netlist and generates a
configuration file known as a bitstream that will be used to configure the FPGA device

bitstream is the file that includes a header and frames of configuration information needed to
set the SRAM cells of the FPGA in order to set the functionality of the device

block a hard block is a core that has been implemented in CMOS transistors, and a soft block
is a core that has been implemented in the function generators and memories of an FPGA
device

Block RAM (BRAM) a Xilinx-defined term for a fix amount of on-chip memory within the FPGA
fabric

bottom-up approach is a form of system design where a design is constructed starting with
simple components that are used to build small systems, and those small systems are used
to build bigger systems, and so on

burst transfer consists of issuing a single request to read or write multiple sequential data ele-
ments; typically used by compute cores during DMA transactions to access on-chip/off-
chip memory

CLB see configurable logic block

coarse-grain parallelism refers to relatively large subtasks, such as an entire subroutine

cohesion is a means of measuring the abstraction; if the details inside of a module come
together to implement an easily understood function, the module is said to have cohesion

computing machine a device consisting of a control or processing mechanism that responds to
inputs by signaling its outputs; implicit in the machine is an encoding that gives meaning
to the inputs and outputs

configurable logic block (CLB) is the Xilinx-defined term for a logic block, which is a group of
slices and interconnect circuitry

control flow graph (CFG) is graph G = (V, E ) where the vertices (or nodes) V of the graph are
basic blocks and the directed edges indicate all possible paths that program could take at
run time

core see IP Core

375



376 GLOSSARY

correctness refers to a system that has been (mathematically) shown to meet a formal specifi-
cation

coupling is a measure of how modules of a system are related to one another

cross-compiler is a high-level language translator that runs on one platform (a specific proces-
sor, a C library, and an operating system) but produces executables for another platform

data-flow firing rule the operation only begins when all of its inputs are available and there is
a place for it to write its output

data-flow graph the network represented as a directed graph

degree of parallelism (DOP) can refer to: the number of concurrent operations at a single
moment of time; a time-varying function over the entire application; or the average of
a time-varying function over some task T which may not include the entire application

design is the digital circuit that is programmed (or configured) into an FPGA

diffused core see hard core

direct memory access (DMA) alleviating the processor from the task of transferring memory to
or from a compute core through the use of a intermediate DMA controller or by allowing
the compute core to directly access memory

double buffering refers to requests that are made while the previous request is still in transit

embedded computing system a computing system that is integral to a larger, enclosing prod-
uct; in contrast to general-purpose computing, the embedded computing system is not
intended to be an end-product in and of itself

evolvability refers to changes that are due to new features

external criteria are characteristics of a design that an end user can observe

feature a portion of software that is a candidate for hardware implementation (by candidate we
mean the hardware implementation is much faster than the software implementation)

fine-grain parallelism means that the subtasks ti are relatively small, maybe the equivalent of a
few instructions

formal functional description of a module meaning the behavior is either described mathe-
matically (in terms of sets and functions) or otherwise codified, such as a completed C
subroutine or a behavioral description in VHDL

formal interface is the module’s name and an enumeration of its operations including, for each
operation, its inputs (if any), outputs (one or more), and name

FPGA Field-Programmable Gate Array

general interface includes the formal interface and any additional protocol or implied com-
munication (through shared, global memory, for example)

general-purpose computing system is a product itself and, as such, the end-user directly inter-
acts with it
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hard core is an FPGA-specific term for an IP core where the logical operations and intercon-
nection have been specified and mapped to the components of a particular device; thus,
the core has a fixed shape and location on the chip

hardware description language (HDL) is a programming language used to describe the behav-
ior of hardware and is the most common form of design entry today

hardware refers to the physical implementation of a computing machine

HDL see hardware description language

high speed serial transceivers are devices that serialize and deserialize parallel data over a
serial channel

host see host machine

host machine (cross-compiling) when cross-compiling a program, the system that will run the
compiler tools for a particular target

host machine (networking) the name for a single machine, in networking terms, that is con-
nected to the Internet through a local network

implementation of a module is some realization of the module’s intended functionality

implicit functional description of a module refers to the a module’s description that is univer-
sally understood, such as the module “FullAdder”

informal functional description of a module meaning its intended behavior is described in
comments, exposition, or narrative

instance of a module is a use of an implementation

instantiate means to make a copy of an instance

instrumentation when a compiler or synthesis tool adds extra functionality to a task to help
determine its characteristics within an application; for example, tasks are often instru-
mented to measure the amount of time spent completing the task or how much time is
spent idle

interface is the set of rules that govern this interaction between two entities (for example, the
interaction between a processor and an I/O device)

internal criteria are characteristics that are inherent in the structure or organization of the
design, but not necessarily directly observable by the user

Internet Protocol a technology-independent, packet-based protocol used for transferring data
across multiple networks

interoperability refers to a system design that works well with other devices

IP Internet Protocol

IP see IP core

IP core intellectual property that refers to a hardware specification which, depending on how
it is expressed, can be used to manufacture an integrated circuit (hard core) or configure
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the resources of an FPGA (soft core); diffused IP core is a hard core embedded in an FPGA
integrated circuit

legal order of subtasks to be an ordering that produces the same results as total order T for all
inputs.

link layer (data link layer) is depicted as being closely integrated with the physical layer; it has
the responsibility of not only communicating with the physical layer but also monitoring
the physical layer for anomalies or errors

logic block is a group of several logic cells along with special-purpose circuitry, such as an
adder/subtractor carry chain

logic cell is a low-level building block of an FPGA which consists of a look-up table and a D
flip-flop storage element

maintainability refers to the ability to fix problems that arose from unspecified behavior

mapping (also known as map) the process of grouping gates and assigning functionality to
FPGA primitives

marshaling hardware and software implementations have different views of the state of the
machine; marshaling is the process of explicitly organizing the transfer of state between
the two

module any self-contained operation that has an interface and some functional description

module is any self-contained operation that has: a name, an interface, and some functional
description; it can refer to hardware, software, or even something less concrete

monitor is a primitive type of debugger that is interrupt-driven; either the processor is inter-
rupted or the application being debugged traps to the debugger; also, a monitor usually
only supports the most basic functionality, such as reading/writing absolute addresses,
setting breakpoints, and manipulating registers

netlist is a computer representation of a collection of logic units and how they are to be
connected

network layer provides connectivity beyond two directly connected hosts, the most common
being the Internet Protocl in TCP/IP

network topology is the underlying point-to-point relationship between each host on the
network which can be modeled as a graph

parallel multiple instances of components are used and some operations may happen concur-
rently

partial order when no specific order is imposed for subtasks

partitioning the process of decomposing an application into multiple implementations (such
as hardware and software implementations)

physical layer is the lowest layer of the network protocl stack and is responsible for transmitting
and receiving real-world, physical signals from outside the device
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pipeline balancing refers to the introduction of buffers so that a network of computations does
not stall

placement the next step in the back-end tool flow after map, during which the FPGA primitives
in the netlist are assigned to specific blocks on a particular FPGA

platform FPGA an FPGA device that includes sufficient resources and functionality to host an
entire system on a single device

portability refers to a system design that can move to new hardware or software platforms

processor is hardware that implements the sequential execution model

program software written in a specific programming language that is the representation of
desired machine behavior

programmable I/O the processor performs all requests on behalf of the compute core; specifi-
cally related to transfers between memory and the compute core

refactoring is the task of looking at an existing design and rearranging the groupings and
hierarchy without changing its functionality

regression testing is a sometimes automated testing procedure that might be simulation driven
(i.e., test benches), or it may be a set of systems that wraps around the component and
exercises its functionality

regular refers to the point of view of any vertex in the graph; the relative positions of every other
vertex in the network are the same

reliability in terms of hardware means that the system behaves correctly in the presence of
physical failures

repairability refers to fixing situations where the behavior was specified but the implementa-
tion was incorrect

resilience accepts the fact that there will be errors and the design “works around” problems
even if it means working in a degraded fashion

router is a device to support communication across two similar technologies but different
networks

routing (also known as route) is the process after placement, during which wire segments are
selected and passing transistors are set

sequential the same components are reused over time and the the results are the accumulation
of a sequence of operations

simulation the process of translating an HDL source into a form suitable for a general-purpose
processor to mimic the hardware

slice is the Xilinx-defined term for a group of logic cells

soft core is an FPGA-specific term for an IP core where the logical operations and interconnec-
tion is specified but these operations have not been mapped to a particular device
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software is a specification that describes the behavior of the machine, generally written in a
programming language (such as C, MATLAB, Java, etc.)

software reference design is a piece of software where the functionally mimics the behavior of
the whole system, even hardware modules that have not been implemented yet

spatial in hardware designs, multiple threads of control are able to operate simultaneously

stall occurs in two cases: whenever a computation unit has some, but not all, of its inputs, or
when it does not have the ability to store its output

stand-alone C is a program that runs without the support of any additional system software

state (of an application) is all of the data associated with an application’s data and part of
the system’s storage; this includes all of the data stored in registers, program counter,
condition codes, RAM, and configuration registers in I/O devices

switch is an intermediate device used to conenct two or more hosts together to support
communication

switch box is used to route between the inputs/outputs of a logic block to the general on-chip
routing network along with passing signals from wire segment to wire segment

synthesis the process of generating the logic configuration for the specified device from an
HDL source

system software refers to any software that assists the application, usually by adding a software
interface to access the hardware

target see target machine

target machine in cross-compiler terms, the processor and operating environment for the
embedded system

top-down approach is a form of system design where a design is described at the top level
as consisting of smaller subcomponents, which are described by still smaller subcompo-
nents, down to the smallest component

totally ordered a composed sequence of n subtasks 〈t0, t1, ..., tn−1〉 in which ti is started before
ti+1 for all i

transport layer provides support between the application and the network layer; it provides
a specific type of service such as a reliable, continuous connection or a packet-based
interface

verifiability is the degree to which parts of the system can be formally verified, that is, proven
correct
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data stream (SIMD), 251
Single instruction stream, single data

stream (SISD), 251
Single program multiple data

(SPMD), 252
SISD, see Single instruction stream,
single data stream
Size, performance metric, 17
Slice

logic cells, 52
Xilinx Virtex 5, 82–83

Small computer system interconnect
(SCSI), 176

SNMP, see Simple Network
Management Protocol

Soft block, 22
Soft core, 22
Software

definition, 7, 154
design, see System design

Software Design Kit (SDK), Xilinx, 36,
39, 177–178

Software reference design, 130
Sparc Improved Boot Loader (SILO),

161
Spatial design

debugging
ChipScope

Analyzer Pro, 286–289
hardware core modification,

283–286
integrated controller,

283–284

integrated logic analyzer,
283–286

inferring components, 280–281
latches versus flip-flops,

279–280
sensitivity list, 279
simulation, 278–281
software addressable registers,

281–282
overview, 245–246
parallelism

degree of parallelism, 250
granularity, 247–250
identification

dependence, 258–262
ordering, 256–258
uniform dependence vectors,

262–254
spatial organizations, 250–256
spatial parallelism with

platform
field-programmable gate
arrays

hardware cores, 266–271
overview, 264–266
parallelism within designs,

271–272)
sequential versus parallel, 246–247
Very High-Speed Integrated

Circuit Hardware
Description Language for
spatial design

constants and generics,
273–274

design constraints, 277–278
generate statements, 276–277
user-defined types, 274–276

Spatial implementation, 152–153
Specifications, design, 11
Spectrometer, platform

field-programmable gate
array example, 25–27

Speed
custom compute cores, 146–147
performance metric, 13–15

Speedup, partitioning, 206–207
SPI, see Serial Peripheral Interface
SPMD, see Single program multiple

data
SRAM, see Static random access

memory
SSA, see Static single assignment
SSL, see Secure Socket Layer
Stall, 294
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Static random access memory
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Static single assignment (SSA), 259
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field-programmable gate
array, 51

Structural/data flow circuit, 59, 68
Subroutine, definition, 202
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Network, 298
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304–305

Synthesis, netlist file output, 74
System bus, 139
System design
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cohesion, 125
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disadvantages, 148
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design quality, 117–120
hardware design
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field-programmable gate
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modules and interfaces, 120–123
overview, 115–116
platform field-programmable gate
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base system

augmentation, 167
building, 166, 169

core generator
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FIFO generation, 170–171
user logic template, 171–175

Create/Import Peripheral
wizard for hardware core
configuration, 170

cross-compiling Linux, 187–190
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libraries, 184–187

embedding of GNU/Linux
system

GNU release process, 179,
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menuconfig, 183–184
Unix filesystem organization,

178–180
floating point adder example,

169
hardware core

connection to base system,
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project file modification,
175–176

Linux booting on ML-510,
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testing
overview, 176–177
Software Design Kit, 177–178

Xilinx Embedded Development
Kit and IBM CoreConnect
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peripherals, 165–166
processors, 163
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Xilinx Platform Studio project
files
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specification, 168
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overview, 167–168
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software design
cross-development tools,

158–159
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159–161
options, 154–156
overview, 153
root filesystem, 156–158
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SystemC, 73
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Protocol/Internet Protocol

Telnet, 357–358
Temporal implementation, 151–152

Test bench, VHDL, 58
Test vector, VHDL, 58
Thread-level parallelism (TLP), 249
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TLP, see Thread-level parallelism
Top-down approach, 120, 150–152
Top-level cell, 74
Total energy, performance metric,

15–16
Totally ordered subtasks, 257
Transceiver

high-speed serial transceiver, 57
overview, 57
Xilinx Virtex 5, 85–86
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Transmission Control
Protocol/Internet Protocol
(TCP/IP), 349–350,
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352

Trapped state, partitioning, 220–221
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UDP, see User Datagram Protocol
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(UART), 141–142, 165, 167,
347

Universal Serial Bus (USB),
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346

Unix, filesystem organization,
178–180

USB, see Universal Serial Bus
User constraints file (UCF), 168–169
User Datagram Protocol (UDP), 352

Vector parallelism, 252–253
Verifiability, design quality, 119
Verilog

adder circuit examples
1-bit full adder, 69
2-bit full adder, 70–71
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user-defined types, 274–276

VHDL, see Very High-Speed
Integrated Circuit
Hardware Description
Language

Virtex 5, see Xilinx Virtex 5
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von-Neumann stored-program

compute model, 8

World Wide Web (WWW), 358
WWW, see World Wide Web

Xilinx ChipScope, see ChipScope
Xilinx core generator, see CoreGen
Xilinx Embedded Development Kit,

see Embedded
Development Kit

Xilinx FX130T, 315
Xilinx Integrated Software

Environment, see
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Environment

Xilinx Microprocessor Debugger
(XMD), 39

Xilinx ML-510
Linux booting, 192–193
model system, 24

Xilinx Platform Studio (XPS)
Create/Import Peripheral wizard,
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downloading hardware and

software, 39–40
graphical user interface

launching, 29–35
overview, 34–36

installation, 28–29
project files

microprocessor hardware
specification, 168

microprocessor software
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user constraints file, 168–169

Software Design Kit, 36, 39
software platform windows, 36–38

Xilinx Synthesis Tool (XST), 88–91
Xilinx Virtex 5
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configurable logic block, 83
digital signal processing block

slices, 84–85
groups of devices, 81
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look-up table, 82
PowerPC 440 processor, 87–88
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Debugger
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